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Abstract

Countless learning tasks require dealing with sequential data. Image
captioning, speech synthesis, and music generation all require that a model
produce outputs that are sequences. In other domains, such as time series
prediction, video analysis, and musical information retrieval, a model must
learn from inputs that are sequences. Interactive tasks, such as translat-
ing natural language, engaging in dialogue, and controlling a robot, often
demand both capabilities. Recurrent neural networks (RNNs) are connec-
tionist models that capture the dynamics of sequences via cycles in the
network of nodes. Unlike standard feedforward neural networks, recurrent
networks retain a state that can represent information from an arbitrarily
long context window. Although recurrent neural networks have tradition-
ally been difficult to train, and often contain millions of parameters, recent
advances in network architectures, optimization techniques, and paral-
lel computation have enabled successful large-scale learning with them.
In recent years, systems based on long short-term memory (LSTM) and
bidirectional (BRNN) architectures have demonstrated ground-breaking
performance on tasks as varied as image captioning, language translation,
and handwriting recognition. In this survey, we review and synthesize
the research that over the past three decades first yielded and then made
practical these powerful learning models. When appropriate, we reconcile
conflicting notation and nomenclature. Our goal is to provide a self-
contained explication of the state of the art together with a historical
perspective and references to primary research.

1 Introduction

Neural networks are powerful learning models that achieve state-of-the-art re-
sults in a wide range of supervised and unsupervised machine learning tasks.
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They are suited especially well for machine perception tasks, where the raw un-
derlying features are not individually interpretable. This success is attributed
to their ability to learn hierarchical representations, unlike traditional meth-
ods that rely upon hand-engineered features [Farabet et al., 2013]. Over the
past several years, storage has become more affordable, datasets have grown
far larger, and the field of parallel computing has advanced considerably. In
the setting of large datasets, simple linear models tend to under-fit, and often
under-utilize computing resources. Deep learning methods, in particular those
based on deep belief networks (DNNs), which are greedily built by stacking re-
stricted Boltzmann machines, and convolutional neural networks, which exploit
the local dependency of visual information, have demonstrated record-setting
results on many important applications.

However, despite their power, standard neural networks have limitations.
Most notably, they rely on the assumption of independence among the training
and test examples. After each example (data point) is processed, the entire state
of the network is lost. If each example is generated independently, this presents
no problem. But if data points are related in time or space, this is unaccept-
able. Frames from video, snippets of audio, and words pulled from sentences,
represent settings where the independence assumption fails. Additionally, stan-
dard networks generally rely on examples being vectors of fixed length. Thus
it is desirable to extend these powerful learning tools to model data with tem-
poral or sequential structure and varying length inputs and outputs, especially
in the many domains where neural networks are already the state of the art.
Recurrent neural networks (RNNs) are connectionist models with the ability to
selectively pass information across sequence steps, while processing sequential
data one element at a time. Thus they can model input and/or output con-
sisting of sequences of elements that are not independent. Further, recurrent
neural networks can simultaneously model sequential and time dependencies on
multiple scales.

In the following subsections, we explain the fundamental reasons why recur-
rent neural networks are worth investigating. To be clear, we are motivated by
a desire to achieve empirical results. This motivation warrants clarification be-
cause recurrent networks have roots in both cognitive modeling and supervised
machine learning. Owing to this difference of perspectives, many published pa-
pers have different aims and priorities. In many foundational papers, generally
published in cognitive science and computational neuroscience journals, such as
[Hopfield, 1982, Jordan, 1986, Elman, 1990], biologically plausible mechanisms
are emphasized. In other papers [Schuster and Paliwal, 1997, Socher et al.,
2014, Karpathy and Fei-Fei, 2014], biological inspiration is downplayed in favor
of achieving empirical results on important tasks and datasets. This review
is motivated by practical results rather than biological plausibility, but where
appropriate, we draw connections to relevant concepts in neuroscience. Given
the empirical aim, we now address three significant questions that one might
reasonably want answered before reading further.
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1.1 Why model sequentiality explicitly?

In light of the practical success and economic value of sequence-agnostic models,
this is a fair question. Support vector machines, logistic regression, and feedfor-
ward networks have proved immensely useful without explicitly modeling time.
Arguably, it is precisely the assumption of independence that has led to much
recent progress in machine learning. Further, many models implicitly capture
time by concatenating each input with some number of its immediate prede-
cessors and successors, presenting the machine learning model with a sliding
window of context about each point of interest. This approach has been used
with deep belief nets for speech modeling by Maas et al. [2012].

Unfortunately, despite the usefulness of the independence assumption, it
precludes modeling long-range dependencies. For example, a model trained
using a finite-length context window of length 5 could never be trained to answer
the simple question, “what was the data point seen six time steps ago?” For
a practical application such as call center automation, such a limited system
might learn to route calls, but could never participate with complete success
in an extended dialogue. Since the earliest conception of artificial intelligence,
researchers have sought to build systems that interact with humans in time. In
Alan Turing’s groundbreaking paper Computing Machinery and Intelligence, he
proposes an “imitation game” which judges a machine’s intelligence by its ability
to convincingly engage in dialogue [Turing, 1950]. Besides dialogue systems,
modern interactive systems of economic importance include self-driving cars
and robotic surgery, among others. Without an explicit model of sequentiality
or time, it seems unlikely that any combination of classifiers or regressors can
be cobbled together to provide this functionality.

1.2 Why not use Markov models?

Recurrent neural networks are not the only models capable of representing time
dependencies. Markov chains, which model transitions between states in an
observed sequence, were first described by the mathematician Andrey Markov
in 1906. Hidden Markov models (HMMs), which model an observed sequence
as probabilistically dependent upon a sequence of unobserved states, were de-
scribed in the 1950s and have been widely studied since the 1960s [Stratonovich,
1960]. However, traditional Markov model approaches are limited because their
states must be drawn from a modestly sized discrete state space S. The dynamic
programming algorithm that is used to perform efficient inference with hidden
Markov models scales in time O(|S|2) [Viterbi, 1967]. Further, the transition
table capturing the probability of moving between any two time-adjacent states
is of size |S|2. Thus, standard operations become infeasible with an HMM when
the set of possible hidden states grows large. Further, each hidden state can
depend only on the immediately previous state. While it is possible to extend a
Markov model to account for a larger context window by creating a new state
space equal to the cross product of the possible states at each time in the win-
dow, this procedure grows the state space exponentially with the size of the
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window, rendering Markov models computationally impractical for modeling
long-range dependencies [Graves et al., 2014].

Given the limitations of Markov models, we ought to explain why it is rea-
sonable that connectionist models, i.e., artificial neural networks, should fare
better. First, recurrent neural networks can capture long-range time depen-
dencies, overcoming the chief limitation of Markov models. This point requires
a careful explanation. As in Markov models, any state in a traditional RNN
depends only on the current input as well as on the state of the network at the
previous time step.1 However, the hidden state at any time step can contain
information from a nearly arbitrarily long context window. This is possible be-
cause the number of distinct states that can be represented in a hidden layer of
nodes grows exponentially with the number of nodes in the layer. Even if each
node took only binary values, the network could represent 2N states where N is
the number of nodes in the hidden layer. When the value of each node is a real
number, a network can represent even more distinct states. While the potential
expressive power of a network grows exponentially with the number of nodes,
the complexity of both inference and training grows at most quadratically.

1.3 Are RNNs too expressive?

Finite-sized RNNs with nonlinear activations are a rich family of models, capa-
ble of nearly arbitrary computation. A well-known result is that a finite-sized
recurrent neural network with sigmoidal activation functions can simulate a uni-
versal Turing machine [Siegelmann and Sontag, 1991]. The capability of RNNs
to perform arbitrary computation demonstrates their expressive power, but one
could argue that the C programming language is equally capable of expressing
arbitrary programs. And yet there are no papers claiming that the invention of
C represents a panacea for machine learning. A fundamental reason is there is
no simple way of efficiently exploring the space of C programs. In particular,
there is no general way to calculate the gradient of an arbitrary C program to
minimize a chosen loss function. Moreover, given any finite dataset, there exist
countless programs which overfit the dataset, generating desired training output
but failing to generalize to test examples.

Why then should RNNs suffer less from similar problems? First, given any
fixed architecture (set of nodes, edges, and activation functions), the recurrent
neural networks with this architecture are differentiable end to end. The deriva-
tive of the loss function can be calculated with respect to each of the parameters
(weights) in the model. Thus, RNNs are amenable to gradient-based training.
Second, while the Turing-completeness of RNNs is an impressive property, given
a fixed-size RNN with a specific architecture, it is not actually possible to re-
produce any arbitrary program. Further, unlike a program composed in C, a
recurrent neural network can be regularized via standard techniques that help

1 While traditional RNNs only model the dependence of the current state on the previous
state, bidirectional recurrent neural networks (BRNNs) [Schuster and Paliwal, 1997] extend
RNNs to model dependence on both past states and future states.
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prevent overfitting, such as weight decay, dropout, and limiting the degrees of
freedom.

1.4 Comparison to prior literature

The literature on recurrent neural networks can seem impenetrable to the unini-
tiated. Shorter papers assume familiarity with a large body of background lit-
erature, while diagrams are frequently underspecified, failing to indicate which
edges span time steps and which do not. Jargon abounds, and notation is in-
consistent across papers or overloaded within one paper. Readers are frequently
in the unenviable position of having to synthesize conflicting information across
many papers in order to understand just one. For example, in many papers sub-
scripts index both nodes and time steps. In others, h simultaneously stands for a
link function and a layer of hidden nodes. The variable t simultaneously stands
for both time indices and targets, sometimes in the same equation. Many excel-
lent research papers have appeared recently, but clear reviews of the recurrent
neural network literature are rare.

Among the most useful resources are a recent book on supervised sequence
labeling with recurrent neural networks [Graves, 2012] and an earlier doctoral
thesis [Gers, 2001]. A recent survey covers recurrent neural nets for language
modeling [De Mulder et al., 2015]. Various authors focus on specific technical
aspects; for example Pearlmutter [1995] surveys gradient calculations in contin-
uous time recurrent neural networks. In the present review paper, we aim to
provide a readable, intuitive, consistently notated, and reasonably comprehen-
sive but selective survey of research on recurrent neural networks for learning
with sequences. We emphasize architectures, algorithms, and results, but we
aim also to distill the intuitions that have guided this largely heuristic and
empirical field. In addition to concrete modeling details, we offer qualitative ar-
guments, a historical perspective, and comparisons to alternative methodologies
where appropriate.

2 Background

This section introduces formal notation and provides a brief background on
neural networks in general.

2.1 Sequences

The input to an RNN is a sequence, and/or its target is a sequence. An input
sequence can be denoted (x(1),x(2), ...,x(T )) where each data point x(t) is a real-
valued vector. Similarly, a target sequence can be denoted (y(1),y(2), ...,y(T )).
A training set typically is a set of examples where each example is an (input
sequence, target sequence) pair, although commonly either the input or the
output may be a single data point. Sequences may be of finite or countably
infinite length. When they are finite, the maximum time index of the sequence
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is called T . RNNs are not limited to time-based sequences. They have been
used successfully on non-temporal sequence data, including genetic data [Baldi
and Pollastri, 2003]. However, in many important applications of RNNs, the
sequences have an explicit or implicit temporal aspect. While we often refer to
time in this survey, the methods described here are applicable to non-temporal
as well as to temporal tasks.

Using temporal terminology, an input sequence consists of data points x(t)

that arrive in a discrete sequence of time steps indexed by t. A target sequence
consists of data points y(t). We use superscripts with parentheses for time, and
not subscripts, to prevent confusion between sequence steps and indices of nodes
in a network. When a model produces predicted data points, these are labeled
ŷ(t).

The time-indexed data points may be equally spaced samples from a con-
tinuous real-world process. Examples include the still images that comprise
the frames of videos or the discrete amplitudes sampled at fixed intervals that
comprise audio recordings. The time steps may also be ordinal, with no exact
correspondence to durations. In fact, RNNs are frequently applied to domains
where sequences have a defined order but no explicit notion of time. This is
the case with natural language. In the word sequence “John Coltrane plays the
saxophone”, x(1) = John, x(2) = Coltrane, etc.

2.2 Neural networks

Neural networks are biologically inspired models of computation. Generally,
a neural network consists of a set of artificial neurons, commonly referred to
as nodes or units, and a set of directed edges between them, which intuitively
represent the synapses in a biological neural network. Associated with each
neuron j is an activation function lj(·), which is sometimes called a link function.
We use the notation lj and not hj , unlike some other papers, to distinguish the
activation function from the values of the hidden nodes in a network, which, as
a vector, is commonly notated h in the literature.

Associated with each edge from node j′ to j is a weight wjj′ . Following
the convention adopted in several foundational papers [Hochreiter and Schmid-
huber, 1997, Gers et al., 2000, Gers, 2001, Sutskever et al., 2011], we index
neurons with j and j′, and wjj′ denotes the “to-from” weight corresponding to
the directed edge to node j from node j′. It is important to note that in many
references the indices are flipped and wj′j 6= wjj′ denotes the “from-to” weight
on the directed edge from the node j′ to the node j, as in lecture notes by Elkan
[2015] and in Wikipedia [2015].

The value vj of each neuron j is calculated by applying its activation function
to a weighted sum of the values of its input nodes (Figure 1):

vj = lj

∑
j′

wjj′ · vj′

 .

For convenience, we term the weighted sum inside the parentheses the incoming
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Figure 1: An artificial neuron computes a nonlinear function of a weighted sum
of its inputs.

activation and notate it as aj . We represent this computation in diagrams
by depicting neurons as circles and edges as arrows connecting them. When
appropriate, we indicate the exact activation function with a symbol, e.g., σ for
sigmoid.

Common choices for the activation function include the sigmoid σ(z) =
1/(1 + e−z) and the tanh function φ(z) = (ez − e−z)/(ez + e−z). The latter has
become common in feedforward neural nets and was applied to recurrent nets by
Sutskever et al. [2011]. Another activation function which has become prominent
in deep learning research is the rectified linear unit (ReLU) whose formula is
lj(z) = max(0, z). This type of unit has been demonstrated to improve the
performance of many deep neural networks [Nair and Hinton, 2010, Maas et al.,
2012, Zeiler et al., 2013] on tasks as varied as speech processing and object
recognition, and has been used in recurrent neural networks by Bengio et al.
[2013].

The activation function at the output nodes depends upon the task. For mul-
ticlass classification with K alternative classes, we apply a softmax nonlinearity
in an output layer of K nodes. The softmax function calculates

ŷk =
eak∑K

k′=1 e
ak′

for k = 1 to k = K.

The denominator is a normalizing term consisting of the sum of the numerators,
ensuring that the outputs of all nodes sum to one. For multilabel classification
the activation function is simply a point-wise sigmoid, and for regression we
typically have linear output.
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Figure 2: A feedforward neural network. An example is presented to the network
by setting the values of the blue (bottom) nodes. The values of the nodes in each
layer are computed successively as a function of the prior layers until output is
produced at the topmost layer.

2.3 Feedforward networks and backpropagation

With a neural model of computation, one must determine the order in which
computation should proceed. Should nodes be sampled one at a time and up-
dated, or should the value of all nodes be calculated at once and then all updates
applied simultaneously? Feedforward networks (Figure 2) are a restricted class
of networks which deal with this problem by forbidding cycles in the directed
graph of nodes. Given the absence of cycles, all nodes can be arranged into
layers, and the outputs in each layer can be calculated given the outputs from
the lower layers.

The input x to a feedforward network is provided by setting the values of
the lowest layer. Each higher layer is then successively computed until output
is generated at the topmost layer ŷ. Feedforward networks are frequently used
for supervised learning tasks such as classification and regression. Learning is
accomplished by iteratively updating each of the weights to minimize a loss
function, L(ŷ,y), which penalizes the distance between the output ŷ and the
target y.

The most successful algorithm for training neural networks is backpropaga-
tion, introduced for this purpose by Rumelhart et al. [1985]. Backpropagation
uses the chain rule to calculate the derivative of the loss function L with respect
to each parameter in the network. The weights are then adjusted by gradi-
ent descent. Because the loss surface is non-convex, there is no assurance that
backpropagation will reach a global minimum. Moreover, exact optimization is
known to be an NP-hard problem. However, a large body of work on heuristic
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pre-training and optimization techniques has led to impressive empirical success
on many supervised learning tasks. In particular, convolutional neural networks,
popularized by Le Cun et al. [1990], are a variant of feedforward neural network
that holds records since 2012 in many computer vision tasks such as object
detection [Krizhevsky et al., 2012].

Nowadays, neural networks are usually trained with stochastic gradient de-
scent (SGD) using mini-batches. With batch size equal to one, the stochastic
gradient update equation is

w ← w − η∇wFi

where η is the learning rate and ∇wFi is the gradient of the objective function
with respect to the parameters w as calculated on a single example (xi, yi).
Many variants of SGD are used to accelerate learning. Some popular heuristics,
such as AdaGrad [Duchi et al., 2011], AdaDelta [Zeiler, 2012], and RMSprop
[Tieleman and Hinton, 2012], tune the learning rate adaptively for each feature.
AdaGrad, arguably the most popular, adapts the learning rate by caching the
sum of squared gradients with respect to each parameter at each time step.
The step size for each feature is multiplied by the inverse of the square root of
this cached value. AdaGrad leads to fast convergence on convex error surfaces,
but because the cached sum is monotonically increasing, the method has a
monotonically decreasing learning rate, which may be undesirable on highly non-
convex loss surfaces. RMSprop modifies AdaGrad by introducing a decay factor
in the cache, changing the monotonically growing value into a moving average.
Momentum methods are another common SGD variant used to train neural
networks. These methods add to each update a decaying sum of the previous
updates. When the momentum parameter is tuned well and the network is
initialized well, momentum methods can train deep nets and recurrent nets
competitively with more computationally expensive methods like the Hessian-
free optimizer of Sutskever et al. [2013].

To calculate the gradient in a feedforward neural network, backpropagation
proceeds as follows. First, an example is propagated forward through the net-
work to produce a value vj at each node and outputs ŷ at the topmost layer.
Then, a loss function value L(ŷk, yk) is computed at each output node k. Sub-
sequently, for each output node k, we calculate

δk =
∂L(ŷk, yk)

∂ŷk
· l′k(ak).

Given these values δk, for each node in the immediately prior layer we calculate

δj = l′(aj)
∑
k

δk · wkj .

This calculation is performed successively for each lower layer to yield δj for
every node j given the δ values for each node connected to j by an outgoing
edge. Each value δj represents the derivative ∂L/∂aj of the total loss function
with respect to that node’s incoming activation. Given the values vj calculated
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during the forward pass, and the values δj calculated during the backward pass,
the derivative of the loss L with respect a given parameter wjj′ is

∂L
∂wjj′

= δjvj′ .

Other methods have been explored for learning the weights in a neural net-
work. A number of papers from the 1990s [Belew et al., 1990, Gruau et al.,
1994] championed the idea of learning neural networks with genetic algorithms,
with some even claiming that achieving success on real-world problems only by
applying many small changes to the weights of a network was impossible. De-
spite the subsequent success of backpropagation, interest in genetic algorithms
continues. Several recent papers explore genetic algorithms for neural networks,
especially as a means of learning the architecture of neural networks, a problem
not addressed by backpropagation [Bayer et al., 2009, Harp and Samad, 2013].
By architecture we mean the number of layers, the number of nodes in each, the
connectivity pattern among the layers, the choice of activation functions, etc.

One open question in neural network research is how to exploit sparsity in
training. In a neural network with sigmoidal or tanh activation functions, the
nodes in each layer never take value exactly zero. Thus, even if the inputs
are sparse, the nodes at each hidden layer are not. However, rectified linear
units (ReLUs) introduce sparsity to hidden layers [Glorot et al., 2011]. In this
setting, a promising path may be to store the sparsity pattern when computing
each layer’s values and use it to speed up computation of the next layer in the
network. Some recent work shows that given sparse inputs to a linear model
with a standard regularizer, sparsity can be fully exploited even if regularization
makes the gradient be not sparse [Carpenter, 2008, Langford et al., 2009, Singer
and Duchi, 2009, Lipton and Elkan, 2015].

3 Recurrent neural networks

Recurrent neural networks are feedforward neural networks augmented by the
inclusion of edges that span adjacent time steps, introducing a notion of time
to the model. Like feedforward networks, RNNs may not have cycles among
conventional edges. However, edges that connect adjacent time steps, called
recurrent edges, may form cycles, including cycles of length one that are self-
connections from a node to itself across time. At time t, nodes with recurrent
edges receive input from the current data point x(t) and also from hidden node
values h(t−1) in the network’s previous state. The output ŷ(t) at each time t
is calculated given the hidden node values h(t) at time t. Input x(t−1) at time
t − 1 can influence the output ŷ(t) at time t and later by way of the recurrent
connections.

Two equations specify all calculations necessary for computation at each time
step on the forward pass in a simple recurrent neural network as in Figure 3:

h(t) = σ(Whxx(t) +Whhh(t−1) + bh)
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Figure 3: A simple recurrent network. At each time step t, activation is passed
along solid edges as in a feedforward network. Dashed edges connect a source
node at each time t to a target node at each following time t+ 1.

ŷ(t) = softmax(Wyhh(t) + by).

Here Whx is the matrix of conventional weights between the input and the
hidden layer and Whh is the matrix of recurrent weights between the hidden
layer and itself at adjacent time steps. The vectors bh and by are bias parameters
which allow each node to learn an offset.

The dynamics of the network depicted in Figure 3 across time steps can
be visualized by unfolding it as in Figure 4. Given this picture, the network
can be interpreted not as cyclic, but rather as a deep network with one layer
per time step and shared weights across time steps. It is then clear that the
unfolded network can be trained across many time steps using backpropagation.
This algorithm, called backpropagation through time (BPTT), was introduced
by Werbos [1990]. All recurrent networks in common current use apply it.

3.1 Early recurrent network designs

The foundational research on recurrent networks took place in the 1980s. In
1982, Hopfield introduced a family of recurrent neural networks that have pat-
tern recognition capabilities [Hopfield, 1982]. They are defined by the values
of the weights between nodes and the link functions are simple thresholding at
zero. In these nets, a pattern is placed in the network by setting the values of
the nodes. The network then runs for some time according to its update rules,
and eventually another pattern is read out. Hopfield networks are useful for
recovering a stored pattern from a corrupted version and are the forerunners of
Boltzmann machines and auto-encoders.
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Figure 4: The recurrent network of Figure 3 unfolded across time steps.

An early architecture for supervised learning on sequences was introduced
by Jordan [1986]. Such a network (Figure 5) is a feedforward network with a
single hidden layer that is extended with special units.2 Output node values
are fed to the special units, which then feed these values to the hidden nodes
at the following time step. If the output values are actions, the special units
allow the network to remember actions taken at previous time steps. Several
modern architectures use a related form of direct transfer from output nodes;
Sutskever et al. [2014] translates sentences between natural languages, and when
generating a text sequence, the word chosen at each time step is fed into the
network as input at the following time step. Additionally, the special units
in a Jordan network are self-connected. Intuitively, these edges allow sending
information across multiple time steps without perturbing the output at each
intermediate time step.

The architecture introduced by Elman [1990] is simpler than the earlier
Jordan architecture. Associated with each unit in the hidden layer is a context
unit. Each such unit j′ takes as input the state of the corresponding hidden
node j at the previous time step, along an edge of fixed weight wj′j = 1. This
value then feeds back into the same hidden node j along a standard edge. This
architecture is equivalent to a simple RNN in which each hidden node has a
single self-connected recurrent edge. The idea of fixed-weight recurrent edges
that make hidden nodes self-connected is fundamental in subsequent work on
LSTM networks [Hochreiter and Schmidhuber, 1997].

Elman [1990] trains the network using backpropagation and demonstrates
that the network can learn time dependencies. The paper features two sets
of experiments. The first extends the logical operation exclusive or (XOR) to

2 Jordan [1986] calls the special units “state units” while Elman [1990] calls a corresponding
structure “context units.” In this paper we simplify terminology by using only “context units”.
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Figure 5: A recurrent neural network as proposed by Jordan [1986]. Output
units are connected to special units that at the next time step feed into them-
selves and into hidden units.

the time domain by concatenating sequences of three tokens. For each three-
token segment, e.g. “011”, the first two tokens (“01”) are chosen randomly and
the third (“1”) is set by performing xor on the first two. Random guessing
should achieve accuracy of 50%. A perfect system should perform the same as
random for the first two tokens, but guess the third token perfectly, achieving
accuracy of 66.7%. The simple network of Elman [1990] does in fact approach
this maximum achievable score.

3.2 Training recurrent networks

Learning with recurrent networks has long been considered to be difficult. Even
for standard feedforward networks, the optimization task is NP-complete Blum
and Rivest [1993]. But learning with recurrent networks can be especially chal-
lenging due to the difficulty of learning long-range dependencies, as described
by Bengio et al. [1994] and expanded upon by Hochreiter et al. [2001]. The
problems of vanishing and exploding gradients occur when backpropagating er-
rors across many time steps. As a toy example, consider a network with a single
input node, a single output node, and a single recurrent hidden node (Figure 7).
Now consider an input passed to the network at time τ and an error calculated
at time t, assuming input of zero in the intervening time steps. The tying of
weights across time steps means that the recurrent edge at the hidden node j
always has the same weight. Therefore, the contribution of the input at time τ
to the output at time t will either explode or approach zero, exponentially fast,
as t− τ grows large. Hence the derivative of the error with respect to the input
will either explode or vanish.
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Figure 6: A recurrent neural network as described by Elman [1990]. Hidden
units are connected to context units, which feed back into the hidden units at
the next time step.

Which of the two phenomena occurs depends on whether the weight of the
recurrent edge |wjj | > 1 or |wjj | < 1 and on the activation function in the
hidden node (Figure 8). Given a sigmoid activation function, the vanishing gra-
dient problem is more pressing, but with a rectified linear unit max(0, x), it is
easier to imagine the exploding gradient. Pascanu et al. [2012] give a thorough
mathematical treatment of the vanishing and exploding gradient problems, char-
acterizing exact conditions under which these problems may occur. Given these
conditions, they suggest an approach to training via a regularization term that
forces the weights to values where the gradient neither vanishes nor explodes.

Truncated backpropagation through time (TBPTT) is one solution to the
exploding gradient problem for continuously running networks [Williams and
Zipser, 1989]. With TBPTT, some maximum number of time steps is set along
which error can be propagated. While TBPTT with a small cutoff can be used
to alleviate the exploding gradient problem, it requires that one sacrifice the
ability to learn long-range dependencies. The LSTM architecture described
below uses carefully designed nodes with recurrent edges with fixed unit weight
as a solution to the vanishing gradient problem.

The issue of local optima is an obstacle to effective training that cannot
be dealt with simply by modifying the network architecture. Optimizing even
a single hidden-layer feedforward network is an NP-complete problem [Blum
and Rivest, 1993]. However, recent empirical and theoretical studies suggest
that in practice, the issue may not be as important as once thought. Dauphin
et al. [2014] show that while many critical points exist on the error surfaces of
large neural networks, the ratio of saddle points to true local minima increases
exponentially with the size of the network, and algorithms can be designed to
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Figure 7: A simple recurrent net with one input unit, one output unit, and one
recurrent hidden unit.

Figure 8: A visualization of the vanishing gradient problem, using the network
depicted in Figure 7, adapted from Graves [2012]. If the weight along the
recurrent edge is less than one, the contribution of the input at the first time
step to the output at the final time step will decrease exponentially fast as a
function of the length of the time interval in between.
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escape from saddle points.
Overall, along with the improved architectures explained below, fast imple-

mentations and better gradient-following heuristics have rendered RNN training
feasible. Implementations of forward and backward propagation using GPUs,
such as the Theano [Bergstra et al., 2010] and Torch [Collobert et al., 2011]
packages, have made it straightforward to implement fast training algorithms.
In 1996, prior to the introduction of the LSTM, attempts to train recurrent nets
to bridge long time gaps were shown to perform no better than random guess-
ing [Hochreiter and Schmidhuber, 1996]. However, RNNs are now frequently
trained successfully.

For some tasks, freely available software can be run on a single GPU and
produce compelling results in hours [Karpathy, 2015]. Martens and Sutskever
[2011] reported success training recurrent neural networks with a Hessian-free
truncated Newton approach, and applied the method to a network which learns
to generate text one character at a time in [Sutskever et al., 2011]. In the paper
that describes the abundance of saddle points on the error surfaces of neural
networks [Dauphin et al., 2014], the authors present a saddle-free version of New-
ton’s method. Unlike Newton’s method, which is attracted to critical points,
including saddle points, this variant is specially designed to escape from them.
Experimental results include a demonstration of improved performance on re-
current networks. Newton’s method requires computing the Hessian, which is
prohibitively expensive for large networks, scaling quadratically with the num-
ber of parameters. While their algorithm only approximates the Hessian, it is
still computationally expensive compared to SGD. Thus the authors describe
a hybrid approach in which the saddle-free Newton method is applied only in
places where SGD appears to be stuck.

4 Modern RNN architectures

The most successful RNN architectures for sequence learning stem from two pa-
pers published in 1997. The first paper, Long Short-Term Memory by Hochre-
iter and Schmidhuber [1997], introduces the memory cell, a unit of computation
that replaces traditional nodes in the hidden layer of a network. With these
memory cells, networks are able to overcome difficulties with training encoun-
tered by earlier recurrent networks. The second paper, Bidirectional Recurrent
Neural Networks by Schuster and Paliwal [1997], introduces an architecture in
which information from both the future and the past are used to determine the
output at any point in the sequence. This is in contrast to previous networks,
in which only past input can affect the output, and has been used success-
fully for sequence labeling tasks in natural language processing, among others.
Fortunately, the two innovations are not mutually exclusive, and have been suc-
cessfully combined for phoneme classification [Graves and Schmidhuber, 2005]
and handwriting recognition [Graves et al., 2009]. In this section we explain the
LSTM and BRNN and we describe the neural Turing machine (NTM), which
extends RNNs with an addressable external memory [Graves et al., 2014].
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Figure 9: One LSTM memory cell as proposed by Hochreiter and Schmidhuber
[1997]. The self-connected node is the internal state s. The diagonal line indi-
cates that it is linear, i.e. the identity link function is applied. The blue dashed
line is the recurrent edge, which has fixed unit weight. Nodes marked Π output
the product of their inputs. All edges into and from Π nodes also have fixed
unit weight.

4.1 Long short-term memory (LSTM)

Hochreiter and Schmidhuber [1997] introduced the LSTM model primarily in
order to overcome the problem of vanishing gradients. This model resembles
a standard recurrent neural network with a hidden layer, but each ordinary
node (Figure 1) in the hidden layer is replaced by a memory cell (Figure 9).
Each memory cell contains a node with a self-connected recurrent edge of fixed
weight one, ensuring that the gradient can pass across many time steps without
vanishing or exploding. To distinguish references to a memory cell and not an
ordinary node, we use the subscript c.

The term “long short-term memory” comes from the following intuition.
Simple recurrent neural networks have long-term memory in the form of weights.
The weights change slowly during training, encoding general knowledge about
the data. They also have short-term memory in the form of ephemeral ac-
tivations, which pass from each node to successive nodes. The LSTM model
introduces an intermediate type of storage via the memory cell. A memory cell
is a composite unit, built from simpler nodes in a specific connectivity pattern,
with the novel inclusion of multiplicative nodes, represented in diagrams by the
letter Π. All elements of the LSTM cell are enumerated and described below.
Note that when we use vector notation, we are referring to the values of the
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nodes in an entire layer of cells. For example, s is a vector containing the value
of sc at each memory cell c in a layer. When the subscript c is used, it is to
index an individual memory cell.

• Input node: This unit, labeled gc, is a node that takes activation in the
standard way from the input layer x(t) at the current time step and (along

recurrent edges) from the hidden layer at the previous time step h(t−1).
Typically, the summed weighted input is run through a tanh activation
function, although in the original LSTM paper, the activation function is
a sigmoid.

• Input gate: Gates are a distinctive feature of the LSTM approach. A gate
is a sigmoidal unit that, like the input node, takes activation from the
current data point x(t) as well as from the hidden layer at the previous
time step. A gate is so-called because its value is used to multiply the
value of another node. It is a gate in the sense that if its value is zero,
then flow from the other node is cut off. If the value of the gate is one, all
flow is passed through. The value of the input gate ic multiplies the value
of the input node.

• Internal state: At the heart of each memory cell is a node sc with lin-
ear activation, which is referred to in the original paper as the “internal
state” of the cell. The internal state sc has a self-connected recurrent edge
with fixed unit weight. Because this edge spans adjacent time steps with
constant weight, error can flow across time steps without vanishing or ex-
ploding. This edge is often called the constant error carousel. In vector
notation, the update for the internal state is s(t) = g(t) � i(t) + s(t−1)

where � is pointwise multiplication.

• Forget gate: These gates fc were introduced by Gers et al. [2000]. They
provide a method by which the network can learn to flush the contents
of the internal state. This is especially useful in continuously running
networks. With forget gates, the equation to calculate the internal state
on the forward pass is

s(t) = g(t) � i(t) + f (t) � s(t−1).

• Output gate: The value vc ultimately produced by a memory cell is the
value of the internal state sc multiplied by the value of the output gate
oc. It is customary that the internal state first be run through a tanh
activation function, as this gives the output of each cell the same dynamic
range as an ordinary tanh hidden unit. However, in other neural network
research, rectified linear units, which have a greater dynamic range, are
easier to train. Thus it seems plausible that the nonlinear function on the
internal state might be omitted.

In the original paper and in most subsequent work, the input node is labeled
g. We adhere to this convention but note that it may be confusing as g does
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Figure 10: LSTM memory cell with a forget gate as described by Gers et al.
[2000].

not stand for gate. In the original paper, the gates are called yin and yout but
this is confusing because y generally stands for output in the machine learning
literature. Seeking comprehensibility, we break with this convention and use i,
f , and o to refer to input, forget and output gates respectively, as in Sutskever
et al. [2014].

Since the original LSTM was introduced, several variations have been pro-
posed. Forget gates, described above, were proposed in 2000 and were not part
of the original LSTM design. However, they have proven effective and are stan-
dard in most modern implementations. That same year, Gers and Schmidhuber
[2000] proposed peephole connections that pass from the internal state directly
to the input and output gates of that same node without first having to be
modulated by the output gate. They report that these connections improve
performance on timing tasks where the network must learn to measure precise
intervals between events. The intuition of the peephole connection can be cap-
tured by the following example. Consider a network which must learn to count
objects and emit some desired output when n objects have been seen. The net-
work might learn to let some fixed amount of activation into the internal state
after each object is seen. This activation is trapped in the internal state sc by
the constant error carousel, and is incremented iteratively each time another
object is seen. When the nth object is seen, the network needs to know to let
out content from the internal state so that it can affect the output. To accom-
plish this, the output gate oc must know the content of the internal state sc.
Thus sc should be an input to oc.

Put formally, computation in the LSTM model proceeds according to the
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Figure 11: A recurrent neural network with a hidden layer consisting of two
memory cells. The network is shown unfolded across two time steps.

following calculations, which are performed at each time step. These equations
give the full algorithm for a modern LSTM with forget gates:

g(t) = φ(Wgxx(t) +Wghh(t−1) + bg)

i(t) = σ(W ixx(t) +W ihh(t−1) + bi)

f (t) = σ(W fxx(t) +W fhh(t−1) + bf )

o(t) = σ(Woxx(t) +Wohh(t−1) + bo)

s(t) = g(t) � i(i) + s(t−1) � f (t)

h(t) = φ(s(t))� o(t).

The value of the hidden layer of the LSTM at time t is the vector h(t), while
h(t−1) is the values output by each memory cell in the hidden layer at the pre-
vious time. Note that these equations include the forget gate, but not peephole
connections. The calculations for the simpler LSTM without forget gates are
obtained by setting f (t) = 1 for all t. We use the tanh function φ for the input
node g following the state-of-the-art design of Zaremba and Sutskever [2014].
However, in the original LSTM paper, the activation function for g is the sigmoid
σ.

Intuitively, in terms of the forward pass, the LSTM can learn when to let
activation into the internal state. As long as the input gate takes value zero,
no activation can get in. Similarly, the output gate learns when to let the
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Figure 12: A bidirectional recurrent neural network as described by Schuster
and Paliwal [1997], unfolded in time.

value out. When both gates are closed, the activation is trapped in the memory
cell, neither growing nor shrinking, nor affecting the output at intermediate
time steps. In terms of the backwards pass, the constant error carousel enables
the gradient to propagate back across many time steps, neither exploding nor
vanishing. In this sense, the gates are learning when to let error in, and when
to let it out. In practice, the LSTM has shown a superior ability to learn long-
range dependencies as compared to simple RNNs. Consequently, the majority of
state-of-the-art application papers covered in this review use the LSTM model.

One frequent point of confusion is the manner in which multiple memory
cells are used together to comprise the hidden layer of a working neural network.
To alleviate this confusion, we depict in Figure 11 a simple network with two
memory cells, analogous to Figure 4. The output from each memory cell flows
in the subsequent time step to the input node and all gates of each memory cell.
It is common to include multiple layers of memory cells [Sutskever et al., 2014].
Typically, in these architectures each layer takes input from the layer below at
the same time step and from the same layer in the previous time step.

4.2 Bidirectional recurrent neural networks (BRNNs)

Along with the LSTM, one of the most used RNN architectures is the bidirec-
tional recurrent neural network (BRNN) (Figure 12) first described by Schuster
and Paliwal [1997]. In this architecture, there are two layers of hidden nodes.
Both hidden layers are connected to input and output. The two hidden layers
are differentiated in that the first has recurrent connections from the past time
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steps while in the second the direction of recurrent of connections is flipped,
passing activation backwards along the sequence. Given an input sequence and
a target sequence, the BRNN can be trained by ordinary backpropagation after
unfolding across time. The following three equations describe a BRNN:

h(t) = σ(Whxx(t) +Whhh(t−1) + bh)

z(t) = σ(W zxx(t) +W zzz(t+1) + bz)

ŷ(t) = softmax(Wyhh(t) +Wyzz(t) + by)

where h(t) and z(t) are the values of the hidden layers in the forwards and
backwards directions respectively.

One limitation of the BRNN is that cannot run continuously, as it requires
a fixed endpoint in both the future and in the past. Further, it is not an
appropriate machine learning algorithm for the online setting, as it is implausible
to receive information from the future, i.e., to know sequence elements that
have not been observed. But for prediction over a sequence of fixed length, it
is often sensible to take into account both past and future sequence elements.
Consider the natural language task of part-of-speech tagging. Given any word
in a sentence, information about both the words which precede and those which
follow it is useful for predicting that word’s part-of-speech.

The LSTM and BRNN are in fact compatible ideas. The former introduces a
new basic unit from which to compose a hidden layer, while the latter concerns
the wiring of the hidden layers, regardless of what nodes they contain. Such an
approach, termed a BLSTM has been used to achieve state of the art results on
handwriting recognition and phoneme classification [Graves and Schmidhuber,
2005, Graves et al., 2009].

4.3 Neural Turing machines

The neural Turing machine (NTM) extends recurrent neural networks with an
addressable external memory [Graves et al., 2014]. This work improves upon the
ability of RNNs to perform complex algorithmic tasks such as sorting. The au-
thors take inspiration from theories in cognitive science, which suggest humans
possess a “central executive” that interacts with a memory buffer [Baddeley
et al., 1996]. By analogy to a Turing machine, in which a program directs
read heads and write heads to interact with external memory in the form of a
tape, the model is named a Neural Turing Machine. While technical details of
the read/write heads are beyond the scope of this review, we aim to convey a
high-level sense of the model and its applications.

The two primary components of an NTM are a controller and memory ma-
trix. The controller, which may be a recurrent or feedforward neural network,
takes input and returns output to the outside world, as well as passing instruc-
tions to and reading from the memory. The memory is represented by a large
matrix of N memory locations, each of which is a vector of dimension M . Ad-
ditionally, a number of read and write heads facilitate the interaction between
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the controller and the memory matrix. Despite these additional capabilities, the
NTM is differentiable end-to-end and can be trained by variants of stochastic
gradient descent using BPTT.

Graves et al. [2014] select five algorithmic tasks to test the performance of the
NTM model. By algorithmic we mean that for each task, the target output for a
given input can be calculated by following a simple program, as might be easily
implemented in any universal programming language. One example is the copy
task, where the input is a sequence of fixed length binary vectors followed by a
delimiter symbol. The target output is a copy of the input sequence. In another
task, priority sort, an input consists of a sequence of binary vectors together
with a distinct scalar priority value for each vector. The target output is the
sequence of vectors sorted by priority. The experiments test whether an NTM
can be trained via supervised learning to implement these common algorithms
correctly and efficiently. Interestingly, solutions found in this way generalize
reasonably well to inputs longer than those presented in the training set. In
contrast, the LSTM without external memory does not generalize well to longer
inputs. The authors compare three different architectures, namely an LSTM
RNN, an NTM with a feedforward controller, and an NTM with an LSTM
controller. On each task, both NTM architectures significantly outperform the
LSTM RNN both in training set performance and in generalization to test data.

5 Applications of LSTMs and BRNNs

The previous sections introduced the building blocks from which nearly all state-
of-the-art recurrent neural networks are composed. This section looks at several
application areas where recurrent networks have been employed successfully. Be-
fore describing state of the art results in detail, it is appropriate to convey a
concrete sense of the precise architectures with which many important tasks
can be expressed clearly as sequence learning problems with recurrent neural
networks. Figure 13 demonstrates several common RNN architectures and as-
sociates each with corresponding well-documented tasks.

In the following subsections, we first introduce the representations of natural
language used for input and output to recurrent neural networks and the com-
monly used performance metrics for sequence prediction tasks. Then we survey
state-of-the-art results in machine translation, image captioning, video caption-
ing, and handwriting recognition. Many applications of RNNs involve processing
written language. Some applications, such as image captioning, involve gener-
ating strings of text. Others, such as machine translation and dialogue systems,
require both inputting and outputting text. Systems which output text are more
difficult to evaluate empirically than those which produce binary predictions or
numerical output. As a result several methods have been developed to assess
the quality of translations and captions. In the next subsection, we provide the
background necessary to understand how text is represented in most modern
recurrent net applications. We then explain the commonly reported evaluation
metrics.
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Figure 13: Recurrent neural networks have been used successfully to model both
sequential inputs and sequential outputs as well as mappings between single data
points and sequences (in both directions). This figure, based on a similar figure
in Karpathy [2015] shows how numerous tasks can be modeled with RNNs with
sequential inputs and/or sequential outputs. In each subfigure, blue rectangles
correspond to inputs, red rectangles to outputs and green rectangles to the en-
tire hidden state of the neural network. (a) This is the conventional independent
case, as assumed by standard feedforward networks. (b) Text and video classi-
fication are tasks in which a sequence is mapped to one fixed length vector. (c)
Image captioning presents the converse case, where the input image is a single
non-sequential data point. (d) This architecture has been used for natural lan-
guage translation, a sequence-to-sequence task in which the two sequences may
have varying and different lengths. (e) This architecture has been used to learn
a generative model for text, predicting at each step the following character.
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5.1 Representations of natural language inputs and out-
puts

When words are output at each time step, generally the output consists of a
softmax vector y(t) ∈ RK where K is the size of the vocabulary. A softmax
layer is an element-wise logistic function that is normalized so that all of its com-
ponents sum to one. Intuitively, these outputs correspond to the probabilities
that each word is the correct output at that time step.

For application where an input consists of a sequence of words, typically the
words are fed to the network one at a time in consecutive time steps. In these
cases, the simplest way to represent words is a one-hot encoding, using binary
vectors with a length equal to the size of the vocabulary, so “1000” and “0100”
would represent the first and second words in the vocabulary respectively. Such
an encoding is discussed by Elman [1990] among others. However, this encoding
is inefficient, requiring as many bits as the vocabulary is large. Further, it offers
no direct way to capture different aspects of similarity between words in the
encoding itself. Thus it is common now to model words with a distributed
representation using a meaning vector. In some cases, these meanings for words
are learned given a large corpus of supervised data, but it is more usual to
initialize the meaning vectors using an embedding based on word co-occurrence
statistics. Freely available code to produce word vectors from these statistics
include GloVe [Pennington et al., 2014], and word2vec [Goldberg and Levy,
2014], which implements a word embedding algorithm from Mikolov et al. [2013].

Distributed representations for textual data were described by Hinton [1986],
used extensively for natural language by Bengio et al. [2003], and more recently
brought to wider attention in the deep learning community in a number of
papers describing recursive auto-encoder (RAE) networks [Socher et al., 2010,
2011a,b,c]. For clarity we point out that these recursive networks are not recur-
rent neural networks, and in the present survey the abbreviation RNN always
means recurrent neural network. While they are distinct approaches, recurrent
and recursive neural networks have important features in common, namely that
they both involve extensive weight tying and are both trained end-to-end via
backpropagation.

In many experiments with recurrent neural networks [Elman, 1990, Sutskever
et al., 2011, Zaremba and Sutskever, 2014], input is fed in one character at a
time, and output generated one character at a time, as opposed to one word at
a time. While the output is nearly always a softmax layer, many papers omit
details of how they represent single-character inputs. It seems reasonable to
infer that characters are encoded with a one-hot encoding. We know of no cases
of paper using a distributed representation at the single-character level.

5.2 Evaluation methodology

A serious obstacle to training systems well to output variable length sequences
of words is the flaws of the available performance metrics. In the case of cap-
tioning or translation, there maybe be multiple correct translations. Further,
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a labeled dataset may contain multiple reference translations for each example.
Comparing against such a gold standard is more fraught than applying standard
performance measure to binary classification problems.

One commonly used metric for structured natural language output with
multiple references is BLEU score. Developed in 2002, BLEU score is related
to modified unigram precision [Papineni et al., 2002]. It is the geometric mean
of the n-gram precisions for all values of n between 1 and some upper limit
N . In practice, 4 is a typical value for N , shown to maximize agreement with
human raters. Because precision can be made high by offering excessively short
translations, the BLEU score includes a brevity penalty B. Where c is average
the length of the candidate translations and r the average length of the reference
translations, the brevity penalty is

B =

{
1 if c > r

e(1−r/c) if c ≤ r
.

Then the BLEU score is

BLEU = B · exp

(
1

N

N∑
n=1

log pn

)
where pn is the modified n-gram precision, which is the number of n-grams
in the candidate translation that occur in any of the reference translations,
divided by the total number of n-grams in the candidate translation. This is
called modified precision because it is an adaptation of precision to the case of
multiple references.

BLEU scores are commonly used in recent papers to evaluate both transla-
tion and captioning systems. While BLEU score does appear highly correlated
with human judgments, there is no guarantee that any given translation with a
higher BLEU score is superior to another which receives a lower BLEU score.
In fact, while BLEU scores tend to be correlated with human judgement across
large sets of translations, they are not accurate predictors of human judgement
at the single sentence level.

METEOR is an alternative metric intended to overcome the weaknesses of
the BLEU score [Banerjee and Lavie, 2005]. METEOR is based on explicit word
to word matches between candidates and reference sentences. When multiple
references exist, the best score is used. Unlike BLEU, METEOR exploits known
synonyms and stemming. The first step is to compute an F-score

Fα =
P ·R

α · P + (1− α) ·R
based on single word matches where P is the precision and R is the recall.
The next step is to calculate a fragmentation penalty M ∝ c/m where c is
the smallest number of chunks of consecutive words such that the words are
adjacent in both the candidate and the reference, and m is the total number of
matched unigrams yielding the score. Finally, the score is

METEOR = (1−M) · Fα.
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Empirically, this metric has been found to agree with human raters more than
BLEU score. However, METEOR is less straightforward to calculate than
BLEU. To replicate the METEOR score reported by another party, one must
exactly replicate their stemming and synonym matching, as well as the calcula-
tions. Both metrics rely upon having the exact same set of reference translations.

Even in the straightforward case of binary classification, without sequential
dependencies, commonly used performance metrics like F1 give rise to optimal
thresholding strategies which may not accord with intuition about what should
constitute good performance [Lipton et al., 2014]. Along the same lines, given
that performance metrics such as the ones above are weak proxies for true
objectives, it may be difficult to distinguish between systems which are truly
stronger and those which most overfit the performance metrics in use.

5.3 Natural language translation

Translation of text is a fundamental problem in machine learning that resists
solutions with shallow methods. Some tasks, like document classification, can
be performed successfully with a bag-of-words representation that ignores word
order. But word order is essential in translation. The sentences “Scientist killed
by raging virus” and “Virus killed by raging scientist” have identical bag-of-
words representations.

Sutskever et al. [2014] present a translation model using two multilayered
LSTMs that demonstrates impressive performance translating from English to
French. The first LSTM is used for encoding an input phrase from the source
language and the second LSTM for decoding the output phrase in the target
language. The model works according to the following procedure (Figure 14):

• The source phrase is fed to the encoding LSTM one word at a time, which
does not output anything. The authors found that significantly better
results are achieved when the input sentence is fed into the network in
reverse order.

• When the end of the phrase is reached, a special symbol that indicates the
beginning of the output sentence is sent to the decoding LSTM. Addition-
ally, the decoding LSTM receives as input the final state of the first LSTM.
The second LSTM outputs softmax probabilities over the vocabulary at
each time step.

• At inference time, beam search is used to choose the most likely words
from the distribution at each time step, running the second LSTM until
the end-of-sentence (EOS ) token is reached.

For training, the true inputs are fed to the encoder, the true translation
is fed to the decoder, and loss is propagated back from the outputs of the
decoder across the entire sequence to sequence model. The network is trained
to maximize the likelihood of the correct translation of each sentence in the
training set. At inference time, a left to right beam search is used to determine
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Figure 14: Sequence to sequence LSTM model of Sutskever et al. [2014]. The
network consists of an encoding model (first LSTM) and a decoding model
(second LSTM). The input blocks (blue and purple) correspond to word vectors,
which are fully connected to the corresponding hidden state. Red nodes are
softmax outputs. Weights are tied among all encoding steps and among all
decoding time steps.
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which words to output. A few among the most likely next words are chosen
for expansion after each time step. The beam search ends when the network
outputs an end-of-sentence (EOS ) token. Sutskever et al. [2014] train the model
using stochastic gradient descent without momentum, halving the learning rate
twice per epoch, after the first five epochs. The approach achieves a BLEU
score of 34.81, outperforming the best previous neural network NLP systems,
and matching the best published results for non-neural network approaches,
including systems that have explicitly programmed domain expertise. When
their system is used to rerank candidate translations from another system, it
achieves a BLEU score of 36.5.

The implementation which achieved these results involved eight GPUS. Nev-
ertheless, training took 10 days to complete. One GPU was assigned to each
layer of the LSTM, and an additional four GPUs were used simply to calculate
softmax. The implementation was coded in C++, and each hidden layer of the
LSTM contained 1000 nodes. The input vocabulary contained 160,000 words
and the output vocabulary contained 80,000 words. Weights were initialized
uniformly randomly in the range between −0.08 and 0.08.

Another RNN approach to language translation is presented by Auli et al.
[2013]. Their RNN model uses the word embeddings of Mikolov and a lattice
representation of the decoder output to facilitate search over the space of pos-
sible translations. In the lattice, each node corresponds to a sequence of words.
They report a BLEU score of 28.5 on French-English translation tasks. Both
papers provide results on similar datasets but Sutskever et al. [2014] only report
on English to French translation while Auli et al. [2013] only report on French
to English translation, so it is not possible to compare the performance of the
two models.

5.4 Image captioning

Recently, recurrent neural networks have been used successfully for generating
sentences that describe photographs [Vinyals et al., 2015, Karpathy and Fei-Fei,
2014, Mao et al., 2014]. In this task, a training set consists of input images x
and target captions y. Given a large set of image-caption pairs, a model is
trained to predict the appropriate caption for an image.

Vinyals et al. [2015] follow up on the success in language to language trans-
lation by considering captioning as a case of image to language translation.
Instead of both encoding and decoding with LSTMs, they introduce the idea of
encoding an image with a convolutional neural network, and then decoding it
with an LSTM. Mao et al. [2014] independently developed a similar RNN image
captioning network, and achieved then state-of-the-art results on the Pascal,
Flickr30K, and COCO datasets.

Karpathy and Fei-Fei [2014] follows on this work, using a convolutional net-
work to encode images together with a bidirectional network attention mech-
anism and standard RNN to decode captions, using word2vec embeddings as
word representations. They consider both full-image captioning and a model
that captures correspondences between image regions and text snippets. At

29



inference time, their procedure resembles the one described by Sutskever et al.
[2014], where sentences are decoded one word at a time. The most probable
word is chosen and fed to the network at the next time step. This process is
repeated until an EOS token is produced.

To convey a sense of the scale of these problems, Karpathy and Fei-Fei [2014]
focus on three datasets of captioned images: Flickr8K, Flickr30K, and COCO, of
size 50MB (8000 images), 200MB (30,000 images), and 750MB (328,000 images)
respectively. The implementation uses the Caffe library [Jia et al., 2014], and
the convolutional network is pretrained on ImageNet data. In a revised version,
the authors report that LSTMs outperform simpler RNNs and that learning
word representations from random initializations is often preferable to word2vec
embeddings. As an explanation, they say that word2vec embeddings may cluster
words like colors together in the embedding space, which can be not suitable
for visual descriptions of images.

5.5 Further applications

Handwriting recognition is an application area where bidirectional LSTMs have
been used to achieve state of the art results. In work by Liwicki et al. [2007] and
Graves et al. [2009], data is collected from an interactive whiteboard. Sensors
record the (x, y) coordinates of the pen at regularly sampled time steps. In
the more recent paper, they use a bidirectional LSTM model, outperforming an
HMM model by achieving 81.5% word-level accuracy, compared to 70.1% for
the HMM.

In the last year, a number of papers have emerged that extend the success
of recurrent networks for translation and image captioning to new domains.
Among the most interesting of these applications are unsupervised video en-
coding [Srivastava et al., 2015], video captioning [Venugopalan et al., 2015],
and program execution [Zaremba and Sutskever, 2014]. Venugopalan et al.
[2015] demonstrate a sequence to sequence architecture that encodes frames
from a video and decode words. At each time step the input to the encoding
LSTM is the topmost hidden layer of a convolutional neural network. At de-
coding time, the network outputs probabilities over the vocabulary at each time
step.

Zaremba and Sutskever [2014] experiment with networks which read com-
puter programs one character at a time and predict their output. They focus
on programs which output integers and find that for simple programs, including
adding two nine-digit numbers, their network, which uses LSTM cells in several
stacked hidden layers and makes a single left to right pass through the program,
can predict the output with 99% accuracy.

6 Discussion

Over the past thirty years, recurrent neural networks have gone from models
primarily of interest for cognitive modeling and computational neuroscience, to
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powerful and practical tools for large-scale supervised learning from sequences.
This progress owes to advances in model architectures, training algorithms, and
parallel computing. Recurrent networks are especially interesting because they
overcome many of the restrictions placed on input and output data by tradi-
tional machine learning approaches. With recurrent networks, the assumption
of independence between consecutive examples is broken, and hence also the
assumption of fixed-dimension inputs and outputs.

While LSTMs and BRNNs have set records in accuracy on many tasks in
recent years, it is noteworthy that advances come from novel architectures rather
than from fundamentally novel algorithms. Therefore, automating exploration
of the space of possible models, for example via genetic algorithms or a Markov
chain Monte Carlo approach, could be promising. Neural networks offer a wide
range of transferable and combinable techniques. New activation functions,
training procedures, initializations procedures, etc. are generally transferable
across networks and tasks, often conferring similar benefits. As the number of
such techniques grows, the practicality of testing all combinations diminishes.
It seems reasonable to infer that as a community, neural network researchers are
exploring the space of model architectures and configurations much as a genetic
algorithm might, mixing and matching techniques, with a fitness function in the
form of evaluation metrics on major datasets of interest.

This inference suggests two corollaries. First, as just stated, this body of
research could benefit from automated procedures to explore the space of mod-
els. Second, as we build systems designed to perform more complex tasks, we
would benefit from improved fitness functions. A BLEU score inspires less con-
fidence than the accuracy reported on a binary classification task. To this end,
when possible, it seems prudent to individually test techniques first with classic
feedforward networks on datasets with established benchmarks before applying
them to recurrent networks in settings with less reliable evaluation criteria.

Lastly, the rapid success of recurrent neural networks on natural language
tasks leads us to believe that extensions of this work to longer texts would be
fruitful. Additionally, we imagine that dialogue systems could be built along
similar principles to the architectures used for translation, encoding prompts
and generating responses, while retaining the entirety of conversation history as
contextual information.
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published PhD dissertation, École Polytechnique Fédérale de Lausanne, Lau-
sanne, Switzerland, 2001.

Felix A. Gers and Jürgen Schmidhuber. Recurrent nets that time and count. In
Neural Networks, 2000. IJCNN 2000, Proceedings of the IEEE-INNS-ENNS
International Joint Conference on, volume 3, pages 189–194. IEEE, 2000.

Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:
Continual prediction with LSTM. Neural computation, 12(10):2451–2471,
2000.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier net-
works. In Proceedings of the 14th International Conference on Artificial In-
telligence and Statistics. JMLR W&CP Volume, volume 15, pages 315–323,
2011.

Yoav Goldberg and Omer Levy. word2vec explained: deriving Mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722,
2014.

33

http://cseweb.ucsd.edu/~elkan/250B/learningmeaning.pdf 
http://cseweb.ucsd.edu/~elkan/250B/learningmeaning.pdf 


Alex Graves. Supervised sequence labelling with recurrent neural networks, vol-
ume 385. Springer, 2012.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with
bidirectional LSTM and other neural network architectures. Neural Networks,
18(5):602–610, 2005.

Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst
Bunke, and Jürgen Schmidhuber. A novel connectionist system for uncon-
strained handwriting recognition. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(5):855–868, 2009.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines. arXiv
preprint arXiv:1410.5401, 2014.

Frdric Gruau, L’universite Claude Bernard lyon I, Of A Diplome De Doctorat,
M. Jacques Demongeot, Examinators M. Michel Cosnard, M. Jacques Ma-
zoyer, M. Pierre Peretto, and M. Darell Whitley. Neural network synthesis
using cellular encoding and the genetic algorithm., 1994.

Steven A. Harp and Tariq Samad. Optimizing neural networks with genetic
algorithms. In Proceedings of the 54th American Power Conference, Chicago,
volume 2, 2013.

Geoffrey E. Hinton. Learning distributed representations of concepts, 1986.

Sepp Hochreiter and Jurgen Schmidhuber. Bridging long time lags by weight
guessing and “long short-term memory”. Spatiotemporal Models in Biological
and Artificial Systems, 37:65–72, 1996.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gra-
dient flow in recurrent nets: the difficulty of learning long-term dependencies.
A field guide to dynamical recurrent neural networks, 2001.

John J. Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79
(8):2554–2558, 1982.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. arXiv preprint arXiv:1408.5093,
2014.

Michael I. Jordan. Serial order: A parallel distributed processing approach.
Technical Report 8604, Institute for Cognitive Science, University of Califor-
nia, San Diego, 1986.

34



Andrej Karpathy. The unreasonable effectiveness of recurrent neural net-
works. http://karpathy.github.io/2015/05/21/rnn-effectiveness/,
2015. Accessed: 2015-08-13.

Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating
image descriptions. arXiv preprint arXiv:1412.2306, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097–1105, 2012.

John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated
gradient. In Advances in Neural Information Processing Systems, pages 905–
912, 2009.

Yann Le Cun, B. Boser, John S. Denker, D. Henderson, Richard E. Howard,
W. Hubbard, and Lawrence D. Jackel. Handwritten digit recognition with
a back-propagation network. In Advances in Neural Information Processing
Systems. Citeseer, 1990.

Zachary C. Lipton and Charles Elkan. Efficient elastic net regularization for
sparse linear models. CoRR, abs/1505.06449, 2015. URL http://arxiv.

org/abs/1505.06449.

Zachary C. Lipton, Charles Elkan, and Balakrishnan Naryanaswamy. Optimal
thresholding of classifiers to maximize F1 measure. In Machine Learning and
Knowledge Discovery in Databases, pages 225–239. Springer, 2014.

Marcus Liwicki, Alex Graves, Horst Bunke, and Jürgen Schmidhuber. A novel
approach to on-line handwriting recognition based on bidirectional long short-
term memory networks. In Proc. 9th Int. Conf. on Document Analysis and
Recognition, volume 1, pages 367–371, 2007.

Andrew L. Maas, Quoc V. Le, Tyler M. O’Neil, Oriol Vinyals, Patrick Nguyen,
and Andrew Y. Ng. Recurrent neural networks for noise reduction in robust
ASR. In INTERSPEECH. Citeseer, 2012.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan Yuille. Deep caption-
ing with multimodal recurrent neural networks (m-RNN). arXiv preprint
arXiv:1412.6632, 2014.

James Martens and Ilya Sutskever. Learning recurrent neural networks with
Hessian-free optimization. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 1033–1040, 2011.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
Boltzmann machines. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 807–814, 2010.

35

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://arxiv.org/abs/1505.06449
http://arxiv.org/abs/1505.06449


Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of
the 40th annual meeting on association for computational linguistics, pages
311–318. Association for Computational Linguistics, 2002.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of
training recurrent neural networks. arXiv preprint arXiv:1211.5063, 2012.

Barak A. Pearlmutter. Gradient calculations for dynamic recurrent neural net-
works: A survey. Neural Networks, IEEE Transactions on, 6(5):1212–1228,
1995.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove:
Global vectors for word representation. Proceedings of the Empirical Methods
in Natural Language Processing (EMNLP 2014), 12, 2014.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
internal representations by error propagation. Technical report, DTIC Docu-
ment, 1985.

Mike Schuster and Kuldip K. Paliwal. Bidirectional recurrent neural networks.
Signal Processing, IEEE Transactions on, 45(11):2673–2681, 1997.

Hava T. Siegelmann and Eduardo D. Sontag. Turing computability with neural
nets. Applied Mathematics Letters, 4(6):77–80, 1991.

Yoram Singer and John C. Duchi. Efficient learning using forward-backward
splitting. In Advances in Neural Information Processing Systems, pages 495–
503, 2009.

Richard Socher, Christopher D. Manning, and Andrew Y. Ng. Learning con-
tinuous phrase representations and syntactic parsing with recursive neural
networks. In Proceedings of the NIPS-2010 Deep Learning and Unsupervised
Feature Learning Workshop, pages 1–9, 2010.

Richard Socher, Eric H. Huang, Jeffrey Pennin, Christopher D. Manning, and
Andrew Y. Ng. Dynamic pooling and unfolding recursive autoencoders for
paraphrase detection. In Advances in Neural Information Processing Systems,
pages 801–809, 2011a.

Richard Socher, Cliff C. Lin, Chris Manning, and Andrew Y. Ng. Parsing natural
scenes and natural language with recursive neural networks. In Proceedings
of the 28th international conference on machine learning (ICML-11), pages
129–136, 2011b.

Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, and Christo-
pher D. Manning. Semi-supervised recursive autoencoders for predicting sen-
timent distributions. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 151–161. Association for Computa-
tional Linguistics, 2011c.

36



Richard Socher, Andrej Karpathy, Quoc V. Le, Christopher D. Manning, and
Andrew Y. Ng. Grounded compositional semantics for finding and describing
images with sentences. Transactions of the Association for Computational
Linguistics, 2:207–218, 2014.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsu-
pervised learning of video representations using LSTMs. arXiv preprint
arXiv:1502.04681, 2015.

Ruslan L. Stratonovich. Conditional markov processes. Theory of Probability &
Its Applications, 5(2):156–178, 1960.

Ilya Sutskever, James Martens, and Geoffrey E. Hinton. Generating text with
recurrent neural networks. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 1017–1024, 2011.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey E. Hinton. On the
importance of initialization and momentum in deep learning. In Proceedings
of the 30th International Conference on Machine Learning (ICML-13), pages
1139–1147, 2013.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning
with neural networks. In Advances in Neural Information Processing Systems,
pages 3104–3112, 2014.

Tijmen Tieleman and Geoffrey E. Hinton. Lecture 6.5- RMSprop: Divide
the gradient by a running average of its recent magnitude. https://www.

youtube.com/watch?v=LGA-gRkLEsI, 2012.

Alan M. Turing. Computing machinery and intelligence. Mind, pages 433–460,
1950.

Subhashini Venugopalan, Marcus Rohrbach, Jeff Donahue, Raymond Mooney,
Trevor Darrell, and Kate Saenko. Sequence to sequence–video to text. arXiv
preprint arXiv:1505.00487, 2015.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and
tell: A neural image caption generator. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3156–3164, 2015.

Andrew J. Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. Information Theory, IEEE Transactions on,
13(2):260–269, 1967.

Paul J. Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990.

Wikipedia. Backpropagation — Wikipedia, the free encyclopedia, 2015. URL
http://en.wikipedia.org/wiki/Backpropagation. [Online; accessed 18-
May-2015].

37

https://www.youtube.com/watch?v=LGA-gRkLEsI
https://www.youtube.com/watch?v=LGA-gRkLEsI
http://en.wikipedia.org/wiki/Backpropagation


Ronald J. Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1(2):270–280,
1989.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint
arXiv:1410.4615, 2014.

Matthew D. Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

Matthew D. Zeiler, M. Ranzato, Rajat Monga, M. Mao, K. Yang, Quoc V.
Le, Patrick Nguyen, A. Senior, Vincent Vanhoucke, Jeffrey Dean, et al. On
rectified linear units for speech processing. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on, pages 3517–
3521. IEEE, 2013.

38


	1 Introduction
	1.1 Why model sequentiality explicitly?
	1.2 Why not use Markov models?
	1.3 Are RNNs too expressive?
	1.4 Comparison to prior literature

	2 Background
	2.1 Sequences
	2.2 Neural networks
	2.3 Feedforward networks and backpropagation

	3 Recurrent neural networks
	3.1 Early recurrent network designs
	3.2 Training recurrent networks

	4 Modern RNN architectures
	4.1 Long short-term memory (LSTM)
	4.2 Bidirectional recurrent neural networks (BRNNs)
	4.3 Neural Turing machines

	5 Applications of LSTMs and BRNNs
	5.1 Representations of natural language inputs and outputs
	5.2 Evaluation methodology
	5.3 Natural language translation
	5.4 Image captioning
	5.5 Further applications

	6 Discussion
	7 Acknowledgements

