
1

Effcient Userspace
Optimistic Spinning
Locks

Waiman Long
Principal Software Engineer, Red Hat
Linux Plumbers Conference, Sep 2019

2

Locking in Userspace
Most Linux applications use the synchronization primitives provided by the pthread library, such as:
● Mutex - pthread_mutex_lock()
● Read/write lock - pthread_rwlock_wrlock()/pthread_rwlock_rdlock()
● Condition variable - pthread_cond_signal()/pthread_cond_wait()
● Spin lock - pthread_spin_lock()

The top three are sleeping locks whereas the last one is a spinning lock as the name implies.

A number of large enterprise applications (e.g. Oracle, SAP HANA), however, implement their own locking code to eke
out a bit more performance than can be provided by the pthread library.

Those locking libraries generally use the kernel futex(2) API to implement the sleeping locks. The system V
semaphore API has also been used to support userspace locking in the past, but using futex(2) is generally more
performant.

3

Userspace Spinning vs. Sleeping Locks

* There was a proposed patch to implement queued spinlock in glibc.

It is generally advised that spinning lock should only be used in userspace when the lock critical sections are short and
the lock is not likely to be heavily contended.

Both spinning lock and sleeping lock have thier own problem as shown below:

The Linux kernel solves the spin lock cacheline contention and unfairness problems by putting the lock waiters in a
queue spinning on their own cachelines. Similar type of queued spin lock may not be applicable to userspace* because
of the lock owner and waiter preemption problems which aren’t an issue in the kernel as preemption can be disabled.

Spinning Lock:

● Lock cacheline contention

● Lock starvation (unfairness)

● A long wait can wastes a lot of CPU cycles

Sleeping Lock:

● Waiter wakeup latency (in 10s to 100s of us)

● Lock starvation

4

Userspace Spinning vs. Sleeping Locks (Cont)

 * There was proposed kernel patch to do exponential backoff on top of the ticket spinlock.

● The sleeping lock wakeup latency limits the maximum locking rate on any given lock which can be a problem in
large multithreaded applications that can have many threads contending on the same lock.

● For applications that needs to scale up to large number of threads on systems with hundreds of CPUs. There is a
dilemma in deciding if a spinning lock or a sleeping lock should be used for a certain type of data that need to be
protected.

● In fact, some large enterprise applications have performance benchmark tests that can stress a spin lock with
hundreds of threads. This can result in over 50% of CPU time spent in the spin lock code itself if the system isn’t
properly tuned.

● A typical userspace spin lock implement can be a regular TAS spinlock with exponential backoff* to reduce lock
cacheline contention.

● It will be hard to implement a fair and effcient userspace spinning lock without assistance from the kernel.

5

Optimistic Spinning Futex
● There are two main types of futexes for userspace locking implementation – wait-wake (WW) futex and priority

inversion (PI) futex.
● Most userspace locking libraries use the WW futexes for their locking implementation. PI futexes are only used in

special cases where real time processes require a bound latency response from the system.
● Both types of futexes require lock waiters to sleep in the kernel until the lock holder which calls into the kernel to

wake them up.
● Optimistic spinning (OS) futex, formerly throughput-optimized (TP) futex, is a new type of futex that is a hybrid

spinning/sleeping lock. It uses a kernel mutex to form a waiting queue with the mutex owner being the head of the
queue. The head waiter will spin on the futex as long as the lock owner is running. Otherwise, the head waiter will go
to sleep.

● Both userspace mutex and rwlock can be supported by the OS futex, but not the condition variable.

CONFIDENTIAL Designator

6

Why Optimistic Spinning Futex

 * The NUMA qspinlock patch was shown to be able to improve database performance because the kernel hash bucket lock was granted to the waiters in a NUMA
friendly manner.

In term of performance, there are two main problems with the use of WW futexes for userspace locks.

1) Lock waiters are put to sleep until the lock holder calls into the kernel to wake up the waiters after releasing the
lock. So there is the wakeup latency. In addition, the act of calling into the kernel to do the wakeup also delay the
task from doing other useful work in the userspace.

2) With a heavily contended futex, the userspace locking performance will be constrained by hash bucket spinlock in
the kernel. With a large number of contending threads, it is possible that more than 50% of the CPU cycles can be
spent waiting for the spinlock*.

With an OS futex, the lock waiters in the kernel are not sleeping unless the lock holder has slept. Instead, they are
spinning in the kernel for the lock to be released. Consequently, the lock holder doesn’t need to go into the kernel to
wake up the waiters after releasing the lock. This allows the tasks to continue doing their work without any delay and
avoid the kernel hash bucket lock contention problem. Once the lock is free, the lock waiter can immediate grab the
lock in the kernel or return to userspace to acquire it.

7

OS Futex Design Principles
The design goals of OS futexes is to maximize the locking throughput while still maintaining a certain amount of
fairness and determistic latency (no lock starvation).

To improve locking throuput:

1) Optimistic spinning – spin on lock owner while it is running on CPU. If the lock owner is sleeping, the head lock
waiter will sleep too. In this case, the lock owner will need to go to the kernel to wake up the lock waiter at unlock
time.

2) Lock stealing – it is known performance enhancement technique provided that safeguard is in place to prevent lock
starvation. As long as the head waiter in the kernel is not sleeping and hence set the FUTEX_WAITERS bit, lockers
from userspace is free to steal the lock.

3) Userspace locking – OS futexes have the option to use either userspace locking or kernel locking. WW futexes
support only userspace locking. Userspace locking provides better performance (shorter lock hold time), but is also
more prone to lock starvation.

To combat lock starvation, OS futexes also have a builtin lock hand-off mechanism to force lock handoff to the head
waiter in the kernel after a certain time threshold. This is similar to what the kernel mutexes and rw semaphores are
doing.

8

Using OS Futexes for Userspace Mutexes
OS futexes are similar to PI futexes in how they should be used.

A thread in userspace will need to atomically put its thread ID into the futex word to get an exclusive lock. If that fails,
the thread can choose to issue the following futex(2) call to try to lock the futex.

The fags can be FUTEX_OS_USLOCK to make the lock waiter returns to userspace to retry locking, or it can be 0 to
acquire the lock directly in the kernel before going back to userspace.

At unlock time, the task can simply atomically clear the futex word as long as the FUTEX_WAITERS bit isn’t set. If it is
set, it has to issue the following futex(2) to do the unlock.

It is relatively simple to use OS futex to implement userspace mutexes.

futex(uaddr, FUTEX_LOCK, flags, timeout, NULL, 0);

futex(uaddr, FUTEX_UNLOCK, 0, NULL, NULL, 0);

9

Using OS Futexes for Userspace Rwlocks
OS futexes support shared locking for implementing userspace rwlock. A special upper bit in the futex word
(FUTEX_SHARED_FLAG) is used to indicate shared locking. The lower 24 bits of the futex word is then used for reader
count.

In order to acquire a shared lock, the task has to atomically put (FUTEX_SHARED_FLAG + 1) to the futex word. If the
FUTEX_SHARED_FLAG bit has already been set, the task just need to atomically increment the reader count. If the
futex is exclusively owned, the following futex(2) call can be used to acquire a shared lock in the kernel.

The supported fag is FUTEX_OS_PREFER_READER to make the kernel code prefer reader a bit more than writer.

At unlock time, a task can just atomically decrement the reader count. If the count reaches 0, it has to atomically clear
the FUTEX_SHARED_FLAG as well.

It gets a bit more complicated if the FUTEX_WAITERS bit is set as a FUTEX_UNLOCK_SHARED futex(2) call need to be
used and it has to be sure that it is the only read-owner that does the unlock.

futex(uaddr, FUTEX_LOCK_SHARED, flags, timeout, NULL, 0);

10

Userspace Mutex Performance Data
A mutex locking microbenchmark run on a 2-socket 48-core 96-thread x86-64 system with a 5.3 based kernel. 96
mutex locking threads with short critical section were run for 10s using WW futex, OS futex and Glibc pthread_mutex.

The OS futex saw a 20.7% increase in locking rate when compared with the WW futex.

One characteristic of OS futex is the small number of futex unlock syscalls that need are issued.

Futex Type WW OS Glibc

Total locking ops 155,646,231 187,826,170 89,292,228

Per-thread average ops/s (std
deviation)

162,114 (0.53%) 195,632 (1.83%) 93,005 (0.43%)

Futex lock syscalls 8,219,362 7,453,248 N/A

Futex unlock syscalls 13,792,295 19 N/A

of kernel locks N/A 276,442 N/A

11

Mutex Performance Chart

 * The number of pause instructions ran in the critical section.

10 20 30 40 50 60 70 80 90 100
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Mutex Locking Rates

WW

Glibc

OS

Critical section length*

A
ve

ra
g

e
 p

e
r-

th
re

a
d

 lo
ck

in
g

 r
a

te

12

Userspace Rwlock Performance Data 1
A rwlock microbenchmark run on a 2-socket 48-core 96-thread x86-64 system with a 5.3 based kernel. 96 rwlock
locking threads doing equal number of read and write locks with short critical section were run for 10s.

The OS futex saw a 212% increase in locking rate when compared with the WW futex.

Futex Type WW OS Glibc

Total locking ops 41,849,400 130,361,414 45,124,138

Per-thread average ops/s
(std deviation)

43,579 (0.17%) 135,779 (1.01%) 47,003 (0.60%)

Futex lock syscalls 8,557,148 6,065,240 N/A

Futex unlock syscalls 12,775,288 10 N/A

of kernel locks N/A 605,817 N/A

13

Userspace Rwlock Performance Data 2
A rwlock microbenchmark run on a 2-socket 48-core 96-thread x86-64 system with a 5.3 based kernel. 48 writer
threads and 48 reader threads with short critical section were run for 10s.

The OS futex lock handoff mechanism ensures that lock starvation will not happen.

Futex Type (Prefer readers) WW OS Glibc

Per-thread writer locking rate 0 39,076 (1.03%) 0

Per-thread reader locking rate 149,132 (0.42%) 138,714 (0.55%) 117,498 (0.57%)

Futex Type (Prefer writers) WW OS Glibc

Per-thread writer locking rate 11,092 (0.23%) 44,916 (1.01%) 41,208 (0.64)

Per-thread reader locking rate 67,600 (0.51%) 141,420 (0.61%) 87 (5.09%)

14

Future Works Ahead

● Find a user for OS futexes, e.g. glibc or applications like PostgreSQL.
● Add a mutex_lock() variant that support timeout as futex(2) supports a timeout argument.
● Investigate various alternatives of doing more userspace optimistic spinning before going into the kernel and its

impact on overall performance. For example, a bit in the futex word can be used to indicate if the lock owner is
running. This bit can be set by the lock waiters spinning in the kernel or it can be set/cleared by the scheduler
during context switch.

15

Q & A

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

16

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

