
Chapter 3

Rings

Rings are additive abelian groups with a second operation called multiplication. The
connection between the two operations is provided by the distributive law. Assuming
the results of Chapter 2, this chapter flows smoothly. This is because ideals are also
normal subgroups and ring homomorphisms are also group homomorphisms. We do
not show that the polynomial ring F [x] is a unique factorization domain, although
with the material at hand, it would be easy to do. Also there is no mention of prime
or maximal ideals, because these concepts are unnecessary for our development of
linear algebra. These concepts are developed in the Appendix. A section on Boolean
rings is included because of their importance in logic and computer science.

Suppose R is an additive abelian group, R 6= 0
¯
, and R has a second binary

operation (i.e., map from R × R to R) which is denoted by multiplication. Consider
the following properties.

1) If a, b, c ∈ R, (a · b) · c = a · (b · c). (The associative property
of multiplication.)

2) If a, b, c ∈ R, a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a).
(The distributive law, which connects addition and
multiplication.)

3) R has a multiplicative identity, i.e., there is an element
1
¯

= 1
¯R ∈ R such that if a ∈ R, a · 1

¯
= 1

¯
· a = a.

4) If a, b ∈ R, a · b = b · a. (The commutative property for
multiplication.)

Definition If 1), 2), and 3) are satisfied, R is said to be a ring. If in addition 4)
is satisfied, R is said to be a commutative ring.

Examples The basic commutative rings in mathematics are the integers Z, the
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rational numbers Q, the real numbers R, and the complex numbers C. It will be shown
later that Zn, the integers mod n, has a natural multiplication under which it is a
commutative ring. Also if R is any commutative ring, we will define R[x1, x2, . . . , xn],
a polynomical ring in n variables. Now suppose R is any ring, n ≥ 1, and Rn is the
collection of all n×n matrices over R. In the next chapter, operations of addition and
multiplication of matrices will be defined. Under these operations, Rn is a ring. This
is a basic example of a non-commutative ring. If n > 1, Rn is never commutative,
even if R is commutative.

The next two theorems show that ring multiplication behaves as you would wish
it to. They should be worked as exercises.

Theorem Suppose R is a ring and a, b ∈ R.

1) a · 0
¯

= 0
¯
· a = 0

¯
. Since R 6= 0

¯
, it follows that 1

¯
6= 0

¯
.

2) (−a) · b = a · (−b) = −(a · b).

Recall that, since R is an additive abelian group, it has a scalar multiplication
over Z (page 20). This scalar multiplication can be written on the right or left, i.e.,
na = an, and the next theorem shows it relates nicely to the ring multiplication.

Theorem Suppose a, b ∈ R and n, m ∈ Z.

1) (na) · (mb) = (nm)(a · b). (This follows from the distributive
law and the previous theorem.)

2) Let n
¯

= n1
¯
. For example, 2

¯
= 1

¯
+ 1

¯
. Then na = n

¯
· a, that is, scalar

multiplication by n is the same as ring multiplication by n
¯
.

Of course, n
¯

may be 0
¯

even though n 6= 0.

Units

Definition An element a of a ring R is a unit provided ∃ an element a−1 ∈ R
with a · a−1 = a−1 · a = 1

¯
.

Theorem 0
¯

can never be a unit. 1
¯

is always a unit. If a is a unit, a−1 is also a
unit with (a−1)−1 = a. The product of units is a unit with (a · b)−1 = b−1 · a−1. More
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generally, if a1, a2, ..., an are units, then their product is a unit with (a1 ·a2 · · ·an)
−1 =

a−1
n · a−1

n−1 · · · a
−1
1 . The set of all units of R forms a multiplicative group denoted by

R∗. Finally if a is a unit, (−a) is a unit and (−a)−1 = −(a−1).

In order for a to be a unit, it must have a two-sided inverse. It suffices to require
a left inverse and a right inverse, as shown in the next theorem.

Theorem Suppose a ∈ R and ∃ elements b and c with b · a = a · c = 1
¯
. Then

b = c and so a is a unit with a−1 = b = c.

Proof b = b · 1
¯

= b · (a · c) = (b · a) · c = 1
¯
· c = c.

Corollary Inverses are unique.

Domains and Fields In order to define these two types of rings, we first consider
the concept of zero divisor.

Definition Suppose R is a commutative ring. An element a ∈ R is called a zero

divisor provided it is non-zero and ∃ a non-zero element b with a · b = 0
¯
. Note that

if a is a unit, it cannot be a zero divisor.

Theorem Suppose R is a commutative ring and a ∈ (R− 0
¯
) is not a zero divisor.

Then (a · b = a · c) ⇒ b = c. In other words, multiplication by a is an injective map
from R to R. It is surjective iff a is a unit.

Definition A domain (or integral domain) is a commutative ring such that, if
a 6= 0

¯
, a is not a zero divisor. A field is a commutative ring such that, if a 6= 0

¯
, a is

a unit. In other words, R is a field if it is commutative and its non-zero elements
form a group under multiplication.

Theorem A field is a domain. A finite domain is a field.

Proof A field is a domain because a unit cannot be a zero divisor. Suppose R is
a finite domain and a 6= 0

¯
. Then f : R → R defined by f(b) = a · b is injective and,

by the pigeonhole principle, f is surjective. Thus a is a unit and so R is a field.
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Exercise Let C be the additive abelian group R2. Define multiplication by
(a, b) · (c, d) = (ac − bd, ad + bc). Show C is a commutative ring which is a field.
Note that 1

¯
= (1, 0) and if i = (0, 1), then i2 = −1

¯
.

Examples Z is a domain. Q, R, and C are fields.

The Integers Mod n

The concept of integers mod n is fundamental in mathematics. It leads to a neat
little theory, as seen by the theorems below. However, the basic theory cannot be
completed until the product of rings is defined. (See the Chinese Remainder Theorem
on page 50.) We know from page 27 that Zn is an additive abelian group.

Theorem Suppose n > 1. Define a multiplication on Zn by [a] · [b] = [ab]. This
is a well defined binary operation which makes Zn into a commutative ring.

Proof Since [a + kn] · [b + ln] = [ab + n(al + bk + kln)] = [ab], the multiplication
is well-defined. The ring axioms are easily verified.

Theorem Suppose n > 1 and a ∈ Z. Then the following are equivalent.

1) [a] is a generator of the additive group Zn.

2) (a, n) = 1.

3) [a] is a unit of the ring Zn.

Proof We already know from page 27 that 1) and 2) are equivalent. Recall that
if b is an integer, [a]b = [a] · [b] = [ab]. Thus 1) and 3) are equivalent, because each
says ∃ an integer b with [a]b = [1].

Corollary If n > 1, the following are equivalent.

1) Zn is a domain.

2) Zn is a field.

3) n is a prime.

Proof We already know 1) and 2) are equivalent, because Zn is finite. Suppose
3) is true. Then by the previous theorem, each of [1], [2],...,[n − 1] is a unit, and
thus 2) is true. Now suppose 3) is false. Then n = ab where 1 < a < n, 1 < b < n,
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[a][b] = [0], and thus [a] is a zero divisor and 1) is false.

Exercise List the units and their inverses for Z7 and Z12. Show that (Z7)
∗ is

a cyclic group but (Z12)
∗ is not. Show that in Z12 the equation x2 = 1

¯
has four

solutions. Finally show that if R is a domain, x2 = 1
¯

can have at most two solutions
in R (see the first theorem on page 46).

Subrings Suppose S is a subset of a ring R. The statement that S is a subring

of R means that S is a subgroup of the group R, 1
¯
∈ S , and (a, b ∈ S ⇒ a · b ∈ S).

Then clearly S is a ring and has the same multiplicative identity as R. Note that Z

is a subring of Q, Q is a subring of R, and R is a subring of C. Subrings do not play
a role analogous to subgroups. That role is played by ideals, and an ideal is never a
subring (unless it is the entire ring). Note that if S is a subring of R and s ∈ S, then
s may be a unit in R but not in S. Note also that Z and Zn have no proper subrings,
and thus occupy a special place in ring theory, as well as in group theory.

Ideals and Quotient Rings

Ideals in ring theory play a role analagous to normal subgroups in group theory.

Definition A subset I of a ring R is a











left
right
2−sided











ideal provided it is a subgroup

of the additive group R and if a ∈ R and b ∈ I, then











a · b ∈ I
b · a ∈ I
a · b and b · a ∈ I











. The

word “ideal ” means “2-sided ideal”. Of course, if R is commutative, every right or
left ideal is an ideal.

Theorem Suppose R is a ring.

1) R and 0
¯

are ideals of R. These are called the improper ideals.

2) If {It}t∈T is a collection of right (left, 2-sided) ideals of R, then
⋂

t∈T

It is a

right (left, 2-sided) ideal of R. (See page 22.)
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3) Furthermore, if the collection is monotonic, then
⋃

t∈T

It is a right (left, 2-sided)

ideal of R.

4) If a ∈ R, I = aR is a right ideal. Thus if R is commutative, aR is an ideal,
called a principal ideal. Thus every subgroup of Z is a principal ideal,
because it is of the form nZ.

5) If R is a commutative ring and I ⊂ R is an ideal, then the following are
equivalent.

i) I = R.
ii) I contains some unit u.
iii) I contains 1

¯
.

Exercise Suppose R is a commutative ring. Show that R is a field iff R contains
no proper ideals.

The following theorem is just an observation, but it is in some sense the beginning
of ring theory.

Theorem Suppose R is a ring and I ⊂ R is an ideal, I 6= R. Since I is a normal
subgroup of the additive group R, R/I is an additive abelian group. Multiplication
of cosets defined by (a + I) · (b + I) = (ab + I) is well-defined and makes R/I a ring.

Proof (a + I) · (b + I) = a · b + aI + Ib + II ⊂ a · b + I. Thus multiplication
is well defined, and the ring axioms are easily verified. The multiplicative identity is
(1
¯

+ I).

Observation If R = Z, n > 1, and I = nZ, the ring structure on Zn = Z/nZ

is the same as the one previously defined.

Homomorphisms

Definition Suppose R and R̄ are rings. A function f : R → R̄ is a ring homo-

morphism provided

1) f is a group homomorphism
2) f(1

¯R) = 1
¯R̄ and

3) if a, b ∈ R then f(a · b) = f(a) · f(b). (On the left, multiplication



Chapter 3 Rings 43

is in R, while on the right multiplication is in R̄.)

The kernel of f is the kernel of f considered as a group homomorphism, namely
ker(f) = f−1(0

¯
).

Here is a list of the basic properties of ring homomorphisms. Much of this
work has already been done by the theorem in group theory on page 28.

Theorem Suppose each of R and R̄ is a ring.

1) The identity map IR : R → R is a ring homomorphism.

2) The zero map from R to R̄ is not a ring homomorphism

(because it does not send 1
¯R to 1

¯R̄).

3) The composition of ring homomorphisms is a ring homomorphism.

4) If f : R → R̄ is a bijection which is a ring homomorphism,

then f−1 : R̄ → R is a ring homomorphism. Such an f is called

a ring isomorphism. In the case R = R̄, f is also called a

ring automorphism.

5) The image of a ring homomorphism is a subring of the range.

6) The kernel of a ring homomorphism is an ideal of the domain.

In fact, if f : R → R̄ is a homomorphism and I ⊂ R̄ is an ideal,

then f−1(I) is an ideal of R.

7) Suppose I is an ideal of R, I 6= R, and π : R → R/I is the

natural projection, π(a) = (a + I). Then π is a surjective ring

homomorphism with kernel I. Furthermore, if f : R → R̄ is a surjective

ring homomorphism with kernel I, then R/I ≈ R̄ (see below).

8) From now on the word “homomorphism” means “ring homomorphism”.

Suppose f : R → R̄ is a homomorphism and I is an ideal of R, I 6= R.

If I ⊂ ker(f), then f̄ : R/I → R̄ defined by f̄(a + I) = f(a)
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is a well-defined homomorphism making the following diagram commute.

R R̄

R/I

f

?

-

�
�

�
�

�
�

�
�>

π
f̄

Thus defining a homomorphism on a quotient ring is the same as
defining a homomorphism on the numerator which sends the
denominator to zero. The image of f̄ is the image of f , and
the kernel of f̄ is ker(f)/I. Thus if I = ker(f), f̄ is
injective, and so R/I ≈ image (f).

Proof We know all this on the group level, and it is only necessary
to check that f̄ is a ring homomorphism, which is obvious.

9) Given any ring homomorphism f, domain(f)/ker(f) ≈ image(f).

Exercise Find a ring R with a proper ideal I and an element b such that b is not
a unit in R but (b + I) is a unit in R/I.

Exercise Show that if u is a unit in a ring R, then conjugation by u is an
automorphism on R. That is, show that f : R → R defined by f(a) = u−1 · a · u is
a ring homomorphism which is an isomorphism.

Exercise Suppose T is a non-void set, R is a ring, and RT is the collection of
all functions f : T → R. Define addition and multiplication on RT point-wise. This
means if f and g are functions from T to R, then (f + g)(t) = f(t) + g(t) and
(f · g)(t) = f(t)g(t). Show that under these operations RT is a ring. Suppose S is a
non-void set and α : S → T is a function. If f : T → R is a function, define a function
α∗(f) : S → R by α∗(f) = f ◦ α. Show α∗ : RT → RS is a ring homomorphism.

Exercise Now consider the case T = [0, 1] and R = R. Let A ⊂ R[0,1] be the
collection of all C∞ functions, i.e., A ={f : [0, 1] → R : f has an infinite number of
derivatives}. Show A is a ring. Notice that much of the work has been done in the
previous exercise. It is only necessary to show that A is a subring of the ring R[0,1].
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Polynomial Rings

In calculus, we consider real functions f which are polynomials, f(x ) = a0 +a1x +
· ·+anx

n. The sum and product of polynomials are again polynomials, and it is easy
to see that the collection of polynomial functions forms a commutative ring. We can
do the same thing formally in a purely algebraic setting.

Definition Suppose R is a commutative ring and x is a “variable” or “symbol”.
The polynomial ring R[x ] is the collection of all polynomials f = a0 + a1x + · ·+anx

n

where ai ∈ R. Under the obvious addition and multiplication, R[x ] is a commutative
ring. The degree of a non-zero polynomial f is the largest integer n such that an 6= 0

¯
,

and is denoted by n = deg(f). If the top term an = 1
¯
, then f is said to be monic.

To be more formal, think of a polynomial a0 + a1x + · · · as an infinite sequence
(a0, a1, ...) such that each ai ∈ R and only a finite number are non-zero. Then

(a0, a1, ...) + (b0, b1, ...) = (a0 + b0, a1 + b1, ...) and

(a0, a1, ...) · (b0, b1, ...) = (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, ...).

Note that on the right, the ring multiplication a · b is written simply as ab, as is
often done for convenience.

Theorem If R is a domain, R[x ] is also a domain.

Proof Suppose f and g are non-zero polynomials. Then deg(f)+deg(g) = deg(fg)
and thus fg is not 0

¯
. Another way to prove this theorem is to look at the bottom

terms instead of the top terms. Let aix
i and bjx

j be the first non-zero terms of f
and g. Then aibjx

i+j is the first non-zero term of fg.

Theorem (The Division Algorithm) Suppose R is a commutative ring, f ∈
R[x ] has degree ≥ 1 and its top coefficient is a unit in R. (If R is a field, the
top coefficient of f will always be a unit.) Then for any g ∈ R[x ], ∃! h, r ∈ R[x ]
such that g = fh + r with r = 0

¯
or deg(r) < deg(f).

Proof This theorem states the existence and uniqueness of polynomials h and
r. We outline the proof of existence and leave uniqueness as an exercise. Suppose
f = a0 + a1x + · · +amxm where m ≥ 1 and am is a unit in R. For any g with
deg(g) < m, set h = 0

¯
and r = g. For the general case, the idea is to divide f into g

until the remainder has degree less than m. The proof is by induction on the degree
of g. Suppose n ≥ m and the result holds for any polynomial of degree less than
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n. Suppose g is a polynomial of degree n. Now ∃ a monomial bxt with t = n − m
and deg(g − fbxt) < n. By induction, ∃ h1 and r with fh1 + r = (g − fbxt) and
deg(r) < m. The result follows from the equation f(h1 + bxt) + r = g.

Note If r = 0
¯

we say that f divides g. Note that f = x − c divides g iff c is
a root of g, i.e., g(c) = 0

¯
. More generally, x − c divides g with remainder g(c).

Theorem Suppose R is a domain, n > 0, and g(x) = a0 + a1x + · · · + anxn is a
polynomial of degree n with at least one root in R. Then g has at most n roots. Let
c1, c2, .., ck be the distinct roots of g in the ring R. Then ∃ a unique sequence of
positive integers n1, n2, .., nk and a unique polynomial h with no root in R so that
g(x) = (x − c1)

n1 · · · (x − ck)
nkh(x). (If h has degree 0, i.e., if h = an, then we say

“all the roots of g belong to R”. If g = anxn, we say “all the roots of g are 0
¯
”.)

Proof Uniqueness is easy so let’s prove existence. The theorem is clearly true
for n = 1. Suppose n > 1 and the theorem is true for any polynomial of degree less
than n. Now suppose g is a polynomial of degree n and c1 is a root of g. Then ∃
a polynomial h1 with g(x) = (x − c1)h1. Since h1 has degree less than n, the result
follows by induction.

Note If g is any non-constant polynomial in C[x], all the roots of g belong to C,
i.e., C is an algebraically closed field. This is called The Fundamental Theorem of
Algebra, and it is assumed without proof for this textbook.

Exercise Suppose g is a non-constant polynomial in R[x]. Show that if g has
odd degree then it has a real root. Also show that if g(x) = x2 + bx + c, then it has
a real root iff b2 ≥ 4c, and in that case both roots belong to R.

Definition A domain T is a principal ideal domain (PID) if, given any ideal I,
∃ t ∈ T such that I = tT. Note that Z is a PID and any field is PID.

Theorem Suppose F is a field, I is a proper ideal of F [x ], and n is the smallest
positive integer such that I contains a polynomial of degree n. Then I contains a
unique polynomial of the form f = a0 + a1x + · · +an−1x

n−1 + xn and it has the
property that I = fF [x ]. Thus F [x ] is a PID. Furthermore, each coset of I can be
written uniquely in the form (c0 + c1x + · · +cn−1x

n−1 + I).

Proof. This is a good exercise in the use of the division algorithm. Note this is
similar to showing that a subgroup of Z is generated by one element (see page 15).
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Theorem. Suppose R is a subring of a commutative ring C and c ∈ C. Then
∃! homomorphism h : R[x ] → C with h(x ) = c and h(r) = r for all r ∈ R. It is
defined by h(a0 + a1x + · · +anx

n) = a0 + a1c + · · +ancn, i.e., h sends f(x) to f(c).
The image of h is the smallest subring of C containing R and c.

This map h is called an evaluation map. The theorem says that adding two
polynomials in R[x ] and evaluating is the same as evaluating and then adding in C.
Also multiplying two polynomials in R[x ] and evaluating is the same as evaluating
and then multiplying in C. In street language the theorem says you are free to send
x wherever you wish and extend to a ring homomorphism on R[x].

Exercise Let C = {a + bi : a, b ∈ R}. Since R is a subring of C, there exists a
homomorphism h : R[x] → C which sends x to i, and this h is surjective. Show
ker(h) = (x2 + 1)R[x ] and thus R[x ]/(x 2 + 1) ≈ C. This is a good way to look
at the complex numbers, i.e., to obtain C, adjoin x to R and set x2 = −1.

Exercise Z2[x ]/(x 2 + x + 1) has 4 elements. Write out the multiplication table
for this ring and show that it is a field.

Exercise Show that, if R is a domain, the units of R[x ] are just the units of R.
Thus if F is a field, the units of F [x ] are the non-zero constants. Show that [1]+ [2]x
is a unit in Z4[x ].

In this chapter we do not prove F [x] is a unique factorization domain, nor do
we even define unique factorization domain. The next definition and theorem are
included merely for reference, and should not be studied at this stage.

Definition Suppose F is a field and f ∈ F [x] has degree ≥ 1. The statement
that g is an associate of f means ∃ a unit u ∈ F [x] such that g = uf . The statement
that f is irreducible means that if h is a non-constant polynomial which divides f ,
then h is an associate of f .

We do not develop the theory of F [x ] here. However, the development is easy
because it corresponds to the development of Z in Chapter 1. The Division Algo-
rithm corresponds to the Euclidean Algorithm. Irreducible polynomials correspond
to prime integers. The degree function corresponds to the absolute value function.
One difference is that the units of F [x ] are non-zero constants, while the units of Z
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are just ±1. Thus the associates of f are all cf with c 6= 0
¯

while the associates of an
integer n are just ±n. Here is the basic theorem. (This theory is developed in full in
the Appendix under the topic of Euclidean domains.)

Theorem Suppose F is a field and f ∈ F [x ] has degree ≥ 1. Then f factors as the
product of irreducibles, and this factorization is unique up to order and associates.
Also the following are equivalent.

1) F [x ]/(f) is a domain.

2) F [x ]/(f) is a field.

3) f is irreducible.

Definition Now suppose x and y are “variables”. If a ∈ R and n, m ≥ 0, then
axnym = aymxn is called a monomial. Define an element of R[x , y ] to be any finite
sum of monomials.

Theorem R[x , y ] is a commutative ring and (R[x ])[y ] ≈ R[x , y ] ≈ (R[y ])[x ]. In
other words, any polynomial in x and y with coefficients in R may be written as a
polynomial in y with coefficients in R[x ], or as a polynomial in x with coefficients in
R[y ].

Side Comment It is true that if F is a field, each f ∈ F [x , y] factors as the
product of irreducibles. However F [x , y ] is not a PID. For example, the ideal
I = xF [x, y] + yF [x, y] = {f ∈ F [x, y] : f(0

¯
, 0
¯
) = 0

¯
} is not principal.

If R is a commutative ring and n ≥ 2, the concept of a polynomial ring in
n variables works fine without a hitch. If a ∈ R and v1, v2, ..., vn are non-negative
integers, then ax v1

1 x v2

2 · · · x vn

n is called a monomial. Order does not matter here.
Define an element of R[x1, x2, ..., xn] to be any finite sum of monomials. This
gives a commutative ring and there is canonical isomorphism R[x1, x2, ..., xn] ≈
(R[x1, x2, ..., xn−1])[xn]. Using this and induction on n, it is easy to prove the fol-
lowing theorem.

Theorem If R is a domain, R[x1, x2, ..., xn] is a domain and its units are just the
units of R.
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Exercise Suppose R is a commutative ring and f : R[x, y] → R[x] is the eval-
uation map which sends y to 0

¯
. This means f(p(x, y)) = p(x, 0

¯
). Show f is a ring

homomorphism whose kernel is the ideal (y) = yR[x, y]. Use the fact that “the do-
main mod the kernel is isomorphic to the image” to show R[x, y]/(y) is isomorphic
to R[x]. That is, if you adjoin y to R[x] and then factor it out, you get R[x] back.

Product of Rings

The product of rings works fine, just as does the product of groups.

Theorem Suppose T is an index set and for each t ∈ T , Rt is a ring. On the
additive abelian group

∏

t∈T

Rt =
∏

Rt, define multiplication by {rt} · {st} = {rt · st}.

Then
∏

Rt is a ring and each projection πs :
∏

Rt → Rs is a ring homomorphism.
Suppose R is a ring. Under the natural bijection from {functions f : R →

∏

Rt}
to {sequences of functions {ft}t∈T where ft : R → Rt}, f is a ring homomorphism
iff each ft is a ring homomorphism.

Proof We already know f is a group homomorphism iff each ft is a group homo-
morphism (see page 36). Note that {1

¯t} is the multiplicative identity of
∏

Rt, and
f(1

¯R) = {1
¯t} iff ft(1

¯R) = 1
¯t for each t ∈ T. Finally, since multiplication is defined

coordinatewise, f is a ring homomorphism iff each ft is a ring homomorphism.

Exercise Suppose R and S are rings. Note that R × 0 is not a subring of R × S
because it does not contain (1

¯R, 1
¯S). Show R× 0

¯
is an ideal and (R× S/R× 0

¯
) ≈ S.

Suppose I ⊂ R and J ⊂ S are ideals. Show I×J is an ideal of R×S and every
ideal of R × S is of this form.

Exercise Suppose R and S are commutative rings. Show T = R × S is not a
domain. Let e = (1, 0) ∈ R × S and show e2 = e, (1− e)2 = (1− e), R × 0 = eT ,
and 0 × S = (1 − e)T .

Exercise If T is any ring, an element e of T is called an idempotent provided
e2 = e. The elements 0 and 1 are idempotents called the trivial idempotents. Suppose
T is a commutative ring and e ∈ T is an idempotent with 0 6= e 6= 1. Let R = eT
and S = (1 − e)T . Show each of the ideals R and S is a ring with identity, and
f : T → R×S defined by f(t) = (et, (1− e)t) is a ring isomorphism. This shows that
a commutative ring T splits as the product of two rings iff it contains a non-trivial
idempotent.
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The Chinese Remainder Theorem

The natural map from Z to Zm × Zn is a group homomorphism and also a ring
homomorphism. If m and n are relatively prime, this map is surjective with kernel
mnZ, and thus Zmn and Zm × Zn are isomorphic as groups and as rings. The next
theorem is a classical generalization of this. (See exercise three on page 35.)

Theorem Suppose n1, ..., nt are integers, each ni > 1, and (ni, nj) = 1 for all
i 6= j. Let fi : Z → Zni

be defined by fi(a) = [a]. (Note that the bracket symbol is
used ambiguously.) Then the ring homomorphism f = (f1, .., ft) : Z → Zn1

× · ·×Znt

is surjective. Furthermore, the kernel of f is nZ, where n = n1n2 · ·nt. Thus Zn

and Zn1
× · · ×Znt

are isomorphic as rings, and thus also as groups.

Proof We wish to show that the order of f(1) is n, and thus f(1) is a group
generator, and thus f is surjective. The element f(1)m = ([1], .., [1])m = ([m], .., [m])
is zero iff m is a multiple of each of n1, .., nt. Since their least common multiple is n,
the order of f(1) is n. (See the fourth exercise on page 36 for the case t = 3.)

Exercise Show that if a is an integer and p is a prime, then [a] = [ap] in Zp

(Fermat’s Little Theorem). Use this and the Chinese Remainder Theorem to show
that if b is a positive integer, it has the same last digit as b5.

Characteristic

The following theorem is just an observation, but it shows that in ring theory, the
ring of integers is a “cornerstone”.

Theorem If R is a ring, there is one and only one ring homomorphism f : Z → R.
It is given by f(m) = m1

¯
= m

¯
. Thus the subgroup of R generated by 1

¯
is a subring

of R isomorphic to Z or isomorphic to Zn for some positive integer n.

Definition Suppose R is a ring and f : Z → R is the natural ring homomor-
phism f(m) = m1

¯
= m

¯
. The non-negative integer n with ker(f) = nZ is called the

characteristic of R. Thus f is injective iff R has characteristic 0 iff 1
¯

has infinite
order. If f is not injective, the characteristic of R is the order of 1

¯
.

It is an interesting fact that, if R is a domain, all the non-zero elements of R
have the same order. (See page 23 for the definition of order.)
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Theorem Suppose R is a domain. If R has characteristic 0, then each non-zero
a ∈ R has infinite order. If R has finite characteristic n, then n is a prime and each
non-zero a ∈ R has order n.

Proof Suppose R has characteristic 0, a is a non-zero element of R, and m is a
positive integer. Then ma = m

¯
· a cannot be 0

¯
because m

¯
, a 6= 0

¯
and R is a domain.

Thus o(a) = ∞. Now suppose R has characteristic n. Then R contains Zn as a
subring, and thus Zn is a domain and n is a prime. If a is a non-zero element of R,
na = n

¯
· a = 0

¯
· a = 0

¯
and thus o(a)|n and thus o(a) = n.

Exercise Show that if F is a field of characteristic 0, F contains Q as a subring.
That is, show that the injective homomorphism f : Z → F extends to an injective
homomorphism f̄ : Q → F .

Boolean Rings

This section is not used elsewhere in this book. However it fits easily here, and is
included for reference.

Definition A ring R is a Boolean ring if for each a ∈ R, a2 = a, i.e., each
element of R is an idempotent.

Theorem Suppose R is a Boolean ring.

1) R has characteristic 2. If a ∈ R, 2a = a + a = 0
¯
, and so a = −a.

Proof (a + a) = (a + a)2 = a2 + 2a2 + a2 = 4a. Thus 2a = 0
¯
.

2) R is commutative.

Proof (a + b) = (a + b)2 = a2 + (a · b) + (b · a) + b2

= a + (a · b) − (b · a) + b. Thus a · b = b · a.

3) If R is a domain, R ≈ Z2.

Proof Suppose a 6= 0
¯
. Then a · (1

¯
− a) = 0

¯
and so a = 1

¯
.

4) The image of a Boolean ring is a Boolean ring. That is, if I is an ideal
of R with I 6= R, then every element of R/I is idempotent and thus

R/I is a Boolean ring. It follows from 3) that R/I is a domain iff R/I
is a field iff R/I ≈ Z2. (In the language of Chapter 6, I is a prime

ideal iff I is a maximal ideal iff R/I ≈ Z2).
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Suppose X is a non-void set. If a is a subset of X, let a′ = (X−a) be a complement
of a in X. Now suppose R is a non-void collection of subsets of X. Consider the
following properties which the collection R may possess.

1) a ∈ R ⇒ a′ ∈ R.
2) a, b ∈ R ⇒ (a ∩ b) ∈ R.
3) a, b ∈ R ⇒ (a ∪ b) ∈ R.
4) ∅ ∈ R and X ∈ R.

Theorem If 1) and 2) are satisfied, then 3) and 4) are satisfied. In this case, R
is called a Boolean algebra of sets.

Proof Suppose 1) and 2) are true, and a, b ∈ R. Then a∪ b = (a′ ∩ b′)′ belongs to
R and so 3) is true. Since R is non-void, it contains some element a. Then ∅ = a∩ a′

and X = a ∪ a′ belong to R, and so 4) is true.

Theorem Suppose R is a Boolean algebra of sets. Define an addition on R by
a + b = (a ∪ b) − (a ∩ b). Under this addition, R is an abelian group with 0

¯
= ∅ and

a = −a. Define a multiplication on R by a · b = a ∩ b. Under this multiplication R
becomes a Boolean ring with 1

¯
= X.

Exercise Let X = {1, 2, ..., n} and let R be the Boolean ring of all subsets of
X. Note that o(R) = 2n. Define fi : R → Z2 by fi(a) = [1] iff i ∈ a. Show each
fi is a homomorphism and thus f = (f1, ..., fn) : R → Z2 × Z2 × · · ×Z2 is a ring
homomorphism. Show f is an isomorphism. (See exercises 1) and 4) on page 12.)

Exercise Use the last exercise on page 49 to show that any finite Boolean ring is
isomorphic to Z2 ×Z2 × · ·×Z2, and thus also to the Boolean ring of subsets above.

Note Suppose R is a Boolean ring. It is a classical theorem that ∃ a Boolean
algebra of sets whose Boolean ring is isomorphic to R. So let’s just suppose R is
a Boolean algebra of sets which is a Boolean ring with addition and multiplication
defined as above. Now define a ∨ b = a ∪ b and a ∧ b = a ∩ b. These operations cup
and cap are associative, commutative, have identity elements, and each distributes
over the other. With these two operations (along with complement), R is called a
Boolean algebra. R is not a group under cup or cap. Anyway, it is a classical fact
that, if you have a Boolean ring (algebra), you have a Boolean algebra (ring). The
advantage of the algebra is that it is symmetric in cup and cap. The advantage of
the ring viewpoint is that you can draw from the rich theory of commutative rings.


