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Abstract. The purpose of this paper is to contribute to development a gen-
eral theory of dual-complex numbers. We start by de�ne the notion of dual-
complex and their algebraic properties. In addition, we develop a simple math-
ematical method based on matrices, simplifying manipulation of dual-complex
numbers. Inspired from complex analysis, we generalize the concept of holo-
morphicity to dual-complex functions. Moreover, a general representation of
holomorphic dual-complex functions has been obtained. Finally and as con-
crete examples, some usual complex functions have been generalized to the
algebra of dual-complex numbers.

1. Introduction

Alternative de�nitions of the imaginary unit i other than i2 = �1 can give
rise to interesting and useful complex number systems. The 16th-century Italian
mathematicians G. Cardan (1501�1576) and R. Bombelli (1526�1572) are thought
to be among the �rst to utilize the complex numbers we know today by calculating
with a quantity whose square is �1: Since then, various people have modi�ed the
original de�nition of the product of complex numbers. The English geometer W.
Cli¤ord (1845�1879) and the German geometer E. Study (1862�1930) added still
another variant to the complex products, see [3, 12, 16]. The �dual�numbers arose
from the convention that "2 = 0:
The ordinary, dual number is particular member of a two-parameter family of

complex number systems often called binary number or generalized complex num-
ber. Which is two-component number of the form

z = x+ y"; (1.1)

where (x; y) 2 R2 and " is an nilpotent number i.e. "2 = 0 and " 6= 0:
Thus, the dual numbers are elements of the 2�dimensional real algebra

D = R ["] =
�
z = x+ y" j (x; y) 2 R2; "2 = 0 and " 6= 0

	
: (1.2)

This nice concept has lots of applications in many �elds of fundamental sci-
ences; such, algebraic geometry, Riemannian geometry, quantum mechanics and
astrophysics, we refer the reader to [2, 5, 14, 8, 15].
An important point to emphasize is that, what happens if components of dual

numbers becom complex numbers. This idea will make the main object of this
work.
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The purpose of this work is to contribute to the development of the concept of
dual-complex numbers and their holomorphic functions.
In the study of dual-complex functions, natural question arises whether it is

possible to extend the concept of holomorphy to dual-complex functions and how
can one extend regularly holomorphic complex functions to dual-complex variables.
We Begin by introducing dual-complex numbers and we give some of their basic

properties. We de�ne on the algebra of dual-comlex numbers DC some caracterisctic
like conjugations and their associated moduli as well as matrix representation. Also
a structure of pseudo-topology is given.
We generalize the notion of holomorphicity to dual-complex functions. To do

this, as in complex analysis. We start by study the di¤erentiability of dual-complex
functions. The notion of holomorphicity has been introduced and a general repre-
sentation of holomorphic dual-complex functions was shown. It is proved here that
many important properties of holomorphic functions of one complex variable may
be extended in the framework of dual-complex analysis.
Further, we also focus on the continuation of complex functions to the algebra

DC: We provide the basic assumptions that allow us to extend analytically holo-
morphic complex functions to the wider dual-complex algebra and we ensure that
such an extension is meaningful. As concrete examples, we generalize some usual
complex functions to dual-complex variables.

2. Dual-Complex Numbers

We introduce the concept of dual-complex numbers as follows.
A dual-complex number w is an ordered pair of complex numbers (z; t) associated

with the complex unit 1 and dual unit "; where " is an nilpotent number i.e. "2 = 0
and " 6= 0: A dual-complex number is usually denoted in the form

w = z + t": (2.1)

We denote by DC the set of dual-complex numbers de�ned as

DC =
�
w = z + t" j z; t 2 C where "2 = 0; " 6= 0 and "0 = 1

	
(2.2)

If z = x1+ix2 and t = x3+ix4; where x1; x2; x3; x4 2 R; then w can be explicitly
written

w = x1 + x2i+ x3"+ x4"i: (2.3)

We will denote by real (w) the real part of w given by

real (w) = x1: (2.4)

z and t are called the complex and dual parts, respectively, of the dual-complex
number w:
There are many ways to choose the dual unit number "; see for more details and

examples the book of W. B. V. Kandasamy and F. Smarandache [9]. As simple
example, we can take the real matrix

" =

�
0 0
1 0

�
: (2.5)

Addition and multiplication of the dual-complex numbers are de�ned by

(z1 + t1") + (z2 + t2") = (z1 + z2) + (t+ t2) "; (2.6)

(z1 + t1") : (z2 + t2") = (z1z2) + (z1t2 + z2t2) ": (2.7)
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One can verify, using (2.7), that the power of w is

wn = (z + "t)
n
= zn + nzn�1t"; n � 1: (2.8)

The division of two complex-dual numbers can be computed as

w1
w2

=
z1 + t1"

z2 + t2"

(z1 + t1") (z2 � t2")
(z2 + t2") (z2 � t2")

=
z1
z2
+
z2t1 � z1t2

z22
": (2.9)

The division w1
w2
is possible and unambiguous if Re (w2) 6= 0:

Thus, dual-complex numbers form a commutative ring with characteristic 0:
Moreover the inherited multiplication gives the dual-comlex numbers the structure
of 2�dimensional comlex Cli¤ord Algebra and 4�dimensional real Cli¤ord Algebra.
In abstract algebra terms, the dual numbers can be described as the quotient of

the polynomial ring C [X] by the ideal generated by the polynomial X2; i.e.

DC � C [X] =X2: (2.10)

The algebra DC is not a division algebra or �eld since the elements of the form
0+ t" are not invertible. All elements of this form are zero divisors. Hence, we can
de�ne the set A of zero divisors of DC; which can be called the null-plane, by

A = ft" j t 2 Cg :

Thus, DC�A is a multiplicative group.
Complex and dual conjugations play an important role both for algebraic and

geometric properties of C and D: For dual-complex numbers, there are �ve possible
conjugations. Let w = z + t" a dual-complex number. Then we de�ne the �ve
conjugations as
1. Complex conjugation.

wy1 = z + t"; (2.11)

where z represent the standard complex conjugate of the complex number z:
2. Dual conjugation.

wy2 = z � t": (2.12)

3. Coulped conjugation.

wy3 = z � t": (2.13)

4. Dual-complex conjugation. Suppose that w 2 DC�A: The dual-complex
conjuguate of w is caraterized by the relations�

wwy4 2 R;
real (w) = real

�
wy4

�
:

(2.14)

We can easily verify that

wy4 = z

�
1� t

z
"

�
: (2.15)

5. Anti-dual conjugation.

wy5 = t� z": (2.16)

The below Lemma follows.
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Proposition 1. Let w = z + "t 2 DC be a dual-complex number. Then, the
following assertions hold

w + wy1 = 2 real (z) + 2 real (t) " 2 D; (2.17)

wwy1 = jzj2 + 2Re
�
zt
�
" 2 D; (2.18)

w + wy2 = 2z 2 C; (2.19)

wwy2 = z2 2 C; (2.20)

w + wy3 = 2 real (z) + 2 Im (t) "i; (2.21)

wwy3 = jzj2 � 2 Im
�
zt
�
"i; (2.22)

zwy4 = zwy2 ; (w 2 DC�A); (2.23)

wwy4 = jzj2 2 R; (w 2 DC�A); (2.24)�
z = w � wy5";
t = wy5 + w":

(2.25)

where jzj represents the usual complex modulus of the complex number z:

The �ve kinds of conjugation all have some of the standard properties of conju-
gations, such as:

Proposition 2. Let w; w1; w2 2 DC are dual-complex numbers. Then( �
wyi
�yi = w; i = 1; :::; 4 where z 6= 0 for y4;�

wy5
�y5 = �w: (2.26)

(w1 + w2)
yi = w

yi
1 + w

yi
2 ; i = 1; 2; 3 and 5; (2.27)

(w1w2)
yi = w

yi
1 w

yi
2 ; i = 1; :::; 4 where z 6= 0 for y4: (2.28)�

1

w

�yi
=

1

wyi
; (z 6= 0) ; i = 1; :::; 4: (2.29)

Denoting now by y0 the trivial conjugation.

wy0 = w 8w 2 DC: (2.30)

The following result holds.

Proposition 3. The composition of the conjugates y0; y1; y2 and y3 gives the four
dimensional abelian Klein group:

� y0 y1 y2 y3
y0 y0 y1 y2 y3
y1 y1 y0 y3 y2
y2 y2 y3 y0 y1
y3 y3 y2 y1 y0

(2.21)

Elsewhere, we know that the product of a standard complex number with its
conjugate gives the square of the Euclidean metric in R2: The analogs of this, for
dual-complex numbers, are the following. Let w = z + "t a dual-complex number,
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then we �nd

jwj2y1 = ww
y1 = jzj2 + 2Re

�
zt
�
" 2 D; (2.32)

jwj2y2 = ww
y2 = z2 2 C; (2.33)

jwj2y3 = ww
y3 = jzj2 � 2 Im

�
zt
�
"i; (2.34)

if w 2 DC�A then jwj2y4 = ww
y4 = jzj2 2 R: (2.35)

Remarks here that if z = 0 then jwjyi = 0; i = 1; 2; 3: We also admit that if
z = 0 then jwjy4 = 0:
We can then evaluate the inverse of any dual-complex number w 2 DC � A as

follows
1

w
=
wy2

jwj2y2
=
wy4

jwj2y4
: (2.36)

It is also important to know that every dual-complex number has another rep-
resentation, using matrices.
Introducing the unit dual-complex vector E de�ned by

E =

2664
1
i
"
"i

3775 : (2.37)

Denoting by G the subset ofM4 (R) given by

G =

8>><>>:A 2M4 (R) j A =

2664
x1 x2 0 0
x2 �x1 0 0
x3 x4 x1 x2
x4 �x3 x2 �x1

3775
9>>=>>; : (2.38)

One can easily verify that G is a subring ofM4 (R) which forms a 4�dimensional
real associative and commutative Algebra.
Under the additional condition x21 + x

2
2 6= 0; G becomes a subgroup of GL (4) :

Let us now de�ne the map8>>>><>>>>:
N : DC �! G;

N (x1 + x2i+ x3"+ x4"i) =

2664
x1 x2 0 0
x2 �x1 0 0
x3 x4 x1 x2
x4 �x3 x2 �x1

3775 (2.39)

The following results give us a correspondence between the two algebra DC and
G via the map N :

Theorem 4. N is an isomorphism of rings.

From now on we denote by P the map�
P : DC �! R+;

P (w) = jwjy4 = jzj :
(2.40)

It is easy to verify that8<: P (w1 + w2) � P (w1) + P (w2) 8w1; w2 2 DC;
P (w1w2) = P (w1)P (w2) 8w1; w2 2 DC;
P (w) � 0 with P (w) = 0 i¤ w 2 A:

(2.41)
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This implies in particular�
P (�w2) = j�j P (w2) 8w1; w2 2 DC; 8� 2 C;

P (�w2) = jRe (�)j P (w2) 8w1; w2 2 DC; 8� 2 D;
(2.42)

So, P de�nes a pseudo-modulus on DC: It inducess a structure of pseudo-topology
over the algebra DC:
The following result holds.

Proposition 5. Let w 2 DC be a dual-complex number and n 2 N: Then

P (w) = jdet (N (w))j
1
2 ; (2.43)

P
�
wyi
�
= P (w) ; i = 1; :::; 4: (2.44)

P (wn) = P (w)n ; (2.45)

P
�
1

w

�
=

1

P (w) ; (w 2 DC�A): (2.46)

Thus, we can construct the dual-complex disk and dual-complex sphere of centre
w0 = z0 + t0" 2 DC and radius r > 0; respectively, as follows

D (w0; r) = fw = z + t" 2 DC j p (w � w0) < rg � Dc (z0; r)� C; (2.47)

S (w0; r) = fw = z + t" 2 DC j p (w � w0) = rg � Sc (z0; r)� C: (2.48)

where Dc (z0; r) and Sc (z0; r) are, repectively, the complex disk and complex sphere
of centre z0 and radius r > 0:
S (w0; r) can be also called the complex Galilean sphere.

De�nition 1. 1. We say that 
 is a dual-complex subset of DC if there exists a
subset O � C such that


 = O + C" � O � C: (2.49)
O is called the generator of 
:
2. We say that 
 is an open dual-complex subset of DC if the generator of 
 is

an open subset of C:
3. 
 is said to be a closed dual-complex subset of DC if his complement is an

open subset of DC:

Note that the algebra DC equipped with the previous pseudo-topology is not
Hausdor¤ space.
We discuss now some properties of dual-complex functions. We investigate the

continuity of dual-complex functions and the di¤erentiability in the dual-complex
sense, which can be also called holomorphicity, as in complex case. In the following
de�nitions, we suppose that DC is equipped with the usual topology of C2:

De�nition 2. A dual-complex function is a mapping from a subset 
 � DC to DC:
Let 
 be an open subset of DC; w0 = z0 + "t0 2 
 and f : 
 �! DC a

dual-complex function.

De�nition 3. We say that the dual-complex function f is continuous at w0 =
z0 + t0" if

lim
w!w0

f (w) = f (w0) : (2.50)

where the limit is calculated coordinate by coordinate, this means that

lim
w!w0

f (w) = lim
z!z0; t!t0

f (w) = f (w0) : (2.51)
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De�nition 4. The function f is continuous in 
 � DC if it is continuous at every
point of 
:

De�nition 5. The dual-complex function f is said to be di¤erentiable in the dual-
complex sense at w0 = z0 + t0" if the following limit exists

df

dw
(w0) = lim

z!z0; t!t0

f (w)� f (w0)
w � w0

; (2.52)

df
dw (w0) is called the derivative of f at the point w0:

If f is di¤erentiable for all points in a neighbourhood of the point w then f is
called holomorphic at w:

De�nition 6. The function f is holomorphic in 
 � DC if it is holomorphic at
every point of 
:

In the following results we generalize the Cauchy-Riemann formulas to dual-
complex functions.

Theorem 6. Let f be a dual-complex function in 
 � DC; which can be written
in terms of its complex and dual parts as

f = p+ q": (2.53)

Then, f is holomorphic in 
 � DC if and only if the derivative of f satis�es
df

dw
=
@f

@z
=
@p

@z
+
@q

@z
": (2.54)

Corollary 7. Let f be a dual-complex function in 
 � DC; which can be written
in terms of its complex and dual parts as f = p + q" and suppose that the partial
derivatives of f exist. Then,
1. f is holomorphic in 
 � DC if and only it satis�es

D (f) = 0; (2.56)

where D is the di¤erential operator

D (f) = �"@f
@z
+
@f

@t
: (2.57)

2. f is holomorphic in 
 � DC if and only if its complex and dual parts satisfy
the following generalized Cauchy-Riemann equations,8<:

@p
@z =

@q
@t ;

@p
@t = 0:

(2.58)

Furthermore, as in complex analysis, the Cauchy-Riemann equations can be also
reformulated using the partial derivative with respect to the anti-dual conjugate.
For this, we can write using the formula (2.25)�

dz = dw � dwy5";
dt = dwy5 + dw":

(2.59)

Replacing in the total di¤erential of f; we �nd

df =

�
@f

@z
+
@f

@t
"

�
dw +

�
@f

@t
� @f
@z
"

�
dwy5 : (2.60)
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This allows us to properly introduce the di¤erential operators @
@w and

@
@wy5

as8<:
@
@w =

@
@z +

@
@t";

@
@wy5

= @
@t �

@
@z ":

(2.61)

Hence, Cauchy-Riemann formulas have the particular compact form

@f

@wy5
= 0: (2.62)

Theorem 8. The function f is holomorphic in the open subset 
 � DC; (with
respect to the topology of C2), if and only if there exists a pair of complex functions
p and r; such that p 2 C2 (Pz (
)) and r 2 C1 (Pz (
)) ; where Pz is the projection
with respect to the �rst complex variable z; so that the function f has the explicite
expression

f (w) = p (z) +

�
dp

dz
t+ r (z)

�
" 8w 2 
: (2.63)

Remark 1. The formula (2.63) gives, taking into account the fact that df
dw =

@f
@z ;

df

dw
=
dp

dz
+

�
d2p

dz2
t+

dr

dz

�
": (2.64)

In particular, since p and r are holomorphic from Cauchy�s integral formula f
is analytic in 
 and we have

dmf

dwm
=
dmp

dzm
+

�
dm+1p

dzm+1
t+

dmr

dzm

�
" 8m � 1: (2.65)

In the following theorem we give two basic results concerning the continuation
of holomorphic dual-complex functions and that of holomorphic complex functions
to dual-complex numbers.

Theorem 9. 1. Let f be an holomorphic dual-complex function in an open subset

 � DC: Then, f can be holomorphically extended to the open dual-complex subset
Pz (
) + C":
2. Let f be an holomorphic complex function in an open subset O � C: Then,

there exists a unique holomorphic dual-complex function F de�ned in the open dual-
complex subset O + C" such that

F (z) = f (z) 8z 2 O: (2.66)

and we have

F (z + t") = f (z) +
df

dz
t" 8z + t" 2 O + C": (2.67)

The proof follows directly from the previous theorem.

3. Usual dual functions

We can think of applying the statement of theorem 10, which asserts that any
holomorphic complex function can be holomorphically extended to dual-complex
numbers, to build dual-complex functions similar to the usual complex functions,
obtained as their extensions.
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3.1. The dual-complex Exponential function. The complex exponential func-
tion ez de�ned for all z 2 C can be extended to the algebra DC as follows

exp (w) = ew = ez + ezt" = ez (1 + t") : (3.1)

The derivative of ew is
dew

dz
=
dez

dx
+
dez

dx
t" = ew 8z 2 DC: (3.2)

By recurrence, we �nd

dnew

dzw
= ew 8z 2 DC; 8n 2 N: (3.3)

Thus, any dual number w = z+ t" 2 DC�A has the exponential representation
w = ze

t
z ": (3.4)

Denoting by argd the complex number, called the dual argument of the dual-
complex number w;

argd w =
t

z
; w 2 DC�A: (3.5)

Some properties are collected in the followings.

Proposition 10. 1. ew1+w2 = ew1ew2 :
2. e�w = 1

ew :
3. ew 6= 0 8w 2 DC:

Proposition 11. 1. The map argd : (DC�A; :) �! (C;+) is a morphism of
groups where the kernel is given by

ker (argd) = C�: (3.6)

2.

8>>><>>>:
wy1 = zeargd(w)";
wy2 = ze�(argd w)";

wy3 = ze�argd(w)";
wy4 = ze�(argd w)":

3.2. The dual-complex Trigonometric functions. The trigonometric functions:
sine, cos, etc, have their dual-complex analogues. In fact, we can de�ne them by
the formulas

sinw = sin z + (cos z) t" 8z 2 DC; (3.7)

cosw = cos z � (sin z) t" 8z 2 DC; (3.8)

The below properties can be mostly deduced from the previous de�nition.

Proposition 12. 1. sin and cos are 2��periodic functions.
2. sin (�w) = � sinw; cos (�w) = cosw:
3. sin (w1 + w2) = sinw1 cosw2 + cosw1 sinw2:
4. cos (w1 + w2) = cosw1 cosw2 � sinw1 sinw2:
5. sin2 w + cos2 w = 1:
6. d sinw

dw = cosw:

7. d cosw
dw = � sinw:

8. sinw =
eiw � e�iw

2i
:

9. cosw =
eiw + e�iw

2
:
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3.3. The dual-complex Hyperbolic functions. The dual-complex hyperbolic
functions are de�ned by

sinhw = sinh z + (cosh z) t" 8w 2 DC; (3.9)

coshw = cosh z + (sinh z) t" 8w 2 DC; (3.10)

These are equivalent, as in the complex case, to

sinhw =
ew � e�w

2
8w 2 DC; (3.11)

coshw =
ew + e�w

2
8w 2 DC; (3.12)

The following collects some basic properties.

Proposition 13. 1. sinh (�w) = � sinhw; cosh (�w) = coshw:
2. cosh2 w � sinh2 w = 1:
3. d sinhw

dw = coshw:

4. d coshw
dw = sinhw:

5. sinh (iw) = i sinw and cosh (iw) = cosw:

3.4. The dual Logarithmic function. We de�ne the dual Logarithmic function
by the formula

logw = log z +
t

z
" = log z + (argd w) " 8w 2 DC�A: (3.13)

It is straightforward to verify that dual Logarithmic function, satis�es some
properties, given by

Proposition 14. 1. log
�
1
w

�
= � logw:

2. log (w1w2) = log (w1) + log (w2) :
3. If arg (z) 2 ]��; �] ; (principal representation), then elogw = log (ew) = w:
5. d logw

dz = 1
w :
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