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psychology is that, despite the overall impressive abilities
of people to sense, remember, and reason about the
world, our cognitive
abilities are extremely
limited in well-charac-
terized ways. In particular, psychologists have found that
people grapple with scarce attentional resources and lim-
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ited working memory. Such limitations become salient
when people are challenged with remembering more than a handful of new ideas or
items in the short term, recognizing important targets against a background pattern
of items [4], or interleaving multiple tasks [5].

These results indicate that we cannot help but

tion, attention is critical in detecting that a con-

to inspect the world via a limited spotlight of | versation is progressing. More generally, detecting

attention. As such, we often generate clues implic-
itly and explicitly about what we are selec-
tively attending to and how deeply we are
focusing. Given constraints on attentional
resources, it is no surprise that communi-
cation among people relies deeply on
attentional signals. Psychologists and lin-
guists studying communication have rec-
ognized that signaling and detecting
attentional states lies at the heart of the fast-paced
and fluid interactions that people have with one
another when collaborating or communicating
[1, 6]. Attentional cues are central in decisions
about when to initiate or to make an effective
contribution to a conversation or project. Beyond
knowing when to speak or listen in a conversa-
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or inferring attention is an essential component of
the overall process of grounding—converg-
ing in a shared manner on a mutual
understanding of a communication [1].
The findings about our limited atten-
tional resources—and about how we rely
on attentional signals in collaborating—
have significant implications for how we
design computational systems and inter-
faces. Over the last five years, our team at
Microsoft Research has explored, within the
Attentional User Interface project, opportunities
for enhancing computing and communication
systems by treating human attention as a central
construct and organizing principle. We consider
attention a rare commodity—and critical cur-
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rency—in reasoning about the information
awareness versus disruption of users [11]. We
have also pursued the use of attentional cues as an
important source of rich signals about goals,
intentions, and topics of interest [9]. We seek to
build systems that sense, and share with users,
natural signals about attention to support conver-
sations and other forms of fluid mixed-initiative
collaborations with computers. Moving to con-
siderations of computational efficiency, an assess-
ment of a user’s current and future attention can
be employed to triage computational resources.
Investigations in this realm include selective allo-
cation of resources in rendering graphics via rely-
ing on models or on direct observations of visual
attention, and in guiding precomputation and
prefetching [10] with forecasts of future atten-
tion. Finally, although there is a rich history of
prior work on attention from cognitive psychol-
ogy, we have found there is much we do not yet
understand. Thus, beyond pooling results from
prior psychological studies, we need to continue
to perform user studies that adapt or extend prior
results on attention and memory from cognitive
psychology to real-world computing and com-
munication applications [2, 3].

We shall first describe several principles and
methodologies at the heart of research on inte-
grating models of attention into human-com-
puter interaction and communications. Then, we
shall review representative efforts illustrating how
we can harness these principles in attention-sen-
sitive messaging and mixed-initiative interaction
applications.

Models of Attention and Decision
Making Under Uncertainty

How might we access and use information
about a user’s attention? To be sure, subtle clues
about attention are often available, and a num-
ber of these clues can be taken as direct signals
about the attentional status of users. For exam-
ple, sensing patterns of simple gestures such as
the touching and lifting of a device in different
settings can relay important information about
attention that can be exploited in a number of
exciting ways [7]. Moving to higher-precision
sensing, several researchers have pursued the use
of gaze-tracking systems, and have used signals
about the focus of visual attention in a variety of
applications. As gaze sensors grow in reliability
and decrease in cost, we are seeing the evolution
of devices that recognize when and how they are
interrogated by the spotlight of visual attention.

Nonetheless, we may often be uncertain about
a user’s attentional focus and workload in light of
observations, and about the value of alternate
actions in different contexts. Thus, we turn to
models that can be harnessed to reason about a
user’s attention and about the ideal attention-
sensitive actions to take under uncertainty.
Such models and reasoning can unleash new
functionalities and user experiences.

We have constructed by hand and learned
from data Bayesian models viewed as performing
the task of an automated “attentional Sherlock
Holmes,” working to reveal current or future
attention wunder uncertainty from an ongoing
stream of clues. Bayesian attentional models take
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Figure 1. (@) High-level decision model considering a user’s
attentional focus and workload as a random variable, influenced
by the observed states of several sensors. (b) A temporal
Bayesian attentional model, highlighting key dependencies
(dashed arcs) between variables in adjacent time slices.

as inputs sensors that provide streams of evidence
about attention and provide a means for computing
probability distributions over a user’s attention and
intentions.

Perceptual sensors include microphones listening
for ambient acoustical information or utterances,
cameras supporting visual analysis of a user’s gaze or
pose, accelerometers that detect patterns of motion
of devices, and location sensing via GPS and analysis
of wireless signals. However, more traditional sources
of events can also offer valuable clues. These sources
include a user’s online calendar and considerations of
the day of week and time of day. Another rich stream
of evidence can be harvested by monitoring a user’s
interactions with software and devices. Finally, back-
ground information about the history of a user’s
interests and prior patterns of activities and attention
can provide valuable sources of information about
attention.

To build probabilistic attentional models able to
fuse evidence from multiple sensors, we leverage the
results of accelerated research over the last 15 years
on representations for reasoning and decision mak-
ing under uncertainty. Such work has led to inferen-
tial methods and representations including Bayesian
networks and influence diagrams—graphical models
that extend probabilistic inference to considerations
of actions under uncertainty. Algorithms have been
developed that enable us to compute probability dis-
tributions over outcomes and expected utilities of
actions from these graphical representations.

Figure 1a displays a high-level influence diagram
representing sensor fusion and decision making in

54

March 2003/Vol. 46, No. 3 COMMUNICATIONS OF THE ACM

the context of a user’s attention under uncertainty. As
portrayed in the figure, a set of variables (oval nodes)
representing sensed evidence influence a random
variable representing a user’s attentional status which,
in turn, influences the expected value of alternate
actions or configurations. We introduce intermediate
cost and benefit variables in the pedagogical model as
it can be useful to deliberate about the value and
costs associated with different outcomes. Decisions
(rectangular node) about ideal computer actions take
into consideration the costs and benefits, given
uncertainty about a user’s attention. In the end, the
expected utility (diamond-shaped node) is influ-
enced by the action and the costs and benefits.

We extend such a high-level, pedagogical view by
constructing richer models that contain additional
intermediate variables and key interdependencies
among the variables. Also, as both devices and people
are immersed in time, we move beyond pointwise
considerations of the states of variables, to build
higher-fidelity temporal attentional models that rep-
resent changing observations and beliefs with the
flow of time. We have employed dynamic Bayesian
networks and Hidden Markov Models for represent-
ing and reasoning about states of attention and loca-
tion over time.

Figure 1b displays two adjacent time slices of a
temporal attentional model. Such a model provides a
probability distribution over a user’s workload and
task developed for an application that provides selec-
tive filtering of messages and communications to
users. In this case, the status of attention includes
approximately 15 discrete states.

Economic Models of Attention and
Information

As we can all attest from personal experiences, com-
puters and communication systems today have little
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Figure 2. Conceptual overview of the Notification Platform, a
cross-device messaging system that balances the costs of
disruption with the value of information from multiple message
sources. The system employs a probabilistic model of attention
and executes ongoing decision analyses about ideal alerting,
fidelity, and routing. (b) Constellation of components of
Notification Platform, depicting the subscription architecture.
Subscribed sources and devices communicate with the Notification
Manager via a set of standard interfaces. Sensor findings from
multiple devices are considered in deliberations about information
value, attention, and the best channel and alerting modality.

awareness of the value and costs of relaying messages,
alerts, and calls to users. Research on the Notification
Platform project has centered on formulating eco-
nomic principles of attention-sensitive notifica-
tion—and on implementing a cross-device-alerting
system based on these principles. A descendant of
the Notification Platform named Bestzcom applies
similar principles to interpersonal communications
[12]. We focus here on the Notification Platform.

The Notification Platform system modulates the
flow of messages from multiple sources to devices by
performing ongoing decision analyses. These analyses
balance the expected value of information with the
attention-sensitive costs of disruption. As highlighted
in Figure 2a, the system serves as an attention-savvy
layer between incoming messages and a user, taking as
inputs sensors that provide information about a user’s
attention, location, and overall situation.

The design of the Notification Platform was
informed by several earlier prototypes exploiting con-
text-sensing for identifying a user’s workload, includ-
ing the Priorities system [11, 12]. Priorities employs
classifiers that predict the urgency of incoming email.
The classifiers are trained with sample messages,
either obtained via explicit training or by automati-
cally drafting data sets by observing a user’s interac-
tion with an email browser. Studies have
demonstrated the system performs remarkably well at
classifying the urgency of messages (see, for example,
the receiver-operator characteristic curve described in
[11]). Beyond classifying the urgency of messages,
Priorities also observes a user’s patterns of presence at
a desktop computer based on time of day, and infers

about email, tasks, and appoint-
ment reminders in mobile and desktop settings.

The Notification Platform uses a decision-analytic
model for cross-device alerting and relay of informa-
tion from multiple sources. The analyses consider a
user’s attention and location under uncertainty, as well
as the fidelity and relevance of potential communica-
tion channels. We developed a distributed architec-
ture that executes over multiple devices. Figure 2b
displays a schematized view of the architecture of the
Notification Platform. Standard interfaces and meta-
data schemas allow users to subscribe different sources
of information and devices to a Notification Manager.
At the heart of the Notification Manager is a Bayesian
attention model and decision analysis that accesses
clues about attention and location from sensors via a
module we refer to as a Context Server.

The Context Server accesses several states and
streams of evidence, including a user’s appointments
from Microsoft Outlook, events about device pres-
ence and activity, an analysis of ambient acoustics in
the room, and a visual analysis of pose using a
Bayesian head-tracking system. Key abstractions from
the evidence, such as “voice trace detected,” “task
completion occurred within five seconds,” “single
application focus,” “head-tracked—looking away
from display,” and “meeting away from office—end-
ing in 10 minutes,” are posted to a volatile store called
the Context Whiteboard, which is continually updated
by incoming evidence. The Context Whiteboard is
contacted for updated information every few seconds
by the Bayesian attentional model in the Notification
Manager.

The Notification Manager’s decision analysis
weighs the expected costs and benefits of alerting a
user about messages coming into the system’s Univer-
sal Inbox. In computing the costs of disruption, the
decision model considers the probability distribution
over a user’s attentional state and location in several
places in its analysis, including the cost of disruption
associated with different alerts for each device, the
availability of different devices, and the likelihood that
the information will reach the user when alerted in a
specific manner on a device.
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Figure 3. (a) Graphical depiction of

the Notification Manager’s analyses.
Attention-sensitive costs of disruption and
the value of information are considered,
along with losses based in decreased
fidelity (narrowing funnel) and transmis-
sion reliability (spinning slotted disk)
associated with the use of each alerting
modality of all subscribed devices.

(b) View of a portion of the Notification
Platform’s real-time reasoning. Information
from multiple sensors is posted to the
Context Whiteboard and fused to infer the
user’s attentional status and location.
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The ongoing expected-utility analysis is performed
in accordance with a user’s preferences, stored in a
profile. These include assertions about the cost of dis-
ruption for each alert modality, conditioned on the
user being in different attentional states. As an exam-
ple, for the case of a desktop computer, the system
makes available a set of display alternatives as the
product of different visual displays of the alert (for
example, thumbnail, full-display alert) and several
auditory cues (for example, no auditory clue, soft
chime, louder herald). The placement of the alert
with regard to the current focus of visual attention or
interaction is also considered.

Figure 3a captures in a graphical manner the delib-
eration of the Notification Platform about incoming
messages. The system computes the expected value of
receiving an alert as the difference between the value
of alerting the user now and the value that will be
obtained when the information is viewed later. Given
probability distributions over a user’s attention and
location inferred from its sensors, Notification Plat-
form iterates over all alerting and display modalities
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for each device with an expected-utility analysis to
decide if, when, and how to alert a user. As repre-
sented with the metaphor of a narrowing funnel in
Figure 3a, the system considers, for each device and
modality, the loss in fidelity of information transmit-
ted. In addition, the system considers the likelihood
that an alert will be received, given inferred probabil-
ity distributions over the attention and location of the
user. This reliability of transmission is represented
metaphorically in the figure as the chance that a mes-
sage will make it through a slot in a spinning disk. In
the end, the attention-sensitive costs of disruption are
subtracted from estimates of the value of alerting,
yielding a net value of alerting a user for each channel
and alerting modality. The channel and modality
with the highest expected value is selected.

Figure 3b displays several aspects of the behind-
the-scenes functioning of the Notification Platform.
A context palette displays current findings drawn from
sensor sources. Several views onto components of the
decision analysis are displayed, including inference
about the time-varying attention of the user. At the
current time, the user is inferred to be most likely in
a state named “high-focus solo activity,” which has
competed recently with “low-focus solo activity,”
“conversation in office,” and other less likely states.
The Universal Inbox displays messages from several
sources, including email, instant messaging, breaking
news, and stock prices. Messages have also been
received from DocWatch, an agent subscribed to by
the user that identifies documents of interest for the
user. Each message is annotated with the best device
and alerting policy, and the associated net expected
dollar value of relaying the messages with that chan-
nel and mode is indicated. As portrayed in the inbox,
it is worthwhile passing two instant messages on to
the user. Other alerts are “in the red,” as the cost of



Figure 4. Sensing PDA, outfitted with multiple perceptual
sensors, including proximity, motion, and touch sensors. In the
background, accelerometer signals are displayed showing the
motion fingerprint of a user walking while looking at the device.

disruption dominates the net value of information. In
this case, the ideal alerting mode and channel for an
instant message is determined to be a visual notifica-
tion in a large format coupled with an audio herald at
the user’s desktop system.

Ongoing research on the Notification Platform
project includes the refinement of preference assess-
ment tools to ease the task of encoding preferences.
Currently, users can adjust sliders to change a set of
predefined defaults on costs of interruptions. Another
key area of work centers on using machine learning
for building probabilistic models of attention, loca-
tion, and cost of disruption from data. Results from
ongoing machine-learning efforts by our team have
been applied to refine the Notification Platform [12].

As highlighted in Figure 4, we have also been
working to make small devices aware of the atten-
tional status and location of users [7]—and either
transmitting local sensor information to inform a
central Notification Manager, performing entirely
local notification management and related services
based on the observations, or doing a combination of
central and local deliberation about notification. In
the latter case, the central Notification Manager
makes general decisions about routing, and relies on
the endpoint device to perform precision targeting of
the timing and alerting modality, based on local sens-
ing and reasoning. As an example, with the use of a
method we refer to as “bounded deferral,” a local
device commits to relaying a message that it has
received before a message-specific deadline is reached;
the device does its best to find a good time for inter-
ruption within the allotted period. Research on smart
endpoints includes the challenges of embedding and
leveraging multiple perceptual sensors on small

devices, including GPS, 802.11 signal strength,
accelerometers, infrared proximity detectors, and
touch sensors. Part of this work has explored oppor-
tunities for developing devices, such as cell phones
that behave with more insight about their disruptive-
ness by considering the situation at hand, including
states derived from coarse models of attention [8].

Additionally, we are continuing to pursue psycho-
logical studies of disruption. Formal studies of the
costs of disruption began with the early work of
Ovsiankina and Zeigarnik nearly 75 years ago. The
rich body of work in this realm includes studies on
memory, problem solving, and overall task efficiency
in the face of disruptions. More recent work includes
efforts by our team [2, 3] and other groups to probe
the influence of notifications of various types and
saliencies on the efficiency and satisfaction with per-
forming a variety of computer tasks. The psychologi-
cal studies and results complement the mathematical
models; the economic models provide a principled,
flexible foundation that can integrate findings about
the costs uncovered by user studies of disruption via
the setting of parameters considered in expected-util-
ity decision making.

Attention, Initiative, and Interaction

In another area of investigation within the Atten-
tional User Interface project, we have studied the use
models of attention to enhance the robustness and
fluidity of human-computer collaboration. Some of
this work focuses on the recognition of attentional
cues as coordinative signals in mixed-initiative inter-
action with computing devices. In mixed-initiative
interaction, both users and computers take turns in
contributing to a project or an understanding [9].
The turn taking of conversational dialogue is a pro-
totypical example of mixed-initiative interaction.
Psychologists have found that people engaged in
conversations rely on attentional cues to signal when
a contribution is going to be offered or has been
accepted [1]. We have sought to endow computers
with an analogous ability to recognize and emit sig-
nals to guide the nature and timing of contributions
and clarifications in support of mixed-initiative
interaction.

DeepListener and Quartet represent efforts in
mixed-initiative interaction to incorporate attention
in spoken language systems. Both systems tackle
what we have referred to as the “speech-target prob-
lem:” When a computer with an open microphone
and speech recognizer detects an utterance, how is it
to recognize that it is being addressed when there are
other people or listening devices in a room? DeepLis-
tener and Quartet explicitly address this challenge
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with probabilistic models that infer the likelihood
that they are the target of speech.

DeepListener reasons about a user’s attention and
intentions to guide clarification dialogue in a spoken
command and control setting. The system considers
its uncertainty about whether it is the target of
speech, what it has heard, and the likelihood of dif-
ferent intentions. DeepListener continues to make
expected-utility decisions about taking actions in the
world, or about how it should approach users, if nec-
essary, to clarify their intentions before taking such
world actions. These decisions take into consideration
the utilities of alternate dialogue actions and the
stakes of the world actions.

DeepListener shares its attention and availability
by gracetully changing the colors and intensities of an
attentional lens that glows on its control panel, or via
gestures and rendered “thoughts” of an animated
agent. These affordances provide cues that assist with
conversational turn taking.

Figure 5a displays a situation where DeepListener
has detected an utterance first directed elsewhere in a
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Figure 5. (a) DeeplListener’s
deliberation about the target of
speech and ideal clarification
dialog. The system first makes
an expected utility decision to
share in a subtle manner its
thoughts about the possibility
that it is the target of an
utterance. Given additional
recognitions, it goes ahead to
seek clarification, and finally
executes an action for the user.
(b) Quartet in action. Quartet’s
partial recognition is displayed
at the top of the display. The
system’s belief about the
attentional status of the user,
with regards to initiating,
maintaining, or breaking out
of conversational dialogue, is
represented as a dynamically
changing probability
distribution.
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V
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noisy environment. After
analyzing a new utterance
a bit later, the system
engages the user in a clari-
fication dialogue, and then
invokes a desired action.

Quartet operates with a
continuous speech recog-
nition system, and incor-
porates a richer model of
attention under uncer-
tainty. It examines key-
board events, an analysis of
the content and the coher-
ence of natural language parsing, and a visual pose
analysis to ascertain the attentional status of the user
and system with regards to the establishment, main-
tenance, and disruption of attention between the user
and system. Since Quartet couples speech recognition
to a natural language parser, the system can also use
the grammatical parse to reason about whether an
utterance was misrecognized, or properly recognized
but intended for someone else. Figure 5b shows
Quartet listening to a user talking abour the system
rather than speaking o the system. In this case, Quar-
tet is being used as an assistant to control, via voice
commands, the navigation of slides displayed in a pre-
sentation. Requests directed 70 Quartet about naviga-
tion among slides arise intermittently during the
more dominant stream of ongoing utterances associ-
ated with the presentation. In this example, the user
is talking @bout the computer, and, based on a fusion
of the user’s language and visual pose, Quartet infers
the user is likely speaking to someone else.

Our ongoing research on mixed-initiative and spo-
ken-language systems is focusing on several chal-



lenges, including the use of sensed or inferred atten-
tion to provide clues about a user’s intentions, the
content and context at hand, and the nature and ideal
timing of the appropriate contributions. This work
includes using sensed or inferred attention to inform
speech recognition systems about the specific micro-
contexts being addressed with utterances. Such nar-
rowing of the spotlight of analysis can be useful for
enhancing recognition as it can enable spoken dia-
logue systems to swap in the appropriate language
models and semantics, and adjust the scope of possi-
ble actions. Also, robust solutions to the speech-target
problem promise to significantly influence the overall
sociology of human-computer interaction, by allow-
ing users to interact with multiple devices and people
in their proximity with speech and gestures in a man-
ner similar to the way people interact with one
another.

In another realm of innovation, computers with an
ability to track and to understand attentional patterns
among people engaged in conversations can provide
new kinds of services and facilities. For example,
methods for identifying visual attention among par-
ticipants in a conversation can be used to automate
the control of cinematography, and to capture, orga-
nize, and understand a group meeting or videoconfer-
ence. Thus, beyond enhancing human-computer
interaction, sensing and reasoning about attention
promises to enhance the way we communicate and
collaborate with one another.

Conclusion

We have described efforts to endow computing and
communication systems with the ability to sense and
reason about human attention. After reviewing some
background on the nature and importance of atten-
tion in cognition and discourse, we discussed meth-
ods for inferring attention from multiple streams of
information, and for leveraging these inferences in
decision making under uncertainty. Then, we pre-
sented illustrative applications of the use of atten-
tional models in cross-device, multichannel
messaging and in mixed-initiative interaction.
Research on the use of models of attention in com-
puting and communication is still in its youth. We
expect that continuing refinement of methods for
recognizing, reasoning, and communicating about
attention will change in a qualitative manner the
way we perceive and work with computing systems
and devices. H
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