
International J.Math. Combin. Vol.3(2014), 104-110

Total Near Equitable Domination in Graphs

Ali Mohammed Sahal and Veena Mathad

(Department of Studies in Mathematics, University of Mysore Manasagangotri, Mysore - 570 006, India)

E-mail: alisahl1980@gmail.com, veena mathad@rediffmail.com

Abstract: Let G = (V, E) be a graph, D ⊆ V and u be any vertex in D. Then the out

degree of u with respect to D denoted by odD (u), is defined as odD (u) = |N(u) ∩ (V − D)|.

A subset D ⊆ V (G) is called a near equitable dominating set of G if for every v ∈ V − D

there exists a vertex u ∈ D such that u is adjacent to v and |od
D

(u)−od
V −D

(v)| ≤ 1. A near

equitable dominating set D is said to be a total near equitable dominating set (tned-set) if

every vertex w ∈ V is adjacent to an element of D. The minimum cardinality of tned-set

of G is called the total near equitable domination number of G and is denoted by γtne(G).

The maximum order of a partition of V into tned-sets is called the total near equitable

domatic number of G and is denoted by dtne(G). In this paper we initiate a study of these

parameters.
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§1. Introduction

By a graph G = (V, E) we mean a finite, undirected graph with neither loops nor multiple

edges. The order and size of G are denoted by n and m, respectively. For graph theoretic

terminology we refer to Chartrand and Lesnaik [2].

Let G = (V, E) be a graph and let v ∈ V . The open neighborhood and the closed neigh-

borhood of v are denoted by N(v) = {u ∈ V : uv ∈ E} and N [v] = N(v) ∪ {v}, respectively. If

S ⊆ V then N(S) = ∪v∈SN(v) and N [S] = N(S) ∪ S.

Let G be a graph without isolated vertices. For an integer k > 1, a Smarandachely k-

dominator coloring of G is a proper coloring of G with the extra property that every vertex in

G properly dominates a k-color classes. Particularly, a subset S of V is called a dominating set

if N [S] = V , i.e., a Smarandachely 1-dominator set. The minimum (maximum) cardinality of

a minimal dominating set of G is called the domination number (upper domination number) of

G and is denoted by γ(G) (Γ(G)). An excellent treatment of the fundamentals of domination

is given in the book by Haynes et al. [5]. A survey of several advanced topics in domination is

given in the book edited by Haynes et al. [6]. Various types of domination have been defined and
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studied by several authors and more than 75 models of domination are listed in the appendix of

Haynes et al. [5]. E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi [3] introduced the concept

of total domination in graphs. A dominating set D of a graph G is a total dominating set if

every vertex of V is adjacent to some vertex of D. The cardinality of a smallest total dominating

set in a graph G is called the total domination number of G and is denoted by γt(G).

A double star is the tree obtained from two disjoint stars K1,n and K1,m by connecting

their centers.

Equitable domination has interesting application in the context of social networks. In a

network, nodes with nearly equal capacity may interact with each other in a better way. In the

society persons with nearly equal status, tend to be friendly.

Let D ⊆ V (G) and u be any vertex in D. The out degree of u with respect to D denoted

by od
D

(u), is defined as od
D

(u) = |N(u) ∩ (V − D)|. D is called near equitable dominating

set of G if for every v ∈ V −D there exists a vertex u ∈ D such that u is adjacent to v and

|od
D

(u)− od
V −D

(v)| ≤ 1. The minimum cardinality of such a dominating set is denoted by γne

and is called the near equitable domination number of G. A partition P = {V1, V2, · · · , Vl} of a

vertex set V (G) of a graph is called near equitable domatic partition of G if Vi is near equitable

dominating set for every 1 ≤ i ≤ l. The near equitable domatic number of G is the maximum

cardinality of near equitable domatic partition of G and denoted by dne(G) [7].

For a near equitable dominating set D of G it is natural to look at how total D behaves.

For example, for the cycle C6 = (v1, v2, v3, v4, v5, v6, v1), S1 = {v1, v4} and S2 = {v1, v2, v3, v4}

are near equitable dominating sets, S1 is not total and S2 is total.

In this paper, we introduce the concept of a total near equitable domination to initiate a

study of a total near equitable domination number and a total near equitable domatic number.

We need the following to prove main results.

Definition 1.1([7]) Let G = (V, E) be a graph and D be a near equitable dominating set of G.

Then u ∈ D is a near equitable pendant vertex if od
D

(u) = 1. A set D is called a near equitable

pendant set if every vertex in D is an equitable pendant vertex.

Theorem 1.2([7]) Let T be a wounded spider obtained from the star K1,n−1, n ≥ 5 by subdi-

viding m edges exactly once. Then

γne(T ) =





n, if m = n− 1 ;

n− 1, if m = n− 2;

n− 2, if m ≤ n− 3.

§2. Total Near Equitable Domination in Graphs

A near equitable dominating set D of a graph G is said to be a total near equitable dominating

set (tned-set) if every vertex w ∈ V is adjacent to an element of D. The minimum of the

cardinality of tned-set of G is called a total near equitable domination number and is denoted

by γtne(G). A subset D of V is a minimal tned-set if no proper subset of D is a tned-set.
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We note that this parameter is only defined for graphs without isolated vertices and,

since each total near equitable dominating set is a near equitable dominating set, we have

γne(G) ≤ γtne(G). Since each total near equitable dominating set is a total dominating set, we

have γt(G) ≤ γtne(G). The bound is sharp for rK2, r ≥ 1. In fact γtne(G) = γt(G) = |V |,

for G = rK2, it is easy to see however, that rK2, r ≥ 1 is the only graph with this property.

Furthermore, the difference γtne(G) − γt(G) can be arbitrarily large in a graph G. It can be

easily checked that γt(K1,r) = 2, while γtne(K1,r) = n− 2.

We now proceed to compute γtne(G) for some standard graphs.

1. For any path Pn, n ≥ 4,

γtne(Pn) = γt(Pn) =





n

2
+ 1, if n ≡ 2 (mod 4);

⌈n

2

⌉
, otherwise.

where ⌈x⌉ is a least integer not less than x.

2. For any cycle Cn, n ≥ 4,

γtne(Cn) = γt(Cn) =





n

2
+ 1, if n ≡ 2 (mod 4);

⌈n

2

⌉
, otherwise.

.

3. For the complete graph Kn, n ≥ 4 γtne(Kn) = γne(Kn) = ⌊
n

2
⌋, where ⌊x⌋ is a greatest

integer not exceeding x.

4. For the double star Sn,m,

γtne(Sn,m) = γne(Sn,m) =





2, if n, m ≤ 2 ;

n + m− 2, if n, m ≥ 2 and n or m ≥ 3.

5. For the complete bipartite graph Kn,m with 2 < m ≤ n, we have

γtne(Kn,m) = γne(Kn,m) =





m− 1, if n = m and m ≥ 3;

m, if n−m = 1;

n− 1, if n−m ≥ 2.

6. For the wheel Wn on n vertices,

γtne(Wn) = γne(Wn) =
⌈n− 1

3

⌉
+ 1.

Theorem 2.1 Let G be a graph and D be a minimum tned- set of G containing t near equitable

pendant vertices. Then γ
tne

(G) ≥
n + t

3
.
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Proof Let D be any minimum tned- set of G containing t near equitable pendant vertices

. Then 2|D| − t ≥ |V −D|. It follows that, 3|D| − t ≥ n. Hence γ
tne

(G) ≥
n + t

3
. 2

Theorem 2.2 Let T be a wounded spider obtained from the star K1,n−1, n ≥ 5 by subdividing

m edges exactly once. Then

γtne(T ) = γne(T ) =





n, if m = n− 1 ;

n− 1, if m = n− 2;

n− 2, if m ≤ n− 3.

Proof Proof follows from Theorem 1.2. 2
Theorem 2.3 Let T be a tree of order n, n ≥ 4 in which every non-pendant vertex is either a

support or adjacent to a support and every non- pendant vertex which is support is adjacent to

at least two pendant vertices. Then γtne(T ) = γne(T ).

Proof Let D denote set of all non-pendant vertices and all pendant vertices except two

for each support of T . Clearly, D is a γne-set. Since any support vertex adjacent to at least

two pendant vertices, it follows that 〈D〉 contains no isolate vertex. Hence D is a tned-set and

hence γtne(T ) ≤ γne(T ). Since γne(T ) ≤ γtne(T ), it follows that γtne(T ) = γne(T ). 2
Theorem 2.4 Let G be a connected graph of order n, n ≥ 4. Then,

γtne(G) ≤ n− 2.

Proof It is enough to show that for any minimum total near equitable dominating set D

of G, |V −D| ≥ 2. Since G is a connected graph of order n, n ≥ 4, it follows that δ(G) ≥ 1.

Suppose v ∈ V −D and adjacent to u ∈ D. Since od
V −D

(v) ≥ 1, then od
D

(u) ≥ 2. 2
The star graph G ∼= K1,n is an example of a connected graph for which

γtne(G) = 2n − (∆(G) + 3). The following theorem shows that, this is the best possible

upper bound for γtne(G).

Theorem 2.5 If G is connected of order n, n ≥ 4, then,

γtne(G) ≤ 2n− (∆(G) + 3).

Proof Let G be a connected graph of order n, n ≥ 4, then by Theorem 2.4, γtne(G) ≤

n− 2 = 2n− (n− 1 + 3) ≤ 2n− (∆(G) + 3). 2
Theorem 2.6 If G is a graph of order n, n ≥ 4 and ∆(G) ≤ n − 2 such that both G and G

connected, then

γtne(G) + γtne(G) ≤ 3n− 6.

Proof Let G be a connected graph and ∆(G) ≤ n − 2. By Theorem 2.4, γtne(G) ≤ 2n−

(∆(G)+4) ≤ 2n−(δ(G)+4). Since G is a connected, by Theorem 2.5, γtne(G) ≤ 2n−(∆(G)+3),



108 Ali Mohammed Sahal and Veena Mathad

it follows that

γtne(G) + γtne(G) ≤ 2n− (δ(G) + 4) + 2n− (∆(G) + 3)

= 4n− (δ(G) + ∆(G))− 7

= 3n− 6. 2
The bound is sharp for C4.

Theorem 2.7 Let G be a graph such that both G and G connected. Then,

γtne(G) + γtne(G) ≤ 2n− 4.

Proof Since both G and G are a connected, it follows by Theorem 2.4 that, γtne(G) +

γtne(G) ≤ 2n− 4. 2
The bound is sharp for P4. We now proceed to obtain a characterization of minimal

tned-sets.

Theorem 2.8 A tned- set D of a graph G is a minimal tned- set if and only if one of the

following holds:

(i) D is a minimal near equitable dominating set;

(ii) There exist x, y ∈ D such that N(y) ∩N(D − {x}) = φ.

Proof Suppose that D is a minimal tned-set of G. Then for any u ∈ D, D − {u} is not

tned-set. If D is a minimal near equitable dominating set, then we are done. If not, then there

exists a vertex x ∈ D such that D−{x} is a near equitable dominating set, but not a tned- set.

Therefore there exists a vertex y ∈ D − {x} such that y is an isolated vertex in 〈(D − {x})〉.

Hence N{y} ∩N(D − {x}) = φ.

Conversely, let D be a tned- set and (i) holds. Suppose D is not a minimal tned-set. Then

for every u ∈ D, D− {u} is a tned- set. So, D is not a minimal near equitable dominating set,

a contradiction. Next, suppose that D is a tned- set and (ii) holds. Then there exist x, y ∈ D

such that N(y) ∩N(D − {x}) = φ.

Suppose to the contrary, D is not a minimal tned- set. Then for every u ∈ D, D − {u} is a

tned- set. So, 〈(D − {u})〉 does not contain any isolated vertex. Therefore for every x, y ∈ D,

N(y) ∩N(D − {x}) 6= φ, a contradiction. 2
Theorem 2.9 For any positive integer m, there exists a graph G such that γ

tne
(G)−

⌊
n

∆ + 1

⌋
=

m, where ⌊x⌋ denotes the greatest integer not exceeding x.

Proof For m = 1, let G = K3,3. Then, γ
tne

(G)−

⌊
n

∆ + 1

⌋
= 2− 1 = 1.

For m = 2, let G = K2,4. Then, γ
tne

(G) −

⌊
n

∆ + 1

⌋
= 3− 1 = 2.

For m ≥ 3, let G = Sr,s, where r+s = m+3, s ≥ r+3, r ≥ 2, γ
tne

(G) = r+s−2 = m+1,
⌊

n

∆ + 1

⌋
=

⌊
r + s + 2

s + 2

⌋
= 1
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and

γ
tne

(G) − ⌊
n

∆ + 1
⌋ = r + s− 3 = m. 2

§3. Total Near Equitable Domatic Number

The maximum order of a partition of the vertex set V of a graph G into dominating sets is

called the domatic number of G and is denoted by d(G). For a survey of results on domatic

number and their variants we refer to Zelinka [9]. In this section we present few basic results

on the total near equitable domatic number of a graph.

Let G be a graph without isolated vertices. A total near equitable domatic partition (tne-

domatic partition) of G is a partition {V1, V2, · · · , Vk} of V (G) in which each Vi is a tned-set

of G. The maximum order of a tne-domatic partition of G is called the total near equitable

domatic number (tne-domatic number) of G and is denoted by dtne(G).

We now proceed to compute dtne(G) for some standard graphs.

1. For any complete graph Kn, n ≥ 4, dtne(Kn) = dne(Kn) = 2.

2. For any n ≥ 1, dtne(C4n) = 2.

3. For any star K1,n, n ≥ 3 , dtne(K1,n) = dne(K1,n) = 1.

4. For the wheel Wn on n vertices, then dtne(Wn) = dne(Wn) = 1.

5. For the complete bipartite graph Kn,m, with 2 < m ≤ n

dtne(Kn,m) = dne(Kn,m) =





2, if |n−m| ≤ 2 ;

1, if |n−m| ≥ 3, n, m ≥ 2.

It is obvious that any total near equitable domatic partition of a graph G is also a total

domatic partition and any total domatic partition is also a domatic partition, thus we obtain

the obvious bound dtne(G) ≤ dt(G) ≤ d(G).

Remark 3.1 Let v ∈ V (G) and deg(v) = δ. Since any tned-set of G must contain either v or

a neighbour of v and dtne(G) ≤ dt(G), it follows that dtne(G) ≤ δ.

Definition 3.2 A graph G is called tne-domatically full if dtne(G) = δ.

For example, a star K1,n is tne-domatically full.

Remark 3.3 Since every member of any tne-domatic partition of a graph G on n vertices has

at least γtne(G) vertices, it follows that dtne(G) ≤
n

γtne(G)
. This inequality can be strict for

rK2, r ≥ 1.

Theorem 3.4 Let G be a graph of order n, n ≥ 4 with ∆(G) ≤ 2 such that both G and G are

connected. Then dtne(G) ≤ 2.
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proof Since ∆(G) ≤ 2, it follows that for any v ∈ G, deg(v) ≥ n−3. Hence γtne(G) ≤ ⌈n
2 ⌉.

Thus by Remark 3.3, dtne(G) ≤ 2. 2
The bound is sharp for Pn, n ≥ 6.

Theorem 3.5 Let G be a graph of order n, n ≥ 4 with ∆(G) ≤ 2 such that both G and G are

connected. Then γtne(G) + dtne(G) ≤ n.

Proof Proof follows by Theorem 2.4 and Theorem 3.4. 2
theorem 3.6 For any graph G, γtne(G) + dtne(G) ≤ 2n− 3.

proof By Theorem 2.5,

γtne(G) ≤ 2n− (∆(G) + 3) ≤ 2n− (δ(G) + 3) ≤ 2n− (dtne(G) + 3).

Therefor, γtne(G) + dtne(G) ≤ 2n− 3. 2
The bound is sharp for 2K2.

theorem 3.7 For any graph G, γtne(G) + dtne(G) ≤ n + δ − 2.

Proof Since dtne(G) ≤ dt(G) ≤ δ(G), by Theorem 2.4,

γtne(G) + dtne(G) ≤ n + δ − 2. 2
The bound is sharp for K1,n.
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