Dynamic Control

Jae Eisenmann CSE 888.x14 Au07

Topics to be Discussed:

- What is Dynamic Control?
- Previous Work in Dynamic Control
- Timing and Tension for Dynamic Characters
- Multiobjective Control with Frictional Contacts

- Dynamically controlled characters:
 - Under the influence of forces in their environment
 - Must not only passively react but actively respond to these forces
 - Central Question: How do we combine interactive controllers with physicallybased controllers?
 - Intuitive user interface
 - Natural resulting motion

- Forces from the Character's Environment:
 - Gravity
 - Friction
 - Wind/Current
 - Perturbations

- Response to Environmental Forces:
 - Ragdoll Physics (passive)
 - Actuation of Joint Torques (active)

- Controllers:
 - Tracking mimicking mocap data
 - IK end effector key frames
 - FK preprogrammed joint angles
 - Behavioral planning/objectives
 - Physics rigid body dynamics
 - Various combinations of the above
- Common Problem:

Controller reuse is difficult when moving from action to action and from model to model

Topics to be Discussed:

- What is Dynamic Control?
- Previous Work in Dynamic Control
- Timing and Tension for Dynamic Characters
- Multiobjective Control with Frictional Contacts

Previous Work in Dynamic Control

- Human Athletic Animation
 (J.K. Hodgins and W.L. Wooten)
 - proportional derivative controllers
 - Running
 - Bicycling
 - Vaulting
 - Diving
 - Sub-real-time performance

Previous Work in Dynamic Control

- Dynamic Legged Locomotion (M.H. Raibert and J.K. Hodgins)
 - spring-dampers compute torques
 - requires time-intensive tuning for each new model

Previous Work in Dynamic Control

Motion Capture-Driven Simulations that Hit and React

(V.B. Zordan and J.K. Hodgins)

- Reacts to collisions by changing stiffness/damping terms
- Trajectory tracking to follow mocap data

Topics to be Discussed:

- What is Dynamic Control?
- Previous Work in Dynamic Control
- Timing and Tension for Dynamic Characters
- Multiobjective Control with Frictional Contacts

Timing and Tension for Dynamic Characters

- Eurographics/ACM SIGGRAPH SCA 2007
- UCLA Department of Computer Science
- Authors:
 - Brian Allen
 - Derek Chu
 - Ari Shapiro
 - Petros Faloutsos

Timing and Tension for Dynamic Characters

- Overview
 - Method
 - Physical Interpolation of Key-Frames
 - Applications
 - Results
 - Evaluation

Method

- How can we provide natural-looking motion while honoring time constraints and providing realistic response to perturbations?
- Use traditional proportional-derivative (PD) feedback controllers to interpolate between keyframes:

$$\gamma_k = (\hat{\theta}_k, \hat{\omega}_k, \hat{t}_k)$$

Method

- Compute torque at each joint using knowledge of precomputed net torque at parent joint
- Magnitude of control torque around a joint at each time step: $\tau = k_s(\hat{\theta} \theta) + k_d(\hat{\omega} \omega)$
- The PD parameters (k_s & k_d) are continuously altered in order to respond to changes in character state as well as external perturbations
- These parameters are found analytically
- Significant improvement over hand-tuning and heuristic methods
- Tension input is specified by the number of seconds the character should take to return to the target trajectory after perturbation

Physical Interpolation of Key Frames

Analytic equations used to find torques at each time step:

$$m_i = \mathbf{s}_i \cdot \mathbf{D}_i^{i..n} \mathbf{s}_i + M_{i..n} \left\| (\mathbf{c}_i^{i..n} - \mathbf{d}_i) \times \mathbf{s}_i \right\|^2$$

• Where:

cinal combined center of mass (vector) combined mass of link i and all its children (scalar) vector from link's local coordinate frame to joint joint's axis (unit vector) composite inertia tensor of ith joint in link local coordinates

$$\mathbf{a}_i = \sum_{j=0}^{i-1} \frac{\mathbf{\tau}_j}{m_j} \mathbf{G}_j^{\mathbf{w}} \mathbf{s}_j$$

Where:

total angular acceleration at joint i in world coordinates

computed scalar torque around jth joint

Transformation Matrix from the jth link local coordinates to world coordinates

 m_j moment of composite inertia

Physical Interpolation of Key Frames

Final analytic equation used to find torques at each time step:

$$\tau_i = \frac{m_i}{\lambda^2}(\hat{\mathbf{e}_i} - \mathbf{e}_i) + 2\frac{m_i}{\lambda}(\hat{\mathbf{e}_i} - \mathbf{e}_i) + \mathbf{a}_i \cdot (\mathbf{G}_j^w \mathbf{s}_i)$$

Where:

total angular acceleration at joint i in world coordinates

computed scalar torque around jth joint

Transformation Matrix from the jth link local coordinates to world coordinates

moment of composite inertia


 \hat{t} : $\lambda = \hat{t}/n$ the time constant used to ensure that target is reached in time \hat{t}

e desired joint position

û desired joint velocity

current joint position

current joint velocity

Applications

- Keyframe Animation input current pose and an array of target keyframes
- Pose Control (aka keyframe interpolation with keys defined as repeatable poses)
- Tracking Motion Capture extract keyframe information from recorded motion data

Results

- Performing timed actions in the presence of perturbations
 - Catching
 - YMCA
 - Conducting
- Comparison with hand-tuned PD controller

Evaluation

- Timing constraints are achieved
- Algorithm runs in O(n) time
- Resulting motion does not respond very naturally to perturbations – Instead response is controlled by time input from user
- This is only an incremental improvement from the Zordan and Hodgins paper

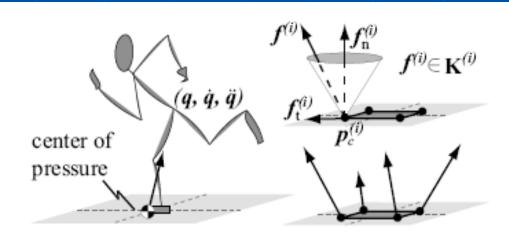
Topics to be Discussed:

- What is Dynamic Control?
- Previous Work in Dynamic Control
- Timing and Tension for Dynamic Characters
- Multiobjective Control with Frictional Contacts

Multiobjective Control with Frictional Contacts

- Eurographics/ACM SIGGRAPH SCA 2007
- MIT Computer Science & Artificial Intelligence Laboratory
- Authors:
 - Yeuhi Abe
 - Marco da Silva
 - Jovan Popovic'

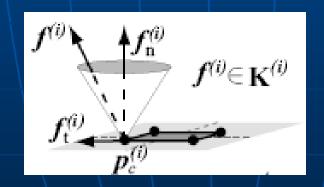
Multiobjective Control with Frictional Contacts


- Overview:
 - Contact Dynamics
 - Multiobjective Control
 - Practical Considerations
 - Results
 - Evaluation

- Contact Mechanics
 - For the case of sustained contact, we can exploit the linear relationship between joint torques, reaction forces, & joint accelerations

Contact Mechanics

Figure 2: Contact dynamics expresses the relationship between the motion $(\mathbf{q}, \dot{\mathbf{q}}, \ddot{\mathbf{q}})$ of an articulated body, its internal torques, and external forces. We model the contact between two surfaces with a set of point contacts $\mathbf{p}_c^{(1)} \dots \mathbf{p}_c^{(m)}$ and the matching contact forces $\mathbf{f}^{(1)} \dots \mathbf{f}^{(m)}$. Each contact force is restricted by a convex cone $\mathbf{K}^{(i)}$ according to the standard Coulomb's model of friction.



- Contact Mechanics: Constructing the Jacobian G⁽ⁱ⁾
 - Non-slipping contacts with environment restrict the relative velocity of each contact point p_c⁽ⁱ⁾ to zero
 - Expressing this condition in terms of joint velocities and using the Jacobian G⁽ⁱ⁾ to compute body velocity at point of contact,

we get:

$$\mathbf{G}^{(i)} \dot{q} = \dot{p}_{c}^{(i)} = 0.$$

- Contact Mechanics: Constructing the Friction Cone K⁽ⁱ⁾
 - Coulomb's friction model limits the tangential component of contact force: ||f_t⁽ⁱ⁾|| ≤ μf_n⁽ⁱ⁾|
 - We gather these limits into the friction cone which limits the direction and magnitude of the contact force: $f^{(i)} \in K^{(i)} = \{x \mid ||x_t|| \le \mu x_n\}$

- Contact Mechanics
 - A linear map G^Tf determines the total joint torque by collecting all the joint forces plus the Jacobian matrices into one vector f and one matrix G

- Active Body Dynamics
 - An active body propels itself using joint torques
 - Joint torques only directly control internal joints, not global position and orientation
 - Thus global position and orientation are unactuated degrees of freedom

- Active Body Dynamics
 - This separation yields two sets of motion equations:

$$\begin{aligned} \mathbf{M}_1(q)\ddot{q} + n_1(q,\dot{q}) + \mathbf{G}_1^\top(q)f &= \mathbf{u} \\ \mathbf{M}_2(q)\ddot{q} + n_2(q,\dot{q}) + \mathbf{G}_2^\top(q)f &= \mathbf{0}. \end{aligned}$$

- First two terms: inertial & gravitational
- Third term: determines total joint torque
- u represents the torques
- Manipulation of f is how we accomplish specific objectives (but remember: it is restricted by K)

- Optimization
 - Given:
 - Current Pose
 - Current Velocity
 - Compute:
 - Joint Torques
 - Joint Accelerations
 - Contact Forces
 - Maximize:
 performance of
 objectives (g⁽¹⁾...g^(L))

$$\min_{\boldsymbol{a},f,u} \quad \{g^{(1)},\dots,g^{(\ell)}\}$$
 subject to
$$\boldsymbol{M}\boldsymbol{a}+\boldsymbol{n}+\boldsymbol{G}^{\top}\boldsymbol{f}=\begin{bmatrix}\mathbf{I}\\\mathbf{0}\end{bmatrix}\boldsymbol{u}$$

$$\boldsymbol{f}\in\mathrm{K},\quad\boldsymbol{u}\in\mathrm{L}$$

$$\boldsymbol{G}\boldsymbol{a}+\dot{\boldsymbol{G}}\dot{\boldsymbol{q}}=\boldsymbol{0}$$

Optimization

 Reduces to linear constraint on vector unknowns b/c:

M, n, & G are constant for current pose and velocity

- Contact forces and control torques are limited by K and L respectively
- Last equation ensures noslip condition

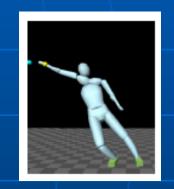
$$\min_{a,f,u} \quad \{g^{(1)}, \dots, g^{(\ell)}\}$$
subject to
$$\mathbf{M}a + \mathbf{n} + \mathbf{G}^{\top} f = \begin{bmatrix} \mathbf{I} \\ \mathbf{0} \end{bmatrix} u$$

$$f \in \mathbf{K}, \quad u \in \mathbf{L}$$

$$\mathbf{G}a + \dot{\mathbf{G}}\dot{q} = \mathbf{0}$$

- Quadratic Program
 - Requires either strict priorities for objectives or a combined weighted-sum objective
 - Objectives are of the form:

$$g^{(i)} = \left\| \ddot{x}^{(i)} - d^{(i)} \right\| = \left\| \mathbf{J}^{(i)} a + \dot{\mathbf{J}}^{(i)} \dot{q} - d^{(i)} \right\|$$


Where J(i) is the Jacobian such that:

$$\dot{x}^{(i)} = \mathbf{J}^{(i)}\dot{q}$$


 Example – when tracking recorded motion trajectories, desired acceleration (d) is:

$$d = k_s \left(m(t) - x \right) + 2\sqrt{k_s} \left(\dot{m}(t) - \dot{x} \right) + \ddot{m}(t)$$

- Control Trade-offs
 - Strict prioritization does not work well in practice because balance tasks usually interfere with other tasks (i.e. tracking recorded motions)

 The weighted-sum objective approach is a compromise and thus allows more flexibility

Practical Considerations

- Stabilizing Contacts
 - Problem: contacts will break, either by numerical errors or by external disturbances
 - Controller must adapt to these cases
 - Add a minimum threshold to the friction cone
 (K)
 - Conservative estimation of contact points within contact region to prevent tangential slipping
 - In case of contact breakage from external disturbances, either collapse friction cone to encourage immediate recovery or remove contact point and add a new motion objective for recovery

Practical Considerations

- Maintaining Balance
 - Center of Mass (COM) must be in a generally upright, centered position in order for a character to maintain balance
 - If COM moves out of reasonable position, character may never recover due to underactuation
 - Return trajectory feasibility is given by:

$$M_2(q)\ddot{q} + n_2(q,\dot{q}) + G_2^{\top}(q)f = 0$$

 Since this cannot be solved in linear time, a heuristic is used to create another objective that will move the COM towards some point above the mid-point of the two footprints (in the case of a humanoid character):

$$d = k_s (x_d - x) - k_d \dot{x}$$

Where x_d is desired position, k_d is a constant, and k_d is proportional to:

$$1/\sqrt{||x_d - x||}$$

Results

- Implementation Details
 - Models created manually
 - Inertial properties computed from volume of the limbs and standard mass distributions
 - Forward dynamics with frictional contacts were computed with Open Dynamics Engine
 - Quadratic Programming problems solved with MOSEK.

Results

- Sobriety (end effector)
- Pelted (motion tracking)
- Platform (single pose)
- Alien (different model)
- Wall (hand contact)
- Mishap (end effector)

Evaluation

- Intuitive use and artistic direction
 - Motion tracking
 - End effector objectives
- Works well even in complex frictional contact configurations
 - Hand on wall
 - Uneven footing
- Friction cones prevent foot-slip so target character need not match proportions of recorded postures
- Weighted-sum multiobjective formulation allows for natural corrective motion
- Counter-intuitive recoveries occur naturally (i.e. lunging in the direction of the fall to maintain balance)
- Objectives are independent of mass distribution, model geometry, and contact dynamics
- Real-time control
- Controller only works for "standing" poses

In Conclusion...

- Timing and Tension for Dynamic Characters
 - Only incremental advancement
 - Resulting motion not very convincing
- Multiobjective Control with Frictional Contacts
 - Very convincing resulting motion
 - Controller easily adapts to many different models and environments