
MTH U345 Ordinary Differential Equations Fall 2008

Lab 3: Using MATLAB for Differential Equations 1

We are now familiar with using a spreadsheet to set up numerical methods for ap-
proximating solutions of a differential equation. In this computer lab, we shall not only
learn how to use MATLAB to obtain numerical solutions of 1st-order equations of the
form x′ = f(t, x), but we shall use its algebraic capabilities to obtain general solutions
to linear 1st-order systems with constant coefficients.

I. 1st-ORDER EQUATIONS (ode45).
MATLAB has several numerical procedures for computing the solutions of first-order

equations and systems of the form y′ = f(t, y); we shall concentrate on “ode45”, which
is a souped-up Runge-Kutta method. The first step is to enter the equation by creating
an “M-file” which contains the definition of your equation, and is given a name for
reference, such as “diffeqn” (the suffix “.m” will be added to identify it as an M-file.).
The second step is to apply ode45 by using the syntax:

(1) [t, y] = ode45(′diffeqn′, [t0, tf ], y0);

where t0 is the initial time, tf is the final time, and y0 is the initial condition, y(t0) = y0.
The same syntax (1) works for equations and systems alike.

Example 1. y′ = y2 − t, y(0) = 0, for 0 ≤ t ≤ 4.

1. Creating the M-file. Start up MATLAB; the Command Window appears with the
prompt >> awaiting instructions. Choose New from the File menu, and select M-file.
You are now in a text editor where you create MATLAB files. Enter the following text:

function ypr=example1(t,y)

ypr=y^2-t;

Name this M-file “example1.m” by selecting Save As from the File menu. Note: The
semicolon at the end tells MATLAB to suppress displaying output. (If you leave out
the semicolon and run ode45, MATLAB will display a lot of calculations that you don’t
need to see.)

2. Running ode45. Return to the Command Window, and enter the following:

>> [t, y] = ode45(′example1′, [0, 4], 0);

The [0, 4] tells MATLAB to consider 0 ≤ t ≤ 4 and the last 0 tells it to start at y = 0.
When you hit the enter key, MATLAB will do its computing, then give you another
prompt.

3. Plotting the Solution. You can plot the solution y(t) by typing

>> plot(t, y)
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and hitting the enter key. To give your plot a title and axes labels, type

>>title(′The solution to y ′ ′ = ŷ 2− t with y(0) = 0.′)

>>xlabel(′t′)

>>ylabel(′y′)

and hit the enter key after each line. Notice that each title/label is identified by single
quotation marks, e.g. ′The solution...′. Note: You might expect that the title line
should read y′ = yˆ2 − t instead of y ′ ′ = yˆ2 − t, but the former would indicate to
MATLAB that the title ends with y′, so we must put in the extra single quote (i.e. ′ ′ is
two single quotes, not one double quote).

You can also have MATLAB tabulate the t-values it has selected and the y-values it
has computed by entering

>> [t, y]

in the Command Window. This should produce a vertical column of numbers, the last
of which is t = 4.0000 and y = −1.9311, i.e. y(4) = −1.9311 as appears in the plot.

Exercise 1. Consider the initial value problem y′ = t2 + cos y, y(0) = 0 which was
encountered in Exercise 4 of Lab 3. Use MATLAB to plot the solution for 0 ≤ t ≤ 1,
and find the approximate value of y(1).

→Hand In: A printout of your plot and the value of y(1).

II. LINEAR 1st-ORDER SYSTEMS (eigenvalues & eigenvectors)

Recall that a first-order system of linear differential equations with constant coeffi-
cients may be expressed in matrix notation as

(2)
dY

dt
= AY,

where Y (t) is a vector-valued function and A is a square matrix (with constant coeffi-
cients). Moreover, if λ1 is an eigenvalue for A (i.e. det(A − λ1I) = 0) with associated
eigenvector V1 (i.e. AV1 = λ1V1), then

(3) Y (t) = eλ1tV1

is a solution of (2). We shall now use MATLAB to compute the eigenvalues and eigen-
vectors of a given square matrix A, and therefore calculate the solutions of (2).

The first step is to enter the given matrix A: this is done by enclosing in square
brackets the rows of A, separated by semicolons. If we only need the eigenvalues of A,
then we can let E = eig(A), and the eigenvalues appear as the column vector E. If we
want the eigenvalues and eigenvectors of A, then we can enter [V,D] = eig(A) in order
to get two matrices: the matrix V has (unit length) eigenvectors of A as column vectors,
and D is a diagonal matrix with the eigenvalues of A on the diagonal.

Example 2. Suppose we want to find the eigenvalues and eigenvectors for

(4) A =

[
4 2
1 3

]
,
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and use them to find the general solution of (2).
Enter the matrix A as follows:

>> A = [4 2; 1 3]

Now request the eigenvalues of A by entering

>> E = eig(A)

MATLAB displays the eigenvalues 5 and 2 as the column vector E. Finally, request
eigenvectors and eigenvalues of A by entering

>> [V, D] = eig(A).

MATLAB displays the following:

V =

0.8944 −0.7071
0.4472 0.7071

D =

5 0
0 2.

(Actually, 0.8944 may appear as 8.9443e-01, where e-01 means to multiply by 10−1.)
The matrix D has the eigenvalues 5 and 2 on the diagonal; the eigenvector corresponding
to 5 appears as the first column of the matrix V , namely V1 = (0.8944, 0.4472). Notice
that this is a unit length eigenvector since (0.8944)2 + (0.4472)2 ≈ 1 (with some small
round-off error). Since we can multiply both components of an eigenvector by the same
number and still get an eigenvector, we could instead take V1 = (2, 1). Similarly, we
could replace the eigenvector V2 = (−0.7071, 0.7071) corresponding to the eigenvalue 2
by V2 = (−1, 1).

This means that we have found two linearly independent solutions of (2), Y1(t) =

e5t
[
2
1

]
and Y2(t) = e2t

[
−1
1

]
, and we can write the general solution as

(5) Y (t) = C1e
5t

[
2
1

]
+ C2e

2t

[
−1
1

]
=

[
2C1e

5t − C2e
2t

C1e
5t + C2e

2t

]
.

If we were given an initial condition Y (0), then we could evaluate C1 and C2.

Exercise 2. Consider the system of equations

dx

dt
= 4x− 2y

dy

dt
= x+ y.(6)

(a) Letting Y =

[
x
y

]
, introduce a matrix A so that (6) is in the form (2).
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(b) Use MATLAB to determine the eigenvalues and eigenvectors of A.
(c) Use (b) to find two linearly-independent solutions and the general solution of

(6).
(d) Use (c) to find the solution of (6) satisfying the initial conditions x(0) = 1 and

y(0) = −1.

Example 3. Suppose we let

(7) A =

[
2 2
−4 6

]
.

Proceeding as before, we obtain

V =

[
.40825 + .40825i .40825− .40825i

.81650i −.81650i

]
D =

[
4 + 2i 0

0 4− 2i

]
which means that A has complex eigenvalues λ1 = 4 + 2i, λ2 = 4 − 2i, and associated
eigenvectors V1 = (1 + i, 2i), V2 = (1− i,−2i).

This means that one solution of (2) is given by

Y1(t) = e(4+2i)t

[
1 + i

2i

]
= e4t(cos 2t+ i sin 2t)

[
1 + i

2i

]
,

and the general solution is given by

Y (t) = C1e
4t

[
cos 2t− sin 2t
−2 sin 2t

]
+ C2e

4t

[
cos 2t+ sin 2t

2 cos 2t

]
.

Given an initial condition Y (0), we could evaluate C1 and C2.

Exercise 3. Consider the system of equations

dx

dt
= −x− 4y

dy

dt
= 3x− 2y.(8)

(a) Use MATLAB to determine the eigenvalues and eigenvectors of the associated
matrix.

(b) Use (a) to find two linearly-independent solutions and the general solution of (8).
(c) Use (b) to find the solution of (8) satisfying the initial conditions x(0) = 1 and

y(0) = −1.


