Super-ballistic flow of viscous electron fluid through graphene constrictions
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Electron-electron (e-e) collisions can impact transport in a variety of surprising and sometimes
counterintuitive ways'®. Despite strong interest, experiments on the subject proved challenging
because of the simultaneous presence of different scattering mechanisms that suppress or

11, Only recently, sufficiently clean electron systems with

obscure consequences of e-e scattering
transport dominated by e-e collisions have become available, showing behavior characteristic of
highly viscous fluids'>**. Here we study electron transport through graphene constrictions and
show that their conductance below 150 K increases with increasing temperature, in stark contrast
to the metallic character of doped graphene’. Notably, the measured conductance exceeds the
maximum conductance possible for free electrons'®'’. This anomalous behavior is attributed to
collective movement of interacting electrons, which ‘shields’ individual carriers from momentum

819 The measurements allow us to identify the conductance

loss at sample boundaries
contribution arising due to electron viscosity and determine its temperature dependence. Besides
fundamental interest, our work shows that viscous effects can facilitate high-mobility transport at
elevated temperatures, a potentially useful behavior for designing graphene-based devices.

2021 sych that e-e

Graphene hosts a high quality electron system with weak phonon coupling
collisions can become the dominant scattering process at elevated temperatures, T. In addition, the
electronic structure of graphene inhibits Umklapp processes®®, which ensures that e-e scattering is
momentum conserving. These features lead to a fluid-like behavior of charge carriers, with the
momentum taking on the role of a collective variable that governs local equilibrium. Previous studies
of the electron hydrodynamics in graphene were carried out using the vicinity geometry and Hall bar
devices of a uniform width. Anomalous (negative) voltages were observed, indicating a highly
viscous flow, more viscous than that of honey**?>?. In this report, we employ a narrow constriction
geometry (Fig. 1a) which offers unique insight into the behavior of viscous electron fluids. In
particular, the hydrodynamic conductance through such constrictions becomes ‘super-ballistic’,
exceeding the fundamental upper bound allowed in the ballistic limit, which is given by the Sharvin

1819 and is attributed to a peculiar

formula®®®’. This is in agreement with theoretical predictions
behavior of viscous flows that self-organize into streams with different velocities with ‘sheaths’ of a
slow-moving fluid near the constriction edges (Fig. 1b). This cooperative behavior helps charge
carriers to circumnavigate the edges and enhances the total conductance. The phenomenon is

analogous to the transition from the Knudsen to Poiseuille regimes, well known in gas dynamics,



where the hydrodynamic pressure can rapidly drop upon increasing the gas density and the rate of
collisions between molecules®.

Our devices are made of monolayer graphene encapsulated between hexagonal boron nitride
crystals as described in Supplementary Section 1. The device design resembles a multi-terminal Hall
bar, endowed with constrictions positioned between adjacent voltage probes (Fig. 1c). Below we
refer to them as (classical) point contacts (PCs). Five such Hall bars were investigated, each having
PCs of various widths w and a reference region without a constriction. The latter allowed standard
characterization of graphene, including measurements of its longitudinal resistivity p«. All our
devices exhibited mobilities exceeding 10 m?* V™' s™ at liquid-helium T, which translates into a mean
free path exceeding 1 um with respect to momentum-non-conserving collisions (Supplementary
Section 2).
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Figure 1| Electron flow through graphene constrictions. a, Schematic of viscous flow in a PC.
b, Distribution of the electric current across the PC, normalized by the total current. In the
hydrodynamic regime (e-e scattering length l.. << w), there is little flow near the edges (blue curve).
In the ballistic regime l.. > w, the current across the aperture is uniform (black curve). c, Optical
micrograph of one of our devices. Scale bar, 5 um. The PCs vary in width from 0.1 to 1.2 um. d,
Measurements of the low-T conductance for PCs of different w (solid curves). Dashed curves:
Ballistic conductance given by eq. (1). Inset: The PC width w found as the best fit to experimental
Gpc(n) is plotted as a function of wagm. Solid line: w = wapm. €, Ry(T) for a 0.5 um constriction at
representative carrier densities. Dots: Experimental data. Horizontal lines: Ballistic resistance given
by eq. (1). Dashed curves: Theoretical prediction for our viscous electron fluid, using simplified
expressions for T dependence of e-e and electron-phonon scattering (cc T* and T, respectively).
Details are given in Supplementary Section 4.

Examples of the measured PC conductance G, at 2 K are given in Fig. 1d. In the low-T regime, all
scattering lengths exceed w and transport is ballistic, which allows G, to be described by the Sharvin
formula®®

__4e?wmn|

Gp=——— (1)
where n is the carrier concentration (positive and negative n denote electron and hole doping,
respectively). The expression is derived by summing the contributions of individual electron modes
that propagate through the constriction with each of them contributing the conductance quantum,
e’/h, towards the total conductance. The dashed curves in Fig. 1d show the PC conductance
calculated using eq. (1) and assuming the width values, wary, as determined by atomic force
microscopy. The observed agreement between the experiment and eq. (1) does not rely on any



fitting parameters. Alternatively, we could fit our experimental curves using eq. (1) and extract the
effective width w for each PC (Supplementary Section 3). The results are plotted in the inset of Fig.
1d as a function of warm. For w > 0.4 um, the agreement between w and wary is within ~5%.
Deviations become larger for our smallest constrictions, suggesting that they are effectively
narrower, possibly because of edge defects. Although we focus here on classical PCs with a large
number of transmitting modes, we note that our devices with w < 0.2 um exhibit signs of
conductance quantization, similar to those reported previously®>?°.

The central result of our study is presented in Fig. le. It shows that the resistance of graphene PCs,
Roc = 1/Gy, is @ non-monotonic function of T, first decreasing as temperature increases. This
behavior, typical for insulators, is unexpected for our metallic system. It is also in contrast to the T
dependence of p,x observed in our Hall bar devices. They exhibit p,, monotonically increasing with T,
the standard behavior in doped graphene (Supplementary Section 2). All our PCs with w < 1 um
exhibited this anomalous, insulating-like T dependence up to 100-150 K (Fig. 2a). As a consequence,
Gy in its maximum could exceed the ballistic limit value by > 15% (Fig. 1le). At higher T, R, starts
growing monotonically and follows the same trend as p.. The minima in R, (7) were more
pronounced for narrower constrictions (Fig. 2a), corroborating the importance of the geometry.
Figures 2b-c elaborate on the non-metallic behavior of graphene PCs by plotting maps of the
derivative dR,/dT as a function of both n and T. The anomalous insulating-like T dependence shows
up as the blue regions whereas the metallic behavior appears in red. For narrow constrictions, the
anomalous behavior was observed for all accessible n below 100 K, becoming most pronounced at
low densities but away from the neutrality point (Figs. 1e, 2b). For wide PCs (Fig. 2c), the non-
metallic region becomes tiny, in agreement with the expected crossover from the PC to standard
Hall bar geometry.
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Figure 2| Transition from metallic to insulating behavior in constrictions of different widths. a,
Temperature dependence for PCs with different w at a given n. The dashed line indicates that the
minima shift to higher T and become deeper for narrower constrictions. b-c, Color map dR,./dT(T,n)
for w = 0.5 and 1.2 um. The black contours mark a transition from the negative to positive T
dependence. The white stripes near zero n cover regions near the neutrality point, in which charge
disorder becomes important and transport involves thermal broadening and other interaction
effects>** beyond the scope of this work.



To describe the non-metallic behavior in our PCs, we first invoke the recent theory'® that predicts

that e-e scattering modifies eq. (1) as

Jrn| e? w? vg (2)
32hv !

vr is the Fermi velocity and e-e collisions are parameterized through the kinematic viscosity

G = Gy, + G, where G, =

v = Velee/4. The quantity G, is calculated for the Stokes flow through a PC in the extreme
hydrodynamic regime (that is, for the e-e scattering length l.. < w). The additive form of Eq. (2) is
valid®®* for all values of l../w, even close to the ballistic regime l.. > w. This implies that G should

1527 a5 oc 1/lee ¢ T°), which leads to the insulating-like

increase with T (in the first approximation
behavior. Eq. (2) also suggests that the viscous effects should be more pronounced at low n where
electron viscosity is smaller, in agreement with the experiment (Figs. 1e, 2b). The description by eq.
(2) is valid until phonon scattering kicks in at higher T. To describe both low-T and high-T regimes on
an equal footing, we extended the transport model of ref. 18 to account for acoustic-phonon
scattering using an additional term o T in the kinetic equation (Supplementary Section 4). The

results are plotted in Fig. 1e showing good qualitative agreement with the experiment.
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Figure 3| Quantifying e-e interactions in graphene. a, T dependence of the PC resistance after
subtracting the contribution from contact regions. b, Viscous conductance G, at a given n for PCs
with w ranging between 0.1 and 0.6 um. ¢, Data from (b) normalized by w?. d, G, as a function of w
for given T = 100 K and n = 10" cm™. Solid curve: Best fit to eq. (2) yields v ~ 0.16 m*s™, a value 5
orders of magnitude larger than the viscosity of water. Inset: Same data as a function of w’. e, T
dependence of the e-e scattering length found as l.. = 4v/ve (symbols) for n = 10 cm™? and w = 0.5
pum. Red curve: Microscopic calculations of l.. (Supplementary Section 6). Inset: v(T) on a log-log
scale. The data are from the main panel and color-coded accordingly. The dashed line indicates the
1/T* dependence.

For further analysis, we used our experimental data to extract G,, which in turn enabled us to
determine v and l... To this end, we first followed the standard approach in analysis of transport
data for quantum PCs, which takes into account the contact resistance Rc arising from the wide

regions leading to constrictions”*®

. Accordingly, the total resistance of PCs can be represented as
Rpc = (Gp + Gv)_l + Rc (3).
To avoid fitting parameters, we model the contact resistance as Rc = bp, Where b is a numerical
coefficient calculated by solving the Poisson equation for each specific PC geometry and py is taken
as measured from the reference regions. For our devices, b ranged between 2 and 5 (Supplementary
Section 5). Examples of the resulting AR = R, - bpx are plotted in Fig. 3a. The figure shows that, after

the rising phonon contribution is accounted for through Rc, the resistance attributable to the



narrowing itself monotonically decreases with increasing T over the entire T range, in agreement
with eq. (2). As a next step, we use the conductance found in the limit of low T as G, for each PC and
subtract this value to find the viscous conductance G,. The results are shown in Fig. 3b for several
PCs. Remarkably, if G, is normalized by w?, all the experimental data collapse onto a single curve
(Fig. 3c). This scaling is starkly different from the Sharvin dependence G, « w observed in the
ballistic regime (Fig. 1d) and, more generally, from any known behavior of electrical conductance
that always varies linearly with the sample width. However, our result is in excellent agreement with
eq. (2) that suggests G, o« w’. The w? scaling behavior is further validated in Fig. 3d, lending strong
support to our analysis.

The measured dependence G,(T) allows us to extract v(T) and l..(T) for graphene using eq. (2). The
results are shown in Fig. 3e and compared with the calculations® detailed in Supplementary
Section 6. The agreement is surprisingly good (especially taking into account that neither experiment
nor calculations use any fitting parameters) and holds for different PC devices and different carrier
densities (Supplementary Section 7). We also note that the agreement is considerably better than
the one achieved previously using measurements of v in the vicinity geometry’? and even
accommodates the fact that both experimental and theoretical curves in Fig. 3e (inset) deviate from

d®*. The deviations arise because

the 1/T> dependence expected for the normal Fermi liqui
temperatures ~50-100 K are not insignificant with respect to the Fermi energy. Furthermore, our
calculations in Fig. 3e stray slightly off the experimental curve above 100 K. In fact, this is expected
because, in the hydrodynamic regime l.. < w, the kinematic viscosity can no longer be expressed in
terms of l.. (as above) and requires a more accurate description using the two-body stress-stress
response function”. Although the strong inequality l.. < w is not reached in our experiments, the

experimental data in Fig. 3e do tend in the expected direction (Supplementary Section 8).

To conclude, graphene constrictions provide a unique insight into the impact of e-e interactions on
electron transport. The observed negative T dependence of the point contact resistance, its super-
ballistic values and the unusual w? scaling are clear indicators of the important role of e-e collisions
in graphene at elevated temperatures. Our analysis, based on the experimental measurements and
microscopic calculations, offers a guide for disentangling intriguing phenomena at the crossover
between the ballistic and hydrodynamic transport regimes.
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Supplementary Information

S1. Device fabrication

Our encapsulated-graphene devices were made following a recipe similar to that used in the
previous reports“*® First, an hBN-graphene-hBN stack was assembled using the dry peel technique’.
This involved mechanical cleavage to obtain monolayer graphene and hBN crystals less than 50 nm
thick. The selected crystallites were stacked on top of each other using a polymer membrane
attached to a micromanipulator’. The resulting heterostructure was transferred on top of an
oxidized silicon wafer (290 nm of SiO,) which served in our experiments as a back gate. After this,
the heterostructure was patterned by electron beam lithography to first define contact regions.
Reactive ion etching (RIE) was employed to selectively remove the heterostructure areas
unprotected by the lithographic mask, which resulted in trenches for depositing long electrical leads
and metal contacts to graphene (Fig. S1a). 3 nm of chromium followed by 80 nm of gold were
evaporated into the trenches. This fabrication sequence allowed us to prevent contamination of the
narrow graphene edges that were exposed by RIE, which reduced the contact resistance®.

Next, the same lithography and etching procedures were employed again to define the final
device geometry. Figure Sla shows another device used in our experiments (in addition to that
shown in Fig. 1c of the main text). The two Hall bars host four constrictions and an accompanying
reference region. To determine their width, point contacts (PCs) were imaged by atomic force
microscopy (AFM). An example of the obtained AFM images is provided in Fig. S1b, and a line trace
in Fig. S1b shows a typical height profile h(x) across the constriction. Because of much quicker
etching of hBN in comparison with graphene, a step-like feature develops in the etched slope® as
indicated by the arrow in Fig. S1b. This feature allows us to accurately determine the vertical
position of the graphene channel. To calculate its width wary, we took into account both graphene’s
vertical position (Fig. S1c) and a finite opening angle of our AFM tips (~20°).

T T T

02 03 04 05

.

X (um)
Figure S1|Graphene point contacts. a, Optical image of a device with PCs varying in width from 0.2
to 0.6 um. Scale bar: 10 um. b, Three dimensional AFM image of one of the point contacts. Scale bar:
0.2 um. ¢, Height profile along the white dashed line in (b). Red lines indicate the width wugy for this
particular constriction; graphene is buried 20 nm under the hBN layer.
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S2. Mobility and mean free path

We characterized quality of our graphene devices using their reference regions. The
longitudinal and Hall resistivities (p«w and py, respectively) were measured in the standard four-
probe geometry as a function of back gate voltage. Figure S2a shows p.(n) at different T, where
carrier density n was determined from p,,. One can see a typical behavior for high quality graphene.
At low T, p, exhibits a peak at the charge neutrality point (NP) with a sharp decrease down to 20-50
Q for |n| >0.5x10" cm™. Away from the NP, p, grows monotonically with T (inset of Fig. S2a) as
expected for phonon-limited transport in doped graphene”.

The mobility was calculated using the Drude formula, p = 1/nep, where e is the electron
charge. For typical n ~ 1x10" cm?, p exceeded 15 m*V''s™* at 5 K and was around 5 m*V's™ at room
temperature. These values translate into the elastic mean free path | = ui/e(nm)®® of about 1 to a
few microns at all T (Fig. S2b) which exceeds the dimensions of our graphene PCs and implies
ballistic transport through the constrictions with respect to momentum-non-conserving collisions. To
illustrate that such ballistic transport occurs not only inside reference regions but also for the
sections of our devices with PCs, we carried out measurements in the bend geometry>® (micrograph
in Fig. S2c). This figure shows an example of the bend resistance Rgz(n) measured from a region
located between two PCs. For n away from the NP, Rz becomes negative, which indicates direct,
ballistic transmission of charge carriers from, for example, current contact (1) into voltage contact
(4) (refs. 5,6). The negative bend resistance was found for all the regions of our devices, proving
their high homogeneity and, also, implying that | at low T was at least 4 um (our Hall bars’ width),
somewhat higher than the above estimates based on the Drude model (inset of Fig. S2b).
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Figure S2| Characterization of encapsulated graphene. a, p, as a function of n at different
temperatures. Inset: p,(7T) for a few n. b, Elastic mean free path as a function of n at high T> 100 K.
Inset: Complete T dependence for various n. d, Bend resistance Rg(n) at low T. The micrograph shows
schematics the bend geometry used in the experiment where Rg = Ry, 34 (for details see refs. 5,6).

S3. Finding the width of point contacts

In a conventional two-dimensional electron gas (e.g., in GaAlAs heterostructures), local gates
are used to deplete charge carriers in specific areas, creating insulating regions that inhibit current
pathways. This allows constrictions with smooth edges. In graphene devices, constrictions are made
by milling away the material. Accordingly, our PCs are defined by actual graphene edges. Figures
S3a-b show two more examples of AFM images of our PCs with wary = 0.2 and 0.5 um. Due to

S2



limitations of electron-beam lithography, the edge profiles are unavoidably rough on a sub-100-nm
scale. The destructive nature of RIE may also introduce microscopic cracks’ that cannot be visualized
being buried under the top hBN layer. Such edge disorder may be responsible for the lowering of the
PC conductance below the Sharvin limit’ and is expected to contribute more in our narrowest
devices (Fig. 1d of the main text).

To gain further information about our narrowest PCs, we compared their measured
conductance with that expected from the Sharvin formula. Figure S3d mirrors the presentation in
Fig. 1d of the main text, showing the PC conductance as a function of density n, for the constrictions
presented in Figs. S3a-c. The theory curves are again plotted using the width measured by AFM. In
the case of wapm = 0.2 um, G, was found to be notably lower than that expected from eq. (1) of the
main text. As discussed above, this can be attributed to the edge roughness playing a relatively more
prominent role for narrower constrictions’. However, even for the narrowest PC, its Gpc(n) still scales
linearly with the Fermi wave vector k¢, following the Sharvin formula (inset of Fig. S3d). This allows
us to find the constriction’s effective width w. We used such linear fits to determine effective widths
for all our PC devices. Figure S3e shows examples of the fitting procedure for five PCs, plotting G, as
a function of k¢. In all our devices, the dependences G,(k) were clearly linear which shows that the
effective width w is a good approximation for describing graphene constrictions. Such an approach
was also used previously for suspended graphene constrictions®.
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Figure S3| Point contact widths. a-b, AFM images of our constrictions. Grey scale: black - 0 nm;
white - 95 nm. ¢, Height profile across the narrowest constriction, similar to the presentation in
Fig. S1. d, Low-T conductance for the devices in (a) and (b). Solid curves: Experimental data. Dashed:
Sharvin expression using the width determined by AFM. Inset: G, for the 0.2 um PC is re-plotted as
a function of k. e, G, as a function of k: for several PCs measured at 2 K (electron doping). The
dashed lines are linear fits to our experimental data (solid curves). The effective width w, extracted
from the best fits to eq. (1) of the main text, is color-coded for each constriction.

S4. Modelling the ballistic-to-viscous crossover

Transport measurements reported in the main text were carried out using constrictions with
w ranging from 0.2 to 1.2 um and carrier densities of the order of 10" cm™. The observed ‘super-
ballistic’ behavior (that is, the suppression of the PC resistance below the ballistic Sharvin-Landauer
value) was found to be most prominent at temperatures below 100 K. Under these conditions the e-
e scattering mean free path l., which depends on T and n, is comparable to the constriction width
w. Therefore, modelling electron transport in our experimental system requires a method that can
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operate at the crossover between the ballistic and hydrodynamic regimes. To this end, we have used
an approach developed in ref. 9, which is based on a kinetic equation with the collision operator
describing momentum-conserving e-e collisions. In the absence of momentum-relaxing processes,
such as electron-phonon scattering, this approach predicts the conductance G, that attains a
ballistic value at zero T and increases monotonically with increasing temperature. In the present
work, to account for the non-monotonic temperature dependence of the measured resistance Ry,
first growing and then decreasing, we have extended the model of ref. 9 by adding to the kinetic
equation a momentum-relaxing term that describes electron-phonon scattering. In notations of ref.
9 our model reads
(0 + vV ) f(0,x) = —Vee (1 — P)f(0,%) — Vep (1 — Po)f (6, x). (S1)

where f(9,x) is the non-equilibrium carrier distribution at the 2D Fermi surface parameterized by the
angle 0. The rates ve. and y., describe the e-e scattering and electron-phonon scattering processes,
the quantities P and Py are projectors on the angular harmonics with m = 0, £1 and m = 0,
respectively, and 1 stands for the identity operator. As in ref. 9, this model assumes that all
harmonics of the distribution function, which are not conserved, should relax at equal rates. The
relaxation rates are equal to Yee + Yep fOr m = +2, +3,... and y.. for m = +1. The single-rate assumption
allows us to reduce the integral-differential kinetic equation to a closed-form self-consistency
relation for quasi-hydrodynamic variables (i.e., the m = 0,41 angular harmonics), providing a means
for solving it in the constriction geometry.

Incorporating the electron-phonon scattering term in the approach of ref. 9 significantly
changes the algebra but conceptually proves to be uneventful. Given the scattering rate values Y.
and 7., we first find the current profile in the constriction cross-section. This is done considering
non-slip boundary conditions, which we modelled by adding to the right-hand side of eq. (S1) a delta
function term of the form -b3(y)d(w/2 - | x|)P. f(6,x) where the operator P, projects f(0,x) on the m =
0,11 angular harmonics. The parameter b is taken to the limit b — o to model an impenetrable
boundary at the half-lines y = 0, |x|>w/2. We then derive a self-consistent relation for current
density in the constriction, solve it numerically and use the solution to determine the potential
distribution in the regions adjacent to the constriction. The potential difference, obtained for the
unit total current, yields the resistance.

As a simple model, we use the temperature dependences for the rates y.. and e, in the
following form

Yee =51_7;22X1;/_F: Yep =CTX:)—F (S2)
where ve= 10° m/s is the graphene Fermi velocity. These dependences correspond to the prediction
of the Fermi liquid theory at weak coupling and the electron-phonon scattering rate due to acoustic
phonons. The fits to the experimental dependences R, (T) shown in Fig. 1e of the main text were
obtained with the best-fit values of a =8.6x10° K?m™ and ¢ = 2x10° K, which were taken to be
identical for all densities n. To test the robustness of our model, we also explored other power-law
and polynomial temperature dependences, and found that modest deviations from the 7° and T
scaling do not impact quality of the fits and may even lead to slight improvement. The agreement
between the fits and the experimental data in Fig. 1le, impressive as it is, should therefore not be
taken as evidence for the 7> and T scaling for the rates ye. and vep. Indeed, the analysis presented in
the final part of the main text effectively uses a faster T dependence for phonon scattering and e
somewhat slower than T2, which provides a surprising good quantitative agreement with the

experimental data.
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S5. Ohmic contribution to point contact resistance

Narrow constrictions that define PCs are connected to broader regions in which current and
voltage contacts are located (see the above images of our experimental devices). In the presence of
elastic scattering, these regions are responsible for an additional Ohmic contribution Rc that
depends on details of device’s geometry. The contribution grows with increasing temperature (that
is, with increasing electron-phonon scattering) and can obscure the viscous-flow behavior, as
discussed in the main text.

To account for the contribution from the contact regions, we calculated R¢ in the limit of
diffusive transport and then subtracted the obtained value from the measured resistance R,.. To this
end, we computed R¢ = Vi,/Is6 (see Fig. S4a) by solving the following set of equations

V@) =0, Vo) (@) =0 (s3)
where J(r) is the current density, ¢(r) is the electric potential in the two-dimensional plane and
0o= ne’t/m is the Drude-like conductivity with m and e being the effective mass and the electron
charge, respectively. To solve the above differential equations, we followed the procedure used in
ref. 10. In brief, by discretizing the differential operators on a square mesh, we obtained a set of
sparse linear equations that could readily be solved. Our method involved three different staggered
meshes that sampled values of the potential and, independently, the two components of the current
density™®. This was required to ensure that the velocity component orthogonal to the boundary was
sampled, too. Finally, we used the following boundary conditions to simulate device’s edges and
contacts: (i) the current orthogonal to the edges was zero, (ii) the current was also zero through
voltage contacts, (iii) the total current through source and drain contacts was fixed, as in the
experiment.

Exploiting the linearity of the problem, we can write the Ohmic contribution as Rc = bpyy,
where b is a dimensionless function of the ratios w/W and L/W. The calculated coefficient b is
plotted in Fig. S4b as a function of w/W for the geometry used in our experiments with L/W = 1.

0.05 0.10 0.15 0.20 0.25 0.30
w/W

Figure S4] Ohmic contribution. a, Schematic of the device geometry. Electrical current / is passed
between contacts 5 and 6. Voltage drop is measured between pairs of contacts 1 and 2 or 3 and 4.
b, Coefficient b as a function of w/W for the given L/W = 1. The solid curve shows our numerical
results. The open circles correspond to the geometry of PC devices measured in this work.

$6. Microscopic calculations of electron-electron scattering

In this section, we provide details of microscopic calculations of l.. which were presented in
Fig. 3e of the main text. We have determined l.. from the imaginary part of the retarded
quasiparticle self-energy X,(k, ®) averaged over the Fermi surface'’. The conduction and valence
bands are marked with A =+ and — , respectively. For an electron-doped system, we use
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= ; f dw (a"F(w)> Sm[z, (kg, )] (S4)

F w

where k; is the Fermi wave vector and ng(w) is the Fermi distribution. Below we use Ai=1and kg=1
for the Planck and Boltzmann constants, respectively. In the spirit of the large-N approximation
(where N = 4 is the number of fermion flavors in graphene), the quasiparticle self-energy X, (k, ®) can

be calculated within the GoW approximation. For monolayer graphene'***

dZ
Im[2; (kg, w)] = fﬁ Z Im[W(q, 0 = g1 )| Far (Bk—q) [n8(@ = E4—gar)
A’
+ne(— &g )] (55)

“T1 1) are the usual Fermi and Bose distribution factors, respectively, and W(g,®)

where ngs(€) = (e
= V(q,m)/e(q,m) is the screened Coulomb interaction. The Fourier transform of the bare Coulomb
interaction, V(g,0) = Znezg(qd,qd’)/q, contains the form-factor G(qd,qd’), which encodes all the
information about the dielectric environment surrounding the graphene. It depends on the thickness
d and d’ of hBN above and below the graphene plane, as well as on the in-plane €, and out-of-plane
€, components of the dielectric tensor of hBN. The full expression for G is given, for example, in the
Supplementary Material of ref. 14. Finally, &, = Avek - W(T) is the band energy measured from the
chemical potential u(T) and &(g,w) = 1 - V(q,®)xnn(g,®) is the RPA dynamical dielectric function. Here,
(g, ®) is the density-density response function of graphene, which can be found in refs. 15-19.
Fin (Okkq) = [1 + AN cos(Okk.q)]/2 is the square of the matrix element of the density operator, with
O k-q = Ok - Ok-q being the angle between the vectors k and k —gq.
For completeness, we note that in the Fermi liquid regime* eq. (54) can be simplified to

ke /T\> [2¢
=5 (5) m(F) (s6)

where € = vik; is the Fermi energy.

S7. Sample and density dependences of e-e scattering length

In monolayer graphene, where charge carriers are massless Dirac fermions, e-e scattering is
dominated by processes that transfer a small amount of the momentum®. Such events, usually
referred to as collinear collisions, are weakly sensitive to the dielectric enviroment®’. Therefore, our
devices with different thicknesses of top and bottom hBN layers are not expected™ to exhibit
drastically different l... Indeed, Fig. S5a plots l..(T) for several PCs in two of our devices with
different d and d’. For these devices, the e-e scattering lengths calculated as described in Section 6
are indistinguishable on the scale of Fig. S5a, yielding the same curve. As for the experiment, |
found for all our PCs closely follow the same functional dependence (see Fig. S5a) and exhibit
guantitative agreement with the calculations. This substantiates the robustness of the experimental
and analytical methods used in this report.

Until now, we presented l..(T) only for fixed carrier densities. For completeness, Fig. S5b
shows the density dependence of l.. at fixed T. To find l..(n), we followed the same analytical
procedure as explained in the main text, which allowed us to extract the viscous conductance G,
and, consequently, obtain l.. without using any fitting parameters. Comparison in Fig. S5b between
our experiment and calculations again shows good agreement. Perhaps unsurprisingly, it holds best
for intermediate T around 100 K, where our PCs are sufficiently away from the purely ballistic regime
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while the electron-phonon contribution to R, remains relatively small. Let us note that, in this
experiment, l.. slowly increases with n, which is in contrast to the trend reported for the vicinity
geometry (see Ref. 12 of the main text) but in agreement with the theory that expects l.. to be
approximately proportional to n°°.

a ® B b
® Device A w=04um P B
6 3° ® Device A w=0.2um W m
. ® Device B.w=0.3 um 14 N
£ 44 fe, ® DeviceB.w~05um [ E ] L v‘/_!/:w/:/‘
= E ® DeviceB.w=06um | = ] TR 100 K
~ ‘e Theory ~ 1
2- "38'
31 1w=
UL LTTPTTTTTTY S
0 0 T T T 01 T T T
40 80 120 -2 -1 0 1 2
Temperature (K) Carrier density (10" cm™)

Figure S5|Electron-electron scattering for different devices and carrier densities. a, l.. as a function
of T measured using devices A and B with several PCs; n = 1x10"* cm™. Device A is made of graphene
encapsulated between hBN crystals off approximately equal thickness (d = d’ ~ 40 nm). In device B,
top hBN is ~20 nm whereas the bottom one ~30 nm. Orange curve: Microscopic calculations of l..(T)
for both A and B. b, l..as a function of n at different T in a constriction with w=0.5 um (solid
curves). Dashed curves: Calculations of l..(n).

S8. Different length scales for electron viscosity

Our experimental data allow us to determine the characteristic length for e-e collisions
responsible for the super-ballistic flow. As discussed above and in the main text, we find that these
lengths agree extremely well with the e-e mean free path l.., associated with the quasiparticle
lifetime Tee= lee/Ve. However, at high temperatures, deep in the hydrodynamic regime, the
quasiparticle lifetime is expected to be no longer the relevant length scale governing the viscous
electron flow. In this regime, the kinematic viscosity v is better described by the ‘viscous’ mean free
path ly, which is of the same order but not identical to l...

The kinematic viscosity v is related to |, by the standard expression v = v¢l,/4 and can be
calculated from the stress-stress linear response function x; «(q, ®) as

) 1 ~ 1
V= - (ng})m . Z ~sm [Xij,ij(olw) - EXii,jj(ol(U)] , (57)
i,j=x,y

where m=k:/v; is the effective mass for monolayer graphene. After rather lengthy calculations (see
ref. 20 for technical details), the viscosity length is found to be given by

-1 _ 2 anF((x)) ~ W)
€ﬁ_ﬁgfdw<—55—>mnh+(@¢@} (8)
where
3m |5 (kp, )]
d%q
- f (21)2 ;Sm[w(q, W = &g )| Far (Bki—q) [ne(@ — &g a7)
+ nF(_Ek—q,A’)] Sir'l2 (Hk,k—q) (59)
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In the Fermi liquid regime™? the viscosity length behaves as
2

T
5t = Nag.kp (—) : (S10)

€F
where 0e.= 2.2 is the e-e coupling constant of graphene, and the coefficient N'~0.1 has a rather

cumbersome expression, depending on microscopic details (see ref. 20).

Figure S6 compares our experimental data (same as in Fig. 3e in the main text) with
microscopic calculations for both lengths l.. and I,. As shown in the main text, the experimental
data follows I closely until about 100 K. Beyond this T, the extracted length deviates slightly
upwards from l.. and tends towards |, as expected in the extreme hydrodynamic regime l.. << w.
Proper validation of this transition from l.. to I, would require measurements at much higher T,
inaccessible for our experimental devices. Accordingly, Fig. S6 is used here only to point out
similarities and differences between our experimental data and e-e scattering length scales, whilst
better theoretical understanding is required to make any further conclusions.
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Figure S6| Different viscous length. Black symbols: Electron-electron scattering length determined
experimentally for a graphene constriction with w = 0.5 um; n = 10> cm™. Red and purple curves:
Microscopic calculations of l.. and Iy as a function of T for the given n.
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