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Abstract 

In this research, a systematic approach was introduced to establish a high quality and 

comprehensive material database. The method was applied to a great number of 

materials in different material categories. The database provides a solid base for 

hygrothermal simulation and further research. 

A method was developed to derive the generic material from the material cluster 

comprising specific materials with similar characteristics. A novel approach was 

developed by using the generic material to extrapolate less incomplete material data 

set to full data set that is suitable for the hygrothermal simulation. The approach 

extends the material database, and hence enhances the usability of existing 

hygrothermal simulation tools. 

Moisture storage characteristics (i.e., the moisture retention function) are one of the 

most difficult aspects to measure in developing a high quality database. In this study, 

a method was developed to simplify the procedure for moisture storage measurement 

with the aid of statistical analyses. For the building brick and plaster/mortar 

categories, results show that properly selected three measurements in the 

overhygroscopic range and one measurement in the hygroscopic range were sufficient 

to get the knowledge of moisture storage characteristics.  

A probabilistic approach based on the Monte Carlo method was developed and 

incorporated into a current hygrothermal simulation tool, to assess hygrothermal 



 

 

 

performance of building enclosure assembly against different performance criteria. 

The uncertainties from different sources, including material properties, boundary 

coefficients, indoor conditions, dimensions of the material layers, and orientation of 

the construction, were accounted for. The rank correlations of basic material 

parameters in different material categories were obtained and incorporated in the 

Latin hypercube sampling.  

The probabilistic approach was then applied to assess the durability, thermal 

efficiency, and mold growth risk of a retrofitted wall assembly. The most influential 

input variables against the specific performance criterion were identified by 

sensitivity analysis. 
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Chapter 1 Introduction 

1.1 Background 

Application of heat, air, and moisture (HAM) simulation to predict and assess the 

hygrothermal performance of the building enclosure / assembly is widely used 

nowadays. Such simulation helps the designer to understand how the construction 

responds to the surrounding environments. Based on the hygrothermal analysis, the 

designer can identify the possible performance problems, estimate the energy flow 

through the enclosure, and optimize the design. A good knowledge of the HAM 

modeling and the accurate input data are crucial to obtain reliable results. The models 

describing heat, air, and moisture transport phenomena in the enclosure/ assembly 

have been well developed in previous studies. However, there is a severe lack of 

high-quality material data for the simulation use. Only a limited amount of material 

data are available in current simulation tools. Therefore, a material database that 

includes a great number of representative building materials on the market, and a 

systematic approach to organize and characterize new materials for the purpose of 

hygrothermal performance simulation are needed by both the developers and users of 

the simulation tools.  

A full material characterization requires detailed material properties, i.e., moisture 

transport and storage data. Many international standards have been well established to 

measure these properties, but full measurements are quite time-consuming and 
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laborious. Some tests, e.g., sorption isotherm, take several weeks. The long test period 

increases the experimental expense and prolongs the analysis process. Thus, a method 

is needed to simplify the measurement procedure while still maintaining acceptable 

data quality.  

In the literature, there is much data that is not sufficiently complete or is of a low 

quality, e.g., including only basic parameters or incomplete material functions. Such 

data is not adequate for the purpose of simulation, but still can be considered a 

valuable resource. Therefore, an approach is required to qualify the incomplete 

material data to be used for the simulation. 

In the simulation, the input variable normally comes from a design value, so called 

“best fit” data and the corresponding simulation is called a deterministic model. 

However, input variable is subject to uncertainty. For instance, the indoor humidity is 

influenced by many factors, e.g., ventilation rate and user behavior, and it is 

impossible to exactly describe it by a fixed function.  

Uncertainty is the deviation from the design value, which is not accounted for by a 

deterministic model. In the field of building physics, the uncertainties arise from 

different aspects: material properties, workmanship, the climatic condition, etc. 

The influence of the uncertainty in the input variable on the output variable can be 

assessed by altering one variable in each simulation, the so called differential method. 

With this method, the individual influence of an input variable can be identified. The 
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differential method is suitable in the case that the number of the input variable is 

small or the designate input variable is exactly known. But the interaction effects of 

all the input variables are not detected.  

Alternatively, another method is to vary all or part of the variables simultaneously, the 

so called Monte Carlo simulation, where the overall influence of input variables is 

observed and evaluated. Uncertainties in the inputs are propagated to the output by the 

simulation model. The variation range and the distribution of the input variable will 

influence the possible span of the associated output variable. Therefore, the reliability 

of the input variable should be checked before other steps. e.g., is the correlation 

between the thermal conductivity and density reproduced in the samples? 

The performance of a building construction may be assessed in many aspects, e.g., the 

durability, the thermal efficiency and mold growth risk. Moisture plays a crucial role 

in the damage of the construction and reduction of effective thermal insulation. The 

drastic variation of the moisture on the building façade could produce excessive stress 

and lead to surface crack and spalling. Moreover, mold often observed in the high 

moisture condition is harmful to residents. The uncertainties in the analysis inputs will 

have more or less impact on the performance evaluation.  

A deterministic method lacks the ability to provide a reliable performance assessment 

in case the uncertainties in the inputs are accounted for. Thus, a probabilistic approach 

is preferred. In addition, the contributions of the input variables on the variation of the 
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output are not the same. It is necessary to identify the influential variables in the 

design stage, so the uncertainties in the influential input variables can be controlled in 

a limit range to improve the accuracy of the output of the simulation. 

To fill the knowledge gaps, the present study was designed to answer the following 

specific research questions: 

1) is there a modeling approach suitable to characterize a great number of materials 

for establishment of a comprehensive material database? 

2) is it possible to quality the incomplete material data in the literature to be used for 

the simulation tools? 

3) is there an approach able to simplify the procedure for the complex moisture 

storage measurements but still guarantee data quality and reliability?  

4) how can a probabilistic approach can be developed and incorporated in existing 

hygrothermal tools to assess the hygrothermal performance of the building enclosure 

assemblies against different evaluation criteria? 

1.2 Objectives and Scope of Research 

The objectives and scope of this research are: 

1. Establish a comprehensive material database with a great number of high-quality 

material data for use by hygrothermal simulation tools. 
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A systematic method was introduced to classify and characterize the materials. By 

applying this method, a great number of building materials were evaluated and 

characterized in different categories, including the anisotropic materials. The 

correlation matrixes of material parameters in different material categories were 

obtained based on the measurements of a number of the material data. 

2. Develop an approach to simply the procedure for moisture storage measurements. 

By the application of cluster analysis, the measured moisture storage data of 20 bricks 

and 47 plaster/mortars were aggregated into different clusters, respectively. 

Regression analysis was conducted to derive the relationships between moisture 

contents in the same cluster. By only measuring one moisture content, the others in 

the same cluster were predictable by the regression models. The relationships between 

moisture content and basic material parameters were explored.  

3. Develop a novel approach to make use of the incomplete material data reported 

elsewhere so as to extend the material database.  

A method to identify the material clusters, in which individual materials have similar 

characteristics, was developed. The criterion variables in the material clustering were 

defined. An approach to derive the generic material from the identified material 

cluster was developed. The generic material represents a type of the specific materials 

that have similar characteristics. A method to qualify the incomplete material data 

was developed by applying the generic material and regression analysis.  
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4. Develop a probabilistic approach to be incorporated into a current hygrothermal 

simulation tool to assess the hygrothermal performance of the building enclosure 

assemblies. 

Different sources of uncertainties in the hygrothermal simulation were addressed. The 

uncertainties in the model parameters were quantified. The probability density 

functions of material parameters were explored. The relations between material 

parameters and between material parameters and material functions were discussed. 

Those relations were incorporated in the Latin hypercube sampling. A probabilistic 

approach was developed to assess the hygrothermal performance of the building 

enclosure assemblies against different evaluation criteria. Sensitivity analysis was 

performed to identify the influential variables against the output of interest. 

1.3 Dissertation Organization 

Chapter 2 reviews the fundamental knowledge in the heat, air, and moisture 

simulation. Existing models in terms of moisture storage and the moisture transport 

are introduced and compared. Current hygrothermal simulation tools are summarized 

in brief. Finally, the need to build a comprehensive material database for the 

simulation use is discussed. 

Chapter 3 describes a systematic method to organize, classify, and characterize the 

materials. The experimental methods to measure the material properties and the 

modeling approach to derive material functions are introduced. A material database is 



 

7 

 

established to provide significantly more new material data in different material 

categories. The rank correlation matrixes of material parameters in different material 

categories are derived. 

Chapter 4 presents the application of statistical methodologies in the hygrothermal 

material characterization. First, a method is developed to simplify the procedure for 

the moisture storage measurements of the building brick and plaster/mortar. Then, an 

approach to identify the material cluster from a set of material data is developed. 

Further, the method to derive generic material from the identified material cluster is 

introduced, for the purpose of qualifying the incomplete material data.  

Chapter 5 describes the different sources of the uncertainty in the hygrothermal 

simulation. The uncertainties in the associated variables are quantified. Then, the 

probability density functions of material parameters are explored. Two sampling 

techniques are introduced. Finally, sensitivity analysis techniques suitably applied for 

this study are discussed and compared.  

Chapter 6 presents a probabilistic approach that implements the propagation of 

uncertainty in the analysis inputs through the simulation model to the analysis output. 

The relationships between material parameters and between material parameters and 

material functions are discussed. Those relationships are incorporated in the Latin 

hypercube sampling. Different criteria for evaluating hygrothermal performance of 

the building enclosure assemblies are discussed.  
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Chapter 7 exemplifies the developed probabilistic approach to assess the 

hygrothermal performance of a retrofitted wall assembly in terms of durability, 

thermal efficiency and mold growth risk. The most influential variables against the 

specific performance evaluation criterion are addressed by applying sensitivity 

analysis. 

Chapter 8 summaries the major conclusions in this research work and provides 

recommendations for the future work. 
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Chapter 2 Literature Review 

In this chapter, basic knowledge of heat, air, and moisture transport in porous material 

is first reviewed. Then, moisture storage and transport phenomena are described and 

the modeling approaches are introduced. In the end, the available hygrothermal 

simulation tools are compared in brief and the necessity to build a comprehensive 

material database is discussed. 

2.1 Heat, Air, and Moisture Transport in Porous 

material 

2.1.1 Representative Elementary Volume 

The structure of the pore system in a porous medium is complex and difficult to 

describe at the microscopic level. Alternatively, the spatial averaged quantities at the 

macroscopic level ignoring the actual geometry of the microscopic pore structure can 

be considered in modeling the physical phenomena. The continuum model describes 

the heat and mass transfer at the macroscopic level based on the Representative 

Elementary Volume (REV) approach, which replaces the microscopic geometrical 

and physical properties of the real porous medium by the macroscopic properties 

depending on the time and spatial coordinate (Descamps1997). The average of a 

quantity E in the phase of α over the REV is expressed as: 

1 ( )
REV

REV
VREV

E x E dV
V

α αγ= ⋅∫                                                   (2.1) 
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The integration over the entire spatial domain of the REV may include the portion 

where no phase α exists. So an indicator γ (x) is introduced, with the value of 1 if the 

position is within the phase of α and the value of 0 if not.  

For a homogenous material, the selected size of the volume determines the variation 

of the properties. The smaller the selected volume, the larger variation in the 

properties. The size of the REV is typically related to the pore size distribution. The 

REV can be defined as the smallest volume at which the macroscopic value of a 

property is independent of the size, shape and the orientation of the volume (Bear 

1975). By analogy with the REV, the representative elementary area (REA) is the 

minimum area needed so that measurements are independent of the sample size and 

account for spatial variations. Figure 2-1 shows a REV in solid, liquid and gas phases 

in a porous medium.  

If the studied phase has a moving velocity relative to a stationary coordinate system, 

the density of a quantity E will be a function of both position and time, ρE(x, t). The 

temporal change of the conserved quantity is: 

E E Ed dx
dt x dt t
ρ ρ ρ∂ ∂

= +
∂ ∂

                                                      (2.2) 

If the REV is defined in a stationary reference system with a sufficiently small mean 

velocity of the selected phase, the velocity term dx/dt is set equal to zero and the REV 

becomes a “local system”. The mathematical equations, introduced in the following 

sections, are based on the “local” REV. 
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Solid materix

Liquid phase

Gas phase

Representative 
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Volume(REV)

 

Figure 2-1 Representative Elementary Volume (REV) in a porous medium (consisting of 
impermeable solid matrix, liquid phase with water and soluble chemicals, and gas phase 
including dry air and water vapor) 

2.1.2 Balance Equations  

Balance equation is based on the fact that the rate of change in time of a conserved 

quantity within the REV must be equal to the sum of all the incoming and outgoing 

fluxes together with the source/sink production rates. Equation 2.3 gives the general 

form of the balance equation: 

 ,
REV

E
E E
k i REV

ik

j
t x

ρ
σ

∂ ∂ ⎡ ⎤
= − +⎢ ⎥∂ ∂ ⎣ ⎦

∑ ,                                                (2.3) 

where j is the quantity flux, E is the general quantity, k is the spatial coordinate index,  

i is the flux index (e.g., mass and energy), and E
REVσ is the source/sink term of the 

quantity. 

Some assumptions in the formulation of the heat, air, and mass balance equations 

should be noted. 

• Distortions of the solid material matrix are neglected. 
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• The gas phase is incompressible and only the laminar gas flux is considered. 

The volume fraction of the gas phase is constant. 

• The driving forces derived from the thermodynamics of gas mixtures are also 

valid in the REV. 

• The conversion of kinetic energy of the gas phase to internal energy by 

compression and friction is neglected. 

Moisture mass balance 

Without ice formation, moisture exists in the phase of liquid water and water vapor. 

Therefore, the moisture mass balance equation is a merged two- phase equation. The 

moisture mass balance relates the rate of change of moisture mass density over time in 

REV to advective liquid water flux, advective water vapor flux, diffusive water vapor 

flux, as well as moisture generation source/sink.  

, , ,

l v

REV l v v l v

m
m m m m
k adv k adv k diff REV

k

j j j
t x

ρ
σ

+

+
∂ ∂ ⎡ ⎤= − + + +⎣ ⎦∂ ∂

,                                    (2.4) 

where l v

REV

mρ +

 is moisture density in REV ( 3
REVkg/m ), ,

lm
k advj  is advective liquid water 

flux ( 2
REAkg/m s ), ,

vm
k advj  is advective water vapor flux ( 2

REAkg/m s ) , ,
vm

k diffj  is diffusive 

water vapor flux ( 2
REAkg/m s ), and l vm

REVσ +

 is moisture source/sink in REV ( 3
REVkg/m s ).        

Air mass balance 

The air mass balance relates the rate of change of air mass density to the sum of net 

rate of advective and diffusive dry air flux, as well as source/sink of the dry air. In a 
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barycentric reference system, diffusive dry air flux and diffusive water vapor flux 

have the same magnitude, but opposite direction. This balance equation is usually set 

equal to zero since the air needs very short time to become constant in the porous 

medium, compared to other quantities (e.g., temperature or moisture). 

, ,

a
a v a

m
m m mREV
k adv k diff REV

k

j j
t x

ρ σ∂ ∂ ⎡ ⎤= − − +⎣ ⎦∂ ∂
,                                           (2.5) 

where am
REVρ  is mass density of dry air in REV ( 3

REVkg/m ), ,
am

k advj  is advective dry air 

flux ( 2
REAkg/m s ), ,

vm
k diffj  is diffusive water vapor flux ( 2

REAkg/m s ), and am
REVσ  is dry air 

mass source/sink in REV ( 3
REVkg/m s ).      

Energy balance 

Assuming temperature in the REV is at equilibrium in all phases, the energy balance 

is associated to the heat flux conducted through the material matrix, the energy carried 

by advective liquid water flux and advective gas flux (including dry air and water 

vapor), as well as vapor diffusion flux. In addition, an external energy source/sink is 

also included.  

, , , ,( )gl v

u
mm mQ uREV

k diff l k adv g k adv v a k diff REV
k

j h j h j h h j
t x

ρ σ∂ ∂ ⎡ ⎤= − + + + − +⎣ ⎦∂ ∂
,                 (2.6) 

where u
REVρ  is internal energy density in REV ( 3

REVJ/m ), ,
Q
k diffj  is conduction 

(diffusive) energy flux ( 2
REAJ/m s ), lh  is specific internal energy of liquid water 

( J/kg ), gh  is specific internal energy of gas phase ( J/kg ), ah  is specific enthalpy 
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of dry air ( J/kg ), vh  is specific enthalpy of water vapor ( J/kg ), u
REVσ  is Energy 

source/sink in REV ( 3
REVJ/m s ).                       

2.1.3 Constitutive Equations  

Balance equations introduce several fluxes, which describe the transport of heat, air 

mass, liquid water and water vapor in the porous material. These fluxes can be 

defined by constitutive equations, expressed by the product of the driving force and 

the associated transfer coefficient.  

Heat transport 

According to Fourier’s law, heat flux by conduction is proportional to the temperature 

gradient, given in equation 2.7. 

,
Q
k diff

k

Tj
x

λ ∂
= − ⋅

∂
,                                                              (2.7) 

where λ (W/m·k) is the thermal conductivity of the material. Depending on the 

moisture content level, λ is determined by the thermal conductivity of dry material 

and thermal conductivity of liquid water. In addition, temperature condition of the 

material may also have an influence on λ.  

Air mass transport 

The advective flux of the gas phase is related to the gas pressure gradient and the gas 

permeability, Kg. In addition, the buoyancy or gravitational effect of the gas phase is 

accounted for by the term ρg gk.. 
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,
gm g

k adv g g k

p
j K g

x
ρ

∂⎡ ⎤
= − ⋅ +⎢ ⎥∂⎣ ⎦

                                                    (2.8) 

The advective air mass flux is specified by the product of dry air mass concentration 

in the gas phase and the advective flux of the gas phase. 

, ,
ga a mm m

k adv g k advj jρ= ,                                                              (2.9) 

where am a v
g

a v a

p R
p p R

ρ = ⋅
+

  is dry air mass concentration in the gas phase (kg/kg), 

,
gm

k advj is advective flux of the gas phase ( 2
REAkg/m s ), pv is partial pressure of water 

vapor in gas phase (Pa), pa is partial pressure of dry air in gas phase (Pa), Ra is gas 

constant of dry air (J/kg·K), Rv is gas constant of water vapor (J/kg·K).  

The diffusive air mass flux has the same magnitude as diffusive water vapor flux, but 

opposite direction. 

Moisture mass transport 

The total moisture flux in the porous material is comprised of advective liquid water 

flux, advective water vapor flux and diffusive water vapor flux. 

Advective liquid water flux 

As shown in Figure 2-2, when a narrow capillary is inserted into an open liquid 

container, the liquid level in the capillary is usually different from that in the 

container due to capillary force, which is the pressure difference between the gas 

phase and the liquid phase.  
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α

r r

α

α < 90 α > 90  

Figure 2-2 Schematic drawing of capillary phenomena in cylindrical capillaries 

Young-Laplace equation defines the capillary pressure in a cylindrical capillary as a 

function of water surface tension σl, contact angle α and capillary radius r, given in 

equation 2.10 (The derivation of Young-Laplace equation is in Appendix A). 

Depending on the contact angle, the meniscus is either downwardly concave (α<90˚), 

e.g., water as the liquid in tube made of hydrophilic materials, or upwardly convex 

(α>90˚), e.g., mercury as the liquid or water as the liquid in a tube made of 

hydrophobic materials (e.g., most synthetics and water-repellent surfaces). 

2 cos( )l
g l cp p p

r
σ α

− = − =                                                    (2.10)   

Above equation indicates that absolute value of capillary pressure increases inversely 

with the radius of the capillary. The larger the radius of capillary, the smaller capillary 

suction force. When the capillaries with different radii are connected to each other, 

the smaller capillaries with higher suction force will draw off the water out of the 

larger capillaries until their meniscus have the same radius of curvature or the larger 

capillaries are empty (Krus 1996). 
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Assuming isobaric condition in gas phase and no positive water pressure, the 

advective liquid water flux can be determined by the product of the liquid water 

conductivity and the gradient of capillary pressure.  

, ( )lm c
k adv l l l k

k

pj K g
x

θ ρ
⎡ ⎤∂

= ⋅ +⎢ ⎥∂⎣ ⎦
,                                                 (2.11)  

where Kl (θl) is the liquid water conductivity (s), which is strongly dependent on the 

pore structure and moisture content level, as well as the temperature condition. 

By employing the moisture content as the motive potential, the advective liquid water 

flux can be expressed by: 

, ( )lm l
k adv l l l

k

j D
x
θρ θ ∂

= − ⋅ ⋅
∂

,                                                      (2.12) 

where Dl (θl) is liquid water diffusivity (m2/s), which depends on moisture content 

level and character of the pore medium, ρl is liquid water density (kg/ m3). 

Advective water vapor flux 

The advective water vapor flux is determined by the concentration of the water vapor 

mass in the gas phase and the advective flux of the gas phase. 

, ,
gv v mm m

k adv g k advj jρ= ,                                                             (2.13) 

where vm v a
g

a v v

p R
p p R

ρ = ⋅
+

 is water vapor mass concentration in the gas phase (kg/kg).  
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Diffusive water vapor flux 

Under isobaric condition, according to Fick’s law, water vapor diffusion can be 

described as a transport process proportional to the vapor pressure gradient. In case 

diffusion occurs in the free air, this process can be expressed by equation 2.14. 

,
,
v v airm v

k diff
v k

D pj
R T x

∂
= − ⋅

⋅ ∂
,                                                         (2.14) 

where Dv,air is vapor diffusivity in still air (m2/s). 

Schirmer (1938) gives an empirical equation to account for vapor diffusivity in still 

air as a function of temperature and air pressure. 

5 1.810
, 2.306 10 ( )

273.15v air
p TD
p

−= × ⋅ ⋅ ,                                          (2.15) 

where p0 is standard air pressure 101,325 (pa) and p is the ambient air pressure. 

In the porous material, water vapor diffuses less than it does in the still air because of 

the resistance due to the tortuosity and porosity of the material. This phenomenon can 

be described by a factor called vapor diffusion resistance factor μ, which indicates 

how many times less vapor can diffuse through the material than through the still air. 

The vapor diffusion coefficient of a porous material is defined by: 

μ
airv

matv

D
D ,

, =                                                                (2.16) 
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Substituting equation 2.16 into 2.14 yields the water vapor diffusion flux within a 

porous material. 

,
,
v v airm v

k diff
v k

D pj
R T xμ

∂
= − ⋅

⋅ ⋅ ∂
,                                                      (2.17) 

where ,v air
v

v

D
K

R Tμ
=

⋅ ⋅
 is the water vapor conductivity/permeability (s). 

2.2 Moisture Storage and Transport Characteristics 

Moisture influences the stability and durability of the building constructions and it is 

considered one of the major factors leading to the building damages, e.g., the 

corrosion and condensation. In addition, mold growth, which is the harmful to the 

human health, is highly dependent on the moisture level. Moisture in building 

materials is mainly in the form of water vapor, liquid water or both of them. The study 

of moisture characteristics in porous material involves two aspects: moisture storage 

and moisture transport.   

2.2.1 Moisture Storage Characteristics 

Moisture storage characteristics demonstrate the ability of a building material to 

preserve the moisture that is in equilibrium with the surrounding environments. 

Moisture storage in the pores can be characterized either by a potential of relative 

humidity θ (φ) or by a potential of capillary pressure θ (pc), shown in Figure 2-3. Both 

potentials are connected by Kevin equation (2.18), which describes the change of the 
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free enthalpy of water vapor and liquid water due to the curved liquid/vapor interface. 

The derivation of this equation is in Appendix B. 

( ) lnc l vp R Tϕ ρ ϕ= − ⋅ ⋅ ⋅ ,                                                      (2.18) 

In addition, Young-Laplace equation (2.10) gives the relation between capillary 

pressure and pore radius, thus allows the connection between the moisture storage 

characteristics and pore volume distribution.  
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Figure 2-3 Moisture content as a function of relative humidity (left) and capillary pressure 
(right)  

2.2.1.1 Moisture content range 

Moisture content range is composed of two regions: the hygroscopic range and the 

overhygroscopic range. 

• The hygroscopic range characterizes the moisture range up to a relative 

humidity of 95 to 98%. Determination of the equilibrium moisture content in 

this range is usually obtained by a sorption isotherm test. 
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• The overhygroscopic range follows the hygroscopic range and reaches up to 

the effective saturation moisture content. The moisture content sharply 

increases in this region and moisture in the porous material is mainly in the 

form of the liquid phase. The measurement of equilibrium moisture content 

can be achieved by a pressure plate test.  

The moisture adsorption in a capillary-active porous medium can be described by a 

process in which this medium continuously reacts to the moist air, At roughly 15% 

relative humidity, a monomolecular coating is formed on the inner surface. As relative 

humidity increases, more molecules attach on the pore wall to form the 

multi-molecular layer. Up to 50% relative humidity, the multi-molecular coating 

linearly increases (Krus 1996). Further increases in the moisture level will lead to 

capillary condensation in small pores. 

2.2.1.2 Hysteresis effect  

Typically, moisture storage characteristics are different in the adsorption and 

desorption process. The moisture difference between two processes is caused by the 

hysteresis effect due to many factors. Besides other factors, three major effects are 

pore space geometry, air entrapment and contact-angle. Pore space geometry can 

produce the so called ink-bottle effect, which is due to structural differences in the 

pore diameter and shape, resulting in a moisture content difference in the adsoprtion 

and desorption process. Entrapped air in the pore reduces the ability of a porous 
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medium to contain moisture. And finally, the contact angle determines a material’s 

ability to produce an advancing and a receding water front at the solid-liquid 

interface. In addition, sorption history is also important to determine the present 

moisture content in the material. 

2.2.1.3 Moisture retention function     

Moisture storage characteristics can be described by a moisture retention function, 

which is able to connect and smooth the scattered measured data to form a continuous 

and complete curve. The closed-form retention function is widely used. The number 

of function or modality is determined from pore volume distribution. The functional 

parameters are adjusted to fit the measured data.  

The moisture retention function was originally developed in soil science. Van 

Genuchten (1980) introduced a uni-modal function to characterize the moisture 

retentions of the soils. Based on Van Genuchten model, Durner (1994) proposed a 

multi-modal function. Those functions are applicable in building physics. In addition, 

several functional approaches are well developed to describe the moisture storage 

characteristics of building materials (Künzel 1995; Carmeliet 2002; Häupl 2003; 

Grunewald 2003).  

The moisture potential in the model can be either relative humidity, or capillary 

pressure, or both of them. Carmeliet et al. (2002) compared different functions to the 

measured data and found that the multi-modal function can achieve better accuracy 
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than the uni-modal function. With more modals in the function, the required 

functional parameters also correspondingly increase. So the appropriate number of 

modals needs to be decided with the consideration of the accuracy of fitness and the 

number of parameters. 

Different moisture retention functions are summarized in Table 2-1. The same 

notation is used to represent the moisture content although different authors use their 

respective symbols in the model. The multi-modal model from Durner (1994) requires 

the iterative adjustment of parameters to minimize the difference between the fitted 

values and measured data. The weighted sum of Gauss distribution functions from 

Grunewald et al. (2003) can well fit the measured data in the whole moisture content 

range, and the parameters in the functions can be easily determined according to the 

measured moisture storage data.  

Table 2-1 Moisture retention functions and their descriptions 

Authors Function Description 

Van Genuchten 
(1980) 

( )
1 ( )

s r
c r mn

c

p
P

θ θθ θ
α

−
= +

⎡ ⎤+⎣ ⎦
 

with 1 1/m n= −

Uni-modal model used for the 
approximation of the moisture 

retention curve. Not flexible for 
the multi-pore material 

Durner 

(1994) 
1

( ) 1
i

i

mk
nr

c i i c
is r

p w pθ θθ α
θ θ

−

=

− ⎡ ⎤= = +⎣ ⎦− ∑

With 1iw =∑ , 1 / 1i im n+ =   

The related n and m cannot 
provide a unique value. Not well

fit in the hygroscopic range 

Künzel(1995) 
( 1)

cap
b
b

ϕθ θ
ϕ

−
= ⋅

−
 

Uni-modal model used for the 
approximation of the moisture 
retention curve. Not flexible or 

accurate 
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Carmeliet 

(2002) ( )

lim lim

(1 1/ )

( )

                         1

n
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θ θ ϕ θ θ

α
− −

= + − ⋅
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Two driving forces in different 
moisture ranges, the parameter 

θlim is difficult to define 

Grunewald et al. 

(2003) 1
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Every parameter has a physical 
meaning and can be directly 

estimated from measurements. 
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2.2.2 Moisture Transport Characteristics 

Moisture transport in porous material involves different mechanisms from the dry 

region into the saturation region. In the hygroscopic range with a low relative 

humidity, water vapor diffusion is the only form of moisture transport. As relative 

humidity increases, capillary condensations in the small pores form the liquid 

short-cuts, which enhance water vapor diffusion. Thus, water vapor transport still 

dominates moisture transport. As moisture content further increases, previously 

isolated liquid short-cuts are connected to form a continuous liquid water phase. As a 

consequence, the available space in pore structure for water vapor diffusion is 

dramatically reduced. Liquid water transport starts to dominate moisture transport. 

When moisture content reaches the effective saturation, the connected pores are 

entirely filled with liquid water and there is no path for water vapor diffusion.  
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The methods to measure and model water vapor and liquid water transports in porous 

material are summarized as follows. 

2.2.2.1 Water vapor transport 

Water vapor transport consists of advective and diffusive water vapor transports. The 

advective water vapor transport has a minor contribution to the whole moisture 

transport due to the low air permeability of most building materials. It is usually 

neglected unless highly permeable materials are used (i.e., fiberglass insulation batt). 

Thus, water vapor transport in the porous material is mainly by diffusion. The 

diffusive water vapor flux in the porous material is given in equation 2.17.  

The water vapor transmission test is used to measure the water vapor diffusion rate 

under different humidity conditions under specific temperature. 

2.2.2.2 Liquid water transport 

The liquid water transport can be described as a diffusivity method with moisture 

content as the driving potential, or as a conductivity method with capillary pressure as 

the driving potential.  

Liquid water diffusivity  

With moisture content as the governing variable, one-dimensional liquid transport in 

porous medium under isothermal conditions can be expressed by a nonlinear diffusion 

equation.  
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where Dl(θl) is the liquid water diffusivity as a function of moisture content (m2/s). 

The determination of liquid water diffusivity requires the moisture content profile, 

which can be obtained from either water absorption or drying test. Currently, many 

non-destructive techniques are available to obtain the transient moisture content 

profile, e.g., gamma-ray attenuation method or nuclear magnetic resonance.  

Once the moisture content profile is known, with the application of the Boltzmann 

transformation x tλ = , equation 2.19 can be reduced to an ordinary differential 

equation: 

2 ( ( ) ) 0l l
l l

d dd D
d d d

θ θθ λ
λ λ λ

+ =                                                  (2.20) 

With initial and boundary conditions: 0lθ θ= for ∞→λ ; l capθ θ=  at 0=λ .                     

Equation 2.20 has only one solution: the characteristic curve. All moisture profiles 

collapse to form only a single curve in the θ (λ) scale. The moisture profiles in a 

calcium silicate plate during water absorption test and the corresponding Boltzmann 

transformed data are shown in Figure 2-4 (Carmeliet 2004). 

The moisture diffusivity from water absorption test can be determined by integrating 

equation 2.20 with respect to λ: 
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Figure 2-4 Moisture content profiles in the calcium silicate plate subjected to water absorption 
test (left) and the corresponding Boltzmann transformed data (right) (Carmeliet 2004) 

Roels et al. (2004) compared six different non-destructive techniques (the 

NMR-technique, the MRI technique, the γ-ray attenuation technique, the capacitance 

method, the X-ray projection method, and the TDR-technique) to analyze moisture 

flux in the calcium silicate plate and ceramic brick by scanning their moisture content 

profiles during water absorption tests. Carmeliet et al. (2004) analyzed the uncertainty 

in determination of the liquid water diffusivity using the Boltzmann transformation 

method and proposed a methodology to improve the accuracy of the liquid water 

diffusivity from moisture content profiles measured in a water absorption test. 

The measurement on moisture content profile is quite sophisticated and 

time-consuming. Many researchers pursued simple approaches to approximate the 

liquid water diffusivity.  
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Kumaran (1999)

Gamma-ray results

Krus and Künzel (1993)

 
Figure 2-5 Approximation of average liquid water diffusivity by basic parameters from water 
absorption test (modified graph from Kumaran 1999) 

As presented in Figure 2-5, Kumaran (1999) compared the liquid water diffusivity 

calculated from simple water absorption measurements with the values determined by 

sophisticated methods (e.g., the gamma-ray method), and drew the same conclusion 

as krus and Künzel (1993): the liquid water diffusivity calculated from water 

absorption coefficient together with capillary saturation moisture content can give a 

good approximation of the magnitude of the average liquid water diffusivity. The 

drawback of this approximation is that the calculated diffusivity is a constant value, 

independent on the moisture content. 

The liquid water diffusivity can be parametrically described by exponential functions. 

Several functions have been proposed during the last few decades (Künzel 1995; Pel 

1995; Krus and Holm 1999; Häupl and Fechner 2003; Carmeliet 2004). Most 

functions used capillary saturation moisture content and water absorption coefficient 

to derive the moisture dependent liquid water diffusivity. Scheffler et al. (2007) 
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compared different liquid diffusivity functions by using simulations to reproduce the 

water absorption and drying tests. He found that for a material with a separate pore 

system most functions could catch the process of the first stage of water absorption 

but deviate from the second stage of water absorption and the drying process (Figure 

2-6). There are no universal parameters suitable for all the functions. 

 
Figure 2-6 Comparison of measured and calculated water absorption (left) and drying (right) 
behaviors by different diffusivity functions for aerated concrete (Scheffler et al. 2007) 

The moisture diffusivity is the sum of liquid water diffusivity and water vapor 

diffusivity. The moisture diffusivity exhibits a non-linear decrease in a lower moisture 

content range and reaches the lowest value at the transition point, where moisture 

transport dominated by water vapor becomes moisture transport dominated by liquid 

water. Further increase of moisture content leads to a quasi-exponential increase of 

moisture diffusivity (Carmeliet 2004). Some authors found that a single exponential 

function cannot accurately describe the moisture diffusivity in the whole moisture 

range, so two or more exponential functions are suggested in the different moisture 

content ranges (Descamps 1997; Brocken 1998; Carmeliet 2004). 
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Liquid water conductivity 

Unlike the diffusivity method, the determination of liquid water transport by the 

conductivity method requires the knowledge of moisture storage characteristics. The 

conductivity method is widely applied in soil science (Van Genuchten 1980; Durner 

1994): A relative liquid conductivity is first derived from the moisture retention 

curve. By adjusting this relative liquid conductivity to match measured data at 

reference saturation moisture content, the absolute conductivity function in the whole 

moisture content range is obtained. This approach usually overestimates the liquid 

water conductivity in the lower moisture content range. 

Carmeliet et al. (1999) proposed a multi-scale network approach to derive liquid 

water conductivity of porous building materials covering the hygroscopic and 

overhygroscopic ranges under isothermal conditions. This method applied standard 

experiments to model the combined liquid water and water vapor transfer over a wide 

saturation range. The network approach used the water vapor permeability of dry 

material as the matching value to scale the relative conductivity function to an 

absolute value. The maximal conductivity is adjusted to match the liquid water inflow 

rate determined from the water absorption test. This method can model the hysteresis 

effect due to the air entrapment. However, the calculation process performed by 

employing network approach is quite complicated and requires much effort. So it is 

not appropriate for characterizing a large amount of materials to establish a material 

database.  
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Grunewald et al. (2003) introduced an engineering model in which the pore domains 

in the medium were separated into a serial-structured pore domain and a parallel- 

structured pore domain. The water vapor and liquid water had different transport 

characteristics in these two structured pore domains. For a medium with the volume 

larger than the REV, the water vapor diffusivity was dependent on the moisture 

content, the ratio of the serial-structured pore volume to the parallel-structured pore 

volume, as well as the water vapor diffusion resistance factor. The relative liquid 

water conductivity function governed by capillary pressure gradient was first derived 

through the bundle of tubes model. The absolute conductivity function is then 

obtained by matching the relative curve to the conductivity at effective saturation 

moisture content.  

Scheffler (2007) extended Grunewald’s work and developed a mechanistic model 

which allowed the flexible adjustment of liquid water conductivity and water vapor 

diffusivity in the whole moisture content range by some standard experiments, e.g., 

water absorption and drying tests.  

Links between liquid water conductivity and diffusivity 

Liquid water diffusivity can be transformed from liquid water conductivity with the 

application of reversed moisture retention curve.                                        

1 ( )( ) ( ) c l
l l l l l

l

dpD K
d

θθ ρ θ
θ

−= ⋅ ⋅ ,                                                (2.22) 
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where ( )c l

l

dp
d

θ
θ

is determined by the derivative of the reverse moisture retention 

curve. 

It needs to be noted that the quality of the derivative of the reverse moisture retention 

curve is dependent on the methods of spline interpolation between the measured 

moisture contents (e.g., linear spline and exponential spline). In addition, the spline 

interpolation may lead to some numerical problems. For instance, the nearly vertical 

interpolation performed between the measured moisture contents in Figure 2-7 would 

yield extreme values in equation 2.22. 
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Figure 2-7 Spline interpolation between the measured moisture contents yielding numerical 
problem 

2.3 HAM Modeling Tools and the Need to Build a 

Comprehensive Material Database 

Currently, there are many HAM modeling tools available for the users to predict 

hygrothermal performance of building enclosure assemblies. Some of them can only 

deal with one-dimensional simulation, while others have the ability to run two- and 
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three-dimensional simulations. Those models are different on the driving potentials 

(vapor pressure, relative humidity, moisture content or capillary suction stress), 

numerical techniques (finite control volume or finite elements), flow type 

(steady-state, quasi-static or dynamic), discretization strategies, time integration, etc. 

Woloszyn and Rode (2008) and Ramos et al. (2010) reviewed current hygrothermal 

modeling tools available for the public, i.e., IDA-ICE, HAM-Tools, HAMLab, 

MOIST, MATCH, hygIRC-1D, WUFI-plus, DELPHIN, and summarized their 

capabilities and limitations. 

Material modeling plays an important role in the analysis of the hygrothermal 

performance of the building enclosure assemblies. The requirement on the quality of 

material data is dependent on the models and assumptions adapted in the simulation 

tools. For the model with the application of Glaser method, capillary moisture 

transport and moisture dependent material properties are ignored. The more complex 

the material modeling approach, the higher requirement on the material data quality. 

To acquire a high quality material data requires a large amount of measurements, and 

the corresponding cost will increase. Thus, currently, only a limited number of 

material data are available in the simulation tools. Often, it is hard to find an 

appropriate material for the simulation. On the other hand, indiscreetly choosing a 

material from the built-in material database of the simulation tools will reduce the 

reliability of the simulation result. 
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Different tools may employ distinct modeling approaches, i.e., for liquid water 

transport, some tools use diffusivity method assuming liquid transport is driven by 

moisture content gradient, while others use the conductivity method assuming liquid 

transport is driven by capillary pressure gradient. This increases the encumbrance to 

share material data between different laboratories or simulation tools. Moreover, 

material functions in the simulation tools are only given as a curve in the graph, and 

the detailed values usually cannot be assessed by the user. 

So far, only a few project (Annex24 1996; MASEA 2007) and researchers are 

committed to the development of a material database (Grunewald et al. 2002; Ramos 

et al. 2012). However, the number of the studied materials is still inadequate. A 

comprehensive material database containing most of the widely used building 

materials on the market is urgently required.  

2.4 Summary 

The fundamental knowledge of heat, air, and moisture transport in the porous material 

was reviewed. A good understanding of those phenomena enables a better explanation 

on the hygrothermal response of the building constructions.  

Different material models in terms of the moisture storage and moisture transport 

were reviewed and compared. Most models need either too many parameters or the 

parameters that are hard to define. To be able to evaluate a large number of materials 

for establishing a comprehensive material data, a material modeling approach should 
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be easily implemented and its parameters should be easily defined according to simple 

measurements. 

The material database project, up until this point, lacked a systematic method to 

classify and identify the materials, and there are no consistent standards to evaluate 

and characterize the materials. 

Various simulation tools have been developed in the last three decades. Many new 

features have been implemented to deal with more complex problems. However, the 

upgrade on material database seems to be lagging behind, which limits the usability 

and capability of the simulation tools. An advanced HAM modeling tool should 

include enough material data for use.  

The above mentioned issues will be addressed in Chapter 3. A systematic approach is 

introduced to organize, classify and characterize the materials.  
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Chapter 3 Establishment of a High Quality 

and Comprehensive Material Database 

3.1 Introduction 

A coupled heat, air, and moisture simulation relies on the proper input data. Besides 

climatic conditions, boundary conditions and contact conditions between different 

construction layers, high quality material data are crucial to obtain the reliable result. 

Material data are composed of two aspects: basic data and functionalized data. Basic 

data include some single parameters, e.g., density and thermal conductivity. 

Functionalized data presents an amount of values derived from material models, e.g., 

the moisture retention curve.  

This chapter starts from the introduction of material data organization, followed by 

the description of experimental methods to obtain material properties. Subsequently, a 

modeling approach to derive material functions in the full moisture range and 

corresponding calibration process are illustrated. By the application of the above 

procedure, a material database with a great number of high quality material data is 

established for the simulation use. 
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3.2 Material Data Organization 

3.2.1 Material Category 

In addition to material properties, the material identification information, e.g., its 

category and the producing method, gives insight into a material’s natural 

characteristics. Such information should be included in the material data file. One 

example is presented in Figure 3-1.  

Identification English German French
Category 1 03
Category 2
Category 3
Producer Wienerberger

Material Name Brick Wienerberger Ziegel Wienerberger Brique Wienerberger
ProdID
ProdMethod extruded
Charge/Batch
ProdDate 2000

Investigator IBK TU Dresden
SampleID TW-NMZ
Sampling randomly selected
SamplingDate 10. Jul. 2002  

Figure 3-1 Material identification information 

Good data organization is convenient to quickly search and investigate materials. For 

easy organization, each material is classified into certain material categories. Table 

3-1 lists total thirteen material categories.  

Comparing to the Masterformat (CSI 2011), which assorts the materials according to 

their roles in the construction, this category list more straightforwardly classifies the 

building materials by their natural characteristics, as well as their usages. Each 

material will be assigned to at least one but no more than three categories. For 

instance, in Figure 3-1, category number 03 in Category1 indicates brick 

Wienerberger is allocated to the building brick category. Calcium silicate board 
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belongs to both the insulation material category and building board category, thus 

category number 06 and 07 will be written in Category1 and Category2, respectively. 

Table 3-1 Material category for data organization 

Category Material description 

01 Coating  
02 Plaster/ mortar  

03 Building brick  

04 Natural stone  

05 Cement containing building material  

06 Insulation material  

07 Building board  

08 Wood  

09 Natural material  

10 Soil  

11 Cladding panel and ceramic tile  

12 Foil and waterproofing product  

13 Miscellaneous  

3.2.2 Material Data Level 

Three material data levels are defined according to the different data processing 

stages. 

• Raw data: measured laboratory numbers from each single specimen. No data 

processing involved. 

• Summary data: statistical data with mean, standard deviation, maximum and 

minimum values calculated from the raw data. Summarized in one data sheet. 

• Functionalized data: processed summary data by application of material 

characterization models. Used for simulation. 
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Figure 3-2 Flow chart of material data processing 

The flowchart of material data processing is shown in Figure 3-2. To acquire 

complete material data for characterization requires a set of measurements. Some 

measurements aim to obtain basic parameters, e.g., thermal conductivity and specific 

heat capacity, while others are designed for further material modeling, e.g., water 

absorption and drying test. First, the raw data from each measurement is written into 

an individual excel sheet, which includes the detailed experimental information, e.g., 

dimension of the specimen, measured temperature and relative humidity, the weight 

loss or gain over time. The necessary data processing to obtain the statistical summary 

data for the material characterization are implemented in those individual sheets. 

Then, the summary data (mean, maximum, minimum and standard deviation) from 

the individual sheet is extracted and collected in one summary sheet. The data 

summary sheet of brick Wienerberger is exemplified in Figure 3-3.    
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Hygrothermal basic parameters
Parameter Symbol Unit Mean StdDev Min Max Remarks

Bulk density ρ [kg/m3] 1786.2 9.3 1770.7 1805.2

Specific heat 
capacity c [J/kgK] 889 10.8 872 901

Thermal 
conductivity λdry [W/mK] 0.548 0.042 0.492 0.612

Open Porosity θpor [m3/m3] 0.354 0.003 0.347 0.359

Capillary 
saturation θcap [m3/m3] 0.262 0.004 0.259 0.267

Dry cup value μdry [---] 18.01 0.32 17.78 18.24
Water absorption 
coefficient Aw [kg/m2s0.5] 0.199 0.015 0.181 0.209

Water Retention (Desorption)
Arguments Mean StdDev Min Max Remarks

pc T θ l
[hPa] [°C] [m3/m3]

0 20.0 0.319 0.005 0.308 0.323
50 20.0 0.301 0.005 0.295 0.310

100 22.3 0.299 0.005 0.294 0.308
300 18.5 0.291 0.006 0.285 0.303
600 14.0 0.275 0.007 0.269 0.287
1000 21.8 0.265 0.007 0.258 0.278
2000 23.5 0.209 0.013 0.187 0.228
3000 22.0 0.172 0.013 0.148 0.196
4000 22.7 0.143 0.011 0.123 0.160

10000 22.9 0.103 0.009 0.086 0.113
14000 20.5 0.075 0.009 0.060 0.088

Sorption Isotherm (Desorption)
Arguments Mean StdDev Min Max Remarks

ϕ T θ l
[%] [°C] [m3/m3]
96.9 21.4 0.033 0.007 0.024 0.045
96.0 22.4 0.026 0.006 0.018 0.035
90.0 20.2 0.019 0.004 0.014 0.023
84.3 22.9 0.016 0.003 0.013 0.019
75.2 21.4 0.010 0.001 0.008 0.012
57.6 22.4 0.006 0.000 0.005 0.007
43.2 20.2 0.004 0.000 0.004 0.004
32.8 22.2 0.002 0.001 0.000 0.003

Water vapor permeability

Arguments Mean StdDev Min Max Remarks
φinside φoutside µ

[%] [%] [-]
5.0 37.0 18.01 0.32 17.78 18.24 DryCup
84.0 53.0 12.04 2.18 10.50 13.58 Wetcup

Liquid water conductivity

Arguments Mean StdDev Min Max Remarks
θ l mean pc Kl

[m3/m3] [Pa] [s]
0.304 8560 2.0E-09 3.1E-10 1.5E-09 2.3E-09

Sorption Isotherm (Adsorption)
Arguments Mean StdDev Min Max Remarks

ϕ T θ l
[%] [°C] [m3/m3]
32.8 20.40 0.00050 0.00019 0.00021 0.00071
43.2 24.20 0.00123 0.00019 0.00091 0.00144
57.6 20.60 0.00180 0.00034 0.00121 0.00213
75.2 20.40 0.00267 0.00043 0.00195 0.00308
84.3 24.20 0.00488 0.00055 0.00372 0.00547
90.0 20.60 0.00630 0.00048 0.00554 0.00708
96.0 20.60 0.00901 0.00086 0.00808 0.01029  

Figure 3-3 Data summary sheet of brick Wienerberger  

Thereafter, the summarized data is imported into material models for generating 

functionalized data. In this step, the discrete measured data is interpolated to 

continuous functions, e.g., the measured data from the pressure plate and sorption 

isotherm tests are used to generate a continuous moisture retention curve (MRC). 

Furthermore, an iterative calibration process is conducted to derive moisture transport 

functions. The detailed description of this process is introduced in Section 3.4.3. 
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3.3 Experimental Methods 

A set of international standards have been developed to measure the building 

materials properties, including: 

• Bulk density, matrix density and porosity: DIN ISO 11272 (2001) 

• Thermal conductivity: ASTM C177 (2010), ASTM C518 (2010) and DIN EN 12664 

(2001)  

• Hygric sorption isotherm: ASTM C1498 (2004) and DIN EN ISO 12571 (2000) 

• Water retention by pressure plate: ASTM C1699 (2009) 

• Water vapor tranmission: ASTM E96 /E96M (2010) and DIN EN ISO 12572 (2001) 

• Water absorption coefficient: DIN EN ISO 15148 (2003) 

In addition to these well described standards, the HAM modeling tools may require 

extra tests to acquire high quality data input. Some complementary tests, together with 

the standard procedures mentioned above, are introduced in the following sections.   

3.3.1 Moisture Storage Measurement 

Moisture storage capacity of porous building materials is used to describe the amount 

of moisture accumulated in the material pores at the consecutive environmental 

conditions. In general, it can be achieved by two tests: sorption isotherm measurement 

in the hygroscopic range and pressure plate measurement in the overhygroscopic 

range. 
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3.3.1.1 Sorption isotherm measurement 

Measurement of moisture content in the hygroscopic range is implemented by 

standardized isothermal adsorption and desorption methods (ASTM C1498 2004; 

DIN EN ISO 12571 2000). Sorption isotherm measurement provides insight into the 

relationship between relative humidity (RH) and the equilibrium moisture content of 

material at a specified temperature. The apparatus overview is given in Figure 3-4. 

For an adsorption measurement, an initially oven dried specimen is conditioned in the  

desiccator chamber with a defined relative humidity level under constant temperature 

until the static sorption equilibrium is attained between relative humidity in the 

desiccator chamber and moisture content of the specimen. The specimen is placed 

consecutively in a series of desiccator chambers from a low humidity level to a high 

humidity level. For a desorption process, a similar procedure is applied except that the 

highly moistened specimen is placed consecutively in a series of desiccator chambers 

with humidity levels that range from high to low. Relative humidity in the desiccator 

chamber is achieved by saturated salt-in-water solutions (ASTM E104-02 2007). The 

saturated salt-in-water solutions and corresponding relative humidity levels are listed 

in Table 3-2.  

Equilibrium between moisture content and relative humidity is attained when three 

successive weightings, at intervals of 24 hours, show a difference in mass less than 

0.1 %. The equilibrium moisture content by volume is determined by equation 3.1. 
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where m is the mean mass of the specimen at equilibrium (kg), m0 is the weight of dry 

specimen (kg), ρl is the density of liquid water (kg/m3), and ρ is the density of the 

specimen (kg/m3). 

Ventilation fan

Humidity sensor

 

Figure 3-4 Desiccator chambers with the saturated salt-in-water solution 

Table 3-2 Saturated salt-in-water solutions and corresponding relative humidity levels 

Saturated salt-in-water solution Relative humidity (%) 

Potassium sulphate (K2SO4 ) 97.4 

Potassium dihydrogen phosphate (KH2PO4) 96.0 

Barium chloride (BaCl2) 90.0 

Potassium chloride (KCl) 84.7 

Sodium chloride (NaCl) 75.4 

Sodium bromide (NaBr) 58.2 

Potassium carbonate (K2CO3) 43.2 

Magnesium chloride (MgCl2) 32.9 

3.3.1.2 Pressure plate measurement 

The pressure plate extractor measures the equilibrium moisture content at high 

relative humidity levels that cannot be achieved by sorption isotherm (ASTM C1699 

2009). The pressure plate extractor and porous ceramic plate are shown in Figure 3-5.  
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Figure 3-5 Pressure plate extractor (left) and porous ceramic plate with specimens (right) 

Pressure plate extractor carries out a desorption measurement. The measurement gives 

the relationship between equilibrium moisture content and corresponding capillary 

potential. Relative humidity and capillary pressure can be converted to each other by 

using Kelvin equation (2.18). The specimen is first effectively saturated by leaving it 

in contact with water for a long time, e.g., two weeks, until the entrapped air in the 

pores is dissolved in water. A fine kaolin paste is applied on the surface of the 

water-saturated ceramic plate to improve hydraulic contact between the specimen and 

plate. One layer of acetate cloth is placed on the top of kaolin to prevent the kaolin 

from sticking to the specimens. After pressing the specimen on the ceramic plate and 

closing the chamber, an overpressure is applied to extract the water out of the 

specimen until the equilibrium between moisture content of the specimen and the 

overpressure is achieved. The equilibrium moisture content of the test specimen is 

determined gravimetrically and calculated by equation 3.1. With the application of 

different overpressures in the extractor, the successive equilibrium moisture contents 

can be attained.  
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In Figure 3-6, the desorption data measured by pressure plate and sorption isotherm 

tests can form a continuous curve. The adsorption data is only measurable through a 

sorption isotherm test in the hygroscopic range. 
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Figure 3-6 Measured moisture contents from pressure plate and sorption isotherm tests 

3.3.2 Moisture Transport Measurement 

In this section, experimental measurements that give insights into the moisture 

transport mechanisms in different moisture content ranges are introduced, including 

water vapor transmission test, water absorption, drying test, the unsaturated liquid 

water conductivity measurement and saturated liquid water conductivity 

measurement. 

3.3.2.1 Water vapor transmission test 

Water vapor transmission test is used to measure the steady water vapor flow through 

a unit area of the material at a unit of time under specific temperature and humidity 

conditions.  
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The specimen is placed at different humidity conditions to get the knowledge of vapor 

diffusion rate within the material. The desiccant method, also called dry-cup test, uses 

the desiccant in the cup as the vapor sink. The water method, also called wet-cup test, 

uses distilled water (ASTM E96/E96M 2010) or salt-in-water solution (DIN EN ISO 

12572 2001) in the cup as the vapor source. The experiment apparatus is showed in 

Figure 3-7.  

 

Figure 3-7 Sealed specimen on the cup (left top), wireless relative humidity sensor (left 
bottom) and humidity controlled chamber (right) 

It is preferred to precondition the specimen before the test. The standards recommend 

storing the specimen in a 50% relative humidity environment, while author suggests 

conditioning the specimen at the mean relative humidity of the exposed environment, 

to shorten the time to achieve the steady flow.  

First, the specimen is sealed at the open mouth of the test cup, which allows the water 

vapor flows only through the test specimen. Then, the whole cup with the specimen is 

placed into the environmental chamber with defined relative humidity. Thus, a water 

vapor flow is driven by the vapor pressure difference between both surfaces of the 

specimen. When vapor flow becomes steady, the vapor transmission rate can be 
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obtained by weighing the mass loss or gain of the system at defined time interval, 

given in equation 3.2. By varying the different relative humidity levels on both 

surfaces of the test specimen, water vapor permeability as a function of the mean 

relative humidity of the exposed environments can be achieved. 

/ ( ) ( / ) /WVT G t A G t A= ⋅ = ,                                             (3.2) 

where WVT is water vapor transmission rate (kg/m2h), G is the weight change of the 

whole cup (kg), t is the time during G occurred (s), and A is the cup-mouth area (m2). 

Water vapor permeance presents the water vapor transmission rate induced by the unit 

vapor pressure difference between two sides of the specimen at specific temperature. 

/ vpermeance WVT p= Δ ,                                                  (3.3) 

where Δpv is the water vapor pressure difference (pa). 

The water vapor permeability is the arithmetic product of water vapor permeance and 

the thickness of the specimen.  

The additional corrections due to the still air in the test cup, the edge masking, etc, 

can be included in the calculation (ASTM E96/E96M 2010; DIN EN ISO 12572 

2001).   

The ability of water vapor diffusion of a porous material can be also described by the 

water vapor diffusion resistance factor defined in equation 2.16. 

1 1 1 1( ) ( ) ( )
/

v v
a air a air a air

p pd d d
d G t A d WVT d permeance

μ δ δ δΔ Δ
= ⋅ − = ⋅ − = ⋅ −

⋅
,       (3.4) 



 

48 

 

where d is the thickness of the specimen (m), dair is the thickness of the still air layer 

in the cup (m). The water vapor permeability in free air δa (kg/m·s·Pa) is calculated 

by: 

,v air
a

v

D
R T

δ =
⋅

,                                                                   (3.5) 

where Dv,air is the water vapor diffusivity in free air given in equation 2.15, and Rv is 

the ideal gas constant for water vapor (461.5 J/kg·K). 

Table 3-3 Water vapor diffusion resistance factors of various building materials  

 

μ value 

Dry cup 
(5-36) 

Wet cup 
(96-84) 

Brick Wienerberger 18.1 12.1 
Sandstone Hildesheim 13.8 10.3 
Calcium silicate 5.4 2.3 
Lime plaster 12.1 9.4 
Mortar 11.8 11.2 
Aerated Concrete 5.7 2.7 
Cellulose 2.4 1.5 
Spruce longitudinal 4.5 1.4 
Spruce radial 236.2 11.6 
Gypsum board 6.9 6.3 

Table 3-3 lists water vapor diffusion resistance factors of some building materials. It 

is obvious that each material owns a smaller wet-cup value than dry-cup value. The 

reason is that in the low relative humidity range, water vapor transport dominates the 

moisture transport, so dry-cup value gives the information of water vapor diffusion in 

the material. As relative humidity increases, the liquid water transport starts to 

contribute to the moisture transport. The wet-cup value provides the knowledge of 

both water vapor and liquid water transport in the porous material. For anisotropic 
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materials, e.g., spruce, their vapor diffusion resistance factors may have a significant 

difference in the spatial directions. 

3.3.2.2 Water absorption test 

The one-dimensional water absorption test is well known as a simple measurement 

performed with the aim to determine water absorption coefficient and capillary 

saturation moisture content. Water absorption coefficient Aw (kg/m2s0.5) is defined as 

the slope of the cumulative, one-directional water inflow versus the square root of 

time. It represents the capillary transport ability of a porous material. An automated 

water absorption apparatus is shown in Figure 3-8. The device consists of a water 

container, the container lifter, a rigid suspension frame connected to a digital balance 

and a data logger for instantaneously recording the mass change of the specimen. 

Before the measurement, the specimen is fixed on a sample holder and placed on the 

suspension frame. Then, the container lifter is adjusted to allow the water level in the 

container to lie above the specimen surface by1-2 mm. 

Water container

Container lifter

Suspension frame

Digital balance

Data logger

 

Figure 3-8 Automated water absorption apparatus (A); specimen fixed in specimen holder 
hanging above the water by suspension frame (B); different types of specimen holders (C) 
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To provide one dimensional vertical water movement, the specimen is protected and 

sealed at the lateral sides. The bottom surface of the initially oven-dried specimen is 

in contact with the free water surface to allow water absorption. The increasing 

weight of the specimen is measured at the defined intervals. For homogeneous and 

isotropic material, the test consists of two stages as shown in Figure 3-9: the first 

stage is characterized by a linear mass increase versus the square root of time. The 

water absorption measurement in this stage is mainly governed by the capillary force 

and viscous force (Roels et al. 2004). The transition from the first to the second stage 

proceeds when the moisture front reaches the top side of the specimen. A further mass 

increase is due to the water redistribution involving the dissolution of entrapped air in 

water. Capillary saturation moisture content is taken as the mean moisture content 

which is the intersection between the first and second stage.  
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Figure 3-9 Schematic view of one-dimensional water absorption process 

The water absorption courses of various building materials are shown in Figure 3-10. 

The water absorption rate is mainly determined by the liquid conductivity in the high 
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moisture content range. The calcium silicate has the higher liquid water conductivity, 

so it has a faster liquid transport in comparison to others. The liquid water 

conductivity of the plaster is relatively low, so it takes more time for the water front to 

reach the top surface of the specimen. 
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Figure 3-10 Measured water absorption courses of various building materials 

3.3.2.3 Drying test 

Drying process of a porous material gives insight into the moisture transport 

characteristics in the low moisture content range. A drying apparatus is presented in 

Figure 3-11. Prior to the test, the effectively saturated specimen is sealed on the lateral 

and bottom sides, allowing only the top side exposing to the specific environment. 

During the test, the specimen is periodically weighed to get the information of water 

mass loss and the corresponding time. The drying process is strongly influenced by 

the climatic conditions and boundary conditions, as well as the material properties of 

specimen itself (Scheffler 2008). Therefore, the detailed information regarding to 

those conditions should be recorded. 



 

52 

 

Surface temperature 
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Specimen holder

Ambient temperature 
and  relative humidity
sensor

 

Figure 3-11 Automated drying apparatus (A); Temperature and relative humidity sensors (B); 
Specimen holder (C) (Plagge et al. 2007) 
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Figure 3-12 Schematic drawing of the drying process  

Drying process is comprised of two stages, as shown in Figure 3-12. The first stage, 

beginning at high moisture content, is characterized by a linear water mass loss over 

time and mainly impacted by the boundary conditions, i.e., air flow rate above the 

evaporation surface. In this stage, the specimen is able to deliver stored liquid water to 

the evaporation surface. The surface temperature will decrease due to the water 

evaporation. In the second stage, the drying rate becomes slow and moisture transport 

is dominated by the water vapor flow within the material. This process is mainly 

governed by the material properties of the specimen itself. Therefore, the dry process 



 

53 

 

presents a transition of moisture transport from liquid water to water vapor transport. 

This transition can be detected when surface temperature of the specimen increases or 

linear mass decrease over time is no longer maintained. 

The measured drying curves of various building materials are shown in Figure 3-13. 

The values are normalized to remove the difference in the initial moisture content and 

the geometry of the specimen for easy comparison. The environmental conditions and 

boundary conditions mainly determine the length of the first drying stage, whereas the 

liquid water conductivity in the low moisture content range primarily affects the 

second drying stage. The plaster has a low liquid conductivity in this range, so it owns 

a long second drying stage. Calcium silicate has relatively higher liquid conductivity, 

so it undergoes a fast second drying stage. For spruce, the liquid water transport in 

longitudinal direction is much faster than that in radial direction. 

Time [d]
302520151050

W
at

er
 m

as
s 

[k
g]

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Brick wienerberger
Calcium silicate
Sandstone
Aerated concrete
Spruce longitudinal
Spruce radial
Plaster

 
Figure 3-13 Drying behaviors of various building materials 
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3.3.2.4 Unsaturated liquid conductivity, Kl 

The unsaturated liquid conductivity measures the ability of the liquid water transport 

through a porous material near the saturation moisture content region. The unsaturated 

liquid conductivity can be obtained by using a tension infiltrometer, which is 

composed of a water-filled tube and a porous ceramic plate connected by a vacuum 

pump as shown in Figure 3-14.  

Water-filled tube
with scale

Ceramic plate

Capillary hole

Water pipe

Metal ring

 

Figure 3-14 Tension infiltrometer apparatus (A); water filled tube and ceramic plate (B); 
Capillary hole on the lateral –bottom side of the tube (C) (Plagge et al. 2007) 

The water-filled tube with a small-diameter capillary at the lateral-bottom side 

provides a threshold pressure on the top of the specimen. The constant suction 

pressure is kept up by inducing the air bubble through the capillary into the 

water-filled tube if the pressure falls below the desired threshold pressure. Before 

measurement, the moistened specimen is attached on the ceramic plate by the kaolin 

paste to enhance their contact. The heavy metal ring is used to tighten the contact 

between the specimen and water-fill tube by its gravity. If the applied suction pressure 

on the bottom side of the ceramic plate exceeds the threshold pressure, then the 
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pressure gradient will force the liquid water flowing through the specimen to form a 

steady state flux rate. The different degrees of moisture saturation are achieved by 

adjusting the suction pressures.  

The liquid water conductivity at certain degree of moisture saturation is calculated by: 

l
V dK
t A p g

Δ
= ⋅

⋅ Δ ⋅
,                                                           (3.6) 

where ΔV is the volume of liquid water flowing through the material (m3), t is the time 

during the measurement (s), d is the thickness of the specimen (m), A is the 

cross-sectional area of the specimen (m2), Δp is the pressure difference between two 

sides of the specimen (pa), and g is the gravity acceleration (m/s2). 

The unsaturated liquid water conductivities of various building materials at certain 

degree of saturation are listed in Table 3-4. 

Table 3-4 Unsaturated liquid water conductivities of various building materials at certain 
degree of saturation 

Material 
Moisture content 

(m3/m3) 
Mean suction pressure 

(Pa) 
Liquid conductivity  

(s) 

Brick Wienerberger 0.304 8650 2.0e-09 

Sandstone Hildesheim 0.21 395 1.8e-07 

Calcium silicate 0.87 1441 8.5e-09 

Lime plaster 0.22 710 6.8 e-09 

Mortar 0.39 4466 1.1 e-09 

Aerated concrete 0.18 2205 9.3 e-12 

Spruce longitudinal 0.69 1473 2.7e-09 

Spruce radial 0.32 1453 2.7 e-09 

Gypsum board 0.42 870 2.7e-10 
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3.3.2.5 Saturated liquid conductivity, Keff 

The saturated liquid conductivity can be measured by a head permeameter apparatus 

as shown in Figure 3-15.  

 
Figure 3-15 Head permeameter apparatus (A); laterally sealed specimens (B): head 
permeameter with specimen (C); water container (D) (Plagge et al. 2007) 

It is composed of a head permeameter connected to a vacuum pump and a water 

container. The lateral sealed specimen is initially saturated and installed in the head 

permeameter, allowing one dimensional liquid water flow. The head permeameter 

with the specimen is then put into the water container with controlled temperature. 

With the application of suction pressure via the vacuum pump from one side of 

specimen, the liquid water will flush the specimen and flow into a glass flask through 

a capillary tube. The steady liquid flow rate can be calculated by measuring the 

increasing weight in the glass flask in the defined time intervals. By converting mass 

flow rate to volumetric flow rate, the saturated liquid conductivity can be determined 

by the equation 3.6. 
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3.4 Material Modeling 

Material modeling includes two aspects: moisture storage modeling and moisture 

transport modeling. With the comparison of different material modeling methods 

described in Section 2.2, the selected modeling approaches that can be easily 

implemented and applicable for a large number of materials are detailedly introduced 

in the following sections. 

3.4.1 Moisture Storage Modeling 

A multi-modal model developed by Grunewald et al. (2003) applies the weighted sum 

of Gauss distribution functions to present N-modal pore volume distribution function, 

given in equation 3.7. 

( )2

2
1

( ) exp
22

N
il i

i ii

pC pC
pC

pC SS
θ θ

π=

⎡ ⎤⎛ ⎞−∂ Δ⎢ ⎥⎜ ⎟= − −
⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

∑ ,                                   (3.7)               

where pC denotes logarithm of capillary suction pc, pC=log (-pc).  

Moisture retention function can be obtained by integrating equation 3.7 over pC. 

1
( ) 1

2 2

N
i i

l
i i

pC pCpC erf
S

θθ
=

⎡ ⎤⎛ ⎞⎛ ⎞Δ −
= +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑                                         (3.8) 

Pore structure analysis can be used to determine the number of modality N (number of 

local maxima in the pore size distribution). The characteristic logarithmic capillary 

pressures pCi give the position of the pore maxima, i.e., peaks of pore size 

distribution. Si affects the steepness of the curve, which is the standard deviation of 
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the pore volume distribution function. Partial volume fractions Δθi provide the level 

of different modalities’ plateau: θ1 = θeff ; 1i i iθ θ θ +Δ = −  for i N< ; N Nθ θΔ = . The 

sum of Δθi should be equal to θeff. 

The advantage of this model in comparison to other multi-modal models is more 

flexible, thus, it is easy to fit the measured data from sorption isotherm and pressure 

plate tests. Every parameter in the model can be directly estimated from the 

measurements with a clear meaning. 

Moisture retention function and pore volume distribution of brick Joens according to 

the measured moisture storage data is exemplified in Figure 3-16. 
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Figure 3-16 Moisture retention function and pore volume distribution of brick Joens 
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3.4.2 Moisture Transport Modeling 

3.4.2.1 Bundle of tubes model 

In the bundle of tubes model, the pore structure in porous material is represented by a 

bundle of parallel capillary tubes, which vary in different radii and are interconnected 

without any resistance. The incompressible laminar liquid water flow in a single tube 

with length Δx can be expressed by Hagen-Poiseuille equation, which describes the 

volume flow rate V as the function of tube radius r, the liquid dynamic viscosity ηl 

and the gradient of capillary pressure. 

4

( )
8

c
l k

l k

prV r g
x

π ρ
η

⎛ ⎞∂
= ⋅ + ⋅⎜ ⎟∂⎝ ⎠

                                                    (3.9) 

Multiplying V(r) with the density of the liquid phase ρl yields the mass flow 

rate , ( )lm
k advj r  

4

, ( )
8

lm c
k adv l l k

l k

prj r g
x

πρ ρ
η

⎛ ⎞∂
= − ⋅ + ⋅⎜ ⎟∂⎝ ⎠

                                           (3.10) 

Integrating equation 3.10 over the pore radii distribution density dn/dr (the density 

function describes the number of pores per radius interval r...r+dr) extends the 

volumetric flux within a single tube to a bundle of tubes with different radii.  

4

,
0

( )
8

l

R
m c c
k adv l l k

l k k

p pr dnj r g dr
x x dr

πρ ρ
η

⎛ ⎞∂ ∂
= − ⋅ + ⋅ ⋅⎜ ⎟∂ ∂⎝ ⎠

∫                                 (3.11) 

The pore radii distribution density dn/dr can be derived by counting pore volume 

distribution density dθ/dr within the cross section πr2, given in equation 3.12. 
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2

1dn d
dr r dr

θ
π

=                                                                 (3.12) 

Taking equation 3.12 to equation 3.11 yields the mass flow rate as a function of the 

capillary radius r(θ). 

2
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( ) ( )
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k adv l l k
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x

θρθ θ θ ρ
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= − ⋅ + ⋅⎢ ⎥ ⎜ ⎟∂⎢ ⎥ ⎝ ⎠⎣ ⎦

∫                                   (3.13) 

In comparison to equation 2.11, the first part in the right hand side of equation 3.13 is 

the liquid water conductivity expressed as a function of moisture content. 

2
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( ) ( )
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l

l
l l

l

K r d
θρθ θ θ

η
= − ∫                                                      (3.14) 

Substituting
2 cos( )( )

( )c

r
P

σ αθ
θ

= −  in equation 3.14, the liquid conductivity can be 

expressed as:  

2 2

20

cos( ) 1( )
2 ( )

ll
l l

l c

K d
P

θρ σ αθ θ
η θ

⋅
= − ∫                                         (3.15) 

In equation 3.15, the term before the integral is independent of liquid content. Thus, 

normalized or relative liquid water conductivity can be written as:  

2 20 0

1 1( )
( ) ( )

l eff

rel l
c c

K d d
P P

θ θ
θ θ θ

θ θ
= ∫ ∫                                        (3.16) 

The absolute liquid conductivity function can be obtained by matching Krel with the 

measured liquid conductivity at saturation moisture content Keff.  

( ) ( )l l eff rel lK K Kθ θ= ⋅                                                         (3.17) 
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This means that the liquid water conductivity in the entire moisture content range can 

be determined by the reversed moisture retention function plus the single measured 

parameter, Keff. 

3.4.2.2 Mechanistical model 

The bundle of tubes model assumes all the pores are interconnected to form a 

continuous capillary flow. This simplification is suitable in the high moisture content 

range, but overestimates the liquid transport in the low moisture content range and the 

hygroscopic range in which the liquid phase is isolated and vapor transport dominates 

the moisture transport. Therefore, the serial-parallel pore theory introduced in the 

engineering model by Grunewald et al. (2003) and further developed by Scheffler 

(2008) is applied to couple with the bundle of tubes model.  

In the model, the volume of a material is divided into two parts: the serial-structured 

pore domain and the parallel-structured pore domain. As shown in Figure 3-17, in a 

serial-structured pore, vapor diffuses through the air filled pore space on both sides of 

a liquid island in the direction from higher to lower vapor pressure. Condensation 

occurs at the capillary meniscus faced to the side with the higher vapor pressure. At 

the same time, water molecules evaporate at the opposite side. In between (in the 

liquid short-cut), water is transported in the liquid phase (liquid water flux) (Philip 

1957). The local vapor pressure gradient (in the air-filled space) increases due to the 

liquid short-cut assuming immediate pressure equalization between the menisci. Serial 
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transport mainly happens in the hygroscopic and lower overhygroscopic moisture 

range. 

jv

jvjv

jl

jl

pv,mean

pv,local

Serial – structured pore :
Liquid short-cut increases local 
vapor pressure gradient 

Parallel – structured pore :
With the increase of liquid in pores the 
effective cross-section for vapor diffuse 
is reduced.

 

Figure 3-17 Serial and parallel structured pores (Grunewald et al. 2003) 

In a parallel-structured pore, the vapor diffusion flux declines with the reduced 

diffusion cross section. Thus, it can be assumed to be inversely proportional to the 

water content. In comparison to serial transport, parallel transport is more powerful in 

the liquid phase, so it usually happens in the upper moisture content range until 

saturation. 

To account for the proportion of serial transport and parallel transport in dependence 

on the moisture content in the pore structure, two scaling functions are introduced: 

fv(θl) given in equation 3.18 represents scaling function for vapor transport and fl(θl) 

given in equation 3.19 denotes scaling function for liquid transport. 
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where ηsp is the scaling factor to describe the volumetric fraction of the 

parallel-structured pore domain as a function of relative water content θl/θpor. This 

factor influences water vapor permeability and liquid water conductivity in the low 

moisture content range. ηsp is adjusted according to the simulation of drying test.  

Thus, the vapor diffusion function can be expressed by multiplying equation 2.16 with 

the scaling function for vapor transport fv(θl).  

,
,

( )
( , ) ( )v air

v mat l v l
dry

D T
D T fθ θ

μ
= ⋅                                                 (3.20)

 

For liquid water conductivity function, in addition to the scaling function fl(θl), 

another scaling parameter ηcap is introduced to adjust liquid water conductivity in the 

high moisture content range. ηcap is adjusted by the simulation of water absorption 

test.  

,( ) ( ) ( )l l cap eff l rel l l lK K K fθ η θ θ= ⋅ ⋅ ⋅                                             (3.21) 

The derived vapor diffusion function and liquid water conductivity function provide 

an initial estimation of the moisture transport in the porous material. The additional 
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adjustments by numerical simulations to reproduce the physical transport phenomena 

in the experiments will be introduced in Section 3.4.3. 

3.4.2.3 Liquid water transport in the hygroscopic range 

Under an isothermal condition, a vapor pressure gradient can be converted to a 

capillary pressure gradient with the application of Kelvin equation (2.18). This allows 

the summation of liquid and vapor fluxes, and relating the moisture transport to only 

one driving potential, either vapor pressure or capillary pressure. 
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,                                                  (3.22) 

where ρv and ρl are water vapor and liquid water densities, respectively.  

One-dimensional moisture flux driven by capillary pressure gradient is given in 

equation 3.23. 
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ρ
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+

∂ ∂ ∂ ∂
= + = − ⋅ − ⋅ = − + ⋅ == − ⋅

∂ ∂ ∂ ∂
, (3.23) 

where Kl+v is moisture conductivity (s). 

Moisture transport at the low relative humidity range, i.e., below mean relative 

humidity of the dry-cup measurement, is assumed to be only water vapor diffusion. 

Cup measurement at the higher relative humidity range, called the wet-cup 

measurement, gives the information for both the liquid water and the water vapor 
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transport. Therefore, moisture conductivity in equation 3.23 can be determined by the 

vapor diffusion resistance factor from wet-cup measurement. 

, ( )
( ) v cupv air

l v wet
wet v l

D
K

R T
ρ ϕ

μ
μ ρ+ =

⋅ ⋅
,                                             (3.24) 

where φcup is the mean relative humidity of the exposed environment in wet-cup 

measurement.  

The liquid transport in this range is slight and cannot be directly measured. 

Alternatively, it can be determined from the difference of the moisture conductivity 

and water vapor conductivity, given in equation 3.25. 

( ) ( ) ( )l wet l v wet v dryK K Kμ μ μ+= −                                               (3.25) 

It should be noted that the cup test can only provide the information of moisture 

transport in the hygroscopic range. The determination of moisture transport in the 

entire moisture content range requires additional experiments and different calculation 

processes.  

3.4.3 Implementation of Material Characterization  

To implement material characterization, the summarized material data in the excel 

sheet is imported into the “Material Generator”, which is an in-house developed 

software that integrates the material models introduced above and allows to flexibly 

adjust material functions to reproduce the measured experimental courses. 
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First, the multi-modal moisture storage function (equation 3.8) is parametrically 

adjusted to match the measured moisture retention and sorption data. The number of 

modal is dependent on the pore size distribution. Then, the linear spline interpolation 

is performed to generate a continuous moisture retention curve (MRC) and a reverse 

moisture retention curve (RMRC). The special check is implemented to guarantee the 

monotonicity of data points and the accuracy of these two functions. The water vapor 

diffusivity derived from equation 3.20 and the liquid water conductivity derived from 

equation 3.21 are initially estimated according to the methods described in Section 

3.4.2.2. 

Subsequently, a set of experiments are used to adjust and calibrate the initially 

estimated transport functions. In the hygroscopic range, the liquid water conductivity 

is linearly interpolated among the calculated values that are the difference of moisture 

conductivity derived from the wet-cup measurement and the water vapor conductivity 

derived from the dry-cup measurement (Section 3.4.2.3). The liquid water 

conductivity above capillary saturation moisture content until saturation is 

interpolated between the Kl,cap(θl) and the measured values from the tension 

infiltrometer or head permeameter test. The Kl,cap(θl) is determined with the aid of the 

adjustment of ηcap at capillary saturation moisture content. The simulation of water 

absorption test is used to adjust the function in the capillary moisture content range, 

and the simulation of the drying test is applied to adjust the function in the lower 
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moisture content range. The liquid water conductivity derived from these experiments 

in the entire moisture content range is presented in Figure 3-18.  
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Figure 3-18 Liquid water conductivity function derived from different experiments according to 
Scheffler (2008) 

The water vapor permeability is adjusted by the scaling factor ηsp according to the 

simulation of the drying test. 

The calibration procedure is an iterated process. The simulations by the application of 

the calibrated functions should reproduce the process of both water absorption and 

drying test. The flowchart of this process is presented in Figure 3-19. The simulation 

of water absorption process precedes that of drying process since the adjustment of 

the liquid water conductivity function in the higher moisture range can have a large 

influence on the function in the lower moisture range. On the other hand, the 

adjustment on the lower part has no or limited effect on the higher part.  
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Figure 3-19 Implementation of material characterization 

The adjustment of liquid water conductivity function in the high moisture content 

range to match the measured water absorption course and in the low moisture content 

range to match the measured drying course is exemplified in Figure 3-20. 
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Figure 3-20 Adjustment of liquid water conductivity to match the measured water absorption 
and drying courses 

Since there is no suitable hysteresis model that can be easily implemented in material 

characterization, the adsorption data in the overhygroscopic range is only from 

estimation. Therefore, at the current stage, moisture transport functions are derived by 

applying the desorption data. In the calibration process, the simulated course can 

reproduce the first stage of water absorption test by the adjustment of the liquid 

conductivity function, so the water absorption rate (represented by water absorption 

coefficient, Aw in kg/m2s0.5) can be kept. However, the equilibrium moisture content at 

the second stage of simulation course may differ from capillary saturation moisture 

content. This may produce a different moisture distribution from the case if the 

adsorption data is applied. So use of the desorption data is an expedient before the 

well established hysteresis model is included. 

Material functions of brick Wienerberger derived according to the above approach are 

exemplified. The sorption isotherm, moisture retention curve, pore volume 

distribution, water vapor permeability, liquid water conductivity, and moisture 

dependent thermal conductivity are demonstrated in Figure 3-21. 
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Figure 3-21 Material functions of brick Wienerberger. Sorption isotherm (a); moisture retention 
curve (b); pore volume distribution (c); water vapor permeability (d); liquid water conductivity 
(e); and moisture dependent thermal conductivity (f) 

The comparisons of the measured water absorption and drying courses with the 

simulated curves are shown in Figure 3-22. The simulated curve achieves good 

agreement with the measured data. 
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Figure 3-22 Comparisons of the measured water absorption (left) and drying (right) courses 
with the simulated ones 

3.5 Establishment of a Comprehensive Material 

Database for Hygrothermal Simulation Tools 

According to the material category described in Section 3.2.1, several representative 

materials in each category are selected for characterization and their material 

functions are derived.  

In the plaster / mortar category, the exterior lime cement plaster, interior lime plaster 

and mortar are covered. In the building brick category, classical clay and loamy 

bricks, as well as lime sandstone brick are analyzed. The natural stone category 

includes lime stones, granite and marble from different sites in the world, e.g., India 

and Japan. Sand stone exhibits distinct moisture transport behaviors on the 

sedimentary direction and the direction perpendicular to the sedimentary layer. So it is 

characterized in both directions. The cement containing material is composed of the 

normal concrete and aerated concrete. The insulation material category contains a 

wide range of materials, including the capillary active material (e.g., calcium silicate) 



 

72 

 

and non-capillary active material (e.g., foam), hygroscopic material (e.g., cellulose) 

and non-hygroscopic material (e.g., mineral wool). The building board category 

contains the material manufactured and applied as board, e.g., orientated strand board 

(OSB), gypsum board and particle board. The wood category includes the hardwood 

and softwood, e.g., spruce and oak. Each wood material is evaluated in longitudinal 

and radial directions due to its heterogeneous characteristics. The building foil and 

waterproofing product category contains the normal vapor retarders and moisture 

adapted vapor retarder, which has the property of water vapor diffusion resistance 

factor decreasing with the increase of relative humidity in the atmosphere surrounding 

the vapor retarder.  

A total of 173 materials have been evaluated for the simulation tools. They represent 

most common building materials on the market and expand the current material 

database. The number of the characterized materials in each category is summarized 

in Table 3-5. 

Table 3-5 Summary of the characterized materials in each category 

Category Material description Number 

02 Plaster/ mortar  57 

03 Building brick  28 

04 Natural stone 21 

05 Cement containing building material 3 

06 Insulation material 35 

07 Building board 5 

08 Wood (longitudinal and radial direction) 3 

12 Foil and waterproofing product 21 
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Each material data file includes the basic material properties, identification 

information (material category, manufacture, the sampling method, etc.), and the 

material functions (MRC, RMRC, water vapor permeability/diffusivity, liquid water 

conductivity/diffusivity, and the moisture dependent thermal conductivity). 

3.6 Correlations between material parameters 

There exist some instinct relationships between material parameters. With the 

investigation of 22 building bricks, 45 plaster/mortars, 35 insulations, and 21 natural 

stones, the rank correlation matrixes of some basic parameters in different material 

categories are derive and presented in Table 3-6, Table 3-7, Table 3-8 and Table 3-9. 

Table 3-6 Rank correlation matrix of basic parameters in the building brick category 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.84 1 

λ 0.76 -0.56 1 

μdry 0.49 -0.32 0.51 1 

θpor -0.94 0.81 -0.68 -0.60 1 

Table 3-7 Rank correlation matrix of basic parameters in the plaster/mortar category 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.42 1 

λ 0.97 -0.37 1 

μdry 0.60 0 0.65 1 

θpor -0.99 0.43 -0.97 -0.59 1 
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Table 3-8 Rank correlation matrix of basic parameters in the insulation category 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.56 1 

            λ 0.94 -0.40 1 

μdry 0.72 -0.41 0.65 1 

θpor -0.91 0.44 -0.92 -0.62 1 

Table 3-9 Rank correlation matrix of basic parameters in the natural stone category 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.23 1 

            λ 0.55 0.14 1 

μdry 0.71 -0.32 0.12 1 

θpor -0.98 0.19 -0.57 -0.7 1 

3.7 Summary 

In this chapter, a systematic approach was introduced to organize, classify and 

characterize the materials. The standardized and complementary experiments to get 

the complete material properties for material characterization were introduced. For the 

purpose of characterization of a large number of materials, the material model should 

be easily implemented and its parameters should be controlled within the limited 

numbers. A multi-modal model was employed to derive the moisture storage function 

and a mechanistical model was applied to derive the moisture transport functions. 

These two models allow flexibly adjusting material functions in the entire moisture 

content range, according to the standard experiments. By applying this approach, a 
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comprehensive material database, including 173 materials in 8 material categories, 

was established for the simulation use.  

The rank correlations of basic material parameters in different material categories 

were derived based on the investigation of a number of measured material data. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 76

Chapter 4  Application of Statistical 

Methods for Hygrothermal Material 

Characterization 

4.1 Introduction 

In the early design stage, the exact building information is usually not provided in 

detail. For instance, only the general type of the brick is given, but the full material 

properties are unknown. With such limited information, it is hard to accurately predict 

the hygrothermal performance of the building enclosure assembly. In addition, 

material data in the literature is usually not complete, i.e., the density and thermal 

conductivity are known, but other properties are missing. Therefore, one generalized 

material, which represents a type of materials with similar characteristics, is needed 

for the analysis, in case the detailed material information is unavailable or a method is 

pursued to qualify the incomplete material data to be used for the simulation tools. 

As introduced in the last chapter, material modeling requires a set of experiments to 

acquire either basic material parameters, or the data for further functionalization. 

Some of these experiments may need a long test period (e.g., pressure plate 

measurement), which prolongs the analysis process and increases the experimental 

expense. Thus, most simulation tools have only a few material data that cannot satisfy 

the increasing simulation need. However, evaluating every material, through 
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conducting full measurements, is also impractical. Therefore, a method is needed to 

simplify the measurement procedure, while still ensuring the data quality.  

By applying the available high-quality material data to detect the natural relationships 

between data and utilize those relationships for data processing is a promising 

approach to achieve the above mentioned expectations.  

Some statistical methods, which can agglomerate the similar data (cluster analysis) 

and reveal the relationships between in-group data (regression analysis), are employed 

in building physics. 

4.1.1 Derivation of Generic Materials 

Three material classification levels are first differentiated in the analysis of material 

data: 

• Material database: the collection of all the individual materials with the 

complete properties. 

• Physical material group: the collection of the materials which exhibit common 

physical characteristics. It has a broader definition compared to material 

category, e.g., all the materials can be differentiated as one porous material 

group (brick, plaster/ mortar, etc.) and one non-porous material group (steel, 

foil, etc.). 
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• Material cluster: the refined group in the physical material group. In each 

cluster, specific materials have the similar characteristics. 

Thereafter, the definitions of specific material and generic material are given. 

• A specific material is an individual material. It has its particular name to 

differentiate from others. Its material properties are unique. 

• A generic material is a “derived” or “artificial” material from one material 

cluster. It represents a type of specific materials which have the similar 

characteristics.  

The definitions of these two terms can be exemplified as follows: historical brick ZM 

and brick ZE are specific materials. These two bricks have similar material properties 

and can be grouped into a cluster “historical brick fabricated by the classic loam and 

clay”, represented by one generic material “historical building brick”. 

The procedure to derive a generic material is shown in Figure 4-1.The material 

database is first classified into several physical material groups according to 

material’s physical characteristics. Then, cluster analysis is employed to aggregate the 

specific materials in each physical group to different material clusters, in which 

specific materials have the similar characteristics. Thereafter, one generic material is 

derived in each material cluster, by the application of generic synthesis, to represent 

the common material characteristics of this cluster.  
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Figure 4-1 Schematic drawing of a systematic procedure to derive generic materials 

The application of generic materials has the practical benefits. The generic material 

can be used in the early design stage to increase the reliability of the simulation 

results. No detailed material information is required any more, only the knowledge of 

the type of the material is sufficient. In addition, the incomplete material data can be 

qualified by extrapolating the missing properties from the most similar generic 

material. The detailed description of this method is introduced in Section 4.4.4. 

4.1.2 Necessity to Simplify the Moisture Storage 

Measurement 

The moisture storage characteristics of porous materials are important for material 

characterization. Moisture storage measurement is comprised of pressure plate test in 

the overhygroscopic range and sorption isotherm test in the hygroscopic range. The 

experimental approach on how to obtain moisture content at the specified capillary 
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pressure or relative humidity has been introduced in Section 3.3.1. The successive 

measurements are very time-consuming and tedious. It may take a few weeks, even 

several months, and requires many efforts during the measurement. Therefore, an 

approach to simplify the measurement step is explored by the application of statistical 

methods. 

This chapter starts with the introduction of two statistical methods: cluster analysis 

and regression analysis. Thereafter, the application of these analyses for material 

characterization is described and exemplified. 

4.2 Cluster Analysis 

Cluster analysis is a multivariate procedure for exploring natural groups in data so 

that the objects or individuals in one group are similar to each other and different 

from the individuals in the other groups (Everitt et al. 2011). It is widely used in 

biology, psychology, and market research, etc., to classify and summarize the data for 

the purpose of data organization and processing. 

Cluster analysis measures the similarity or dissimilarity between individuals in order 

to identify the clusters. 

The dissimilarity between two individuals is determined by their distance. There are 

different ways to measure it. The most commonly used one is the Euclidean distance, 

given in equation 4.1.  
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where xji and xki are, respectively, the ith variable of n-dimensional observations for 

individuals j and k. 

The distance djk can be interpreted as physical distances between two n- dimensional 

points ( )j j1 jnx x , x= …%  and ( )k k1 knx x , x= …%  in the Euclidean space.  

The individuals are similar if the distance between them is small. The most similar 

individuals are then jointed into one cluster. 

The distance between groups of individual or clusters can be measured by different 

methods, including:  

• Single linkage. This method is also called the nearest neighbour approach. It 

defines the distance of two clusters from the shortest distance between pairs of 

individuals, with one individual from each cluster. 

• Complete linkage. It is the opposite of single linkage. The method is also 

called the furthest neighbour approach. It defines the distance of two clusters 

from the furthest distance between pairs of individuals, with one individual 

from each cluster. 

• Average linkage. The method defines the distance of two clusters from the 

average of the distance between all pairs of individuals, with one individual 

from each cluster. 
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• Centroid method. The method uses the mean value of all individuals in a 

cluster as the reference vector to define the distance to the other cluster.  

• Ward’s method. It is also called the minimum variance method. The method 

tries to find the objects or clusters whose fusion increases the sum of the 

squared distances between objects or cluster centroid as little as possible. 

The inter-cluster distance measures of single linkage, complete linkage and average 

linkage methods are illustrated in Figure 4-2 (Everitt et al. 2011). 

Single linkage distance Complete linkage distance Average linkage distance

dAB

Cluster B

Cluster A

Cluster B Cluster B

Cluster A

dAB

Cluster A

 

Figure 4-2 Illustration of single, complete and average linkage distance measures (Everitt et al. 
2001) 

Hierarchical clustering technique is one of the most used cluster analysis techniques. 

It is comprised of the agglomerative method and divisive method. The former 

successively fuses individuals into groups until a single group containing all the 

individuals. The latter successively splits the whole data set into the finer groups until 

individuals. These two methods proceed in the opposite direction, as illustrated in 

Figure 4-3. The agglomerative process and divisive process can be represented 

graphically by a tree-like diagram, known as dendrogram, which can demonstrate both 
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the cluster-subcluster relationship and the order of fusion or division at each successive 

stage (Everitt et al. 2011). 

b
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f

a, b

c, d

e, f

a,b,c, d

a,b,c, 
d,e,f

Agglomerative process 

Divisive process  

Figure 4-3 Schematic drawing of the agglomerative process and divisive process 

Euclidean distance can be significantly affected by the scale of the objective. In 

addition, it is not sensible to treat the variables measured in the different units 

equivalent. So prior to the analysis, each variable should be standardized. 

In building physics, Plagge et al. (2004) applied cluster analysis to group the different 

specific bricks by employing their moisture storage data as the criterion variables. The 

results showed that cluster analysis can well classify the bricks into their respective 

clusters.  

4.3 Statistical Regression Analysis 

Regression analysis is widely used for the purpose of data description, control and 

prediction. The regression model is generally applied to obtain the relationship 

between variables. 
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4.3.1 Linear Least-squares Regression 

Linear regression analysis relies on the method of least squares to estimate the 

parameters in the model. The least-squares method minimizes the sum of the squared 

residuals, which are the difference between the observed value and their fitted value.  

When the regression coefficients are linear, it is called a linear regression. A 

regression model that involves more than one predictor variable is called a multiple 

regression model.  

The general form of a multiple linear regression is given in equation 4.2. 

0 1 1 2 2 k ky xx xβ β β β ε⋅⋅⋅= + + + ,                                        (4.2)  

where y is the response variable, x is the predictor variable, βk is the regression 

coefficient, and ε is random error that accounts for the failure of the model to fit the 

data exactly.  

The regression model in equation 4.2 can be also written as: 

0 2

1
0

1 1 2

     

i i i k ik i
k

j ij i
j

y x x x

x

β β β β ε

β β ε
=

= + + +… +

= + +∑                                             (4.3)  

where i=1,2…n, n is the number of observations.   

In most cases, it is more convenient to use the matrix form of equation 4.3 to 

determine the regression coefficients. 

y X β ε= + ,                                                                  (4.4) 
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y is n×1 vector, X is n×(k+1) matrix of the levels of the predictor variables, β is  

(k+1)×1vector of the regression coefficients, and ε is n×1 vector of random errors. 

The regression coefficient β by the least-squares estimation can be expressed by:  

1ˆ ( ' ) 'X X X yβ −=                                                              (4.5)     

If the predictor variables are not taken into account, the total sum of squares will be 

written as: 

2 2 2

1 1 1

ˆ ˆ( ) ( ) ( )
n n n

i i i i
i i i

y y y y y y
= = =

− = − + −∑ ∑ ∑ ,                                       (4.6) 

where ˆ iy  denotes the fitted value of observation iy  from the regression model and 

y is the mean of all the observations.  

The equation 4.6 can be also written as:  

T R ResSS SS SS= + ,                                                            (4.7) 
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The total sum of squares of the regression model is represented by SST. It is composed 

by the sum of squares due to the regression SSR, and the residual sum of squares or 

error sum of squares SSRes. SST measures the total variability in the observations. The 
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greater variability of the observation, the larger the total sum of squares will be. If all 

the observations are the same, then SST=0. SSR measures the amount of variability in 

the observation yi associated with the regression line. SSRes accounts for the residual 

variation which cannot be explained by the regression line. 

Residual mean square 

The residual mean square MSRes defined in equation 4.8 measures the quality of the 

model. The smaller the value is, the better the model will fit the observed data. MSRes 

is also the unbiased estimator of variance σ2. 

2

1
Res

Res
SSMS

n k
σ= =

− −
                                                         (4.8) 

Regression mean square 

A sum of squares due to regression divided by its associated degrees of freedom is 

called regression mean square, given in equation 4.9. 

R
R

SSMS
k

=                                                                    (4.9) 

4.3.1.1 Statistical significance testing 

Statistical significance testing is a procedure to measure the likelihood that an event 

occurs, assuming that the null hypothesis is true. The significance level or critical 

p-value is the possibility to observe an extreme value by chance. Typical levels of 

significance are 0.1, 0.05 and 0.01. Statistical significance testing involves comparing 

a calculated test value to certain critical value for the statistics (e.g., F, t, chi-square). 
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If the calculated statistic value is larger than the corresponding critical value, or 

calculated p-value is smaller than the preset significant level, the null hypothesis is 

rejected, which means the result is statistically significant. In the regression analysis, 

one can utilize test statistics to examine the significance of regression and significance 

of the individual regression coefficient. 

Test for significance of regression 

The test for the significance of regression is performed to verify if there is a linear 

relation between the response variable and any predictor variable. The null hypothesis 

will be rejected if at least one predictor variable has a significant contribution to the 

model. The hypothesis is given by: 

0 0 1

1

: 0
 : not all 0

k

j

H
H

β β β
β

= = = =

=

L
                                                    (4.10)             

The significance of regression measured by F statistic is expressed by: 

/
/ ( 1)

R R

Res Res

SS k MSF
SS n k MS

= =
− −

                                                (4.11) 

Where, n is the number of observations; k is the number of regression coefficients 

excluding the constant. 

The null hypothesis H0 is rejected if , , 1k n kF Fα − −>                                         

Fα,k,n-k-1 is determined from the significant level α, the number of degree of freedom 

of SSR and the number of degree of freedom of SSRes. The analysis of the variance for 

the significance of regression is summarized in Table 4-1. 
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Table 4-1 Analysis of variance for general linear regression model 

Source of 
variation 

Sum of 
squares 

SS 

Degree of 
Freedom 

df 

Mean square 

MS 
F 

Regression SSR k MSR=SSR/k MSR/MSRes 

Residual SSRes n-k-1 MSRes=SSRes/(n-k-1) 

Total SST n-1 

Test for significance of individual regression coefficient 

The test for the significance of a regression coefficient is performed to examine if the 

regression variable is really useful to explain the regression model. The hypothesis is 

given in equation 4.12: 

0 : 0jH β = ; 1 : 0jH β =                                                        (4.12) 

The significance of the coefficient can be measured by the t statistic: 

0 2

ˆ

ˆ
j

jj

t
C

β

σ
=                                                                  (4.13) 

Where, 2ˆ
1

Res
Res

SS MS
n k

σ = =
− −

; jjC is the jth diagonal element of 1( ' )X X −  

corresponding to ˆ
jβ . 

The null hypothesis H0 is rejected if 0 /2, 1n kt tα − −> .  

A t test could be used for a one-sided hypothesis e.g., either H0:β1< 0 or H0:β1> 0, 

while the F test considers the two-sided hypothesis.  

The regression sum of squares in equation 4.7 can be decomposed into two parts: one 

part is the regression sum of squares due to the regression model containing p 
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variables, and another part is the extra sum of squares due to regression model 

containing the remaining k-p variables. 

1 1 1 1( , , ) ( , , ) ( , , , , )R k R p k R p p kSS x x SS x x SS x x x x+ +⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                     (4.14) 

To test whether some of the coefficients are equal to zero, the following hypothesis is 

tested. 

0 1 2

1 0

: 0

:         
p

j

H

H not all in H equal to zero

β β β

β

= ⋅⋅⋅ =
                                              

(4.15)
               

The associated F statistic is:   

1 1( , , , , )R p p k

Res

MS x x x x
F

MS
+⋅⋅⋅ ⋅⋅⋅

=                                                (4.16) 

The null hypothesis H0 is rejected, if , , 1p n kF Fα − −>                                         

If p=1, the statistic is to test whether a single regression coefficient jβ  is equal to 

zero. 

1 1 1( , , , , , )R j j j k

Res

MS x x x x x
F

MS
− +⋅⋅⋅ ⋅⋅⋅

=                                            (4.17) 

4.3.1.2 Model adequacy check 

Coefficient of determination  

The goodness of fit of the regression model to the data can be measured by the 

coefficient of determination R2, which represents the amount of variance in the 

dependent variable explained by the regression model. A higher value of R2 implies 

that most of the variability in y is explained by the regression model. 
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2 1 ResR

T T

SSSSR
SS SS

= = −           20 1R≤ ≤                                      (4.18)            

The high coefficient of determination is one but not the only standard to evaluate the 

suitability of the regression mode. Other criterion should be used together to 

determine the adequacy of the model. 

Adjusted coefficient of determination 

The coefficient of determination R2 never decreases when additional predictor 

variable x is included into the model, since SSRes will not increase with additional 

predictor variable x and SST always remains the same with the fixed numbers of the 

responses. So it is important to address if the added predictor variable really 

contributes to the decrease of the total variability of the regression model. The 

adjusted coefficient of determination, given in equation 4.19, will only increase when 

the added variable reduces the residual mean square (Montgomery 2006). 2
AdjR  is 

equal to or less than R2.  

2 11
1

Res
Adj

T

SSnR
n k SS

−⎛ ⎞= − ⎜ ⎟− −⎝ ⎠
                                                    (4.19) 

The assumptions to build linear regression model include:  

• The error terms εi has a mean value of 0 and a constant variance.  

• The error terms εi is normally distributed and uncorrelated to each other.  

A small deviation of these assumptions will not lead to serious model issues. But a 

large violation of the assumption will lead to a wide range of standard error of the 
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regression coefficient, even the wrong regression model. The normal method to check 

the model adequacy is to study the model residual, which can be regarded as the 

observed error to reflect the properties assumed for the εi (Kutner et al. 2004). Two 

forms of the residual are introduced as follows: 

Residual of regression 

The residual ei is the difference between the observed value yi and the corresponding 

fitted value ˆiy .  

ˆi i ie y y= −                                                                    (4.20)        

Standardized residual 

The standardized residual is a kind of scaling residual for residual analysis. 

i
i

Res

ed
MS

=     1, 2...i n= ,                                          (4.21) 

where MSRes is the residual mean square. A larger standardized residual (if >3) may 

indicate an outlier.  

The diagnostic plot of the residual is an effective way to examine the departure of the 

model assumption and the aptness of the regression model. The residual plot clearly 

shows the deviation departure from the fitted regression line. The usual plots include 

the normal probability plot of residuals, the plot of residuals against predictor variable 

and the plot of residuals against fitted value. They are introduced as follows. 
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Normal probability plot of residuals 

A normal probability plot of residuals is useful to check the assumption if the error 

term is normally distributed. It plots each ordered residual against its z-score value 

under normality assumption. The z-score value measures the divergence of a 

individual data from the mean of the data set. If the normality assumption is fulfilled, 

the points in the graph will follow a straight line. A small deviation from the 

normality assumption will not lead to a serious problem. A large violation needs to be 

concerned, and correction methods should be applied, such as variable transformation. 

Plot of residuals against fitted value 

A plot of residuals against the corresponding fitted values can assess the 

appropriateness of the regression and examine whether the variance of the error terms 

is constant. Moreover, it can also help to identify the outlier and the nonlinearity of 

the function. If the assumption is met, the plotted point will lay between horizontal 

bands. 

Plot of residuals against predictor variable 

A plot of residuals against each predictor variable has the same usefulness as the plot 

of residuals against the fitted value. It helps to check if there is an outlier in the 

predictor variable and examine whether the variance of the error terms is constant. 
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Transformation of response and predictor variable 

If the assumption of the regression model is not satisfied, e.g., the variance of error 

term is not constant, the validation and correctness of the model is questionable and 

suspect. Some techniques offer useful strategies to transform the data to remedy the 

departure of the assumptions, e.g., the scaled response variable and predictor variable 

in the appropriate form. 

The new regression model, with the transformed form of response and predictor 

variable, still needs to be examined to determine whether it is appropriate and meets 

the assumptions. 

4.3.1.3 Regression model selection  

A regression model can include one or part of the candidate predictor variables. For 

the n predictor variables, there are 2n alternative models to fit the observed data. In the 

model-building process, not all the predictors have the same contribution. The 

appropriate selection of predictors in the model is important: if the key predictors are 

ignored, the model cannot adequately explain the relation between the response and 

predictor variables and produce the bias estimation on the regression coefficients. If 

unnecessary predictors are included, the variance of the estimated parameters will 

become larger and the corresponding cost on acquiring those unnecessary predictors 

will rise (Kutner et al. 2004). The regression model selection is a procedure that uses 

specified criterion to identify the most suitable model.  
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The stepwise regression selection procedure is one of the most used model selection 

methods. In the selection process, the model is evaluated in each step with adding or 

deleting a predictor variable by certain criterion, e.g., t statistic, F statistic, p-value. 

The stepwise select ends with a single “most suitable” candidate model. 

There are two methods in the stepwise selection. The first method is the forward 

stepwise selection, which begins without any predictor variable in the model 

assuming only the intercept is included. At each step, one predictor is added into the 

model and the corresponding p-value is calculated to compare with the predefined 

“threshold” value, which is the α-to-enter for adding a variable and α-to-remove for 

deleting a variable. If the calculated p-value is smaller than the α-to-enter, then this 

predictor is added into the model. This method not only calculates the p-value of 

newly added predictor, but also that of the predictors already in the model. If the 

p-value of the predictor already existed in the model is larger than α-to-remove after 

the new predictor enters, this existed predictor will be dropped. The stepwise selection 

stops when no more calculated p-value is smaller than the α-to-enter, or the last 

predictor variable is reached.  

In contrast to the forward stepwise regression method, the backward stepwise 

regression is the opposite procedure, which begins with all the predictors in the 

model. At each step, the predictor variable with the calculated p-value larger than 

α-to-remove is dropped from the model until the “most suitable” model is obtained, 
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or no more predictor variables can be dropped. The advantage of this method is that it 

accounts for the effect of the important predictors. 

The stepwise regression method may require the judgment of the experienced experts 

in the associated research field to determine if the selected predictor variables in the 

“final” model are reasonable to the response variable. 

4.3.1.4 Indicator for qualitative variable 

In addition to the quantitative variable, the qualitative variable can also be used in the 

regression model. In building physics, the qualitative variables could be the 

orientation (East, West, etc.), the weather condition (cloudy, sunny, etc.), and the type 

of buildings different in height (high-rise or low-rise).  

Normally, if there are n levels in the qualitative variable, assuming the nth level are 

selected to be dropped, the qualitative variable can be represented by the other n-1 

indicator variables, each taking on the values of 0 and 1 (Kutner et al. 2004). If all the 

n-1 indictor variables take the value of 0, it indicates that the nth level is chosen. The 

advantage of this method is to avoid computational difficulties, such as the singularity 

in the matrix of coefficients (Frey et al. 2003). It is important to explain the meaning 

of the regression coefficient of the qualitative variable. Since the indicator variable is 

only represented by 0 and 1, the coefficients of the indicator variable do not represent 

the magnitude of the importance. Therefore, the estimated regression coefficient of 

the indicator variable is not comparable with that of the quantitative input with respect 
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to evaluating the sensitivity of output variable to input variable (Frey et al. 2003). If 

there is no interaction between qualitative and quantitative variables, the estimated 

coefficient of indicator variable adjusts the intercept of the regression model, i.e., lead 

to the intercept shifting up or down. When the indicator variable is employed for the 

qualitative variable, the quantitative variable in the model do not make any change. 

Here, one example in building physics is used to explain the concept described above. 

Supposing the solar radiation incident on the external wall assembly is only related to 

the solar radiation intensity and the orientation of the wall assembly, without 

consideration of other factors. The first predictor variable, the solar radiation 

intensity, is a quantitative variable. The second predictor variable, orientation of the 

wall assembly, is a qualitative variable and composed of four classes: East, South, 

West, and North. Therefore, there are three indicator variables (x2, x3, and x4), and 

each can be expressed by the values of 0 and 1. The data input of indicator variable is 

listed in Table 4-2. 

Table 4-2 Data input of indicator variable 

Orientation classes x2 x3 x4 

East  0 0 0 
South 1 0 0 

West 0 1 0 

North 0 0 1 

A first-order regression model to present the introduced relation is expressed as: 

0 1 1 2 2 3 3 4 4y x x x xβ β β β β ε= + + + + + ,                                         (4.22) 
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where x1 is the solar radiation intensity, x2 is the South orientation, x3 is the West 
orientation, x4 is the North orientation.  

2

1   if South orientation
0  otherwise               

x
⎧

= ⎨
⎩

 3

1   if West orientation  
0  otherwise                

x
⎧

= ⎨
⎩

4

1   if North orientation   
0  otherwise                  

x
⎧

= ⎨
⎩

   

In case that the East orientation is adopted, x2=0, x3=0, and x4=0. Equation 4.22 will 

become: 

2,3,4 0 1 1 2 3 4

0 1 1

( | 0) (0) (0) (0)
                         
E y x x

x
β β β β β

β β

= = + + + +

= +                             (4.22 a) 

Similar, for South, West, and North orientations, equation 4.22 will be written as: 

2 0 1 1 2 3 4

0 2 1 1

( | 1) (1) (0) (0)
                     ( )
E y x x

x
β β β β β
β β β

= = + + + +

= + +                                (4.22 b) 

3 0 1 1 2 3 4

0 3 1 1

( | 1) (0) (1) (0)
                     ( )
E y x x

x
β β β β β

β β β
= = + + + +

= + +                                (4.22 c) 

4 0 1 1 2 3 4

0 4 1 1

( | 1) (0) (0) (1)
                     ( )
E y x x

x
β β β β β
β β β

= = + + + +

= + +                                (4.22 d) 

The plot of the relations denoted by equation 4.22a to 4.22d is presented in Figure 

4-4. 

South orientation E(y | x2=1) = (β0+β2)+ β1x1

North orientation E(y | x4=1) = (β0+β4)+ β1x1
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Figure 4-4 Illustration of regression model with the variation of orientation 
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The four regression models have the same slope of β1. The coefficients β2, β3 and β4 

indicates respectively how much higher or lower the West, South, and North oriented 

walls gain the solar radiation than the East oriented walls does with respective to the 

same solar radiation intensity. Thus, β2, β3, and β4 measure the effect of different 

orientations on the solar radiation incident on the wall assembly, compared to the East 

orientation. Of course, this influence can be compared between orientations, i.e., the 

difference of incident solar radiation between South and West orientation can be 

obtained by β2 – β3. 

The application of the indicator variable in the regression model for sensitivity 

analysis is exemplified in Section 7.4.4. 

4.3.2 Robust Regression 

Validity of the ordinary least-square regression requires several fundamental 

assumptions, as described in Section 4.3.1.2. If those assumptions cannot be satisfied 

by the nature of the data, the prediction and estimation of the model may be biased, 

e.g., the outlier can seriously affect the least-squares estimation since it pulls the 

regression line in the direction that deviates from the majority of the data. 

Once the residual plot or standardized residual identifies the outlier, the next step is to 

check the source of the outlier. If it is due to an erroneous measurement or other 

errors, it could be discarded to increase the accuracy of the model. However, in most 

of the cases, there is no compelling reason to explain the outlier; and in those cases, 



 

 99

the outlier should be included in the model. Robust regression analysis is developed 

as an alternative to the least-squares estimation when the assumptions cannot 

adequately be fulfilled. It keeps the outlier in the dataset but tries to dampen its 

influence on the estimation of the regression coefficients. So the regression model 

will not be sensitive to these unusual outliers. 

Different algorithms are implemented for robust regression, e.g., least absolute 

deviations (LAD) regression and least median of squares (LMS) regression. 

Iteratively reweighted least square (IRIS) is one of the widely used robust methods. 

The method employs the weighted lease-squares to reduce the influence of the outliers 

by adjusting the weights that vary inversely to the size of the residual (Kutner et al. 

2004). The case with a large residual is assigned with relatively small weight. In each 

iteration, the weights are revised until the convergence criteria are reached or the 

maximum iteration number is attained.  

4.4 Application of Cluster Analysis and Regression 

Analysis 

Cluster analysis and regression analysis are applied in this section to simplify the 

procedure for the moisture storage measurement, identify the material cluster, derive 

the generic material and qualify the incomplete material data.  
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4.4.1 Statistical Analysis on Moisture Storage Data in the 

Building Brick Category 

As mentioned in Section 4.1.2, conducting pressure plate and sorption isotherm tests 

to get the knowledge of moisture storage characteristics of building material is very 

time-consuming. A statistical approach to detect the natural relations among moisture 

contents and apply these relations to reduce the measurement steps is introduced in 

this section. 

4.4.1.1 Clustering of moisture storage data in the building brick category 

Moisture storage data of 20 specific bricks are collected for cluster analysis in order to 

find the natural groups among moisture contents. For each brick, moisture contents 

come from 11 measurements in the overhygroscopic range and 8 measurements in the 

hygroscopic range. For convenience, logarithmic capillary pressures is represented by 

pC (pC=log10(-Pc)). The symbol w3.48 denotes moisture content at pC3.48. w6.56 

(97.4%) denotes moisture content at 97.4% relative humidity, corresponding to 

pC6.56. 

Prior to cluster analysis, moisture contents at the specific capillary pressures are first 

standardized. Then, the normalized Euclidean distance between each pair of moisture 

contents are calculated and compared. Moisture contents that have the smallest 

distance are joined into one cluster. Then, the Ward’s clustering method is applied to 

measure the distance between the clusters or groups of moisture contents, due to its 
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high efficiency and good performance (Hands and Everitt 1987; Everitt et al. 2011). 

The clusters with the closest distance are fused together. The agglomerative process 

continues until all the moisture contents are joined into a single cluster. 

w3.48

w3.78

w4.18

w4.48

w4.78

w4.95

w5.30

w5.60

w5.90

w6.15

w6.56(97.4%)

w6.75(96.0%)

w7.16(90.0%)

w7.36(84.7%)

w7.59(75.4%)

w7.87(58.2%)

w8.06(43.2%)

w8.18(32.9%)

0.051

0.253

0.046

0.096

0.336

0.076

w0

1.409

 
Figure 4-5 Tree diagram of clustering of moisture storage data in the building brick category by 
using Ward’s method  

Tree diagram of clustering of 19 moisture contents is presented in Figure 4-5. In this 

tree diagram, the leaves on the left side of the structure are the specific moisture 

contents. The numbers above the stem is distance at which two clusters or individuals 

are joined. The nodes of the diagram represent the clusters. The root of the tree on the 

right side of the diagram has the largest joining distance or dissimilarity.  
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Four sub-clusters are identified in the dendrogram. In the overhygroscopic range, 

moisture contents from w0 to w4.18 can be grouped into one cluster with a joining 

distance of 0.051. Moisture contents w4.48, w4.78, and w4.95 are merged into another 

cluster with a joining distance of 0.046. Moisture contents from w5.30 to w6.15 are in 

one cluster with a joining distance of 0.076. In the hygroscopic range, moisture 

contents at the different relative humidity levels (from 97.4% to 32.9%) are similar 

and are grouped in one cluster with a joining distance of 0.096. Subsequently, in the 

next agglomeration, moisture contents from w0 to w4.95 are merged to a second-stage 

cluster with a joining distance of 0.253. Moisture contents from w5.30 to w6.15 in the 

overhygroscopic range and moisture contents from w6.56 to w8.18 in the hygroscopic 

range are grouped into a second-stage cluster with a joining distance of 0.336. Finally, 

these two second-stage clusters are agglomerated into one cluster with the largest 

distance 1.409.  

The clustered moisture contents from Figure 4-5 can also be illustrated in the moisture 

retention curve as shown in Figure 4-6. Moisture contents in the moisture retention 

curve are divided into four groups: three groups in the overhygroscopic range and one 

group in the hygroscopic range. 
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Figure 4-6 Clustered moisture storage data on the moisture retention curve  

4.4.1.2 Scatterplot matrixes of the clustered moisture contents 

Based on cluster analysis, the scatterplot matrixes of moisture contents at different 

logarithmic capillary pressures (or relative humidly levels) in each identified cluster 

are presented in Figures 4-7, 4-8, 4-9, and 4-10, respectively. In the graph, each circle 

represents one specific brick. From the plot matrix, it is easy to find that the moisture 

contents in the same cluster form a good linear relationship to each other. For 

instance, in Figure 4-7, moisture content w0 has a good linear relationship with 

moisture contents w3.48, w3.78, and w4.18, respectively. 
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w
0

w
3.

48
w

3.
78

w
4.

18

 
Figure 4-7 Scatterplot matrix of moisture contents w0, w3.48, w3.78 and w4.18 in the building 
brick category 
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Figure 4-8 Scatterplot matrix of moisture contents w4.48, w4.78 and w4.95 in the building brick 
category 

The transformation of variables in a certain form could help to build a better linear 

relationship between them. Figure 4-9 presents the scatterplot matrix of moisture 

contents w5.30, w5.60, and w5.90, without transformation and with logarithmic 

transformation. After logarithmic transformation, these three moisture contents gain a 

better linear relationship with each other.  

w5.30

w
5.

30

w5.60

w
5.

60

w5.90

w
5.

90

w6.15

w
6.

15

Log(w5.30) Log(w5.60) Log(w5.90) Log(w6.15)

Lo
g(

w
5.

30
)

Lo
g(

w
5.

60
)

Lo
g(

w
5.

90
)

Lo
g(

w
6.

15
)

 

Figure 4-9 Scatterplot matrixes of moisture contents w5.30, w5.60, and w5.90 without 
transformation (left) and with logarithmic transformation (right) in the building brick category 
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.  
Figure 4-10 Scatterplot matrix of logarithmic-transformed moisture contents in the hygroscopic 
range in the building brick category 

The scatterplot matrix of the logarithmic-transformed moisture contents in the 

hygroscopic range is shown in Figure 4-10. From the graph, one can easily find that 

moisture content w7.59 (75.4%) form has a good linear relationship with other 

moisture contents. 

4.4.1.3 Regression analysis on the clustered moisture contents based on the reference 

moisture content  

Once cluster analysis and scatterplot matrix detect that there exist some relationships 

between moisture contents in each group, the next step is to use the regression 
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analysis to examine and derive these relationships. One advantage for creating the 

relationship between moisture contents is that it can help to reduce the measurement 

steps, therefore, save experimental resource in terms of the time and expense. By only 

measuring one moisture content as the reference value, other moisture contents in the 

same group can be predicted by employing the regression models. The strategy to 

choose the reference moisture content follows two criteria: 1, it should have a good 

linear relationship with the others. In one cluster, the regression analyses among all 

moisture contents are conducted, and the one which forms the best relationships with 

all the others is selected as the reference one; and 2. the value should not be difficult 

to measure.  

The relationship between the reference and predicted moisture contents can be 

represented by a simple linear regression model: 

predicted referencew constant coefficient w= + ⋅                                       (4.23) 

The output of regression model on moisture contents w0 and w3.48, calculated from 

statistical software SYSTAT11 (2002), is shown in Figure 4-11a. The p-value of the 

regression coefficient and p-value of the analysis of variance are less than 0.01, 

indicating the significance of the regression model and the regression coefficient. The 

coefficient of determination has the value of 0.985, which implies the adequacy of the 

model. The fitted value and residual of each case are listed in Figure 4-11b. 
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Dep Var: w3.48    N: 20    Multiple R: 0.992    Squared multiple R: 0.985
Adjusted squared multiple R: 0.984      Standard error of estimate: 0.009

Variable      Coefficient      Std Error     Std Coeff.      Tolerance         t           P(2 Tail)

Constant        -0.025            0.009           0.000                 .            -2.813        0.012
w0                   1.053            0.031           0.992             1.000        33.834       0.000

Variable       Coefficient    Lower 95%   Upper 95%

Constant         -0.025            -0.044            -0.006
w0                    1.053             0.987             1.118

Analysis of Variance

Source            Sum-of-Squares     df Mean-Square         F-ratio              P

Regression               0.094             1               0.094             1144.767        0.000
Residual                   0.001            18              0.000

Case w3.48 Fitted value Residual

ZA 0.2774 0.2726 0.0048
ZC 0.2063 0.1984 0.0079
ZD 0.3580 0.3549 0.0031
ZE 0.3507 0.3505 0.0002
ZF 0.1519 0.1531 -0.0012
ZG 0.2972 0.3138 -0.0166
ZH 0.2800 0.2722 0.0078
ZI 0.3166 0.3118 0.0048
ZJ 0.2815 0.2821 -0.0006
ZK 0.3166 0.3159 0.0007
ZL 0.3430 0.3368 0.0063
ZM 0.3358 0.3316 0.0042
ZN 0.3240 0.3192 0.0047
ZO 0.1646 0.1779 -0.0132
ZP 0.1622 0.1478 0.0144
ZQ 0.1465 0.1633 -0.0168
ZHS 0.2334 0.2264 0.0070
ZBD 0.2280 0.2276 0.0004
ZJN 0.3300 0.3451 -0.0151
ZWB 0.3015 0.3041 -0.0026

a) Basic SYSTAT output b) Basic regression data  
Figure 4-11 Output of least-square regression analysis on moisture contents w3.48 and w0 a) 
and the basic regression data b) 

According to the output presented in Figure 4-11, the regression model to build the 

relationship between moisture contents w3.48 and w0 is expressed as:  

3.48 0.025 1.053 0w w= − + ⋅                                                   (4.24) 

The scatter plot of these two moisture contents and corresponding residual diagnostic 

plots are presented in Figure 4-12. The plot of residuals against the fitted value 

(Figure 4-12b) and the plot of residuals against the predictor variable (Figure 4-12c) 

indicate the assumption of constant error variance is fulfilled. In the normal 

probability plot of residual (Figure 4-12d), the data partly deviates from the straight 

line in the lower left quarter. This deviation is probably due to the small sample size. 

The coefficient of determination and residual diagnostic plots verify the rationality 

and validity of the regression model. 
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Figure 4-12 Scatter plot of moisture contents w0 and w3.48 and corresponding residual 
diagnostic plots  

In some cases, the transformation of moisture contents in a certain form is needed to 

obtain the better relationship, as shown in Figure 4-9. The regression model for 

logarithmic-transformed moisture contents w5.30 and w5.60 is expressed as: 

( 5.30) 0.161 0.987 ( 5.60)Log w Log w= + ⋅                                      (4.25) 

After transformation, equation 4.25 becomes: 

0.161 0.9875.30 10 5.60w w= ⋅                                                      (4.26) 

If the outlier exists in the data and there is no indication that the outlier is 

unreasonable and should be eliminated, the robust regression is used to reduce the 

influence of the outlier.  

The ordinary linear least-square regression model for moisture contents w4.48 and 

w4.78 is given by: 
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4.48 0.045 0.875 4.78w w= + ⋅      with     2 0.961R =                        (4.27) 

The residual plots in Figure 4-13 indicate that there is one outlier in the dataset. With 

a careful check on the measured data, there is no obvious evidence to prove that this 

outlier comes from a measurement error. In this case, robust regression is adopted to 

weaken the influence of the outlier, while still keeping it in the analysis. The output of 

robust regression by iteratively reweighted least square method and basic regression 

data with fitted value and residual of each case is shown in Figure 4-14. 
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Figure 4-13 identification of the outlier by the residual diagnostic plots 

The robust regression model for moisture contents w4.48 and w4.78 is given by 

equation 4.28. 

4.48 0.041 0.888 4.78w w= + ⋅               with 2 0.961R =                    (4.28) 

The difference between the ordinary least-square regression model (equation 4.27) 

and the robust regression model (equation 4.28) is not substantial, so the influence of 

the outlier is not significant for this case.  
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HUBER robust regression:   20 cases have positive psi-weights
The average psi-weight is 0.85616

Dependent variable is w4.48

Source             Sum-of-Squares         df Mean-Square
Regression             0.961                     2                 0.481
Residual                 0.005                    18                0.000

Total                   0.966                    20
Mean corrected        0.127                    19

Raw  R-square (1-Residual/Total)  =  0.995
Mean corrected R-square (1-Residual/Corrected)  =  0.960

R(observed vs predicted) square  =  0.961

Wald Confidence Interval
Parameter          Estimate           A.S.E.        Param/ASE       Lower < 95%> Upper
CONSTANT          0.041             0.009             4.642              0.023             0.060
COEFFICIENT     0.888             0.042            21.224             0.800             0.976

Case w4.48 Fitted value Residual
1 0.232 0.229 0.002
2 0.291 0.285 0.006
3 0.187 0.189 -0.002
4 0.104 0.100 0.004
5 0.220 0.211 0.009
6 0.334 0.338 -0.004
7 0.114 0.135 -0.020
8 0.279 0.267 0.012
9 0.216 0.197 0.019

10 0.275 0.280 -0.005
11 0.187 0.194 -0.007
12 0.281 0.287 -0.006
13 0.170 0.157 0.013
14 0.315 0.316 -0.001
15 0.308 0.314 -0.006
16 0.102 0.126 -0.024
17 0.100 0.114 -0.014
18 0.104 0.112 -0.008
19 0.109 0.103 0.006
20 0.169 0.116 0.053

Iteration
No. Loss Constant Coefficient
0 0.245355D+00 0.101000D+00 0.102000D+00
1 0.500089D-02 0.452025D-01 0.875319D+00
2 0.221838D-02 0.452025D-01 0.875319D+00
3 0.220149D-02 0.425839D-01 0.884973D+00
4 0.214722D-02 0.417388D-01 0.887838D+00
5 0.209295D-02 0.414859D-01 0.888468D+00
6 0.206254D-02 0.414406D-01 0.888385D+00
7 0.204509D-02 0.414447D-01 0.888234D+00
8 0.203682D-02 0.414577D-01 0.888111D+00
9 0.203283D-02 0.414671D-01 0.888042D+00
10 0.203110D-02 0.414727D-01 0.888005D+00
11 0.203035D-02 0.414755D-01 0.887987D+00
12 0.203004D-02 0.414769D-01 0.887979D+00
13 0.202991D-02 0.414775D-01 0.887975D+00
14 0.202987D-02 0.414778D-01 0.887974D+00
15 0.202985D-02 0.414779D-01 0.887973D+00
16 0.202984D-02 0.414780D-01 0.887973D+00
17 0.202984D-02 0.414780D-01 0.887973D+00
18 0.202984D-02 0.414780D-01 0.887973D+00

a) Basic SYSTAT output

b) Basic regression data

 

Figure 4-14 Output of robust regression on moisture contents w4.48 and w4.78 a) and basic 
regression data b) 

In the following analyses, if the outlier is identified and it is verified not from a 

measurement error, robust regression is applied to substitute linear least-squares 

regression.  

In the overhygroscopic range, moisture contents w0, w4.78, and w5.60 are selected as 

the reference moisture contents to derive others in the same cluster, as presented in 

Figure 4-6. The coefficients of regression models are summarized in Table 4-3.  
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Table 4-3 Coefficients of regression models based on w0, w4.78, and w5.60 in the building 
brick category 

 constant w0 R2 

w3.48 -0.025 1.053 0.985 
w3.78 -0.046 1.100 0.966 
w4.18 -0.093 1.178 0.926 

 constant w4.78 R2 

w4.48 0.041 0.888 0.961(Ro) 
w4.95 -0.028 1.033 0.964 

 constant Log(w5.60) R2 

Log(w5.30) 0.161 0.987 0.908 
Log(w5.90) -0.103 0.970 0.979 (Ro) 
Log(w6.15) -0.162 0.986 0.940 

Note: Ro denotes that the regression coefficients and R2 are derived from robust 
regression 

In the hygroscopic range, 75.4% relative humidity is easily achieved by the NaCl 

solution, so moisture content at 75.4% RH is selected as the reference value. The 

logarithmic-transformed moisture contents are used for analysis. The coefficients of 

regression models based on w7.59 (75.4%) are summarized in Table 4-4.  

Table 4-4 Coefficients of regression models based on w7.59 (75.4%) in the building brick 
category 

 constant Log(w7.59(75.4%)) R2 

Log(w6.56(97.4%)) 1.102 1.288 0.846(Ro) 
Log(w6.75(96.0%)) 0.747 1.199 0.861(Ro) 
Log(w7.16(90.0%)) 0.196 1.029 0.956 
Log(w7.36(84.7%)) 0.249 1.075 0.974(Ro) 

Log(w7.87(58.2%)) -0.464 0.848 0.953(Ro) 
Log(w8.06(43.2%)) -0.824 0.748 0.831 
Log(w8.18(32.9%)) -0.915 0.749 0.693 

Note: Ro denotes that the regression coefficients and R2 are derived from robust 
regression 

The results from Table 4-3 and Table 4-4 indicate that the predicted moisture content 

could be well estimated by the reference one in the same cluster (R2 > 0.8 in most 
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cases). With this method, the moisture storage characteristics could be determined by 

three measurements (w0, w4.78, and w5.60) in the overhygroscopic range and one 

measurement (w7.59 (75.4%)) in the hygroscopic range. The total measurement steps 

are reduced to four. 

4.4.1.4 Regression analysis on the clustered moisture contents based on basic material 

parameters 

In case there is no moisture storage measurement, moisture contents of building 

bricks in the overhygroscopic range are still predictable by some basic material 

parameters. 

Material parameters related to thermal properties are excluded in the analysis. The 

considered parameters, including their transformed data (e.g., logarithmic or 

exponential transformed data) are: 

• ρ: density of dry material 

• θpor: open porosity   

• θeff : effective saturation moisture content 

• θcap: capillary saturation moisture content 

• Aw: water absorption coefficient 

• μdry: water vapor diffusion resistance factor (dry-cup value) 

• μwet: water vapor diffusion resistance factor (wet-cup value) 

The variables in the model are selected by using a backward stepwise regression in 

which unimportant variables are sequentially eliminated from the model. The 

α-to-enter and α-to-remove use the values of 0.05 and 0.10, respectively, as the 
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threshold to add or delete a variable. All candidate variables are included in the model 

at the beginning. In each step, the variable that has the calculated p-value larger than 

α-to-remove is deleted from the model. The removed variable has the opportunity to be 

added into the model again if its calculated p -value is smaller than α-to-enter in the 

new model. The process continues until no more variable in the model has the 

calculated p-value larger than α-to-remove. 

Table 4-5 presents the coefficients of regression models based on basic material 

parameters. Those models, for example, can be expressed as: 

3.48 0.0365 1.163 capw θ= + ⋅                                                   (4.29) 

4.48 0.056 1.472 0.267cap ww Aθ= − + ⋅ − ⋅                                        (4.30)  

0.5 0.55.60 5.930 9.945 2.752por wLogw Aθ= − + ⋅ − ⋅                                  (4.31)     

After transformation, the equation 4.31 becomes: 

0.5 0.55.930 9.945 2.7525.60 10 wpor Aw θ− + ⋅ − ⋅=                                               (4.32)   

As shown in the Table 4-5, moisture contents in the low capillary pressure range can 

be determined by capillary saturation moisture content. From w4.48 to w5.30, they are 

related to two parameters: capillary saturation moisture content and water absorption 

coefficient. In the high capillary pressure range, the logarithmic-transformed moisture 

contents can be derived by the square root of open porosity and the square root of 

water absorption coefficient.  
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Table 4-5 Coefficients of regression models based on basic material parameters in the 
building brick category 

 constant θcap Aw R2 

w0 0.056 1.108 - 0.936 
w3.48 0.0365 1.163 - 0.919 

w3.78 0.017 1.210 - 0.894 

w4.18 -0.029 1.312 - 0.880 

w4.48 -0.056 1.472 -0.267 0.883(Ro) 

w4.78 -0.100 1.655 -0.369 0.864(Ro) 

w4.95 -0.134 1.805 -0.516 0.864(Ro) 

w5.30 -0.090 1.439 -0.640 0.877 
 constant θpor

 0.5 Aw
0.5 R2 

Log(w5.60) -5.930 9.945 -2.752 0.803(Ro) 
Log(w5.90) -5.782 9.580 -2.760 0.858(Ro) 
Log(w6.15) -5.788 9.542 -2.845 0.870 

Note: Ro denotes that the regression coefficients and R2 are derived from robust 
regression 

4.4.2 Statistical Analysis on Moisture Storage Data in the 

Plaster/ mortar Category 

The measured moisture storage data of 47 plaster / mortars are collected for cluster 

analysis and regression analysis. Both the exterior and interior plaster/mortars are 

included. For each material, moisture contents come from 10 measurements in the 

overhygroscopic range and 8 measurements in the hygroscopic range. The effective 

saturation moisture content w0 is excluded due to its high uncertainty. 

4.4.2.1 Clustering of moisture storage data in the plaster/mortar category 

The clustering process is the same as the one applied for the moisture storage data in 

the building brick category. Tree diagram of clustering of 18 moisture contents is 

demonstrated in Figure 4-15.  
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As opposed to the tree diagram of the building bricks, the moisture contents in the 

plaster/mortar category can be clearly classified as one cluster in the overhygroscopic 

range with a joining distance of 0.377, and one cluster in the hygroscopic range with a 

joining distance of 0.151. In the overhygroscopic range, there are three sub-clusters: 

moisture contents w3.48, w3.78, and w4.18 are in one cluster with a joining distance of 

0.030; moisture contents w4.48, w4.78, and w4.95 are in another cluster with a joining 

distance of 0.036; and moisture contents from w5.30 to w6.15 are the third cluster with 

a joining distance of 0.049. In the hygroscopic range, moisture contents from w6.56 

(97.4%) to w7.59 (75.4%) are in one cluster with a joining distance of 0.070, and 

moisture contents from w7.87 (58.2%) to w8.18 (32.9%) are in another cluster with a 

joining distance of 0.029. 

w3.48

w3.78

w4.18

w4.48

w4.78

w4.95

w5.30

w5.60

w5.90

w6.15

w6.56(97.4%)

w6.75(96.0%)

w7.16(90.0%)

w7.36(84.7%)

w7.59(75.4%)

w7.87(58.2%)

w8.06(43.2%)

w8.18(32.9%)

0.030

0.134

0.036

0.377

0.070

0.029

0.151

1.139

0.049

 

Figure 4-15 Tree diagram of clustering of moisture storage data in the plaster/mortar category 
by using Ward’s method  
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4.4.2.2 Scatterplot matrixes of the clustered moisture contents 

The scatterplot matrixes of the clustered moisture contents in the overhygroscopic 

range and in the hygroscopic range are shown in Figures 4-16, 4-17, 4-18, and 4-19, 

respectively. Each circle in the graph denotes one specific plaster/mortar. Moisture 

contents in each cluster basically have a linear relationship with each other.  
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Figure 4-16 Scatterplot matrix of moisture contents w3.48, w3.78 and w4.18 in the 
plaster/mortar category 
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Figure 4-17 Scatterplot matrix of moisture contents w4.48, w4.78 and w4.95 in the 
plaster/mortar category 
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Figure 4-18 Scatter plot matrix of moisture contents w5.30, w5.60, w5.90 and w6.15 in the 
plaster/mortar category 

 

Figure 4-19 Scatterplot matrix of logarithmic-transformed moisture contents in the hygroscopic 
range in the plaster/mortar category 
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4.4.2.3 Regression analysis on the clustered moisture contents based on reference 

moisture content 

In each sub-cluster, one moisture content is selected as the reference value, and other 

moisture contents in the same cluster can be determined by this reference value with 

the application of either linear least-squared regression or robust regression. 

In the overhygroscopic range, the coefficients of regression models based on moisture 

contents w3.78, w4.78, and w5.60 are listed in Table 4-6. In the hygroscopic range, 

w7.59 (75.4%) could have a good relationship with other moisture contents, so the 

coefficients of regression models based on logarithmic-transformed moisture content 

w7.59 (75.4%) are presented in Table 4-7. All the models have a higher R2, indicating 

a good linear relationship between the selected reference moisture content and the 

predicted one. 

Table 4-6 Coefficients of regression models based on moisture contents w3.78, w4.78, and 
w5.60 in the plaster/mortar category  

 constant w3.78 R2 

w3.48 0.001 1.003 0.988(Ro) 
w4.18 0.001 0.977 0.988(Ro) 

 constant w4.78 R2 

w4.48 0.015 1.004 0.956 
w4.95 -0.004 0.972 0.986 

 constant w5.60 R2 

w5.30 0.020 0.997 0.935(Ro) 
w5.90 -0.004 0.977 0.992 
w6.15 -0.003 0.896 0.969 

Note: Ro denotes that the regression coefficients and R2 are derived from robust 
regression 
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Table 4-7 Coefficients of regression models based on w7.59 (75.4%) in the plaster/mortar 
category 

 constant Log(w7.59(75.4%)) R2 

Log(w6.56(97.4%)) 0.031 0.766 0.850 
Log(w6.75(96.0%)) 0.109 0.872 0.895 
Log(w7.16(90.0%)) 0.065 0.907 0.930(Ro) 
Log(w7.36(84.7%)) 0.014 0.927 0.964(Ro) 

Log(w7.87(58.2%)) -0.276 0.943 0.936 
Log(w8.06(43.2%)) -0.460 0.913 0.859 
Log(w8.18(32.9%)) -0.463 1.007 0.799 

Note: Ro denotes that the regression coefficients and R2 are derived from robust 
regression 

The results from Table 4-6 and Table 4-7 indicate that in the plaster/mortar category 

the moisture storage characteristics can be determined by three measurements (w3.78, 

w4.78 and w5.60) in the overhygroscopic range and one measurement (w7.59 

(75.4%)) in the hygroscopic range. In total, four measurements can gain a good 

knowledge of the moisture storage characteristics. For the plaster/mortar category, up 

to now, there are no appropriate regression models detected to derive the relationships 

between moisture contents and basic material parameters. 

4.4.3 Validation of Regression Methods Applied in Moisture 

Storage Characteristics 

The validity of application of the regression method to gain the moisture storage 

characteristics is examined by comparing the measured data with the predicted data 

derived from different regression models. Moisture contents at the defined capillary 

pressures are interpolated to gain the knowledge of moisture storage characteristics. 

Therefore, the application of the regression method to predict the entire moisture 
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storage data, instead of individual one, is evaluated. For the regression method based 

on the reference moisture content, except for the measured reference one, other 

moisture contents are derived from their respective regression models.  

A specific material, brick ZB, is served as one example to demonstrate this approach. 

The material has the properties of θpor=0.35 m3/m3, θcap=0.25 m3/m3, and Aw=0.21 

kg/m2s0.5. The measured moisture contents of brick ZB are compared with two sets of 

predicted values: the predicted values based on reference moisture contents and 

predicted values based on basic material parameters. The regression method based on 

basic material parameters is only feasible in the overhygrosopic range. As shown in 

Figure 4-20, the predicted moisture contents can basically catch the measured ones 

although there are some deviations between the measured data and predicted data 

based on basic material parameters in the overhygrocopic range.  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8 9

Measured data
Predicted data based on reference moisture contents
Predicted data based on basic material parameters

Capillary pressure (log pa)

M
oi

st
ur

e 
co

nt
en

t (
m

3 /m
3 )

 
Figure 4-20 Comparison of measured data, predicted data based on reference moisture 
contents and predicted data based on basic material parameters (brick ZB) 
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One type of mortar and one type of plaster are also used to examine the validity of 

this approach. The comparisons of the measured moisture contents and predicted ones 

are presented in Figure 4-21 and Figure 4-22, respectively. The results show that the 

predicted curve follows the measured one with the reasonable accuracy. 
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Figure 4-21 Comparison of measured data and predicted data based on reference moisture 
contents (mortar) 
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Figure 4-22 Comparison of measured data and predicted data based on reference moisture 
contents (lime plaster) 

In case the difference between two adjacent reference moisture contents is small, e.g., 

less than 0.02 m3/m3, the predicted moisture contents derived from these two adjacent 

regression models may overlap each other. If this occurs, the unreasonable value can 
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be removed. For the exemplified mortar, moisture content w4.95 derived from the 

reference moisture content w4.78 is smaller than moisture content w5.30 derived from 

the reference moisture content w5.60. This is contrary to the fact that moisture content 

decreases as capillary pressure increases. So w4.95 is discarded. 

4.4.4 Application of Generic Materials for qualifying 

incomplete material data 

First, the procedure to derive a generic brick from one of identified brick clusters is 

exemplified. Thereafter, the methodology to extrapolate the missing properties of 

incomplete material data is introduced. This research focuses on the development of a 

methodology to derive the generic material from an identified cluster of specific 

materials, so the scope of the analysis is limited on the material category level, but 

further study should be based on the physical material group level. 

Material properties of specific materials in one material category may exhibit 

significant divergence. For example, scatter plot of measured moisture storage data of 

23 specific bricks is demonstrated in Figure 4-23. To avoid the hysteresis effect, only 

desorption data is presented. It is obvious that moisture contents of those bricks cover 

a very wide range. The effective saturation moisture contents (moisture content at 

logarithmic capillary pressure 0) span from 0.165 to 0.361 m3/m3. It is hard to 

generalize material properties from such diverse data. Therefore, the cluster analysis 
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is employed to aggregate the specific bricks into different material clusters, in which 

the specific bricks own the similar characteristics. 
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Figure 4-23 Scatter plot of measured moisture storage data of 23 specific bricks  

To find the similarity between the specific materials needs to compare their material 

properties. In this study, both the basic material properties and several representative 

moisture contents in the moisture storage measurement are used as the criterion 

variables. Material properties of each brick are presented in Appendix C. As 

summarized in the Section 4.4.1.3, the moisture storage characteristics of building 

brick can be determined by three values in the overhygroscopic range and one value 

in the hygroscopic range. Therefore, those four characteristic moisture contents are 

used as the criterion variables. The density and open porosity are highly correlated 

(Section 3.6) with each other, so only one of them is selected as the clustering 

criterion variable. 

Therefore, the selected criterion variables include: 
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• Open porosity 
• Thermal conductivity 
• Specific heat capacity 
• Effective saturation moisture content 
• Capillary saturation moisture content 
• Water vapor diffusion resistance factor 
• Water absorption coefficient 
• Moisture contents at logarithmic capillary pressure 4.78 and 5.60  
• Moisture content at 75.4% relative humidity  

Prior to the analysis, each selected parameter is scaled to unit variance. The 

dissimilarity in the selected parameters between each pair of specific bricks is 

measured by the normalized Euclidean distance. The specific bricks with the smallest 

distance are first joined into one cluster. Thereafter, the complete linkage and Ward’s 

clustering methods are applied to calculate the distance between different clusters or 

groups of specific bricks. The most “closest” clusters or groups of individuals are 

fused together. This clustering process continues until all the specific bricks 

agglomerate to one set. The tree diagrams of the clustering results are presented in 

Figure 4-24. 

As presented in Figure 4-24, both clustering methods identify four clusters among 23 

specific bricks: Cluster 1 includes brick ZN and ZI. Cluster 2 contains brick ZB, ZE, 

ZG, ZK, ZM, ZBA, ZJN, and ZWB. Cluster 3 is comprised of brick ZA, ZD, ZJ, ZH, 

ZL, and ZGZ. And cluster 4 includes brick ZC, ZF, ZO, ZP, ZQ, ZBD, and ZHS.  
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Figure 4-24 Tree diagrams of clustering of specific bricks by using complete linkage method 
(left) and Ward’s method (right) 
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Figure 4-25 Measured moisture storage data and their means in each cluster 
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The moisture storage data of the specific bricks in each cluster are demonstrated, 

respectively, in Figure 4-25. It is evident that the moisture storage data in one cluster 

follows the same shape and tendency. Moreover, the difference among the data in one 

cluster becomes smaller compared to that in the whole brick set. Within each cluster, 

the mean moisture contents, by averaging moisture contents of the in-group bricks, 

are connected by a dark blue curve with the square marker.  

The specific bricks in each cluster have some common characteristics. The cluster 1 is 

composed of modern bricks manufactured with the application of new technology. 

The cluster 2 mainly includes the historical bricks fabricated by the classic clay and 

loam. The dimension of the brick is not exactly the same size since its shape is easy to 

change in the high processing temperature without the bound of sand component. The 

cluster 3 contains the historical bricks produced by clay, loam and additional sand 

component. The bricks in the cluster 4 commonly have the higher density and lower 

liquid water transport ability compared to other clusters, so it is mainly used on the 

external façade of building construction. 

Once the material clusters are identified, the generic synthesis process is conducted 

thereafter. The properties of the generic brick can be gained by arithmetically 

averaging material properties of the specific bricks in one cluster. Thus, the generic 

brick owns the common characteristics of one type of the specific bricks with a 

relatively small deviation in the material property. The material properties of the 

generic brick derived from the building brick cluster 2 are presented in Figure 4-26.  
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Minimum Input Information

Hygrothermal basic parameters
Parameter Symbol Unit Mean StdDev Min Max Remarks

Bulk density ρ [kg/m3] 1741.0 44.0 1657.2 1787.5

Specific heat 
capacity c [J/kgK] 939 72.7 868 1092

Thermal 
conductivity λdry [W/mK] 0.656 0.117 0.543 0.871

Open Porosity θpor [m3/m3] 0.352 0.011 0.336 0.375

Capillary 
saturation θcap [m3/m3] 0.254 0.011 0.231 0.266

Dry cup value μdry [---] 18.0 05.8 08.6 24.5

Water absorption 
coefficient Aw [kg/m2s0.5] 0.175 0.047 0.107 0.227

Water Retention (Desorption)
Arguments Mean StdDev Min Max Remarks

pc θl

[hPa] [m3/m3]
0 0.332 0.016 0.313 0.357
30 0.320 0.017 0.297 0.351
60 0.318 0.016 0.296 0.345

150 0.308 0.016 0.289 0.335
300 0.295 0.032 0.232 0.334
600 0.282 0.038 0.212 0.334
900 0.262 0.042 0.206 0.316
2000 0.163 0.047 0.100 0.221
4000 0.093 0.037 0.047 0.146
8000 0.075 0.034 0.041 0.137

14000 0.062 0.028 0.030 0.120
Sorption Isotherm (Desorption)

Arguments Mean StdDev Min Max Remarks
ϕ θl

[%] [m3/m3]
97.4 0.0250 0.0130 0.0037 0.0427
96.0 0.0182 0.0112 0.0033 0.0380
90.0 0.0122 0.0060 0.0028 0.0185
84.7 0.0097 0.0049 0.0025 0.0164
75.4 0.0062 0.0032 0.0024 0.0111
58.2 0.0043 0.0016 0.0019 0.0060
43.2 0.0032 0.0016 0.0013 0.0053
32.9 0.0026 0.0016 0.0008 0.0051

Additional Input Information
Water vapour permeability

Arguments Mean StdDev Min Max Remarks
ϕ insite ϕ outsite µ
[%] [%] [-]
5.0 30.0 18.0 5.8 8.6 24.5 DryCup

96.0 82.0 13.7 4.6 8.5 20.8 WetCup
Liquid water conductivity

Arguments Mean StdDev Min Max Remarks
θl mean pc Kl

[m3/m3] [Pa] [s]
0.33 3.1E-09 3.4E-09 8.6E-10 1.1E-08

 
Figure 4-26 Material properties of the generic brick derived from the building brick cluster 2 

For each property, the statistical data, e.g., maximum, minimum and standard 

deviation, are included to show the variation. It needs to be noted that due to the small 

number of specific materials in the material cluster, the statistical data for this generic 

brick is not sufficiently reliable for the further statistic analysis. However, it provides 

a methodology for deriving the generic material from a identified material cluster. 
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The variance in the material properties of the generic material can be also used as a 

reference for uncertainty analysis. 

Regression methods described in the last section is also examined for the generic 

material. Comparison of the measured moisture storage data and the predicted 

moisture storage data derived from two regression approaches is shown in Figure 4-27. 

One may find that the measured values and the predicted values show good agreement. 

Thus, this regression method is also applicable for the generic material. 
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Figure 4-27 Comparison of measured data, predicted data based on reference moisture 
contents and predicted data based on basic material parameters (generic brick derived from 
the building brick cluster 2) 

As shown in Figure 4-28, the missing properties of incomplete material data can be 

completed by two ways: 1. by comparing the available properties of the incomplete 

material data with those of generic materials in the same physical material group, a 

most similar generic material is selected. The missing properties of the incomplete 

material data can be supplemented by the material properties of the most similar 

generic material. 2. the relationships among material properties, deduced from the 
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measured high-quality data by regression analysis, can be applied to complete the 

missing properties. Regression analysis can be based on the physical material group 

level, which means more materials are included for the analysis but may lead to a 

wide range of uncertainty, or based on the material cluster level, which results in a 

narrow range of uncertainty since fewer materials are involved but may have the 

problem with statistics basis. The decision on which level to choose is dependent on 

the number of the materials in the physical material group and in the material cluster, 

and the quality of the regression model, e.g., the coefficient of determination R2. 

Complete
material data

Incomplete 
material data

Generic materials
in the same physical 

material groups

Regression 
analysis

More materialsLess materials

Problem with 
statistics basis

Wide range of 
uncertainty

Physical
group 
Level

Material
cluster 
Level

 

Figure 4-28 Extrapolation of the missing properties of incomplete material data by generic 
material and regression analysis 

4.5 Summary 

This chapter focused on the application of the statistical methods for hygrothermal 

material characterization.  
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1. Moisture storage data of 20 bricks and 47 plaster/mortars were collected for 

the investigation. Cluster analysis was applied to detect the natural groups 

among moisture contents at specific capillary pressures or relative humidity 

levels. The most similar moisture contents were aggregated into one cluster. 

Regression analysis was conducted to derive the relationships between 

moisture contents in the identified cluster. Thus, by only measuring one 

moisture content, the others in the same cluster are predictable by applying the 

regression models. Three characteristic moisture contents w0 (for building 

bricks)/w3.78 (for plaster/mortars), w4.78, and w5.60 in the overhygroscopic 

range and one moisture content w7.59 (75.4%) in the hygroscopic range were 

identified and verified to be sufficient to gain a good knowledge of moisture 

storage characteristics. The measurement was reduced to four steps. 

2. Regression analysis was conducted to investigate the relation between 

moisture content and basic material parameters. It was found that moisture 

contents of building bricks in the overhygroscopic range are related to three 

parameters: capillary saturation moisture content, water absorption coefficient, 

and open porosity. The relationships between them provide a possibility to 

quickly estimate the moisture storage data without any moisture measurement.  

3. A method to identify the material clusters from a group of specific materials 

was developed by the application of cluster analysis. The similarity between 

specific materials was obtained by comparing their parameters. The criterion 
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variables applied in the material clustering were defined in consideration of 

the correlation between material parameters and the characteristic moisture 

contents addressed in the simplification of the moisture storage measurement. 

The method was applied to cluster 20 specific bricks. Four brick clusters were 

identified. The specific bricks in each brick cluster exhibit similar 

characteristics.  

4. A method to derive generic material from identified material cluster was 

developed. The generic material represents a type of specific materials with 

similar characteristics. A generic brick was exemplarily derived from one 

building brick cluster.  

5. Incomplete material data can be qualified by the application of the generic 

material and regression analysis. 

Future research is needed to 

1. investigate the relationship between moisture content and basic parameters in 

the whole moisture range and in other physical material groups/categories. 

2. derive the generic materials in other physical material groups/categories.  

3. investigate the relationship between material parameters by regression analysis 

in different material groups/categories to build a statistical base in order to 

quality the incomplete material data. 
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Chapter 5 Uncertainty and Sensitivity 

Analysis in Building HAM Simulations 

5.1 Introduction 

An uncertainty analysis quantifies the uncertainty in model's output that responds to 

the uncertainty in model's inputs, helps researchers to understand the behavior of the 

simulation model, and explores how the variations of inputs influence output. It could 

also help to provide a more useful range of results than a deterministic result (Saltelli 

et. al 2009). 

Uncertainty in the application may arise from different sources and generally can be 

classified into stochastic or aleatory uncertainty and subjective or epistemic uncertainty 

(Helton 1993; Helton 1997; Macdonald 2002). Stochastic uncertainty is a system 

inherent behavior and this kind of random error is irreducible. Subjective uncertainty 

results from the lack of knowledge about an appropriate value for a quantity, and it is 

reducible by improving the model or getting additional data. Those two types of 

uncertainty generally cannot be entirely separated in the applications (Helton 1993). 

Uncertainty exists in every stage of the building life. In the early design stage, quite a 

lot of parameters are unknown due to the lack of the knowledge in detail. As more 

information is completed, many parameters can be progressively fixed. This kind of 

uncertainty belongs to the subjective uncertainty. However, there still exist some 
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stochastic uncertainties that cannot be avoided. For instance, the moisture storage data 

is measured in the laboratory under specific conditions for a long period to reach a 

steady state. But in the realistic condition, this steady state can never be reached. The 

experimental results from the standard test procedures, described in Section 3.3, also 

face the challenge of preciseness and confidence due to uncertainties (Bomberg et al. 

2005; Kumaran et al. 2006). Material properties collected from different laboratories 

may have large variances (Roels et al. 2004). Even the same procedure repeated by 

different operators in the same laboratory may get distinct results. This may be due to 

the material’s inherent inhomogeneous nature, the production process, and 

measurement method.  

The relative importance of the input variables is not the same. A small perturbation in 

some input variables may lead to a large variation of the output variable. These 

influential input variables should be addressed in the early design stage and carefully 

characterized to reduce their uncertainty. A sensitivity analysis is committed to 

determine the contribution of the individual input variable to the uncertainty in the 

output variable (Helton 1993). It is usually performed together with uncertainty 

analysis to carry out the risk assessment, model verification and validation, and to 

give insight into robustness of the model results (Hamby 1994; Cullen and Frey 1999; 

Frey and Patil 2002; Saltelli et al. 2009). 

This aim of the study in this chapter is 1) to identify and quantify the uncertainties in 

the hygrothermal simulation from different sources. 2) to find the suitable sensitivity 
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analysis technique to address the most influential input variables against performance 

evaluation criteria.   

5.2 Uncertainty in Building HAM Simulations 

The designers or engineers commonly assess the risk of failure based on the results 

from the deterministic simulation, in which mathematical models use the design 

values or “best fit” values as the input parameters. To consider the occurrence of the 

unexpected conditions, normally, a safety factor is introduced. For example, in DIN 

EN ISO 13788, a safety factor of 1.1 is suggested in calculation of the temperature 

factor to assess the mold growth risk. The limitation of using a safety factor is that it 

overestimates the result in terms of its maximum range, but the probability of the 

failure and the mechanisms, which lead to the failure, are not entirely addressed.  

The analysis based on a deterministic simulation cannot provide the complete and 

correct information, if a large amount of uncertainties exist in the model’s inputs. The 

uncertainties in the building simulation come from different sources: orientation of 

the construction, material properties, indoor moisture loads, etc. 

The influence of the uncertainties in the input variables on the predicted hygrothermal 

performance of the building enclosure assembly has been investigated in the past 

(Salonvaara et al. 2001; Holm and Kunzel 2002; Cornick et al. 2009; Zhao et al. 2010; 

Hagentoft 2010). Recently, many researchers carried out uncertainty and sensitivity 
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analyses to investigate the thermal performance of the building enclosure/ assemblies 

(Corrado and Mechri 2009; Hopfe 2009; Struck et al. 2009).  

5.2.1 Sources of Uncertainty  

To perform an uncertainty analysis, the source of the uncertainties needs to be 

identified first. The previous research in the building simulation (De Wit 2001; 

Macdonald 2002; Moon 2005) has classified the uncertainties into four categories: (1) 

enclosure uncertainty, (2) scenario uncertainty, (3) modeling uncertainty, and (4) 

numerical uncertainty. 

• Enclosure uncertainty accounts for the uncertainties of the enclosure 

/assembly itself, e.g., the uncertainty in the material properties, the orientation 

of enclosure assembly and the dimension of the material layer.  

• Scenario uncertainty relates to all the external uncertainties in the simulation 

that do not come from the enclosure itself. For instance, the uncertainty comes 

from the difference between the actual climatic condition and associated 

boundary coefficients on the enclosure, versus the input values in the program. 

The uncertainty results from the difference between the actual indoor moisture 

gain due to human behavior and appliance operation in the real building, 

versus those assumed by the designer. 

• Modeling uncertainty arises from the difference between physical phenomena 

and the mathematical solution of models by the simplifications and 
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assumptions. For instance, the hysteresis effect is usually not accounted for in 

the current HAM models. However, for some insulations, e.g., aerated 

concrete, the difference between the adsorption and desorption processes is 

sufficiently large, thus the hysteresis effect is obvious and should be 

considered. Most simulation models assume the different material layers are 

perfectly contacted to each other, without any contact resistance. But this 

idealization will not happen in reality. Those simplifications and assumptions 

reduce the complex of the simulation, but bring the uncertainties in the 

performance assessment. Addressing uncertainties in the physical modeling is 

not the scope of this study, so the different physical models in the simulation 

are introduced in a deterministic way.  

• Numerical uncertainty is the error introduced by the tolerance with respect to 

the convergence criteria as well as the discretization strategies. For example, 

the treatment of the nonlinear mechanism, e.g., the liquid transport between 

the interfaces of two adjacent materials, will determine the accuracy of the 

outputs. With better design of above concerns, the numerical uncertainty is 

assumed to be controlled in a sufficiently small range. Thus, the numerical 

uncertainty is not accounted for in this study. 
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5.2.2 Quantification of Uncertainty 

The uncertainties in the input variables are propagated by the simulation model and 

induce the uncertainty in the output variable. Therefore, the uncertainties in the input 

variables determine the possible range and distribution of the corresponding output 

variable. The uncertainties in the input variables of hygrothermal simulation are 

introduced as follows.  

5.2.2.1 Material property 

The uncertainty in material property comes from the material’s natural 

inhomogeneity, the production and measurement, and modeling methodology 

concerning the functionalization of material data: 

• Nature: errors come from the natural variability of the physical properties of a 

specific material. It is an intrinsic property of the material. 

• Measurement: errors caused by experimental setup, evaluation, and 

interpretation of experiments (inconsistent standards have different 

interpretations).    

• Modeling: errors due to the fact that the material functions (e.g., liquid water 

conductivity) are generated by using the simplified material models that could 

not represent the real properties perfectly. 
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The experimental methods to measure the material properties are described in Section 

3.3. The summarized experimental data include the mean, standard deviation, 

maximum and minimum values of each parameter. These statistical values account for 

the uncertainties due to the material’s natural inhomogeneous variability and 

measurement error. The uncertainty, resulted from the assumption and simplification 

in the material models with respect to the functionalization of material data, is not 

considered here. 

5.2.2.2 Boundary conditions 

The simulation results are sensitive to the assumed boundary conditions. For instance, 

the wind-driven rain is one of the major moisture loads on the building constructions.  

The choice of amount of the rain impinging on the façade will determine if the 

construction performs properly or not. 

In addition, the impact of the surface film coefficients should not be ignored. 

Beausoleil-Morrison (2002) summarized the previous studies and concluded that the 

predictions of building energy demand and consumption can be strongly influenced 

by the choice of the convective surface heat transfer coefficient. Janssen et al. (2007) 

stated the surface transfer coefficients significantly affect the moisture transfer in 

permeable building components. Moreover, Steskens (2009) reported the surface heat 

and moisture transfer coefficients have relatively large impacts on the hygrothermal 

conditions of the building components and the indoor environment.  
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Therefore, the uncertainties in the boundary conditions will have a great influence on 

the performance assessment. 

In this section, different models related to the boundary conditions in the 

hygrothermal simulation are introduced. The empirical value and possible variation 

range of the associated boundary coefficients are also given. 

Short wave radiation  

The global radiation is composed of the diffuse and direct radiations incident on a 

horizontal surface, noted as qH,diff  and qH,dir respectively. Diffuse radiation describes 

the portion of the sunlight, which is scattered by the molecules or particles in the sky, 

while direct radiation is the portion of the sunlight, which directly comes from the 

sun. The incident short wave (0.3-3.0 μm wavelength portion of the solar spectrum) 

radiation flux qsw on the building surface is determined by the daytime, incoming 

direct and diffuse radiation together with the construction character, e.g., orientation, 

inclination, and the latitude of the building location. 

( )sw sw dir diffq q qα= ⋅ + ,                                                         (5.1) 

where 

,
cos( )cos sin

tan
s s

dir H dir
s

q q φ ββ β
θ

⎡ ⎤−
= +⎢ ⎥

⎣ ⎦
 for sin 0sθ >  and 90 90s sφ β− < − <o o ,  (5.2) 

2 2
, , , ,cos ( / 2) ( )sin ( / 2)diff H diff s g H dir H diffq q q qβ ρ β= + ⋅ +                         (5.3) 

β is the inclination of the construction (0°=flat roof, 90° =vertical wall, 180°=facing 

downwards, etc.), βs is the orientation of the construction (0°=North, 90° =East, etc.), 
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ρs,g is the ground reflectivity. The solar elevation angle θs and the solar azimuth 

angleφs can be determined from local latitude Φ and the current sun decline angle δ 

(Nicolai and Grunewald 2011). 

284( ) 23.45 sin(360 )
365

t dayt
day

δ +
= o o                                              (5.4) 

sin ( ) sin sin cos cos cos(360 /1 )s t t dayθ δ δ= Φ − Φ ⋅o                             (5.5) 

sin(360 /1 )tan ( )
tan cos sin cos(360 /1 )s

t dayt
t day

φ
δ

⋅
= −

Φ + Φ ⋅

o

o
                              (5.6) 

Short wave radiation absorptivity αsw accounts for the fraction of total solar radiation 

absorbed on the building surface. The magnitude of αsw depends on the spectral and 

directional distribution of the incident radiation, as well as the nature of the absorbing 

surface (Incropera et al. 2005), e.g., the surface color. The absorptivities of some 

typical building surfaces are listed in Table 5-2. 

In equation 5.3, the incident diffuse radiation on an inclined plane is composed of the 

sky diffuse radiation (the first part of the right-hand side of the equation) and the 

ground reflected radiation (the second part of the right-hand side of the equation). The 

ground reflected radiation is significant in the calculation of the solar energy gained 

on the building enclosure. Sometimes, this value can reach the order of 100W/m2 for a 

vertical plane (Psiloglou et al. 1997). The ground reflectivity ρs,g, also called the 

ground albedo, is the ratio of the ground reflected radiation to the incoming short 

wave radiation incident on the ground. Several models have been developed to predict 

the ground reflectivity (Liu and Jordan 1963; Arnfield 1975; Temps and Coulson 
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1977; Gueymard 1987; Ineichen et al. 1990). ρs,g is influenced by the solar elevation, 

the studied location, the surface condition, etc. The snow cover can strongly influence 

the ground reflectivity: the value of the snow-covered ground can reach as high as 0.9 

(Muneer 2004). In the weather file, the information of snow cover is seldom included. 

In case the measurements are lacking, the average value of 0.2 is widely accepted and 

used when the ground was free of snow or covered with less than 25mm thick snow, 

while 0.7 is used for the snow coverage of 25mm or thicker (Liu and Jordan 1963). 

The range of ρs,g for the urban areas is between 0.15–0.25 (Muneer 2004). The typical 

average ground reflectivity for various surfaces are listed in Table 5-1 (Thevenard and 

Haddad 2006). 

Table 5-1 Estimates of average ground reflectivity for various surfaces (Thevenard and 
Haddad 2006) 

Ground cover  Reflectivity 

Water (large incidence angles) 0.07 

Coniferous forest (winter) 0.07 

Bituminous and gravel roof 0.13 

Dry bare ground 0.2 

Weathered concrete 0.22 

Green grass 0.26 

Dry grassland 0.2–0.3 

Desert sand 0.4 

Light building surfaces 0.6 

Long wave radiation  

A building surface successively emits the long wave radiation, in the same time it 

absorbs such radiation from the surrounding objects. The long wave radiation flux on 
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the surface of enclosure assembly captures the net radiate heat exchange between 

enclosure assembly and sky, as well as near the field ground. Long wave radiation 

emitted by the sky is called atmospheric counter radiation or sky radiation. Long wave 

radiation emitted by the terrestrial surroundings is called terrestrial counter radiation. 

Long wave radiation flux between the surface of enclosure and sky, as well as the 

surrounding ground can be expressed by: 

4 4( ) ( )lw sky sky s grd grd sq f q T f q Tσ σ= ⋅ − ⋅ + ⋅ − ⋅ ,                                    (5.7) 

where  

2cos( / 2)skyf β ε= ⋅                 -     Sky radiation factor                            

2 1sin( / 2) 1 1 1
grad

g

f β

ε ε

= ⋅
+ −

        -     Terrestrial counter radiation factor       

Ts is the surface temperature of building enclosure, σ=5.67×10-8 W/m2K4 denotes the 

Stefan-Boltzmann constant, ε and εg are the long wave emissivities of the building 

enclosure surface and surrounding ground, respectively, and qgrd denotes the 

terrestrial counter radiation flux as a function of the ground surface temperature by 

the Stefan-Boltzmann law. The atmospheric counter radiation qsky can be taken 

directly from the weather file if the measurement is available or calculated from the 

sky temperature Tsky via the Stefan-Boltzmann law: 

4
sky skyq Tσ= ⋅    W/m2                                                          (5.8) 
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Long wave emissivity indicates the ability of the surface to emit and absorb long 

wave radiation. It is independent of the color of the material surface. For most 

nonmetallic building material, the surface emissivity is around 0.9 (ASHRAE 2009). 

On the contrary, the metallic surface has a very low surface emissivity. The 

emissivities of some building material surfaces are listed in Table 5-2 (USAID 

ECO-III 2010). 

Table 5-2 Absorptivities and emissivities of some building material surfaces (USAID ECO-III et 
al. 2010) 

Material surface 
Absorptivity  

(solar radiation) 
Emissivity       

(thermal radiation =300K) 

Lime sand stone, gray 0.6 0.96 

Concrete, smooth 0.55 0.96 

Brick facing, red 0.54 0.93 

Aluminum, raw 0.20 0.05 

Aluminum, anodized 0.33 0.92 

Plaster, white 0.21 0.97 

Plaster, gray, blue 0.65 0.97 

Glass 0.08 0.88 

Paint, white 0.25 0.95 

Heat transfer 

The temperature difference between the building component surface and surrounding 

ambient air leads to their mutual heat transfer. The heat flux is given in equation 5.9. 

( )s airq T Tα= ⋅ − ,                                                              (5.9) 

where α is the heat transfer coefficient (W/m2K), Tair is the temperature of the ambient 

air (K), and Ts is the surface temperature of building enclosure(K). 
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For simplification, the heat transfer coefficient is usually presented as the sum of the 

convective and radiation heat transfer coefficients. Convective heat transfer 

coefficient relies on a few factors: natural convection heat transfer coefficient is a 

function of the surface’s length and temperature difference between the undisturbed 

air and the wall surface. The forced convection heat transfer coefficient is conditional 

to the meteorological wind velocity. The radiation heat transfer coefficient depends on 

the long wave emissivity of the considered surface and temperature ratio for radiation 

(Hens 2007). It is quite complex to analyze them individually, so in the standards a 

constant value of the sum of both convective and radiation heat transfer coefficients 

are given. If long wave radiation components are required to be determinated 

separately, the radiation heat transfer coefficient should be removed from the heat 

transfer coefficient. 

The exterior heat transfer coefficient is suggested as 23 W/m2K by Hens (2007) and 25 

W/m2k by DIN EN ISO 6946 (2008). The empirical interior heat transfer coefficients 

proposed by DIN EN ISO 6946 (2008) are listed in Table 5-3. For the interior surface 

of construction corner or the interior surface blocked by the furniture, heat transfer 

coefficient is generally below the empirical value due to the uncirculated air.  

Table 5-3 Empirical interior heat transfer coefficient (DIN EN ISO 6946 2008) 

Vertical surfaces 7.7 W/m2·K 

Horizontal surfaces Heat upwards(q↑): 10 W/m2·K 

 Heat downwards(q↓):6 W/m2·K 
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In ASHRAE (2009), the exterior heat transfer coefficient is given in a range between 

1/0.06 to 1/0.03 W/m2K. The interior heat transfer coefficient is given in a range 

between 1/0.20 to 1/0.12 W/m2K.  

Water vapor diffusion 

The water vapor diffusion flux between the building component surface and the 

surrounding air can be determined by equation 5.10: 

( )vm
diff air sj p pβ= ⋅ − ,                                                         (5.10) 

The associated enthalpy flux can be expressed as: 

( )v vH m
diff v v diffj h T j= ⋅ ,                                                            (5.11)   

where pair is the partial water vapor pressure in the air (pa), ps is the partial water 

vapor pressure at the building enclosure surface (pa), hv(Tv) is specific enthalpy of 

water vapor (J/kg), and β is called vapor transfer coefficient (s/m). The suffix i is used 

to indicate interior, and the suffix e denotes exterior. The reciprocal value of the vapor 

transfer coefficient is the surface resistance for the diffusion, with the unit of m/s and 

symbol Z. 

Hens (2007) gives the typical values for the interior and exterior vapor transfer 

coefficients: 

Interior: βi =18.5·10-9 s/m; Exterior: βe =140·10-9 s/m 
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He also suggested certain variations of the vapor transfer coefficient, given in Table 

5-4.  

Table 5-4 Interior and exterior vapor transfer coefficient (Hens 2007) 

Interior vapor transfer coefficient 
(Pa=1 atm, 0 ≤ θi ≤ 20 °C) 

Exterior vapor transfer coefficient 
(Pa=1 atm, -20 ≤ θi≤ 30 °C) 

θi-θsi (K) βi ·10-9 s/m va (m/s) βe ∙10-9 s/m 

2 28.6 < 1 ≤110 

4 30.0 5 212 

6 31.4 5 to 10 280 

8 32.8 25 849 

10 34.2 

12 36.0 

14 37.4 

16 38.8 

18 40.2 

20 41.6 

where θi is the indoor temperature, θsi is the interior surface temperature, ya is the air 
velocity. 

Wind-driven rain  

Wind-driven rain is used to quantify the amount of rain impinging on the building 

façade. It is one of the major moisture sources to influence the hygrothermal 

performance and durability of the building enclosure (Lacasse and Vanier 1999). 

Wind-driven rain is governed by a number of factors, e.g., wind speed, wind 

direction, horizontal rain intensity, and building geometry. The standard 

meteorological data normally include the information of the wind speed, wind 

direction, and horizontal rain intensity. The semi-empirical wind-driven rain model 

mainly involves those three factors, as well as the building character itself, guided by 
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the experimental observation (Blocken and Carmeliet 2004). The wind-driven rain 

model described by Häupl (2008) is given in equation 5.12. 

wdr R wind hR k Rα= ⋅ ⋅ ,                                                          (5.12)   

where Rwdr is the wind-driven rain intensity on the façade (l/m2h), and kwind is wind 

coefficient as a function of the wind direction, wind velocity, horizontal rain intensity 

Rh, and the orientation of the enclosure assembly. 

The rain exposure coefficient αR accounts for the possibility of construction exposure 

to the rain. αR is in a range between 0 and 1.0. The value of 0 indicates that there is no 

exposure possibility for the rain impinging on the construction, and 1.0 denotes the 

maximum rain exposure possibility at normal condition. The choice of the value 

depends on the topography surrounding the building, i.e., if there are obstacles or 

trees, and the location where the rain intensity is calculated. The building structure, 

itself, may also impact the choice of αR, e.g., the size of the overhang and the type of 

paint on the surface. Therefore, it is crucial to select an appropriate αR to evaluate the 

rain influence on the hygrothermal performance of the building constructions. 

If the ambient temperature is below -2 ˚C, the precipitation is snow instead of rain. 

Consequently, the wind-driven rain flux intensity is set as zero. 

The possible variation ranges of the boundary coefficients in the hygrothermal 

simulation are summarized in Table 5-5. 
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Table 5-5 Boundary coefficients and their possible ranges 

Coefficient Symbol Unit Possible variation range  

Heat transfer coefficient_interior αi W/m2K 
5 - 8.33 (ASHRAE 2009)        
6 -10 (DIN EN ISO 6946 2008) 

Heat transfer coefficient_exterior αe W/m2K 16.67 - 33.3 (ASHRAE 2009) 

Vapor transfer coefficient_interior βpi s/m 2.86·10-8 - 4.16·10-8 (Hens 2007) 

Vapor transfer coefficient_exterior βpe s/m 1.10·10-7 - 8.5·10-7 (Hens 2007) 

Short wave radiation absorptivity αsw - 0.1 - 0.98 (Incropera et al.2005) 

Ground reflectivity  ρs,g - 0.15 - 0.25 (Muneer 2004) 

Long wave emissivity of building surface ε - 0.82 - 0.96 (Incropera et al.2005) 

Rain exposure coefficient  αR - 0 -1.0 (in normal condition) 

5.2.2.3 Ambient environmental conditions 

In the hygrothermal simulation, the ambient conditions include both the indoor and 

outdoor environmental conditions to which the construction is exposed.  

To assess the transient hygrothermal response of the building enclosure assembly, the 

instantaneous environmental data is employed. The outdoor condition usually uses the 

climatic data from the complete meteorological measurement of the previous years or 

Test Reference Year (TRY). The TRY data assemblies the selected representative 

portions of the actual measured hourly data to form a one-year weather data. Some 

extreme periods, e.g., unusually hot summer and extremely cold winter, can also be 

selected to predict hygrothermal response of the building enclosure assembly in 

critical condition. The standard weather data usually includes hourly data of 

temperature, relative humidity, wind direction, wind velocity, sky radiation, diffuse 

radiation, direct radiation, cloud coverage, and horizontal rain intensity.  



 

 149

Indoor condition is influenced by various factors, e.g., the usage of the appliances, 

window open frequency, the tightness of enclosure assembly, and HVAC operation 

schedule. During wintertime in the cold climate, the indoor relative humidity has a 

great influence on the moisture response of the enclosure assembly. Thus, the indoor 

relative humidity plays a major role in the assessment of the durability of building 

enclosure assembly, as well as the health and comfort of the inhabitants.  

Based on the measurements of different buildings in Germany, DIN EN 15026 (2007) 

proposed that indoor design temperature and relative humidity in the heated-only 

building can be determined according to the daily average outdoor temperature, as 

shown in Figure 5-1 
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Figure 5-1 Indoor daily average air temperature (top) and relative humidity (bottom, A:low 
occupancy, B: high occupancy) depending on the daily average outdoor air temperature (DIN 
EN 15026 2007) 
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.Two humidity scenarios are defined: relative humidity at normal indoor moisture 

load in the case of low occupancy and relative humidity at high indoor moisture load 

in the case of high occupancy. These two scenarios profiles provide a possible 

variation range of indoor relative humidity. Relative humidity can be also derived 

from the function profile that varies between these two profiles to account for the case 

that cannot be described by the defined two scenarios. 

5.2.2.4 Workmanship 

The quality of workmanship has a great influence on the performance of the building 

enclosure assembly. The imperfect workmanship could induce the dramatic 

performance bias from the design requirements. The bad workmanship, e.g., the 

deficient installation of the insulation in the cavity wall, the perforation of the 

building board and the vapor retarder, can produce the unexpected vapor flow and the 

excess moisture. These issues give rise to the degradation of the thermal performance 

of the building enclosure assembly (Bankvall 1986; Trethowen 1991). The thermal 

bridges, due to uninsulated wall corner or window lintel, could lead to enormous heat 

loss and moisture related issues. It is hard to evaluate the workmanship in terms of 

quantity and quality. In the scope of this study, the dimension of the material layer, 

which is easily impacted by the craftsmanship, is considered as an uncertain variable.  
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5.2.2.5 Orientation 

In the early design stage, the orientation of the building enclosure assembly may be 

unknown. Orientation in the simulation is mainly used to calculate the projection 

angle of the wind, solar radiation and wind-driven rain that fell on the building facade. 

Thus, it plays an important role to determine both thermal and moisture loads on the 

enclosure assembly. In the northern hemisphere, a south-oriented wall is exposed to 

the highest solar radiation intensity in winter and relatively low solar radiation in 

summer (Givoni 1998), while the north-oriented wall obtains the least solar radiation 

compared to other oriented walls. A west or south-west oriented wall often has the 

largest chance to expose to the wind driven-rain, subjecting to the variation due to 

local micro-climatic conditions. Thus, it is essential to explore the impact of the 

orientation in the performance assessment. 

5.2.3 Probability Density Function of the Input Variable 

The uncertainty can be quantified from a probability distribution, which approximates 

the possible range of the variable. The probability distribution of the inputs will 

influence the range and distribution of the outputs, thus they should be carefully 

selected in the Monte Carlo simulation. 

The density, thermal conductivity, and specific heat capacity are easily measured 

material properties, which can be estimated from the normal distribution bounded by 

a certain value (Lomas and Bowman 1987).  
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The moisture storage characteristics are important in material characterization. 

Therefore, the probability distribution of moisture content is crucial and must be 

addressed. The effective saturation moisture contents of some typical building 

materials from different material categories are investigated in this research. For each 

material, the effective saturation moisture contents of 30 to 50 specimens are 

measured and their probability distributions are examined by using the 

Kolmogorov-Smirnov test, which can test if the data follows the specified 

distribution. The null hypothesis is that the data comes from the specified distribution. 

The null hypothesis is accepted, if the calculated p-value is larger than the predefined 

significance level α. In addition, the Shapiro-Wilk test is used to examine if the 

sample is from a normally distributed population. The histogram plots of the 

measured data are given in Appendix E. The Kolmogorov-Smirnov test, Shapiro-Wilk 

test, and p -value calculation are conducted for each material. The significance level 

α=0.05 is selected as the threshold. The results show that the effective saturation 

moisture content can be estimated from a normal distribution. 

Lacking the enough information on the possibility density function, other input 

variables are assumed to follow either the normal distribution or the uniform 

distribution.  
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5.2.4 Sampling Technique 

The reasonable selection of the representative samples from the population is 

important for uncertainty analysis. If the selected samples have some bias, the 

corresponding outputs resulted from the propagation of those samples are also not 

reliable. Besides the independent sampling, the conditional sampling, i.e., correlated 

sampling, are also required in many cases. Currently, there exist several sampling 

techniques, among which the two most common ones are introduced. 

Random sampling 

Random sampling is a popular sampling technique to produce the variability of the 

input parameters. It is also known as a pseudo method since the samples are generated 

by the computer in a deterministic and predictable process. The method provides the 

unbiased estimates for the means, the variances, and distribution functions (Helton 

and Davis 2008). The random sampling is easy to implement, but normally requires 

large samples to achieve a good performance. 

Latin hypercube sampling 

Latin hypercube sampling is a stratified sampling approach. For the generation of N 

samples, the domain of each variable is divided into N disjoint intervals with equal 

probability 1/N. In each interval, a single sample is randomly selected from the 

associated probability distribution. Application of this technique can provide a more 

precise shape of a sampled distribution and better coverage of the variable range than 
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the random sampling with the same sample size. The method yields the unbiased 

estimates of the means and distribution functions, but gives a biased estimation on the 

variances (Helton and Davis 2008). If the underlying model is quite computationally 

expensive for evaluation, i.e., two-dimensional hygrothermal simulation of a building 

enclosure assembly normally requires several hours, even a few days, Latin 

hypercube sampling can achieve a quite robust and efficient result even with a small 

sample size, i.e., N= 50-200 (Iman and Helton 1991; Helton and Davis 2008).  

Correlated variables sampling  

A correlation structure should be incorporated in the sampling, if there are two or 

more variables that are dependent on each other. Iman and Conover (1982) proposed a 

restricted pairing technique to generate a correlation structure collaborated with 

random and Latin hypercube samplings. The method is based on the rank correlation 

between the variables and can be applied to any type of distribution functions. The 

proposed interval in the Latin hypercube sampling and desired correlation between 

the variables could be well kept by this method. Helton and Davis (2003) illustrated 

this technique in a model for two-phase fluid flow. In their example, the technique can 

well reproduce the desired correlations between variables. The detailed description of 

this technique is presented in Appendix F. 
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Sample size  

The larger the sample size, the better coverage of the desired distribution of the input. 

Due to the computational cost, the number of the samples should be controlled in a 

reasonable limit. Lomas and Eppel (1992) applied the Monte Carlo analysis on 

building thermal modeling field. They found after 60-80 simulations the accuracy of 

the confidence interval on the standard deviation of outputs marginally increase, 

regardless of the number of input parameters. Iman and Helton (1985) recommended 

that the minimum of the sample size should be larger than 4k/3, where k is the number 

of the input variables. 

5.3 Sensitivity Analysis 

By deliberately and systematically changing the input variables, sensitivity analysis is 

used to investigate the relationship between the inputs and the outputs and address the 

most influential inputs versus the outputs of interest. Thus, sensitivity analysis can 

determine the following questions (Hamby 1994): 

• Which input variable is more critical compared to others and need additional 

investigation? With this answer the precise of the significant variables can be 

improved to reduce the output uncertainty;  

• Which input variable has little contribution to the model? With this answer the 

insignificant variable can be fixed in the nominal value to simplify the model. 
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• Is the model performed in a proper way? If the model is sensitive to some 

non-influential variables judged by experienced experts, the chosen range of the 

variable or the model structure need to be further examined. 

There are several approaches available to perform sensitivity analysis. Each approach 

has its own capability and applicability. To facilitate the decision-maker to select the 

most appropriate one, sensitivity analysis approaches are broadly classified into three 

categories: mathematical method, statistical (or probabilistic) method, and graphical 

method (Frey and Patil 2002).  

1. Mathematical method evaluates the impact of the variation range of input variable 

on the output variable (Morgan and Henrion 1990; Frey and Patil 2002). Mathematical 

method includes nominal range sensitivity, differential sensitivity analysis, etc. The 

method typically assesses the sensitivity of the output to a few values of the input 

variable and is mostly valid for the linear model (Frey and Patil 2002). When applied 

to the non-linear model, the result of the evaluation could be misleading.  

Differential sensitivity analysis (DSA) is one type of mathematical methods.  This 

approach only varies one input variable in each simulation, while keeping others fixed 

in their expected values. Therefore, it is also known as a local sensitivity analysis 

method. The sensitivity coefficient can be computed from the first-order partial 

derivative of the output variable with respect to the input variable in the Taylor series 

approximation of the model (Saltelli et al. 2009). In case nonlinearities are neglected, 
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the first-order partial derivative can be approximated as the ratio of the corresponding 

variation in the output to the variation in the input (Downing et al. 1985; Hamby 

1994).                                  

2. Statistical method incorporates the influence of both the range and distribution of the 

input variables by repeatedly implementing the model. This method evaluates the 

sensitivity of the individual input with varying the other input variables at the same 

time. Therefore, it considers the interaction effect among the multiple input variables 

(Frey and Patil 2002). Statistical method includes regression based sensitivity 

technique, partial correlation, Fourier Amplitude Sensitivity Test (FAST), Sobol’s 

method, etc. 

In the statistical sensitivity analysis, one of the important steps which should not be 

ignored is the definition of the distribution of the input variable. The choice of the 

distribution of the input variable determines the uncertainty of the output variable, as 

well as the relative importance of input variable in the model. The inappropriate 

distribution of the input variable could lead to large influence on the output variable 

and may even draw the wrong conclusion. The choice of the range and distribution of 

input variables might base on the measurement, experienced expert opinion, and 

rational estimation (Saltelli et al. 2004; Helton and Davis 2008). 

3. Graphical method detects the relationship between input variable and output 

variable by the graphs and charts. The graphical method provides a more intuitive 
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way for the analyst to explore the model behavior. It gives a complement to the 

mathematical and statistical methods (Frey and Patil 2002). The commonly used 

graphical methods include scatter plots, histograms, and cobweb plots. 

The Monte Carlo analysis is performed by executing the models repeatedly with 

different sets of input variables, which are simultaneously selected at random from 

their respective probability distributions. The application of the Monte Carlo analysis 

in the building simulation is the interest of this study. Thus, several statistical 

methods, which are suitable for the Monte Carlo analysis, are introduced in detail. 

5.3.1 Regression-Based Sensitivity Analysis  

Regression-based sensitivity analysis explores the relationship between the output 

variable and input variable by a linear model. By standardizing the input variables and 

output variable in consideration of the sample size, the influence of the units are 

removed. Therefore, all the coefficients are in a comparable level (Iman and Helton 

1991). The general linear model, given by equation 4.2, can be restructured as: 
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The coefficient ˆ ˆ/j js sβ  is called the Standardized Regression Coefficient (SRC). 

SRC measures the effect of the input variable on the output variable by varying each 

input variable in one unit while keeping other input variables remained at their 
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expected values. In case the input variables are independent, the absolute value of 

SRC provides a measure of variable’s importance, i.e., the input variable with large 

SRC has higher importance than the one with small SRC. The sign of the SRC 

indicates whether the output variable trends to increase (positive coefficient) or 

decrease (negative coefficient) with the variation of the corresponding input variable 

(Helton and Davis 2008). 

The validity of the regression-based sensitivity technique is conditional to the degree 

to which the model fits the data (Helton and Davis 2008). Therefore, the coefficient of 

determination R2 should be provided to check the assumption of the model’ linearity. 

A R2 close to 1.0 indicates that the uncertainty in the output variable can be mostly 

explained by the regression model. 

5.3.2 Stepwise Regression Analysis 

In contrast to the standard regression analysis, which includes all the input variables 

in the model, the stepwise regression provides a concise structure containing only the 

subgroup of the most important variables. A sequence of regression models is 

constructed in a way that each variable enters the model at each step (Helton and 

Davis 2008). The first model includes the most influential variable on the uncertainty 

in the output variable. The second model contains the first selected input variable and 

one of the remaining variables that has the largest impact on the uncertainty not 

accounted for by the first selected variable. This procedure continues until there are 
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no more variables that can satisfy the predefined requirement to allow a variable to 

enter the model. The pre-entered variable can be also dropped from the model, if its 

contribution on the variation of the output is not significant. At each step, the model 

checks if the selected variable in the prior step has an F value below or α-value above 

the threshold. 

Stepwise regression analysis provides extra hints to rank the importance of input 

variables in addition to comparing the absolute value of SRCs in the final model. The 

order in which the input variable enters into the model indicates its importance. The 

first selected variable is the most important. Likewise, the second selected variable 

has the most importance than others, except for the first one, and so on. The 

coefficient of determination R2 at each step provides an indication of how much 

uncertainty of the output can be explained by the currently included input parameters 

(Iman and Helton 1991).   

5.3.3 Partial Correlation  

The correlation coefficient rx,y provides a measure of relationship between input 

variable xj and output variable y, given by: 
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The derivation of partial correlation coefficient (PCC) is based on the concept of 

correlation and partial correlation (Helton 1993). In the PCC method, two regression 

models are first built, given in equation 5.15.  
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The PCC of the input variable xj and output variable y is defined as the correlation 

coefficient between two new variables, ˆj jx x− and ˆy y− . So the PCC provides a 

measure of relationship between the input variable and output variable, excluding the 

effect due to other input variables (Helton 1993). 

The PCC and SRC produce the same ranking when the input variables are 

uncorrelated to each other. The reliability of the PCC and SRC rely on the linearity of 

the model. In case the relations are nonlinear but monotonic, the transformation of the 

actual data to their corresponding ranks can help to improve the linear relationship 

between input and output (Helton and Davis 2008). Such coefficients in the model are 

called standardized rank regression coefficients (SRRC) and partial rank correlation 

coefficients (PRCC). The PRCC and SRRC are in the range between -1.0 and +1.0. A 

value close to ±1.0 indicates significant monotonic relationship between inputs and 

output, while a value close to zero indicates a non-significant relationship between the 

inputs and output (Iman and Helton 1991). 
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5.3.4 Statistical Test in Regression Analysis 

As opposed to the regression coefficient, F test provides a measure of the sensitivity 

of both the qualitative and quantitative variables. The F statistic calculated from 

equation 4.16 can be used as a guidance to assess the effect of an input variable on the 

model prediction (Helton and Davis 2008). A large F value indicates that the standard 

error for the input variable and the corresponding uncertainty in the estimated 

coefficient are small. In contrast, a small F value indicates that the standard error for 

the input variable and the corresponding uncertainty in the estimated coefficient are 

large. Hence, F value not only considers the magnitude of the coefficient, but also 

accounts for the amount of error in the coefficient (Frey et al. 2003). For a qualitative 

variable, the calculated F value equals the square of t value given in equation 4.13.  

The importance of the variable can be also measured by p-value, which is usually 

used together with the F or t statistics. Typical cut-off p-value is 0.01, 0.05, and 0.1. 

The calculated p-value will be compared with predefined significance level α, which 

is the probability of rejecting H0 when it is true. Generally, a small p-value indicates 

there are more evidences against the null hypothesis H0, while a large p-value means 

little or no evidence against the null hypothesis H0. Thus, p-value provides a criterion 

to assess the variable importance (Helton and Davis 2008). 
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5.3.5 Other Sensitivity Analysis Techniques 

There are many other sensitivity analysis techniques available, e.g., Morris method, 

Sobol’ method, and FAST method. The detailed introduction for these approaches can 

be accessed in Saltelli et al. (2009).  

5.3.6 Comparison of Sensitivity Analysis Techniques 

The regression-based sensitivity analysis, partial correlation technique, stepwise 

regression analysis, and F test can detect the relationship between the input variables 

and the output variables, with the consideration of the correlations among the input 

variables. Stepwise regression analysis gives several aspects of insights into the 

importance of the input variables. F test provides a measure of the importance of both 

qualitative and quantitative input variables. However, the validity of those approaches 

is based on the assumption of the good linear relationship between the input variables 

and output variables. Morris method is one of the screening methods to identify the 

most important subset from inputs. It measures the qualitative sensitivity of inputs, 

but cannot provide the exact magnitude of the importance of the inputs (Saltelli et al. 

2009). Sobol’ method and FAST method are variance-based sensitivity analysis 

techniques. They are model-independent, e.g., can cope with nonlinear and 

non-monotonic model, but they also require substantial calculation cost. The graphical 

approach provides immediate exploration of the relationship between input variables 

and output variable. It is useful to observe relationships between a few inputs. 
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There exist certain correlations between material properties as introduced in Section 

3.6, which should be accounted for in random sample generation. Therefore, the 

regression-based sensitivity analysis, stepwise regression analysis, partial correlation, 

F test, and graphical methods, which are able to rank the importance of the correlated 

input variables, are applied in this research. Those techniques will be exemplified in 

Chapter 7 to address the influential variables against the performance evaluation 

criteria. 

5.4 Summary 

Uncertainties exists in many aspects of hygrothermal simulation. This may be due to 

the lack of information in the design stage, the inherent variation in the material 

properties, the assumption and simplification in the mathematical models, etc.  

Building enclosure uncertainty and scenario uncertainty were introduced in detail. 

The uncertainties from different sources in the hygrothermal simulation, including 

material properties, boundary conditions, orientation of the construction, indoor 

condition, and workmanship were described and quantified. Probability density 

function of effective saturation moisture content was explored based on measurements 

of a number of building materials, and it is proposed as a normal distribution. A good 

sampling technique can efficiently cover and represent the population. The random 

sampling and Latin hypercube sampling techniques were introduced. In addition, the 
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correlation structure among the variables and the choice of the sample size should be 

considered in the sampling. 

Sensitivity analysis gives insight into the importance of the model's inputs versus 

model's output. The influential parameter can be treated with more care to reduce its 

uncertainty and increase the accuracy of the model’s outputs. Different sensitivity 

techniques were introduced, and their advantages and limitations were compared. The 

suitable techniques for this study, which can take into account the correlation between 

the input variables, were found. 
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Chapter 6 Probabilistic Assessment of 

Hygrothermal Performance of Building 

Enclosure Assemblies  

6.1 Introduction                                              

The previous chapter discussed and addressed the uncertainties from different sources 

in the building simulation. The uncertainties in the analysis inputs are propagated by 

the simulation models to the outputs, which will subsequently serve as the input for 

the performance assessment. 

The performance evaluation criteria in building physics mainly concern the thermal 

efficiency and durability of the construction, as well as the mold growth risk. A good 

understanding of those evaluation criteria helps designer to reduce the risk of damage 

and prolong the building’s service life. The performance concerning the thermal 

efficiency can be rated by the amount of heat loss through the enclosure and the 

thermal resistance of the enclosure. The performance regarding the durability can be 

assessed by the amount of condensation in the enclosure assembly and the possibility 

of the damage due to the hygrothermal loads on the surface region of the enclosure 

assembly. Mold spores contaminate the indoor environment and are harmful to the 

health of inhabitants, so the knowledge of mold germination mechanisms will help to 

control the mold issues on a minimum level.  
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In this chapter, the procedure to integrate uncertainty and sensitivity analysis in the 

hygrothermal simulation is first introduced. A probabilistic approach is developed to 

assess the hygrothermal performance of building enclosure assembly. Subsequently, 

different performance evaluation criteria are given. Finally, a criteria-based statistical 

evaluation procedure is described. 

6.2 Development of a Probabilistic Approach 

The previously developed DELPHIN program can run one and two-dimensional, and 

axial-symmetric three- dimensional transient mass and energy transport simulation by 

using instantaneous climatic data (Grunewald 1997; Nicolai 2008). In this study, 

DELPHIN program is used as the platform for the hygrothermal simulation. 

A probabilistic performance assessment is composed of multiple steps as presented in 

Figure 6-1. First, the study case is determined, i.e., is it a wall assembly or roof, and 

the corresponding scenario is described. Second, the involved input variables and the 

associated uncertainties are defined, including the variation range and distribution of 

each input variable. The outputs of interest are decided according to the requirements 

and expectations from the predefined performance evaluation criteria. Then, the 

variables are randomly generated from their respective probabilistic density functions 

by the selected sampling technique, and the uncertainties in the inputs are propagated 

to the output by iteratively executing the models. In the end, the outputs with 

uncertainty are collected and used as the inputs in the performance evaluation.  



 

 168

The input variables sampling is first discussed in Section 6.2.1. The process of the 

uncertainty propagation from inputs to outputs is detailedly introduced in Section 

6.2.2. 
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Figure 6-1 Schematic drawing of the probabilistic performance evaluation procedure  

6.2.1 Input Variables Sampling 

The sampled input variables need to follow the natural phenomena or physical rules. 

For instance, the upper limit of the short wave absorptivity and long wave emissivity 

should not be greater than 1.0. In this study, the variable is bounded in a 95% 

confidence interval to keep its associated variation in the reasonable range. The 

sample with a value beyond the limited range will be rejected. In addition, the input 

variables should also obey some intrinsic relationships, described as follows: 

Relationship between basic material parameters: There are three parameters in the 

material model related to the characteristics of moisture storage and pore structure: 

Open porosity (θpor), effective saturation moisture content (θeff), and capillary 
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saturation moisture content (θcap). They represent the level of the air or water 

penetration in the materials. θpor is the total pore volume in the material, excluding the 

closed pores. θeff is the pore volume that is filled by liquid water and dissolved air 

without entrapped air. It is a long-term saturation and starting point of the desorption 

test. θcap is determined from water absorption test. It is the transition moisture content 

from the first stage to the second stage during water absorption (Plagge et al. 2004; 

Roels et al. 2004). The relationship among them is θpor ≥ θeff ≥ θcap.  

There also exist some correlations among the material parameters. The variation of 

some parameters indicates the increase or decrease of others. For instance, the 

increase of the density correlates to an increase of the thermal conductivity due to the 

reduced pore space in which the air usually has a low thermal conductivity compared 

to solid matrix. The rank correlation matrixes of some basic parameters in different 

material categories are presented in Table 3-6, Table 3-7, Table 3-8, and Table 3-9. 

Relationship between basic parameter and material function: Several basic 

parameters are related to material functions, as presented in Table 6-1. For instance, 

open porosity and water vapor diffusion resistance factor are related to water vapor 

permeability function; effective saturation moisture content is the upper limit of 

moisture content in the moisture retention function and liquid water conductivity 

function. When those basic parameters vary, the related material functions will also be 

modified by a scale factor, which is the ratio of the new value to the old value of the 

related parameter. For example, the scaled moisture retention curve will be the old 
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curve multiplied by the scale factor θeff_new/θeff_old. So in the sampling, not only are 

the basic parameters generated from PDF, but also the related material functions vary 

in a certain range. It is important to note that material functions in the sampling are 

only modified by the scale factors without considering the physical phenomena as 

applied in the deterministic model, i.e., dependence of water vapor diffusion 

resistance factor on relative humidity. 

Table 6-1 Material functions and their related material parameters 

Material function Unit  Symbol  
Parameters that affect the 

material function 

Moisture retention function m3/m3 θ(pC) θeff 

Water vapor permeability s Kv(θ) θpor and μdry 

Liquid water conductivity s Kl(θ) θeff and Keff 

Thermal conductivity  W/m·K λ(θ) θeff 

When the difference between means of θeff and θpor is small and standard deviations of 

both parameters are relatively large, the randomly generated θeff may be larger than 

θpor. The condition θpor ≥θeff is handled by first generating the samples from their 

respective probability density functions with the application of the usual Latin 

hypercube sampling technique. The inequality is treated as follows: in each sampling, 

the generated θeff and θpor are examined. If θeff is larger than θpor, it is replaced by a 

new θeff that is iteratively generated from its probability density function until the new 

value fulfills the unequal condition. In this manner, the samples follow the desired 

distributions and the inequality is satisfied. The samplings of θeff and θcap are treated 

in a similar way. 
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6.2.2 Implementation of Uncertainty Propagation  

For a deterministic heat, air, and moisture simulation, the first step is to set up the 

construction in the program and provide sufficient information, including the 

description of the building structure, the properties of each material, boundary 

conditions, climatic conditions, initial conditions, etc. This information can be written 

into a project file and read by the simulation tool. Then the simulation is carried out, 

and the corresponding results are collected for the further analysis. 

A procedure to implement uncertainty propagation is demonstrated in Figure 6-2. 

First, a reference project file is created in the same procedure as the above described 

deterministic simulation. In the next step, an external Python script, which can 

automatically process multiple simulations, is used to randomly generate samples and 

modify the reference project file to build the new project file with the generated 

samples. In each sampling, all the variables are simultaneously selected at random 

from their respective probability density functions. The program will check if they are 

in the reasonable range and meet the preconditions, e.g., the correlation between 

material parameters. If not, they will be discarded and the program will generate a 

new set of samples until the full conditions are satisfied. Then, this new set of samples 

is written into the reference project file to substitute the designated variables/ 

functions. So the new project file is composed of the updated data and unchanged part 

that is the same as the reference project file. A set number of new project files are 
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built and simulations are automatically executed. Thus, the uncertainties in the inputs 

are propagated by the simulation model to the outputs.. 

Material 
data

Boundary 
conditions

Initial 
conditions

Designated random 
variables generation

Build new 
project files

No

project file 1 project file 2 project file N

Output file 1 Output file 2 Output file N

Output and input 
data collection 

Deterministic 
Input data

Climate 
conditions

Construction 
description

Yes

Hygrothermal simulations

Meet the 
preconditions

Reference project file

 

Figure 6-2 Schematic drawing of implementation of uncertainty propagation  

The outputs of the simulations can be read in sequence and collected for the 

performance evaluation. The randomly generated inputs and the corresponding 

outputs are imported into SIMLAB 2.2 (Simlab 2011) for sensitivity analysis 
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6.3 Performance Evaluation Criteria 

A good building design should consider the possible performance problems in 

advance, and find a solution to minimize the possibility of occurrence of those 

problems. The performance problems of building enclosure may vary in different 

aspects. For instance, the excessive moisture in the construction, e.g., interstitial 

condensation, could diminish the thermal resistance of insulations and reduce energy 

efficient. The presence of mold is another moisture-induced issue that influences the 

indoor air quality and the occupant’s health. Moreover, the drastic variation of 

moisture and temperature on the surface of the building component will cause 

intensified stress and accelerate the material deterioration. 

Different criteria against the hygrothermal performance of the building enclosure 

assembly have been developed to evaluate moisture related deteriorations and 

problems, as well as the thermal efficiency of the building enclosure assembly.  

6.3.1 Condensation 

Condensation is one of the major harms for the building enclosure and it can lead to 

the deterioration of the construction, thus, reduce its durability. The long-term 

condensation in the enclosure should be avoided. 

6.3.1.1 DIN 4108-3 (2001) 

Condensation inside the assembly, induced by the increased humidity of the 

construction and thermal insulation, should not produce the material damage or impair 
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the safety function. It is considered harmless, if the essential requirements, such as 

thermal protection, stability of the structure are guaranteed. These conditions are met 

when the conditions listed below are ensured (DIN 4108-3 2001): 

a) The components that contact with the condensed water must not be damaged (e.g., 

corrosion, fungus). 

b) The condensed water that formed in the enclosure during the thaw period must be 

dried out during the evaporation period. 

c) For roof and wall assembly, the amount of condensed water in total should not 

exceed 1.0 kg/m2. This does not apply to conditions d) and e). 

d) For the condensation that occurs at contact surfaces between non-capillary building 

materials, the total amount of condensed water should not exceed 0.5 kg/m2.  

e) The moisture content of wood should not increase beyond 5%. For wood based 

materials, this limit is no more than 3%. 

6.3.1.2 DIN EN ISO 13788 (2001) 

Interstitial condensation is acceptable, if the sums of the condensation from each 

interface are expected to evaporate during the evaporation period (summertime). 

Surface condensation can cause damage to unprotected building materials that are 

sensitive to moisture. The moisture is allowed temporarily in some place and in small 

quantity, i.e., windows and tiles in bathrooms, where the surface does not absorb the 

moisture and precautions are taken to avoid the moisture contact with adjacent 
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sensitive materials. There is a risk of mold infestation on a surface where relative 

humidity exceeds 80% for several days. 

6.3.2 Mold Growth 

Mold fungi are widely observed in the building components where the moisture exists 

in the high level, such as the floor, interface between interior and exterior wall. The 

mold may not only lead to the blemish of the surface finishing, the reduction of 

thermal performance of the construction, but it will also produce the healthy issues for 

the occupancies, such as respiratory, allergenic, nausea, and other symptoms (Burr et 

al. 1988; Lewis et al. 1994; Baughman and Arens 1996). In recent years, mold related 

issues have reached a wide attention.  

Mold growth needs moisture, which can be expressed either as water activity (aw) or 

as relative humidity in a steady state. Mold can grow in a wide environmental 

condition. Depending on the species, some xerophilic species can start to germinate 

when relative humidity is as low as 62% to 65% (Adan 1994), while hydrophilic 

microorganisms require at least 90% to 95% RH. The favorable temperature range for 

mold growth is from 0 to 50 °C (Viitanen et al. 2010).  

In the past, the criterion to define the germination of mold fungi was relative humidity 

only. When relative humidity is beyond the limited value, i.e., 80% RH (IEA 1991; 

ASHRAE 2009), the mold is assumed to germinate. In fact, the germination of mold 

fungi is not only related to the humidity, but also determined by temperature, 
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exposure time, and nutrition of the substrates (Hens 1999; Hukka and Viitanen 1999; 

Sedlbauer 2001). At defined relative humidity, higher temperature and more nutrition 

on the substrates will shorten the time of spore germination. The mold growth is also 

dependent on the surface type and dirtiness of the substrate. Under the same 

conditions, some organic materials, e.g., wood and plywood, require less exposure 

time than stone based materials. However, when organic dusts accumulate on the 

surface of stone based material, its surface properties will be become suitable for 

mold growth (Viitanen 2010). Moreover, light, radiation, oxygen, and air movement 

may also have influence on the mold growth (Hagentoft 1998; Sedlbauer 2001). 

Different mold models are introduced as follows. 

6.3.2.1 DIN standards for prevention of mold growth 

DIN 4108-3 (2001) adopts a constant value of 80% relative humidity on the interior 

surface of wall assembly as a threshold to assess the mold growth risk.  

The mold easily occurs in the area suffering the thermal bridge effect due to its 

relatively lower temperature than other regions. In DIN EN ISO 13788 (2001), a 

temperature factor fRsi was then introduced to evaluate the thermal bridge and 

minimize the risk of moisture damage, primarily fungus defacement.�

si e
Rsi

i e

f θ θ
θ θ

−
=

−
,                                                                (6.1) 
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where θsi is the interior surface temperature, θi is the indoor temperature, and θe is the 

outdoor temperature. The knowledge of the interior surface temperature can be 

obtained from the hygrothermal simulation.  

The minimum value of the temperature factor, fRsi,min= 0.70, should be guaranteed to 

avoid moisture condensation and prevent fungus defacement.  

6.3.2.2 Isopleth model 

The isopleth model (Sedlbauer 2001) describes the spore germination and mold 

growth rate in dependence on temperature and relative humidity on different 

substrates. The model defines several analogous isolines, e.g., Lowest Isopleth for 

Mold (LIM) line, 8-days line, 2mm/d line, to parameterize either the time that spores 

start to appear or mycelium growth rate at the specified relative humidity and 

temperature. The temperature in the model is fixed between 0 and 30 °C in agreement 

with the range of indoor temperature (Sedlbauer 2001). Under the condition on the 

LIM line, the spore takes theoretically “infinite” time to germinate. To assess the risk 

of spore germination, the pairs of temperature and relative humidity from the 

hygrothermal simulation are compared with the LIM line. If the relative humidity at 

the specified temperature is under LIM line, then there is no fungi activity. 

The type of substrate impacts the surface conditions for the spore germination and 

mold growth. Four substrate categories were defined to classify different building 

materials: 



 

 178

• Substrate category 0: Optimal culture medium; 

• Substrate category I: Biologically recyclable building materials like wall 

paper, plaster cardboard, building materials made of biologically degradable 

raw materials, material for permanent elastic joints; 

• Substrate category II: Biologically adverse recyclable building materials such 

as renderings, mineral building material, certain wood as well as insulation 

material not covered by Ι; 

• Substrate category III: Building materials that are neither degradable nor 

contain nutrients, e.g., foils, glass, tiles; 

Substrate category 0 is the most favorable medium for spore germination. Therefore, 

it requires the lowest relative humidity at defined temperature. On the contrary, 

substrate category III is the worst medium for spore germination. Substrate category I 

and category II include most of the building materials. Their isopleth systems are 

shown in Figure 6-3. In this study, the isopleth system of substrate category I is 

selected as the criteria, since it requires a relatively lower condition for spore 

germination than category II. Under the same conditions, if there is no spore 

germination risk on the materials from substrate category I, the same conclusion can 

be drawn for the materials from substrate category II. 



 

 179

 

Figure 6-3 Generalized isopleth system for spore germination (left) and mycelia growth (right). 
Top: isopleth system for substrate category I. Bottom: isopleth system for substrate category II 
(Sedlbauer 2001) 

6.3.2.3 Model index 

Hukka and Viitanen (1999) presented a mathematical model to evaluate the mold 

growth on wooden material based on the laboratory measurements. The experiments 

covered the temperature range between 5 and 40 °C and relative humidity range 

between 75 and 100%. They defined a mold index between 0 and 6 based on visual 

appearance of the substrate surface as listed in Table 6-2. The mold is initiated when 

the index is beyond 1.   
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Table 6-2 Mold index for experiments and modeling (Hukka and Viitanen 1999) 

Mold index Description 

0 no growth 

1 some growth detected only with microscopy 

2 moderate growth detected with microscopy (coverage more than 10%) 

3 some growth detected visually 

4 visually detected coverage more than 10% 

5 visually detected coverage more than 50% 

6 visually detected coverage 100% 

There are some threshold conditions under which mold requires to germinate. The 

initiation of mold growth is dependent on the temperature, relative humidity, exposure 

time and surface quality of the substrate. From the experiment result, the critical 

temperature and relative humidity to initiate mold growth can be described by the 

equation 6.2 (Hukka and Viitanen 1999): 

3 20.00267 0.160 3.13 100.0   when T 20
80%                                                        when T 20crit

T T T C
RH

C

⎧− + − + ≤⎪= ⎨
>⎪⎩

o

o
               (6.2) 

The largest possible mold growth index Mmax between the mold index 1 in the 

initiation stage and index 6 in the fully contaminated stage can be expressed by a 

parabolic equation: 

2

max 1 2
100 100

crit crit

crit crit

RH RH RH RHM
RH RH

⎛ ⎞− −
= + − ⎜ ⎟− −⎝ ⎠

                                     (6.3)  

A mathematical differential equation to express the mold index linearly increasing 

over time in days during the initiation stage of mold growth is given in equation 6.4.   

1 ,    1
7 exp( 0.68 ln 13.9 ln 0.14 0.33 66.02)

dM M
dt T RH W SQ

= <
− − + − +

 ,       (6.4) 
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where T is temperature, RH is relative humidity, W is the type of wood as the 

substrate (0=pine, 1=spruce), and SQ is the quality of the surface (0=re-sawn after 

drying, 1=original). 

The mold growth does not exhibit the same rate: the mycelium growth is much faster 

in the later stage (M>1) than in the early stage (M>1). This phenomenon can be 

defined by two correction coefficients, given in equation 6.5 and 6.6 (Hukka and 

Viitanen 1999).   

1

1                   when M<1
2       when M 1

1v m

k
t t

⎧
⎪= ⎨ >⎪ −⎩

 ,                                                (6.5) 

[ ]2 max1 exp 2.3( )k M M= − − ,                                                  (6.6) 

where tv is the predicted response time for growth of mold fungi (M=3) in weeks, and 

tm is the predicted response time for growth of mold fungi (M=1) in weeks. They can 

be derived from equation 6.7 and 6.8. 

exp( 0.74 ln 12.72 ln 0.06 61.50)vt T RH W= − − + +                               (6.7) 

exp( 0.68 ln 13.9 ln 0.14 0.33 66.02)mt T RH W SQ= − − + − +                      (6.8) 

Thus, the mold growth rate with the consideration of the contribution of k1 and k2 is 

given by:  

1 2
1

7 exp( 0.68 ln 13.9 ln 0.14 0.33 66.02)
dM k k
dt T RH W SQ

= ⋅ ⋅
− − + − +

           (6.9) 
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Mold growth under the fluctuating humidity condition will slow down, and the latent 

period will become longer than at a constant favorite condition (Adan 1994; 

Viitanen1997; Hukka and Viitanen 1999). Under the unfavorable condition, the mold 

activity will reduce. In case temperature is under 0 or relative humidity is below the 

critical relative humidity, the delay of mold growth can be obviously observed. This 

delay happens in the period from the start of drying to 6 hours. But there is no drying 

behavior, if the drying time extends from 6 hours to 24 hours. After 24 hours, this 

drying delay is prolonged again. The mold index in dependence on the drying period 

(t-t1) is written in equation 6.10 (Hukka and Viitanen 1999).   

1

1

1

0.032          when t-t 6
0                   when 6 t-t 24

0.016          when t-t 24

h
dM h h
dt

h

− ≤⎧
⎪= ≤ ≤⎨
⎪− >⎩

                                     (6.10) 

The mold index model is best applicable for the wooden based material. Mold growth 

on other materials has a slower speed than on the wooden materials (Ritschkoof et al. 

2000; Viitanen 2007). In the same surface condition and ambient temperature and 

humidity, concrete and non-organic thermal insulation usually need longer exposure 

time. So by using the mathematical model based on the wooden material actually 

overestimates the mold index. But if the result from the worse scenario is on the 

“safe” side, it will be applicable on other cases. 
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6.3.2.4 Comparison of the mold models 

Previous sections discussed the main features of each mold model. This section will 

illustrate the strengths and limitations of these models. 

In DIN 4108-3 (2001), relative humidity is considered as a sole rule to assess the 

mold growth risk. The temperature factor (DIN EN ISO 13788 2001) as the threshold 

is only applicable under stationery conditions. The isopleth model and mold index not 

only account for the effect of relative humidity, but also consider the impact of the 

temperature and the substrate under transient condition.  

For isopleth model, it covers the worst scenario since the initial inertia phase of the 

mycelium growth is not considered after the unfavorable condition occurs. Therefore, 

the result could overestimate the spore germination or mold growth rate. So it is 

always on the “safe” side to evaluate the risk of mold growth. The disadvantage of the 

isopleth model is that it cannot assess the interim drying out of the fungi spore when 

mico-climatic boundary conditions transiently vary.  

While the mold index also has some limitations. The model did not consider the 

situation when temperature is below 0 °C, although some phenomena show that the 

mold activities in this temperature range decrease or stay constant (Viitanen 2010). 

The time interval to calculate the mold index also determines the magnitude of the 

index. In fluctuating conditions, as the shorter time interval adopts, the larger the 

mold index will be. This is due to the fact that the mold index increases faster than it 
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decreases (Vinha 2007). The model is established based on the wooden materials, so 

its expendability to other materials needs to be further validated. 

6.3.3 Probability of Damages Induced by the Hygrothermal 

Loads 

Hygrothermal response of the building enclosure dynamically presents the interaction 

of the enclosure with outdoor and indoor environments. The excessive fluctuation of 

relative humidity, temperature, and moisture content over time on the material surface 

may cause the thermal expansion, hygric swelling and shrinkage. The induced 

possible deterioration phenomena are illustrated in Figure 6-4 a), b), and c).  
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Figure 6-4 Damages induced by hygrothermal loads 

Case a presents the micro-cracks on a solid material surface due to the dramatic 

temperature and hygic variations over time. Those variations build the tension in the 

pore structure, thus result in the micro-cracks and segregations. Case b presents the 

crack developed inside the material due to the difference of temperatures, relative 

humidity levels, and moisture contents between distinct positions of the material over 
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time. The different responses of the material layers to the temperature and hygric 

variations will produce a shear stress that could lead to the demolition and crack. Case 

c presents a surface crack induced by the shear stress due to temperature difference on 

two adjacent surface regions, resulted from the unevenly incident solar radiation. 
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Figure 6-5 Schematic diagram of the mechanism of hygrothermal load impact 

Hygrothermal loads provide a measure of the possibility of damages at outer surface 

region of the construction. To quantify the hygrothermal load, the course length of the 

hygrothermal parameter, e.g., temperature, relative humidity, and moisture content 

over time, together with their differences at distinct positions, are summed up in the 

surface region (Ruisinger and Grunewald 2009). 

This means both the amplitude and the frequency of the state variables over time will 

be measured by their “travel path”. For instance, a surface temperature with a large 

difference between maximum and minimum values or with more frequency variations 

over time will give rise to a longer course than the relatively uniform temperature 
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does. Thus, the potential of detriment of this load is correspondingly high. This 

mechanism is demonstrated in Figure 6-5. 

6.3.3.1 Hygrothermal loads on the exterior surface  

Hygrothermal loads on the exterior surface of the building enclosure assembly, 

described by Figure 6-4a, are induced by the variations of the surface temperature, 

relative humidity, and moisture content over time. The loads are defined by HLST, 

HLSϕ, and HLSθ in equation 6.11, which integrate the annual curve lengths of 

temperature, relative humidity, and moisture content at the outer surface in specific 

time interval, respectively. 
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where ,s iTΔ , ,s iϕΔ , and ,s iθΔ are surface temperature difference, relative humidity 

difference, and moisture content difference in the time interval itΔ (1 hour), 

respectively. 

The hygrothermal loads on the exterior surface give insight into the frequency and 

intensity of the swelling and shrinkage, as well as thermal expansion on the outer 

surface. 
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6.3.3.2 Hygrothermal loads at the certain depth layer from the exterior surface 

Hygrothermal loads at the certain depth layer from the exterior surface, described by 

Figure 6-4b, is induced by the difference of temperatures, relative humidities, and 

moisture contents between distinct positions of the material over time. The loads are 

defined by HLDT, HLDφ, and HLDθ in equation 6.12, which integrate the annual 

temperature, relative humidity and moisture content difference between the outer 

surface and the material layer at the defined depth in specific time interval, 

respectively. 
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where , ,s i xmm iT T− , , ,s i xmm iϕ ϕ− , and , ,s i xmm iθ θ− are mean temperature difference, 

relative humidity difference, and moisture content difference between the outer 

surface and x mm depth layer from outer surface in time interval itΔ (1 hour), 

respectively. 

The hygrothermal loads at the certain depth layer from exterior surface measure the 

stress due to the difference in hygric or thermal response near the outer region of the 

construction, i.e., outer surface and 10mm depth layer from the outer surface. A large 
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difference in temperature or moisture content between these two positions indicates 

an increased risk of delamination and spall of the outer layer. 

6.3.4 Thermal Resistance  

Thermal resistance measures a material’s ability to resist the heat flow. The static 

method determines the thermal resistance of a material according to its thickness and 

thermal conductivity. For a component with multi-layers, the thermal resistance can 

be calculated from the equation 6.13. 

1

k
n

n n

dR
λ=

= ∑ ,                                                                  (6.13)           

where dn and λn are the thickness and thermal conductivity of the material layer n, 

respectively. 

DIN 4108-2 (2003) requires that the thermal resistance of the external wall should not 

be less than 1.2 m2·K/W. 

To account for the transient heat loss through the construction, the heat flux density 

and the temperature difference between the interior and exterior surface of the 

construction are evaluated as time-dependent variables (Ruisinger and Grunewald 

2009). 

The transient thermal resistance during the heating period (HP) is defined as the ratio 

of integral of temperature difference ΔθHP to integral of the heat flux through the 

interior surface of the building enclosure qHP. 
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where q(t) is the heat flux through the interior surface of the building enclosure, θsi is 

the interior surface temperature and θse is the exterior surface temperature.          

Compared to the static method, the transient approach assesses the hygrothermal 

response of the wall assembly with the consideration of the thermal inertia in the 

massive wall, moisture-dependent thermal conductivity, and the effect of short wave 

and long wave radiations (Ruisinger and Grunewald 2009). 

6.4 Criteria-based Statistical Evaluation Procedure 

The performance assessment relies on two aspects: the input state variables and the 

selected criterion. As illustrated in Figure 6-1, the state variables (e.g., relative 

humidity and temperature) obtained from the simulations are used for the probabilistic 

performance evaluation. Those state variables can be applied either directly or input 

in the mathematical model to derive a new output, to compare with the target 

performance criterion. If the value exceeds a certain threshold, one can assume the 

building enclosure assembly is no longer “safe” in this specific performance. If this is 

the case, a careful inspection of the design should be fulfilled to reduce the possibility 

of failure. The performance of the building enclosure assembly can be evaluated in 

various aspects, including the mold growth risk, inner condensation, thermal 

efficiency, and the damages induced by the hygrothermal loads. 



 

 190

Different criteria can be applied for one target performance, e.g., the mold growth risk 

can be assessed by either the isopleth system or mold index. As stated in Section 

6.3.2.4, each criterion has its advantages and limitations. Application of multiple 

criteria to evaluate one performance can provide a diverse estimation on the 

possibility of failure. 
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Figure 6-6 Probabilistic performance evaluation  

The probabilistic performance evaluation also depends on the selected approach. The 

possibility of failure can be assessed by either directly comparing the output curves / 

values with the defined threshold (Figure 6-6 a and b), or calculating the probability 

from density functions (Figure 6-6 c and d). 

6.5 Summary  

A probabilistic approach, incorporated into DELPHIN simulation tool, was developed 

to assess the hygrothermal performance of the building enclosure assemblies. 
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Compared to the deterministic model with a single output, this approach propagates 

the uncertainties in the analysis inputs to the analysis outputs by iteratively carrying 

out the simulations and produces the result in a certain range. Therefore, the risk 

assessment will not provide just a result of “failure” or “no failure”, but will give a 

possibility of failure.  

The relations between the material parameters and between material parameters and 

material functions were discussed. The variation of basic material parameter will yield 

the shift of the related material functions. Those relationships were incorporated in the 

Latin hypercube sampling. 

The different criteria to assess the durability, thermal efficiency, and mold growth risk 

of the building enclosure assembly were discussed and compared. The evaluation of 

the hygrothermal performance of the building enclosure assembly in the design stage 

should base on one or more criteria in order to minimize the possibility of damages 

and maximize the usability. 
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Chapter 7 Case Study 

7.1 Introduction 

Before the energy crisis in the 1970s, most external walls in Europe were uninsulated, 

either constructed as masonry cavity wall with the air layer in-betweens or only as the 

plastered masonry wall. During the heating season, these buildings consumed 

considerable amount of energy in order to achieve a comfortable level for the 

residents. Constructions with low thermal resistance are often accompanied with 

surface condensation and mold growth issues. 

In recent years, to meet energy requirements, many European countries have started to 

renovate historical buildings by installing interior or exterior insulations. From the 

aesthetic and artistic point of view, the appearance of the building facade should be 

maintained. The exterior insulation has the limitations for this aim, so the interior 

insulation is more suitable. The installation of extra insulation improves the thermal 

resistance of the building component. On the other hand, it also increases the air 

tightness of the building and reduces the infiltration/exfiltration, which further raises 

the risk of the moisture related issues. The appropriate strategy to install the insulation 

should consider the characteristics of both the surrounding environments and building 

construction itself, and its reasonability should be examined in the design stage.  

In this chapter, the developed probabilistic approach is exemplified. First, the need to 

renovate a plastered masonry wall is discussed. Then, a retrofitted wall with an 
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interior insulation installed on the masonry wall is introduced. The uncertainties in the 

input variables are described and quantified, and the hygrothermal performance of the 

retrofitted wall is assessed by different performance criteria. Finally, sensitivity 

analysis is applied to address the most influential variables against the criteria of 

interest.  

7.2 Wall Assemblies Description 

7.2.1 Base Wall 

A historic plastered masonry wall is first introduced and it is served as the base wall. 

From interior to exterior, it is composed of 15 mm historical lime plaster, 380 mm 

brick, and 20 mm lime cement plaster. The basic material properties of each material 

are listed in Table 7-1. The static thermal resistance of the wall has the value of 0.532 

m2·K/W, which is far below the value of 1.2 m2·K/W required in DIN 4108-2 (2003).  

The external wall corner has the thermal bridge effect and usually has a relatively 

lower temperature compared to the other parts of the building enclosure. This is 

because the low air movement in this region reduces the surface heat exchange with 

the indoor environment. Another reason is the difference of the surface area between 

the interior side and exterior side of the wall corner. Therefore, the mold growth risk 

at this location is assessed by the hygrothermal simulation.  
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The schematic drawing of the external wall corner and the location of concern are 

shown in Figure 7-1. The length of the wall on each side is set as 1000 mm in the 

simulation, to exclude the influence of the thermal bridge.  

Inner 
corner

North

Brick (380mm)

Historical lime plaster(15mm)  

Lime cement plaster(20mm)

Exterior Interior  

Figure 7-1 Schematic drawing of the base wall corner  

The outdoor condition adopted the weather data of test reference year of Potsdam, 

Germany. The indoor condition was derived according to DIN EN 15026 (2007), in 

which the indoor temperature and relative humidity are calculated from the daily 

average outdoor temperature. Indoor humidity has two scenarios: the normal and the 

high indoor moisture loads (Section 5.2.2.3). The applied boundary coefficients were 

listed in Table 7-2. 

The initial moisture content of each material was set as the equivalent value 

corresponding to relative humidity of 80% (ASHRAE 160 2009), derived from 

sorption isotherm. The initial temperature was assumed to be 20°C. The simulation 

started from July 1 for a period of 2 years. The first year was considered as the 
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initializing period. Therefore, the second-year outputs of hygrothermal simulation 

were used for the analysis.  

Temperature and relative humidity at the interior surface of the base wall corner from 

the hygrothermal simulation are shown in Figure 7-2. Relative humidity obtained by 

using the high indoor moisture load is higher than 80% in most of time. 
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Figure 7-2 Temperature and relative humidity at the interior surface of the base wall corner 

Figure 7-3 shows the isopleth system for assessing mold growth risk at the interior 

surface of the base wall corner. It is clear that, for the result derived by using high 

indoor moisture load, quite a large amount of values are across the line of spore 

germination after 8 days, indicating a very high potential of mold growth. For the 

result derived by using the normal indoor moisture load, only a few points are beyond 

the line of Lowest Isopleth for Mold, indicating the low potential of mold growth. 
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Figure 7-3 Isopleth system for assessing the mold growth risk at the interior surface of the 
base wall corner 

The mold index for assessing the mold growth risk at the interior surface of the base 

wall corner are presented in Figure 7-4. The mold index above 1 indicates the mold 

starts to grow. For the scenario with the high indoor moisture load, the result shows 

that the mold starts to grow during the autumn and reaches the highest value in the 

spring. If the scenario with the normal indoor moisture load is adopted, there is no 

mold growth risk.  

 
Figure 7-4 Mold index for assessing the mold growth risk at the interior surface of the base wall 
corner 
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The analyses from both mold models indicate that there is a possibility of the mold 

growth at the interior surface of the base wall corner. To improve the thermal 

performance and reduce the mold growth risk, the renovation of the base wall is 

needed.  

7.2.2 Retrofitted Wall  

The calcium silicate is a rigid and capillary-active material. It has a low thermal 

conductivity and is easy installation. So it is selected for the application. 

A 5 mm glue mortar is used to attach the calcium silicate board to the inner surface of 

the base wall, and a 5 mm lime plaster is applied on the surface of the calcium silicate. 

The retrofitted wall with the installation of 30 mm calcium silicate, has the static 

thermal resistance of 1.03 m2·K/W, which is still less than 1.2 m2·K/W required by 

DIN 4108-2 (2003). So a 50 mm calcium silicate, giving rise to the static thermal 

resistance of 1.34 m2·K/W, is adopted. The schematic drawing of the renovated wall 

with dimensions is shown in Figure 7-5. 

Lime plaster (5mm)

Brick (380mm)

Calcium silicate glue mortar (5mm)

Historical lime plaster(15mm)  

Calcium silicate (50mm)

Lime cement plaster(20mm)

Exterior Interior  

Inner 
corner

North
 

Figure 7-5 Schematic drawing of the retrofitted wall and the corresponding corner  
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The hygrothermal performance of the retrofitted wall is assessed against different 

evaluation criteria described in Section 6.3, in consideration of the uncertainties in the 

input variables. The simulation started from July 1 for a period of 2 years. The second 

year outputs of the simulations were used for the analysis. 

7.3 Uncertainty Analysis on Hygrothermal 

Performance of the Retrofitted Wall  

7.3.1 Uncertainty in the Input Variables 

The uncertainties in the hygrothermal simulation may come from different sources. In 

this study, the considered uncertain variables include the material properties, the 

indoor conditions, boundary coefficients, orientation of the wall assembly, and the 

dimension of the material layer. For each variable, the design value for the 

deterministic simulation and the deviation/ variation range for the probabilistic 

performance evaluation are detailedly introduced as follows. 

7.3.1.1 Material properties 

As discussed in Section 5.2.3, the material properties were assumed to follow the 

normal distributions. The mean value and the standard deviation of each property 

used the statistical data obtained from IBK-laboratory measurements. They are listed 

in Table 7-1. The perturbation in the basic parameters will lead to the variation of the 

related material functions as mentioned in Section 6.2.1. So when the basic parameter 
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is randomly selected from the normal distribution, the related material functions will 

also vary in a certain range. 

Table 7-1 Material properties and their standard deviations (in the parenthesis)  

Basic property 
Symbol 
[Unit] 

Lime 
plaster 

Calcium 
silicate 

Calcium 
silicate 

glue 
mortar 

Historical 
lime 

plaster 
Brick 

Lime 
cement 
plaster 

Density  
ρ  

[kg/m3] 

1380    

(30.0) 

235     

(10.0) 

1480    

(40) 

1790    

(35) 

1830   

(28) 

1800   

(30) 

Specific heat capacity  
c   

[J/kg·K] 

650     

(20.0) 

1250   

(25.0) 

1020    

(45.0) 

850     

(28) 

790    

(20) 

840    

(25) 

Thermal conductivity 
λ  

[W/m·K] 

0.43    

(0.03) 

0.063    

(0.005) 

0.92    

(0.06) 

0.82    

(0.04) 

0.78   

(0.05) 

0.76   

(0.03) 

Open porosity 
θpor  

[m3/m3] 

0.49    

(0.02) 

0.92    

(0.01) 

0.45    

(0.02) 

0.31    

(0.02) 

0.31   

(0.02) 

0.32   

(0.02) 

Effective saturation 

moisture content 

θeff    

[m3/m3] 

0.46    

(0.02) 

0.91    

(0.01) 

0.27    

(0.02) 

0.28    

(0.02) 

0.28   

(0.02) 

0.30   

(0.02) 

Capillary saturation 

moisture content 

θcap    

[m3/m3] 

0.32   

(0.02) 

0.81    

(0.02) 

0.03    

(0.003) 

0.25    

(0.02) 

0.21   

(0.02) 

0.12   

(0.01) 

Water absorption 

coefficient 

Aw   

[kg/m2s0.5] 

0.08    

(0.005) 

0.95    

(0.05) 

0.01    

(0.002) 

0.13    

(0.02) 

0.26   

(0.02) 

0.015   

(0.003) 

Water vapor diffusion 

resistance factor  

μdry    

[ - ] 

11.0 

(1.5) 

5.5 

(0.5) 

38.0    

(3.0) 

12.0    

(1.5) 

9.8    

(1.5) 

13.0   

(1.5) 

Liquid water 

conductivity at 

saturation moisture 

content 

Keff 

[ s ] 

5.0E-11   

(1.5E-11) 

9.0E-09   

(2.0E-09) 

3.0E-11   

(1.0E-11) 

3.0E-09   

(1.0E-09) 

3.0E-9   

(1.0E-9) 

5.0E-09  

(1.5E-09)

 

7.3.1.2 Boundary conditions 

The outdoor condition adopted the weather data of test reference year of Potsdam, 

Germany, the same as the base case. The design indoor temperature and relative 

humidity, according to DIN EN 15026 (2007), were the functions of the daily average 

outdoor temperature.  
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To account for the uncertainties in the indoor environment, the indoor temperature 

and relative humidity function profiles were set as uncertain variables. The relative 

humidity function profile (Figure 7-6 top) were parallel to vary between the profiles 

of the normal (A) and the high (B) indoor moisture loads, following a uniform 

distribution. The temperature function profile (Figure 7-6 bottom) varied parallel to 

the design temperature function profile, following a normal distribution with a 

standard deviation of 0.5˚C. 

The boundary coefficients were assumed to follow the normal distributions. The 

design values and the corresponding standard deviations, referring to the summarized 

empirical values in Table 5-5, are listed in Table 7-2. 
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Figure 7-6 Indoor relative humidity (top) and temperature (bottom) function profiles. The dash 
lines outline the relevant variation range  



 

 201

Table 7-2 Boundary coefficients and the standard variations (in the parenthesis)  

Boundary coefficient Symbol Unit Value 

Heat transfer coefficient _ interior  αi W/m2K 8.0 (1.0) 

Vapor transfer coefficient _ interior  βpi s/m 3e-08 (5e-09) 

Heat transfer coefficient _ exterior  αe W/m2K 25.0 (3.0) 

Vapor transfer coefficient _ exterior  βpe s/m 2e-07 (5e-08) 

Short wave radiation absorptivity αsw - 0.6 (0.1) 

Ground reflectivity  ρs,g - 0.2 (0.04) 

Long wave emissivity of building surface ε - 0.9 (0.06) 

Rain exposure coefficient  αR - 0.60 (0.12) 

7.3.1.3 Orientation 

In the early design stage, the orientation of a wall assembly may be unknown. Thus, it 

was considered as an uncertain variable. Customarily, the value of 0 is used to 

represent a North oriented wall and the value of 90 is used to denote an East oriented 

wall, etc. In this study, the orientation of the wall assembly was uniformly selected 

from the values of 0, 45, 90, 135, 180, 225, 270, and 315. For a wall corner section, 

the incident short wave radiation, long wave radiation, and rain impinging on the 

two-component walls are different. Therefore, it needs to specify their respective 

orientations in the simulation. 

7.3.1.4 Dimension of material layer 

The dimension of the material layer may also impact the hygrothermal response of the 

wall assembly. So the dimension of the material layer prone to be influenced by the 

craftsmanship was considered as an uncertain variable following a uniform 

distribution. Those materials include the historical lime plaster, calcium silicate glue 
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mortar, and lime plaster. The design value and the variation range (in the parenthesis) 

of each material layer are listed in Table 7-3. 

Table 7-3 Dimensions of material layers and their variation ranges (in the parenthesis) 

Material d [mm] 

Lime plaster 5 (3-8) 

Calcium silicate glue mortar 5 (3-8) 

Historical lime plaster 15 (10-20) 

7.3.1.5 Probability distributions of the input variables 

The probability distributions of the input variables are summarized in Table 7-4. The 

variables are randomly selected from their respective distributions by the Latin 

hypercube sampling. 

Table 7-4 Probability density functions of the input variables  

Input variable Distribution 

Material property (basic parameter and material function) Normal 

Boundary coefficient Normal 

Orientation Uniform 

Dimension of material layer Uniform 

Indoor temperature  Normal 

Indoor relative humidity Uniform 

7.3.1.6 Sample size 

According to Lomas and Eppel (1992), the accuracy of the total uncertainty in the 

prediction can be denoted by the accuracy of the standard deviation of the prediction. 

The normalized 95% confidence interval of standard deviation of the prediction 

against the number of the Monte Carlo simulation is shown in Figure 7-7. After 200 
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simulations, the accuracy is only marginally improved with the total simulation 

number. So 400 simulation project files with the randomly generated input variables 

were built, according to the procedure described in Section 6.2.2. 400 simulations are 

also sufficiently greater than the minimum sampling size 4k/3 (k is the number of the 

input variables; k=56 in this study) recommended by Iman and Helton (1985). Each 

simulation project is referenced as one sample for uncertainty and sensitivity analysis.  
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Figure 7-7  Accuracy of the standard deviation against the number of the Monte Carlo 
simulation 

7.3.2 Randomly Generated Material Parameters 

7.3.2.1 Rank correlation matrix of material parameters 

Rank correlation matrixes of the generated basic parameters of the materials are listed 

from Table 7-5 to Table 7-10. The correlations between the randomly generated 

parameters mostly achieves good agreement to the desired correlations described in 

Section 3.6.  
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Table 7-5 Rank correlation matrix of the generated basic parameters of lime cement plaster 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.40 1 

λ 0.97 -0.36 1 

μdry 0.60 0 0.65 1 

θpor -0.98 0.43 -0.96 -0.59 1 

Table 7-6 Rank correlation matrix of the generated basic parameters of brick 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.81 1 

λ 0.76 -0.55 1 

μdry 0.48 -0.32 0.51 1 

θpor -0.92 0.81 -0.67 -0.59 1 

Table 7-7 Rank correlation matrix of the generated basic parameters of historical lime plaster 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.41 1 

λ 0.97 -0.37 1 

μdry 0.60 0 0.65 1 

θpor -0.98 0.43 -0.97 -0.59 1 

Table 7-8 Rank correlation matrix of the generated basic parameters of calcium silicate glue 
mortar 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.41 1 

λ 0.97 -0.37 1 

μdry 0.60 0 0.65 1 

θpor -0.99 0.43 -0.96 -0.59 1 
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Table 7-9 Rank correlation matrix of the generated basic parameters of calcium silicate 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.55 1 

λ 0.94 -0.40 1 

μdry 0.72 -0.40 0.66 1 

θpor -0.87 0.46 -0.89 -0.60 1 

Table 7-10 Rank correlation matrix of the generated basic parameters of lime plaster 

Ranked 
Correlation 

ρ c0 λ μdry θpor 

ρ 1 

c0 -0.40 1 

λ 0.97 -0.36 1 

μdry 0.60 0 0.64 1 

θpor -0.98 0.43 -0.97 -0.58 1 

7.3.2.2 Material functions of each material 

The uncertainties in the material properties will lead to the variation of the related 

material functions. The generated material functions of each material are presented 

from Figure 7-8 to Figure 7-13. These functions include the moisture retention curve, 

thermal conductivity, water vapor permeability, and liquid water conductivity. In each 

graph, the red curve presents the design material function for the deterministic 

simulation. The grey shadow region is the possible variation range of the material 

functions obtained from 400 samples. 
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Figure 7-8 Material functions of lime cement plaster a) moisture retention curve b) thermal 
conductivity c) water vapor permeability d) liquid water conductivity 

   

   
Figure 7-9 Material functions of brick a) moisture retention curve b) thermal conductivity c) 
water vapor permeability d) liquid water conductivity 

a) b) 

c) d)

a) b) 

c) d)

lime cement plaster 

Brick 
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Figure 7-10 Material functions of historical lime plaster a) moisture retention curve b) thermal 
conductivity c) water vapor permeability d) liquid water conductivity 

   

   
Figure 7-11 Material functions of calcium silicate glue mortar a) moisture retention curve b) 
thermal conductivity c) water vapor permeability d) liquid water conductivity 

a) b)

c) d)

c) d) 

a) b)

Historical lime plaster

Calcium silicate glue mortar
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Figure 7-12 Material functions of calcium silicate a) moisture retention curve b) thermal 
conductivity c) water vapor permeability d) liquid water conductivity 

  

  
Figure 7-13 Material functions of lime plaster a) moisture retention curve b) thermal 
conductivity c) water vapor permeability d) liquid water conductivity 

a) b)

a) b)

c) d)

c) d)

Calcium silicate 

Lime plaster 
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The materials with the high uncertainties in the properties have a wide distribution of 

the material function, e.g., calcium silicate glue mortar. Calcium silicate is a relatively 

homogenous material, so its material functions have smaller uncertainties compared 

to other materials. 

7.3.3 Relative Humidity Distribution in the Wall Assembly 

Figure 7-14 presents the relative humidity profiles of one-dimensional retrofitted wall 

on the 175th day, which has the highest relative humidity distribution in the wall 

assembly during the wintertime. The red line is the mean curve derived from the 

results of 400 samples. The mean curve is determined in the following way: a vertical 

line was drawn through all the curves at each time point. The mean value at one given 

time point was the averaged value of all the crossed values of this vertical line. Then, 

all the mean values were connected to form a continuous curve. The grey shadow 

region marks the possible variation range of the relative humidity profiles. The 

dimension of the material is outlined by the vertical blue line. The result demonstrates 

that relative humidity in the wall assembly is departed in two parts: from the exterior 

lime cement plaster to the calcium silicate glue mortar, relative humidity is in the 

level around 90%. In calcium silicate, relative humidity has a dramatic decrease, from 

86% to 51%, due to its capillary-active character. Calcium silicate plays an important 

role in delivering the excessive moisture in the wall assembly to the indoor side 

during the wintertime. At the interior surface, relative humidity is less than 60%. 
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Exterior

Lime plaster (5mm)

Brick (380mm)

Calcium silicate glue mortar (5mm)

Historical lime plaster(15mm)  

Calcium silicate (50mm)

Lime cement plaster(20mm)

 

Figure 7-14 Relative humidity profiles in the retrofitted wall in the 175th day simulation 

7.3.4 Condensation in the Wall Assembly 

Condensation in the wall assembly can be partitioned into two aspects: internal 

condensation or internal overhygroscopic moisture due to the internal moisture load, 

and total overhygroscopic moisture across the whole wall assembly due to the 

moisture loads from both the internal and external environments. Internal 

condensation includes surface condensation and interstitial condensation resulted 

from the warm indoor humidity air contacting with the sufficiently cold surface, at or 

below its dew point. In this study, the external moisture load due to the water from the 

plumping leakage and foundation drainage are not taken into account. 

To differentiate condensation due to different sources, the wall assembly was divided 

into two parts: one part was defined from the half thickness of the brick layer toward 

the interior surface of the wall, which has less impact from the rain. Another part was 

the rest part of the wall. 
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Figure 7-15 Total overhygroscopic moisture in the wall assembly (top), internal condensation 
(middle), and moisture distribution with the largest condensation across the wall assembly 
(bottom) 
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Figure 7-15 (top) shows the total overhygroscopic moisture in the wall assembly over 

time. The red curve represents the mean calculated from 400 samples. In most of the 

time, the mean curve has the value less than 1.0 kg/m2 stipulated in DIN 4108-3 

(2001). In addition, the condensation formed in the winter is substantially evaporated 

in the summer. The internal condensation has a very small value as shown in Figure 

7-15 (middle), which implies that the total overhygroscopic moisture in the wall is 

mainly formed in the external part. The moisture distribution across the wall, from the 

sample that has the largest amount of condensation among 400 samples, is presented 

in Figure 7-15 (bottom). It is clear that the high moisture content mainly exists in the 

external lime cement plaster due to the rain penetration. 

From above analysis, condensation is not an issue for this retrofitted wall assembly. 

7.3.5 Probability of the Damages Induced by the 

Hygrothermal Loads 

The damages induced by the hygrothermal loads on the outer surface region of the 

building enclosure assembly have been introduced in Section 6.3.3. They are mainly 

caused by the dramatic variations of temperature, relative humidity and moisture 

content over time, together with their differences at distinct positions of the material.  

The probability of the damage can be measured either by the hygrothermal loads on 

the exterior surface of the wall assembly, which leads to the surface micro-cracks, or 

by the hygrothermal loads at the certain depth layer from the exterior surface, which 



 

 213

causes the cracks inside the material layer. The magnitude of the hygrothermal loads 

indicates the probability of the damages. 

To evaluate the influence of installation of the interior insulation on the outer surface 

region of the wall, the ratios of the hygrothermal loads on one-dimensional retrofitted 

wall to those on one-dimensional base wall were calculated, given in equation 7.1 to 

7.6.  

T _ retrofit
T

T _ base

HLS
HLSR

HLS    
= ,                                                         (7.1) 

_ retrofit

_ base

HLS
HLSR

HLS    
ϕ

ϕ
ϕ

= ,                                                         (7.2) 

_ retrofit

_ base

HLS
HLSR

HLS    
θ

θ
θ

= ,                                                         (7.3) 

T _ retrofit
T

T _ base

HLD
HLDR

HLD    
= ,                                                        (7.4) 

_ retrofit

_ base

HLD
HLDR

HLD    
ϕ

ϕ
ϕ

= ,                                                        (7.5) 

_ retrofit

_ base

HLD
HLDR

HLD    
θ

θ
θ

= ,                                                        (7.6) 

where HLST, HLSφ and HLSθ denote the hygrothermal loads resulted from the 

variations of surface temperature, relative humidity and moisture content over time, 

respectively. HLDT, HLDφ, and HLDθ denote the hygrothermal loads induced by the 

temperature difference, relative humidity difference and moisture content difference 

between the exterior surface and the certain depth layer over time, respectively. 
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A higher value of hygrothermal loads ratio indicates a greater potential of 

hygrothermal-related deterioration after the retrofit, i.e., a large ratio implies a 

relatively severe damage compared to a small one. 

The base case has two scenarios: high indoor moisture load and normal indoor 

moisture load. So the ratios based on these two scenarios were compared. 

The box plot was applied to represent hygrothemal load ratio. The box plot provides 

concise multiple distributions. The endpoints of the boxed are bounded by the lower 

and higher quartiles of data, namely x25% and x75%. The horizontal line within the box 

represents the median, x50%. The star in the box represents the mean value. The bar on 

the top of the box extends to the minimum of x75%+1.5·(x75%-x25%) and the maximum 

value. In the same manner, the bar on the bottom of the box extends to the maximum 

of x25%-1.5·(x75%-x25%) and minimum value. The observations falling out side of these 

bars are shown with crosses.  

Hygrothermal load ratios on the exterior surface  

Figure 7-16 shows the hygrothermal load ratios on the exterior surface. The load 

ratios based on the high indoor moisture load and low indoor moisture load almost 

reach the same results, i.e., same mean, median, and standard deviation. So the indoor 

moisture load has no influence on the hygrothermal loads on the exterior surface.  
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Figure 7-16 Hygrothermal load ratios on the exterior surface  

As listed in Table 7-11, temperature and relative humidity load ratios vary in a wide 

range, from 61.75% to 132.88% and from 57.2% to 118.37%, respectively. But the 

mean and median of these two ratios are lower than 100%, indicating that the 

installation of the additional interior insulation will not increase the possibility of the 

damages induced by the temperature and relative humidity loads.  

Moisture load ratio has relatively small variation. So the installation of the additional 

insulation has a minor influence on the moisture load on the exterior surface. 

Table 7-11 Hygrothermal load ratios on the exterior surface  

  

HLSRT(%) 

[normal] 

HLSRT(%)

[high] 

HLSRφ(%) 

[normal] 

HLSRφ(%)

[high] 

HLSRθ (%) 

[normal] 

HLSRθ (%) 

[high] 

Minimum 61.746 61.749 57.2 57.203 98.356 98.355 

Maximum 132.875 132.88 118.364 118.37 101.476 101.475 

Median 86.529 86.532 87.676 87.68 99.049 99.049 

Mean 87.761 87.764 88.903 88.908 99.266 99.266 

Standard Dev 14.505 14.506 10.701 10.701 0.734 0.734 
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Hygrothermal load ratios at the certain depth layer from the exterior surface  

Figure 7-17 presents hygrothermal load ratios at the 10mm depth layer from the 

exterior surface. The load ratios based on the high and normal indoor moisture loads 

are basically the same. So the indoor moisture load has no influence on this type of 

hygrothermal loads.  

 
Figure 7-17 Hygrothermal load ratios at the 10mm depth layer from the exterior surface 

As presented in Table 7-12, temperature load ratio varies in the range between 55% 

and 102%. The mean and median are around 72%, which is substantially lower than 

100%, indicating that the installation of the additional insulation will not raise the 

temperature load inside the external material layer. Although relative humidity load 

ratio is across a wide range, from 53% to 152%, its mean and median are both under 

100%. Moisture load ratio varies between 93% and 115%, so the installation of the 

additional insulation has a minor influence on the moisture load inside the external 

material layer. 
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Table 7-12 Hygrothermal load ratios at the 10mm depth layer from the exterior surface 

  

HLDRT (%) 

[normal] 

HLDRT (%)

[high] 

HLDRφ(%)

[normal] 

HLDRφ(%) 

[high] 

HLDRθ (%) 

[normal] 

HLDRθ (%)

[high] 

Minimum 55.411 55.388 53.439 53.442 92.526 92.52 

Maximum 102.441 102.397 152.04 152.05 115.272 115.264 

Median 71.649 71.618 89.696 89.701 96.107 96.1 

Mean 73.303 73.271 91.005 91.01 97.365 97.359 

Standard Dev 9.269 9.265 13.02 13.021 3.766 3.766 

The analyses on the hygrothermal load ratios on the exterior surface and at the 10mm 

depth layer from the exterior surface indicate that the installation of the additional 

interior insulation leads to a relatively low possibility of the damages on the outer 

surface region of the retrofitted wall assembly. 

7.3.6 Daily Average Heat Flux and Transient Thermal 

Resistance 

Daily average heat flux through interior surface of one-dimensional retrofitted wall is 

shown in Figure 7-18.  

 
Figure 7-18 Daily average heat flux through the interior surface 
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The grey shadow region assembles the results from 400 randomly generated samples. 

The mean curve, 5% and 95% quartile curves are statistically determined and outlined 

in the graph. Those derived curves provide a more quantitative summary of the 

distribution of the generated curves. The average daily heat flux reaches the 

maximum value in the end of January and early February. The heat flux varies in the 

range of mean ± 3 W/m2. 

As introduced in Section 6.3.4, the derivation of transient thermal resistance requires 

the knowledge of the heating period. First, the daily average outdoor temperature of 

Potsdam, Germany was approximated by a Cosines’ function to determine a 

continuous heating time, as shown in Figure 7-19. The heating period was considered 

to start when the daily average outdoor temperature was below 10 °C (EnEV 2007). 

For the weather of test reference year of the Potsdam, this period had 197 days 

starting from October 12 to April 27. 
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Figure 7-19 Heating period derived from the approximation of the daily average outdoor 
temperature by Cosines’ function 
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The average heat flux through the interior surface and the transient thermal resistance 

of the retrofitted wall during the heating period are listed in Table 7-13. Static thermal 

resistance was also calculated with the consideration of uncertainties. The cumulative 

density functions in Figure 7-20 show that there are 0.75% of static thermal resistance 

and 7.25% of transient thermal resistance lower than 1.2 m2k/W (DIN 4108-2 2003). 

Thus, there is a low possibility of thermal resistances less than this threshold. 

Transient thermal resistance with the mean of 1.28 m2k/W faces a more critical 

judgment than static thermal resistance with the mean of 1.35 m2k/W. One possible 

reason is that transient thermal resistance considers the transient environmental 

impacts and thermal inertia of the wall assembly in additional to the characteristics of 

the wall itself. 

Table 7-13 Average heat flux and transient thermal resistance during the heating period  

 Unit Symbol Mean Stdev Max Min 

Average heat flux W/m2 qHP 12.165 0.675 14.173 10.426 

Transient thermal resistance m2k/W RHP 1.282 0.06 1.450 1.137 
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Figure 7-20 Probability density functions and cumulative density functions of transient and 
static thermal resistances 
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7.3.7 Mold Growth Risk 

The retrofitted wall corner has the thermal bridge effect. Therefore, the mold growth 

risk at this local was assessed. To gain the sufficient and accurate information of 

temperature and relative humidity at this location, the discretization of the wall corner 

in the simulation requires a large amount of elements, around 5,000. This will 

increase the simulation cost, i.e., each sample approximately takes 9 hours. So, in this 

analysis, a total of 200 samples were generated. This sample size still meets the 

requirement discussed in Section 7.3.1.6. 

The isopleth system for assessing the mold growth risk at the interior surface of the 

retrofitted wall corner, derived from 200 samples, is presented in Figure 7-21. The 

result was determined by the daily average relative humidity and temperature.  

Relative humidity at the specified temperature was compared with the lines of Lowest 

Isopleth for Mold (LIM), spore germination after 16 days, and spore germination after 

8 days. The result shows that a small amount of points are higher than the line of 

LIM, 0.25% from the total samples, which means that the probability of the fungi 

germination is relatively low. Only a few of them are higher than the line of spore 

germination after 16 days, 0.001% from 200 samples, indicating that there is a very 

low possibility that after 16 days some spores will start to appear under the specified 

temperature and relative humidity. 



 

 221
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point

 

Figure 7-21 Isopleth system for assessing the mold growth risk at the interior surface of 
retrofitted wall corner 

The 80% RH was also applied as a criterion to assess the mold growth risk. It was 

marked as a horizontal blue dot line in the graph. Only one value from the total 200 

samples is higher than 80% RH line. So there is almost no possibility of mold growth.   

The mold growth risk at this location of concern was also assessed by the mold index 

model. The result shows that all the index curves have the value near zero, indicating 

there is no possibility of mold growth. 

Based on the above analyses, there is no mold growth risk at the interior surface of the 

retrofitted wall assembly. 

7.3.8 Stability of the Results 

To examine the stability of the results, the Monte Carlo simulation was replicated 

three times. The daily average heat flux through the interior surface and the transient 
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thermal resistance of the one-dimensional retrofitted wall assembly were compared 

among those three replicates. 

The daily average heat flux curves of the three replicates, illustrated in Figure 7-22, 

overlap each other, indicating the stability from replicate to replicate. 
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Figure 7-22 Daily average heat flux curves of the three replicates  

Figure 7-23 shows the transient thermal resistance of the three replicates represented 

by the box plot and the plot of cumulative density functions. The mean, standard 

deviation, and maximum and minimum values from the three replicates are nearly the 

same. The 95% confidence intervals of the means of the three replicates are all in the 

range between 1.276 and 1.288. The density profiles closely follow each other. 

Therefore, the results are quite stable.  
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Figure 7-23 Box plot of transient thermal resistances of the three replicates (left) and the plot of 
their cumulative density functions (right) 

7.4 Sensitivity Analysis in the Performance Evaluation 

Sensitivity analysis usually follows uncertainty analysis. The purpose of sensitivity 

analysis is to identify the influenced input variables against the output variable of 

interest , so less effort can be made for the unimportant input variables and more 

attention are taken on the influential ones. The different sensitivity analysis 

techniques have been introduced in Section 5.3. 

There are a total of 56 input variables, randomly generated, to account for the 

uncertainties from different sources. Capillary saturation moisture content (θcap) and 

water absorption coefficient (Aw) are not directly involved in the hygrothermal 

simulation, so they are omitted in sensitivity analysis. When correlated variables are 

involved in sensitivity analysis, the results derived from the regression-based 

techniques may provide unreliable indications of variable importance (Helton and 
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Davis 2008). Therefore, highly correlated input variables were excluded in the 

analysis to avoid the improper explanation of the results. 

The correlation between open porosity and density is -0.94 in the building brick 

category, -0.99 in the plaster/mortar category, and -0.91 in the insulation category. 

The correlation between thermal conductivity and open porosity is -0.97 in the 

plaster/mortar category and -0.92 in the insulation category. For those highly 

correlated input variables, only one in each pair was kept for sensitivity analysis. So 

density of each material, open porosity of four plasters, and open porosity of calcium 

silicate were excluded. With those considerations, 45 input variables were used in 

sensitivity analysis. They are listed in Table 7-14. 

Since the variation of basic parameters will also influence the material functions, it 

was assumed that the variation of the effective saturation moisture content (θeff) can 

be regarded as the change of the moisture retention curve. The shift of the water vapor 

diffusion resistance factor (μdry), the liquid conductivity at saturation moisture content 

(Keff), and the effective saturation moisture content (θeff) could be regarded as the 

variations of the moisture transport characteristics. So if those parameters are 

addressed as the influential variables, the corresponding material functions are also 

important to the output variable of interest.  
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Table 7-14 Variables involved in sensitivity analysis 

Orientation  

Indoor condition 
Indoor temperature 

Indoor relative humidity 

Boundary 

coefficients 

Heat transfer coefficient _ interior 

Vapor transfer coefficient _ interior 

Heat transfer coefficient _ exterior 

Vapor transfer coefficient _ exterior 

Short wave radiation absorptivity 

Ground reflectivity 

Long wave emissivity of building surface 

Rain exposure coefficient 

Dimension of 

material layers 

Thickness of lime plaster 

Thickness of calcium silicate glue mortar 

Thickness of historical lime plaster 

Material  

properties 

  

Lime 

plaster 

Calcium 

silicate 

Calcium 

silicate glue 

mortar 

Historical 

lime 

plaster 

Brick 

Lime 

cement 

plaster 

Density   

Specific heat capacity  ×  ×  ×  ×  ×  × 

Thermal conductivity ×  ×  ×  ×  ×  × 

Open porosity × 

Effective saturation 

moisture content 
×  ×  ×  ×  ×  × 

Water vapor diffusion 

resistance factor  
×  ×  ×  ×  ×  × 

Liquid water conductivity 

at saturation moisture 

content 

×  ×  ×  ×  ×  × 

The output of interest in sensitivity analysis can be a single value that represents one 

specific performance of the building enclosure assembly (e.g., transient thermal 

resistance) or a variable as a function of time (e.g., interior surface temperature). 

Sensitivity analyses on transient thermal resistance of the retrofitted wall were first 

exemplified, from Section 7.4.1 to Section 7.4.4, to address the most influential 
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variables by different techniques. Sensitivity analysis on the output variables as a 

function of time was presented in Section 7.4.5. 

7.4.1 Scatter Plot 

Scatter plot is a direct method to reveal the relationship between the input and output 

variables. The scatter plots of transient thermal resistance of the retrofitted wall 

(Rtransient) against thermal conductivity of calcium silicate (λcalcium silicate), thermal 

conductivity of brick (λbrick), the indoor relative humidity (RHin), and the thickness of 

lime plaster (dlime plaster) are shown in Figure 7-24. The histogram density presented 

beside the frame of each plot can be used to check if the input variables are generated 

in consistency with the desired distribution. The plots in Figure 7-24 illustrate that 

λcalcium silicate, λbrick, RHin and dlime plaster are very well generated from their respective 

distributions. This also confirms that the Latin hypercube sampling technique and 

selected sample size are reliable for this study.  

The linear relationship between Rtransient and λcalcium silicate is apparent. The increase of 

λcalcium silicate leads to an associated decrease of Rtransient, so they have a negative effect 

on each other. The similar relationship can be detected between Rtransient and λbrick. The 

relationship between Rtransient and RHin and relationship between Rtransient and dlime plaster 

are not so obvious to observe from the scatter plots.  
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Figure 7-24 Scatter plots of transient thermal resistance against different input variables 

7.4.2 Regression-Based Sensitivity Analysis and Partial 

Correlation 

Regression-based sensitivity analysis and partial correlation were also applied to 

identify the key variables, which greatly influence the transient thermal resistance of 

the retrofitted wall. In Table 7-15, the six most influential variables and their 

corresponding SRCs (Section 5.3.1) and PCCs (Section 5.3.3) are listed in descending 

order. Other variables having a minor influence on the transient thermal resistance are 

not presented. The stability of sensitivity analysis was also examined by replicating 
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three Monte Carlo simulations. The three replicates achieve the same rank of variable 

importance. So the results are quite stable.  

The good linear relationship between input variables and output variable is the 

assumption to achieve the reliable result of the regression-based sensitivity analysis. 

This assumption can be examined by the coefficient of determination R2: High R2 

indicates the linearity is satisfied. So R2 is provided for each sampling. The R2 in the 

three replicated samplings are around 0.99, indicating that the rankings based on the 

magnitude of the SRCs are quite reliable. 

PCCs usually have the values larger than SRCs, since partial correlation measures the 

importance of the input variable after excluding the effect of other variables.  

λcalcium silicate is addressed as the most important variable. The second important 

variable is λbrick. Both of them have the PCC and SRC quite larger than others. RHin is 

the third important variable, but its SRC is dramatically reduced to less than 0.1. 

Other variables, e.g., thickness of material layer, have even smaller values, indicating 

that their influences on the transient thermal resistance are very weak.  

A positive sign of PCC and SRC indicates the input and output variables tend to 

increase or decrease together, and a negative sign indicates that they tend to vary in 

the opposite direction. So the increase of λcalcium silicate and λbrick will decrease Rtransient.  
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Table 7-15 SRCs and PCCs of the six most influential variables against Rtransient in the three replicated samplings 

 
Replicate1 
(R2=0.991) 

Replicate2 
(R2=0.990) 

Replicate3 
(R2=0.992) 

Variable name SRC PCC SRC PCC SRC PCC 

Rank Value Rank Value Rank Value Rank Value Rank Value Rank Value 

λcalcium silicate 1 -0.886 1 -0.989 1 -0.861 1 -0.988 1 -0.859 1 -0.988 

λbrick 2 -0.534 2 -0.969 2 -0.526 2 -0.969 2 -0.531 2 -0.968 

RHin 3 -0.084 3 -0.659 3 -0.070 3 -0.584 3 -0.091 3 -0.666 

dHistorical lime plaster 4 0.066 4 0.576 4 0.061 4 0.528 4 0.065 4 0.554 

dlime plaster 5 0.047 5 0.447 5 0.046 5 0.434 5 0.044 5 0.402 

dcalcium silicate glue mortar 6 0.037 6 0.359 6 0.035 6 0.338 6 0.034 6 0.329 
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7.4.3 Stepwise Regression Analysis 

Stepwise regression analysis can help to identify the influential variables by 

constructing a sequence of regression models. The order of the input variable entering 

in the model gives the indication of the variable importance (Section 5.3.2). It is 

necessary to set a criterion to stop an unimportant variable entering the model, and a 

criterion to exclude an existing variable in the model if it is no longer needed. In this 

analysis, the α-value of 0.01 was adopted as a threshold to add a variable into a 

regression model and α-value of 0.05 was used as a threshold to drop a prior selected 

variable from the model.   

Table 7-16 summarizes the results of stepwise regression analysis from the three 

replicated samplings. The listed SRC of each variable is the value in the final 

regression model. The listed R2 is the cumulative value with the entry of a new 

variable into the model in each step. The R2 at each step provides a measure of how 

much uncertainty of output that can be accounted for by the selected inputs in the 

model. λcalcium silicate and λbrick account for 97% uncertainty of Rtransient, so they are the 

two most important variables. The R2 only has slight improvement after adding other 

variables.  

Table 7-16 Stepwise regression coefficients in the three replicated samplings 

Step  
Replicate 1 Replicate 2 Replicate 3 

Variable SRC R2 Variable SRC R2 Variable SRC R2 

1 λcalcium silicate -0.866 0.69 λcalcium silicate -0.858 0.705 λcalcium silicate -0.854 0.702

2 λbrick -0.536 0.974 λbrick -0.526 0.977 λbrick -0.521 0.974

3 RHin -0.085 0.981 RHin -0.068 0.982 RHin -0.091 0.982

4 dHistorical limeplaster 0.067 0.985 dHistorical limeplaster 0.063 0.986 dHistorical lime plaster 0.062 0.985

5 dlime plaster 0.048 0.988 dlime plaster 0.047 0.988 dlime plaster 0.042 0.987

6 dglue mortar 0.037 0.989 dglue mortar 0.035 0.989 dglue mortar 0.031 0.988
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The stability of the result was also examined. In the three replicates, R2 in the final 

model has the value above 0.98, implying that underlying assumption of linear 

relationship between the transient thermal resistance and selected input variables are 

strongly reliable. 

7.4.4 Statistical F Test 

The magnitude of the F value provides a direct measure of the importance of both 

quantitative and qualitative variables. If the model with the quantitative variables 

performs poorly in sensitivity analysis, i.e., low coefficient of determination R2, some 

input variables could be alternatively treated as the qualitative variables. In this study, 

orientation can be treated as a qualitative input by employing the indicator variables 

to represent different orientated directions in regression analysis (Section 4.3.1.4). 

The indicator variable is also called dummy variable which can be set in the statistical 

software SYSTAT (SYSTAT11 2002). The input variables were firstly standardized 

before the analysis. 

In Table 7-17, λcalcium silicate has the largest F value, indicating Rtransient is most sensitive 

to it. So it is ranked as the most important input variable. λbrick has an F value one 

magnitude larger than other remains, so it is ranked second. RHin, dhistorical lime plaster, 

dlime plaster, dglue mortar, and Tin are ranked third to seventh, respectively. Orientation has 

an F value less than 1 and p-value larger than 0.05. So Orientation does not impact the 

transient thermal resistance of the wall assembly.  

The rankings from the three replicated samplings obtain quite good agreement, 

indicating the stability of the analysis. The coefficients of determination R2 in the 

three replicated samplings have the value larger than 0.99, implying that the linear 

assumption for the functional relation between the output and input variables is valid. 
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Table 7-17 F and p-values of the most influential variables against Rtransient in the three 
replicated samplings 

 
Replicate 1 
(R2=0.992) 

Replicate 2 
(R2=0.991) 

Replicate 3 

(R2=0.992) 

Variable name F value p-value Rank F value p-value Rank F value p-value Rank

λcalcium silicate 15714.8 <0.001 1 13672.5 <0.001 1 14186.5 <0.001 1 

λbrick 5284.7 <0.001 2 5088.8 <0.001 2 5299.6 <0.001 2 
RHin 265.6 <0.001 3 274 <0.001 3 181.2 <0.001 3 

dHistorical lime plaster 175.7 <0.001 4 155.2 <0.001 4 132.5 <0.001 4 

dlime plaster 87.7 <0.001 5 63.3 <0.001 5 81 <0.001 5 

dglue mortar 51.2 <0.001 6 39.9 <0.001 6 45.2 <0.001 6 

Tin 15.6 <0.001 8 21.5 <0.001 7 9. 1 0.003 7 

Orientation 0.58 0.77 31 0.93 0.48 29 0.31 0.95 36 

7.4.5 Sensitivity Analysis of Time-Dependent Output 

variables 

It is common that the output variable of a hygrothermal simulation is time-dependent. 

Thus, its influential input variables and their influences may vary over time. 

Sensitivity analyses of three time-dependent output variables are conducted in this 

section. 

As introduced in Section 6.3.2, mold growth requires the suitable temperature and 

relative humidity. Therefore, the identification of the input variables that greatly 

impact temperature and relative humidity on the interior surface of the retrofitted wall 

assembly is the interest of this study. In addition, daily average heat flux gives insight 

into how much energy flows through the wall assembly, so its influential variables 

were also addressed.  

The plots of PCC and SRC provide insight into the relationship between input and 

output variables over time. The PCCs and SRCs of the eight most influential variables 

against interior surface temperature, interior surface relative humidity, and daily 
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average heat flux through interior surface of the retrofitted wall assembly are 

demonstrated in Figure 7-25, 7-26, and 7-27, respectively. PCC always has a larger 

value than SRC, since it provides a measure of the strength of the linear relationship 

after excluding the impact of other variables.  

7.4.5.1 PCCs and SRCs of the eight influential variables against interior surface 

temperature  

Figure 7-25 displays the PCCs and SRCs of the eight influential variables against 

interior surface temperature Tsi over time. A substantially high PCCs and SRCs of 

indoor temperature Tin imply that it is the most influential variable to impact Tsi. It is 

straightforward that the increase of Tin will cause the rise of Tsi. The increment of the 

interior heat transfer coefficient αi will also enlarge the heat transfer between the 

indoor climate and interior surface of the wall assembly. This impact is more obvious 

in winter. The rise of λcalcium silicate and λbrick will reduce the thermal resistance, raise the 

heat flux through the wall assembly, and further decrease Tsi. So they have a 

constantly negative effect on Tsi.  

The exterior boundary coefficients also have the influence on Tsi: the rise of short 

wave radiation absorptivity αsw will enhance the surface absorbability of the short 

wave radiation, thus further increase the exterior surface temperature and reduce the 

heat loss. This mechanism indirectly raises Tsi. PCCs and SRCs of αsw reach the 

highest value in summertime, due to the fact that short wave radiation is more intense 

in summertime than in other seasons. On the other hand, the rise of long wave 

emissivity ε and exterior heat transfer coefficient αe will increase the heat loss from 

the wall assembly. So they have a negative effect on Tsi. In some wintertime, the 

exterior surface temperature is lower than the outdoor air temperature, so the heat flux 
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is in the direction from the outdoor air to the wall. The rise of the αe actually enhances 

the heat gain from the environment. This is why some PCCs of αe in the wintertime 

are positive. Orientation also has the influence on the interior surface temperature Tsi, 

and its effect is more obvious in the summertime.  
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Figure 7-25 PCCs (top) and SRCs (bottom) of the eight influential variables against interior 
surface temperature  
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7.4.5.2 PCCs and SRCs of the eight influential variables against interior surface 

relative humidity 

Figure 7-26 exhibits PCCs and SRCs of the eight influential variables against interior 

surface relative humidity RHsi over time. The indoor moisture load has a greater 

influence on RHsi. Excluding other factors, the rise of indoor relative humidity RHin 

will cause a high vapor pressure potential, which will further give rise to the increase 

of RHsi. The increment of Tin will also increase the RHsi: for the same RHin, the 

increase of Tin will enlarge indoor partial vapor pressure, and result in the increase of 

interior surface partial vapor pressure. In the meanwhile, the interior surface 

temperature Tsi will also increase, as stated in Section 7.4.5.1. However, the increment 

of interior surface saturation vapor pressure due to the rise of Tsi is lower than the 

increment of interior surface partial vapor pressure due to the rise of Tin. Thus, RHsi as 

the ratio of interior surface partial vapor pressure to interior surface saturation vapor 

pressure will increase. 

The increase of αi and αsw will raise Tsi as mentioned in Section 7.4.5.1. The rise of Tsi 

increases interior surface saturation vapor pressure, thus decreases RHsi. On the other 

hand, the increase of λcalcium silicate and λbrick will decrease Tsi, and lower the surface 

saturation vapor pressure, thus increase the RHsi.  

The interior vapor transfer coefficient βpi enlarges the vapor transfer between indoor 

climate and interior surface of the wall assembly. Its influence on RHsi varies greatly 

over time.  
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Figure 7-26 PCCs (top) and SRCs (bottom) of the eight influential variables against interior 
surface relative humidity 
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7.4.5.3 PCCs and SRCs of the eight influential variables against daily average heat 

flux through the interior surface 

As shown in Figure 7-27, daily average heat flux qd is positively correlated to the 

indoor temperature Tin and interior heat transfer coefficient αi. The reason is explicit: 

A high Tin forms a high driving potential of heat flux. Large αi enhances the heat 

transfer between interior surface and indoor climate. So increments of those two 

variables increase the heat flux through the wall assembly. The increase of λcalcium 

silicate and λbrick will decrease the thermal resistance of the wall assembly, which will 

further increase qd. Thus, these two variables positively correlated with qd over time. 

αsw has a negative influence on qd because it increases the solar gain of exterior 

surface, thus reduces the heat loss. Its impact is more apparent in the summertime 

than in wintertime. The rise of long wave emissivity ε will increase the heat loss from 

the wall assembly. So it has a positive effect on qd.  
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Figure 7-27 PCCs (top) and SRCs (bottom) of the eight influential variables against daily 
average heat flux through interior surface 

7.5 Summary 

In consideration of the uncertainties in the input variables, the simulation result is not 

a deterministic value, but rather a range of possibilities. The developed probabilistic 

approach was exemplified to assess the hygrothermal performance of a retrofitted 

wall. For each specific performance, one or more criteria were applied to obtain the 

reliable results. 

1. Material functions are closely related to basic material parameters. When the 

related material parameter is randomly generated, the material function also 

varies in a certain range. Material function is subject to a large variation if the 

uncertainty in the related basic parameter is high, e.g., liquid conductivity of 

calcium silicate glue mortar has a large variation range due to the wide spread 

of effective saturation moisture content. 
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2. The sampled variables should follow the physical rules. The rank correlation 

matrix of sampled material parameters by the Latin hypercube sampling could 

achieve good agreement with the desired correlation matrix. 

3. The calcium silicate could deliver most excessive moisture in the retrofitted 

wall to the interior surface due to its capillary-active characteristics. Thus, it 

reduces the possibility of condensation within the wall. Condensation formed 

during the wintertime can evaporate during the summertime. Therefore, there 

is no condensation risk in this retrofitted wall assembly.  

4. To examine if the installation of the additional interior insulation will 

aggravate the surface crack or spalling, the ratios of the hygrothermal loads on 

the outer region of the wall assembly before and after retrofit were calculated. 

In addition, the impact of indoor moisture load on the hygrothermal loads was 

also evaluated. The result indicates that the installation of the additional 

insulation would not lead to extra deterioration and the indoor moisture load 

has no influence on the hygrothermal loads. 

5. Mold growth risk at the interior surface of the retrofitted wall corner was 

assessed by 80% RH, mold index and isopleth model. The results show that 

there is no mold growth risk at this location of concern.  

6. Compared to static thermal resistance, transient thermal resistance accounts 

for not only the thermal characteristics of the wall assembly itself, but also the 

influence from the surrounding environments. 

7. The Latin hypercube sampling was replicated three times to check the stability 

of the results with respect to transient thermal resistance of the wall assembly 
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and daily average heat flux through the wall assembly. The results are quite 

stable. 

A simulation model is composed of many components. Each component has its own 

role to play. However, it is hard to judge which component or which variable is 

dominant among others. So sensitivity analysis is applied to help the analyzers to 

obtain this information.   

1. Five sensitivity analysis techniques, including scatter plot, regression-based 

sensitivity analysis, stepwise regression analysis, partial correlation, and 

statistical F test, were employed to identify the most influential variables 

against transient thermal resistance of the retrofitted wall. All these methods 

identify that thermal conductivity of the calcium silicate and thermal 

conductivity of brick were two most important variables among 45 input 

variables. So in order to improve the thermal performance of the wall 

assembly, selecting an appropriate calcium silicate insulation with low thermal 

conductivity is crucial. 

2. Three replicated samplings were generated to check the stability of sensitivity 

analysis. The three replicates provide the some rank of the most influential 

input variables against transient thermal resistance of the retrofitted wall 

assembly. 

3. The identified influential variables and their impacts are dependent on the 

output variables of interest. For the studied case, interior vapor transfer 

coefficient βpi has a great influence on interior surface relative humidity, but it 

only slightly impacts the interior surface temperature. The rise of interior heat 
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transfer coefficient increases interior surface temperature, but decreases 

interior surface relative humidity. 

4. If the output variable is time-dependent, its influential input variables and their 

influences may vary over time. For the studied case, short wave radiation 

absorptivity has a larger contribution to the heat flux through the wall 

assembly in summertime, but less in wintertime. 

5. Indoor humidity is identified as the most important variable against interior 

surface relative humidity. Indoor temperature substantially influences interior 

surface temperature and the heat flux though the wall assembly. So choosing 

an appropriate indoor condition is crucial to predict the hygrothermal response 

of the wall assembly. 

6. The variations of the boundary coefficients enhance or reduce the heat and 

moisture transfer between the wall assembly and its surrounding environments. 

Their contributions are also significant in the hygrothermal simulation and 

should not be ignored. 

7. The influential variables are case-dependent. The conclusion drawn from this 

study should be revalidated, if the scenario is different. 
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Chapter 8 Summary, Conclusions and 

Recommendations 
The research in this dissertation focuses on three aspects: 1) establishment of a high 

quality and comprehensive material database for the simulation tools. 2) application 

of statistical methods for hygrothermal material characterization. 3) development of a 

probabilistic approach to assess hygrothermal performance of building enclosure 

assemblies. 

8.1 Establishment of a High quality and 

Comprehensive Material Database 

A systematic approach was introduced to organize, classify, and characterize the 

materials. Total 13 material categories were defined according to the natural 

characteristics and the usages of the materials. The experimental methods to measure 

the complete material properties and the material modeling approach were introduced 

in detail for material characterization. By applying this approach, a significant amount 

of representative materials were evaluated, covering 173 materials in 8 material 

categories. For anisotropic materials, e.g., wood and sand stone, they were 

characterized in different spatial directions. Thus, a comprehensive material database 

was established for the simulation tools.  
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8.2 Application of Statistical Methods for Hygrothermal 

Material Characterization 

1. By applying statistical methods, the measurement procedure to obtain the 

knowledge of moisture storage characteristics was greatly simplified. 

 With the application of cluster analysis, the natural groups among moisture 

contents at specific capillary pressure were detected. The most similar 

moisture contents were aggregated into one cluster. Regression analysis was 

conducted to derive the relationships between moisture contents in the 

identified cluster. Thus, by only measuring one moisture content, the others in 

the same cluster are predictable by applying the regression models. For the 

building bricks and plaster/mortars, three characteristic moisture contents w0 

(for building bricks)/w3.78 (for plaster/mortars), w4.78, and w5.60 in the 

overhygroscopic range and one moisture content w7.59 (75.4%) in the 

hygroscopic range were identified and verified to be sufficient to get a good 

knowledge of moisture storage characteristics. The moisture storage 

measurement is reduced to four steps. 

 Moisture contents of building bricks in the overhygroscopic range are related 

to three material parameters: capillary saturation moisture content, water 

absorption coefficient, and open porosity. The relationships between moisture 

contents and basic parameters provide a possibility to quickly estimate the 

moisture storage data without any moisture measurement. 

2. By applying statistical methods, a novel approach and procedure was developed to 

use the existing measured high-quality data to extend the use of the incomplete 

material data for hygrothermal simulation.  
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 For this purpose, an approach to identify material clusters from a group of 

specific materials was developed by the application of cluster analysis. The 

similar specific materials were aggregated into one material cluster by 

comparing their properties, including both the basic material parameters and 

identified characteristic moisture contents in the simplification of the moisture 

storage measurement. This approach was applied in the building brick 

category. The specific bricks in each identified brick cluster exhibit quite 

similar characteristics. 

 A method to derive the generic material from the identified material cluster 

was developed. The generic material represents one type of specific materials 

with similar characteristics. One generic brick was exemplarily derived from 

one of the brick clusters.  

 The application of generic material has a practical benefit for qualifying the 

incomplete material data and improving accuracy of the analysis in the 

building design stage. By comparing the available properties of the incomplete 

material with that of the generic materials in the same physical material group, 

a most similar generic material is selected. The missing properties of the 

incomplete material could be supplemented by adopting the properties of the 

most similar generic material. In the early design stage, the detailed material 

information is not necessary. The generic material, representing one type of 

specific materials, can be used in the analysis to reduce the risk of improper 

selection of specific material. 
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8.3 Development of a Probabilistic Approach to 

Assess Hygrothermal Performance of Building 

Enclosure Assemblies 

A probabilistic approach based on the Monte Carlo method was developed and 

incorporated into a current simulation tool, to assess the hygrothermal performance of 

building enclosure assemblies against different performance criteria.  

 The relations between material parameters and between material parameters 

and material functions were discussed. The rank correlations of material 

parameters in different material categories were derived. Those relations were 

incorporated in the Latin hypercube sampling. 

 Probability density function of effective saturation moisture content was 

explored based on measurements of a number of building materials, and it is 

proposed as a normal distribution. 

 The uncertainties in material properties, boundary coefficients, indoor 

condition, dimensions of material layers, and orientation of the construction 

were considered in the performance assessment. 

 The performance evaluation was accomplished by analyzing the results from 

the hygrothermal simulations. The evaluation criteria covered three aspects in 

this study: durability, thermal efficiency and mold growth risk. The durability 

of the construction was evaluated by condensation accumulated in the 

assembly and the probability of damages induced by the hygrothermal loads 

on the outer surface region of the assembly. The thermal performance was 

examined by the static thermal resistance and transient thermal resistance of 
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the wall assembly. Mold risk was assessed by the isopleths model, model 

index and 80% relative humidity.  

 By the application of the probabilistic approach, the risk assessment will not 

just provide a result of “failure” or “no failure”, but will give a probability of 

“failure”.  

 Sensitivity analysis can effectively address the most influential input variables 

against the output of interest. Five sensitivity analysis techniques has been 

applied in this study, including scatter plot, regression-based sensitivity 

analysis, stepwise regression analysis, partial correlation, and statistical F test. 

These techniques identified the same influential input variables against the 

transient thermal resistance of the wall assembly.  

 The influence of the input variable on the output variable may vary over time 

if the output variable is time-dependent.  

 It needs to be noted that sensitivity analysis is case dependent. For the 

constructions with different design scenarios, the influential variables may be 

different. 

8.4 Recommendations for Future Work 

A method to derive the generic material from a group of the specific materials has 

been developed in this research work. One generic brick was exemplarily derived 

from one of the brick material clusters. This method should be extended to other 

physical material groups/categories. Furthermore, the relationships between material 

parameters in different material groups/categories need to be investigated by 

regression analysis, in order to build a statistical basis for the qualification of 

literature data as the input for the hygrothermal simulation. 
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Several uncertainties from different sources were considered in this research. 

However, there are still some limitations in processing the uncertainties in the input 

variables. The workmanship only took into account the influence of the dimension of 

the material layer, while other factors, e.g., the infiltration/ exfiltration through the 

enclosure assembly, may lead to a large impact on the results. The outdoor climatic 

condition adopts the weather data of test reference year, which is a deterministic data. 

Those uncertain variables should be accounted for in the future work. 

Sensitivity analysis techniques applied in this study are limited by the linear 

assumption. In case the linear assumption is not satisfied, the results cannot provide 

reliable results. The model-independent sensitivity analysis approaches, e.g., Sobol’s 

or FAST, are then preferred. 

The influence of the input variables on the single output variable, e.g., transient 

thermal resistance and interior surface temperature of the retrofitted wall assembly, 

was assessed. Further work is needed to evaluate an entire set of physical quantities 

against all relevant criteria.  

A simulation package, which can integrate current hygrothermal simulation tools with 

the probabilistic approach developed in this study, is needed. Once the package is 

developed, the designer can easily apply it to determine whether the proposed 

construction meets all the performance criteria and address the most influential 

parameters. 
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Nomenclature 

List of Arabic symbols 

Symbol Unit Definition 

wA  kg/(m2·s0.5) Water absorption coefficient 
vm

gc  kg/ kg Water vapor mass concentration in gas phase  

d  m Thickness 

lD  m2/s Liquid water diffusivity 

,  v airD   m2/s Water vapor diffusivity in free air 

,  v matD  m2/s Water vapor diffusivity in porous material 

e  - Residual 

Rsif  - Temperature factor  

kg  m/s2 Gravitational constant  

ah  J/kg        Specific enthalpy of dry air                

lh  J/kg Specific internal energy of liquid water 

gh  J/kg Specific internal energy of gas phase (including dry air and 
water vapor) 

vh  J/kg Specific enthalpy of water vapor 

0H   Null hypothesis 

,
am

k convj  kg/m2s Convective dry air mass flux  

,
gm

k convj  kg/m2s Convective flux of gas phase  

,
lm

k convj  kg/m2s Convective liquid water flux  

,
vm

k convj  kg/m2s Convective water vapor flux  

,
vm

k diffj  kg/m2s Diffusion water vapor flux  

,
Q
k diffj  W/m2s Conduction energy flux  

windk  - Wind coefficient 

K  m2 Permeability of the porous medium 

capK  s Liquid water conductivity at capillary moisture content 

effK  s Liquid water conductivity at effective saturation 

gK  s Gas permeability 
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Symbol Unit Definition 

lK  s Liquid water conductivity 

relK  - Normalized / relative liquid water conductivity 

vK  s Water vapor permeability 

l vK +  s Moisture conductivity  

m&  kg/s Design moisture generation rate  

ap  Pa dry air pressure 

lp  Pa Liquid water pressure 

vp  Pa Water vapor pressure 

gp  Pa Gas pressure 

0p  Pa Standard air pressure 

cp  Pa Capillary pressure 

pC  log(Pa) Logarithmic capillary pressure pC = log(–pc) 

dq W/ m2 Daily average heat flux 

,H dirq  W/ m2 Direct radiation gained on a horizontal surface 

,H diffq  W/ m2 Diffuse radiation gained on a horizontal surface 

skyq  W/ m2 Sky radiation  

r  m Capillary radius  

R m2·K/W Thermal resistance 

aR  J/kg·K Gas constant of air 

hR  Kg/m2s Rain flux on a horizontal surface  

vR  J/kg·K Gas constant of water vapor 

wdrR  Kg/ m2s Wind-driven rain flux 

2R  - Coefficient of determination 
2
adjR  - Adjusted Coefficient of determination 

t  s Time 

T  K Thermodynamic (absolute) temperature 
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List of Greek symbols 

Greek Unit Definition 

α  - Significant level 

α  degree Contact angle between liquid and solid phases  

α  W/m2·K Heat transfer coefficient 

Rα  - Rain exposure coefficient 

SWα  - Short wave radiation absorptivity  

β  - Regression coefficient 

β  degree Inclination of the construction 

β  s/m Vapor transfer coefficient 

sβ   - Orientation of the construction 

δ  degree Sun decline angle 

aδ  kg/m·s·Pa Water vapor permeability in still air  

ε  - Long wave emissivity of building surface 

gε  - Long wave emissivity of surrounding ground 

lη  N·s/m2 Dynamic viscosity of the liquid phase  

capθ  m3/ m3 Capillary saturation moisture content 

effθ  m3/ m3 Effective saturation moisture content 

lθ  m3/ m3 Volumetric moisture content  

porθ  m3/ m3 Open porosity 

sθ  degree Solar elevation angle 

λ  W/m·k Thermal conductivity 

λ  m/s0.5 Boltzmann variable x tλ =  

μ - Water vapor diffusion resistance factor 

ρ  Kg/m3 Bulk density  

,s gρ  - Ground reflectivity 
am

gρ  kg/ kg dry air concentration in the gas phase 
vm

gρ  kg/ kg Water vapor mass concentration in the gas phase  
l v

REV

mρ +  kg/m3
REV Moisture density in REV 

u
REVρ  W/m3

REV Internal energy density in REV 
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Greek Unit Definition 

σ  W/m2K4 Stefan-Boltzmann constant σ =5.67×10-8 W/m2K4 

lσ  N/m Liquid water surface tension  
u
REVσ  W/m3 Energy source/sink in REV 

l vm
REVσ +  kg/m2s Moisture generation source/sink in REV 

am
REVσ  kg/m2s Air mass generation source/sink in REV 

ϕ  - Relative humidity 

sφ  degree Solar azimuth angle 

Φ  degree Local latitude  

List of abbreviations  

Abbreviations  Description  

ASTM  American Society for Testing and Materials 

ASHRAE  American Society of Heating, Refrigerating, and Air-Conditioning 
Engineers 

DIN  German Institute for Standardization  

HAM  Heat, air and moisture 

HLS  Hygrothermal loads on the exterior surface 

HLD Hygrothermal loads at the certain depth layer from the exterior 
surface

HP  Heating period  

IBK  Institute of Building Climatology 

LHS  Latin Hypercube Sampling 

M  Mold index 

MS  Mean square 

RH  Relative humidity 

PCC  Partial correlation coefficient 

SS  Sum of square 

SRC  Standardized regression coefficient 

TRY  Test reference year 
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List of indices 

Subscript description 

cap  Capillary 

e  Exterior 

g  Ground 

i  Interior 

l  Liquid water 

R Rain 

R Regression 

Res  Residual 

s  Building surface 

sat  Saturation 

T  Total 

v  Vapor 
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Appendix A 
The equilibrium condition at the surface of the liquid water in a capillary is expressed 

as: 

cos( )g l cF F F α= +                                                            (A. 1)   

2 2 2 cos( )g l lr p r p rπ π π σ α= + ⋅                                                (A. 2)   

After reorganization, 

2 cos( )l
g l cp p p

r
σ α

− = − =                                                    (A. 3)   

 

α

r

α < 90

Fc Fc

Fg

Fl

σl

 

Figure A-1 Equilibrium condition at the surface of liquid water in a capillary 
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Appendix B 
In the free water surface, when the water vapor and liquid water are in equilibrium 

(water molecular condensation and evaporation has the same rate), the specific free 

enthalpy of water vapor is equal to that of the liquid water.  

,0 ,0v lg g=                                                                     (B. 1)   

Free water surface

Water surface in a 
capillary

,v v satp p=
0cp =

,v v satp p<
0cp <

 

Figure B-1 Equilibrium pressure condition at the free water surface and water surface in a 
capillary 

At the water surface in the capillary, specific free enthalpy get the new equilibrium as:  

,0 ,0v v l lg g g g+ Δ = − Δ  with 
1

g dp
ρ

Δ =
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫                                      (B. 2) 

,

,0 ,0
0

1 1  
v c

v sat

p p

v v l l
p v l

g dp g dp
ρ ρ

⎛ ⎞ ⎛ ⎞
+ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∫ ∫                                           (B. 3) 

Substituting ideal gas equation
1 v

v v

R T
pρ

=  into equation B.3, 

,

ln v c
v

v sat l

p pR T
p ρ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
                                                       (B. 4) 

After reorganization,  

ln( )c l vp R Tρ ϕ= −                                                           (B. 5) 
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Appendix C 
Material properties of 23 specific bricks are presented in the following column graphs 

with error bars. 
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Appendix D 
Table D-1 Joining distance of moisture contents in the building brick category by using 
Ward’s method 

Cluster containing and Cluster containing Were joined at 
distance in 

No.of members 
new cluster 

     w8.18(32.9%)       w8.06(43.2%) 0.001 2 
     w7.36(84.7%)       w7.16(90.0%) 0.001 2 
     w8.18(32.9%)       w7.87(58.2%) 0.002 3 
     w7.36(84.7%)       w7.59(75.4%) 0.003 3 
     w6.75(96.0%)       w6.56(97.4%) 0.011 2 
     w6.15       w5.90 0.012 2 
     w7.36(84.7%)       w8.18(32.9%) 0.013 6 
     w3.78       w3.48 0.013 2 
     w3.78       w0 0.021 3 
     w6.15       w5.60 0.025 3 
     w4.95       w4.78 0.029 2 
     w4.95       w4.48 0.046 3 
     w3.78       w4.18 0.051 4 
     w6.15       w5.30 0.076 4 
     w6.75(96.0%)       w7.36(84.7%) 0.096 8 
     w3.78       w4.95 0.253 7 
     w6.15       w6.75(96.0%) 0.336 12 
     w3.78       w6.15 1.409 19 
 
 
 
Table D-2 Joining distance of moisture contents in the plaster/mortar category by using 
Ward’s method 

Cluster containing and Cluster containing Were joined at 
distance in 

No.of members 
new cluster 

     w8.18(32.9%)      w8.06(43.2%) 0.008 2 
     w5.90      w5.60 0.010 2 
     w4.18      w3.78 0.013 2 
     w4.95      w4.78 0.015 2 
     w7.36(84.7%)      w7.16(90.0%) 0.015 2 

     w6.75(96.0%)      w6.56(97.4%) 0.016 2 
     w5.90      w6.15 0.025 3 
     w7.36(84.7%)      w7.59(75.4%) 0.026 3 

     w8.18(32.9%)      w7.87(58.2%) 0.029 3 
     w4.18      w3.48 0.03 3 
     w5.90      w5.30 0.049 4 
     w6.75(96.0%)      w7.36(84.7%) 0.070 5 
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Cluster containing and Cluster containing Were joined at 
distance in 

No.of members 
new cluster 

     w4.18      w4.95 0.134 6 
     w6.75(96.0%)      w8.18(32.9%) 0.151 8 
     w4.18      w5.90 0.377 10 
     w4.18      w6.75(96.0%) 1.139 18 
 
 
 
Table D-3 Joining distance of specific bricks by using Ward’s method 

Cluster containing and Cluster containing Were joined at 
distance in 

No.of members new 
cluster 

      ZBD        ZC 0.339 2 
      ZJ        ZA 0.354 2 
      ZK        ZG 0.356 2 
      ZL        ZD 0.390 2 
      ZBD        ZHS 0.397 3 
      ZP        ZO 0.412 2 
      ZF        ZP 0.478 3 
      ZWB        ZK 0.485 3 
      ZM        ZE 0.492 2 
      ZJ        ZH 0.502 3 
      ZGZ        ZL 0.602 3 
      ZWB        ZM 0.695 5 
      ZBA        ZB 0.712 2 
      ZN        ZI 0.729 2 
      ZJN        ZWB 0.943 6 
      ZF        ZQ 1.199 4 
      ZBA        ZJN 1.320 8 
      ZBD        ZF 1.656 7 
      ZJ        ZGZ 2.145 6 
      ZBA        ZN 2.659 10 
      ZJ        ZBA 3.233 16 
      ZBD        ZJ 8.693 23 
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Table D-4 Joining distance of specific bricks by using complete linkage method 

Cluster containing and Cluster containing Were joined at distance 
in 

No.of members 
new cluster 

      ZBD        ZC 0.339 2 
      ZJ        ZA 0.354 2 
      ZK        ZG 0.356 2 
      ZL        ZD 0.390 2 
      ZBD        ZHS 0.398 3 
      ZP        ZO 0.412 2 
      ZWB        ZK 0.462 3 
      ZF        ZP 0.485 3 
      ZM        ZE 0.492 2 
      ZJ        ZH 0.543 3 
      ZGZ        ZL 0.614 3 
      ZM        ZB 0.654 3 
      ZN        ZI 0.729 2 
      ZM        ZJN 0.750 4 
      ZF        ZBD 0.768 6 
      ZWB        ZM 0.864 7 
      ZJ        ZGZ 1.211 6 
      ZBA        ZWB 1.301 8 
      ZQ        ZF 1.403 7 
      ZBA        ZJ 1.667 14 
      ZBA        ZN 2.249 16 
      ZBA        ZQ 2.540 23 
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Appendix E 
The histogram plot and approximated probability density function of the measured 

effective saturation moisture content of different building materials. 
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Building brick 3

Kolmogorov-Smirnov test statistic = 0.083
Shapiro-Wilk test statistic for normality = 0.954
P-value = 0.11

Estimated: mean = 0.238, SD = 0.008

0.21 0.22 0.23 0.24 0.25 0.26
0

4

8

12

16

C
ou

nt

0.0

0.1

0.2

0.3

0.4

P
roportion per B

ar

0.21 0.22 0.23 0.24 0.25 0.26
0

4

8

12

16

C
ou

nt

Building brick 4

 

Lime sands brick

Kolmogorov-Smirnov test statistic =0.11 
Shapiro-Wilk test statistic for normality = 0.969 
P-value = 0.36

Estimated: mean = 0.33, SD = 0.008
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Calcium silicate

Kolmogorov-Smirnov test statistic =0.129  
Shapiro-Wilk test statistic for normality = 0.95  
P-value = 0.12

Estimated: mean = 0.903, SD = 0.007
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Kolmogorov-Smirnov test statistic =0.083
Shapiro-Wilk test statistic for normality = 0.97   
P-value = 0.38

Estimated: mean = 0.32 , SD = 0.008

0.30 0.31 0.32 0.33 0.34
0

4

8

12

16

C
ou

n t

0.0

0.1

0.2

0.3

0.4

P
roportion per B

ar

0.30 0.31 0.32 0.33 0.34
0

4

8

12

16

C
ou

n t

Lime plaster 1

Kolmogorov-Smirnov test statistic = 0.075   
Shapiro-Wilk test statistic for normality = 0.99  
P-value = 0.98

Estimated: mean = 0.451 , SD = 0.009
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Lime plaster 2

 

Lime plaster 3

Kolmogorov-Smirnov test statistic =0.07 
Shapiro-Wilk test statistic for normality = 0.98
P-value = 0.88

Estimated: mean = 0.3, SD = 0.026
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Kolmogorov-Smirnov test statistic = 0.10
Shapiro-Wilk test statistic for normality = 0.96
P-value = 0.33

Estimated: mean = 0.33, SD = 0.013
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Lime cement plaster

 

Mortar

Kolmogorov-Smirnov test statistic = 0.11
Shapiro-Wilk test statistic for normality = 0.98
P-value = 0.88

Estimated: mean = 0.4, SD = 0.011
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Glue mortar

Kolmogorov-Smirnov test statistic = 0.13  
Shapiro-Wilk test statistic for normality = 0.95 
P-value = 0.15

Estimated: mean = 0.26, SD = 0.005
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Sandstone Arholzen

Kolmogorov-Smirnov test statistic = 0.128 
Shapiro-Wilk test statistic for normality = 0.97 
P-value = 0.34

Estimated: mean = 0.114, SD = 0.003
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Sandstone Obernkirchen

Kolmogorov-Smirnov test statistic = 0.124 
Shapiro-Wilk test statistic for normality = 0.96
P-value = 0.43

Estimated: mean = 0.132, SD = 0.007
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Sandstone Sander

Kolmogorov-Smirnov test statistic = 0.12
Shapiro-Wilk test statistic for normality = 0.96 
P-value = 0.26

Estimated: mean = 0.195, SD = 0.004
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Aerated concrete

Kolmogorov-Smirnov test statistic = 0.11 
Shapiro-Wilk test statistic for normality = 0.96
P-value = 0.34

Estimated: mean = 0.18, SD = 0.009
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Cork

Kolmogorov-Smirnov test statistic = 0.20
Shapiro-Wilk test statistic for normality = 0.94
P-value = 0.18

Estimated: mean = 0.144, SD = 0.028
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Gypsum board

Kolmogorov-Smirnov test statistic = 0.135
Shapiro-Wilk test statistic for normality = 0.95
P-value = 0.185

Estimated: mean = 0.526, SD = 0.008
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Spruce

Kolmogorov-Smirnov test statistic = 0.13
Shapiro-Wilk test statistic for normality = 0.97
P-value = 0.6

Estimated: mean = 0.69, SD = 0.007
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Oak

Kolmogorov-Smirnov test statistic = 0.13
Shapiro-Wilk test statistic for normality = 0.96
P-value = 0.37

Estimated: mean = 0.561, SD = 0.006
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Beech

Kolmogorov-Smirnov test statistic = 0.115 
Shapiro-Wilk test statistic for normality = 0.96
P-value = 0.37

Estimated: mean = 0.624, SD = 0.0054
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Appendix F 
First, the definitions of the Pearson correlation coefficient and Spearman correlation 

coefficient are given. 

Pearson correlation coefficient provides a measure of the strength and direction of the 

linear relationship between two variables. For two variables xj and xk with a random 

sample of size n, Pearson correlation coefficient is defined by:  

1
1/2 1/2

2 2

1 1

( )( )

( ) ( )
j k

n

ij j ik ki
x x n n

ij j ik ki i

x x x x
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− −
=

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦

∑
∑ ∑

,                            (F. 1) 

where 

1

n

j iji
x x / n

=
= ∑ , 

1

n

k iki
x x / n

=
= ∑  

Pearson correlation coefficient has the range between -1.0 and 1.0. The value of 0 

means there is no linear relationship between two variables and the value of ±1.0 

indicates an exact relationship between two variables. The negative coefficient and 

positive coefficient implies the two variables tend to move in the opposite direction 

and in the same direction, respectively.  

Spearman correlation coefficient measures the strength of the monotonic relationship 

between two variables. It also has the range between -1.0 and 1.0. But unlike Pearson 

correlation coefficient using the variables directly, Spearman correlation coefficient 

employs the ranked variables in the calculation.  
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where ( )ijR x  and ( )ikR x  are the rank-transformed values of ijx and ikx , respectively. 

The smallest value of the variable has the rank of 1 and the largest one has the rank of 

n. ( ) ( ) ( 1) / 2j kR x R x n= = + . 

The procedure to generate correlated samples is introduced as follows. 

A randomly generated matrix of m input variables and n samples can be represented 

as: 
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,                                            (F. 3) 

where ijx is the value for variable j in sample element i. The generated variables are 

independent of each other. 

The desired rank correlation structure is represented by m×m matrix 
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,                                           (F. 4) 

where klρ is the desired rank correlation between variables kx and lx . 

The key concept to obtain the variables with desired correlation is that it only adjusts 

the rank order of the randomly generated values, but does not change the values 

themselves.  

To implement this aim, an n×m matrix R is first established. Each column of R 

contains a random permutation of the n van der Waerden scores 1( / ( 1))i n−Φ + , 

i=1,2…,n, where 1−Φ  is the inverse function of the standard normal distribution. 

The desired correlation matrix C is decomposed by Cholesky factorization: 
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TC PP= ,                                                        (F. 5) 

where P is the lower triangular matrix.            

If the correlation matrix associated with R is the identity matrix, then 

* TR RP=                                                         (F. 6) 

has the correlation matrix equal to C. 

For convenience, the correlation matrix of R is represented by matrix T. The Cholesky 

factorization for T is presented by: 

TT QQ= ,                                                        (F. 7) 

where Q is lower triangular matrix. 

In case T is not an m×m identity matrix, the matrix R* with a correlation matrix equal 

to C is defined by: 

* 1( )T TR R Q P−=                                                    (F. 8) 

In equation F.8, multiplication of R by (Q-1)T transforms R into a matrix whose 

associated correlation matrix is m×m identity matrix. And further multiplication of the 

product by PT produces a matrix whose associated correlation matrix is C. 

The desired X*is obtained by simple rearrangement of the column of X as the same 

rank order as the values in the individual columns of R*. So the correlation matrix of 

X* will be C. Since the approach only rearranges the rank order of input variables, not 

the numbers themselves, the original marginal distributions of the input variables are 

kept.
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