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ABSTRACT

This tutorial discusses the issues and procedures for

using simulation as a tool for optimization of stochastic

complex systems that are modeled by computer

simulation. It is intended to be a tutorial rather than an

exhaustive literature search. Its emphasis is mostly on

issues that are specific to simulation optimization instead

of concentrating on the general optimization and

mathematical programming techniques, Even though a

lot of effort has been spent to provide a comprehensive

overview of the field, still there are methods and

techniques that have not been covered and valuable

works that may not have been mentioned.

1 INTRODUCTION

Computer simulation has proved to be a very powerful

tool in evaluating complex systems. These evaluations

are usually in the from of responses to “what if”

questions. In recent years the success of computer

simulation has been extended to answering “how to”

questions as well. “What if” questions demand answers

on certain performance measures for a given set of

values for the decision variables of the system. “How to”

questions, on the other hand, seek optimum values for

the decision variables of the system so that a given
response or a vector of responses are maximized or

minimized. In the past ten years a considerable amount

of effort has been expended on simulation optimization

procedures that deal with optimization of the quantitative

decision variables of a simulated system. In addition,

there seems to be an increasing need for procedures that

address optimization of the structures of the complex

systems. These are the problems where the performance

of the system depends more on operation policies of the

system than the values of the quantitative decision

variables.

Comprehensive reviews of literature on

simulation optimization has been provided by

Glynn (1986), Meketon (1987), Jacobson and Schruben

(1989) and Safizadeh (1990). In this tutorial these

citations will not all be repeated. Instead, issues that

make simulation optimization distinct from generic

optimization procedures will be addressed, various

classifications of these problems will be presented and

solution procedures suggested in the literature and

applied in practice will be explored.

2 ISSUES IN SIMULATION OPTIMIZATION

Using simulation as an optimization tool for complex

systems presents several challenges. Some of these

challenges are those involved in optimization of any

complex and highly nonlinear function. Others are more

specifically related to the special nature of the simulation

modeling. Simply stated, a simulation optimization

problem is an optimization problem where the objective

function(objective functions in case of a multi-criteria

problem), constraints, or both are responses that can

only be evaluated by computer simulation. As such,

these functions are only implicit functions of decision

parameters of the system. In addition, these functions are

often stochastic in nature as well. With these

characteristics in mind, the major issues to address when

comparing them to generic non-linear programming
problems are as follows:

-There does not exist an analytical expression of

the objective function or the constraints. This eliminates

the possibility of differentiation or exact calculation of

local gradients.

- The objective function(s) and constraints are

stochastic functions of the deterministic decision

variables. This presents a major problem in estimation of

even approximate local derivatives. Furthermore, this

works against even using complete enumeration because

based on just one observation at each point the best

decision point cannot be determined.
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- Computer simulation programs are much more

expensive to run than evaluating analytical functions.

This makes the efficiency of the optimization algorithms

more crucial.

- Most practitioners use some kind of simulation

language for modeling their systems. Optimization, on

the other hand, requires using some other kind of

programming language which differs from one

practitioner to the next. Interfacing simulation moclels

with generic optimization routines is not always a sim~ple

task. This is especially true for newer higher level user

friendly simulation languages.

We will address each of these issues in

following sections.

3 GENERAL FORMULATION

The most common formulation for optimization of

systems through simulation has been for maximization or

minimization of the expected value of the objedive

function of the problem. This, however, does not have

to be the case. Operation of a system might be

considered optimal if the risk of exceeding a certain

threshold is minimized. On other situations, one might

be interested in minimizing the dispersion of the

response rather than maximizing its expected value, In

this tutorial we limit ourselves to optimization of the

expected values.

Another pertinent issue in formulating

simulation optimization problems is the treatment of

stochastic constraints. These constraints, like the

objective functions are functions of deterministic decision

variables and are supposed to define a deterministic

feasible region. To incorporate them into an optimization

process they have to somehow be changed into

deterministic functions. Again, the expected value has

been used for this transformation by some. In practice,

however, many decision makers prefer to deal with their

constraints as the risk of violation of a particular

constraint rather than being within the expected value of

the feasible region.

Then two alternative ways of formulating the

general simulation optimization problem are:

Maximize(Minimize) f(X) = E[z(X)]

Subject to: g(x) = E[@Q] s O (3.1)

and h(X) s O

where z and r are random vectors representing several

responses of the simulation model for a given X, a p-

dimensional vector of decision variables of the system.

f and g are the unknown expected values of these vectors

that can only be estimated by noisy observations on z

and r. h is a vector of deterministic constraints on the

decision variables.

The alternative formulation is:

Maximize(Minimize) f(X) = E[z(X)]

Subject to: P{g(X)< O} >1- a (3.2)

and h(X) s O

where a is the vector of risks of violation of constraints

the decision maker is prepared to accept. This

formulation yields itself well to simulation analysis

because the constraints can easily be transformed into a

manageable form as follows:

UCL14jgj(X) <0 (3.3)

where UCL1.&j indicates the upper confidence limit

calculated for the response gj at 1- aj level. This form of

constraint can be easily used to check whether a decision

point is feasible, because one can use available means of

estimating confidence intervals for a given X.

4 CLASSES OF SIMULATION

OPTIMIZATION PROBLEMS

There are several ways simulation optimization problems

can be classifkxl. Each class can be considered as a

special case of the above general formulation. If f(X) is

a one-dimensional vector, the problem is reduced to a

single objective optimization while in its general form it

is a multiple objective problem. If elements of X are

continuous variables the problem is often easier to solve

by available stochastic search methods. If they are

discrete but still quantitative, the problem will be closer

to those addressed by integer programming techniques.

If X represents a vector of qualitative decision policies,

optimization becomes more difficult because of the lack

of available analytical tools to treat this type of

problems. In addition, for such problems there will be a

need for automatic generation of simulation models

according to a systematic process. In this tutorial, we

refer to those problems as non-parametric optimization
problemz.

In following sections we will cover available

solution procedures for various classes of these
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problems. Most of the efforts will be spent on exploring

procedures applied to single objective problems with

continuous or discrete quantitative decision variables

subject to deterministic or stochastic constraints. Several

approaches to solving multiple objective problems will

be discussed next. Finally, a short discussion on non-

parametric optimization problems will be presented.

5 SINGLE OBJECTIVE PROBLEMS

There have basically been four major approaches to

solving these problems. These are:

- Gradient based search methods

- Stochastic approximation methods

- Response surface methods

- Heuristic search methods

5.1 Gradient Based Search Methods

These methods attempt to take advantage of the vast

amount of literature available on search methods

developed for non-linear programming problems. The

major contribution of practitioners in simulation

optimization to this field has been the various methods

of efficient estimation of gradients. Two major factors in

determining the success of these methods are the

reliability and the efficiency. Reliability is important

because simulation responses are stochastic and a large

error in gradient estimation may result in a mo~ement in

an entirely wrong direction. The efficiency is a major

factor because simulation experiments are expensive and

it is desirable to estimate gradients with minimum

number of function evaluations. The gradient estimation

methods often employed in simulation optimization are

as follows:

5.1.1 Finite Difference Estimation

This is the crudest method of estimating the gradient.

Partial derivatives of f(X) in this case are estimated by:

8f/6xi=[f(x,,.., Xi+ AXi,..,XP)-f(Xl,.., XP)AXiXi

(5.1.1.1)

As a result, to estimate the gradient at each point at least

p+ 1 evaluations of the simulation model will be

required. Furthermore, to obtain a more reliable estimate

of the derivatives there may be a need for multiple

observations for each derivative. An example of applying

this method in conjunction with the Hooke and Jeeves

pattern search technique is presented by Pegden and

Gately (1977).

5.1.2 Infhitesirnal Perturbation Analysis(IPA)

Perturbation analysis, when applied properly and to

models that satisfy certain conditions estimates all

gradients of the objective function from a single

simulation experiment. In a relatively short time since its

introduction to simulation field a significant volume of

work on this topic is reported in the literature. A sample

of these works can be found in Ho (1984), Ho et al

(1983), Ho et al (1984), and Suri (1983). A complete

discussion of all issues in IPA has been published in a

recent book by Ho and Cao (1991).

The main principle behind perturbation analysis

is that if a decision parameter of a system is perturbed

by an infinitesimal amount, the sensitivity of the

response of the system to that parameter can be estimated

by tracing its pattern of propagation through the system.

This will be a function of the fraction of the

propagations that die before having a significant effect

on the response of interest. The fact that all derivatives

can be derived from the same simulation run, represents

a significant advantage to IPA in terms of the efficiency.

However, some restrictive conditions have to be satisfied

for IPA to be applicable. For instance if as a result of

perturbation of a given parameter, the sequence of events

that govern the behavior of the system changes, the

results obtained by perturbation analysis may not be

reliable. Considering the complex nature of most

simulation models this condition may not be satisfied

most of the time. Heidelburger (1986) presents a study

of deficiencies of IPA in estimating the gradients. There

are also reports that additional work done in this area in

recent years may alleviate some of the problems in its

application to simulation optimization.

One difficulty with application of IPA to simulation

optimization problems is that the modeler has to have a

thorough knowledge of the simulation model and in

some situations must have built it from scratch to be

able to add additional tracking capabilities that are
needed by IPA. Most practitioners build their simulation

models using some kind of simulation language. With

the advance of object oriented simulation methodology

and languages, it will become even more difficult to

build these additional tracking capabilities into a reusable

simulation model.

5.1.3 Frequency Domain Analysis

Frequency domain analysis in estimating the sensitivity

and gradients of the responses of simulation models was

suggested by Schruben and Cogliano (1981). Additional

work on the subject has been reported by Jacobson

(1988) and Jacobson and Schruben (1988). The gradients

are estimated by analyzing the power spectrum of the

simulation output function which is affected by inducing

specific sinusoidal oscillations to the input parameters. In
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a recent work, Jacobson and Schruben (1991) have used

this in applying the Newton’s method to simulation

optimization. The frequency domain analysis suffers

from the same difficulty as IPA because of the

complexity of incorporating it with independently built

simulation models.

5.1.4 Likelihood Ratio Estimators
Glynn (1987) presents an overview of

Likelihood Ratio Estimators and their potential use in

simulation optimization. He provides two algorithms by

which the gradient of a simulation response function

with respect to its parameters can be estimated.

Rubenstein (1989) suggests a variation of this metlhod

and shows how it can be used in estimation of Hessians

and higher level gradients to be incorporated in the

Newton’s method.

Once the method of estimating the gradients is

decided upon, one of the available search techniques can

be employed to search for the optimum. For a recent

work using Quasi-Newton’s method refer to Safizadeh

(1992).

5.2 Stochastic Approximation Methods (SAM)

Stochastic approximation methods refer to a family of

recursive procedures that approach to the minimum or

maximum of the theoretical regression function clf a

stochastic response surface using noisy observations

made on the function. These are based on the original

work by Robbins and Monro (1951) and Kiefer and

Wolfowitz (1952). The original recursive formula is

given for a single variable function and is stated as:

Xn+l =Xn+ (~/2cJ[f(xn+ cJ-f(&-cJ] (5.2.1)

where ~ and c. are two series of real numbers that

satisfy the following conditions:

Z%< =, Li~_(c~ =0, and Li~_(~/c~2 < m (5.2.2)

It has been proven that as n approaches infinity &

approaches to a solution such that the theoretical

regression function of the stochastic response is

maximized or minimized. This proof has been extended

to multi-dimensional decision variables as well.

A neat characteristic of the stochastic

approximation method when applied to simulation
optimization is that the optimum of the expected value of

the response could be reached using noisy observations.

The difficulty is that a large number of iterations of the

recursive formula will be required to obtain the

optimum. Besides, for multi-dimensional decision

vectors, p+ 1 observations will be needed for each

iteration. Glynn (1986) has provided estimates of speed

of convergence for some variations of this method. The

other difficult y with these methods is the incorporation

of the constraints into the optimization.

An earlier work in application of stochastic

approximation method to simulation optimization is

reported by Azadivar and Talavage (1980). In this work

an automatic optimum seeking algorithm has been

developed that could be interfaced with any

independently built simulation model. In this algorithm

the decision variables can be constrained by a set of

linear deterministic constraints.

5.3 Response Surface Methodology (RSM)

Response surface methodology is the procedure of fitting

a series of regression models to the responses of the

simulation model evaluated at several points and trying

to optimize the resulting regression function. The process

usually starts with first order regression timction and

after reaching the vicinity of the optimum, higher degree

regression functions are utilized. Among the earlier

works in application of RSM to simulation optimization

are those of Biles (1974) and Smith (1976). Additional

work has been reported by Daugherty and Turnquist

(1980), and Wilson (1987). Smith developed an

automatic optimum seeking program based on RSM that

could be interfaced with independently built simulation

models. This program was developed for both

constrained and unconstrained problems. Compared to

many gradient based methods, RSM is a relatively

efficient method of simulation optimization in terms of

the number of simulation experiments needed. However,

Azadivar and Talavage (1980) show that for complex

functions with sharp ridges and flat valleys it does not

provide good answers.

5.4 Heuristic Methods

There are two heuristic methods that have shown

promise in application of simulation optimization. These

are Box’s (1965) Complex Search method and Simulated

Annealing.

5.4.1 Complex Search

Complex search is an extension of Nelder and

Mead’s (1965) Simplex search that has been modified for

constrained problems. The search starts with evaluation
of points in a simplex consisting of p + 1 vertices in the

feasible region. It proceeds by continuously dropping the

worst points from among the points in the simplex and

adding new points determined by the reflection of this
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point through the centroid of the remaining vertices. The

major issue in applying this procedure to simulation

models is the determination of the worst point. Since the

responses are stochastic, an apparently worst point may

actually be one of the better points and dropping it may

take the search away from the optimum region.

Azadivar and Lee (1988) developed a program

based on Complex Search that automatically applies this

process to any given simulation model. The decision

variables of these models can be constrained by

deterministic as well as stochastic constraints that maybe

responses of the same or other simulation models. In

order to avoid making a wrong decision regarding the

worst point the values of the responses at vertices are

compared statistically. If the result of the multiple

comparison is conclusive and shows that one point is

significantly worse than the others it is dropped.

Otherwise additional simulation runs are made to reduce

the variance and the comparison is repeated.

5.4.2 Simulated Annealing

Simulated annealing is a relatively new method that

could be utilized for simulation optimization. A

description of this procedure is presented by Eglese

(1990). Simulated annealing is a gradient search method

that attempts to achieve a global optimum. In order not

to be trapped in a locally optimum region, this procedure

sometimes accepts movements in directions other that

steepest ascend or descend. The acceptance of an uphill

rather that a downhill direction is controlled by a

sequence of random variables with a controlled

probability.

6 MULTI-CRITERIA OPTIMIZATION

In addition to the common difficulties with all other

multi-criteria optimization problems, multi-criteria

simulation optimization possesses its own complexities

which are mostly due to the stochastic nature of the

response functions. Most of the work done in this area

are slight modifications of the techniques used in
operations research for generic multi-objective

optimization. Some of these approaches are:

- Using one of the responses as the primary

response to be optimized subject to certain levels of

achievement on the other objective functions. Biles

(1975, 1977) uses this approach in conjunction with a

version of Box’s complex method and alternatively with

a variation of gradient and gradient projection method.

- Variations of goal programming approach as

those reported by Biles and Swain (1980), Clayton et al

(1982), and Rees et al (1985).

- Multi-attribute value function methods such as

the one used by Mollaghasemi et al (1991) and

Mollaghasemi and Evans (1992).

Among the procedures that have been developed

specifically for simulation optimization Teleb and

Azadivar (1992) use the stochastic nature of the

responses to the advantage of optimization. They use the

Complex search method but suggest an alternative way

of comparing the responses at vertices. For each point in

the complex they calculate a probability that the response

vector belongs to the random vector representing the best

value for all objective functions. The point with the

lowest probability is dropped and its reflection with

respect to the centroid of the rest of the points is added

to the simplex.

7. NON-PARAMETRIC OPTIMIZATION

Many industrial, service, and other complex systems that

are modeled by computer simulation need to be

optimized in terms of their structural designs and

operational policies. Mathematical programming
techniques are not usually applicable in these situations.

Examples of these systems are scheduling policies,

layout problems and part routing policies. In order to

address these problems, each function evaluation requires

a new configuration of the simulation model.

Furthermore, since the decision variables are not

quantitative, regular hill climbing, infinitesimal

perturbation analysis, and stochastic approximation
methods are not quite applicable. To deal with these

problems an automatic model generation and a new

optimization procedure has to be developed.

Since this is a new area of attention not much

work has been reported in the literature. An example of

this approach is the work by Prakash and Shamon

(1989). We believe this is a very important topic for the

fiture of the simulation optimization. Developments in

this area will provide the real answer to “how to”

questions.

8 CONCLUSIONS AND RECOMMENDATIONS

The choice of the procedure to employ in simulation

optimization depends on the analyst and the problem to
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be solved, However we believe the modeler is often not
. .

a good mathematlclm ~d the mathematician is not
necessarily a good simulation modeler. When it colmes

time to model a complex system a team of experts will

work on developing a valid simulation model. These

models are usually rather complex and do not yield

themselves to the type of tracking needed in perturbation

analysis and frequency domain analysis. Untill a

significant progress is made in these areas, practitioners

will treat their simulation model as a black ‘box

demanding instruction from the optimization routines

should be such that they can directly interface with

these black boxes and operate on them in an input output

mode not putting too much demand on the modelers to

modi~ them for each iteration.
We recommend, parallel to additional efforts

spent on advancing theoretical concepts such as IPA and

frequency domain analysis, researchers work on making

simulation optimization procedures more suitable tct be

interfaced with independently built models. We believe

intelligent frameworks to perform these interfaces ‘will

make this task more feasible. task.
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