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Preface

Frontiers of Higher Order Fuzzy Sets

Uncertainty is the result of imperfection of knowledge about a state or a process.
Inevitable errors that occur in the process of measurement on one hand, together
with the limited accuracy and resolution level of measuring instruments on the other
hand, constitute empirical uncertainty level. Natural language as the main carrier of
human knowledge, with its intrinsic ambiguity and vagueness, results in cognitive
uncertainty level. Sometimes, knowledge is intentionally made uncertain for specific
strategic usages, which constitutes the social level of uncertainty.

Real world problems require exploitation of frameworks that enable handling
different types and levels of uncertainty. Type-2 fuzzy sets enable handling intra- and
inter-uncertainties, i.e., uncertainty of a subject and uncertainties among different
subjects.

In the implementation of fuzzy systems, in addition to the explicit reasons of un-
certainty associated with membership grades related to the empirical and cognitive
levels of uncertainty, implicit sources of uncertainty are to be recognized that rooted
at the methods that may be used to tune the membership values. Uncertain data or
uncertain resources that may be used for tuning the membership grades themselves
will introduce new sources of uncertainties. Type-2 fuzzy sets enable capturing the
uncertainty on membership functions of fuzzy sets through blurring the member-
ship function of type-1 fuzzy sets. In general, as the order of fuzzy sets increases,
their degrees of freedom increase, and hence, provide more potential for handling
uncertainties.

The book intends to be a valuable source of recent knowledge about higher types
and orders of fuzzy sets. New capable fuzzy frameworks are discussed and their
applicability is shown. There are elaborations on providing a basis for selecting fuzzy
sets of higher order which are suitable for addressing various types of uncertainty
issues in problems. New areas in which fuzzy sets would be applicable are also
introduced.

This book outlines notable achievements in the realm of higher order and higher
type of fuzzy set to date. The editors hope the materials covered in this book, provided
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vi Preface

by the leading scholars in the field, motivate and accelerate future progress and
introduce new branches off the fuzzy set theory. Of course, there are still many related
theoretical and applied issues that need to be addressed . This book is organized in
three parts.

Part 1 is dedicated to the theoretical foundations of type-2 fuzzy sets. In Chap. 1,
Tahayori and Sadeghian have introduced a disjointing difference operator on fuzzy
sets. Based on the properties of their proposed operator, a novel and easy algorithm
for performing the union and intersection operations on type-2 fuzzy sets with respect
to min t-norm and max t-conorm is proposed. Through defining robustness in terms of
the maximum output tolerance of the system to a given output deviation, Biglarbegian
in Chap. 2, has presented a rigorous mathematical methodology for the robustness
analysis of Interval Type-2 Takagi-Sugeno-Kang fuzzy logic systems.

Chapters in Part 2 discuss different methodologies of fuzzy modeling. Pedrycz
in Chap. 3 has investigated potential and algorithmic implications of fuzzy sets of
higher order and higher type, specially fuzzy sets of type-2 and order-2, in the realm
of fuzzy modeling. In Chap. 4, Türkşen has discussed a framework for modeling the
human decision-making process with type-1 and full type-2 fuzzy logic methodology.
He has also proposed a new algorithm for generating type-2 membership value
distributions for the development of second order fuzzy system models. Chapter 5,
by Liu and Gomide, introduces participatory evolutionary learning as a framework
for data driven fuzzy modeling. Despite the focus on participatory learning and the
selective transfer to build first order fuzzy rule-based models, the use of the genetic
fuzzy systems to develop higher order fuzzy rule-based models is also discussed.
Chapter 6, by Frantz et al., provides an instance that shows the strong potential
of IT2FS to establish a comparatively simple aggregation of opinions into a fuzzy
set. They have proposed a mechanism to integrate numerous opinions to model the
establishment of economic institutional rules.

Finally, chapters in Part 3 introduce novel application of higher order fuzzy sets.
Livi and Rizzi, in Chap. 7, have defined a framework for designing and evaluating
uncertainty preserving transformation procedures for generating type-2 fuzzy sets
from raw input data. They have applied their method on the set of labeled graphs
as input data. Yazdanbakhsh and Dick, in Chap. 8, have studied the performance of
adaptive neuro-complex-fuzzy inference system (ANCFIS) which is a neuro-fuzzy
system that employs complex fuzzy sets for time-series forecasting. Chapter 9 by
Niewiadomski and Superson has enhanced basics of type-2 linguistic summariza-
tion of data. They have introduced new forms of linguistic summaries that use type-2
fuzzy sets as representations of linguistic information. Castillo, in Chap. 10, has
presented a general framework for designing interval type-2 fuzzy controllers based
on bio-inspired optimization techniques. He has shown how bio-inspired optimiza-
tion techniques can be used to obtain results that outperform traditional approaches
in the design of optimal type-2 fuzzy controllers. In Chap. 11, Melin has reported
some experiments that clearly show that fuzzy edge detectors are a good choice to
improve the performance of neural or other types of recognition systems. Hence,
she has argued that the recognition rate of the neural networks can be used as an
edge detection performance index. Jamshidi et al., in Chap. 12, attempts to construct
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a bridge between system-of-systems and data analytic to develop reliable models
for operating, nonhomogeneous systems. They have applied big data analytic ap-
proaches to predict or forecast the behavior of stock market and renewable energy
availability.

The editors would also like to express their sincere thanks to the distinguished
authors for their contributions. The editors would also like to acknowledge the in-
valuable, continuous assistance and advice from the Springer editorial team, Brett
Kurzman, Rebecca Hytowitz, and Charles Glaser.
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Technology, Łódź, Poland
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About the Book

• The book presents new variations of fuzzy set frameworks and new areas of
applicability of fuzzy theory

• It discusses different methodologies for fuzzy modeling
• It studies Perceptual Computing with higher order fuzzy sets

This book is a valuable source of recent knowledge about higher types and orders of
fuzzy sets. New capable fuzzy frameworks are discussed and their applicability is
shown. Moreover, there are elaborations on providing a basis for selecting fuzzy sets
of higher order which are suitable for addressing various types of uncertainty issues
in problems. New areas in which fuzzy sets would be applicable are also introduced.

In the book, efficient algorithms for performing operations on general type-2
fuzzy sets (T2FSs) are proposed. Also, rigorous mathematical methodology for the
robustness analysis of interval type-2 fuzzy logic systems is presented. Participatory
evolutionary learning as a framework for data driven fuzzy modeling and implications
of fuzzy sets of higher order and higher type, in the realm of fuzzy modeling is studied.
Moreover, a general framework for designing interval type-2 fuzzy controllers based
on bio-inspired optimization techniques is discussed in the book. Also, the potential
of IT2FS to establish a comparatively simple aggregation of opinions into a fuzzy set
is studied. Uncertainty-preserving transformation procedures for generating T2FSs
from raw input data are introduced in the book. Moreover, new forms of linguistic
summaries that use T2FSs as representations of linguistic information are discussed.
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Chapter 1
A New Fuzzy Disjointing Difference Operator
to Calculate Union and Intersection of Type-2
Fuzzy Sets

Hooman Tahayori and Alireza Sadeghian

Abstract This chapter introduces a fuzzy disjointing difference operator. Based on
the ordering of the disjoint fuzzy sets of the real line, a novel algorithm for calculation
of the union and intersection of type-2 fuzzy sets with convex fuzzy grades using
min t-norm and max t-conorm is proposed. The algorithm can be easily extended to
the problems of ordering fuzzy numbers and calculation of the extended max and
min of fuzzy sets.

1.1 Introduction

In type-1 fuzzy sets (T1FSs), membership values are real numbers that are linearly
ordered. Although the membership values may be chosen from a partially ordered
set [1], in practice the values are from the unit interval [0, 1]. Hence, the operations
max and min can be easily exploited to determine the ordering of any pair of the
membership values. Consequently, calculating the union and intersection of T1FSs
using any t-norm and t-conorm operation is straightforward.

It has been argued in the literature that the membership functions of T1FSs are
precise and therefore they lack the ability to handle uncertainties [2–5]. Hence,
type-2 fuzzy sets (T2FSs) have been proposed as an extension to T1FSs to handle
uncertainties [4, 5]. It is also argued that the more imprecise or vague the data are
the better applicability of T2FSs can be assumed [5]. However, T2FSs advantage
comes at a cost which may hinder their applicability. In particular, T2FSs are more
complex than T1FSs, and importantly operations on T2FSs are more computationally
expensive.

In T2FSs, membership values are of T1FSs and extending t-norm and t-conorm
operations on them are not as straightforward as performing the same operations
on the membership grades in T1FSs. In particular, calculating their maximum and

H. Tahayori (�) · A. Sadeghian
Department of Computer Science, Ryerson University,
Toronto, ON M5B 2K3, Canada
e-mail: htahayor@scs.ryerson.ca
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2 H. Tahayori and A. Sadeghian

minimum cannot be achieved by direct exploitation of max and min operations. Ful-
filling such operations naturally demands for Zadeh’s extension principle [6] which
is known to be neither simple nor efficient [7]. There have been extensive efforts to
overcome the aforementioned difficulties associated with T2FSs. For example, [8, 9]
provide the underlying principle of T2FSs, and [7, 9, 21] elaborate on algorithms
to perform operations on T2FSs. The existing algorithms for operations on T2FSs
are not as efficient as the operations on T1FSs [14]. Moreover, most of the existing
algorithms are limited to T2FSs with normal convex fuzzy membership grades. That
is why despite their rather Boolean behavior in modeling uncertainties, a special
case of T2FSs, i.e., interval type-2 fuzzy sets (IT2FSs) [22], is more preferred by
researchers. Recently, shadowed fuzzy sets (SFSs) as another variation of T2FSs are
proposed [23, 24]. SFSs through redistribution of fuzziness associated with fuzzy
grades in shadowed sets [25] provide more freedom degrees for handling uncer-
tainties in comparison with IT2FSs but with lower computational complexity than
general T2FSs.

In this chapter, we introduce a novel algorithm for calculating the union and in-
tersection operations on T2FSs using min t-norm and max t-conorm. The underlying
idea is inspired by the concept of ordering the disjoint fuzzy sets of the real line. To
this end, we will define the disjointing difference operation on fuzzy sets based on
which we determine the minimum and maximum of the fuzzy membership grades.
The proposed algorithm can be easily extended to the problem of ordering fuzzy
numbers and calculation of the extended max and min of fuzzy sets.

The rest of this chapter is organized as follows. In Sect. 1.2, we provide a brief
review of the basics of T1FSs and T2FSs. We introduce the disjointing difference
operation on fuzzy sets and will investigate some of its properties in Sect. 1.3. The
proposed algorithm for performing union and intersection operations on T2FSs is
discussed in Sect. 1.4, and the conclusions are given in Sect. 1.5.

1.2 Preliminaries and Notations

A fuzzy set F in the universe of discourse X is characterized by its membership
function f : X → [0,1] that assigns a crisp number from unit interval [0, 1] to each
element of X. The support of fuzzy set F is defined to be SF = {x ∈ X|f (x) > 0}
while its height is HF = Sup

x∈X

(f (x)). A fuzzy set is normal if its height is 1 otherwise

it is considered as subnormal. The set CF = {x ∈ X|f (x) = HF } constitutes the core
of the fuzzy set F. Fuzzy set F is said to be empty if Sup

x∈X

(f (x)) = 0, i.e., HF = 0.

Fuzzy set F is convex if for all x1, x2 ∈ X and λ ∈ [0,1], f (λx1 + (1 − λ)x2) ≥
Min (f (x1), f (x2)). Given f : X → [0,1] and g : X → [0,1] be membership
functions of the fuzzy sets F and G that are defined on the same domain. F is a
subset of G, i.e., F is included in G, if for all x ∈ X, f (x) ≤ g(x).
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T2FS, F, a fuzzy set with fuzzy membership grades over the universe of discourse
X, is denoted as

F = {(x, Fx), x ∈ X, Fx = {(u, fx(u)), u ∈ [0,1], fx(u) ∈ [0,1]}}
= {

(x, (u, fx(u))), x ∈ X, u ∈ JF
x ⊆ [0,1], fx(u) ∈ [0,1]

}
, (1.1)

where x denotes primary variable and JF
x represents the primary membership values

of x in F. We refer to

Fx = {
(u, fx(u)), u ∈ JF

x ⊆ [0,1], fx(u) ∈ [0,1]
}

, (1.2)

which is a T1FS, as the fuzzy grade of x in F, and it is also known as secondary
membership function or secondary set [8]. The domain of fx constitutes the pri-
mary membership values of x ∈ X and if all uncertainty on membership values
disappear, the domain can be reduced to a point. The union of all primary member-
ship values constitutes a region known as footprint of uncertainty (FOU), that is,
FOUF = ⋃

x∈X

{(
x, JF

x

)}
. The amplitudes of the primary membership values, i.e.,

fx(u) are referred to as the secondary grades. In (1.2), if all fx(u) = 1 then F is
considered as a special case of T2FS that is known as IT2FS.

1.3 Fuzzy Disjointing Difference Operation

The difference of two sets, A and B, in the classical set theory is defined as A−B =
{x|x ∈ A and x /∈ B}. It is evident that based on the given difference definition,
A−B and B −A, are disjoint sets. The notion of the set difference can be extended
to the fuzzy sets using several proposed operators, e.g., see [26, 27]. However, the
common characteristic of these operators is the fact that they do not necessarily
result in disjointing fuzzy sets. Fuzzy sets F and G are disjoint if their intersection is
empty. However, since this condition is very restrictive; instead, the highest degree
of separation of two convex fuzzy sets F and G is defined as 1 − Sup

x∈X

(μF∩G(x))

(see [1]). In this section, we define a difference operation on fuzzy sets that leads to
disjoint fuzzy sets. Throughout the chapter, we assume all T1FSs are defined on real
line unless explicitly expressed otherwise. Initially we define packed fuzzy sets.

Definition 1: Fuzzy set F = {(x, f (x)), x ∈ R} defined on real line is packed if and
only if SF is a convex set.

The disjointing difference operation (DDO) on fuzzy sets of real line is then
defined as follows.

Definition 2: Let F = {(x, f (x)), x ∈ R} and G = {(x, f (x)), x ∈ R} be two fuzzy
sets of real line. The disjointing difference of fuzzy sets F and G, is the fuzzy set
F ′ = F − G = {(

x, f ′(x)
)
, x ∈ R

}
, where

f ′(x) =
⎧
⎨

⎩
f (x) f (x) > g(x)

0 otherwise
.
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Definition 3: Symmetrical difference of fuzzy sets F and G is defined as,
D = F�G = (F − G) ∪ (G − F) = ⋃

k

Dk , where Dm ∩ Dn 
= ∅, m 
= n.

In the case of F and G, which are two regular sets represented by their characteristic
functions, Definitions 2 and 3 are valid to denote their difference and symmetri-
cal difference. Theorem 1 in the following proves the main property of DDO, i.e.,
F ′ = F − G and G′ = G − F are disjoint.

Theorem 1: Let F ′ = F − G and G′ = G − F then F ′ ∩ G′ = ∅.

Proof: Assume F ′ ∩G′ 
= ∅, so ∃x ∈ X such that f ′(x)∧ g′(x) > 0, i.e., f ′(x) > 0
and g′(x) > 0. Based on Definition 2, f ′(x) > 0 connotes f (x) > g(x)and similarly
g′(x) > 0 means g(x) > f (x) that is a contradiction. �

Based on Definition 2, generally F ′ cannot be a packed fuzzy set. Figure 1.1a
shows an example where F ′ has ended in a single-packed fuzzy set; however Fig. 1.1b
demonstrates that F ′ is not necessarily a packed fuzzy set. In Theorem 2, we prove
that the disjointing difference of two fuzzy sets will in general result in a number of
packed-disjoint fuzzy sets.

Theorem 2: Let F and G be arbitrary fuzzy sets and F ′ = F − G 
= ∅. F ′ is
composed of a number of packed disjoint fuzzy sets, i.e., F ′ = F − G = ⋃

i F
′
i ,

where ∀i, F ′
i is packed fuzzy set and Fi

′ ∩ Fj
′ = ∅, i 
= j .

Proof: First, we prove that F ′ is composed of a set of packed fuzzy sets. Assume ∃i
such that F ′

i is not packed; hence, SF ′
i

is not convex, and is composed of a number
of intervals, i.e., SF ′

i
= ⋃

k>1 Sk
F ′

i
. Sk

F ′
i

is the kth interval that constitutes SF ′
i

and is
convex, so its underlying fuzzy set is a packed fuzzy set. This signifies that even if
F ′

i is not a packed fuzzy set, it is composed of a set of packed fuzzy sets.
To prove that the constituting packed fuzzy sets of F ′ are disjoint, we assume

∃i 
= j , F ′
i ∩ F ′

j 
= ∅ which means ∃x, f ′
i (x) > 0 and f ′

j (x) > 0. This indicates
that ∀x ∈ SF ′

i
∪ SF ′

j
, f (x) > g(x) and since SF ′

i
∩ SF ′

j

= ∅, based on Definition 1,

S
F
′

i
= SF ′

j
. �

Throughout the chapter, we refer to the fuzzy sets that are composed of a number
of packed fuzzy sets as compound fuzzy sets.

Theorem 3 proves that DDO on respectively a convex and arbitrary fuzzy set
results in a compound fuzzy set that each of its constituting packed fuzzy set is
convex. The obvious consequence of this theorem is that DDO of convex fuzzy sets
results in a compound fuzzy set with all of its constituting packed fuzzy sets convex.

Theorem 3: Let F be a convex fuzzy set and G an arbitrary fuzzy set, and let
F ′ = F − G = ⋃

i

F ′
i . Then for all i, F ′

i is a convex fuzzy set.

Proof: The proof is by contradiction. Imagine ∃i such that F ′
i is not convex. Given

x1, x2 ∈ SF ′
i
, where x1 ≤ x2. There should exist a x3 ∈ SF ′

i
, x1 ≤ x3 ≤ x2

such that f ′
i (x3) < min(F ′

i (x1), F ′
i (x2)). Based on Definition 2, x1, x2, x3 ∈

SF ′
i

implies that f ′
i (x1) = f (x1) > g(x1), f ′

i (x2) = f (x2) > g(x2), and
f ′

i (x3) = f (x3) > g(x3). F is convex; hence, f (x3) ≥ min(f (x1), f (x2)) and
consequently f ′

i (x3) ≥ min(F ′
i (x1), F ′

i (x2)). �
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Fig. 1.1 Disjoint difference of two convex fuzzy sets. (a) The difference has resulted in one packed
fuzzy set. (b) the difference has resulted in two disjoint packed fuzzy sets
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1.4 Fuzzy Disjointing Difference Operation to Calculate Join
and Meet of Fuzzy Grades

Let F= {
(x, (u, fx(u))), x ∈ X, u ∈ JF

x ⊆ [0,1], fx(u) ∈ [0,1]
}

and
G = {

(x, (u, gx(u))), x ∈ X, u ∈ JG
x ⊆ [0,1], gx(u) ∈ [0,1]

}
be the two T2FSs

defined in the universal set X. The membership value of x in F and G are, respectively
Fx = {

(u, fx(u)) , u ∈ Jx
F ⊆ [0, 1], fx(u) ∈ [0, 1]

}
and

Gx = {
(u, gx(u)) , u ∈ Jx

G ⊆ [0, 1], gx(u) ∈ [0, 1]
}
. The membership degree of

x in the union and intersection of F and G, using min t-norm and max t-conorm
respectively represented by ∧ and ∨, is calculated through exploitation of Zadeh’s
extension principle as [28]

μ
F∪G

(x) = Fx � Gx =
{(

θ , Sup
u∧w=θ

(f (u) ∧ g(w))

)
, u, w ∈ U

}
(1.3)

μ
F∪G

(x) = Fx � Gx =
{(

θ , Sup
u∨w=θ

(f (u) ∧ g(w))

)
, u, w ∈ U

}
, (1.4)

where � and � denote the so-called join and meet operations [14, 28]. As evident
from (1.3) and (1.4), the join and meet operations through the direct application
of Zadeh’s extension principle are computationally and conceptually complex. The
main goal of the chapter is to propose an algorithm for performing the join and
meet operations based on the properties of disjoint fuzzy grades. To this end, in the
following, we study some properties of join and meet of two fuzzy grades.

Theorem 4: Let F and G be packed fuzzy grades of x respectively in T2FSs,
F and G, where SF∩G = [

si, si
] 
= ∅, then

(i) ∀θ > si then μF�G(θ ) = 0,

(ii) ∀θ < si then μF�G(θ ) = 0,

Proof: Using (1.3) and calculating the meet operation we have

μ
F�G

(θ ) = Sup
u∧w=θ

(f (u) ∧ g(w)) = Sup
u=θ
w≥θ

(f (θ ) ∧ g(w)) ∨ Sup
w=θ
u≥θ

(f (u) ∧ g(θ ))

=
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)
. (1.5)

Given θ > si, we know that f (θ ) ∧ g(θ ) = 0. Without loss of generality, we
assume f (θ ) = 0 and since F is packed fuzzy set; hence, ∀θ > si, f (θ ) = 0 and
consequently ∀θ > si, Sup

u≥θ

(f (u)) = 0; hence,

μ
F�G

(θ ) =
(

0 ∧ Sup
w≥θ

(g(w))

)
∨ (g(θ ) ∧ 0) = 0. (1.6)
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Proof of (ii) for the join operation is similar. �
Corollary 1: Let F and G be packed fuzzy grades of x respectively in T2FSs, F and
G, then

(i) F ∩ G ⊆ F � G ⊆ F ∪ G, (1.7)

(ii) F ∩ G ⊆ F � G ⊆ F ∪ G. (1.8)

Proof: We will first prove (i), and then (ii) can also be proved similarly. First, we
will prove that F ∩ G ⊆ F � G. Based on (1.3) we have

μ
F�G

(θ ) =
(

f (θ )∧Sup
w≥θ

(g(w))

)
∨
(

g(θ )∧Sup
u≥θ

(f (u))

)

=
(

(f (θ ) ∧ g(θ ))∨
(

f (θ ) ∧ Sup
w≥θ

(g(w))

))

∨
(

(f (θ ) ∧ g(θ ))∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

))
.

= (f (θ ) ∧ g(θ ))∨
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ )∧Sup
u≥θ

(f (u))

)
(1.9)

It is evident that μF�G(θ ) ≥ (f (θ ) ∧ g(θ )).
To prove that F � G ⊆ F ∪ G, we have

μ
F�G

(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

= (f (θ ) ∨ g(θ )) ∧
(

f (θ ) ∨ Sup
u≥θ

(f (u))

)
∧
(

g(θ ) ∨ Sup
w≥θ

(g(w))

)

∧
(

Sup
u≥θ

(f (u)) ∨ Sup
w≥θ

(g(w))

)

= (f (θ ) ∨ g(θ )) ∧
(

Sup
u≥θ

(f (u))

)
∧
(

Sup
w≥θ

(g(w))

)

∧
(

Sup
u≥θ

(f (u)) ∨ Sup
w≥θ

(g(w))

)

= (f (θ ) ∨ g(θ )) ∧
(

Sup
u≥θ

(f (u))

)
∧
(

Sup
w≥θ

(g(w))

)
≤ (f (θ ) ∨ g(θ )). �

(1.10)

Corollary 2: Let F and G be fuzzy grades of x respectively in T2FSs, F and G, where
SF = SG, then SF�G= SF�G = SF .

Proof: Let θ∈SF , then f (θ ) 
= 0, g(θ ) 
= 0; hence, Sup
u≥θ

(f (u)) > 0, Sup
w≥θ

(g(w)) > 0

and consequently,
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μF�G(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)
> 0. However, for all

θ /∈ SF , both f (θ ) = 0 and g(θ ) = 0; hence,

μ
F�G

(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)
= 0. �

Corollary 3: Let F and G be packed fuzzy grades of x respectively in T2FSs, F and
G, then HF�G ≤ HF ∧ HG and HF�G ≤ HF ∧ HG.

Proof: With respect to the second part of the proof provided for Corollary 1, it is
straightforward.

1.4.1 Calculation of the Join and Meet of Disjoint Fuzzy Grades

Real numbers are linearly ordered; hence, there is no doubt of finding minimum and
maximum of a set of real numbers. Definition 4, however, describes how ordering
can be extended on the intervals of real line.

Definition 4 [29]: Let A = [
a, a

] = {
x ∈ R|a ≤ x ≤ a

}
and B = [

b, b
] ={

x ∈ R|b ≤ x ≤ b
}

be two intervals defined on the real line. Then A < B if and
only if a < b.

Considering the interval ordering (see Definition 4) in Theorem 5, we prove that
given two disjoint fuzzy grades, finding their meet (join) can be reduced to the
identification of the fuzzy grade that is located to the left/right of the other. It should
be stressed that since the fuzzy grades are disjoint, there is no ambiguity regarding
their ordering.

Theorem 6 hence provides a generalization of Theorem 5 over two disjoint com-
pound fuzzy sets. Although ordering compound fuzzy grades is not straightforward,
in Theorem 6 it is shown that calculation of the join (meet) of two disjoint compound
fuzzy grades can be reduced to the calculation of the join (meet) of all possible pairs
of their constituting packed fuzzy sets.

Theorem 5: Let F and G be disjoint packed fuzzy grades of x respectively in T2FSs,
F and G with the heights of HF and HG and SF < SG, then F � G = F ∧ HG and
F � G = G ∧ HF .

Proof: Using (1.3) and calculating the meet of the fuzzy grades F and G, the
membership value of θ in the result is

μ
F�G

(θ ) = Sup
u∧w=θ

(f (u) ∧ g(w)) = Sup
u=θ
w≥θ

(f (θ ) ∧ g(w)) ∨ Sup
w=θ
u≥θ

(f (u) ∧ g(θ ))

=
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)
. (1.11)

We evaluate (1.11) in three cases:
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Case I: θ < SF . In this region, f (θ ) = 0 and g(θ ) = 0; hence, μF�G(θ ) = 0.
Case II: θ ∈ SF . Since F ∩ G = ∅ and SF < SG, we have g(θ ) = 0 and
Sup
w≥θ

(g(w)) = HG. So

μ
F�G

(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

= (f (θ ) ∧ HG) ∨
(

0 ∧ Sup
u≥θ

(f (u))

)
= f (θ ) ∧ HG. (1.12)

Case III: θ > SF . We have f (θ ) = 0 and Supu≥θ (f (u)) = 0. So

μ
F�G

(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

=
(

0 ∧ Sup
w≥θ

(g(w))

)
∨ (g(θ ) ∧ 0) = 0. (1.13)

The proof for the joint operation is similar. �
Theorem 6: Let F = ⋃M

i=1 Fi and G = ⋃N
j=1 Gj be disjoint compound fuzzy

grades of x respectively in T2FSs, F and G, where M , N ≥ 1 and SFi
< SFi+1 and

SGj
< SGj+1 , then

(i) F � G =
(

M⋃

i=1

Fi

)

�
⎛

⎝
N⋃

j=1

Gj

⎞

⎠ =
⋃

i,j

(
Fi � Gj

)

=
(
⋃

i

(

Fi ∧
(

∨
SGj

>SFi

HGj

)))

∪
⎛

⎝
⋃

j

(

Gj ∧
(

∨
SFi

>SGj

HFi

))⎞

⎠

(1.14)

(ii) F � G =
(

M⋃

i=1

Fi

)

�
⎛

⎝
N⋃

j=1

Gj

⎞

⎠ =
⋃

i,j

(
Fi � Gj

)

=
(
⋃

i

(

Fi ∧
(

∨
SGj

<SFi

HGj

)))

∪
⎛

⎝
⋃

j

(

Gj ∧
(

∨
SFi

<SGj

HFi

))⎞

⎠.

(1.15)

Proof: We will first prove (i), and then (ii) can also be proved similarly. Fl ∩ Fk =
∅, l 
= k, Gl ∩ Gk = ∅, l 
= k. Since F and G are disjoint, for any θ either θ ∈ SF or
θ ∈ SG. Given θ ∈ SFi

, hence ∀j , gj (θ ) = 0,
Case I: Given θ ∈ SFi

, 1 ≤ i ≤ M . Since F is a compound fuzzy grade, Fl ∩ Fk =
∅, l 
= k. Moreover, F and G are disjoint; hence, gj (θ ) = 0, 1 ≤ j ≤ N , so
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μ
F�G

(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

=
(

fi(θ ) ∧
(

Sup
w≥θ

(
gj (w)

) ∨ ... ∨ Sup
w≥θ

(gN (w))

))
, SGj

> SFi

= (
fi(θ ) ∧ (

HGj
∨ ... ∨ HGN

))
, SGj

> SFi

= (
fi(θ ) ∧ HGj

) ∨ ... ∨ (
fi(θ ) ∧ HGN

)
, SGj

> SFi
. (1.16)

Considering Theorem 5, then for all Gj , SGj
> SFi

(Fi � Gj ) ∪ . . . ∪ (Fi � GN ) = (Fi ∧ HGj
) ∪ . . . ∪ (Fi ∧ HGN

). (1.17)

Hence, for all θ ∈ SFi
,

μ(Fi�Gj )∪...∪(Fi�GN )(θ ) = (fi(θ ) ∧ HGj
) ∪ . . . ∪ (fi(θ ) ∧ HGN

). (1.18)

Case II: Given θ ∈ SGj
, 1 ≤ j ≤ N . Since G is a compound fuzzy grade, Gl ∩Gk =

∅, l 
= k. Moreover, F and G are disjoint; hence, fi(θ ) = 0, 1 ≤ i ≤ M , so

μF�G(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

=
(

gj (θ ) ∧
(

Sup
w≥θ

(f i(w)) ∨ . . . ∨ Sup
w≥θ

(f M (w))

))
, SFi

> SGj

= (
gj (θ ) ∧ (

HFi
∨ . . . ∨ HFM

))
, SFi

> SGj

= (
gj (θ ) ∧ HFi

) ∨ . . . ∨ (
gj (θ ) ∧ HFM

)
, SFi

> SGj
, (1.19)

Based on Theorem 5, then for all Fi , SFi
> SGj

(Gj � Fi) ∪ . . . ∪ (Gj � FN ) = (Gj ∧ HFi
) ∪ . . . ∪ (Gj ∧ HFN

). (1.20)

Hence, for all θ ∈ SGj
,

μ(Gj�Fi )∪...∪(Gj�FN )(θ ) = (gj (θ ) ∧ HFi
) ∨ . . . ∨ (gj (θ ) ∧ HFN

). (1.21)

Case III: Given 
 ∃i, j such that θ ∈ SFi
or θ ∈ SGj

, hence ∀i, j , fi(θ ) = gj (θ ) = 0
and consequently μFi�Gj (θ ) = 0. �
Corollary 4: Let F and G be disjoint fuzzy grades as defined in Theorem 6, then

(i) ∀θ ∈ SFi
, i ∈ {1,2, . . . , M} , where SFi

> SGN
then μF�G(θ ) = 0

(ii) ∀θ ∈ SFi
, i ∈ {1,2, . . . , M} , where SFi

< SGN
then μF�G(θ ) = 0

Proof: Based on Theorem 6, the proof is straightforward.
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1.4.2 Join and Meet Operations on Non-Disjoint Convex
Fuzzy Grades

Theorem 6 proved in Sect. 1.4.1 is restricted to disjoint fuzzy grades. However, in this
section we elaborate on convex fuzzy grades that are not essentially disjoint. Using
the fuzzy disjointing difference operator and the properties proved in Theorems 1–3
and corollaries 1–3, we will extend Theorem 6 to non-disjoint convex fuzzy grades.
We will show that calculating join (meet) of two fuzzy grades can be fulfilled based
on the join (meet) of the disjoint fuzzy grades corresponded to the fuzzy grades that
are calculated using the introduced DDO.

Theorem 7: Let F and G be normal convex fuzzy grades of x respectively in T2FSs,
F and G, where CF 
⊆ CG, CG 
⊆ CF , F ′ = F −G = ⋃M

i=1 Fi
′ and G′ = G−F =⋃N

j=1 G′
j ,

(i) F � G = (
F ′ � G′) ∪ (F ∩ G) (1.22)

(ii) F � G = (
F ′ � G′) ∪ (F ∩ G). (1.23)

Proof: We will prove (i), and (ii) can be proved in the same manner. We investigate
μF�G(θ ) in three cases. In each case we compare membership grades in F �G with(
F ′ � G′) ∪ (F ∩ G).

(a) Given f (θ ) > g(θ ), then the membership grade of θ in F � G is

μF�G(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

=
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨ (g(θ ))

= (f (θ ) ∨ g(θ )) ∧
(

g(θ ) ∨ Sup
w≥θ

(g(w))

)
. (1.24)

Knowing f (θ ) > g(θ ), indicates f ′(θ ) = f (θ ) and g′(θ ) = 0; hence, the
membership grade of θ in (F ′ � G′) ∪ (F ∩ G) is

μ(F ′�G′)∪(F∩G)(θ ) =
(

f ′(θ ) ∧ Sup
w≥θ

(
g′(w)

))∨
(

g′(θ ) ∧ Sup
u≥θ

(
f ′(u)

)) ∨ (f (θ ) ∧ g(θ ))

=
(

f ′(θ ) ∧ Sup
w≥θ

(
g′(w)

)) ∨ (f (θ ) ∧ g(θ ))

=
(

f ′(θ ) ∧ Sup
w≥θ

(
g′(w)

)) ∨ g(θ )

= (
f ′(θ ) ∨ g(θ )

) ∧
(

Sup
w≥θ

(
g′(w)

) ∨ g(θ )

)
. (1.25)
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Since CG 
⊆ CF , hence ∃θ ′s.t.g′(θ ′) = 1. Consequently, if θ ≤ θ ′, then (1.20)
and (1.21) are

μF�G(θ ) = (f (θ ) ∨ g(θ )) ∧
(

g(θ ) ∨ Sup
w≥θ

(g(w))

)
= (f (θ ) ∨ g(θ )) (1.26)

μ(F ′�G′)∪(F∩G)(θ ) = (
f ′(θ ) ∨ g(θ )

) ∧
(

Sup
w≥θ

(
g′(w)

) ∨ g(θ )

)

= f ′(θ ) ∨ g(θ ) = f (θ ) ∨ g(θ ).

(1.27)

However, if θ ≥ θ ′, due to the convexity of G, Supw≥θ (g(w)) = g(θ ); hence, (1.20)
and (1.21) are

μF�G(θ ) = (f (θ ) ∨ g(θ )) ∧
(

g(θ ) ∨ Sup
w≥θ

(g(w))

)

= (f (θ ) ∨ g(θ )) ∧ g(θ ) = g(θ ) (1.28)

μ(F ′�G′)∪(F∩G)(θ ) = (
f ′(θ ) ∨ g(θ )

) ∧
(

Sup
w≥θ

(
g′(w)

) ∨ g(θ )

)

= (
f ′(θ ) ∨ g(θ )

) ∧ g(θ ) = g(θ ). (1.29)

(b) Given g(θ ) > f (θ ), then the membership grade of θ in F � G is

μF�G(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

= f (θ ) ∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

= (f (θ ) ∨ g(θ )) ∧
(

f (θ ) ∨ Sup
u≥θ

(f (u))

)
. (1.30)

Knowing g(θ ) > f (θ ), indicates g′(θ ) = g(θ ) and f ′(θ ) = 0; hence, the
membership grade of θ in

(
F ′ � G′) ∪ (F ∩ G) is

μ(F ′�G′)∪(F∩G)(θ ) =
(

f ′(θ ) ∧ Sup
w≥θ

(
g′(w)

))∨
(

g′(θ ) ∧ Sup
u≥θ

(
f ′(u)

))∨(f (θ ) ∧ g(θ ))

=
(

g′(θ ) ∧ Sup
u≥θ

(
f ′(u)

)) ∨ f (θ )

= (
g′(θ ) ∨ f (θ )

) ∧
(

Sup
u≥θ

(
f ′(u)

) ∨ f (θ )

)
. (1.31)

Since CF 
⊆ CG, hence ∃θ ′ s.t. f ′(θ ′) = 1. Consequently, if θ ≤ θ ′, then (1.26) and
(1.27) are

μF�G(θ ) = (f (θ ) ∨ g(θ )) ∧
(

f (θ ) ∨ Sup
u≥θ

(f (u))

)
= (f (θ ) ∨ g(θ )) = g(θ )

(1.32)
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μ(F ′�G′)∪(F∩G)(θ ) = (
g′(θ ) ∨ f (θ )

) ∧
(

Sup
u≥θ

(
f ′(u)

) ∨ f (θ )

)

= (
g′(θ ) ∨ f (θ )

) = g(θ ).

(1.33)

However, if θ ≥ θ ′ and due to convexity of F, Supu≥θ (f (u)) = f (u); hence,
(1.26) and (1.27) are

μF�G(θ ) = (f (θ ) ∨ g(θ )) ∧
(

f (θ ) ∨ Sup
u≥θ

(f (u))

)

= (f (θ ) ∨ g(θ )) ∧ f (θ ) = f (θ ) (1.34)

μ(F ′�G′)∪(F∩G)(θ ) = (
g′(θ ) ∨ f (θ )

) ∧
(

Sup
u≥θ

(
f ′(u)

) ∨ f (θ )

)

= (
g′(θ ) ∨ f (θ )

) ∧ f (θ ) = f (θ ). (1.35)

(c) f (θ ) = g(θ ), then f ′(θ ) = g′(θ ) = 0, so

μF�G(θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

= f (θ ) ∨ g(θ ) = f (θ ) = g(θ ) (1.36)

μ(F ′�G′)∪(F∩G)(θ ) =
(

f ′(θ )∧Sup
w≥θ

(
g′(w)

))∨
(

g′(θ )∧Sup
u≥θ

(
f ′(u)

))∨(f (θ )∧g(θ ))

= f (θ ) ∧ g(θ ) = f (θ ) = g(θ ). (1.37)

�
Theorem 8: Let F and G be fuzzy grades as defined in Theorem 6, where CF ⊆ CG,
then

(i) F � G =
⎛

⎝
⋃

SF ′
i
<CF

F ′
i

⎞

⎠ ∪
⎛

⎜
⎝

⋃

SG′
j
<CF

G′
j

⎞

⎟
⎠ ∪ (F ∩ G) (1.38)

(ii) F � G =
⎛

⎝
⋃

SF ′
i
>CF

F ′
i

⎞

⎠ ∪
⎛

⎜
⎝

⋃

SG′
j
>CF

G′
j

⎞

⎟
⎠ ∪ (F ∩ G). (1.39)

Proof: We will prove (i), and (ii) can then be proved similarly. We investigate
μF�G(θ ) in two cases. In each case we compare corresponding membership grades

in ϕ1 = F � G with ϕ2 =
(

∪
SF ′

i
<CF

F ′
i

)
∪
(

∪
SG′

j
<CF

F ′
i

)
∪ (

F ∩ G
)
.
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Fig. 1.2 Calculating meet and join of two convex normal fuzzy grades based on Theorems 6 and
7. (a) convex fuzzy grades F and G, (b) intersection of the fuzzy grades, i.e., (F ∩ G) (c) disjoin
difference F–G, i.e., F ′ = F − G = ⋃2

i=1 F ′
i , (d) disjoin difference G–F, i.e., G′ = G − F =

⋃2
j=1 G′

j , (e) meet of the disjoint fuzzy sets F’and G’, i.e.,
(
F ′ � G′) (f) meet of the fuzzy grades

F and G, F �G = (
F ′ � G′)∪ (F ∩ G) (g) join of the disjoint fuzzy sets F’and G’, i.e.,

(
F ′ � G′)

(h) join of the fuzzy grades F and G, F � G = (
F ′ � G′) ∪ (F ∩ G)
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(a) Given, θ > CF , then

μϕ1 (θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)

=
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨ (g(θ ) ∧ f (θ ))

= g(θ ) ∧ f (θ ). (1.40)

However, for θ > CF , we have,
(

∪
SF ′

i
<CF

F ′
i

)
(θ ) = 0 and

(
∪

SG′
j
<CF

F ′
i

)
(θ ) = 0,

it follows then

μϕ2 (θ ) = 0 ∨ 0 ∨ (g(θ ) ∧ f (θ )) = g(θ ) ∧ f (θ ). (1.41)

(b) Given θ ∈ CF or θ < CF , since CF ⊆ CG so ∃x ≥ θ s.t. f (x) = g(x) = 1;
hence,

μϕ1 (θ ) =
(

f (θ ) ∧ Sup
w≥θ

(g(w))

)
∨
(

g(θ ) ∧ Sup
u≥θ

(f (u))

)
= f (θ ) ∨ g(θ ) (1.42)

(b.1) if f (θ ) > g(θ ), then μϕ1 (θ ) = f (θ ) and

μϕ2 (θ ) = f ′(θ ) ∨ g′(θ ) ∨ (f (θ ) ∧ g(θ )) = f (θ ) ∨ (f (θ ) ∧ g(θ )) = f (θ ) (1.43)

(b.2) if g(θ ) > f (θ ), then μϕ1 (θ ) = g(θ ) and

μϕ2 (θ ) = f ′(θ ) ∨ g′(θ ) ∨ (f (θ ) ∧ g(θ )) = g(θ ) ∨ (f (θ ) ∧ g(θ )) = g(θ ) (1.44)

(b.3) if f (θ ) = g(θ ), then μϕ1 (θ ) = f (θ ) = g(θ ) and

μϕ2 (θ ) = f ′(θ ) ∨ g′(θ ) ∨ (f (θ ) ∧ g(θ )) = f (θ ) ∧ g(θ ) = f (θ ) = g(θ ). (1.45)

�
Corollary 5: Let F and G be fuzzy grades with the heights of HF and HG, then

(i) F � G = (F ∧ HG) � (G ∧ HF ) (1.46)

(ii) F � G = (F ∧ HG) � (G ∧ HF ) (1.47)

Proof: Straightforward.
Based on Corollary 6, we observe that Theorems 6 and 7 can be easily extended

to the convex fuzzy grades with different heights. Figure 1.2 depicts an example
of calculating join and meet of two convex fuzzy grades. Fuzzy grades are plotted
in Fig. 1.2a and their intersection is shown in Fig. 1.2b. Figures 1.2c and 1.2d,
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respectively represent F ′ = F −G = F1
′ ∪F2

′ and G′ = G−F = G′
1 ∪G′

2, where
F ′ ∩ G′ = ∅, F1

′ ∩ F2
′ = ∅ and G′

1 ∩ G′
2 = ∅. Since F ′ ∩ G′ = ∅, hence F ′ � G′

(and similarly F ′ � G′) is calculated using Theorem 5:

F ′ � G′= (
F ′

1 � G′
1
) ∪ (

F ′
1 � G′

2
) ∪ (

F ′
2 � G′

1
) ∪ (

F ′
2 � G′

2
)

= (
G′

1 ∧ HF ′
1

) ∪ (
F ′

1 ∧ HG′
2

) ∪ (
G′

1 ∧ HF ′
2

) ∪ (
G′

2 ∧ HF ′
2

)

= G′
1︸︷︷︸

M1

∪ F ′
1︸︷︷︸

M2

∪ (
G′

2 ∧ HF ′
2

)

︸ ︷︷ ︸
M3

(1.48)

1.5 Conclusion

In this chapter, we have introduced a disjointing difference operator on fuzzy sets
and investigated its related properties. Based on the proposed disjointing difference
operator, we have discussed a novel and easy-to-follow algorithm for performing
the union and intersection operations on T2FSs with respect to min t-norm and max
t-conorm. The idea is based on the fact that if we remove the commonalities between
two convex fuzzy grades that are defined on the real line, then calculating the join
and meet operations using min t-norm and max t-conorm on the resulting disjoint
fuzzy subsets is straightforward.
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Chapter 2
Robustness of Higher-Order Fuzzy Sets

Mohammad Biglarbegian

Abstract Robustness is an important metric in analysis and design of interval type-2
fuzzy logic systems (IT2 FLSs). This chapter presents a mathematical approach to
determine the robustness of IT2 FLSs that have Takag-Sugeno-Kang (TSK) structure.
We present numerical examples to demonstrate how the developed methodologies
can be applied. The presented approach herein provides a systematic method for
robust analysis of IT2 FLSs to further enhance their applications.

2.1 Introduction

This chapter presents a systematic approach for the analysis and design of robust
interval type-2 fuzzy logic systems (IT2 FLSs) with Takag-Sugeno-Kang (TSK)
structure. The reason that we adopt the TSK structure is because this model structure
allows for rigorous mathematical analyses on IT2 TSK FLSs.

IT2 FLSs have proven to handle uncertainties better than their type-1 (T1) coun-
terparts. Robustness of any nonlinear system is inherently very essential when it is
used for modeling or control. Robustness of T1 FLSs has been investigated in the
literature [4]. To further expand their range of applications of IT2 FLSs, it is, hence,
needed to investigate their important properties, such as robustness. Therefore, we
focus on this important topic and present methodologies to determine the robustness
of IT2 TSK FLSs and demonstrate how the developed methods can be used to design
IT2 TSK FLSs.

This chapter is organized as follows: Sect. 2.2 presents background on IT2 FLSs,
Sect. 2.3 presents an inference engine for analyses, Sect. 2.4 presents the main portion

The majority of this chapter has been adopted by the authors previous work [1–5].
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of the chapter by providing the robustness analyses, Sect. 2.5 provides examples and
conclusions are given in Sect. 2.6.

2.2 Background

This section provides preliminaries on IT2 TSK FLSs that are necessary to establish
the main robustness development. We first introduce the rule structure, followed by
some well-known inference mechanisms used in the literature.

2.2.1 IT2 FLSs

The ith rule for a continuous system is written as

Ri : If x1 is F̃ i
1 and x2 is F̃ i

2 and · · · and xp is F̃ s
p, then

yi = ai
0 + ai

1x1 + · · · + ai
pxp (2.1)

The lower and upper firing strengths of the ith rule are given by

f i (x) =μ
F̃ i

1
(x1) ∗ · · · ∗ μ

F̃ i
p

(
xp

)
(2.2)

f
i
(x) =μF̃ i

1
(x1) ∗ · · · ∗ μF̃ i

p

(
xp

)
(2.3)

where x = [x1, x2, · · · , xp]T is the state vector containing all the inputs, and μ
F̃

and
μF̃ are lower and upper membership functions, respectively; the t-norm operator is
shown by ∗.

2.2.2 IT2 TSK FLS

Using the Karnik–Mendel algorithms [5], the final output of an IT2 FLS is given as
follows:

YIT2 (x) = [yl (x) , yr (x) ] =
∫

f 1∈
[
f 1,f

1
] · · ·

∫

f M∈
[
f M ,f

M
] 1/

∑M
i=1 f i(x)yi

∑M
i=1 f i(x)

(2.4)

where yi is given by 2.1, and Eqs. 2.2 and 2.3 are used to determine the firing
strengths.

Since YIT2 is an interval type-1 set and only a function of its left and right end
points, i.e., yl and yr . These end points can be computed using the KM algorithms.
The final output is thus given by

Youtput(x) = yl(x) + yr (x)

2
. (2.5)
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Needless to say, 2.5 does not represent a closed-form expression because of 2.4.
Having a closed-form expression for rigorous mathematical analysis on the robust-

ness is preferred. Since the KM algorithms cannot provide a closed-form expression,
we introduce a simple and an innovative inference mechanism that will be used
throughout the rest of the chapter for our analysis.

2.3 An Innovative Inference Mechanism for Analysis of IT2
TSK FLSs

As mentioned earlier, we need to use an inference engine that offers a closed-form.
We adopt a novel inference engine that was proposed in [1, 2] and has been used
successfully in several IT2 FLSs design, analysis, and control. This inference engine,
called m − n, is used in the rest of the paper. The m − n inference engine is [2]

Ym−n(x) = m

∑M
i=1 f i (x) yi

∑M
i=1 f i (x)

+ n

∑M
i=1 f

i
(x) yi

∑M
i=1 f

i
(x)

(2.6)

where yi is the output of each rule, and m and n are design parameters and will be
chosen according to the design/control criteria.

2.4 Robustness of IT2 TSK FLSs

We formally define robustness in this section and present methodologies for the
analysis of robust IT2 TSK FLSs.

We define robustness as follows: The maximum deviations of inputs of a system
resulting in a maximum allowable output deviation. In other words, if we show
the desired (allowable) output deviation with �Ydes , the robustness problem is to
find |�xi |’s such that the system output, Yout , satisfies the following: |�Yout | ≤
|�Ydesired |.

We formulate this definition as a classical optimization problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize : |�x1|, · · · , |�xp|
|�Yout | ≤ |�Ydes |
�x1min ≤ �x1 ≤ �x1max

�x2min ≤ �x2 ≤ �x2max

...

Subject to : �xpmin ≤ �xp ≤ �xpmax
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Next, we derive an expression for �Yout . The deviation in the output as a result of
the change in the inputs, x + �x, is calculated as follows:

�Y = Y (x + �x) − Y (x)

= m

M∑

i=1

hi (x + �x) yi(x + �x) + n

M∑

i=1

h
i
(x + �x) yi(x + �x)

− m

M∑

i=1

hi (x) yi(x) − n

M∑

i=1

h
i
(x) yi(x) (2.7)

where h and h are given by

hi (x) = f
i
(x)

∑M
i=1 f

i
(x)

(2.8)

hi (x) = f i (x)
∑M

i=1 f i (x)
. (2.9)

Note that for small input deviations, we can use the following approximations:

hi (x + �x) � hi (x) +
p∑

j=1

∂hi (x)

∂xj

�xj (2.10)

yi (x + �x) � yi (x) +
p∑

j=1

∂yi (x)

∂xj

�xj . (2.11)

We can similarly use

h
i
(x + �x) � h

i
(x) +

p∑

j=1

∂h
i
(x)

∂xj

�xj . (2.12)

For simplicity in notations, we drop x in the rest of the following derivations.
Considering the first and fourth terms of 2.7:

m

M∑

i=1

⎡

⎣

⎛

⎝hi +
p∑

j=1

∂hi

∂xj

�xj

⎞

⎠

⎛

⎝yi +
p∑

j=1

∂yi

∂xj

�xj

⎞

⎠

⎤

⎦− m

M∑

i=1

hiyi

= m

M∑

i=1

⎡

⎣hiyi + hi

p∑

j=1

∂yi

∂xj

�xj + yi

p∑

j=1

∂hi

∂xj

�xj

+
⎛

⎝
p∑

j=1

∂hi

∂xj

�xj

⎞

⎠

⎛

⎝
p∑

j=1

∂yi

∂xj

�xj

⎞

⎠

⎤

⎦− m

M∑

i=1

hiyi . (2.13)
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Since input deviations are small, the quadratic terms of input deviations are
negligible. Thus, we can simply express 2.13 as

m

M∑

i=1

⎡

⎣hiyi + hi

p∑

j=1

∂yi

∂xj

�xj + yi

p∑

j=1

∂hi

∂xj

�xj

⎤

⎦− m

M∑

i=1

hiyi

= m

M∑

i=1

⎡

⎣hi

p∑

j=1

∂yi

∂xj

�xj + yi

p∑

j=1

∂hi

∂xj

�xj

⎤

⎦ . (2.14)

Similarly, the second and third terms of 2.7 are expressed as

n

M∑

i=1

⎡

⎣h
i

p∑

j=1

∂yi

∂xj

�xj + yi

p∑

j=1

∂h
i

∂xj

�xj

⎤

⎦ . (2.15)

Using 2.14 and 2.15, the output of the IT2 TSK FLS is simply expressed as

�Y = m

M∑

i=1

⎡

⎣hi

p∑

j=1

∂yi

∂xj

�xj + yi

p∑

j=1

∂hi

∂xj

�xj

⎤

⎦

+n

M∑

i=1

⎡

⎣h
i

p∑

j=1

∂yi

∂xj

�xj + yi

p∑

j=1

∂h
i

∂xj

�xj

⎤

⎦ (2.16)

which can be expressed as

�Yout =
p∑

j=1

M∑

i=1

[
mhi ∂yi

∂xj

+ myi ∂hi

∂xj

]
.�xj +

p∑

j=1

M∑

i=1

[

nh
i ∂yi

∂xj

+ nyi ∂h
i

∂xj

]

.�xj .

(2.17)

We can express 2.17 in the following compact form:

�Yout =
p∑

j=1

αj�xj (2.18)

where

αj =
M∑

i=1

[
mhi ∂yi

∂xj

+ myi ∂hi

∂xj

]
+

M∑

i=1

[

nh
i ∂yi

∂xj

+ nyi ∂h
i

∂xj

]

. (2.19)

Therefore, the expression given by 2.18 can be used to solve the optimization
problem formulated above.
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2.5 Examples

This section present three examples to demonstrate the proposed methodologies.

2.5.1 Example 1

This example is adopted from [3] where T1 and IT2 TSK FLSs were developed to
approximate a nonlinear function with two inputs given by f (x1, x2) = sin (x1)

x1 . sin (x2)
x2 .

Gaussian membership functions were used to design the FLSs; the membership
parameters are summarized in Table 2.1. Note that the mean of the Gaussian functions
for T1 and IT2 are the same. The two free parameters of the IT2 TSK FLS (tuning
parameters) are chosen as m = 0.3 and n = 0.1.

Performance of the two system in terms of modeling and robustness to different
input perturbations are shown in Table 2.2; e indicates the error in function approxi-
mation, EPI stands for error performance improvement, Ri = max|�xi |

�Ydes
, and RPI is

an indication for robust performance improvement. It is evident that the IT2 reveals a
better approximator in modeling the target nonlinear function. In terms of robustness,
the two systems exhibit similar performances, although T1 is slightly more robust.

2.5.2 Example 2

In this example, we study the robustness of another nonlinear system with two inputs.
The function considered is f (x1, x2) = cos(x1)+sin(x2)

x1+x2
. The parameters of the designed

T1 and T2 FLSs are summarized in Table 2.3; the means of the Gaussian memberships
for T1 and IT2 are chosen to be the same, and the tuning parameters of the IT2 FLS
are: m = 1.1, n = 0.1.

The error generated in function approximation by T1 and IT2 are T1error =
46.8473 and T 2error = 33.6858. For a given output deviation of �Ydes = 0.34, the
maximum output deviations for T1 are: δx1 = 3.6843e − 4 and δx2 = 0.1998, and
for IT2 δx1 = 8.8789e − 4 and δx2 = 0.1142. Therefore, IT2 is significantly better
function approximator. With regards to robustness, the first input IT2 can reveal more
robustness, however, for the second input T1 can have a better robustness.

2.5.3 Example 3

In this example, we examine the robustness of another nonlinear system which has
three inputs. This expression for this function is given by f (x1, x2, x3) = x0.12

1 /x2 +
x2.x3. The membership function parameters are given in Table 2.4; the values for the
IT2 tuning parameters are m = 1.1 and n = −0.41.
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Table 2.2 T1 and IT2 output performances

�Ydes = 0.01

e EPI% R1 R2 RPI1% RPI2%

T1 0.1491 – 0.0114 0.0100 – –

IT2 0.1476 1.0231 % 0.0166 0.0100 45.61 0

�Ydes = 0.03

T1 0.1491 – 0.0034 0.0033 – –

IT2 0.1449 2.81 % 0.0034 0.0034 0 3.03

�Ydes = 0.05

T1 0.1499 – 0.0066 0.9400 – –

IT2 0.1450 3.26 % 0.0081 0.5120 44.26 -45.53

�Ydes = 0.07

T1 0.1615 – 0.0021 2.8471 – –

IT2 0.1534 5.04 % 0.0067 2.6029 > 100 -9.38

�Ydes = 0.1

T1 0.1763 – 1 3 – –

IT2 0.1688 4.28 % 1 3 0 0

The error generated in approximating the function by T1 and IT2 are 6.0181e5
and 1.8663e3, respectively. This means that IT2 FLS obviously maps the function
much better than its T1 counterpart.

For a given output deviation of �Ydes = 0.18, the maximum output deviations
for T1 are: δx1 = 2.2273e − 4 and δx2 = 2.8427e − 4, δx3 = 6.5783, and for
IT2 δx1 = 0.0227, δx2 = 0.0527, and δx3 = 6.1664. Therefore, IT2 significantly
approximates the function better. In terms of robustness, for the first and second
inputs, the IT2 reveals enhanced improvement. For the third input, T1 is slightly
more robust.

From the examples, it is concluded that decision on the robustness of IT2 versus
T1 depends on the nonlinear function. However, IT2 has the potential to exhibit more
robustness in some cases, which is of interest for the design of robust FLSs.

2.6 Conclusion

This chapter presented a rigorous mathematical methodology for the robustness anal-
ysis of IT2 TSK FLSs. We adopted the TSK model structure because it offers a closed
form and, hence, enabling a mathematical formulation. The robustness is defined in
terms of the maximum output tolerance of the system to a given output deviation. We
formulate the robustness in terms of an optimization problem and present numerical
examples to show how the developed contribution can be used in robustness analyses.
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As higher-order fuzzy sets are finding more applications, it is important to inves-
tigate some of their main properties such as robustness especially for modeling and
control. Therefore, the methodologies in this chapter will help designers to have a
tool in determining the robustness of their system, as well as having a tool for the
design on robust system that can tolerate certain input perturbations.
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Chapter 3
Fuzzy Sets of Higher Type and Higher Order
in Fuzzy Modeling

Witold Pedrycz

Abstract Fuzzy sets of higher order and higher type form one of the interesting
conceptual and methodological pursuits in the development of the fundamentals of
fuzzy sets. The objective of this study is to investigate a role of these constructs
in the realm of fuzzy modeling. Rather than venturing into detailed algorithmic
developments, we highlight key motivating factors behind the use of type-2 and
order-2 in fuzzy models, especially fuzzy rule-based models. Linkages between
type-n fuzzy sets and hierarchical fuzzy models are discussed. An overall setting of
the study concerns granular computing (GC) along with its two fundamental ideas
of the principle of justifiable granularity and an optimal allocation of information
granularity.

3.1 Introductory Notes

Fuzzy models and fuzzy modeling have been around since the inception of fuzzy
sets. There has been a plethora of different approaches supporting sound design
practices, detailed algorithms, and applications. There has been a growing interest
in the development of fuzzy models through a multiobjective optimization process
with accuracy and interpretability being regarded as the two essential objectives. With
the ever-growing challenges in system modeling, there is a visible need to exploit
more advanced constructs of fuzzy sets and engage more advanced methodologies
encountered in the realm of fuzzy sets.

Along with the generic constructs of fuzzy sets treated as mappings from a certain
universe of discourse to the unit interval, we have witnessed a great deal of studies
aimed at the generalizations of fuzzy sets. These developments were stimulated
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by the common interest to develop more abstract and generalized notions of fuzzy
sets, investigate their properties, and reveal relationships among them. Some of the
generalizations are directly linked with applications; however, most of them exhibit
some theoretical underpinnings not necessarily being fully justified.

In general, fuzzy sets are generalized in two main directions: fuzzy sets of higher
order and fuzzy sets of higher type. Fuzzy sets of higher order generalize the original
constructs of fuzzy sets by generalizing their universes of discourse. While in the
generic constructs of fuzzy sets, the universe of discourse is composed of single
elements, in order-2 fuzzy sets, their universes of discourse are composed of infor-
mation granules, say sets, fuzzy sets, rough sets, etc. In fuzzy sets of type-2 or type-n,
in general, instead of numeric membership grades, we admit granular membership
grades such as intervals (interval-valued fuzzy sets), fuzzy sets defined in [0, 1] (type-
2 fuzzy sets [8, 9]), probability density functions, say probabilistic fuzzy sets [5, 6],
and probability-fuzzy set constructs [17]. Similarly, instead of the plain concept of
quantification realized in the [0, 1] interval, more abstract situations are considered
such as L-fuzzy sets. In all these cases, it becomes apparent that membership grades
articulated in terms of information granules tend to capture and quantify a concept
of membership, which spreads far beyond a simple numeric quantification.

In a nutshell, the origin of order-2 fuzzy sets is motivated by the complexity of the
notion itself to be captured by a fuzzy set. Examples such as comfortable climate,
high-quality car, and strong economy are convincing examples in this regard. High-
quality car is a multifaceted concept: We consider good fuel economy, high reliability,
low maintenance costs, etc. On the other hand, type-2 fuzzy sets address the point
of difficulty of quantifying membership grades by single numeric entities. We can
envision constructs where type-2 and order-2 aspects are brought together.

Both categories of these constructs presented above can be generalized further
by forming fuzzy sets in a recursive way so we can talk about type-n and order-n
fuzzy sets. While these generalizations could be appealing when looked at these
more abstract fuzzy sets, one has to be cognizant that they come with (a) visible
cost of processing (where in some cases the computational overhead could be quite
substantial) and (b) estimation costs; the determination of membership functions of
these fuzzy sets (again, one cannot ignore the algorithmic and experimental costs
present here). Whether they are legitimate, this depends upon a problem at hand.

The ultimate objective of this study is to discuss a role of higher-order and higher-
type fuzzy sets in fuzzy modeling. Having this objective in mind, we are concerned
about ensuing algorithmic pursuits, which are supported by the use of these higher-
type or -order fuzzy sets. In particular, we assess the current situation as to the
position of these constructs in system modeling and identify to which extent they
are considered in fuzzy modeling. We highlight a number of essential developments
in system modeling which call for the use of type-2 and order-2 fuzzy sets. This
research area is of growing interest considering a number of studies focused on the
use of type-2 (mostly interval valued) fuzzy sets in control and system modeling
[3, 4, 7, 9], decision making [16], and data analysis [15].

Quite often one encounters modeling scenarios where a number of local sources
of knowledge (local models) become available and need to be used en block in further
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Fig. 3.1 A landscape of fuzzy
sets of higher type and higher
order; identified are main
alternatives

processing to arrive at a holistic view of the system under discussion. This diversity
of these sources has to be taken into account when constructing a piece of knowledge
of global nature. For instance, considering that the local sources are descriptors of
some decision-making processes realized by humans (and in this way exhibiting a
quite local character confined to a single individual), we are interested in retaining
and quantifying the diversity of the local sources of knowledge when arriving at the
model formed at the higher level of abstraction. These considerations call for the
use of fuzzy sets of higher type. In this suite of scenarios, fuzzy sets of higher type
serve as a vehicle to quantify the diversity of the models present at the lower levels
of hierarchy.

The final outcome should be reflective of the existing diversity offering an im-
portant overview of the classification pursuits completed so far and, if necessary,
produce some guidelines for the enhancements of the local sources of knowledge
(classifiers).

The landscape of fuzzy constructs of higher order and higher type is displayed in
Fig. 3.1. Note that we may have constructs that generalize along the two directions,
viz. we encounter fuzzy sets type-2 and order-2. Likewise, what falls under the rubric
of type-2 fuzzy sets may exhibit a visible diversity bringing ideas of interval-valued
fuzzy sets, shadowed sets, and probabilistic fuzzy sets.

The main objectives of the study can be succinctly outlined as follows. We inves-
tigate potential and algorithmic implications of fuzzy sets of higher order and higher
type in fuzzy modeling. While the underlying concepts were intensively investigated
in the realm of fuzzy sets and their formal structures are well investigated, it is not
apparent how much and in which way they can impact current methodologies and
practices of fuzzy modeling. Various topologies of fuzzy models along with related
algorithms are critically assessed and contrasted.

The backbone of this study links with the concepts, methodologies, and algorithms
of granular computing (GC); see the recent comprehensive treatise of the subject [14].
The reader may also refer to [1, 18–21]. In this regard, we elaborate on two principles;
principle of justifiable granularity (which supports a construction of information
granules, and fuzzy sets, in particular), and an allocation of information granularity
where granularity is sought as an important modeling asset making the fuzzy model
being more in rapport with reality.
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The overall structure of the chapter is outlined as follows. We start with a brief
review of fuzzy models cast in the context of fuzzy clustering by stressing a role of
information granules highlighting the nature of modeling as predominantly based on
and operating at the level of fuzzy sets rather than numeric entities. This feature is
profoundly visible in fuzzy rule-based models (Sect. 3.2). In Sect. 3.3, we present a
way of constructing information granules on a basis of existing experimental evidence
by introducing a principle of justifiable granularity. The generality of the idea is
that both the experimental evidence and the resulting information granules can be
expressed in different ways not being necessarily confined to fuzzy sets. In the
sequel, in Sect. 3.4, we discuss type-2 and order-2 fuzzy sets in system modeling by
articulating a number of compelling reasons behind involving fuzzy sets of type-2.
This is directly related to the treatment of information granularity as an important
design asset in system modeling (Sects. 3.5 and 3.6). The role of type-2 and order-2
fuzzy sets in the model design is demonstrated in Sects. 3.7 and 3.8. Hierarchical
modeling, consensus formation, and a role of type-n fuzzy sets is outlined in Sect. 3.8.

When it comes to fuzzy models, we concentrate on the use of fuzzy clustering—
fuzzy c-means (FCM) [2, 12] and refer to its algorithmic settings to proceed into
more detailed explanatory discussion.

3.2 Design of Fuzzy Models Through Fuzzy Clustering: A View
at Type-2 Constructs

If we wish to point at the essence of fuzzy models, it is very likely we will be stress-
ing the following characterization: fuzzy models are modeling constructs, which are
built at the level of information granules—fuzzy sets—and operate by processing
information granules realized at this level. Fuzzy rule-based models are convincing
examples of fuzzy models in which these two features are highly visible. The dom-
inant two categories of rule-based models (a) Mamdani and (b) Takagi-Sugeno are
illustrated in a general way in Fig. 3.2.

Note that in the case of rules of Mamdani, the information granules (fuzzy sets)
are present both in the input and in the output space. For the Takagi-Sugeno, we have
fuzzy sets forming the condition parts of the rules and conclusions realized as local
functions. Fuzzy sets Ai and Bj form a backbone (blueprint) of the fuzzy model.

Fuzzy clustering is used as a common vehicle to construct fuzzy sets out of a
collection of experimental data. When FCM is considered, the membership functions
of Ai (input space) read as follows:

Ai(x) = 1
c∑

j=1

(
||x−vi||
||x−vj||

)2/(m−1)
, (3.1)

where vi are the prototypes (centers) of the corresponding fuzzy set, ||.|| stands for a
distance function while m stands for the fuzzification coefficient [2].
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Fig. 3.2 A general view at fuzzy rule-based models. Mamdani (a) and Takagi-Sugeno (b)
architectures and a web of link between functional elements in the input and output spaces

Fig. 3.3 Order-2 fuzzy set of
activation of fuzzy sets in the
input space

Once the fuzzy sets have been constructed, the next step of the design of the
fuzzy model is to determine relationships among fuzzy sets Ai and Bj (Mamdani)
or establish local models fi .

In both categories of the models presented above, it is worth stressing that order-
2 fuzzy sets are well visible. Any input x “activates” information granules and is
translated into membership grades A1(x) A2(x). . . Ac(x). Alluding to the FCM (using
which the input and output information granules are formed), the order-2 fuzzy set of
activation levels is described in the vector form [A1(x) A2(x). . . Ac(x)]. We underline
this fact by using the following notation [m1/A1 m2/A2. . . mc/Ac]. It now becomes
apparent that the universe of discourse of this fuzzy set is a family of information
granules {A1, A2, . . . , Ac} and the corresponding degree of membership is Ai(x)
(Fig. 3.3).

In what follows, we look at the design of information granules by engaging the
principle of justifiable granularity and link it with the construction of fuzzy sets of
higher type.
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3.3 Formation of Information Granules: The Principle
of Justifiable Granularity

In what follows, we briefly highlight the concept of justifiable information granularity
concentrating on the computational aspects in case of interval and fuzzy set-based
formalisms of information granules.

The requirement of experimental evidence is quantified by counting the number
of data falling within the bounds of information granule 
. More generally, we may
consider an increasing function of this cardinality, say f1(card{xk |xk∈
}), where
f1 is an increasing function of its argument. The simplest example is a function of
the form f1(u)= u. The specificity of the information granule 
 associated with
its well-defined semantics (meaning) can be articulated in terms of the length of the
interval. In case of 
= [a, b], any continuous nonincreasing function f2 of the length
of this interval, say f2(m(
)) where m(
)= |b−a|, can serve as a sound indicator
of the specificity of the information granule. The shorter the interval (the higher the
value of f2(m(
))), the better the satisfaction of the specificity requirement. It is
evident that two requirements identified above are in conflict. The increase in the
values of the criterion of experimental evidence (justifiable) comes at an expense of
a deterioration of the specificity of the information granule (specific). As usual, we
are interested in forming a sound compromise between these requirements.

The construction of the interval information granule comprises two steps. We
start with a numeric representative of the set of data D around which the information
granule 
 is created. A sound numeric representative of the data is its median,
med(D). Recall that the median exhibits an appealing behavior by being a robust
estimator of the sample and typically comes as one of the elements of D. Once the
median has been determined, 
 (the interval [a, b]) is formed by specifying its lower
and upper bounds, denoted here by a and b. As the determination of these bounds
is realized independently, we discuss the optimization of the upper bound (b). The
optimization of the lower bound (a) is carried out in an analogous fashion.

In the calculations of the cardinality of the information granule, we take into
consideration the elements of D positioned to the right from the median, that is card
{xk∈D|med(D)≤ xk ≤ b}. As the requirements of experimental evidence (justifiable
granularity) and specificity (semantics) are in conflict, we resort ourselves to a max-
imization of the composite index in which we form a product of the two expressions
governing the requirements. This is done independently for the lower (a) and upper
(b) bound of the interval.

In light of the conflicting requirements elaborated above, we form a multiplicative
form of the optimization criterion:

V (b) = f1(card{xkD|med (D) ≤ xk ≤ b}) ∗ f2(|med (D) − b|) . (3.2)

We obtain the optimal upper bound bopt, by maximizing the value of V (b), namely

V (bopt) = maxb>med(D)V (b). (3.3)
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Among numerous possible design alternatives regarding functions f1 and f2, we
consider the following quite appealing alternatives f1(u)= u and f2(u)= exp(−au)
where α is a positive parameter delivering some flexibility when optimizing the
information granule 
. Under these assumptions, the optimization problem takes on
the following form:

V (b) = card{xk ∈ D|med (D) ≤ xk ≤ b} ∗ exp(−α|med (D) − b|) . (3.4)

The essential role of the parameter α is to calibrate an impact of the specificity
criterion on the constructed information granule. Note that if α= 0, then the value
of the exponential function is 1; hence, the criterion of specificity of information
granule is completely ruled out (ignored). In this case, b= xmax with xmax being
the largest element in D. Higher values of α stress the increasing importance of the
specificity criterion.

The maximal value of α, say αmax, is determined by requesting that the optimal
interval is the one for which bopt = x1, where x1 is the data point closest to the
median and larger than it. More specifically, we determine αmax so that it is the
smallest positive value of α for which the satisfaction of the following collection of
inequalities holds,

1 ∗ exp( − α|med (D) − x1 |) > 2 ∗ exp( − α|med (D) − x2|)
1 ∗ exp( − α|med (D) − x1 |) > 3 ∗ exp( − α|med (D) − x3|)

. . .

1 ∗ exp( − α|med (D) − x1 |) > p ∗ exp( − α|med (D) − xp|),

(3.5)

where the data x1, x2, . . . , xp form a subset of D and are arranged as follows:
med < x1 < x2 < . . . < xp.

Once the largest value of αmax has been determined, the range of these values [0,
αmax] can be normalized to [0, 1], and then the corresponding intervals [a, b] indexed
by α can be sought as a union of α-cuts of a certain fuzzy set of information granule
A. In this way, the principle of justifiable granularity gives rise to a fuzzy set.

The concept of justifiable information granule has been presented in its simplest,
illustrative version. In case of multivariable data, each variable is treated separately
giving rise to the corresponding information granules and afterwards a Cartesian
product of them is formed. The principle of justifiable granularity can be applied to
experimental data being themselves information granules rather than numeric data.
In these situations, some modifications of the coverage criterion are required.

An important design aspect of the discussed concept is concerned with the forma-
tion of the information granule in the presence of weighted experimental evidence.
In other words, we have the data xk associated with some weight coefficient fk

assuming values in the unit interval. The higher the value of the weight, the more
substantial is a contribution of the data to the resulting information granule.

The underlying optimization process is arranged as follows. We again start with a
numeric representative. The weighted median, med, is considered. It is constructed
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by determining a value for which the following sum attains its minimum:

Minξ

M∑

k=1

fk|zk − ξ | =
M∑

k=1

fk|zk − med|. (3.6)

Subsequently, the detailed calculations of (3.6) are slightly modified by incorpo-
rating the values of the weights fk associated with the corresponding data.

Consider the objective function (3.4) where α= 0.0 and rewrite the remaining
part in a different way:

V (b) = card{xk ∈ D|med (D) ≤ xk ≤ b}/M , (3.7)

where M is the number of data located on the right-hand side of the median.
The request that V (b) exceeds a certain threshold brings a criterion of probabilistic

character. Simply by requesting that V (b) is not lower than 0.25, 0.50, 0.75, we are
forming interval information granules implied by the corresponding quartiles of the
experimental evidence.

The generality of the principle of justifiable granularity stems from the fact that
the principle is associated with the idea, which inherently links with the fundamental
notion of information granularity but does not specify directly which formalism is
to be used. We showed how the construct works in case of intervals (sets) and fuzzy
sets, but one can easily contemplate the use of other formal setup of GC. Likewise,
we do not restrict ourselves to a specific construct. For instance, if {x1, x2,. . . , xM}
are membership values reported for a given element of the universe of discourse, the
resulting interval of membership grades produces an interval-valued fuzzy set. If for
the same case, we consider a fuzzy set being constructed, the result is a type-2 fuzzy
set. In a similar way, we can anticipate a realization of fuzzy sets of higher type, say
type-3 fuzzy sets, etc.

3.4 Type-2 and Order-2 Fuzzy Sets in Fuzzy Models

Order-2 fuzzy sets are elevated to order 2 and type-2 fuzzy sets. There are several
compelling reasons behind the emergence and usage of type-2 fuzzy sets in fuzzy
models:

Construction of Models with Granular Parameters The original numeric parameters
of the fuzzy model are augmented and made granular to make a model being in rapport
with the real world. Information granularity is regarded as an important design asset
whose prudent usage improves the quality of the model. The construction of the
model is supported by the principle of optimal allocation of information granularity
being one of the underlying ideas of GC.

Use of Fuzzy Models in Presence of Input Granular Information In contrast to
the commonly considered scenario where the input of the model is numeric, one
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considers inputs that might be information granules. These granules could be a result
of dealing with available data, which in virtue of their nature or the way in which
the problem is formulated are nonnumeric.

Use of Granular Parameters and the Granular Inputs This is a combination of the
two scenarios outlined above. One can strike a certain balance as to the allocation
of information granularity in the sense that both parameters and inputs are made
granular.

3.5 Allocation of Information Granularity in the Emergence
of Granular Fuzzy Models

The problem of allocation of granularity across the parameters of the function f is
regarded as a way of assigning a given level of information granularity ε ∈[0, 1]
being viewed as a design asset. It transforms the vector of numeric parameters a into
a vector whose coordinates are information granules A= [A1 A2 . . . Ap] such that
the level of admissible granularity ε is allocated to Ais in such a way that a balance
of levels of information granularity, with ε1 ε2 . . . εp being the levels of information
granularity, is satisfied, that is

∑p

i=1 εi = pε, i.e., ε= ∑p

i=1 εi/p. Concisely, we can
articulate this process of granularity allocation as follows:

f (x, a) → granularity allocation (ε) → f (x, A) = f (x, G(a)),

numeric mapping granular mapping (3.8)

that is, Ai = G(ai) with G(.) denoting a transformation of the numeric parameter ai

to a certain granular counterpart Ai . Note that this expression is general and we are
not confined to any particular formalism of information granules used here [13].

The mapping itself can be formed in various ways depending upon its original
realization and a way in which information granules are represented, we come up
with a plethora of modeling constructs with some representative examples listed in
Table 3.1.

3.6 Information Granules: Formal Models and Characterization
of Granularity

The information granules of the parameters of the mapping can be realized as inter-
vals, fuzzy sets, or probability density functions (PDFs), to recall some commonly
encountered alternatives. All of them are well documented in the literature. Hybrid
constructs such as fuzzy probabilities, rough–fuzzy, or fuzzy–rough constructs are
also quite visible. An information granule can be characterized by its specificity. In
a descriptive way, one can think of specificity as a measure quantifying how detailed
(specific) a piece of knowledge—information granule—is. If one regards information
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Table 3.1 A collection of selected examples of granular mappings developed on a basis of well-
known numeric modeling constructs

Model Granular model Examples of granular models

Linear regression Granular linear regression Fuzzy linear regression
Rough linear regression
Interval-valued linear
regression
Probabilistic linear regression

Rule-based model Granular rule-based model Fuzzy rule-based model
Rough rule-based model
Interval-valued rule-based
model
Probabilistic rule-based model

Fuzzy model Granular fuzzy model Fuzzy fuzzy model= fuzzy2

model
Rough fuzzy model
Interval-valued fuzzy model
Probabilistic fuzzy model

Neural network Granular neural network Fuzzy neural network
Rough neural network
Interval-valued neural network
Probabilistic neural network

Polynomial Granular polynomial Fuzzy polynomial
Rough polynomial
Interval-valued polynomial
Probabilistic polynomial

granule as a certain constraint expressed over a certain variable, the more specific this
constraint is, the more useful the piece of knowledge (information granule) becomes.
Granularity of information granule relates with the number of elements associated
with the granule. The highest granularity characterizes an information granule com-
posed of a single element, {x}. When the number of such elements (or some related
characterization of the entities associated with the information granule) increases, the
granularity decreases. In other words, the granularity is a nonincreasing or decreas-
ing continuous function of this number of elements. Formally speaking, consider an
information granule A and denote by Φ the function operating on A, Φ(A) and return-
ing a nonnegative value characterizing the number of elements, dispersion or related
measure of dispersion of A over the universe of discourse X, Φ: A→R+ ∪{0}. The
granularity of A, g(A), is any continuous nonincreasing (decreasing) mapping defined
over Φ(A), g(Φ(A)). Let us consider some illustrative examples. For sets defined over
a certain discrete space X, a cardinality of A, card (A), can be viewed as the number of
elements in X belonging to A. When X=R, where A= [a, b], Φ(A) can be expressed
as the length of this interval, namely Φ(A)= |b−a|. In the sequel, the granularity can
be taken as, e.g., g(A)= exp(−Φ(A))= exp(−|b−a|). If A collapses to a single point,
{a}, then g(A)= 1.
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For fuzzy sets, as we are concerned with elements associated with information
granule at some levels of belongingness (membership), the notion of cardinality is
generalized in the form of so-called σ -count where one computes the overall sum
of membership degrees. For the discrete space, we compute Φ(A)= ∑

x∈X
A(x) with

A(x) being a degree of membership of x in A. For X=R, one has Φ(A)= ∫
X A(x)dx

(assuming that the integral does exist).
For probabilistic information, granules described by probability density function,

a measure of dispersion, say a standard deviation or variance, var(A), of the density
function could be sought as a suitable representative of Φ, Φ(A)= var(A). As before,
g(A) is a nonincreasing function of Φ(A).

Considering possible ways of allocating granularity and in order to arrive at its
optimization throughout the mapping, we have to translate the allocation problem to
a certain optimization task with a well-defined performance index and the ensuing
optimization framework. In the evaluation, we use a collection of input–output data
{(x1, target1), (x2, target2). . . (xN , targetN )}. For xk , the granular mapping return Yk ,
Yk = f (xk , A). There are two criteria of interest which are afterwards used to guide
the optimization of the allocation of information granularity:

a. Coverage criterion. We count the number of cases when Yk “covers” targetk. In
other words, one can engage a certain inclusion measure, say, incl (targetk , Yk)
quantifying an extent to which targetk is included in Yk . The computing details
depend upon the nature of the information granule Yk . If Yk is an interval, then
the measure returns 1 if targetk Yk . In case Yk is a fuzzy set, the inclusion measure
returns Yk(targetk), which is a membership degree of of targetk in Yk . The overall
coverage criterion is taken as a sum of degrees of inclusions for all data relative
to all data, namely

Q = 1

N

N∑

k=1

incl(targetk , Yk). (3.9)

b. Specificity criterion. Here our interest is in quantifying the specificity of the
information granules Y1, Y2,.., YN . A simple alternative using the f -measure could

be an average length of the intervals V = 1/N
N∑

k=1

∣∣yk
+yk

−∣∣ in case of interval-

valued formalism of information granules, Yk = [y−
k , y+

k ] or a weighted length of
fuzzy sets when this formalism is used.

Two optimization problems are formulated:
Maximization of the coverage criterion, maximize Q realized with respect to

allocation of information granularity ε, that is

Maxε1,ε2...εp
Q

subject to constraints
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Fig. 3.4 Plot of a Pareto front
displayed in AUC-length of
interval coordinates

εi > 0 and the overall level of information granularity requirement

p∑

i=1

εi = pε. (3.10)

Minimize average length of intervals V,

Minε1,ε2...εpV

subject to constraints
εi > 0 and the overall level of information granularity requirement

p∑

i=1

εi = pε. (3.11)

This optimization is about the maximization of specificity of the granular map-
ping (quantified by the specificity of the output of the mapping). Note that both Q
and V depend upon the predetermined value of ε. Evidently, Q is a nondecreasing
function of ε. If the maximization of Q is sought, the problem can be solved for each
prespecified value of ε and an overall performance of the granular mapping can be
quantified by aggregation over all levels of information granularity, namely

AUC =
∫ 1

0
Q(ε)dε, (3.12)

which represents an area under curve (AUC). The higher the AUC value, the higher
the overall performance of the granular mapping.

The criteria of coverage and specificity of the granular outputs are in conflict.
One can also consider a two-objective optimization problem and as a result develop
a Pareto front of nondominated solutions (see Fig. 3.4).



3 Fuzzy Sets of Higher Type and Higher Order in Fuzzy Modeling 43

Fig. 3.5 From granular (interval-valued) prototypes to type-2 and order-2 fuzzy sets

3.7 Granular Fuzzy Rule-Based Models: Towards a Formation
of Granular Prototypes in Fuzzy Clustering

Information granularity as a design asset gives rise to more realistic rule-based
models, which could be referred to as granular fuzzy models. The granularity of
information coming into the picture could be expressed in many different ways,
however, the simplest version involve intervals. In a nutshell, we build granular pro-
totypes, see Fig. 3.5, on a basis of the numeric prototypes (formed by the FCM),
which in turn give rise to intervals of activation levels of each rule. This, in turn,
produces interval (rather than numeric) outputs of the model “covering” the numeric
data. The maximization of coverage is achieved by the allocation of information
granularity as discussed in the previous section.

To come up with the details, let us look into calculations in the presence of granular
prototypes. We compute the interval-valued membership grades in case the data x
is not fully included in the granular prototype. Recall that for the j-th variable, the
bounds of the granular prototype Vi form the interval [v−ij , v+ij ], refer to Fig. 3.6.

For the j-th coordinate of x, xj , we consider the following two situations:

1. xj /∈ [v−ij , v+ij ] The bounds of the distance are taken by considering the pessimistic
and optimistic scenario, and computing the distances from the bounds of the
interval, that is min((x−

j v−ij )2, (x−
j v+ij )2) and max((x−

j v−ij )2, (x−
j v+ij )2).

2. xj ∈ [v−ij , v+ij ] It is intuitive to accept that the distance is equal to zero (as xj is
included in this interval).

The distance being computed on a basis of all variables, ||x−Vi ||2, is determined
coordinatewise by involving the two situations outlined above. The minimal distance
obtained in this way is denoted by dmin(x, Vi) while the maximal one is denoted by
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Fig. 3.6 Granular (interval)
prototypes Vi , numeric
patterns, and computations of
distances

dmax(x, Vi). More specifically, we have,

dmin (x, Vi ) = ∑

j∈K

min

((
xj − v−ij

)2
,
(
xj − v+ij

)2
)

dmax (x, Vi ) = ∑

k∈K

max

((
xj − v−ij

)2
,
(
xj − v+ij

)2
)

,
(3.13)

where K = {j = 1, 2, . . . , n|xj /∈ [v−ij , v+ij ]}. Having the distances determined, we
compute the following expressions:

w1(x) = 1
c∑

j=1

(
dmin(x,Vi )
dmin(x,Vj )

)1/(m−1)

w2(x) = 1
c∑

j=1

(
dmax(x,Vi )
dmax(x,Vj )

)1/(m−1)
. (3.14)

Notice that these two formulas resemble the expression used to determine the
membership grades in the FCM algorithm. In the same way as in the FCM, the
weighted Euclidean distance is considered here, namely

dmin(x, Vi)= ∑
j∈K min

((
xj − vij

−)2
/σj

2,
(
xj − vij

+)2
/σ 2

J

)
, and dmax(x,

Vi)= ∑
j∈K max

((
xj − vij

−)2
/sj

2,
(
xj − vij

+)2
/σ 2

j

)
with σj being the standard

deviation of the j-th variable. These two are used to calculate the lower and upper
bounds of the interval-valued membership functions (induced by the granular pro-
totypes). Again, one has to proceed carefully with this construct. Let us start with a
situation when x is not included in any of the granular prototypes. In this case, we
compute

u−
i (x) = min(w1(x), w2(x))

and (3.15)

u+
i (x) = max(w1(x), w2(x)).
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Fig. 3.7 Granular fuzzy
model realized in presence of
granular prototypes and
granular (nonnumeric) input

So, in essence we arrive at the granular (interval-valued) membership function
Ui(x)= [u−

i (x), u+
i (x)]. If x belongs to Vi , then apparently u−

i (x)= u+
i (x)= 1 (and

this comes as a convincing assignment as x is within the bounds of the granular
prototype). Obviously, in this case, u−

j (x) as well as u+
j (x) for all indexes j different

from i are equal to zero.

3.8 Distribution of Information Granularity Across the Model
and Its Inputs: A Hybrid Design Scenario

An extension of the previous construct comes in the form illustrated in Fig. 3.7. Here
the input x is also regarded to be nonnumeric, namely it is represented as a hyperbox
(hypercube).

Here the main difference comes with the calculations of the distances. As both X
and Vi are information granules (hypercubes)

dmin (X, Vi ) = ∑

j∈K

min[(x−
j − v−

ij )
2
, (x+

j − v−
ij )

2
, (x−

j − v+
ij )

2
, (x+

j − v+
ij )

2
]

dmax (X, Vi ) = ∑

j∈K

max[(x−
j − v−

ij )
2
, (x+

j − v−
ij )

2
, (x−

j − v+
ij )

2
, (x+

j − v+
ij )

2
],

(3.16)

where K = {j = 1, 2, . . . , n| [x−j ,x+
j ] 
= [v−ij , v+ij ]}.

The motivation behind these formulas is made clear from Fig. 3.8.

3.9 Models of Consensus Formation with Higher-Type
Information Granules: An Emergence of Type-N Fuzzy Sets

As discussed so far, the two-level hierarchy leads to granular (interval) fuzzy sets.
This means that, as a result of reconciliation, information granules are made more
abstract. More specifically, the type of the fuzzy sets has been elevated. Once working
with type-1 fuzzy sets (with numeric membership grades), the result formed at the
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Fig. 3.8 Computing of
distances in case of granular
(interval) prototypes Vi and
granular input X

Fig. 3.9 Emergence of
information granules (fuzzy
sets) of higher
type—symbolically shown
are increased types of fuzzy
sets when moving up along
the hierarchy. Numeric values
of the membership grades are
denoted by a series of dots

higher level of hierarchy is expressed as a type-2 (interval) fuzzy set. The emergence
of higher types of fuzzy sets is a result of processing information granules of a lower
type. This effect arises in many different ways (this issue will be discussed in a
while). Let us consider that at the lower level of hierarchy, we obtain interval-valued
fuzzy sets (viz. type-2 fuzzy sets) and the results are subject to reconciliation. The
result of this aggregation becomes a type-3 fuzzy set. For illustration, see Fig. 3.9.

Computationally, we note that the level of the fuzzy set increases; we show this as
the following sequence: [. . . .] [. . . ..] [ [.,.] [.,.]. . . . [.,.]] . . . . The aggregation of the
bounds of the intervals of membership grades, say ai[1], i= 1, 2, . . . , c gives rise to
a certain interval formed again in the unit interval (more precisely, the subinterval of
the [0, 1] with the lower and upper bound expressed as miniiai[ii] and maxiiai[ii]).
In a graphic form, the resulting construct is displayed in Fig. 3.10.

More descriptively, in contrast to type-2 (interval) fuzzy set where membership
bounds are numbers, here the bounds are intervals (see shadowed regions shown in
Fig. 3.10). This construct relates in a convincing way to shadowed sets [11] or rough
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Fig. 3.10 Formation of type-3 fuzzy with the use of type-2 (interval) fuzzy sets

sets [10]—in both constructs, we deal with boundary regions of the information
granules and their description.

When it comes to the emergence of type-2 fuzzy sets at the lower level of the
hierarchy, there are at least two compelling scenarios supporting their emergence,
see also Fig. 3.7:

a. Formation of local models of higher relevance captured by the granular (interval)
fuzzy relations. Instead of numeric membership functions of R, following the
scheme of allocation of information granularity [18], the entries or R are interval-
valued. As a result of the composition of type-1 fuzzy set and type-2 fuzzy relation,
the results are type-2 fuzzy sets.

b. Inputs are granular, viz. type-2 fuzzy sets. In this case, even though the fuzzy
relation is of type-1, the result is type-2 fuzzy set. This is an inherent effect of the
propagation of information granularity—the result inherits the highest level of the
type of information granules present in the chain of processing. This scenarios
emerge when dealing, e.g., in models of time series to be classified—the models
come with granular features.

c. A combination of the situations outlined above—the models come with the type-2
fuzzy sets and the inputs are also type-2 information granules.

3.10 Conclusions

Fuzzy sets of higher order and higher type, especially type-2 and order-2, provide
new opportunities to system modeling. In this study, we identified main directions
and pointed out the main motivating factors behind the emergence of these modeling
generalizations.

GC plays a pivotal role in this setting. As visualized in Fig. 3.11, the fundamental
concepts such as the principle of justifiable granularity and the idea of allocation
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Fig. 3.11 Granular fuzzy models and fuzzy sets of higher order and higher type: a general
perspective

of information granularity are essential in supporting the design of granular fuzzy
models (in which type-2 and order-2 as well as higher order/type fuzzy sets provide
interesting design features). Hierarchical fuzzy models naturally engage fuzzy sets
of higher type; however, one has to be cognizant that high-order/high-type fuzzy
sets invoke significant computing overhead and call for more elaborate acquisition
(estimation) procedures required to construct information granules.
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Chapter 4
Recent Advances in Fuzzy System Modeling

I. Burhan Türkşen

Abstract Decision making under uncertainty is an interdisciplinary research field.
In this chapter, we attempt to create a framework for the human decision-making
processes withType 1 and FullType 2 Fuzzy Logic methodology. For this purpose, we
first present a brief review of the essentials of (1) Zadeh’s rule base model, (2) Takagi
and Sugeno’s model which is partly a rule base and partly a regression function,
and (3) Türkşen’s model of fuzzy regression functions where a fuzzy regression
function corresponds to each fuzzy rule in a fuzzy rule base model. Next, we review
the well-known fuzzy C-means (FCM) algorithm which lets one to extract Type 1
membership values from a given data set for the development of Type 1 fuzzy system
models as a foundation for the development of Full Type 2 fuzzy system models.
For this purpose, we provide an algorithm which lets one to generate Full Type
2 membership value distributions for a development of second-order fuzzy system
models with our proposed second-order data analysis. If required, one can generate
Full Type 3, . . . , Full Type n fuzzy system models with an iterative execution of our
proposed algorithm. We present our applied results graphically for TD_Stockprice
data with respect to two validity indices, namely (1) Çelikyılmaz–Türkşen and (2)
Bezdek indices.

4.1 Introduction

After Zadeh’s introduction of fuzzy logic and fuzzy sets, a vast volume of literature
appeared about fuzzy logic and fuzzy system modeling (FSM). There are at least two
advantages of FSM that attracts researchers: (1) its power of linguistic explanation
with resulting ease of understanding and (2) its tolerance to imprecise data which
provides flexibility and stability for prediction.

Briefly, in the fuzzy theory, every element belongs to a concept class, say A, to a
partial degree, i.e., μA : X → [0, 1], μA(x) = a ∈ [0, 1], x ∈ X, where μA(x) is the
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membership assignment of an element ‘x’ to a concept class A in a proposition. All
concepts in fuzzy theory are assumed to be definable to be true to a matter of degree.

Treating the membership assignment as perfectly known or calculated may be
seen as contradiction. There are several types of fuzzy theory called as Type 1, Full
Type 2, . . . , Full Type n fuzziness. Type 1 fuzzy sets are obtained in both subjective
and objective manners and are well established in this area. Full Type 2 and higher
types of fuzziness, on the other hand, are still a very active area of recent research.
Here, we present an objective algorithmic Full Type 2 fuzzy systems investigations.

4.2 Fuzzy System Models

Let us first review historically significant fuzzy system model developments in order
to identify their unique structures and to point out how they differ from each other.
Then let us show the details of our Full Type 2 fuzzy system developments with
an iterative algorithm that can generate Full Type 3, . . . , Full Type n fuzzy system
models.

4.2.1 Type 1 Fuzzy Rule Base Models

The most commonly applied fuzzy system models are fuzzy rule bases. Here, we
only deal with multi-input single output (MISO) systems. Generally, fuzzy system
models represent relationships between the input and output variables which are
expressed as represented with fuzzy sets. The general fuzzy rule base structure is a
collection of IF–THEN rules that utilize linguistic labels, which is known as Zadeh
Fuzzy Rule Base (Z-FRB). Z-FRB, can be written as follows:

R :
c∗

ALSO
i=1

(IF antecedenti THEN consequenti),

where c* is the number of rules in a rule base either given by experts or determined
by a fuzzy clustering algorithm such as fuzzy C-means (FCM) [1] or improved fuzzy
clustering (IFC) [2]. The fuzzy rule base structures determined by various alternatives
mainly differ in the representation of the consequents. If the consequent is represented
with fuzzy sets, then the fuzzy rule base is known as Z-FRB [3] a modified version of
which is proposed by Sugeno andYasukawa, SY-FRB [4], whereas if the consequents
are represented with linear equations of input variables, then the rule base structure
is the Takagi–Sugeno Fuzzy Rule Base (TS-FRB) [5] structure. These are the main
models among others which we do not review in this chapter. In particular, Z-FRB
can be formalized as follows, where the multidimensional antecedent fuzzy subset
of the ith rule is Ai :

R :
c∗

ALSO
i=1

(IF x ∈ X isr Ai THEN y ∈ Y isr Bi).
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In general, let nv be the number of selected input variables in the system. Then, the
multidimensional antecedent, x, can be defined as x= (x1, x2, . . . , xnv), where xj is
the j th input variable of the antecedent and the domain of x in X can be defined as
X=X1 × X1 × . . . ×Xnv, Xj ⊆ � . This multidimensional antecedent fuzzy subset
determination eliminates the search for the appropriate t-norm for the combination
of antecedent fuzzy subsets with “AND.”

Thus, variations of Z-FRB are SY-FRB and TS-FRB structures:
(SY-FRB):

R :
c∗

ALSO
i=1

(IF x ∈ X isr Ai THEN y ∈ Y isr Bi)

(TS-FRB):

R :
c∗

ALSO
i=1

(IF antecedenti THEN yi = aix
T + bi),

where antecedenti = x∈X isr Ai , and ai = (ai , 1, . . . , ai , NV) is the regression
coefficient vector associated with the ith rule together with biwhich is the scalar
associated with the ith rule. For these special cases of Z-FRB, again each degree of
firing, di , associated with the ith rule is determined directly from the corresponding
ith multidimensional antecedent fuzzy subset Ai and applied to the consequent fuzzy
subset for the SY-FRB or to the classical ordinary regression for the case of TS-FRB.

4.2.2 Fuzzy Regression Functions

There are a number of variations of fuzzy regression functions proposed by Turk-
sen [6]. We discuss only one alternative in this chapter, namely, fuzzy regression
functions which we have proposed with least square estimation (LSE).

Fuzzy Regression Functions with LSE (FF-LSE) In ordinary LSE method, the de-
pendent variable, y, is assumed to be a linear function of input variables, x, plus an
error component:

y = β0 + β1x1 + · · · + βnvxnv + ε,

where y is the dependent output, xj ’s are the explanatory input variables, for
j = 1, . . . , nv, nv is the number of selected inputs, and ε is the independent error term
which is typically assumed to be normally distributed. The goal of the least-squares
method is to obtain estimates of the unknown parameters, βj ’s, j = 0, 1, . . . , nv,
which indicate how a change in one of the independent variables affects the dependent
variable and are calculated as

β = (XT X)
−1

XT y.

The proposed generalization of LSE as FF-LSE (fuzzy functions with LSE, more
appropriately known as fuzzy regression functions with LSE) requires that a fuzzy
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clustering algorithm, such as FCM, or IFC be available to determine the interactive
(joint) membership values of input–output variables in each of the fuzzy clusters that
can be identified for a given training data set. Let (Xk , Yk), k = 1, . . . , nd,be the
set of observations in a training data set, such that Xk = (xjk|j = 1, . . . , nv). First,
one determines the optimal (m*, c*) pair for a particular performance measure, i.e.,
cluster validity indices such as Bezdek [1] and Celikyılmaz and Türkşen [2] with an
iterative search and an application of FCM or IFC algorithm, where m is the level
of fuzziness (in our experiments, we usually take m = 1.4, . . . , 2.5; Ozkan and
Türkşen [8]) and c is the number of clusters (in our experiments, we usually take
c = 2, . . . , 10). The well-known FCM [1] algorithm can be stated as follows:

min J (U , V ) =
nd∑

k=1

c∑

i=1
(uik)

m(‖xk − vi‖)A
s.t. o ≤ uik ≤ 1, ∀i, k

c∑

i=1
uik = 1, ∀k

o ≤
nd∑

k=1
uik ≤ nd , ∀i

,

where J is objective function to be minimized and ||.||A is a norm that specifies a
distance-based similarity between the data vector xk and a fuzzy cluster center vi . In
particular, A = I is the Euclidian norm and A=C−1 is the Mahalonobis norm, etc.

Once the optimal pair (m*, c*) is determined with the application of FCM algo-
rithm, and a cluster validity index, one next identifies the cluster centers for m = m∗
and c= 1,. . . ,c* as

vX|Y ,j
m∗

= (x1,j
c, x2,j

c, · · ·, xnv,j
c, yj

c).

From this, we identify the cluster centers of the input space again for m = m∗
and c = 1, . . . , c∗ as

vX,j
m∗

= (x1,j
c, x2,j

c, · · ·, xnv,j
c).

Next, one computes the normalized membership values of each vector of obser-
vations in the training data set with the use of the cluster center values determined
in the previous step. There are generally two steps in these calculations.

First, one determines the (local) optimum membership values uik’s and then de-
termines μik’s that are above an α-cut in order to eliminate harmonics generated by
FCM as:

uik =
⎛

⎝
c∑

j=1

(∥∥xk − vX,i

∥∥
∥∥xk − vX,j

∥∥

) 2
m−1

⎞

⎠

−1

, μik ≥ α,

where μik denotes the membership value of the kth vector, k= 1,. . . , nd, in the ith rule,
i= 1,. . . ,c*, and xk denotes the kth vector and for all the input variables j= 1,. . . ,
nv in the input space.
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Next, we normalize them as

γij (xj ) = μij (xj )
c∑

i′−1
μi′j (xj )

,

where γij is the normalized membership value of xj , j= 1,. . . , nv, in the ith rule, i=
1,. . . ,c*, which in turn will indicate the membership value that will constitute a new
input variable in our proposed scheme of function identification for the representation
of the ith cluster.

Let �i = (γij |i = 1, . . . , c∗; j = 1, . . . , nv) be the membership values of X
in the ith cluster, i.e., rule. Next, we determine a new augmented input matrix X
for each of the clusters which could take on several forms depending on which
transformations of membership values we want to or need to include in our system
structure identification for our intended system study. Let

Xi
′ = [1, �i , X],

Xi

′′ = [1, �i
2, X],

Xi
′′′ = [

1, �i
2, �m

i , exp (�i), X
]
,

etc., where Xi
′, Xi

′′
, Xi

′′′are the new input matrices to be used in least-squares
estimation of a new system structure identification where

�i = (γij |i = 1, . . . , c∗; j = 1, . . . , nv).

The choice depends on whether we want to or need to include just the membership
values or some of their transformations as new input variables in order to obtain the
best representation of a system behavior. In particular, this is done in order to get a
higher value of R2 to show that a better model is obtained for an application. A new
augmented input matrix, say Xì , would look as shown below for the special case of
X=Xj , i.e., the matrix X is just a vector of a single variable, Xj = (xjk | k= 1,. . . ,
nd), for the j th variable:

Xì j
= [1, �i , Xij ] =

⎡

⎢⎢⎢
⎣

1 γi1 xij 1
...

...
...

1 γind xijnd

⎤

⎥⎥⎥
⎦

.

Thus, the fuzzy regression function, Yi = βi0 + βi1�i + βi2Xij , that represents
the ith rule corresponding to the ith interactive (joint) cluster in space (Yi , �i , Xj ),

βi
∗ =

(
Xij`T Xij`

)−1 (
Xij`T Yi

)
,

Xij
′ = [1, �i , Xij ],
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Fig. 4.1 A fuzzy cluster in
U × X × Y space
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such that βi
∗ = (βi0

∗, βi1
∗, βi2

∗) and the estimate of Yi would be obtained as Y ∗
i =

β∗
i0 + β∗

i1�i + β∗
i2Xij .

Within the proposed framework, the general form of the shape of a cluster can be
conceptually captured by a second order (cone) in the space of U × X × Y which
can be illustrated with a prototype shown in Fig. 4.1.

One usually determines Type 1 membership values with an application of FCM
algorithm shown below:

ALGORITHM 1. Fuzzy c-means ClusteringAlgorithm (FCM) Given data vec-
tors, X = {x1,..,xn}, number of clusters, c, degree of fuzziness, m, and a termination
constant, ε (maximum iteration number in this case). Initialize the partition matrix,
U, randomly.

Step 1: Find initial cluster centers using Eq. 1 shown below using membership
values of initial partition matrix as inputs.
Step 2: Start iteration t = 1. . . max-iteration value:

Step 2.1. Calculate membership values of each input data object k in cluster
i, μ

(t)
ik , using the membership value calculation equation in via Eq. 1 below,

where xk are input data objects as vectors and υ
(t−1)
i are cluster centers from

the (t − 1)th iteration.
Step 2.2. Calculate cluster center of each cluster i at iteration t, υ

(t)
i , using the

cluster center function in Eq. 2 shown below, where the inputs are the input
data matrix, xk , and the membership values of iteration t, μ

(t)
ik .

Step 2.3. Stop if termination condition satisfied, e.g.,
∣∣∣υ(t)

i − υ
(t−1)
i

∣∣∣ ≤ ε.

Otherwise, go to step 1.

Where Eq. 1 stated in the algorithm above is
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μ
(t)
ik =

⎡

⎢⎢
⎣

c∑

j=1

⎛

⎝
d
(
xk , υ(t−1)

i

)

d
(
xk , υ(t−1)

j

)

⎞

⎠

2
m−1

⎤

⎥⎥
⎦

−1

(4.1)

and Eq. 2 is

υ
(t)
i =

(
n∑

k=1

(
μ

(t)
ik

)m

xk

)

/

n∑

k=1

(
μ

(t)
ik

)m

, ∀i = 1, ..., c. (4.2)

4.3 Generation of Full Type 2 Membership Values

For this purpose, we propose and hence introduce a new algorithm in order to gen-
erate Full Type 2 membership value distribution from the results obtained with an
application of FCM which produce a Type 1 membership value distribution for our
studies of Full Type 2 investigations.

4.3.1 Full Type 2 Fuzziness i.e., Membership of Membership

Here, we want to show how one determines the second-order degree of fuzziness in
order to develop Full Type 2 fuzzy system models.

It should be noted that depending on where x ∈ X, there may be more than one
second-order membership value distribution.

4.3.1.1 Full Type 2 Fuzzy Set Extraction Algorithm

We propose the following Full Type 2 fuzzy set extraction algorithm from a given
data set called FT2FCM (Türkşen [7]):

Full Type 2 Fuzzy Clustering Algorithm

Min J`
(
U

′
(U ), W

)
=

=
nd∑

k=1

c
′

∑

i=1

1∑

l=0

(
μμi(xk) (z)

) (||μμi(xk) (zl) − μ(xk)
(zl) ||A

)
,

k = 1, . . . , nd; i = 1, . . . , c
′

st. 0 ≤ μμi(xk) (z) ≤ 1

0 ≤ μi (xk) ≤ 1
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0 ≤
nd∑

k=1

μi (xk) ≤ nd

μi (xk) ∈ [0,1]; μμi(xk) (z) ∈ [0,1]; l ∈ [0,1] ,

where J ` is the objective function to be minimized for a given xk ∈ X; ||.||A is a
norm, i.e., Euclidian or Mahalanobis, that specifies a distance measure based on
membership values for a given xk ∈ X and its second-order fuzzy cluster center
μi(xk).

Next, one computes the normalized membership values of these Full Type 2 mem-
bership values for each vector of membership values obtained in an initial application
of the original FCM or IFC algorithm in the first stage.

There are generally two steps in these calculations:
We first determine (local) optimum membership of membership values μμi

(xk)’s
and then apply an α-cut in order to eliminate the second-order harmonics generated
by an application of FT2FCM as

μμi
(xk)

xk ∈ X
=

⎡

⎢
⎣

⎛

⎝
c
′

∑

i=1

||μμi
(xk) − μi (xk)||

||μμi
(xk) − μj (xk)||

⎞

⎠

2
m−1

⎤

⎥
⎦

−1

γ
′
μμi

(xk)
= μμi

(xk) |xk∈X

∑c
′

i=1 μμi
(xk)

, μμi
(xk) ≥ α, γ

′
μμi

(xk)
≥ α,

where γ
′
μμi

(xk ) denotes the membership values of the membership values of the kth

vector k = 1,..,nd in the ith rule, or ith fuzzy regression function (Türkşen 2012), and
xk ∈ X denotes the kth vector and for all the input variables, k = 1,.., nd in the input
space.

Recall that we are able to obtain the membership value distribution as

X′
ij = [1, �i, Xij ] =

⎡

⎢⎢⎢
⎣

1
...

1

γi1 xi1

...
...

γind xind

⎤

⎥⎥⎥
⎦

�i = (γik|i = 1, . . . , c∗; k = 1, . . . , nd)

�i = (γij |i = 1, . . . , c∗; j = 1, . . . , nd) =

⎡

⎢⎢⎢
⎣

γ11 γ21 · · · γc∗1

...
...

...

γ1nd γ2nd · · · γc∗nd

⎤

⎥⎥⎥
⎦

.

We process each �i via our Full Type 2 clustering algorithm given above, called
FT2FCM, to determine Full Type 2 distribution for each cluster i, �i = (γij |i =
1, . . . , c∗; j = 1, . . . , nd). Thus, we apply to each �i ALGORITHM 2 given below
to generate Full Type 2 membership values, i.e., membership of membership.
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Fig. 4.2 Çelikyılmaz–Türkşen’s validity index results for TD_Stockprice data

ALGORITHM 2 Given data vectors, γi = (γij |i = 1, . . . , c∗; j = 1, . . . , nd) the
number of clusters, c`, degree of fuzziness, m, and termination constant, ε (maximum
iteration number in this case). Initialize a partition matrix, �, randomly:

Step 1: Find initial cluster centers using Eq. 4.3 shown below using membership
of membership values of initial partition matrix as inputs.
Step 2: Start iteration t = 1. . . max-iteration value;

Step 2.1. Calculate Type 2 membership values of a given � vector of each
input data object k in cluster i, μμi

(xk), using each � vector of the membership
values where xk are input data objects as vectors and μi(xk) are Type 2 cluster
centers from the (t −1)th iteration.
Step 2.2. Calculate Type 2 cluster center wik of each cluster l at iteration t, the
t-th μi(xk) he cluster center function of Type 2 membership values in Eq. 4.4
shown below, where the inputs are the input data matrix, , , and the membership
of the membership values of iteration t, μμi

(xk,t )
Step 2.3. Stop if termination condition is satisfied, e.g., |μi (xk) @t −
μi (xk) @t − 1| ≤ ε. Otherwise, go to step 1.

4.4 Experimental Results

We present here our experimental results for TD_Stockprice data set that is available
for all researchers on the Internet (Figs. 4.2, 4.3, 4.4, and 4.5).
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Fig. 4.3 Fuzzy classification of TD_Stockprice data: (c*= 2, m*= 1.8)

Fig. 4.4 Cluster-2 view for TD_Stockprice data
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Fig. 4.5 Çelikyılmaz–Türkşen’s validity index for μik data

Fig. 4.6 μlk(μik) for cluster 1 and 2 are shown above

Cluster-2 Results of TD_Stockprice Data (c*= 2, m*= 1.8) According to the
Çelikyılmaz–Türkşen index, the suitable number of cluster should be chosen as c′ = 2
(μik data are the membership values of the first study’s cluster-2), where c′ = 2,
m′ = 1.8 (Figs. 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, and 4.13).



62 I. B. Türkşen

Fig. 4.7 A possible three-cluster view

Fig. 4.8 TD_Stockprice data set: According to Bezdek’s validity index results (shown as follows),
the suitable number of cluster was chosen as c*= 3
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Fig. 4.9 Fuzzy classification of TD_Stockprice data: (c*= 3, m*= 2.0)

Fig. 4.10 Cluster-2 view for TD_Stockprice data
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Fig. 4.11 Çelikyılmaz–Türkşen’s validity index for μik data

Fig. 4.12 According to Çelikyılmaz–Türkşen index, the suitable number of cluster should be chosen
as c′ = 2 (the μik data are the membership values of the first study’s cluster-2), where c′ = 2, m′ = 2.0
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Fig. 4.13 A possible three-cluster view

Cluster-2 Results of TD_Stockprice Data (c*= 3, m*= 2.0) for Membership of
Membership

4.5 Conclusions

In this chapter, we first briefly provide a framework for the review of the essentials of
fuzzy system models, namely: (1) Zadeh’s rule base model, (2) Takagi and Sugeno’s
model which is partly a rule base and partly a regression function, and (3) Türkşen’s
model of fuzzy regression functions where a fuzzy regression function corresponds
to each fuzzy rule in a fuzzy rule base model. In this framework, a fuzzy rule base is
replaced with “fuzzy regression function” models. Next, we review the well-known
FCM algorithm which lets one to extract Type 1 membership values from a given
data set for the development of “Type 1” fuzzy system models as a foundation for
the development of “Full Type 2” fuzzy system models. For this purpose, we provide
a new algorithm which lets one to generate Full Type 2 membership value distri-
butions for a development of second-order fuzzy system models with our proposed
second-order data analysis. If required, one can generate Full Type 3, . . . , Full Type
n fuzzy system models with an iterative execution of our algorithm. Finally, we
present our results graphically for TD_Stockprice data with respect to two validity
indices, namely: (1) Çelikyılmaz–Türkşen and (2) Bezdek indices. Based on our
development, we expect in the future new results would be obtained in “Full Type
3, . . . , Full Type n” fuzzy system model analyses.
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Chapter 5
On the Use of Participatory Genetic Fuzzy
System Approach to Develop Fuzzy Models

Yi Ling Liu and Fernando Gomide

Abstract Genetic fuzzy systems constitute an essential approach to build fuzzy
models. There is an increasing interest to develop fuzzy models in the realm of com-
plex, large-scale, multiobjective, and high-dimensional systems. Nowadays, fast
and scalable evolutionary algorithms to handle complex fuzzy modeling is a major
need. Procedures to learn rule bases and tune their parameters are being shaped with
the purpose to produce parsimonious and accurate models. Approaches to develop
distinct types of fuzzy models such as type one and higher types, or higher order
fuzzy trees, fuzzy relations, fuzzy cognitive maps, and neural fuzzy networks are
rare. This chapter introduces participatory evolutionary learning as a framework for
data driven fuzzy modeling. The participatory evolutionary learning approach is a
population-based paradigm in which the population itself defines the fitness of the
individuals as evolution progress. The approach uses compatibility between popula-
tion individuals during selection and recombination. A mechanism for information
exchange in recombination based on selective transfer is introduced. Combination
of participatory learning and selective transfer offers a new class of genetic fuzzy
systems. Despite the focus on participatory learning and the selective transfer to
build first order fuzzy rule-based models, the use of the genetic fuzzy systems to
develop higher order fuzzy rule-based models is also discussed. An electric system
maintenance data modeling problem is explored to illustrate the usefulness of the
participatory genetic fuzzy systems approach in practice. The performance of par-
ticipatory evolutionary learning is evaluated using the mean squared modeling error
and number of fuzzy rules to measure model accuracy and complexity, respectively.
The results suggest that the participatory evolutionary learning develops high quality
models and is highly competitive with current state of the art approaches.
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5.1 Introduction

During the last decade, genetic fuzzy systems (GFS) have been shown to be in-
strumental as a tool to develop fuzzy classifiers, process models, control systems,
robotics, and economy applications. From the soft computing point of view, ge-
netic fuzzy systems combine two major archetypes, evolutionary computation and
fuzzy systems theory. Basically, a GFS is a fuzzy system together with a learning
mechanism based on evolutionary computation. GFS use genetic algorithms (GA)
and genetic programming mostly, but evolutionary strategies, particle swarms, and
their hybridizations with classic modeling and optimization methods have also been
fruitful [14].

Nowadays, there is a renewed interest in methodologies and approaches to develop
fuzzy models for industrial processes, economic systems, and large data mining and
knowledge acquisition systems. In general, these systems are multifarious and require
sophisticated modeling procedures. Intuition and expert knowledge are not enough,
and modeling should benefit from data-driven approaches to complete knowledge-
based design and development. Multiobjective evolutionary algorithms have been
constructed to build linguistic fuzzy rule-based systems from data. Many successful
GFS use embedded genetic database learning to learn simple and accurate models
fast [3].

Genetic algorithm is one of the most important components of evolutionary com-
putation. GA is a heuristic search that uses mechanisms inspired by the principles of
natural evolution. The purpose of a GA is to serve as a metaphor to solve complex
problems that can be put within a system optimization framework. Commonly, in
GA an objective function is given externally, and a selection process together with
recombination and mutation operators work simultaneously through generations to
search for the best solution. From this point of view, the objective function can be
seen as the representation of some skill required by nature, the better an agent at
this skill, the more it is preferred. The objective function is the main way to account
for fitness in genetic algorithms. Fitness measures the reproductive suitability of the
individuals that form a population.

In the real world survival of the fittest saga there appears to be an additional
process going on. In particular, the objective function, besides being determined by
some external requirement, is always strongly effected by the population itself. The
population is always involved in determining the desired properties of the reproduc-
tive fitness of each individual that assembles itself. This observation suggests the
possibility to build a GA in which the current population plays a role in determining
or modifying reproduction and evolution. This can be viewed as a kind of fitness
learning. The real world survival of the fittest suggests evolutionary algorithms in
which fitness shapes the reproductive suitability of individuals through an evalua-
tion that combines external objective function with the influence of the population
itself. One further observation is that, in natural environments, often the effect of the
population participation in the crafting of the fitness function is to make fitness more
like itself [33].
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During the 1990s, a recombination mechanism called selective transfer was sug-
gested as an alternative for crossover of genetic algorithms. Selective transfer was
inspired in modular technologies. Here an agent may adopt a part or all of another
agent’s action if the first agent estimates that this increases his/her own fitness [31].

The purpose of this chapter is to introduce the participatory evolutionary learning
algorithm (PELA), a learning procedure in which compatibility between individuals,
in addition to objective function, influences the evolution of a population. Together,
objective function values and compatibility degrees shape fitness of the individuals.
PELA uses selective transfer to retain the similarity information of good individuals
in offspring. It forms the kernel of a genetic fuzzy system framework aiming at
complex, large-scale, and high-dimensional fuzzy system modeling. It produces
parsimonious and accurate models within reasonable computer processing times.
The chapter discusses representation issues for first and higher order fuzzy rule-based
models.

After this introduction, the next section overviews the area of genetic fuzzy
systems. Section 5.3 details the participatory evolutionary learning algorithm em-
phasizing selective transfer and its properties. Computational experiments and
comparisons with a state of the art approach [3] is done in Sect. 5.4 using the actual
data to develop a linguistic fuzzy model of electrical maintenance systems. Sec-
tion 5.5 concludes the chapter summarizing its contribution and issues for further
development.

5.2 Genetic Fuzzy Systems

This section overviews the GFS and the applications whose development has bene-
fited from it. As a development framework, GFS spans a wide class of fuzzy models,
as shown in Fig. 5.1. Despite the rich body of fuzzy models available today, for
the clarity of exposition we will focus on the most visible instance of GFS, that
is, genetic fuzzy rule-based systems (GFRBS). Mutatis mutandi, the concepts and
main ideas behind GFS are similar for the different instances of fuzzy models and
generalizations of the notion of fuzzy sets. More specifically, the focus is on ordinary
(equivalently, type 1, first order) fuzzy set-based model development.

Given a set X, recall that an ordinary fuzzy set A is defined by a function of the
form

A : X → [0, 1] (5.1)

Fuzzy sets of this type are the most prevalent in the literature and applications of
fuzzy set theory. In this chapter, ordinary fuzzy sets are called just fuzzy sets, for
short. More general types of fuzzy sets have been proposed in the literature. For
instance, interval-valued fuzzy sets are sets defined as functions of the form

A : X → I ([0, 1]) (5.2)
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Fig. 5.1 Evolutionary fuzzy modeling process

where I ([0, 1]) denotes the family of all closed intervals of [0, 1]. More generally,
the intervals of I ([0, 1]) themselves can be replaced by fuzzy sets of F ([0, 1]), the
set of all ordinary fuzzy sets on [0, 1], as follows:

A : X → F ([0, 1]) (5.3)

These sets are called fuzzy sets of type 2. Thus, fuzzy sets are type 1 fuzzy sets.
Fuzzy sets of type 2 own higher expressive power, but demand greater computational
effort that interval-valued and fuzzy sets. Higher types of fuzzy sets can be obtained
recursively in a similar way as type 2 sets. L-fuzzy sets relax the requirement that
membership values should be in [0, 1]; let them be elements of a partially ordered
set L. L-fuzzy set A has as membership function

A : X → L (5.4)

A different generalization is when a fuzzy set is defined by functions whose domain
itself has fuzzy sets as elements. If F (X) denotes the set of all fuzzy sets on domain
X, then order 2 fuzzy set A (alternatively, level 2 fuzzy sets) has membership function
of the form

A : F (X) → [0, 1] (5.5)

Order 2 fuzzy sets can be generalized into higher order fuzzy sets recursively,
similarly as type 2.

Except for this brief remind, the properties, operations, and procedures to compu-
tate with generalized fuzzy sets will not be addressed in this chapter. See [13, 20–22]
for further explanation and details.

GFRBS is a fuzzy rule-based system enhanced by a learning procedure based on
genetic algorithms [14]. A fuzzy rule-based system (FRBS) is expressed in terms of
a knowledge base (KB) and an appropriate inference engine. Often, input interfaces
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are required to convert measurements into fuzzy sets to capture data imprecision. In-
put interfaces serves as a fuzzification module to allow fuzzy reasoning. Conversely,
a fuzzy output may be converted by output interfaces into a single value that, in some
sense, is the best representative of the fuzzy set. The KB has two main components,
the data base and the fuzzy rule base. The data base (DB) contains definition of the
linguistic variables, scaling functions of variables, membership functions, and pa-
rameters of the model. The fuzzy rule base (RB) is a collection of fuzzy rules. Fuzzy
rules can be either linguistic or functional. Linguistic fuzzy rules have linguistic vari-
ables and associated fuzzy sets in both, rule antecedent and consequent. Functional
fuzzy rules have linguistic variables in the rule antecedent only. The consequents are
functions of the base input variable, or a function approximator such as a multilayer
feedforward neural network.

A GFS must perform two major tasks: tuning and learning [9]. Tuning concerns
optimization of an existing FRBS, whereas, learning constitutes an automatic design
procedure to develop collections of fuzzy rule-bases. Tuning assumes that a RB is
available. The aim is to find optimal values for parameters of the membership, scaling
functions, gains, that is, to find appropriate values of the entries of the DB. Learning
performs a search in the space of the rule bases, data bases, or both.

Scaling functions are used to normalize the domains of the input and output
variables. The scaling functions are parameterized either by a single scale factor,
or a lower and upper bound factor in case of linear scaling. Several contraction
or dilation parameters are needed in nonlinear scaling. Parameter tuning involves
adaptation of one to four parameters per variable, depending on the scaling strategy.
For instance, linear scaling requires two and nonlinear scaling three or four. Real
and binary representations can be used to encode parameters. Because the number of
input and output variables and the number of scaling parameters are known a priori,
fixed length code is the simplest.

Tuning of membership functions often requires an individual representing the
entire DB because its chromosome encodes parameterised membership functions
associated to the linguistic terms of all fuzzy partitions. Common shapes for the
membership functions are triangular, trapezoidal, or Gaussian. In these cases, the
number of parameters per membership function ranges from one to four. The pa-
rameters can be encoded using either real or binary values. The structures of the
chromosome are slightly different depending if the rules are linguistic or functional.
Tuning the membership functions of the linguistic models requires that the entire
fuzzy partitions be encoded into the chromosome. The chromosome must be glob-
ally adapted to maintain the semantics of the RB, that is, the meaning of the model.
If we assume a predefined number of linguistic terms for each variable, then fixed
length chromosomes can be adopted. Notice that, even when the length is fixed, the
number of linguistic terms of a variable can be found using and extra gene to encode
the maximum number of variables. This strategy can also be adopted to evolve the
parameters of the consequents of functional fuzzy rules. The maximum number of
parameters defines the length of the chromosome.

An approach to learn the KB of an FRBS is to develop the DB and the RB in
two separate steps within the same process. An example is the embedded GFRBS
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which learns the DB using simultaneously a simple method to develop a RB for each
DB [14]. The embedded GFRBS, however, does not necessarily provide simple,
transparent, and competitive models in terms of the generalization capability. They
do not scale well in terms of processing time and memory [3]. A way to reduce
the search space in an embedded genetic DB learning framework is suggested in
[3] together with a fast multiobjective evolutionary algorithm. Lateral displacement
of fuzzy partitions using a unique parameter for all membership functions of each
linguistic variable is one of the mechanisms adopted to reduce the dimension of the
search space. The idea is to prescreen promising partitions to avoid overfitting, and
to maintain coverage and semantic soundness of the fuzzy partitions. The algorithm
also includes incest prevention, restarting, and rule-cropping in the RB generation
process to improve convergence. Despite the mechanisms introduced to manage
dimensionality, the algorithm does not scale-up on the number of data in datasets.
A strategy to deal with scalability is to avoid large percentage of samples and error
estimation using a subset of the original dataset. A postprocessing step refines the
model further.

Evaluation of complete solutions in isolation is one feature of evolutionary ap-
proaches. In general, interactions between the individuals of a population are not
accounted for and there is no evolutionary pressure for coadaptation, which is in-
adequate to develop complex models. One way to approach this issue is trough
cooperative coevolution [23]. An alternative to cooperative coevolution is the par-
ticipatory evolution approach, detailed in Sect. 5.3. The architecture of a general
cooperative coevolutionary fuzzy systems is shown in Fig. 5.2. In principle, any
evolutionary algorithm could be adopted, but in what follows we emphasize genetic
algorithm [10].

Individuals of the four populations in Fig. 5.2 represent four distinct species
and encode different design parameters. Partitions of the domain of the variables
and corresponding membership functions, called partition set level for short, are
at the first level. Rules are the individuals of the second level, sets of fuzzy rules
are the individuals of the third level, and rule semantics and inference compose the
population of the fourth level. The encoding scheme uses real and integer encoding,
summarized in Fig. 5.3. The populations coevolve via repeated application of the
evolutionary operators selection, crossover, and mutation.

Note that higher order fuzzy modeling can be pursued extending the encoding of
the individuals accordingly.

Beyond GFRBS, the use of GFS and genetic programming approaches to develop
fuzzy decision trees is addressed in [11, 18] and references therein. A survey of fuzzy
decision tree classifier methodology is given in [30]. Fuzzy relational modeling in the
realm of evolutionary computation is discussed in [24], and neural network design
in [4]. For a recent account of evolutionary and genetic algorithms to design fuzzy
models, see [1].

The application examples of the GFS are many. For instance, [27] develops a
multiobjective approach in which a fuzzy controller regulates the selection procedure
and fitness function of genetic algorithms. They developed timetables of railway
networks to reduce passenger waiting time when switching trains while, at the same
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Fig. 5.2 Coevolutionary genetic fuzzy system architecture

time, minimizing the cost of new investments to increase capacity. The result of the
genetic optimization is a cost–benefit curve that shows the effect of investments on
the accumulated passenger waiting time and trade-offs between criteria [9]. In [17]
the aim was to optimize trip time and energy consumption of a high-speed railway
using fuzzy c-means clustering and a genetic algorithm. The method was used to
derive a control strategy for a high-speed train line. An economical train run with a
trip time margin of less than 7 % and an energy saving of 5 % was reported [9]. A
model to relate the total length of low voltage line installed in a rural town with the
number of people in the town and the mean of the distances from the center of the
town to the three furthest clients in it was addressed in [7]. The authors compare the
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Fig. 5.3 Encoding in coevolutionary genetic fuzzy systems

training and test errors achieved by different modeling techniques. See also [1] for
further techniques and applications of evolutionary intelligent systems.

5.3 Participatory Evolutionary Learning Algorithm

This section describes the participatory evolutionary learning algorithm (PELA). We
first review the main concepts and ideas of the participatory learning paradigm. Next
the selective transfer recombination mechanism is detailed and explained, and the
difference between the selective transfer and classic crossover is highlighted.

5.3.1 Participatory Learning

During the 1990s, Yager suggested the concept of participatory learning, a scheme
in which the process learning depends on what is already known or believed [32]. A
central characteristic of the idea of participatory learning is that an observation has
the greatest impact in causing learning or knowledge revision when it is compatible
with the current knowledge. Learning occurs in an environment in which the current
knowledge participates in the process of learning about itself. A fundamental part of
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Fig. 5.4 Participatory
learning

this learning scheme is the compatibility between observation and knowledge. This
is depicted in Fig. 5.4. What is important to note is that the current knowledge in
addition to providing, via the lower loop, a standard against which the observations
are compared, they directly affect the process used for learning via the upper loop.
The upper loop indicates that current knowledge affects how the system accepts and
processes input information. The upper loop corresponds to the participatory nature
of the learning scheme addressed in this chapter.

Participatory learning uses the notion of compatibility degree which is com-
puted as the similarity measure between current knowledge and current observation.
When an observation is far from the current knowledge, it is filtered [32]. That
is, if observations are very conflicting with the current knowledge, then they are
discounted.

A formal mechanism to update knowledge is a smoothing algorithm like the
following

v(t + 1) = v(t) + αρt (z(t) − v(t)) (5.6)

where v(t + 1), v(t) and z(t) are n-dimensional vectors corresponding to the new
knowledge, the old knowledge, and the current observation at step t , respectively.
The basic learning rate is α ∈ [0, 1], and ρt ∈ [0, 1] is the compatibility degree at
t . This smoothing mechanism corresponds to the lower loop of Fig. 5.4 and will not
be emphasized here. See [19] for details. Essential for the purpose of this chapter is
the notion of compatibility degree. One way to compute the compatibility degree ρt

is as follows:

ρt = 1 − 1

n

n∑

k=1

|zk(t) − vk(t)|. (5.7)

Note that if ρt = 0, then v(t +1) = v(t) which means that the current observation
z(t) is completely incompatible with the current knowledge v(t). This condition
implies that the system is not open to any learning from the current observation.
On the other hand, if ρt = 1, then v(t + 1) = z(t). In this case the observation is
in complete agreement with the current belief system and thus the system is fully
open for learning. Also, notice that the basic learning rate α is modulated by the
compatibility degree. This helps to attenuate swings due to values of z which are far
from v because it smooths the effect of conflicting observations such as outliers.
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5.3.2 Selection

Selection of PELA uses (5.7) to compute the compatibility degree between individ-
uals z and v of a population, that is, to measure how similar individuals z and v
are.

Assume a set St = St
old ∪ St

new of strings of fixed length n at step t . Let St
old ⊂ St

denote an old population, and St
new ⊂ St denote a new population at step t . Let

s∗ ∈ St be the best individual from the objective function point of view, and s ∈ St
new

and s
′ ∈ St

old be two individuals chosen randomly. In PELA selection proceeds
computing compatibility degrees between s and s

′
and choosing the one that is

closest to the best individual, s∗ . More precisely, the compatibility degrees ρs(s, s∗)

and ρs
′
(s

′
, s∗) are found as follows

ρs = 1 − 1

n

n∑

k=1

|sk − s∗k |, (5.8)

and

ρs
′ = 1 − 1

n

n∑

k=1

|s ′
k − s∗k |, (5.9)

and the individual whose compatibility degree with s∗ as the largest is selected.
Important in this step is to notice that selection depends on both, the objective
function which identifies s∗, and on ρ which measures the compatibility degree
between s∗ and the candidate individuals. Combination of objective function values
with compatibility degrees defines the fitness of the individuals. Jointly, s∗ and
ρ(p, s∗), p ∈ St , decide which individual is selected. We see that the individuals
themselves are a part of the selection procedure, which is a manifestation of the
participatory nature of PELA.

5.3.3 Selective Transfer

During the last few years, we have witnessed a growing interest to use economic
principles and models of learning in the genetic algorithms. For instance, evolu-
tionary processes have been used to model the adaptive behavior of a population
of economic agents [5]. Here agents develop models of fitness to their environment
in conjunction with the corresponding economic activities. Economists believe that
behavior acquired through individual experience can be transmitted to future gen-
erations, and that learning changes the way to search the space in which evolution
operates. This is an argument in favor of the interaction between the processes of
evolution and learning. Since technical knowledge is distributed across the economic
population, technological change can be viewed as a process of distributed learning.
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Fig. 5.5 Selective transfer

Here, the term learning is used in a broad sense, that is, there is no distinction be-
tween learning as propagation of knowledge through the population and the process
of innovation, creation, and discovery. The distributed learning perspective helps
to understand technological change and focus on the population suggests that an
evolutionary perspective may be appropriate.

Birchenhall et al. [5] claim that our knowledge and technology are modular,
that is, they can be decomposed into several components or modules. From the
evolutionary computation point of view, they suggest that the crossover operator of
genetic algorithms could be seen as a representative of modular imitation. To bring
these ideas together, they advocate an algorithm that replaces selection and crossover
operators by an operator based on selective transfer. Essentially, selective transfer
is a filtered replacement of substrings from one string to another, without excluding
the possibility that the entire sequence is copied [6]. Clearly, the selective transfer is
similar to Holland crossover, but it is one-way transfer of strings, not an exchange
of strings. The behavior selective transfer is likely to be very different from the
combination of selection and crossover. PELA translates the selective transfer idea
into a recombination procedure as follows.

Assume that an individual pselected is selected using the objective function and
compatibility as described in the Sect. 5.3.2. Two positions h ≤ k in the pselected

string are chosen randomly, and a fair coin is tossed. If the coin turns head, then the
substring from pselected (h) to pselected (k) of pselected is replaced by the corresponding
substring from s∗(h) to s∗(k) of s∗. If the coin turns up tail, then the substring from
pselected (1) to pselected (h−1) and from pselected (k+1) to pselected (n) are replaced by
the corresponding substrings of s∗. Figure 5.5 illustrates the idea of selective transfer.

Despite similarity with crossover of the standard genetic algorithms, there are
some differences. The most important one is that selective transfer uses one-way
relocation of substrings, from the best individual to the individual selected, and
hence it is not a crossover. This is important because selective transfer is much more
schemata destructive than the standard crossover.
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In what follows, an analysis of the selective transfer behavior is developed. Since,
recombination aims at mixing individuals to combine their meaningful properties,
it should fulfill appropriate requirements to produce offspring with such desirable
properties. For instance, an important requirement uses the metric adopted as fol-
lows [25]. Given two parent solutions xp1 and xp2 and an offspring x0, proper
recombination operators should fulfill [26]

d(xp1, xp2) ≥ max(d(xp1, x0), d(xp2, x0)). (5.10)

Inequality (5.10) expresses the requirement on the distances of offspring and their
parents to be equal to or smaller than the distance between the parents.

When the distance d(xp1, xp2) between xp1 and xp2 is viewed as a measurement
of dissimilarity, (5.10) guarantees that offspring are similar to parents. In an extreme
case, when parents are the same, xp1 = xp2, the offspring are equal to the respective
parents, x0 = xp1 = xp2.

The PELA performs selective transfer as follows.

1. Choose h, k, h ≤ k, and r ∈ [0, 1] randomly.

2. If r ≤ 1/2 then c = [s∗(1 : h), pselected (h + 1 : k), s∗(k + 1 : n)];
else c = [pselected (1, 1 : h), s∗(h + 1 : k), pselected (k + 1 : n)].

Notice that s∗, pseleted , and c play the role of xp1, xp2 and x0 in (5.10). Notation
c = [s∗(1 : h), pselected (h+1 : k), s∗(k+1 : n)] means that the string c is assembled
merging the substrings s∗(1 : h), pselected (h+1 : k), and s∗(k+1 : n) of s∗, pselected ,
and s∗], respectively. Substring s∗(1 : h) is a copy of the first h components of string
s, pselected (h+ 1 : k) is a copy of pseleccted from component h+ 1 up to k. Similarly
s∗(k + 1 : n) is a copy of components from h + 1 to n of string s∗. To analyze the
behavior of selective transfer, we must verify if

d(s∗, pselected ) ≥ max(d(s∗, c), d(pselected , c)). (5.11)

Because pselected is the individual whose compatibility degree of either s or s
′

with s∗ is the largest, we have two options to be verified, respectively.

1. If pselected = s, then

d(s∗, s) ≥ max(d(s∗, c), d(s, c)). (5.12)

2. If pselected = s ′, then

d(s∗, s
′
) ≥ max(d(s∗, c), d(s

′
, c)). (5.13)
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Fig. 5.6 Analysis of selective
transfer

Fig. 5.7 Participatory
evolutionary learning
algorithm

First, to verify (5.12), we need to check if d(s∗, s) ≥ d(s∗, c) and d(s∗, s) ≥ d(s, c)
hold simultaneously. From Fig. 5.6, if r ≥ 1/2, then d(s∗(1 : h), c(1 : h)) = 0,
d(s∗(k + 1 : n), c(k + 1 : n)) = 0, and hence d(s∗, s) ≥ d(s∗, c). Similarly, since
d(s(h : k), c(h : k)) = 0, d(s∗, s) ≥ d(s, c). If r < 1/2, from Fig. 5.6 we see
that d(s∗(h : k), c(h : k)) = 0, and consequently d(s∗, s) ≥ d(s∗, c). Also, because
d(s(1 : h), c(1 : h)) = 0 and d(s(k + 1 : n), c(k + 1 : n)) = 0, d(s∗, s) ≥ d(s, c).
Thus, (5.12) holds. It can be shown similarly that (5.13) also holds. Therefore, both
(5.12) and (5.13) hold. Intuitively speaking, this result suggests that, because the
distance of offspring and parents are equal to or smaller than the distance between
the parents, selective transfer essentially is an exploitation mechanism.
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Figure 5.7 summarizes the participatory evolutionary learning algorithm. The
aim of this chapter is to introduce a participatory evolutionary learning algorithm to
develop fuzzy models. PELA is an instance of participatory evolutionary algorithm
useful to construct a participatory genetic fuzzy system (PGFS) approach. The PGFS
assumes that an appropriate encoding scheme for the intended class of fuzzy models
has been chosen by the user. It works as follows.

As before, let St = St
old ∪ St

new be a set of strings of length n at step t . St
old ⊂ St

denotes the population at step t called old population, and St
new ⊂ St denotes the

population at step t , called new population. Let s∗ ∈ St be the best individual from the
objective function point of view. The directive last(St+1) denotes the last individual
of the population St+1. The detailed steps of the PGFS are given in Fig. 5.8.

5.4 Application Example and Performance Evaluation

This section illustrates the use of PGFS to develop a linguistic fuzzy rule-based model
of electrical maintenance using actual data. Performance of PGFS is evaluated and
compared with a state of the art GFRBS. The data and encoding methods adopted
here are the same as reported in [3]. They will be briefly reviewed for sake of
completeness. For comparison and performance evaluation purposes, we also rely
on the results achieved in [3]. The PGFS adopts the embedded GFRBS approach. It
learns the DB using Wang and Mendel [28, 29] method to construct the RB for each
DB.

1. Database encoding uses a double-encoding scheme C = C1 +C2. First, equidis-
tant strong fuzzy partitions are defined considering the granularity of C1. Second,
the membership functions of each variable are uniformly displaced to a new
position considering the displacement values of C2.
a. Number of linguistic labels C1: It is a vector of integers of size N representing

the number of linguistic variables.

C1 = (L1, . . ., LN ). (5.14)

Gene Li is the number of labels of the ith linguistic variable, Li ∈ {2, . . ., 7}.
b. Lateral displacements C2: It is a vector of real numbers of size N . It encodes

displacements αi of the different variables, αi ∈ [ − 0.1, 0.1].

C2 = (α1, . . ., αN ). (5.15)

For a more detailed description of the linguistic 2-tuple representation scheme,
please see [2, 15].

2. Rule bases are produced using the Wang and Mendel algorithm as follows:
a. Partition the input and output spaces
b. Generate fuzzy rules using data
c. Assign a confidence degree to each rule generated to solve conflicts
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Fig. 5.8 Participatory genetic
fuzzy system procedure

procedure PGFS
ƒ objective function
generate S0 randomly
set a0 = 0; t ← 0
while t ≤ tmax do

compute s*
Selection
choose s Є

Є

Є
Є

St
new and s Є St

old randomly
best ← s*
compute ρs (s,best) and ρs  (s ,best)′

′

′

′

′

if ρ s ≥ ρ s then
pselected ← s

else
pselected ← s

end if
Selective Transfer
choose α ,β [0, 1] randomly
choose h, k, h ≤ k, and r [0, 1] randomly
if r ≤ 1/ 2 then

c = [ best(1, 1 : h), pselected (1, h + 1 : k), best(1, k +1 : n)]
else

c = [ pselected (1, 1 : h), best(1, h + 1 : k), pselected (1, k + 1 : n)]
end if
Compute compatibility degrees
ρ c(c, best) and ρ pselected ( pselected , best)
if ρ c ≥ ρ s* then

pr ← c
else

pr ← pselected
end if
Mutation
compute E = n · m, m is the mutation probability
choose γ [0, 1] randomly
if γ < E then

pm ← mutate( pr)
end if
if ƒ( pm) better than ƒ(best) then

best ← pm
end if
generate St+ 1

last(St+ 1) ← best
t → t + 1

end while
return best

end procedure

d. Create a fuzzy rule base combining the rules generated from data with, if
available, rules given by experts

e. Find the input–output mapping using the fuzzy rule base, an inference engine,
and a defuzzification method

3. Objective function: This is the mean-squared error (MSE)

MSE = 1

2|D|
|D|∑

l=1

(F (xl) − yl)2 (5.16)
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Table 5.1 ELE modeling methods considered in the experiments [3]

Method Type of learning

WM(3) Rule base by Wang and Mendel algorithm (WM) with 3 labels

WM(5) Rule base by WM with 5 labels

WM(7) Rule base by WM with 7 labels

WM Rule base by WM with different labels

FSMOGFS Gr [8], lateral partition parameters and rule base by WM

FSMOGFS+TUN FSMOGFS + (Tuning of MF parameters and rule selection by

SPEA2E/E [12])

FSMOGFSe FSMOGFS including fast error estimation

FSMOGFSe+TUNe FSMOGFS + TUN including fast error estimation

where |D| is the size of the dataset, F (x) is the output of the FRBS model, and y

the actual output produced by input x.
This section uses max–min fuzzy inference and center of gravity defuzification.

4. Initial population: This is generated as follows. Each chromosome has the same
number of labels, from two to seven labels for each input variable. For each
number of input labels, all possible combinations are used to assign respective
rules consequents. Additionally, for each combination, two copies are included
with different values in the C2 part. The first has values randomly chosen in
[ − 0.1, 0] and the second random values in [0, 0.1].

5. Selective transfer: This assumes that pselected = (x1. . .xN ) and s∗ = (y1. . .yN )
with xi , yi ∈ [ai , bi] and i = 1, .., N , are two real-coded chromosomes in the part
C2. The parent-centric BLX [16], which is based on BLX-α, is applied to the C2

part. The selective transfer operator generates the following individuals:

c2 = (c11. . .c1 N ) (5.17)

where
a. If r ≤ 1/2 then c1i is randomly generated in the interval [l1

i , u1
i ], with l1

i =
max{ai , xi − Ii}, u1

i = min{bi , xi + Ii}, and Ii = |xi − yi | · α with α = 0.3.

b. If r > 1/2 then c1i is randomly generated in the interval [l2
i , u2

i ], with l2
i =

max{ai , yi − Ii}, u2
i = min{bi , yi + Ii}.

6. Mutation: This uses the expected value E. It decreases the granularity by 1 in a
randomly selected gene g, that is, Lg = Lg − 1.

The electric maintenance model has four input variablesand one output variable. The
dataset (ELE) has 1056 samples. The nature of data suggests learning methods to
develop a considerable number of rules. Therefore, the problem involves a large
search space [3]. The ELE data is available at http://sci2s.ugr.es/keel/index.php.

Table 5.1 summarizes the methods considered in [3]. WM [29] is a reference
because all methods addressed in this chapter use it to evolve rule bases.

Table 5.2 shows the average of 12 runs of the participatory genetic fuzzy system
(PGFS). The population size was 60 and evolution stops after 1000 generations.
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Fig. 5.9 Convergence of PGFS

The selection of two inputs in the method WM was done as suggested in [3]. The
results of Tables 5.2 and 5.3 highlight the following. The average mean-squared error
(MSE) achieved by the different models evolved by the participatory genetic fuzzy
system (PGFS) were lower than the average values of Table 5.3. The four inputs
model evolved by the PGFS using WM with different labels is more accurate than
the PGFS using WM with a fixed number of linguistic labels. The standard deviation
(SD) of the MSE of PGFS with WM is smaller. In both, Tables 5.2 and 5.3, we notice
that the MSE decreases as the number of linguistic labels adopted by WM increases.
The lowest value is achieved for seven labels, WM(7). For the two inputs modeling
case, the PGFS using WM performs best among FSMOGFS and FSMOGFS + TUN
from the point of view of the MSE and SD. In this case, the processing time of the
PGFS was 105.3 s while FSMOGFS + TUN took 125 s. Thus PGFS is faster.

Figure 5.9 depicts the values of the objective function (MSE) during a typical run.
Note the fast convergence of the participatory genetic fuzzy procedure.

5.5 Conclusion

This chapter has introduced a new evolutionary learning approach based on partic-
ipatory learning and selective transfer. The participatory nature means that current
population plays an important role in shaping evolution. Exchange of informa-
tion during recombination is done using selective transfer instead of selection and
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Table 5.3 Average MSE values when training with different algorithms for ELE dataset [3]

Method WM(3) WM(5) WM(7) FSMOGFS FSMOGFSe FSMOGFS
+TUN

FSMOGFSe

+TUNe

Input 4 4 4 2 2 2 2

Rules 27 65 103 10 9 9 8

Mean 192,241 56,135 53,092 16,018 16,153 8803 9665

SD 9658 1498 1955 314 450 739 823

crossover of the canonical genetic algorithm. Participatory learning and selective
transfer helps to improve the performance of evolutionary learning because it de-
creases complexity and increases search power, producing high quality models with
less computational effort. The approach is an instance of participatory genetic fuzzy
system whose main purpose is to serve as a tool to develop fuzzy models. Compu-
tational experiments using actual data suggest that the participatory genetic fuzzy
system performs better than state of the art genetic fuzzy systems approaches. Fu-
ture work shall address convergence analysis formally, new forms of participatory
evolutionary computation, and applications in modeling and optimization.
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Chapter 6
Fuzzy Modeling of Economic Institutional Rules

Christopher Frantz, Martin K. Purvis, Maryam A. Purvis,
Mariusz Nowostawski and Nathan D. Lewis

Abstract Modeling collective social action is challenging not only because of the
opacity of the underlying social processes, but even more because of the insufficient
information detail concerning the activities under investigation. Such information
gaps are customarily filled using the modeler’s intuition or randomization techniques.
A promising alternative is to employ fuzzy reasoning. We have built on this poten-
tial to employ fuzzy methods as an alternative mechanism to integrate numerous
opinions in order to model the establishment of economic institutional rules. Our
empirical application domain is based on a historic trade scenario in which traders
established rules and shared information in order to prevent the sellers of their goods
from cheating them. We address this modeling problem by employing two different
group decision-making mechanisms—majority-based voting on the one hand (which
follows the original historical case) and preference aggregation using interval type-2
fuzzy sets on the other hand. We compare the outcomes of these two approaches and
identify significantly lower sensitivity of the outcomes (i.e., instability of the out-
comes to small changes in parameter settings) using fuzzy-set-based approaches in
contrast to majority votes. The results suggest that the use of abstract decision-making
mechanisms (such as preference aggregation) may be more useful in scenarios that
prescribe a decision-making mechanism, but do not provide information to model
this process in its entirety. Based on our finding, the potential for a wider use of
fuzzy logic in the context of social simulation is discussed and pointers for future
investigations are provided.

6.1 Introduction

Collective decision making is the building block for cooperation among social an-
imals, including human beings. However, to provide generalizable and explicit
behavioral prescriptions in human societies is a fundamental characteristic that en-
abled sustained cooperative behavior. Individuals can move between different open
societies and, in many cases, rely on the existence of similar institutional settings
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and legal environments, such as the security of individual property and basic human
rights. A historic precursor of more unified legal systems is the Lex Mercatoria [44]
which enabled merchants to trade their goods safely across different jurisdictions in
medieval Europe and brought great prosperity to cities (by means of taxation) and
traders. An ongoing quest is the analysis of how those institutions, or as North put
it “the rules of the game” [47] 1, have come about. The method of simulation is one
approach to address the complexity of decision-making processes in an experimental
fashion. Modeling decision-making processes in social systems is a complex task
that is not only challenging because of its influence from a wide range of social-
scientific disciplines such as sociology, psychology, political science, economics,
etc., but even more so as it is characterized by uncertainty and subjectivity of the
individuals involved in the process.

Under the conceptual roof of group decision making that builds on social choice
theory [1], modelers find a range of decision-making operations that they can apply
to specific decision problems.

• One well-known modeling technique that lies at the heart of modeling decision
problems is game theory, which follows utilitarian principles to map a problem
scenario on a set of players that face one or more potentially interdependent
decision choices which have associated payoffs. Specifying decisions in a game-
theoretical fashion facilitates the identification of Nash equilibria that may indicate
stable forms of social interaction that become institutionalized by means of insti-
tutional rules governing the payoffs (e.g., [22]). Probably the best known example
for games that explore cooperative behavior is the Prisoner’s dilemma game [2].

• For approaches that require stronger attention to contextual detail, social simu-
lation is an alternative that intersects the social sciences with computer science
by modeling artificial societies, and thus provides the environment to explore
social problems in silica, be it by system-level modeling (e.g., system dynamics
[13]), or individual-based modeling using the notion of agents (agent-based social
simulation [3, 12]).

• Fuzzy logic [59] is another approach that looks at decision making based on the
important assumption that individual actors may bear uncertainty about their own
opinion or preferences (in contrast to game theory).

In this chapter, we look at the application of fuzzy sets in the context of social sim-
ulation to model the establishment of economic institutional rules. A key challenge
of social simulation scenarios is the lack of consistent information at a given de-
tailed level to provide a complete model specification. When filling those gaps with
crisp data, experimenters must perform careful sensitivity analysis to investigate
the impact of their approximations (or the data generated by applied randomiza-
tion or parameter optimization mechanisms, such as Monte Carlo Methods). An
alternative or complementary approach is to utilize representations of uncertainty
in their models. However, depending on the context and knowledge level of detail,

1 We will refine the definition of institutions in Sect. 6.3.
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this may even lead to fundamental adaptations of the model by replacing a known
component (e.g., voting-based decision-making mechanism) with another that can
accommodate a higher level of abstraction and does not require such detailed contex-
tual knowledge (e.g., preference aggregation). We suggest that simulation outcomes
that operate on higher abstraction levels are less sensitive to individual parameter
inputs, which is particularly important for scenarios that should be explored from
multiple perspectives and under different objectives.

To investigate these ideas, we borrow a prototypical scenario from the area of
Comparative Economics tagged as the “Maghribi Traders Coalition” [21, 22] that
has been used to postulate the emergence of institutional rules in individualistic
societies. This historical scenario uses the Italian city state of Genoa as an example,
where economic institutional rules emerged, in contrast to a Jewish traders collective
(the actual “Maghribi Traders”) that operated along the NorthAfrican coast and could
rely on social norms to sustain cooperative behavior. A compelling argument about
why such rules have come about was given by Avner Greif, who offers a convincing
account backed by game-theoretical exploration [22].

In this chapter, we use an agent-based approach to accommodate more individual
detail and enable social ability, i.e., direct interaction between individuals, which
is crucial for the realistic modeling of social scenarios. Ultimately this allows us to
look at the “how” that extends Greif’s utilitarian perspective on “why” institutional
rules emerged, respectively, ‘what’ motivated their establishment.

In order to achieve this, in this chapter, we rely on a model that incorporates the
metaphor of social forces. Individuals experience their social environment by means
of social forces based on individual attraction and repulsion (e.g., by similarity and/or
difference, respectively), which drive them in a “social proximity.” Being united by
a common concern, we assume that individuals take some sort of collective action,
which, in this case, is the formulation of rules they will collectively follow.

In the next section, we provide a brief introduction to fuzzy sets that outlines why
they are attractive in the context of this work and the field of group decision making
in general. We further contextualize our approach in this field.

In Sect. 6.3, we introduce the Maghribi Traders Coalition scenario in more detail,
and in Sect. 6.4, we embed it into a simulation concept that takes inspiration from
social psychology and models social influence as “forces” that drive the shaping of
groups as a precursor for collective action. Section 6.4.2 is dedicated to the analysis
of a baseline scenario that uses prescriptions from Greif’s approach to establish
economic institutional rules by means of the majority vote. Extending this, we use
the more inclusive and differentiated approach of preference aggregation by means
of interval type-2 fuzzy sets (in Sect. 6.5) and contrast the effects of the different
decision-making mechanisms.

Section 6.6 discusses the overall outcomes and the significance of the application
of fuzzy sets for the concrete simulation case as well as for the wider context of
social simulation.



90 C. Frantz et al.

Fig. 6.1 Type-1 vs. type-2 fuzzy sets. a Example of type-1 fuzzy set. b Example of type-2 fuzzy
set

6.2 Fuzzy Sets and Their Application in Group Decision Making

6.2.1 Fuzzy Sets

In this section, we offer a brief nontechnical introduction into the basic idea of Zadeh’s
fuzzy sets, and in particular, the difference between type-1 (T1FS) and type-2 (T2FS)
fuzzy sets [59, 61] to identify properties which make the latter particularly attractive
for the application in the context of social simulation.

In contrast to classic set theory that models the belonging of an element to a set
using bivalent logic, fuzzy sets are characterized by the ability to model uncertainty
about the assignment of an element to one or more given sets. Fuzzy sets are modeled
as membership functions (MFs) within a universe of discourse. For any input value
in a given domain x, a T1FS MF returns the degree of membership of that input with
the fuzzy set as a value between 0 and 1. Referring to Fig. 6.1a as an example, the
degree of membership with the fuzzy set K for the input value 3 is μK(3) which
resolves to a certainty of 0.8.

As for any other fuzzy set type, the purpose of the original T1FS is to represent
uncertainty. However, the fact that T1FS MF represents uncertainty as crisp values
against which input values are evaluated is considered a limitation for their appli-
cation. When specifying membership functions, modelers need to be “certain about
the uncertainty” those functions represent, which operates against the objective to
model uncertainty. Klir and Folger [29] offer a good account on this paradox, and
Mendel [41, 42] explores its philosophical implications for the scientific applicabil-
ity of T1FS. The limitations of building systems using T1FS are further explored by
Hagras [24, 25], Mendel [40], as well as Wu and Tan [58].

To overcome this problem, Zadeh generalized the concept of fuzzy sets to T2FS
and eventually type-n sets [61]. The specialization of interval type-2 fuzzy sets [40]
(IT2FS) has found wider popularity, mostly because of the benefits derived from their
trade-off of expressing uncertainty in membership functions, their comparatively
low computational costs, and the reduced complexity that makes them accessible to



6 Fuzzy Modeling of Economic Institutional Rules 91

a wider community [43]. We refer to Fig. 6.1b to explain the central characteristics
following [40] and [57]. To introduce uncertainty into membership functions, IT2FS
express the membership function for a given value as intervals that are bounded by an
upper (K) and a lower (K) type-1 membership function. This allows the introduction
of varying degrees of uncertainty across the membership function. The area between
upper and lower membership function is referred to as the Footprint of Uncertainty
(FOU) of an interval type-2 MF. For a given input value 3, we thus receive an interval
[0.3, 0.8] that describes the degree of membership μK̃(3) for that input with fuzzy
set K̃.

The already wide adoption of fuzzy sets across a range of areas (e.g., medical
systems, controller design, decision making) has been broadened by IT2FS, based on
their ability to express second-order uncertainty, and it reaches from the optimization
of supply chains [45] in Logistics via modeling of age-structured bird populations
in the context of Ecology [51] to stock price prediction [37].

Another area that greatly benefits from the application of fuzziness is that of
complex social systems which are characterized by the inherent connectedness of
individuals (and by the vagueness and ambiguity of shared ontologies). Their inher-
ent collective complexity irreducibly conflicts with the desire for precision (Zadeh’s
Incompatibility Principle [60]). An example that shows the challenges of analyzing
shared understanding across human subjects is Zadeh’s, Mendel’s and others’ work
on Computing with Words [43, 63], which gears toward a generalized interpretation
of subjective qualitative categorization of given words. So it is not surprising that
moving to a wider scope, uncertainty plays a central role when building artificial soci-
eties that aim to replicate human behavior, be it by the differentiated opinions among
artificial individuals, or insufficient or vague information on social relationships, or
simulation models in general as analyzed by Hassan et al. [26].

The application of fuzzy sets in the context of group decision making has a long-
standing tradition reaching back to the 1970s2. To contextualize approaches, a brief
overview of group decision making is thus indicated.

6.2.2 Group Decision Making

The field of group decision making (GDM) originally emerged from social choice
theory [1], which integrates aspects from decision theory and Economics. A cen-
tral theme of GDM research is the investigation of decision-making methods and
their adequate selection based on the nature of a social choice problem. A selection
of commonly applied decision-making mechanisms based on social choice theory
include [7]:

2 See [48] for an overview.
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• Preference Aggregation: Preference aggregation maps sets of individual prefer-
ences onto a collective set of preferences and yields toward the highest possible
degree of consensus achievable based on the applied aggregation rules.

• Voting: Voting is concerned with the achievement of commonly accepted deci-
sions based on agreed voting rules. The abundance of possible voting rules have
made this an extensively researched field [5]. Popular voting rules include sim-
ple majority vote, and qualified majorities (e.g., 2/3 majority for constitutional
amendments) [8, 20, 54]. Likewise decisions could be driven by submajorities
[54]3 or even a minority, such as given in the case of dictatorial rule (i.e., one vote)
or a given quorum threshold needed to effectuate collective behavior (“quorum
response”) [53].

• Resource Allocation and Fair Division: Resource allocation is associated with the
distribution of limited resources across one or more sets of individuals taking into
account the individuals’ preferences as well as efficiency and fairness measures
[46].

• Coalition Formation: Coalition formation is concerned with modeling the for-
mation of cooperative behavior among individuals to increase the net benefit per
individual leveraged from that cooperation. It is interrelated with fairness prob-
lems regarding the distribution of added value. An active subfield of investigation
is cooperative game theory [34].

• Belief Merging and Judgement Aggregation: These are two closely related fields
that apply strategies to integrate individual judgements into matching collective
ones [10]. In contrast to voting, consensus is the desired outcome of that process,
which can be facilitated by a moderating party or by prescriptions for selecting
opinions. Examples for this mechanism are expert panels or juries. It bears dy-
namic characteristics, as participants may be required to modify or trade opinions
during the process.

Many of the mentioned methods are interrelated, i.e., judgement aggregation is a
specialization of voting and extends it with the iterative refinement process to reach
consensus.

We can broadly structure those group decision-making mechanisms into two cat-
egories based on the respective decision-making objective. Preference aggregation,
voting, as well as belief merging and judgement aggregation, have the objective to
integrate the opinions of the participants. Resource allocation problems and coalition
formation apply a negotiation approach to satisfy the interests of respective stake-
holders. The iterative nature of judgement aggregation bears negotiation elements,
but nevertheless operates along the lines of unifying opinions approximating the
highest possible degree of consensus. Figure 6.2 structures these decision-making
mechanisms by their objectives.

GDM is an active research area for fuzzy sets. A central theme of work in this area
aligns with the achievements in the context of Computing with Words [63, 43] and

3 An example is the choice of new nesting sites in social insects driven by a submajority [55].
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Fig. 6.2 Group
decision-making mechanisms
by objective

uses linguistic quantifiers [62] to derive thresholds for different consensus measures
(e.g., “more than 80 %,” “most,” etc.) [6]. Examples of these include the modeling
of majority decisions [50] or consensus-based models that incorporate qualitative
aspects and rely on the analysis of linguistic interval preference [16]. GDM in this
context is generally interpreted as what we earlier described as judgement aggregation
in expert groups and involves two processes (see e.g., [28]):

• The consensus process that describes how a highest possible degree of consensus
can be achieved and is generally supported by a moderator [11].

• As a second step the selection process describes how to isolate a set of solutions
from opinions developed in the consensus process.

The work we describe in this chapter applies fuzzy sets for a different purpose
and concentrates on the two other opinion integration methods, namely, preference
aggregation and voting to develop regulated behavior. Instead of exploiting fuzzy
sets for the interpretation of imprecise linguistic expressions, we investigate their
potential to integrate differing opinions across large numbers of agents. To achieve
this, we exploit the ability of IT2 MFs to express second-order uncertainty, which
makes them attractive for the aggregation of individual opinions. To achieve that, we
refer to the a historical case that concentrates on the establishment of institutional
rules in order to regulate deviant behavior in the context of long-distance trade, which
is introduced in the upcoming section.

6.3 Maghribi Traders Coalition

The problem of the Maghribi Traders’ Coalition is taken from the area of Compara-
tive Economics and was introduced by Avner Greif [21, 22], who highlighted it as
an example of the establishment of institutional rules in eleventh and twelfth century
Italy, which was then dominated by influential city states such as Genoa and Venice.
They existed in contrast to a Jewish trader community (known as the ‘Maghribi
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Traders’) that operated along the North African Mediterranean coast between the
tenth and twelfth centuries. The prominence of this scenario is of interest for com-
parative purposes for two reasons. As a first aspect, Genoese traders and Maghribis
both engaged in long-distance trade around the Mediterranean Sea, their main trade
centered around a roughly comparable region; Genoese traders focused on the South-
ern European coast of the Mediterranean sea, and Maghribi traders dominated trade
along the North African shore. However, both trader communities hardly had any
interaction with each other and thus developed sustainable cooperation mechanisms
independently from each other.

In both cases, long-distance traders relied on “agents” they endowed with their
goods to sell them overseas at a commission. However, given the long distance
between trading base (here, Genoa) and market place (e.g., Spain), the owners of the
goods (traders) were not able to completely observe if the selling agents (which we
call “sellers” from here on to avoid confusion with the notion of software agents)
truthfully reported gains and losses. Beyond the poor detection of cheating, the harsh
competition and lack of interaction among traders (who maintained information about
cheaters as a business secret) was to the cheaters’ benefit, so they could exploit a
large number of traders, even if individual traders memorized and dismissed cheaters
individually. For that reason, the Italian traders established institutional rules to
control cheating of sellers which was an economic innovation in the context of long-
distance trade at that time. Its key benefit was to recover losses, but fore-mostly to
identify cheaters publicly in order to hinder their reemployment.

Maghribis, in contrast, relied on an extensive network of relationships that ensured
a constant information flow. Using that mechanism, cheating behavior was collec-
tively monitored, communicated, and sanctioned in a decentralized fashion. A partial
answer to the question as to why the decentralized model prevailed for Maghribis lies
in the homogeneity and the size of the respective group. Maghribis (which is derived
from the Arab word for “West”) were Jews that had been driven out of the Iraq and
established themselves as traders along the North African shore, thereby adopting
Muslim customs without adopting their religion or actually fully integrating into
their social environment. Their own religion and kinship-based background acted
as a social binding link among them, and this social coherence was achievable by
the virtue of the group’s limited size—the total number of Maghribi traders ranged
around 330 to 550. In contrast, Genoa’s size (and with this the trader community’s
size) exploded from 30,000 to 100,000 between 1200 and 1300 AD [22]. Its primary
purpose to serve as a base for pirating activities and subsequently long-distance trade
(and its constant competition with the superior city state of Venice) suggests that a
significant proportion of that population operated as either traders or agents acting
on behalf of traders to sell their goods (which we call “sellers” for the remainder of
the chapter).
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A second reason for the importance of this model is the reasonable level4 of
information maintained about both communities. Avner Greif [22] undertook an
extensive game-theoretic analysis of economic, political, and social circumstances
as well as characteristics of both groups. His conclusions are that a variety of sit-
uational circumstances (e.g., Genoa as a city state) and societal changes (e.g., the
notion of nuclear family promoted by church) have motivated the establishment of
depersonalized centralized-institutional rules in contrast to the decentralized-control
mechanisms Maghribis relied on. Greif went beyond this scenario and generalized
the Genoese traders’ behavior as individualistic and used Maghribis as an archetype
of a collective culture. An interest of Greif’s was to understand why a widely dis-
tributed collection of self-interested agents could arrive at stable institutions, which
he calls “ . . . a system of rules, beliefs, norms, and organizations that together
generate a regularity of (social) behaviour” [22].

For his analyses, Greif put an emphasis on a rational motivation to explain why
institutional rules came about, but he hardly addressed the situational drivers, the how,
that drove individual traders into cooperation; nor did he suggest more differentiated
institutional rules to govern deviant behavior, other than excluding cheating partners
from future business. For this purpose, he applied game-theoretical approaches to
derive Nash equilibria for given scenarios, which he saw as symptomatic for the
existence of institutional rules.

Our work shares Greif’s focus on the “Genoese case,” namely, the establishment
of institutional rules, but it extends beyond his achievements in that the objective
lies in the application of modeling mechanisms that might help to understand how
the Genoese might have arrived at given institutional rules. We also wish to consider
more differentiated rule sets. This thought is motivated by an interest in the con-
trasts between collective and individualistic societies. Durkheim [9] characterized
collective societies as linked by mechanical solidarity and put them in contrast to
societies that were interacting based on individual interest and specialization but
also stronger detachment from the social surrounding, and, in accordance with this,
reducing the devotion to the “commons.” However, Durkheim also outlined pat-
terns for the different society types. He suggested that judicial systems driven by
the interest of the group with a strong hierarchical structure generally exhibit more
repressive and categorical sanctions, while organic solidarity promotes restitutive
sanctions and differentiated legal systems (e.g., commercial law, administrative law,
etc.). Applying this dichotomy to our case, we suggest that legal sanctions that the
Genoese established by institutional rule were more differentiated than simply pre-
scribing the exclusion of deviants from future commercial interaction, a pattern that
could be more suitably attributed to the normatively regulated Maghribis.

4 Based on their contractual nature, the information about the Genoese society is mostly derived
from systematically maintained cartularies [22]. Information about the Maghribis, on the other hand,
is largely derived from individual business letters (see [19, 22]), providing the model foundation
based on a less systematic and comprehensive but rather anecdotal account.
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6.4 Simulation Scenario

To investigate the effects of a differentiated system of sanctions, we conceptualize
an agent-based simulation that represents the Genoese case. It consists of a parame-
terized number of traders and sellers. Traders hold goods of predefined value. Both
traders and sellers can only have a parameterized maximum number of concurrent
employment relationships.

At the beginning of the simulation, traders are initialized with a given offer wage.
Sellers are likewise set up with a minimum wage they accept. Traders send em-
ployment requests to sellers. Traders can employ a parameterized maximum number
of sellers, sellers can likewise have a parameterized maximum number of employ-
ers. Upon employment acceptance by sellers, traders send goods (of fixed value) to
sellers. Sellers then realize the market transaction which, with a given probability,
results in profit or loss5. Once realizing the trade, sellers send the profit back to their
traders who can then again send goods during the next round. If a trader suspects
cheating, he has a range of three means to sanction the respective seller. He also
memorizes this particular suspected cheater and tries to re-employ another seller
during the next round. The sanctions traders can apply range from a low sanction
which a trader would apply for negligible cheating behavior and merely warns the
respective cheater (Sanction: Warning). A stronger sanction would be to recover the
loss (Sanction: Loss Recovery). In this case, the trader would recover exactly the
amount of loss the cheater had generated. The strongest sanction is a dismissal (Sanc-
tion: Dismissal). In this case, the trader quits the employment relationship with the
seller after recovering the loss. If a trader does not have sufficient funds to employ
sellers, he is forced to quit any economic transaction and is rendered unemployed.
His sellers can then wait for employment by another trader.

Throughout the course of the simulation traders memorize the trading behavior
of their business partners. They keep records of the truthful behavior of individual
sellers. This is incremented for compliant behavior (here, noncheating) and decre-
mented for deviant behavior. To reflect the concept of “negativity bias” [4], impact
of negative behavior is valued significantly stronger than of compliant behavior. In
this given context, negative experience is elevated by adding the incurred loss to
the cheating seller’s (negative) reputation. This memory of past interactions is dis-
counted throughout the runtime of the simulation (γforget ), and converges toward
zero. We include this mechanism to simulate forgetfulness and to introduce a re-
cency bias to support the idea of a strong situational embedding of agents. Once
memories about sellers fall below a specified threshold (θdiscard ), they are discarded.
The agent thus forgets whether this seller acted in a compliant or deviant manner.
Maintaining the mean of the past experiences with sellers allows traders to derive an
indicator for the emotional and economic “pressure” from cheating they experience
(cheaterPressure), which is discussed further below.

5 Realizing losses during market transactions was realistic, as the price for commodities could
fluctuate considerably, given the extended travel times in long-distance trade [22].
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Given that Genoese traders operated in fierce competition with each other, they
did not directly communicate their experience with particular cheaters. So the ques-
tion arises: If the traders did not communicate, how then were they able to shape
institutional rules?

In order to address this issue, we first need to provide the reader with a brief
background of our social-psychologically inspired modeling approach concerning
the formation of interest groups. Given that it is secondary to the objective to show
the benefit of T2FS in our system, we limit this introduction to bare essentials that
suffice to understand how rule shaping in the system can come about.

6.4.1 Social Forces as a Pressure Metaphor

To express the Genoese ability to establish institutional rules without direct commu-
nication, we rely on the notion of “social forces” introduced by Kurt Lewin [33],
which will be used to bring agents with a common purpose together (on a social
plane) which is a precursor to establishing shared norms and rules. Lewin’s notion
of social forces was motivated by his attempt to provide a comprehensive formal-
ization of psychological constructs. We now know that this objective has not been
met, but the theories developed in its context have found wide-spread adoption be-
yond their metaphorical value (e.g., force-field analysis [32], approach-avoidance
conflict [31]). The core essence of his work was to suggest that an individual’s
behavior is fundamentally influenced by its own personality but likewise by its en-
vironment, and in particular, social environment. Following this idea, we model
our (software) agents to experience attraction to and/or repulsion from other agents
in their environment based on their situational relationship. Under these circum-
stances they generally oscillate between prioritization of cooperation relationships
within the in-group (e.g., attraction by sharing similar concerns) and competition
among the in-group leading toward attraction to complementary out-group members
(e.g., employer–worker relationship).

To operationalize this model, individual agents are randomly positioned in a mul-
tidimensional environment, and potential relationship types (social planes) between
them are specified, some of which can be static (e.g., belonging to an ethnic group,
fixed role assignment) or dynamic (e.g., employment relationships). These are asso-
ciated with the weights dynamically assigned and modified by the individual agent.
Figure 6.3 visualizes the concept schematically.

In addition, individuals can express their attitudes and opinions using tags, which
include aspects such as dissatisfaction with given situations. Depending on the spec-
ification, tags can be associated with mutual attraction or repulsion. The aggregated
effects of tag-based attraction (or repulsion) and relationship-based attraction can
lead to agents “approaching” each other to form social constellations which can
act as a precursor for collective action, such as the establishment of institutional
rules. If individual situational prioritization for concerns (and thus, relationships)
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Fig. 6.3 Social forces model

is derived from the agent internals and observing attraction (i.e., social forces) op-
erate on a global level will provide the experimenter with a visual and conceptual
understanding of the global social constellation.

Figure 6.4 provides an overview of the different operation stages of the social
forces model. The action of social forces in the Attraction stage leads to Association
behavior with social constellations as its outcome, which provide the basis for the
collective to engage in decision making (rule formation). The forces that lead to
association of individuals and even rule formation can then be causally associated
with the reaction of those groups. Established rules are thus a behavior that addresses
issues that caused individuals to associate in the first place. This applies the metaphor
of collective action rooted in social pressure.

We think that this modeling approach has generic value in describing situational
social pressures and arising patterns of social constellations. It is applicable to ef-
fectively any scenario that incorporates social influence and operates based on the
assumption that perceived social pressure, if sustained over longer periods of time,
leads to collective action.

However, with its general nature come various challenges regarding its opera-
tionalization, such as the choice of independent social planes which, in the context
of social sciences, are difficult to specify even though they are intuitively understand-
able (For example, consider the interdependence of individual demographic factors
such as affluence and education level, etc.). Another challenge is the choice of pa-
rameters, such as the attraction values on social planes. These aspects are significant
empirical issues, but they are not the focus of this work here. We can avoid the
discussion at this stage, as this model itself does not have confounding influence on
the objective of interest of this work. Instead, our key objective is to present work in
the evaluation of rule formation using majority-based decision-making (using votes)
in contrast to mechanisms that aggregate individual opinions based on fuzzy sets.
It thus concentrates on the last stage (action stage in Fig. 6.4) of the social forces
model.
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Fig. 6.4 Operation of social forces model

We use this mechanism as a basis to perform collective action, which is achieved by
letting individuals engage in decision-making processes based on decision-making
strategies provided by the experimenter. This is where the formation of institu-
tional rules becomes meaningful. This is also the starting point for the performance
comparison of different decision-making mechanisms (or rule formation conditions).

Applying this idea to the Genoese case, which had the characteristics of an indi-
vidualist society and had established citizen rights based on elementary democratic
principles (i.e., participation of citizens with voting rights [22]). In this social context,
traders do not directly communicate their experiences with each other. Instead traders
privately evaluate their individual experience with sellers. If the overall experience
(the mean across all individual experiences) is negative, traders interpret that as being
exposed to social “pressure” from cheating and assign themselves a tag displaying
the fact that they experience pressure. Tags in this model carry heavier semantics
than the conventional tag that acts as a mere syntactic marker. Additional to an action
or state description, tags allow the association of a valence with that state. Utilizing
this mechanism, individuals can indirectly express their opinion about a condition
(e.g., be neutral or negative about the fact that they are affected by cheating).

If this shared experience is of dominant concern (which is measured as an aggre-
gate of the tag weights), individuals are socially attracted to each other and thus move
into closer social proximity. If their attraction is sustained, they are clustered and can
suggest general measures that address the issue of concern without actually sharing
detailed information (such as names of cheaters) that would be to the potential benefit
of their fellow trader competitors. In our case, this means that cheated traders can
agree upon consequences they impose on detected cheaters. In our model, where
clustering signifies a common objective, any suggested countermeasure would be
associated with that common purpose. In this case, traders are united by their per-
ceived pressure by cheaters and can then suggest a sanction they would prefer to
impose on cheaters, which is generally the sanction they apply individually in the
first place.
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Using the cluster metrics, we can then specify conditions and means according
to which suggested consequences are processed and activated. An example for rule
formation conditions is the majority-based voting mechanism in order to identify a
dominant rule suggestion. Note at this stage that the choice of a decision mechanism
along with its parameterization is strongly context-dependent. However, in our case,
the City of Genoa was ruled by an elected consulate [22] in which traders’ interests
were (though not perfectly) represented in a democratic fashion6.

6.4.2 Baseline Scenario for the Establishment of Institutional
Rules

Corresponding to the manner in which Greif employed game theory to suggest a
plausible solution to cheating, i.e., the establishment of institutional rules that banned
cheaters from further participation in commercial interactions, we base our initial
approach on social choice theory and suggest the use of the egalitarian weighted
majority rule [39]:

If the majority of actively employing traders are united in the concern to punish cheaters for
their actions, the dominating sanction suggestion is chosen as a permanent rule and adopted
by all individuals participating in the rule formation.

This rule formation condition still leaves open how individual traders derive rules
from their internals. In the preceding section, we introduced the dynamic measure
of “social pressure,” and more concrete “cheater pressure,” as a determinant of a
trader’s overall perception of emotional and economic pressure. To operational-
ize it, the trader maintains a memory about the most negative cheating experience
(cheaterPressuremin) he has encountered during the entire simulation runtime. This
memory is discounted at a different (generally lesser) rate (represented as γmostNegative)
due to its greater distinctiveness in comparison to other instances of cheating expe-
rience (which are discounted using γforget). Potential sanctions, “warning,” “loss
recovery,” and “dismissal” are ordered by severity. Starting from the most severe
sanction, “dismissal,” traders apply and suggest this sanction if their overall sit-
uational cheating pressure drops below cheaterPressuremin/2 (recall that cheating
pressure is a negative number). Otherwise, traders apply “recovery of loss” as long
as the situational cheater pressure is smaller than cheaterPressuremin/4. Any lesser
cheater pressure (i.e., remaining value range below zero) carries a “warning” as a
consequence. Algorithm 1 summarizes this rule set.

6 The consulate itself, although democratic in its nature, was imperfect as it needed to balance
interests of competing clans which, over time, had varying degree of influence (see Greif [22] for
details).
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Given this rule set, traders develop a dynamic and differentiated perception of the
cheating behavior of individual traders. We use this simulation as an initial baseline
scenario whose results serve as a comparison for further rule formation conditions
we will introduce below. In Table 6.1, we highlight simulation parameters that are
central to the observations described here. The choice of the selected parameters was
driven by sensitivity analysis of the parameter set and focused on stable simulation
behavior and identification of tipping points in sanction choice, rather than being
based on historically authenticated market behavior7. Beyond that, an important
variable is the decision-making strategy used to drive collective action, which, at
that stage, is the majority rule provided above. The alternative approach based on
fuzzy sets will be introduced in Sect. 6.5.

Dependent variables in this simulation are employment levels for traders and
sellers, the subjectively perceived pressure from cheating, as well as employment
levels for both groups. In addition, we take note of metrics that are particular to
the applied decision-making mechanisms. For our simulation, the choice of the
cheater memory discount factor (γ ) plays a critical role, since the traders’ sanction
boundaries are directly derived from memory about past interactions. We executed
the simulation for each parameter setup (15 times, initially for 1000 rounds but later
reduced to 500 rounds as simulations stabilize within this number of rounds) on Intel
Quad-core desktop computers (2.66 GHz, 4 GB RAM) running Windows XP/7 and
Java 1.7. The tables provided here show the mean and standard deviation value of
these runs. The figures provided in the chapter are chosen from a simulation run that
is in closest alignment with the mean values.

To show the range of possible simulation outcomes using the weighted majority
rule, we concentrate on the manipulation of the memory discount factor γforget. We
show employment figures for γforget values 0.96 (Fig. 6.5a), 0.97 (Fig. 6.5b) as well
as 0.98 (Fig. 6.6a), and 0.99 (Fig. 6.6b) and discuss characteristics of the respective
outcomes. All figures consist of four series, two of which represent the trader and
seller employment levels. Along with those, the cheater pressure is represented by
two complementary series. Although seemingly redundant, the symmetry of those
graphs support their visual differentiation from the other (employment-related) data
series.

7 For this reason, commissions that sellers can achieve in the system have been set to fixed values
in order to encourage maximum employment levels.
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Table 6.1 Simulation parameters

Parameter Value

Number of traders 150

Number of sellers 200

Maximum number of employers per seller 2

Maximum number of sellers per employer 5

Quota of cheating sellers 0.3

Probability of cheating random value between 0.2 and 0.8 (initial-
ized on per-seller basis)

Fraction of trade withheld by cheater random value between 0.3 and 0.9 (deter-
mined on per-trade basis)

Cheater memory discount factor (γforget) 0.96–0.99

Discount factor for highest cheating extent
(γmostNegative)

0.99

Fraction of transactions with suspected cheating 0.05

Threshold for discarding memory entries (θdiscard ) 0.01

Goods value 200

Probability that selling goods results in profit 0.8

Maximum win/loss from market transaction 0.3

If initializing γforget with 0.96, traders converge on the categorization of cheating
behavior as weak, and thus on the weakest sanction, after around 44 rounds. This is
caused by their relatively high degree of forgetting. As a consequence, the majority
of economically pressured traders opts for the weakest sanction (“Warning”). Given
that the rule is collectively adopted, traders that actually employ cheaters have no
harsher means of sanctioning that would allow them to recover their losses or exclude
deviants from further transactions. This presents the worst possible outcome, in as
much as it results in an economic decline caused by the inability of most traders to
sustain a sufficient level of income that allows continued employment of sellers. This
effect can be clearly observed by the sudden drops in seller employment caused by
traders that let off all sellers (potentially up to five at a time) upon exiting the market.
Consequently, the cheater pressure declines to a low level maintained by traders that
employ a mix of cheaters and noncheaters. In sum, to model the Genoese case from
an economic perspective, converging to a soft sanction is not desirable.

Looking at the baseline scenario with γforget at 0.97 (Fig. 6.5b), traders maintain
a memory of negative trading experience for longer and agree on the recovery of
loss as their unified reaction to cheater’s behavior. Given that the recovery of loss is
sufficient to sustain the traders’ income (traders recover any loss from cheating from
the cheater while keeping them in employment), no firing occurs, i.e., employment
levels are high, and income levels are stable. However, cheaters never leave the
system, so traders continue to perceive the emotional pressure by cheating, which is
only reduced by forgetting.
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Fig. 6.5 Employment and cheater pressure (1/2). a Employment and cheater pressure for
γforget = 0.96. b Employment and cheater pressure for γforget = 0.97

We extend our view to the third case, a γforget value of 0.98. Traders maintain an
even longer memory about cheating experiences, which ultimately lets them converge
to DISMISSAL as a general sanction. As a result of this sanction choice, cheater
pressure levels off more rapidly.
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Fig. 6.6 Employment and cheater pressure (2/2). a Employment and cheater pressure for
γforget = 0.98. b Employment and cheater pressure for γforget = 0.99

The last case, with γforget set to 0.99, equally helps drive traders toward agreement
on the harshest sanction, which is the firing of individuals and public announce-
ment to prevent (or at least delay) re-employment. Given their better memory, they
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consequently apply this sanction in the first place, which leads to rapid adjustment
of employment levels. The effect of this sanction is an employment level of sellers
slightly above 150.

Table 6.2 provides us with further metrics that describe when the majority rule con-
dition (described at the beginning of this subsection) of this voting-based approach
is met for the particular configurations, how many individuals (employing traders)
participated in the agreement on a rule, but also how many of those individuals’
opinions are directly represented in the codified rule.

An important characteristic for the evaluation of aggregation mechanisms is the
representativeness, i.e., the fraction of individuals whose choice is directly repre-
sented in the outcome (e.g., all individuals that opted for DISMISSAL if this sanction
was chosen). In all configurations, the quota of individuals whose opinion is directly
represented, lies between 38 and 60 %, mostly leading to outcomes that represent
submajority rule. Note the stronger the convergence the more unified the perceived
cheater pressure is. For γforget at 0.97, we see a low representativeness. Many par-
ticipants opted for the bordering alternative sanctions. For γforget at 0.99, we see
a particularly strong advocation of a sanction as cheater pressure was dominantly
perceived as “HIGH.”

This current model has some clear limitations. Converging to a single rule seems
unrealistic, given the largely varying extent of cheating and the available sanctions set
to address this. The sensitivity of the simulation toward the γforget parameter (based on
the largely differing simulation outcomes) suggest that a more differentiated selection
of sanctions seems not only appropriate but necessary in the cases where sufficient
detail information is not available.

6.5 Modeling Differentiated Institutional Rules with Interval
T2FS

IT2FS offer attractive options for representing the negotiation of a differentiated
categorization and sanctioning of cheaters. Given that traders’ sanction choices are
driven by their individual experiences with cheaters (see Algorithm 1), they develop
an independent understanding of cheating categories. Instead of having individuals
put forth their preferred sanction choices (their classification of situational cheater
pressure, as done in our initial model), IT2FS enable individuals to provide the
boundaries (intervals) for all cheating categories. From a functional perspective in
this context, the use of IT2FS can be interpreted in terms of a concurrent negoti-
ation of a shared understanding on positions, which is ultimately used as a model
for subsequent decision-making processes. Given the universal domain of applica-
bility along with the potential anonymity of “voters” and a neutral treatment of all
decision options, the use of fuzzy sets complies with characteristics for generaliz-
able aggregation rules in the context of social choice theory [39]. In contrast to the
majority-based approach, however, opinions can be excluded by statistical means.
Second, from the standpoint of computation, we require a notion of global observer
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that collects and integrates the different opinions. In majority-based approaches, on
the other hand, it can be organized in a decentralized fashion.

Nevertheless, given the intent to include diverse opinions within statistical
boundaries, IT2FS may offer a better approximation of decision outcomes than
majority-based models. Given the suppression of information of the unrepresented
fraction of a quorum, a majority-based voting model can react very sensitively to
minor input adjustments and is prone to display distinct tipping points (as shown
for the memory discount factor in Sect. 6.4.2), at least as long as it relies on the
conventional use of crisp votes8. As we show below, fuzzy modeling may be a bet-
ter approach to avoid high sensitivity to adjusted input parameters, especially for
cases in which precise information is not available. Moreover, as mentioned in the
previous paragraph, inclusion of individual opinions in this scheme is not limited to
identifying the sanction with maximum support as in the majority-based approach.
Instead inclusion is determined by the statistical similarity to others’ opinions about
the category boundaries of the input set “cheating.”

In order to extend the simulation with fuzzy logic functionality, we ported Mendel
and Liu’s membership function generator (whose algorithm is described in the con-
text of their application of IT2FS to Computing with Words [36]) to Java, which
is the implementation language of our simulation framework. Membership func-
tions generated from individual intervals are then used to generate an interval type-2
fuzzy logic system (IT2FLS) using a ported (and modified) version of Dongrui Wu’s
IT2FLS Processor [57]9. Both components have been integrated, modified, and ex-
tended with evaluation utilities and visualization capabilities to provide mechanisms
for analyzing the creation of membership functions and the exploration of generated
IT2FLS instances. Note that we interpret an IT2FLS instance as a IT2FLS that has
been generated at a given point in time, incorporating the collective membership
functions and rule set valid at that time. The architecture of our IT2FLS Module is
depicted in Fig. 6.7. We briefly describe the components as follows.

Upon reaching into close social proximity, agents send their individual intervals
(boundaries of cheater pressure) for each cheating category into the interval prepro-
cessor, which performs a basic validation of numeric values, and organizes intervals
by input set (here, we only use a single input set), and respective categories (here,
cheating categories HIGH, MEDIUM, LOW). Beyond this, the preprocessor ensures
that only inputs from the current simulation step are processed (i.e., it clears and re-
builds the input sets during each step), and prevents multiple inputs by individual
agents. Once all intervals for a given simulation step have been added, the collected
input intervals are used to generate a nine point membership function10 for each
input interval set. Generated MFs can be inspected using a visualizer extension (see
Fig. 6.8 for an example).

8 See Li et al. [35] for an approach to model fuzzy majority votes.
9 In both cases, the original code is written in MATLAB.
10 In IT2FS, a membership function is described by a nine point vector that describes its shape in
a two-dimensional representation with the input assigned to the domain axis and upper and lower
boundaries of the function assigned to the range axis [57].
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Fig. 6.7 IT2FLS module

Fig. 6.8 Example of generated nine-point membership function

Liu and Mendel’s MF generation algorithm is particularly useful in our context,
since it introduces extensive data preprocessing to support the generation of robust
membership functions. Given that their work is based on questionnaires of human
subjects, the proposed preprocessing steps seem equally applicable to data gener-
ated by an artificial entity (that builds on the “human” metaphor). Without exploring
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Fig. 6.9 Example of membership functions to categorize cheating levels derived from collective
trader input

the entire MF generation in detail11, Liu and Mendel’s approach [36] eliminates
useless results (bad data), e.g., caused by inverted values for upper and lower in-
terval boundaries, and data that are unreasonably high or low, i.e., outside 1.5 *
Interquartile_Range (outliers). As further steps, data outside a confidence boundary
of 95 % of the distribution of the collected intervals for a given set are excluded (out-
side tolerance limits). Finally, their approach eliminates data that is not sufficiently
overlapping with other intervals (unreasonable data). The MF shown in Fig. 6.8 is
an extreme example for an MF generated from agent interval inputs. The visual-
ization also provides information on intervals that have been excluded during any
data preprocessing steps (annotated with the reason for exclusion). In contrast to
input generated by human subjects, the production of nonplausible “bad data” can
be controlled by design. However, all other processing steps that rely on statistical
measures for exclusion equally apply to data produced by artificial entities. In the
figure, the upper MF and lower MF are plotted with a strong stroke. Intervals that
have been included in the generation appear dark gray (and are by principle of MF
generation framed by the upper MF). The remaining intervals have line patterns that
indicate the reason for elimination (see the legend in Fig. 6.8) with the outer left and
right ones being outliers, followed by intervals that are outside the tolerance zone,
and ultimately intervals that are considered “unreasonable data” according to the last
condition in the data preprocessing step referred to before.

11 For full details, please refer to [36].
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Observing the potentially extensive exclusion of data, the role of data prepro-
cessing in generating meaningful MFs becomes clear. This is especially important
for larger numbers of input intervals, an aspect that is relevant for agent-based
simulations that operate with a large numbers of agents.

Calculating the MFs for all inputs provides a complete picture of potential MFs,
an example of which is given in Fig. 6.9 to show the characteristic functions produced
by the system based on the determination of sanctions by individuals (see Algorithm
1). The deviation among input intervals is directly reflected in the size of the foot-
print of uncertainty of the respective MF, which offers a high inclusion of different
opinions but naturally trades this for precision. The mentioned data preprocessing
steps provide a means to adjust this trade-off into either direction, which is an aspect
beyond the scope of this chapter.

Note the widely varying input on the left-most membership function (high cheat-
ing) in Fig. 6.9. This is ultimately caused by the randomized cheating behavior of
sellers and is amplified by the cheater pressure algorithm (Algorithm 1), which has
a low threshold for the categorization of cheater perception as “HIGH.”

In order to put established rule sets into action using a generated IT2FLS instance,
we require the specification of rules along with consequences that are associated with
evaluated degrees of membership of input values with different fuzzy sets. In cases
that operate on multiple input sets (e.g., cheating, employment status), a rule must
be specified for each input set-fuzzy set combination.

In our current example, which at this stage, works with a single input set, the
rule consequences are directly associated with the input value’s (k) membership in
an associated fuzzy set. In IT2FSs, the rule consequent is an interval of upper and
lower boundary. For our rule consequences, we use crisp values and thus set upper
and lower boundary to the same value. This rule consequent directly maps onto a
given sanction (highlighted in parentheses):

IF k is HIGH_CHEATING, THEN: [0.0, 0.0] (DISMISSAL)
IF k is MEDIUM_CHEATING, THEN: [0.5, 0.5] (RECOVER_LOSS)
IF k is LOW_CHEATING, THEN: [1.0, 1.0] (WARNING)

Based on this information, i.e., all generated type-2 membership functions and rules,
the IT2FLS module (see Fig. 6.7) can create an IT2FLS instance.

To operate the IT2FLS, agents invoke it using their current cheater pressure and
expect a return value between 0 and 1, which they classify and associate with sanc-
tions. Values in the range from 0 <= x < 1/3 are interpreted as DISMISSAL
(i.e., firing of cheaters), 1/3 <= x <= 2/3 as RECOVER_LOSS, and the remainder
2/3 < x <= 1 as WARNING.

In our simulation, the generation and operation of IT2FLSs is integrated into the
overall simulation architecture and triggered by a specified rule formation condi-
tion (see Sect. 6.4.1). Derived from the consensus-based rule formation condition,
codified rules (that traders are bound to) are only established once the majority of
employing traders participate in the collective decision process (i.e., feed their in-
terval sets into the preprocessor). The resulting IT2FLS instance is then fixed and is
invoked by traders to react to any future cheating. In order to address the fact that
the range of the input values is unknown beforehand and can also change after the
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establishment of a rule, the IT2FLS implementation for this simulation treats left-
and right-most MFs as left and right shoulders, even if boundaries are not specified.
This way the range of input values for the ordinally scaled cheating categories can
vary while ensuring that they are still captured by the left or right outer MF.

6.5.1 Results

Running the simulation with the fuzzy set extension, with the cheater memory dis-
count factor γforget set to 0.96, 0.97, 0.98, and 0.99, we receive the results shown in
Figs. 6.10a, 6.11a, 6.12a, and 6.13a. To ease the comparison with previously shown
results for rule choice based on majority vote, the previous results are provided just
below the respective outcomes of their IT2FLS equivalent (Figs. 6.10b, 6.11b, 6.12b,
and 6.13b). The representation of all generated membership functions for this sim-
ulation setup (which is, given the unchanged individual categorization of cheating,
constant across all simulation runs) is the one shown in Fig. 6.9.

It can be immediately observed that the sensitivity of the simulation to γforget for
all parameter choices is reduced. This result is afforded by the differentiated sanction
set with which traders can operate. The differences in simulation outcomes across
γforget values are essentially reduced to the speed of convergence and comparatively
minor shifts in employment levels.

For γforget = 0.96 (Fig. 6.10a), we can observe the slow convergence of seller em-
ployment toward 145 (employed sellers) after about 450 rounds, a level at which most
cheaters have been identified and excluded from further transactions. Trader employ-
ment levels remain around 110, which is in stark contrast to the continuous drop in
employment levels for the previously described voting approach (Fig. 6.10b). The
perceived cheater pressure is neutralized after about 160 rounds, which is facilitated
by the relatively high forgetfulness of traders.

For γforget = 0.97 (Fig. 6.11a), the fuzzy selection of sanctions leads to very similar
employment levels as for γforget at 0.96. The central difference is the difference in
convergence time which is caused by the stronger influence of cheater memory that
drives the establishment of common rules. As shown earlier for the nonfuzzy ap-
proach (Fig. 6.11b), traders agree on the second-harshest sanction, which maintains
very high employment levels for both traders and sellers at the cost of continued
pressure caused by cheating (see Sect. 6.4.2).

The effect of preference aggregation using IT2FS for γforget at 0.98 (Fig. 6.12a)
follows a similar pattern as for 0.97 and converges roughly in the same fashion. For
this setup, we observe an effect that is not directly visible from the employment
levels. Employment levels do not decline in the gradual fashion as for previous
values, but produce a step pattern until they eventually reach a stable plateau. This
pattern directly reflects the situationally preferred sanction. After establishment of
the fuzzy rule set, most sellers respond to their high cheating pressure by dismissing
cheaters which, once the pressure starts to decline, is replaced by the recovery of loss
as a dominantly applied sanction. This pattern finally subsides, and traders fall back
to a mixed application of sanctions. Cheating levels ultimately balance at around
235 rounds.
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Fig. 6.10 Employment and cheating levels in fuzzy and nonfuzzy rule formation. a Fuzzy rule
formation for γforget = 0.96. b Nonfuzzy rule formation for γforget = 0.96

Forγforget at 0.99 (Fig. 6.13a), we can observe a similar pattern as for the value 0.98.
The core difference is a more consistent application of the DISMISSAL sanction,
which leads to an initial steep decline in employment levels that bottoms out just
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Fig. 6.11 Employment and cheating levels in fuzzy and nonfuzzy rule formation. a Fuzzy rule
formation for γforget = 0.97. b Nonfuzzy rule formation for γforget = 0.97

below 150 employed sellers after 180 rounds. This leads to a slightly better outcome
for the fuzzy version as compared to the nonfuzzy one, since it manages to reduce
the cheater pressure after around 335 rounds in comparison to 380 for the nonfuzzy
version (Fig. 6.13b).
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Fig. 6.12 Employment and cheating levels in fuzzy and nonfuzzy rule formation. a Fuzzy rule
formation for γforget = 0.98. b Nonfuzzy rule formation for γforget = 0.98

Differences in employment levels and rule efficiency are reflected by various mea-
sures of rule establishment, such as round of rule establishment (before that point,
traders carry out sanctions according to their own preferences) and numbers of partic-
ipating traders (higher numbers of traders lead to more consistent rule application).
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Fig. 6.13 Employment and cheating levels in fuzzy and nonfuzzy rule formation. a Fuzzy rule
formation for γforget = 0.99. b Nonfuzzy rule formation for γforget = 0.99

We will thus have a look at various metrics of the fuzzy preference aggregation
approach as shown in Table 6.3 and compare them to the voting-based approach
(Table 6.2).
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Table 6.3 Established rules using IT2FS-based preference aggregation

γforget Round of
rule estab-
lishment

σ Individuals
participat-
ing in rule
establishment

σ Individuals
who are rep-
resented in
rule

σ Ratio of rep-
resented indi-
viduals

0.96 46 3.72 79 6.62 72 7.29 0.911

0.97 42 2.47 81 5.85 76 6.91 0.938

0.98 44 3.30 78 8.37 71 7.59 0.910

0.99 49 4.04 95 10.16 84 11.21 0.884

As a summary, in contrast to the voting-based decision making, the fuzzy approach
using preference aggregation bears a set of differences. It allows the definition of a
set of sanctions which traders converge on, instead of focusing on a fixed sanction or
complex means to enable differentiated mechanisms of argumentation to establish
a sanction set. A key characteristic of preference aggregation is the high level of
inclusiveness and thus representation. Exclusion of individuals from aggregation
only occurs based on statistical evaluation of the distribution (see Sect. 6.5). In
general about 90 % of all opinions are considered and thus represented in the rule
outcome. By nature, (nonqualified) majority-based voting yields lower levels of
representation. Our results for that scenario range between 38 % to just above 60 %
(see Table 6.2).

However, a central observation is that the introduction of fuzzy sets considerably
reduces the sensitivity of the simulation to a specific parameter, especially in contrast
to mechanisms with strong tipping point, such as majority-based voting. This may not
necessarily be wrong per se, but for cases in which detailed information is lacking,
this may lead to high parametric sensitivity, which can be spurious and misleading.
This was evident from the nonfuzzy (voting) outcome for γforget = 0.96 and 0.97.

Our application of fuzzy logic up to this stage is still relatively rudimentary as
we only focus on a single input set, the extent of cheating. However, a trader’s
sanctioning behavior may not only depend on his perception of cheating extent but,
as a further influence factor, may depend on his affluence. As shown in Fig. 6.12a
(fuzzy setup with γforget = 0.98), traders’ behavior showed linearity with regard to
sanction cheating categorization by transitioning from dismissing to the recovery
of loss. We, therefore, proceed to incorporate traders’ wealth information into the
sanction choice to represent a more differentiated behavior.

6.5.2 Adding Wealth as Input Set for Differentiated Rule Sets

To make traders’ sanctioning behavior not only dependent on perceived cheating
pressure, we add the perception of wealth as a second dimension which is a starting
point for the consideration of further (here, demographic) factors.
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In order to include wealth self-perception into the gradual sanctioning of cheaters,
traders not only provide their intervals for different cheating categories but likewise
intervals for wealth categories to the interval preprocessor (see Fig. 6.7). Similar
to the cheating categories, the boundaries for wealth levels are derived based on
individual experience. The rules to derive categories are described in Algorithm 2.
If the evaluated wealth level is within the first quartile of the range of experienced
wealth, wealth is considered low. Wealth values ranging within the second quartiles
indicate medium wealth. Higher values are considered to indicate high wealth.

We thereby introduce the assumption that the harshness of a trader’s reaction is
negatively correlated with his perceived wealth status. To integrate the new input
set, we need to adapt the rule specification for the IT2FLS generation by assigning
consequents for all possible input set combinations:

IF k is HIGH_CHEATING AND LOW_WEALTH, THEN: [0.0, 0.0] (DISMISSAL)
IF k is HIGH_CHEATING AND MEDIUM_WEALTH, THEN: [0.0, 0.0] (DISMISSAL)
IF k is HIGH_CHEATING AND HIGH_WEALTH, THEN: [0.0, 0.0] (DISMISSAL)

IF k is MEDIUM_CHEATING AND LOW_WEALTH, THEN: [0.0, 0.0] (DISMISSAL)
IF k is MEDIUM_CHEATING AND MEDIUM_WEALTH, THEN: [0.0, 0.0] (DISMISSAL)
IF k is MEDIUM_CHEATING AND HIGH_WEALTH, THEN: [0.5, 0.5]
(LOSS_RECOVERY)

IF k is LOW_CHEATING AND LOW_WEALTH, THEN: [0.0, 0.0] (DISMISSAL)
IF k is LOW_CHEATINGAND MEDIUM_WEALTH, THEN: [0.5, 0.5] (LOSS_RECOVERY)
IF k is LOW_CHEATING AND HIGH_WEALTH, THEN: [1.0, 1.0] (WARNING)

With increasing wealth, traders thus react more leniently when facing deviant be-
havior. The consideration of wealth for rule suggestions has equally been integrated
into the nonfuzzy majority-based voting approach to provide direct comparison.
The generated membership functions for the categorization of wealth are shown in
Fig. 6.14.

In contrast to cheating (see Fig. 6.9), in this conception, wealth is generally
of positive value, thus ordered from low to high wealth level. Another difference
to cheating is that wealth self-perception is much more certain (as visible by the
relatively small FOU), as it is only influenced by extreme wealth changes that extend
the boundaries of wealth categories (see Algorithm 2), which hardly occur based on
an individual transaction, but stabilize over the run of the simulation. The perception
of cheating, in contrast, can be strongly influenced by an individual transaction
with a strong cheater. To compare the impact of introducing wealth into sanction
considerations, we pair figures showing the fuzzy approach along with the nonfuzzy
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Fig. 6.14 Example of membership functions to categorize cheating levels as well as wealth levels
derived from collective trader input

approach to extend our argument of the smoothening impact of integrating fuzziness
into our rule formation system.

For the nonfuzzy version with γforget = 0.96, incorporating wealth (Fig. 6.15b), we
see similar behavior as in the initial nonfuzzy setup (Fig. 6.10b). Employment levels
surge because of the convergence to a weak sanction. Employment levels, in fact,
drop faster in the wealth-including version as individuals that consider themselves
well off act more leniently, even in the case of strong cheating. We see a similar
pattern for the fuzzy version (Fig. 6.15a) where lenient sanctioning effects more
rapidly dropping employment levels of traders.

The nonfuzzy version of that model, which includes wealth for γforget of 0.97, is
a good example of the significant impact the inclusion of wealth can have on the
convergence behavior for a majority-based voting system. Integrating wealth into
the decision-making for the nonfuzzy setup, traders converge toward the weakest
sanction, which is in stark contrast to the nonfuzzy setup that does not consider
wealth (Fig. 6.11b) and in which traders concentrate on the recovery of losses. This
is reflected in the relatively poor representativeness (compared to all other values for
γforget) of the resulting sanction (see Table 6.4) for the overall opinion. We can see that
the overall majority opts for the two harsher sanctions; only a submajority of around
48 % defines the rule (compared to 65 % for γforget at 0.96 for the same sanction). In
this context, γforget = 0.97 is just below the tipping point toward a harsher sanction.

For γforget at 0.98 and 0.99, we can see the sanction shift, which is relatively
extreme for the wealth-enhanced nonfuzzy approach and directly shifts to the harsh-
est sanction (DISMISSAL) (see Table 6.4). The patterns of those two graph pairs
are comparable in that they show similar outcomes. The fuzzy approaches show
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Fig. 6.15 Employment and cheating levels in fuzzy and nonfuzzy rule formation. a Fuzzy rule
formation (using cheating and wealth as input sets) for γforget = 0.96. b Nonfuzzy rule formation
(using cheating and wealth as input sets) for γforget = 0.96

smoothened results because of their differentiated sanction application. However,
both approaches ultimately arrive at the same employment levels. The only differ-
ence for γforget at 0.99 (compared to γforget at 0.98) is the slightly lower employment
rate for sellers as of the harsher cheating reinforcement by lower forgetfulness.
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Table 6.5 Established rules using IT2FS-based preference aggregation (including wealth)

γforget Round
of rule
establish-
ment

σ Individuals
participating
in rule estab-
lishment

σ Individuals
who are
represented
in rule

σ Ratio of repre-
sented individu-
als

0.96 37 2.27 79 5.73 71 7.32 0.898

0.97 36 5.19 80 11.40 76 12.29 0.950

0.98 37 2.21 68 9.53 65 8.26 0.956

0.99 44 7.79 92 12.43 81 14.45 0.880

Compared to the fuzzy approaches without consideration of wealth (see
e.g., Fig. 6.13a in comparison to Fig. 6.18a), the wealth inclusion effects more
moderate sanctioning behavior. This is ultimately to the disadvantage of traders;
their employment levels shrink. Table 6.5 shows the representativeness of wealth-
incorporating decision outcomes, which have similar ranges as the previous simula-
tion sets that excluded wealth aspects (see Table 6.3) while displaying slightly faster
convergence.

6.6 Discussion and Conclusions

To this stage, we have shown a set of experiments that compare a majority-based
voting approach with preference aggregation using IT2FSs. Although for the given
scenario of rule generation, the majority-based approach is more aligned with the sce-
nario’s background, we suggest that the alternative approach using fuzzy sets might
in fact be more useful to model this case. For simulations for which consistent knowl-
edge at a given abstraction level is not available, choosing alternative mechanisms
on a higher abstraction level and the reduced precision might in fact be more suitable
to model subtle dynamics of social simulations which would otherwise be lost (see
the sanction choice shift in the wealth-enhanced version between γforget = 0.97 and
0.98 (Figs. 6.16a and 6.17a) for example). Beyond that, introducing fuzziness in
such cases makes simulation behavior less dependent on the experimenter’s specifi-
cations, which is a core criticism of the social simulation approach in general [23].
The experiments shown in this work provided a clear account of a simulation sce-
nario that was strongly sensitive to a single parameter which was ultimately rooted
in the choice of a seemingly correct decision-making mechanism (majority-based
voting). Knowledge about this in combination with lacking detailed knowledge re-
sulted a widely varying behavior (unstable to small parameter variation). In contrast,
the use of preference aggregation provided more believable behavior along with a
mechanism to enable differentiated sanction choices.

This chapter provides an instance that shows the strong potential of IT2FS to estab-
lish a comparatively simple aggregation of opinions into a fuzzy set. This approach
is generalizable and could find application across different simulation scenarios. It
also shows that fuzzy mechanisms can be applied as an alternative to conventional



122 C. Frantz et al.

Fig. 6.16 Employment and cheating levels in fuzzy and nonfuzzy rule formation. a Fuzzy rule
formation (using cheating and wealth as input sets) γforget = 0.97. b Nonfuzzy rule formation (using
cheating and wealth as input sets) for γforget = 0.97

decision-making approaches, which can open exploration options from different an-
gles and easily introduce new influence factors (in the shape of additional input sets
and corresponding additional rule combinations as shown for the inclusion of wealth
in addition to the consideration of cheating categories in Sect. 6.5.2).
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Fig. 6.17 Employment and cheating levels in fuzzy and nonfuzzy rule formation. a Fuzzy rule
formation (using cheating and wealth as input sets) for γforget = 0.98. b Nonfuzzy rule formation
(using cheating and wealth as input sets) for γforget = 0.98

The potential of IT2FS for social simulation lies in the degree to which they sup-
port the modeling of collective opinions. In addition, the specialization of interval
type-2 FS (in contrast to general type-2 FS) makes the creation of fuzzy logic sys-
tems more transparent to the modeler and eases their adoption. Type-1 fuzzy sets
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Fig. 6.18 Employment and cheating levels in fuzy and nonfuzzy rule formation. a Fuzzy rule
formation (using cheating and wealth as input sets) for γforget = 0.99. b Nonfuzzy rule formation
(using cheating and wealth as input sets) for γforget = 0.99

do not offer the potential of integrating individual opinions into a fuzzy set that
bears uncertainty in itself. This particular characteristic, the second-order uncer-
tainty, makes the adoption of fuzzy approaches an alternative to the inclusion of
randomness (which modelers would otherwise incorporate by using random number
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distributions or Monte Carlo Simulations in cases where they want to express un-
certainty or vague knowledge about behavior they intend to simulate). The use of
those approaches shows that uncertainty is often a necessary element for social sim-
ulations and thus requires an appropriate representation. However, this also implies
that those simulations generally support a conceptual understanding of a particular
social constellation, not precise specification or specific outcome, which is in line
with Zadeh’s own observation that precision is in inherent conflict with uncertainty
[60] (see Sect. 6.2.1).

We note that our work is not isolated in its advocation of fuzzy sets. In the context
of agent-based modeling and social simulations, fuzzy sets (of type 1) have found
application for the modeling of personality traits [18, 49], trust [30] as well as social
relationships [26, 27, 52]. An explicit comparison for the incorporation of crisp and
fuzzy sets in the BDI architecture [17] is explored by Vu et al. [56] for decision
making using the example of soccer penalties. Hassan et al. [26] further provided a
powerful general argument for the adoption of fuzzy modeling in the area of social
simulation. To date, IT2FS have hardly been applied to agent-based modeling of
social phenomena, one rare exception being Márquez et al.’s [38] approach to model
poverty levels for the city of Tijuana representing the demographics of individual
areas as agents.

Our work extends the argument for the adoption of IT2FS for agent-based mod-
eling in general, and institutional modeling in particular. We have proposed a
mechanism to represent collective decision making by integrating individual mi-
croperspectives with a collective macroperspective based on configurable strategies,
an application of IT2FS that we have not observed in the literature so far.

For our particular simulation discussed here, there are multiple future avenues to
explore. Making the assumption that wealthier individuals are more lenient to cheat-
ing behavior, one could also adopt the opposing stance, claiming their behavior to
be driven by an orthodox understanding of normative behavior. In contrast, leniency
could apply for less affluent members of the societies which are more likely to be
socialized in environments in which cheating thrives, thus being more “used to it,”
and thus more accepting or even expecting.

From a more conceptual perspective, a strong potential lies in the exploitation
of T2FS to extend an agent’s awareness. As individuals, we often experience situa-
tions that have clear normative or even institutionalized prescriptions, such as to wait
in front of a red traffic light as a pedestrian. However, depending on the situation
(which country are we in, if there are cars around, or other people, small children,
etc.) we might decide differently whether or not to comply with this prescription.
Thus, individuals have a situational understanding of the degree of freedom their
actions underlie, which from a modelers perspective, can be interpreted as the foot-
print of uncertainty of a type-2 membership function, ranging between the extreme
cases of strict compliance and ignorance of such rule. Thus, IT2FS can stand in
a direct relationship to the modeling of collective perception, and in consequence,
to the modeling of social systems in general. To achieve this, we plan to integrate
IT2FS with the concept of dynamic deontics [15] that allows the representation of
the dynamic and fluid nature of norms, in addition to the nADICO grammar [14]
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that offers a general syntax to express an individual’s or a collective’s norm and rule
understanding in a comprehensive manner. This would enable the modeler to provide
agents with insight into the membership function details (or its abstraction) for par-
ticular norms, both on individual and collective level, thus, giving them awareness of
the individual boundary levels as well as the boundaries of a generated membership
function for a given fuzzy set (such as exemplified in Fig. 6.8). We think that this can
directly aid the modeling of cultural and social aspects of societies and their under-
standing of rules, aspects which are otherwise inaccessible to individuals or require
artificial entities for evaluation (e.g., impersonalization of normative authorities in
artificial societies).

Complex systems and fuzzy sets share a commonality in their ability to incor-
porate plurality in behavior and opinion. Social simulation can rely on the formal
backing of fuzzy logic and capitalize on capabilities fuzzy logic provides at this stage
(and discussed in this section). An argument for the intellectual investment into the
incorporation of fuzzy methods can also be supported by the active research that
defines the ecosystem of fuzzy logic in general.

We believe that a more systematic consideration of fuzzy approaches in the so-
cial modeler’s toolbox is a natural step in the progression of social modeling and
simulation toward a more realistic representation of the social environment.
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Chapter 7
Modeling the Uncertainty of a Set of Graphs
Using Higher-Order Fuzzy Sets

Lorenzo Livi and Antonello Rizzi

Abstract Recent advances in type-2 fuzzy sets (T2FS) have attracted considerable
attention for applications in data mining and pattern recognition. In particular, there
is an effort in designing granulation procedures able to generate, from raw input
measurements, data, granules of information modeled as T2FS. From our viewpoint,
the principal aim of those procedures is to embed into the generated T2FS model
the key uncertainty characterizing the input data. However, to date there is no for-
mal principle or guideline for the formal evaluation of such granulation procedures
in these terms. In this paper, our aim is to define a framework to design and eval-
uate what we called uncertainty-preserving transformation procedures, which are
basically computational procedures that generate, from raw input measurements,
information granules modeled as T2FS. In particular, in this chapter, we deal with
input measurements that are represented as graphs; hence, a set of graphs G is seen as
a set of raw input measurements sampled from an unknown data generating process
P . The framework is, however, meant to be general and thus applicable to any input
type. We motivate and explain the proposed framework by performing experimental
evaluations on ad hoc synthetically generated datasets.

7.1 Introduction

The concepts of uncertainty and information pervade our lives ubiquitously, from
the perceptions of the world to the formal interpretation of experiments and sys-
tems. The two concepts are intimately related. In fact, the uncertainty is usually
related to some action, which may involve a prediction, a decision making, or a
representation—conceptualization of a formal system. Gaining information instead
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can be described as the act of reducing the uncertainty of a particular situation, such
as one of those previously described [15]. As claimed by Klir [15] “The nature of
uncertainty depends on the mathematical theory within which problem situations
are formalized.” This intuitive fact suggests that the mathematical description of
the uncertainty, and accordingly of the information, pertaining to a specific situa-
tion may change the quantification of those two observed concepts. The well-known
mathematical frameworks for this purpose are probability theory, fuzzy set theory,
possibility theory, and the Dempster–Shafer theory [15, 16, 48, 49]. Beyond such
a technical problem, there is the intuitive fact that a particular data system should
have also an absolute description in terms of uncertainty, meaning that if the data
system is uncertain, it should remain “adequately” uncertain regardless the particular
mathematical framework adopted for the description.

Research on data-driven modeling has defined several automatic systems able to
cope with dataset of R

n feature vectors [45]. However, many interesting practical ap-
plications deal directly with structured patterns, such as images [9, 31], audio/video
signals [36], biochemical compounds [4], and metabolic networks [46]. In this con-
text, labeled graphs are general and widely adopted structures able to represent the
topology and the characterizing attributes of data. Consequently, the graph-based
representation has been adopted extensively in different contexts [11, 21, 27]. The
design of effective pattern recognition and data mining systems is, however, harder
on a structured domain, since the common metric structure underlying feature-
based representations is usually missing or nontrivial. Consequently, researchers
in this context focus on the so-called dissimilarity measures and related embedding
strategies [21, 34].

Recent advances in type-2 fuzzy logic [28, 29] are gathering considerable attention
for the application in data mining and pattern recognition systems. In particular,
there is an effort in designing granulation procedures able to generate type-2 fuzzy
set (T2FS) granules of information [1] from input raw measurements data [7, 18,
26, 30, 40, 44]. The main aim of those procedures is to model the uncertainty
characterizing the input dataset by means of a proper T2FS model. To our knowledge,
the only formalized framework to design such granulation procedures is the so-called
principle of justifiable granularity [33]. Although this principle has been widely
applied, it is not conceived to provide a formal and objective measure to express the
“quality” of the granulation itself.

In this paper, we propose a novel framework that is based on the well-known
principles of uncertainty [15, 16]. We elaborate such principles in an experimental
setting. We develop a framework with the aim of providing the groundwork for fu-
ture theoretical and experimental contextualization of such procedures. As a result,
procedures for generating T2FS can be evaluated also by measurable and, hence,
controllable criteria. Here, we focus on input data represented in terms of labeled
graphs and granules of information modeled as T2FS. The framework is, however,
general and thus, it is applicable to virtually any type of input data and any suitable
setting of information granulation. The paper is structured as follows. Section 7.2
briefly reviews the T2FS basic definitions. In Sect. 7.3, we portray the application
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of (labeled) graphs as data models. In Sect. 7.4, we present and motivate the frame-
work for the design of uncertainty-preserving transformations. Section 7.6 describes
the experiments performed on a batch of synthetically generated dataset of graphs.
Finally, conclusions and future directions are drawn in Sect. 7.7.

7.2 Brief Review of T2FS

A T2FS Ã defined on the universe of discourse X is represented as in [28, 29, 39,
41–43]

Ã = {(x, μÃ(x)) | x ∈ X , (7.1)

μÃ(x) = {(u, fx(u)) | u ∈ Jx ⊆ [0, 1], fx(u) ∈ [0, 1]}}.

We refer to μÃ(x) as the fuzzy membership value of x in Ã—it is also known as
secondary membership function or secondary set. Moreover, in Eq. (7.1), x is called
primary variable, the set Jx represents the primary membership values of x, and
fx(u) is named secondary grade. X , as well as Jx , ∀x ∈ X , can be continuous or
discrete, defining, respectively, continuous or discrete T2FS.

A T2FS in which ∀u ∈ Jx , fx(u) = 1 holds, reduces to the so-called interval type-
2 fuzzy set (IT2FS). In case of IT2FSs, μÃ(x) is referred to as interval membership
value, since the membership degree of an input element is an interval in [0, 1]. An
IT2FS is fully characterized by its so-called footprint Of uncertainty (FOU) [28, 40],
which is defined as:

FOU(Ã) =
⋃

x∈X

[
μÃ(x), μÃ(x)

]
. (7.2)

As can be observed from Eq. (7.2), FOU is a bounded region depicting the un-
certainties associated with the membership grades of IT2FS Ã. Notably, the FOU
can be characterized by two type-1 fuzzy sets (T1FSs) only, which are called upper
membership function (UMF) and lower membership function (LMF), respectively,
and are defined as follows:

UMF(Ã) = FOU(Ã) = {
(x, μÃ(x)) | x ∈ X

}
, (7.3)

LMF(Ã) = FOU(Ã) =
{

(x, μÃ(x)) | x ∈ X
}

. (7.4)

7.3 Graphs as Data Patterns

A labeled graph is defined as a tuple G = (V , E , μ, ν), where V is the (finite) set of
vertices, E ⊆ V × V is the set of edges, μ : V → LV is the vertex labeling (total)
function, with LV denoting the vertex-labels set, and finally ν : E → LE is the edge
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Fig. 7.1 Graph representation
of proteins data

Fig. 7.2 Example of
drawings of the letter “A”

(total) labeling function, with LE denoting the edge-labels set [2, 19, 21–23, 25]. The
topology of a graph enables the description of patterns that are characterized in terms
of interacting elements, by describing their spatiotemporal relations. Moreover, the
generality of both LV and LE allows fitting a broad range of patterns.

There are many fields of application where labeled graphs can be, and have been,
applied as a powerful and general representation framework [11, 21, 27]. For exam-
ple, we can cite applications to web content-based information retrieval [37], smart
grids modeling [10], and complex networks analysis [3, 6]. The graph-based repre-
sentation is very effective when dealing with biochemical molecules. For example, in
[13], the recognition of mutagenic compounds is performed by using labeled graphs
as models of the data. The representation of molecules as graphs is straightforward:
the atoms are the vertices and the covalent bonds are the (undirected) edges. Vertices
are labeled with the corresponding chemical symbol and edges by the valence of
the linkage. In [4], labeled graphs modeling proteins are considered for recogni-
tion. The graphs are constructed considering the secondary structure elements of the
proteins and their spatial postfolding relations. In fact, each vertex is connected to
the three nearest neighbors in the 3-D space. Both vertices and edges are equipped
with complex composite type labels, describing both biological and spatial informa-
tion. Figure 7.1, taken from [4, Fig. 2], shows a simple illustration of the graph’s
elaboration process. A further example of graph-based representation comes from
the characters recognition problem, largely described in [31]. Graphs are employed
to represent distorted letter drawings. For example, Fig. 7.2 shows different level
of distortions applied to the “A” letter. Labeled graphs are constructed represent-
ing straight lines by undirected and unlabeled edges and ending points of lines by
vertices. Each vertex is labeled with a 2-D attribute giving its position relative to
a reference coordinate system (usually the 2-D plane). Figure 7.3 shows different
graph representations of the (distorted) “A” letter.
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Fig. 7.3 Graph representations of the letter in Fig. 7.2

7.4 Uncertainty Invariance of the IT2FS Transformation

Motivated by the recent works on (interval) T2FSs data granulation [7, 18, 30,
40, 44], in this section, we formalize a framework, forged into an experimental
and conjectural setting, for the design of what we called uncertainty-preserving
transformations. Those procedures, which we denote as φ : X → F2(X ), are
computational procedures aimed at generating (interval) T2FSs starting from a set
of raw input measurements, such as points in R

d , sequences, interval endpoints,
or labeled graphs—F2(X ) denotes the set of all (interval) T2FSs generated over
the domain X . To date, the performance, and more generally, the effectiveness of
those procedures has been evaluated based on user-centered criteria, or considering
conventions established by the scientific community (e.g., reasonability of the derived
T2FS shape and positioning in the input domain, etc.). While one of the ultimate aims
of data granulation is to allow a semantic interpretation of the extracted information
granules, we believe that a formal, quantifiable, and objective evaluation criteria can
be established in this case.

The main aim of such a data granulation procedure, φ( · ), is to embed into
the generated T2FS model Ã, the (relevant) uncertainty that characterizes the input
measurements. Accordingly, our claim is that any procedure φ( · ) conceived for
this purpose should be designed and, hence, evaluated also on the base of this fact.
In the following, and throughout this paper, we use the concept of entropy as an
universal measure of uncertainty, since there is correspondence between mainstream
uncertainty theories (i.e., probability theory, possibility theory, and fuzzy set theory)
[8, 15, 20, 47]. Moreover, without loss of generality, we focus on reconstructing
IT2FS granules of information only.

7.4.1 Preserving the Uncertainty of the Observed Measurements

A process P generates data according to some analytical model, which may be
deterministic or not; it may also be completely known, partially known, or completely
unknown in its closed form. For instance, assuming that P is a stochastic process,
we can characterize the uncertainty of P by computing its entropy rate [8], which is
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Fig. 7.4 Overview of the
uncertainty modeling and
calculation stages

defined as the limit (when exists) of the joint entropy:

H (P ) = lim
n→∞

1

n
H (X1, X2, . . ., Xn). (7.5)

Note that in Eq. (7.5), Xi , i = 1, 2, . . ., n, is a random variable describing the ith
observed variable of P . However, in real-world data mining and pattern recognition
problems, the true underlying model of P is most of the time unknown, and the only
available evidence is a finite sampling P [X ]. As a consequence, a computational
procedure, φ( · ), whose aim is to model the uncertainty of the observed measure-
ments P [X ] through an IT2FS Ã[X ], i.e., φ(P [X ]) = Ã[X ], must consider the
fact that the intrinsic uncertainty of P , denoted as H (P ), characterizes directly the
diversity of the available measurements, P [X ]. For example, if P [X ] is constituted
by measurements that are all equal, we deduce that the generating process P is cer-
tain, meaning that it generates certainly a specific measurement. This fact must be
reflected in turn by the uncertainty of the generated IT2FS, Ã[X ], modeling these
measurements.

Formalizing this intuitive idea, we write the following expression:

H (P ) � H (P [X ]) = g(H (Ã[X ])). (7.6)

The uncertainty H (P [X ]) estimated from the observed measurements is assumed
to be sufficiently descriptive of the uncertainty characterizing the data generating
process—H (P ) � H (P [X ]). The degree of validity of this assumption is, however,
dependent on the number of available measurements, and to the complexity (non-
linearity) of P ; in this paper, we assume this hypothesis to be true. The last part
of Eq. (7.6), that is, H (P [X ]) = g(H (Ã[X ])), will be elaborated in the following.
Figure 7.4 shows an high-level diagram depicting the, herein, introduced relation
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among the uncertainty at the three different stages: the data generating process, the
available set of samples, and the reconstructed IT2FS model.

Since our aim is to provide a framework to guide the design of computational
procedures to model the uncertainty of a set of input data using an IT2FS, we focus
our analysis completely on P [X ]. Let D be the dissimilarity matrix of P [X ], which
is defined as

Dij = d(xi , xj ), ∀xi , xj ∈ P [X ], (7.7)

where d : X × X → R
+ is a suitable dissimilarity measure [21, 34, 38]. H (P [X ])

can be computed by considering the estimated entropy Ĥ (D) calculated from the
dissimilarity matrix Dn×n of P [X ], n = |P [X ]|:

H (P [X ]) = Ĥ (D). (7.8)

This estimation is performed by interpreting the n rows (columns) of D as n-
dimensional random vectors, generated by an unknown random process. If D denotes
degenerate dissimilarity values, i.e., it contains numerical values concentrated around
a single point, the estimated entropy is close to zero. Conversely, the higher the
variability of the dissimilarity values, the higher is the estimated entropy [24, 25,
35]. This mechanism permits to approximate the uncertainty of the unknown data
generating process by analyzing only a finite set of samples. It is worth to stress
that the definition H (P [X ]) = Ĥ (D) works regardless the nature of P . The only
requirement is the definition of a proper dissimilarity measure, d(·, ·), operating in
the input space X .

Equation (7.6) aims to provide an operative expression for the well-known prin-
ciple of uncertainty invariance [15, 16, 47, 50]. This principle states that “the
uncertainty of a modeled system should be invariant with respect to the particu-
lar mathematical framework adopted for the description.” According to Eq. (7.6),
(artificial) variations of the uncertainty related to the generating process P induce
a direct variation of the uncertainty estimated from Ĥ (D), which in turn must be
monotonically related with the variation of the uncertainty observed in the generated
IT2FS—φ(P [X ]) = Ã[X ]. We can describe the second part of this causality relation
by introducing a monotonic function g : R

+ → R
+ such that:

Ĥ (D) = g(H (φ(P [X ]))). (7.9)

The function g(·) (7.9) is introduced to handle the fact that the underlying model of
P [X ] and the one of the final IT2FS Ã[X ] may be based on different mathematical
frameworks, which may result in a different practical quantification of the uncer-
tainty. Moreover, the numerical quantification may also differ assuming the same
mathematical framework (e.g., fuzzy sets) since there exist different formulations of
the entropy [47].

The procedure φ( · ) which generates the IT2FSs—φ(P [X ]) = Ã[X ]—is usually
implemented through a complex computational procedure, which may be composed
of different parametric subroutines. Moreover, since we rely on the available mea-
surements P [X ] only, the function g( · ) can be determined only experimentally.
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To this end, let us assume a suitable artificial scenario in which we are able to
control the uncertainty of the generating process P , producing m independent sam-
plings P [X ]j , j = 1, . . ., m, characterized by a monotone uncertainty variation (e.g.,
monotonically decreasing). To approximate g( · ), we put in relation the results ob-
tained on the batch of m different (and independent) evaluations of xj = Ĥ (Dj ) and
yj = H (φ(P [X ]j )), j = 1, 2, . . ., m, by using a suitable best-fitting algorithm [14]
on the collection of [xj , yj ]T ∈ R

2, j = 1, 2, . . ., m. As a consequence, if we denote
with f ( ·) the obtained approximation of g( ·) on such a batch, the equality (7.9) most
likely will not be satisfied perfectly by f ( · ), since we may introduce errors during
the best-fitting procedure. Indeed, the best fit will be most likely imprecise and/or
the batch size m may be insufficiently large to describe the process with complete
accuracy.

Once f ( · ) has been experimentally derived, according to Eqs. (7.6) and (7.9),
φ( · ) must be defined such that the derived IT2FS loses the minimum amount of
uncertainty with respect to the observed input measurements. By defining

δ = e
(
f ( · ), Ĥ (Dj ), H (φ(P [X ]j )); {P [X ]j }mj=1

)
(7.10)

as a measure quantifying the error introduced by f ( · ) on the batch of m samplings
{P [X ]j }mj=1, we say that the transformation function φ( · ) is δ-divergent, meaning
that the procedure φ( · ) diverges of an amount of input uncertainty experimentally
quantifiable as δ. Of course, the best possible result is obtained when δ = 0, i.e.,
when the uncertainty is perfectly preserved during the transformation. It is worth
underlying that δ is intended either as an excess or deficiency of uncertainty, i.e., δ

may be either positive or negative. Therefore, the module of δ, |δ|, can be used as an
absolute quality indicator for φ( · ).

In essence, we claim that the procedure φ( · ) should be designed and evaluated,
among with the other context-dependent requirements, with the minimization of |δ|
in mind:

min
φ(·) |δ|. (7.11)

Equation (7.11), contextualized in our experimental setting, takes into account
also another principle of uncertainty, called principle of minimum uncertainty [15].
This principle in fact states that “one should consider solutions from a given solution
set such that the resulting information reduction is as small as possible,” which is in
accord with our framework.

7.5 Modeling the Uncertainty of a Set of Graphs

Let P be a data generating process that generates raw measurements described by
means of graphs, Gi . Let P [G] = {G1, G2, . . ., Gn} be the finite set of measurements
observed from P . By using φ( · ), we model P [G] (and hence by assumption also
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Fig. 7.5 Main steps of the proposed IT2FS transformation procedure, φ( · )

P ) as a single IT2FS, Ã[G]. As claimed in Sect. 7.4, the model of Ã[G] must allow
a plausible quantification of the uncertainty of the observed measurements, P [G],
according to the intrinsic uncertainty of the (unknown) data generating process, P .
In this section, we propose an instance of such a computational procedure, φ( · ), able
to process set of input graphs, yielding the corresponding IT2FS model as output.

Figure 7.5 gives the block diagram describing the fundamental steps characteriz-
ing the proposed computational procedure φ( · ). The first step consists of inducing
the collection of T1FSs D, corresponding to P [G]. In this stage, each input graph Gi

is mapped into a suitable T1FS Fi by means of the graph ambiguity [20]; this concept
is discussed in Sect. 7.5.1. Successively, the set D is analyzed using a dissimilarity-
based algorithm [30, 44] that first identifies a core subset N of D characterized by
a single element (i.e., a single T1FS) called minimum sum-of-distances (MinSOD)
element ν. By using ν and its neighbors N , the final step of the procedure generates
the output IT2FS.

7.5.1 Membership Function Elicitation from a Graph

Recently, Livi and Rizzi [20] have proposed what they have called graph ambiguity.
The graph ambiguity is a new theoretical development that defines the concept of
fuzzy entropy for a graph—the fuzzy entropy is effectively considered as a measure
of ambiguity/uncertainty for a graph. To this end, a graph G = (V , E), of order
|V| = N , is first mapped into a T1FS Fi defined on a finite universe of discourse U
of |U | = N elements, each referring to a specific vertex of the graph. This mapping
is performed by means of the following membership function:

μFi
(v) = α(v) · τ (v), ∀v ∈ V. (7.12)

The factor α(v) ∈ [0, 1] takes into account a measure of degree concentration of
the vertex v, while τ (v) ∈ [0, 1] is a measure of centrality referred to that vertex
in the graph G. Once the corresponding T1FS has been derived, the input graph
can be effectively manipulated according to the T1FSs mathematics; hence, well-
known fuzzy entropy formulations can be used to derive the uncertainty–ambiguity
of the (fuzzified) graph. Since the fuzzy entropy is a function that depends on the
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membership values only, and not on their order with respect to the elements of the
input domain, Livi and Rizzi [20] proved that isomorphic graphs have the same fuzzy
entropy. This particular property will be used in this paper during the final IT2FS
model generation.

Therefore, we deal with the first task shown in Fig. 7.5 by using the herein briefly
introduced graph ambiguity embedding mechanism, obtaining eventually the set
D = {F1, F2, . . ., Fn} of n T1FSs corresponding to the n input graphs.

7.5.2 Reconstruction of the IT2FS Model

We generate the corresponding IT2FS by analyzing the set D = {F1, F2, . . ., Fn}
only. In this chapter, we make use of a variation of the recently proposed procedure
outlined in [30, 44]. The procedure is a dissimilarity-based algorithm that generates
the output IT2FS in two stages. In the first stage, the algorithm individuates a subset
N ⊆ D of T1FSs represented by a single element ν ∈ N : the MinSOD element.
Accordingly, ν is characterized by the following equation,

ν =arg min
Fi∈D

n∑

j=1

d(Fi , Fj ), (7.13)

where d(·, ·) is a proper dissimilarity measure for T1FSs, such as one of the measures
discussed in [30, 44]. The set N is defined considering only the closest neighbors
of ν in D; the number of neighbors is, however, determined automatically by the
algorithm, on the base of the dissimilarity values distribution among the elements in
D with respect to ν.

The second stage of the IT2FS transformation procedure makes use of both ν and
N to generate the output IT2FS Ã (dropping for simplicity, the additional notation
involving G). This stage of the elaboration is based on the principle of justifiable
granularity developed by Pedrycz [32]. In few words, the algorithm tries to cover
the maximum number of membership values keeping the generated interval mem-
berships as narrow as possible. However, in this paper, we follow a different (and
simplified) approach, since we deal with controlled synthetic experiments only (see
Sect. 7.6), avoiding thus the possibility of observing outliers. Let N be the maximum
order of the input graphs:

N = max
Gi∈P [G]

|V(Gi)|. (7.14)

The corresponding T1FSs of D are thus defined on a domain with N elements,
|U | = N . Accordingly, we generate the corresponding IT2FS Ã as a finite IT2FS
whose interval membership function describes those N elements. First, we order the
membership values of each Fi ∈ N in a nondecreasing order. That is, we make sure
that j ≤ k ⇔ Fi(vj ) ≤ Fi(vk) holds ∀vj , vk ∈ U and ∀Fi ∈ N . Reordering the
elements describing the T1FSs (i.e., the vertices of the embedded graphs) does not
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alter the representation of a graph in terms of fuzzy set, since its fuzzy entropy is
invariant with respect to this type of transformations (i.e., permutations) [20]. Let N ′

be the set of T1FSs with reordered membership values. The (interval) membership
function of the output IT2FS is hence generated according to the following formula:

Ã(vj ) =
[

min
Fk∈N ′Fk(vj ), max

Fh∈N ′Fh(vj )

]
, j = 1, 2, . . ., N. (7.15)

7.6 Experiments

7.6.1 Synthetic Dataset Generation

The benchmarking dataset of input graphs is generated using a discrete, time-
homogeneous, Markov chain, P . The corresponding transition matrix T describes
entirely the generation process. Labeled (simple) graphs can be generated perform-
ing a random walk on a suitable transition matrix TN×N . The number of states of the
chain determines the order of the generated graph, G = (V , E), N = |V|. During the
transition from state i to state j , we add an edge between the corresponding vertices,
vi , vj ∈ V of the graph, i.e., eij = (vi , vj ) is added to E . The length l of the random
walk determines the size of the graph, that is, the number of edges. Both vertices
and edges are labeled using unique integer-valued identifiers, which are generated
progressively during the walks.

A transition matrix T is characterized by “certain” transition probabilities if at each
state there is a certain probability (i.e., equal to 1) of transition through a specific
state. Performing a random walk on such a transition matrix, will generate only
isomorphic graphs, yielding in turn equivalent representations in terms of T1FSs
(see Sect. 7.5.1). Consequently, we expect to generate an IT2FS characterized by
zero-width interval membership values. Instead, if we use more uncertain transition
probabilities in T, we would likely generate different measurements/graphs. This
fact should be reflected in turn on the generated IT2FS, which should denote more
uncertain membership values (i.e., a wider interval).

We consider in our experiments 10 different dataset instances, each containing
200 graphs generated according to the herein described scheme based on Markov
chains. In particular, we use chains defined by 50 states, generating thus graphs with
order 50. The size of the graphs, i.e., the length of the random walks, varies from 200
to 250. The similarity, and thus the certainty, of the generated graphs of a specific
dataset instance is strictly controlled, producing a sequence of dataset instances of
decreasing uncertainty, which corresponds to sample ten different process instances
characterized by decreasing uncertainty.
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7.6.2 Entropy Estimation Methods

In this chapter, the uncertainty of the generated IT2FSs is computed by evaluating
the (normalized) fuzzy entropy proposed by Burillo and Bustince [5], which reads
as:

H (Ã) =
(

1

N

N∑

i=1

μÃ(xi) − μÃ(xi)

)

∈ [0, 1]. (7.16)

We also provide the computation of the the average fuzzy entropy measured from
the set of T1FSs D. To this end, for calculating the fuzzy entropy of a T1FS, we use
the expression proposed by Kosko [17],

H (F) = Σ(F�F c)

Σ(F⊥F c)
∈ [0, 1], (7.17)

where � and ⊥ implement, respectively, a t-norm and t-conorm, and Σ( · ) is a
measure of the derived fuzzy set cardinality [1]. In this paper, the t-norm and t-
conorm are implemented as the minimum and maximum operators, respectively,
while the cardinality is computed taking the sum of the membership values of the
T1FS.

Finally, the dissimilarity matrices Di , i = 1, 2, . . ., 10, have been calculated by
means of the graph coverage dissimilarity measure for labeled graphs [19, 23]. The
corresponding entropy is estimated making use of the recently-proposed quadratic
Rényi entropy estimator [35], elaborated in the dissimilarity representation context
by Livi et al. [24, 25].

7.6.3 Results

Table 7.1 depicts the experimental results obtained on the batch of the datasets
P [G]i , i = 1, 2, . . ., 10. The column “DM entropy” shows the entropy estimated from
the dissimilarity matrix Di of the input graphs. Column “IT2FS entropy” shows the
entropy computed on the generated IT2FS Ã[G]i . Finally, the last column of the
table, i.e., “Average T1FSs entropy,” contains the average fuzzy entropy computed
on the set Di of T1FSs, from which we generate Ã[G]i . Figure 7.6 shows a 2-D
plot that correlates the entropy estimated from the dissimilarity matrix with the one
estimated from the IT2FS (depicted in blue in the figure), and with the one computed
as the average of the T1FSs entropy (depicted in orange). In the figure, we also report
the corresponding linear best-fitting functions (i.e., the best fit f ( · ) introduced in
Sect. 7.4.1), together with the coefficient of determination, R2 ∈ [0, 1] [12]. A coef-
ficient close to zero means that the linear regression does not fit the data. Translated
into our scenario, it means that the procedure φ( · ) does not generate IT2FSs that
preserve adequately the uncertainty of the input data. Conversely, when R2 is close
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Table 7.1 Entropy estimation results corresponding to the ten synthetic datasets

Dataset DM entropy IT2FS entropy Average T1FSs entropy

1 0.00930967 0.163009 0.384406

2 0.00893943 0.157133 0.357200

3 0.00828627 0.155459 0.353313

4 0.00769669 0.150279 0.347275

5 0.00589712 0.143724 0.341297

6 0.00553871 0.13446 0.336101

7 0.00525712 0.145131 0.331705

8 0.00518623 0.148126 0.322282

9 0.00495156 0.143333 0.314029

10 0.00490041 0.145925 0.312859

Fig. 7.6 Linear best-fitting results considering the entropy estimated from Di with respect to Ã[Gi ]
and Di , for i = 1, 2, . . ., 10

to one, φ( · ) is generating IT2FSs characterized by a suitable uncertainty trend with
respect to one of the input data. Note that R2 can be related straightforwardly to the
error δ introduced in Eq. (7.10) by taking |δ| = 1−R2. From the (linear) best-fitting
equations shown in Fig. 7.6, it is possible to observe that there is more correlation
when considering the average entropy computed on the set of T1FSs, Di , instead of
the one taken on Ã[G]i , i = 1, 2, . . ., 10. Notwithstanding, in both cases, we obtain
monotonic best-fitting functions, characterized by reasonable errors.
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7.7 Conclusions

In this chapter, we have described a framework, forged into an experimental and
conjectural setting, for the design of what we have called uncertainty-preserving
transformations. Those transformations are basically computational procedures
aimed at generating T2FS granules of information from raw input measurements
data. From our viewpoint, these procedures share the same common underlying ob-
jective: they are designed to model the input data uncertainty by means of a properly
synthesized (interval) T2FS model. Accordingly, we have grounded the proposed
framework over the guidelines provided by the so-called principles of uncertainty.
We have discussed a specific case study involving graphs as the input measurements
(patterns); however, the framework is meant to be valid in general, regardless of the
particular input data type and the specific information granule model. Experimental
results on synthetically generated problems show encouraging preliminary results.

Future research efforts will be devoted to the theoretical consolidation of the
proposed framework. Furthermore, more experimental results on several data types
and contexts that confirm the validity of the herein proposed framework are of course
of considerable interest.
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Chapter 8
Time-Series Forecasting via Complex
Fuzzy Logic

Omolbanin Yazdanbakhsh and Scott Dick

Abstract Adaptive neuro-complex-fuzzy inference system (ANCFIS) is a neuro-
fuzzy system that employs complex fuzzy sets for time-series forecasting. One of
the particular advantages of this architecture is that each input to the network is a
windowed segment of the time series, rather than a single lag as in most other neural
networks. This allows ANCFIS to predict even chaotic time series very accurately,
using a small number of rules. Some recent findings, however, indicate that published
results on ANCFIS are suboptimal; they could be improved by changing how the
length of an input window is determined, and/or subsampling the input window.

We compare the performance of ANCFIS using three different approaches to
defining an input window, across six time-series datasets. These include chaotic
datasets and time series up to 20,000 observations in length. We found that the
optimal choice of input formats was dataset dependent, and may be influenced by
the size of the dataset. We finally develop a recommended approach to determining
input windows that balances the twin concerns of accuracy and computation time.

8.1 Introduction

Time-series forecasting has emerged as the first major application of complex fuzzy
sets and logic, which were first described by Ramot in [1]. Beginning in 2007,
complex-valued neuro-fuzzy systems were developed to inductively learn forecasting
models; these include the adaptive neuro-complex-fuzzy inference system (ANCFIS)
architecture [2], and the family of complex neuro-fuzzy system (CNFS) architectures
[3]. Both ANCFIS and CNFS are modifications of the well-known ANFIS architec-
ture, in which complex fuzzy sets and complex-valued network signals are used.
These architectures showed that complex fuzzy sets were naturally useful in creating
very accurate forecasting models. ANCFIS in particular is also very parsimonious;
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experiments in [2] showed that this architecture could forecast even chaotic systems
with no more than three complex fuzzy rules.

One of the key reasons why ANCFIS is so parsimonious is its input format.
Most generic machine-learning algorithms must use lagged inputs in order to create
a forecasting model. While this approach is mathematically sound, it means that
the number of inputs to the learning algorithm has to be equal to the number of
lags required to reconstruct the state space of the system that generated the time
series (i.e., to form a delay reconstruction in the sense of Takens [4]). This directly
leads to a combinatorial explosion in the complexity of the model. However, due
to the nature of complex fuzzy sets, ANCFIS does not use lagged inputs; rather,
an entire windowed segment of the time series is taken as a single input to the
network, greatly reducing the curse of dimensionality. Recent experiments reported
in [5] indicated that we might be able to further improve the accuracy of ANCFIS
by subsampling the input windows. This is possible because in ANCFIS, we use
sinusoidal membership functions for the complex fuzzy sets, which are sampled and
convolved with the input window. Subsampling the input window simply implies
that we also sample the complex fuzzy sets at a lower rate. Our goal in the current
chapter is to determine if such subsampling generally leads to improved accuracy,
or if this was a dataset-specific effect.

We compare the forecast accuracy of ANCFIS using three different approaches to
identifying and sampling input windows on six time-series datasets. Two of these (a
realization of the Mackey–Glass map and the Santa Fe Laser A dataset) are known
to be chaotic; the remainder are observations of physical processes (sunspots, stellar
brightness, waves, solar power production). All but the last one have been previously
studied in the forecasting community and in [2]. The solar power dataset was de-
veloped in our laboratory and is discussed in depth in [5]. In [2], the length of the
input windows for each of the five datasets was set at one “period” in the dataset,
as determined by ad-hoc inspection. We explore the use of heuristics from [4] to
construct two different delay embeddings of the time series: one with an “optimal”
delay between each lag and one with unit delays between each lag. These input lags
are concatenated together in chronological order to form our input windows.

The remainder of this chapter is organized as follows. Section 8.2 provides an
essential background on complex fuzzy sets and logic, as well as the ANCFIS ar-
chitecture. Section 8.3 describes our datasets and experimental methodology. We
provide our experimental results in Sect. 8.4 and close with a summary and discussion
of future work in Sect. 8.5.

8.2 Literature Review

8.2.1 Complex Fuzzy Sets and Logic

Ramot et al. in 2002 proposed the complex fuzzy set (CFS) as a fuzzy set whose
membership function takes complex-valued grades, bounded by the unit circle [1]:

μs(x) = rs(x).e(jws (x))j = √−1, (8.1)
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where rs(x) ∈ [0,1] is the magnitude and ws(x) is the phase of the complex fuzzy set S.
Ramot defined complex fuzzy intersection and union to act solely on the magnitude of
complex fuzzy sets; the phase was treated as a means of adding application-dependent
context to the CFS. In 2003, Ramot et al. proposed an isomorphic complex fuzzy logic
(CFL) based on the generalized modus ponens inference rule. To implement complex
fuzzy implication, he suggested the complex product [6]:

μA→B(x, y) = μA(x) · μB(y), (8.2)

where μA→B(x, y) is the complex-valued membership function of the implication,
and μA(x), μB(y) are both CFS. To aggregate multiple rules, Ramot proposed a
complex-valued weighted sum called vector aggregation as given below [6]:

v : {a|a ∈ C, |a| ≤ 1}n → {b|b ∈ C, |b| ≤ 1} (8.3)

μA(x) = v(μA1 (x), μA2 (x), . . . , μAn
(x)) =

n∑

i=1

wiμAi
(x), (8.4)

where wi ∈ {a|a ∈ C, |a| ≤ 1} for all i, and
n∑

i=1
|wi | = 1. In vector aggregation,

rules can interfere constructively or destructively with each other.
Dick in 2005 showed that considering the phase as a relative quantity in Ramot

et al.’s papers [1, 6] can be interpreted as rotational invariance, meaning that if two
vectors undergo rotation by ϕ radians about the origin, their union, intersection, or
complement will be rotated by the same amount [7]. It was shown that the algebraic
product and the traditional complement, f (x) = −x, are not rotationally invariant.
He then proposed a new formulation of membership degree by considering amplitude
and phase simultaneously. The algebraic product was shown to be a conjunction
operator, and the existence of a dual disjunction operator was proved. He then argued
that capturing the behavior of approximately periodic phenomena was a possible
application for CFL, and sinusoidal functions were suggested as appropriate complex
fuzzy membership functions.

Tamir et al. in [8] proposed a new definition for complex fuzzy degrees using the
Cartesian representation of complex numbers where both real and imaginary parts
may vary from 0 to 1. These are called “pure” complex fuzzy sets and are defined as
[8]:

μ(V , z) = μr (V ) + jμi(z)

μr , μi ∈ [0,1], (8.5)

where μr (V ) and μi(Z) are the real and imaginary part of the pure complex fuzzy
membership grade, μ(V , z). An interpretation of pure complex fuzzy grades was
proposed based on the pure fuzzy class of order 1; “a fuzzy class is a finite or
infinite collection of objects and fuzzy sets which can be unambiguously defined and
complies with the class theory; a pure fuzzy class of order 1 can have only fuzzy
sets” [8]. Consider the pure complex fuzzy membership function, μ�(V , z):

μ�(V , z) = μr (V ) + jμi(z). (8.6)
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Let � be a complex fuzzy class, V a fuzzy set, and z a variable in the universe of
discourse U. μ�(V , z) can be interpreted as the degree of membership of z in V and
the degree of membership of V in �. Complement, intersection, and union operations
were also proposed for the complex fuzzy classes in the paper [8].

Tamir et al. proposed a first-order predicate CFL in [9]. In the CFL system, based
on Ł� system (propositional logic system) by Běhounek et al. [10], a complex fuzzy
proposition, � = �r + j�i , is considered as a composition of two propositions each
with truth value in the interval [0, 1]. The proposed CFL was extended to generalized
propositional CFL, applicable in multidimensional fuzzy propositional and predicate
logic, through definitions in [10] based on fuzzy Łukasiewicz logical system [11].
Tamir et al. [12] proposed an extended complex post-logical system (ECPS) based
on the extended Post system (EPS) of order p > 2 by DiZenzo [13]. One of the
possible applications of the proposed system is in discrete processes such as digital
signal processing (DSP), real-time applications, and embedded systems.

Salleh [14] defined complex Atanassov’s intuitionistic fuzzy sets (CAIFS). In-
tuitionistic fuzzy sets were introduced by Atanasov [15]; they record the degree of
membership and nonmembership of an element in a set, each indicated by a value in
[0, 1]. In complex intuitionistic fuzzy sets, the degrees of membership and nonmem-
bership are each drawn from the unit circle in the complex plane. Basic operations on
CAIFS, including complement, union, and intersection, were also presented in the
paper. Yager and Abbasov [16] defined Pythagorean membership grades as a subset
of complex fuzzy grades, μ = reθ with the properties r ∈ [0,1] and θ ∈ [0, π

2 ].
Zhang et al. [17] studied different operations and their properties on the complex

fuzzy sets introduced by Ramot et al. [1] when phases are restricted to [0, 2π]. A
new definition for distance of complex fuzzy sets was introduced in the paper:

d(A, B) = max

(
supX∈U |rA(X) − rB(X)| ,

1

2π
supX∈U

∣∣argA(X) − argB(X)
∣∣
)

,

(8.7)

where d(A, B) is the distance of two complex fuzzy sets A = rA(X)ej ·argA(X) and
B = rB(X)ej ·argB (X). Then, based on this definition, δ-equalities of complex fuzzy
sets were proposed; two complex fuzzy sets, A and B, are δ-equal if and only if
d(A, B) ≤ 1−δ, 0 ≤ δ ≤ 1. Zhang et al. also defined δ-equalities for complex fuzzy
relations [18]. Alkouri and Salleh [19] introduced a distance between two CAIFS,
and proposed complex intuitionistic fuzzy relations by extending operations defined
in [17, 18]. They also proposed projection and cylindrical extensions for CAIFS.

A few authors investigated complex-valued membership grades before Ramot’s
work. Moses et al. [20] proposed a CFS with memberships drawn from the unit
square U → [0,1] × [0,1]. These complex fuzzy sets contain two fuzzy sets rep-
resented by the real and imaginary domains. Linguistic coordinate transformations
(i.e., the relationship between linguistic variables when transforming from Cartesian
to polar coordinates or vice versa) were also studied. Nguyen et al. [21] proposed an
optimization approach to select the best representation of complex fuzzy sets for a
particular application.
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Fig. 8.1 Two-rule ANCFIS architecture for univariate time-series problems [2]

8.2.2 Adaptive Neuro-Complex-Fuzzy Inference System

Chen et al. [2, 22] proposed the first inductive machine-learning realization of the
CFL proposed by Dick [7] and Ramot [6]. The ANCFIS architecture is a relative of
Jang’s well-known ANFIS. The main differences are (1) ANCFIS uses a sinusoidal
membership function as follows:

r(θ ) = d sin (a(θ = x) + b) + c, (8.8)

where r(θ ) is the amplitude and θ is the phase of the membership grade of element
x; (2) an additional layer implements rule interference, inspired by Ramot’s vec-
tor aggregation in [6]; (3) the network signals are complex-valued up through this
rule interference layer; and (4) the learning algorithm incorporates a derivative-free
optimization component (Fig. 8.1).

As suggested by Dick [7], one possible application of CFL is capturing approx-
imately periodic behavior of phenomena; Chen et al. [2] suggested that time-series
forecasting is a good example of such behaviors. Thus, sinusoidal functions are
candidate complex fuzzy membership functions since a periodic function can be
represented by a Fourier series, i.e., a sum of sin and cosine functions. In Eq. (8.8),
the four parameters {a, b, c, d} act as follows: a changes the frequency of the sine
wave, b gives a phase shift whereas c shifts the wave vertically, and d changes the
amplitude of the sine wave. Since the amplitude of complex fuzzy memberships is
limited to [0,1], the parameters must satisfy the following conditions:

0 ≤ d + c ≤ 1, 1 ≥ c ≥ d ≥ 0. (8.9)

The use of a sinusoidal CFS in ANCFIS also implies an important operational
difference between ANCFIS and ANFIS (and indeed most other machine-learning
algorithms). In using ANFIS and other algorithms for time-series forecasting, input
vectors containing lagged values of a variate are presented to the network to predict
the next value of the variate. The components of the input vectors are considered
orthogonal; thus, to predict f (t), the components f (t−1), f (t−2), . . . , f (t−n) of an
input vector are presented as separate inputs to the system. However, this cannot work
in ANCFIS, because matching a sinusoidal membership function to an observation
requires that we keep the phase information in our inputs. Orthogonal lagged inputs
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destroy this phase information by definition. Instead, in ANCFIS, we take a sliding
window of the variate as a single input, [f (t − 1), f (t − 2), . . . , f (t − n)], and then
match that window to the membership functions. This implies that ANCFIS requires
only a single input for each variate of a time series, whereas systems using a lagged
input require

∏n
i=1 ri inputs, where ri is the number of lags for a given variate, and

n is the number of variates. Thus, ANCFIS significantly reduces the combinatorial
explosion inherent in time-series forecasting [2].

As the network signals in ANCFIS are complex-valued, the backward-pass com-
putations in the network must also be different from ANFIS. Like ANFIS, ANCFIS
uses a hybrid learning rule where consequent parameters are updated on the forward
pass, and antecedent parameters on the backward pass. Indeed, as network signals are
real-valued at the consequent layer (layer 5 in ANCFIS), we employ the same least-
squares algorithm asANFIS. However, the backward pass requires back-propagation
of complex-valued signals; and ultimately, there is no closed-form expression for the
partial derivative of network error with respect to the CFS parameters in Eq. (8.8). As
described in [2], we use gradient descent to determine the back-propagating error sig-
nals until layer 1, and then use a derivative-free optimization technique (a variant of
simulated annealing) to determine the update to the CFS parameters. This technique
is the variable neighbourhood chaotic simulated annealing (VNCSA) algorithm.

In chaotic simulated annealing (CSA), the generation of new candidate solutions
is governed by a chaotic map instead of a random number generator. This potentially
makes the algorithm faster, as we only search a fractal subset of the total solution
space. In VNCSA, we create an initial population of solutions by iterating the logistic
map starting from a random point. We create new solutions by iterating the Ulam-
von Neumann map and adding that value to the existing best solution, weighted
by a neighborhood size factor. As with other simulated-annealing algorithms, we
will allow a new solution with a worse objective function to replace the current
solution with a probability that depends on the current temperature T. As the routine
continues, T is gradually reduced by a constant factor at each iteration. When T is
updated, the neighborhood size is also updated, depending in part on how much the
objective function changed from the last iteration to the current one (thus limiting the
neighborhood in which new candidate solutions are generated in the next iteration).
For additional details, please see [2].

The ANCFIS architecture has six layers as follows [2]:

• Layer 1: In this layer, the input vector is convolved with the membership function.
First, the membership function is sampled over one period by

rk (θk) = dsin (aθk + b) + c, θk = 2π

n
k, (8.10)

k = 1, 2, . . . , n

where n is the length of the input vector. Then, the sampled membership functions
are convolved with the input vector:

conv =
2n−1∑

k=1

min(k, n)∑

j=max(1, k+1−n)

f (j )g(k + 1 − j ), (8.11)
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where f (.) is the input vector and g(.) is the sampled membership function (in
Cartesian coordinates). To ensure that the convolution sum remains within the
unit disc, it is normalized using the Eliot function:

O1, i = conv

1 + |conv| . (8.12)

• Layer 2: In this layer, the firing strength of a fuzzy rule is calculated as follows:

O2, i =
∏

i

O1, i , i = 1, 2, . . . , |O1|, (8.13)

where |O1| is the number of nodes in layer 1. For univariate time series, neurons
in this layer reduce to the identity function.

• Layer 3: The output of each node represents the normalized firing strength of a
rule:

O3,i = wi = wi
∑|O2|

j=1 |wj |
, i = 1,2, . . . , |O2|, (8.14)

where |O2| is the number of rules. This layer only normalizes the magnitude
whereas phases are unchanged.

• Layer 4: This layer realizes the property of “rule interference” from [6], using the
dot product:

O4,i = wDP
i = wi

|O3|
·∑
i=1

wi , (8.15)

where |O3| is the number of nodes in layer 3 and
∑|O3|

i=1 wi is the complex sum.
Both constructive and destructive interference are possible.

• Layer 5: This layer implements the linear consequent function:

O5,i = wDP
i

⎡

⎣
n∑

j=1

pi,j xj + ri

⎤

⎦, (8.16)

where wDP
i is the output of layer 4, xj is the jth data point if the input vector, n is

the length of the input vector, and pi,j , ri are the parameters of a linear function
of xj .

{
pi,j , ri

}
are obtained in the forward pass by least-squares estimation.

• Layer 6: This layer sums all incoming signals.

The ANCFIS architecture is related to the more general area of complex-valued
neural networks (CVNN) where inputs, outputs, biases, and weights can take on
complex values [23–26]. In the specific domain of neuro-fuzzy systems, a few other
studies have investigated complex-valued network signals in the ANFIS framework.
Li and Jang [27] proposed CANFIS, which accepts the real and imaginary parts of
a complex number as separate inputs in ANFIS. Malekzadeh-A and Akbarzadeh-T
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[28] designed a different CANFIS, using CFS in the first layer—but preprocessing
them through a CVNN first. This architecture is limited to complex-valued inputs and
outputs. A complex steepest descent algorithm and a complex least-square estimator
were used to update complex membership function parameters and complex bias and
weight parameters, respectively.

Other complex fuzzy machine-learning architectures have also been proposed;
Aghakhani and Dick [29] proposed an online learning algorithm for ANCFIS. The
architecture uses recursive least squares instead of least-square algorithm in the
forward pass, and applies the downhill simplex algorithm instead of VNCSA in the
backward pass. Li and Chiang [3] proposed a different variation of ANFIS called the
CNFS. Their learning algorithm is a hybrid of particle swarm optimization (PSO)
and recursive least-square estimator (RLSE) algorithm. Li and Chiang [30] extended
CNFS by using a Gaussian-type CFS as:

cGaussian (h, m, σ ) = Re(cGaussian (h, m, σ )) + jIm(cGaussian (h, m, σ ))
(8.17)

Re(cGaussian (h, m, σ )) = exp

[

−0.5

(
h − m

σ

)2
]

(8.18)

Im(cGaussian (h, m, σ )) = − exp

[

−0.5

(
h − m

σ

)2
]

×
(

h − m

σ 2

)
, (8.19)

where {m, σ} are the mean and spread of the Gaussian function, and h is the input.
This paper also proposed the “dual-output property,” which refers to treating the real
and imaginary components of the output as separate variates (and thus, the network
can naturally handle bivariate time series). Several other papers from this research
group explore other variations on the CNFS architecture; Li and Chan [31] used the
artificial bee colony (ABC) algorithm instead of PSO, and applied CNFS to image
restoration (Li et al. [33] used the CNFS from [30] for image restoration as well). Li
and Chan [32] used CNFS with theABC-learning algorithm for knowledge discovery.
Li and Chiang [35] replaced PSO in the CNFS proposed by [30] with a multiple-
swarm variation called hierarchical multi-swarm PSO, while also proposing a new
Gaussian-type complex fuzzy set:

cGaussian (h, m, σ , λ) = rs(h, m, σ ) exp (jws(h, m, σ , λ)) (8.20)

rs(h, m, σ ) = Gaussian (h, m, σ ) = exp

[

−0.5

(
h − m

σ

)2
]

(8.21)

ws(h, m, σ , λ) = − exp

[

−0.5

(
h − m

σ

)2
]

×
(

h − m

σ 2

)
× λ, (8.22)

where {m, σ , λ} are the mean, spread, and phase frequency factor for the complex
fuzzy set, and h is the input. Li and Chiang [36] developed a model based on CNFS
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proposed in [35] where the consequent layer is an ARIMA model, CNFS-ARIMA.
Li and Chiang [34] applied the system proposed in [35] for financial time-series
forecasting. Li et al. [37] proposed a CNFS using the Gaussian membership function
introduced in [35], which updates the premise and consequent parameters based on
PSO-RLSE-learning algorithm. To minimize the rule base of CNFS, a clustering
algorithm called FCM-based splitting algorithm (FBSA) is employed [38].

Ma et al. [39] proposed a product–sum aggregation operator for the complex fuzzy
sets introduced by Ramot et al. [1]. Based on this operator, a prediction method was
developed to solve multiple periodic factor prediction problems in multisensory data
fusion applications containing semantic uncertainty and periodicity. We can view this
as the first CFL inferential system whose rules are declaratively specified rather than
inductively learned. Alkouri et al. [40] defined linguistic variables of complex fuzzy
sets based on the ideas in [39]. Linguistic hedges (as introduced by Zadeh [41]) were
also extended to complex fuzzy sets. Hamming, Euclidean, normalized Hamming,
and normalized Euclidean distances and their boundaries were also obtained for
complex fuzzy sets. Deshmukh et al. [42] designed a hardware implementation for
the CFL proposed in [6].

8.2.3 Delay Embedding of a Time Series

Machine-learning algorithms are usually applied to a delay embedding of a time-
series dataset (also called the lagged representation), rather than the raw dataset
itself. Each lag is a previous observation of the time series; a delay vector is a
chronologically ordered sequence of lags [43]:

Sn = (
sn−(m−1)τ , sn−(m−2)τ , . . . , sn

)
, (8.23)

where Sn is the delay vector with dimension m, and τ specifies the delay between
successive observations. Each delay vector can be considered as a point in a state
space, whose dimensions are the chosen lags. According to Takens’ embedding
theorem [4], if a sufficient number of lags are taken (i.e., a sufficiently large delay
vector constructed), the resulting state space is equivalent to the original state space of
the system that gave rise to the time series. Thus, the evolution of the time series can
be predicted from its trajectory through the embedding space, because this trajectory
is equivalent to the original system’s trajectory in its state space.

Takens’embedding theorem does not, however, provide a constructive method for
determining the parameters m and τ ; instead, we need to use heuristics to determine
adequate values for both parameters. Mathematically, embeddings with different τ

are equivalent to each other; however, in real-world data, the choice of the delay
parameter has a significant influence on the utility of an embedding. Small values of
τ generally lead to higher correlations between observations in each delay vector;
and thus the distribution of delay vectors (and hence the apparent state-space trajec-
tory) tend to be concentrated in a small region of the embedding space, potentially
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obscuring important features of the trajectory. On the other hand, large values of τ

tend to make observations in a delay vector poorly correlated. This tends to result
in the delay vectors becoming a weakly differentiated cloud of points, with little
apparent structure. Heuristics for determining a “best” value for τ include taking the
first zero of the autocorrelation function, or the first minimum of the time-delayed
mutual information. These are given in Eqs. (8.24) and (8.25), respectively [4]:

cτ = 1

σ 2
〈(sn − 〈s〉) (sn−τ − 〈s〉)〉 , (8.24)

where cτ is the autocorrelation between values of sn and sn−τ where there is a time
lag of τ between them. 〈.〉 indicates average over time, and σ 2 denotes the variance.

I (τ ) =
∑

i,j

pij (τ ) ln pij (τ ) − 2
∑

i

pi ln pi , (8.25)

where I (τ ) is the mutual information between sn and sn−τ . To compute this value,
consider a histogram of sn. pi is the probability that sn lies in the i-th interval, and
pij is the joint probability that sn has values in the i-th interval and sn−τ has values
in the j-th interval.

To determine the dimensionality of the embedding space, Kennel et al. [44]
proposed applying the false nearest neighbors technique. The Euclidean distance
between one delay vector and its rth nearest neighbor in the embedding space of
dimension m is given by [44]:

R2
d (n, r) =

m−1∑

k=0

[
sn−kτ − sr

n−kτ

]2
, (8.26)

where Rd is the Euclidean distance and sn−kτ are elements of the delay vector in the
embedding space. When the dimension of the embedding space increases to m+ 1,
the delay vectors have one more coordinate which is sn−mτ . The Euclidean distance
between the delay vectors in the new embedding space is calculated as [44]:

R2
d+1(n, r) = R2

d (n, r) + [
sn−mτ − sr

n−mτ

]2
. (8.27)

Thus, the false nearest neighbor method can be stated as the following criterion
[44]:

∣∣sn−mτ − sr
n−mτ

∣∣

Rd (n, r)
> Rtol, (8.28)

where Rtol is a threshold. That means increasing the embedding dimensionality must
not increase the distance between two neighbors more than the given threshold. The
estimated number of dimensions is determined by plotting the fraction of false nearest
neighbors in the dataset against the number of dimensions, for several different values
of the threshold Rtol. When all of the curves saturate at a low value, we consider that
to be the best estimate of the necessary embedding dimensionality for the dataset.
All three heuristics can be computed using the TISEAN software package [43].
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8.3 Methodology

8.3.1 Experimental Design

The goal of the current chapter is to evaluate alternative time-series representations
in forecasting with ANCFIS. We explore three different approaches for setting the
length of the input windows and subsampling them. The first is the approach used in
[2], the second is the delay embedding technique from Sect. 8.2.3, and the third is a
hybrid of the two. Specifically:

• Method 1 is to make an ad hoc determination of the length of one “period” in
the dataset. The input window is set to this length and is not subsampled. As this
method was used in [2] for five of the six datasets, we will use the same period
lengths as in that paper. For the sixth dataset (solar power forecasting), the length
of a period is clearly 1 day (see our discussion in Sect. 8.3.2.1 for further details).

• Method 2 is to form a delay embedding, relying on the heuristics from Sect. 8.2.3
to guide our selection of the embedding dimensionality and delay. We will use the
mutual-information heuristic to select the delay, and the false nearest neighbors
technique to select the dimensionality. We can consider this a subsampling of an
input window; for dimensionality m and delay τ , we select every τ -th sample
from an input window of length ((m+ 1)·τ )+ 1.

• Method 3 is to assume that the delay is always equal to 1 and to employ the false
nearest neighbors technique for selecting the embedding dimensionality under
that assumption. This will mean that the input window is again not subsampled.

Our experiments follow a common design in the time-series forecasting literature.
We use a single-split design, with all elements of the training set chronologically
earlier than elements of the testing set. The embedding dimension and delay are
determined from the training set only, and are then applied to both the training and
testing sets. The results of the three input representations are compared in terms of
root mean square error (RMSE):

RMSE = √
MSE =

√
∑n

i=1 (yi − ∧
y1)

2

n
, (8.29)

where yi is the expected value, ŷ1 is the predicted value, and n is the number of
inputs.

8.3.2 Datasets

8.3.2.1 Solar Power Dataset

This dataset was created in [5], as very few high-resolution solar power datasets are
publicly available. It was developed from a public dataset recording air temperature
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Fig. 8.2 Training set for the solar power dataset

(◦C) and total solar radiation (W/m2) measured every 1 min from May 30, 2008, to
August 12, 2012, at the Lowry Range Solar Station. Total solar radiation is the sum of
direct irradiance, diffuse irradiance, and ground-reflected radiation, and is measured
by a LICOR LI-200 Pyranometer mounted 7 ft above ground level on a Rotating
Shadow Band Radiometer (RSR). Air temperature is measured by a thermometer
mounted 5 ft above ground level inside a naturally aspirated radiation shield [45].
These two measurements are the principal variables affecting power output from a
photovoltaic cell; we convert them to an estimated power output using the model
proposed in [46], following the specifications of a Photowatt PW 2650-24V panel.
The result is a new time series recording solar power production at 1-min intervals
over a period of 5 years, giving 2,212,520 observations.1 For our experiments in
the current chapter, we use data from July 31, 2012, to August 13, 2012, giving us
20,000 measurements. The dataset is split into 2/3 and 1/3 for the training and testing
sets, respectively. A plot of the training set is given in Fig. 8.2.

In this dataset, the length of one period is clearly 1 day, or 1440 observations.
When we attempted to take this entire period as an input window following Method
1, we found that the computation time is infeasibly long on our computer system
(Intel(R) CoreTM 2 Duo CPU E8400 @ 3.00 GHz, 4 GB of memory). We were thus

1 Available online at http://www.ualberta.ca/yazdanba/SolarData.txt.
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Fig. 8.3 Mutual information versus delay

forced to subsample this window; we take every tenth measurement, giving us 145
observations, which we concatenate together in chronological order. For Method 2,
we plot the mutual information statistic versus delay in Fig. 8.3. The first minimum
of the curve occurs at τ = 370, and so, we adopt this value as our delay parameter.
With this delay, the false nearest neighbor plot is given in Fig. 8.4. For all values
of Rtol examined, the curves saturate at m= 12, and so, we adopt this value as our
embedding dimension. We can also view this input as a subsampled window of
length (m− 1)τ = 4070 data points. For Method 3, we set the delay τ = 1, and rerun
the false nearest neighbor procedure. This time, the apparent minimum embedding
dimension is 15, and so, we adopt this as our window length.

8.3.2.2 Mackey–Glass Dataset

This dataset is a realization of the Mackey–Glass differential equation, a frequently
used benchmark for testing time-series forecasting algorithms. The equation is given
by [47]:

ẋ(t) = 0.2x(t − δ)

1 + x10(t − δ)
− 0.1x(t). (8.30)

This equation is useful because it exhibits chaotic behavior for appropriate choices
of the parameter δ. In particular, we follow the design in [47], where 124 < t < 1123,
x(0)= 1.2, τ = 17, and the time step is 0.1. The first 500 data points are used as the
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Fig. 8.4 Fraction of false nearest neighbors versus dimensionality

training set and the remaining data points form the testing set; this is also the design
that was used in [2]. We omit the details of how the embedding dimension and delay
are determined in the interest of brevity; we simply note that they followed the same
process as in Sect. 8.3.2.1.

8.3.2.3 Santa Fe Laser A

The Santa Fe time-series forecasting competition held in 1991 has left us six datasets
for use as benchmarks. The “Laser A” dataset is frequently used, as it also exhibits
chaotic behavior. This dataset records the amplitude of an 81.5-micron 14NH3 cw
(FIR) laser being controlled by the Lorenz system of equations for modeling turbulent
flow; with appropriate choices of parameters, the Lorenz system is also chaotic. We
normalized the data to the range [0, 1] (matching [2]). The dataset has 1000 data
points; the first 900 data points are the training set, and the last 100 are the testing
set (again, matching [2]).

8.3.2.4 Sunspot Dataset

This dataset consists of observations of a physical system: it is the average number
of sunspots observed for each day in a calendar year, recorded from 1700–1979 (280
observations) [48]. The first 220-year measurements, years 1700–1920, are used as
the training set and the remaining points form the testing set; this again matches [2].
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Table 8.1 Results for the
solar power dataset

Method Input vector design RMSE

Dimension Delay

1 145 10 5.293

2 12 370 3.1057

3 15 1 4.846

8.3.2.5 Stellar Brightness

This dataset is also made up of observations of a physical system. The time-series
records the daily observed brightness of a variable star on 600 successive midnights.
The first 480 night measurements are used as the training set, and the remainder form
the testing set. This is again the same split used in [2].

8.3.2.6 Waves

This dataset also records observations of a physical system, but this time in a labo-
ratory setting. The time-series measures the oscillation of a cylinder suspended in a
tank of water every 0.15 s. There are a total of 320 data points of which the first 256
data points form the training set and the last 64 points are the testing set. This also
matches the split in [2].

8.4 Experimental Results

The following tables record the input window parameters and out-of-sample error for
each of our input representations in Sect. 8.3.1, over each of the datasets described
in Sect. 8.3.2. Table 8.1 presents our results for the solar power dataset.

Quite plainly, in this dataset, the traditional delay embedding was superior to the
down-sampled “one period” input window, even though the smaller dimensionality
provides far fewer tunable parameters in the consequent layer. It was also superior
to the unit-delay input window created from Method 3, even though Method 2 again
resulted in fewer dimensions.

Table 8.2 presents our results on the Mackey–Glass dataset; the results for Method
1 are taken from [2]. Interestingly, this dataset presents a completely different pic-
ture than the solar power dataset. The traditional delay embedding gave—by two
orders of magnitude—the least accurate predictions, even though the most accurate
approach (Method 3) differed only in the delay length (reflecting what was stated in
Sect. 8.2.3; all values of the delay parameter are theoretically equivalent, but in prac-
tice a good choice of the delay parameter can significantly impact the performance
of a forecasting algorithm).

Table 8.3 presents our results for the Santa Fe Laser A dataset. This time, Method
1 appears to be the best, while Method 2 yields the worst results. Table 8.4 presents
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Table 8.2 Results for the
Mackey-Glass dataset

Method Input vector design RMSE

Dimension Delay

1 [2] 44 1 5.57e-4

2 9 11 0.015

3 9 1 5.29e-4

Table 8.3 Results for Santa
Fe Laser A

Method Input vector design RMSE

# Lags Delay

1 [2] 8 1 0.033

2 9 2 0.114

3 9 1 0.067

Table 8.4 Results for sunspot Method Input vector design RMSE

# Lags Delay

1 [2] 12 1 0.091

2 5 4 0.103

3 6 1 0.089

Table 8.5 Results for stellar
brightness

Method Input vector design RMSE

# Lags Delay

1 [2] 27 1 7.49e-3

2 6 7 1.4e-2

3 6 1 1.3e-2

Table 8.6 Results for Waves
Method Input vector design RMSE

# Lags Delay

1 [2] 12 1 0.0032

2 4 4 0.00866

3 4 1 0.0104

our results for the sunspot dataset. This time, the traditional delay embedding is
somewhat worse than Methods 1 and 3; however, the difference is not very large. In
addition, Methods 1 and 3 are nearly indistinguishable from one another.

Table 8.5 presents our results for the Stellar Brightness dataset. This time, Method
1 is substantially better than Methods 2 or 3; furthermore, Method 2 is slightly less
accurate than Method 3.

Table 8.6 presents our results for the Waves dataset. Once again, Method 1
proved to be the most accurate. However, this time Method 3 was less accurate
than Method 2.
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8.4.1 Discussion

As with many other experiments in pattern recognition, our general finding is that
the “best” input representation for ANCFIS is dataset dependent. In five of our six
datasets, the traditional delay embedding was clearly outperformed by the window-
based approaches, but in our single largest dataset, Method 2 was clearly the best.
Four times, Method 1 was either the best approach or virtually identical to Method
3 and superior to Method 2.

Our findings do, however, suggest which methods seem more likely to succeed in
future experiments. Method 3 was the better approach once, and essentially tied with
Method 1 on a second dataset. This method also seems to lead to lower embedding
dimensionalities than Method 1. This still matters in ANCFIS, even though we have
reduced the combinatorial explosion of rules seen in other machine-learning methods
using orthogonal lags. A complexity analysis carried out in [2] indicates that the
running time of both the least-squares estimate of the consequent parameters, and
the VNCSA optimization of the CFS parameters, depend linearly on the length
of the input vector (this explains why running ANCFIS on the full input window
for the solar power dataset took an infeasibly long time). Thus, with Method 3
often providing strong results, and usually resulting in a significantly smaller input
window, this seems to be the most effective initial approach to modeling a time series
with ANCFIS. We would recommend that Method 1 be tried next, and finally, the
traditional delay embedding.

8.5 Conclusions

In this study, we have explored three different approaches for representing time-series
inputs for the ANCFIS machine-learning algorithm. We compared input windows
based on an ad hoc determination of what constitutes one “period” in the dataset; the
traditional delay embedding, guided by the mutual-information and false-nearest-
neighbor heuristics; and the use of only the false-nearest-neighbor heuristic, across
six time-series datasets. While the “best” method appears to be dataset dependent,
we found enough evidence that we recommend Method 3 as the best combination of
accuracy and expected computation time.

In future work, we intend to explore the use of ANCFIS as a stream data mining
algorithm. An online-learning version of ANCFIS was developed in [29], meaning
that incremental learning is possible in the ANCFIS framework. This characteristic,
along with the demonstrated success of ANCFIS as a time-series forecasting algo-
rithm, indicates that it may be an appropriate algorithm for modeling data streams.
One of the datasets we will use in evaluating this possibility is the full solar power
dataset.
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Chapter 9
Multi-Subject Type-2 Linguistic Summaries
of Relational Databases

Adam Niewiadomski and Izabela Superson

Abstract It is almost trivial to say that fuzzy sets and fuzzy logic are one of the
most powerful computing methods for natural language-driven representation of
information. Despite, in this chapter, we focus on extensions of Zadeh’s concepts,
and these extensions are called “general type-2 fuzzy sets” or “higher-order fuzzy
sets.” They cover some more specific groups, like interval-valued (interval type-2)
fuzzy set, triangular or Gaussian type-2 fuzzy sets, and even the traditional fuzzy
sets. To be more precise, here we are interested in applying type-2 fuzzy sets to
relational database exploration. The point of departure is the concept of a linguistic
summary of a database by Yager (1982).

In this chapter, basics of type-2 linguistic summarization of data (Niewiadomski
2008) are enhanced. In particular, we introduce new forms of linguistic summaries
that use type-2 fuzzy sets as representations of linguistic information, and, so far,
original methods for evaluating the degrees of truth based on cardinalities of type-2
fuzzy sets. The new forms are named “multi-subject” linguistic summaries, because
they can describe more than one table or more than one set of records/objects collected
in a database, for example, More boys than girls play football well. Thanks to that,
the generated linguistic summaries—quasi-natural language sentences—are more
interesting and human-oriented. Besides, using higher-order fuzzy sets helps us to
deal with situations when membership degrees in models of linguistic terms are
imprecise or too vague to use traditional fuzzy sets.
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9.1 Linguistic Summarization of Data:
Essential Ideas and Goals

More than 30 years ago, R. R. Yager proposed the idea of a linguistic summary of a
(relational) database [28], for example, More than half of basketball players are very
tall. This simple concept appeared to be a direct answer to people’s needs for quick
and friendly receiving of large amounts of data and/or information. Most important
is that the idea does not refer to any terse statistical method for aggregating data
(mean, variation, standard deviation, etc.) but to fuzzy models of natural language
expressions. Even if these expressions are less precise than numbers, for example,
more than half of objects instead of 55.6 % of objects or a very tall boy instead of
6′ 5′′-tall boy, they are commonly understood and provide knowledge on what the
summarized data mean.

To be more precise, the concept of a linguistic summary is based on Zadeh’s
calculus of linguistically quantified propositions (statements) [31]. There are two
basic forms of linguistic summaries (based on two forms of linguistically quantified
propositions, respectively) presented in the literature [2, 5, 7, 8, 28, 30]:

QP are/have S[T ] (9.1)

for example, Many boys are tall [0.83], and

QP being W are/have S[T ] (9.2)

for example, Many boys who are teenagers, are tall [0.63]. In both forms (9.1) and
(9.2), Q is a quantity in agreement, for example, Many, more than 900, represented
by an aggregation operator, for example, fuzzy quantifier or an ordered weighted
averaging (OWA) operator [29]; P is the subject of the summary, for example,
men, cars, or any other objects described in the summarized database, and S is a
summarizer—a linguistic expression for properties of the objects—represented by
a fuzzy set. The W symbol, appearing only in form (9.2), is a qualifier, represented
by a fuzzy set, that determines additional and/or specific properties of the objects that
the summary deals with. T ∈ [0, 1] is a degree of truth and it determines how good
(how informative, how true) the summary is; values of T are evaluated according to
the Zadeh calculus of linguistically quantified propositions and/or to another different
methods of evaluating [5, 14].

Obviously, this chapter is too short to present or even mention all methods and
applications of linguistic summarization of relational databases (e.g., [6, 12, 32]).
Moreover, we are not able to enumerate all the concepts for data summarization that
are based on fuzzy sets but take into account assumptions different than the Yager
originals (e.g., [1, 20, 21, 24]). What is to be done here is to introduce a multi-
subject linguistic summary of a relational database. That means that a summary
contains more than one subject P1, for example, P1 and P2, and models of imprecise
linguistic expressions (summarizers, quantifiers, etc.) are built using higher-order
fuzzy sets.
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Hence, the rest of the chapter is organized as follows: In Sect. 9.2, we make
an overview on using higher-order fuzzy sets in data linguistic representation and
summarization. In particular, we intend to enumerate papers that are of essential
meaning for computing with words (CWW) techniques and type-2-fuzzy-set-based
methods applied to linguistic representation and summarization of data collected in
relational databases.

The new concept called a multi-subject linguistic summary of a relational database
is presented in Sect. 9.3 of this chapter. We intend to construct and evaluate sum-
maries, including type-2 linguistic summaries, related to more than one subject P

that is represented by tuples in the summarized database D, for example, to P1 and
P2 or to P1 in comparison to P2. These two or more subjects are represented by
nonfuzzy sets of tuples collected in separated tables in D, or can be, if necessary,
results of some other selecting, querying and/or filtering tuples, with respect to cho-
sen values and/or attributes, for example, male and female. Obviously, these general
explanations are explained in details and exemplified in Sect. 9.3 of the chapter.

Section 9.4 contains a brief description of the experiment (developing and ex-
ploring software) that helped us to present, determine and evaluate usefulness and
performance of multi-subject linguistic summaries of relational databases. We show
sample outputs of the program produced for a chosen database, and how users
(intermediate and advanced) may affect summaries that are generated by the software.

Finally, there are conclusions on the usefulness of the concepts and the methods
presented, drawn in Sect. 9.5.

9.2 An Overview of Higher-Order Fuzzy Sets in Data
Representation and Linguistic Summarization

In general, type-2 fuzzy sets are adapted in fuzzy logic systems and in fuzzy rep-
resentations of information and knowledge, if only linguistic terms applied in these
systems are too vague to be represented by traditional fuzzy sets. Obviously, there is
no point here to argue more for using type-2 fuzzy sets, because all the pros, as far as
cons, are well and intuitively clarified by Jerry Mendel in [9] or in the web-published
essay Why We Need Type-2 Fuzzy Logic Systems.1

It seems natural that capabilities of type-2 fuzzy sets, especially their flexibility
and imprecise memberships, have been noticed soon as a very intuitive means to
increase the power of methods for data linguistic representation. To be more specific,
in linguistic summarization, type-2 fuzzy sets are applied as models of linguistic
quantifiers Q, summarizers S, and qualifiers W , by notations of (9.1) and (9.2).
To keep consistency with commonly used symbols for type-2 fuzzy sets, we denote

1 E-version at http://www.informit.com/articles/article.aspx?p=21312, ac-
cess: March 6, 2013. A comparative translation of this essay into Polish is elaborated by I. Superson
and published at:http://ics.p.lodz.pl/˜aniewiadomski/ksr/WHY.pdf.
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type-2 quantifiers, summarizers, and qualifiers as Q̃, S̃, and W̃ , respectively. Higher-
order fuzzy sets helps us to deal with situations when membership degrees of fuzzy
models of statements are imprecise or too vague to use traditional fuzzy sets with real
membership degrees. For instance, a method for dealing with imprecise (linguistic)
memberships used to build type-2 summarizers for database of papers contributed
to a conference is shown in [17].

One of the first proposals of extending the linguistic summarization methods via
higher-order fuzzy sets has been given by Niewiadomski [10, 19]. In particular, the
authors have used interval-valued fuzzy sets2 [22, 25] to represent linguistic ex-
pressions (i.e., quantifiers, summarizers, and qualifiers) appearing in both (9.1) and
(9.2) forms of data linguistic summaries. The paper [19] introduces also an exten-
sion of Zadeh’s calculus of linguistically quantified propositions and properties of
interval-valued fuzzy sets representing linguistic quantifiers. The direct consequence
of such an approach is that degrees of truth, quality measures, and other character-
istics of summaries and of sets applied (e.g., supports) are expressed with intervals
in R. Moreover, it requires to define and use extended arithmetic operations (addi-
tion, subtraction, power, etc., cf. [23]), for example, for a = [a, a], b = [b, b] in R,
[a, a]+[b, b] = [a+b, a+b] and [a, a]−[b, b] = [a−b, a−b] and some partial or-
der binary relations, for example, a ≤ b ⇔ a ≤ b∧ a ≤ b, to evaluate and compare
interval-valued degrees of truth or other characteristics and measures (cf. [3, 23]).
Besides, what is very important, it is necessary to define and apply such arithmetic
and ordering operations that cover analogous operations for real numbers, looking
at them as at “degenerated intervals,” that is, [a, a] = a ∈ R ↔ a = a. Impreci-
sion measures for interval-valued fuzzy sets and quality measures for interval-valued
linguistic summaries have been proposed and discussed in [11, 13, 16].

However, a question arises on how general type-2 fuzzy sets can be employed as
elements of linguistic summaries and means for data linguistic representation. On
one hand, this seems to be quite simple just to replace interval-valued quantifiers,
summarizers, and qualifiers, with analogous general type-2 fuzzy sets, if only fuzzy
membership degrees are necessary to represent one or more linguistic expressions
used in a model. What is needed here, is to extend again (with respect to the interval-
valued approach) the calculus of linguistically quantified statements, using scalar (!)
cardinalities of type-2 fuzzy sets [17, 18]. It is also necessary to define convexity
(via embedded type-1 fuzzy sets) and normality (via restrictions put on secondary
membership degrees) of type-2 fuzzy sets used as models of linguistic quantifiers
[17], having in mind that these new definitions must also apply to type-1 fuzzy sets
[17, 15]. But on the other hand, one may see a problem or difficulty: what are proper
criteria of choosing a group of type-2 fuzzy sets? Or in other words: if cardinali-
ties (and similar related values) of interval type-2 fuzzy sets are expressed with or

2 It is worth adding that nowadays interval-valued fuzzy sets are considered as interval type-2 fuzzy
sets, and their cardinalities, imprecision measures, and other characteristics can be represented by
different values, for example, scalar or fuzzy, not strictly intervals.
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related to intervals (it means with/to type-1 fuzzy sets with rectangular member-
ship functions), should cardinalities/characteristics of triangular type-2 fuzzy sets
be expressed with or related to triangular membership functions, or cardinalities
of Gaussian type-2 fuzzy sets with/to Gaussian membership functions? Obviously,
such a choice would imply that only one group (“class”) of type-2 fuzzy sets can be
taken into account in a model, and it would significantly block the most expected
properties of type-2-fuzzy-based representation of information—its versatility and
flexibility [17].

Mostly because of the arguments provided above, the type-2-fuzzy-set-based
linguistic summarization of relational databases presented in [15] and in [18] relies
on scalar cardinalities for finite type-1 and type-2 fuzzy sets and on adequate scalar
measures for infinite ones. The proposed scalar cardinalities/measures3 are evaluated
for all type-2 fuzzy sets, and these evaluation methods are independent of shapes of
their particular secondary membership functions. The following formula is based on
the proposal by Jang and Ralescu [4], and, following the original, called nonfuzzy
sigma-count, nfσ -count:

|Ã| = nfσ -count(Ã) =
∑

x∈X

sup{uÃ ∈ Jx : μÃ(x, uÃ) = 1} (9.3)

assuming that sup ∅ = 0, if there is no u ∈ Jx′ such that μx′ (u) = 1 for a given
x ′ ∈ X. Equation (9.3) is interpreted as the sum of those greatest primary membership
degrees for which the secondary membership degrees are 1. Even an interval type-2
fuzzy set may have a scalar cardinality (or an adequate measure,4 if infinite) evalu-
ated, though the interval-valued approach to the calculus of linguistically quantified
propositions assumed that these values are always intervals [19]. The same applies
to type-1 fuzzy sets. Some other proposals of evaluating cardinalities of type-2 fuzzy
sets are given in [18].

Also a few questions on finity/infinity and countability/uncountability of type-
2 fuzzy sets in applications must be asked, since these two properties may exert
influence on some other characteristics of sets, measures, and operations on related
sets (supports, universes of discourse, domains of attributes in a database, etc.) and, as
a consequence, on degrees of truth and other measures of type-2 linguistic summaries.
Hence, they are crucial for the expected model, and an attempt of answering the
questions is presented in [18]. Finity and countability of a type-2 fuzzy set is proposed
to be related to the support of a type-2 fuzzy set Ã in X, defined as type-1 fuzzy
set supp (Ã) such that μsupp(Ã)(x) = supu∈Jx\{0} μx(u). Since the properties of finity
and countability are defined for type-1 fuzzy sets, we also may define these two
properties for higher-order fuzzy sets [18].

3 These measures for infinite type-2 fuzzy sets are based mainly on integrals of their principal or
lower/upper membership functions. The intuitions expressed by the measures are very similar to
the meaning of a scalar cardinality of a finite type-2 fuzzy set, so the authors of [17, 18] propose to
call them cardinality-like measures, clm ( · ), of type-2 fuzzy sets, to underline this analogy.
4 See Footnote 3.
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Such a proposed set of linguistic summarization methods based on type-2 fuzzy
sets allows users and/or programmers to use all described types of numbers and
sets, that is, type-2 fuzzy sets, interval-valued fuzzy sets, type-1 fuzzy sets, intervals
and real numbers, to be applied together in the same model/system. We believe
it is a very important conclusion showing that higher-order fuzzy sets do not find
any separated group of computing methods, but they can be considered as the most
universal (from the practical point of view) and taking into account all “lower-order”
sets and fuzzy sets as special cases, it is undeniably necessary to keep consistency
between traditional fuzzy methods and higher-order fuzzy methods (not only from
the point of view of data summarization, but also in fuzzy logic systems, etc.).

An important extension to linguistic summarization methods is proposed by Wu
and Mendel [27]: the authors provide us with algorithms that make it possible to ex-
tract knowledge and formulate user-friendly messages using IF–THEN expressions,
instead of commonly used in summaries aggregating data via linguistic quantifiers,
OWA operators, etc. It must be said that actually new forms of data linguistic sum-
maries and methods of generating them, as far as quality measures adequate for
these new forms, are proposed in this chapter. To the best knowledge of the authors,
no application combining both aggregation and IF-THEN approaches is proposed
till now. Another interesting approach is presented by the same authors [26]; it is
aggregation of data using interval type-2 fuzzy sets. Though it is not strictly data
linguistic summarization in terms introduced by Yager and followed in this paper,
using averaging operators and higher-order fuzzy sets to aggregate information, and
(implicitly) to extract and represent knowledge from sets of data is, for sure, worth
noticing in the context of this paper. A very similar criterion applies to the paper by
Zhou et al. [33]; aggregation of uncertain information is really close to data sum-
marization using fuzzy sets and higher-order fuzzy sets, especially, if it is directly
related to the use of type-2 linguistic quantifiers, that is, linguistic quantifiers repre-
sented by type-2 fuzzy sets. All the three papers quoted in this paragraph [26, 27, 33]
present a real applicational potential of higher-order fuzzy sets in data aggregation,
summarization, and representation.

9.3 New Forms of Summaries: Multi-Subject Type-2
Linguistic Summaries

We are sure that the reader is well familiar with relational databases by Codd (1970),
hence, the first paragraph of this section is only to set the denotations used in the next
parts of the chapter. We assume that a summarized database consists of tables which
are sets of tuples (usually called “records”), and one tuple is a representation of one
real object (a child, person, car, transaction, etc.). This set of objects is here denoted
as Y = {y1, . . . , ym}. Obviously, not all possible parameters of the objects are stored
in the database, but only those relevant to a model are created. Table D consists
of tuples di , i = 1, 2, . . . , m which are “rows” in the table: D = {d1, . . . , dm}T ,
m ∈ N is the number of tuples in D. Each tuple di consists of n ∈ N values of
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Table 9.1 A sample database
D collecting information on
children in school age

ID Gender Age Height

1 Girl 7 130

2 Boy 8 120

3 Boy 13 150

4 Girl 8 140

5 Girl 18 160

Table 9.2 The part of dataset
D presented in Table 9.1
filtered with respect to the
“boy” value of the “gender”
attribute

ID Gender Age Height

2 Boy 8 120

3 Boy 13 150

Table 9.3 The part of dataset
D presented in Table 9.1
filtered with respect to the
“girl” value of the “gender”
attribute

ID Gender Age Height

1 Girl 7 130

4 Girl 8 140

5 Girl 18 160

attributes V1, . . . , Vn and the domains of the attributes are X1, . . . , Xn, respectively.
The values of attributes express properties of objects, for example, height, salary,
price, date, etc., and they are treated as “columns” of the table. Domains of the
attributes are just sets of possible values taken into account in the database, for
example, set X1 = [50, 250] is the domain of V1=“height of person in centimeters.”
The value of attribute Vj for object yi , is denoted as Vj (yi) ∈ Xj , i ∈ {1, 2, . . . , m},
j ∈ {1, 2, . . . , n}. Hence, the database D collecting information on elements from
Y = {y1, . . . , ym} is in the form:

D =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈V1(y1), . . . , Vn(y1)〉
...

...

〈V1(ym), . . . , Vn(ym)〉

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d1

...

dm

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(9.4)

A sample database in the form of (9.4) is shown by Table 9.1. It is a part of the larger
database summarized in the experiment described in Sect. 9.4. The table presents
also the possibility of extracting two sets of subjects for multi-subject summaries;
in this case, it is attribute “gender” that allows us to “split” the set of data into two
subsets, represented by Tables 9.2 and 9.3.

It must be underlined that Tables 9.2 and 9.3 do not represent real database tables
stored separately in a database management system; such a storage could appear
inefficient and nonoptimal, especially, with respect to normal forms of relational
database tables, popular optimization criteria for databases. The presented tables are
only results of filtering operations performed on D (represented by Table 9.1) with
respect to values of a chosen attribute, here: “gender,” for both “boys” and “girls”
values.
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What is crucial for the main idea of the chapter, is that two separated sets of
objects, previously stored as one set in D, are now distinguished. These two sets
represent different subjects P1 and P2, of multi-subject linguistic summaries that are
now presented.

The first form of a multi-subject type-2 linguistic summary is proposed:

Q̃ P1 relatively toP2 are S̃1 (9.5)

where Q̃ is a type-2 fuzzy quantifier, P1 and P2 are the subjects of the summary
and S̃1 is a summarizer, represented by a type-2 fuzzy set. The degree of truth of
summary (9.5) is evaluated with formula (9.6):

T (Q̃ P1 relatively to P2 are S̃1) = μQ̃

⎛

⎝
1

MP1
card(S̃1P1

)

1
MP1

card(S̃1P1
) + 1

MP2
card(S̃1P2

)

⎞

⎠ (9.6)

where

card(S̃1P1
) =

m∑

i=1

max{uS̃1
: μS̃1

(di , uS̃1
) = 1 ∧ di ∈∗ P1} (9.7)

and card(S̃1P2
), analogously. The notation di ∈∗ P1 means that di is a tuple repre-

senting P1 subject. MP1 and MP2 are numbers of tuples representing subjects P1 and
P2, respectively,

MP1 =
m∑

i=1

tioneof (9.8)

where ti ,

tiP1
=

⎧
⎨

⎩
1, if di ∈∗ P1

0, otherwise
(9.9)

For instance,

tiboys =
⎧
⎨

⎩
1, if Vj (di) =“boy”

0, if Vj (di) =“girls”
(9.10)

and Vj = Gender . An example of a summary in the form of (9.5) is now given
below:

Most of boys relatively to girls are tall [0.456] (9.11)

where Q̃ = most of, P1 = boys, P2 = girls, S̃1 = tall.
The second form of a multi-subject summary proposed here is given below:

Q̃ P1 relatively to P2 being S̃2 are S̃1 (9.12)

where S̃2 is a qualifier, cf. (9.2). The degree of truth of the summary is evaluated via
formula (9.13).
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T (Q̃ P1 relatively to P2 being S̃2 are S̃1) = μQ̃

⎛

⎝
1

MP1
card(S̃1P1

∩ S̃2P1
)

1
MP1

card(S̃2P1
) + 1

MP2
card(S̃2P2

)

⎞

⎠

(9.13)

where Q̃ is a relative quantifier, P1 and P2 are the subjects of the summary, S̃2 is a
qualifier related to both P1 and P2 subjects, and S̃1 is a summarizer.

card(S̃1P1
∩ S̃2P1

) =
m∑

i=1

min
{
max{uS̃1

: μS̃1
(di , uS̃1

) = 1 ∧ di ∈∗ P1},

max{uS̃2
: μS̃2

(di , uS̃2
) = 1 ∧ di ∈∗ P1}

}
(9.14)

and card (S̃2P1
), card (S̃2P2

), di ∈∗ P1, analogously to (9.5). An example of a summary
in the form of (9.12) is now presented as follows:

About two-third of boys relatively to girls being teenagers, are tall [0.390] (9.15)

where Q̃ = about two-third, P1 = boys, P2 = girls, S̃1 = tall, S̃2 = teenagers.
Summaries in form (9.12) allow us to retrieve information about selected subjects’

features S̃1, according to other subjects conditions (specific features that both subjects
must possess). It means that in this case, the tuples taken into account represent boys
and girls who are qualified by S2 as teenagers.

The third form of a multi-subject linguistic summary is proposed as:

Q̃ P1 being S̃2 relatively to P2 are S̃1 (9.16)

and its degree of truth is evaluated with formula (9.17).

T (Q̃ P1 being S̃2 relatively to P2 is S̃1) = μQ̃

⎛

⎝
1

MP1
card(S̃1P1

∩ S̃2P1
)

1
MP1

card(S̃1P1
) + 1

MP2
card(S̃1P2

)

⎞

⎠

(9.17)

where Q̃ is a relative quantifier, P1 and P2 are the subjects of the summary, S̃2 is a
qualifier referring only to subject P1, and S̃1 is a summarizer. An example of such a
summary is given (9.16) as:

About half of boys being teenagers relatively to girls, are tall [0.256] (9.18)

where Q̃ = about half, P1 = boys, P2 = girls, S̃1 = tall, S̃2 = teenagers.
Summaries in the form of (9.16) allow users to retrieve information on some

selected features of subjects, according to chosen conditions given for subject P1

only (i.e., some specific features that only subject P1 must fulfill). It means that
tuples taken into account by the summary represent both P1 and P2 subjects, that is,
boys and girls, but only P1 is additionally qualified by S̃2 (here, as teenagers).



176 A. Niewiadomski and I. Superson

Note that none of the older forms of linguistic summaries, that is, (9.1) and
(9.2), is able to represent the relations between different groups of objects and their
properties, for example, boys and girls, and their height, age, etc. On the other hand,
these relations can be easily discovered and expressed in an interesting way using
multi-subject linguistic summaries. For older, non-multi-subject methods, the only
opportunity is to generate summaries that includes the preselected set of objects, for
example, boys or girls, as qualifier W̃ , see (9.2), for example, About half of BOYS
are tall, where BOYS is a qualifier W̃ .

Now, in Sect. 9.4, we show results of an experiment: a database containing in-
formation is summarized using newly proposed forms of linguistic summaries. The
results are finally related to those obtained via non-multi-subject summaries (cf. (9.1)
and (9.2)).

9.4 Application Example: Descriptions of Databases Content
Using Multi-Subject Type-2 Linguistic Summaries

The application created for testing purposes is based on the Java 1.7 SE Platform.
The database used in the experiment contains data of children from the age of 7 up
to 18 years old. The data describes factors like children height, mass, date of birth,
living conditions such as number of rooms in flat, number of people in family, family
financial situation, etc. The database contains data on 13, 956 children, including
6991 boys and 6965 girls.

In the experiment, generated summaries are assumed to discover how children
age and gender is related to their height. Two subjects taken into account in multi-
subject summaries are boys and girls. The process of logical splitting the database
into two separated sets of data describing boys and girls, respectively, is exemplified
by Tables 9.1, 9.2, and 9.3. The relative quantifiers are used in the experiment called
most of, about two-third, and about half to represent the quantities in agreement for
selected subjects, and to evaluate degrees of truth of the multi-subject summaries.
The proposed membership functions for the quantifiers used in the experiment are
presented in Figs. 9.1 and 9.2.

The generated summaries are based on qualifiers and summarizers represented
by Gaussian type-2 fuzzy sets. Sample summarizers and qualifiers are:

• Tall (height)
• Short (height)
• In early school age (age)
• Teenager (age)

For instance, the label tall is represented by type-2 fuzzy set

Ã = {〈x, utall, μx(utall)〉 : x ∈ [150, 195], utall ∈ [0, 1]} (9.19)
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Fig. 9.1 The membership function of the MOST OF linguistic quantifier

Fig. 9.2 The membership function of the ABOUT TWO-THIRD linguistic quantifier

where

utall =

⎧
⎪⎪⎨

⎪⎪⎩

2(x−150)
45 , if 150 ≤ x ≤ 150+195

2
2(195−x)

45 , if 150+195
2 ≤ x ≤ 195

0, if x ≤ 150 or x ≥ 195

(9.20)
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and

μx(utall) = exp

(

−1

2

(
utall − m(x)

0.1

)2
)

(9.21)

Analogously, the label teenage is represented by type-2 fuzzy set

B̃ = {〈x, uteenager, μx(uteenager)〉x ∈ [13, 18], uteenager ∈ [0, 1]} (9.22)

where

uteenager =

⎧
⎪⎪⎨

⎪⎪⎩

2(x−13)
5 , if 13 ≤ x ≤ 13+18

2
2(18−x)

5 , if 13+18
2 ≤ x ≤ 18

0, if x ≤ 13 or x ≥ 18

(9.23)

and

μx(uteenager) = exp

(

−1

2

(
uteenager − m(x)

0.1

)2
)

(9.24)

The output of the experimental software, that is, the generated summaries, are
collected in Table 9.4. For each summary, the evaluated degree of truth (column
T ) and the form of the summary (column “Summary form”), are provided. The
“Summary form” refers to the number of equation of this chapter, that means (9.5),
(9.12), (9.16) refer to the first, the second, and the third form of a multi-subject
linguistic summary introduced in this chapter, respectively, and (9.1) and (9.2) refer
to the older forms of linguistic summaries.

According to expert opinion, the results are intuitively correct. The first eight
summaries 1–8 are constructed according to the first form of a multi-subject lin-
guistic summary (9.5). Analysing their degrees of truth we can see that there is no
disproportion between information on boys or girls, for example, summaries 1 and
2 are of very similar degree of truth.

The next summaries, 9–16, lead us to the conclusion that there are more tall girls
than tall boys in early school age; for example, summary 9 contains the opposite
statement, that is, boys relatively to girls in the early school age are tall, and it is
of the very low degree of truth. The situation changes for teenagers; there are more
tall teenager boys than teenager girls, summary 10. Also, it cannot be said that in
comparison to boys, major part of teenager girls are short, because it would mean that
there are many teenager girls from 103 to 150 cm height, summary 10. (The reader
must take into consideration that children in the dataset was from 103 to 195 cm tall,
so in this circumstances, a short child is more or less between 103 and 150 cm tall.)

Using the older forms of the linguistic summaries, that is, (9.1) and (9.2), with
Q, S, W represented by type-2 fuzzy sets gives us extensive information about the
analysed dataset. Extending summarizations set from Table 9.4 with summaries in
known forms, 17–20, completes our knowledge on the summarized database. For
example, information on proportions between boys and girls, amount of tall boys, tall
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Table 9.4 Sample multi-subject summaries

No. Summary T Summary
form

1. Most of girls relatively to boys are in early school age 0.495 (9.5)

2. Most of boys relatively to girls are in early school age 0.505

3. Most of girls relatively to boys are teenagers 0.511

4. About half of boys relatively to girls are teenagers 0.994

5. Most of girls relatively to boys are tall 0.206

6. Most of boys relatively to girls are tall 0.298

7. Most of girls relatively to boys are short 0.249

8. About two-thirds of boys relatively to girls are short 0.043

9. Most of boys relatively to girls being in early school age, are tall 0.004 (9.12)

10. Most of boys relatively to girls being teenagers, are tall 0.129

11. Most of girls relatively to boys being in early school age, are short 0.124

12. About half of girls relatively to boys being teenagers, are short 0

13. Most of girls being in early school age, relatively to boys are short 0.101 (9.16)

14. Most of girls being teenagers, relatively to boys are short 0.004

15. Most of boys being teenagers, relatively to girls are tall 0.098

16. About two-thirds of boys in early school age relatively to girls, are tall 0

17. About half of children are girls 1 (9.1)

18. Most of children are in early school age 0.32

19. About two-thirds of boys are tall 0

20. Most of boys being tall are teenagers 0.031 (9.2)

girls, teenager boys, teenager girls, teenage boys which are tall, early school-aged
girls which are short, are provided. The dedicated algorithm can evaluate degrees of
truth, select the best (the most informative) summaries and present them in clear and
intuitive forms, for example, About half of children are girls; Most of boys relatively
to girls are all; About two-third of girls being in early school age, relatively to boys
are tall. The last conclusion shows in particular, that newly proposed multi-subject
summaries of databases do not exclude the older forms, but can be used together with
them, to extend and improve the process of extracting and representing knowledge
from large datasets.

9.5 Conclusions

The goal of the research is to elaborate fuzzy-based methods that make it possible
to describe provided data in as human-friendly a manner as possible, preferably
with natural or quasi-natural language. In this chapter, we presented an original
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concept that extends the known methods of data linguistic summarization and
representation—multi-subject linguistic summaries of relational databases. In par-
ticular, we put emphasis on new and more interesting forms of linguistic summaries,
that were based on describing one subject P only, until now (for bibliographical
references, see Sect. 9.2). The new forms of type-2 linguistic summaries are given
by Eqs. (9.5), (9.12), and (9.16), in Sect. 9.3. The details of evaluating degrees of
truth of the new forms are presented in Sect. 9.3, too. From the point of view of
an average user, the most important detail of the multi-subject linguistic summaries
is that the output of the proposed method remains texts/messages composed by a
human. Sample application of multi-subject linguistic summaries to a system pro-
viding users with natural language information on a chosen set of data, is described
in Sect. 9.4. We believe the proposals here introduced, that is, describing more than
one subject by a summary, may have potential to extend the summarization methods
already known in the scientific literature.
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Krawczak, Z. Nahorski, E. Szmidt, S. Zadrożny (Academic Publishing House EXIT, Warsaw,
2008), pp. 105–119

17. A. Niewiadomski, Methods for the Linguistic Summarization of Data: Applications of Fuzzy
Sets and Their Extensions (Academic Publishing House EXIT, Warsaw, 2008)

18. A. Niewiadomski, On finity, countability, cardinalities, and cylindric extensions of type-2 fuzzy
sets in linguistic summarization of databases. IEEE Trans. Fuzzy Syst. 18(3), 532–545 (2010)

19. A. Niewiadomski, J. Ochelska, P.S. Szczepaniak, Interval-valued linguistic summaries of
databases. Control Cybern. 35(2), 415–444 (2006)

20. G. Raschia, N. Mouaddib, SAINTETIQ: A fuzzy set-based approach to database summariza-
tion. Fuzzy Sets Syst. 129, 137–162 (2002)

21. D. Rasmussen, R.R. Yager, A fuzzy SQL summary language for data discovery, in Fuzzy
Information Engineering: A Guided Tour of Applications, ed. by D. Dubois, H. Prade, R.R.
Yager (Wiley, New York, 1997), pp. 253–264

22. R. Sambuc, Fonctions φ-floues. application à l‘aide au diagnostic en pathologie thyroidienne.
Ph.D. thesis (in French), Univ. Marseille, France, 1975

23. A. Sengupta, T.K. Pal, D. Chakraborty, Interpretation of inequality constraints involving inter-
val coefficients and a solution to interval linear programming. Fuzzy Sets Syst. 119, 129–138
(2001)

24. R. Srikanth, R. Agrawal, Mining quantitative association rules in large relational tables. The
1996 ACM SIGMOD International Conference on Management of Data, Montreal, Canada,
4–6 June, 1996, pp. 1–12, 1996

25. I.B. Turksen, Interval-valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 20, 191–210
(1986)

26. D. Wu, J.M. Mendel, Aggregation using the linguistic weighted average and interval type-2
fuzzy sets. IEEE Trans. Fuzzy Syst. 15(6), 1145–1161 (2007)

27. D. Wu, J.M. Mendel, Linguistic summarization using if-then rules and interval type-2 fuzzy
sets. IEEE Trans. Fuzzy Syst. 19(1), 136–151 (2011)

28. R.R. Yager, A new approach to the summarization of data. Inf. Sci. 28, 69–86 (1982)
29. R.R. Yager, On ordered weighted averaging operators in multicriteria decision making. IEEE

Trans. Syst. Man Cybern. 18, 183–190 (1988)
30. R.R.Yager, M. Ford, A.J. Canas, An approach to the linguistic summarization of data. Proceed-

ings of 3rd International Conference, Information Processing and Management of Uncertainty
in Knowledge-Based System, Paris, France, 2–6 July, 1990, pp. 456–468, 1990

31. L.A. Zadeh, A computational approach to fuzzy quantifiers in natural languages. Comput.
Math. Appl. 9, 149–184 (1983)
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Chapter 10
Bio-Inspired Optimization of Interval Type-2
Fuzzy Controller Design

Oscar Castillo

Abstract This chapter presents a general framework for designing interval type-
2 fuzzy controllers based on bio-inspired optimization techniques. The problem
of designing optimal type-2 fuzzy controllers for complex nonlinear plants under
uncertain environments is of crucial importance in achieving good results for real-
world applications. Traditional approaches have been using genetic algorithms or
trial and error approaches; however, results tend to be not optimal or require very
large design times. More recently, bio-inspired optimization techniques, like ant
colony optimization or particle swarm intelligence, have also been applied on optimal
design of fuzzy controllers. In this chapter, we show how bio-inspired optimization
techniques can be used to obtain results that outperform traditional approaches in
the design of optimal type-2 fuzzy controllers.

10.1 Introduction

We describe, in this chapter, new methods for building intelligent systems using type-
2 fuzzy logic and bio-inspired optimization techniques. Bio-inspired optimization
includes techniques such as particle swarm optimization (PSO), ant colony opti-
mization (ACO) and genetic algorithms (GAs) that have been applied in numerous
optimization problems. In this chapter, we are extending the use of fuzzy logic to
a higher order, which is called type-2 fuzzy logic [4, 33]. Combining type-2 fuzzy
logic with bio-inspired optimization techniques, we can build powerful hybrid in-
telligent systems that can use the advantages that each technique offers in solving
complex control problems.

Fuzzy logic is an area of soft computing that enables a computer system to reason
with uncertainty [44]. A fuzzy inference system consists of a set of if–then rules
defined over fuzzy sets [4, 23]. Fuzzy sets generalize the concept of a traditional
set by allowing the membership degree to be of any value between 0 and 1. This
corresponds, in the real world, to many situations where it is difficult to decide in an
unambiguous manner if something belongs or not to a specific class. Fuzzy expert
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systems, for example, have been applied with some success to problems of decision,
control, diagnosis, and classification, just because they can manage the complex
expert reasoning involved in these areas of application. The main disadvantage of
fuzzy systems is that they cannot adapt to changing situations. For this reason, it is a
good idea to combine fuzzy logic with neural networks or GAs, because either one of
these last two methodologies could give adaptability to the fuzzy system [12, 40]. On
the other hand, the knowledge that is used to build these fuzzy rules is uncertain. Such
uncertainty leads to rules whose antecedents or consequents are uncertain, which
translates into uncertain antecedent or consequent membership functions [20, 33].
Type-1 fuzzy systems, like the ones mentioned above, whose membership functions
are type-1 fuzzy sets, are unable to directly handle such uncertainties. Type-2 fuzzy
sets are fuzzy sets whose membership grades themselves are type-1 fuzzy sets; they
are very useful in circumstances where it is difficult to determine an exact membership
function for a fuzzy set [2, 6, 7, 31, 32].

Uncertainty is an inherent part of intelligent systems used in real-world appli-
cations [3, 5]. The use of new methods for handling incomplete information is of
fundamental importance [13, 17, 30, 36, 43]. Type-1 fuzzy sets used in conventional
fuzzy systems cannot fully handle the uncertainties present in the intelligent sys-
tems [14, 15]. Type-2 fuzzy sets that are used in type-2 fuzzy systems can handle
such uncertainties in a better way because they provide us with more parameters
[8, 19, 21]. This chapter deals with the design of intelligent systems using inter-
val type-2 fuzzy logic for minimizing the effects of uncertainty produced by the
instrumentation elements, environmental noise, etc. Experimental results include
simulations of feedback control systems for nonlinear plants using type-1 and type-2
fuzzy logic controllers (FLCs); a comparative analysis of the systems’ response is
performed, with and without the presence of uncertainty [28, 29]. The main contri-
bution of the chapter is the proposed approach for the design of type-2 FLCs using
bio-inspired optimization algorithms [1, 8].

We describe the use of ACO for the problem of finding the optimal intelligent
controller for an autonomous wheeled mobile robot, in particular for the problem
of tuning a fuzzy controller of the Sugeno type. In our study case, the controller
has four inputs, each of them with two membership functions, and we consider the
interpolation point for every pair of membership function as the main parameter and
their individual shape as secondary ones in order to achieve the tuning of the fuzzy
controller by using an ACO algorithm [30]. Simulation results show that using ACO
and coding the problem with just three parameters instead of six allow us to find an
optimal set of membership function parameters for the fuzzy control system with
less computational effort needed [8].

This chapter also describes the application of the optimization algorithm for parti-
cle swarm known by its acronym as PSO, used to adjust the parameters of membership
functions of an FLC to find the optimal intelligent control for a wheeled autonomous
mobile robot. Results of several simulations show that the PSO is able to optimize the
type-1 and type-2 FLCs for this specific application [29]. We use the PSO method to
find the parameters of the membership functions of a type-2 FLC in order to minimize
the state error for nonlinear systems. The PSO is used to find the optimal type-2 FLC
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to achieve regulation of the output and stability of the closed-loop system [28]. For
this purpose, we change the values of the cognitive, social, and inertia variables in
the PSO. The simulation results, with the optimal FLC implemented in SIMULINK,
show the feasibility of the proposed approach.

In general, the abovementioned applications of type-2 fuzzy logic in intelligent
control are representative of the state-of-the-art in the area. However, we also have
to mention that there exist applications of type-2 fuzzy logic in pattern recognition
[22], time-series prediction [12], and classification [17], which have been successful
in the real world, but are not the main concern in this chapter. There have also been
important theoretical advances on type-2 fuzzy logic that have enabled more efficient
processing and type-reduction [33, 36, 43], which have helped obtaining solutions
to real-world problems [26, 27, 35, 37–39, 41, 42].

10.2 Design of Interval Type-2 Fuzzy Controllers

Uncertainty is an inherent part of intelligent systems used in real-world applications
[38, 42]. The use of new methods for handling incomplete information is of fun-
damental importance [4, 33]. Type-1 fuzzy sets used in conventional fuzzy systems
cannot fully handle the uncertainties present in intelligent systems. Type-2 fuzzy
sets that are used in type-2 fuzzy systems can handle such uncertainties in a better
way because they provide us with more parameters [2, 11]. This section deals with
the design of intelligent systems using interval type-2 fuzzy logic for minimizing
the effects of uncertainty produced by the instrumentation elements, environmen-
tal noise, etc. Experimental results include simulations of feedback control systems
for nonlinear plants using type-1 and type-2 FLCs; a comparative analysis of the
systems’ response is performed, with and without the presence of uncertainty [8].

10.2.1 Introduction to the Design

Uncertainty affects decision making and appears in a number of different forms. The
concept of information is fully connected with the concept of uncertainty. The most
fundamental aspect of this connection is that the uncertainty involved in any problem-
solving situation is a result of some information deficiency, which may be incomplete,
imprecise, fragmentary, not fully reliable, vague, contradictory, or deficient in some
other way. Uncertainty is an attribute of information. The general framework of
fuzzy reasoning allows handling much of this uncertainty; fuzzy systems employ
type-1 fuzzy sets, which represent uncertainty by numbers in the range [0, 1]. When
something is uncertain, like a measurement, it is difficult to determine its exact value,
and of course, the type-1 fuzzy sets make more sense than using sets. However, it is
not reasonable to use an accurate membership function for something uncertain, so
in this case what we need is another type of fuzzy sets, those that are able to handle
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these uncertainties, the so-called type-2 fuzzy sets. So, the amount of uncertainty
in a system can be reduced by using type-2 fuzzy logic because it offers better
capabilities to handle linguistic uncertainties by modeling vagueness and unreliability
of information [4, 33].

In this section, we deal with the application of interval type-2 fuzzy control
to nonlinear dynamic systems [24, 25, 34]. It is a well-known fact, that in the
control of real systems, the instrumentation elements (instrumentation amplifier,
sensors, digital to analog, analog to digital converters, etc.) introduce some sort of
unpredictable values in the information that has been collected [8]. So, the controllers
designed under idealized conditions tend to behave in an inappropriate manner. Since
uncertainty is inherent in the design of controllers for real-world applications, we
are presenting how to deal with this problem using type-2 FLC, to reduce the effects
of imprecise information [33]. We are supporting this statement with experimental
results, qualitative observations, and quantitative measures of errors. For quantifying
the errors, we utilized three widely used performance criteria, which are integral of
square error (ISE), integral of the absolute value of the error (IAE), and integral of
the time multiplied by the absolute value of the error (ITAE).

10.2.2 Fuzzy Logic Systems

In this section, a brief overview of type-1 and type-2 fuzzy systems is presented.
This overview is considered as necessary to understand the basic concepts needed to
understand the methods and algorithms presented later in the chapter [4, 33].

10.2.2.1 Type-1 Fuzzy Logic Systems

In the 1940s and 1950s, many researchers proved that dynamic systems could be
mathematically modeled using differential equations. In these works, we have the
foundations of the control theory, which in addition to the transform theory (Laplace’s
theory) provided an extremely powerful means of analyzing and designing control
systems. These theories were developed until the 1970s, when the area was called
systems theory to indicate its definitiveness.

Soft computing techniques have become an important research topic, which can be
applied in the design of intelligent controllers. These techniques have tried to avoid
the abovementioned drawbacks, and they allow us to obtain efficient controllers,
which utilize the human experience in a more natural form than the conventional
mathematical approach. In the cases in which a mathematical representation of the
controlled system is difficult to obtain, the process operator has the knowledge and
the experience to express the relationships existing in the process behavior.

An FLS, described completely in terms of type-1 fuzzy sets, is called a type-1 fuzzy
logic system (type-1 FLS). It is composed of a knowledge base, which comprises
the information given by the process operator in the form of linguistic control rules,
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Fig. 10.1 System used for obtaining the experimental results for control

a fuzzification interface, which has the effect of transforming crisp data into fuzzy
sets, and an inference system, which uses the fuzzy sets in conjunction with the
knowledge base to make inferences by means of a reasoning method. Finally, a
defuzzification interface translates the fuzzy control action, so obtained, to a real
control action using a defuzzification method.

In this section, the implementation of the fuzzy controller in terms of type-1
fuzzy sets has two input variables, which are the error e(t), the difference between
the reference signal and the output of the process, as well as the error variation �e(t):

e(t) = r(t) − y(t) (10.1)

�e(t) = e(t) − e(t − 1), (10.2)

so the control system can be represented as in Fig. 10.1.

10.2.2.2 Type-2 FLSs

If for a type-1 membership function, as in Fig. 10.2, we blur it to the left and to the
right, as illustrated in Fig. 10.3, then a type-2 membership function is obtained. In this
case, for a specific value x ′, the membership function (u′) takes on different values,
which are not all weighted the same, so we can assign an amplitude distribution to
all of those points.

Doing this for all x ∈ X, we create a three-dimensional membership function—a
type-2 membership function—that characterizes a type-2 fuzzy set. A type-2 fuzzy
set, Ã, is characterized by the membership function:

Ã = {(
(x, u), μÃ(x, u)

) |∀x ∈ X, ∀u ∈ Jx ⊆ [0,1]
}

, (10.3)

in which 0 ≤ μÃ(x, u) ≤ 1. Another expression for Ã is

Ã =
∫

x∈X

∫

u∈Jx

μÃ(x, u)/(x, u) Jx ⊆ [0,1], (10.4)
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Fig. 10.2 Type-1 membership function

where
∫ ∫

denotes the union over all admissible input variables x and u. For discrete
universes of discourse,

∫
is replaced by � [33]. In fact, Jx ⊆ [0,1] represents the

primary membership of x, and μÃ(x, u) is a type-1 fuzzy set known as the secondary
set. Hence, a type-2 membership grade can be any subset in [0, 1], the primary
membership, and corresponding to each primary membership, there is a secondary
membership (which can also be in [0, 1]) that defines the possibilities for the primary
membership. Uncertainty is represented by a region, which is called the footprint
of uncertainty (FOU). If μÃ(x, u) = 1, ∀u ∈ Jx ⊆ [0,1], then we have an interval
type-2 membership function, as shown in Fig. 10.4. The uniform shading for the
FOU represents the entire interval type-2 fuzzy set, and it can be described in terms
of an upper membership function μ̄Ã(x) and a lower membership function μÃ(x).

An FLS described using at least one type-2 fuzzy set is called a type-2 FLS.
Type-1 FLSs are unable to directly handle rule uncertainties, because they use type-
1 fuzzy sets that are certain. On the other hand, type-2 FLSs are very useful in
circumstances where it is difficult to determine an exact membership function, and
there are measurement uncertainties.

It is known that type-2 fuzzy sets enable modeling and minimizing the effects of
uncertainties in rule-based FLS. Unfortunately, type-2 fuzzy sets are more difficult
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Fig. 10.3 Blurred type-1 membership function

to use and understand than type-1 fuzzy sets; hence, their use is not widespread yet.
As a justification for the use of type-2 fuzzy sets, at least four sources of uncertainties
not considered in type-1 FLSs are mentioned:

1. The meanings of the words that are used in the antecedents and consequents of
rules can be uncertain (words mean different things to different people).

2. Consequents may have histogram of values associated with them, especially when
knowledge is extracted from a group of experts who do not agree all.

3. Measurements that activate a type-1 FLS may be noisy and therefore uncertain.
4. The data used to tune the parameters of a type-1 FLS may also be noisy.

All of these uncertainties translate into uncertainties about fuzzy set membership
functions. Type-1 fuzzy sets are not able to directly model such uncertainties because
their membership functions are totally crisp. On the other hand, type-2 fuzzy sets are
able to model such uncertainties because their membership functions are themselves
fuzzy. A type-1 fuzzy set is a special case of a type-2 fuzzy set; its secondary
membership function is a subset with only one element, unity.

A type-2 FLS is again characterized by if–then rules, but its antecedent or conse-
quent sets are now of type 2. Type-2 FLSs can be used when the circumstances are
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Fig. 10.4 Interval type-2 membership function

too uncertain to determine exact membership grades such as when the training data is
corrupted by noise. Similar to a type-1 FLS, a type-2 FLS includes a fuzzifier, a rule
base, fuzzy inference engine, and an output processor, as we can see in Fig. 10.5. The
output processor includes type reducer and defuzzifier; it generates a type-1 fuzzy
set output (from the type reducer) or a crisp number (from the defuzzifier). Now, we
will explain each of the blocks of Fig. 10.5.

10.2.2.2.1 Fuzzifier

The fuzzifier maps a crisp point x = (
x1, . . . , xp

)T ∈ X1 ×X2 × . . .×Xp ≡ X into
a type-2 fuzzy set Ãx in X, interval type-2 fuzzy sets in this case. We will use type-2
singleton fuzzifier; in a singleton fuzzification, the input fuzzy set has only a single
point on nonzero membership. Ãx is a type-2 fuzzy singleton if μÃx

(x) = 1/1 for
x = x ′ and μÃx

(x) = 1/0 for all other x 
= x ′.

10.2.2.2.2 Rules

The structure of rules in a type-1 FLS and a type-2 FLS is the same, but in the latter
the antecedents and the consequents will be represented by type-2 fuzzy sets. So for



10 Bio-Inspired Optimization of Interval Type-2 Fuzzy Controller Design 191

Fig. 10.5 Type-2 fuzzy logic system

a type-2 FLS with p inputs, x1 ∈ X1, . . . , xp ∈ Xp and one output y ∈ Y , multiple
input single output (MISO), if we assume there are M rules, the lth rule in the type-2
FLS can be written as follows:

Rl : IF x1 is F̃ l
1 and xp is F̃ l

p, then y is G̃l l = 1, . . . , M (10.5)

10.2.2.2.3 Inference

In the type-2 FLS, the inference engine combines rules and gives a mapping from
input type-2 fuzzy sets to output type-2 fuzzy sets. It is necessary to compute the join
� (unions) and the meet � (intersections), as well as extended sup-star compositions
(sup-star compositions) of type-2 relations. If F̃ l

1 × · · · × F̃ l
p = Ãl , Eq. (10.5) can

be rewritten as

Rl : F̃ l
1 × · · · × F̃ l

p → G̃l = Ãl → G̃l l = 1, . . . , M (10.6)

Rl is described by the membership function μRl (x, y) = μRl (x1, . . . , xp, y), where

μRl (x, y) = μÃl→G̃l (x, y) (10.7)

can be written as

μRl (x, y) = μÃl→G̃l (x, y) = μF̃ l
1
(x1)Π · · ·ΠμF̃ l

p
(xp)ΠμG̃l (y)

= [Πp

i=1μF̃ l
i
(xi)]ΠμG̃l (y). (10.8)

In general, the p-dimensional input to Rl is given by the type-2 fuzzy set Ãx whose
membership function is

μÃx
(x) = μx̃1 (x1)Π · · ·Πμx̃p(xp) = Π

p

i=1μx̃i(xi) (10.9)
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where X̃i(i = 1, . . . , p) are the labels of the fuzzy sets describing the inputs. Each
rule Rl determines a type-2 fuzzy set B̃l = Ãx · Rl such that

μB̃l (y) = μÃx ·Rl = �x∈X

[
μÃx

(x)Π μRl (x, y)] y ∈ Y l = 1, . . . , M. (10.10)

This equation is the input/output relation in Fig. 10.5 between the type-2 fuzzy set
that activates one rule in the inference engine and the type-2 fuzzy set at the output
of that engine.

In the FLS, we used interval type-2 fuzzy sets and meet under product t-norm, so
the result of the input and antecedent operations, which are contained in the firing
set Π

p

i=1μF̃ii
(x ′

i ≡ F l(x ′)), is an interval type-1 set:

F l(x ′) =
[
f−

l(x ′), f̄ l(x ′)
]
≡

[
f−

l , f̄ l

]
, (10.11)

where

f−
l(x′) = μ−

F̃ l
1

(x1
′) ∗ · · · ∗ μ−

F̃ l
p

(xp
′) (10.12)

and

f̄ l(x′) = μ̄F̃ l
1
(x1

′) ∗ · · · ∗ μ̄F̃ l
p
(xp

′), (10.13)

where * is the product operation.

10.2.2.2.4 Type-Reducer

The type-reducer generates a type-1 fuzzy set output, which is then converted in
a crisp output through the defuzzifier. This type-1 fuzzy set is also an interval set;
for the case of our FLS, we used center of sets (cos) type-reduction, Ycos, which is
expressed as

Ycos(x) = [yl , yr ]

=
∫

y1∈[yl
1,yr

1] · · ·
∫

yM∈[yl
M ,yr

M ]

∫

f 1∈[f−
1,f̄ 1] · · ·

∫

f M∈[f−
M ,f̄ M ]1/

∑M
i=1 f iyi

∑M
i=1 f i

(10.14)

This interval set is determined by its two end points, yl and yr , which corresponds
to the centroid of the type-2 interval consequent set G̃i ,

CG̃i =
∫

θ1∈Jy1 · · ·
∫

θN∈JyN
1/

∑N
i=1 yiθi

∑N
i=1 θi

= [yl
i , yr

i] (10.15)

Before the computation of Ycos (x), we must evaluate Eq. (10.15), and its two end
points, yl and yr . If the values of fi and yi that are associated with yl are denoted
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as f i
l and yi

l , respectively, and the values of fi and yi that are associated with yr are
denoted as f i

r and yi
r , respectively, from Eq. (10.14), we have

yl =
∑M

i=1 fl
iyl

i

∑M
i=1 fl

i
(10.16)

yr =
∑M

i=1 fr
iyr

i

∑M
i=1 fr

i
. (10.17)

10.2.2.2.5 Defuzzifier

From the type-reducer, we obtain an interval set Ycos; to defuzzify it, we use the
average of yl and yr . So, the defuzzified output of an interval singleton type-2 FLS
is

y(x) = yl + yr

2
. (10.18)

In this chapter, we are simulating the fact that the instrumentation elements (in-
strumentation amplifier, sensors, digital-to-analog and analog-to-digital converters,
etc.) are introducing some sort of unpredictable values in the collected information.
In the case of the implementation of the type-2 FLC, we have the same characteristics
as in type-1 FLC, but we used type-2 fuzzy sets as membership functions for the
inputs and for the output.

10.2.2.3 Performance Criteria

For evaluating the transient closed-loop response of a computer control system, we
can use the same criteria that are used normally for adjusting constants in proportional
integral derivative (PID) controllers. These are:

1. Integral of square error (ISE):

ISE =
∫ ∞

0
[e(t)]2dt (10.19)

2. Integral of the absolute value of the error (IAE):

IAE =
∫ ∞

0
|e(t)|dt (10.20)

3. Integral of the time multiplied by the absolute value of the error (ITAE):

ITAE =
∫ ∞

0
t |e(t)|dt (10.21)
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Criteria selection depends on the desired type of control response; the errors will
contribute different for each criterion. So, we have those large errors that will increase
the value of ISE more heavily than to IAE. ISE will favor responses with smaller
overshoot for load changes, but ISE will give longer settling time. In ITAE, the time
appears as a factor, and therefore, ITAE will penalize heavily errors that occur late in
time, but virtually ignore errors that occur early in time. Designing using ITAE will
give us the shortest settling time, but it will produce the largest overshoot among the
three criteria considered. Designing considering IAE will give us an intermediate
result; in this case, the settling time will not be so large than using ISE or so small
than using ITAE, and the same applies for the overshoot response. The selection of
a particular criterion is dependent on the type of desired response.

10.3 Optimization of Fuzzy Controllers Using the ACO
Metaheuristic

In this section, we describe the application of a simple ACO (S-ACO) as a method
of optimization for membership functions’ parameters of an FLC in order to find
the optimal intelligent controller for an autonomous wheeled mobile robot [8]. The
simulation results show that the ACO outperforms a GA in the optimization of FLCs
for an autonomous mobile robot [8].

10.3.1 Introduction

Nowadays, fuzzy logic is one of the most used methods of computational intelligence
and with the best future. This is possible thanks to the efficiency and simplicity of
fuzzy systems since they use linguistic terms similar to those that human beings
use [44].

The complexity for developing fuzzy systems can be found at the time of deciding
which are the best parameters of the membership functions, the number of rules, or
even the best granularity that could give us the best solution for the problem that we
want to solve [4].

A solution for the abovementioned problem is the application of evolutionary al-
gorithms for the optimization of fuzzy systems [6, 14, 16, 28, 38, 42]. Evolutionary
algorithms can be a useful tool because of its capabilities of solving nonlinear prob-
lems, well-constrained or even nondeterministic polynomial-time hard (NP-hard)
problems. However, recently, there have also been proposals of new optimization
techniques based on biological or natural phenomena that have achieved good re-
sults in real-world problems, for example, ACO, the bat algorithm, firefly algorithm,
chemical optimization, and others [1].

This section describes the application of one recent bio-inspired algorithm, such
as the ACO [24] as a method of optimization of the parameters of the membership
functions of the FLC in order to find the best intelligent controller for an autonomous
wheeled mobile robot [8, 30].
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10.3.2 S-ACO algorithm

ACO is a probabilistic technique that can be used for solving problems that can be
reduced to finding a good path along graphs. This method is inspired by the behavior
presented by ants in finding paths from the nest or colony to the food source [24].

The S-ACO is an algorithmic implementation that adapts the behavior of real ants
to the solutions of minimum-cost path problems on graphs [35]. A number of artificial
ants build solutions for a certain optimization problem and exchange information
about the quality of these solutions making allusion to the communication systems
of the real ants.

Let us define the graph G = (V , E), where V is the set of nodes and E is the
matrix of the links between nodes. G has nG = |V | nodes. Let us define LK as the
number of hops in the path built by the ant k from the origin node to the destiny node.
Therefore, it is necessary to find:

Q = {
qa , . . . , qf |q1 ∈ C

}
, (10.22)

where Q is the set of nodes representing a continuous path with no obstacles;
qa , . . . , qf are former nodes of the path and C is the set of possible configura-
tions of the free space. If xk(t) denotes a Q solution in time t, f (xk(t)) expresses the
quality of the solution. The general steps of S-ACO are the following:

• Each link (i, j ) is associated with a pheromone concentration denoted as τij .
• A number k = 1, 2, . . . , nk are placed in the nest.
• On each iteration, all ants build a path to the food source (destiny node). For

selecting the next node, a probabilistic equation is used:

pk
ij

⎧
⎪⎪⎨

⎪⎪⎩

τ k
ij∑

j∈Nk
ij

τ α
ij (t)

if j ∈ Nk
i

0 if j /∈ Nk
i

, (10.23)

where Nk
i is the set of feasible nodes (in a neighborhood) connected to node i

with respect to ant k, τij is the total pheromone concentration of link ij, and α is
a positive constant used again for the pheromone influence.

• Remove cycles and compute each route weight f (xk(t)). A cycle could be gen-
erated when there are no feasible candidate nodes, that is, for any i and any k,
Nk

i = ∅; then, the predecessor of that node is included as a former node of the
path.

• Pheromone evaporation is calculated with the equation

τij (t) ← (1 − ρ)τij (t) (10.24)

where ρ ∈ [0,1] is the evaporation rate value of the pheromone trail. The evapora-
tion is added to the algorithm in order to force the exploration of the ants and avoid
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Fig. 10.6 Wheeled mobile
robot [10]

premature convergence to suboptimal solutions. For ρ = 1, the search becomes
completely random.

• The update of the pheromone concentration is realized using the equation

τij (t + 1) = τij (t) +
nk∑

k=1

�τk
ij (t) (10.25)

where �τk
ij is the amount of pheromone that an ant k deposits in a link ij in a

time t.

• Finally, the algorithm can be ended in three different ways:
– When a maximum number of epochs has been reached
– When it has found an acceptable solution, with f (xk(t)) < ε

– When all ants follow the same path

10.3.3 Problem Statement

The model of the robot considered in this chapter is a unicycle mobile robot (see
Fig. 10.6), that consists of two driving wheels mounted on the same axis and a front
free wheel [8, 28, 30].

A unicycle mobile robot is an autonomous, wheeled vehicle capable of performing
missions in fixed or uncertain environments. The robot body is symmetrical around
the perpendicular axis, and the center of mass is at the geometrical center of the
body. It has two driving wheels that are fixed to the axis that passes through C and
one passive wheel prevents the robot from tipping over as it moves on a plane. In
what follows, it is assumed that the motion of the passive wheel can be ignored in
the dynamics of the mobile robot presented by the following set of equations:

M(q)ϑ̇ + C(q, q̇)ϑ̇ + Dϑ = τ + Fext (t) (10.26)
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q̇ =

⎡

⎢⎢
⎣

cos θ

sin θ

0

0

0

1

⎤

⎥⎥
⎦

︸ ︷︷ ︸
J (q)

⎡

⎣v

w

⎤

⎦

︸ ︷︷ ︸
ϑ

, (10.27)

where q = (x, y, θ )T is the vector of the configuration coordinates; ϑ = (v, w)T

is the vector of linear and angular velocities; τ = (τ1, τ2) is the vector of torques
applied to the wheels of the robot where τ1 and τ2 denote the torques of the right
and left wheel, respectively (Fig. 10.6); Fext ∈ R

2 uniformly bounded disturbance
vector; M(q) ∈ R

2×2 is the positive-definite inertia matrix; C(q, q̇)ϑ is the vector of
centripetal and Coriolis forces; and D ∈ R

2×2 is a diagonal positive-definite damping
matrix. Equation 10.27 represents the kinematics of the system, where (x, y) is the
position of the mobile robot in the X–Y (world) reference frame, θ is the angle
between heading direction and the x-axis, and v and w are the angular and angular
velocities, respectively.

Furthermore, the system (10.26)–(10.27) has the following nonholonomic
constraint:

ẏ cos θ − ẋ sin θ = 0, (10.28)

which corresponds to a no-slip wheel condition preventing the robot from mov-
ing sideways. The system (10.27) fails to meet Brockett’s necessary condition for
feedback stabilization, which implies that a noncontinuous static state-feedback con-
troller exists that stabilizes the closed-loop system around the equilibrium point
[15].

The control objective is to design an FLC of τ that ensures

limt→∞ ‖qd (t) − q(t)‖ = 0 (10.29)

for any continuously, differentiable, bounded desired trajectory qd ∈ R
3 while

attenuating external disturbances.

10.3.4 Fuzzy Logic Control Design

In order to satisfy the control objective, it is necessary to design an FLC for the real
velocities of the mobile robot. To do that, a Takagi–Sugeno FLC was designed using
linguistic variables in the input and mathematical functions in the output. The errors of
the linear and angular velocities (vd , wd respectively) were taken as input variables,
while the right (τ1) and left (τ2) torques were taken as outputs. The membership
functions used in the input are trapezoidal for the negative (N) and positive (P), and
a triangular was used for the zero (C) linguistic terms. The interval used for this
fuzzy controller is [−50, 50] [10]. Figure 10.7 shows the input and output variables,
and Fig. 10.8 shows the general FLC architecture.
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Fig. 10.8 Fuzzy logic
controller architecture

Table 10.1 Fuzzy rules set ev/ew N Z P

N N/N N/Z N/P

Z Z/N Z/Z Z/P

P P/N P/Z P/P

The FLC has a rule set that contain 9 rules, which governs the input–output rela-
tionship of the FLC and this adopts the Takagi–Sugeno-style inference engine, and
it is used with a single point in the outputs, considering that the outputs are constant
values, obtained using weighted average defuzzification procedure. In Table 10.1,
we present the rule set whose format is established as follows:

Rule i: if ev is G1 and ew is G2 then F is G3 and N is G4,

where G1 . . . G4 are the fuzzy set associated to each variable i= 1, 2, . . . , 9.
To find the best FLC, we used an S-ACO to find the parameters of the membership

functions. Table 10.2 shows the parameters of the membership functions, the minimal
and maximum values in the search range for the S-ACO algorithm to find the best
FLC.

It is important to remark that values shown in Table 10.2 are applied to both inputs
and both outputs of the FLC.

10.3.5 ACO Architecture

The S-ACO algorithm was applied for the optimization of the membership functions
for the FLC. For developing the architecture of the algorithm, it was necessary to
follow the next steps:

1. Marking the limits of the problem in order to eliminate unnecessary complexity
2. Representing the architecture of the FLC as a graph that artificial ants could

traverse
3. Achieving an adequate handling of the pheromone but permitting the algorithm

to evolve by itself
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Table 10.2 Parameters of the membership functions

MF type Point Minimal value Maximal value

Trapezoidal a − 50 − 50
b − 50 − 50
c − 15 − 5.1
d − 1.5 − 0.5

Triangular a − 5 − 1.8
b 0 0
c 1.8 5

Trapezoidal a 0.5 1.5
b 5.1 15
c 50 50
d 50 50

Constant (N) a − 50 − 50

Constant (C) a 0 0

Constant (P) a 50 50

Table 10.3 Parameters of membership functions included in S-ACO search

MF type Point Minimal value Maximal value

Trapezoidal c − 15 − 5.1
d − 1.5 − 0.5

Triangular a − 5 − 1.8
c 1.8 5

Trapezoidal a 0.5 1.5
b 5.1 15

10.3.5.1 Limiting the Problem and Graph Representation

One of the problems found in the development of the S-ACO algorithm was to make
a good representation of FLC. First, we reduced the number of elements that the
method needed to find by deleting the elements whose minimal value and maximal
values are the same (see Table 10.2), and therefore if they were included they will
not change any way. Table 10.3 shows the parameters of the membership functions
included in the search.

The next step was to represent those parameters shown in Table 10.3; to that
was necessary to discretize the parameters in a range of possible values in order
to represent every possible value as a node in the graph of search. The level of
discretization between the minimal and maximal value was of 0.1 (by example:
− 1.5, − 1.4, − 1.3, . . . , − 0.5).

Table 10.4 shows the number of possible values that each parameter can take.
Figure 10.9 shows the search graph for the proposed S-ACO algorithm; the graph

can be viewed as a tree where the root is the nest and the last node is the food source.



10 Bio-Inspired Optimization of Interval Type-2 Fuzzy Controller Design 201

Table 10.4 Number of possible values of the parameters of membership functions

MF type Point Combinations

Trapezoidal c 100
d 15

Triangular a 33
c 33

Trapezoidal a 15
b 100

Fig. 10.9 S-ACO search graph

10.3.5.2 Updating Pheromone Trail

An important issue is that the update of pheromone trail be applied in the best way
possible. In this sense, we need to handle the evaporation (Eq. 10.24), and increase
or deposit of pheromone (Eq. 10.25), where the key parameter in evaporation is
denoted by ρ that represents the rate of evaporation and in deposit of pheromone is
denoted by �τ that represents the amount of pheromone that an ant k deposits in a
link ij in a time t. For ρ, we assign a random value and Eq. (10.30) shows the way
how the increase of pheromone is calculated:

�τ = (emax − ek)

emax
, (10.30)

where emax = 10 is the maximum error of control permitted and ek is the error of
control generated by a complete path of an ant k. We decided to allocate emax = 10
in order to stand �τ ∈ [0,1].
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10.3.6 Simulation Results

In this section, we present the results of the proposed controller to stabilize the
unicycle mobile robot, defined by Eq. (10.26) and Eq. (10.27), where the matrix
values are defined as

M(q) =
⎡

⎣ 0.3749 −0.0202

−0.0202 0.3739

⎤

⎦,

C(q, q̇) =
⎡

⎣ 0 0.1350θ̇

−0.150θ̇ 0

⎤

⎦,

and

D =
⎡

⎣10 0

0 10

⎤

⎦.

The evaluation was made through computer simulation performed in MATLAB®
and SIMULINK®.

The desired trajectory is the following one:

ϑd (t) =
⎧
⎨

⎩
vd (t) = 0.2(1 − exp (−t))

wd (t) = 0.4 sin (0.5t)
(10.31)

and was chosen in terms of its corresponding desired linear vd and angular wd

velocities, subject to the initial conditions

q(0) = (0.1,0.1,0, )T and ϑ(0) = 0 ∈ R
2.

The gains γi , i= 1, 2, 3, of the kinematic model are γ1 = 5, γ2 = 24, and γ3 = 3.

10.3.6.1 S-ACO Algorithm Results for the FLC Optimization

Table 10.5 shows the results of the FLC, obtained varying the values of maximum
iterations and number of artificial ants, where the italicized row shows the best result
obtained with the method. Figure 10.10 shows the evolvement of the method.

Figure 10.11 shows the membership functions of the FLC obtained by the S-ACO
algorithm.
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Table 10.5 S-ACO results of simulations for FLC optimization

Iterations Ants α ρ Average error Time

20 10 0.2 Random 1.5589 00:01:30

20 10 0.2 Random 1.451 00:01:34

25 10 0.2 Random 1.5566 00:01:46

25 10 0.2 Random 1.4767 00:01:51

25 10 0.2 Random 1.4739 00:02:05

25 10 0.2 Random 1.6137 00:02:08

25 10 0.2 Random 1.6642 00:01:54

25 100 0.2 Random 1.3484 00:20:30

25 100 0.2 Random 1.3413 00:18:44

25 100 0.2 Random 1.3360 00:18:31

25 100 0.2 Random 1.2954 00:18:32

25 100 0.2 Random 1.4877 00:18:41

25 100 0.2 Random 1.2391 00:18:31

10 15 0.2 Random 1.6916 00:01:14

10 15 0.2 Random 1.4256 00:01:09

40 65 0.2 Random 1.2783 00:19:17

40 65 0.2 Random 1.4011 00:19:45

40 65 0.2 Random 1.2216 00:19:33

40 65 0.2 Random 1.2487 00:19:49

50 70 0.2 Random 1.3782 00:26:09

50 70 0.2 Random 1.0875 00:27:35

50 70 0.2 Random 1.4218 00:33:45

50 70 0.2 Random 1.475 01:08:48

25 80 0.2 Random 1.4718 00:14:55

25 80 0.2 Random 1.4212 00:15:00

25 80 0.2 Random 1.3221 00:14:52

25 80 0.2 Random 1.1391 00:15:41

50 80 0.2 Random 1.2148 00:28:43

62 50 0.2 Random 1.0322 00:24:49

50 80 0.2 Random 1.1887 00:29:55

50 80 0.2 Random 1.2158 00:29:56

60 90 0.2 Random 1.3493 00:41:56

60 90 0.2 Random 1.3060 00:39:48

60 90 0.2 Random 1.3161 00:40:00
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Fig. 10.10 Evolution of the S-ACO for FLC optimization

Fig. 10.11 a Linear velocity error and b angular velocity error optimized by S-ACO algorithm

Figure 10.12 shows the block diagram used for the FLC that obtained the best
results. Figure 10.13 shows the results of linear and angular errors, and Fig. 10.14
shows the output results of the fuzzy controller that represents the torque applied to
the wheels of the autonomous mobile robot.

The position errors of the autonomous mobile robot can be observed in Fig. 10.15.
Figure 10.16 shows the desired trajectory and obtained trajectory.

A trajectory-tracking controller has been designed based on the dynamics and
kinematics of the autonomous mobile robot through the application of ACO for the
optimization of membership functions for the FLC with good results obtained after
simulations.
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Fig. 10.12 Block diagram for simulation of the FLC

Fig. 10.13 Linear and angular velocity errors
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Fig. 10.14 Right and left torques

Fig. 10.15 Position errors in x, y, θ

10.4 Optimization of an Interval Type-2 Fuzzy Controller for
an Autonomous Mobile Robot Using the PSO Algorithm

This section describes the application of the optimization algorithm for particle
swarm known by its acronym as PSO [18], used to adjust the parameters of mem-
bership functions of an FLC to find the optimal intelligent control for a wheeled
autonomous mobile robot [29]. Results of several simulations show that the PSO is
able to optimize the type-1 and type-2 FLC for this specific application [8].
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Fig. 10.16 Obtained trajectory

This section describes the application of particle swarm algorithm (PSO) as a
method of optimizing the parameters of membership functions of the proposed FLC
in order to find the best intelligent controller for an autonomous mobile robot.

10.4.1 Optimization Algorithm Using Particle Swarm

Optimization by swarm of particles (PSO) is a relatively new technique that is slowly
emerging and gaining recognition as an effective and efficient algorithm [18]. The
PSO algorithm shares similarities with other evolutionary computation techniques
while also differing in certain respects and needs no evolution operators such as
crossover and mutation [16].

PSO emulates the swarm behavior of insects, a herd of grazing animals, a swarm
of birds, and a host of fish in these swarms or clouds that made the search for food in
a collaborative manner. Each member of a swarm adapts its search patterns, learning
from his own experience and experiences of other members, i.e., taking into account
their cognitive beliefs and social beliefs.

These phenomena are discussed in the algorithm and the mathematical models
are built on the method for updating the positions of each particle.

In the PSO algorithm, a member in the swarm, called a particle, represents a
possible solution, is a point in the search space. The global optimum is considered
as the location of food; the problem would be implemented as the optimal solution
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found. Each particle has a fitness value and a speed to adjust the flying direction
according to the best.

The general formula (Eq. 10.32) for determining the motion of particles, which
are presented below, is shown in two parts, the cognitive and social part of which are
crucial to identify the type of algorithm that is being implemented; in our case, we
used the Full GBEST, i.e., both C1 and C2 must have values greater than 0 but less
than 4, respectively:

Vid = Vid (t + 1) + C1rid (t) [Yid (t) Xid (t)] + C2r2 (t) [Yid (t) Xid (t)] (10.32)

Another formula that is critical (Eq. 10.33) for the update of each particle; this
assesses the current position of the particle and the previous position to choose which
is the most appropriate to find more quickly the result this position is recalculated at
each new iteration that is the algorithm:

Xi(t + 1) = Xi(t) +Vi(t + 1) (10.33)

10.4.2 Design of the Fuzzy Controller

As determined by one of the most used and effective techniques to solve control
problems is to use fuzzy systems to meet the control objective, it is necessary to
design a fuzzy controller for the actual speed of the mobile robot. In this work the
fuzzy inference system if of Takagi-Sugeno type with only input linguistic variables
and mathematical functions in the outputs. The errors of linear and angular velocities
(respectively) were taken as input variables, while the left and right pairs were taken
as outputs. The membership functions used in the entry are trapezoidal for negative
(N) and positive (P), and a triangle was used to zero (C) linguistic terms. Figure 10.17
shows the input and output variables used; these are used for both types of fuzzy
logic (1 and 2).

The FLC has nine rules, which are adapted to the style of Takagi–Sugeno con-
troller, so the output has a single point, and for that, the results are constants
values (P, C, N), which are obtained through a procedure using a weighted average
defuzzification by

� R1: If Vangular is C and VLinear is C, then τ 1 is C and τ 2 is C
� R2: If Vangular is C and VLinear is P, then τ 1 is C and τ 2 is P
� R3: If Vangular is C and VLinear is N, then τ 1 is C and τ 2 is N
� R4: If Vangular is P and VLinear is C, then τ 1 is P and τ 2 is C
� R5: If Vangular is P and VLinear is P, then τ 1 is P and τ 2 is P
� R6: If VLinear is P and Vangular is N, then τ 1 is P and τ 2 is N
� R7: If VLinear is N and Vangular is C, then τ 1 is N and τ 2 is C
� R8: If VLinear is N and Vangular is P, then τ 1 is N and τ 2 is P
� R9: If Vangular is N and VLinear is N, then τ 1 is N and τ 2 is N
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Fig. 10.17 Variable input/output: a error of the linear velocity (ev). b Angular velocity error (ew).
c Exit fee (τ1). d Exit left (τ2)

Table 10.6 FLC rules

ev/ew N C P

N N/N N/C N/P

C C/N C/C C/P

P P/N P/C P/P

The linguistic terms of input variables are shown in the first row and column of
Table 10.6; the rest of the content corresponds to the linguistic terms of output
variables.

10.4.3 Results of the Simulations

This section presents the results of the proposed controller to stabilize the autonomous
mobile robot. The evaluation is done through computer simulation done in MATLAB
® and SIMULINK ® 2007b.

Table 10.7 shows the results of the FLC, obtained by varying the values of maxi-
mum iterations and the number of particles, where the italicized row shows the best
result obtained with the method. Figure 10.18 shows the behavior of the optimization
method.

Figure 10.19 shows the membership functions of the FLC obtained by the PSO
algorithm, and achieved the desired path and the degree of error was obtained.
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Table 10.7 Results for PSO using the constriction coefficient for type 1

Experiment
no

Iterations Swarm Coefficient
constriction

Average error Runtime

1 50 50 1.0 0.0606 00:20:05

2 100 200 1.0 0.2670 02:44:53

3 100 100 1.0 0.0301 01:49:55

4 100 150 1.0 0.0315 01:54:31

5 100 50 1.0 0.0266 03:16:34

6 100 57 1.0 0.0211 00:41:38

7 100 300 1.0 0.0276 04:04:54

8 100 80 1.0 0.0527 01:03:45

9 150 80 1.0 0.0260 01:35:17

10 300 150 1.0 0.0307 04:30:16

11 500 200 1.0 0.0529 39:56:23

12 200 90 1.0 0.0345 01:54:59

13 150 100 1.0 0.0496 01:36:37

14 100 53 1.0 0.0230 00:39:29

Fig. 10.18 Evolution of PSO for the optimization of FLC

As you can see, the above results are acceptable for type-1 FLC obtaining a final
result of 0.0211 using 57 particles and 100 iterations in a time of 47 min and 38 s for
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Fig. 10.19 a linear velocity (ev), b angular velocity (ew), c shows the desired path and the trajectory
obtained, d plots representing the degree of error in the simulation

this experiment, but as previously mentioned there were also simulations with type 2,
taking into account the same parameters and conditions of Takagi–Sugeno controller;
the results of these simulations are presented below in Table 10.8. Figure 10.20 shows
the convergence of the PSO algorithm.

Figure 10.21 shows the membership functions of the FLC obtained by the PSO
algorithm, and achieved the desired path and the degree of error was obtained.

The above results are acceptable for type-2 fuzzy logic control because we obtain
a final result of 0.0500 using 380 particles and 300 iterations in a time of 7 h 55 min
and 08 s for this experiment, which cannot be considered high due to the complexity
of the problem.

The type-2 fuzzy controllers were implemented with the type-2 fuzzy logic
toolbox that was developed previously by our research group [9, 10].

With the results of the experiments shown in Table 10.9, we can determine that
for this particular problem the optimized type-2 FLC clearly outperforms its type-1
counterpart.

The trajectory-tracking controller is designed based on the dynamics and kinemat-
ics of mobile autonomous robot through the application of PSO for the optimization
of membership functions of fuzzy controller both type 1 and type 2 with the good
results obtained after simulations.
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Table 10.8 Results of PSO using the constriction coefficient for type 2

Experiment
no

Iterations Swarm Coefficient
constriction

Average error Runtime

1 100 150 1.0 0.0659 02:20:31

2 100 200 1.0 0.0675 02:56:21

3 100 250 1.0 0.0666 03:05:31

4 200 150 1.0 0.0663 03:55:06

5 200 200 1.0 0.0651 04:07:14

6 200 250 1.0 0.0642 04:20:10

7 200 300 1.0 0.0536 04:54:43

8 200 350 1.0 0.0554 05:12:09

9 250 350 1.0 0.0600 05:38:20

10 300 300 1.0 0.0531 06:12:57

11 300 350 1.0 0.0503 07:30:28

12 300 380 1.0 0.0500 07:55:08

13 350 400 1.0 0.0501 08:10:15

14 350 450 1.0 0.0503 08:59:01

15 400 300 1.0 0.0502 12:31:11

Fig. 10.20 Plot of convergence of PSO algorithm



10 Bio-Inspired Optimization of Interval Type-2 Fuzzy Controller Design 213

Fig. 10.21 a linear velocity (ev), b angular velocity (ew), c shows the desired path and the trajectory
obtained, d plots representing the degree of error in the simulation

Table 10.9 Comparison of results of PSO algorithm for type 1 and type 2

Iterations Swarm Average error Runtime

PSO with type-1 fuzzy logic 100 57 0.0211 00:41:38

PSO with type-2 fuzzy logic 300 380 0.0050 07:55:08

10.5 Conclusions

This chapter has presented a general framework for designing interval type-2 fuzzy
controllers based on bio-inspired optimization techniques. A trajectory-tracking con-
troller has been designed based on the dynamics and kinematics of the autonomous
mobile robot through the application of ACO for the optimization of membership
functions for the FLC with good results obtained after simulations. Also, a trajectory-
tracking controller is designed based on the dynamics and kinematics of mobile
autonomous robot through the application of PSO for the optimization of member-
ship functions of the fuzzy controller for both type 1 and type 2 with the good results
obtained after simulations. As future work, we plan to test other bio-inspired op-
timization techniques, like the bat or firefly algorithms for this particular robotic
application and in other different kinds of applications.
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Chapter 11
Image Processing and Pattern Recognition with
Interval Type-2 Fuzzy Inference Systems

Patricia Melin

Abstract Interval type-2 fuzzy systems can be of great help in achieving efficient
image processing and pattern recognition applications. In particular, edge detection
is an operation usually applied to image sets before the training phase in recognition
systems. This preprocessing step helps to extract the most important shapes in an im-
age, ignoring the homogeneous regions and remarking the real objective to classify
or recognize. Many traditional and fuzzy edge detectors have been proposed, but it
is very difficult to demonstrate which one is better before the recognition results are
obtained. In this chapter, we present experimental results where several edge detec-
tors were used to preprocess the same image sets. Each resultant image set was used
as training data for a neural network recognition system, and the recognition rates
were compared. The goal of these experiments is to find the better edge detector that
can be used to improve the training data of a neural network for image recognition.

11.1 Introduction

In previous works, we have proposed some extensions to traditional edge detectors to
improve their performance by using fuzzy systems [14, 16, 19]. In all the experiments,
we show the resulting images, demonstrating that the images obtained with fuzzy
systems were visually better than the ones obtained with the traditional methods.

There is still work to be done on developing formal validations for fuzzy edge
detectors using different methods. In the literature, we can find comparisons of edge
detectors based on human observations [5, 8, 9, 11, 12], and some others that found
the optimal values for parametric edge detectors [12].

Edge detectors can be used in recognition systems for different purposes, but in
our work, we are particularly interested in knowing which is the best edge detector
for a neural recognition system. In this chapter, we present some experiments that
clearly show that fuzzy edge detectors are a good choice to improve the performance
of neural or other types of recognition systems, and for this reason, we propose
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Fig. 11.1 Sobel edge detector enhanced with fuzzy systems

that the recognition rate of the neural networks can be used as an edge detection
performance index.

11.2 Overview of Existing Fuzzy Edge Detectors

11.2.1 Sobel Edge Detector Improved with Fuzzy Logic

In the Sobel fuzzy edge detector, the Sobel operators Sobelx and Sobely are used
as in the traditional method, and then we substitute the Euclidean distance of Eq.
(11.1) by a fuzzy system that uses these operators as inputs, as can be appreciated in
Fig. 11.1 [23]:

Sobel _edges =
√

Sobel2x + Sobel2y. (11.1)

Sobel operators are the main inputs for the type-1 fuzzy inference system (FIS1)
and type-2 fuzzy inference system (FIS2), and we have also considered adding two
more inputs, which are filters that improve the final edge image. The fuzzy variables
used in the Sobel+ FIS1 and Sobel+ FIS2 edge detectors are shown in Figs. 11.2
and 11.3, respectively.

The use of the FIS2 [6, 7] provided images with better defined edges than the FIS1,
which is a very important result in providing better inputs to the neural networks that
will perform the recognition task.

The fuzzy rules for both the FIS1 and FIS2 are the same (the knowledge is the
same) and are shown below:

1. If (dh is LOW) and (dv is LOW) then (y1 is HIGH).
2. If (dh is MIDDLE) and (dv is MIDDLE) then (y1 is LOW).
3. If (dh is HIGH) and (dv is HIGH) then (y1 is LOW).
4. If (dh is MIDDLE) and (hp is LOW) then (y1 is LOW).
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Fig. 11.2 Membership functions of the variables for the Sobel+ FIS1 edge detector

5. If (dv is MIDDLE) and (hp is LOW) then (y1 is LOW).
6. If (m is LOW) and (dv is MIDDLE) then (y1 is HIGH).
7. If (m is LOW) and (dh is MIDDLE) then (y1 is HIGH).

The fuzzy rule base shown above infers the gray tone of each pixel for the edge image
with the following reasoning: When the horizontal gradient dh and vertical gradient
dv are LOW, it means that there is not enough difference between the gray tones in
its neighboring pixels, then the output pixel must belong to a homogeneous or not
edges region, then the output pixel is HIGH or near WHITE. In the opposite case,
when dh and dv are both HIGH, this means that there is enough difference between
the gray tones in its neighborhood, then the output pixel is an EDGE.
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Fig. 11.3 Membership functions of the variables for the Sobel+ FIS2 edge detector

11.3 Morphological Gradient Edge Detectors Improved with
Fuzzy Logic

In the morphological gradient (MG), the four gradients are calculated as in the tra-
ditional method [1, 4], and substitute the sum of gradients Eq. (11.2), using instead
a fuzzy inference system that uses as inputs these gradients, as can be appreciated in
Fig. 11.4:

MG _edges = D1 + D2 + D3 + D4. (11.2)

The linguistic variables used in the MG+ FIS1 and MG+ FIS2 edge detectors
are shown in Figs. 11.5 and 11.6, respectively.

The rules for both the FIS1 and FIS2 are the same and are shown below:
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Fig. 11.4 Morphological gradient edge detector enhanced with fuzzy systems

1. If (D1 is HIGH) or (D2 is HIGH) or (D3 is HIGH) or (D4 is HIGH) then (E is
BLACK).

2. If (D1 is MIDDLE) or (D2 is MIDDLE) or (D3 is MIDDLE) or (D4 is MIDDLE)
then (E is GRAY).

3. If (D1 is LOW) and (D2 is LOW) and (D3 is LOW) and (D4 is LOW) then (E is
WHITE).

After many experiments, we found that an edge exists when any gradient Di is HIGH,
which means a difference of gray tones in any direction of the image must produce a
pixel with a BLACK value or EDGE. The same behavior occurs when any gradient
Di is MIDDLE, which means that even when the differences in the gray tones are not
maximal, the pixel is an EDGE, then the only rule that found a non-edge pixel is the
number 3, where only when all the gradients are LOW, the output pixel is WHITE,
which means a pixel belonging to a homogeneous region.

11.4 Experimental Setup To Test the Proposed Approach

The experiment consists of applying a neural recognition system using each of the
following edge detectors: Sobel, Sobel+ FIS1, Sobel+ FIS2, MG, MG+ FIS1, and
MG+ FIS2.

11.4.1 General Algorithm Used for the Experiments

1. Define the database folder.
2. Define the edge detector.
3. Detect the edges of each image as a vector and store it as a column in a matrix.
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Fig. 11.5 Membership functions of the variables for the MG+ FIS1 edge detector

4. Calculate the recognition rate using the k-fold cross-validation method.
a. Calculate the indices for training and test k folds.
b. Train the neural network k−1 times, one for each training fold calculated

previously.
c. Test the neural network k times, one for each fold test set calculated previously.

5. Calculate the mean rate for all the k folds.

11.4.2 Parameters for the Images Databases

The experiments can be performed with images databases used for identification
purposes. That is the case of the face recognition applications, then we use three of
the most popular sets of images, the ORL face database [3], the Cropped Yale face
database [2, 10], and the FERET face database [22].
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Fig. 11.6 Membership functions of the variables for the MG+ FIS2 edge detector

For the three databases, we defined the variable p as the person number and s
as number of samples for each person. The tests were made with the k-fold cross-
validation method, with k = 5 for both databases. We can generalize the calculation
of folds size m or number of samples in each fold, dividing the total number of
samples for each person s by the folds number, and then multiplying the result by
the person number p (11.3), then the train dataset size i (11.4) can be calculated as
the number of samples in k−1 folds m, and test dataset size t (11.5) are the number
of samples in only one fold:

m = (s/k) ∗ p (11.3)

i = m(k − 1) (11.4)

t = m (11.5)

The total number of samples used for each person were 10 for the ORL and YALE
databases; then if the size m of each fivefold is 2, the number of samples for training
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Table 11.1 Particular information for the tested database of faces

Database Pearson
number (p)

Samples
number (s)

Fold size (m) Training set
size (i)

Test set size
(t)

ORL 40 10 80 320 80

Cropped
Yale

38 10 76 304 76

FERET 74 4 74 222 74

Fig. 11.7 General structure for the monolithic neural network

for each person is 8 and for testing is 2. For the experiments with the FERET face
database, we use only the samples of 74 persons who have four frontal sample images.
The particular information for each database is shown in Table 11.1.

11.4.3 The Monolithic Neural Network

In previous experiments with neural networks for image recognition, we have found
a general structure with acceptable performance, even if it is not optimal. We used the
same structure for multi-net modular neural networks, in order to establish a standard
for comparison for all the experiments [13, 15, 17, 21]. The general structure for the
monolithic neural network is shown in Fig. 11.7:

• Two hidden layers with 200 neurons
• Learning Algorithm: Gradient descent with momentum and adaptive learning rate

back-propagation
• Error goal 0.0001

11.5 Simulation Results

In this section, we show the numerical results of the experiments. Table 11.2 contains
the results for the ORL face database, Table 11.3 contains the results for the Cropped
Yale database, and Table 11.4 contains the results for the FERET face database.

For a better appreciation of the results, we made plots for the values presented in
Tables 11.2, 11.3 and 11.4. Even if this work does not pretend to make a comparison
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Table 11.2 Recognition rates for the ORL database of faces

Training set
preprocessing
method

Mean time (s) Mean rate (%) Standard
deviation

Max rate (%)

MG+ FIS1 1.2694 89.25 4.47 95.00

MG+ FIS2 1.2694 90.25 5.48 97.50

Sobel+ FIS1 1.2694 87.25 3.69 91.25

Sobel+ FIS2 1.2694 90.75 4.29 95.00

Table 11.3 Recognition rates for the Cropped Yale database of faces

Training set
preprocessing
method

Mean time (s) Mean rate (%) Standard
deviation

Max rate (%)

MG+ FIS1 1.76 68.42 29.11 100

MG+ FIS2 1.07 88.16 21.09 100

Sobel+ FIS1 1.17 79.47 26.33 100

Sobel+ FIS2 1.1321 90 22.36 100

Table 11.4 Recognition rates for the FERET database of faces

Training set
preprocessing
method

Mean time (s) Mean rate (%) Standard
deviation

Max rate (%)

MG+ FIS1 1.17 75.34 5.45 79.73

MG+ FIS2 1.17 72.30 6.85 82.43

Sobel+ FIS1 1.17 82.77 00.68 83.78

Sobel+ FIS2 1.17 84.46 03.22 87.84

based on the training times as performance index for the edge detectors, it is inter-
esting to note that the necessary time to reach the error goal is established for each
experiment.

As we can see in Fig. 11.8, the lowest training times are for the MG+ FIS2 edge
detector and Sobel+ FIS2 edge detector. That is because both edge detectors were
improved with interval type-2 fuzzy systems and produce images with more homo-
geneous areas, which means a high frequency of pixels near the WHITE linguistic
values.

However, the main advantage of the interval type-2 edges detectors are the recog-
nition rates plotted in Fig. 11.9, where we can notice that the best mean performance
of the neural network was achieved when it was trained with the datasets obtained
with the MG+ FIS2 and Sobel+ FIS2 edge detectors.

Figure 11.10 shows that the recognition rates are also better for the edge detec-
tors improved with interval type-2 fuzzy systems. The maximum recognition rates
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Fig. 11.8 Training time for the compared edge detectors tested with the ORL, Cropped Yale, and
FERET face databases

Fig. 11.9 Mean recognition rates for the compared edge detectors with ORL, Cropped Yale, and
FERET face databases

could not be the better parameter to compare the performance of the neural networks
depending on the training set, but it is interesting to note that the maximum recogni-
tion rate of 97.5 % was achieved when the neural network was trained with the ORL
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Fig. 11.10 Maximum recognition rates for the compared edge detectors with ORL, Cropped Yale,
and FERET face database

dataset preprocessed with the MG+ FIS2 edge detector. This is important because in
a real-world system we can use this as the best configuration for images recognition,
expecting to obtain good results.

11.6 Conclusions

This work is the first effort for developing a formal comparison method for edge
detectors as a function of their performance in different types of recognition systems.
In this work, we demonstrate that Sobel and MG edge detectors improved with type-
2 fuzzy logic have a better performance than the traditional methods in an image
recognition system based on neural networks.

References

1. A.N. Evans, X.U. Liu, Morphological gradient approach for color edges detection. IEEE Trans.
Image Process. 15(6), 1454–1463 (2006)

2. A.S. Georghiades, P.N. Belhumeur, D.J. Kriegman, From few to many: Illumination cone
models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach.
Intell. 23(6), 643–660 (2001)

3. AT & T Laboratories Cambridge, The ORL database of faces, http://www.cl.cam.ac.uk
/research/dtg/attarchive/facedatabase.html. Accessed 9 Dec 2013

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html


228 P. Melin

4. F. Russo, G. Ramponi, Edge extraction by FIRE operators fuzzy systems. IEEE World Congr.
Comput. Intell., 1, 249–253 (1994)

5. H. Bustince, E. Berrenechea, M. Pagola, J. Fernandez, Interval-Valued Fuzzy Sets Con-
structed from Matrices: Application to Edge Detection, Fuzzy Sets and Systems (Elsevier),
http://www.sciencedirect.com. Accessed 13 Dec 2013

6. J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems : Introduction and New Directions
(Prentice-Hall, Upper Saddle River, 2001)

7. J.R. Castro, O. Castillo, P. Melin, A. Rodriguez-Diaz, Building fuzzy inference systems with
a new interval type-2 fuzzy logic toolbox. Transactions on Computational Science, vol. 4750
(Springer, Heidelberg, 2008), pp. 104–114

8. K. Revathy, S. Lekshmi, S.R. Prabhakaran Nayar, Fractal-based fuzzy technique for detection
of active regions from solar. J. Solar Phys. 228, 43–53 (2005)

9. K. Suzuki, I. Horiba, N. Sugie, M. Nanki, Contour extraction of left ventricular cavity from
digital subtraction angiograms using a neural edge detector. Syst. Comput. Jpn., 55–69 (2003)

10. K.C. Lee, J. Ho, D. Kriegman, Acquiring linear subspaces for face recognition under variable
lighting. IEEE Trans. Pattern Anal. Mach. Intell., 27(5), 684–698 (2005)

11. L. Hua, H.D. Cheng, Ming Zhanga, A high performance edge detector based on fuzzy inference
rules. Int. J. Inf. Sci. 177(21), 4768–4784 (2007) (Elsevier, New York)

12. M. Heath, S. Sarkar, T. Sanocki, K.W. Bowyer, A robust visual method for assessing the
relative performance of edge-detection algorithms. IEEE Trans. Pattern Anal. Mach. Intell.
19(12), 1338–1359 (1997)

13. O. Mendoza, P. Melin, The fuzzy Sugeno integral as a decision operator in the recognition of
images with modular neural networks. Hybrid Intelligent Systems (Springer, Germany, 2007),
pp. 299–310

14. O. Mendoza, P. Melin, G. Licea, A new method for edge detection in image processing using
interval type-2 fuzzy logic. IEEE International Conference on Granular Computing (GRC
2007) (Silicon Valley, 2007)

15. O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2
fuzzy logic, modular neural networks and the sugeno integral. Inf. Sci. 179(13), 2078–2101
(2007) (Elsevier, New York)

16. O. Mendoza, P. Melin, G. Licea, Fuzzy inference systems type-1 and type-2 for
digital images edges detection. Eng. Lett., Int. Assoc. Eng., E.U.A., 15(1) (2007)
http://www.engineeringletters.com/issues_v15/issue_1/EL_15_1_7.pdf

17. O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic for module relevance estimation in
Sugeno integration of modular neural networks. Soft Computing for Hybrid Intelligent Systems
(Springer, Germany, 2008), pp. 115–127.

18. O. Mendoza, P. Melin, G. Licea, A hybrid approach for image recognition combining type-2
fuzzy logic, modular neural networks and the Sugeno integral. Inf. Sci. 179(3), 2078–2101
(2008) (Elsevier)

19. O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic for edges detection in digital
images. Int. J. Intell. Syst. 24(11), 1115–1134 (2009) (Wiley, New York)

20. O. Mendoza, P. Melin, G. Licea, Interval type-2 fuzzy logic and modular neural networks for
face recognition applications. Appl. Soft Comput. J. 9(4), 1377–1387 (2009)

21. O. Mendoza, P. Melin, O. Castillo, G. Licea, Type-2 fuzzy logic for improving training data
and response integration in modular neural networks for image recognition. Foundations of
Fuzzy Logic and Soft Computing (LNCS) (Springer, Germany, 2007), pp. 604–612

22. P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology for face-
recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

23. Y. Yitzhaky, E. Peli, A method for objective edge detection evaluation and detector parameter
selection. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1027–1033 (2003)



Chapter 12
Big Data Analytic via Soft Computing Paradigms

Mo Jamshidi, Barney Tannahill, Yunus Yetis and Halid Kaplan

Abstract Large sets of data have been accumulating in all aspects of our lives for
a long time. Advances in sensor technology, the Internet, social networks, wireless
communication, and inexpensive memory have all contributed to an explosion of
“Big Data.” System of Systems (SoS) integrate independently operating, nonhomo-
geneous systems to achieve a higher goal than the sum of the parts. Today’s SoS are
also contributing to the existence of unmanageable “Big Data.” Recent efforts have
developed a promising approach, called “data analytic,” which uses statistical and
computational intelligence (CI) tools such as principal component analysis (PCA),
clustering, fuzzy logic, neuro-computing, evolutionary computation, Bayesian net-
works, etc. to reduce the size of “Big Data” to a manageable size and apply these
tools to (a) extract information, (b) build a knowledge base using the derived data,
and (c) eventually develop a nonparametric model for the “Big Data.” This chapter
attempts to construct a bridge between SoS and data analytic to develop reliable
models for such systems. The first application prediction of the stock market close is
presented using a neural network paradigm. In the second application, a photovoltaic
energy forecasting problem of a micro-grid SoS will be offered here for a case study
of this modeling relation. The given input data represent the market price of the years
which are between 2012 and 2013. The real exchange rate value of the NASDAQ
stock market index is used. The results in both applications are quite promising.
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12.1 Introduction

System of Systems (SoS) are integrated, independently operating systems working
in a cooperative mode to achieve a higher performance. A detailed literature sur-
vey on definitions to applications of SoS and many applications can be found in
recent texts by Jamshidi [1, 2]. The application areas of SoS are vast indeed. They
are software systems like the Internet, cloud computing, health care, and cyber-
physical systems all the way to such hardware-dominated cases like military, energy,
transportation, etc. Data analytic and its statistical and intelligent tools including
clustering, fuzzy logic, neuro-computing, data mining, pattern recognition, principal
component analysis (PCA), regression analysis, and postprocessing, such as evolu-
tionary computations have their own applications in forecasting, marketing, politics,
and all domains of SoS. SoSs are generating “Big Data” which makes modeling of
such complex systems a challenge indeed.

A typical example of SoS is the future smart grid, destined to replace conven-
tional electric grids and their small-scale version known as a micro-grid designed
to provide electric power to a home, an office complex, or a small local commu-
nity. A micro-grid is an aggregation of multiple distributed generators (DGs) such as
renewable energy sources and conventional generators, in association with energy
storage units which work together as a power supply networked in order to provide
both electric power and thermal energy for small communities which may vary from
one common building to a smart house or even a set of complicated loads consisting
of a mixture of different structures such as buildings, factories, etc. [2]. Typically,
a micro-grid operates synchronously parallel to the main grid. However, there are
cases in which a micro-grid operates in an islanded mode, or in a disconnected state
[3]. Accurate predictions of received solar power can reduce operating costs by in-
fluencing decisions regarding buying or selling power from the main grid or utilizing
nonrenewable energy generation sources.

Another typical example is stock market prediction. Prediction of stock market
price is one of the most important issues in finance. Many researchers have presented
their ideas about how to forecast the market price in order to make gain using different
techniques, such as technical analysis and statistical analysis, with different methods
[4].

Energy systems is one example of Big Data and SoS. Another important example
is the financial markets in any region, continent, or a nation. Nowadays, artificial
neural networks (ANNs), as a data analytic tool, have been applied in order to
predict exchange stock market index prediction. ANNs are one of the data mining
techniques that are learning the capability of the human brain. Data patterns may
perform dynamics and are unpredictable because of complex financial data used.
Several research efforts have been made to improve the computational efficiency of
share values [5, 6].

ANNs have been used in stock market prediction during the decade. One of the
first projects was by Kimoto et al. [7] who had used ANN for the prediction of the
Tokyo stock exchange index. Mizuno et al. [8] applied ANN again to the Tokyo



12 Big Data Analytic via Soft Computing Paradigms 231

stock exchange to predict buying and selling signals with an overall prediction rate
of 63 %. Sexton and friends [9] concluded in 1998 that use of momentum and start
of learning at random points may solve the problems that may occur in the training
process. Phua et al. [10] applied neural network with genetic algorithm to the stock
exchange market of Singapore and predicted the market direction with an accuracy
of 81 %.

The object of this chapter is to use big data analytic approaches to predict or
forecast the behavior of two important aspects of our times—stock market prediction
and renewable energy availability. In each case, a massive amount of data is used to
achieve these goals.

The remainder of this chapter is as follows. Section 12.2 briefly describes two
such tools: PCA and ANN. Stock market prediction using ANN will be presented in
Sect. 12.3, while Sect. 12.4 describes irradiance components forecast of a PB-based
micro-grid. Section 12.5 then discusses the application and effectiveness of different
data analytic tools in the generation of models and relations that could be leveraged
to better optimize the operation of the micro-grid. Finally, Sect. 12.6 concludes the
chapter.

12.2 Brief Description of Soft Computing Tools for Data
Analytic

12.2.1 Principal Component Analysis

PCA is a scheme to identify patterns in data sets so that its similarities and differences
are highlighted. Since patterns in data can be hard to find in data of high dimensions,
PCA can help reduce the dimension of the data while bringing up the principal
meaning of the information in the data. In other words, PCA can first find the pattern
and then compress the data. PCA can work with both numerical and image data. The
following steps can summarize simple steps to perform PCA [11]:

Step 1: Get a data set
Step 2: Subtract the mean from each data value.
Step 3: Calculate the covariance matrix.
Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix.
Step 5: Choose components and form a feature vector.

The principal component of the data will be near to the eigenvector of the covariance
matrix with the largest eigenvalue.
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Fig. 12.1 Architecture of a feed-forward multilayer perceptron

12.2.2 Artificial Neural Networks

ANNs are an information processing system that was first inspired by generalizations
of mathematical of human neuron (Fig. 12.1).

Each neuron receives signals from other neurons or from outside (input layer).
The multilayer perceptron (MLP), shown in Fig. 12.1, has three layers of neurons,
where one input layer is present. Every neuron employs an activation function that
fires when total input is more than a given threshold. In this chapter, we focus on
MLP networks that are layered feed-forward networks typically trained with static
backpropagation. These networks are used for application static pattern classification
[12, 13].

One of the learning methods in MLP neural networks selects an example of train-
ing, making a forward and a backward pass. The first advantage of MLP networks
is their ease of use and approximation of any input or output map. The first disad-
vantage is that they train very slowly and require a lot of training data. It should be
said that the learning speed will dramatically decrease according to the increase of
the number of neurons and layers of the networks.

12.3 Stock Market Data Analytic

The stock prediction data analytic was divided into the next two sections.

12.3.1 Training Process

Training is the process by which the free parameters of the networks, such as optimal
weight values, are determined. Learning models, which are used for MLP, train
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Fig. 12.2 Network based on a comparison of the output and the target. (Source: Ball and Tissot
[14])

certain output nodes to respond to certain input patterns and the changes in connection
weights, due to learning, cause those same nodes to respond to more general classes
of patterns. In these models, input layer units distribute input signals to the network.
Connection weights modify the signals that pass through it. Hidden layers and output
layer contain a vector of processing elements with an activation function. Usually,
the sigmoid is used as the activation function.

Once the network weight and biases have been initialized, the network is ready
for training. During the training, the network is adjusted based on a comparison of
the output and the target (Fig. 12.2)

The training process requires a set of examples of proper network behavior and
target outputs. During training, the weights and biases of the network are iteratively
adjusted to minimize the network performance function. The most common perfor-
mance function for feed-forward networks is mean square error (MSE), which is the
average squared error between the networks outputs and the target outputs [15].

Training of the network takes place through the backpropagation algorithm (sim-
ilar to a conjugate gradient optimization approach) from output layer to the input
layer. Backpropagation is one of the important ways for the training process because
hidden units do not have training target value that can be used, so they must be
trained based on errors from previous layers. Output is the only layer which has a
target value in order to compare. Training occurs until the errors in the weights. Net-
work training continues until the norm ||.|| of the error between current and previous
set of weights of the network is less than a threshold value. MLP is the most common
type of feed-forward networks (Fig. 12.3). MLP has three types of layers: an input,
an output, and a hidden layer.

Table 12.1 shows the stock data from the 2013 NASDAQ [16]. The data include
opening, high, low, and close prices of NASDAQ and the volume of stocks for given
dates.



234 M. Jamshidi et al.

Fig. 12.3 Neural network training
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Fig. 12.4 Training data set

Fig. 12.5 Randomly divided
three sets of input and target
vectors

With these settings, the input vectors and target vectors will be randomly divided
into three sets as follows (Fig. 12.4): 70 % will be used for training and 15 % will be
used to validate the network and to stop training before overfitting.

The last 15 % will be used as a completely independent test of network
generalization (Fig. 12.5).
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Fig. 12.6 Performance curve for training

12.3.2 Experimental Results

The data set of NASDAQ daily stock price has been used for experiments [16]. There
are six parameters of opening price, high, low, volume, adjusted close, and closing
price. The inputs are used opening price, low and high during the day, volume, and
adj. (adjusted) closing price for predicting stock price (Fig. 12.10). The output is the
closing price of the day. Data are shown above in Table 12.1 and Fig. 12.11.

This observation is taken when other parameters are:

• Hidden neurons: 10
• Learning rate (alpha): 0.4
• Momentum constant (mom): 0.75
• Max epochs (epochs): 1000

Mean squared error I (MSE) is the average squared difference between outputs and
targets. Lower values are better. If the test curve had increased significantly before
the validation curve increased, it means it is possible that some overfitting might
have occurred [17]. According to the above information which explains the diagram’s
principle of operation, the result is reasonable because of the following considerations
which are the train set error, the test curve had increased before the validation curve
increased (Fig. 12.6).
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Fig. 12.7 Error histogram

Fig. 12.8 Errors for each day

Error histogram obtains additional verification of network performance. It can be
clearly seen that errors are between − 120 and + 100. Data sets are represented in
hundreds of thousands so these errors are negligible considering the error is smaller
than approximately 0.02 % of targets (Fig. 12.7 Fig. 12.8).
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One of the important issues is that making the ANN implement better relates to
input normalization. Each input variable should be preprocessed. The mean value and
average of training set are small compared to its standard deviation. The index range
is between − 1 and + 1 [18]. We are able to use a simple formula which is Index(x)=
(Index(x)−Min (Index))/ (Max (Index) – Min (Index)) [18]. The regression plot of
the training set can be seen clearly. Each of the figures corresponds to the target
from the output array. R parameters are very close to 1. This means that correlation
between the outputs and the target is very high.

Regression is used to validate the network performance. The following regression
plots display the network outputs with respect to targets for training, validation, and
test sets. For a perfect fit, the data should fall along a 45 degree line, where the
network outputs are equal to the targets. For this problem, the fit is reasonably good
for all data sets, with R values in each case of 0.99 or above (Fig. 12.9).

12.4 Photovoltaic Data Analytic

The proposed micro-grid SoS is shown in Fig. 12.12. Solar array, battery storage, di-
rect current (DC)–alternating current (AC) inverter, load, and a controller to manage
the entire system are shown in the figure. Ultimately, we want to forecast received
solar power as a model based on real-time environmental measurements to be used
in an energy management system [3, 19] to minimize operating costs.

This micro-grid represents a facility-scale cyber-physical system (CPS) or an SoS
consisting of a building with:

• A fixed (or with tracking system) solar photovoltaic (PV) system
• A load demand in the form of overall energy consumption; heating, ventilation,

and air conditioning (HVAC); and lighting, with bidirectional communications
(e.g., bidirectional inverter)

• A reconfigurable control and acquisition system (i.e., with open I/O modules,
embedded controller for communication, processing, and a user-programmable
field-programmable gate array (FPGA))

• A local, off-site, or cloud-based computing infrastructure for simula-
tion/computational analysis.

12.4.1 PV Data Description

To ensure that the PV input data for the different data analysis tools are comprehen-
sive, data from different sources were combined to form the full data set. This was
possible because of the solar research projects occurring in Golden, CO, where the
National Renewable Energy Laboratory (NREL) is conducting long-term research
and data recording to support the growing renewable energy industry.
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Fig. 12.9 Regression plot for training

Fig. 12.10 Target and estimated data of annual NASDAQ data
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Fig. 12.11 Real data of NASDAQ stock price. (Source: finance.yahoo.com)
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Fig. 12.12 A PV forecasting system as a constituent of a micro-grid SoS [19]
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Fig. 12.13 Sample sky image

The first source was the data recorded by the Solar Radiation Research Labora-
tory (SRRL), which employs over 70 instruments to measure solar conditions and
environmental parameters [20]. Also, this data set includes 180◦ images of the sky
that are used to determine current cloud conditions directly. An example of this is
shown in Fig. 12.13.

The second source of data was the SOLPOS data, made available by the Mea-
surement and Instrumentation Data Center (MIDC), which has stations throughout
North America to capture information on solar position and available solar energy
[21]. Luckily, the MIDC has a station near NREL, so their data can be used in
conjunction with the SRRL data.

The final set of data originates from the Iowa Environmental Mesonet (IEM) [22].
Their Automated Surface Observing System (ASOS) station near the Golden, CO,
site was also included to have current weather data in the set.

Data from the month of October 2012 were combined from the different sources of
data. This final set includes one sample for each minute of the month and incorporates
measured values for approximately 250 different variables at each data point. The
data set was sanitized to only include data points containing valid sensor data prior
to the analysis.
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12.4.2 Data Analytic of PV Data and Objective

In this section, the analysis steps are described, and the results from the different
techniques are compared. The goal is to use data analytic tools to generate a useful
model from the data set without needing to resort to parametric analysis and the use
of subject matter experts.

Since the micro-grid would benefit from predicted values of solar irradiance,
it was decided that the output of the data analytic should be 60-minute predicted
values of three key irradiance parameters (Global Horizontal Irradiance, GHI; Direct
Horizontal Irradiance, DHI; and Direct Normal Irradiance, DNI).

12.4.3 Input Variable Down-Selection and Data Cleanup

The input variables were down-selected from the full data set to only include cloud
levels, humidity, temperature, wind speed, and current irradiance levels. If this
exercise was conducted using “Cloud” computing, the number of variables might
not need to be down-selected; however, since this effort took place on a single PC,
the number of variables was reduced.

Next, the data set was further reduced by removing data points in which GHI,
DHI, and DNI levels were very low. The primary reason for this second step was
to reduce the amount of time and memory necessary for analysis. Figure 12.14 is a
graph containing the measurements of GHI, DHI, and DNI over 1 day in the cleaned
data set.

12.5 Nonparametric Model General Tools

After cleaning took place, the data could be fed into either of the two nonparametric
model-generating tools, the fuzzy inference system generator and backpropagation
neural network training tools included in the MATLAB Fuzzy Logic Toolbox and
the Neural Network Toolbox.

12.5.1 Nonparametric Model Generation Tools

The Fuzzy Logic Toolbox function used in this exercise, genfis3, uses fuzzy C-means
clustering to cluster values for each variable which produces fuzzy membership func-
tions for each of the variables in the input matrix and output matrix. It then determines
the rules necessary to map each of the fuzzy inputs to the outputs to best match the
training data set. These membership functions and rules can be viewed using the
MATLAB FIS GUI tools such as ruleview. When run with default parameters,
the genfis3 function ran significantly slower and performed worse than MATLAB’s
neural network fitting function.
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Fig. 12.14 Three key irradiance parameter plots for a clear day

Note that in Fig. 12.15, the differences in the observed and predicted data points
generally correspond to the presence of clouds or other anomalies that could not be
predicted an hour in advance using the variables input to the function.

12.5.2 Neural Network Fitting Tool

The second model-generating method was the MATLAB Neural Network training
tool. By default, this tool uses the Levenberg–Marquardt backpropagation method
to train the network to minimize its mean squared error performance. Results from
training one sample set are shown in Figs. 12.16–12.18.

12.5.3 Additional Preprocessing Discussion

Once the initial performance of these two tools was evaluated, it was decided that
further effort should go into including a greater number of original input variables
and including additional preprocessed parameters in the training data in an effort
to enhance the performance of the derived model. This effort took three paths, the
calculation of nonlinear input parameters, the inclusion of a greater number of input
parameters, and the reduction of input data dimension when necessary in order to
support the execution requirements of the two model generation tools.
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Fig. 12.15 Data generated using GENFIS3 based on 13 input variables

Fig. 12.16 Backpropagation performance curve
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Fig. 12.17 Post-training
network regression
performance

12.5.3.1 Nonlinear Data-Set Expansion

In an effort to derive additional useful input parameters from the existing data set,
each variable included in the data set generated several additional variables based
on nonlinear functions and past values of the variable itself. Inclusion of these pa-
rameters in the training data set greatly improved the performance of the training
tools. A subject matter expert would be useful in this step to identify useful derived
parameters such as these to add to the training data set.

12.5.3.2 Large Data Sets and PCA

Models were generated using different sets of input variables to try to assess the
impact of incorporating increasing numbers of variables in the training data set. In
general, the trained model performed better when more variables were included in
the training data set; however, as the number of variables increased, the training
execution time became excessive and out-of-memory errors occurred when the data
sets became too large.

In order to combat this issue, the dimension of the training data set was reduced
to a manageable size using PCA. PCA can be used to compress the information from
a large number of variables to a smaller data set while minimizing the information
lost during this process [10]. This can be performed directly on a data set using the
princomp function in MATLAB.

The columns of the SCORE matrix returned by the princomp function represent
the columns of the input data transformed to place the majority of the information
in the data set in the first few principal components. The information distribution
among the principal components is illustrated in Fig. 12.19. The higher eigenvalues
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Fig. 12.18 Data generated using NFTOOL based on 13 input variables and ten hidden neurons

Fig. 12.19 Principal component information graph
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Fig. 12.20 Data recovery demonstration using first 50 principal components

represent the principal components with the most information. Incorporating
principal components past 10 provides minimal additional information.

Figure 12.20 shows the quality of information recovery if transforming back to
the original basis using only information from the first 50 principal components.

In this application, PCA was primarily useful because it allowed the reduction of
very high-dimension data sets to smaller, more manageable data sets that could be
used as training inputs to the model generation tools.

12.5.4 PV Forecasting Results

In order to generate the best nonparametric model possible, different combina-
tions of data inputs to the GENFIS3 and NFTOOL were considered. Different
implementations of the options discussed above were evaluated during this analysis.

The best-performing NFTOOL-generated model utilized data from 244 original
variables, which were then expanded to 1945 variables using derivatives calculations
such as sin(.), d(.)/dt, cos(.), etc. Next, the dimension of the data was shrunk to 150
so that the training function had sufficient memory to train the network. The resulting
network was the best of all the generated models.

The best-performing GENFIS3-generated model (Figs. 12.21–12.24) evaluated
during this effort used the same input data set as mentioned in the paragraph above
with the exception that the dimension was shrunk down to 50 using PCA. It was
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Fig. 12.21 Best neural network linear regression performance

Fig. 12.22 Best neural network GHI error
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Fig. 12.23 Best neural network DHI error

Fig. 12.24 Best neural network DNI error
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Table 12.2 Performance comparison of the generated nonparametric models (GENFIS3)

Table 12.3 Performance comparison of the generated nonparametric models (NN10)

observed during this effort that the effectiveness of the GENFIS3 tool appears to be
less tolerant of high-dimension training data sets than the NFTOOL.

Tables 12.2 and 12.3 describe the performance of the models generated using these
tools. Note that these performance numbers should be compared qualitatively since
the different input parameter configurations can yield different numbers of training
data points.

A suboptimal predictor was constructed in order to show its performance relative to
that of the nonparametric models. This predictor was based on the average GHI, DHI,
and DNI values for each time bin in the data set. Table 12.4 shows the improvement
of the nonparametric models when compared to this suboptimal predictor, named
“Time Bin Mean” in Table 12.4.

During this analysis, the aspect of the scalability of the GENFIS3 and NFTOOL
tools was evaluated. The model generation time for NFTOOL was always shorter
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Table 12.4 Performance of best nonparametric to mean time bin suboptimal predictor

Fig. 12.25 Model generation
execution time relationship
with data set dimension

than GENFIS3 for the same data sets. The relationship of NFTOOL execution time
to data set length and dimension was generally linear for the test cases evaluated. The
relationship of GENFIS3 execution time to data set length was also linear; however,
its relationship between data set dimension and execution time was exponential. This
is shown in Figs. 12.25 and 12.26.
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Fig. 12.26 Model generation execution time relationship with data set length

12.6 Conclusions

Applications of ANN in stock market forecast have been documented fro quite some
time. In this section ANN is used to predict future behavior of stock market indices
such as NASDAQ in the United States. This paper presents that ANN does indeed
offer an opportunity for them to improve price in selecting stocks.

On the basis of the above applications, it is clear ,that the ANN is a very effective
tool in soft computing for determining nonparametric models for Big Data. In order
to create the prediction model, the implementation process should include different
steps like data collection, data preprocessing, classification, and model evaluation.
The experiment conducted in this paper uses a simple and efficient approach to stock
prediction using backpropagation with a feed-forward network. The accuracy of the
network recorded was 99 % in case of training with five layers, ten neurons in input
layer, and one in output layer, and the best validation performance was 1378,0411.

This model can be very beneficial for individual and corporate investors, financial
analysts, and users of financial news. They can foresee the future behavior and
movement of stock prices, take corrective actions immediately, and act properly in
their trading to gain more profit and prevent loss. In conclusion, we can say that if
we train our system with more input data sets, it generates more error-free prediction
price.

The second application was solar forecasting for a micro-grid system. That ap-
plication presented a high-level look at some of the tools available in the MATLAB
toolset that enable the user to extract information from “Big Data” sources in order
to draw useful conclusions. As described in Sect. 12.4, the specific application dis-
cussed in this chapter is the prediction of the amount of solar power generated by a
micro-grid. Section 12.4 then discusses the data that were gathered to support this
exercise. Section 12.5 discussed the steps and techniques considered while trying to
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generate the best solar irradiance prediction model. Techniques discussed included
data-set sanitation, training input parameter selection, model generation via fuzzy
C-means clustering and rule inference (GENFIS3), Neural Network training using
backpropagation (NFTOOL), preprocessing nonlinear variables to add to the train-
ing data set, and the use of PCA to reduce the dimension of the training data while
maximizing the information retained in the data set.

It was observed in the results presented in Sect. 5 that the best model predicting
solar irradiance was one utilizing the maximum number of original and preprocessed
variables, which was then reduced to a manageable dimension using PCA prior to use
in training the model. The results in this section also showed that the nonparametric
model generation methods discussed in this chapter performed significantly better
than a suboptimal predictor. Finally, the results describing the model generation times
for the two techniques showed that NFTOOL provides significantly better training
times, especially when the dimension of the data set is high.
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