MATLAB for biologists

Lecture 6

Kevin Smith
Light Microscopy Centre ETH Zurich
kevin.smith@Ilmec.biol.ethz.ch

April 4, 2012



1 Cell Arrays

So far we have only worked with numeric arrays in MATLAB . Cell arrays
are similar to numeric arrays, but are more general. In addition to numeric
values, cell arrays may also contain

e strings
e structures
e numeric arrays
e cell arrays
There are several ways to initialize a cell array

>> C = cell (1,5)

C =

or

>> 0{1’5} = H:
C—

[] [] [] [] []

Cell arrays are useful for storing lists of things that have varying dimensions,
such as a list of file names or a list of images of different size.

>> a = {1, rand(3), ’hello’, imread(’peppers.png’)}
a =

[1] [3x3 double] "hello’ [384x512x3 uint8 |
Cell arrays can also contain other cell arrays.

>> b = {8, [2 54], a}
b =

[8] [1x2 double] {1x4 cell}



Accessing data in cell arrays is slightly more tricky than numeric arrays.

>> a(2)
ans =

[3x3 double]
>> class (a(2))
ans =

cell

This is not the result we would expect based on our experience with numeric
arrays. To access the contents of a cell array, we need to use curly braces {}.
Use parentheses () for indexing into a cell array to collect a subset of cells
together in another cell array.

To access the 2" element of a, use curly braces

>> a{2}
ans =

0.9649 0.9572 0.1419
0.1576 0.4854 0.4218
0.9706 0.8003 0.9157

We can use parentheses to extract the first two elements from a to form a
new cell d

>> d = a(l:2)
d:

[1] [3x3 double]

We can extract the first two elements of a into separate numeric arrays al
and a2

>> [al a2] = a{l:2}

al =



a2

0.9649 0.9572 0.1419
0.1576 0.4854 0.4218
0.9706 0.8003 0.9157

As an exercise, write a function that generates a Fibonacci sequence. The
input of the function should be the length of the sequence, N. Note that
the sequence should always have N 4 1 elements, we don’t count the first
element 0. The function should have two outputs

1. a vector containing the values of the Fibonacci sequence until N

>> [fib fibCell] = fibDemo (6)
fib =
0 1 1 2 3 5 8

2. a cell array where entry n contains the sequence up to that point

>> fibCell {2}

ans =

>> fibCell{end}

ans =

— O

— = o
O~ = O
WK~ RO
LW N —= = O
LW N —= = O

Hint: initialize the sequence to be [0 1], loop from 3 to N + 1.



2 Structures and arrays of structures

Structures are a useful way of grouping arrays in MATLAB that belong
together. For example, you might want to collect data about a person in a
structure.

>> myStruct.name = ’Fred’;
>> myStruct. height = 1.80;
>> myStruct.age = 33

myStruct =

name: Fred’
height: 1.8000

age: 33
You could initialize the exact same structure using
>> clear;
>> myStruct = struct(’name’, ’'Fred’, :
"height’, 1.80, ’age’, 33)
myStruct =

name: Fred’
height: 1.8000
age: 33

The structure array we created contains pairs of fields and values. The values
can be a numeric array, string, cell, or scalar. The field names must begin
with a character and are case-sensitive. In the example below, the field names
appear on the left of the : and the values appear on the right. Let’s add
some new fields to the structure.

>> myStruct. favoriteFoods = {’pizza’, ’chocolate’}
>> myStruct.image = imread( ’images/fred.jpg’)

myStruct =

firstName: ’'Fred’
height: 1.8000
age: 33
favoriteFoods: {’pizza’ ’chocolate’}
image: [277x220 uint8]



We can grow the array to include other people and measurements. By simply
setting the value to one of the fields in the 2"¢ element, the entire 2"¢ element
is initialized. However, the unspecified fields remain empty.

>> myStruct (2).name = ’Ginger’
myStruct =

1x2 struct array with fields:
name
height
age
favoriteFoods
image

>> myStruct (2)
ans =

name: ' Ginger

height: |

age: |[]
favoriteFoods: []
image: |[]

If we want to fill in the missing values, we can specify each of them individ-
ually.

>> myStruct (2). height = 1.65;

>> myStruct (2).age = 21;

>> myStruct (2). favoriteFoods = {’Spaghetti’, ’'Kiwi’}
>> myStruct (2).image = imread(’images/ginger.jpg’);
>> myStruct (2)

ans =
name: ’Ginger’
height: 1.6500
age: 21

favoriteFoods: {’Spaghetti’ ’Kiwi’}
image: [280x220 uint8]

Question: What happens if we add a new field/value to myStruct (2)?



We’ve seen previously that some MATLAB functions such as regionprops
return structure arrays as output. Another useful command that outputs
structure arrays is dir.

>> d = dir
d:

7x1 struct array with fields:
name
date
bytes
isdir
datenum

>> d(1)

ans —

) )

name: .
date: '04—Apr—2012 00:20:12°
bytes: 0
isdir: 1

datenum: 7.3496e+05

>> d(3)
ans —

name: cellDemo .m’
date: '03—Apr—2012 21:27:06"
bytes: 1120
isdir: 0
datenum: 7.3496e+05

Useful functions related to structures: setfield, getfield, fieldnames,
orderfields, rmfield.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3 Cell array and structure array example

Let’s combine our knowledge of cell arrays and structure arrays to write a
function that looks at the contents of a directory, finds all the image files,
and displays the images sorted by date.

function showDirectorylmages (pathname)

% get directory structures filtered for different image

% types
djpg = dir (|pathname ’"x*.jpg’]|);
dbmp = dir (|pathname ’x.bmp’]);

(1 ])
(1 D)
dpng = dir ([pathname ’'*.png’]);
dtif = dir ([pathname ’x.tif’])
% concatenate the directory structures into a single
% structure array

d = [djpg; dbmp; dpng; dtif];

% sort the array by the date

datenums = [d(:).datenum];
[datenumSorted , inds| = sort(datenums);
d = d(inds);

% initialize a cell which will store the images
images = cell (1,numel(d));

% open a figure to display the images
figure;

% loop through the images in d, load them, display them,
% and print their information

for i = 1l:numel(d)
images{i} = imread ([pathname d(i).name]);
fprintf('%d. %s %s\n’, i, d(i).date, d(i).name);

imshow (images{i });
pause ;
end

We can run this function from the prompt by passing it the path to the folder
as an argument.

>> showDirectorylmages ([pwd ’/images/’]);

8



4 Profiling your code

The MATLAB profiler helps you debug and optimize code by tracking their
execution time. For each MATLAB function, MATLAB subfunction, or
MEX-function in the file, profile records information about execution time,
number of calls, parent functions, child functions, code line hit count, and
code line execution time.

>> profile on;

>> profileDemo ( "images/corporatefatcat.jpg’);
>> profview ;

>> profile off;

5 User interface

MATLAB demo extending the segmentation example to include some useful
user interfaces.

>> cellDemo
Functions we will use in our demo: uigetfile, uiputfile, questdlg, uicontrol,
impoly.

Other useful functions related to user interfaces: errordlg, inputdlg,
uigetdir, uiopen, uisave.



