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We present an efficient heuristic algorithm for record clustering that can run on a SIMD machine. 
We introduce the P-tree, and its associated numbering scheme, which in the split phase allows each 
processor independently to compute the unique cluster number of a record satisfying an arbitrary 
query. We show that by restricting ourselves in the merge phase to combining only sibling clusters, 
we obtain a parallel algorithm whose speedup ratio is optimal in the number of processors used. 
Finally, we report on experiments showing that our method produces substantial savings in an 
environment with relatively little overlap among the queries. 

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream 
Architectures-single-instruction-stream, multiple-data-stream processors (SIMD); F.2.2 [Analysis 
of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems-sequencing 
and scheduling; H.3.2 [Information Storage and Retrieval]: Information, Storage; H.3.3 [Infor- 
mation Storage and Retrieval]: Information Search and Retrieval 

General Terms: Algorithms, Experimentation, Performance 

1. INTRODUCTION 

The availability of parallel computers has stimulated much interest in finding 
parallel algorithms in a number of areas, such as sorting [3, 4, 81 and graph 
theoretic problems [ 17,181. In the area of database systems, research into parallel 
algorithms has been basically limited to performing relational database opera- 
tions, such as the join in parallel [5, 211, and to allocating data to independently 
accessible disks [6]. In this paper, we show that record clustering is another 
problem that possesses intrinsic parallelism, and we introduce an efficient parallel 
algorithm for a SIMD machine. 

Both record clustering and attribute partitioning have the same objective of 
minimizing the number of accesses to secondary storage by placing the records 
(or attributes) most likely to be referenced together in the same queries into 
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related clusters (or subfiles). However, the techniques applied to attribute parti- 
tioning, such as the Bond Energy algorithm [20], are too expensive for record 
clustering, since the relevant input size for record clustering (the number of 
records) is several orders of magnitude larger than the input size for attribute 
partitioning (the number of attributes). 

On the other hand, record clustering can be viewed as a complementary problem 
to indexing. The performance of a file organization dealing with complex queries 
can be improved substantially by providing an appropriate directory or index 
which will identify those records that satisfy a given query [19]. However, if the 
data records themselves are not clustered in the file, they could span many pages 
[ 221. Thus, an appropriate index will reduce the number of records to be retrieved, 
while clustering related records on the same, or adjacent pages, will guarantee 
that most of the time their retrieval will not require separate accesses to the data 
file. 

In the past few years, a number of dynamic, multiattribute file organizations 
have been proposed that do not require knowledge of statistics about a file’s use 
and can perform an incremental restructuring that maintains high performance 
when dealing with insertions and deletions [ll, 191. These schemes can be viewed 
as Cartesian product clustering methods. They partition either the embedding 
space, or the space of the specific set of stored records, into cells that correspond 
to buckets (pages) on secondary devices. However, as with most other clustering 
algorithms [lo], these methods are effective for conjunctive queries only. 

In [ 12,141 we have introduced an approach to record-clustering and companion 
file reorganization that can be applied to all kinds of queries. The clustering 
algorithm, called SPLITMERGE, assumes that for each relevant query we keep 
statistics on its frequency of occurrence as well as the identifiers (addresses) of 
the records that satisfy the query. The output of the clustering algorithm is a list 
of clusters containing the records pertinent to different subsets of queries. As 
shown in [ 13, 231, the problem of determining an optimal clustering of records is 
NP-hard; hence our approach is a heuristic one, which produces a near-optimal 
list of clusters. 

The SPLITMERGE algorithm has the advantage of being applicable to all 
kinds of queries, not just conjunctive ones. On the other hand, it has a worst- 
case time complexity of O(M * N) and a space complexity of O(N), where M is 
the number of relevant queries and N is the number of records. We present an 
efficient, parallel clustering algorithm that is based on the sequential SPLIT- 
MERGE. Our algorithm is intended for a SIMD (Single Instruction stream, 
Multiple Data stream) machine having K processors, with local memory inter- 
connected by an interconnection network. As is the case for parallel external 
sorting algorithms [4], we also assume that the number of processors is sublinear 
with respect to the number of records in the file; that is, K <= log,N. The parallel 
algorithm has a time complexity of O(M * N/K + N), and its speedup ratio is 
optimal in the number of processors used. In addition, we relax the requirement 
that the record identifiers that satisfy a query must be available in advance and 
show how each processor can compute independently for a given record a unique 
cluster number that indicates the queries it satisfies using only O(N/K) space. 

This paper is organized as follows. In Section 2 we formulate the problem and 
review the SPLITMERGE clustering algorithm. Section 3 describes the P-tree 
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and its associated numbering scheme, which introduces the potential for paral- 
lelism in the cluster identification process. The PARALLEL SPLITMERGE 
algorithm is presented and analyzed for correctness and complexity in Section 4. 
Section 5 reports on a number of synthetic experiments we carried out to evaluate 
the performance of our algorithm in terms of the quality of the clustering 
produced. 

2. THE SERIAL ALGORITHM 

For our record-clustering problem we considered a file of N records and a set of 
M queries, (Qi, . . . , Qm ), to be processed against the file. We assumed that for 
each query the following statistics are available: its frequency of occurrence, 
and the identifiers (addresses) of the records which satisfy the query. Actually, 
(QI, . . . , QM ) is a subset of Q*, the set of all possible queries containing the most 
frequently requested queries. The objective function we want to minimize is: 

C = F F(Qi) * p(Qi) 
Where F(Qi) = Frequency of query Qi 
and P(Qi) = number of pages which (1) 

i=l contain records for the query Qi 

The serial clustering algorithm, SPLITMERGE, consists of two components: 
the logical phase and the physical phase. Basically, in the logical phase, 
records are assigned to clusters such that records that satisfy a given subset of 
(Q1, Qz, . . . , Qnn ] end up in the same cluster. Assume that we are processing 
the queries in some order Qil, Qiz, . . . , Qi,. When we consider query Qij, 
we will group together the records that satisfy this query but do not satisfy 
any of the preceding queries IQ;,, Qi2, . . . , QG-,), in order to reduce P(QG ). On 
the other hand, if there are some records that satisfy Q;, as well as a subset of 
(Qi,, Qi,, . . . , Qi,-,I, an existing cluster is split into two parts such that the 
intersecting set of records creates a separate cluster. 

Let RQ, be the set of records that satisfy Qi and r.a denote the identifier (or 
address) of record r. We also denote by &, the set of record identifiers that 
satisfy Q;, that is, Eoi = (r.a ] r E Ro; ]. The SPLITMERGE algorithm produces 
clusters of record identifiers that satisfy only a single query Qi, denoted by Qi, 
as well as clusters that satisfy Qi and another subset s of queries, where s C 
(1, . .+, M) - (; ), denoted by Qis. We shall refer to Qi as a primary cluster of Qi 
and any Qis as a secondary cluster of Qi. 

In the physical phase, we produce a mapping of clusters to fixed-size pages. 
For each query Qi, we attempt to assign to the same page, or neighboring pages, 
not only the records belonging to the primary cluster Qi, but also those belonging 
to its secondary clusters &;s. But since Qis = Qii(is) 9 where R stands for a 
permutation function, and the assignment to storage is done in a nonredundant 
fashion, we must decide which secondary clusters get materialized and which do 
not. 

If a query occurs very often, we want to minimize the number of pages accessed 
for that query. However, we must also consider the query set size, that is, the 
number of records satisfying a query, since the number of pages accessed when 
records are randomly placed approaches the query set size as shown in Yao [22]. 
To account for both these factors in the minimization of the objective function 
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(l), we arrange the queries in the following order: Qi a Qj (Q; precedes Qj ) if and 
only if F(Qi) * S(Qi) 1 F(Qj) * S(Qj), w h ere S (Qi), the query set size for Qi, is 
defined as the cardinality of RQi. The logical phase of SPLITMERGE processes 
the queries in this order, and as a result, only the secondary clusters whose index 
satisfies this precedence order are materialized, that is, 

1 

{r.a ] r E RB,, and r @J RQi,) 

@clip ,__., i, = where ik E (il, . . . , ij) and il E = {ii, . . . , i,) - (ii, . . . , ij) 
if Qi, (Y Qi, cx . . . 01 Qi, 

0 otherwise 

The superscript n in Qt,ipr,,,,G, for 1 5 n 5 M, denotes the position (order) of 
Qi,, the last query in the precedence order for which the logical phase of 
SPLITMERGE was completed. Note that at the end of the logical phase (that 
is, when n = IV), the cluster Qcil,..,,ij indeed contains only identifiers of the 
records satisfying Qi,, Q,, . . . , Qi,. Thus, we obtain Qi = @” (and similarly Q& = 
@“). On the other hand, during each iteration of the logical phase, an existing 
cluster QE,i, ,,_,, 1; will be split into Qi:: ,,_,, <,i,+l and Qi>t,...,i, if it has records in 
common with RQ,+,. However, this step is executed only if the size of Q7,i2,,,,,ij 
exceeds the physical page size, as our objective is to group related records on the 
same physical page, if possible. 

In addition to splitting an existing cluster, SPLITMERGE also incorporates a 
merge step for every query Qn. This is done to avoid the possibility of small 
secondary clusters, Qj”sT’, . . . , QJ’s;’ for j < n, being assigned to k different pages 
in the physical phase. Since Qj precedes Qn, earlier split steps are not able to 
detect whether these clusters are needed for answering Qn. If during iteration n 
we find that they are required, and their combined size does not exceed the 
physical page size, we merge them. 

The result of the physical phase of SPLITMERGE can be seen as a mapping 
A of N record identifiers to S pages of storage [12,13]. The actual transformation 
of the file from the old state corresponding to the pre-clustering configuration, 
described by a mapping Aold, to the new state, defined by A, is accomplished by 
a separate reorganization algorithm. In [ 121 and [ 141 we have introduced efficient 
incremental reorganization algorithms that allow for concurrent reorganization 
with user access to the file. 

As we stated earlier, a record-clustering approach can be viewed as comple- 
menting a directory structure that provides an index(es) to the different attributes 
appearing in the set of queries Q1, . . . , Qnn. In order to perform the reorganization 
efficiently, a page table PG can be used [9], which associates with every record 
identifier the page number on which it resides. Thus, between the directory and 
the data file, we introduce an additional level of indirection; the accession pointers 
in the directory [19] are not pointing to the data file anymore, but to the page 
table PG. This scheme has the advantage that any changes to the data file affect 
only the PG, and not the directory. 

Alternatively, if no index(es) on the attributes appearing in the queries are 
kept, we can construct a clustered index [lo] in the physical phase of SPLIT- 
MERGE in order to identify for each query Qi where its relevant records are 
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stored. We observe that such a clustered index is much smaller than an index of 
the various attributes in the queries. In particular, it suffices to store for each 
query Qi a beginning and end address of the pages, where its primary cluster Qi 
and secondary clusters Qis are stored and a similar list of addresses for the 
secondary clusters Q”(k), which exist, but for which QL,s is not materialized. 

3. THE PARTITION TREE AND ITS NUMBERING SCHEME 

In this section we describe the Partition Tree (P-tree) and the associated P-tree- 
numbering scheme, which form the basis for the parallel algorithm. By making 
no restrictions a priori on the cluster sizes in the split step, we introduce the 
potential for parallelism in the cluster decomposition process. 

The partition tree, like a decision tree, represents all possible clusters, including 
empty ones, that can be formed from a file by examining a given set of queries. 
The underlying structure of a P-tree is a binary tree, in which each level 
corresponds to a different query. After M queries have been processed against a 
file, the external nodes correspond to all the distinct clusters involving the given 
M queries. 

We associate with each node of the P-tree a cluster number. Each record, in 
turn, is now mapped to the unique cluster number of an external node in the 
following way. As the record is examined to determine whether or not it satisfies 
a given query, a bit is set to on/off in a fixed position corresponding to this query 
in the binary representation of the cluster number. This process is repeated for 
all queries, but the inherent parallelism is due to the fact that we can assign a 
cluster number to a record (on one processor) independently of assigning a cluster 
number to a different record (on any other processor). In addition, the P-tree- 
numbering scheme guarantees that a minimal amount of interprocessor com- 
munications is required to determine whether the resulting clusters should be 
merged or not. We now proceed to define more formally the P-tree and its 
associated numbering scheme. 

Definition 1. The Partition tree (P-tree) of a file F is a binary tree of height h 
representing all the clusters, including possibly empty ones, which are induced 
by h - 1 queries. Thus, the nodes at level i (; I h - 1) represent the clusters 
formed after examining the first i queries in the given precedence order. Let N’ 
be an arbitrary node at level i in this full binary tree. We associate with each N’ 
a set of record identifiers E(N’). The structure of the P-tree and the correspond- 
ing E(N’) are defined as follows: 

(1) The root node No always exists and R(N’) = F where F is the set of all 
record identifiers in F. 

(2) If R(N’-‘) # 0, then the children of Ni-’ exist and 
(a) ~(LEFTC!HILD(Ni-l)) = R(N’-‘) n & 1 5 i < h and 
(b) R(RIGHT~HILD(N’-1)) = R(Ni-1) - Rci 1 I i c h. 

(Note: Strictly speaking, the structure of the P-tree corresponds to a full 
binary tree, but for simplicity, we elect not to extend further empty nodes.) 
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LEVEL 

0 

0 IL21 0 (3.41 1% 61 (7) 3 

6 4 1 0 

CLUSTER NUMBER 

Fig. 1. Partition tree. 

As an example, let us consider the file F = (1, 2, 3, 4, 5, 6, 7) and the queries 
Q1 o( Qz (Y Q3 for which we have: &, = (1, 2, 3, 41, Eo2 = (1, 21, and &, = (5, 6). 
The corresponding P-tree of height 4 is illustrated in Figure 1, in which next to 
each node Ni is shown its set B(N’). 

At level 0, no queries have been processed, and the set R(N”) contains all the 
record identifiers in the file. At level 1, after Q1 has been processed, there exist 
two clusters (that is, ~(LEFTCHILD(N”)) = R(N”) n &, = 11, 2, 3, 4) and 
R(RIGHTCHILD(N’)) = R(N’) - &, = (5,6, 7)). Finally, after all three queries 
have proceeded, seven possible clusters are identified, out of which only four, 
corresponding to the paths Q1 Qz Q3, Q1 Q2 Q3, Q1 Q, Q3, and Q1 Q2 &, are nonempty. 

We now superimpose on the P-tree a numbering scheme that will enable us to 
assign independently to each record identifier a cluster number. Let us assume 
the P-tree of a file has h levels corresponding to h - 1 queries. With query Qi in 
the given precedence order, we associate the base cluster number 2h-1-i. Initially, 
all record identifiers are assigned 0 as their cluster number. At level i in the 
P-tree, for all record identifiers in Ro,, we add the base number 2h-1-r to their 
previous cluster numbers. Thus, the P-tree-numbering scheme can be described 
as given below. 

Definition 2. The P-tree-numbering scheme assigns a cluster number, denoted 
by CLUSTER-NO(N’), to each node N’ at level i in the P-tree as follows: 

(1) CLUSTER-NO(NO) = 0. 
(2) If Ni-’ has children then 

CLUSTER-NO(LEFTCHILD(N’-‘)) = CLUSTER-NO(N’-‘) + 2h-1--i 
CLUSTER-NO(RIGHTCHILD(N’-‘)) = CLUSTER-NO(N”-‘) 
for 1 5 i < h. 
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A AA A 
7 6 5 4 3 2 1 0 

Fig. 2. P-tree-numbering scheme. 

Figure 2 illustrates the P-tree-numbering scheme on a full binary tree of height 
4. Correspondingly, the nonempty external nodes of the P-tree in Figure 1 
correspond to clusters numbered 0, 1, 4, and 6. Let us denote with CLUSTER- 
NOW’) the set of cluster numbers associated with nodes at level i: 

CLUSTER-NO@,‘) = (CLUSTER-NO(W) 1 Ni is a node at level i ] 

From Definition 2, we obtain the following equality: 

CLUSTER-NO(L’) 
= CLUSTER-NO(L’-‘) u (j + 2h-‘-i lj E CLUSTER-NO(L’-‘)I. 

Furthermore, for the last level in the P-tree, that is, for i = h - 1, our numbering 
scheme implies the following: 

PROPERTY 1. Sibling leaves in the P-tree are assigned consecutive cluster 
numbers. 

An additional property of our numbering scheme will be used in the parallel 
clustering algorithm. 

PROPERTY 2. Given the cluster number C, of a node in a P-tree at level i, then 
the cluster number of its parent is LC,/2h-iJ * 2h-i, where h is the height of the 
P-tree. 

PROOF. From Definition 2, we know that if CLUSTER-NOW’-‘) = j, then 
the cluster number of its right child (if it exists) is j, and the cluster number of 
its left child (if it exists) is j + 2h-‘-i. Hence, we have to show that if we apply 
the above formula to the cluster number of either child, we obtain j; that is, 

tj/p-iJ * 2h-i = Lj + 2h-l-i/2h-il * 2h-i = j. 
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The preceding expression is equivalent to: 

Lj/2”-i j = Lj/zh-” + + J = j/2”+. 

It can easily be shown by induction that j is divisible by 2h-i [13], and hence the 
above equality is established. 0 

4. PARALLEL SPLITMERGE 

Our parallel clustering algorithm is designed for a SIMD (Single Instruction 
stream, Multiple Data stream) machine having K processors, each with its own 
memory and linked by an interconnection network. As in [3], we assume the 
existence of a route instruction that allows a given processor to read a memory 
location of an adjacent processor and store the contents in its own memory. 
The interconnection scheme is a linear order, that is, processor P’ is adjacent 
to Pj where j = i - 1 (modK) or j = i + 1 (modK). All processors are synchro- 
nized, but each processor has the capability of inhibiting the execution of the 
current instruction. As is the case in parallel external-sorting algorithms for 
large files [4, 151, we assume that the number of processors is sublinear with re- 
spect to the number of records in the file; that is, K 5 1ogJJ. We note that, in 
general, faster parallel algorithms can be obtained for SIMD machines having a 
shared memory, but this requires a number of processors that are linear, at least 
in the input size [4, 81, an assumption that is not very realistic for database 
systems. 

The parallel heuristic algorithm for the above SIMD model consists of four 
modules: SPLIT, SORT, and MERGE, which implement the logical phase, and 
ALLOCATE, which accomplishes the physical phase. Since the ALLOCATE 
procedure is a serial allocation scheme similar to the one presented in (121, we 
shall not discuss it further. The SPLIT and MERGE procedures are based on 
the P-tree and its numbering scheme, while the SORT procedure implements 
the parallel sorting algorithm developed in [3] for an SIMD machine with a mesh 
interconnection scheme. 

In the SPLIT phase of the parallel algorithm, we do not halt the splitting of a 
cluster if its size is less than or equal to the page size because the records forming 
a cluster may be distributed among a number of processors, and the communi- 
cations cost to determine the cluster sizes would be too great. The SORT and 
MERGE procedures are designed to remedy this problem, that is, to merge 
clusters back to the page size. 

As input to the SPLIT algorithm we have a file F that is being read in parallel 
by the K processors. One suitable hardware design would be a modified moving 
head disk that provides for parallel read/write [ 21. Each processor reads a portion 
Fj of the file and computes the vectors REC-ID’ and CLUSTER-NO’, containing 
the identifiers of the records in Fj and their cluster numbers. Specifically, 
processor Pj will store in REC-ID; [l : N/K] the identifiers of the records in 
positions (j - 1) * N/K + 1 through j * N/K in the file and the corresponding 
cluster numbers in CLUSTER-NOj[l: N/K]. (We assume for simplicity that 
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N/K is an integer.) The SPLIT algorithm is outlined below: 

Algorithm 1. SPLIT 

Input: F’, Q1 0: Qz a . . . 01 QM 
Output: REC-ID’ [l :N/K] 

CLUSTER-NO’ [l : N/K] 

For each F’ do in parallel 
Forp=ltoN/Kdo 

/* Initialization steps */ 
Read F’ (p); 

CLUSTER-NO’ [p] = 0; 
REC-ID’ [p] = (j - 1) * N/K + p; 

For i = 1 to M do /* once for each query */ 
If F’ [p] satisfies Qi 

then CLUSTER-NO’ [p] = CLUSTER-NO’ [p] + 2”-i 
end 

end 
end 

Let us consider the following example: 

Example 1. F = (1, 2, 3, 4, 5, 6, 7, 8), &, = (1, 3, 5, 71, &, = (1, 2, 5, 61, 
K = 2, and PAGESIZE = 4. 

The corresponding P-tree and the corresponding cluster numbers for this file are 
illustrated in Figure 3a. 

After the execution of the SPLIT algorithm, the configuration of the proces- 
sors’s memory is 

P’: REC-ID’[1:4] = 1, 2, 3, 4 P’: REC-ID2[1:4] = 5, 6, 7, 8 
CLUSTER-NO’[1:4] = 3, 1, 2, 0 CLUSTER-NO’[l : 41 = 3, 1, 2, 0 

Since we did not check the size of the clusters during the split process, we ended 
up with four clusters, all smaller than the PAGESIZE, which, in this case, equals 
four. To remedy this situation, we merge the sibling clusters to obtain the revised 
P-tree shown in Figure 3b. 

The basic idea behind the MERGE algorithm is similar to that of the buddy 
system [l] for memory management. We start with the original clusters corre- 
sponding to the nodes at the highest level in the P-tree and combine siblings if 
their combined size does not exceed the page size. This step is repeated for each 
level, up to level 0, or until no more clusters can be merged. 

The reason for restricting ourselves to merging sibling clusters only is to 
minimize the amount of interprocessor communication required. By performing 
a parallel sort algorithm, we can reassign the record identifiers to the processors’ 
memories based on a nonincreasing order of cluster numbers. Thus, by sorting 
the list of cluster numbers of the N records, the record identifiers with the largest 
N/K cluster numbers will be reassigned to the memory of P’, the identifiers with 
the next largest N/K cluster numbers will be reassigned to the memory of P’, 
and so on. The result of a parallel sort on the configuration of Example 1 results 
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l1.2.3,4.5.6.7,81 

A O 
A A’ 

(1.9 (3,7) 12.61 (4.8) 2 

3 2 1 0 

CLUSTER NUMBER 

Fig. 3a. P-tree for Example 1. 

(1.2,3,4,5,6,7,8) 0 

(1?3,5,7) 129 4,6,8) 1 

LEVEL 

2 0 

I I 

CLUSTER NUMBER 

Fig. 3b. Revised P-tree. 

in the following memory assignment for the two processors: 

P’: REC-ID’[1:4] = 1, 5, 3, 7 P*: REC-ID*[1:4] = 2, 6, 4, 8 
CLUSTER-NO’[l : 41 = 3, 3, 3, 2 CLUSTER-NO’[l : 41 = 1, 1, 0, 0 

As a result of Property 1, shown in Section 2, it follows that after the sort is 
executed, the record identifiers for sibling clusters are in consecutive memory 
locations of a processor, except for the situation in which a cluster may span the 
memory of two or more adjacent processors. Thus, as we shall see in more detail 
later, we can limit the amount of communication needed for routing instructions 
between adjacent processors. 

For the second step of our parallel clustering algorithm, we employ the parallel 
sorting algorithm developed by Baudet and Stevenson [3]. Their algorithm is 
basically a generalization of the odd-even transposition sort. Let us consider a 
partially sorted sequence of numbers, S = S, , S,, S3, . . . , SK. Each Si subsequence, 
consisting of r elements and stored in the memory of processor P’, is sorted, but 
the whole sequence S is not. During an odd step, processors Pi for i = 1, 3, 5, . . . 
are active; they merge the two subsequences Si and Si+, and then assign to Si the 
ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990. 



Step 1 Step 2 Step 3 Step 4 

S, :5, 7, 8 t- 3, 5, 1 3, 5, 7 1 1, 2, 3 1, 2, 3 

SP :3, 10, 11 8, 10, 1 .l 1, 2, 4 I’ 4, 5, 7 4, 5, 6 

S.1 :4, 6, 12 1, 2, 4 8, 10, 11 I+ 6, 8, 9 7, 8, 9 

sq : 1, 2, 9 J 6, 9, 12 6, 9, 12 J 10, 11, 12 10, 11, 12 
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first half of the resulting merged sequence (that is, the r smallest elements) and 
to h-1 the second half (that is, the r largest elements). During an even step, 
processors Pi for i = 2, 4, 6, . . . are active, and they repeat the same operations. 
An example of the parallel sorting algorithm is shown below. 

The details of the MERGE algorithm and its subordinated procedure, SPAN- 
NING, are illustrated below. To do the merging, we must first determine the 
parent cluster numbers for each cluster, using Property 2 shown in Section 2 
(Step 2.1). Next, we check that the combined size of sibling clusters is not greater 
than the page size by partitioning the vector PARENT-NO’[l :iV/K] into sets 
with an identical parent cluster number; that is, for each distinct p in the parent 
vector, we compute COMMON-PARENT’ (p) (Step 2.3). If the size of a partition 
COMMON-PARENT’ (p) is smaller than, or equal to, the page size, the merge 
of the descending sibling clusters is recognized; otherwise, the merge is undone 
by restoring the cluster numbers to their previous values (Step 2.5). This checking 
suffices if the parent cluster does not span adjacent processors. In addition, each 
processor computes FIRST’, FIRSTSIZE’, LAST’, and LASTSIZE’ (Step 2.2). 
FIRST’ and LAST’ are the highest and lowest parent cluster numbers in 
PARENT-NOj[l :N/K]. FIRSTSIZE’ and LASTSIZE’ denote the size of the 
clusters numbered FIRST’ and LAST I. The SPANNING procedure is invoked 
(Step 2.4) to check whether the records of a parent cluster span adjacent 
processors. Each processor Pj must check whether a parent cluster spans Pj and 
P’-’ and computes its combined size and, in addition, checks whether another 
parent cluster spans Pj and Pj+’ and repeats the same procedure. If the size of 
a parent cluster exceeds the page size, the cluster numbers must be reset to their 
previous values. 

We proceed now with a more detailed description of SPANNING. The 
SPANNING procedure for processor Pj begins by reading from the memory of 
processor Pi-’ the variables LAST’-l and LASTSIZE’-’ and from Pi+* the 
variables FIRST’” and FIRSTSIZE”‘. SPANNING then compares FIRST’ 
and LAST’-’ (Step 2). If they are equal, this indicates that the cluster spans 
processors Pi and Pi-‘, and the combined size (that is, FIRSTSIZE’ and 
LASTSIZE’-‘) must be compared to the page size. If the combined size is not 
greater than the page size, then it is a valid cluster, and no further action is 
necessary. When the sum equals the page size, we know that this cluster should 
not be combined with its sibling in a successive step. To prevent further combin- 
ing in later steps, the FIRST-SPAN-FLAG’ is set to false (Step 2.1), and FLAG’ 
is also set to false for each individual record contained in the cluster. These flags 
are also set in the case when the sum is greater than the page size. When the 
sum FIRSTSIZE’ + LASTSIZE-‘-’ exceeds the page size, then the proposed 
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cluster is too large. Hence, the two previous cluster numbers (that is, the sibling 
numbers) must be restored (Step 2.2). The PARENT-NOj[i] number, for each 
record i in the cluster being examined, is set to CLUSTER-NOj[i]. This is 
necessary, since in Step 2.5 of MERGE, the CLUSTER-NO’ vector is updated 
from the PARENT-NO’ vector to reflect the modified clusters (that is, the 
merging of two clusters into one). The same process is repeated for the right 
neighbor; that is, Pj compares LAST’ with FIRST’+‘, and so on (Step 3). In 
addition, if we find that the FIRST’ and LAST’ clusters on Pj cannot be merged 
any further with clusters on Pj-’ and Pi+‘, respectively, then SPAN-FLAG’ is 
set to false (Step 4). A value of false for SPAN-FLAG’ would inhibit the calling 
of SPANNING for processor Pj from the MERGE procedure. 

Algorithm 2. MERGE 

Input: CLUSTER-NO’ [l : N/K] 
output: Modified CLUSTER-NO’ [l : N/K] 
Variables: PARENT-NO’[l :N/K] = vector containing for each processor the 

cluster numbers of the parents in the P-tree corresponding to the 
entries in CLUSTER-NO’ [l : N/K] 

COMMON-PARENT’ (p) = {i ) PARENT-NO’[i] = p) 
FLAG’ [ 1: N/K] = Boolean vector; FLAG’ [p] becomes false when the 

cluster with number CLUSTER-NO’ [p] cannot be merged further 
FIRST’ = the highest number among the parent cluster numbers in 

PARENT-NO’ [ 1: N/K] 
LAST’ = the lowest number among the parent cluster numbers in 

PARENT-NO’ [ 1: N/K] 
SPAN-FLAG’ = Boolean; if it is false, then the procedure SPANNING 

will not be called. 
LASTSIZE’ = size of cluster whose number is LAST’ 
FIRSTSIZE’ = size of cluster whose number is FIRST’ 

Step 1: /* Initialization */ 
Set SPAN-FLAG’, FLAG’ [ 1: N/K], FIRST-SPAN-FLAG’, LAST- 

SPAN-FLAG’ to True in parallel; 
L c M /* the height of the P-tree is M + 1 */ 

Step 2: While FLAG’ [l : N/K] # False do in parallel 
Step2.1: Forr=ltoN/Kdo 

PARENT-NO’ [r] = LCLUSTER-NO’ [r]/2”+‘--L J * 2”+‘--L; 
Step 2.2: Determine FIRST’ and LAST’ for each processor; 

LASTSIZE’ = ) (i ) PARENT-NO’ [i] = LAST’ ) ) ; 
FIRSTSIZE’ = ) (i ) PARENT-NO’ [i] = FIRST’ ) ) ; 

Step 2.3: For each distinct p in PARENT-NO’ [l : N/K] do 
700 Determine COMMON-PARENT’ (p); 

(2.3.1): If there is an i in COMMON-PARENT’(p) such that FLAG’ [i ] = 
False 

then do for each i in COMMON-PARENT’ (p) 
Begin FLAG’ [i] = False. 

PARENT’[i] = CLUSTER-NO’ [;I; 
End 

else Begin 
(2.3.2): If ) COMMON-PARENT’ (p) ) 2 PAGESIZE 

then do for each i in COMMON-PARENT’ (p) 
FLAG’ [;I = False; 

(2.3.3): If ) COMMON-PARENT’ (p) ( > PAGESIZE 
then do for each i in COMMON-PARENT’ (p) 

PARENT’ [;I = CLUSTER-NO’[1‘]; 
End; 
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Step 2.4: If SPAN-FLAG’ = True and j < K 
then call SPANNING; 

Step 2.5: /* Reset cluster number values for the next iteration */ 
Fori=ltoN/Kdo 

CLUSTER-NOj[i] = PARENT-NO’ [i]; 
Step 2.6: L t L - 1; 

Algorithm 3. 

Step 1: 

Step 2: 

Step 2.1: 

Step 2.2: 

Step 3: 

Step 3.1: 

Step 3.2: 

Step 4: 

SPANNING (for processor P’ ) 

Read LAST’-’ and LASTSIZE’-’ (from processor P’-“s memory) 
Read FIRST’+’ and FIRSTSIZE”’ (from processor P’+“s memory) 
Note 1: P’ inhibits the execution of Step 2 and sets 

FIRST-SPAN-FLAG’ = False 
Note 2: Pk inhibits the execution of Step 2 and sets 

LAST-SPAN-FLAG!+ = False 

If (LAST’-’ = FIRST’) and FIRST-SPAN-FLAG’ then 
Begin 

If LASTSIZE’-’ + FIRSTSIZE’ 2 PAGESIZE then 
Begin 

For each i s.t. PARENT-NO’ [i] = FIRST’ do 
FLAG’ [i] = False; 
FIRST-SPAN-FLAG’ = False; 

End; 
If LASTSIZE’-’ + FIRSTSIZE’ > PAGESIZE then 

For each i s.t. PARENT-NO’ [i] = FIRST’ do 
PARENT-NO’ [i] = CLUSTER-NO’ [i]; 

End; 
If (LAST’ = FIRST’“) and LAST-SPAN-FLAG’ then 

Begin 
If LASTSIZE’ + FIRSTSIZE’” 2 PAGESIZE then 
Begin 

For each i s.t. PARENT-NO’ [i] = LAST’ do 
FLAG’ [i] = False; 
LAST-SPAN-FLAG’ = False; 

End; 
If LASTSIZE’ + FIRSTSIZE’” > PAGESIZE then 

For each i s.t. PARENT-NO’ [i] = LAST’ do 
PARENT-NO’ [i] = CLUSTER-NO’ [i]; 

End; 
SPAN-FLAG’ = FIRST-SPAN-FLAG’ OR LAST-SPAN-FLAG’; 

We now illustrate the interaction of the different modules of PARALLEL 
SPLITMERGE by looking at a complete example. 

Example 2. We consider a file with 20 records for which P = 1, 2, . . . , 20, 
and a page size of 3 records. We utilize four processors and do the clustering with 
respect to the four queries listed below in nonincreasing order of frequency 
* query set size: 

i&l, = (1, 3, 5, 7, 9, 11, 13, 15, 17, 19) 

R,, = (1, 2, 3, 4, 5, 6, 71 
RQ, = {l, 3, 8, 9, 10, 11, 13, 18, 191 

R, = (1, 2, 5, 9, 12, 14, 16) 

The configuration of the processors’ memory after execution of the SPLIT 
phase is illustrated in Figure 4, and the corresponding P-tree is shown in 
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RECORD- CLUSTER- RECORD- CLUSTER- RECORD- CLUSTER- RECORD- CLUWER- 

Fig. 4. Processor memory after SPLIT phase. 
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CLUSTER NUMBER 

Fig. 5. P-tree. 

Figure 5. At this point the parallel SORT algorithm is executed, resulting in the 
memory configuration of Figure 6. 

We now enter the MERGE phase, and since the RECORD-ID’ vectors will 
not change further, we no longer exhibit them. We examine, however, the 
CLUSTER-NO’, PARENT-NO’, and FLAG’ vectors, as well as the FIRST’, 
LAST’, and SPAN-FLAG’ variables defined in the MERGE and SPANNING 
algorithms. 

During the first iteration of MERGE, after steps 2.1 and 2.2 have been executed 
in parallel on all four processors, we have the configuration shown in Figure 7. 
During execution of step 2.3 on processor P4, we find that the size of a parent 
cluster (that is, cluster 0) exceeds the page size. Hence, PARENT-NO4 and 
FLAG4 are changed. In addition, processors P3 and P2 contain parent clusters 
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Fig. 6. Processor memory after SORTING. 
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Fig. 7. Processor memory during first iteration of MERGE. 

whose size equals the page size. To inhibit further attempts to merge these 
clusters during the next iterations, FLAG3 and FLAG’ are changed correspond- 
ingly. The changes made so far are depicted in Figure 8. During the execution of 
step 2.4, that is, the invocation of the SPANNING procedure, on processor P’ 
we find the LAST’ = FIRST’ = 10, and the combined size of the cluster is 4, 
which exceeds the page size. Thus, the corresponding FLAG’ and FLAG* entries, 
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P2 

PARENT-NO 2 CLUSTER- 

NO2 

FLAG 2 

Fig. 8. Processor memory modifications. 

as well as LAST-SPAN-FLAG’ and FIRST-SPAN-FLAG’, must be set to false. 
In addition, the entries in PARENT-NO’ and PARENT-NO’, corresponding to 
parent cluster number 10, are restored to the values of their original descendent 
cluster numbers. Since LAST’ # FIRST3, nothing more is done for processor P'. 
Procedure SPANNING invoked for processor P3 finds LAST3 = FIRST* = 2. In 
this case the combined size of the parent cluster equals the page size, so we just 
set the corresponding FLAG3, FLAG4 entries, and the LAST-SPAN-FLAG3 and 
FIRST-SPAN-FLAG* variables to false. The result, after SPANNING is fin- 
ished, appears in Figure 9. 

For the second iteration of MERGE, we see that processors P3 and P* will not 
execute step 2, since all FLAG3 and FLAG4 entries are set to false. After step 2.1 
is executed for processors P' and P2, we obtain the following changes, shown in 
Figure 10. During the execution of step 2.3 on processors P' and P2, we find that 
parent clusters 12 and 8, respectively, exceed the page size, and PARENT-NO’, 
FLAG*, PARENT-N02, and FLAG’ are changed as shown in Figure 11. Step 2.4 
will not be executed on processor P', since SPAN-FLAG’ is false. For processor 
P2, SPANNING is called, but since LAST2 # FIRST3, nothing is changed. After 
step 2.5 is executed, we are finished with the second iteration of MERGE. At 
this point all the entries in FLAG’, FLAG2, FLAG3, and FLAG4 are set to false. 
This condition terminates the execution on all processors. The final contents of 
the CLUSTER-NO’ and REC-ID’ vectors are displayed in Figure 12. 

The space requirements for the PARALLEL SPLITMERGE algorithm are of 
the order O(N/K) for each processor. We now want to show that the MERGE 
procedure and its subordinate procedure, SPANNING, terminate, and that they 
correctly combine successive sibling clusters, while the resulting cluster sizes are 
smaller or equal to the page size. 
ACM Transactions on Database Systems, Vol. 15, No. 4, December 1990. 



Parallel Algorithm for Record Clustering - 615 

NO1 

P3 P4 

PARENT-NO 3 CLUSTER- FLAG3 PARENT-NO 4 CLUSTER- FLAG 4 
NO3 NO4 

SPAN-FLAG ’ = FALSE 

Fig. 9. Processor memory after SPANNING. 
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Fig. 10. Memory after Step 2.2 of second iteration of MERGE. 
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Fig. 11. Memory after Step 2.3 of second iteration of MERGE. 
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RECORD- CLUSTER-RECORD. CLUSTER- RECORD-CLUSTER- RECORD- CLU!STER- 

Fig. 12. Result of MERGE phase. 

THEOREM. Algorithms MERGE and SPANNING terminate correctly under 
the assumption that N/K is larger than, or equal to, the page size. 

PROOF. We first show that it suffices that processor Pi attempts to merge 
sibling clusters with the help of one adjacent processor only, Pi+’ or Pi-‘. A 
problem that could develop is for, say, processors Pi and Pi+’ to fail to recognize 
a combined cluster that is larger than the page size, and, similarly, for Pj+l and 
PI+’ to fail in this task, but when taken together over Pi, Pitl, and Pi+2, the 
cluster size does, indeed, exceed the page size. The combined cluster spans over 
three processors, and given our condition that N/K 2 page size processor Pj+l 
would have set the FLAG’+’ vector to faise in step 2.3 of MERGE; consequently, 
the FLAG’ and FLAGi+2 vectors would have been set to false in step 2.4 of 
MERGE. Thus, it is not necessary for a given processor to communicate to more 
than one processor, that is, P j+’ A similar argument applies when PJ attempts . 
to merge two different sibling clusters with Pi-‘. Hence, a given processor, Pi, 
needs to communicate only with two adjacent processors, Pi-’ and Pi+‘. Next, 
we want to show that after a maximum of M - 1 iterations of MERGE, the 
FLAG’ vectors are set to false; hence the algorithm terminates. During a given 
iteration of MERGE, if two sibling clusters cannot be combined, their correspond- 
ing entries in FLAG-’ (and maybe FLAG’+‘) are set to false in steps 2.3.2-2.3.4. 

During the next iteration of MERGE, step 2.3.1 guards against the possible 
combination of nonsibling clusters. Consider, for example, two clusters C’ and 
C 2 at level i in the P-tree which cannot be combined, and their “would-be” sibling 
WS at level i - 1 (that is, a cluster having the same grandparent in the P-tree). 
Due to the numbering scheme imposed on the P-tree, the next iteration of 
MERGE would find that the parent cluster numbers for WS coincide with those 
of either C1 or C2 and, consequently, also set the entries in the FLAG vector 
corresponding to WS to false. If the maximum number of iterations, M - 1, were 
executed, we would be left with two clusters, each spreading over the memory of 
at least one processor; hence all the FLAG’ must have been set to false. 0 

We estimate the time complexity of PARALLEL SPLITMERGE by looking 
at its three major components. In the SPLIT algorithm, each processor reads in 
parallel a subfile of size N/K and recomputes for its corresponding records their 
cluster numbers after each of the given M queries. Thus, the SPLIT phase 
requires O(M * N/K) time. The parallel SORT algorithm, which we use in the 
second phase, has a time complexity of O(N * log N/K) + 0 (N), with the second 
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term accounting for the number of routing instructions. When K = logN, we 
obtain for the SORT algorithm a time of O(N). The while loop, that is, step 2, 
of the MERGE algorithm, is executed at most M times. During each iteration, a 
given processor can determine in time proportional to its local memory size, 
O(N/K), whether the sibling clusters should be merged further, with the invo- 
cation of SPANNING also requiring at most O(N/K) time. Thus, the MERGE 
and SPANNING phases have a time complexity of O(M * N/K). 

Overall, the time complexity of PARALLEL SPLITMERGE is O(M * 
N/K + N). For K 5 1ogN 5 M, the asymptotic speedup ratio of our algorithm, 
versus the original (serial) SPLITMERGE, is K, which is optimal. 

5. EXPERIMENTAL RESULTS 

In this section we report on a number of synthetic experiments we carried out to 
evaluate the performance of PARALLEL SPLITMERGE in terms of the quality 
of the clustering produced. The PARALLEL SPLITMERGE was implemented 
on a conventional architecture, i.e., using a single processor, since the objective 
was to estimate the average number of page accesses for the clustering produced. 
In [ 121 we reported on a number of experiments with our original SPLITMERGE 
algorithm. Our first objective was to compare the average number of page accesses 
obtained by SPLITMERGE versus PARALLEL SPLITMERGE for different 
data and query configurations. As expected the difference was negligible; in the 
worst case, PARALLEL SPLITMERGE was off 1.5 percent, a small price to pay 
for the algorithm speedup. 

An additional set of experiments was performed to compare the performance 
of PARALLEL SPLITMERGE with the Adaptive Record Clustering algorithm 
of Yu et al. [23, 241, as well as with a randomly generated solution. 

The Adaptive Record Clustering method of Yu et al. [23, 241 is a very general 
technique for adaptive database design [7]. Like our method, it works for arbitrary 
queries but does not require keeping statistics about query frequencies. However, 
the Yu et al. algorithm requires that a list of active record addresses, and their 
positions in the line (-co, +m), be kept in random access memory. As each query 
occurrence is executed, the positions of the records satisfying the query are 
modified. First, the records are moved closer toward their centroid; in a subse- 
quent step, they are moved apart from other records in order to permit identifi- 
cation of clusters. We describe below in more detail version 2 of the Yu et al. 
algorithm, which we denote by ARCB: 

Step 0. Initialization. Each accessed record Ri is initially assigned an arbi- 
trary position Xi on the line (-co, +m). 

Step 1. Moving Records Together. For each processed query Qm, let Xm(i), 
1 5 i 5 K be the positions of the records satisfying it. The centroid of the records 
accessed by Q,,, is defined as: 

CX = ; X,&K. (3) 
i==l 

The records in the query set are moved toward their centroid with a distance 
proportional to their currrent distance from it. DXmCi,, the distance by which the 
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record with position Xm(i) is moved, is defined as follows: 

DX,,,(i, = A * ) Xmci, - CX 1 * Benefit(Q,)/HUVMAX (4) 

where the benefit of query Qi, Benefit(Q,), is given by 

Benefit(Q,) = Costa - Costl(Qm), and 
Costl(Q,,,) = the minimum number of pages necessary to store the K 

records of the query set, and 
Costa = the expected number of page accesses necessary to retrieve 

the K records in the current configuration. 

Similarly, the parameter, BENMAX, stands for the maximum benefit among 
all queries considered in a time interval, and A is a constant that we originally 
set to 0.5. As far as computing Cost2(Qm), we assume that in the nonclustered 
configuration the K records are uniformly distributed among the S pages of the 
file, each containing N/S records, with N standing for the total number of records 
in the file. 

Thus, we can make use of the formula developed by Yao [22], to obtain: 

Cost2(Q,)=Sx 
K N(1 - l/S) - I + 1 1 N-I+1 * 

(5) 

Step 2. Shift accessed records away. If the centroid of the records satisfying 
Q,,, is less than the centroid of all accessed records, then each of the records in 
the query set of Q,,, is shifted to the left by a distance equal to the average 
distance by which these K records were moved in Step 1. Otherwise, these records 
are shifted to the right by the same distance. 

Step 3. Sort and form clusters. All the accessed records are sorted in ascending 
order of their positions. If the distance between two adjacent records is less than 
a distance, DK, defined as the average distance between adjacent records in the 
sorted list, then both records are assigned to the same cluster; otherwise a new 
cluster is identified. 

Step 4. Assignment of records to pages. This step is similar to the physical 
phase of the SPLITMERGE algorithm. Our experiments were divided into a 
number of classes, from which we discuss below a sample of four: 

NO. OF NO. OF NO. RECORDS 
CLASS RECORDS QUERIES PER QUERY 

U’O Of) W-W 

I 1000 100 100 
II 1000 100 250 
III 1000 50 100 
IV 1000 50 50 

The number of records specified in an occurrence of query type Q,,,, denoted 
by S(Q,,,), is a random number in the range [l, MAX]. Once the cardinality of 
the query set has been determined, a number of S(Qm) record identifiers, drawn 
from the range [l, N], are generated for a particular query occurrence. 

The query type frequencies were also synthetically produced and varied from 
a highly skewed distribution to one in which the frequencies were the same for 
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Table I. Query Distributions 

Distributions Queries Frequencies 

1 l-5 0.1042 

6-20 0.0208 
21-100 0.0021 

2 l-10 0.0309 

11-30 0.0206 

31-60 0.0052 

61-100 0.0031 
3 l-10 0.018 

11-60 0.01 
61-100 0.008 

4 l-60 0.0105 

61-90 0.0095 

91-100 0.0084 

5 l-100 0.01 
6 l-25 0.0222 

26-50 0.0111 
51-75 0.0056 
76-100 0.0011 

7 l-5 0.0205 

6-30 0.0154 
31-35 0.0144 

36-70 0.0082 
71-100 0.0051 

8 l-5 0.05 
6-25 0.02 

26-75 0.005 
76-100 0.004 

9 l-l 0.1003 
2-51 0.015 

52-100 0.003 
10 l-5 0.08 

6-30 0.01 
31-100 0.005 

all queries. For each class of experiments, we used the ten query distributions 
exhibited in Table I. For the PARALLEL SPLITMERGE algorithm, we ran 
1000 query occurrences for each experiment, given class and query distribution. 
With regard to the ARC2 algorithm, an additional concern to be considered was 
the convergence of the method [24]. We selected time intervals of 400 query 
occurrences, drawn from the same distributions in Table I, and after each interval 
we computed the resulting allocation to physical storage. If the difference between 
two consecutive allocations (mappings) to storage was small [24], the algorithm 
terminated; otherwise, we repeated the steps for a new time interval. 

The experimental results for Class 1 are depicted in Table II. The table contains 
the average number of page accesses per query for a given clustering approach, 
as well as the percent difference between the corresponding pairs of methods. 
The average number of page accesses necessary for a random solution (abbrevi- 
ated as RN) was obtained using Yao’s formula [22] in step 1 of the ARC2 method. 
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Table II. Comparing Parallel and ARC2 Methods for Class I (Average Pages/Query) 

ARCZ/PARALLEL PARALLEL/RN ARCB/RN 
PARALLEL ARC2 RANDOM DIFF DIFF DIFF 

1 13.71 24.81 39.53 80.96 65.32 37.24 
2 19.17 31.72 35.91 65.47 46.62 11.67 
3 25.74 32.04 35.51 24.48 27.51 9.77 
4 27.28 32.02 35.24 17.38 22.59 9.14 
5 27.53 32.25 35.56 17.14 22.58 9.31 
6 19.08 30.54 33.55 60.06 43.13 8.97 
7 23.46 31.38 34.80 33.76 32.59 9.83 
8 19.15 30.76 36.73 60.63 47.86 16.25 
9 18.76 28.36 33.43 51.17 43.88 15.17 

10 18.80 21.62 37.89 46.91 50.38 27.10 

Average % difference between ARCB/PARALLEL: +45.80% 
Average % difference between PARALLEL/RN: -40.25% 
Average % difference between ARCP/RN: -15.45% 
Average no. of pages per query for PARALLEL: 21.27 
Average no. of pages per query for ARCP: 30.15 

In Table II, we see that the PARALLEL SPLITMERGE algorithm outper- 
forms ACSZ in all trials. On the average, PARALLEL SPLITMERGE produces 
a solution that uses 40 percent fewer page accesses than the random solution, 
while ARC2 produces a solution that uses 15 percent fewer page accesses. We 
noticed that with the ARC2 method records tend to bunch up in a few clusters. 
A secondary reason why ARC2 may not yield better results is due to its treatment 
of infrequent queries. If the occurrences of infrequent query type are processed, 
then this would cause ARC2 to pull certain records together. However, if these 
records were also required earlier by other more frequent queries, then these 
records would be pulled apart from the centroids of the more frequent queries. 
Thus, records belonging to a number of queries (that is, the secondary cluster of 
a primary cluster) are likely to end up in positions quite apart on the line, which 
increases the number of page accesses. 

For the Class 2 experiments, represented in Table III, the maximum number 
of records that can be requested by a query is increased from 100 to 250, while 
the size of the database does not change. The decrease in performance is caused 
by a greater overlap between the query occurrences. ACS2 and PARALLEL 
SPLITMERGE improve the random solution on the average by only 7 and 24 
percent respectively. Nevertheless, a 24 percent improvement is appreciable. 

In Table IV (Class 3), we decrease the number of queries to 50, with a maximum 
of 100 records per query and, in Table V (Class 4), we decrease further the 
maximum number of records per query to 50. This has the effect of decreasing 
the overlap among queries, in comparison to Class 1, and we can see a marked 
improvement in both ARC2 and PARALLEL SPLITMERGE. The random 
solution is improved by 53 percent for Class 3, by 67 percent for Class 4 by 
PARALLEL SPLITMERGE, and by 28 and 48 percent, respectively, by ARCB. 
One additional observation about ARC2 for Classes 3 and 4 is that, instead of 
the records congregating in a few clusters, most of the records formed individual 
clusters. 
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Table III. Comparing Parallel and ARC2 Methods for Class II (Average Pages/Query) 

ARCB/PARALLEL PARALLEL/RN ARCP/RN 
PARALLEL ARC2 RANDOM DIFF DIFF DIFF 

1 30.86 51.97 69.84 68.41 55.81 25.59 
2 47.26 58.62 62.99 23.25 24.97 6.94 
3 53.99 61.19 61.98 13.34 12.89 1.27 
4 56.59 57.62 61.77 1.82 8.39 6.72 
5 56.19 60.46 61.56 7.53 8.72 1.79 
6 50.23 61.53 63.99 22.50 21.51 3.84 
7 54.06 62.87 63.69 11.30 15.12 1.29 
8 43.73 62.57 66.24 43.08 33.98 5.54 
9 48.80 56.36 61.89 15.49 21.14 8.94 

10 40.44 60.41 68.30 49.38 40.79 11.55 

Average % difference between ARCB/PARALLEL: +25.61% 
Average % difference between PARALLEL/RN: -24.33% 
Average % difference between ARCP/RN: -7.35% 
Average no. of pages per query for PARALLEL: 48.21 
Average no. of pages per query for ARC2: 59.36 

Table IV. Comparing Parallel and ARC2 Methods for Class III (Average Pages/Query) 

PARALLEL ARC2 

1 9.78 14.69 34.57 50.20 71.71 57.51 
2 14.71 25.80 36.58 75.39 59.77 29.47 
3 22.74 33.12 38.54 45.65 41.00 14.06 
4 23.80 33.88 39.35 42.35 39.52 13.90 
5 23.64 32.82 39.71 38.83 40.46 17.35 
6 15.80 27.82 37.43 76.08 57.78 25.67 
7 19.81 28.35 37.59 43.11 47.30 24.58 
8 15.10 26.13 37.22 73.05 59.43 29.80 
9 14.65 24.74 33.16 68.87 55.81 25.39 

10 14.56 20.59 35.41 41.41 58.88 41.85 

ARCZ/PARALLEL PARALLEL/RN ARCB/RN 
RANDOM DIFF DIFF DIFF 

Average % difference between ARCS/PARALLEL: +55.49% 
Average % difference between PARALLEL/RN: -53.17% 
Average % difference between ARCB/RN: -27.96% 
Average no. of pages per query for PARALLEL: 17.46 
Average no. of pages per query for ARCB: 26.79 

It is now appropriate to point out some of the subtle differences between 
PARALLEL SPLITMERGE and ARCB. Our algorithm requires that the query 
statistics be collected and classified before the algorithm can be run, while ARC2 
is an adaptive algorithm that computes the record positions and shifts them as 
part of the retrieval process. Our method, then, requires that we identify syn- 
tactically identical queries that retrieve the same set of records, and we are 
currently investigating this problem. The time complexity of our method is 
O(M * N/K + N), where M is the number of the most frequently incurred 
queries. Since no information about query frequencies is kept in the ARC2 
algorithm, its steps must be repeated for all queries (i.e., the additional cost to 
retrieval due to running the clustering steps is O(M’ * N), where M’ is the total 
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Table V. Comparing Parallel and ARC2 Methods for Class IV (Average Pages/Query) 

ARCB/PARALLEL PARALLEL/RN ARC2/RN 
PARALLEL ARC2 RANDOM DIFF DIFF DIFF 

1 5.54 7.83 26.34 41.34 78.96 70.27 
2 7.01 12.50 23.33 78.32 69.97 46.42 
3 8.31 12.97 21.01 56.08 60.43 38.27 
4 8.53 10.98 20.17 28.72 57.72 45.56 
5 8.62 12.08 20.01 40.14 56.92 39.63 
6 7.51 13.19 23.06 75.63 67.43 42.80 
7 7.83 12.69 21.40 62.07 63.41 40.70 
8 6.81 11.08 23.50 62.70 71.02 52.85 
9 7.01 11.65 22.81 66.19 69.27 48.93 

10 6.54 9.72 23.89 50.15 72.62 59.31 

Average % difference between ARC2/PARALLEL: +56.13% 
Average % difference between PARALLEL/RN: -66.78% 
Average % difference between ARCP/RN: -48.47% 
Average no. of pages per query for PARALLEL: 7.37 
Average no. of pages per query for ARCZ: 11.47 

number of queries). In our method, the cost in page accesses of reading the input 
file in parallel is O(N/K * PAGESIZE). Although the ARC2 method makes the 
assumption that the record positions are all available in random access memory, 
this may not be feasible for large databases; hence, additional page accesses may 
occur here too. 

In summary, we have seen that in all tests our algorithm outperforms ARCB, 
the only other method dealing with arbitrary queries. Our method produces 
substantial savings when applied to an environment with a nonuniform distri- 
bution of query frequencies and/or with relatively little overlap among the 
queries. 

6. CONCLUSION 

We have presented an efficient parallel algorithm for record clustering that can 
run on a SIMD machine whose processors are connected via an interconnection 
network. We have introduced the P-tree and its numbering scheme, which allows 
each processor to perform the initial allocation of records to clusters; we have 
shown that by restricting the merging to sibling clusters, we can reduce the 
amount of interprocessor communication and that the difference in performance, 
versus the original SPLITMERGE algorithm, is negligible. 

Our algorithm can be applied to an environment consisting of arbitrary queries 
whose frequencies of request and selectivities can be estimated. In practice, it 
suffices to restrict ourselves to the most frequently appearing queries only, which 
should eliminate a large proportion of them. Our experimental results have shown 
that our method produces substantial savings when applied to an environment 
with a nonuniform distribution of query frequencies and with relatively little 
overlap among the queries. 

Important questions to be addressed, in the general context of database design, 
are how much information and which statistics about the query structure should 
be kept and how should this information be stored. We envision that our method 
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could be easily applicable to object-oriented databases, for which the permissible 
query structure is known in advance and stored by the system as part of the 
object description. However, even for more traditional database systems, the 
statistics about query frequencies are needed in order to perform different 
optimization tasks, such as index selection. As we have shown, our algorithm 
outperforms ARCS, the only other record-clustering method that deals with 
arbitrary queries, and lends itself to easy parallelization. 

We view record clustering not as a one-time operation, but as an operation 
that may need to be executed periodically, if the query structure changes sub- 
stantially. In using the adaptive clustering approach of Yu et al. [24], the 
algorithm needs to be run continuously, in order to detect whether a reorgani- 
zation is warranted. We are currently investigating how the additional informa- 
tion available in our approach (that is, query frequencies and query set sizes) can 
be used to determine the points in time when a change in the query structure 
warrants a new clustering and subsequent reorganization of the file. 
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