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“Bring forward what is true. Write it so that it is clear. Defend it to your last breath.”  
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The Zitterbewegung Interpretation 
of Quantum Mechanics 

Introduction 

Wild games 
The cover for this book is designed by one of the new friends I made while delving into the rather arcane 

subject-matter of this book. His name is Jason Hise, and he produces wild animated computer graphics 

for some of the best-selling computer games in the world.1 When he is not consumed by work, he helps 

scientists or amateurs like me: people who wonder how complicated multi-dimensional objects or weird 

motions might actually look like in 3D space.  

 

Figure 1: Complex motion (Jason Hise) 

I am explicit when I write we’re looking at stuff in 3D space. Why? Because physicists invented non-3D 

spaces. I don’t believe in those. I believe reality is sort of layered – think of motions within motions – but 

that’s not the same as those n-dimensional physical spaces that string theorists are trying to sell you. I’ll 

come back to that in the Prolegomena. Back to Jason’s story.  

As a visualization artist, Jason is constrained by imagination only – not by reality – and his imagination 

seems to be boundless. However, this is a book and we can, therefore, not show any animations here. 

We recommend you check out his YouTube channel or his Twitter posts for dynamic versions of the 

illustration above.2 

Tame games  
To illustrate weird symmetries, we could also refer you to YouTube videos demonstrating Dirac’s belt 

trick, which is also known as the string trick or, more oriental-sounding, the Balinese cup trick.3 Other 

                                                           
1 I don’t want to make any publicity here but, just to give an example, he co-designed the God of War Saga, a collection of 
games which, among others, features Ghost of Sparta. He told me Ghost of Sparta was the first game he worked on at the 
Ready at Dawn studio, which he joined in 2010. Guess what? That game features Archimedes screws, and rather prominently! 
After reading one or two chapters of this book, the reader will understand why this is a rather weird coincidence. 
2 YouTube: https://www.youtube.com/channel/UCw5aOpkU7_uuL73-kVxdJIA. Twitter: https://twitter.com/jasonhise64.   
3 If I have to choose the best of all these tricks, then I’d choose this one: https://www.youtube.com/watch?v=JDJKfs3HqRg. Not 
because it’s the most photogenic – it’s definitely not – but because it’s the simplest. 

https://www.youtube.com/channel/UCw5aOpkU7_uuL73-kVxdJIA
https://twitter.com/jasonhise64
https://www.youtube.com/watch?v=JDJKfs3HqRg
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references you may find are Feynman’s plate trick, the Balinese candle trick or the Philippine wine 

dance. These videos have one thing in common: they are all supposed to show that real objects can 

have 720-degree symmetries.  

That answers a common question in physics: yes, we can imagine 720-degree symmetries in 3D space. In 

that sense, they are real. No problem: 720-degree symmetries exist. But the next question is: these 

symmetries – or, the corollary, these asymmetries – are (a)symmetries of what, exactly? That is the 

more important question we’re asking ourselves here: what is reality? How many layers do we have? 

What’s at the bottom? This book wants to help you to answer that question.  

I like Jason’s animations because they are much more powerful than those belt, plate or glass of water 

tricks. He uses quaternions to program those amazing visualizations. Why would I mention that? 

Because quaternions can be used to simplify advanced quantum-mechanical calculations involving 

rotations and spinors. The combination of advanced computer graphics and advanced mathematical 

techniques allows Jason to visualize any pattern of motion you can think of. He calls it 4D modeling – but 

the symmetries and asymmetries in the patterns of motion he creates suggest even more dimensions: 

layers of motion within layers of motion.  

But – there! – I have said it all: he visualizes motion. There is an ontological difference between a pattern 

of motion and what physicists refer to as elementary particles.  

What’s an elementary particle? I am not sure – you’ll find various definitions – but, from the textbooks 

on physics that I have read, I gather elementary particles are not supposed to have any sub-structure: 

they’re supposed to be elementary, which means we can’t analyze them any further. Stuff that has a 

720-degree symmetry can’t be elementary: it could be a rotation within a rotation.4 

Why am I starting this book with talk about computer games and motions? Because I want to talk about 

real games. 

Real games 
After showering him with praise, I should add that none of Jason’s videos or animations have convinced 

me that elementary particles with a 720-degree symmetry actually exist: all of the animations are based 

on some rotation within a rotaton or – alternatively – on establishing some unacceptable5 relation 

between the object and the observer—or, more generally, between the object and the space that 

frames the object. Look at those belt trick videos: the belt is held by two hands, and the plate – or the 

cup of tea or the glass of wine in the oriental version of it – are also being held by an arm that’s firmly 

attached to the person who is doing the trick.  

                                                           
4 Dr. Hestenes sent me a link to a mechanical device illustrating those 720-degree symmetries: 
https://www.youtube.com/watch?v=JFSU9X11wyY. It’s effectively based on a rotation within a rotation: it’s got two wheels 
that are connected through a 1:4 gear ratio. You may want to look at these things. It will help you think about it yourself. 
5 Unacceptable to me, that is. Why? I do believe any measurement will establish some relation between what is being 
measured and the measurement apparatus, but that is just a geometric relation. Think of a Stern-Gerlach experiment, or a 
simple interference or diffraction experiment. The direction of the beam and the geometry of the apparatus, taken together, 
define what is up and down, left and right, and front and back. In other words, the relation between subject and the object 
defines the physical (3D) space in which the experiment takes place. 

https://www.youtube.com/watch?v=JFSU9X11wyY
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So, if I don’t believe in 720-degree symmetries6, why am I using these illustrations? Because they are 

what they are: a wonderful illustration of motions within motions and rotations within rotations. 

Let me clarify that statement I just made—just to make sure we’re understanding each other: I do not 

believe real-life elementary particles have 720-degree symmetries. However, the trajectories of their 

motion can have any symmetry, including 720-degree symmetries or whatever else we can imagine. 

Indeed, Jason’s animations show us that we can easily imagine more complicated trajectories with even 

weirder symmetries. 

At this point, I should probably tell you what I mean when I talk about a real object. My definition is 

pretty simple: anything we can sort of visualize in 3D space feels real to me. It may move about so, yes, 

it could also be some complicated pattern of motion. That sounds very real to me too. As mentioned 

above, I agree patterns of motion may have 720-degree or even more complicated symmetries. In short, 

I think Jason’s animations – visualizing various patterns of motion – may represent real stuff—as real as 

the elementary particle that is caught up in the motion, that is. There! I’ve said it. The so-called 

elementary particle that’s moving in that whirl should be elementary: no sub-structure. 720-degree 

symmetries have a sub-structure. 

Perhaps I should contrast what sounds real to me to that which does not sound real to me. That’s easy 

enough. The current mainstream Copenhagen interpretation of quantum mechanics doesn’t sound real 

to me. Let me give just one example of why it doesn’t sound real to me.7  

According to the current mainstream interpretation of quantum mechanics, a particle will sort of travel 

simultaneously over an infinite number of quantum-mechanically possible trajectories. We then have 

some procedure – involving weird mathematical objects (amplitudes or wavefunctions) – to determine 

the probability of our particle actually going from here to there. To be precise, the procedure will give us 

a probability density, which we get by squaring the modulus of the sum of the complex-valued 

amplitudes that we can associate with each of the infinite number of possible trajectories. In fact, this 

story is very much simplified because weird things might happen along of these trajectories. These 

weird things are modelled in various first-, second-, third-,… nth order diagrams – Feynman diagrams – 

and they just multiply the integrals you have to combine and add to get the final result, which will – I 

any case – always be approximate. Yes, you’ll get the zillionth digit with all the computing power that’s 

currently being unleashed on it, but that’s still approximate.8 

                                                           
6 I should qualify this: I do not believe real-life particles have 720-degree symmetries. The trajectories of their motion can have 
any symmetry, including 720-degree symmetries or whatever else we can imagine based on a rotation within a rotation. In fact, 
we can easily imagine more complicated trajectories with even weirder symmetries.    
7 Yes. I am choosing an example that’s rather significant because it’s very standard: it underpins the mainstream theory on how 
elementary particles are supposed to propagate through space. It’s modelled using – yes, you’ve guessed it – mathematical 
functions that are referred to as propagators. You’ll agree that a basic theory of physics should include some explanation of 
why some object goes from here to there, right? The path integral formulation of quantum mechanics just doesn’t cut it, in my 
not-so-humble view. 
8 Stefano Laporta claims – in a 2017 article (other researchers have come up with similar articles in the meanwhile) – to have 
calculated 891 four-loop contributions to the anomalous magnetic moment, resulting in a precision of ‘up to 1100 digits of 
precision’ of the electron’s actual g-ratio (slightly different from a theoretical value of 2, which is – in my not-so-humble view – 
equally nonsensical). One gets an uncanny feeling here: if one has to calculate a zillion integrals all over space using 72 third-
order diagrams to calculate the 12th digit in the anomalous magnetic moment, or 891 fourth-order diagrams to get the next 
level of precision, then there might something wrong with the theory. Is there an alternative? We think there is, and we hope 
that – after reading this book – the reader will agree the new idea is surprisingly simple. 
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I am not joking. You’ll have to admit it is really hard to sort of imagine what is going on here, right? Why 

is it so hard? The answer is simple: because we cannot. We cannot what? We cannot imagine. It’s not a 

matter of trying to be more creative or imaginative. No. Not at all. Let me repeat: we just cannot 

imagine what is going on here—no matter how hard we try!  

Why not? Because there is no geometry here: there is no common-sense explanation of why we should 

use this procedure. The current mainstream interpretation of quantum mechanics – the (in)famous 

Copenhagen interpretation – gives us similar black-box explanations of diffraction of interference or 

whatever other quantum-mechanical experiment you can think of—among which I will single out the 

one-photon interference experiment in this book. It also gives us this rather weird explanation of the 

measured magnetic moment of an electron, which is not quite equal to the magnetic moment of a 

structure-less electron in orbit. For me, that’s not a surprise, because the electron has a structure. It’s a 

simple structure, but it has a structure. Any case, that’s for later. 

You – as a Millennial or whatever generation you belong to – will want to know: what’s your point? Why 

should I be reading this? Why should I continue? My point is simple: there is an alternative 

interpretation. Moreover, it’s credible because it’s not weird—not weird like pilot wave or many-worlds 

interpretations. It gives you an understanding in terms of the geometry and the physicality of the 

situation at hand. It’s referred to as the Zitterbewegung interpretation. It has good credentials—

credentials that go back to Erwin Schrödinger9 and Paul A.M. Dirac, to be precise. If you have never 

heard about these people, we do recommend you read another book on the weird world of quantum 

mechanics. 

If you are still reading, then I would like to add another name—which I did not know before I started 

doing research on this book so – in this case – you’d be forgiven for not knowing him: David Hestenes.  

Prof. Dr. Hestenes is the Great Guru of the Zitterbewegung interpretation of quantum mechanics. He 

started working on an entirely new algebra, which he refers to as spacetime algebra (STA) or geometric 

calculus. You can find more information about that on his website.10 We won’t get into it because 

understanding it requires very advanced math but – simplifying a lot – you should think of extending 

Einstein’s geometric approach to gravity to electromagnetism. So it’s a geometric approach to explaining 

quantum mechanics. In practice, that amounts to explaining what’s going in the black box that the 

mainstream interpretation of quantum mechanics is not able to open.  

So why should you continue reading? Be part of the movement. Be part of the revolution. Think for 

yourself. Contribute to the debate. If you don’t, then don’t. Be a Renaissance Man or Women: try to 

understand it all. This book will – at the very least – show you what we understand, and what we don’t. 

                                                           
 
9 That explains the German terminology: Zitter means trembling or shaking. You’ll probably shake  
10 See: David Hestenes, Geometric calculus, http://geocalc.clas.asu.edu/. I had a few exchanges with Prof. Dr. Hestenes, from 
which I understand he would like me to include a more detailed description of STA or GC in this book. However, the publisher 
and I agreed to keep this book at an introductory level. 

http://geocalc.clas.asu.edu/
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So, what is it all about? 
If you read this book, you will probably have heard about the superposition principle. We can – and 

should – apply it to motion. Jason layers many motions in his animations:  circular, linear and curvilinear. 

That’s an important idea in this book. Why? It’s heart of the Zitterbewegung description of reality. 

The Zitterbewegung interpretation of an elementary particle combines the idea of a pointlike charge 

moving about in its own space. That motion is probably quite chaotic: Zitter is German for shaking or 

trembling11, and Zitterbewegung theorists (we’ll abbreviate as zitter or zbw) think the Uncertainty 

Principle in quantum mechanics is rooted in that chaotic motion. However, zbw theorists also think we 

can model this uncertainty, somehow, by analyzing the various degrees of freedom in the system. Look 

at the rather boring illustration below. It’s an Archimedes screw: it combines simple linear with equally 

simple circular motion. By the way, you should note the circular motion itself can be analyzed as a 

combination of two linear motions. Look at the green and blue sinusoidal curves: their combination 

gives us the circular motion.    

 

Figure 2: An idealized Zitter trajectory12 

As boring and simple as it is, you’ll have to admit it that – because of the linear motion – it becomes a bit 

difficult to associate a plane of rotation with the circular movement. Perhaps the concept of a plane of 

rotation has become meaningless, but we don’t think so: we think the plane of rotation itself is also in 

some oscillation now: it wobbles about, and it may wobble about some other plane that’s parallel – 

rather than perpendicular – to the (linear) direction of propagation. Is that important?  

It is: if we think of that red line as capturing the motion of an electron, then its rotational motion is 

equivalent to some current ring. The loop isn’t closed but we’ll still have a magnetic moment there: 

current loops produce a magnetic moment, and it’s probably the single most important quantum-

mechanical property of particles that needs to be explained. It’s closely related to the concept of spin, 

but not quite identical. Spin is angular momentum. The ratio of the magnetic moment and the angular 

moment will give us the gyromagnetic ratio, or the g-factor as it’s more commonly known, and we’ll 

show it’s, effectively, equal to 1 for a pure orbital moment (an electron in an orbital), while it’s 2 for a 

pure spin moment (a free electron). 

                                                           
11 In case you wonder why this motion is described using some German word, it is because Erwin Schrödinger – who stumbled 
upon while exploring solutions to Dirac’s wave equation for an electron – was a German-speaking Austrian. German was an 
important language for physics and scientists around 1900, but that changed after the first World War. 
12 This diagram is based on an illustration of a circularly polarized wave, which looks exactly the same. We just added the λ 
wavelength. It is a diagram from Wikimedia Commons. While it is in the public domain, we still want to acknowledge the author 
here: https://commons.wikimedia.org/wiki/User:Dave3457.   

https://commons.wikimedia.org/wiki/User:Dave3457
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Any case, what we want to tell you here is that most physicists will tell you that spin, or the magnetic 

moment, of an electron – or any particle, really – is some intrinsic property of a pointlike particle that 

we can’t understand. That’s the Copenhagen interpretation of quantum mechanics: we have some black 

box there and we can’t look inside, unless we decide to do a measurement but then we disturb the 

whole system because it’s so small: we’re probing particles with particles. The Zitterbewegung 

interpretation admits the disturbance of the measurement but says the interpretation is nonsense: we 

think a charged particle is this hybrid combination of a pointlike charge and its complicated motions. 

Now, that is, in a nutshell, the revolution which comes with the Zitterbewegung interpretation of 

quantum mechanics: we think this hybrid description of a particle can explain everything.  

Everything? Yes. Everything: diffraction or interference is no longer some weird thing. We interpret 

these quantum-mechanical amplitudes as some real oscillation. 

Now, if you know something about quantum mechanics, you’ll know we need to square those 

amplitudes to get probabilities. It’s usually the probability of actually finding the electron here or there. 

Can we explain that squaring rule? Yes, we can. The oscillation packs some energy. The energy in an 

oscillation – any physical oscillation – is always proportional to the square of the (maximum) amplitude 

of the oscillation, so here’s the first little equation of this book: E  a2. Now, Einstein’s mass-energy 

equivalence relation (E = m·c2) tells that energy densities will also be mass densities. It, therefore, makes 

sense to think the mass of the whole thing – the charge in its weird oscillatory motion – is just the 

equivalent mass of the energy in the oscillation, and it also makes sense to think the probability of 

finding the charge here or there will be proportional to the energy density here or there. 

Is it that simple? We think it is. Your next question should then this: why didn’t think anyone of this 

before? We’re 2019, right? We are, and many people actually did think of this before we did, but those 

weird 720-degree symmetries prevented the kind of easy geometric understanding of the wavefunction 

that we’ll be providing in this book. So we had to prove these 720-degree symmetries are not really 

there, and that’s what we did.13 The argument is a rather complicated one, and so we do not 

recommend you look at it. It will come. We first have to explain some basic stuff. It will, then, all unfold 

gradually—or so we hope. 

I hope you will have fun with this book, because that’s the objective! It is fun to deeply understand stuff, 

so we hope we can share that understanding. 

For the professional physicist 
For the more serious reader – who may be more reluctant to speculate too much and will want to see 

some formulas – we want to quickly insert some very crazy math that may or may not entice him to read 

the whole book.  

Let me warn the not-so-serious reader, though: please skip what follows, as we’ll explain step by step 

later. I really do not want to discourage you! This is not an easy book, but it’s no hocus-pocus either! 

Anyone with basic knowledge of math and physics should be able to get through it. But what I am going 

to present below is very dense, and so I will unpack it in the book. I promise! 

                                                           
13 See: Jean Louis Van Belle, Euler’s wavefunction : the double life of −1, 30 October 2018, http://vixra.org/abs/1810.0339.   

http://vixra.org/abs/1810.0339
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Let me get back to the more serious reader. We want to tell him (or her) that we will think of that 

circular motion as a two-dimensional oscillation and – because the two oscillations are independent and 

90 degrees out of phase – we can just add the energy of the two oscillators: E = m·a2·ω2 . Now, ω = E/ħ, 

and E = m·c2, so it’s easy to figure out we get the Compton radius for a: 

E = m ∙ 𝑐2 = m ∙ 𝑎2 ∙ ω2 = m ∙ 𝑎2 ∙
E2

ℏ2
⇔ 𝑎 =

ℏ

m ∙ 𝑐
 

That’s a weird but beautiful result, isn’t it? The fun doesn’t stop. If c is equal to the (tangential) velocity 

of the pointlike charge, then it’s easy to see the Compton radius must diminish if the linear velocity (v) 

gets larger. we get the following formula for that wavelength λ in Figure 2: 

λ = 𝑣 ∙ T =
𝑣

𝑓
= 𝑣 ∙

h

E
= 𝑣 ∙

h

m𝑐2
=
𝑣

𝑐
∙
h

m𝑐
= β ∙ λ𝐶  

Hence, λ is a fraction of the Compton wavelength λC = 2π·a, and the fraction is the relative velocity β = 

v/c. As the linear velocity increases (so that’s just the classical velocity of our particle), then it’s energy 

and, therefore, its equivalent mass is going to increase. In fact, using natural units (c = 1 and ħ = 1), we 

get the simplest of simple formulas for the Compton radius: 

𝑎 =
1

m
 

What about uncertainty? If there is uncertainty about the velocity, then there is uncertainty about the 

energy and, therefore, about the (equivalent) mass of our electron. Hence, the radius of the oscillation 

may also increase or decrease, which is what Jason’s image (Figure 1) suggests. The two complementary 

expressions of Heisenberg’s Uncertainty Principle (Δp·Δx = h and ΔE·Δt = h) can, therefore, easily be 

related one to another. In fact, all uncertainties can easily be related through this very simple geometric 

model. But so what’s h? What is that quantum of action? It’s just the product of the force that keeps 

that charge in its orbit, the circumference (λC = 2π·a) and the cycle time T = 1/f. Energy is force over a 

distance, so we can write this: 

F ∙ λ𝐶 ∙ T = E ∙
1

𝑓
= E ∙

ℎ

E
= ℎ 

Planck’s quantum of action represents what we are going to refer to as the elementary cycle! It is a 

powerful idea because it will also give us the Bohr orbitals and an elegant photon model. All is geometry 

now! 

The more serious reader will now ask us: can you explain the weirder stuff? The anomalous magnetic 

moment, and the interference of a photon with itself? The answer is positive. The zbw model of an 

electron introduces an asymmetry. Let us show you what we mean. We can calculate the de Broglie 

wavelength, which we’ll denote as λL , as: 

λL =
h

m0𝑐
∙
1

γβ
=
1

β
·
h

m𝑐
 

We now get the following fascinating relationship between three lengths: 
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λL ∙ λ = λL ∙ β ∙ λ𝐶 =
1

β
·
h

m𝑐
∙ β ∙

h

m𝑐
= λ𝐶

2  

That’s the latus rectum formula for an ellipsoid. Hence, we should not think of an electron as a perfect 

sphere, or a perfect disk. It does resemble the Dirac-Kerr-Newman geometry we get from classical 

analysis, and the asymmetry should explain the anomalous magnetic moment. We invite you to check all 

of the calculations above by reading this book. In fact, we will further build on them and derive many 

other previously mysterious properties. 

How do we explain the interference of a photon with itself? Because it’s a spin-one particle – but 

without a pointlike charge – we will argue it consists of two linear polarization states, which we will 

interpret as being real. We know that sounds crazy but – if you want to skip it all – please do check out 

chapter XV at least! 

OK. This must be one of the longest introductions to a simple text on physics ever. So let’s get started. 

Jean Louis Van Belle, March 2019  
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I. Prolegomena 

The nature of space and time 
Prolegomena is Greek for introduction or prologue. It is also the title of a manuscript all students of 

philosophy (including me) are familiar with: Prolegomena to Any Future Metaphysics That Will Be Able 

to Present Itself as a Science. It was written by Immanuel Kant. Kant’s ideas on the nature of space and 

time were interesting. They go back to the great Enlightenment thinker David Hume whose ideas can, in 

turn, be traced further back in time to earlier thinkers—until the trace disappears in the mists of history. 

Studying the genealogy of concepts and ideas – think about the evolution of the concept of energy, for 

example14 – is an interesting exercise but that’s not what we’re going to do here.  

So what is that we want to do then? We want to give the reader some pointers to think for himself. For 

example, we hope that, after reading this book, he or she will effectively take a moment to think about 

the concepts of space, time and energy, and how they structure our thinking about what we refer to as 

reality. In fact, you should already start doing that right now—in background mode, so to speak.  

To get you started, I want you to reflect on the following. You know time has one direction only: it is not 

like a (spatial) coordinate axis along which we can measure position in both directions: this direction or 

its opposite. You also know there are some general principles in physics that reflect that idea of time 

going in one direction only—time ticking away, lost forever. The idea is very real. In fact, while writing 

this, Prof. Dr. David Hestenes – who started the modern thinking about the interpretation of quantum 

mechanics that we want to present in this book15 – emailed me his latest article, and its title is quite 

significant: Quantum Mechanics of the Electron Particle-Clock.16 

In classical mechanics, physicists will talk about thermodynamics and entropy and tell you that entropy 

(energy dispersal) will always increase, and so that is why physical processes are not reversible—in 

practice, not in theory: a perpetuum mobile doesn’t work because of friction or heat. In footnote 14, I 

wrote something about the modern idea of energy: it has no direction. However, we believe that, if 

some charged particle is going to tunnel through what is referred to as a potential barrier, it will need 

some direction: if you want to ram a door, you’d better get the direction right. But that’s classical 

physics. Not what you want to hear when you’re reading a book about quantum mechanics, as you’re 

doing now. Quantum physicists will tell you a more complicated story involving CP-symmetry breaking 

and its corollary: CPT invariance.  

I have written about these things17 but when someone asks me to explain why time has one direction 

only, I wouldn’t refer to any principle in physics. I will tell him or her it is just because our mind works 

                                                           
14 We will let you google here. Note that, in modern physics, the concept of energy does not include the idea of a direction. 
When we will be discussing the concept of Planck’s quantum of action as a vector quantity, you will want to think about that. 
Kinetic energy is related to motion, and motion has a direction. Also, potential energy is measured at this or that point in space 
and, hence, any difference in potential energy between two points will also involve the idea of a direction. 
15 See: David Hestenes, The Zitterbewegung Interpretation of Quantum Mechanics, Found. Physics., Vol. 20, No. 10, 1990, pp. 
1213–1232. 
16 In case you prefer a more classic reference, Richard Feynman also advances the idea of the particle clock in a short series of 
lectures (QED: The Strange Theory of Light and Matter) for laymen. These lectures were transcribed and published by Ralph 
Leighton, just before Feynman died, from cancer, at the relatively young age of 69. It is a delightfully simple introduction to 
quantum math, but towards the end there are some inaccuracies, so we wonder if Feynman has thoroughly reviewed it.  
17 If you are interested in these things, you can check my blog, which has various posts on these fascinating topics. See, for 
example, https://readingfeynman.org/2014/05/11/time-reversal-and-cpt-symmetry-iii/, or just use the search function with 

https://readingfeynman.org/2014/05/11/time-reversal-and-cpt-symmetry-iii/
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that way. If the person I am talking to has no background in physics or math, I will refer to philosophers 

such as Hume or Kant and repeat what they told us: time is just a category of our mind but – unlike 

spatial categories (up or down, left or right, front or back) – it has one direction only. Our world would 

not make sense if we would allow this or that object to go back in time. That is why we find all of those 

time travel movies so interesting: they are intriguing because they do not make sense.18  

But why would that be so? If the person I am talking to has some basic knowledge of math or physics – 

which, if you are reading this book, you surely have – I will tell him or her time has one direction only 

because – if it wouldn’t – we would not be able to describe trajectories in spacetime by a well-behaved 

function.  

There is really no need to think of entropy or of other more convoluted explanations. The diagrams 

below illustrate the point. The spacetime trajectory in the diagram on the left is not kosher, because our 

object travels back in time a couple of times. Spacetime trajectories need to be described by well-

defined function: for every value of t, we should have one, and only one, value of x. The reverse is not 

true, of course: a particle can travel back to where it was. That’s what it’s doing in the graph on the 

right. The force that makes it do what it does is some wild oscillation but it is possible: not only 

theoretically but also practically.  

 

Figure 3: A well- and a not-well behaved trajectory in spacetime 

Hence, it is easy to see that our concept of time going in one direction, and in one direction only, implies 

that we get well-behaved functions for trajectories—for motion in other words. The idea of motion, in 

fact, is what gives space and time their meaning.19 The alternative idea is spaghetti: that’s the first 

graph. 

Having said that, I should note this is a book on physics – quantum physics, in fact – and we should, 

therefore, not get into too much philosophy. We should get into math. The introduction to a book on 

physics is usually mathematical, and this book is not an exception. No differential equations, however. I 

promise. Why not? Not because I want this book to be an easier read but because I do not believe in 

that one equation that gives us everything. Theorists who do, think of differential equations. They’re a 

remnant of the idea that there is some aether—some medium in which things take place. If such 

medium exists, then we should find that one differential equation that gives us all possible motion in 

                                                           
key words such as time reversal or CPT symmetry. However, we would advise to not get too distracted and continue to try to 
read this book. Otherwise your chances of getting through it will be even less. 
18 Do the test: you will always find something that just isn’t right about the movie. However, Jason Hise – who designed the 
cover for this book – told me I should see Predestination because he doesn’t find any logical mistake there.   
19 Please do disagree. You can always email the author directly: jeanlouisvanbelle@outlook.com. I am happy to learn from 
alternative explanations. 

mailto:jeanlouisvanbelle@outlook.com
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space and time. But so I don’t believe in that. I think the intuition that underpins Einstein’s general 

relativity theory – the idea that objects come with their own space – can and should be generalized.  

Hence, we need to think of layers of motion—or a layered reality, really. We need to think in terms of 

systems, sub-systems and interfaces. We should learn from the paradigms that are driving stuff like 

object-oriented programming. When talking fundamental physics, we are talking movements within 

movements, and rotations within rotations.20 That enables us to understand those weird 720-degree 

symmetries in quantum mechanics geometrically. 

We dropped the word here: geometry. What does it mean to understand something? We need to be 

able to visualize something. That is why the Copenhagen interpretation of quantum mechanics is so 

unsatisfactory: it tells us Nature is just some black box and we cannot know what goes on inside. That is 

why this book is different: it offers a geometric interpretation. In fact, we think the Copenhagen 

interpretation is no interpretation: it tells us to just give up. It tells us we should not even try to 

understand. We hope that, after reading this book, you will feel there is an alternative—and a pretty 

good one too! 

The Theory of Everything: U = 0 
We have given our answer to one fundamental question above: what is the nature of time and space? 

What is their essence?21 We answered that question by saying space and time are concepts that enable 

reality to meet our mind. You may or may not like that answer. You may also want to distinguish 

between mathematical space (think of the Cartesian coordinate space) and physical space (think of the 

idea of curved space around massive objects, for example). However, we will not dwell on this. We only 

want to give you a few pointers to think for yourself.  

Now, the few friends who sort of vaguely appreciate what I am trying to do would sometimes ask 

another question: what is that fundamental equation or that Theory of Everything that Stephen Hawking 

was looking for?22 When I get that question, I will usually say something like along the lines of what 

follows. 

Everything is motion.23 A force is that what changes the state of motion of an object. Mass is a measure 

of inertia—resistance to a change of the state of motion. When we choose a natural unit to measure 

force, we choose a natural unit to measure mass. Also, energy and mass are equivalent according to 

Einstein’s E = mc2 equation, so energy can be understood in terms of motion too.24 Hence, the force law 

– or force laws, plural – are very fundamental.  

                                                           
20 This book integrates the idea of layered motions, which I developed in one of the papers that contributed to this manuscript. 
See: Jean Louis Van Belle, Layered Motions: the Meaning of the Fine-Structure Constant, 23 December 2018, 
http://vixra.org/abs/1812.0273.  
21 I am tempted to talk about another philosopher here – Thomas Aquinas – but I don’t want to confuse the reader even more 
than I am already doing. 
22 I enjoyed the movie on Hawking’s life (The Theory of Everything, 2014). At the same time, some of Hawking’s one-liners in 
that movie are obviously taken out of context or might, quite simply, be factually incorrect. 
23 You may want to interpret this as Heraclitus’ panta rhei principle. That’s fine. However, this idea is much older than that – 
think of the thoughts that are attributed to Simplicius and Plato himself, for example – and, in any case, physicists cannot do 
much with an idea without an equation. In other words, don’t engage in too much philosophy here. 
24 One of the key achievements of this book is that it offers an easy understanding of the E = mc2 equation. We will show it 
models a two-dimensional oscillation. As such, we will think of mass the way John Wheeler thought about it: “mass without 

http://vixra.org/abs/1812.0273
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But what is a force? A force has to grab onto something. So let us think about what a force can grab 

onto. We may say that mass comes in one ‘color’ only: it is just some scalar number. Hence, Einstein’s 

geometric approach to gravity makes total sense. An object with some mass comes with its own space, 

so to speak: a light beam that gets bent by the Sun goes along a geodesic. So we can establish an 

equivalence between a description in terms of curved spacetime and gravity.25  

In contrast, the electromagnetic force is based on the idea of an electric charge, which comes in two 

‘colors’, so to speak: black or white, or + or −, or whatever other dichotomy you want to use. Maxwell’s 

equation(s) seemed to cover it all until it was discovered the nature of Nature – sorry for the wordplay – 

might be discrete and probabilistic. However, that's fine. We have been able to modify the classical 

theory to take that into account. We’re all good. It’s just a different sector in the Standard Model. 

Gravity talks about big stuff. Quantum electrodynamics (QED) talks about small stuff: electrons and 

photons, and how they interact.   

And then we have the strong force to describe what goes on inside of the nucleus. So that’s quantum 

chromodynamics: QCD. The strong force effectively grabs onto stuff (quarks) that comes in three colors, 

so to speak, and the rules for mixing those colors are quite particular. So that’s some version of color 

television.26 And then we have the weak force which we don’t really understand but we’ve got some 

kind of theory that matches the results from whatever experiments we’re doing.27  

In short, we have different sectors in the Standard Model, and they’re separated by very different force 

laws: some linear, some non-linear, and all acting on different stuff.  So we might say we have a Theory 

of Everything already. In fact, with the addition of the Higgs sector, we may say the Standard Model is a 

Theory of Everything. The only problem is that it looks rather ugly: a lot of equations. No single equation 

can capture it all. 

Really? The one equation doesn’t exist? When people insist, I’ll go a bit further and I’ll jot down 

Feynman’s equation of the Theory of Everything28: 

                                                           
mass.” An easy-to-read reference to that concept is https://cpb-us-
e1.wpmucdn.com/sites.uark.edu/dist/b/383/files/2017/02/Mass-without-Mass.pdf.  
25 It is funny but, while it is a very deep and profound statement, it is one of those that many of my interlocutors understand 
intuitively—regardless of their level of training, knowledge or experience. It is one of the key reasons why we think what we will 
present in this book makes sense: the stuff I am going to present is deep, but it makes sense intuitively. 
26 Our eyes actually do respond to three types of color only—using three types of cone receptors, and color television works the 
same! 
27 Physicists will probably cry wolf when I say we don’t really understand the weak force: Weinberg, Salam and Glashow got a 
Nobel Prize for unifying the weak and electromagnetic forces in 1979, right? Have a look at the press release: 
https://www.nobelprize.org/prizes/physics/1979/press-release/. I feel it’s just an ad hoc theory. It will take some more to 
convince me. I am with Dirac: if a theory isn’t beautiful, then it can’t be right. To paraphrase Dirac’s words: if God exists, then 
he’s a mathematician—not a plumber. 
28 Feynman develops the U = 0 equation for the Theory of Everything in what I think is one of his best tongue-in-cheek 
arguments in his seminal Lectures on Physics (http://www.feynmanlectures.caltech.edu/II_25.html#Ch25-S6). Its title sounds 
serious enough: The Invariance of the Equations of Electrodynamics. There is a lot of criticism on Feynman’s seminal Lectures 
on Physics—especially the volume on quantum mechanics. For example, Prof. Dr. Ralston (How To Understand Quantum 
Mechanics, 2017, p. 10-40) writes that “Feynman’s magic fails when he gets tangled up trying to derive quantum mechanics 
from Stern-Gerlach and ad-hoc notation.” We agree and don’t agree with such comments. The great value of Feynman’s 
Lectures is that they make you think for yourself. It took me decades to get through them, and I am still discovering subtleties I 
hadn’t seen before. Having said, there are serious flaws, but these are just the flaws of the Copenhagen interpretation of 
quantum mechanics, which Feynman did not dare to challenge—although he was tantalizing close to it in some of his Lectures. 

https://cpb-us-e1.wpmucdn.com/sites.uark.edu/dist/b/383/files/2017/02/Mass-without-Mass.pdf
https://cpb-us-e1.wpmucdn.com/sites.uark.edu/dist/b/383/files/2017/02/Mass-without-Mass.pdf
https://www.nobelprize.org/prizes/physics/1979/press-release/
http://www.feynmanlectures.caltech.edu/II_25.html#Ch25-S6
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U = 0 

That’s a full-blown Theory of Everything. In fact, it is the Theory of Everything. Without any doubt 

whatsoever. Why? All of the laws and equations in physics – Standard Model or not (it works for any 

theory—even nonsensical ones) – can be written like this. We wrote U and 0 in boldface, so it can be a 

vector equation, or a matrix equation. So we just take all of our laws and equations and we re-write 

them as a mn matrix equation: Ui = 0. The m and n are just the dimensions of the most complicated 

equation on our list. To give a very simple example, note that we can always re-write the simple x = v·t 

equation of motion as the following matrix equation: 

[
𝑥 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

] = [
𝑣 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

] [
𝑡 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

] 

So we can write every single law or equation in physics as U1 = 0, U2 = 0,… Ui = 0,…29 and we can then 

add them all to get the Theory of Everything: 

U1 + U2 + … + Ui +… + Uæ = U = 0 

What’s that æ subscript? It’s the dimension of the Universe. Why? Because it’s the number of equations 

we need to describe it. Or… Well… No. Maybe æmn is the dimension of the Universe.  

[…] 

Surely you’re joking, Mr. Feynman! You are right. He was joking when he wrote this. But think about it. It 

triggers some fundamental questions. What’s a dimension? Is it just a number or some mn product? 

How are they related to the degrees of freedom in a physical system? Is a dimension physical or is it a 

purely mathematical concept? There is no answer to this, because the concept of a mathematical 

dimension is quite ambiguous. It is as ambiguous as the concept of a mathematical space.30  

In physics, it is somewhat less ambiguous – we think we know what a kg or a joule represents, and we 

know how the physical space that we’re living in looks like – but it is not as straightforward as teachers 

or university professors want us to believe. In fact, that’s another thing we want you to think about as 

you’re going through this book: what’s a dimension? What is it in math? What is in physics? What is it 

when we’re trying to make sense of the world? 

OK. What’s the point here? The point is: the Theory of Everything is already there! It’s the Standard 

Model. It just has a structure we do not really like because it is overly complicated. The equations don’t 

look good: everyone feels they can be simplified, somehow.31 All Theories of Everything are about 

simplifying what we already know. So what’s our contribution here? 

                                                           
His chapter on identical particles (http://www.feynmanlectures.caltech.edu/III_04.html) is – in my not so humble view – the 
one that is most misleading. 
29 You may wonder how we can get the x = v·t equation, with x, v and t as matrix quantities, in the Ui = 0 format but you should 
be able to figure that out for yourself. It involves the idea of an inverse of a matrix. You can google that. 
30 If you think that concept isn’t ambiguous, read this early blog post of mine: https://readingfeynman.org/2013/10/27/many-
spaces/.  
31 This must sound sacrilegious to Gell-Mann (who is 89 now) and his colleagues, as they simplified the wild zoo of particles 
through the introduction of the concepts of quarks and gluons. We applaud – and actually do believe in – this effort. However, 
we feel the QED sector itself can be simplified substantially. In fact, that’s what this book is all about.  

http://www.feynmanlectures.caltech.edu/III_04.html
https://readingfeynman.org/2013/10/27/many-spaces/
https://readingfeynman.org/2013/10/27/many-spaces/
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We hope this book will contribute by cleaning up the QED sector. With cleaning up, we mean simplifying 

and rationalizing by injecting some common-sense ideas—by providing some understanding in terms of 

geometry. You – the reader – will have to judge – after reading this book – if we delivered on that. 

Fundamental equations 
If you understood anything of what we wrote so far, you will understand it is about structure. How do 

we structure equations into a coherent theory, and what is the structure of those equations? How do we 

model the various degrees of freedom in our understanding of what is—or of what might be the case. 

Indeed, the facts are the same32 and there are various ways of structuring our interpretation of them.  

We talk real structure here. Not just some mathematical rewriting. What’s mathematical rewriting? I’ll 

give you an example. You know that Maxwell’s equations are usually written as a set of four 

independent equations, with variables that vary in space and in time—variables that are described in 

terms of position and time. But we can also re-write that set of equations in terms of four-vectors. 

Instead of four equations, we get two.33 This is the most fascinating thing about physics: we can re-write 

various sets of equations by re-defining our variables – integrating a physical law (special or general 

relativity) or a mathematical convention (a complex number is not quite the same as a two-dimensional 

vector) – and our level of understanding may or may not change accordingly. However, that doesn’t 

change the basic question in regard to the structure of our theory: if we assume or accept some basic 

understanding of what time, space and energy actually are, then what equations should we think of as 

being fundamental, and how do we derive the other equations from those that we consider to be 

fundamental? That is the question! 

As mentioned, this book is limited to quantum electrodynamics (QED), so that’s electromagnetism 

augmented with quantum theory. Hence, Maxwell’s equations are pretty fundamental—and we will 

assume you have some basic knowledge of them. All other equations we’ll introduce in the rest of this 

chapter, and you should take your time to look at them and google some more background information 

if you feel you don’t get them. We will have two or three equations that will come back all of the time: 

Newton’s force law (F = m·a), Einstein’s mass-energy equivalence relation (E = mc2) and the formula for 

the energy of a harmonic oscillator (E = k·a2·ω2).  

The latter (E = k·a2·ω2) can be derived from Newton’s force law – so it is not fundamental in that sense – 

but we will use it (almost) all of the time. It is the formula for an oscillator and, if you know something 

about physics, you know a lot of phenomena are described in terms of oscillators. We, therefore, do 

want to mention this formula here already.  

Then we have Einstein’s E = mc2 equation. So what’s that? One of the best things in this book is that it 

will offer you a bold physical explanation of Einstein’s E = mc2 equation by equating the E = m·c2 and E = 

k·a2·ω2 equations. Hence, we will think of m as some proportionality coefficient (k) and we will explain 

how we can think of the speed of light (c) as the product of an amplitude (a) and a frequency (ω). The 

latter will sound weird at this stage but you will soon see that the idea is not all that outrageous. In fact, 

                                                           
32 I do not like the earlier Wittgenstein (Wittgenstein I, that is), but his philosophical notion of ‘what’s the fact?’ is – almost – as 
good as my own personal answer to it: “It is that what might be the case.” The latter is just my personal favorite definition of 
reality. Please tell me yours. 
33 It is very tempting to write them here – because they are so beautiful – but I will resist the temptation, because I am 
digressing too much already. 
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the idea of mass as a proportionality constant should already be familiar to you because we also get it 

from re-writing Newton’s force law: 

𝑭

𝒂
= m 

You know what a force is, right? It is that what causes an object to change its state of motion. Such 

change might involve linear acceleration (or deceleration, of course), but it may also involve a change of 

its linear trajectory into something with some curvature. So Newton’s force law tells us how this 

works—not in some kind of vague way, but how it works exactly: the ratio of the force and the 

acceleration will equal the mass of that object. Hence, the mass appears as a proportionality coefficient 

here. That’s quite deep (if you don’t think so, think again).  

We should note one more thing. We can also re-write Newton’s force law like this: 

𝑭

m
= 𝒂 

Think about the physical dimensions here. A force is expressed in newton (N). Mass in kilogram (kg). 

Acceleration in meter per second per second (m/s2). Hence, we get the following fundamental equation 

for physical measurement units: 

N

kg
=
m
s⁄

s
=
m

s2
 

On the left, we have the physical dimension of a field strength: a force per unit something. To be 

precise, it’s a force per unit mass, in this case. If it would be a charge, then we’d have an 

electromagnetic force grabbing onto a charge, and the field strength would be expressed as a force per 

unit charge: newton per coulomb (N/C). But so here it’s unit mass and we have the physical dimension 

of the gravitational field. As you can see, it’s the dimension of acceleration, which describes motion. It 

may not dawn on you right away, but that’s why Einstein’s geometric approach to the gravitational force 

makes perfect sense to me, and I hope it does for you too.34 

If it makes sense for you too, then you should ask yourself: why don’t we have a geometric approach to 

the electromagnetic force? Can we think of charges causing some curvature in space, so we have 

geodesics instead of force lines? The answer here is negative. Why? Because we have two colors here: 

plus and minus, positive and negative. Mass comes in one color only. So, no! No geometric approach to 

electromagnetism. 

Or… Well… I should immediately correct myself here. The great David Hestenes – whom I mentioned 

already as the Great Guru of the Zitterbewegung interpretation of quantum mechanics – actually does 

such geometries but, as you can imagine, they are quite complicated. It’s a whole different ballgame. 

Hestenes refers to it as spacetime algebra (STA) or geometric calculus. You can find more information 

                                                           
34 Most of the test readers of the draft of this book said they wanted me to be much more explicit on what I mean when I write 
things like that, but you will gain more from trying to pierce through these things yourself. One thing that helps me is to re-
write even the simplest of equations – equations like a·b = c, indeed – in every possible form (c/a = b, or a/c = 1/b) – and then 
think of what it might mean – taking into account these variables are not merely numbers: they have a physical dimension, so 
there is usually some physical meaning to each alternative expression. One just has to find it and, if one does, it usually leads to 
some Aha-Erlebnis that will further your intuitive understanding of it all significantly.  
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about that on his website.35 We won’t get into that because it requires a more advanced understanding 

of math. We will keep things simple here. Simple but correct. How correct?  

David Hestenes read a draft of this book, and he wrote the following to me:  

Dear Jean Louis, I delayed answering your email until I had time to read your whole manuscript. 

I like your verve, your style and your commitment. I agree that Zitter, rather than the 

uncertainty principle, is the key to understanding QM. I agree that [understanding the imaginary 

unit] i is crucial to QM interpretation, but I invite you to study what I say about it on my 

geometric calculus website. It happens that I was just about to submit the attached papers for 

publication, so you are among the first to see them. Enjoy the scenery! David Hestenes.36 

In short, he prefers an analysis in terms of spacetime algebra because I am cutting some corners in this 

book here. However, I interpret his words as indicating I am cutting them in a way he does not 

fundamentally object to.37  

Now that I am throwing some names around, I should mention that David Hestenes is not the only 

Zitterbewegung theorist, of course! However, we may say he started the revolution, so to speak. He is in 

good company. We can quickly mention some more names here: Burinskii (Russian Academy of 

Sciences), Celani, Vassallo and Di Tommaso (University of Palermo), Frabboni, Gazzadi, and Pozzi 

(Universities of Bologna and Modena). Those are the names. If you google them, you’ll see they’re 

associated with concepts you’ve probably never heard about: Kerr-Newman geometries, black-hole 

electrons, torus topologies and what have you. Don’t worry about it: this book will give you some good 

pointers and then you can check out stuff for yourself.  

The point to note is that all these theories inject realism into quantum-mechanical models: they explain 

stuff. They go beyond the Copenhagen interpretation which merely describes stuff. To be blunt, you 

shouldn’t think of the Copenhagen theory as a theory: it’s a procedure. It tells you what to do, not why. 

That’s where all these Zitterbewegung theories and models are very different, and why I like them and 

why I want to share the basics of these theories with you in this book.  

Physical dimensions 
We introduced a few fundamental concepts above: force, mass, motion. We can measure these. In 

physics, we can also define various new quantities. For example, we have a definition for (linear) 

momentum: mass times velocity.38 Hence, its physical dimension is kg·m/s. Think of a big truck ramming 

into some house versus some insect flying into your face while you are biking: their momentum differs 

quite a lot. However, we do not want you to think of the p = m·v formula as some separate physical law 

                                                           
35 See: David Hestenes, Geometric calculus, http://geocalc.clas.asu.edu/.  
36 E-mail from David Hestenes to the author dated 4 March 2019. 
37 We had a further exchange on what’s acceptable in terms of cutting corners and I will just quote his summary answer to the 
last draft of this book: “There is certainly a need for introductory and semi-popular accounts of zbw in QM. The level and tone 
of your manuscript is fine. But you still have work to do if you wish to match your account of the basics with mine.” So… Well… 
What should I say about this? The Universe is populated by Gods, demi-gods, heroes, workers, peasants, and whatever other 
category of people you might come up with. It is good enough for me. As I will mention a couple of times, this book intends to 
make you think of what might be true, or not. The objective is to give you some pointers, so you can decide yourself what 
makes or what doesn’t make sense in terms of understanding reality. 
38 The definition for angular momentum is the same, but we multiply angular mass (so that’s rotational inertia) with angular 
velocity.   

http://geocalc.clas.asu.edu/
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or formula. Just think of a force being available for some time. That’s momentum. We just multiply both 

sides of Newton’s law with time: 

[F · ∆t] = [m · 𝑎 · ∆t] = kg ∙
m
s⁄

s
∙ s = kg ∙

m

s
= N ∙ s = [p] = [m · 𝑣] 

The [x] brackets around the formula (x) are there to show that we’re analyzing the physical dimensions 

of the formula—and only those physical dimensions. Now that we’re here, think of multiplying both 

sides of Newton’s law with some distance: 

[F · ∆s] = [m · 𝑎 · ∆s] = kg ∙
m
s⁄

s
∙ m = kg ∙

m2

s2
= N ∙ m = J (𝑗𝑜𝑢𝑙𝑒) = [E] 

We get energy! So think of energy as a force times a distance, or a force over some distance. Why is this 

relevant? We’ll show you that in a moment—when we’re going to look at the physical dimension of 

Planck’s quantum of action which – as you may or may not know – is also a physical concept. However, 

for some weird reason that I don’t quite understand, you don’t learn about it in high school.39  

In fact, now that we’re here – doing dimensional analysis of simple equations – I want you to think of 

the physical dimension of Planck’s quantum of action (h). It’s the product of not two but three things: a 

force, a distance and some time: 

h ≈ 6.626[m] × 10−34 N ∙ m ∙ s = J ∙ s 

That looks tiny, but that’s only because our meter and second are rather large units at the sub-atomic 

scale, as we will see when we are going to talk about the idea of an elementary cycle, which will 

combine the idea of a force, a distance and a (cycle) time. In fact, that idea – combined with the 

oscillator model – will explain (almost) everything we’re going to talk about in this book.  

Now think of the following. We can write h as the product of some momentum (N·s) and some interval 

in space (expressed in meter) or, alternatively, as the product of some energy (J = N·m) and some time 

(expressed in seconds, or whatever equivalent time unit you would want to choose40). We will not 

discuss much about uncertainty in this book – because we think we’ve got a pretty certain model41 – but 

if we do, you should remember this: if there’s uncertainty, it will express itself in terms of conjugate 

variables—position and momentum, or energy and time. The reason for that should now be clear: we 

can re-write Planck’s quantum of (physical) action as the product of momentum and distance or, 

alternatively, as the product of energy and time. Hence, we have two complementary expressions of the 

Uncertainty Principle42: 

                                                           
39 If I were to decide on school curricula for math and physics, I’d say: teach those kids about complex numbers, and also tell 
them what physical action is. Why? Complex numbers are essential in our description of Nature. As for physical action, I will 
explain – in a moment – that energy and momentum are just two aspects of physical action. Hence, the concept of physical 
action is – in that sense – more fundamental. 
40 We will talk about these natural time and distance units soon enough. We do not want to present them upfront because they 
tend to confuse rather than enlighten discussions. 
41 As David Hestenes puts it: “Zitter, rather than the uncertainty principle, is the key to understanding quantum mechanics.” We 
will soon explain what Zitter is: it’s oscillatory motion. Patience! 
42 You will usually see ħ or ħ/2 on the right-hand side, so that’s the reduced Planck constant. It depends on how you think of the 
Δ. The Δ is an error or some uncertainty in the measurement but there are various statistical definitions of that. In most 

modern-day publications, you’ll find the so-called Kennard inequality: σp· σx  ħ/2. The σ in this expression is the standard 
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∆p ∙ ∆𝑥 = h 

∆E ∙ ∆𝑡 = h 

It’s as simple as that.  

[…]  

In fact, these ideas are obviously not all that simple but we hope that the idea of conjugate variables 

might make a little bit more sense now: if there is an uncertainty in the momentum, there will be an 

uncertainty in the position. If energy is some oscillation – which we think it is, as we’ll show in this book 

– then the uncertainty in the cycle time and in the energy will also be related because of Planck’s unit. 

We all know Nature is discrete, but the question is: what is discrete, exactly?  

Nature’s quantum is a quantum of physical action (or angular momentum – which amounts to the same, 

except for a 2π factor, which we’ll explain shortly), and physical action – and any uncertainty in it – can 

express itself in various ways: our measurement instruments will usually only gauge one aspect of it 

(spatial or temporal) because we measure what is measured by what is measured. This sounds weird, so 

let us give you an example. We will use light (photons) to obtain information about where an electron 

actually is. Hence, we disturb it, because the photon that hits it will transfer and/or absorb energy. We 

can optimize the measurement process so as to make sure we get great information on at least one set 

of conjugate variables. But it will never be perfect: the measurement will always interfere with what’s 

going on. Why? Because we’re probing the smallest of smallest stuff with the smallest of smallest stuff. 

However, we are getting ahead of ourselves here and so we should let the matter rest for the time 

being—literally. We analyzed Newton’s force law in terms of its physical dimensions. Let’s do the same 

for Einstein’s E = m·c2 equation. As you know, that’s an equation that emerges from relativity theory. Its 

structure is very simple but there is no physics textbook that offers an intuitive explanation for it. In 

other words, we do not understand it in the way we would like to understand it. We do not understand 

it like we understand Newton’s force law. This book is special because we will give you that intuitive 

explanation. Look at these two equations: 

E = m ∙ 𝑐2 

E = m ∙ 𝑎2 ∙ ω2 

Their structure is similar, right? If two formulas have the same structure, then they will usually model 

the same thing. So if we understand the second equation (E = m·a2·ω2), we may understand the first one 

(E = m·c2). So what’s the second equation? It gives us the energy of an oscillation in two dimensions. 

Think of something going up and down and sideways at the same time so it will actually go round and 

round (we’ll give you some illustrations later). The radius of that motion will be equal to a and its 

frequency will be equal to ω, and their product is the tangential velocity v = a·ω. Hence, we will want to 

                                                           
deviation of the distribution that models the uncertainty. We won’t get into the technicality of that—not because it’s difficult 
(it’s not) but just because it’s not the right place here. We will just note that the Δp·Δx = h and ΔE·Δt = h expressions are the 
expressions that Paul A.M. Dirac uses in section 24 (Heisenberg’s Principle of Uncertainty) of his 1930 Principles of Quantum 
Mechanics. It is also the expression Heisenberg himself used.  
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think of the E = m·c2 as modeling some oscillation as well. To be precise, we will say that the E0 = m0·c2 

formula represents the rest matter oscillation.43 

These formulas and the idea of a rest matter oscillation must sound like Chinese (or, worse, like 

nonsense) right now but we will come back to it, and you’ll see the idea is not as weird as it sounds at 

first. To take some of the weirdness away, we’ll just do another dimensional analysis. First note that we 

can write E = m·c2 as c2 = E/m. What’s the use of re-writing it like this? The c2 factor now appears as a 

proportionality constant:  

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
𝑚𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

=
𝐸𝑝𝑟𝑜𝑡𝑜𝑛
𝑚𝑝𝑟𝑜𝑡𝑜𝑛

=
𝐸𝑝ℎ𝑜𝑡𝑜𝑛
𝑚𝑝ℎ𝑜𝑡𝑜𝑛

=
𝐸𝑎𝑛𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑚𝑎𝑛𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
= 𝑐2 

Don’t you find it intriguing that the ratio between the energy and the mass of any particle is always 

equal to c2? For any particle. For any physical object—including you and me! If you think that’s 

intriguing, think again!  

OK. We should move on. Let us do that dimensional analysis: 

[
E

𝑐2
] =

[E]

[𝑐2]
=
N ∙ m

m2 s2⁄
=

N

m s2⁄
= kg = [m] =

[𝐹]

[𝑎]
= [
𝐹

𝑎
]  

Look at this expression: we’ve written the mass m as a proportionality factor in both the m = E/c2 and 

the m = F/a expressions. The dimensions work out, of course. Energy is force times distance, and 

acceleration times distance gives us a squared velocity: 

[m] =
[𝐹]

[𝑎]
=
[𝐹]

[𝑎]
·
[λ]

[λ]
=
[𝐹 ∙ λ]

[𝑎 ∙ λ]
=
N ∙ m
m
s2
∙ m

=
J

m2
s2
⁄

=
[E]

[𝑐2]
 

Note that we used another symbol for Δs. We used the Greek letter lambda (λ). It’s usually referred to 

denote some wavelength. We will show – later – it has the same meaning in the equation above.  

By now, you must be bewildered and wonder: where is this game going? Why are we doing this? Don’t 

worry about it. It’s just a bit of a mental exercise. We hope that re-writing a few formulas in ways that 

do not look familiar should make you think and will prepare you somewhat for the more difficult things 

that will follow. Indeed, this dimensional analysis will say nothing to you, but I am sure you will come 

back to it at some point in time.  

It will help you to understand the two expressions of the Uncertainty Principle, which you should always 

think of a set of equations—just like the two de Broglie relations, which should also be viewed as a set of 

two equations. Taken together, there is no uncertainty, really—except in the direction of this or that 

vector quantity.44  

Also, we hope that analyzing Newton’s force law – re-arranging it, or multiplying it by some distance, or 

some time, over some distance, or over some time – will help you to get a bit of a sense of what Planck’s 

                                                           
43 The energy of a moving object increases as velocity increases. Hence, relativity tells us that its equivalent mass will also 
increase. That is why one needs to distinguish the rest mass, or the rest energy, m0 from m or – what amounts to the same – E0 
from E.  
44 This is a statement we will come back to later. We have given no proof whatsoever here. Hence, if you are confused, then just 
forget about it for the time being. Just move on. It will all come together. I promise! 
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quantum of action might actually represent: an elementary cycle—a force that does some work over 

some distance in some time. This remark brings us to a third or, if you also think of E = m·a2·ω2 as some 

fundamental equation, a fourth fundamental equation. It’s the Planck-Einstein relation, which you have 

surely seen before, but perhaps not in the form I am going to write it here: 

E = ħ · ω = h ∙ 𝑓 =
h

T
⟺ T =

E

h
 

T = E/h ? What is T ? T is a cycle time. If f is the frequency45 (so many oscillations per second) then we 

get the cycle time by dividing a second by that number: T = 1/f. But what cycle time are we talking 

about? Be patient. We will get there. Again, the objective of re-writing these equations in some other 

equivalent format is just to make you think about these equations, but you’re right: I really got ahead of 

myself here46, and so I hope you did not stop reading.  

Let’s get into the basic math. However, before we do so, we want to tackle one more philosophical 

question. 

What does it mean to understand an equation? 
Shouldn’t we have started with this question? We’ve introduced four equations already, and only now 

we’re wondering what it means to understand them? Yes. Think about it. The audience of this book is 

people like you and me: people who want to truly understand quantum physics and who are, therefore, 

not afraid to learn about a few equations. Why are you not afraid? Because you know these equations – 

mathematics, that is – are the language scientists have come to use to describe reality—or their idea of 

reality, at least. 

Language is important. All-important, really. One of my favorite quotes is this one:  

‘We are in the words, and at the same time, apart from them. The words spin out, spin us out, 

over a void. There, somewhere between us, some words form some answer for some time, 

allowing us to live more fully in the forgetting face of nonexistence, in the dissolving away of 

each other.’47 

The language of physicists is math. Dirac once said God must be a mathematician, because He used very 

advanced mathematics to construct the Universe. Dirac was not a believer.48 Hence, he meant to say 

this: we can only understand the Universe if we understand the equations. The next question then is: 

what does it mean to understand an equation? As we started talking about Paul Dirac, let us see what it 

meant to him. He was the first of those first-generation quantum physicists to bring all of quantum math 

together in one comprehensive volume: his 1930 Principles of Quantum Mechanics is, in fact, still in use 

                                                           
45 The ω and f are both frequencies, but ω is the frequency expressed in radians per second, instead of oscillations per second: 

ω = f/2π. That explains why we go from ħ (the reduced Planck constant) to h and vice versa: h = 2π·ħ  ħ = h/2π. You should 
play with these things. 
46 There is a logic, however: one of my test readers advised me to introduce things early on and repeat them a couple of times 
throughout the book, so as to help nurture some more intuitive understanding of the many formulas in this book. 
47 Lagan, in Jeremy D. Safran (2003), Psychoanalysis and Buddhism: an unfolding dialogue, p. 134. 
48 It is said that, because of Dirac’s reputation as an agnostic or even an atheist, the Dean of Westminster Abbey initially refused 
permission for a memorial for Dirac in the Abbey. 
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as a textbook.49 Hence, he should be the ideal person to ask, right? Dirac said he understood an equation 

if he could predict the properties of its solutions without actually solving it. 

Now, I thought about that for quite a while, and I now realize Dirac was, obviously, talking more as a 

mathematician than as a physicist then. He was probably also thinking of some differential equation – 

his wave equation for the electron, perhaps – rather than, say, an equation like E = m·c2, or the two de 

Broglie relations E = h·f and λ = h/p.  

We may mention other differential equations: Schrödinger developed one to explain electron orbitals—

– and others built on that (think of the Klein-Gordon equation, for example). Heisenberg came up with 

one and, as mentioned, Dirac’s equation is there too! The fact that we have a fair number of so-called 

fundamental differential equations – each serving a rather specific purpose (explaining an electron 

orbital, or the motion of an electron in free space, for example) – made me shy away from them. Not 

because they are difficult to understand but because I now think they are, perhaps, not fundamental to 

our understanding of the nature of Nature. 

Why? The equations that describe reality do not have any solutions. They just describe reality. Think of 

these de Broglie equations, for example. Or the E = m·c2 relation. They don’t have any solutions. They 

just represent some relation between two variables we can, somehow, imagine. There is a geometry 

there. That is why I think of these equations as being more real than those differential equations.  

Having said that, I should hastily add that we can actually not directly verify if these de Broglie relations 

are true. Why not? Because we cannot directly observe the frequency (f) of the matter-wave, and we 

cannot directly observe its wavelength (λ) either. Having said that, we all believe these relations to be 

true. Why? Because they emerge from other equations we can actually verify, through making simple 

observations or – more usually – through rather advanced experiments, such as electron interference 

experiments50, or one of the other variation of a Stern-Gerlach experiment.   

The same remark can be made for the E = m·c2 equation: this equation relates two physical concepts – 

mass and energy, so that’s stuff we can measure – in a proportionality relation. This proportionality 

relation tells us that the ratio E/m is always equal to some constant—for any particle or system, really: 

electrons, photons, whatever you can think of. This relation also tells us that, for some weird reason that 

we’ll actually explain in this book, this proportionality constant is equal to the square of the speed of 

light. Just like de Broglie equations, it is a relation one cannot prove directly, but we believe it to be true 

because it emerges out of the equations of relativity theory. To be precise, Einstein’s mass-energy 

equivalence relation emerges from the Lorentz transformation rules for measuring position and time in 

the stationary versus the moving reference frame.  

The question is: what is that equivalence? What mechanism or explanation can we find? We have 

announced that already and we will come back to it a couple of times: we believe the equation 

represents an oscillation in two dimensions—an oscillation in some plane of oscillation. 

You’ll say: what’s the point? All this is rather obvious, right? Or not, perhaps. The point is: if you google 

the Dirac equation – or Schrödinger’s equation or whatever other wave equation – and look at it, then 

                                                           
49 If people question that, I usually joke that I am still using it. 
50 While Feynman thought the electron interference experiment could not be carried out in practice, nanotechnology has made 
that possible now. See: http://www.iop.org/news/13/mar/page_59670.html.  

http://www.iop.org/news/13/mar/page_59670.html
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you’ll have to agree that the functions, variables and operators in that equation are not so 

comprehensible. Why not? Because they do not correspond to anything we can imagine.51 In contrast, E, 

f, λ and even Planck’s quantum of action (h) are things that make sense intuitively. We can associate 

energy with a battery, for example. If we think of a frequency, we may want to think of the flapping 

wings of a hummingbird, and if we think of a wavelength, we may want to think of water sloshing 

around.  

That’s obvious, you’ll say. But what about Planck’s constant? How should we imagine that? Imagining 

what Planck’s quantum might actually be, is somewhat more difficult, but it is not impossible. It is not a 

mathematical constant: it is a physical constant. So it has physical dimensions. To be precise, it is the 

product of a force over some distance and some time. Alternatively, we can also write it as the product 

of some energy and a time interval, or as the product of some momentum and some distance. We can 

imagine forces, energy, momentum52, and distance and time. Hence, here already we get some inkling 

of what Planck’s quantum of action might actually describe.  

However, we will want to be more precise and so we will come back to that: we’ll want you to associate 

Planck’s constant – a Wirkung, in German53 – with the idea of a cycle of some oscillation. So we will get 

there. As for now, we will want you to focus on equations like E = h·f, λ = h/p and E = E = mc2 because, 

yes, we can effectively understand them. In fact, in this book we want to show that – with these three 

equations – you can explain almost everything. What’s almost everything? Almost everything: the spin 

and the magnetic moment of an electron, photon absorption and emission, interference, electron 

orbitals, etcetera. After you have finished the book, you should write me and tell me what I did not 

explain.  

To motivate you, I’ll insert the single-most important graph of the whole book already. I will also give 

you some clues about it so you can already start thinking for yourself. The illustration below presents 

the essence of the Zitterbewegung model of an electron. We believe it offers a classical interpretation of 

all of the quantum-mechanical phenomena that you’ll usually see explained in terms of hocus-pocus and 

blah-blah.  

                                                           
51 I should correct myself here: one of the advantages of the physical (or geometric) interpretation of the wavefunction that we 
will be offering in this book, is that we can also think of a geometric interpretation of a wave equation such as Schrödinger’s, 
which explains the electron orbitals. We believe Schrödinger’s equation describes an energy propagation mechanism, in very 
much the same way as Maxwell’s wave equations describe a propagation mechanics for electromagnetic waves. See: 
http://vixra.org/abs/1812.0202.  
52 We didn’t give an intuitive example of momentum. What’s momentum? It’s the product of mass and velocity. Think of a 
speeding truck ramming into your house. That thing has a lot of momentum as compared to, say, some insect that happens to 
fly into face you while biking. 
53 In English, the dimension of h is referred to as the dimension of (physical) action: newton·meter·second, or joule·seconds (1 J 
= 1 N·s). We feel the English term doesn’t quite catch the physicality of h—not as nicely as the German term. But we have to 
make do with it. 

http://vixra.org/abs/1812.0202
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Figure 4: The Zitterbewegung of an electron54 

If this makes you think of an Archimedes’ screw, then that’s good because it is, effectively, exactly that 

shape: a combination of linear and rotational motion. We effectively think of the electron as a pointlike 

charge that moves along that weird screw-like trajectory (so that’s the red line), combining two motions: 

rotational and linear. As you can see, we can also think of that trajectory as the sum (or superposition, 

as we’d say in physics) of a motion in a horizontal and a vertical plane. That will be important when we’ll 

be discussing the photon. 

We should warn you, however: there is no reason whatsoever why the plane of the oscillation – the 

plane of rotation of the pointlike charge, that is – would be perpendicular to the direction of 

propagation of the electron as a whole. In fact, we think that plane of oscillation moves about itself. 

We’ll come back to that. We think the uncertainty is there: in the oscillation of the oscillation, so to 

speak. But don’t worry about that now. As for now, you should just: 

1. Look at that length λ: you can think of it as the de Broglie wavelength.55  

2. Look at the radius of the circular motion: that’s the Compton radius of an electron (a = λC/2π).  

Moreover, we’ll show the two are related through the velocity of our electron β = v/c. In case the Greek 

letter (beta) makes you afraid already, don’t think like that: β is just the velocity expressed in its natural 

unit, which is the speed of light (c). So there is nothing special about it.  

Talking natural units, if we measure distance and time in so-called equivalent units (so the numerical 

value of c is effectively equal to 1), and if we also chose a force unit such that the numerical value of 

Planck’s famous constant h is also equal to one56, then the Compton radius of an electron will be equal 

to a = 1/m.  

                                                           
54 This diagram is based on an illustration of a circularly polarized wave, which looks exactly the same. We just added the λ 
wavelength. It is a diagram from Wikimedia Commons. While it is in the public domain but we still want to acknowledge the 
author here: https://commons.wikimedia.org/wiki/User:Dave3457.   
55 We will re-fine this statement later because we actually have more than one concept of a wavelength here. 
56 If you are like me, then you may struggle a bit with the various systems of so-called natural units. Should we equate h or its 
so-called reduced value ħ = h/2π with one, and why? We’ll answer those questions in this book. For the time being, you should 
just understand what a natural unit is and what it does. For example, if we keep the second, but we define the distance unit to 
be equal to 299 792 458 m, then we have natural distance and time units, because the numerical value of the speed of light will 
turn out to be equal to one. Of course, we can also choose to keep our distance unit (one meter) and change our time unit to 
the time it takes for light to travel one meter and we’ll get natural units too! So it’s simple and complicated at the same time. 
Simple because it’s simple, but complicated because you have many choices here and you want to make the right choices. 
Why? Because if you make the wrong choices, your relations will become more rather than less obscure.  

https://commons.wikimedia.org/wiki/User:Dave3457
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Of course, mass will now also be expressed in some natural unit57. The point is: we get a wonderfully 

simple geometric interpretation of what an electron actually is, and it’s described by two variables only: 

that radius a = 1/m and that wavelength λ. Furthermore, these two variables are related through the 

following simple equation: 

λ = 2π ∙ β ∙ 𝑎 = β ∙ λ𝐶  

The de Broglie wavelength is just some fraction of the circumference of the circle that’s being described 

by our pointlike charge (λC = 2π·a), and that fraction happens to be equal to the velocity of our electron 

(β). In addition, we get the radius a as the inverse of the electron mass m. Could it possibly be simpler? 

In addition, you will probably wonder: what’s the nature of that mass? We will show it’s ‘mass without 

mass’, as John Wheeler referred to it in the 1960s: it is just the equivalent mass of the energy in this 

circular oscillation—so that’s the Zitterbewegung of the pointlike charge, which itself has no rest mass 

whatsoever and which can, therefore, move about at the speed of light.  

Is it that simple? Yes.  

Can we show it is that simple? We can. That’s what this book is about. It’s not about differential 

equations. Having said that, we will need some math, and that’s what this first chapter is trying to give 

you. Let’s continue our journey in Mathematical Wonderland. 

The force law and relativity 
I said no differential equations. Except one. It’s one we really can’t avoid. In fact, we’ve already 

introduced it: Newton’s force law. That’s an easy one. So easy that you’ve probably never thought of it 

as a differential equation. But it has a derivative in it, so it’s a differential equation: 

𝑭 = m ∙ 𝒂 = m ∙
d𝒗

d𝑡
= m ∙

d(d𝒙 d𝑡⁄ )

d𝑡
= m ∙

d(d𝒙 d𝑡⁄ )

d𝑡
= m ∙

d2𝒙

d𝑡2
 

You know this equation from your high school classes, but you probably just thought a force as the 

product of some mass and an acceleration factor: 1 newton is the force that gives a mass of 1 kg an 

acceleration of 1 meter per second, per second. Reiteration intended. The latter is the dimension of the  

d2x/dt2 factor: m/s2.58  

You know that we may think of Newton’s force law as defining mass as a measure of inertia: some 

strange resistance to a change in its state of motion. Indeed, Newton’s force law tells us that objects 

tend to keep doing what they’re doing, and that it requires a force to change their state. That’s an 

important concept – in both classical as well as in quantum mechanics, so we want you to think of that, 

always. 

I should make another quick note here: besides being a differential equation, Newton’s law is also a 

vector equation: the force F, and the position vector x (and its derivatives v and a) are vectors. They 

have a magnitude but also some direction. That’s why we write them in boldface. We hope you’re 

                                                           
57 You can google what natural unit exactly, but don’t get distracted. The point is: Newton’s law defines mass as a measure of 
inertia: an object will resist a change in its state of motion, which is why it requires a force to do so. Hence, if you re-define the 
force unit, and your distance and time units, then you’ll get a new mass unit.  
58 You might think – because of the d2x/dt2 – that I am making a mistake here: shouldn’t it be m2/s2? No. Just write it all out in 
case you hesitate a bit here.  
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familiar with that: in an illustration, you might see an arrow on top of the symbol—but so it’s the same 

thing.  

OK. Let’s move on and do some more thinking. 

Because relativistic speeds – velocities that are a substantial fraction of c, that is – are not uncommon 

when we are discussing elementary particles – as opposed to the large-scale objects we are used to – we 

also want you to understand the basics of relativity. It’s not that difficult. All you should know about it is 

that we can no longer treat mass as some constant. Mass increases with velocity. 

Why is that so? That’s a tough question. When I have to explain that to someone, I usually do it in a 

rather light-hearted – and hopefully not too sacrilegious – way. So let me give you that story here and 

then you can think about it for yourself and see if it makes sense to you. 

You know that mass has to increase because of the absolute speed of light, right? If it wouldn’t increase, 

a force would be able to accelerate an object – any object, really – to an infinite speed: it would take 

some time – especially if it’s a big mass and a small force – but, in the end, it would accelerate to an 

infinite speed (if you don’t get this immediately, then you should pause and think it through).  

Now, infinity is a nice mathematical concept but you’ll agree that, in reality, it’s kind of a weird thing, 

right? In fact, we may want to think that, if objects are around long enough, all kinds of forces might 

cause all of these objects to reach an infinite speed and that would be very inconvenient. Again, we 

want you to think this through: just see if it makes sense to you. If it does, you’ll agree we may want to 

think that there should effectively be some absolute speed cap in the Universe. Now, if you would be 

God, and you’d have to regulate the Universe by putting a cap on speed, how would you do that? 

First, you would probably want to benchmark speed against the fastest thing in the Universe, which are 

those photons. Why should they be the fastest thing in the Universe? Because they have no rest mass 

and so they can effectively travel at the speed of light: c. So that’s the fastest thing in the Universe now: 

it’s the speed of a signal, really.59 So now you want to put a speed limiter on everything else, so it can 

only travel at some fraction of the speed of light. That fraction (v/c) is just a ratio between 0 and 1, of 

course. 

Now, because you’re God, you do not want to police around so you want something mechanical: you 

want to burden everything with an intricate friction device, so as to make sure the friction goes up 

progressively as v/c goes to 0 to 1. You do not want something linear because you want the friction to 

become infinite as v/c goes to 1, so that’s when v approaches c. So that’s one thing you have figured out 

in your design.  

Of course, you’ll also want a device that can cope with everything: electrons, bicycles, spaceships, solar 

systems—whatever you can think of. The speed limit applies to all. But then you don’t need too much 

force to accelerate a proton as compared to, say, that new spaceship that was just built on planet X.  

                                                           
59 If you know anything about quantum mechanics, you will know that the phase velocity of a composite wave packet may be 
superluminal. In fact, it usually is. However, this phase velocity is just a mathematical concept. It is not something real that is 
traveling through space. In other words, it cannot carry any information. Only the shape of the wave can carry information (I 
mean a proper signal here). And the shape of the wave travels with the group velocity of the wave packet, which is always 
smaller than c. This is probably confusing you, but I just wanted to be correct—especially because I must assume you have 
already done quite a lot of homework when you are reading this book. 
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So you think about brakes and engines and all that but, after a while, you realize it’s probably better to 

just ask your best engineers to finalize your design. You all sit together and you explain your problem 

and the design requirements. One of them, Newton, will tell you that, when applying a force to an 

object, its acceleration will be proportional to its mass. So he goes to the blackboard and writes it down 

like this: F = m·a. Of course, you tell him you know that already, and that this is exactly your problem: 

even the smallest force can accelerate the heaviest object to crazy speeds—to infinite speeds! You just 

need to apply the force long enough. Newton shrugs his shoulders and sits down again.  

Now Lorentz gets up and points to the mass factor in the formula: m should go up with speed, he says. 

And it should go up progressively—as per God’s design, he says. Lorentz is always well prepared, so he 

has a print-out with some formulas and graphs and sticks it on the blackboard. Here is an easy formula 

that does the trick, he says.  

 

Figure 5: How to put a speed cap on bicycles, spaceships and galaxies60 

Look here, he says. The red graph is for m = 1/2, the blue one for m = 1, and the green one for m = 3. In 

the beginning, nothing much happens: the thing picks up speed but its mass doesn’t increase all that 

much. Why not? Because you do want to allow everyone to move their stuff around, right? But when it 

gets a bit crazy, then the friction kicks in, and very progressively so as the speed gets closer to the speed 

of light.  

Now you stare at this for a few seconds, but you tell Lorentz you don’t want to discriminate: it looks like 

we’re putting more aggressive brakes on the green thing than on the blue or the red thing, right? 

However, Lorentz says that is not the case. There is no discrimination here: his factor is the 

same per unit mass. The graphs show the product of the mass and his Lorentz factor, which is actually 

represented by the blue line—because that’s the one for m = 1. So, yes, the green thing will actually 

have better brakes, but that’s just commensurate with its mass. You want the lorry to come with better 

brakes, right? And bicycle brakes won’t do for a car either, right?  

You look again, and you think that makes sense. But then you hesitate, of course. You don’t want to 

change the Laws of the Universe, as that would be messy. It would surely upset Newton, because he is 

pretty fussy about you tampering with stuff. So you look at both and you say: what’s the implications for 

                                                           
60 This and other graphs in this book have all been made using free online graphing tools. There are a few but, because of their 
particularly easy interface, we love rechneronline.de and desmos.com in particular. 
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the force law? Newton nods in agreement: yes, what about it? We don’t want to change it, he says, 

because there are a zillion devices that work on it now. We can’t do a total recall, can we?  

Lorentz is still at the blackboard but he tells Newton: it’s not a problem. We’re going to use the same 

force law. We’re just going to distinguish two mass concepts: the mass at rest, and the mass at some 

velocity v. Just put a subscript – mv – and then you use this. He jots this on the blackboard: 

𝑭 = m𝑣 ∙ 𝒂 =
d(m𝑣 ∙ 𝒗)

d𝑡
=
d𝐩

d𝑡
 

m𝑣 = γ ∙ m𝑣 =
1

√1 − 𝑣2 𝑐2⁄
∙ m𝑣 

Now Newton stares at that, and he takes a few minutes. You think he is going to turn it down, because 

his formula is… Well… Newton’s formula, right? But… No. Something weird happens: Newton nods and 

agrees! He gets up, shakes hands with Lorentz and says: excellent job! Perfect fix!  

So you’re delighted and you tell Lorentz he can pick and choose his men and build it.  

Newton walks out, and Lorentz stays behind. Suddenly you see some worry on this face, and so you ask: 

what’s up? You’re not happy with your own thing? He sighs and says: my formula is the only thing that 

can do the trick because, yes, you want it to be progressive. It needs to be something based on the idea 

of the mass unit. But this mechanical thing has some weird implications. You ask: what implications? 

Now Lorentz starts a discussion on a guy you’ve never heard about – Albert Einstein – and he starts 

mumbling about time dilation and length contraction. He says Newton’s formula came with Galilean 

relativity, and that we’ll need a new concept of relativity. But you want to move on by now, and so you 

tell Lorentz to hire that Einstein and just get on with it. 

[…] 

So… Well… That’s what we’ll do also. We’ll just get on with it. We need to look at some wavefunction 

math now. Before we do so, I want to offer you some more do-it-yourself tasks—if only to make these 

rather deep matters as digestible as possible.   

Think for yourself: We wrote that the Lorentz formula is the only one that can do the trick. Of course, 

there is no proof that other formulas would not work and, in any case, our Universe is what it is, so the 

Lorentz factor is what it is. However, it is an interesting exercise to try some other formulas. The 

√1− (𝑣/𝑐)
2
 factor makes us think of the formula for a circle: 𝑦 = √1 − x2, and so you might think some 

similar formula might also do the trick. Try it. It doesn’t.61  

We also wrote – rather jokingly – that infinity is a nice mathematical concept but that it is weird to think 

of what it could possible mean in reality. This is actually a rather deep philosophical statement. You 

should think through Zeno’s paradoxes. Differential calculus shows that the idea that we can keep 

splitting some interval in time or in space in smaller and smaller bits – going on forever (so that’s, funny 

                                                           
61 I offer some thoughts on that on the https://readingfeynman.org/e-book/ page of my blog. If you have no time, then just 
continue reading. I’ll show the graph of the inverse Lorentz factor, as a function of the β = v/c ratio, is, in fact, just a simple 
circular arc – which is as it should be in light of the functional shape of the two formulas. 

https://readingfeynman.org/e-book/
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enough62, the idea of a limit in math) – is not incompatible with Achilles overtaking the tortoise, or the 

idea of an arrow being somewhere while flying through space, but it is good to think through those 

paradoxes. We need math to describe reality – whatever idea we have about it – but Planck’s quantum 

of action, and the finite speed of light, seems to tell us our mathematical ideas are what they are: 

idealized notions to describe something finite.63 

OK. We need to move on, so let’s do that. 

Easy wave math 
We have introduced some math already – the force law, basically – but we need to add more. We need 

to add some wave math. The idea of a wave – or an oscillation – is central to our understanding of how 

things might work at the atomic level, so we’re going to explain all of the wavefunction math you’ll 

need—not only to understand this book, but to understand everything about quantum math. Don’t 

worry too much. It is just basic circle math—and some funny notations, of course!  

Look at the illustration below. It’s the green circle that matters. Look at it carefully: think of the green 

dot going around and around as the argument θ ticks away with time. The original is, in fact, an 

animated GIF that you can easily google64 and you may want to stare at it for a while so as to appreciate 

the dynamics.  

 

Figure 6: Rotational motion 

We will write θ as θ = ω·t. Greek letters always scare but they should not. They are just letters—like a, b, 

c. Scientists usually use a Greek letter to distinguish a constant from some variable.65 The omega (ω) is 

just an angular frequency—aka radial or circular frequency. Don’t be scared by the omega symbol: it is 

                                                           
62 Think about what I’d call that funny: the mathematical definition of a limit involves the idea of infinity. So that’s a pretty clear 

example of a contradictio in terminis, no? 😊 
63 The rather philosophical discussion on the mathematical consistency of Dirac’s delta function is a nice example of a paradox 
in quantum mechanics. We will not entertain such discussions in this book, however. Not because we don’t like them – on the 
contrary – but because they have little practical value in trying to move towards some understanding of it all. However, we do 
encourage the reader to look into this. It’s fun. For starters, the reader may want to think of how a link function can map the 

infinite [0, +] set of real numbers to the finite [0, c] interval.    
64 Source: https://en.wikipedia.org/wiki/Sine#/media/File:Circle_cos_sin.gif. The illustration is public domain content from 
Wikimedia Commons.  
65 That is a simplification, of course. There is no rule here. In the E = ħ·ω = ħ·f expression, Planck’s quantum (ħ or h) is the only 
constant. It relates the energy and the frequency of an electron or a photon through what we will refer to as the form factor. It 
is a sort of generalized notion of the idea of a proportionality factor. I have no formal definition of this. It is just an intuitive 
thing which, hopefully, will help you to understand quantum mechanics in a more intuitive way.  

https://en.wikipedia.org/wiki/Sine#/media/File:Circle_cos_sin.gif
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just a regular frequency – but expressed in a somewhat different unit. If f is expressed in cycles (or 

oscillations) per second (Hertz66), then we will want to associate π/2 radians with one cycle, and we 

have our formula for ω: 

ω = 2π ∙ 𝑓 =
2π

T
 

Do take your time to think about this: the period (T) is the inverse of the frequency (f). If the frequency 

(f) is, say, ten cycles per second, then the time that’s needed for the system to come back to its original 

state (so that’s the cycle time T) will be one tenth of a second: T = 1/f. Now, if you want to truly 

understand what this book is all about, then you have to get into the physicality of this thing! Do you 

remember the Rotor or the Gravitron? It was an amusement ride: a large barrel, whose rotation (about 

30 revolutions per minute) created a centrifugal effect. The force was about three time the force of 

gravity and, hence, one the barrel had attained full speed, the floor could be retracted—leaving the 

riders stuck to the wall of the drum.  

The point is: it takes a force to keep something in orbit. We’re not going into the detail of what force 

that might be (that will come later) but you should now be able to appreciate the physical dimension of 

Planck’s constant: it is a product of (1) a force (as we will show, we think of this force as keeping some 

charge in an orbit), (2) a length (the circumference), and (3) a cycle time. Hence, its physical dimension is 

N·m·s (newton-meter-second). That’s the dimension of angular momentum. It’s also the dimension of a 

poorly understood physical quantity which, in German, is referred to as a Wirkung. The English 

translation – physical action – doesn’t quite catch that meaning, I think—but we just have to make do 

with it. It’s usually denoted by S. For angular momentum, we’ll usually write L. So we will have the 

following equations for an electron:  

𝑆 = 𝐹 ∙ λ ∙ T 

L = 𝐼 ∙ ω 

The F is a force, the λ is a length (the Compton wavelength, to be precise, which we’ll effectively 

interpret as a circumference), and T is a cycle time. The I in the angular momentum formula is the 

moment of inertia, aka the angular mass or the rotational inertia.67 The ω is the angular frequency, 

which we have come across already: ω = 2π·f = 2π/T.  

Now, the title of this book makes it clear, we are going to offer an interpretation of quantum mechanics 

based on the Zitterbewegung idea. We will not go too much in detail here, but we do want to sketch 

some of the basics here. Zitter is German for shaking or trembling, and the Zitterbewegung refers to a 

presumed local oscillatory motion—which we now believe to be true, whatever that means. Erwin 

                                                           
66 It is quite significant that the frequency unit is named after Heinrich Rudolf Hertz. He died at a very young age (36 only!) – 
but, among his many other achievements, he managed to prove the reality of electromagnetic waves. His first radio transmitter 
– built in 1887 – was a dipole radiator which transmitted radio waves at a frequency around 50 MHz – pretty much the 
frequency range that is used for radio and TV transmission today. Of course, we are talking transmission so he built a receiver 
too, using a spark micrometer. Fascinating stuff for DIY physicists!   
67 We have to warn you: at some point we will also talk about electric currents, and we will also use the same symbol for it: I. 
That’s confusing, but the context should be enough to remind you of what is what. We’ll encounter similar confusion between E 
(energy) and E (electric field strength). 
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Schrödinger stumbled upon it when he was exploring solutions to Dirac’s wave equation for free 

electrons. It is worth quoting Dirac’s summary of Schrödinger’s discovery: 

“The variables give rise to some rather unexpected phenomena concerning the motion of the 

electron. These have been fully worked out by Schrödinger. It is found that an electron which 

seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of 

small amplitude superposed on the regular motion which appears to us. As a result of this 

oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 

prediction which cannot be directly verified by experiment, since the frequency of the 

oscillatory motion is so high and its amplitude is so small. But one must believe in this 

consequence of the theory, since other consequences of the theory which are inseparably 

bound up with this one, such as the law of scattering of light by an electron, are confirmed by 

experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 

1933) 

The reference to the ‘law of scattering of light by an electron’ is a reference to Compton scattering. 

Compton scattering is a weird process: a photon hits an electron, basically, and its energy is sort of 

absorbed – temporarily – before the electron emits another photon, whose wavelength will be different, 

and the difference in the energy of the incoming and the outgoing photon gives the electron some linear 

momentum. Needless to say, the formula for the photon energies is the E = h·f = h·ω/2π = ħ·ω 

equation68, so that’s just the Planck-Einstein relation, or de Broglie’s first equation. Their wavelength can 

be calculated in two ways: 

1. We have the general λ = c·T = c/f equation: the wavelength of a wave is the product of its velocity and 

the cycle time. Just think about it: makes sense, right? The time that’s needed for a wave to travel over a 

distance that is equal to one wavelength is just the cycle time T. 

2. We also have the second de Broglie equation: λ = h/p. But what’s the momentum (p) of a photon? Its 

energy has an equivalent mass, so Einstein’s mass-energy equivalence relation tells us its mass is m = 

E/c2. We can then use the classical formula for the momentum p = m·v (mass times velocity). Because v 

= c here (our photon travels at the speed of light), we can write:  

λ =
h

p
=

h

m · 𝑐
=
h ∙ 𝑐2

E · 𝑐
=
h ∙ 𝑐

E
=
h ∙ 𝑐

h ∙ 𝑓
=
𝑐

𝑓
= 𝑐 ∙ T 

What’s the use of this? Nothing particular. We just want to give you a bit of a feel of how these 

fundamental equations – Einstein’s mass-energy equivalence relation, the de Broglie equation and some 

basic wave formulas – can work together. Nothing more. Nothing less. 

Let us go back to the Zitterbewegung. Compton scattering experiments give us an effective diameter of 

an electron. This diameter is, of course, twice its radius, which we will refer to as the Compton radius69, 

                                                           
68 The reduced Planck constant (ħ) is just h/2π. You will get a feel for when to use h and ħ when we get into the nitty-gritty of 
our models. Generally speaking, when we speak of Planck’s quantum of action – physical action, that is – we have h. However, 
the angular momentum that we can associate with this physical concept will be expressed in units of ħ. It is a rather simple 
mathematical thing, but we will not explain it here, because we don’t want to confuse the reader by frontloading too much! 
69 Physicists usually speak of the Compton wavelength, which is equal to 2π·a. 
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which we’ll denote by a. This scattering radius has been determined through experiments but – rather 

remarkably, one would think – it has been found to correspond to the following ratio of natural units: 

𝑎 =
ℏ

m𝑐
=
λ

2π
≈ 0.386…× 10−12 m 

The m is the electron mass, and we do think of it as some natural unit. Think of it as one of Nature’s 

constants. Why is this so? Why would a – or the associated circumference λ = 2π·a = h/mc  

2.426×10−12 m – be equal to that rather particular combination of natural constants? The 

Zitterbewegung hypothesis explains it. Think of the green dot as a pointlike charge, spinning around at 

the speed of light. The speed of light, c is, a tangential velocity here, and we have a formula for that in 

terms of the radius and the angular velocity (or angular frequency) of the rotation. 

c = a·ω  a = c/ω 

Now look what happens if we use the Planck-Einstein relation once more, to substitute ω for ω = E/ħ. 

We get that formula above: 

𝑎 =
𝑐

ω
=
ℏ𝑐

E
=
ℏ𝑐

m𝑐2
=
ℏ

m𝑐
 

Not impressed? You should be, so if you are not, stop reading.  

There is a lot of magic here but – if you are interested in a physical interpretation of these formulas, 

then your basic question should be this: what is that E = m·c2 equation telling us? We will come back to 

that in a moment, so just hang in here for a while. We’ll give you a delightful physical interpretation of 

Einstein’s mass-energy equivalence in a moment but, first, I want to give you some more of a feel for the 

models we’re going to develop. Let’s go back to these formulas for physical action and angular 

momentum, which we wrote as:  

𝑆 = 𝐹 ∙ λ ∙ T 

L = 𝐼 ∙ ω 

From your high school classes in physics, you should remember we can calculate an energy as a force 

over some distance.70 Hence, if we have the energy and a length, we can calculate the force. So now we 

can calculate the amount of physical action that we should associate with one cycle of this 

Zitterbewegung oscillation. We get this:   

𝑆 = 𝐹 ∙ λ ∙ T =
E

λ
∙ λ ∙

1

𝑓
= E ∙

ℎ

E
= ℎ 

We get Planck’s constant: the quantum of physical action. You may shrug your shoulders and say: what 

about it? It is a very fundamental idea. The formula above gives us a physical interpretation of Planck’s 

constant: Planck’s quantum of action is the physical action that’s associated with what we refer to as an 

elementary cycle.  

                                                           
70 From time to time, I write some posts for my kids on my physics blog. If you want to review the concept of energy as a force 
over a distance, you can check here: https://readingfeynman.org/2014/05/23/a-post-for-my-kids-on-energy/.  

https://readingfeynman.org/2014/05/23/a-post-for-my-kids-on-energy/
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In fact, we have a cycle like this for the electron, but we also have a cycle like this for a photon. We’ll 

also have one for electron orbitals. So, yes, pretty elementary, indeed! Let us quickly show you how it 

works for a photon:     

λ =
h

p
=
h𝑐

E
⟺ h = p ∙ λ =

E

𝑐
∙ λ 

Now you’ll wonder: why is h = p·λ some unit of physical action here? Because, besides writing action as 

the product of force, distance and time, there are two other ways to express physical action, and they’re 

equivalent: 

1. The product of force and time gives us the physical dimension of (linear) momentum (N·s). 

Hence, if we multiply some linear momentum with a length, we also get some Wirkung. 

2. As mentioned above, force times distance is energy, so if we multiply that with time, we also get 

a certain amount of physical action. In fact, from the postulate that we should associate a 

photon with an amount of action that is equal to Planck’s constant, we get the Planck-Einstein 

relation, as shown below: 

ℎ = E ∙ T ⟺ T =
ℎ

E
=
1

𝑓
⟺ E = h𝑓 

In fact, we’re repeating ourselves a bit here, and so I realize this is getting somewhat tedious. If that’s 

the case, then I should remind you bought this book because you want to know what these things really 

mean, and so I’d say: take a break, and then start reading again.  

[…] 

Are you back? Feel more relaxed again? I want to show one more thing here. We talked about angular 

momentum, and you’ll know that fermions – like that electron that we’re looking at here – are referred 

to as spin-1/2 particles. Why? Because we have that mysterious property, which is referred to as spin, in 

classical as well as in quantum mechanics. In fact, it is not mysterious in classical mechanics, but all that 

you’ve read so far will tell you that it is mysterious in QM. But so we don’t think so. The Zitterbewegung 

model gives an entirely classical explanation for it. Let us show you.  

Quantum-mechanical spin is expressed – and, more importantly, also measured in real-life experiments 

(such as the Stern-Gerlach experiment, with which you should be familiar) – in units of ħ/2, but so we 

are told that we should not try to think of it as a classical property—as something that has some physical 

meaning. It’s just that weird number, right? No. It’s not. We can just use the classical L = I·ω expression 

and substitute I and ω for the angular mass and the angular frequency. To calculate the angular mass, 

we need a form factor. Are we talking some hoop or some disk or a shell, perhaps? The model we’ll 

develop implies the energy is in the oscillation and, therefore, it implies that the effective mass of the 

electron will be spread over a circular disk. We should, therefore, use the 1/2 form factor for the 

moment of inertia: I = ma2/2. So now we can write it all out: 

L = 𝐼 ∙ ω =
m𝑎2

2

𝑐

𝑎
=
m𝑐

2
∙ 𝑎 =

𝑚𝑐

2
∙
ℏ

𝑚𝑐
=
ℏ

2
 

So, yes, an electron is a spin-1/2 particle. No hocus-pocus here. No obscure ‘intrinsic’ property of an 

equally obscure ‘pointlike’ particle: we’ve got a disk-like structure and there’s a torque on it, so we’ve 
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got angular momentum. We’ll explain the magnetic moment – equally ‘mysterious’ according to the 

Copenhagen interpretation of quantum mechanics – in a similarly classic explanation. 

Can we do the same for the photon? That’s a boson, right? So it should carry an angular momentum 

that’s equal to ħ. A full unit of ħ: no half unit. Can we? Yes, we can. We get a delightfully simple physical 

interpretation of that magnitude when thinking of the photon in a model that we refer to as the one-

cycle photon. It is illustrated below: we have a rotating electric field vector E. Sorry for the confusion 

with the energy E here, but you should be able to figure out what is what from the context. Note that 

we use boldface for E, because it is a vector: it has a magnitude (E) but it also a direction. If not, the idea 

of a rotating field vector (you will recognize this from illustrations of circularly polarized light) would not 

make any sense. 

 

Figure 7: The photon model: circular polarization 

So, yes, we can think of the photon as an oscillation that is traveling through space and time and whose 

cycle packs one unit of angular momentum (ħ) or – which amounts to the same, one unit of physical 

action (h). As mentioned above, it is a very fundamental idea, really: we interpret Planck’s quantum of 

action as the physical action of what we refer to as an elementary cycle and, yes, we do not only have 

cycle like this for the electron, but we also have one for the photon. As we will show in this book, this 

model also allows us to calculate the actual field and the forces which, in turn, allows us to explain a 

number of previously mysterious quantities and numbers, such as the fine-structure constant, to just 

give one example that should surely be of interest to you.  

Most importantly, the models do give us a specific geometric idea of what an electron and a photon 

actually are, and that’s the kind of intuitive and natural understanding you want to have. 

By now, you think I should start the book but, unfortunately, we need just a little bit more math. Hang in 

there! I just need to explain Euler’s function and some basic complex algebra. Don’t be afraid: it is not 

difficult. Why not? Because this too we will approach geometrically, so don’t worry too much. It won’t 

be long and it will be intuitive—as intuitive as can be, that is. Also don’t forget to take a break from time 

to time: this is not a book you want to read in one go. 

Euler’s function 
Have a look at Figure 6 once again: the rotational motion of the green dot. If you’re going to remember 

only one message from this book, then we want it to be this: the mathematical and physical idea of a 
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cycle, and the idea of its integrity, as expressed in Planck’s quantum of action (h): we don’t think of half 

a cycle, or a quarter of a cycle. No, a cycle is a cycle, so we have that circular motion.  

Now, we will want to describe that in terms of the math that you should be familiar with when you’ve 

already read something about quantum mechanics (which we assume you have). That math uses 

complex numbers. To be precise, we will be using Euler’s function all of the time, which is illustrated 

below.   

 

Figure 8: Euler’s formula71 

Don’t panic. Just keep staring at it for a while, and understanding will come—or so I hope. Think of that 

circular motion as a superposition of a sine and a cosine. In case you forgot, the sine and the cosine are 

basically the same function but with a phase difference of 90 degrees—so that is an angle that is equal 

to π/2 radians. Again, you may want to remind yourself that the radian is just the distance unit: the 

circumference of the unit circle has a length that is equal to 2π distance units. Of course, our disk will not 

always be described by the unit circle. In fact, it will never be, because a radius of 1 meter is humongous. 

Our circle will have a radius of, say, that Compton radius, so that’s the picometer scale: a  

0.386×10−12 m. All we need to do is multiply our sine and cosine with that amplitude. We write:  

r = a·ei = x + i·y = a·cos(ω·t) + i·a·sin(ω·t) = (x, y) 

That’s a lot to swallow, so let us give you some pointers. The imaginary unit (i) gives us the imaginary 

axis. The term imaginary is a poor choice. It is just as real a dimension as the… Well… The real 

dimension. Indeed, the choice of real and imaginary for the two axes is quite unfortunate because it 

gives one the impression the imaginary dimension is, somehow, not real. Forget that idea: an object 

comes with its own space, so to speak, and the Zitterbewegung hypothesis tells us we should be thinking 

of elementary particles as oscillating in two dimensions—some plane of oscillation, in other words: a 

plane assumes two dimensions, and it is very stupid to think of one as being less real than the other. So 

that explains – or should explain – the x + i·y = a·cos(ω·t) + i·a·sin(ω·t) = (x, y) in the equation(s) above.  

What about the r = a·ei notation? The r is a vector, as you can see from the boldface that we’re using, 

so that should not be an issue. So all that’s left to explain now is that weird ei = cos(θ) + i·sin(θ) identity. 

                                                           
71 The illustration was sourced from Wikimedia Commons but is to be attributed to Gunther (derivative work: Wereon), CC BY-
SA 3.0, https://commons.wikimedia.org/w/index.php?curid=821342.  

https://commons.wikimedia.org/w/index.php?curid=821342
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The e is Euler’s number: it’s an irrational number – you’ve seen it: e = 2.71828… – and it’s a 

mathematical constant, just like π.  

What’s the difference between a mathematical constant and a physical constant? A mathematical 

constant has no physical dimension. It is just a number. Just like π, we can visualize it in various ways. 

You can check a math course on that, or Wikipedia. We can draw functions such as 1/x or ln(x) and then 

e will be some area under a curve or – quite simply – the point for which ln(x) = 1.72 But, yes, how to 

explain that weird ei = cos(θ) + i·sin(θ) identity?  

Feynman wrote a rather interesting explanation of Euler’s function in terms of an algebraic construction 

of the sine and cosine functions.73 However, this is a book on physics – not on math – and so I won’t 

dwell on it. Having said that, I would really suggest you look at Feynman’s argument here so as to try to 

develop a feel for Euler’s function and all of the math that’s related to algebra with complex numbers.  

For example, you should appreciate that a multiplication by the imaginary unit corresponds to a 

rotation by 90 degrees in the counterclockwise direction. For a clockwise rotation, we need to multiply 

by −i.  

We’re using boldface here because it is a really important point. Why? Because, as we will see later, 

these two degrees of freedom in the mathematical description correspond to the direction of spin in our 

physical interpretation of the wavefunction. Sure, you’ll say. But, no, we want you to note that this is not 

the standard interpretation of the wavefunction. Physicists usually use the wavefunction to model some 

theoretical spin-zero particle: stuff that doesn’t exist, in other words. And then they’re surprised they 

get in trouble as they have to plug spin back in through the back door, so to speak!  

In fact, apart from our remarks on understanding the physicality of Planck’s quantum of action (the 

association with an elementary cycle of the matter-wave, or of a photon), this is the other major 

breakthrough in our understanding of the reality of the wavefunction that we want to highlight in this 

book. We will come back to it soon enough.  

Let’s conclude this math excursion by saying a few words about the argument of the (elementary) 

wavefunction.  

An electron – of any matter-particle – will have no momentum in its own space, so to speak: its 

momentum p is zero, and the argument of the wavefunction therefore reduces to: 

θ = ω ∙ t = 2π ∙ 𝑓 ∙ t = 2π ∙
t

T
 

Look at what happens here. We re-scale time: instead of measuring it in seconds, we measure it in units 

of the cycle time T. This cycle time is given by T = h/E, so we get it from the energy of the particle that 

we’re looking at, and h, of course. Hence, we might, indeed, say that each particle comes with its own 

internal clock—a clock that has its own clock speed.74 What clock speed? It’s given by the energy of our 

particle. We then just multiply by 2π to get an argument expressed in radians. Of course, the energy of 

                                                           
72 The latter example is a bit of a tautology, but useful still. 
73 You can check my blog post on that (https://readingfeynman.org/2014/06/24/eulers-formula-revisited/) or, perhaps, check 
out Feynman’s argument online (http://www.feynmanlectures.caltech.edu/I_22.html).  
74 We may refer to the title of Hestenes’ latest article once more: quantum mechanics of the electron particle-clock (2018). Or, 
alternatively, to Feynman’s metaphor of the stopwatch in his QED: The Strange Theory of Light and Matter (1988). 

https://readingfeynman.org/2014/06/24/eulers-formula-revisited/
http://www.feynmanlectures.caltech.edu/I_22.html
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our particle in its own frame of reference is equal to the rest energy, which we may denote by using a 

subscript: E = E0. So the argument of the elementary wavefunction is this: 

θ =
E0
ℏ
𝑡 = 2π ∙

t

T
 

Now, you will – of course – have seen the much more complicated formula for the elementary 

wavefunction75: 

ψ = 𝑎 ∙ 𝑒
 
𝑖
ℏ
(E∙t−𝐩∙𝐱)

= 𝑎 · cos( − 
E ∙ 𝑡

ħ
−
𝐩 ∙ 𝐱

ħ
)  +  𝑖 · 𝑎 · sin(  

E ∙ 𝑡

ħ
−
𝐩 ∙ 𝐱

ħ
) 

So what about that? Well… Believe it or not, that expression is just a relativistic correction, because we 

will usually see our electron moving from here to there, and they may do so at pretty high speeds, at 

which point we should effectively use a relativistically correct formula. Having said that, if speeds are 

non-relativistic – which is usually the case – then you can forget about this correction and just think of 

the clock speed as a simple angular frequency given by that ω = 2π/T = E/ħ expression. 

Not convinced? Let me write it out for you. If we write the energy of our particle as it moves about as Ev, 

then we can apply the Lorentz formulas for transforming the time and space coordinates back to the 

rest frame of reference, as shown below:  

θ =
1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

E0

√1 −
𝑣2

𝑐2

(𝑡 −
𝑣

𝑐2
𝑣𝑡) =

1

ℏ

E0

√1 −
𝑣2

𝑐2

(1 −
𝑣2

𝑐2
) 𝑡 = √1 −

𝑣2

𝑐2
·
E0
ℏ
𝑡 

We get what we said we would get: the clock is just ticking away in the particle’s own time, which is our 

time multiplied by the inverse Lorentz factor, which is show below. However, do not worry about this 

too much. We will come back to it. The important thing is that you grasp the idea of the particle’s own 

clock, and the nature of the argument of the wavefunction: it really is something like a simple 

stopwatch. 

 

Figure 9: The inverse Lorentz factor as a function of (relative) velocity (v/c) 

                                                           
75 The argument of the wavefunction usually has a minus sign, but that’s just a matter of convention, as we’ll explain shortly. 
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The graph below might or might not help you to make sense of it. [If it doesn’t, don’t worry, because we 

will come back to it.] In the Zitterbewegung interpretation of an electron, the trajectory of the pointlike 

charge will be something like what’s illustrated below. By the way, if it makes you think of an 

Archimedes’ screw, it should, because it’s the same shape!76 

 

Figure 10: Is this a moving electron? 

However, we say something like it because there is no reason whatsoever for assuming that the plane of 

oscillation will be perpendicular to the direction of motion of our electron. In fact, as we have no clue 

whatsoever here, the common-sense assumption is that its plane of oscillation (or rotation) will itself 

move about in a rather random way. That’s consistent with another idea we will want to introduce: 

Planck’s quantum of action is a physical constant (h  6.626×10−34 N·m·s) – and we associate it with the 

idea of an elementary cycle of an equally elementary two-dimensional oscillation in this book – but we 

may want to think of it as a vector quantity: something with a magnitude (6.626×10−34 N·m·s) but with 

some direction as well. Why? The physical dimension of Planck’s constant is the same as that of angular 

momentum, and the idea of a rotational cycle and angular momentum are, obviously, closely related, as 

illustrated below: the angular momentum (L) is a vector. Hence, we should probably think of Planck’s 

constant as a vector too, so we should write it in boldface: h.77  

 

Figure 11: Torque (τ = rF) and angular momentum (L = rp) as vector (cross) products78 

                                                           
76 You’ll say I am repeating myself, and I am. Because these are all familiar concepts to me but not to you, I’d rather repeat 
things a couple of times. 
77 We should note here that L is a vector because it’s the vector cross-product of two other vectors: the position or radius 
vector r and the momentum vector p. In that sense, it is a bit of an artificial vector: it is known as an axial vector, or a pseudo-
vector—as opposed to polar (or real) vectors. Both are vectors – in a mathematical sense, that is – but they are different 
objects: the sign of a polar vector gets reversed when coordinate axes are reversed. In contrast, that does not happen to an 
axial vector. We may, therefore, actually think of them as being more real than the so-called real (polar) vectors we need to 
multiply (using the vector cross-product formula) to get the axial vector! 
78 This is another animated gif (https://upload.wikimedia.org/wikipedia/commons/0/09/Torque_animation.gif) in the 
Wikimedia Commons public domain. Hence, you may want to watch the dynamics rather than this static image. 

https://upload.wikimedia.org/wikipedia/commons/0/09/Torque_animation.gif
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We won’t waste too much time on this, but just make a mental note of it: associate one rotational cycle 

with some vector h and think of the plane of oscillation as being random for the time being.  

Let us move to the next idea. A rotating electric charge has a magnetic moment, whose magnitude is 

going to be equal to the current (I) and the surface of the loop, as illustrated below (S).79  

 

Figure 12: The magnetic moment of a rotating charge80 

The magnetic moment will cause the plane of oscillation to line up in an external magnetic field—such 

as the magnetic field of a Stern-Gerlach apparatus, which is used to determine the magnitude of the 

magnetic moment of elementary particles. However, in the absence of an external magnetic field, there 

is no reason whatsoever to assume the plane of oscillation would have some fixed orientation. It may 

just wobble around. We have no real proof of what we’re saying here but we like to think that the 

quantum-mechanical uncertainty is not in the magnitude of h, but in its direction!  

As that’s just speculation, we should get back to that illustration of our moving electron (Figure 10). We 

showed a sort of wavelength there (λ). What is it? If this would be an electromagnetic wave81, it would 

be its wavelength, but here we’re just thinking of that rotating pointlike charge moving along some 

center that itself is moving in… Well… The direction of propagation of the whole thing. The λ here is just 

the distance between the crests (or the troughs) of the two-dimensional wave. What’s that distance? 

Let’s calculate it. 

You should, first, note that the velocity of our electron – let us denote by v – is likely to be non-

relativistic, in contrast to the tangential velocity of the pointlike charge in its rotation motion. That 

tangential velocity is equal to c. From the graph, it’s obvious that λ will be equal to the product of v and 

the cycle time T.82 So we get the following formula: 

λ = 𝑣 ∙ T =
𝑣

𝑓
= 𝑣 ∙

h

E
= 𝑣 ∙

h

m𝑐2
=
𝑣

𝑐
∙
h

m𝑐
= β ∙ λ𝐶  

This is an interesting formula: it says that length λ is some fraction (between 0 and 1 as v goes from 0 to 

c) of the Compton wavelength λC = 2π·a = 2πħ/mc. Note, once again, that λC is just the circumference of 

the circular orbit of our charge, and the v/c fraction is just the (relative) velocity β, so that’s the velocity 

                                                           
79 We use I and S also for the moment of inertia and physical action, which are entirely different physical concepts. The context 
of the formula should make clear what is what. We do not like to multiply the symbols. Instead, we’d rather re-use them and 
associate them with different meanings depending on the context. This is a choice made by the author based on philosophical 
considerations: Wittgenstein would not agree! 
80 https://commons.wikimedia.org/wiki/File:Magnetic_moment.svg.  
81 The illustration is actually that of a circularly polarized electric field propagating through space. The magnetic field vector is 
not shown. The structural similarity between an electromagnetic wave (or its electric field vector, at least) and the matter-wave 
is quite deep, and exploring it has provided us with a lot of intuitive thoughts, which we’ll further explore in this book.  
82 You may, perhaps, have to think about this for a while, but just take a piece of paper and a pen and you’ll be able to work it 
out. It’s just logic. We do want you to think this through for yourself. 

https://commons.wikimedia.org/wiki/File:Magnetic_moment.svg
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of our electron expressed in its natural unit (c). So it’s not the de Broglie wavelength λ = h/p = h/mv, 

unless v is equal to c.  

We’ll talk about that more in detail when discussing the electron model so don’t worry if you didn’t get 

all of the finer stuff above. We will effectively come back to it all. 

What’s the dimension of a pointlike charge? 
If you have understood anything of what we wrote above, you will understand we are introducing a 

rather subtle distinction between the pointlike charge and the electron. The electron is the 

Zitterbewegung as a whole: it is the oscillation of the pointlike charge. The charge itself has no rest mass 

– so it can effectively move at the speed of light along this weird circular orbit (about which we will write 

more later) – but the electron as a whole has some mass. In fact, that is the whole point of our 

Zitterbewegung model: we explain the rest mass of an electron by introducing a rest matter oscillation. 

As Dirac noted, it is impossible to directly verify the model because of the extreme frequency (fe = ωe/2π 

= E/h ≈ 0.123×10−21 Hz) and the sub-atomic distance scale (a = rC = ħ/mc ≈ 386×10−15 m). It is, therefore, a 

logical model only: it gives us the right values for the angular momentum (L = ħ/2), the magnetic 

moment (μ = (qe/2m)·ħ, and the gyromagnetic factor (g = 2).83 You may think that should end the 

discussion but it doesn’t: we will show there is a way – and probably more than one – to indirectly verify 

the model. We’re basically talking the theory and measurements in regard to the anomalous magnetic 

moment here. 

In regard to this, we should ask ourselves: is an electron really some disk-like structure and – if it is – 

what’s its shape, exactly? That’s a complicated discussion but we can already start it here by asking a 

more basic question: is our pointlike charge dimensionless, or does it have some radius itself? What do 

we mean by pointlike? 

We have no definite answer to this – none of the answers in this book are definite – but we can and, 

therefore, should make a few sensible remarks here. We do not believe in dimensionless objects: a 

pointlike charge must also occupy some space in… Well… In space. […] So what space would that be? 

This is where the classical electron radius comes in. The classical electron radius is also known as the 

Lorentz radius or – something that might ring more of a bell – the Thomson radius. Just like the Compton 

radius, we have an experimental value for this radius, which corresponds to:  

𝑟e =
e2

m𝑐2
= α ∙ 𝑎 = α

ℏ

m𝑐
≈ 2.818…× 10−15 m 

What is this radius? We also get it from scattering experiments but – in contrast to Compton scattering – 

we have a totally elastic scattering here: the wavelength of the photon does not change. The photon 

just bounces back: as such, the photon doesn’t seem to mess with the electron.84 In short, the photon 

does seem to bounce off some core, and that core is (much) smaller than our Zitterbewegung electron. 

Hence, we think it bounces off that pointlike charge, and that the Thomson radius is the radius of our 

                                                           
83 We have not introduced these quantities yet, but we will do so later. We just wanted to flag our model also yields other 
observables. 
84 Physicists will shout wolf here and say this process should also be analyzed in terms of interactions, so that’s in terms of 
photon absorption(s) and photon emission(s), in other words. We readily admit that we skip those niceties for the time being. 
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pointlike charge. Can we prove that? No. It is just a sensible interpretation of what might or might not 

be happening. 

How much smaller is it? We see that wonderful ratio in our formula above: α  1/137. It’s the fine-

structure constant which we’ll write about later: we claim to have an explanation for this so-called ‘God-

given number.’85 But here we are still introducing some basics so let us not get ahead of ourselves. So 

what’s the point? 

The point is: pointlike does not necessarily mean dimensionless. In fact, as mentioned, common sense 

tells us something that has no dimension cannot exist. So our pointlike charge is a pointlike charge but 

pointlike just means we have no further clue on what its internal structure might be – if it has any 

internal structure. Just note that pointlike does not mean: dimensionless. As far as we are concerned, 

we like to think of it as a perfect object – something physical but with a perfect mathematical shape: a 

tiny little sphere, probably. 

What’s its nature? Where does it come from? What are the implications? Good questions. I don’t have 

the answer to them. The chapter on the fine-structure constant and the classical electron radius will 

offer some remarks – based on re-arranging and combining various formulas so as to possibly produce 

some new meaning, most notably on the question on what the nature of electric charge might be – but 

these are definitely not definite. We hope it will encourage the reader to actually engage in some 

further thinking himself. 

The take-away here is that our Zitterbewegung electron is not a perfect disk: it has some thickness. 

Should we describe it as a thick disk, or as a thin disk (in case you wonder, I am borrowing some 

concepts from the description of galaxies here86)? Again, I have no definite answer to that. However, 

some pretty advanced – but non-mainstream – research is underway in this area, and that research 

makes a lot of sense to me. These more advanced approaches – we mentioned Burinskii (Russian 

Academy of Sciences), Celani, Vassallo and Di Tommaso (University of Palermo), Frabboni, Gazzadi, and 

Pozzi (Universities of Bologna and Modena) – take into account that the forces and fields are rather 

large – in light of the small distance scale, that is – and, hence, general relativity comes into play: we 

have some curvature of space, and that makes the analysis rather difficult. We will come back to this in 

a later chapter because… 

Well… We’re done with the prerequisites – the prolegomena, as I called it. Finally! Let’s now talk about 

this book—and what you might get out of it.87 

  

                                                           
85 There are a few references to that expression (the fine-structure constant as some God-given number) but the one that is 
best known is from the little booklet that Feynman published a few years before he died (QED: The Strange Theory of Light and 
Matter), in which the following is written: “You might say the hand of God wrote that number, and that we don't know how He 
pushed his pencil.” One should note that Feynman did not actually write that book: it is a transcript of some lectures for a 
popular audience, and we are not so impressed with it. In fact, we think it is one of those popular books that is somewhat 
misleading because of over-simplification. 
86 I have not done any research in this regard, so I will let you google for yourself. 
87 Of course, we hope you already got something out of this by reading the first chapter! 
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II. What’s new in this book? 
Lots of stuff, of course. But then I have to say this, because this book needs to sell, right? Well… Yes and 

no. Sales are my publisher’s concern. Not mine. I do think this book is truly innovative. I hope the 

remarks below – which may come across as rather un-organized – will manage to convince you this book 

is, effectively, very different from whatever else you might have read.  

No differential equations—only solutions! 
Scientists are obsessed by differential equations. Dirac was not any different. His very first degree is that 

of an electrical engineer, and he always wanted to do what Maxwell did to explain electromagnetism, 

and that is to derive a concise set of differential equations – if possible, only one equation, really – that 

would explain everything. Don’t get me wrong: I totally get the obsession with differential equations: 

once you have the differential equation(s) for a system, you have described all of its dynamics – and you 

can leave the nitty-gritty of actually solving them to the mathematicians – or, if you can’t solve it 

analytically – to a computer. 

So it will come as a big surprise to you that we will actually avoid differential equations in this book. It is 

one of the many reasons why this book is different from all others. We do not want to focus on the 

rather abstract business of differential equations, but on understanding their solutions. Hence, we will 

focus on the wavefunctions that are a solution to this or that wave equation and try to understand what 

they might represent or describe.  

Why? For two reasons. First, unlike most physicists, we do think the wavefunction corresponds to 

something real. For us, it’s just not some weird mathematical object on which you should then operate 

with this or that operator to get this or that probability for this or that observable. We think the 

wavefunction effectively describes the object—an electron or a photon, to be specific. That’s why we 

think those operators actually do what they do, and that is to get some real information about the 

system that’s being modeled. And so that’s what this book is all about: the wavefunction represents 

something real, and we’ll show you what—not in some kind of vague way, but in a very exact way!  

There is a second, subtler, reason: we effectively do not believe one wave equation can describe 

everything. We think in terms of layered motions and, hence, we don’t think one wave equation can 

capture it all. In fact, when Dirac first talks about the Zitterbewegung of an electron, he talks of it as a 

motion that is ‘superposed’ on the regular motion.  

As this book is going to offer an interpretation of quantum mechanics based on this idea, we’ll give you 

the full quote once again, and some context. Zitter is German for shaking or trembling, and the 

Zitterbewegung refers to a presumed local oscillatory motion—which I now believe to be true, whatever 

that means. Erwin Schrödinger stumbled upon when he was, effectively, exploring solutions to Dirac’s 

wave equation for free electrons. He, therefore, got a shared Nobel Prize for Physics with Paul Dirac – 

for the “the discovery of new productive forms of atomic theory” – and it is worth quoting Dirac’s 

summary of Schrödinger’s discovery: 

“The variables give rise to some rather unexpected phenomena concerning the motion of the 

electron. These have been fully worked out by Schrödinger. It is found that an electron which 

seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of 

small amplitude superposed on the regular motion which appears to us. As a result of this 
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oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 

prediction which cannot be directly verified by experiment, since the frequency of the 

oscillatory motion is so high and its amplitude is so small. But one must believe in this 

consequence of the theory, since other consequences of the theory which are inseparably 

bound up with this one, such as the law of scattering of light by an electron, are confirmed by 

experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 

1933) 

So we think the wavefunction is real. However, while we are a bit skeptical about all of these wave 

equations, it is true they should correspond to something real too. They must model something, right? 

So what is it? It depends. For example, we can interpret Schrödinger’s wave function as an energy 

diffusion equation.88 More in general, we should say that it is rather regrettable few physicists try to 

understand what a differential equation, like Schrödinger’s equation, might actually represent. They 

should do more of an effort to think of them as vector equations—I mean equations that model 

relations between real physical vectors.  

Having said that, we should repeat we are not going to have to deal much with differential equations in 

this book—not only because it requires a more advanced understanding of math but, more importantly, 

because we think it’s better to focus on trying to understand their solutions, because these solutions 

have a more direct correspondence with some physical object or reality: an electron, or a photon, or an 

electron orbital—these are the very specific examples we’ll be dealing with in this book.  

We’ve used the same magical word two or three times now: what is it that a formula – an equation, or a 

set of equations (like the E = h·f and λ = h/p equations, which should be thought of as a set of two 

equations), or some implicit or explicit function – is trying to describe? What do these formulas 

represent, really? That’s been my motivation to study physics, and so I want to share the answers I’ve 

found in this book. 

Indeed, I’ve always wanted to know what equations in physics describe: I wanted to know what reality 

they refer to. What is this de Broglie wavelength (λ), for example? What is it that is oscillating at 

frequency f = E/h? And what is that wavefunction, exactly? We’re not God, so we can never be sure. 

However, this book offers an interpretation of quantum mechanics that will give you very precise 

answers to those questions. It is then up to you to decide whether or not these answers make sense to 

you.  

Any other book on quantum mechanics will tell you that cannot be done. We disagree. For starters, one 

can – and should – exploit the quintessential difference between an equation in physics and a merely 

mathematical equation: the variables in a law or an equation in physics have some physical dimension—

like newton-meter (the unit of energy) or a second or whatever other physical dimension. A second, or a 

newton-meter, are things we can imagine. What’s a newton-meter? Think of lifting an apple to a height 

of one meter. It becomes somewhat more difficult with units such a tesla (the strength of a magnetic 

field), but it can be done, if only because we can deconstruct that unit and relate it to the unit we use to 

measure the strength of an electric field (newton (N) per coulomb (C), so that’s force per unit charge). 

The magnetic field is produced by a moving electric charge. We, therefore, also have the unit of velocity 

                                                           
88 See: Jean Louis Van Belle, A Geometric Interpretation of Schrödinger’s Equation, 12 December 2018, 
http://vixra.org/abs/1812.0202 
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(m/s) in the tesla (T). To be precise, 1 T = 1 N/(C·m/s). We can effectively imagine – sort of, at least – 

what a charge of 1 C traveling at a speed of 1 m/s represents. So, yes, a thorough dimensional analysis of 

some key equations brings a lot of intuitive understanding free of cost, so to speak. 

However, more is needed. As mentioned, truly understanding some equation requires some intuitive or 

natural understanding of whatever it is that is being described by the equation. As such, the equations 

become a language which we need to master to arrive at some deeper understanding. To put it 

differently, through the equations, we must sort of see how reality looks like. Now, what I see doesn’t 

have much in terms of color vision – nor is there much other familiarity with what I see in daily life – but 

I do see something, and so I’ll try to communicate what exactly in this book.  

This involves some speculation – or some interpretation, I would say. And I am not talking the 

Copenhagen interpretation now. It’s also none of the other – even weirder – interpretations of quantum 

mechanics (think of the many-worlds hypothesis, for example). If we have to give a name to the 

interpretation that is being offered here, I would say it is just a classical explanation of quantum theory 

based on the Zitterbewegung hypothesis. So what is it all about?  

No Copenhagen interpretation: quantum mechanics is a theory—not a procedure 
What we are claiming in this book is that quantum electrodynamics – as a theory, and in its current 

shape and form – is incomplete: it is all about electrons and photons – and the interactions between the 

two – but the theory lacks a good description of what electrons and photons actually are. All of the 

weirdness of Nature is, therefore, in this weird description of the fields: perturbation theory, gauge 

theories, Feynman diagrams, quantum field theory, etcetera. This complexity in the mathematical 

framework does not match the intuition that, if the theory has a simple circle group structure89, one 

should not be calculating a zillion integrals all over space over 891 4-loop Feynman diagrams to explain 

the magnetic moment of an electron in a Penning trap.90 Hence, this book offers a new geometric model 

of both the electron as well as the photon.  

Seriously? Yes. Seriously. We offer an electron model which combines the idea of a pointlike charge and 

Wheeler’s idea of mass without mass: the mass of the electron is the equivalent mass of the energy in 

the oscillation of the pointlike charge. Don’t worry. It will soon be clear what we mean by this. 

We will also offer a photon model. In essence, our photon is just what electromagnetic theory suggests 

it is: an oscillation of the electromagnetic field. No charge. So what’s new? What’s new in our photon 

model is that we are going to calculate the exact magnitude of the oscillation. We refer to this model as 

the one-cycle photon.  

Anything else? Yes. We will relate our electron and photon model in a more refined version of the Bohr-

Rutherford model of an atom—so we have the interactions as well. Plus some other stuff. I hope you are 

intrigued by what I wrote above. If not, you should stop reading. 

                                                           
89 QED is an Abelian gauge theory with the symmetry group U(1). This sounds extremely complicated but you can interpret this 
rather simply: it means its mathematical structure is basically the same as that of classical electromagnetics. 
90 We refer to the latest theoretical explanation of the anomalous magnetic moment here: Stefano Laporta, High-precision 
calculation of the 4-loop contribution to the electron g-2 in QED, 10 July 2017, https://arxiv.org/abs/1704.06996.  

https://arxiv.org/abs/1704.06996
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Understanding Einstein’s mass-energy equivalence relation 
What’s the other stuff? Tons. As we’re talking of what a true understanding of equations might actually 

mean, let us take the example of Einstein’s E = mc2 formula, for example—especially because it’s related 

to the above-mentioned idea of mass without mass. The E = mc2 might well be the most famous formula 

in physics but I think it is fair to say that most – if not all – physicists would struggle to explain what it 

means, exactly—despite its apparent simplicity! We all know we have an equivalence here: the energy 

that keeps the protons and neutrons in a nucleus together will give the nucleus some extra mass—in 

addition to the combined mass of the individual protons and neutrons.91 But what does it mean?  

We will offer a metaphor – in the very first chapter on the quantum-mechanical wavefunction – that 

will, hopefully, help you to think it through. We’re not saying it’s an easy explanation—but I can promise 

it is going to be more intuitive or natural than anything you’ve read before. Let me give you some clues 

already, so you can start thinking about it. The energy in an oscillation – think of an electric circuit, or a 

mass on a spring – will be proportional to the square of (i) the amplitude of the oscillation (which we’ll 

write as a) and (ii) the frequency of the oscillation (which we’ll write as ω because it is quite convenient 

to work with an angular frequency92). So we will have some proportionality coefficient k and we can 

write the energy as: 

E = k𝑎2ω2 

For example, you may remember the formula for the energy of a harmonic oscillator. Think of a mass on 

a perfect (read: frictionless) spring. The proportionality constant k is equal to m/2 here, so the formula is 

this: 

E =
1

2
m𝑎2ω2 

Now think of some device that combines the energy of two oscillators. We’ll show (in chapter IV of this 

book) that it’s not that difficult: not in theory, and not in practice. All we need to do is to make sure the 

two oscillations are perpendicular one to another, so they are independent. The mass on the springs 

(plural!) –  so that’s the green dot in the illustration below – will now go round and round, with some 

constant tangential velocity. This tangential velocity is equal to the angular velocity – which is just the 

angular frequency93 times the radius of the circular path: v = a·ω.  

                                                           
91 It is this binding energy between protons and neutrons that is being released in a nuclear explosion. There is no proton or 
neutron matter that gets converted into energy. 
92 An angular frequency is expressed in radians (rad) per second, rather than cycles (or oscillations) per second (hertz). One 
oscillation corresponds to 2π rad. The radian is, of course, nothing but the distance unit – one meter in SI units – but used to 
measure an angle. Hence, we write: ω = 2π·f = 2π/T, with T the period of the oscillation (T is the time which corresponds to one 
cycle). I recommend reading one of my posts on wave math so as to make sure you get the basic concepts: 
https://readingfeynman.org/2015/09/08/a-post-for-my-kids-on-the-math-of-waves/.   
93 Think of the angular frequency as the angular velocity if the radius is one. Remember that the radian (rad) is the distance unit 
for measuring angles. 

https://readingfeynman.org/2015/09/08/a-post-for-my-kids-on-the-math-of-waves/
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Figure 13: Angular frequency (ω) and tangential velocity (v = a·ω) 

It is, therefore, very tempting to think of c as some tangential velocity too. Why? Think of the structural 

similarity of these equations:  

1. E = ma2ω2 /2 (energy of an oscillator) 

2. E = mc2 (relativistic energy) 

3. E = mv2/2 (kinetic energy) 

All we do is here is to assume that the kinetic energy must be matched by some potential energy94, 

which works if we have two oscillators working in tandem.95 The 1/2 factor in the first equation then 

disappears, and we can then boldly equate the E = m·c2, E - m·a2·ω2 and E = m·v2 equations. So we just 

equate the energy of our two-dimensional oscillator with the energy of whatever it is that we’re looking 

at (think of an electron here), and then the mass m has to be equal to the proportionality constant k. 

The c2 = a2·ω2 hypothesis gives us the frequency as well as the amplitude of what we will refer to as the 

rest energy (or rest matter) oscillation. It is that what gives mass to our electron: its rest mass is nothing 

but the equivalent mass of the energy of the pointlike charge in its two-dimensional oscillation. Does 

this make any sense at all? It does. Let me show you why. We should get ω from the Planck-Einstein 

relation, which is just the first de Broglie relation: E = h·f   ω = E/ħ. Hence, we can write:    

E = m𝑎2ω2 = m𝑎2
E2

ℏ2
⟺ ℏ2 = m𝑎2E = m𝑎2m𝑐2 = 𝑚2𝑎2𝑐2 

⟺ 𝑎 =
ℏ

m𝑐
=
λ𝐶
2π
≈ 0.386 × 10−12 m 

We get the Compton radius of an electron. The Compton radius is the effective photon scattering radius 

of an electron, so it is effectively the size of an electron! This is a most wonderful result, and it convinced 

us we’ve got something real here in terms of an interpretation! 

                                                           
94 In one of our very first blog posts on this, we referred to the potential energy as the hidden energy, or the missing energy, or 
the imaginary energy. See: https://readingfeynman.org/2016/05/23/the-missing-energy/. However, we now think that term is 
too ambiguous. 
95 We will show two oscillators can work in tandem if their phase differs by 90 degrees—which is in line with the requirement 
for their motion to be perpendicular to each other. In other words, we have a sine and a cosine—as these are the same 
function, but with a phase difference of 90 degrees. So we have Euler’s function—the wavefunction! 

https://readingfeynman.org/2016/05/23/the-missing-energy/
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You will probably shake your head and have all kinds of questions (which we’ll try to answer soon96) but 

the more fundamental question among those should be this one: what is the nature, then, of this 

equivalent mass? The answer is surprisingly simple: it is just a measure of its inertia, so that is just its 

resistance to acceleration. Nothing more. Nothing less.  

You may think that the explanation above is not very intuitive. If you do some homework on it, then you 

should throw these ω2 = C−1/L or ω2 = k/m formulas of harmonic oscillators at me97 – noting that they 

introduce two (or more) degrees of freedom. In contrast, c2= E/m for any particle, always. In fact, that’s 

exactly the point: we can modulate the resistance, inductance and capacitance of electric circuits, and 

the stiffness of springs and the masses we put on them, but we live in one physical space 

only: our spacetime. Hence, the speed of light c emerges as the defining property of spacetime here—as 

some kind of elasticity, so to speak (as opposed to its quality as the velocity of travel of an 

electromagnetic signal, which we get out of Maxwell’s equations). 

Of course, you can now ask the next question: what is the nature of this inertia to acceleration or a 

change in direction? Here we can refer you to an experience you are surely familiar with: if you have a 

bicycle wheel in your hand – just holding it by its axle – and it is not spinning, then it is fairly easy to 

move it here or there. In contrast, when it is rapidly spinning, it will have a moment of inertia that comes 

into play—and that will complicate whatever you will want to do with is: you will feel its inertia to 

motion. Is the nature of what we referred to as the rest matter oscillation really the same?  

Yes. At least that’s what I like to believe. 

Reintroducing intuition and imagination 
The little digression above makes it clear that what’s intuitive or natural to me will not necessarily come 

across as intuitive or natural to you. Indeed, a lot of the formulas in this book feel somewhat intuitive to 

me but that is only because I have been staring at them for many years now. They were not intuitive – 

not at all, really – before I had diligently worked my way through them. As I learned how to relate the 

key equations in physics by fits and starts, some new picture emerged in a cognitive process that was 

characterized by the rare but essential experience of the Aha-Erlebnis—a sudden insight into the 

question that has troubled me for all of my life: what are those quantum-mechanical amplitudes? What 

does that quantum-mechanical wavefunction represent, exactly? I believe I have the answer to that 

question now—and the objective of this book is to share it with you. 

I cannot promise that this book will be an easy read. It’s not—even if I will be avoiding differential 

equations.98 However, I am confident you will get some kind of feel for what the equations and formulas 

actually mean because all of the formulas I use represent something we can imagine in terms of three-

                                                           
96 We’ll do so in the next chapter. One question you should have is whether or not the formula for the energy oscillator is 
relativistically correct. We’ll come to that.  

 The ω2= 1/LC formula gives us the natural or resonant frequency for an electric circuit consisting of a resistor (R), an inductor 

(L), and a capacitor (C). Writing the formula as ω2 = C−1/L introduces the concept of elastance, which is the equivalent of the 
mechanical stiffness (k) of a spring. We will usually also include a resistance in an electric circuit to introduce a damping factor 
or, when analyzing a mechanical spring, a drag coefficient. Both are usually defined as a fraction of the inertia, which is the 
mass for a spring and the inductance for an electric circuit. Hence, we would write the resistance for a spring as γm and as R = 
γL respectively. This is a third degree of freedom in classical oscillators.   
98 There may be one or two very simple ones, but I am actually not going to talk about Schrödinger’s or Dirac’s equation. We 
have done that in various papers which the reader can consult on Phil Gibbs’ viXra.org site 
(http://vixra.org/author/jean_louis_van_belle).  

http://vixra.org/author/jean_louis_van_belle
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dimensional space and one-dimensional time—something we can understand in our Universe. With “our 

Universe”, I really mean our world, which is not to be equated with some abstract mathematical space 

defined in terms of strings and hidden dimensions. I believe a true understanding of physics implies an 

understanding in terms of the geometry and the physicality of the situation at hand. 

You’ll say: of course! But it not so obvious. Indeed, let me contrast what I am trying to do with the rather 

limited ambition of mainstream physicists, which may be summed up in the following rather famous 

quote of the equally famous Richard Feynman:  

“Because atomic behavior is so unlike ordinary experience, it is very difficult to get used to, and 

it appears peculiar and mysterious to everyone—both to the novice and to the experienced 

physicist. Even the experts do not understand it the way they would like to, and it is perfectly 

reasonable that they should not, because all of direct, human experience and of human intuition 

applies to large objects. We know how large objects will act, but things on a small scale just do 

not act that way. So we have to learn about them in a sort of abstract or imaginative fashion and 

not by connection with our direct experience.”99 

I started this search for some truth long time ago because I could not accept the idea that I would never 

be able to understand quantum mechanics the way I would like to understand it. Of course, I did not 

expect things to be intuitive right from the start. Let me give you another example here.  

I must assume you understand the basics of relativity theory. If you are reading a book on quantum 

mechanics, you should. And, if you do, you will agree relativity theory is not intuitive: relativistic mass, 

time dilation and length contraction are not what we observe in our daily lives, and the idea that 

simultaneous events may not appear as simultaneous to another observer isn’t very intuitive either. 

However, once we accept a signal cannot travel faster than the speed of light, we can derive what must 

be true, and the more we play with the formulas, the more we sort of get an inkling of what the likes of 

Einstein and Minkowski must have imagined when they talked about relativistic spacetime to whatever 

audience they were talking to, and some kind of understanding of spacetime in terms of geometry and 

the physicality of the situation does follow in the end.  

Now try to imagine what Feynman’s path integral formulation of quantum mechanics wants us to 

believe.100 According to this interpretation, one should abandon the classical idea of a single, unique 

classical trajectory for a particle. Instead, one should get used to the idea that a particle sort of travels 

simultaneously over an infinite number of quantum-mechanically possible trajectories. Each of these 

paths is associated with a complex number which is referred to as an amplitude. One then has to sum all 

of these amplitudes, and the absolute square of this complex sum then gives us the probability of our 

particle actually going from here to there. To be precise, it gives us a probability density, and when we 

say the absolute square, we mean the square of the modulus of the complex sum. 

                                                           
99 See: The Feynman Lectures on Physics, Volume III, Chapter 1, Atomic mechanics. The italics are mine. Richard Feynman is one 

of the most famous post-World War II physicists⎯, i.e. the second generation of quantum physicists), and his Lectures are a 
common reference in mainstream physics. They are accessible online (www.feynmanlectures.caltech.edu) and that is why we 
will often use them whenever we will want to refer to a textbook explanation of something. It allows the interested reader to 
put in an additional effort: he or she can look up the standard argument, so as to appreciate the subtle but fundamental 
difference in the approach that we are going to take in this book.  
100 I am choosing this example because the path integral formulation of quantum mechanics does effectively inform most of the 
other formalisms of quantum mechanics.   

http://www.feynmanlectures.caltech.edu/
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It is really hard to imagine what is going on here, right? Hence, one has to be very imaginative or 

abstract here. Why is it so hard? Because we cannot really imagine it—no matter how hard we try! 

There is no geometry here: no explanation why we should use this procedure.  

In fact, mainstream physicists tell us we should not even try to understand. The dominating Copenhagen 

interpretation of quantum mechanics tells us that Nature is just some kind of black box, and the best we 

can do is to think of some input-output relations to describe what goes in and what comes out. You 

don’t believe this? Take any online course in quantum mechanics, and the first thing the professor will 

teach you is how to describe the Mach-Zehnder interference experiment, and that description is quite 

similar to the input-output matrix algebra that economists need to master as part of learning the tricks 

of their trade.101 I will come back to this experiment in one of the final chapters, and I will show there is 

an alternative interpretation. It just requires a more imaginative description of the idea of a photon—a 

description that is more real, I’d say. 

Hidden variables and black boxes: going where Bell tells us not to go 
If you already know a thing or two about quantum physics – which I assume you do – you will say: 

“What about Bell’s No-Go Theorem, which tells us there are no hidden variables that can explain the 

interference in some kind of classical way?” My answer to that is like Einstein’s when younger physicists 

would point out that his objections to quantum mechanics (which he usually expressed as some new  

thought experiment) violated this or that axiom or theorem in quantum mechanics: “Das ist mir 

wurscht.” It’s German for: I don’t care.  

I don’t care either because Bell’s Theorem is what it is: a mathematical theorem. Hence, it respects the 

GIGO principle: garbage in, garbage out. So we will just boldly go to where Bell’s Theorem says we can’t 

go. In fact, John Stewart Bell himself – one of the third-generation physicists, we may say – did not like 

his own ‘proof’ and thought that some “radical conceptual renewal”102 might disprove his conclusions. 

We should also remember Bell kept exploring alternative theories – including Bohm’s pilot wave theory, 

which is a hidden variables theory – until his death at a relatively young age.     

Hence, Albert Einstein was surely not the only one who did not like the black box idea. In fact, all of the 

founding fathers of quantum mechanics ended up becoming pretty skeptical about the theory they had 

created.103 Quantum physics – in its current mainstream rendering of it – only survived because second-

generation physicists such as Freeman Dyson, Julian Schwinger, Richard Feynman and – to name a 

somewhat less familiar Nobel Prize name – Sinichiro Tomonaga, kept it alive by inventing a weird 

mathematical framework which we may summarize by referring to it as perturbation and 

                                                           
101 How do I know? Because I studied economics before getting into physics and math. 
102 See: John Stewart Bell, Speakable and unspeakable in quantum mechanics, pp. 169–172, Cambridge University Press, 1987. 
J.S. Bell died from a cerebral hemorrhage in 1990 – the year he was nominated for the Nobel Prize in Physics. He was just 62 
years old then. 
103 See: Ivan Todorov, From Euler’s play with infinite series to the anomalous magnetic moment, 12 October 2018 
(https://arxiv.org/pdf/1804.09553.pdf). We can also quote from Dirac’s last paper on quantum mechanics, His last paper 
(1984), entitled "The inadequacies of quantum field theory," contains his final judgment on quantum field theory, The 
Inadequacies of Quantum Field Theory, which he published in 1984: "These rules of renormalization give, surprisingly, 
excessively good agreement with experiments. Most physicists say that these working rules are, therefore, correct. I feel that is 
not an adequate reason. Just because the results happen to be in agreement with observation does not prove that one's theory 
is correct." That is a pretty strong statement to make—and most people would actually dismiss such statement: we should be 
happy with a theory that’s in agreement with observation, right? However, this is not a statement from your average physicist: 
it is a statement by a genius. Hence, we may want to think about it.  

https://arxiv.org/pdf/1804.09553.pdf
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renormalization theory.104 These distinguished scientists all received Nobel Prizes for it, so there is a 

vested interest now in further nurturing the mystery culture around quantum mechanics alive: no 

academic will want to hurt his or her career by exclaiming the Emperor has no clothes!  

Radical conceptual renewal: the double-life of −1 
By now, you should be tired of my ranting, and you’ll want to know: what is the kind of “radical 

conceptual renewal” that I am offering here, exactly? What do we offer instead of Feynman’s path 

integral math? Again, I am not saying it is an easy matter, and so I cannot elaborate on everything in the 

introduction here—especially because I actually did already reveal some basic tenets of my new physics 

above (cf. what I wrote about the interpretation of (rest) mass as a rest matter oscillation, the 

introduction of a consistent electron and photon model, etcetera). However, I do want to share why I 

think I can do what others could not do: I found a deep conceptual flaw in the early quantum-

mechanical mathematical framework.  

It sounds terribly arrogant but we do think the early theorists made a small mistake: they did not fully 

exploit the power of Euler’s ubiquitous ψ = a·ei function. Schrödinger and Dirac may have been too 

obsessed by their differential equation – as opposed to the wavefunction that is its solution. They didn’t 

integrate spin—not from the outset, at least. The mistake is illustrated below.  

 

Figure 14: The meaning of +i and −i 

This looks like kids’ stuff, right? I hope I didn’t the simplistic illustration above didn’t put you off, 

because it is actually a very subtle thing. Quantum physicists will tell you they don’t really think of the 

elementary wavefunction as representing anything real but, in fact, they do. Of course! And, if you 

insist, they will tell you, rather reluctantly because they are not so sure about what is what, that it might 

represent some theoretical spin-zero particle. Now, we all know spin-zero particles do not exist. All real 

particles – electrons, photons, anything – have spin, and spin (a shorthand for angular momentum) is 

always in one direction or the other: it is just the magnitude of the spin that differs. It is, therefore, 

completely odd that the plus (+) or the minus (−) sign of the imaginary unit (i) in the a·e±i function is not 

being used to include the spin direction in the mathematical description.  

Indeed, most introductory courses in quantum mechanics will show that both a·e−i· = a·e−i·(t−kx) and 

a·e+i· = a·e+i·(t−kx) are acceptable waveforms for a particle that is propagating in a given direction (as 

opposed to, say, some real-valued sinusoid). One would expect that the professors would then proceed 

to provide some argument showing why one would be better than the other, or some discussion on why 

                                                           
104 I should do justice to history and, hence, note that Dirac had already inserted a chapter on perturbation theory (chapter VII) 
and on the action principle (a precursor to Feynman’s path integral formulation of QM) in this 1930 Principles of Quantum 
Mechanics. 
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they might be different, but that is not the case. The professors usually conclude that “the choice is a 

matter of convention” and, that “happily, most physicists use the same convention.”105  

This, then, leads to the false argument that the wavefunction of spin-½ particles have a 720-degree 

symmetry. Again, you should not worry if you don’t get anything of what I write here – because I will 

come back to it – but the gist of the matter is the following: because they think the elementary 

wavefunction describes some theoretical zero-spin particle, physicists treat −1 as a common phase 

factor: they think we can just multiply a set of amplitudes – let’s say two amplitudes, to focus our mind 

(think of a beam splitter or alternative paths here) – with −1 and we’re going to get the same states. We 

find it rather obvious that that is not necessarily the case: −1 is not necessarily a common phase factor. 

We should think of −1 as a complex number itself: the phase factor may be +π or, alternatively, −π. To 

put it simply, when going from +1 to −1, it matters how you get there – and vice versa – as illustrated 

below.106  

 

Figure 15: e+iπ  e−iπ 

I know this sounds like a bad start for a book that promises to provide some intuitive understanding of 

quantum mechanics but – as mentioned above – I did not promise such understanding would come 

easily. I only promised this this book would be very different from anything else that you’ve read about 

quantum physics.  

What’s the point? It is this: if we exploit the full descriptive power of Euler’s function, then all weird 

symmetries disappear – and we just talk standard 360-degree symmetries in space. Also, weird 

mathematical conditions – such as the Hermiticity of quantum-mechanical operators – can easily be 

explained as embodying some common-sense physical law. In this particular case (Hermitian operators), 

we are talking physical reversibility: when we see something happening at the elementary particle level, 

then we need to be able to play the movie backwards. Physicists refer to it as CPT-symmetry, but that’s 

what it is really: physical reversibility.107 

                                                           
105 In case you wonder, this is a quote from the MIT’s edX course on quantum mechanics (8.01.1x). We quote this example for 
the same reason as why we use Feynman’s Lectures as a standard reference: it is an authoritative course, and it’s available 
online so the reader can check and explore for himself.  
106 The quantum-mechanical argument is technical, and I did not reproduce it in this book. I encourage the reader to glance 
through it, though. See: Jean Louis Van Belle, Euler’s Wavefunction: The Double Life of – 1, http://vixra.org/abs/1810.0339. 

Note that the e+iπ  e−iπ expression is horror to any mathematician! Hence, if you’re a mathematician, you should switch off. If 
you’re an amateur physicist, you should be excited, because it actually is the secret key to unlocking the so-called mystery of 
quantum mechanics. Remember Aquinas’ warning: quia parvus error in principio magnus est in fine. A small error in the 
beginning can lead to great errors in the conclusions. As arrogant as it sounds, we think we’ve found the small error in the 
beginning. 
107 My blog (www.readingfeynman.org) has probably more than a dozen posts on this, which we didn’t reproduce into this book 
either because a lot of it is quite nitty-gritty: interesting – and important – but nitty-gritty. The interested reader can use the 
search function to find the posts – if and when he or she would like to dig further. 

http://vixra.org/abs/1810.0339
http://www.readingfeynman.org/
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If you still wonder why this should be important, this is why: all physicists – and popular writers on 

physics – will tell you that the wavefunction of a particle – say, an electron – has this weird 720-degree 

symmetry, which we cannot really imagine. Of course, we have these professors doing the Dirac belt 

trick on YouTube – and many other wonderful animations108 but, still, these visualizations all assume 

some weird relation between the object and the subject. To put it differently, it is fair to say that we 

cannot really imagine an object with a 720-degree symmetry, and so that’s why the Copenhagen 

interpretation tells us we should just be content with the above-mentioned procedural approach to 

‘understanding’ quantum mechanics.  

Now, that procedural approach is, in my not so humble view, no understanding at all! Hence, what we 

want to do in this book, is to show we should not distinguish between so-called symmetric and anti-

symmetric wavefunctions: all wavefunctions have standard 360-degree symmetries and, therefore, 

represent equally standard three-dimensional objects in relativistic spacetime. 

The form factor 
The argument above revolves around geometry, and this brings me to a second mistake of the early 

quantum physicists: a total neglect of what I refer to as the form factor in physics. Why would an 

electron be some perfect sphere, or some perfect disk? We will argue it is not. It is – most probably – 

some regular geometric shape – Dr. Burinskii’s Dirac-Kerr-Newman model of an electron, for example, 

suggests it’s an oblate spheroid – but so that’s not necessarily a perfect sphere, or a perfect disk. Once 

you acknowledge the form factor, the so-called anomalous magnetic moment – which is touted as the 

ultimate precision test of mainstream quantum-mechanical theory – is not-so-anomalous anymore. We 

predict it is only a matter of time before some physicist will show classical physics explain it perfectly 

well.109 

Planck’s constant as a vector 
The mistake is actually more general than what I wrote above. Physicists think of the key constants in 

Nature as some number. Most notably, they think of Planck’s quantum of action (h  6.626×10−34 N·m·s) 

as some (scalar) number. Why would it be? It is – obviously – some vector quantity or – let me be 

precise – some matrix quantity: h is the product of a force (some vector in three-dimensional space), a 

distance (another three-dimensional concept) and time (one direction only). Somehow, those 

dimensions disappeared in the analysis. Vector equations became flat: vector quantities became 

magnitudes. Schrödinger’s equation should be rewritten as a vector or matrix equation.  

                                                           
108 You may have come across the animations of Jason Hise. He is a professional game programmer whom I’ve been in touch 
with. I think he makes the best ones. You can find them on Wikipedia. 
109 Prof. Dr. Alexander Burinskii is working on this currently. In an email dated 8 February 2019, he wrote me he has the α 
factor, but lacks the 2π factor and corrections. I am elated already: he has the α factor! So he’s got 99.85% of the so-called 
anomaly (a factor of 2π is always some logical error that can easily be fixed). I feel like toasting to this future Nobel Prize. The 
Nobel Prize Committee should prepare for the eventuality. Why? Because this eventuality feels more like a certainty. 
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We do think of Planck’s quantum of action as some vector—or even a matrix quantity, possibly! We are, 

therefore, tempted to think that the uncertainty – or the probabilistic nature of Nature, so to speak110 – 

might not be in its magnitude: it might be in its direction.111  

Classical clothes and Occam’s Razor 
We’ve explained – roughly – what we offer instead of Feynman’s path integral interpretation: a real 

model of the electron and the photon. We then don’t need perturbation theory, gauge theories, 

Feynman diagrams, quantum field theory, etcetera. As you will see, we’ll have very classical theory 

instead. An update, basically, of what was around before Heisenberg told everyone to just give up and 

not even try to understand. This updated classical theory is based on what we will loosely refer to as the 

idea of the integrity of a cycle. 

We will be upfront. That might be more of an ontological than a physical concept. We basically say that 

the very idea of a cycle implies that we count them: we do not think in terms of half, quarter or 

whatever other fraction of a cycle. This, we argue, gives us a new analytical framework to re-analyze the 

quantum math.  

To be precise, we think it allows us to re-establish a one-to-one relation between the (mathematical) 

description of physical phenomena, and the phenomena themselves. It’s Occam’s Razor, really. Occam’s 

Razor Principle says we should reduce complexity and search for mathematical parsimony. Hence, if 

possible, we should use all of the degrees of freedom in the mathematical expression when describing 

reality. Orthodox quantum mechanics clearly doesn’t do so. As mentioned above, spin-zero particles 

don’t exist. We should, therefore, incorporate spin in the description (the wavefunction, that is) right 

from the start. If we do so, we suddenly find all makes sense. 

And… Oh… Yes. What about the classical clothes? The private working title of this book was: The 

Emperor Has No Clothes: A Classical Explanation of Quantum Mechanics. You’ll make the connection, 

won’t you? 

Relating amplitudes and probabilities through energy or mass densities 
What about those amplitudes and the absolute square? The squaring can be related to the universal 

principle we mentioned above already: the energy in any oscillation is proportional to the square of its 

amplitude—and we’re not thinking of the abstract quantum-mechanical concept of an amplitude here: 

we’re really talking the (maximum) displacement of the point or the object that’s oscillating. I shouldn’t 

elaborate this square-law because, again, I must assume you have some basic knowledge of physics 

already when you are reading this.112  

                                                           
110 A fair amount of so-called thought experiments in quantum mechanics – and we are not (only) talking the more popular 
accounts on what quantum mechanics is supposed to be all about – do not model the uncertainty in Nature, but on our 
uncertainty on what might actually be going on. Einstein was not worried about the conclusion that Nature was probabilistic 
(he fully agreed we cannot know everything): a quick analysis of the full transcriptions of his oft-quoted remarks reveal that he 
just wanted to see a theory that explains the probabilities. A theory that just describes them didn’t satisfy him. 
111 We will present that argument a couple of times in this book but – truth be told – uncertainty might be in everything: the 
factors in the product, the direction, or even in the h = ΔF·Δs·Δt formula itself. When everything is said and done, it’s obvious 
we’re modeling something that does seem to be indeterministic, and there is no good reason why there would be more 
indeterminacy here or there.  
112 If not, please do go through a good textbook on general physics and electromagnetic theory – such as Feynman’s Volume I 
and II. As for the term ‘square-law’, you won’t find this anywhere, but if we have inverse-square laws, it is only logical we have a 
few square-laws as well, right? 
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One should then combine this with the following easy question: what is the probability of the propeller 

of a plane being here or there when it’s rotating? Sorry for those common-sense questions, but I think 

you’ll agree common-sense makes sense, right? Sometimes, at least. So have a look at the illustration 

below. You’ll agree that probability must be proportional to the mass density, right? Hence, Einstein’s 

mass-energy equivalence relation tells us probabilities will be proportional to mass or energy densities. 

Does this make sense? Yes? No? A little bit? Don’t worry. We’ll come back to this. This is, after all, just 

the introduction to this book. 

 

Figure 16: Where is the propeller, exactly?113 

QED versus QCD: black-and-white versus color vision 
So, yes, I should probably have started the book a dozen times now but, as I have already introduced 

some of the basic discoveries in this book, I should also clarify what it is and what it isn’t about. What we 

want to do here in this book is to provide a geometric – or physical, I should say – understanding of the 

QED sector of the Standard Model. We’re not getting into the nucleus itself. In other words, we won’t be 

discussing quarks and gluons—or quantum chromodynamics (QCD) as it’s known. Why not? It’s not 

(only) because QED is a big enough piece in its own. The more substantial reason is that I feel the innate 

nature of man to generalize did not contribute to greater clarity.114 I think it makes perfect sense to 

think that each sector of the Standard Model requires its own mathematical approach.  

Let me briefly summarize this idea in totally non-scientific language. We may say that mass comes in one 

‘color’ only: it is just some scalar number. Hence, Einstein’s geometric approach to gravity makes total 

sense. In contrast, the electromagnetic force is based on the idea of an electric charge, which comes in 

two ‘colors’, so to speak: black or white, or + or −. Maxwell’s equation seemed to cover it all until it was 

discovered the nature of Nature – sorry for the wordplay – might be discrete and probabilistic. However, 

that's fine. We should be able to modify the classical theory to take that into account. There is no need 

                                                           
113 I downloaded this image from a website selling Christmas presents long time ago, and I have not been able to trace back 
from where I have got it. If someone recognizes this as their picture, please let us know and we will acknowledge the source or 
remove it. 
114 If you are familiar with Feynman’s Lectures already, you’ll agree that his rather weird excursion on the general difference 
between the equally general idea of a boson and a fermion (Volume III, Chapter 4) does not have any practical value: it just 
confuses the picture. It is much easier to first try to understand the specifics of electrons and photons, and their interactions, 
before generalizing to whatever other boson- or fermion-like particle we assume to be out there.  
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to invent an entirely new mathematical framework (I am talking quantum field and gauge theories 

here).  

Now, the strong force comes in three colors, and the rules for mixing them, so to speak, are very 

particular. So that’s color television.115 It is, therefore, only natural that its analysis requires a wholly 

different approach. Hence, I would think the new mathematical framework should be reserved for that 

sector. To put it differently, I really don't like the reference of Aitchison and Hey116 to gauge theories as 

'the electron-figure'. The electron figure is a pretty classical idea to me. Hence, I do hope one day some 

alien will show us that the application of the Dyson-Feynman-Schwinger-Tomonaga ‘electron-figure’ to 

what goes on inside of the nucleus of an atom was, perhaps, not all that useful. 

The Higgs field: mass as a scalar field—of course! 
What about the Higgs particle—or the Higgs field? I won’t talk about that because I don’t know much 

about it. However, I’ll just make one short remark here: the Higgs field is a scalar field. A scalar field 

associates some number (a scalar) with some position in spacetime. So mass is some number. None of 

what we write contradicts that. In fact, if we think of mass as the equivalent mass of the energy in some 

oscillation, then it should not come as a surprise that we can think of mass as a scalar field. 

If I have not lost you by now, please follow me to the acknowledgments section, in which I want to 

explain where I come from. Because I am not an alien.  

Would I want to be one? That’s a good question. I sure want to live forever, but would I want to know 

everything. My instinct tells me: probably not. Why not? Because, if you’re going to live forever, you 

need some puzzle. Some mystery to solve. Some computer game to win.117 It’s not nice to have all of the 

answers, because then there is nothing left to solve.118 

  

                                                           
115 Our eyes actually do respond to three types of color only—using three types of cone receptors, and color television works 
the same! 
116 I.J.R. Aitchison and A.J.G. Hey’s Gauge Theories in Particle Physics is, for QCD, what Feynman’s Lectures are for QED: a 
standard textbook. As mentioned above, we feel QCD is an entirely different ballgame altogether, so to speak, and we will, 
therefore, not touch on it here. 
117 I made some friends through this intellectual journey, and one of them is a top-notch computer game programmer. He does 
marvelous stuff—including animations that are better than any Dirac belt trick video. He also challenges me in ways I wouldn’t 
expect. For example, he thinks some movies involving reverse time travel make sense. He gave me some titles, but I haven’t 
had time yet to see them.  
118 If the ideas in this book would, somehow, contribute to solving the QED sector of the Standard Model, then we should get 
going on the QCD sector, right? 
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III. History and acknowledgments 
It is somewhat odd to have a chapter on the history of this book, and acknowledgements usually come 

at the front of a book! However, we thought of introducing an easy-to-read thing here before we delve 

even deeper into the subject-matter.  

Of course, you may want to skip this chapter but I wouldn’t do it. The story will effectively help you to 

appreciate the sort of intuition that brought us where we are right now and, hence, it will probably help 

you to understand what – despite all simplifications – is still a rather abstruse matter. So… Well… Where 

do we come from?  

This journey – a long search for understanding, really – started about thirty-five years ago. I was just a 

teenager then—reading popular physics books. Gribbin’s In Search of Schrödinger’s Cat is just one of the 

many that left me unsatisfied in my quest for knowledge.119 However, my dad never pushed me and 

thought I should just make some money. So I went the easy route: humanities, and economics—plus 

some philosophy and a research degree afterwards. He was right. I never made an awful lot of money—

but enough to be able to buy me whatever free time I wanted. 

In fact, those rather awkward qualifications (for an author on physics, that is) have served me well—not 

only because I had a great career abroad, but also because I now realize that physics, as a science, is in a 

rather sorry state: the academic search for understanding has become a race to get the next non-

sensical but conformist theory published, so I am happy I am not in that race. My search was fueled by a 

rather instinctive discontent with the orthodox view that we will never be able to understand quantum 

mechanics “the way we would like to understand it”, as Richard Feynman puts it. That sounds arrogant – 

I guess it is arrogant – but it’s a great advantage. In case you wonder why, I think the cartoon below – 

which was sent to me by Dr. Giorgio Vassallo, about whom I’ll say a few words in a moment – probably 

explains that better than any words can do. Being independent comes with great freedom. No teaching 

assignments, and complete freedom in terms of what to dig into.  

 

Figure 17: Academic freedom versus academic freedom 

                                                           
119 I went into a bookstore recently and – to my surprise – that book is still around! 
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Talking Feynman, I must admit his meandering Lectures are the foundation of my current knowledge, 

and also the reference point from where I started to think for myself.120 I had been studying them on 

and off – an original print edition that I had found in a bookshop in Old Delhi – but it was really the 2012 

Higgs-Englert experiments in CERN’s LHC accelerator, and the award of the Nobel prize to these two 

scientists, that made me accelerate my studies. It coincided with my return from Afghanistan – where I 

had served for five years – and, hence, I could afford to reorient myself a bit.121 

I started a blog (www.readingfeynman.org) as I started struggling through it all. That helped me greatly, 

if only because of the encouragement of other crazies. However, besides attention from a lot of like-

minded crazies, I got some serious reactions too. I fondly recall that, back in 2015, Dr. Lloyd N. Trefethen 

from the Oxford Math Institute reacted to a post in which I had pointed out a flaw in one of Richard 

Feynman’s arguments. It was on a topic that had nothing to do with quantum mechanics – the rather 

mundane topic of electromagnetic shielding, to be precise – but his acknowledgement that Feynman’s 

argument was, effectively, flawed and that he and his colleagues had solved the issue in 2014 only 

(Chapman, Hewett and Trefethen, The Mathematics of the Faraday Cage) was an eye-opener for me. 

Trefethen concluded his email as follows: “Most texts on physics and electromagnetism, weirdly, don't 

treat shielding at all, neither correctly nor incorrectly. This seems a real oddity of history given how 

important shielding is to technology.” This resulted in a firm determination to not take any formula for 

granted – even if they have been written by Richard Feynman! With the benefit of hindsight, I might say 

this episode provided me with the guts to question orthodox quantum theory. 

The informed reader will now wonder: what do I mean with orthodox quantum theory? I should be 

precise here, and I will. It is the modern theory of quantum electrodynamics (QED) as established by 

Dyson, Schwinger, Feynman, Tomonaga and other post-World War II physicists. It’s the explanation of 

the behavior of electrons and photons – and their interactions – in terms of Feynman diagrams and 

propagators. I instinctively felt their theory might be incomplete because it lacks a good description of 

what electrons and photons actually are. Hence, all of the weirdness of quantum mechanics is now in 

this weird description of the fields – as reflected in the path integral formulation of quantum mechanics. 

Whatever an electron or a photon might be, we cannot really believe that it sort of travels along an 

infinite number of possible spacetime trajectories all over space simultaneously, can we?   

I also found what Brian Hayes refers to as “the tennis match between experiment and theory” – the 

measurement (experiment) or calculation (theory) of the so-called anomalous magnetic moment – a 

rather weird business: the complexity in the mathematical framework just doesn’t match the intuition 

that, if the theory of QED has a simple circle group structure, one should not be calculating a zillion 

integrals all over space over 891 4-loop Feynman diagrams to explain the magnetic moment of an 

electron in a Penning trap. There must be some form factor coming out of a decent electron model that 

can explain it, right? 

                                                           
120 I would like to acknowledge Michael A. Gottlieb and Rudolf Pfeiffer here, who put those Lectures online and who, therefore, 
now have the copyrights on them. They gave me some trouble as they felt I was copying a bit too much stuff on my blog—but it 
was all in good faith: I think I did expose some flaws here and there. Little cracks, that become bigger and bigger as you keep 
thinking about them. I wanted to re-use some diagrams from Feynman’s Lectures in this book, but didn’t manage to get their 
approval, unfortunately. It would have made some explanations easier. 
121 I work as a management consultant. If you wonder in what business: it’s development. But I specialize in difficult countries, 
still: Afghanistan, and Nepal. Beautiful places that are poorly managed. 

http://www.readingfeynman.org/
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Of course, all of the above sounds very arrogant, and it is. However, I always felt I was in good company, 

because I realized that not only Einstein but the whole first generation of quantum phycisists 

(Schrödinger, Dirac, Pauli and Heisenberg) had become skeptical about the theory they had created—if 

only because perturbation theory yielded those weird diverging higher-order terms. Dirac wrote the 

following about that in 1975: “I must say that I am very dissatisfied with the situation because this so-

called 'good theory' [perturbation and renormalization theory] involves neglecting infinities. […] This is 

just not sensible mathematics. Sensible mathematics involves neglecting a quantity when it is small – 

not neglecting it just because it is infinitely great and you do not want it!” The Wikipedia article on Dirac, 

from which I am quoting here, notes that “his refusal to accept renormalization resulted in his work on 

the subject moving increasingly out of the mainstream.” 

With the benefit of hindsight, I think it’s not overly brutal to say that the likes of Dyson, Schwinger, 

Feynman – the whole younger generation of mainly American scientists who dominated the discourse at 

the time – lacked a true general: they kept soldiering on by inventing renormalization and other 

mathematical techniques to ensure those weird divergences cancel out, but they had no direction. As 

mentioned above, these distinguished scientists all received Nobel Prizes for their ‘discoveries’, so there 

is a vested interest now in keeping the mystery alive: no academic will want to hurt his or her career by 

claiming Dyson, Schwinger, Feynman or Tomonaga were wrong!122 In fact, it’s probably only 

independent researchers like me who can just say what many might be thinking: the Emperor has No 

Clothes! 

However, once again I am getting ahead of myself here. We will get into the meat of the matter soon. 

Before doing so, let me just add some remarks and acknowledge all the people who supported me in 

this rather lonely search. First, whom am I writing for? I am writing for people like me: amateur 

physicists. Not-so-dummies, in other words. People who don’t shy away from calculations. People who 

understand a simple differential equation123, some complex algebra and classical electromagnetism – all 

of which are, indeed, necessary, to understand anything at all in this field. However, don’t be afraid: I 

have good news for you too: I have come to the conclusion that we do not need to understand anything 

about gauges or propagators or Feynman diagrams to understand quantum electrodynamics.  

Indeed, rather than “using his renormalized QED to calculate the one loop electron vertex function in an 

external magnetic field”, Schwinger should, perhaps, have listened to Oppenheimer’s predecessor on 

the Manhattan project, Gregory Breit, who wrote a number of letters to both fellow scientists as well as 

the editors of the Physical Review journal suggesting that the origin of the so-called discrepancy might 

be due to an ”intrinsic magnetic moment of the electron of the order of αµB.” In other words, I do not 

think Breit was acting schizophrenic when complaining about the attitude of Kusch and Lamb when they 

got the 1955 Nobel Prize for Physics for their work on the anomalous magnetic moment. I think he was 

just making a very sensible suggestion—and that is that one should probably first try investing in a good 

theory of the electron before embarking on mindless quantum field calculations.  

My search naturally led me to the Zitterbewegung hypothesis. Zitter is German for shaking or trembling. 

It refers to a presumed local oscillatory motion—which I now believe to be true, whatever that means. 

Erwin Schrödinger found this Zitterbewegung as he was exploring solutions to Dirac’s wave equation for 

free electrons, and I have already quoted Dirac’s instructive summary of Schrödinger’s discovery so I 

                                                           
122 All of them have died now, except Freeman Dyson, who is 95 years old now! 
123 As mentioned above, we will avoid them in general, but we do need one or two. It will be kids’ stuff. Don’t worry. 
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won’t elaborate here. I’ll just note that it took me quite a while to figure out that some non-mainstream 

physicists had actually continued to further explore this concept. To be precise, the writings of David 

Hestenes from the Arizona State University of Arizona who – back in 1990 – proposed a whole new 

interpretation of quantum mechanics based on the Zitterbewegung concept (Hestenes, 1990, The 

Zitterbewegung Interpretation of Quantum Mechanics) made me realize there was sort of a parallel 

universe of research out there – but it is not being promoted by the likes of MIT, Caltech or Harvard 

University – and, even more importantly, their friends who review and select articles for scientific 

journals. 

I reached out to Dr. Hestenes but – admittedly – only very late in the game: I sent him a draft of this 

book as it was about ready. I thought he’d never reply124 but it turns out he is very sympathetic to this 

whole effort125 even if he thinks I am cutting a lot of corners to get my point across which – I’ll admit – is 

what I’ve always done. It’s just what management consultants do: we reduce complexity. He is 85 now 

but – if you google him – you’ll see he’s just one of those guys that keeps going. He sends me a few 

teasers every now and then, and I apologize for understanding only a fraction of what he tries to tell me. 

That’s OK enough for me. I hope this book will contribute to getting him the Nobel Prize he clearly 

deserves. 😊 

As for other learned people and proper academics, I would really like to express my gratitude to Dr. 

Giorgio Vassallo. He is one of the researchers of an Italian group centered around Dr. Francesco Celani 

who followed up on the Schrödinger-Hestenes zbw model of an electron. He encouraged me. He 

basically told me I was on a not-so-popular track with this but, at the same time, that he also believed 

this stuff was kinda true, which is why he keeps publishing on it. He also politely directed me towards Dr. 

Alex Burinskii126, about whom I’ll talk a lot in this book so I’ll be short here: he is so smart. So smart I 

can’t even imagine. This guy is really dimensions within dimensions.  

Any case… I am wasting too many pages here, I guess. Let me just say Dr. Vassallo and Dr. Burinskii have 

both been invaluable – not necessarily because they would want to be associated with any of the ideas 

that are being expressed here127 – but because they gave me the benefit of the doubt in their occasional 

                                                           
124 He is 85 by now but still inspiring research, didactics and managing a lot of projects. Hence, I thought he’d never would 
bother to look at an email from someone he doesn’t know. But he does. His emails are just one-liners—not even that. He just 
forwards stuff – adding the ubiquitous FYI or a small comment. From the little I know of him, he’s a truly gifted and fascinating 
scholar. I love that he turned to didactics. That’s what drives me too: this book is full of shortcuts to fundamental results in 
quantum mechanics. They may not be true, but they’re surely interesting from a didactic point of view. How do I know? 
Because my son is studying quantum mechanics right now. It’s part of his studies in engineering. To be honest, I don’t want to 
give him the shortcuts yet. Why not? Once you see those shortcuts, you will not want to study those procedures anymore.  
125 See the quote from his email to me (4 March 2019): “Dear Jean Louis, I delayed answering your email until I had time to read 
your whole manuscript. I like your verve, your style and your commitment. I agree that Zitter, rather than the uncertainty 
principle, is the key to understanding QM. I agree that [understanding the imaginary unit] i is crucial to QM interpretation, but I 
invite you to study what I say about it on my geometric calculus website. It happens that I was just about to submit the 
attached papers for publication, so you are among the first to see them. Enjoy the scenery! David Hestenes.”  
126  I should put a Prof. Dr. title in front of every name mentioned above, because they all not only doctors in science but also 
full-tenured professors. Sorry for skipping some niceties here. I hope no one is offended. 
127 My clients think I am a bit of a gorilla when approaching tough jobs. That’s why they bring me in: when the standard 
approach doesn’t work anymore. I am cutting a lot of corners in this publication. I know that. But the Zitterbewegung 
interpretation of QM is, obviously, a simpler explanation of complexity than the previous ones. The objective of this book is not 
to provide the ultimate model or theory, but to show there might be some shortcuts here and there—to provide some belief 
that, ultimately, we can understand reality. 
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but consistent communications. Hence, I would like to thank them here for reacting and encouraging me 

for at least trying to understand. 

To be honest, I think Dr. Hestenes, Dr. Burinskii, Dr. Vassallo and so many other zbw theorists deserve a 

Nobel Price, but they will probably never get one. Why? Because it would question not one but two 

previously awarded Nobel Prizes (1955 and 1965). I feel validated because, in his latest communication, 

Dr. Burinskii wrote me to say he takes my idea of trying to corroborate his Dirac-Kerr-Newman electron 

model by inserting it into models that involve some kind of slow orbital motion of the electron – as it 

does in the Penning trap – seriously.128 

I should now really start the book. However, before I do so, I should wrap up the acknowledgments 

section, so let us do that here. I have been in touch with Prof. Dr. John P. Ralston, who wrote one of a 

very rare number of texts that, at the very least, tries to address some of the honest questions of 

amateur physicists and philosophers upfront. I was not convinced by his interpretation of quantum 

mechanics, but I loved the self-criticism of the profession: “Quantum mechanics is the only subject in 

physics where teachers traditionally present haywire axioms they don’t really believe, and regularly 

violate in research.” We exchanged some messages, but then concluded that our respective 

interpretations of the wavefunction are very different and, hence, that we should not “waste any 

electrons” (his expression) on trying to convince each other.  

In the same vein, I should mention some other seemingly random exchanges – such as those with the 

staff and fellow students when going through the MIT’s edX course on quantum mechanics which – I 

admit – I did not fully complete because, while I don’t mind calculations in general, I do mind mindless 

calculations. 

I am also very grateful to my brother, Prof. Dr. Jean Paul Van Belle, for totally unrelated discussions on 

his key topic of research (which is information systems and artificial intelligence), which included 

discussions on Roger Penrose’s books—mainly The Emperor’s New Mind and The Road to Reality. These 

discussions actually provided the inspiration for the working title of this book: The Emperor Has No 

Clothes: the Sorry State of Quantum Physics.129 We will go for another mountainbike or mountain-

climbing adventure when this project is over.130 

Among other academics, I would like to single out Dr. Ines Urdaneta. Her independent research is very 

similar to ours. She has, therefore, provided much-needed moral support and external validation. I also 

warmly thank Jason Hise, whose wonderful animations of 720-degree symmetries did not convince me 

that electrons – as spin-1/2 particles – actually have such symmetries – but whose creations and 

communications stimulated my thinking on the subject-object relation in quantum mechanics. 

Finally, I would like to thank all of my friends—especially my university friends here in Belgium, whom I 

can always count on when I get a bit exhausted. I will also single out Soumaya Hasni, who has provided 

me with a whole new fan club here here in Brussels. Other dear friends include Luc Hellinckx, a gifted 

math teacher who also works with the University of Brussels as a coordinator for curriculum 

                                                           
128 As mentioned above, in his most recent email, he wrote he has the α factor already (the fine-structure constant). I feel his 
work is done already, but I know he’s a perfectionist. So I feel he’ll soon give us the 2π factor and the corrections as well.  
129 The title was changed to the current title in mutual agreement between the publisher and the author. 
130 We just have to! All of the late-night writing made me put on a lot of weight! 
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development for secondary schools. He was the first whom I shared my very first E = mc2 paper with131, 

and he went through the trouble of checking all the math—saying he thought it was all weird but 

formally correct. I also had some test readers, among which Koenraad De Smet—a management 

consultant who, despite his busy schedule, found time to get into this and provided very valuable 

feedback. I must also applaud him for his wider engagement on so many things we both care about. In 

the same vein, I must thank Prof. Dr. Diederik Aerts from the University of Brussels. He was the 

convener of the 1995 ‘Einstein meets Magritte’ conference in Brussels, which I found very inspiring at 

the time: it turns out that – almost 25 years later – he is still as active as then. He got a draft through Luc 

Hellinckx and has provided very valuable remarks and feedback.132  

I also had my family, which kept me sane. I would like to thank, in particular, my children – Hannah and 

Vincent – and my wife, Maria, for having given me the emotional, intellectual and financial space to 

pursue this little intellectual adventure. 

So, now we should really get into the nitty-gritty of this book. I will regularly refer to a series of papers I 

published on what I refer to as the Los Alamos Site for Spacetime Rebels.133 You can find these papers at 

http://vixra.org/author/jean_louis_van_belle and you may want to quickly glance at the titles and see 

what they cover—just in case you get stuck in this book: the papers may help you out.  

This brings me to the final point in my introduction. This is just a first version of this book. Hence, I hope 

you do not give up and say: this may be a classical interpretation of quantum physics, but it’s far from 

easy (read: too difficult for me). If you feel like quitting, you should think of the following: 

1. It may not be easy, but it is definitely easier than whatever else you’ll read when exploring the 

more serious stuff. 

2. To get my degree in philosophy, I had to study Wittgenstein’s Tractatus Logico-Philosophicus. I 

hated that booklet—not because it is dense but because I think it is nonsense. Wittgenstein 

wasn’t even aware of the scientific revolution that was taking place while he was writing it. Still, 

it became a bestseller. Why? I think it’s because it was so abstruse it made people think for 

themselves. 

I hope this book will do the same: it should make you think for yourself. The first version of this book is 

going to be dense but – hopefully – you will find it is also full of sense. Also note that there is actually a 

fair amount of overlap between the various chapters as we wanted them to be logically independent. 

Hence, the reader should not hesitate to skip some material here and there as there is a good chance 

the same idea or principle will be revisited in a subsequent chapter. If not, the advantage of a book is 

that one can always re-read a previous chapter. Good luck! It’s a tough climb—but the view on top of 

the mountain is quite beautiful, and definitely worth the effort. 

  

                                                           
131 http://vixra.org/abs/1709.0390. 
132 Because of time constraints, we have not been able to integrate or respond to all of these. However, we added, for example, 
a section on bosonic and fermionic behavior to address one of his concerns. He has also provided me with references to articles 
I should check. These include the papers on the experiments of Rauch and Zeilinger in the early 1980s, which I really want to 
look into.  
133 The site is managed by Phil Gibbs. I would like to acknowledge and thank him here for providing a space for independent 
thinkers. If you check out its origin, you’ll understand my reference to Los Alamos and rebel thinkers. 

http://vixra.org/author/jean_louis_van_belle
http://vixra.org/abs/1709.0390
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IV. The two-dimensional oscillator 
Before going into the nitty-gritty of our interpretation of the wavefunction, we need to recap what I 

personally consider to be the nicest result of all of my forays into physics: an intuitive explanation of 

Einstein’s E = mc2 equation. As it underpins our interpretation of the wavefunction, I need to walk you 

through this as good as I can. I won’t apologize for introducing a fair amount of equations here because 

it is just a very gentle warm-up for what follows. We’ll start with a metaphor, which should you give 

some feel for the equations that will follow. 

The V-2 metaphor: Ducati versus Harley  
You know that the energy of any oscillation will always be proportional to its amplitude (let us denote 

that by a).134 However, we also know that the energy in the oscillation will also be proportional to its 

frequency (let us denote the frequency by ω). Hence, we will have some proportionality coefficient k 

and we can write something like this: 

E = k𝑎2ω2 

For example, you may remember the formula for the energy of a harmonic oscillator: 

E =
1

2
m𝑎2ω2 

Think of a mass on a spring or, somewhat less boring, perhaps, a piston in a frictionless one-cylinder 

engine with permanently closed valves.135 We’ll get to the formulas but let us first be creative.  

If we combine two oscillators in a 90-degree angle – think of two springs or two pistons attached to 

some crankshaft as illustrated below – then we get some perpetuum mobile which stores twice that 

energy. Think of a V-2 engine with the pistons at a 90-degree angle, as illustrated below. The 90° angle 

makes it possible to perfectly balance the counterweight and the pistons, thereby ensuring smooth 

travel always. With permanently closed valves, the air inside the cylinder compresses and decompresses 

as the pistons move up and down. It provides, therefore, a restoring force. As such, it will store potential 

energy, just like a spring. In fact, the motion of the pistons will also reflect that of a mass on a spring: it is 

described by a sinusoidal function, with the zero point at the center of each cylinder. We can, therefore, 

think of the moving pistons as harmonic oscillators, just like mechanical springs.  

Indeed, instead of two cylinders with pistons, one may also think of connecting two springs with a 

crankshaft. In fact, that would be the typical physicists’ thing to do, but we wanted to be more creative. 

In fact, to make all of this somewhat less boring, I should, perhaps, admit that this metaphor has a 

rather mundane origin: I was doing some research on motorbikes and, as part of that process, 

comparing the efficiency of the Ducati and a Harley-Davidson V-2 engines: the Ducati V-2 engine is more 

efficient because of the 90-degree angle between the pistons. The Harley-Davidson V-2 engine has a 

more characteristic irregular sound because of its (relative) inefficiency. 😊 

                                                           
134 If you don’t, you should go through the basic physics: you can find them on the Web or in any textbook. Otherwise, just try 
to hang in and continue to read: it might be a bit of a bumpy ride but, at this stage, you don’t need to understand each and 
every detail, so don’t worry too much! The idea here is to give you a more of a feel for the equations. 
135 The restoring force here is the air inside the cylinder, which compresses and decompresses as the piston moves up and 
down. We admit the example requires more imagination, but it is definitely more fun to think it through! 
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Figure 18: The V-2 metaphor136 

The analogy can also be extended to include two pairs of springs or pistons, in which case the springs or 

pistons in each pair would help drive each other. Whatever! The point is: we have a great metaphor 

here. Somehow, in this beautiful interplay between linear and circular motion, energy is borrowed from 

one place and then returns to the other, cycle after cycle. While transferring kinetic energy from one 

piston to the other, the crankshaft will rotate with a constant angular velocity: linear motion becomes 

circular motion, and vice versa. More importantly, we can now just add the total energy of the two 

oscillators to get the total energy of the whole system, and so we get the E = ma2ω2 formula.137 

The c = a·ω equation and the wavefunction 
We can now boldly equate c2 and a2·ω2 or – as shown below – think of c as a tangential velocity: c = v = 

a·ω.  

 

Figure 19: E = ma2ω2 = mc2 = mv2? 

Why would we do that? I am not sure. It is just too obvious to not try it. The geometry of the illustration 

above is exactly the same as that of Euler’s function—the quantum-mechanical wavefunction (see 

Figure 8). Note the mathematical convention for measuring the phase angle (ϕ) is counter-clockwise but 

– as mentioned in our introduction – we think we should use that convention to incorporate spin in our 

description. We will come back to that later, but the interested reader should definitely check out our 

                                                           
136 The illustration is from a January 2011 article in the Car and Driver magazine, titled: The Physics of Engine Cylinder-Bank 
Angles. See: https://www.caranddriver.com/features/a15126436/the-physics-of-engine-cylinder-bank-angles-feature/. We 
reached out to secure copyright but did not get any reply. Hence, we assume this can be referenced as such.  
137 We further developed this metaphor in: The Wavefunction as an Energy Propagation Mechanism, 
http://vixra.org/abs/1806.0106. We will also show you the basic calculations (one of) the next section(s).  

https://www.caranddriver.com/features/a15126436/the-physics-of-engine-cylinder-bank-angles-feature/
http://vixra.org/abs/1806.0106
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paper on this138, as we won’t say too much about it in this very first version of this book—not because 

we don’t want to but because… Well… One thing at a time, right? 

Oscillator math 
At this point, it is probably to walk through the math of this ‘two-dimensional oscillator’, which I used to 

refer to as the ‘flywheel model’ of matter-particles.139 It is all pretty straightforward, and so let us just go 

through it to make sure you’re comfortable with it. 

If the magnitude of the oscillation is equal to a, then the motion of the piston (or the mass on a spring) 

will be described by x = a·cos(ω·t + Δ).140 Needless to say, Δ is just a phase factor which defines our t = 0 

point, and ω is the natural angular frequency of our oscillator. Because of the 90° angle between the 

two cylinders, Δ would be 0 for one oscillator, and –π/2 for the other. Hence, the motion of one piston is 

given by x = a·cos(ω·t), while the motion of the other is given by x = a·cos(ω·t–π/2) = a·sin(ω·t). The 

kinetic and potential energy of one oscillator (think of one piston or one spring only) can then be 

calculated as: 

1. K.E. = T = m·v2/2 = (1/2)·m·ω2·a2·sin2(ω·t + Δ) 

2. P.E. = U = k·x2/2 = (1/2)·k·a2·cos2(ω·t + Δ)  

The coefficient k in the potential energy formula characterizes the restoring force: F = −k·x. From the 

dynamics involved, it is obvious that k must be equal to m·ω2. Hence, the total energy is equal to: 

E = T + U = (1/2)· m·ω2·a2·[sin2(ω·t + Δ) + cos2(ω·t + Δ)] = m·a2·ω2/2 

The formulas above are illustrated below.  

 

Figure 20: Kinetic (K) and potential energy (U) of an oscillator141 

                                                           
138 See: Euler’s wavefunction and the double life of −1, http://vixra.org/pdf/1810.0339v2.pdf.  
139 See: https://readingfeynman.org/2017/11/19/the-flywheel-model-of-an-electron/.  
140 If you’re still thinking of those beautiful motorbikes (and their engines), then we should note that – because of the sideways 
motion of the connecting rods – the sinusoidal function will describe the linear motion only approximately. Springs connected 
to a crankshaft will give you the same issue. However, you can easily imagine the idealized limit situation. 
141 You will find this diagram in many texts, but we took this one from the https://phys.libretexts.org/ site—which is a great hub 
for open-access textbooks.  

http://vixra.org/pdf/1810.0339v2.pdf
https://readingfeynman.org/2017/11/19/the-flywheel-model-of-an-electron/
https://phys.libretexts.org/
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Now, if the amplitude of the oscillation is equal to a, then we know that the sum of the kinetic and 

potential energy of the oscillator will be equal to (1/2)·m·a2·ω2. Now, if we have two oscillators – 

working in tandem at a 90-degree angle – then we can add their kinetic and potential energies. Why? 

Because of the 90-degree phase difference. Think of the V-2 metaphor—or of two springs working in 

tandem on the same crankshaft: it is a perpetuum mobile. Let us show you the associated math. 

To facilitate the calculations, we will briefly assume that k = m·ω2 and a are both equal to 1. Think of it 

as a normalization.142 The motion of our first oscillator is given by the cos(ω·t) = cosθ function (so the 

phase varies with time only: θ = ω·t). Its kinetic energy will be equal to sin2θ. Hence, the 

(instantaneous) change in kinetic energy at some point in time – any point in time, really – will be equal 

to: 

d(sin2θ)/dθ = 2·sinθ·d(sinθ)/dθ = 2·sinθ·cosθ 

Let us look at the second oscillator now. Just think of the second piston going up and down in the V-2 

engine. Its motion is given by the sinθ function, which is equal to cos(θ−π /2). Hence, its kinetic energy is 

equal to sin2(θ−π /2), and how it changes – as a function of θ – will be equal to: 

2·sin(θ−π /2)·cos(θ−π /2) = −2·cosθ·sinθ = −2·sinθ·cosθ 

We have our perpetuum mobile! While transferring kinetic energy from one piston to the other, the 

crankshaft will rotate with a constant angular velocity: linear motion becomes circular motion, and vice 

versa, and the total energy that is stored in the system is T + U = ma2ω2.  We have a great metaphor 

here. Somehow, in this beautiful interplay between linear and circular motion, energy is borrowed from 

one place and then returns to the other, cycle after cycle.  

We know the wavefunction consist of a sine and a cosine: the cosine is the real component, and the sine 

is the imaginary component. We believe they are equally real. And we believe each of the two 

oscillations carries half of the total energy of our particle. 

The relativistic oscillator 
You may wonder if the math holds for relativistic speeds. If the velocity of our mass on this spring – on 

the two springs, really – becomes a sizable fraction of the speed of light, then we can no longer treat the 

mass as a constant factor: it will vary with velocity, and its variation is given by the Lorentz factor (γ). 

While we will not work out each and every detail, we will show you the basics of why our reasoning 

above isn’t faulty – even when relativistic speeds are involved. 

The relativistically correct force equation for one oscillator is:  

F = dp/dt = F = –kx with p = mvv = γm0v 

The mv = γm0 varies with speed because γ varies with speed: 

γ =
1

√1 − 𝑣2 𝑐2⁄
=

1

√1 − β2
=
dt

dτ
 

                                                           
142 There is no trick here. You can check for yourself by writing it all out. In fact, we advise that – as an exercise – you re-do the 

calculations for a  1 and k = m·ω2  1. It’s easy enough: you can treat both as a constant factor in the derivations. 
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What’s the dt/dτ here? Don’t worry about it. We actually don’t need it for what follows, but we quickly 

wanted to insert it so as to remind you that we no longer have a unique concept of time: there is the 

time in our reference frame (t) – aka as the coordinate time – and the time in the reference frame of the 

object itself (τ) – which is known as the proper time. We may want to use these two concepts of time in 

a later development, so it’s good to introduce them here. But let’s get on with that equation above. It 

actually is a differential equation (it involves a derivative), but you’ll agree it’s a very simple one. In fact, 

when you first learned about an equation like this, no one probably told you it’s a proper differential 

equation. However, simple as it is, we’re not going to solve it – because we don’t have to. We’ll just 

derive an energy conservation equation from it. 

We do so by multiplying both sides with v = dx/dt. I am skipping a few steps (we’re not going to do all of 

the work for you) but you should be able to verify the following: 

𝑣
d(γm0𝑣)

dt
= −kx𝑣 ⟺

d(m𝑐2)

dt
= −

d

dt
[
1

2
k𝑥2] ⟺

dE

dt
=
d

dt
[
1

2
k𝑥2 +m𝑐2] = 0 

So what’s the energy concept here? We recognize the potential energy: it is the same kx2/2 formula we 

got for the non-relativistic oscillator. No surprises: potential energy depends on position only, not on 

velocity, and there is nothing relative about position.143 However, the (½)m0v2 term that we would get 

when using the non-relativistic formulation of Newton’s Law is now replaced by the mc2 = γm0c2 term. 

So…. What’s the conclusion? Both energies vary – with position and with velocity respectively – but the 

equation above tells us their sum is some constant. In fact, that’s we refer to it as an energy 

conservation equation. So we can imagine the same game: two oscillators working in tandem, 

somehow.144  

[…] 

All of the above should give you a funny feeling. That’s good – because it gives me a weird feeling too. 

You should wonder: what’s going on here, really? The following reflections may help you to work 

yourself through that question. 

Is the speed of light a velocity or a resonant frequency? 
That’s a good question! We think of it as a velocity. The idea of c being some resonant frequency of the 

spacetime fabric is tempting but... Well… It’s not that easy to interpret it that way. Why not? Think of 

the following. One of the most obvious implications of Einstein’s E = mc2 equation is that the ratio 

between the energy and the mass of any particle is always equal to c2. We write: 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
𝑚𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

=
𝐸𝑝𝑟𝑜𝑡𝑜𝑛

𝑚𝑝𝑟𝑜𝑡𝑜𝑛
=
𝐸𝑝ℎ𝑜𝑡𝑜𝑛

𝑚𝑝ℎ𝑜𝑡𝑜𝑛
=
𝐸𝑎𝑛𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑚𝑎𝑛𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
= 𝑐2 

This should, effectively, remind you of the ω2 = C−1/L or ω2 = k/m formulas of harmonic oscillators – with 

one key difference, however: the ω2= C−1/L and ω2 = k/m formulas introduce two (or more) degrees of 

freedom.145 In contrast, c2= E/m for any particle, always. In fact, that’s exactly the point we are trying to 

                                                           
143 You may want to think about this. 
144 We admit we haven’t worked out the details: we’ll leave it that to the more mathematically inclined reader. The metaphor is 
likely to require some rather sophisticated tinkering too, so we will leave that as a challenge for the more gifted under us! 

 The ω2= 1/LC formula gives us the natural or resonant frequency for an electric circuit consisting of a resistor (R), an inductor 

(L), and a capacitor (C). Writing the formula as ω2 = C−1/L introduces the concept of elastance, which is the equivalent of the 
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make here: we can modulate the resistance, inductance and capacitance of electric circuits, and the 

stiffness of springs and the masses we put on them, but we live in one physical space 

only: our spacetime. Hence, the speed of light c emerges here as the defining property of spacetime. 

I should, perhaps, note that Maxwell’s equations tell us exactly the same thing: c is the defining property 

of spacetime! It’s the (absolute) propagation speed of an electromagnetic signal. As I must assume you 

have a basic background in physics – and in electromagnetics in particular – you will know Maxwell’s 

theory was relativistically correct decades before Einstein actually invented the notion of what is and 

isn’t relativistically correct. You will know that, in fact, it is fair to say that Einstein was inspired by the 

implications of Maxwell’s equations: Einstein saw they had to be true and that, therefore, Newtonian or 

Galilean relativity had to be wrong. 

I won’t spend too much time on this. Let me just note that it is, in fact, very tempting to think of c as 

some kind of resonant frequency. However, the c2 = a2·ω2 hypothesis tells us it defines both the 

frequency as well as the amplitude of what we will refer to as the rest energy oscillation. It is that what 

gives mass to our electron: its rest mass is nothing but the equivalent mass of the energy in its two-

dimensional oscillation. As such, the only way we can interpret it, is as the velocity of the pointlike 

charge in its Zitterbewegung. 

Really? Yes. I mentioned the concept before. It is about time we talk about the true origin of that idea of 

a two-dimensional oscillation. It’s not some idiot like me who thought of it first. No. It’s Schrödinger. 

And he thought of it because he could see it in Dirac’s wave equation for the (free) electron. Before we 

go there, however, I should add say more about that metaphor of the oscillator. It has its limits. 

Let’s start with the non-relativistic analysis. We said our pointlike charge has zero rest mass, so what 

does it all mean? It is, effectively, a rather weird business to analyze a frictionless spring with a (rest) 

mass that is equal to zero. In fact, it just doesn’t make all that much sense. I’ll let you think about that. 

How sensible is the analysis we get when using relativistically correct force law? You know the idea. If 

the velocity of our mass on this spring – on the two springs, really – becomes a sizable fraction of the 

speed of light, then we can no longer treat the mass as a constant factor: it will vary with velocity, and 

its variation is given by the Lorentz factor (γ). We got that energy conservation equation: 

𝑣
d(γm0𝑣)

dt
= −kx𝑣 ⟺

d(m𝑐2)

dt
= −

d

dt
[
1

2
k𝑥2] ⟺

dE

dt
=
d

dt
[
1

2
k𝑥2 +m𝑐2] = 0 

We explained the two energy components. The sum of these two doesn’t change. Hence, we get the 

total energy for this oscillator from equation x to 0, at which point the velocity of our mass will reach its 

maximum. That maximum is equal the speed of light in our electron model. Hence, we get the E = mc·c2 

formula. What’s mc? It’s the mass on the spring when v = c. But that does not make much sense either, 

because we get zero (1 – 1 = 0) in the denominator of the Lorentz factor. So we are stuck here too! Our 

metaphor has obvious limits! Dirac once claimed that, if God exists, he must be a mathematician. If he 

                                                           
mechanical stiffness (k) of a spring. We will usually also include a resistance in an electric circuit to introduce a damping factor 
or, when analyzing a mechanical spring, a drag coefficient. Both are usually defined as a fraction of the inertia, which is the 
mass for a spring and the inductance for an electric circuit. Hence, we would write the resistance for a spring as γm and as R = 
γL respectively. This is a third degree of freedom in classical oscillators.   
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is, he’s surely a smarter mathematician than all of us, because I wonder how he gets away with those 

zeroes and those infinities. 

OK. We should now talk about the most fundamental concept of this book: the Zitterbewegung idea. 

The idea of the Zitterbewegung  
As I already mentioned, Zitter is German for shaking or trembling. It refers to a presumed local 

oscillatory motion – which I now believe to be true, whatever that means – which Erwin Schrödinger 

stumbled upon when he was exploring solutions to Dirac’s wave equation for free electrons. 

Schrödinger shared the 1933 Nobel Prize for Physics with Paul Dirac for “the discovery of new 

productive forms of atomic theory”, and it is worth quoting Dirac’s summary of Schrödinger’s discovery: 

“The variables give rise to some rather unexpected phenomena concerning the motion of the 

electron. These have been fully worked out by Schrödinger. It is found that an electron which 

seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of 

small amplitude superposed on the regular motion which appears to us. As a result of this 

oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a 

prediction which cannot be directly verified by experiment, since the frequency of the 

oscillatory motion is so high and its amplitude is so small. But one must believe in this 

consequence of the theory, since other consequences of the theory which are inseparably 

bound up with this one, such as the law of scattering of light by an electron, are confirmed by 

experiment.” (Paul A.M. Dirac, Theory of Electrons and Positrons, Nobel Lecture, December 12, 

1933) 

Dirac obviously refers to the phenomenon of Compton scattering of light by an electron and, as we shall 

see in the next chapter, the Zitterbewegung model naturally yields the Compton radius of an electron.146 

and – as such – effectively provides some geometric explanation of what I now believe might be reality. 

When everything is said and done, it really is what it is: a wonderfully simple explanation of Einstein’s E 

= m·c2 equation.  

As an added benefit, we can also apply the same trick to our idea of a photon. As we will show in this 

book, the amplitude of the oscillation will become a wavelength then. We can then write: 

E = 𝑘𝑎2ω2 = 𝑘λ2
E2

ℎ2
= 𝑘

ℎ2𝑐2

E2
E2

ℎ2
= 𝑘𝑐2⟺ 𝑘 = m and E = m𝑐2 

Don’t worry about it now. I did some substitutions here which you may or (more probably) may not be 

very familiar with. We will come back to this. Just make a mental note – for the time being – that we’ve 

got a pretty good photon model here. Sometimes physics can be just nice.  

A visualization of the wavefunction 
It is now time to relate all of the above to the elementary wavefunction. You will (or should) know that it 

is written as: 

                                                           
146 As I am sort of stitching various things together here, I realize I might not always do the best job in explaining it. The 
confused reader may, therefore, want to check my original paper: Einstein’s mass-energy relation: an explanation in terms of 
the Zitterbewegung, http://vixra.org/pdf/1811.0364v1.pdf.  

http://vixra.org/pdf/1811.0364v1.pdf
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ψ = a·e−i[E·t − p·x]/ħ = a·cos(p·x/ħ − E·t/ħ) + i·a·sin(p·x/ħ − E·t/ħ) 

If we assume the momentum p is all in the x-direction, then the p and x vectors will have the same 

direction, and p·x/ħ reduces to p·x/ħ. Most illustrations – such as the one below – will either freeze x or, 

else, t. Alternatively, one can google web animations varying both. The point is: we do have a two-

dimensional oscillation here. These two dimensions are perpendicular to the direction of propagation of 

the wavefunction. For example, if the wavefunction propagates in the x-direction, then the oscillations 

are along the y- and z-axis, which we may refer to as the real and imaginary axis. In case you wonder, 

yes, this is exactly the same diagram we used to illustrate the Zitterbewegung of an electron (Figure 10).  

 

Figure 21: Geometric representation of the wavefunction147 

Note how the phase difference between the cosine and the sine  – the real and imaginary part of our 

wavefunction – appear to give some spin to the whole. We have talked about this already—and will talk 

about it more. Still… We fear this book might not cover all details – as we are just in its very first draft – 

so we recommend checking our papers on how spin is actually being modeled in the current mainstream 

view of QED.148 

Now, our model implies that the two perpendicular oscillations carry each half of the total energy of the 

particle. We could refer to these energies as the real and imaginary energy of the particle respectively, 

but we won’t use that terminology because it is rather confusing.149 Just note how the interplay 

between the real and the imaginary part of the wavefunction shows how energy propagates through 

space over time.  

Really? Is that what it is?  

You are right to be skeptical. The illustration above doesn’t show much in terms of an explanation of 

how the wave actually propagates. The propagation mechanism is, effectively, quite mysterious. In fact, 

we may never understand what’s really happening there. We have one lucky break though: the 

mechanism is not any more mysterious than the propagation mechanism of an electromagnetic wave. 

This is where the interpretation of Schrödinger’s equation as an energy diffusion equation comes in.  

                                                           
147 This diagram is based on an illustration of a circularly polarized wave, which looks exactly the same. We just added the λ 
wavelength. It is a diagram from Wikimedia Commons. While it is in the public domain but we still want to acknowledge the 
author here: https://commons.wikimedia.org/wiki/User:Dave3457.   
148 Our paper that suggests an alternative (classical) explanation for a photon interfering with itself – A Classical Explanation for 
the One-Photon Mach-Zehnder Interference Experiment (http://vixra.org/pdf/1812.0455v1.pdf) – has a good overview of our 
thoughts on this. 
149 The imaginary part is as ‘real’ as the real part, obviously. 

https://commons.wikimedia.org/wiki/User:Dave3457
http://vixra.org/pdf/1812.0455v1.pdf
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The basics of that interpretation are illustrated below, but I do not expect the reader to have some Aha-

Erlebnis here. It requires a deep understanding of vector equations and rather complicated vector 

algebra, including a geometric understanding of vector differential operators (such as the gradient, 

divergence and curl). Having said that, I hope the illustration below sort of shows that Maxwell’s 

equations are pretty similar. In case you wonder what it’s all about: you should recognize (fragments of) 

Schrödinger’s equation (the first set of equations) as well as Maxwell’s equations in free space(the 

second set of equations).150 

 

Figure 22: Wave propagation mechanisms 

Incorporating spin in the wavefunction 
As mentioned above, we said we’d like to incorporate spin straight from the start. The illustrations 

below – which are Wikipedia illustrations of a circularly polarized electromagnetic wave151 – show a left- 

and a right-handed wave.152  

 

Figure 23: Left-handed and right-handed wavefunctions153 

                                                           
150 Free space means we have no (other) currents. For a more comprehensive exploration of the geometry, we refer the reader 
to The Wavefunction as an Energy Propagation Mechanism (http://vixra.org/pdf/1806.0106v1.pdf). The reader may also want 
to check out our Geometric Interpretation of Schrödinger’s Equation (http://vixra.org/pdf/1812.0202v1.pdf).   
151 These illustrations show the electric field vector only, which is why we can use them as illustrations of the wavefunction. The 
complete image of an electromagnetic wave should involve the magnetic field vector as well. In fact, it is rather weird that 
illustrations such as these always conveniently forget about the magnetic field vector. We think that’s a fundamental mistake, 
but the advantage is that we can use the illustrations to serve our purpose, and that’s to visualize the wavefunction. 
152 What is left and right depends on your convention – and your own position in space. 
153 These illustrations were also taken from Wikimedia Commons. We have mentioned their author already: 
https://commons.wikimedia.org/wiki/User:Dave3457. It is very kind to put these images in the public domain. 

http://vixra.org/pdf/1806.0106v1.pdf
http://vixra.org/pdf/1812.0202v1.pdf
https://commons.wikimedia.org/wiki/User:Dave3457
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Indeed, mainstream physicists do not think of the elementary wavefunction as representing anything 

real but – if they do – they would reluctantly say it might represent some theoretical spin-zero particle. I 

always felt that was a mistake – and this book is actually the result of a deep exploration of that 

intuition. Spin-zero particles do not exist. All real particles have spin – electrons, photons, anything – 

and spin (a shorthand for angular momentum) is always in one direction or the other: it is just the 

magnitude of the spin that differs. Hence, it is rather odd that the plus/minus sign of the imaginary unit 

in the a·e±i function is not being used to include spin in the mathematical description. Indeed, most 

introductory courses in quantum mechanics will show that both a·e−i· = a·e−i·(t−kx) and a·e+i· = a·e+i·(t−kx) 

are acceptable waveforms for a particle that is propagating in a given direction (as opposed to, say, 

some real-valued sinusoid).  

Now, we would think physicists would then proceed to provide some argument showing why one would 

be better than the other, or some discussion on why they might be different, but that is not the case. 

The professors usually conclude that “the choice is a matter of convention” and, that “happily, most 

physicists use the same convention.” In case you wonder, this is a quote from the MIT’s edX course on 

quantum mechanics (8.01.1x).  

Historical experience tells us theoretical or mathematical possibilities in quantum mechanics often turn 

out to represent real things – think, for example, of the experimental verification of the existence of the 

positron (or of anti-matter in general) after Dirac had predicted its existence based on the mathematical 

possibility only. So why would that not be the case here? Occam’s Razor principle tells us that we should 

not have any redundancy in the description. Hence, if there is a physical interpretation of the 

wavefunction, then we should not have to choose between the two mathematical possibilities: they 

would represent two different physical situations, and the one obvious characteristic that would 

distinguish the two physical situations is the spin direction. Hence, we do not agree with the mainstream 

view that the choice is a matter of convention. Instead, we dare to suggest that the two mathematical 

possibilities represent identical particles with opposite spin. Combining this with the two possible 

directions of propagation (which are given by the +− or ++ signs in front of ω and k), we get the 

following table: 

Table 1: Occam’s Razor: mathematical possibilities versus physical realities 

Spin and direction of travel Spin up (e.g. J = +ħ/2) Spin down (e.g. J = −ħ/2) 

Positive x-direction ψ = a·e−i·(t−kx) ψ* = a·e+i·(t−kx) 

Negative x-direction χ = a·e−i·(t+kx) χ* = a·e−i·(t+kx) 

 

We will come back to this in a later chapter, because it has some rather devastating implications on 

some core theorems in quantum mechanics. To be precise, it rubbishes the arguments on these weird  

720-degree symmetries. Think spinors and all that. However, before we can talk about that, we first 

need to take you through some more basic stuff. 

Introducing the wavefunction – and relativity 
The elementary wavefunction is written as: 

ψ = a·e−i[E·t − p·x]/ħ = a·cos(p·x/ħ − E·t/ħ) + i·a·sin(p·x/ħ − E·t/ħ) 
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When considering a particle at rest (p = 0) this reduces to: 

ψ = a·e−i·E·t/ħ = a·cos(−E·t/ħ) + i·a·sin(−E·t/ħ) = a·cos(E·t/ħ) − i·a·sin(E·t/ħ) 

Let us now look at this motion in a moving reference frame. Let us consider the idea of a particle 

traveling in the positive x-direction at constant speed v. This idea implies a pointlike concept of position 

and time: we think the particle will be somewhere at some point in time. The somewhere in this 

expression does not necessarily mean that we think the particle itself will be dimensionless or pointlike. 

It just implies that we can associate some center with it. In fact, that’s what we have in our zbw model 

here: we have an oscillation around some center, but the oscillation has a physical radius, which we 

referred to as the Compton radius of the electron. Of course, two extreme situations may be envisaged: 

v = 0 or v = c. However, let us consider the more general case. In our reference frame, we will have a 

position – a mathematical point in space, that is – which is a function of time: x(t) = v·t. Let us now 

denote the position and time in the reference frame of the particle itself by x’ and t’. Of course, the 

position of the particle in its own reference frame will be equal to x’(t’) = 0 for all t’, and the position and 

time in the two reference frames will be related as follows: 

𝑥′ =
𝑥 − 𝑣𝑡

√1 −
𝑣2

𝑐2

=
𝑣𝑡 − 𝑣𝑡

√1 −
𝑣2

𝑐2

= 0 

𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 −
𝑣2

𝑐2

 

Hence, if we denote the energy and the momentum of the electron in our reference frame as Ev and p = 

m0v, then the argument of the (elementary) wavefunction a·ei can be re-written as follows: 

θ =
1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

(

 
E0

√1−
𝑣2

𝑐2

𝑡 −
E0𝑣

𝑐2√1−
𝑣2

𝑐2

𝑥

)

 =
1

ℏ
E0

(

 
𝑡

√1 −
𝑣2

𝑐2

−

𝑣𝑥
𝑐2

√1−
𝑣2

𝑐2)

 =
E0
ℏ
𝑡′ 

We have just shown that the argument of the wavefunction is relativistically invariant (E0 is, obviously, 

the rest energy and, because p’ =  0 in the reference frame of the electron, the argument of the 

wavefunction effectively reduces to E0t’/ħ in the reference frame of the electron itself).  

In fact, it was this rather simple discovery that made us think that of the argument of the wavefunction 

and – therefore – the wavefunction itself – might be more real – in a physical sense, that is – than the 

various wave equations (Schrödinger, Dirac, Klein-Gordon) for which it is some solution. Let us, 

therefore, explore it some more.  

We have been interpreting the wavefunction as an implicit function here: for each x, we have a t, and 

vice versa. There is, in other words, no uncertainty here: we think of our particle as being somewhere at 

any point in time, and the relation between the two is given by x(t) = v·t. We will get some linear 

motion. If we look at the ψ = a·cos(p·x/ħ − E·t/ħ) + i·a·sin(p·x/ħ − E·t/ħ) once more, we can write p·x/ħ as 

Δ and think of it as a phase factor. We will, of course, be interested to know for what x this phase factor 

Δ = p·x/ħ will be equal to 2π. Hence, we write:  
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Δ = p·x/ħ = 2π ⇔ x = 2π·ħ/p = h/p = λ 

We may think we have some meaningful interpretation of the de Broglie wavelength here. It is the 

distance between the crests (or the troughs) of the wave, so to speak, as illustrated below.  

 

Figure 24: An interpretation of the de Broglie wavelength 

The alert reader will note we’ve cut some corners here, and he’s right. The interpretation of what de 

Broglie wavelength actually represents is a rather tricky matter. It is surely not as simple as we are 

suggesting here. We’ll come back to this.  

It is now time to get into the meat of the matter. 😊 All of the above was just what it was: some 

introductory concepts – and some basic math. 
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V. The wavefunction and the electron 

The Zitterbewegung model 
Euler’s function is a wonderful mathematical object. We introduced it above and we must assume that 

the reader is fully familiar with it: 

𝑎 ∙ 𝑒𝑖θ = 𝑎 ∙ cos(θ) + 𝑖 ∙ sin(θ) 

We can immediately visualize this using the Zitterbewegung model of an electron. We described the 

origin of the model: see the quote from Dirac’s Nobel Prize speech above. The illustration below 

represents the circular oscillatory motion of the electron (the Zitterbewegung) or – possibly – of any 

charged particle. 

 

Figure 25: The Zitterbewegung model of an electron 

It is driven by a force – which must be electromagnetic, because the force has only a charge to grab 

onto. We think of this charge as a pointlike object that has no rest mass. Hence, the charge spins around 

at the speed of light. We have a dual view of the reality of the wavefunction here.  

1. On the one hand, it will describe the physical position (i.e. the x- and y-coordinates) of the pointlike 

charge – the green dot in the illustration, whose motion is described by: 

r = a·ei = x + i·y = a·cos(ωt) + i·a·sin(ωt) = (x, y) 

As such, the (elementary) wavefunction may be viewed as an implicit function: it is equivalent to the x2 + 

y2 = a2 equation, which describes the same circle.  

2. On the other hand, the zbw model implies the circular motion of the pointlike charge is driven by a 

tangential force, which we write as: 

F = Fx·cos(ωt+π/2) + i·Fx·sin(ωt+π/2) = F·ei(+π/2) 

The line of action of the force is the orbit because a force needs something to grab onto, and the only 

thing it can grab onto in this model is the oscillating (or rotating) charge. We think of F as a composite 

force: the resultant force of two perpendicular oscillations. A metaphor for such oscillation is the idea of 

two springs in a 90-degree angle working in tandem to drive a crankshaft. The 90-degree angle ensures 

the independence of both motions. The kinetic and potential energy of one harmonic oscillator add up 

to E = m·a2·ω2/2. If we have two, we can drop the ½ factor. We can then boldly equate the E = mc2 and E 
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= m·a2·ω2 formulas to get the zbw radius. We can think of this as follows. The zbw model – which is 

derived from Dirac’s wave equation for free electrons – tells us the velocity of the pointlike charge is 

equal to c. If the zbw frequency is given by Planck’s energy-frequency relation (ω = E/ħ), then we can 

combine Einstein’s E = mc2 formula with the radial velocity formula (c = a·ω) and, hence, we get the zbw 

radius, which is nothing but the (reduced) Compton wavelength – or the Compton radius of the 

electron: 

𝑎 =
ℏ

m𝑐
=
λ𝐶
2π
≈ 0.386 × 10−12 m 

The amount of physical action – which we will denote by S as per the usual convention – that is 
associated with one loop along the zbw circumference over its cycle time is equal to Planck’s constant:  

𝑆 = 𝐹 ∙ λ𝐶 ∙ T =
E

λ𝐶
∙ λ𝐶 ∙

1

𝑓𝐶
= E ∙

ℎ

E
= ℎ 

Planck’s constant h is equal to 6.62607015×10−34 J·s. Hence, it is a small unit  - but small and large are 

relative. In fact, because of the tiny time and distance scale, we have a rather enormous force here. We 

can calculate the force because the energy in the oscillator must be equal to the magnitude of the force 

times the length of the loop, we can calculate the magnitude of the force, which is – effectively – rather 

enormous in light of the sub-atomic scale: 

E = Fλ𝐶 ⟺ 𝐹 =
E

λ𝐶
≈
8.187 × 10−14 J

2.246 × 10−12 m
≈ 3.3743 × 10−2 N 

The associated current is equally humongous:  

I = qe𝑓 = qe
E

ℎ
≈ (1.6 × 10−19 C)

8.187 × 10−14 J

6.626 × 10−34 Js
≈ 1.98 A (𝑎𝑚𝑝𝑒𝑟𝑒) 

A household-level current at the sub-atomic scale? The result is consistent with the calculation of the 

magnetic moment, which is equal to the current times the area of the loop and which is, therefore, 

equal to: 

μ = I ∙ π𝑎2 = qe
m𝑐2

ℎ
∙ π𝑎2 = qe𝑐

π𝑎2

2π𝑎
=
qe𝑐

2

ℏ

m𝑐
=
qe
2m

ℏ 

It is also consistent with the presumed angular momentum of an electron, which is that of a spin-1/2 

particle. As the oscillator model implies the effective mass of the electron will be spread over the 

circular disk, we should use the 1/2 form factor for the moment of inertia (I). We write: 

L = 𝐼 ∙ ω =
𝑚𝑎2

2

𝑐

𝑎
=
𝑚𝑐

2

ℏ

𝑚𝑐
=
ℏ

2
 

We now get the correct g-factor for the pure spin moment of an electron: 

𝛍 = −g(
qe
2m
)𝐋 ⇔

qe
2m

ℏ = g
qe
2m

ℏ

2
⇔ g = 2 

The vector notation for 𝛍 and L (boldface) in the equation above should make us think about the plane 

of oscillation. This question is related to the question of how we should analyze all of this is a moving 
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reference frame. This is a complicated question. The Stern-Gerlach experiment suggests we may want to 

think of an oscillation plane that might be perpendicular to the direction of motion, as illustrated below. 

 

Figure 26: The zbw electron traveling through a Stern-Gerlach apparatus? 

Of course, the Stern-Gerlach experiment assumes the application of a (non-homogenous) magnetic 

field. In the absence of such field, we may want to think of the plane of oscillation as something that is 

rotating in space itself. The idea, then, is that it sort of snaps into place when an external magnetic field 

is applied.  

We should think some more about the nature of the force. The assumption is that the force grabs onto a 

pointlike charge. Hence, the force must be electromagnetic and we can write it as the product of the 

unit charge and the field (E). We write: 

F = qeE. 

Because the force is humongous (a force of 0.0375 N is equivalent to a force that gives a mass of 37.5 

gram (1 g = 10-3 kg) an acceleration of 1 m/s per second), and the charge is tiny), we get an equally huge 

field strength: 

𝐸 =
𝐹

qe
≈
3.3743 × 10−2 N

1.6022 × 10−19 C
≈ 0.21 × 1018 N/C 

Just as a yardstick to compare, we may note that the most powerful man-made accelerators may only 

reach field strengths of the order of 109 N/C (1 GV/m). Does this make sense? Can we calculate an 

energy density? Using the classical formula, we get: 

𝑢 = 𝜖0𝐸
2 ≈ 8.854 × 10−12 ∙ (0.21 × 1018)2

J

m3
= 0.36 × 1024  

J

m3
= 0.63 × 1024  

J

m3
  

This amounts to about 7 kg per mm3 (cubic millimeter). Is this a sensible value? Maybe. Maybe not. The 

rest mass of the electron is tiny, but then the zbw radius of an electron is also exceedingly small. It is 

very interesting to think about what might happen to the curvature of spacetime with such mass 

densities: perhaps our pointlike charge just goes round and round on a geodesic in its own (curved) 

space. We are not well-versed in general relativity and we can, therefore, only offer some general 

remarks here: 

1. If we would pack all of the mass of an electron into a black hole, then the Schwarzschild formula gives 

us a radius that is equal to: 

𝑟𝑠 =
2Gm

𝑐2
≈ 1.35 × 10−57m (𝑚𝑒𝑡𝑒𝑟) 
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This exceedingly small number has no relation whatsoever with the Compton radius. In fact, its scale has 

no relation with whatever distance one encounters in physics: it is much beyond the Planck scale, which 

is of the order of 10−35 meter and which, for reasons deep down in relativistic quantum mechanics, 

physicists consider to be the smallest possibly sensible distance scale. 

2. We are intrigued, however, by suggestions that the Schwarzschild formula should not be used as it 

because an electron has angular momentum, a magnetic moment and other properties, perhaps, that 

do not apply when calculating, say, the Schwarzschild radius of the mass of a baseball. To be precise, we 

are particularly intrigued by models that suggest that, when incorporating the above-mentioned 

properties of an electron, the Compton radius might actually be the radius of an electron-sized black 

hole (Burinskii, 2008, 2016).  

Introducing relativity – and more! 
Let us look at a moving electron now. Let us consider the idea of a particle traveling in the positive x-

direction at constant speed v. This idea implies a pointlike concept of position and time: we think the 

particle will be somewhere at some point in time. The somewhere in this expression does not 

necessarily mean that we think the particle itself will be dimensionless or pointlike. It just implies that 

we can associate some center with it. In fact, that’s what we have in our zbw model here: we have an 

oscillation around some center, but the oscillation has a physical radius, which we referred to as the 

Compton radius of the electron. Of course, two extreme situations may be envisaged: v = 0 or v = c.  

However, let us consider the more general case. In our reference frame, we will have a position – a 

mathematical point in space, that is – which is a function of time: x(t) = v·t. Let us now denote the 

position and time in the reference frame of the particle itself by x’ and t’. Of course, the position of the 

particle in its own reference frame will be equal to x’(t’) = 0 for all t’, and the position and time in the 

two reference frames will be related as follows: 

𝑥′ =
𝑥 − 𝑣𝑡

√1 −
𝑣2

𝑐2

=
𝑣𝑡 − 𝑣𝑡

√1 −
𝑣2

𝑐2

= 0 

𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 −
𝑣2

𝑐2

 

Hence, if we denote the energy and the momentum of the electron in our reference frame as Ev and p = 

m0v, then the argument of the (elementary) wavefunction a·ei can be re-written as follows: 

θ =
1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

(

 
E0

√1−
𝑣2

𝑐2

𝑡 −
E0𝑣

𝑐2√1−
𝑣2

𝑐2

𝑥

)

 =
1

ℏ
E0

(

 
𝑡

√1 −
𝑣2

𝑐2

−

𝑣𝑥
𝑐2

√1−
𝑣2

𝑐2)

 =
E0
ℏ
𝑡′ 

We have just shown that the argument of the wavefunction is relativistically invariant (E0 is, obviously, 

the rest energy and, because p’ =  0 in the reference frame of the electron, the argument of the 

wavefunction effectively reduces to E0t’/ħ in the reference frame of the electron itself). It makes us 

think that of the argument of the wavefunction and – therefore – the wavefunction itself – might be 

more real – in a physical sense, that is – than the various wave equations (Schrödinger, Dirac, Klein-
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Gordon) for which it is some solution. Let us, therefore, further explore this. We have been interpreting 

the wavefunction as an implicit function again: for each x, we have a t, and vice versa. There is, in other 

words, no uncertainty here: we think of our particle as being somewhere at any point in time, and the 

relation between the two is given by x(t) = v·t. We will get some linear motion. If we look at the ψ = 

a·cos(p·x/ħ − E·t/ħ) + i·a·sin(p·x/ħ − E·t/ħ) once more, we can write p·x/ħ as Δ and think of it as a phase 

factor. We will, of course, be interested to know for what x this phase factor Δ = p·x/ħ will be equal to 

2π. Hence, we write:  

Δ = p·x/ħ = 2π ⇔ x = 2π·ħ/p = h/p = λ 

We now get a meaningful interpretation of the de Broglie wavelength. It is the distance between the 

crests (or the troughs) of the wave, so to speak, as illustrated below.154  

 

Figure 27: An interpretation of the de Broglie wavelength 

Of course, we should probably think of the plane of oscillation as being perpendicular to the plane of 

motion – or as oscillating in space itself – but that doesn’t matter. Let us explore some more. We can, 

obviously, re-write the argument of the wavefunction as a function of time only:    

θ =
1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

E0

√1 −
𝑣2

𝑐2

(𝑡 −
𝑣

𝑐2
𝑣𝑡) =

1

ℏ

E0

√1 −
𝑣2

𝑐2

(1 −
𝑣2

𝑐2
) 𝑡 = √1 −

𝑣2

𝑐2
·
E0
ℏ
𝑡 

We recognize the inverse Lorentz factor here, which goes from 1 to 0 as v goes from 0 to c, as shown 

below.  

                                                           
154 We are actually not satisfied with this description. I write that it’s the distance between crests of the wavefunction, but it 
cannot be. Note that it converges to the Compton wavelength as v goes to c: λ = h/p = h/mc = a for v = c. The interpretation of 
the meaning of the de Broglie wavelength remains a tricky matter. The standard interpretation of quantum physics 
(mainstream or Copenhagen) always brings some complicated argument involving uncertainty – but we do not have any 
uncertainty in the Zitterbewegung model (we can introduce uncertainty later but – at this stage – we’re really looking at an 
electron model without uncertainty). So… Well… It requires some further thinking. At a minimum, I guess we should measure 
time and distance in equivalent units to say something meaningful about the λ = h/p relation. Of course, if v = c, and we 
measure x and t in equivalent units, then we get the λ = h/p relation from the universal λ = c/f relation for a wave and the 
Planck-Einstein relation (E = mc2 = hf). We can then write: λ = c/f = ch/mc2  = h/mc = h/p. Perhaps it’s that simple. Any 
thoughts? Anyone? 
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Figure 28: The inverse Lorentz factor as a function of (relative) velocity (v/c) 

Note the shape of the function: it is a simple circular arc. This result should not surprise us, of course, as 

we also get it from the Lorentz formula: 

𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 −
𝑣2

𝑐2

=
𝑡 −

𝑣2

𝑐2
𝑡

√1 −
𝑣2

𝑐2

= √1 −
𝑣2

𝑐2
∙ 𝑡 

In fact, we had already introduced this formula when we were talking about the difference between 

coordinate time and proper time. 

γ =
1

√1 − 𝑣2 𝑐2⁄
=

1

√1 − β2
=
dt

dτ
 

We just used different symbols for it: the time in our reference frame (t) is the coordinate time, and the 

time in the reference frame of the object itself (τ) is referred to as the proper time. Why are we talking 

about this? What does it all mean? We want to introduce a not-so-intuitive but very important result: 

the Compton radius becomes a wavelength when v goes to c.155  

What? Yes. Just hang in there for a while. Let us first go through a simple numerical example to think 

through that formula above. Let us assume that, for example, that we are able to speed up an electron 

to, say, about one tenth of the speed of light. Hence, the Lorentz factor will then be equal to  = 1.005. 

This means we added 0.5% (about 2,500 eV) – to the rest energy E0: Ev = E0 ≈ 1.005·0.511 MeV ≈ 0.5135 

MeV. The relativistic momentum will then be equal to mvv = (0.5135 eV/c2)·(0.1·c) = 5.135 eV/c. We get:   

θ =
E0
ℏ
𝑡′ =

1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

(

 
E0

√1−
𝑣2

𝑐2

𝑡 −
E0𝑣

𝑐2√1−
𝑣2

𝑐2

𝑥

)

 = 0.955
E0
ℏ
𝑡 

This is interesting: we get an explanation for time dilation. A more interesting question is what happens 

to the radius of the oscillation. Does it change? It must, but how should we interpret this? In the moving 

reference frame, we measure higher mass and, therefore, higher energy – as it includes the kinetic 

                                                           
155 To be precise, the Compton radius multiplied by 2π becomes a wavelength, so we are talking the Compton circumference , 
or whatever you want to call it. 
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energy. The c2 = a2·ω2 identity must now be written as c2 = a’2·ω’2. Instead of the rest mass m0 and rest 

energy E0, we must now use mv = m0 and Ev = E0 in the formulas for the Compton radius and the 

Einstein-Planck frequency, which we just write as m and E in the formula below: 

m𝑎′2ω′2 = m
ℏ2

m2𝑐2
m2𝑐4

ℏ2
= m𝑐2 

This is easy to understand intuitively: we have the mass factor in the denominator of the formula for the 

Compton radius, so it must increase as the mass of our particle increases with speed. Conversely, the 

mass factor is present in the numerator of the zbw frequency, and this frequency must, therefore, 

increase with velocity. It is interesting to note that we have a simple (inverse) proportionality relation 

here. The idea is visualized in the illustration below (for which credit goes to the modern zbw theorists 

Celani et al.): the radius of the circulatory motion must effectively diminish as the electron gains speed. 

Once again, however, we should warn the reader that he or she should also imagine the plane of 

oscillation to be possibly parallel to the direction of propagation, in which case the circular motion 

becomes elliptical.  

 

Figure 29: The Compton radius must decrease with increasing velocity 

Can the velocity go to c? In the limit, yes. This is very interesting, because we can see that the 

circumference of the oscillation becomes a wavelength in the process! This, then, links the zbw electron 

model with our photon model, which we will explain later. We first need to talk about orbital electron 

motion. Before we do so, we will resume the model that we have here. 

We should note that the center of the Zitterbewegung was plain nothingness and we must, therefore, 

assume some two-dimensional oscillation makes the charge go round and round. The angular frequency 

of the Zitterbewegung rotation is given by the Planck-Einstein relation (ω = E/ħ) and we get the 

Zitterbewegung radius (which is just the Compton radius a = rC = ħ/mc) by equating the E = m·c2 and E = 

m·a2·ω2 equation. The energy and, therefore, the (equivalent) mass is in the oscillation and we, 

therefore, should associate the momentum p = E/c with the electron as a whole or, if we would really 

like to associate it with a single mathematical point in space, with the center of the oscillation – as 

opposed to the rotating massless charge.  

We should note that the distinction between the pointlike charge and the electron is subtle, perhaps, 

but essential. The electron is the Zitterbewegung as a whole: the pointlike charge has no rest mass, but 
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the electron as a whole does. In fact, that is the whole point of our Zitterbewegung model: we explain 

the rest mass of an electron by introducing a rest matter oscillation. The model cannot be verified 

because of the extreme frequency (fe = ωe/2π = E/h ≈ 0.123×10−21 Hz) and sub-atomic scale (a = rC = 

ħ/mc ≈ 386×10−15 m). It is, therefore, a logical model only: it gives us the right values for the angular 

momentum (L = ħ/2), the magnetic moment (μ = (qe/2m)·ħ, and the gyromagnetic factor (g = 2).  

Explaining interference and diffraction 
This subtle combination of the idea of a pointlike charge and an electromagnetic oscillation is interesting 

because it opens the door to a plain classical explanation of interference and/or diffraction. In this 

regard, we would link this to more recent theory and experiments that focus on how slits or holes affect 

wave shapes as electrons – or photons – go through them. The diagram below illustrates the point that 

we are trying to make here.156 We do think these are very promising in terms of offering some kind of 

classical (physical) explanation for interference and/or diffraction.  

 

Figure 30: Physical interpretations of the electron wave 

All that is left to explain – for the photon as well as the electron – is why the whole oscillation seems to 

stick together upon detection. We admit that’s not easy to do. But – as an idea – it is definitely easier to 

accept this axiom than whatever other theory is on the market right now. 

But what is that oscillation? 
We gave an easy answer to that above: it must be electromagnetic, because the force only has a charge 

to grab on. It cannot be gravitational, because the pointlike charge itself has no rest mass: the mass of 

the electron is in the oscillation. That’s Wheeler’s idea of mass without mass.  

However, that doesn’t answer the more fundamental question: what does it all mean, really? We will 

just offer a few remarks here, which may or may not help us to further develop our understanding of the 

matter—literally! Let us first do some more thinking about the nature of that E/m = c2 result. The idea of 

a two-two-dimensional oscillation is intuitive enough. It’s the intuition behind the E = ma2ω2 = mc2 

equation, really: the energy of any oscillation will be proportional to the square of (i) the (maximum) 

                                                           
156 The definition is somewhat random but we think of diffraction if there is only one slit or hole. In contrast, the idea of 
interference assumes two or more wave sources. The research we refer to is the work of the Italian researchers Stefano 
Frabboni, Reggio Emilia, Gian Carlo Gazzadi, and Giulio Pozzi, as reported on the phys.org site (https://phys.org/news/2011-01-
which-way-detector-mystery-doubleslit.html). The illustration was taken from the same source, but we added the explanatory 
tags. 

https://phys.org/news/2011-01-which-way-detector-mystery-doubleslit.html
https://phys.org/news/2011-01-which-way-detector-mystery-doubleslit.html
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amplitude of the oscillation and (ii) the frequency of the oscillation, with the mass as the proportionality 

coefficient. At the same time, we should wonder: what could it possibly mean? 

This question is difficult to answer. Is there any other idea – we mean: other than the idea of a two-

dimensional oscillation – to explain the Zitterbewegung? We do not see anything obvious but, as 

mentioned, we can offer a few remarks which may or may not help the reader to develop his or her own 

interpretation of what might be going on in reality.    

The first remark is this: when everything is said and done, we should admit that the bold c2 = a2·ω2  

assumption interprets spacetime as a relativistic aether. It is a term that is, unfortunately, taboo but, 

fortunately, some respected academics, such as Nobel Prize Laureate Robert Laughlin, are still defending 

it. This interpretation is inspired by the most obvious implication of Einstein’s E = mc2 equation, and that 

is that the ratio between the energy and the mass of any particle is always equal to c2: 

𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛
𝑚𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛

=
𝐸𝑝𝑟𝑜𝑡𝑜𝑛
𝑚𝑝𝑟𝑜𝑡𝑜𝑛

=
𝐸𝑝ℎ𝑜𝑡𝑜𝑛
𝑚𝑝ℎ𝑜𝑡𝑜𝑛

=
𝐸𝑎𝑛𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒

𝑚𝑎𝑛𝑦 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒
= 𝑐2 

As mentioned above, this reminds us of the ω2 = C−1/L or ω2 = k/m of harmonic oscillators – with one key 

difference, however: the ω2= C−1/L and ω2 = k/m formulas introduce two (or more) degrees of freedom. 

157 In contrast, c2= E/m for any particle, always. This is the point: we can modulate the resistance, 

inductance and capacitance of electric circuits, and the stiffness of springs and the masses we put on 

them, but we live in one physical space only: our spacetime. Hence, the speed of light c emerges here as 

the defining property of spacetime. It is, in fact, tempting to think of it as some kind of resonant 

frequency but the c2 = a2·ω2 hypothesis tells us it defines both the frequency as well as the amplitude of 

what we referred to as the rest energy oscillation: it is that what gives mass to our electron. 

Now, it’s still a weird matter—literally, again. This two-oscillator model is all great, but it is hard to 

address its single biggest conceptual gap: what is the nature of the force in our electron model? So we 

want to go beyond what we said about its electromagnetic nature. Can we do that? I am not sure. It is a 

very fundamental question which, perhaps, we will never be able to answer. It is what it is, right? 

Maybe. Maybe not.  

In case you wonder what the issue is about, I think it is nicely summarized in one of Dr. Burinskii’s very 

first communications to me. He effectively wrote the following to me when I first contacted him on the 

viability on the model:  

“I know many people who considered the electron as a toroidal photon158 and do it up to now. I 

also started from this model about 1969 and published an article in JETP in 1974 on it: 

"Microgeons with spin". Editor E. Lifschitz prohibited me then to write there about 

                                                           
 The ω2= 1/LC formula gives us the natural or resonant frequency for an electric circuit consisting of a resistor (R), an inductor 

(L), and a capacitor (C). Writing the formula as ω2 = C−1/L introduces the concept of elastance, which is the equivalent of the 
mechanical stiffness (k) of a spring. We will usually also include a resistance in an electric circuit to introduce a damping factor 
or, when analyzing a mechanical spring, a drag coefficient. Both are usually defined as a fraction of the inertia, which is the 
mass for a spring and the inductance for an electric circuit. Hence, we would write the resistance for a spring as γm and as R = 
γL respectively. This is a third degree of freedom in classical oscillators.   
158 This is Dr. Burinskii’s terminology: it does refer to the Zitterbewegung electron: a pointlike charge with no mass in an 
oscillatory motion – orbiting at the speed of light around some center. 
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Zitterbewegung [because of ideological reasons159], but there is a remnant on this notion. There 

was also this key problem: what keeps [the pointlike charge] in its circular orbit?”160 

He noted that this fundamental flaw was (and still is) the main reason why had abandoned the simple 

Zitterbewegung model in favor of the much more sophisticated Kerr-Newman approaches to the 

(possible) geometry of an electron.  

I am reluctant to make the move he made – mainly because I prefer simple math to the rather daunting 

math involved in Kerr-Newman geometries – and so that is why I am continuing to explore alternative 

explanations – such as this one. I feel there is scope here to complement the model with a third view of 

the wavefunction.  

You may feel this is bewildering so let me explain. The zbw model offers a basic interpretation of the 

wavefunction by noting the various aspects of the (possible) reality that might correspond to the 

wavefunction. We referred to these aspects as the dual view of a wavefunction. That dual view 

consisted of (1) a description of the position of our pointlike particle and (2) a description of the force 

that makes it move. Both descriptions are descriptions in terms of a complex-valued function: the 

wavefunction itself. Hence, it would seem to be logical that we develop a third view now: the 

wavefunction as a description of the physical space that comes with the particle. How can we do that?  

Perhaps Einstein provides some inspiration again. Indeed, we got that two-dimensional oscillator model 

(the flywheel model of an electron, as I used to call it) as a result of a deep exploration of the (possible) 

meaning of Einstein’s mass-energy equivalence relation (E = mc2), which comes out of special relativity 

theory. So… Well… Perhaps we should now explore some other intuition—an intuition-based Einstein’s 

general relativity theory. What am I thinking of?  

It’s the following: if we can describe the particle itself by Euler’s wavefunction – exploring different 

aspects of its reality, such as the position of the pointlike charge, and the nature of the force that makes 

it move along its circular orbit – then we should, perhaps, also explore how we can use it to describe the 

nature of the space that comes with the particle. 

I must be joking, right? But I am not. The E = mc2 equation, which we get out of Einstein’s special relativity 

theory, made us think about a physical interpretation of the wavefunction. I want to go further now. I feel 

the geometric approach to gravity suggests objects do come with their own geometry. Their own space, 

so to speak. A physical space, obviously. Not the mathematical coordinate space, which can have any 

geometry. Now, when we describe physical space (as opposed to a purely mathematical space – 

coordinate space, that is), we will usually describe its nature in terms of some potential, whose derivative 

will then give us the force acting on our particle. Hence, if the force on our particle can be described by a 

complex function, perhaps we should try to describe potential in terms of a complex-valued function as 

well. Let me show you what I mean.  

In classical mechanics, a force may be defined as the (negative of the) derivative of a potential. Such 

potential may be gravitational or electrostatic. We write: 

                                                           
159 This refers to perceived censorship from the part of Dr. Burinskii. In fact, some of what he wrote me strongly suggests some 
of his writings have, effectively, been suppressed because – when everything is said and done – they do fundamentally question 
– directly or indirectly – some key assumptions of the mainstream interpretation of quantum mechanics. 
160 Email from Dr. Burinskii to the author dated 22 December 2018. 
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−dU/dx = F(x) = Fx 

If we’re considering the y-direction, then we write −dU/dy = F(y) = Fy. Now, what if we would – 

somehow – think of the a·ei function as some complex-valued potential? Let us forget about the 

coefficient a for a while (we can plug it back in at a later stage), so we write: 

U = ei 

Let us take the derivative in regard to the variable here, which is… What? It is the angle θ. It is a real 

number, so we will not be calculating the usual derivative of a complex exponential, which is d(ez)/dz = 

ez , with z a complex number. Instead, we calculate: 

−dU/dθ = −d(ei)/dθ = −d(cosθ + i·sinθ)/dθ = −d(cosθ)/dθ − i·d(sinθ)/dθ 

= sinθ − i·cosθ = cos(θ−π/2) + i·sin(θ−π/2)    

We get the sine and cosine factors of our force formula, except the sign is right: the phase factor should 

be +π/2 instead of −π/2. That problem is solved if we drop the minus sign in front of the −dU/dθ 

derivative:  

dU/dθ = d(ei)/dθ = d(cosθ + i·sinθ)/dθ = d(cosθ)/dθ + i·d(sinθ)/dθ 

= −sinθ + i·cosθ = cos(θ+π/2) + i·sin(θ+π/2)    

Why would we drop the minus sign? One may think it could be related to the other mathematical 

possibility: the rotation may be clockwise rather than counterclockwise. The mathematical formalism 

works out equally well, but it does not explain why we should drop the minus sign in front of the 

derivative. However, if we acknowledge there would be a minus sign if we would have adopted the 

convention of measuring angles clockwise rather than counterclockwise, then we see it’s just a matter of 

convention, effectively. 

Does this make any sense? I am not sure. The idea of a complex-valued potential may or may not 

provide the ultimate answer – but it sure does cater to the idea of a particle coming with its own space. 

The nature of this space is – quite simply – this new concept: a complex-valued potential.  

The first reaction of the reader is predictable: this must be nonsense. I invite the reader to think about 

why he would say that – because my own initial reaction to my thoughts was the same: this is ridiculous. 

However, I then realized that my instinctive objection to my own thoughts was that it is somewhat hard 

to distinguish ontological or mathematical concepts here from what might (or might not) be reality – or 

physical concepts, I should say. In fact, the ambiguity is in the concept of a potential itself. It is less 

tangible than a force. It is like thinking of a force without thinking simultaneously about what it’s going 

to grab onto – which is not an easy exercise. To put it differently, I have a strong feeling that my train of 

thought here effectively does involve some implicit tautologies. Having said that, tautologies – when 

made explicit – may bring new insights.161 

                                                           
161 I published a very first paper – with some comments – on viXra.org. See http://vixra.org/abs/1902.0113: Can the idea of a 
complex-valued potential explain the Zitterbewegung? However, Dr. Burinskii does not like it, because he feels these are just 
tautologies, indeed. We thought of taking it down, but then left it, because we think discussions on tautologies (or not) might 
yield other insights.  

http://vixra.org/abs/1902.0113
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This may or may not lead anywhere, but something inside of me says we should consider it. It might 

bring some more integrated view on the fundamental nature of matter. In fact, my very first paper also 

explored the idea of the wavefunction representing some two-dimensional rest matter oscillation, but I 

initially thought it might, effectively, be a gravitational wave162 and – funnily enough – this paper still 

gets a lot of downloads. As mentioned, I have no doubt that the nature of the force is electromagnetic, 

but something inside of me also keeps suggesting that its oscillation might actually be an oscillation of 

spacetime itself. It’s just an attractive idea: objects come with their own (physical) space. 

However, this is plain philosophy. We should get back to the equations.  

A geometric interpretation of the de Broglie wavelength 
As part of the prolegomena to this book, we discussed the concept of a wavelength in the context of the 

Zitterbewegung model. Let us copy Figure 10 once again to focus our mind: it presented the presumed 

Zitterbewegung of an electron as we would see it when it moves through space.  

 

Figure 31: Is this a moving electron? 

We warned you immediately: there is no reason whatsoever why the plane of the oscillation – the plane 

of rotation of the pointlike charge, that is – would be perpendicular to the direction of propagation of 

the electron as a whole. In fact, we think that plane of oscillation moves about itself, and we’ll come 

back to that. We just want you to make a mental note of as we now are going to present a rather 

particular geometric property of the Zitterbewegung (zbw) motion: the Compton radius must decrease 

as the velocity of our electron increases. The idea is visualized in the illustration below (for which credit 

goes to an Italian group of zbw theorists163): 

                                                           
162 See http://vixra.org/abs/1709.0390: The Quantum-Mechanical Wavefunction as a Gravitational Wave. 
163 Vassallo, G., Di Tommaso, A. O., and Celani, F, The Zitterbewegung interpretation of quantum mechanics as theoretical 
framework for ultra-dense deuterium and low energy nuclear reactions, in: Journal of Condensed Matter Nuclear Science, 2017, 

Vol 24,  pp. 32-41. Don’t worry about the rather weird distance scale (110−6 eV−1). Time and distance can be expressed in 
inverse energy units when using so-called natural units (c = ħ = 1). We are not very fond of this because we think it does not 

necessarily clarify or simplify relations. Just note that 110−9 eV−1 = 1 GeV−1  0.197510−15 m. As you can see, the zbw radius is 

of the order of 210−6 eV−1 in the diagram, so that’s about 0.410−12 m, which is what we calculated: a  0.38610−12 m. 

http://vixra.org/abs/1709.0390
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Figure 32: The Compton radius must decrease with increasing velocity 

Can the velocity go to c? In the limit, yes. This is very interesting, because we can see that the 

circumference of the oscillation becomes a wavelength in the process! We’ll come back to this because 

it relates the geometry of our zbw electron to the geometry of the photon model we’re going to develop 

in a later chapter. 

What happens here is quite easy to understand. If the tangential velocity remains equal to c, and the 

pointlike charge has to cover some horizontal distance as well, then the circumference of its rotational 

motion must decrease so it can cover the extra distance. But let us analyze it the way we should analyze 

it, and that’s by using our formulas. Let us first think about our formula for the zbw radius a: 

𝑎 =
ℏ

m𝑐
=
λ𝐶
2π

 

The λC is the Compton wavelength, so that’s the circumference of the circular motion.164 How can it 

decrease? If the electron moves, it will have some kinetic energy, which we must add to the rest energy. 

Hence, the mass m in the denominator (mc) increases and, because ħ and c are physical constants, a 

must decrease.165 How does that work with the frequency? The frequency is proportional to the energy 

(E = ħ·ω = h·f = h/T) so the frequency – in whatever way you want to measure it – will increase. Hence, 

the cycle time T must decrease. We write:   

θ = ω𝑡 =
E

ℏ
𝑡 =

γE0
ℏ
𝑡 = 2π ∙

t

T
 

So our Archimedes’ screw gets stretched, so to speak. Let us think about what happens here. We got the 

following formula for this λ wavelength, which is like the distance between two crests or two troughs of 

the wave166: 

λ = 𝑣 ∙ T =
𝑣

𝑓
= 𝑣 ∙

h

E
= 𝑣 ∙

h

m𝑐2
=
𝑣

𝑐
∙
h

m𝑐
= β ∙ λ𝐶  

                                                           
164 Hence, the C subscript stands for the C of Compton, not for the speed of light (c).   
165 We advise the reader to always think about proportional (y = kx) and inversely proportional (y = x/k) relations  
166 Because it is a wave in two dimensions, we cannot really say there are crests or troughs, but the terminology might help you 
with the interpretation of the geometry here. 
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This wavelength is not the de Broglie wavelength λL = h/p.167 So what is it? We have three wavelengths 

now: the Compton wavelength λC (which is a circumference, actually), that weird horizontal distance λ, 

and the de Broglie wavelength λL. Can we make sense of that? We can. Let us first re-write the de Broglie 

wavelength: 

λL =
h

p
=
h

m𝑣
=
h𝑐2

E𝑣
=
h𝑐

Eβ
=
h

𝑐
∙
1

m ∙ β
=

h

m0𝑐
∙
1

γβ
 

What is this? We are not sure, but it might help us to see what happens to the de Broglie wavelength as 

m and v both increase as our electron picks up some momentum p = m·v. Its wavelength must actually 

decrease as its (linear) momentum goes from zero to some much larger value – possibly infinity as v 

goes to c – but how exactly? The 1/γβ factor gives us the answer. That factor comes down from infinity 

(+) to zero as v goes from 0 to c or – what amounts to the same – if the relative velocity β = v/c goes 

from 0 to 1. The graphs below show how that works. The 1/γ factor is the circular arc that we’re used to, 

while the 1/β function is just the regular inverse function (y = 1/x) over the domain β = v/c, which goes 

from 0 to 1 as v goes from 0 to c. Their product gives us the green curve which – as mentioned – comes 

down from + to 0. 

 

Figure 33: The 1/γ, 1/β and 1/γβ graphs 

Now, we re-wrote the formula for de Broglie wavelength λL as the product of the 1/γβ factor and the 

Compton wavelength for v = 0:  

λL =
h

m0𝑐
∙
1

γβ
=
1

β
·
h

m𝑐
 

Hence, the de Broglie wavelength goes from + to 0. We may wonder: when is it equal to λC = h/mc? 

Let’s calculate that: 

λL =
h

p
=
h

m𝑐
∙
1

β
= λ𝐶 =

h

m𝑐
⟺ β = 1⟺ 𝑣 = 𝑐 

                                                           
167 The use of L as a subscript is a bit random but think of it as the L of Louis de Broglie. 
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This is a rather weird result, and we have not yet fully interpreted its significance. Let’s bring the third 

wavelength in: the λ = β·λC wavelength—which is that length between the crests or troughs of the 

wave.168 We get the following two rather remarkable results: 

λL ∙ λ = λL ∙ β ∙ λ𝐶 =
1

β
·
h

m𝑐
∙ β ∙

h

m𝑐
= λ𝐶

2  

λ

λL
=
β ∙ λ𝐶
λ

=
p

h
∙
𝑣

𝑐
∙
h

m𝑐
=
m𝑣2

m𝑐2
= β2 

The product of the λ = β·λC wavelength and de Broglie wavelength is the square of the Compton 

wavelength, and their ratio is the square of the relative velocity β = v/c. – always! – and their ratio is 

equal to 1 – always! These two results are rather remarkable too but, despite their simplicity and 

apparent beauty, we are also struggling for an easy geometric interpretation. The use of natural units 

may help. Equating c to 1 would give us natural distance and time units, and equating h to 1 would give 

us a natural force unit—and, because of Newton’s law, a natural mass unit as well. Why? Because 

Newton’s F = m·a equation is relativistically correct: a force is that what gives some mass acceleration. 

Conversely, mass can be defined of the inertia to a change of its state of motion—because any change in 

motion involves a force and some acceleration. We write: m = F/a. If we re-define our distance, time and 

force units by equating c and h  to 1, then the Compton wavelength (remember: it’s a circumference, 

really) and the mass of our electron will have a simple inversely proportional relation: 

λ𝐶 =
1

γm0
=
1

m
 

We get equally simple formulas for the de Broglie wavelength and our λ wavelength: 

λL =
1

βγm0
=
1

βm
 

λ = β ∙ λ𝐶 =
β

γm0
=
β

m
 

This is quite deep: we have three lengths here – defining all of the geometry of the model – and they all 

depend on the rest mass of our object and its relative velocity only. Can we take this discussion any 

further? Perhaps, because what we have found may or may not be related to the idea that we’re going 

to develop in the next section. However, before we move on to the next, let us quickly note the three 

equations – or lengths – are not mutually independent. They are related through that equation we 

found above: 

λL ∙ λ = λ𝐶
2 =

1

m2
 

We’ll let you play with that. To help you with that, you may start by noting that the λLλ = 1/m2 reminds 

us of a property of an ellipse. Look at the illustration below.169 The length of the chord – perpendicular 

                                                           
168 We should emphasize, once again, that our two-dimensional wave has no real crests or troughs: λ is just the distance 
between two points whose argument is the same—except for a phase factor equal to n·2π (n = 1, 2,…). 
169 Source: Wikimedia Commons (By Ag2gaeh - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=57428275).  

https://commons.wikimedia.org/w/index.php?curid=57428275
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to the major axis of an ellipse is referred to as the latus rectum. One half of that length is the actual 

radius of curvature of the osculating circles at the endpoints of the major axis.170 We then have the usual 

distances along the major and minor axis (a and b). Now, one can show that the following formula has to 

be true: 

a·p = b2 

 

Figure 34: The latus rectum formula: a·p = b2 

If you don’t immediately see why this would be relevant, then… Well… Then you should look at it again. 

And if you don’t see much right now and you’re tired of thinking about it, don’t worry too much: we’ll 

come back to it. 

Onwards! 

The de Broglie equation as a vector equation? 
We suggested that Planck’s quantum of action h, which we associated with an elementary cycle, or – in 

its reduced form (ħ = h/2π) – with the fundamental unit of angular momentum, should, perhaps, be 

written as a vector quantity. It’s a force times a circumference (or a radius or – more generally – some 

length) times a cycle time. A force is a vector quantity: it has a magnitude but it also has a direction. The 

linear momentum which appears in the second de Broglie relation for matter-waves is a vector quantity 

too—not because of the mass factor (m) but because of the velocity factor (v): p = mv. This makes it very 

tempting to write the second de Broglie relation (λ = h/p) as a vector equation: 

λ =
𝐡

𝐩
=
ℎ⃗ 

𝑝 
 

We would, therefore, also have to re-write the Uncertainty Principe—or the Uncertainty Relation as I 

prefer to refer to it. We are currently doing some research in this regard and it is all quite promising. For 

example, it provides a rather fresh perspective on the so-called random walk of an electron in free space 

and it may, therefore, explain Einstein’s formula for it in a very different (but necessarily equivalent) 

way. However, we do not want to burden the reader with that at this point in time, because the 

mentioned research is rather immature at this point. 

                                                           
170 The endpoints are also known as the vertices of the ellipse. As for the concept of an osculating circles, that’s the circle which, 
among all tangent circles at the given point, which approaches the curve most tightly. It was named circulus osculans – which is 
Latin for ‘kissing circle’ – by Gottfried Wilhelm Leibniz. You know him, right? Apart from being a polymath and a philosopher, he 
was also a great mathematician. In fact, he was the one who invented differential and integral calculus.  
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You may that vector equation looks weird, but it’s not any different than writing Newton’s force law as a 

vector equation: 

m =
𝐅

𝒂
=
𝐹 

𝑎 
 

We want you to think about this, and we will come back to this idea in the next chapter because it is, 

effectively, an idea which we can only explain bringing various things together, so we’d rather devote an 

entire chapter to it. 

Before we go there, let me quickly say a few words about this weird distinction between bosons and 

fermions in quantum mechanics. You know this distinction is quintessential is any introduction to 

quantum mechanics so, yes, we should see if our zbw models can cope with it. 

Fermionic versus bosonic behavior 
We are talking electrons and photons in this book, and we’ll also talk about how they interact. So it is 

quantum electrodynamics (QED) only. However, if you know anything about quantum mechanics, you 

will know quantum theorists like to generalize and there is, therefore, this grand distinction between 

bosons and fermions.  

Fermions are matter-particles, like our electron. Quantum physicists will say protons and neutrons are 

also fermions but – as you know – they do not think of protons and neutrons as being elementary: we 

believe there is a sub-structure there. Why? Because they are so massive. The electric charge of a 

proton is exactly the same as that of an electron, but its mass is about 2,000 times that of an electron. 

So, yes, we think there are other moving bits there and – to explain that huge mass factor – the force 

that makes them move must be very strong, indeed! Also, a neutron is matter, obviously, but it has no 

(net) charge, so we think those constituent parts – you know we are talking quarks and gluons now, 

right? – must have opposite charges. In any case, that’s complicated business. A totally different 

ballgame than the one here because… Well… Totally different balls. 

The term bosons refer to photons and other so-called force-carrying particles. Again, we’re only going to 

talk about photons here so we’re not very interested in grand generalizations of their behavior. There is 

one question, though, that any electron or photon model needs to answer: what causes them to behave 

in a fermionic or bosonic way? To answer that question, we must start by being pretty precise about 

what bosonic and fermionic behavior actually means. 

There are various aspects to it. As for bosons, quantum physicists will usually start talking about spin and 

polarization states and what have you. They will say that bosons have spin one (one unit of angular 

momentum ħ) but – despite that – have two polarization states only. In our physical interpretation of 

the photon, this does not come as a surprise at all. In chapter XV we will explain the interference of a 

photon with itself by assuming we effectively have two linear polarization states that – taken together – 

make up the photon. We will interpret those states as something real, so it also explains weak 

measurement and other weird stuff which orthodox quantum mechanics can’t deal with. But so that’s 

not the point. Not here. 

The point here is: bosons like to be together. The more bosons you have, the more will join. It’s like a 

popular party in town: it just tends to become more popular because it’s popular. In contrast, you 

cannot mix matter-particles. There is Pauli’s exclusion principle: two electrons can only be in the same 
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spot – more or less, that is – if they have opposite spin. In fact, their joint energy in an electron orbital 

will be slightly less if two electrons with opposite spin somehow move together in an electron orbital. 

Using language from condensed matter physics, we might say they tend to form a Cooper pair171 but, 

otherwise, it’s a no-no: we can’t have two matter-particles in the same spot. Can our Zitterbewegung 

model explain that? 

We think it is rather obvious, but it’s true we would need to detail this. It’s big on the agenda of zbw 

theorists, and they’ll need to move on it if they want to convince their fellow physicists. But the logic is 

more or less clear: those pointlike charges will repel each other big time when they come near to each 

other so, yes, they will not want to be together and, therefore, respect Pauli’s exclusion principle. At the 

same time, the geometry of the zbw electron shows there might be scope for tying two Archimedes 

screws together, somehow. Why? Because they have opposite direction: there is a 3D mirror symmetry 

there. That’s easy enough. The Zitterbewegung model provides a much more intuitive explanation for 

fermionic behavior than orthodox quantum mechanics. In fact, Feynman writes the following about 

Pauli’s exclusion principle: 

“The explanation is deep down in relativistic quantum mechanics. This probably means that we do 

not have a complete understanding of the fundamental principle involved. For the moment, you will 

just have to take it as one of the rules of the world.”172 

So, yes, we think orthodox quantum mechanics doesn’t give us any fundamental principles. As 

mentioned before, we think of it as a bunch of procedures, rather than a logical theory. 

So we have dealt with that. We should, perhaps, just add why positive and negative charges cannot be 

together. Negative charges repel, but opposite charges should just sit on top of each other, right? Well… 

No. That’s where the strong force comes in. It’s a non-linear force: it’s there only when distances 

become very short, so it’s there when opposite charges effectively would want to sit on top of each 

other. They would like to but they just can’t.173 

OK. What about bosons? What about photons? We haven’t presented our photon model yet but – as 

we’re talking about these matters here – we should quickly fill you in on that. Our photon is delightfully 

simple: we think of it as a one-cycle electromagnetic wave traveling through space and time. It will, 

effectively, pack one unit of angular momentum (ħ) or – which amounts to the same, one unit of 

physical action (h), and so we will be able to calculate the field strength and all that.  

The point is: it has energy and, therefore, an equivalent mass. Hence, gravity does come into play and – 

because there is no charge there – photons can just pile on top of each other. In fact, that’s what 

experiments show they like to do. It explains the consistency of a laser beam, for example. It’s just 

superposition of waves. But it’s also more than that. We can write the equivalent mass of a photon as m 

= E/c2 = p/c and, hence, if we have n photons that are already present, then their joint mass will be equal 

to n·m, and the next photon should be happy to join. This, then, should explain the (n+1) factor in the 

mysterious formula for the amplitude of a Bose particle going into a state where there are already n 

                                                           
171 Physicists will cry foul here, but I don’t care too much. 
172 Feynman’s Lectures on Physics, Vol. III, Chapter 4. 
173 This is, once again, a rather primitive explanation of the likely mechanism, but it’s what QCD tells us, basically. 
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others present. We won’t write the formula here because it would confuse you. We’ll just quote 

Feynman’s easy verbal rendering of it:  

“When there are n other identical Bose particles present, the probability that one more particle will 

enter the same state is enhanced by the factor (n+1). The probability of getting a boson, where 

there are already n, is (n+1) times stronger than it would be if there were none before. 

The presence of the other particles increases the probability of getting one more.” 

We think there is nothing mysterious about this: it’s just gravity. But then gravity is a mysterious thing, 

of course! The point is: we have an explanation within our model, and it’s not a hocus-pocus 

explanation. 
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VI. The Zitterbewegung and the Uncertainty Principle 
We promised we’d talk about the Uncertainty Principle, and how it meshes with this new 

Zitterbewegung interpretation of an electron.174 Hence, we will do that here – in a separate chapter. 

Why do we need a separate chapter? Perhaps we don’t, but I think it’s a good opportunity to recap 

some of the stuff we’ve been talking about and so I thought it would be nice to have a stand-alone 

chapter on this.175  

The Zitterbewegung interpretation of an electron: recap 
The diagram below show the idealized Zitterbewegung of a moving pointlike charge. The combined idea 

of a pointlike charge and its presumed motion make up what we think of as an electron. 

 

Figure 35: An idealized Zitter trajectory176 

The model is exceedingly simple. The pointlike charge itself has no rest mass and, hence, rotates around 

at the speed of light.177 We also think of the circular motion as some kind of two-dimensional oscillation 

and – because the two oscillations are independent and 90 degrees out of phase – we just add the 

energy of the two oscillators and, therefore, get an E = m·a2·ω2 equation. We then use the Planck-

Einstein relation (ω = E/ħ) and Einstein’s mass-energy equivalence (E = m·c2), to get the Compton radius 

(a): 

E = m ∙ 𝑐2 = m ∙ 𝑎2 ∙ ω2 = m ∙ 𝑎2 ∙
E2

ℏ2
⇔ 𝑎 =

ℏ

m ∙ 𝑐
 

The Compton wavelength λC is the circumference of the rotation: λC = 2π·a = h/mc. Now, if c is equal to 

the (tangential) velocity of the pointlike charge, then it’s easy to see that the Compton radius must 

                                                           
174 As mentioned in the introduction, the Zitterbewegung interpretation is everything but new. It goes back to Schrödinger’s 
original interpretation of the solution(s) to Dirac’s wave equation, and Dirac mentions it upfront in his Nobel Prize speech. It is 
weird no one – including Dirac -  pursued the idea, until David Hestenes picked it up again in the 1990s. My next book is going 
to be more philosophical: I want to trace the genealogy of this idea and find out why it does or doesn’t break through.  
175 Truth be told, this chapter is an almost literal reproduction of a very recent paper of mine (http://vixra.org/abs/1903.0154). 
We hope the reader doesn’t mind the repetitions. There was limited time as we were moving this book to production and, yes, I 
do have a very different day job. 
176 This diagram is based on an illustration of a circularly polarized wave, which looks exactly the same. We just added the λ 
wavelength. It is a diagram from Wikimedia Commons. While it is in the public domain, we still want to acknowledge the author 
here: https://commons.wikimedia.org/wiki/User:Dave3457. 
177 This is a result that Schrödinger had already obtained from an analysis of Dirac’s wave equation of the electron. He referred 
to it as a Zitterbewegung. Prof. Dr. David Hestenes is to be credited with reviving this interpretation of what an electron might 
actually be. I should note, however, that Prof. Dr. David Hestenes – and other zbw theorists – may not agree with my shortcut 
to the results of the model. 

http://vixra.org/abs/1903.0154
https://commons.wikimedia.org/wiki/User:Dave3457
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diminish if the linear velocity (v) gets larger. We get the following formula for the λ wavelength λ in 

Figure 2: 

λ = 𝑣 ∙ T =
𝑣

𝑓
= 𝑣 ∙

h

E
= 𝑣 ∙

h

m𝑐2
=
𝑣

𝑐
∙
h

m𝑐
= β ∙ λ𝐶  

Hence, λ is a fraction of the Compton wavelength λC = 2π·a, and the fraction is the relative velocity β = 

v/c. As the linear velocity increases (so that’s just the classical velocity of our particle), then it’s energy 

and, therefore, its equivalent mass is going to increase. In fact, using natural units (c = 1 and ħ = 1), we 

get the simplest of simple formulas for the Compton radius: 

𝑎 =
1

m
 

Interpreting the de Broglie wavelength 
The λ wavelength is not the de Broglie wavelength λL = h/p.178 So what is it? We have three wavelengths 

now: the Compton wavelength λC (which is a circumference, actually), that weird horizontal distance λ, 

and the de Broglie wavelength λL. Can we make sense of that? We can. Let us first re-write the de Broglie 

wavelength: 

λL =
h

p
=
h

m𝑣
=
h𝑐2

E𝑣
=
h𝑐

Eβ
=
h

𝑐
∙
1

m ∙ β
=

h

m0𝑐
∙
1

γβ
 

What is this? Let’s analyze it mathematically. What happens to the de Broglie wavelength as m and v 

both increase because our electron picks up some momentum p = m·v? Its wavelength must actually 

decrease as its (linear) momentum goes from zero to some much larger value – possibly infinity as v 

goes to c – but how exactly? The 1/γβ factor gives us the answer. That factor comes down from infinity 

(+) to zero as v goes from 0 to c or – what amounts to the same – if the relative velocity β = v/c goes 

from 0 to 1. The graphs below show how that works. The 1/γ factor is the circular arc that we’re used to, 

while the 1/β function is just the regular inverse function (y = 1/x) over the domain β = v/c, which goes 

from 0 to 1 as v goes from 0 to c. Their product gives us the green curve which – as mentioned – comes 

down from + to 0. [Take your time to carefully look at the formulas and the curves so you can digest 

this.] 

 

Figure 36: The 1/γ, 1/β and 1/γβ graphs179 

                                                           
178 The use of L as a subscript is a bit random but think of it as the L of Louis de Broglie. 
179 We used the free desmos.com graphing tool for these and other graphs. 
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Now, we re-wrote the formula for de Broglie wavelength λL as the product of the 1/γβ factor and the 

Compton wavelength for v = 0:  

λL =
h

m0𝑐
∙
1

γβ
=
1

β
·
h

m𝑐
 

Hence, the de Broglie wavelength goes from + to 0. We may wonder: when is it equal to λC = h/mc? 

Let’s calculate that: 

λL =
h

p
=
h

m𝑐
∙
1

β
= λ𝐶 =

h

m𝑐
⟺ β = 1⟺ 𝑣 = 𝑐 

This is a rather weird result, isn’t it? But it is what it is. Let’s bring the third wavelength in: the λ = β·λC 

wavelength⎯which is that length between the crests or troughs of the wave.180 We get the following 

two rather remarkable results: 

λL ∙ λ = λL ∙ β ∙ λC =
1

β
·
h

m𝑐
∙ β ∙

h

m𝑐
= λC

2 

λ

λL
=
β ∙ λC
λ

=
p

h
∙
𝑣

𝑐
∙
h

m𝑐
=
m𝑣2

m𝑐2
= β2 

The product of the λ = β·λC wavelength and de Broglie wavelength is the square of the Compton 

wavelength, and their ratio is the square of the relative velocity β = v/c. – always! – and their ratio is 

equal to 1 – always! These two results are rather remarkable too but, despite their simplicity and 

apparent beauty, you might be struggling for an easy geometric interpretation. I was struggling for it 

too, but then I thought the use of natural units might help. Equating c to 1 would give us natural 

distance and time units, and equating h to 1 would give us a natural force unit—and, because of 

Newton’s law, a natural mass unit as well. Why? Because Newton’s F = m·a equation is relativistically 

correct: a force is that what gives some mass acceleration. Conversely, mass can be defined of the 

inertia to a change of its state of motion—because any change in motion involves a force and some 

acceleration: m = F/a. If we re-define our distance, time and force units by equating c and h  to 1, then 

the Compton wavelength (remember: it’s a circumference, really) and the mass of our electron will have 

a simple inversely proportional relation181: 

λ𝐶 =
1

γm0
=
1

m
 

We get equally simple formulas for the de Broglie wavelength and our λ wavelength: 

λL =
1

βγm0
=
1

βm
 

λ = β ∙ λ𝐶 =
β

γm0
=
β

m
 

                                                           
180 We should emphasize, once again, that our two-dimensional wave has no real crests or troughs: λ is just the distance 
between two points whose argument is the same—except for a phase factor equal to n·2π (n = 1, 2,…). 
181 In case you wonder why we get the same 1/m result for a as for λC, note that it depends on what we consider to be a natural 
unit: we got the a = 1/m equation by equating ħ to 1, as opposed to h. 
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This is quite deep: we have three lengths here – defining all of the geometry of the model – and they all 

depend on two factors only: the rest mass of our object and its (relative) velocity. Can we take this 

discussion any further? Perhaps, because what we have found may or may not be related to the idea 

that we’re going to develop in the next section. However, before we move on to the next, let us quickly 

note the three equations – or lengths – are not mutually independent. They are related through that 

equation we found above: 

λL ∙ λ = λ𝐶
2 =

1

m2
 

We’ll let you play with that. To help you with that, you may start by noting that the λLλ = 1/m2 reminds 

us of a property of an ellipse. Look at the illustration below.182 The length of the chord – perpendicular 

to the major axis of an ellipse is referred to as the latus rectum. One half of that length is the actual 

radius of curvature of the osculating circles at the endpoints of the major axis.183 We then have the usual 

distances along the major and minor axis (a and b). Now, one can show that the following formula has to 

be true: 

a·p = b2 

 

Figure 37: The latus rectum formula: a·p = b2 

You probably wonder: why would this be relevant? It introduces an asymmetry in what we may loosely 

refer to as the shape of an electron. We get such asymmetry from other models – notably Dirac-Kerr-

Newman models of the electron – and it should explain the anomalous magnetic moment without 

having to resort to weird calculations using Feynman diagrams and renormalization techniques. In short, 

we think the analysis above gives you a classical electron model which may explain all of quantum 

mechanics in a classical way. That’s what this book is about and so we will not repeat ourselves too 

much here. 

                                                           
182 Source: Wikimedia Commons (By Ag2gaeh - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=57428275).  
183 The endpoints are also known as the vertices of the ellipse. As for the concept of an osculating circles, that’s the circle which, 
among all tangent circles at the given point, which approaches the curve most tightly. It was named circulus osculans – which is 
Latin for ‘kissing circle’ – by Gottfried Wilhelm Leibniz. You know him, right? Apart from being a polymath and a philosopher, he 
was also a great mathematician. In fact, he was the one who invented differential and integral calculus.  

https://commons.wikimedia.org/w/index.php?curid=57428275
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Introducing uncertainty 
What about uncertainty? If there is uncertainty about the velocity, then there is uncertainty about the 

energy and, therefore, about the (equivalent) mass of our electron. Hence, the radius of the oscillation 

may also increase or decrease. The two complementary expressions of Heisenberg’s Uncertainty 

Principle (Δp·Δx = h and ΔE·Δt = h) can, therefore, easily be related one to another.184 In fact, all 

uncertainties can easily be related through this very simple geometric model. But so what’s h? What is 

that quantum of action? It’s just the product of the force that keeps that charge in its orbit, the 

circumference (λC = 2π·a) and the cycle time T = 1/f. Energy is force over a distance, so we can write this: 

F ∙ λ𝐶 ∙ T = E ∙
1

𝑓
= E ∙

ℎ

E
= ℎ 

This gives us the formula underpinning the energy-time expression the Uncertainty Principle: 

E ∙ T = h ⟹ ∆E ∙ ∆T = h 

You may wonder what this really means, but we will give a bit of an interpretation with some diagrams 

for the position-momentum expression in the next section, so you may want to hold your horses for a 

while. Let us first see if we can get that position-momentum expression from our geometric 

interpretation. A force times some time will give us the physical dimension of (linear) momentum. Of 

course, at this point we’re not quite sure if we’re going to get the classical p = m·v momentum, so let us 

just be careful and use some subscript. We’ll use pc. Why the c? I don’t know: classical, Compton, c,… It 

is just a placeholder for the time being. Let’s see what we get185: 

F ∙ λ𝐶 ∙ T = p𝑐 ∙ λ𝐶 = F ∙ T ∙ λ𝐶 =
E

λ𝐶
∙
ℎ

E
∙ λ𝐶 = ℎ 

So now we can write: 

p𝑐 ∙ λ𝐶 = h ⇒ ∆p𝑐 ∙ ∆λ𝐶 = h 

You think this looks good? I don’t think so. Why not? Because our pc is not the classical p = mv 

momentum, and that Compton wavelength is not the right length either. Why not? Well… We want to 

relate this to the linear motion. In other words, we want an equation involving the classical velocity. We 

don’t have that here. Just write it all out: 

p𝑐 =
E

λ𝐶
∙
ℎ

E
=
ℎ

λ𝐶
=
ℎ ∙ m ∙ 𝑐

ℎ
= m ∙ 𝑐 

What kind of momentum is this? I’ll let you think about it. I want to see something else, so let me try 

something here. If I multiply pc by β = v/c, I do get the classical momentum p = m·v. Let’s see what we 

get if we write this: 

p𝑐 ∙ λ𝐶 = h ⇔ p𝑐 ∙ β ∙ λ𝐶 ∙
1

β
= h ⇔ p ∙ λ𝐶 ∙

1

β
= p ∙ λL = ℎ 

                                                           
184 You will often see ħ/2 or ħ on the right-hand side, as opposed to h. However, that just depends on what formula you’re 
going to use to describe the spread in your variables. The expressions I use are the ones Dirac and Heisenberg used. 
185 Energy is a force over a distance and, hence, we substitute F for E/λC here. 
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That’s better! We get the second de Broglie equation. In fact, it’s the de Broglie equation – because the 

first de Broglie equation is just the Planck-Einstein relation, so de Broglie didn’t contribute much to that.  

So now we get what we had secretly hoped to come out of this rather weird discussion on the geometry 

of an electron: 

p ∙ λL = ℎ ⇒ Δp ∙ ΔλL = ℎ 

This, then, should guide our interpretation of the Δp·Δx = h expression of Heisenberg’s Uncertainty 

Principle. You’ll say: sure, we knew that already, didn’t we? No. We didn’t. The Δx is not an uncertainty 

in the position. It’s an uncertainty in the de Broglie wavelength, and it’s rather hard to relate to that to 

the position, as we’ll explain in the next sections. 

Planck’s quantum of action as a vector 
I have a not-so-secret agenda: I want to think of h as a vector, so I want to write it as h (in bold face). I 

feel that should not sound too outrageous because the physical dimension of Planck’s quantum of 

action is that of angular momentum, and angular moment is a vector, so why not think of h as a vector 

too? 

Of course, you may say angular momentum is an axial vector and, therefore, perhaps not all that real. 

We’d like to counter that objection by the following rather subjective statement: an axial vector does 

not reverse its sign when the coordinate system is changed to a new system by a reflection in the origin. 

In light of those weird 720-degree symmetries that pop up when analyzing spin-1/2 particles, I’d say that 

property makes an axial vector very real – perhaps even more real than the polar vectors that enter as 

factors into the vector cross-product. However, we don’t want to engage in philosophy here so let us 

play some more and see what might make sense.  

Modeling uncertainty 
Before thinking of Planck’s quantum of action as a vector quantity, we should, perhaps, first try to write 

the Δp·Δx = h expression of the Uncertainty Principle as a vector (dot) product: 

Δp·Δx = h 

We use an equality sign here because we think there must be certainty in the uncertainty: something 

must explain the probabilities.186 Hence, we write the right-hand side of the equation – currently, that is 

– as h. No uncertainty there. All of the uncertainty is in the left-hand side. So how should we think of it? 

Δp is the uncertainty in p. Both Δ as well as p are written in bold type. We think of it as an entity: a 

vector in its own. If there is uncertainty in the momentum p, the uncertainty may be in the magnitude of 

p, but it may also be in its direction. Hence, Δp can be any of the vectors depicted below – or anything 

in-between.  

                                                           
186 If you have read any of my papers, you’ll know I am just faithfully following Einstein’s basic intuitions. This is not the 
Copenhagen interpretation of quantum mechanics. In fact, the only reason why you want to read this paper is that it’s not. 
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Figure 38: Uncertainty in the linear momentum 

Note that the various Δp vectors here can point in any direction, and they also can have any magnitude. 

That is a bit weird because – as you can see from the illustration – the momentum vectors themselves – 

the p vectors, that is – are generally in the same direction: we do think that, if a particle has some 

momentum, it will in some direction. That’s just logic. 

But now we really run into trouble when interpreting Δx as some uncertainty in the position. The Δp·Δx 

= h relation gives us an inverse proportionality between Δp and Δx, and that doesn’t make sense. The 

uncertainty in the momentum will amplify the uncertainty in the position. I should find a better 

illustration but the one below should already give you an idea. If we have some uncertainty ε in the 

direction of the momentum of some object (the red billiard ball below, that is), then that uncertainty 

will be amplified over a longer distance.  

 

Figure 39: Uncertainty in (linear) momentum gets amplified over distance 

Why is that so? The momentum, velocity and position vectors (p, v and x) all have the same direction. 

Indeed, p and v only differ because of the mass factor: p = m·v. And v and x are, in turn, related by the 

simplest of equations: the x = v·t. Hence, their direction is the same – by definition: an object with some 

velocity v (and some mass m) will be at position x = v·t at any point in time t. That is just the way we 

make sense of the world. Hence, that weird inverse proportionality in the Δp·Δx = h expression cannot 

be explained if we interpret Δx as the spread in the position: they should be proportional187, rather than 

inversely proportional (as illustrated above and below).  

                                                           
187 The proportionality relation is given by simple trigonometry: if the angle ε measures the spread, and c is the hypotenuse, 
while a and b are the adjacent and opposite side of the triangle, then b will be equal to b = c·sinε. 
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Figure 40: Inverse proportionality 

In short, the second expression of the Uncertainty Principle should, effectively, be written in terms of 

the uncertainty in the (classical) momentum and the uncertainty in the (de Broglie) wavelength of our 

electron: 

Δp ∙ ΔλL = ℎ 

Planck’s quantum of action as a vector (2) 
Let me get back to my not-so-secret agenda: what would it mean to write h as a vector? Well… It would 

write it as h, just like we would write L for angular momentum. Look at the wobbling angular 

momentum of the spinning top below, and then think of the plane of rotation of our pointlike charge in 

Figure 2). 

 

Figure 41: A wobbling plane of rotation188 

So how would we write the Uncertainty Principle then? Simple, we just write h and p as vectors. So we 

have the p·λ = h expression out of the zbw geometry (with λ the de Broglie wavelength189). So then we 

can introduce the idea of a non-precise magnitude, or a non-precise direction and write:  

Δp· Δλ = h 

                                                           
188 The illustration is taken from Wikimedia Commons under the CC-BY-SA 2.5 license so I need to acknowledge the author: 
Xavier Snelgrove (https://commons.wikimedia.org/wiki/User:Wxs).  
189 I dropped the subscript here. You may want to add it again if you’re getting confused. 

https://commons.wikimedia.org/wiki/User:Wxs
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So I have p and h as vectors then: h wobbles as the electron gains linear momentum, so p wobbles too.  

[…] 

So… Well… We’re there. There is only one question left to answer: the precession of the spinning top in 

the illustration above is regular. The movement is regular, and we can associate it with some precise 

precession frequency. Can we do that for an electron? In other words, we have uncertainty – and we 

can model it – but do we introduce some uncertainty in our model? 

My instinctive answer to this is Einstein’s: no. The velocity of light is the velocity of light, and the 

classical velocity of our electron is the classical velocity of our electron. In other words, if we assume the 

rotational motion is defined by c and the Compton radius which, in turn, is defined by the linear velocity 

v, then there’s no room for uncertainty. The uncertainty is the wobbling of h. Nothing more. Nothing 

less. But I am happy to get other opinions. They’d be philosophical rather than scientific – as 

philosophical as Einstein’s intuition – but that shouldn’t prevent us from thinking creatively. 

I should add this intuitive reply is in contrast with what I wrote in the introduction to this book. Let me 

copy that: 

The motion is probably quite chaotic: Zitter is German for shaking or trembling190, and 

Zitterbewegung theorists (we’ll abbreviate as zitter or zbw) think the Uncertainty Principle in 

quantum mechanics is rooted in that chaotic motion. However, zbw theorists also think we can 

model this uncertainty, somehow, by analyzing the various degrees of freedom in the system. 

So… Well… I can’t say much about this. As I’ve repeated a couple of times already: this book just wants 

to give you some pointers, so you can think for yourself. What makes sense? What doesn’t? My answer 

is just my answer, and it’s just words. Even if there’s a lot of math here, Lagan’s words still apply: 

‘We are in the words, and at the same time, apart from them. The words spin out, spin us out, 

over a void. There, somewhere between us, some words form some answer for some time, 

allowing us to live more fully in the forgetting face of nonexistence, in the dissolving away of 

each other.’191 

Let’s briefly talk about a more important question. 

How can we test this? 
Could we possibly verify this interpretation of Heisenberg’s Uncertainty Principle? I haven’t given this all 

that much thought, but I think we should be able to do so. Indeed, if my memory is correct, then the 

(tiny) spread around the two spots where the electrons hit the detector in a Stern-Gerlach experiment 

are explained by the (tiny) spread in their (classical) velocity. So, yes, I think that might prove the 

point.192 

                                                           
190 In case you wonder why this motion is described using some German word, it is because Erwin Schrödinger – who stumbled 
upon while exploring solutions to Dirac’s wave equation for an electron – was a German-speaking Austrian. German was an 
important language for physics and scientists around 1900, but that changed after the first World War. 
191 Lagan, in Jeremy D. Safran (2003), Psychoanalysis and Buddhism: an unfolding dialogue, p. 134. 
192 Note that actual Stern-Gerlach experiments are usually done with atoms or ions rather than electrons. I am actually not 
aware of any Stern-Gerlach experiment with electrons and would be interested to hear about them. 
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OK. We’ve talked enough about the freely moving electron now. Let’s move to the next: the behavior of 

an electron in an atom. We will show that we can describe it by the very same wavefunction, but its 

physical interpretation is somewhat different. Let’s go for it! 
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VII. The wavefunction and the atom  
The illustration below depicts the geometry of a Bohr orbital. We describe such orbital by the same 

mathematical object – the elementary wavefunction (Euler’s function) – but we do have a different 

geometry here.  

In fact, the situation is very different. The Bohr model has a positively charged nucleus at its center and 

its electron has an effective rest mass: the radial velocity v = a·ω of the electron is, therefore, some 

fraction of the speed of light (v = α·c). It also has some non-zero momentum p = m·v which we can relate 

to the electrostatic centripetal force using the simple classical formula F = p·ω = mv2/a. In contrast, the 

model of an electron in free space is based on the presumed Zitterbewegung, which combines the idea 

of a very high-frequency circulatory motion with the idea of a pointlike charge which – importantly – has 

no inertia and can, therefore, move at the speed of light (v = c).  

 

Figure 42: The position, force and momentum vector in a Bohr loop 

The formulas in the Bohr-Rutherford model are derived from the quantum-mechanical that angular 

momentum comes in units of ħ = h/2π. We rephrased that rule as: physical action comes in unit of h. We 

also associated Planck’s quantum of action with a cycle: one rotation will pack some energy over some 

time (the cycle time) or – what amounts to the same – some momentum over some distance (the 

circumference of the loop). We wrote: 

S = h = E·T = L·2π·rB 

Using the v = α·c and rC = α·rB relations193 one can easily verify this for the momentum formulation: 

𝑆 = p ∙ 2π ∙ 𝑟B = m𝑣 ∙ (𝑟C/α) = mα𝑐 ∙
2πħ

αmc
= h 

We can also calculate S by calculating the force and then multiply the force with the distance and the 

time. The force is just the (centripetal) electrostatic force between the charge and the nucleus 

                                                           
193 These relations come out of the model. They are, therefore, not some new hypothesis. The α in the formula is the fine-
structure constant. It pops up in (almost) all of the equations we get. As such, it does appear as some magical dimensionless 
number that relates almost all (physical) dimensions of the electron (radii, circumferences, energies, momenta, etcetera). 
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F =
qe
2

4πε0𝑟B
2
= α ∙

ħ𝑐

𝑟B
2
 

We can then recalculate S as: 

𝑆 = F ∙ 𝑟B ∙ T = α ∙
ħ𝑐

𝑟B
2
∙ 𝑟B ∙

2π𝑟B
𝑣

= α ∙
h𝑐

α𝑐
= h 

All is consistent. However, we should note the implied energy concept is somewhat surprising: 

𝑆 = ℎ = E ∙ T = E ∙
2π𝑟B
𝑣

= E ∙

ℎ
αm𝑐
α𝑐

⇔ E = α2m𝑐2 

This is twice the ionization energy of hydrogen (Ry = α2mc2/2), and it is also twice the kinetic energy 

(ħ2/2ma2 = α2mc2/2). It is also just a fraction (α2 ≈ 0.00005325) of the rest energy of the electron.194 This 

somewhat odd result can be explained if we would actually be thinking of a two-dimensional oscillation 

here. In that case, we would effectively write the force as F = Fx + Fy (as suggested in the illustration 

above) in a moment) and, hence, we should therefore add the kinetic and potential energy of two 

oscillators.  

Let us explain and generalize these results for all electron orbitals. In other words, let us explain it in 

terms of the Bohr atom. The quantum of action effectively underpins the Rutherford-Bohr model of an 

atom. This 105-year old model195 was designed to explain the wavelength of a photon that is emitted or 

absorbed by a hydrogen atom – a one-electron atom, basically – and does a superb job of it. The idea is 

that the energy of such photon is equal to the difference in energy between the various orbitals. The 

energy of these orbitals is usually expressed in terms of the energy of the first Bohr orbital, which is 

usually referred to as the ground state of (the electron in) the hydrogen atom. The Rydberg energy ER is 

just the combined kinetic and potential energy of the electron in the first Bohr orbital and it can be 

expressed in terms of the fine-structure constant (α) and the rest energy (E0 = mc2) of the electron196: 

E𝑅 =
α2m𝑐2

2
=
1

2
(
qe
2

2ε0h𝑐
)2m𝑐2 =

qe
4m

8ε0
2h2

≈ 13.6 eV 

To be precise, the difference in energy between the various orbitals should be equal to: 

ΔE = (
1

𝑛1
2
−
1

𝑛2
2
) ∙ E𝑅 

                                                           
194 The reader can check the conversion of the Rydberg energy in terms of the fine-structure constant and the rest mass (or rest 
energy) of the electron. 
195 Around 1911, Rutherford had concluded that the nucleus had to be very small. Hence, Thomson’s model – which assumed 
that electrons were held in place because they were, somehow, embedded in a uniform sphere of positive charge – was 
summarily dismissed. Bohr immediately used the Rutherford hypothesis to explain the emission spectrum of hydrogen atoms, 
which further confirmed Rutherford’s conjecture, and Niels and Rutherford jointly presented the model in 1913. As Rydberg 
had published his formula in 1888, we have a gap of about 25 years between experiment and theory here. 
196 We should write m0 instead of m – everywhere. But we are using non-relativistic formulas for the velocity and kinetic energy 
everywhere. Hence, we dropped the subscript. 
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The Rydberg formula then becomes self-evident. The idea of the wavelength of a wave (λ), its velocity of 

propagation (c) and its frequency (f)197 are related through the λ = c/f relation, and the Planck-Einstein 

relation (E = h·f) tells us the energy and the wavelength of a photon are related through the frequency: 

λ =
𝑐

𝑓
=
ℎ𝑐

E
 

Hence, we can now write the Rydberg formula by combining the above: 

1

λ
=
E

h𝑐
= (

1

𝑛1
2
−
1

𝑛2
2
) ∙
E𝑅
h𝑐
= (

1

𝑛1
2
−
1

𝑛2
2
) ∙
α2m𝑐2

2h𝑐
 

The Rydberg formula uses the fine-structure constant, but actually describes the so-called gross 

structure of the hydrogen spectrum only (illustrated below). Indeed, when the spectral lines are 

examined at very high resolution, the spectral lines are split into finer lines. This is due to the intrinsic 

spin of the electron. This intrinsic spin of the electron is to be distinguished from its orbital motion. It 

shows we should not be thinking of the electron as a pointlike (infinitesimally small) particle: it has a 

radius.198 Hence, we speak of spin angular momentum versus orbital angular momentum. However, as 

we will explain, there is some coupling between the two motions. We will come back to this later. 

 

Figure 43: The gross structure of the hydrogen spectrum199 

The Copenhagen interpretation of quantum mechanics – which, privately, we have started to think of as 

the Heisenberg Diktatur200 – dismisses Bohr’s model. However, it is actually a proper quantum-

                                                           
197 Our papers – and this book – relate mathematical and physical concepts. Hence, we prefer to think of a wavelength as a 
mathematical idea right now, as opposed to some (physical) reality. Our ontological viewpoint is very simple: language 
describes reality. Hence, math describes physics. There is an intimate relation between both but – at the same time – we should 
not confuse the two. 
198 We argue its radius is the Compton radius. See: Jean Louis Van Belle, Einstein’s mass-energy equivalence relation: an 
explanation in terms of the Zitterbewegung, 24 November 2018 (http://vixra.org/pdf/1811.0364v1.pdf).   
199 The illustration is from a fellow blogger: http://hydrogenatomgirikosa.blogspot.com/2017/03/emission-spectrum-of-
hydrogen-atom.html.  
200 No one should take offense here. It is an opinion which is rooted in our experience trying to submit articles to scientific 
journals as well as interactions with academics. In fact, we should tone down and not specifically associate the Copenhagen 
interpretation with Heisenberg and other founding fathers of the quantum-mechanical framework, as they were part of the 

http://vixra.org/pdf/1811.0364v1.pdf
http://hydrogenatomgirikosa.blogspot.com/2017/03/emission-spectrum-of-hydrogen-atom.html
http://hydrogenatomgirikosa.blogspot.com/2017/03/emission-spectrum-of-hydrogen-atom.html
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mechanical explanation and Schrödinger’s equation does not seem to add much in terms of a scientific 

explanation for the atomic electron orbitals. Feynman (Lectures, III-2-4) derives it from the momentum-

space expression of the Uncertainty Principle which we may loosely state as follows: the product of the 

uncertainty in the momentum (Δp) and the uncertainty in the position (Δx) has an order of magnitude 

that is equal to Planck’s quantum (h). His equation is the following: 

p ∙ 𝑎 ≈ ℏ ⇔ p ≈ ℏ/𝑎 

This allows him to write the kinetic energy of the electron as mv2/2 = p2/2m = ħ2/2ma2. The potential 

energy is just the electrostatic energy −e2/a.201 The idea is then that the configuration must minimize the 

total energy E = ħ2/2ma2 − e2/a. The variable is the radius a and, hence, we get a by calculating the 

dE/da derivative and equating it to zero. We thus get the correct Bohr radius: 

𝑟Bohr =
ℏ2

me2
=
4πε0ℏ

2

mqe
2
=
1

α
 ∙ 𝑟Compton ≈ 53 × 10

−12 m 

We find it useful to write the Bohr radius as the Compton radius divided by the fine-structure constant:  

rB = rC/α = ħ/αmc ≈ (386/0.0073)×10−15 m ≈ 53×10−9 m. 

We can now calculate the Rydberg energy – which is the ionization energy of hydrogen – by using the 

Bohr radius to calculate the energy E = ħ2/2ma2 − e2/a: 

ER =
1

2

ℏ2

m

m2e4

ℏ4
− e2

me2

ℏ2
= −

1

2

me4

ℏ2
≈ −13.6 eV 

This amount equals the kinetic energy (ħ2/2ma2 = α2mc2/2). The electrostatic energy itself is twice that 

value (−e2/rBohr = −α2mc2).  

Feynman’s Uncertainty Principe is suspiciously certain. He basically equates the uncertainty in the 

momentum as the momentum itself (Δp = p) and the uncertainty in the position as a precise radius. We 

offer an alternative interpretation. If Planck’s constant is, effectively, a physical constant (h ≈ 

6.626×10−34 N·m·s), then we should interpret it as such. If physical action – some force over some 

distance over some time – comes in units of h, then the relevant distance here is the loop, so that is 

2π·rBohr. We would, therefore, like to re-write Feynman’s p·a ≈ ħ assumption as: 

S = h = p·2π·rBohr = p·λ  

The λ is, of course, the circumference of the loop. The equation resembles the de Broglie equation λ = 

h/p. How should we interpret this? We can associate Planck’s quantum of action with a cycle: let us 

                                                           
group of ‘founding fathers’ who actually became quite skeptical about the theory they had created because of the divergences 
in perturbative quantum electrodynamics (QED). Todorov (2018) specifically Heisenberg, Dirac, and Pauli in this regard, and 
mentions that QED, as a theory, only survived because of the efforts of the second generation of quantum physicists (Feynman, 
Schwinger, Dyson, etcetera). See: Ivan Todorov, From Euler’s play with infinite series to the anomalous magnetic moment, 12 
October 2018 (https://arxiv.org/pdf/1804.09553.pdf).    
201 The e2 in this formula is the squared charge of an electron (qe

2) divided by the electric constant (4πε0). The formula assumes 
the potential is zero when the distance between the positively charged nucleus and the electron is infinite, which explains the 
minus sign. We also get the minus sign, of course, by noting the two charges (electron and nucleus) have equal magnitude but 
opposite sign. One should note that the formulas are non-relativistic. This is justified by the fact that the velocities in this model 
are non-relativistic (the electron velocity in the Bohr orbital is given by ve = α·c ≈ 0.0073·c. This is an enormous speed but still 
less than 1% of the speed of light. 

https://arxiv.org/pdf/1804.09553.pdf
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refer to it as a Bohr loop and, yes, we think of it as a circular orbit. As such, we can write h either as the 

energy times the cycle time or, else, as the (linear) momentum times the loop: h = p·2π·rB. The latter 

expression not only reflects the second de Broglie relation but also the quantum-mechanical rule that 

angular momentum should come in units of ħ = h/2π. Indeed, the angular momentum can always be 

written in terms of the tangential velocity, the radius and the mass. As such, the two formulas below 

amount to the same: 

L = m ∙ 𝑣 ∙ 𝑟𝐵 = p ∙ 𝑟B = ℏ ⟺ 𝑆 = p ∙ 2π · 𝑟B = p ∙ λ𝐵 = ℎ 

Let us continue our calculations. We get the velocity out of the expression for the kinetic energy: 

K. E.=
m𝑣2

2
=
α2m𝑐2

2
⇔ 𝑣 = α ∙ 𝑐 ≈ 0.0073 ∙ 𝑐 

Of course, we should also be able to express the velocity as the product of the radius and an angular 

frequency, which we can do as follows: 

𝑣 = α ∙ 𝑐 = 𝑟B ∙ ωB =
ℏ

αm𝑐
∙
α2m𝑐2

ℏ
= α ∙ 𝑐 ⇔ ωB =

α2m𝑐2

ℏ
 

We then calculate the cycle time T as T = 1/fB = 2π/ωB. Interestingly, the formula for fB (or, thinking in 

terms of angular frequencies, for ωB) reflects the first de Broglie relation: fB = E/h = α2mc2/h. However, 

we should note that α2mc2 is twice the Rydberg energy – and, unlike some physicists, we do care about a 

1/2 or π factor in our model of a Bohr electron. Hence, we should have a look at this energy concept. We 

will do so later. Let us – just for now – roll for a moment with this E = α2mc2 energy concept. It is, 

obviously, the energy that is associated with the loop. We wrote the quantum of action as the product 

of the (linear) momentum and the distance along the loop: h = p·λB = p·2π·λB. Likewise, we can write: 

ℎ = E ∙ T = α2m𝑐2 ∙
2π ∙ 𝑟B
𝑣

= α2m𝑐2 ∙
2π ∙ 𝑟C
α ∙ 𝑐 ∙ α

= m𝑐2
2π ∙ ℏ

𝑐 ∙ m ∙ 𝑐
= ℎ 

Let us now generalize our formulas for all of the Bohr orbitals:  

Table 2: Generalized formulas for the Bohr orbitals 

Orbital electron (Bohr orbitals) 

S𝑛 = 𝑛h for 𝑛 = 1, 2, … 

E𝑛 = −
1

2

α2

𝑛2
m𝑐2 = −

1

𝑛2
E𝑅  

𝑟𝑛 = 𝑛
2𝑟B =

𝑛2𝑟C
α

=
𝑛2

α

ℏ

m𝑐
 

𝑣𝑛 =
1

𝑛
α𝑐 

ω𝑛 =
𝑣𝑛
𝑟𝑛
=
α2

𝑛3ℏ
m𝑐2 =

1
𝑛2
α2m𝑐2

𝑛ℏ
 

L𝑛 = 𝐼 ∙ ω𝑛 = 𝑛ℏ 
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μ𝑛 = I ∙ π𝑟𝑛
2 =

qe
2m

𝑛ℏ 

g𝑛 =
2m

qe

μ

L
= 1 

 

The reader can easily verify these formulas – by googling them, doing the calculations himself or, 

preferably, just doing some substitutions here and there. Let us substitute the equation for ωn in the Ln 

formula, for example: 

L𝑛 = 𝐼 ∙ ω𝑛 = m ∙ 𝑟𝑛
2 ∙
α2

𝑛3ℏ
m𝑐2 = m ∙

𝑛4

α2
ℏ2

m2𝑐2
∙
α2

𝑛3ℏ
m𝑐2 = 𝑛ℏ 

The reader should note that these formulas are not so obvious as they seem. The table below shows 

what happens with radii, velocities, frequencies and cycle times as we move out. The velocities go down, 

all the way to zero for n → , and the corresponding cycle times increases as the cube of n. Using totally 

non-scientific language, we might say the numbers suggest the electron starts to lose interest in the 

nucleus so as to get ready to just wander about as a free electron.  

Table 3: Functional behavior of radius, velocity and frequency of the Bohr orbitals 

n 1 2 3 4 5 6 7 8 9 

rn  n2 1 4 9 16 25 36 49 64 81 

vn  1/n 1 0.500 0.333 0.250 0.200 0.167 0.143 0.125 0.111 

ωn  1/n3 1 0.125 0.037 0.016 0.008 0.005 0.003 0.002 0.001 

Tn  n3 1 8 27 64 125 216 343 512 729 

 

The important thing is the energy formula, of course, because it should explain the Rydberg formula, 

and it does: 

E𝑛2 − E𝑛1 = −
1

𝑛2
2
E𝑅 +

1

𝑛1
2
E𝑅 = (

1

𝑛1
2
−
1

𝑛2
2
) ∙ E𝑅 = (

1

𝑛1
2
−
1

𝑛2
2
) ∙
α2m𝑐2

2
 

Let us know look at the energies once again and try to connect this model with the idea of a photon. 
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VIII. The wavefunction and the photon 
The Bohr orbitals are separated by a amount of action that is equal to h. Hence, when an electron jumps 

from one level to the next – say from the second to the first – then the atom will lose one unit of h. Our 

photon will have to pack that, somehow. It will also have to pack the related energy, which is given by 

the Rydberg formula (see above). To focus our thinking, let us consider the transition from the second to 

the first level, for which the 1/12 – 1/22 is equal 0.75. Hence, the photon energy should be equal to 

(0.75)·ER ≈ 10.2 eV.202 Now, if the total action is equal to h, then the cycle time T can be calculated as: 

E ∙ T = ℎ ⇔ T =
ℎ

E
≈
4.135 × 10−15eV ∙ s

10.2 eV
≈ 0.4 × 10−15 s 

This corresponds to a wave train with a length of (3×108 m/s)·(0.4×10−15 s) = 122 nm. That is the size of a 

large molecule and it is, therefore, much more reasonable than the length of the wave trains we get 

when thinking of transients using the supposed Q of an atomic oscillator.203 In fact, this length is exactly 

equal to the wavelength λ = c/f = c·T = hc/E. 

What picture of the photon are we getting here? Because of the angular momentum, we will probably 

want to think of it as a circularly polarized wave, which we may represent by the elementary 

wavefunction, as shown below.204 We will call this interpretation of the wavefunction the one-cycle 

photon: the wavefunction represents the rotating field vector itself or, remembering the F = qeE 

equation, the force field. 

 

Figure 44: The one-cycle photon 

It is a delightfully simple model: the photon is just one single cycle traveling through space and time, 

which packs one unit of angular momentum (ħ) or – which amounts to the same, one unit of physical 

                                                           
202 This is short-wave ultraviolet light (UV-C). It is the light that is used to purify water, food or even air. It kills or inactivate 
microorganisms by destroying nucleic acids and disrupting their DNA. It is, therefore, harmful. The ozone layer of our 
atmosphere blocks most of it. 
203 In one of his famous Lectures (I-32-3), Feynman thinks about a sodium atom, which emits and absorbs sodium light, of 
course. Based on various assumptions – assumption that make sense in the context of the blackbody radiation model but not in 
the context of the Bohr model – he gets a Q of about 5×107. Now, the frequency of sodium light is about 500 THz 

(500×1012 oscillations per second). Hence, the decay time of the radiation is of the order of 10−8 seconds. So that means that, 
after 5×107 oscillations, the amplitude will have died by a factor 1/e ≈ 0.37. That seems to be very short, but it still makes for 5 
million oscillations and, because the wavelength of sodium light is about 600 nm (600×10–9 meter), we get a wave train with a 
considerable length: (5×106)·(600×10–9 meter) = 3 meter. Surely you’re joking, Mr. Feynman! A photon with a length of 3 meter 
– or longer? While one might argue that relativity theory saves us here (relativistic length contraction should cause this length 
to reduce to zero as the wave train zips by at the speed of light), this just doesn’t feel right – especially when one takes a closer 
look at the assumptions behind. 
204 Note that the wave could be either left- or right-handed. 
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action (h). This gives us an equally delightful interpretation of the Planck-Einstein relation (f = 1/T = E/h) 

and we can, of course, do what we did for the electron, which is to express h in two alternative ways: (1) 

the product of some momentum over a distance and (2) the product of energy over some time. We find, 

of course, that the distance and time correspond to the wavelength and the cycle time: 

ℎ = p ∙ λ =
E

𝑐
∙ λ ⟺ λ =

ℎ𝑐

E
 

ℎ = E ∙ T ⟺ T =
ℎ

E
=
1

𝑓
 

Needless to say, the E = mc2 mass-energy equivalence relation can be written as p = mc = E/c for the 

photon. The two equations are, therefore, wonderfully consistent: 

ℎ = p ∙ λ =
E

𝑐
∙ λ =

E

𝑓
= E ∙ T 

Let us now try something more adventurous: let us try to calculate the strength of the electric field. How 

can we do that? Energy is some force over a distance. What distance should we use? We could think of 

the wavelength, of course. 

However, the formulas above imply the following equation: E·λ = h·c. This suggest we should, perhaps, 

associate some radius with the wavelength of our photon. We write: 

E ∙
λ

2π
= E ∙ 𝑟 = ℏ ∙ 𝑐 ⟺ 𝑟 =

λ

2π
=
ℏ ∙ 𝑐

E
 

A strange formula? The reader can check the physical dimensions. They all work out: we do get a 

distance – something that is expressed in meter. But why the 2π factor? We do not want to confuse the 

reader too much but let us quickly re-insert the graph on the presumed Zitterbewegung of a free 

electron – which is interpreted as an oscillation of a pointlike charge (with zero rest mass) moving about 

a center at the speed of light. Now, as the electron starts moving along some trajectory at a relativistic 

velocity (i.e. a velocity that is a substantial fraction of c), the radius of the oscillation will have to 

diminish – because the tangential velocity remains what it is: c. The geometry of the situation (see 

below) shows the circumference becomes a wavelength in this process.    

 

Figure 45: The Compton radius must decrease with increasing velocity 
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We have probably confused the reader now, but he or she should just hang on for a while. Let us just jot 

down the following expression and then we can think about it: 

Eγ = Fγ ∙ 𝑟γ = Fγ ∙
λγ

2π
 

We use the γ subscript to denote we’re talking the energy, force and radius in the context of a photon 

because – in order to justify the formula above – we will remind ourselves of one of the many meanings 

of the fine-structure constant here: as a coupling constant, it is defined as the ratio between (1) k·qe
2 

and (2) E·λ. We can interpret this as follows: 

1. The k·qe
2 in this ratio is just the product of the electric potential between two elementary charges (we 

should think of the proton and the electron in our hydrogen atom here) and the distance between them: 

U(𝑟) =
𝑘 · qe

2 

𝑟
=
qe
2 

4πε0𝑟
⟺ 𝑘 · qe

2 = U(𝑟) · 𝑟 

2. The fine-structure constant can then effectively be written as: 

α =
𝑘 · qe

2

ℏ ∙ 𝑐
=
𝑘 · qe

2

ℏ ∙ 𝑐
=

U(𝑟) · 𝑟

E𝑝ℎ𝑜𝑡𝑜𝑛 ∙ 𝑟𝑝ℎ𝑜𝑡𝑜𝑛
 

We can also write this in terms of forces times the squared distance: 

α =
𝑘 · qe

2

ℏ ∙ 𝑐
=
FB · 𝑟B

2

Fγ ∙ 𝑟γ ∙ 𝑟γ
=
FB · 𝑟B

2

Fγ ∙ 𝑟γ
2
=
EB · 𝑟B
Eγ ∙ 𝑟γ

 

This doesn’t look too bad. We use B as a subscript in the denominator to remind ourselves we are 

talking the Bohr energies and radii. Let us write it all out – using the generalized formulas (n = 1, 2,…) 

above – to demonstrate the consistency of this formula: 

α =
EB · 𝑟B
Eγ ∙ 𝑟γ

=

1

𝑛2
α2m𝑐2 ∙

𝑛2

α
ℏ
m𝑐

Eγ ∙
ℏ ∙ 𝑐
Eγ

= α 

Onwards! We think the following formula for the force may make sense now: 

Fγ =
Eγ

𝑟γ
=
2π ∙ Eγ

λγ
=
2π ∙ ℎ ∙ 𝑓γ

λγ
=
2π ∙ ℎ ∙ 𝑐

λγ
2  

The electric field (E) is the force per unit charge which, we should remind the reader, is the coulomb – 

not the electron charge. Dropping the subscript, we get a delightfully simple formula for the strength of 

the electric field vector for a photon205: 

                                                           
205 The E and E symbols should not be confused. E is the magnitude of the electric field vector and E is the energy of the photon. 
We hope the italics (E) – and the context of the formula, of course! – will be sufficient to distinguish the electric field vector (E) 
from the energy (E). 
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𝐸 =

2πℎ𝑐
λ2

1
=
2πℎ𝑐

λ2
=
2πE

λ
(
𝑁

𝐶
) 

Let us calculate its value for our 10.2 eV photon. We should, of course, express the photon energy in SI 

units here: 

𝐸 ≈
2π ∙ 1.634 × 10−18 𝐽

122 × 10−9 𝑚 ∙ 𝐶
≈ 84 × 10−12

N

C
 

This seems pretty reasonable!206 Let us make a final check on the logical consistency of this model. The 

energy of any oscillation will always be proportional to (1) its amplitude (a) and (2) its frequency (f). Do 

we get any meaningful result when we apply that principle here? If we write the proportionality 

coefficient as k, we could write something like this: 

E = 𝑘 ∙ 𝑎2 ∙ ω2 

It would be wonderful if this would give some meaningful result – and even more so if we could 

interpret the proportionality coefficient k as the mass m. Why? Because we have used the E = m·a2·ω2 

equation before: it gave us this wonderful interpretation of the Zitterbewegung as what we referred to 

as the rest matter oscillation. We will show, in the next section, that the idea of a two-dimensional 

oscillation can also be applied to the Rutherford-Bohr model. Hence, can we repeat the trick here? We 

can, but the amplitude of the oscillation here is the wavelength. We can then write: 

E = 𝑘𝑎2ω2 = 𝑘λ2
E2

ℎ2
= 𝑘

ℎ2𝑐2

E2
E2

ℎ2
= 𝑘𝑐2⟺ 𝑘 = m and E = m𝑐2 

Sometimes physics can be just nice. I think we have a pretty good photon model here.  

Before we move on, we need to answer an obvious question: what happens when an electron jumps 

several Bohr orbitals? The angular momentum between the orbitals will then differ by several units of ħ. 

What happens to the photon picture in that case? It will pack the energy difference, but should it also 

pack several units of ħ. In other words, should we still think of the photon as a one-cycle oscillation, or 

will the energy be spread over several cycles? 

We will let the reader think about this, but our intuitive answer is: the photon is a spin-one particle and, 

hence, its energy should, therefore, be packed in one cycle only. This is also necessary for the 

consistency of the interpretation here: when everything is said and done, we do interpret the 

wavelength as a physical distance. To put it differently, the equation below needs to make sense:  

ℎ = p ∙ λ =
E

𝑐
∙ λ =

E

𝑓
= E ∙ T 

                                                           
206 We got a rather non-sensical value in one of our first papers (http://vixra.org/abs/1812.0028) but that’s because we used 
the electron charge instead of the unit charge to calculate the field. 

http://vixra.org/abs/1812.0028
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IX. The two-dimensional oscillator model: additional considerations 
Let us summarize what we have presented so far. We explained the rest mass of the electron in terms of 

its Zitterbewegung. This interpretation of an electron combines the idea of motion with the idea of a 

pointlike charge, which has no inertia and can, therefore, move at the speed of light. The illustration 

below described the presumed circular oscillatory motion of the charge (the Zitterbewegung). We got 

wonderful results. The most spectacular result is the explanation for the rest mass of an electron: it is 

the equivalent mass of what we referred to as the rest matter oscillation. 

 

Figure 46: The Zitterbewegung model of an electron 

The table summarizes the properties – angular momentum, magnetic moment, g-factor, etc. – we 

calculated:  

Table 4: The properties of the free electron (spin-only) 

Spin-only electron (Zitterbewegung) 

S = h 

E = m𝑐2 

𝑟 = 𝑟C =
ℏ

m𝑐
 

𝑣 = 𝑐 

L = 𝐼 ∙ ω =
ℏ

2
 

μ = I ∙ π𝑟C
2 =

qe
2m

ℏ 

g =
2m

qe

μ

L
= 2 

 

The reader should keep his wits about him207 here: the Zitterbewegung model should not be confused 

with our Bohr atom. We do not have any centripetal force here. There is no nucleus or other charge at 

the center of the Zitterbewegung. Instead of a tangential momentum vector, we have a tangential force 

                                                           
207 The him could be a her, of course. 
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vector (F), which we thought of as being the resultant force of two perpendicular oscillations.208 This led 

us to boldly equate the E = mc2, E = m·a2·ω2 and E = ħ·ω equations – which gave us all the results we 

wanted. The zbw model – which, as we have mentioned in the footnote above, is inspired by the 

solution(s) for Dirac’s wave equation for free electrons – tells us the velocity of the pointlike charge is 

equal to c. Hence, if the zbw frequency would be given by Planck’s energy-frequency relation (ω = 

E/ħ), then we can easily combine Einstein’s E = mc2 formula with the radial velocity formula (c = a·ω) 

and find the zbw radius, which is nothing but the (reduced) Compton wavelength: 

𝑟Compton =
ℏ

m𝑐
=
λe
2π
≈ 0.386 × 10−12 m 

The calculations relate the Bohr radius to the Compton radius through the fine-structure constant: 

𝑟Bohr =
ℏ2

me2
=
4πε0ℏ

2

mqe
2
=
1

α
 ∙ 𝑟Compton =

ℏ

αm𝑐
≈ 53 × 10−12 m 

The fine-structure constant also relates the respective velocities, frequencies and energies of the two 

oscillations. We wrote: 

𝑣 = α ∙ 𝑐 = 𝑟B ∙ ωB =
ℏ

αm𝑐
∙
α2m𝑐2

ℏ
= α ∙ 𝑐 ⇔ ωB =

α2m𝑐2

ℏ
 

As we mentioned before, the formula for the frequency of the motion of the electron in the Bohr 

orbitals reflects the first de Broglie relation: fB = E/h = α2mc2/h. Needless to say, the cycle time T is given 

as a function of the Bohr loop frequency by T = 1/fB = 2π/ωB. [In this section, we will just use the 

formulas for the first Bohr orbital (n = 1). It is easy generalize for n = 2, 3, 4, etc.] However, we noted 

that the α2mc2 is twice the Rydberg energy – and, unlike some physicists, we do care about a 1/2 or π 

factor in our model of a Bohr electron. Hence, we should have a look at this energy concept. 

The E = α2mc2 energy concept is the energy that is associated with the loop. It is twice the kinetic energy, 

but it is a different energy concept altogether. In line with our interpretation of the elementary 

wavefunction in the context of our one-cycle photon and our free (spin-only) electron, we are thinking 

of the orbital motion as being driven by a two-dimensional oscillation, as illustrated below.  

 

Figure 47: The oscillator model for the Bohr orbital 

We look at the centripetal force as a resultant force here – a vector sum of two perpendicular 

components: F = Fx + Fy. Needless to say, the boldface here indicates vectors: these force components 

have a magnitude as well as a direction. We can now develop yet another interpretation of the 

                                                           
208 A metaphor for such oscillation is the idea of two springs in a 90-degree angle working in tandem to drive a crankshaft. The 
90-degree ensures the independence of both motions. See: Jean Louis Van Belle, Einstein’s mass-energy equivalence relation: 
an explanation in terms of the Zitterbewegung, 24 November 2018 (http://vixra.org/pdf/1811.0364v1.pdf).  

http://vixra.org/pdf/1811.0364v1.pdf
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elementary wavefunction and think of a dual view of what is going on. Let us start with the description 

of the physical position (i.e. the x- and y-coordinates) of the electron. This is the green dot in the 

illustration of Euler’s function above. Its motion is described by:  

r = a·ei = x + i·y = a·cos() + i·a·sin() = (x, y) 

We can now think of this motion being driven by two perpendicular oscillations. These oscillations are 

associated with a kinetic and a potential energy. We illustrate this below for one oscillator only.  

 

Figure 48: Kinetic (K) and potential energy (U) of an oscillator209 

Now, if the amplitude of the oscillation is equal to a, then we know that the sum of the kinetic and 

potential energy of the oscillator will be equal to (1/2)·m·a2·ω2. In this case (the Bohr orbital), we have 

two oscillators, and we can add their kinetic and potential energies because of the 90-degree phase 

difference. Indeed, it is easy to see that the total kinetic energy – added over the two oscillators – will 

effectively be constant over the cycle and will be equal to: 

K. E.=
1

2
m ∙ 𝑟B

2 ∙ ω2 =
1

2
m ∙ 𝑣2 =

1

2
α2 ∙ m ∙ 𝑐2 

The potential energy will be equal to the kinetic energy and we, therefore, get the desired result: the 

total energy of the loop is equal to E = α2mc2. We can now re-write the quantum of action as the 

product of the energy and the cycle time: 

ℎ = E ∙ T = α2m𝑐2 ∙
2π ∙ 𝑟B
𝑣

= α2m𝑐2 ∙
2π ∙ 𝑟C
α ∙ 𝑐 ∙ α

= m𝑐2
2π ∙ ℏ

𝑐 ∙ m ∙ 𝑐
= ℎ 

Of course, we can also write it as the product of the (linear) momentum and the distance along the loop: 

ℎ = p ∙ λB = m ∙ 𝑣 ∙ 2π ∙ 𝑟B = m ∙ α ∙ 𝑐 ∙ 2π ∙
ℏ

αm𝑐
= ℎ 

All makes sense. Now, we said we have a dual view of the meaning of the wavefunction here. What is 

the dual view? It is that of the force vector: we will want to write the energy as the product of a force 

over a distance. Hence, what is the force and what is the distance here? The Bohr model implies the 

                                                           
209 You will find this diagram in many texts, but we took this one from the https://phys.libretexts.org/ site—which is a great hub 
for open-access textbooks.  

https://phys.libretexts.org/
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circular motion of the electron is driven by (1) its inertia210 and (2) a centripetal force (because of the 

presence of a nucleus with the opposite charge). The geometry of the situation shows we can write F = 

Fx + Fy as: 

F = −F·cos(ωt) − i·F·sin(ωt) = −F·ei 

The nature of this force is electric, of course. Hence, we should write in in terms of the electric field 

vector E211: F = qeE. The electric field is, of course, the force on the unit charge which, in this case, is a 

force between qe (the electron) and −qe (the proton or hydrogen nucleus).212 Let us calculate the 

magnitude of the force by using the fine-structure constant to check the consistency of the model: 

𝐹 = qe𝐸 =
qe
2

4πε0𝑟B
2
=
αℏ𝑐

𝑟B
2
=
ℏ𝑣

𝑟B
2
=
ℏ𝑟BωB
𝑟B
2
=
ℏ

𝑟B

α2m𝑐2

ℏ
=
E

𝑟B

This F = qeE = E/rB is confusing (E is the electric field, but E is the energy) but very interesting because it 

allows us to write the quantum of action in its usual dimensions – which is the product of a force, a 

distance (the radius of the oscillation, in this particular case), and a time: 

ℎ = 𝐹 ∙ 𝑟 ∙ T =  
E

𝑟B
∙ 𝑟B ∙

1

𝑓
=
E

𝑟B
∙ 𝑟B ∙

ℎ

E
= ℎ 

Hence, we have a bunch of equivalent expressions for Planck’s quantum of action – all of which help us 

to understand the complementarity of the various viewpoints: 

h = p·2π·r = p·λ 

 h = E·T = E/f 

h = r·T·F = r·T·qeE = r·T·E/r = E·T   

We could also combine these formulas with the classical formulas for a centripetal force – think of the F 

= m·r·ω2 and F = m·v2/r = p·v/r formulas here – but we will let the reader play with that. 

The point is: there is an energy in this oscillation, and the energy makes sense if we think of it as a two-

dimensional oscillation. We can write this two-dimensional oscillation – using Euler’s formula - in various 

but complementary ways. We can use the position vector, the force vector, or the electric field vector: 

F = −Fx·cos(ωt) − i·Fx·sin(ωt) = −F·ei 

                                                           
210 Note the difference with the Zitterbewegung model, which assumes a pointlike charge with no inertia to motion. Its orbital 
velocity is, therefore, effectively equal to the speed of light (c). This is very different from the Bohr model, in which the electron 
moves at a non-relativistic speed v = αc with α ≈ 0.0073. However, the two models are obviously complementary: the 
Zitterbewegung model – Dirac’s electron, we might say – effectively explains the (rest) mass of the Bohr electron.  
211 Symbols may be confusing. We use E for the energy, but E for the electric field vector. Likewise, I is a moment of inertia, and 
I is an electric current. The context is usually clear enough to make out what is what. 
212 The concepts of potential, potential energy and the electric field can be quite confusing. The potential and the potential 
energy of a charge in a field vary with 1/r. The electric field is the electric force – generally defined as the Lorentz force F = qE + 

q(vB) – on the unit charge. Hence, the F = qE formula here is nothing but the E = F/q formula. The electric field varies with 1/r2 
and is, therefore, associated with the inverse-square law. It is also quite confusing that qe is actually the (supposedly negative) 
electron charge and that we have to, therefore, use a minus sign for the charge of the (supposedly positive) proton charge – but 
then the signs always work out, of course. 
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E = −(E/qe)·cos(ωt) − i·(E/qe)·sin(ωt) = −F·ei 

r = a·ei = x + i·y = a·cos() + i·a·sin() = (x, y) 

The various viewpoints of the oscillation are complementary. They pack the same energy (E = α2mc2), 

and they pack one unit of physical action (h). We will leave it to the reader to generalize for the n = 2, 3, 

etc. orbitals. It is an easy exercise: the energy for the higher loops is equal to En = α2mc2/n2 and the 

associated action is equal to S = n·h. One obvious way to relate both is through the frequency of the 

loop. We write: 

𝑓𝑛 =
E𝑛
S𝑛
=

1
𝑛2
α2m𝑐2

𝑛ℎ
=
α2

𝑛3ℎ
m𝑐2 

X. The fine-structure constant as a scaling constant 
The fine-structure constant pops up as a dimensional scaling constant in the calculations above. It 

relates the Bohr radius to the Compton radius, for example: 

𝑟Bohr =
ℏ2

me2
=
4πε0ℏ

2

mqe
2
=
1

α
 ∙ 𝑟Compton =

ℏ

αm𝑐
≈ 53 × 10−12 m 

But it also relates the respective velocities, frequencies and energies of the two oscillations. We may 

summarize these relations in the following equations: 

𝑣 = α ∙ 𝑐 = 𝑟B ∙ ωB =
ℏ

αm𝑐
∙
α2m𝑐2

ℏ
= α ∙ 𝑐 

But this is not the only meaning of the fine-structure constant. We know it pops up in many other 

formulas as well. To name just a few: 

1. It is the mysterious quantum-mechanical coupling constant.  

2. It explains the so-called anomalous magnetic moment – which, as we will explain in a moment, 

might not be anomalous at all! 

3. Last but not least, it explains the fine structure of the hydrogen spectrum – which is where it got 

its name from, of course! 

Can we make some more sense of this as a result of the interpretations we have offered above? Let us 

start with the coupling constant because there is a lot of nonsensical writing on that.213 We basically 

showed that, as a coupling constant, the fine-structure continues to act as a dimensional scaling 

constant. We wrote: 

α =
𝑘 · qe

2

ℏ ∙ 𝑐
=
FB · 𝑟B

2

Fγ ∙ 𝑟γ ∙ 𝑟γ
=
FB · 𝑟B

2

Fγ ∙ 𝑟γ
2
=
EB · 𝑟B
Eγ ∙ 𝑟γ

 

                                                           
213 Feynman’s QED: The Strange Theory of Light and Matter (1985) refers to its (negative) square root as the coupling constant, 
and states that is “the amplitude for a real electron to emit or absorb a real photon.” We take it to be just one example of an 
ambiguous remark by a famous physicist that is being explained by an amateur physicist. The book was not written by Richard 
Feynman: it is a transcription of a short series of lectures by Feynman for a popular audience. We are not impressed by the 
transcription. 
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We use B as a subscript in the denominator to remind ourselves we are talking the Bohr energies and 

radii. Let us use the generalized formulas (n = 1, 2,…) for the Bohr orbitals once again and write it all out: 

α =
EB · 𝑟B
Eγ ∙ 𝑟γ

=

1

𝑛2
α2m𝑐2 ∙

𝑛2

α
ℏ
m𝑐

Eγ ∙
ℏ ∙ 𝑐
Eγ

= α 

While the formula is obvious, its interpretation is not necessarily as obvious: what is this product of an 

energy and a radius? How should we interpret this? The physical dimension of this product (in the 

denominator and the numerator, of course) is J·m = N·m·m = N·m2. We get the same physical dimension 

if we multiply action or angular momentum with a velocity, so let us try this to check if it makes us any 

wiser: 

α =
EB · 𝑟B
Eγ ∙ 𝑟γ

=
L𝑛 · 𝑣𝑛
Lγ ∙ 𝑣γ

=
𝑛ℏ ∙

1
𝑛
α𝑐

ℏ ∙ 𝑐
= α =

S𝑛 · 𝑣𝑛
Sγ ∙ 𝑣γ

=
𝑛ℎ ∙

1
𝑛
α𝑐

ℎ ∙ 𝑐
= α 

The formulas show we should, most probably, just think of them as yet another expression of the idea of 

a scaling constant. 

Let us think of the fine-structure constant in yet one more way. We know the Compton and Bohr radius 

are related through the fine-structure constant. We used this formula many times already: 

𝑟C = α ∙ 𝑟B 

Let us write this out: 

𝑟C =
ℏ𝑐

m𝑐2
=
ℏ𝑐

Ee
 

𝑟B =
ℏ𝑐

αm𝑐2
=
ℏ𝑐

EB
 

The Ee is just the (rest) energy of the electron, and EB is the energy in the (first) Bohr orbital. Hence, we 

can also write the fine-structure constant as the ratio between these two energies: 

α =
𝑟C
𝑟B
=

ℏ𝑐
Ee
ℏ𝑐
EB

=
EB
Ee

 

Because rn = n2rB and En = EB/n2, we know that 𝑟𝑛 =
𝑛2ℏ𝑐

αm𝑐2
=
ℏ𝑐

E𝑛
  and, hence, we can easily generalize for 

the n = 2, 3,… orbitals: 

α =
𝑟C
𝑟𝑛
=

ℏ𝑐
Ee
ℏ𝑐
E𝑛

=
E𝑛
Ee
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The explorations above  - and the interpretation of the fine-structure constant as a scaling constant – 

raise an interesting question. We know there is also the idea of a classical electron radius, which is 

related to the Compton radius in the same way as the Compton radius to the Bohr radius: 

𝑟e = α ∙ 𝑟C = α
2 ∙ 𝑟B 

We have already explained the second identity (αrC = α2rB  rC = αrB) but what about re = αrC? Let us 

think about that in a separate section. 
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XI. The fine-structure constant and the classical electron radius 
Let us write all out and see if there is something triggering some idea: 

𝑟e =
e2

m𝑐2
= α

ℏ𝑐

m𝑐2
 

We, once again, have two energies in the numerator – but they are the same! Hence, when writing the 

fine-structure constant as the ratio between the two radii, we get: 

α =
𝑟𝑒
𝑟C
=

e2

m𝑐2

ℏ𝑐
m𝑐2

=
e2

ℏ𝑐
= 𝑘qe

2 =
1

4πε0

qe
2

ℏ𝑐
 

We just get the usual formula for the fine-structure constant here. What does it mean in terms of 

interpretation? Here we should probably try to think of the meaning of e2. There is something 

interesting here: the elementary charge e2 has the same physical dimension – the joule-meter (J·m) – as 

the h·c = E·λ product: 

[e2] = [
1

4πε0

qe
2

ℏ𝑐
] =

N ∙ m2

C2
∙ C2 = N ∙ m2 = J ∙ m 

What was that h·c = E·λ product again? We got it in the context of our photon model. To be precise, we 

got it by applying the second de Broglie equation to a photon: 

ℎ = p ∙ λ =
E

𝑐
∙ λ ⇔ λ =

ℎ𝑐

E
 

In fact, it appears we may apply this relation to any particle that is traveling at the speed of light. Any 

particle? What does that mean? What other particle do we have? Our pointlike charge in the 

Zitterbewegung model of an electron: this charge has, effectively, no rest mass and, therefore, does 

make us think of a photon. But we should be precise here: it is the square of the elementary charge that 

that joule-meter dimension. We write: 

[e2] = [E] · [λ] = [ℎ] · [𝑐] 

This is strange: what energy and what wavelength would we associate with this pointlike charge. I am 

not sure – but if we try the energy and the circumference of the loop of the Zitterbewegung, we get a 

sensible relation on the right-hand side: 

E ∙ λ = m𝑐2 ·
ℏ

m𝑐
= ℎ · 𝑐 

Obvious, you’ll say. But, no, this is not obvious: we are not talking the energy and the mass of a photon 

here but the energy and the mass of… Well… Our pointlike charge in its Zitter motion.  

And what about the suggestion we should be able to write something like e2 = E·λ? Well… We can start 

by re-writing the formula for the classical electron radius so it gives us a product of an energy and a 

distance: 

e2 = 𝑟em𝑐
2 = 𝑟𝑒E 
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Does this make sense? Yes, it does. It gives us the formula for the fine-structure constant once again: 

e2 = 𝑟em𝑐
2 = α𝑟CE = α

ℏ𝑐

m𝑐2
E = α

ℏ𝑐

m𝑐2
E = αℏ𝑐 ⇔ α =

e2

ℏ𝑐
 

By now, the reader is probably tired of these gymnastics and, hence, we will stop here. What was the 

use? Interpretation. The formulas are not presenting anything new: we have just been substituting and 

re-arranging equations but we have, hopefully, succeeded in presenting a coherent picture while doing 

so. 
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XII. The fine-structure constant and the anomalous magnetic moment 

Introduction 
This chapter may feel like a long and difficult digression, but we feel it might be the most important 

chapter of all, because this is really where our Zitterbewegung model diverges from the mainstream 

interpretation of quantum mechanics.  

Let us briefly remind the reader of the context. The theoretical derivation of an exact value for the 

anomalous magnetic moment of a real-life electron – and, importantly, its agreement with what is 

experimentally measured – is considered to be one of the greatest triumphs of modern quantum 

mechanics. 

Dirac – and many others – weren’t that convinced. Let me quote from Dirac’s very last paper on the 

topic, which was written in 1984, so that’s the year he died. It was entitled: "The Inadequacies of 

Quantum Field Theory" and, in light of the fact he died the very same year, I think it is fair to say that 

this is a rather dark final judgment of a genius on these matters on the state of the post-WW II 

developments on the topic. The title of the paper is, obviously, very significant, and this one line sums it 

all up:  

"These rules of renormalization give, surprisingly, excessively good agreement with 

experiments. Most physicists say that these working rules are, therefore, correct. I feel that is 

not an adequate reason. Just because the results happen to be in agreement with observation 

does not prove that one's theory is correct."  

Read it again: you'll either burst out laughing—thinking he must have become crazy (which might be the 

case have been—depending on your definition of crazy) or, else, that he had a lot of courage in the face 

of death. Indeed, why wouldn’t one be happy with a theory that’s in agreement with observation? Is 

there anything better? We think there is. That’s what this book is all about. We, therefore, think it's the 

latter: Dirac just spoke his mind in the face of death. In fact, he had started to say his theory was no 

good as soon as the second world war had ended—in vain, unfortunately, as the Wikipedia article on 

Dirac, from which I am quoting here, notes that “his refusal to accept re-normalization resulted in his 

work on the subject moving increasingly out of the mainstream.” 

Hence, the challenge is out there, but if we want to challenge orthodox theory, then we should be 

possible to explain the anomalous magnetic moment based on our theory. To be precise, we should be 

able to explain it based on some form factor that comes out of our electron model. We suggested this 

should be possible in recent papers214 and, hence, this chapter basically develops the ideas in those 

papers. While we initially thought about these things from a learning perspective only – we just wanted 

to possibly identify a better didactic approach to teaching quantum mechanics – the idea seems to have 

taken some life on its own now.215  

                                                           
214 See: Jean Louis Van Belle, Testing QED. The Other Game in Town, 26 December 2018, http://vixra.org/pdf/1812.0419v1.pdf.  
Also see: Jean Louis Van Belle, The Not-So-Anomalous Magnetic Moment, 21 December 2018, 
http://vixra.org/pdf/1812.0233v3.pdf. These papers should, preferably, be read in conjunction with a more recent paper on 
how the fine-structure constant relates the various layers in the motion of an electron: Layered Motions: The Meaning of the 
Fine-Structure Constant, 23 December 2018, http://vixra.org/pdf/1812.0273v3.pdf.  
215 Our physics blog attracts  a fair amount of comments from fellow amateur physicists. These remarks are encouraging but do 
not add any credibility to the model (on the contrary, we’d say). However, we also had discussions with some researchers on 

http://vixra.org/pdf/1812.0419v1.pdf
http://vixra.org/pdf/1812.0233v3.pdf
http://vixra.org/pdf/1812.0273v3.pdf
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So we prefer classical electron models to perturbation theory, but what is a ‘classical’ electron model? 

We use this term to refer to any theory of an electron that does not invoke perturbation theory. We do 

not like perturbation theory because of the very same reason that made the founding fathers 

(Heisenberg, Dirac, Pauli, ...) skeptical about the theory they had created.216 Interestingly, Ivan Todorov 

– whose paper notes the above – also speaks of the theoretical value of the spin angular momentum 

(gspin = 2) as a “dogma” and mentions two letters of Gregory Breit to Isaac Rabi, which may be 

interpreted as Breit defending the idea that an intrinsic magnetic moment “of the order of αμB” may not 

be anomalous at all.217 Needless to say, the issue is quite controversial because a classical explanation of 

the anomalous magnetic moment would question some of the rationale behind the award of two Nobel 

Prizes for physics.  

Am I serious? Yes, I am. Polykarp Kusch got (half of) the 1955 Nobel Prize "for his precision 

determination of the magnetic moment of the electron."218 As such, we should not associate him with 

the theory behind. Having said that, the measurement obviously corroborated the new theories of what 

Todorov refers to as “the younger generation” of physicists, in particular Richard Feynman, Julian 

Schwinger and Shinichiro Tomonaga, who got their 1965 Nobel Prize for "for their fundamental work in 

quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles." 

So these guys got it for the theory. 

These Nobel Prizes triggered a “campaign to refine measurements and theoretical calculations”, which 

continues to this day. Indeed, what Brian Hayes refers to as “the tennis match between experiment and 

theory” seems to be a game without end. 219 The question is: is there another game in town? We think 

there might be one. 

The new quantum physics 
We will not explain perturbation theory here.220 We only want to give a quick overview of its results in 

the context of the theoretical explanation of the anomalous magnetic moment. As for the methodology 

of its measurement, we would suggest the reader directly consults the 2009 article of the Harvard 

University group that does these experiments.221 We will just note that the confusion was built-in from 

                                                           
Kerr-Newman and Zitterbewegung models. While we speak a very different language, these discussions suggest the key ideas 
might make some sense. Dr. Burinskii – one of the core researchers on the Kerr-Newman model of an electron – recently wrote 
me he has the α correction. So he is missing the 2π factor but that’s probably just some stupid calculation error. And, of course, 
he should, hopefully, also manage to get some of the second- or third-order terms. Let us see where this research goes. 
Something inside of me says that, a few decades from now, no one might want to talk about Bell's Theorem anymore, because 
we will, by then, hopefully have a whole new theory based on a decent electron (and photon) model.  
216 See: Ivan Todorov, From Euler’s play with infinite series to the anomalous magnetic moment, 12 October 2018 
(https://arxiv.org/pdf/1804.09553.pdf). 
217 For a more detailed account of the substance of these conversations, see: Silvan S. Schweber, QED and the Men Who Made 
It: Dyson, Feynman, Schwinger, and Tomonaga , p. 222-223. 
218 See: https://www.nobelprize.org/prizes/physics/1955/summary/ and 
https://www.nobelprize.org/prizes/physics/1965/summary/. 
219 See: Brian Hayes, Computing Science: g-ology, in: American Scientist, Vol. 92, No. 3, May-June 2004, pages 212-216. We took 
the first quote from the subtitle of this article, which says it all: it is an article ‘on the long campaign to refine measurements 
and theoretical calculations of a physical constant called the g factor of the electron.’ 
https://pdfs.semanticscholar.org/4c12/50f66fc1fb799610d58f25b9c1e1c2d9854c.pdf.   
220 The interested reader may consult any standard textbook on that. See, for example, Jon Mathews and R.L. Walker, 
Mathematical Methods of Physics, 1970. 
221 D. Hanneke, S. Fogwell, N. Guise, J. Dorr and G. Gabrielse, More Accurate Measurement of the Electron Magnetic Moment 
and the Fine-Structure Constant, in: Proceedings of the XXI International Conference on Atomic Physics, 2009. We prefer this 
article over the original 2006 article (G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, New Determination of the 

https://arxiv.org/pdf/1804.09553.pdf
https://www.nobelprize.org/prizes/physics/1955/summary/
https://www.nobelprize.org/prizes/physics/1965/summary/
https://pdfs.semanticscholar.org/4c12/50f66fc1fb799610d58f25b9c1e1c2d9854c.pdf
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the very start: the anomalous magnetic moment is not a magnetic moment but a gyromagnetic ratio 

(i.e. a ratio between a magnetic moment and an angular momentum) and it is defined as: 

𝑎𝑒 =
𝑔

2
− 1 

Why would this matter? As a ratio of two other quantities, one cannot directly measure it and, hence, 

the claim that such experiments do so is somewhat ambiguous, to say the least. But let’s go along with it 

for the time being and try to follow the argument.  

The mentioned 2009 article states that the measured value of g is equal to 2.00231930436146(56). The 

56 (between brackets) is the (un)certainty: it is equal to 0.00000000000056, i.e. 56 parts per trillion (ppt) 

and it is measured as a standard deviation.222 Hence, ae is equal to 0.00115965218073(28).  

Now, the so-called anomaly is the difference with the theoretical value for the spin angular momentum 

which came out of Dirac’s equation for the free electron, which is equal to 2. The confusion starts here 

because there is no obvious explanation of why one would use the (theoretical) g-factor for the intrinsic 

spin of an electron (g = 2). The electron in the Penning trap that is used in these experiments is not a 

spin-only electron. It follows an orbital motion too. In fact, its spin – and its orbit – is just one of the 

three or four layers in its motion. Hence, if some theoretical value for the g-factor has to be used here, 

then one should also consider the g-factor that is associated with the orbital motion of an electron, 

which is that of the Bohr orbitals (g = 1).  

However, because we have superposed motions here, one should not expect either of the two values to 

work exactly. At the very least, we would expect to see a classical coupling between (1) the precession, 

(2) the orbital angular momentum and (3) the spin angular momentum. Furthermore, it is obvious that 

the situation is further complicated because of the electric fields in the Penning trap, which add another 

layer of motion. We will just provide an illustration here and refer to more advanced course material for 

a detailed description of the complexity of the situation.223  

                                                           
Fine Structure Constant from the Electron g Value and QED, Phys. Rev. Lett. 97, 030802, 2006) because it can be freely 
consulted online: http://gabrielse.physics.harvard.edu/gabrielse/papers/2009/PushingTheFrontiersOfAtomicPhysics.pdf. 
222 To be precise, the article gives the measured value for g/2, which is equal to 1.00115965218073(28). 
223 We found the following course material particularly enlightening: Cylotron frequency in a Penning trap, Blaum Group, 28 
September 2015, https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F47.pdf. The motions are complicated 
because the Penning trap traps the electron using both electric as well as magnetic fields. 

http://gabrielse.physics.harvard.edu/gabrielse/papers/2009/PushingTheFrontiersOfAtomicPhysics.pdf
https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F47.pdf
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 Figure 49: The three principal motions and frequencies in a Penning trap224 

The electron in the Penning trap that is used in these experiments is not a spin-only electron. It follows 

an orbital motion – that is one of the three or four layers in its motion, at least – and, hence, if some 

theoretical value for the g-factor has to be used here, then one should also consider the g-factor that is 

associated with the orbital motion of an electron, which is that of the Bohr orbitals (g = 1).  

In any case, one would expect to see a classical coupling between (1) the precession, (2) the orbital 

angular momentum and (3) the spin angular momentum, and the situation is further complicated 

because of the electric fields in the Penning trap, which add another layer of motion.  

The point we are trying to make is this: the theoretical value for ae (zero) needs a (much) better 

explanation.  

However, let us roll for a moment with the idea that, through some magic of classical or non-classical 

coupling, that the theoretical value of ae should be zero and that we, therefore, do have some anomaly 

here of the measured order of magnitude, i.e. ae = 0.00115965218073(28). How is it being explained? 

The new quantum physicists write it as (the sum of) a series of first-, second-, third-,…, nth-order 

corrections: 

𝑎𝑒 =∑𝑎𝑛 (
α

π
)
𝑛

𝑛

 

The first coefficient (a1) is equal to 1/2 and the associated first-order correction is, therefore, equal to: 

α/2π ≈ 0.00116141 

Julian Schwinger had already obtained this value back in 1947, using “his renormalized QED theory”. To 

be precise, he got it from calculating the “one loop electron vertex function in an external magnetic 

                                                           
224 We contacted the Physics Department of Heidelberg University (ludwig@kip.uni-heidelberg.de; fp@physi.uni-heidelberg.de) 
several times to inquire about any copyrights but we did not receive any reply. Hence, we assume the material is either public 
or, else, that this illustration or reference can be used for academic purposes, which is the case here. 
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field.” In case you wonder, I am just quoting here from Todorov’s excellent paper on the history of this 

thing (2018).  

Now, Julian Schwinger is, of course, one of the most prominent representatives of the second 

generation of quantum physicists. He has this number on this tombstone, and he got a Nobel Prize for it. 

Hence, we surely do not want to question the depth of his understanding of this phenomenon. 

However, the difference that needs to be explained by the 2nd, 3rd, etc. corrections is only 0.15%. Now, it 

turns out that all the above-mentioned series of first-, second-, and third-order corrections can be 

written in terms of an exponential series of α/π and a phi-function φ(n) which had intrigued Euler for all 

of his life. Let me jot down the formula for the theoretical value of ae as calculated in 1995-1996. 225  

𝑎𝑒 =
1

2

α

2
+ [ϕ(3) − 6ϕ(1)ϕ(2) + ϕ(2) +

197

2432
] (
α

2
)
2

+ [
2

32
(83ϕ(2)ϕ(3) − 43ϕ(5)) −

50

3
ϕ(1, 3) +

13

5
ϕ(2)2

+
287

3
(
ϕ(3)

32
− 12ϕ(1)ϕ(2)) +

34202

355
ϕ(2) +

28259

2534
] (
α

2
)
3

+⋯

≈ 1.159652201(27) × 10−3 

Do you think this looks like hocus-pocus? Don’t worry. I think so too. You can find this formula in a 

couple of places226, but it is worth to quote Todorov’s succinct summary of how this result was obtained: 

“Toichiro Kinoshita of Cornell University evaluated the 72 [third-order loop Feynman] diagrams 

numerically, comparing and combining his results with analytic values that were then known for 67 of 

the diagrams. A year later, the last few diagrams were calculated analytically by Stefano Laporta and 

Ettore Remiddi of the University of Bologna.” 

Apparently, the calculations are even more detailed now: the mentioned Laporta claims to have 

calculated 891 four-loop contributions to the anomalous magnetic moment.227  

One gets an uncanny feeling here: if one has to calculate a zillion integrals all over space using 72 third-

order diagrams to calculate the 12th digit in the anomalous magnetic moment, or 891 fourth-order 

diagrams to get the next level of precision, then there might something wrong with the theory. Is there 

an alternative? We think there is, and the idea is surprisingly simple.  

Classical electron models 
Our Zitterbewegung model of the electron implies a delightfully simple geometry, but it is not a perfect 

sphere, nor is it a perfect disk. In fact, if anything, we might say our electron occupies a space whose 

shape is an ellipsoid, as shown below. 

                                                           
225 See: Ivan Todorov, From Euler’s play with infinite series to the anomalous magnetic moment, 12 October 2018 
(https://arxiv.org/pdf/1804.09553.pdf).  
226 The φ(1, 3) function is a phi-function with two arguments. For its definition, see the mentioned article from Todorov 
(formula 8). 
227 See: Stefano Laporta, High-precision calculation of the 4-loop contribution to the electron g-2 in QED, as reported in: 
https://www.sciencedirect.com/science/article/pii/S0370269317305324.  

https://arxiv.org/pdf/1804.09553.pdf
https://www.sciencedirect.com/science/article/pii/S0370269317305324


126 
 

 

Figure 50: A sphere, a spheroid and an ellipsoid228 

An ellipsoid is defined by three parameters (a, b and c in the illustration above), as opposed to a 

spheroid, which is defined by two parameters only (or, for a perfect sphere, only one parameter: the 

radius). Of course, these three parameters are not independent: they are mutually related. We can 

relate them through various equations, but the most obvious way to relate them is the equation for the 

ellipsoid itself: 

𝑥2

𝑎2
+
𝑦2

𝑏2
+
𝑧2

𝑐2
= 1 

This is a very straightforward formula. It relates the coordinates to the three axes of the ellipsoid (a, b 

and c). However, there are other ways of defining the ellipsoid. For example, we had introduced the 

latus rectum formula when discussing the radius and (wave)lengths of our Zitterbewegung electron (see 

our geometric interpretation of the de Broglie wavelength). We remind the reader of this formula in the 

illustration below.229  

 

Figure 51: The latus rectum formula: a·p = b2 

                                                           
228 Source: Wikimedia Commons, User: Ag2gaeh - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=45585493  
229 Source: Wikimedia Commons (By Ag2gaeh - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=57428275).  

https://commons.wikimedia.org/w/index.php?curid=45585493
https://commons.wikimedia.org/w/index.php?curid=57428275
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Let us also remind the reader of what we found. Using natural units (units such that the numerical value 

of c and h equals one230), we showed that the Compton wavelength – which, remember, is really a 

circumference in our model – and the mass of our electron have a simple inversely proportional relation: 

λ𝐶 =
1

γm0
=
1

m
 

We got equally simple formulas for the de Broglie wavelength and our λ wavelength: 

λL =
1

βγm0
=
1

βm
 

λ = β ∙ λ𝐶 =
β

γm0
=
β

m
 

This is quite deep: we have three lengths here – defining all of the geometry of the model – and they all 

depend on the rest mass of our object and its relative velocity only. We also noted that it’s easy to see 

that these lengths are related through the latus rectum formula: 

λL ∙ λ = λ𝐶
2 =

1

m2
 

It is a beautiful thing, and we will leave it to the reader to further explore the detail of the geometry. We 

may want to note, for example, that the p in the a·p = b2 can also be interpreted as a measure of the 

curvature of the ellipsoid.231 

Are we the only ones getting such nice and simple geometries out of our thinking? No. We are not. In 

fact, we are in rather good company. One of these so-called classical electron models I would like to 

single out is that of Dr. Alexander Burinskii. You may or may not have heard about him, but he has been 

working on an electron model since the 1970s and, while retired now, is still very active and publishing 

regularly.232 Dr. Burinskii’s models are part of a more general class of electron models that are based on 

what is referred to as Kerr-Newman geometries. To put it simply, these geometries combine gravity and 

classical electromagnetic theory into one. Now, Dr. Burinskii would probably not want us to refer to his 

rather sophisticated model of an electron as a classical electron model – and neither would he want to 

be considered as a classical physicist233 – but that is what it is for us: a charge with a geometry in three-

dimensional space. To be precise, it is a disk-like structure, and its form factor – read: the ratio between 

the radius and thickness of the disk – depends on various assumptions.  

The point is: when assuming classical (non-perturbative) theory applies, then it turns out that the ratio 

between the Compton and Thomson radius of an electron reduces to the fine-structure constant. We 

quote from Mr. Burinskii’s 2016 paper, which states the same but in highbrow physics language: “It 

turns out that the flat Compton zone free from gravity may be achieved without modification of the 

                                                           
230 As we have already mentioned several times, the use of natural units can be quite confusing. One should always remember 
231 To be precise, the semi-latus rectum measures the radius of curvature of the osculating circles at the vertices on the major 
axis. As said, we will leave it to the reader to have some more fun with this. 
232 Dr. Burinskii’s profile can be found on https://www.researchgate.net/profile/Alexander_Burinskii. 
233 See: Alexander Burinskii, The Dirac–Kerr–Newman electron, 19 March 2008, https://arxiv.org/abs/hep-th/0507109. A more 
recent article of Mr. Burinskii (New Path to Unification of Gravity with Particle Physics, 2016, https://arxiv.org/abs/1701.01025, 
relates the model to more recent theories – most notably the “supersymmetric Higgs field” and the “Nielsen-Olesen model of 
dual string based on the Landau-Ginzburg (LG) field model.”  

https://www.researchgate.net/profile/Alexander_Burinskii
https://arxiv.org/abs/hep-th/0507109
https://arxiv.org/abs/1701.01025
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Einstein-Maxwell equations.” In other words, we get the fine-structure constant as the ratio of the 

Compton radius – i.e. the radius of the disk R – and the classical electron radius – i.e. the thickness of the 

disk r – out of a smart model based on Maxwell’s and Einstein’s equations, i.e. classical 

electromagnetism and general relativity theory: 

α =
𝑟

𝑅
=
𝑟𝑒
𝑟𝐶
=
e2 m𝑐2⁄

ℏ𝑐 m𝑐2⁄
=
e2

ℏ𝑐
 

The illustration below illustrates Dr. Burinskii’s results. Note the rather sharp edge of the ellipsoid, which 

seems to introduce another asymmetry: curvature of spacetime, as a result of the rather large force 

field, may cause the ellipsoid to take on an irregular shape. This introduces yet another degree of 

freedom in the model, which may help to explain the second-, third-, etc. corrections in the expression 

for the anomalous magnetic moment. 

 

Figure 52: Alexander Burinskii’s electron model234 

The point is: there seems to be no need for smart quantum mechanics here! These results, therefore, 

confirm the intuitive but, admittedly, rather primitive Zitterbewegung model we introduced in our own 

papers. 

The question is: can we test this thing? We think we can. 

How to test the classical electron models 
Mr. Burinskii’s model is very flexible. If one limits the assumptions  - combining gravity and 

electromagnetism, we get the Zitterbewegung electron – a simple disk-like structure whose form factor 

is given by the fine-structure constant:  

                                                           
234 The original version of this illustration appeared in the International Journal of Modern Physics D (IJMPD). The reference is: 
https://doi.org/10.1142/S0218271817430222. While we received agreement in principle in an email from the IJMPD editors to 
reproduce the diagram for academic reference purposes (email to the author dated 1 March from rights@wspc.com), we 
requested Dr. Burinskii to produce a new diagram for this book, which he did (email to the author dated 4 March 2019). 

https://doi.org/10.1142/S0218271817430222
mailto:rights@wspc.com
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α =
𝑟

𝑅
=
𝑟𝑒
𝑟𝐶
=
e2 m𝑐2⁄

ℏ𝑐 m𝑐2⁄
=
e2

ℏ𝑐
 

When calculating the angular momentum, this form factor translates into a simple ½ factor when 

calculating the moment of inertia. We write I = mr2/2 – as opposed to the I = mr2 formula we would use 

for a pure orbital moment. This effectively gives us Dirac’s theoretical value for the gyromagnetic ratio 

(g-factor) of the spin-only electron: g = 2. The table below summarizes the difference between the spin 

and orbital angular momentum.   

Table 5: Intrinsic spin versus orbital angular momentum 

Spin-only electron (Zitterbewegung) Orbital electron (Bohr orbitals) 

S = h S𝑛 = 𝑛h for 𝑛 = 1, 2, … 

E = m𝑐2 E𝑛 = −
1

2

α2

𝑛2
m𝑐2 = −

1

𝑛2
E𝑅  

𝑟 = 𝑟C =
ℏ

m𝑐
 𝑟𝑛 = 𝑛

2𝑟B =
𝑛2𝑟C
α

=
𝑛2

α

ℏ

m𝑐
 

𝑣 = 𝑐 𝑣𝑛 =
1

𝑛
α𝑐 

ω =
𝑣

𝑟
= 𝑐 ∙

m𝑐

ℏ
=
E

ℏ
 ω𝑛 =

𝑣𝑛
𝑟𝑛
=
α2

𝑛3ℏ
m𝑐2 =

1
𝑛2
α2m𝑐2

𝑛ℏ
 

L = 𝐼 ∙ ω = m
ℏ2

m2𝑐2
E

ℏ
=
ℏ

2
 L𝑛 = 𝐼 ∙ ω𝑛 = 𝑛ℏ 

μ = I ∙ π𝑟C
2 =

qe
2m

ℏ μ𝑛 = I ∙ π𝑟𝑛
2 =

qe
2m

𝑛ℏ 

g =
2m

qe

μ

L
= 2 g𝑛 =

2m

qe

μ

L
= 1 

 

As we mentioned in our paper235, we will have a classical coupling between the two moments because 

of the Larmor precession of the electron in the Penning trap, as illustrated below. The effective current 

and the effective radius of the orbital motion will, therefore, not be equal to the values one would get 

from using the formulas in the right-hand column of the table above.236  

                                                           
235 Jean Louis Van Belle, The Not-So-Anomalous Magnetic Moment, 21 December 2018, http://vixra.org/pdf/1812.0233v3.pdf. 
236 Note that the formulas in the right column are the formulas for the properties of the Bohr orbitals. These resemble the 
cyclotron orbitals – to some extent – but one should not confuse them: the cyclotron orbitals have no nucleus at their center. In 
fact, the oft-quoted description of the electron in the Penning trap as an artificial atom is quite confusing and, therefore, not 
very useful: the radius and kinetic energy of the electron in a magnetron is of an entirely different order of magnitude! 
However, we would expect the formulas to be similar.  

http://vixra.org/pdf/1812.0233v3.pdf
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Figure 53: The precession of an orbital electron 

Now, this classical coupling may or may not explain the bulk of what is actually being measured in these 

famous experiments measuring the (anomalous or not) magnetic moment of an electron in a Penning 

trap. However, we would suspect there will, effectively, be a small anomaly left – which is only natural 

because all of the formulas above assume the electron is a perfect disk (when calculating the values for 

the spin-only moment), or a perfect sphere (when calculating the values for the orbital moment). 

However, the Dirac-Kerr-Newman model of an electron tells us that is, perhaps, not the case: the 

ellipsoid is not a perfect disk. Would this explain the anomalous magnetic moment? 

We think it can be done. In fact, Dr. Burinskii is working on that right now. We had, effectively, sent our 

very first paper on this topic to Mr. Burinskii, and he took up the suggestion. He has already obtained 

the α factor. We are confident he’ll able to figure out the 1/2π factor and the remaining corrections.237 If 

he does, he should probably be considered for the next Nobel Prize in Physics. 

What’s involved? Why are the calculations complicated? As mentioned, the motion of an electron is a 

Penning trap is a very complicated superposition of various layers of motion. That is why it is not so easy 

to immediately see what happens if you insert a classical electron model into some other model. Indeed, 

as Dirac noted, “the very-high frequency oscillatory motion of small amplitude superposed on the 

regular motion which appears to us”, as a result of which “the velocity of the electron at any time equals 

the velocity of light” is a “prediction which cannot be directly verified by experiment, since the 

frequency of the oscillatory motion is so high and its amplitude is so small.”238 However, we can, of 

course, insert this Zitterbewegung model – or, preferably, the more flexible model of Mr. Burinskii – into 

models that do not involve micro-motion at the speed of light. What models? Models involving the slow 

                                                           
237 A missing 2π or a 1/2π factor usually implies a simple logical or mathematical error, so we are not worried about that. 
238 Erwin Schrödinger had, effectively, already derived the Zitterbewegung as he was exploring solutions to Dirac’s wave 

equation for free electrons. In 1933, he shared the Nobel Prize for Physics with Paul Dirac for “the discovery of new productive 

forms of atomic theory”, and it is worth to now quote all of Dirac’s summary of Schrödinger’s discovery in his 1933 Nobel Prize 

speech: “The variables give rise to some rather unexpected phenomena concerning the motion of the electron. These have 

been fully worked out by Schrödinger. It is found that an electron which seems to us to be moving slowly, must actually have a 

very high frequency oscillatory motion of small amplitude superposed on the regular motion which appears to us. As a result of 

this oscillatory motion, the velocity of the electron at any time equals the velocity of light. This is a prediction which cannot be 

directly verified by experiment, since the frequency of the oscillatory motion is so high and its amplitude is so small. But one 

must believe in this consequence of the theory, since other consequences of the theory which are inseparably bound up with 

this one, such as the law of scattering of light by an electron, are confirmed by experiment.” 
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motion of an electron around a nucleus (atomic orbitals) or – in this particular case – the motion of an 

electron in a Penning trap. 

As mentioned, we made a start by sketching the approach in our papers239, but there is still some way to 

go before we’ll have a conclusive argument. 

Theoretical implications: who ordered this? 
The reader may wonder: what’s the use if there is already a satisfactory theory (perturbative theory)? 

The answer to this question is quite obvious. First, a classical theory would be simpler, and Occam’s 

Razor Principle, therefore, tells us we should consider it. More generally, all physicists would agree the 

King of Science should respect Boltzmann’s adage: “Bring forth the truth. Write it so it’s clear. Defend it 

to your last breath.” Indeed, even if the results would only remotely explain the anomaly, we would still 

have achieved two very significant scientific breakthroughs. First, it would show that these seemingly 

irrelevant micro-models can be validated externally. More importantly, it would prove that an 

alternative (classical) explanation of the anomalous magnetic moment would be possible. 

One may, of course, wonder, further down the line, if an augmented classical explanation of QED would 

upset the theoretical approach in other sectors of the Standard Model. Indeed, as Aitchison and Hey 

write, the new quantum electrodynamical theory (QED) provided physicists with a model – they refer to 

it as the ‘electron-figure’ but what we are talking about are gauge theories, really240 – to analyze the 

forces in the nucleus – i.e. the strong and weak force. We do not think so, because these forces are non-

linear and are also quite different in their nature in other respects.  

Using totally non-scientific language, we may say that mass comes in one ‘color’ only: it is just some 

scalar number. Hence, Einstein’s geometric approach to it makes total sense. In contrast, the 

electromagnetic force is based on the idea of an electric charge, which can come in two ‘colors’ (+ or −), 

so to speak. Maxwell’s equation seemed to cover it all until it was discovered the nature of Nature – 

sorry for the wordplay – might be discrete and probabilistic.241 Now, the strong force comes in three 

colors, and the rules for mixing them, so to speak, are very particular. It is, therefore, only natural that 

its analysis requires a wholly different approach. In fact, who knows? Perhaps one day some alien will 

show us that the application of the ‘electron-figure’ to these sectors was actually not so useful. Don’t get 

us wrong: we think these models are all very solid, but history has shown us that one can never exclude 

a scientific revolution! 

Let us see what happens! My guts instinct tells me that Dr. Burinskii will publish a rather spectacular 

paper in the coming years. I dare to say it might be a paper that is going to be as significant as Einstein’s 

Annus Mirabilis papers. 

                                                           
239 See: Jean-Louis Van Belle, Testing QED: The Other Game in Town, http://vixra.org/abs/1812.0419.  
240 Ian J.R. Aitchison and Anthony J.G. Hey, Gauge Theories in Particle Physics, 4th edition, Volume I, p. 3. 
241 In the above-mentioned paper, we note it helps a lot to think of Planck’s quantum of action as a vector quantity: the 
uncertainty may then be related to its direction, rather than its magnitude. We also note the theoretical framework might 
benefit from using the ± sign in the argument of the wavefunction to associate the wavefunction with a non-zero spin particle. 
We argue that the weird 720-degree symmetries which discouraged research into geometric (or physical) interpretations of the 

wavefunction might then disappear. See: Jean Louis Van Belle, Euler’s Wavefunction: The Double Life of −1, 30 October 2018, 
http://vixra.org/pdf/1810.0339v2.pdf.   

http://vixra.org/abs/1812.0419
http://vixra.org/pdf/1810.0339v2.pdf
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XIII. The fine-structure constant and the fine structure 
We should now explain the final and last meaning of the fine-structure constant – the one that gave it its 

name! Why is that the fine-structure constant explains the fine structure of the hydrogen spectrum? 

However, because this is actually a topic that is well covered in standard physics textbooks – we will, 

effectively, refer the reader to such physics textbooks. He or she should, by now, be able to apply the 

knowledge gained here to translate the quantum-mechanical explanation into something that is not-so-

mysterious as physicists and popular writers want us to believe. 

Let us – after all this – offer some more fundamental reflections on the meaning of the wavefunction. 

We’re going to combine these reflections with a bit of a recap of what we’ve learned so far.  

  



133 
 

XIV. The meaning of the wavefunction  
Thomas Aquinas starts his de Ente et Essentia (on Being and Essence) quoting Aristotle: quia parvus error 

in principio magnus est in fine. A small error in the beginning can lead to great errors in the conclusions. 

This philosophical warning – combined with Occam’s quest for mathematical parsimony – made us think 

about the mathematical framework of quantum mechanics: its rules explain reality, but no one 

understands them. Perhaps some small mistake has been made – early on – in the interpretation of the 

math. This has been a long quest – with little support along the way (see the acknowledgments above) – 

but we think we have found the small mistake – and we do believe it has led to some substantial 

misunderstandings – or, at the very least, serious ambiguities in the description.  

We think that the power of Euler’s function – as a mathematical description of what we believe to be a 

real particle – has not been fully exploited. We, therefore, have a redundancy in the description. The 

fallacy is illustrated below. When we combine −1 with an amplitude, we should not think of it as a 

scalar: we should think of −1 as a complex number itself. Hence, when we are multiplying a set of 

amplitudes – let’s say two amplitudes, to focus our mind (think of a beam splitter or alternative paths 

here) – with −1, we are not necessarily multiplying them with the same thing: −1 is not necessarily a 

common phase factor. The phase factor may be +π or, alternatively, −π. To put it simply, when going 

from +1 to −1, it matters how you get there – and vice versa.  

 

Figure 54: e+iπ  e−iπ 

Let us elaborate this.  

Spin-zero particles do not exist! 
Quantum physicists don’t think of the elementary wavefunction as representing anything real but – if 

they do – they would reluctantly say it might represent some theoretical spin-zero particle. Now, we all 

know spin-zero particles do not exist. All real particles have spin – electrons, photons, anything – and 

spin (a shorthand for angular momentum) is always in one direction or the other: it is just the magnitude 

of the spin that differs. Hence, it is rather odd that the plus/minus sign of the imaginary unit in the a·e±i 

function is not being used to include spin in the mathematical description. Indeed, most introductory 

courses in quantum mechanics will show that both a·e−i· = a·e−i·(t−kx) and a·e+i· = a·e+i·(t−kx) are 

acceptable waveforms for a particle that is propagating in a given direction (as opposed to, say, some 

real-valued sinusoid). We would think physicists would then proceed to provide some argument 

showing why one would be better than the other, or some discussion on why they might be different, 

but that is not the case. The professors usually conclude that “the choice is a matter of convention” and, 

that “happily, most physicists use the same convention.” In case you wonder, this is a quote from the 

MIT’s edX course on quantum mechanics (8.01.1x).  
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Historical experience tells us theoretical or mathematical possibilities in quantum mechanics often turn 

out to represent real things – think, for example, of the experimental verification of the existence of the 

positron (or of anti-matter in general) after Dirac had predicted its existence based on the mathematical 

possibility only. So why would that not be the case here? Occam’s Razor principle tells us that we should 

not have any redundancy in the description. Hence, if there is a physical interpretation of the 

wavefunction, then we should not have to choose between the two mathematical possibilities: they 

would represent two different physical situations, and the one obvious characteristic that would 

distinguish the two physical situations is the spin direction. Hence, we do not agree with the mainstream 

view that the choice is a matter of convention. Instead, we dare to suggest that the two mathematical 

possibilities represent identical particles with opposite spin. Combining this with the two possible 

directions of propagation (which are given by the +− or ++ signs in front of ω and k), we get the 

following table: 

Table 6: Occam’s Razor: mathematical possibilities versus physical realities 

Spin and direction of travel Spin up (e.g. J = +ħ/2) Spin down (e.g. J = −ħ/2) 

Positive x-direction ψ = a·e−i·(t−kx) ψ* = a·e+i·(t−kx) 

Negative x-direction χ = a·e−i·(t+kx) χ* = a·e−i·(t+kx) 

 

Let us think this through. Physicists tell us that wavefunctions of spin-1/2 particles (which is what we are 

thinking of here) have a weird 720° symmetry, but that this weird symmetry is not there for spin-1 

particles. Hence, intuition tells us that it should disappear when we would use the two mathematical 

possibilities for describing the wavefunction of a particle to distinguish between two particles that are 

identical but have opposite spin. If our intuition is correct (we do not have a formal proof of this – but 

we do have a heuristic disproof (see: Euler’s wavefunction, the double life of −1: 

http://vixra.org/abs/1810.0339), then the most important objection to a physical interpretation of the 

wavefunction would no longer be valid and, in our humble view, it would trigger a whole new wave (pun 

intended) of geometric (read: physical) interpretations of the wavefunction. 

For starters, it would get rid of the desiccated idea that the complex conjugate of the (elementary)  = 

exp(i) = exp[i(kx−t)] function – so that is * = exp(−i) = exp[i(t−kt)] – is just another mathematical 

possibility to describe reality. In other words, it would get rid of the idea that it is just some convention. 

We insist on this point. Why? We readily acknowledge conventions are essential in any (mathematical) 

description of (physical) reality, so why don’t we like this convention? It’s Occam. Occam tells us the 

degrees of freedom in the mathematical description (and we are talking just some plain number here, 

like 3 or 5 or whatever) should match the degrees of freedom in our measurement of whatever we think 

reality might be. The idea of just settling on a mathematical convention in this particular context (a 

mathematical object describing a physical reality) is, for us, plain anathema. 

Let us mention some (possible) implications so as to illustrate the point.   

The meaning of the complex conjugate 
The idea of associating the complex conjugate of a wavefunction with a particle that’s identical except 

for its (opposite) spin might be outlandish, which is why we should first try to connect with a much 
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simpler idea – which might or might not be more palatable: the complex conjugate of a wavefunction 

obviously reverses the trajectory of the particle in space and in time: x becomes −x and t becomes −t. 

What? Yes. A true physical interpretation will present the real and imaginary part of the elementary 

wavefunction a·ei as real field vectors driven by the same function but with a phase difference of 90 

degrees: 

a·ei = a·(cos + i·sin) = a·sin(+/2) + i·a·sin 

However, a minus sign in front of our exp(i) function reverses the direction of the oscillation – in space 

and, importantly, in time too. Here we can use the cos = cos(−) and sin = −sin(−) formulas to relate 

−exp(i) to the complex conjugate. We write: 

− = −exp(i) = −(cos + i·sin) = cos(−) + i·sin(−) = exp(−i) = * 

This should make us feel uneasy. Yes. We should think of this. We should not scrap one ambiguity in the 

description to introduce another. Things should be clean: the math has to match the physics. So… Does 

it? We think it does. We need to highlight a subtle point here. Time has one direction only. We cannot 

reverse time. We can only reverse the direction in space. We can do so by reversing the momentum of a 

particle. If we do so, the k = p/ħ in the argument of the wavefunction becomes −k = −p/ħ. However, the 

energy remains what it is and, hence, nothing happens to the ·t = (E/ħ)·t term. Hence, our 

wavefunction becomes exp[i(−k·x−·t)], and we can calculate the wave velocity as negative: v = −/|k| 

= −/k. The wave effectively travels in the opposite direction (i.e. the negative x-direction in one-

dimensional space). Hence, we can think of opposite directions in space, but we can’t reverse time. Why 

not?  

Time and well-behaved functions 
The answer is related to how our mind works. Time has one direction only because – if it wouldn’t – we 

would not be able to describe trajectories in spacetime by a well-behaved function. We really don’t 

need to think of entropy or of other more convoluted explanations here. The diagrams below illustrate 

the point. The spacetime trajectory in the diagram on the left is not kosher, because our object travels 

back in time a couple of times. Spacetime trajectories need to be described by well-defined function: for 

every value of t, we should have one, and only one, value of x. The reverse is not true, of course: a 

particle can travel back to where it was. Hence, it is easy to see that our concept of time going in one 

direction, and in one direction only, implies that we should only allow well-behaved functions. 

 

Figure 55: A well- and a not-well behaved trajectory in spacetime 

It may be a self-evident point to make but it is an important one. It shows us we should not be worried: 

our new interpretation of the wavefunction – incorporating spin – is fully consistent. It rules out any 
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ambiguity. It we would not accept it, then we would have two mathematical possibilities to describe a 

theoretical spin-zero particle that would travel in one direction or the other:  = exp[i(−kx−t)] or, 

alternatively, − = * = exp[i(kx+t)]. 

An added benefit of our interpretation is that it eliminates the logic that leads to the rather 

uncomfortable conclusion that the wavefunction of spin-1/2 particles (read: electrons, practically 

speaking) has some weird 720-degree symmetry in space. This conclusion is uncomfortable because we 

cannot imagine such objects in space without invoking the idea of some kind of relation between the 

subject and the object (the reader should think of the Dirac belt trick here). It has, therefore, virtually 

halted all creative thinking on a physical interpretation of the wavefunction. 

Interpreting state vectors and absolute squares 
This may sound like Chinese to the reader, so let us proceed to something else: how should we interpret 

the product of the elementary function with its complex conjugate? In orthodox quantum mechanics, it 

is just this weird thing: some number that will be proportional to some probability. In our interpretation, 

this probability is proportional to energy densities – or, because of the energy-mass equivalence – to 

mass densities. Let us take the simplest of cases and think of the ⟨ψ| state as some very generic thing 

being represented by a generic complex function242: 

⟨ψ| a·ei     

The ⟨ψ|⟨ψ|* = ⟨ψ||ψ⟩ product then just eliminates the oscillation. It freezes time, we might say: 

⟨ψ|⟨ψ|* = ⟨ψ||ψ⟩ = a·ei· a·e−i = a2·e0=  a2   

Hence, we end up with one factor of the energy of an oscillation: its amplitude (a). Let us think about 

this for a brief moment. To focus our minds, let us think of a photon. The energy of any oscillation will 

always be proportional to (1) its amplitude (a) and (2) its frequency (f). Hence, if we write the 

proportionality coefficient as k, then the energy of our photon will be equal to: 

E = 𝑘 ∙ 𝑎2 ∙ ω2 

What should we use for the amplitude of the oscillation here? It turns out we get a nice result using the 

wavelength243: 

E = 𝑘𝑎2ω2 = 𝑘λ2
E2

ℎ2
= 𝑘

ℎ2𝑐2

E2
E2

ℎ2
= 𝑘𝑐2⟺ 𝑘 = m and E = m𝑐2 

                                                           
242 Our critics will cry wolf and say we should be more general. They are right. However, let us make two remarks here. First, we 
should note that QED is a linear theory and, hence, we can effectively  - and very easily – generalize anything we write to a 

Fourier superposition of waves. We use the  symbol to indicate an equivalence. It’s not an identity. To mathematical purists – 

who will continue to cry wolf no matter what we write because they won’t accept the e−π  e−π expression either – we will 
admit it is more like a symbol showing congruence. Second, we do get some physical laws out of physics (both classical as well 

as quantum-mechanical) that are likely to justify the general a·ei shape. 
243 We use the Eλ = hc  λ = hc/E identity. The reader might think we should use the amplitude of the electric and magnetic 
field. We could – the model is consistent – but it requires some extra calculations as we then need to think of the energy as 
some force over a distance. We refer to our papers for more details. 
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However, we should immediately note that – in our interpretation(s) of the wavefunction – this assumes 

a circularly polarized wave. Its linear components – the sine and cosine, that is – will only pack half of 

that energy. Our electron model – zbw electron as well an orbital electron – is based on the same.  

So, yes, now that we are here, let us quickly recap the formulas we found: 

Table 7: Intrinsic spin versus orbital angular momentum 

Spin-only electron (Zitterbewegung) Orbital electron (Bohr orbitals) 

S = h S𝑛 = 𝑛h for 𝑛 = 1, 2, … 

E = m𝑐2 E𝑛 = −
1

2

α2

𝑛2
m𝑐2 = −

1

𝑛2
E𝑅  

𝑟 = 𝑟C =
ℏ

m𝑐
 𝑟𝑛 = 𝑛

2𝑟B =
𝑛2𝑟C
α

=
𝑛2

α

ℏ

m𝑐
 

𝑣 = 𝑐 𝑣𝑛 =
1

𝑛
α𝑐 

ω =
𝑣

𝑟
= 𝑐 ∙

m𝑐

ℏ
=
E

ℏ
 ω𝑛 =

𝑣𝑛
𝑟𝑛
=
α2

𝑛3ℏ
m𝑐2 =

1
𝑛2
α2m𝑐2

𝑛ℏ
 

L = 𝐼 ∙ ω =
ℏ

2
 L𝑛 = 𝐼 ∙ ω𝑛 = 𝑛ℏ 

μ = I ∙ π𝑟C
2 =

qe
2m

ℏ μ𝑛 = I ∙ π𝑟𝑛
2 =

qe
2m

𝑛ℏ 

g =
2m

qe

μ

L
= 2 g𝑛 =

2m

qe

μ

L
= 1 

 

What’s Hermiticity? 
We will come back to this in the next section of this book. Let us first relate the discussion to the 

discussion to the Hermiticity of (many) operators. If A is an operator244, then it could operate on some 

state |ψ⟩. We write this operation as:  

A|ψ⟩ 

Now, we can then think of some (probability) amplitude that this operation produces some other state 

|ϕ⟩, which we would write as:  

⟨ϕ|A|ψ⟩ 

We can now take the complex conjugate: 

⟨ϕ|A|ψ⟩* = ⟨ψ|A†|ϕ⟩ 

A† is, of course, the conjugate transpose of A: A†ij=(Aji)*, and we will call the operator (and the matrix) 

Hermitian if the conjugate transpose of this operator (or the matrix) gives us the same operator matrix, 

                                                           
244 We should use the hat because the symbol without the hat is reserved for the matrix that does the operation and, therefore, 
already assumes a representation, i.e. some chosen set of base states. However, let us skip the niceties here.  
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so that is if A† = A. Many operators are Hermitian. Why? Well… What is the meaning of ⟨ϕ|A|ψ⟩* = 

⟨ψ|A†|ϕ⟩ = ⟨ψ|A|ϕ⟩? Well… In the ⟨ϕ|A|ψ⟩ we go from some state |ψ⟩ to some other state ⟨ϕ|. 

Conversely, the ⟨ψ|A|ϕ⟩ expression tells us we were in state |ϕ⟩ but now we are in the state ⟨ψ|. 

So, is there some meaning to the complex conjugate of an amplitude like ⟨ϕ|A|ψ⟩? We say: yes, there 

is! Read up on time reversal and CPT symmetry! Based on the above – and your reading-up on CPT 

symmetry – we would think it is fair to say we should interpret the Hermiticity condition as a physical 

reversibility condition.  

We are not talking mere time symmetry here: reversing a physical process is like playing a movie 

backwards and, hence, we are actually talking CPT symmetry here. Of course, it may be difficult to prove 

this interpretation – can one prove interpretations, really? – but, at the very least, we made a start, 

right? 😊 

Summary: explaining QED using classical theory 
The following series of diagrams summarizes most of what we covered in the previous chapters. 

 

 

  Figure 56: Physical interpretations of the wavefunction245 

We refer to our previous papers for a detailed discussion of each of these.246 Here we will just sum up 

the basics:  

                                                           
245 All diagrams are the author’s creation except diagram 5, which has already been referenced before. 
246 See our series of viXra papers (http://vixra.org/author/jean_louis_van_belle). If we would have to choose one which sort of 
sums most, we would select our Layered Motions: The Meaning of the Fine-Structure Constant 
(http://vixra.org/pdf/1812.0273v3.pdf).   

http://vixra.org/author/jean_louis_van_belle
http://vixra.org/pdf/1812.0273v3.pdf
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1. We had a Zitterbewegung model, in which the elementary wavefunction represents a pointlike charge 

with zero rest mass and which, therefore, moves at the speed of light. This model explains Einstein’s 

energy-mass equivalence relation in terms of a two-dimensional oscillation. The radius of the oscillation 

is the Compton radius of the electron.  

2. The Zitterbewegung electron – which combines the idea of a pointlike charge and Wheeler’s idea of 

mass without mass247 – can then be inserted into Bohr’s quantum-mechanical model of an atom, which 

can also be represented using the elementary wavefunction. We have a different force configuration 

here (because of the positively charged nucleus, we have a centripetal force now – as opposed to the 

tangential zbw force) but Euler’s a·e±i function still represents an actual position vector of an electron 

which – because it acquired a rest mass from its Zitterbewegung – now moves at velocity v = (α/n)·c.248 

This should suffice to explain diagram 1, 2 and 3 below.     

3. Diagram 4 represents the idea of a photon that we get out of the Bohr model. We referred to it as the 

one-cycle photon model. The idea is the following. The Bohr orbitals are separated by a amount of 

(physical) action that is equal to h. Hence, when an electron jumps from one level to the next – say from 

the second to the first – then the atom will lose one unit of h. Our photon will have to pack that, 

somehow. It will also have to pack the related energy, which is given by the difference of the energies of 

the two orbitals. This gives us not only the Rydberg formula – Bohr sort of explained that formula in 

1913 already, but not like we do here – but also a delightfully simple model of a photon and an intuitive 

interpretation of the Planck-Einstein relation (f = 1/T = E/h) for a photon. Indeed, we can do what we did 

for the electron, which is to express h in two alternative ways: (1) the product of some momentum over 

a distance and (2) the product of energy over some time. We find, of course, that the distance and time 

correspond to the wavelength and the cycle time: 

ℎ = p ∙ λ =
E

𝑐
∙ λ ⟺ λ =

ℎ𝑐

E
 

ℎ = E ∙ T ⟺ T =
ℎ

E
=
1

𝑓
 

Needless to say, the E = mc2 mass-energy equivalence relation can be written as p = mc = E/c for the 

photon. The two equations are, therefore, wonderfully consistent: 

ℎ = p ∙ λ =
E

𝑐
∙ λ =

E

𝑓
= E ∙ T 

We calculated the related force and field strength in our paper249 so we won’t repeat ourselves here. We 

would just like to point out something interesting – using diagram 5 above. Diagram 5 was copied from 

one of the many papers of Celani, Vassallo and Di Tommaso on the Zitterbewegung model, but we can 

use it to illustrate how and why we can associate a radius with the wavelength of a photon. Indeed, the 

diagram shows that, as an electron starts moving along some trajectory at a relativistic velocity – a 

velocity that becomes a more substantial fraction of c, that is – then the radius of the Zitterbewegung 

                                                           
247 The mass of the electron is the equivalent mass of the energy in the oscillation. 
248 The n is the number of the Bohr orbital (n = 1, 2, 3…). The α and c are the fine-structure constant and the speed of light. This 
formula comes out naturally of the Bohr model. See the referenced papers. 
249 See the above-mentioned paper: Jean Louis Van Belle, Layered Motions: The Meaning of the Fine-Structure Constant, 23 
December 2018, http://vixra.org/pdf/1812.0273v3.pdf. 

http://vixra.org/pdf/1812.0273v3.pdf
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oscillation becomes smaller and smaller. In the limit (v → c), it becomes zero (r → 0), and the 

circumference of the oscillation becomes a simple (linear) wavelength in the process (this is illustrated in 

diagram 5 and 7, which provides a geometric interpretation of the de Broglie wavelength). Now, if we 

write this wavelength as λC (this is, of course, the Compton wavelength), then we get the usual 

relationship between a radius and a wavelength: rC = λC/2π. This, then, provides an intuitive 

interpretation of the Eλ = hc equation for the photon and – more importantly – an intuitive explanation 

of the 2π factor in the formula for the fine-structure constant as a coupling constant. We write: 

α =
2π · qe

2

ℎ ∙ 𝑐
=
𝑘 · qe

2

ℏ ∙ 𝑐
=
FB · 𝑟B

2

Fγ ∙ 𝑟γ ∙ 𝑟γ
=
FB · 𝑟B

2

Fγ ∙ 𝑟γ
2
=
EB · 𝑟B
Eγ ∙ 𝑟γ

 

Needless to say, EB, FB, rB and Eγ, Fγ, rγ are the energies, forces and radii that are associated with the Bohr 

orbitals and our one-cycle photon.250 

Finally – but this is a much finer and more philosophical point – diagram 5 gives us an intuitive geometric 

interpretation of one of the many ways in which Planck’s quantum of action may express itself: the 

quantization of space. Indeed, at v = 0 (diagram 2), we have perfectly circular motion of a pointlike 

charge moving at the velocity of light, and we may associate Planck’s quantum of action with the surface 

area of the circle. However, at v = c, the motion is purely linear – but we still think of the rotating field 

vector at the core (diagram 4). Planck’s quantum of action now expresses itself space as a linear 

distance: the wavelength of the photon. We like to express this dual view as follows: 

𝑧𝑏𝑤 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛: S = ℎ = p𝐶𝑜𝑚𝑝𝑡𝑜𝑛 ∙ λ𝐶𝑜𝑚𝑝𝑡𝑜𝑛 = me𝑐λC = me𝑐 ∙ 2π𝑟C = me𝑐
ℎ

me𝑐
= ℎ 

𝑝ℎ𝑜𝑡𝑜𝑛: S = ℎ = p𝑝ℎ𝑜𝑡𝑜𝑛 ∙ λ𝑝ℎ𝑜𝑡𝑜𝑛 =
Eγ

𝑐
λγ = mγ𝑐λγ = mγ𝑐 ∙ 2π𝑟γ = mγ𝑐

ℎ𝑐

Eγ
= ℎ 

To be fully complete, we can add the same equation for the Bohr orbitals: 

𝑛𝑡ℎ 𝐵𝑜ℎ𝑟 𝑜𝑟𝑏𝑖𝑡𝑎𝑙: S = 𝑛 · ℎ = p𝑛 ∙ λ𝑛 = m𝑒𝑣𝑛λ𝑛 = m𝑒
α𝑐

𝑛
2π

𝑛2ℏ

αm𝑒𝑐
= 𝑛 · ℎ 

We like these expressions because – in our humble view – there is no better way to express the idea 

that we should associate Planck’s quantum of action (or any multiple of it) with the idea of a cycle in 

Nature.251  

We can imagine the reader is, by now, quite tired of these gymnastics. He or she should ask: what does 

it all mean? We would like to refer to some history here. Prof. Dr. Alexander Burinskii – the author of the 

Dirac-Kerr-Newman electron model – told us he had started to further elaborate the Zitterbewegung 

model in the year the author of this book was born – that is in 1969. He published an article on this in 

the Journal of Experimental and Theoretical Physics (JETP)252. However, he told us he had always been 

                                                           
250 These formulas may appear as mind-boggling to the reader. If so, we advise the reader to first look at our papers, whose 
pace is much more gradual. 
251 Our model also offers a much more comprehensive understanding of the fine-structure constant as a scaling constant. See: 
Jean Louis Van Belle, Layered Motions : The Meaning of the Fine-Structure Constant, http://vixra.org/abs/1812.0273.  
252 Burinskii, A.Y., Microgeons with spin, Sov. Phys. JETP 39 (1974) 193. One should note that Prof. dr. Burinskii refers to the zbw 
charge as an ‘electron photon’ or the ‘electron EM wave’. However, its function in the model is basically the same. Prof. dr. 

http://vixra.org/abs/1812.0273
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puzzled about this one question: what keeps the pointlike charge in the zbw electron in its circular orbit? 

He, therefore, moved to exploring Kerr-Newman geometries – which has resulted in his Dirac-Kerr-

Newman model of an electron.253  

While the Dirac-Kerr-Newman model is a much more advanced model – it accommodates the theory of 

the supersymmetric Higgs field and string theory – we understand it does reduce to its classical limit, 

which is the Zitterbewegung model, if one limits the assumptions to general relativity and classical 

electromagnetism only. In our modest view, this validates our model. There is no mystery on the zbw 

force, we think: it is just the classical Lorentz force F = qE + qvB. We, therefore, think that the zbw force 

results from the very same electric and magnetic field oscillation that makes up the photon. It is just the 

way that Planck’s quantum of action expresses itself in space that is different here: we just get a 

different form factor, so to speak, when we look at the pointlike zbw charge. This, then, should solve Mr. 

Burinskii’s puzzle in our not so humble view. 

Finally, the attentive reader will have noticed that we did not discuss diagram 6. We inserted this 

diagram because when we considered the various degrees of freedom in interpreting Euler’s 

wavefunction, we thought we should, perhaps, not necessarily assume that the plane of the circulatory 

motion – the zbw motion of the pointlike charge in the diagram – is perpendicular to the direction of 

propagation. In fact, the Stern-Gerlach experiment tells us the magnetic moment is literally up or down, 

which assumes the plane of the electric current should be parallel to the direction of motion. We like 

this alternative picture of the zbw electron because – intuitively – we feel it might provide us with some 

kind of physical explanation of relativistic length contraction: as velocities increase, the radius of the 

circular motion becomes smaller which, in this model, may be interpreted as a contraction of the size of 

the zbw electron.254 

  

                                                           
Burinskii also told us that he was told not to refer to the Zitterbewegung model at the time, because it was seen as a classical 
model and, therefore, not in tune with the modern ideas of quantum mechanics. 
253 See the references above. 
254 This is just a random thought at the moment. It needs further exploration. 
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XV. The interference of a photon with itself 

The interference experiment 
The dominating Copenhagen interpretation of quantum mechanics tells us that Nature is just some kind 

of black box, and the best we can do is to think of some input-output relations to describe what goes in 

and what comes out. You don’t believe this? Take any online course in quantum mechanics, and the first 

thing the professor will teach you is how to describe the Mach-Zehnder interference experiment, and 

that description is quite similar to the input-output matrix algebra that economists need to master as 

part of learning the tricks of their trade.255 Let us, by way of introduction, say a few words about the 

apparatuses that are used in such experiments. 

Experiments demonstrating the interference of light usually involve an apparatus which is referred to as 

an interferometer. There are various types around, but the Michelson-Morley interferometer below may 

be used to describe the basic components. We have a light source, some mirrors and one or more beam 

splitters – which is just a half-silvered mirror in the illustration below. The beam splitter splits the beam, 

and the mirrors are then adjusted so as to produce constructive or destructive interference. 

 

Figure 57: The Michelson-Morley interferometer256 

The classical explanation is easy enough: the two beams arrive in phase or, alternatively, out of phase 

and we, therefore, have constructive or destructive interference when recombining them. However, 

when we want to analyze this in terms of one single photon, this classical picture becomes quite 

complicated. Physicists will tell you the photon cannot actually split itself, and they will start talking 

about amplitudes – based on which they will calculate probabilities of this or that happening – but they 

will never explain what’s actually happening. We argue this should be possible, and we will show you 

what classical picture might explain what could be happening.  

                                                           
255 How do I know? Because I studied economics before getting into physics and math. 
256 The image is taken from Wikimedia Commons (source: Stannered - Image:Interferometer.png, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=1728260).  

https://commons.wikimedia.org/w/index.php?curid=1728260
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We will give you two choices here. Either you just read the summary below – and you accept it – or, 

else, we will take you through a much more elaborate argument, so you can appreciate the finer details 

and think through them for yourself. 

How do we explain quantum-mechanical interference—i.e. the interference of a photon with itself in an 

interferometer? Physicists will tell you we have these amplitudes, and we should think of them as some 

weird combination of linear polarization states. They hasten to add that these states cannot be real. At 

the same time, they will also admit that weak measurement experiments do seem to confirm something 

is traveling along those alternative paths. So what is it then? 

We think the linear polarization states are real. We want to think of a photon as the sum of two linearly 

polarized waves. We, therefore, have an alternative theory of what happens in the Mach-Zehnder 

interferometer: 

1. The incoming photon is circularly polarized (left- or right-handed). 

2. The first beam splitter splits our photon into two linearly polarized waves. 

3. The mirrors reflect those waves and the second beam splitter recombines the two linear 

waves back into a circularly polarized wave. 

4. The positive or negative interference then explains the binary outcome of the Mach-

Zehnder experiment – at the level of a photon – in classical terms. 

I know this is a lot to swallow, so you will probably want to take your time to digest this. We will help 

you by first presenting some classical ideas about light particles (photons). 

The idea of a photon 
The classical idea of a photon is just the classical idea of light: an oscillating electromagnetic field. The 

illustration below shows what happens if a linearly polarized light beam hits a charged particle (think of 

an electron). The electric field will cause the charge to move upwards and, as it acquires some velocity, 

the magnetic field comes into play too. The magnetic force on the particle is given by the F = qvB, and 

it gives us the classical explanation for the momentum of light, which is also referred to as referred to as 

radiation or light pressure.    

 

Figure 58: Feynman’s explanation of the momentum of light 

The magnetic force – which is just denoted as F in the diagram above – will be equal to F = qvB, and the 

right-hand rule for a vector cross-product tells us the direction of that force is going to be in the 

direction of the beam. Furthermore, because the magnitude of the magnetic field (B) is 1/c times that of 

the electric field E, one can also show that the pushing momentum of light will be equal to the 1/c times 
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the energy that is being absorbed. That reflects and equation for a photon that you have encountered 

already:  

p = m · 𝑐 =
E

𝑐2
· 𝑐 =

E

𝑐
 

The 1/c factor may feel like the momentum – or the magnetic field itself – are not very important, but 

we would like to remind the reader we could choose to use equivalent distance and time units, so c = 1 

and the whole things looks very different.257 Hence, you should not think the magnetic force is, 

somehow, less real or not so important. The magnetic force becomes very important when velocities 

become relativistic. Indeed, if we just think magnitudes, then we can write this258: 

𝐹magnetic = q · 𝑣 · 𝐵 = q · 𝑣 ·
𝐸

𝑐
= q · β · 𝐸 

This shows the magnitude of the magnetic force approaches that of the electrostatic force when the 

velocity approaches that of light. In fact, I have a huge problem with the way physics are being taught in 

standard textbooks because many physicists focus on the electric field vector only when talking about 

light! Big mistake! For example, it is quite interesting to think about how the same electric field might 

give a jolt to some charge in orbit (think of an electron orbital or our pointlike charge in the 

Zitterbewegung model of an electron) but, again, you need to remind yourself we should also think of 

the magnetic force when modeling something like this—especially when thinking about the 

Zitterbewegung electron, because the pointlike charge does effectively move at the speed of light in 

that model!    

 

Figure 59: How the electric field of a photon might drive an orbital electron 

Having said that, the illustration above bridges classical mechanics with quantum mechanics because it 

shows we’re not only transferring energy here: we’re also transferring angular momentum. To be 

precise, we interpret the reality of Planck’s quantum of action – which, in its reduced form (ħ = h/2π), is 

also some unit of angular momentum – as implying that photon absorption and emission by an atom 

(think of the electron orbitals here) should respect the integrity of a cycle. You may criticize and say: 

                                                           
257 It is quite interesting to think this through. Using equivalent units will, of course, also change the way we measure 
acceleration. Hence, Newton’s force law will only make sense if we also use natural units for mass (or, what amounts to the 
same, for force). 
258 As usual, there is a risk of confusing the reader because we use the same symbol (E and E) for energy and electric field, but 
the context should make clear what is what. 
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what is this rule? Some new random interpretation of quantum mechanics? Our answer is: yes. That’s 

what’s on offer here.  

Your next question might be this one: what happens when an electron jumps several Bohr orbitals? The 

angular momentum between the orbitals will then differ by several units of ħ. What happens to the 

photon picture in that case? It will pack the energy difference, but will it also pack several units of ħ 

(angular momentum) or – what amounts to the same – several units of h (physical action)? We should 

do some further analysis on this, but our intuition tells us that we should probably still think of the 

photon as a one-cycle oscillation. Hence, we do not think its energy will be spread over several cycles.259 

In other words, the two equations below need to make sense for all transitions260: 

𝑝ℎ𝑜𝑡𝑜𝑛: S = ℎ = pγ ∙ λγ =
Eγ

𝑐
λγ =

Eγ

𝑓γ
= Eγ ∙ Tγ 

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛: S = 𝑛 · ℎ = p𝑛 ∙ λ𝑛 = m𝑒𝑣𝑛λ𝑛 = E𝑛 ∙ T𝑛 

The formulas above express our Certainty Principle. Pun intended. We will leave it as an exercise for the 

reader to re-write these formulas in terms of a product of force, distance, and time. So, what about 

Uncertainty, then? Nothing – absolutely nothing – of what we wrote above involves any uncertainty. It 

must be there somewhere, right? We would like to repeat what we suggested already: Planck’s 

quantum of action should probably be interpreted as a vector. The uncertainty – or the probabilistic 

nature of Nature, so to speak261 – might, therefore, not be in its magnitude. We feel the uncertainty is in 

its direction. This may seem to be restrictive. However, because h is the product of a force (some vector 

in three-dimensional space), a distance (so that is a spatial concept as well) and time, we think we have 

the mathematical framework comes with sufficient degrees of freedom to describe any situation. 

Quantum-mechanical equations – such as Schrödinger’s equation – should probably be written as vector 

equations.262 

Our photon model assumes they will make a beam that is circularly polarized. The spin direction may, of 

course, be left-handed or right-handed, as shown below. 

                                                           
259 When discussing the Mach-Zehnder experiment more in detail, we will add a subtle but essential nuance to this point of 
view.  
260 The use of the same integer n for the difference in energy between Bohr orbitals might be confusing but we did not want to 
use another symbol – such as m, for example – because m would make one think of the fine-structure transitions (which we 
haven’t discussed at all – not in this book, and not in any of ours papers) and – more importantly – because we want to 
encourage the reader to think these things through for him- or herself. Symbols acquire meaning from the context in which 
they are used. We are tempted to go off on a tangent on Wittgenstein but we should restrain ourselves here. There is too much 
philosophy in this book already. We advise the reader to critically cross-check the formula for electron transitions with what we 
wrote in previous papers. We warmly welcome comments. 
261 A fair amount of so-called thought experiments in quantum mechanics – and I am not (only) talking the more popular 
accounts on what quantum mechanics is supposed to be all about – do not model the uncertainty in Nature, but on our 
uncertainty on what might actually be going on. Einstein was not worried about the conclusion that Nature was probabilistic 
(he fully agreed we cannot know everything): a quick analysis of the full transcriptions of his oft-quoted remarks reveal that he 
just wanted to see a theory that explains the probabilities. A theory that just describes them didn’t satisfy him. 
262 We made a start with this in a previous paper: Jean Louis Van Belle, A geometric interpretation of Schrödinger’s equation, 
http://vixra.org/pdf/1812.0202v1.pdf.  

http://vixra.org/pdf/1812.0202v1.pdf
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Figure 60: Left- and right-handed polarization263 

We are now coming to the crux of the matter: we will think of these photons as the sum of two linearly 

polarized waves. We write:  

cos + i·sin = ei· (RHC) 

cos(−) + i·sin(−) = cos − i·sin = e−i· (LHC) 

What is the geometry here? It is quite simple but let us spell it out so we have no issues of 

interpretation. If x is the direction of propagation of the wave, then the z-direction will be pointing 

upwards, and we get the y-direction from the righthand rule for a Cartesian reference frame.264 We may 

now think of the oscillation along the y-axis as the cosine, and the oscillation along the z-axis as the sine. 

If we then think of the imaginary unit i as a 90-degree counterclockwise rotation in the yz-plane (and 

remembering the convention that angles (including the phase angle ) are measured counterclockwise), 

then the right- and left-handed waves can effectively be represented by the wavefunctions above. 

It was, in fact, easy visualizations like this that encouraged us to think of a geometric representation of 

the wavefunction. For example, we may adopt the convention that the imaginary unit should be 

interpreted as a unit vector pointing in a direction that is perpendicular to the direction of propagation 

of the wave and one may then write the magnetic field vector as B = −i·E/c.265 The minus sign in the B = 

−i·E/c. It is there because of consistency: we must combine a classical physical right-hand rule  for E and 

B here as well as the mathematical convention that multiplication with the imaginary unit amounts to a 

counterclockwise rotation by 90 degrees. This allows us to re-write Maxwell’s equations using complex 

numbers. We have done that in other papers, so if the reader is interested he can check there. 266 The 

point to note is that, while we will often sort of forget to show the magnetic field vector, the reader 

should always think of it – because it is an integral part of the electromagnetic wave: when we think of 

E, we should also think of B. Both oscillations carry energy. 

                                                           
263 Credit: https://commons.wikimedia.org/wiki/User:Dave3457. 
264 Note the reference frame in the illustrations of the LHC and RHC wave – which we took from Wikipedia – is left-handed. Our 
argument will use a regular right-handed reference frame. 
265 As usual, we use boldface letters to represent geometric vectors – the electric (E) and magnetic field vectors (B), in this case. 
There is a risk of confusion between the energy E and the electric field E because we use the same symbols, but the context 
should make clear what is what. 
266 See, for example, Jean Louis Van Belle, A geometric interpretation of Schrödinger’s equation, 
http://vixra.org/pdf/1812.0202v1.pdf.  

https://commons.wikimedia.org/wiki/User:Dave3457
http://vixra.org/pdf/1812.0202v1.pdf
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The mention of energy brings me to another important point. As mentioned above, we think of a 

circularly polarized beam – and a photon – as a superposition of two linear waves. Now, these two 

linearly polarized waves will each pack half of the energy of the combined wave. It is a very important 

point to make because any classical explanation of interference – like the one we will offer in the next 

section – will need to respect the energy conservation law. Note that, while each wave packs half of the 

energy of the combined wave, their (maximum) amplitude is the same: there is no change there. Let us 

briefly elaborate this point. The energy of any oscillation will always be proportional to (1) its amplitude 

(a) and (2) its frequency (f). Hence, if we write the proportionality coefficient as k, then the energy of 

our photon will be equal to: 

E = 𝑘 ∙ 𝑎2 ∙ ω2 

What should we use for the amplitude of the oscillation here? It turns out we get a nice result using the 

wavelength267: 

E = 𝑘𝑎2ω2 = 𝑘λ2
E2

ℎ2
= 𝑘

ℎ2𝑐2

E2
E2

ℎ2
= 𝑘𝑐2⟺ 𝑘 = m and E = m𝑐2 

However, we should note this assumes a circularly polarized wave. Its linear components – the sine and 

cosine, that is – will only pack half of that energy. We can now offer the following classical explanation 

of the Mach-Zehnder experiment for one photon only.268  

A classical explanation for the one-photon Mach-Zehnder experiment 
We offered a geometric interpretation of the wavefunction. When analyzing interference in quantum 

mechanics, the wavefunction concept gives way to the concept of a probability amplitude which we 

associate with a possible path rather than a particle. The math looks somewhat similar but models very 

different ideas and concepts. Before the photon enters the beam splitter, we have one wavefunction: 

the photon. When it goes through, we have two probability amplitudes that – somehow – recombine 

and interfere with each other. What we want to do here is to explain this classically. So let us look at the 

Mach-Zehnder interferometer once again. We have two beam splitters (BS1 and BS2) and two perfect 

mirrors (M1 and M2). An incident beam coming from the left is split at BS1 and recombines at BS2, 

which sends two outgoing beams to the photon detectors D0 and D1. More importantly, the 

interferometer can be set up to produce a precise interference effect which ensures all the light goes 

into D0, as shown below. Alternatively, the setup may be altered to ensure all the light goes into D1. 

                                                           
267 We use the Eλ = hc  λ = hc/E identity. The reader might think we should use the amplitude of the electric and magnetic 
field. We could – the model is consistent – but it requires some extra calculations as we then need to think of the energy as 
some force over a distance. We refer to our papers for more details (http://vixra.org/author/jean_louis_van_belle).  
268 We have written about this topic before (see: Jean Louis Van Belle, Linear and circular polarization states in the Mach-
Zehnder interference experiment, 5 November 2018,  http://vixra.org/pdf/1811.0056v1.pdf). Hence, we will only offer a 
summary of what we wrote there. 

http://vixra.org/author/jean_louis_van_belle
http://vixra.org/pdf/1811.0056v1.pdf
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Figure 61: The Mach-Zehnder interferometer 

What is the classical explanation? The classical explanation is something like this: the first beam splitter 

(BS1) splits the beam into two beams. These two beams arrive in phase or, alternatively, out of phase 

and we, therefore, have constructive or destructive interference that recombines the original beam and 

makes it go towards D0 or, alternatively, towards D1. When we analyze this in terms of a single photon, 

this classical picture becomes quite complicated – but we argue there is such classical picture. Our 

alternative theory of what happens in the Mach-Zehnder interferometer is the following: 

1. The incoming photon is circularly polarized (left- or right-handed). 

2. The first beam splitter splits our photon into two linearly polarized waves. 

3. The mirrors reflect those waves and the second beam splitter recombines the two linear 

waves back into a circularly polarized wave. 

4. The positive or negative interference then explains the binary outcome of the Mach-

Zehnder experiment – at the level of a photon – in classical terms. 

We will detail this in the next section, because what happens in a Mach-Zehnder interferometer is not 

all that straightforward. We should note, for example, that there are phase shifts along both paths: 

classical physics tells us that, on transmission, a wave does not pick up any phase shift, but it does so on 

reflection. To be precise, it will pick up a phase shift of π on reflection. We will refer to the standard 

textbook explanations of these subtleties and just integrate them in our more detailed explanation in 

the next section.269 Before we do so, we will show the assumption that the two linear waves are 

orthogonal to each other is quite crucial. If they weren’t, we would be in trouble with the energy 

conservation law. Let us show that before we proceed. 

Suppose the beams would be polarized along the same direction. If x is the direction of propagation of 

the wave, then it may be the y- or z-direction of anything in-between. The magnitude of the electric field 

vector will then be given by a sinusoid. Now, we assume we have two linearly polarized beams, of 

course, which we will refer to as beam a and b respectively. These waves are likely to arrive with a phase 

difference – unless the apparatus has been set up to ensure the distances along both paths are exactly 

                                                           
269 For a good classical explanation of the Mach-Zehnder interferometer, see: K.P. Zetie, S.F. Adams and R.M. Tocknell, January 
2000, How does a Mach–Zehnder interferometer work? 
(https://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/zetie_et_al_mach_zehnder00.pdf, accessed on 5 
November 2018). 
For a good quantum-mechanical explanation (interference of single photons), see – for example – the Mach-Zehnder tutorial 
from the PhysPort website (https://www.physport.org/curricula/QuILTs/, accessed on 5 November 2018).  

https://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/zetie_et_al_mach_zehnder00.pdf
https://www.physport.org/curricula/QuILTs/
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the same. Hence, the general case is that we would describe a by cos(ω·t − k·x) = cos() and b by cos( + 

Δ) respectively. In the classical analysis, the difference in phase (Δ) will be there because of a difference 

of the path lengths270 and the recombined wavefunction will be equal to the same cosine function, but 

with argument  + Δ/2, multiplied by an envelope equal to 2·cos(Δ/2). We write271: 

cos() + cos( + Δ) = 2·cos( + Δ/2)·cos(Δ/2) 

We always get a recombined beam with the same frequency, but when the phase difference between 

the two incoming beams is small, its amplitude is going to be much larger. To be precise, it is going to be 

twice the amplitude of the incoming beams for Δ = 0. In contrast, if the two beams are out of phase, the 

amplitude is going to be much smaller, and it’s going to be zero if the two waves are 180 degrees out of 

phase (Δ = π), as shown below. That does not make sense because twice the amplitude means four 

times the energy, and zero amplitude means zero energy. The energy conservation law is being violated: 

photons are being multiplied or, conversely, are being destroyed.  

 

Figure 62: Constructive and destructive interference for linearly polarized beams 

Let us be explicit about the energy calculation. We assumed that, when the incoming beam splits up at 

BS1, that the energy of the a and b beam will be split in half too. We know the energy is given by (or, to 

be precise, proportional to) the square of the amplitude (let us denote this amplitude by A).272 Hence, if 

we want the energy of the two individual beams to add up to A2 = 12 = 1, then the (maximum) amplitude 

of the a and b beams must be 1/√2 of the amplitude of the original beam, and our formula becomes: 

(1/√2)·cos() + (1/√2)·cos( + Δ) = (2/√2)·cos( + Δ/2)·cos(Δ/2) 

This reduces to (2/√2)·cos() for Δ = 0. Hence, we still get twice the energy – (2/√2)2 equals 2 – when the 

beams are in phase and zero energy when the two beams are 180 degrees out of phase. This doesn’t 

make sense.  

Of course, the mistake in the argument is obvious. This is why our assumption that the two linear waves 

are orthogonal to each other comes in: we cannot just add the amplitudes of the a and b beams because 

                                                           
270 Feynman’s path integral approach to quantum mechanics allows photons (or probability amplitudes, we should say) to travel 
somewhat slower or faster than c, but that should not bother us here. 
271 We are just applying the formula for the sum of two cosines here. If we would add sines, we would get sin() + sin( + Δ) = 

2·sin( + Δ/2)·cos(Δ/2). Hence, we get the same envelope: 2·cos(Δ/2). 
272 If we would reason in terms of average energies, we would have to apply a 1/2 factor because the average of the sin2 and 

cos2 over a cycle is equal to 1/2. 



150 
 

they have different directions. If the a and b beams – after being split from the original beam – are 

linearly polarized, then the angle between the axes of polarization should be equal to 90 degrees to 

ensure that the two oscillations are independent. We can then add them like we would add the two 

parts of a complex number. Remembering the geometric interpretation of the imaginary unit as a 

counterclockwise rotation, we can then write the sum of our a and b beams as: 

(1/√2)·cos() + i·(1/√2)·cos( + Δ) = (1/√2)·[cos() + i·cos( + Δ)] 

What can we do with this? Not all that much, except noting that we can write the cos( + Δ) as a sine for 

Δ = ± π/2. To be precise, we get: 

(1/√2)·cos() + i·(1/√2)·cos( + π/2) = (1/√2)·(cos − i·sin) = (1/√2)·e−i·   

(1/√2)·cos() + i·(1/√2)·cos( − π/2) = (1/√2)·(cos + i·cos) = (1/√2)·ei·  

This gives us the classical explanation we were looking for: 

1. The incoming photon is circularly polarized (left- or right-handed). 

2. The first beam splitter splits our photon into two linearly polarized waves. 

3. The mirrors reflect those waves and the second beam splitter recombines the two linear 

waves back into a circularly polarized wave. 

4. The positive or negative interference then explains the binary outcome of the Mach-

Zehnder experiment – at the level of a photon – in classical terms. 

What about the 1/√2 factor? If the e−i· and ei· wavefunctions can, effectively, be interpreted 

geometrically as a physical oscillation in two dimensions – which is, effectively, our interpretation of the 

wavefunction273 – then   then each of the two (independent) oscillations will pack one half of the energy 

of the wave. Hence, if such circularly polarized wave splits into two linearly polarized waves, then the 

two linearly polarized waves will effectively, pack half of the energy without any need for us to think 

their (maximum) amplitude should be adjusted. If we now think of the x-direction as the direction of the 

incident beam in the Mach-Zehnder experiment, and we would want to also think of rotations in the xz-

plane, then we need to need to introduce some new convention here. Let us introduce another 

imaginary unit, which we’ll denote by j, and which will represent a 90-degree counterclockwise rotation 

in the xz-plane.274 We then get the following classical explanation for the results of the one-photon 

Mach-Zehnder experiment:  

Photon 
polarization 

At BS1 At mirror At BS2 Final result 

RHC Photon (ei· = cos + 

i·sin)   is split into 
two linearly polarized 
beams: 

Upper beam (vertical 

oscillation) = j·sin 

The vertical oscillation 
gets rotated clockwise 

and becomes −j·j·sin 

= −j2·sin = sin 

The horizontal 
oscillation is not 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and 

becomes j·sin. The 

The photon 
wavefunction is given 

by cos + j·sin = e+j·.   

This is an RHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

                                                           
273 We can assign the physical dimension of the electric field (force per unit charge, N/C) to the two perpendicular oscillations. 
274 This convention may make the reader think of the quaternion theory but we are thinking more of simple Euler angles here: i 
is a (counterclockwise) rotation around the x-axis, and j is a rotation around the y-axis.  
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Lower beam 
(horizontal oscillation) 

= cos 

 

affected and is still 

represented by cos 

lower beam is still 

represented by cos 

LHC Photon (e−i· = cos − 

i·sin)   is split into 
two linearly polarized 
beams: 

Upper beam (vertical 

oscillation) = −j·sin 

Lower beam 
(horizontal oscillation) 

= cos 

 

The vertical oscillation 
gets rotated clockwise 
and becomes 

(−j)·(−j)·sin = = 

j2·sin = −sin 

The horizontal 
oscillation is not 
affected and is still 

represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and 

becomes −j·sin. The 
lower beam is still 

represented by cos 

The photon 
wavefunction is given 

by cos − j·sin = e−j·.  

This is an LHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

 

Of course, we may also set up the apparatus with different path lengths, in which case the two linearly 

polarized beams will be out of phase when arriving at BS1. Let us assume the phase shift is equal to Δ = 

180° = π. This amounts to putting a minus sign in front of either the sine or the cosine function. Why? 

Because of the cos( ± π) = −cos and sin( ± π) = −sin identities. Let us assume the distance along the 

upper path is longer and, hence, that the phase shift affects the sine function.275 In that case, the 

sequence of events might be like this: 

Photon 
polarization 

At BS1 At mirror At BS2 Final result 

RHC Photon (ei· = cos + 

i·sin)   is split into 
two linearly polarized 
beams: 

Upper beam (vertical 

oscillation) = j·sin 

Lower beam 
(horizontal oscillation) 

= cos 

 

The vertical oscillation 
gets rotated clockwise 

and becomes −j·j·sin 

= −j2·sin = sin 

The horizontal 
oscillation is not 
affected and is still 

represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and – 
because of the longer 
distance – becomes 

j·sin( + π) = −j·sin. 
The lower beam is still 

represented by cos 

The photon 
wavefunction is given 

by cos − j·sin = e−j·.  

This is an LHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

LHC Photon (e−i· = cos − 

i·sin)   is split into 
two linearly polarized 
beams: 

Upper beam (vertical 

oscillation) = −j·sin 

Lower beam 
(horizontal oscillation) 

= cos 

The vertical oscillation 
gets rotated clockwise 
and becomes 

(−j)·(−j)·sin = = 

j2·sin = −sin 

The horizontal 
oscillation is not 
affected and is still 

represented by cos 

Photon is 
recombined. The 
upper beam gets 
rotated counter-
clockwise and – 
because of the longer 
distance – becomes 

−j·sin( + π) = +j·sin. 
The lower beam is still 

represented by cos 

The photon 
wavefunction is given 

by cos + j·sin = e+j·.   

This is an RHC photon 
travelling in the xz-
plane but rotated 
over 90 degrees. 

                                                           
275 The reader can easily work out the math for the opposite case (longer length of the lower path). 
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What happens when the difference between the phases of the two beams is not equal to 0 or 180 

degrees? What if it is some random value in-between? Do we get an elliptically polarized wave or some 

other nice result? Denoting the phase shift as Δ, we can write: 

cos + j·sin( + Δ) = cos + j·(sin·cosΔ + cos·sinΔ) 

However, this is also just a circularly polarized wave, but with a random phase shift between the 

horizontal and vertical component of the wave, as shown below. Of course, for the special values Δ = 0 

and Δ = π, we get cos + j·sin and cos − j·sin once more.   

 

Figure 63: Random phase shift between two waves 

Mystery solved? Maybe. Maybe not. We just wanted to show that Bell’s No-Go Theorem should not 

prevent you from trying to go everywhere. 
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XVI. The way forward 
We presented a lot of material in this book. What was it all about? Perhaps the following remarks might 

sum it all up. We wanted to show how a lot of hocus-pocus in quantum mechanics can be explained 

classically. We did so by doing something that physicists should do a lot more, and that is consider the 

form factor in their analysis. It somehow disappeared. Vector equations became flat. Vector quantities 

became magnitudes. Schrödinger’s equation, for example, should be rewritten as a vector equation. We 

have made a start with this276 but there is a lot more work to be done.  

What about uncertainty? We inserted a chapter on that, but it’s pretty rudimentary. We basically 

suggested Planck’s quantum of action should be interpreted as a vector. The uncertainty – or the 

probabilistic nature of Nature, so to speak277 – might, therefore, not be in its magnitude: it might be in 

its direction. This may seem to be restrictive. However, because h is the product of a force (some vector 

in three-dimensional space), a distance (another spatial concept) and time, we think the mathematical 

framework comes with sufficient degrees of freedom to describe any situation. However, more 

reflection is needed here. Can we capture the uncertainty in a model and/or some formulas? That 

question has not been answered. Having said that, I think this book has shown that a fair amount of 

thought experiments in quantum mechanics – and we are not (only) talking the more popular accounts 

on what quantum mechanics is supposed to be all about – do not model the uncertainty in Nature, but 

on our uncertainty on what might actually be going on.  

Indeed, Einstein was not worried about the conclusion that Nature was probabilistic: he fully agreed we 

cannot know everything: he just wanted to see a theory that explains the probabilities. A theory that 

just describes them did not satisfy him. We think we have offered the kind of theory that Einstein would 

want to see but, again, a lot of work remains to be done. One skeptical but friendly critic wrote me the 

following: “There are a number of models out there that describe some aspects of quantum physics 

quite well, but one needs to show those models can effectively describe all aspects of the behavior of 

quantum-mechanical particles.”278 

We are, obviously, not there yet. There is, effectively, a lot of nitty-gritty that we haven’t answered. For 

example, our description of how interference or diffraction actually works, both for electrons as well as 

for photons, was very rudimentary. Physicists will – and should – only accept a model if it explains stuff 

exactly. So we need to translate our models into models that have a lot more detail – so we can show, 

for example, that we can get the Fresnel equations out of them. 

The road ahead is long. Fortunately, I have some fellow travelers now, and I think that thing ahead is the 

real summit, not some intermediate high point. 

Jean Louis Van Belle, Drs, MAEc, BAEc, BPhil, March 2019  

                                                           
276 See: A Geometric Interpretation of Schrödinger’s Equation, http://vixra.org/abs/1812.0202.  
277 A fair amount of so-called thought experiments in quantum mechanics – and we are not (only) talking the more popular 
accounts on what quantum mechanics is supposed to be all about – do not model the uncertainty in Nature, but on our 
uncertainty on what might actually be going on. Einstein was not worried about the conclusion that Nature was probabilistic 
(he fully agreed we cannot know everything): a quick analysis of the full transcriptions of his oft-quoted remarks reveal that he 
just wanted to see a theory that explains the probabilities. A theory that just describes them didn’t satisfy him. 
278 Prof. Dr. Diederik Aerts, University of Brussels, various Facebook messages in February-March 2019 to the author. 

http://vixra.org/abs/1812.0202
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References 
Academics will usually add a long list of books and articles here, but I don’t want to do that. I would just 

advice the interested readers to not trust too much in the latest update of this or that textbook. I 

recommend reading originals, especially as many of these are available online and, therefore, are widely 

referenced in various discussion fora. Also, when you would have an issue with this or that 

interpretation, you will find you will be able to google for help very easily. 

Feynman’s Lectures is and remains a classic for me (http://www.feynmanlectures.caltech.edu/). Some of 

his Lectures on quantum mechanics – such as chapter 4, on identical particles – suffer from excessive 

and speculative generalization, but even this chapter makes you think for yourself. That is very valuable, 

in my humble view, because I find more modern textbooks often too confident in their approach: they 

emphasize what we know, as opposed to what we don’t know.  

Feynman’s Lectures also have the advantage that you get the math you need with the physics you study. 

However, in case you’d want a good mathematical introduction, Mathews and Walker’s Mathematical 

Methods of Physics, is a reference that stands out. 

As mentioned in the introduction, Dirac’s 1930 Principles of Quantum Mechanics is still worth reading, as 

the basics haven’t changed. Of course, it covers the QED sector mainly, and there is not a single 

illustration or diagram in it. :-/ QED as a procedure, in other words. But that’s what’s standard quantum 

mechanics is, unfortunately.  

For QCD, and the other sectors of the Standard Model, you will probably want to consult the reference 

in the field, which is Aitchison and Hey’s Gauge Theories in Particle Physics. Its 4th edition includes all 

latest developments and discoveries, including the theory of the Higgs field. 
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