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Preface

While the finite element method has been used in many fields of engineering
practice for over thirty years, it is only relatively recently that it has begun to be
widely used for analysing geotechnical problems. This is probably because there
are many complex issues which are specific to geotechnical engineering and which
have only been resolved relatively recently. Perhaps this explains why there are
few books which cover the application ofthe finite element method to geotechnical
engineering.

For over twenty years we, at Imperial College, have been working at the
leading edge of the application of the finite element method to the analysis of
practical geotechnical problems. Consequently, we have gained enormous
experience of this type of work and have shown that, when properly used, this
method can produce realistic results which are of value to practical engineering
problems. Because we have written all our own computer code, we also have an
in-depth understanding of the relevant theory.

Based on this experience we believe that, to perform useful geotechnical finite
element analysis, an engineer requires specialist knowledge in a range of subjects.
Firstly, a sound understanding of soil mechanics and finite element theory is
required. Secondly, an in-depth understanding and appreciation of the limitations
of the various constitutive models that are currently available is needed. Lastly,
users must be fully conversant with the manner in which the software they are
using works. Unfortunately, it is not easy for a geotechnical engineer to gain all
these skills, as it is vary rare for all of them to be part of a single undergraduate or
postgraduate degree course. It is perhaps, therefore, not surprising that many
engineers, who carry out such analyses and/or use the results from such analyses,
are not aware of the potential restrictions and pitfalls involved.

This problem was highlighted when we recently gave a four day course on
numerical analysis in geotechnical engineering. Although the course was a great
success, attracting many participants from both industry and academia, it did
highlight the difficulty that engineers have in obtaining the necessary skills
required to perform good numerical analysis. In fact, it was the delegates on this
course who urged us, and provided the inspiration, to write this book.

The overall objective of the book is to provide the reader with an insight into
the use of the finite element method in geotechnical engineering. More specific
aims are:
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To present the theory, assumptions and approximations involved in finite
element analysis;
To describe some ofthe more popular constitutive models currently available
and explore their strengths and weaknesses;
To provide sufficient information so that readers can assess and compare the
capabilities of available commercial software;
To provide sufficient information so that readers can make judgements as to the
credibility of numerical results that they may obtain, or review, in the future;
To show, by means of practical examples, the restrictions, pitfalls, advantages
and disadvantages of numerical analysis.

The book is primarily aimed at users of commercial finite element software both
in industry and in academia. However, it will also be of use to students in their
final years of an undergraduate course, or those on a postgraduate course in
geotechnical engineering. A prime objective has been to present the material in the
simplest possible way and in manner understandable to most engineers.
Consequently, we have refrained from using tensor notation and presented all
theory in terms of conventional matrix algebra.

When we first considered writing this book, it became clear that we could not
cover all aspects of numerical analysis relevant to geotechnical engineering. We
reached this conclusion for two reasons. Firstly, the subject area is so vast that to
adequately cover it would take many volumes and, secondly, we did not have
experience with all the different aspects. Consequently, we decided only to include
material which we felt we had adequate experience of and that was useful to a
practising engineer. As a result we have concentrated on static behaviour and have
not considered dynamic effects. Even so, we soon found that the material we
wished to include would not sensibly fit into a single volume. The material has
therefore been divided into theory and application, each presented in a separate
volume.

Volume I concentrates on the theory behind the finite element method and on
the various constitutive models currently available. This is essential reading for any
user of a finite element package as it clearly outlines the assumptions and
limitations involved. Volume 2 concentrates on the application of the method to
real geotechnical problems, highlighting how the method can be applied, its
advantages and disadvantages, and some of the pitfalls. This is also essential
reading for a user of a software package and for any engineer who is
commissioning and/or reviewing the results of finite element analyses.

This volume of the book (i.e. Volume 1) consists of twelve chapters. Chapter
1 considers the general requirements of any form of geotechnical analysis and
provides a framework for assessing the relevant merits of the different methods of
analysis currently used in geotechnical design. This enables the reader to gain an
insight into the potential advantage of numerical analysis over the more

Preface / xiii

'conventional' approaches currently in use. The basic finite element theory for
linear material behaviour is described in Chapter 2. Emphasis is placed on
highlighting the assumptions and limitations. Chapter 3 then presents the
modifications and additions that are required to enable geotechnical analysis to be
performed.

The main limitation of the basic finite element theory is that it is based on the
assumption of linear material behaviour. Soils do not behave in such a manner and
Chapter 4 highlights the important facets of soil behaviour that ideally should be
accounted for by a constitutive model. Unfortunately, a constitutive model which
can account for all these facets of behaviour, and at the same time be defined by
a realistic number of input parameters which can readily be determined from
simple laboratory tests, does not exist. Nonlinear elastic constitutive models are
presented in Chapter 5 and although these are an improvement over the linear
elastic models that were used in the early days of finite element analyses, they
suffer severe limitations. The majority of constitutive models currently in use are
based on the framework of elasto-plasticity and this is described in Chapter 6.
Simple elasto-plastic models are then presented in Chapter 7 and more complex
models in Chapter 8.

To use these nonlinear constitutive models in finite element analysis requires
an extension of the theory presented in Chapter 2. This is described in Chapter 9
where some ofthe most popular nonlinear solution strategies are considered. It is
shown that some ofthese can result in large errors unless extreme care is exercised
by the user. The procedures required to obtain accurate solutions are discussed.

Chapter 10 presents the finite element theory for analysing coupled problems
involving both deformation and pore fluid flow. This enables time dependent
consolidation problems to be analysed.

Three dimensional problems are considered in Chapter 11. Such problems
require large amounts of computer resources and methods for reducing these are
discussed. In particular the use of iterative equation solvers is considered. While
these have been used successfully in other branches of engineering, it is shown
that, with present computer hardware, they are unlikely to be economical for the
majority of geotechnical problems.

The theory behind Fourier Series Aided Finite Element Analysis is described
in Chapter 12. Such analysis can be applied to three dimensional problems which
possess an axi-symmetric geometry but a non axi-symmetric distribution of
material properties and/or loading. It is shown that analyses based on this approach
can give accurate results with up to an order of magnitude saving in computer
resources compared to equivalent analyses performed with a conventional three
dimensional finite element formulation.

Volume 2 ofthis book builds on the material given in this volume. However,
the emphasis is less on theory and more on the application of the finite element
method in engineering practice. Topics such as obtaining geotechnical parameters
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from standard laboratory and field tests and the analysis of tunnels, earth retaining
structures, cut slopes, embankments and foundations are covered. A chapter on
benchmarking is also included. Emphasis is placed on explaining how the finite
element method should be applied and what are the restrictions and pitfalls. In
particular, the choice of suitable constitutive models for the various geotechnical
boundary value problems is discussed at some length. To illustrate the material
presented, examples from the authors experiences with practical geotechnical
problems are used. Although we have edited this volume, and written much ofthe
content, several of the chapters involve contributions from our colleagues at
Imperial College.

All the numerical examples presented in both this volume and Volume 2 ofthis
book have been obtained using the Authors' own computer code. This software is
not available commercially and therefore the results presented are unbiased. As
commercial software has not been used, the reader must consider what implications
the results may have on the use of such software.

1 .1 Synopsis
This chapter considers the analysis ofgeotechnical structures. Design requirements
are presented, fundamental theoretical considerations are discussed and the various
methods of analysis categorised. The main objective of the chapter is to provide a
framework in which different methods of analysis may be compared. This will
provide an insight into the potential advantages of numerical analysis over the
more 'conventional' approaches currently in use.

London
November 1998

David M. Potts
Lidija Zdravkovic

Cut slope

Raft foundation

Gravity wall

/ '

Embankment

Piled foundation

Embedded wall

Figure 1. 1: Examples of geotechnical structures
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Figure 1.3: Overall stability
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The loads on any structural
elements involved in the construction
must also be calculated, so that these
may be designed to carry them safely.

Movements must be estimated,
both of the structure and of the
ground. This is particularly important
if there are adjacent buildings and/or
sensitive services. For example, if an
excavation is to be made in an urban
area close to existing services and
buildings, see Figure lA, one of the
key design constraints is the effect
that the excavation has on the
adjacent structures and services. It
may be necessary to predict any
structural forces induced in these
existing structures and/or services.

As part of the design process, it is
necessary for an engineer to perform
calculations to provide estimates of
the above quantities. Analysis
provides the mathematical framework
for such calculations. A good
analysis, which simulates real
behaviour, allows the engineer to Figure 1.4: Interaction of structures

understand problems better. While an
important part of the design process, analysis only provides the engineer with a
tool to quantify effects once material properties and loading conditions have been
set. The design process involves considerably more than analysis.

1.2 Introduction
Nearly all civil engineering structures involve the ground in some way. Cut slopes,
earth and rockfill embankments, see Figure 1.1, are made from geological
materials. The soil (or rock) provides both the destabilising and stabilising forces
which maintain equilibrium of the structure. Raft and piled foundations transfer
loads from buildings, bridges and offshore structures to be resisted by the ground.
Retaining walls enable vertical excavations to be made. In most situations the soil
provides both the activating and resisting forces, with the wall and its structural
support providing a transfer mechanism. Geotechnical engineering, therefore, plays
a major role in the design of civil engineering structures.

The design engineer must assess the forces imposed in the soil and structural
members, and the potential movements of both the structure and the surrounding
soil. Usually these have to be determined under both working and ultimate load
conditions.

Traditionally geotechnical design has been carried out using simplified analyses
or empirical approaches. Most design codes or advice manuals are based on such
approaches. The introduction ofinexpensive, but sophisticated, computer hardware
and software has resulted in considerable advances in the analysis and design of
geotechnical structures. Much progress has been made in attempting to model the
behaviour of geotechnical structures in service and to investigate the mechanisms
of soil-structure interaction.

At present, there are many different methods of calculation available for
analysing geotechnical structures. This can be very confusing to an inexperienced
geotechnical engineer. This chapter introduces geotechnical analysis. The basic
theoretical considerations are discussed and the various methods of analysis
categorised. The main objectives are to describe the analysis procedures that are
in current use and to provide a framework in which the different methods of
analysis may be compared. Having established the place of numerical analysis in
this overall framework, it is then possible to identify its potential advantages.

Figure 1.2: Local stability

1.3 Design objectives
When designing any geotechnical structure, the engineer must ensure that it is
stable. Stability can take several forms.

Firstly, the structure and support system must be stable as a whole. There must
be no danger of rotational, vertical or
translational failure, see Figure 1.2.

Secondly, overall stability must be
established. For example, if a
retaining structure supports sloping
ground, the possibility of the
construction promoting an overall
slope failure should be investigated,
see Figure 1.3.

1.4 Design requirements
Before the design process can begin, a considerable amount of information must
be assembled. The basic geometry and loading conditions must be established.
These are usually defined by the nature of the engineering project.

A geotechnical site investigation is then required to establish the ground
conditions. Both the soil stratigraphy and soil properties should be determined. In
this respect it will be necessary to determine the strength of the soil and, if ground
movements are important, to evaluate its stiffness too. The position of the ground
water table and whether or not there is underdrainage or artesian conditions must
also be established. The possibility ofany changes to these water conditions should
be investigated. For example, in many major cities around the world the ground
water level is rising.
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Figure 1.6: Stress trajectories

A

- self weight, y, acts in the x direction;
- compressive stresses are assumed positive;
- the equilibrium Equations (1.1) are in terms of

total stresses;
stresses must satisfy the boundary conditions (i.e. at the boundaries the
stresses must be in equilibrium with the applied surface traction forces).

1.5.3 Compatibility

Physical compatibility
Compatible deformation involves no overlapping ofmaterial and no generation of
holes. The physical meaning of compatibility can be explained by considering a

The following should be noted:

Similarly, a concrete beam, supported by two reactions on its lower surface and
loaded by a load L on its upper
surface, is presented in Figure 1.6.
Clearly, for overall equilibrium the
reactions must be 2L/3 and L/3. What
is not so clear, however, is how the
load is transferred through the beam.
It is not possible to see how the load
is transmitted in this case. As noted
above, engineers use the concept of
stress to investigate the load transfer.
Stresses are essentially fictitious
quantities. For example, the manner in which the major principal stress varies
through the beam is given in Figure 1.6. The length of the trajectories represents
the magnitude of the stress and their orientation its direction.

Whereas the velocity offlow is a vector with essentially three components, one
in each of the Cartesian coordinate directions, stress is a tensor consisting of six
components. In the same way as there are rules which govern the flow of water
through the tank, there are also rules which control the manner in which the stress
components vary throughout the concrete beam. Neglecting inertia effects and all
body forces, except self weight, stresses in a soil mass must satisfy the following
three equations (Timoshenko and Goodier (1951»:

Figure 1.5: F/ow trajectories

1.5.2 Equilibrium
To quantify how forces are transmitted through a continuum engineers use the
concept of stress (force/unit area). The magnitude and direction of a stress and the
manner in which it varies spatially indicates how the forces are transferred.
However, these stresses cannot vary randomly but must obey certain rules.

Before considering the concept of

stresses, an analogous example of the Tank \. III Inlet

problem of water flowing through a A :: :: :: :: ::;;':( jj;:~:: :: :: :: :: :: :..• c
tank full of sand is presented in '::;;;;;;;;;;;~~::::::::::::': ..
Figure 1.5. The tank full of sand has
one inlet and two outlets. This figure
indicates vectors of water velocity at
discrete points within the tank. The
size of the arrows represents the
magnitude ofthe flow velocity, while their orientation shows the direction of flow.
Due to the closer proximity of the left hand outlet to the inlet, more water flows in
this direction than to the right hand outlet. As would be expected, the flows are
very small in regions A, Band C. Such a result could be observed by using a
transparent tank and injecting dye into the flow.

1.5 Theoretical considerations
1.5.1 Requirements for a general solution
In general, a theoretical solution must satisfy Equilibrium, Compatibility, the
material Constitutive behaviour and Boundary conditions (both force and
displacement). Each of these conditions is considered separately below.

The site investigation should also establish the location of any services (gas,
water, electricity, telecommunications, sewers and/or tunnels) that are in the
vicinity of the proposed construction. The type (strip, raft and/or piled) and depth
of the foundations of any adjacent buildings should also be determined. The
allowable movements ofthese services and foundations should then be established.

Any restrictions on the performance ofthe new geotechnical structure must be
identified. Such restrictions can take many different forms. For example, due to the
close proximity of adjacent services and structures there may be restrictions
imposed on ground movements.

Once the above information has been collected, the design constraints on the
geotechnical structure can be established. These should cover the construction
period and the design life of the structure. This process also implicitly identifies
which types ofstructure are and are not appropriate. For example, when designing
an excavation, if there is a restriction on the movement of the retained ground,
propped or anchored embedded retaining walls are likely to be more appropriate
than gravity or reinforced earth walls. The design constraints also determine the
type of design analysis that needs to be undertaken.
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plate composed ofsmaller plate elements, as shown in Figure I.Sa. After straining,
the plate elements may be so distorted that they form the array shown in Figure
I.Sb. This condition might represent failure by rupture. Alternatively, deformation
might be such that the various plate elements fit together (i.e. no holes created or
overlapping) as shown in Figure I.Sc. This condition represents a compatible
defOlmation.
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1.5.5 Constitutive behaviour
This is a description of material behaviour. In simple terms it is the stress - strain
behaviour of the soil. It usually takes the form of a relationship between stresses
and strains and therefore provides a link between equilibrium and compatibility.

For calculation purposes the constitutive behaviour has to be expressed
mathematically:

a) Original b) Non-compatible c) Compatible

!'1crx
!'1cry

!'1crz

!'1Txy
!'1 Txz
!'1 Tzy

D11 Dl2 Dl3 Dl4 DlS Dl6

D21 D22 D23 D24 D2S D26

D31 D32 D33 D34 D3S D36

D41 D42 D43 D44 D4S D46

DSl DS2 DS3 DS4 Dss DS6

D61 D62 D63 D64 D6S D66

!'1E:x
!'1E:y

!'1E:z
!'1Yxy

!'1Yxz

!'1Yzy

(1.3)

Figure 1.8: Modes of deformation
or

!'1a = [D] !'18

(1.2)

Mathematical compatibility
The above physical interpretation of compatibility can be expressed
mathematically, by considering the definition of strains. If deformations are
defined by continuous functions u, v and w in the x, y and z directions respectively,
the strains (assuming small strain theory and a compression positive sign
convention) are defined as (Timoshenko and Goodier (1951)):

ou ov OwE: =--' E: =--' E: =--
x ox' y oy' z oz
ov ou ow ov ow ou

Yxy = - ox - oy ; Yyz = - oy - oz ; Yxz = - a;: - oz

As the six strains are a function of only three displacements, they are not
independent. It can be shown mathematically that for a compatible displacement
field to exist, all the above components of strain and their derivatives must exist
(are bounded) and be continuous to at least the second order. The displacement
field must satisfy any specified displacements or restraints imposed on the
boundary.

1.5.4 Equilibrium and compatibility conditions
Combining the Equilibrium (Equations (1.1)) and Compatibility conditions
(Equations (1.2)), gives:

Unknowns: 6 stresses + 6 strains + 3 displacements = 15
Equations: 3 equilibrium + 6 compatibility = 9

To obtain a solution therefore requires 6 more equations. These come from the
constitutive relationships.

For a linear elastic material the [D] matrix takes the following form:

(1- f.1) f.1 f.1 0 0 0

f.1 (1- f.1) f.1 0 0 0

E f.1 f.1 (1- f.1) 0 0 0

(1 + f.1) 0 0 0 (1/2-f.1) 0 0
(104)

0 0 0 0 (1/ 2 - f.1) 0

0 0 0 0 0 (1/2 - f.1)

where E and fl are the Young's Modulus and Poisson's ratio respectively.
However, because soil usually behaves in a nonlinear manner, it is more

realistic for the constitutive equations to relate increments of stress and strain, as
indicated in Equation (1.3), and for the [D] matrix to depend on the current and
past stress history.

The constitutive behaviour can either be expressed in terms oftotal or effective
stresses. If specified in terms of effective stresses, the principle of effective stress
(a =a'+ar) may be invoked to obtain total stresses required for use with the

equilibrium equations:

/':,.a' = [D'] /':,.8; /':,.ar= [Df ] /':,.8; therefore /':,.a = ([D']+[Df ]) /':,.8 (1.5)

where [Dr ] is a constitutive relationship relating the change in pore fluid pressure
to the change in strain. For undrained behaviour, the change in pore fluid pressure
is related to the volumetric strain (which is small) via the bulk compressibility of
the pore fluid (which is large), see Chapter 3.
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1.6 Geometric idealisation
In order to apply the above concepts to a real geotechnical problem, certain
assumptions and idealisations must be made. In particular, it is necessary to specify
soil behaviour in the form of a mathematical constitutive relationship. It may also
be necessary to simplify andlor idealise the geometry andlor boundary conditions
of the problem.

D41 , D42 and D 44 are not dependent on az . This condition is satisfied if the soil is
assumed to be elastic. It is also true if the Tresca or Mohr-Coulomb failure
condition is adopted (see Chapter 7) and it is assumed that the intermediate stress
a2=az . Such an assumption is usually adopted for the simple analysis of
geotechnical problems. It should be noted, however, that these are special cases.

Figure 1.9: Examples of plane
strain

Triaxial sample

er,

PileCircular footing

Figure 1. 10: Examples ofaxi-symmetry

1.6.2 Axi-symmetry
Some problems possess rotational symmetry. For example, a uniform or centrally
loaded circular footing, acting on a homogeneous or horizontally layered
foundation, has rotational symmetry about a vertical axis through the centre ofthe
foundation. Cylindrical triaxial samples, single piles and caissons are other
examples where such symmetry may exist, see Figure 1.10.

where U and V are the displacements in the rand z directions respectively.
This is similar to the plane strain situation discussed above and, consequently,

the same arguments concerning the [DJ matrix apply here too. As for plane strain,
there are four non-zero stress changes, 1'>ar, 1'>az, 1'>all and 1'>'rz'

In this type of problem it is usual to carry out analyses using cylindrical
coordinates r (radial direction), z (vertical direction) and e (circumferential
direction). Due to the symmetry, there is no displacement in the edirection and the
displacements in the rand z directions are independent of e and therefore the
strains reduce to (Timoshenko and Goodier (1951 )):

DU DV U DV DU
Cr =-a;; Cz =- DZ ; Co =--;; rrz =-a;-a;; rrO =rzO =0 (1.8)

(1.6)

(1.7)

L1O"x D 11 D 12 D 14
L1O"y D 21 D 22 D 24 t' )L1O"z D 31 D 32 D 34 L1cyL1 'xy D 41 D 42 D 44

L1 'xz DS1 DS2 DS4 L1rxy

L1 'zy D 61 D 62 D 64

C = - DW = °.r = _ DW _ DV = °. = _ DW _ DU = °
z Cl 'vc Cl Cl ' rx- Cl Cluz . uy uZ - ux uZ

The constitutive relationship then reduces to:

1.6.1 Plane strain
Due to the special geometric
characteristics of many of the
physical problems treated in soil
mechanics, additional simplifications
of considerable magnitude can be
applied. Problems, such as the
analysis ofretaining walls, continuous
footings, and the stability of slopes,
generally have one dimension very
large in comparison with the other
two, see Figure 1.9. Hence, if the
force andlor applied displacement
boundary conditions are perpendicular to, and independent of, this dimension, all
cross sections will be the same. If the z dimension of the problem is large, and it
can be assumed that the state existing in the x-y plane holds for all planes parallel
to it, the displacement of any x-y cross section, relative to any parallel x-y cross
section, is zero. This means that w=O, and the displacements u and v are
independent of the z coordinate. The conditions consistent with these
approximations are said to define the very important case ofplane strain:

However, for elastic and the majority of material idealisations currently used
to represent soil behaviour DS2=Ds1=DS4=D61=D62=D64=0' and consequently
1'>'xz=1'>'zv=O. This results in four non-zero stress changes, 1'>ax , 1'>ay, 1'>azand 1'>'xy'

It is common to consider only the stresses aX' ay and 'xy when performing
analysis for plane strain problems. This is acceptable ifDj b D 12, D 14 , D 2b D 22 , D 24 ,
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1.7 Methods of analysis
As noted above, fundamental considerations assert that for an exact theoretical
solution the requirements of equilibrium, compatibility, material behaviour and
boundary conditions, both force and displacement, must all be satisfied. It is
therefore useful to review the broad categories of analysis currently in use against
these theoretical requirements.

Current methods of analysis can be conveniently grouped into the following
categories: closed form, simple and numerical analysis. Each of these categories
is considered separately. The ability of each method to satisfy the fundamental
theoretical requirements and provide design information are summarised in Tables
1.1 and 1.2 respectively.

Table 1. 1: Basic solution requirements satisfied by the various
methods of analysis

METHOD OF I SOLUTION REQUIREMENTS I
ANALYSIS

~
Boundary

E conditions
= :c
.;: :;:

~
OIlc. Force DispE Constitutive= 00- U behaviour...,

Closed form S S Linear elastic S S

Limit Rigid with a failure
equilibrium S NS criterion S NS

Rigid with a failure
Stress field S NS criterion S NS

'" Lower
~ .~ bound S NS Ideal plasticity with S NS
E";i
.- c associated flow rule..:< OIl Upper

bound NS S NS S

Soil modelled by
Beam-Spring springs or elastic
approaches S S interaction factors S S

Full Numerical
analysis S S Any S S

S - Satisfied; NS - Not Satisfied
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Table 1.2: Design requirements satisfied by the various methods of
analysis

I DESIGN REQUIREMENTS I
Wall & Adjacent

Stability supports structures
METHOD OF

ANALYSIS ..... .....
I: C.. .. ..

~ ";i E ";i E
~t:

OIl ... .. ... ....
Oil = c; = c;

..c: ..... ..!:! ..... OIl_ 0 .. ... c; .. c; .. Q.";i c. .. = c; c. =c. '" 0
c;

~
OIl ... ... '" ... ... '"= I:Q ii5.s: is U5~ is'"

Closed form
(Linear elastic) No No No Yes Yes Yes Yes

" "+-> e-=o:i •

Limit .... -o:i ;:l o:i ;:l
c. U c. U

equilibrium Yes ~"§
,,- Yes No No Nor.FJ ~

" "+-> e.....:o:i •
.... -o:i ;:l o:i ;:l
c.~ c. U

Stress field Yes " o:i
,,- Yes No No Nor.FJ U r.FJ ~

" " "+-> e-: +->o:i •
" o:iLower .... -o:i ;:l o:i ;:l "0 a

'"
c. U c. U ;:l .-

.:;; bound Yes ,,0;
~"§ u~ No No Nor.FJ U.:t: ;;..

E";i
" " " ".- I:

..::I o:l
+-> e.....: +-> +->o:i •

" o:i " o:iUpper .... -o:i ;:l o:i ;:l "0 a "0 ac. U c. U ;:l .- ;:l .-
bound Yes ,,0; ,,- .... +-> .... +-> No Nor.FJ U r.FJ ~ U ~ U ~

Beam-Spring
approaches Yes No No Yes Yes No No

Full Numerical
analysis Yes Yes Yes Yes Yes Yes Yes

1.8 Closed form solutions
For a particular geotechnical structure, if it is possible to establish a realistic
constitutive model for material behaviour, identify the boundary conditions, and
combine these with the equations of equilibrium and compatibility, an exact
theoretical solution can be obtained. The solution is exact in the theoretical sense,
but is still approximate for the real problem, as assumptions about geometry, the
applied boundary conditions and the constitutive behaviour have been made in
idealising the real physical problem into an equivalent mathematical form. In
principle, it is possible to obtain a solution that predicts the behaviour ofa problem



Failure criterion: T = c'+cr' tan cp'
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(l.9)

(1.11)

(!.l0)

Rigid

H

2 c' cos m'H= 't'

Ycos(jJ + rp') sinjJ

~
Sinf3

w~
wcosf3

I I I I
f ,dl = fe' dl + f (J' tantp' dl = c'l + tantp' f (J' dl
o 0 0 0

Noting that W=lIzyJ-PtanfJ and I=H/cosfJ, Equations (l.9) and (1.10) can be
combined to give:

Figure 1. 11: Failure mechanism for
limit equilibrium solution

The value of the angle fJ which produces the most conservative (lowest) value of
H is obtained from aH/afJ=O:

where c' and rp' are the soil's cohesion and angle of shearing resistance
respectively.

Applying equilibrium to the wedge 'abc', i.e. resolving forces normal and
tangential to failure surface' ac', gives:

I

f (J 'dl = WsinjJ
o
I

f ,dl = WcosjJ
o

The actual distributions of (J and T along the failure surface 'ac', presented in
Figure 1.11, are unknown. However, if I is the length of the failure surface 'ac',
then:

Example: Critical height of a vertical cut
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1 .9 Simple methods
To enable more realistic solutions to be obtained, approximations must be
introduced. This can be done in one of two ways. Firstly, the constraints on
satisfying the basic solution requirements may be relaxed, but mathematics is still
used to obtain an approximate analytical solution. This is the approach used by the
pioneers of geotechnical engineering. Such approaches are considered as 'simple
methods' in what follows. The second way, by which more realistic solutions can
be obtained, is to introduce numerical approximations. All requirements of a
theoretical solution are considered, but may only be satisfied in an approximate
manner. This latter approach is considered in more detail in the next section.

Limit equilibrium, Stress field and Limit analysis fall into the category of
'simple methods'. All methods essentially assume the soil is at failure, but differ
in the manner in which they arrive at a solution.

from first loading (construction/excavation) through to the long term and to
provide information on movements and stability from a single analysis.

A closed form solution is, therefore, the ultimate method of analysis. In this
approach all solution requirements are satisfied and the theories ofmathematics are
used to obtain complete analytical expressions defining the full behaviour of the
problem. However, as soil is ahighly complex multi-phase material which behaves
nonlinearly when loaded, complete analytical solutions to realistic geotechnical
problems are not usually possible. Solutions can only be obtained for two very
simple classes of problem.

Firstly, there are solutions in which the soil is assumed to behave in an isotropic
linear elastic manner. While these can be useful for providing a first estimate of
movements and structural forces, they are of little use for investigating stability.
Comparison with observed behaviour indicates that such solutions do not provide
realistic predictions.

Secondly, there are some solutions for problems which contain sufficient
geometric symmetries that the problem reduces to being essentially one
dimensional. Expansion of spherical and infinitely long cylindrical cavities in an
infinite elasto-plastic continuum are examples.

Equation (1.12) equals zero if cos(2fJ+rp')=0. Therefore fJ = n/4-rp'/2.
Substituting this angle into Equation (1.11) yields the Limit equilibrium value

of Hu ::

rcos(n /4+ tp' /2) sin(n /4- tp' /2)
4c'-tan(n/4+tp' /2) (1.13)
r

1.9.1 Limit equilibrium
In this method of analysis an 'arbitrary' failure surface is adopted (assumed) and
equilibrium conditions are considered for the failing soil mass, assuming that the
failure criterion holds everywhere along the failure surface. The failure surface
may be planar, curved or some combination of these. Only the global equilibrium
of the 'blocks' of soil between the failure surfaces and the boundaries of the
problem are considered. The internal stress distribution within the blocks of soil is
not considered. Coulomb's wedge analysis and the method of slices are examples
of limit equilibrium calculations.

oH
ojJ

2 c' costp'

- 2 c' cos rp' cos(2 jJ + rp')

y(sinjJ cos(jJ + rp')) 2
(1.12)



14 / Finite element analysis in geotechnical engineering: Theory Geotechnical analysis / 15

where S" is the undrained strength.
Note: This solution is identical to the upper bound solution obtained assuming a
planar sliding surface (see Section 1.9.3). The lower bound solution gives halfthe
above value.

1.9.2 Stress field solution
In this approach the soil is assumed to be at the point of failure everywhere and a
solution is obtained by combining the failure criterion with the equilibrium
equations. For plane strain conditions and the Mohr-Coulomb failure criterion this

gives the following: <p'
~

Along these characteristics the following equations hold:

(1.19)

(1.20)

(I + sin~' cos2B) as + sin rp' sin2B as + 2s sinrp'(cos2B aB - sin2B aB) = 0
ax ay ay ax

sin rp' sin2B~+ (1- sinrp' cos2B) as + 2s sinrp'(sin2B aB + cos2BiJ.!!...) r
ax ay ay ax

These two partial differential equations can be shown to be of the hyperbolic
type. A solution is obtained by considering the characteristic directions and
obtaining equations for the stress variation along these characteristics (Atkinson
and Potts (1975)). The differential equations of the stress characteristics are:

dy = tan[B-(1l:!4-~'/2)]
dx

dy = tan[B+(TC/4-~'/2)]
dx

(1.14)
r

In terms of total stress, the equation reduces to:

4 Su

and substituting in Equation (1.16), gives the following alternative equations for
the Mohr-Coulomb criterion:

(1.21 )
Equilibrium equations:

a(Jx +
aTxy

= 0
ax ay

(1.15)
aTxy +

a(Jy
= r

ax ay

Mohr-Coulomb failure criterion
(from Figure 1.12):

(J; - (J; = 2c'cosrp' + ((J[ + (J;) sinrp'

(1.16)

Noting that:

s = c'cotrp' + Yz ((Jt' + (J]')

= c'cotrp' + Yz ((Jx' + (Jy')

_ 1/( ,_ ')-[1/( ,_ ,)2 2 ]0,5t - 12 (JI (J] - /4 (Jx (Jy + Txy

<p'

s .~
x

e I cr '
~crf

y cr f'-,cr,"
y

Figure 1. 12: Mohr's circle of
stress

ds - 2s tan~' dB = r(dy - tan~' dx)

ds +2stan~'dB = r(dy+tan~'dx)

Equations (1.20) and (1.21) provide four differential equations with four
unknowns x, y, s, and e which, in principle, can be solved mathematically.
However, to date, it has only been possible to obtain analytical solutions for very
simple problems and/or ifthe soil is assumed to be weightless, y=O. Generally, they
are solved numerically by adopting a finite difference approximation.

Solutions based on the above equations usually only provide a partial stress
field which does not cover the whole soil mass, but is restricted to the zone of
interest. In general, they are therefore not Lower bound solutions (see Section
1.9.3).

The above equations provide what appears to be, and some times is, static
determinacy, in the sense that there are the same number ofequations as unknown
stress components. In most practical problems, however, the boundary conditions
involve both forces and displacements and the static determinacy is misleading.
Compatibility is not considered in this approach.

Rankine active and passive stress fields and the earth pressure tables obtained
by Sokolovski (1960, 1965) and used in some codes of practice are examples of
stress field solutions. Stress fields also form the basis of analytical solutions to the
bearing capacity problem.

U-;;' (o-x' - 0-y')2 + T;y]05 = [c'cot~' + Yz (o-x' + (Jy')] sin~' (1.18)

The equilibrium Equations (1.15) and the failure criterion (1.18) provide three
equations in terms ofthree unknowns. It is therefore theoretically possible to obtain
a solution. Combining the above equations gives:

t = s sin~' (1.17)
1.9.3 Limit analysis
The theorems of limit analysis (Chen (1975)) are based on the following
assumptions:

Soil behaviour exhibits perfect or ideal plasticity, work hardening/softening
does not occur. This implies that there is a single yield surface separating
elastic and elasto-plastic behaviour.
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Example: Critical height of a vertical cut in undrained clay
Unsafe solution (Upper bound)

(1.22)

c

Yield condition 1: = s"

b

a

H

= u Su H / cosj3

Rate of work done by external forces is:

Figure 1. 13: Failure mechanism for
unsafe analysis

Rigid,bl~ck.'abc' moves with respect to the rigid base along the thin plastic shear
zone ac, FIgure 1.13. Th~ re.lative displacement between the two rigid blocks is
u. Internal rate of energy dIssIpation is:

Unsafe theorem
An unsafe solution to the true collapse loads (for the ideal plastic material) can
be found by selecting any kinematically possible failure mechanism and
performing an appropriate work rate calculation. The loads so determined are
either on the unsafe side or equal to the true collapse loads.

This theorem is often referred to as the 'Upper bound' theorem. As equilibrium
is not considered, there is an infinite number of solutions which can be found. The
accuracy ofthe solution depends on how close the assumed failure mechanism is
to the real one.
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The yield surface is convex in shape and the plastic strains can be derived from
the yield surface through the normality condition.
Changes in geometry of the soil mass that occur at failure are insignificant.
This allows the equations of virtual work to be applied.

With these assumptions it can be shown that a unique failure condition will
exist. The bound theorems enable estimates of the collapse loads, which occur at
failure, to be obtained. Solutions based on the 'safe' theorem are safe estimates of
these loads, while those obtained using the 'unsafe' theorem are unsafe estimates.
Use of both theorems enable bounds to the true collapse loads to be obtained.

(1.23)

(1.26)

= Ii H 2 u rsinj3

Equating equations (1.22) and (1.23) gives:

H = 4Su/(rsin2j3) (1.24)

Beca~se this. is an unsafe estimate, the value ofjJ which produces the smallest value
ofH IS reqUIred. Therefore:

aH 8S" cos2j3
aj3 r sin2 2j3 (1.25)

~quatio~ (1.25) equals zero if cos2jJ=O. Therefore jJ=1[/4 which, when substituted
\l1 EquatIon (1.24), gives:

Safe solution (Lower bound)

Stress discontinuities are assumed along lines ab and QC in Figure 1 14 F th
M h' . I . . . ram e

. 0 r s CIrc es, see ~I~ure 1.14, the stresses in regions 1 and 2 approach yield
sll~1Ultan:ouslya~ HIs \l1creased. As this is a safe solution, the maximum value of
~ IS reqUlr~~. ThIS occurs when the Mohr's circles for zones 1 and 2 just reach the
yIeld condItion. Therefore:

Sa fe theorem
Ifa static-ally admissible stressfield covering the whole soil mass can befound,
which nowhere violates the yield condition, then the loads in equilibrium with
the stress field are on the safe side or equal to the true collapse loads.

This theorem is often referred to as the 'Lower bound' theorem. A statically
admissible stress field consists of an equilibrium distribution of stress which
balances the applied loads and body forces. As compatibility is not considered,
there is an infinite number of solutions. The accuracy of the solution depends on
how close the assumed stress field is to the real one.

If safe and unsafe solutions can be found which give the same estimates of
collapse loads, then this is the correct solution for the ideal plastic material. It
should be noted that in such a case all the fundamental solution requirements are
satisfied. This can rarely be achieved in practice. However, two such cases in
which it has been achieved are (i) the solution of the undrained bearing capacity
of a strip footing, on a soil with a constant undrained shear strength, S" (Chen
(1975)), and (ii) the solution for the undrained lateral load capacity ofan infinitely
long rigid pile embedded in an infinite continuum of soil, with a constant
undrained shear strength (Randolph and Houlsby (1984)).

HLB = 2Su / r (1.27)
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S"!------+------

Soil represented by
springs/interaction

""""' J' -.-......... \,...., factors

Props/anchors
represented by
springs

Soil represented by
springs/interaction
factors

lA

1 .10 Numerical analysis
1.10.1 Beam-spring approach
This approach is used to investigate soil-structure interaction. For example, it can
be used to study the behaviour of axially and laterally loaded piles, raft
foundations, embedded retaining walls and tunnel linings. The major
approximation is the assumed soil behaviour and two approaches are commonly
used. The soil behaviour is either approximated by a set of unconnected vertical
and horizontal springs (Borin (1989)), or by a set of linear elastic interaction
factors (Papin et al. (1985)). Only a single structure can be accommodated in the
analysis. Consequently, only a single pile or retaining wall can be analyzed.
Further approximations must be introduced ifmore than one pile, retaining wall or
foundation interact. Any structural support, such as props or anchors (retaining
wall problems), are represented by simple springs (see Figure 1.15).

yy a

~ ..~
CD

- - - -b

a,=rY (})-9- a,=y(Y-H)

H

____......+a

Cl) a,=y(y-H)

a,=y(y-H) -9-
c'

Yield condition r-S"

Point circle
for zone 3

Mohrts circle for Mahr's circle
zone I, at depth H for zone 2

Figure 1. 14: Stress field for safe
solution

1.9.4 Comments
The ability of these simple methods to satisfy the basic solution requirements is
shown in Table 1.1. Inspection ofthis table clearly shows that none of the methods
satisfy all the basic requirements and therefore do not necessarily produce an exact
theoretical solution. All methods are therefore approximate and it is, perhaps, not
surprising that there are many different solutions to the same problem.

As these approaches assume the soil to be everywhere at failure, they are not
strictly appropriate for investigating behaviour under working load conditions.
When applied to geotechnical problems, they do not distinguish between different
methods ofconstruction (e.g. excavation versus backfilling), nor account for in situ
stress conditions. Information is provided on local stability, but no information on
soil or structural movements is given and separate calculations are required to
investigate overall stability.

Notwithstanding the above limitations, simple methods form the main stay of
most design approaches. Where they have been calibrated against field observation
their use may be appropriate. However, it is for cases with more complex soil­
structure interaction, where calibration is more difficult, that these simple methods
are perhaps less reliable. Because oftheir simplicity and ease ofuse it is likely that
they will always play an important role in the design of geotechnical structures. In
particular, they are appropriate at the early stages of the design process to obtain
first estimates of both stability and structural forces.

Figure 1. 15: Examples of beam-spring problems

To enable limiting pressures to be obtained, for example on each side of a
retaining wall, 'cut offs' are usually applied to the spring forces and interaction
factors representing soil behaviour. These cut off pressures are usually obtained
from one of the simple analysis procedures discussed above (e.g. Limit
equilibrium, Stress fields or Limit analysis). It is important to appreciate that these
limiting pressures are not a direct result of the beam-spring calculation, but are
obtained from separate approximate solutions and then imposed on the beam­
spring calculation process.

Having reduced the boundary value problem to studying the behaviour of a
single isolated structure (e.g. a pile, a footing or a retaining wall) and made gross
assumptions about soil behaviour, a complete theoretical solution to the problem
is sought. Due to the complexities involved, this is usually achieved using a
computer. The structural member (e.g. pile, footing or retaining wall) is
represented using either finite differences or finite elements and a solution that
satisfies all the fundamental solution requirements is obtained by iteration.

Sometimes computer programs which perform such calculations are identified
as finite difference or finite element programs. However, it must be noted that it
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is only the structural member that is represented in this manner and these programs
should not be confused with those that involve full discretisation of both the soil
and structural members by finite differences or finite elements, see Section 1.10.2.

As solutions obtained in this way include limits to the earth pressures that can
develop adjacent to the structure, they can provide information on local stability.
This is often indicated by a failure of the program to converge. However,
numerical instability may occur for other reasons and therefore a false impression
of instability may be given. Solutions from these calculations include forces and
movements ofthe structure. They do not provide information about global stability
or movements in the adjacent soil. They do not consider adjacent structures.

It is difficult to select appropriate spring stiffnesses and to simulate some
support features. For example, when analysing a retaining wall it is difficult to
account realistically for the effects of soil berms. Retaining wall programs using
interaction factors to represent the soil have problems in dealing with wall friction
and often neglect shear stresses on the wall, or make further assumptions to deal
with them. For the analysis of retaining walls a single wall is considered in
isolation and structural supports are represented by simple springs fixed at one end
(grounded). It is therefore difficult to account for realistic interaction between
structural components such as floor slabs and other retaining walls. This is
particularly so if 'pin-jointed' or 'full moment' connections are appropriate. As
only the soil acting on the wall is considered in the analysis, it is difficult to model
realistically the behaviour of raking props and ground anchors which rely on
resistance from soil remote from the wall.

1.10.2 Full numerical analysis
This category of analysis includes methods which attempt to satisfy all theoretical
requirements, include realistic soil constitutive models and incorporate boundary
conditions that realistically simulate field conditions. Because ofthe complexities
involved and the nonlinearities in soil behaviour, all methods are numerical in
nature. Approaches based on finite difference and finite element methods are those
most widely used. These methods essentially involve a computer simulation ofthe
history of the boundary value problem from green field conditions, through

construction and in the long term.
Their ability to accurately reflect field conditions essentially depends on (i) the

ability ofthe constitutive model to represent real soil behaviour and (ii) correctness
of the boundary conditions imposed. The user has only to define the appropriate
geometry, construction procedure, soil parameters and boundary conditions.
Structural members may be added and withdrawn during the numerical simulation
to model field conditions. Retaining structures composed ofseveral retaining walls,
interconnected by structural components, can be considered and, because the soil
mass is modelled in the analysis, the complex interaction between raking struts or
ground anchors and the soil can be accounted for. The effect of time on the
development of pore water pressures can also be simulated by including coupled
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consolidation. No postulated failure mechanism or mode of behaviour of the
problem is required, as these are predicted by the analysis. The analysis allows the
complete history of the boundary value problem to be predicted and a single
analysis can provide information on all design requirements.

Potentially, the methods can solve full three dimensional problems and suffer
none of the limitations discussed previously for the other methods. At present, the
speed of computer hardware restricts analysis of most practical problems to two
dimensional plane strain or axi-symmetric sections. However, with the rapid
development in computer hardware and its reduction in cost, the possibilities offull
three dimensional simulations are imminent.

It is often claimed that these approaches have limitations. Usually these relate
to the fact that detailed soils information or a knowledge of the construction
procedure are needed. In the Authors' opinion, neither of these are limitations. If
a numerical analysis is anticipated during the design stages of a project, it is then
not difficult to ensure that the appropriate soil information is obtained from the site
investigation. It is only ifa numerical analysis is an after thought, once the soil data
has been obtained, that this may present difficulties. If the behaviour of the
boundary value problem is not sensitive to the construction procedure, then any
reasonable assumed procedure is adequate for the analysis. However, if the
analysis is sensitive to the construction procedure then, clearly, this is important
and it will be necessary to simulate the field conditions as closely as possible. So,
far from being a limitation, numerical analysis can indicate to the design engineer
where, and by how much, the boundary value problem is likely to be influenced
by the construction procedure. This will enable adequate provision to be made
within the design.

Full numerical analyses are complex and should be performed by qualified and
experienced staff. The operator must understand soil mechanics and, in particular,
the constitutive models that the software uses, and be familiar with the software
package to be employed for the analysis. Nonlinear numerical analysis is not
straight forward and at present there are several algorithms available for solving
the non linear system ofgoverning equations. Some ofthese are more accurate than
others and some are increment size dependent. There are approximations within
these algorithms and errors associated with discretization. However, these can be
controlled by the experienced user so that accurate predictions can be obtained.

Full numerical analysis can be used to predict the behaviour of complex field
situations. It can also be used to investigate the fundamentals of soil/structure
interaction and to calibrate some of the simple methods discussed above.

The fin ite element method and its use in analysing geotechnical structures is the
subject of the remaining chapters of this book.

1.11. Summary
1. Geotechnical engineering plays a major role in the design of nearly all civil

engineering structures.



22 / Finite element analysis in geotechnical engineering: Theory

2. Design of geotechnical structures should consider:
Stability: local and overall;
Structural forces: bending moments, axial and shear forces in
structural members;
Movements of the geotechnical structure and adjacent ground;
Movements and structural forces induced in adjacent structures
and/or services.

3. For a complete theoretical solution the following four conditions should be
satisfied:

Equilibrium;
Compatibility;
Material constitutive behaviour;
Boundary conditions.

4. It is not possible to obtain closed form analytical solutions incorporating
realistic constitutive models of soil behaviour which satisfy all four
fundamental requirements.

5. The analytical solutions available (e.g. Limit equilibrium, Stress fields and
Limit analysis) fail to satisfy at least one ofthe fundamental requirements. This
explains why there is an abundance of different solutions in the literature for
the same problem. These simple approaches also only give information on
stability. They do not provide information on movements or structural forces
under working load conditions.

6. Simple numerical methods, such as the beam-spring approach, can provide
information on local stability and on wall movements and structural forces
under working load conditions. They are therefore an improvement over the
simpler analytical methods. However, they do not provide information on
overall stability or on movements in the adjacent soil and the effects on
adjacent structures or services.

7. Full numerical analysis can provide information on all design requirements. A
single analysis can be used to simulate the complete construction history ofthe
retaining structure. In many respects they provide the ultimate method of
analysis, satisfying all the fundamental requirements. However, they require
large amounts of computing resources and an experienced operator. They are
becoming widely used for the analysis ofgeotechnical structures and this trend
is likely to increase as the cost of computing continues to decrease.

2. Finite element theory for
linear materials

2.1 Synopsis
This chapter introduces the finite element method for linear problems. The bas'
th . d 'b d d IC. eor~ .IS escn e an the finite element terminology is introduced. For
SImplICIty, discussion is restricted to two dimensional plane strain situations.
~oweve~, t~e c?ncepts described have a much wider applicability. Sufficient
InformatIOn IS gIven to enable linear elastic analysis to be understood.

2.2 Introduction
The finite element method has a wide range of engineering applications.
Consequently, there.are man~ text books on the subject. Unfortunately, there are
~ew books t?at conSIder speCIfically the application of the finite element method
In.geotec?mcal engi~eering. This chapter presents a basic outline of the method,
WIth partIcular attentIOn to the areas involving approximation. The discussion .

t . t d t l' I' ISres nc e 0 Inear ~ astIc two dimensional plane strain conditions. Only continuum
ele~ents are conSIdered and attention is focussed on the 'displacement based'
fimte element approach. The chapter begins with a brief overview of the main
stages of the method and follows with a detailed discussion of each stage.

2.3 Overview
The finite element method involves the following steps.

Element discretisation

!his ~s t?e process of modelling the geometry of the problem under
InvestIgatIOn by an assemblage of small regions, termedfinite elements. These

.elements have nodes defined on the element boundaries, or within the element.
Przmary variable approximation

A primary ~ariable must be selected (e.g. displacements, stresses etc.) and rules
as to how It should vary over a finite element established. This variation is
express~d in terms of nodal values. In geotechnical engineering it is usual to
adopt dlsplacements as the primary variable.

Element equations

Us~ ofan appropriate variational principle (e.g. Minimum potential energy) to
denve element equations:
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b) Curved material interface

a) Curved boundaries
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Figure 2.2: Element and
node numbering
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Figure 2.3: Use of higher
order elements

In combination with the above factors, the
size and the number of elements depend largely
on the material behaviour, since this influences
the final solution. For linear material behaviour
the procedure is relatively straightforward and
only the zones where unknowns vary rapidly
need special attention. In order to obtain accurate

In order to refer to the complete finite
element mesh, the elements and nodes must be
numbered in systematic manner. An example of
a numbering scheme for a mesh of 4 noded
quadrilateral elements is shown in Figure 2.2.
The nodes are numbered sequentially from left to
right and from bottom to top; the elements are
numbered separately in a similar fashion. To
describe the location of an element in the mesh,
an element connectivity list is used. This list
contains the node numbers in the element,
usually in an anticlockwise order. For example,
the connectivity list of element 2 is 2,3, 7, 6.

When constructing the finite element mesh
the following should be considered.

The geometry ofthe boundary value problem
must be approximated as accurately as
possible.
If there are curved boundaries or curved
material interfaces, the higher order
elements, with mid-side nodes should be
used, see Figure 2.3.
In many cases geometric discontinuities
suggest a natural form of subdivision. For
example, discontinuities in boundary
gradient, such as re-entrant corners or cracks,
can be modelled by placing nodes at the
discontinuity points. Interfaces between
materials with different properties can be
introduced by element sides, see Figure 2.4.
Mesh design may also be influenced by the
applied boundary conditions. If there are
discontinuities in loading, or point loads,
these can again be introduced by placing
nodes at the discontinuity points, see Figure
2.5.

(2.2)

(2.1)

RNoded6 Nodcd

3 Nodcd

D

Rffim
~L,o

4 Nodcd

o

2.4 Element discretisation
The geometry ofthe boundary value problem under investigation must be defined
and quantified. Simplifications and approximations may be necessary during this
process. This geometry is then replaced by an equivalentfinite element mesh which
is composed of small regions called
finite elements. For two
dimensional problems, the finite
elements are usually triangular or
quadrilateral in shape, see Figure
2.1. Their geometry is specified in
terms of the coordinates of key
points on the element called nodes.
For elements with straight sides
these nodes are usually located at
the element corners. Ifthe elements
have curved sides then additional
nodes, usually at the midpoint of
each side, must be introduced. The
set of elements in the complete
mesh are connected together by the
element sides and a number of Figure 2. 1: Typical2D finite elements

nodes.

where [KG] is the global stiffness matrix, {Lldd is the vector ofall incremental
nodal displacements and {Md is the vector of all incremental nodal forces.

Boundary conditions
Formulate boundary conditions and modify global equations. Loadings (e.g.
line and point loads, pressures and body forces) affect {Md, while the

displacements affect {Lldd·
Solve the global equations

The global Equations (2.2) are in the form of a large number of simultaneous
equations. These are solved to obtain the displacements {Lldd at all the nodes.
From these nodal displacements secondary quantities, such as stresses and
strains, are evaluated.

where [K
E

] is the element stiffness matrix, {LldE}, is the vector of incremental
element nodal displacements and {ME} is the vector of incremental element

nodal forces.
Global equations

Combine element equations to form global equations

[KG]{LldG} = {Md
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solutions these zones require a refined mesh of smaller elements. The situation is
more co~plex for general nonlinear material behaviour, since the final solution
may depend, for example, on the previous loading history. F~r.such problems t?e
mesh design must take into account the boundary conditions, the mate~IaI

properties and, in some cases, the geometry, which all vary throughout the solutIOn
process. In all cases a mesh of regular shaped elements will give the best res~lts.

Elements with widely distorted geometries or long thin elements should be aVOided

(see Figure 2.6 for example).

x

(2.3)

(2.5)

(2.4)

j

Figure 2.7: Three noded
element

Ui a j + a2xi + a3Yi

u j a j + a2x j + a3Yj

um a j + a2xm + a3Y m

Vi bj + b2X i + b3Yi

V j b j + b2x j + b3Yj

Vm bj + b2xm + b3Ym

u = a j +a2x+a3y

v = bj +b2x+b3y

The six constants a j - b3 can be expressed in krms of the nodal displacements
by substituting the nodal coordinates into the above equations, and then solving the
two sets of three simultaneous equations which arise:

2.5 Displacement approximation
In the displacement based finite element method the primary unknown quantity is
the displacement field which varies over the problem domain. Stresses and strains
are treated as secondary quantities which can be found from the displacement field
once it has been determined. In two dimensional plane strain situations the
displacement field is characterised by the two global displacements U and v, in the
x andy coordinate directions respectively.

The main approximation in the finite element
method is to assume a particular form for the way
these displacement components vary over the
domain under investigation. Clearly, this assumed
variation must satisfy the conditions of
compatibility. Over each element the displacement
components are assumed to have a simple
polynomial form, where the order of the polynomial
depends on the number ofnodes in the element. The
displacement components are then expressed in
terms of their values at the nodes. For example,
consider the displacement equations for the three
noded triangular element shown in Figure 2.7:

30 Elements

Figure 2.5: Effect of boundary
conditions

36 Elements

Figure 2.4: Geometric
discontinuities

Wall----+

Re-entrant
corner

~
i,

Soil

rE:

1/ ""

The above simultaneous equations are solved for a j - b3 in terms of the nodal
displacements Ui , uj , Um , Vi , vj and Vn" to give:

a) Ill-conditioned mesh b) Well conditioned mesh (2.6)

Figure 2.6: Examples of good and bad meshes where the matrix [N] is known as the matrix of shape/unctions. The displacement
components U and V are now expressed in terms of their values at the nodes. For
three and four noded elements there is, therefore, a linear variation ofdisplacement
across the element, see Figure 2.8. For the higher order six and eight noded
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(2.7)

b) Global Element
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Figure 2. 11: 8 noded isoparametric
element

a) Parent Element
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2.5.1 Isoparametric finite elements
The choice ofthe finite elements to be used for two dimensional problems depends
largely on the geometry being modelled and the type of analysis required. For
geotechnical problems, the main requirement is that the element types should be
useful for all the geometric situations that may arise, including cases where
structures have curved boundaries or curved material interfaces. Both triangular
and quadrilateral types of elements could equally well be used, since both of these
types are easily modified, by the addition of mid-side nodes, to accurately
represent curved edges. As the finite element equations are slightly easier to
formulate for the quadrilateral family of isoparametric elements, these will be used
for any of the derivations presented in this book. This does not imply that
quadrilateral elements are in any way superior to triangular elements. In fact, some
experts are of the opinion that triangular elements are superior. For completeness,
the derivation of the interpolation and shape functions for triangular elements is
presented in Appendix 11.1 of this chapter.

An 8 noded quadrilateral
isoparametric element is
shown in Figure 2.11. This
element is widely used in
geotechnical finite element
software. It can be used as a
general shaped quadrilateral
element with curved sides.
The global element is derived
from a parent element which
has the same number ofnodes,
but is defined with respect to a natural coordinate system. Figure 2.11 shows the
configuration of the parent element. The natural coordinates S, T for this element
satisfy the conditions -1 o;So; 1, -10; To; 1.

The basic procedure in the isoparametric finite element formulation is to
express the element displacements and element geometry in terms of interpolation
functions using the natural coordinate system. The term isoparametric arises from
the fact that the parametric description used to describe the variation of the
unknown displacements within an element is exactly the same as that used to map
the geometry of the element from the global axes to the natural axes.

For the element shown in Figure 2.11 the global coordinates of a point in the
element can be expressed by coordinate interpolations of the form:

where Xi and Yi are the global coordinates of the eight nodes in the element, and Nil
i=1, .. ,8, are called interpolation functions. For isoparametric elements the
interpolation functions are expressed in terms of the natural coordinates Sand T
which vary from -1 to +1. To construct the interpolation functions for the eight

x

Displacement
Approximation

j

x

47
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: 'rvariation
, ,
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-:igure 2.9: Continuity of
displacement field

u

Figure 2. 10: Variation of
displacement across a mesh of

4 noded elements

Disp.
u

Figure 2.8: Linear variation of
displacements across a 4 noded

element

The simple polynomial approximation
presented above satisfies these
compatibility conditions.

The essential feature of the element-
wise approximation is that the variation
of the unknown displacements within an
element is expressed as a simple function
of the displacements at the nodes. The
problem of determining the displacement field throughout the finite element mesh
is, therefore, reduced to determining the displacement components at a finite
number of nodes. These nodal displacements are referred to as the unknown
degrees offreedom. For two dimensional plane strain problems there are two
degrees of freedom at each node: the u and v displacements.

elements the displacement field varies
quadratically across the element.

The accuracy of a finite element
analysis depends on the size of the
elements and the nature of the
displacement approximation. For the
accuracy to increase as the elements
become smaller, the displacement
approximation must satisfy the following
compatibility conditions.

Continuity of the displacement field.
In order to avoid gaps or overlaps
occurring when the domain is loaded,
the displacement components must
vary continuously within each
element and across each element side.
This can be achieved by ensuring that
the displacements on an element side
depend only on the displacements of
the nodes situated on that side, see
Figure 2.9.
The displacement approximation
should be able to represent rigid body
movement. Examples of such
movements are translations and
rotations. Such displacements do not
induce strains in an element.
The displacement approximation
should be able to represent constant
strain rates.
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noded isoparametric element, the following properties are used. Firstly, there is one
interpolation function corresponding to each node in the element and each function
is quadratic in the natural coordinates Sand T. Secondly, the interpolation function
NI is equal to 1 at node I (S = - 1, T = - 1) and is equal to zero at the other seven
nodes; a similar relation holds for the interpolation functions N2, N3, ••• , Ns. Using
these properties it can be shown that the interpolation functions take the form:

Since the element is isoparametric, the displacements within the element are
interpolated in the same way as the geometry. Therefore, the above interpolation
functions N], N 2, ••• , N s are used as the shape functions in Equation (2.6).
Consequently, the displacements within the 8 noded isoparametric element are also
assumed to be quadratic in Sand T.

The main advantage of the isoparametric formulation is that the element
equations need only be evaluated in the parent element coordinate system. Thus,
for each element in the mesh the stiffness matrix integrals can be evaluated by a
standard procedure. The integrations need only be performed over a square, with
Sand T varying between -1 and +1. The boundary conditions can be determined
in a similar fashion. If gravity loads are applied, the nodal forces are determined
from elenlent integrals, which can again be reduced to integrals over the parent
element. If stress boundary conditions are applied, the nodal forces are determined
from integrals over the boundary of the mesh. In this case, the integrals can be
reduced to line integrals over the sides of the parent element.

For all types offinite elements the best results are obtained ifthe elements have
reasonable shapes. Wildly distorted elements may lead to different forms of
inaccuracy. For example, in the case ofisoparametric elements difficulties may be
encountered ifthe distortions lead to a non-unique mapping between the global and
parent elements. For the quadrilateral isoparametric element described above, the
following points should be observed.

To avoid a non-unique global to parent element mapping, all the interior
angles, at the element corners, should be smaller than 180°. In particular, the
best results are obtained if these angles lie between 30° and 150°.
If an element becomes thin, the stiffness coefficients corresponding to the
transverse degrees offreedom are considerably larger than those corresponding
to the longitudinal displacements. This results in numerical ill-conditioning of
the system equations which can lead to large errors in the solution. To avoid
this the ratio between the longest and shortest sides of an element should be
smaller than 5: 1. For anisotropic materials, if the longitudinal direction of the
element is parallel to the stiffest material direction, this ratio may be exceeded.

(2.9)

(2.10)

Strains: The strains corresponding to these displacements follow from
Equation (1.2):

f:..s.. =- a(f:..u) . f:..c = _ o(f:..v) . f:..y = _ a(f:..u) _ a(f:..v)
\ ox' l' 0J' xl' 0J ~

f:..s: = f:..Yx: = f:..YzF =0 ; {f:..sl T = {f:..cx f:..cl' f:..Yxl' f:..s
z
lT

The location of mid-side nodes greatly affects the uniqueness of the global to
parent element mapping. For elements with curved sides, experience has shown
that the best results are obtained if the radius of curvature of each side is laraer

b
than the length of the longest side.

2.6 Element equations
Element equations are those that govern the deformational behaviour of each
element. They essentially combine the compatibility, equilibrium and constitutive
conditions.

Displacements: As noted above, the chosen displacements are assumed to be
given by:

Combining Equations (2.9) and (2.10) for an element with n nodes leads to:

aNI aN2 aN"
f:..u]

0 0 0 f:..v I

r' )
ax ax ax

aNI aN2 aN"
f:..u2f:..sy 0 0 0 f:..v2

~~:\T =-
ay ay ay (2.11 )

aNI aNI aN2 aN2 aN" aN"
ay ax ay ax ay ax
0 0 0 0 0 0 f:..u"

f:..v
lI

or more conveniently:

{f:..cl = [B]{f:..dL (2.12)

where the matrix [B] contains only derivatives of the shape functions Ni, while
{f:..d}" contains the list of nodal displacements for a single element.

If isoparametric elements are being used, the shape functions are identical to
the interpolation functions, see Section 2.5. I, and Ni depend only on the natural
coordinates Sand T. Consequently, the global derivatives aNi / ax, aNi / ay in
Equation (2.11) cannot be determined directly. However, using the chain rule
which relates the x, y derivatives to the S, T derivatives gives:

{
aNI ONi}T=[J]{~N; ON;}T (2.13)
oS aT ox 0J

where [J] is the Jacobian matrix:

Corner nodes:

N] = J;;(1-S)(1- T)- /iNs - /iNs

N2 = J;;(l+ S)(l- T)- /iNs - /i N 6 (2.8)

N 3 = J;;(1+S)(l+ T)- /iN6 - /i N 7

N 4 = J;;(l-S)(1+ T)- /iN? - /iNs

Mid - side nodes:

N, = IW-S 2 )(1- T)

N 6 = /i (1 + S)(1- T 2
)

N 7 =/i(1-S2)(1+T)

Ns = /i(l- S)(l- T2
)
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Hence, on inverting Equation (2.13), the global derivatives ofthe interpolation

functions are given by:

(2.20)

(2.22)

~L = J{~dr {~F} dVol + J{~dr {~T} dSrf
Vo! SI]

The essence of the finite element method is now to discretise the problem into
elements. This has two effects. Firstly, the potential energy is replaced by the sum
of the potential energies of the separate elements:

where N = number of elements. Secondly, the variation of the displacements can
be expressed in terms of nodal values using Equation (2.9). Equation (2.21)
therefore becomes:

where:
{~dr = {~u ,~v} = displacements;
{~F} T = {~Fx, ~Fy} = body forces;
{~T} T = {~Tx ,~Ty} = surface tractions (line loads, surcharge pressures);
Srfis that part of the boundary of the domain over which the surface tractions
are applied.

Combining Equations (2.19) and (2.20) the total potential energy of the body
becomes:

(2.17)

(2.16)

(2.15)

(2.14)

- aYj{aNi1as as
ax aNi

as aT

l
ax aYj

[J] = ~~ ~~
aT aT

The coordinate derivatives in Equations (2.15) and (2.16), which arise from the
Jacobian transformation, can be found by differentiating the isoparametric relations

given by Equation (2.7).
Constitutive model: The constitutive behaviour can be written as in Equation

(1.3):

{:£.j = I~jl- ~
ay aT

where IJI is the Jacobian determinant:

I
Jj = ax ay _ ay ax

as aT as aT

Totalpotentialenergy (E) =Strain energy (W) - Work done by the appliedloads (L)

where {~(f} T = [~O'x ~O'y ~Txy ~O'z]

For isotropic linear elastic materials the constitutive matrix [D] takes the form
given in Section 1.5.5 of Chapter 1. The form of the matrix for transversely
isotropic materials is presented in Chapter 5.

To determine the element equations for linear material behaviour, the principle
of minimum potential energy is invoked. This principle states that the static
equilibrium position ofa loaded linear elastic body is the one which minimises the
total potential energy. The total potential energy of a body is defined as:

where the volume integral is now over the volume of an element and the surface
integral is over that portion of the element boundary over which surface tractions
are specified. The principal unknowns are the incremental nodal displacements
over the whole mesh, {~d} /I' Minimising the potential energy with respect to these
incremental nodal displacements gives:

(2.24)

N
ME = I({Md}~);[ f [B]T[D][B] dVol {M}n - f[Nf {~F} dVol-

i=l Vo[ Vol·

f[N]T {~T} dSrfl = 0
S~f

which is equivalent to a set of equations of the form:

(2.18)o~E = o~w- o~L = 0

The strain energy, ~W, is defined as:

The principle of minimum potential energy states that for equilibrium:

~W=~ J{~fr{~O"} dVol=~ J{~&nD]{~&} dVol
Vo! Vol

(2.19) (2.25)

where the integrations are over the volume of the body.
The work done by applied loads, M, can be divided into contributions from

body forces and surface tractions and can, therefore, be expressed as:

where: [[(E] = f vo![BY[D][B] dVol = Element stiffness matrix;
{~RE} = fvo![Nn~F} dVol+ fs,iNY{~T} dSrf=Righthandsideload

vector.
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Thus the problem is reduced to determining and summing the separate element

equilibrium equations:

1

f f(x) dx
-I

3

I,Jt;f(xJ = rY;f(xl ) + W;J(x1 ) +1t;f(x3 )
;=1

(2.29)

Figure 2. 12: Examples of
numerical integration
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where: Wj are weights;
fix;) are the values of the function at the three integration points Xj~1 23'

The values of the weights, W" and the location of the integration poin't~ x
d

' n

epend on the nature of the integration scheme being used. The number of
integration points determines the integration order. The higher order of integration
gives the more accurate
integration process.
Unfortunately, the number
of function evaluations 0.57

also depends on the 0.57

integration order, so the
cost of an analysis will
increase when a higher
order integration is
employed. This becomes
particularly important for
two and three dimensional 0.7

integrals where an array of 0.7

integration points is
required. For example, for
a two dimensional
generalisation of the
integral discussed above,
an array of 3x3 integration
points would be required.
For three dimensional element this increases to a 3x3x3 array.

~he mos~ com~on numerical integration scheme is Gaussian integration and
the mtegratIOn pomts are often referred to as Gauss points. For Gaussian
integration t~e optimum inte~ration order depends on the type of element being
used and ~n Its shape. Expenence has shown that for the 8 noded isoparametric
element either a 2x2 or a 3x3 order should be used. Figure 2.13 illustrates the
loc~t~ons .of the Gauss points in the parent element and an example of their
pOSitIOns m a global element for the 2x2 and 3x3 integration orders. 2x2 and 3x3
integration o:ders are often referred to as reducedandfull integration, respectively.

For nonlmear problems (see Chapter 9), the element stiffness matrix at a
particular increment may, in general, depend on the stresses and strains determined
~t the p~evious increment. Since the stiffness matrix is determined by numerical
mtegratIOn a.nd the ele~ent equations are referred to the integration points, it is
also co~venIent to restnct evaluation of the stresses and strains to these points.
Hence, m many programs the output listings provide values of stresses and strains
at integration points.

X

X
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2.6.1 Numerical integration
To evaluate the element stiffness matrix and
right hand side vector, integrations must be
performed. The explicit evaluation of these
element integrals cannot usually be
performed, except for special cases, and
therefore a numerical integration scheme is -1 Xi 1

employed. For example, consider the one a) Integration using Trapezoidalmle

dimensional integral, f-\ fix)cIx, shown

~:~~~c~~~f~~mF~~%:r~~~~~~t~;:t:~:f~e:~ f(x) / ~--~
split the x range of the integral (i.e. -1 < x <1) /
into a number of equal steps of size a and~~~ ~12
assume that the area under the curve is equal ""< ""<
to the sum of the trapezoidal areas
a(j(x;)+fix i• j ))/2. Such a procedure is often
referred to as the Trapezoidal rule. This b) Gaussian integration
procedure can be refined to obtain the
greatest accuracy for the minimum number
of function evaluations, fix;), and several
different procedures are available.
Essentially, the integral ofa function is replaced by a weighted sum ofthe function
evaluated at a number of integration points (sampling points). For example,
consider a one dimensional integral with three integration points, Figure 2.12b:

In Equation (2.28) IJI is given by Equation (2.16) and represents the determinant
of the Jacobian matrix arising from the mapping between global and parent
elements. The explicit evaluation ofEquation (2.28) cannot usually be performed,
except for very special element shapes. It is therefore convenient to use a
numerical integration procedure.

where for plane strain problems the thickness t is unity and'the element stiffness

matrix, [KE], becomes:

The element stiffness matrix for isoparametric elements is evaluated using the
natural coordinate system. The isoparametric coordinate transformation gives:



36 I Finite element analysis in geotechnical engineering: Theory
Finite element theory for linear materials I 37

2.7 Global equations
The next stage in the formulation of the finite element equations is the assembly
of the separate element equilibrium equations into a set of global equations:

2.7.1 The direct stiffness assembly method
The essence ofthe direct stiffuess method is to assemble the individual terms ofthe
element stiffuess matrix, [KE ] , into the overall global stiffness matrix, [KG],
according to the global degree offreedom numbering scheme. At the element level,
the stiffness matrix terms correspond to the relative stiffness between the degrees
of freedom contained in the element. At the mesh level, the stiffness matrix terms
correspond to the relative stiffness between the degrees offreedom over the whole
mesh. For this reason the size ofthe global stiffness matrix will depend on the total
number of degrees of freedom and the non-zero terms will occur from the
connections between the degrees of freedom through the elements.

To illustrate the stages of the assembly process it is convenient to consider a
mesh of4 noded elements with only one degree offreedom at each node (note: for
two dimensional analyses there are usually two degrees offreedom at each node).
With only one degree of freedom at each node the stiffness matrices are much

K 22 K 2] K 27 K 26
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K]] K]7 K]6

SYM K n K 76

K 66

12

-

K II K IZ K 13 K I4

~ [KE ]

Kzz Kz] K 24

SYM K]] K]4

2 K 44

1110

0'
2 3

4

simpler and the assembly process is easier to describe. In such a situation 'degree
of freedom' may be associated with 'node number'.

The numbering of the degrees of freedom and the form of the stiffness matrix
for a single 4 noded element is illustrated in Figure 2.14. It is assumed that all the
stiffness matrices are symmetric and therefore only the diagonal and upper triangle
of terms are indicated.

Figure 2. 14: Stiffness matrix for a single element

If this single element becomes part of a mesh ofelements then, with respect to
the global degree of freedom numbering, the stiffness matrix will take the form
shown in Figure 2.15. The numerical values ofthe stiffness terms remain the same
but the quantities they represent in global terms become different. For example ~
Figure 2.14 the stiffness term K II refers to element degree of freedom 1 wher~as
in Figure 2.15 the same degree of freedom becomes global degree of fr~edom 2'
?ence the co~tribution ofthe element to the global value ofK

22
is equal to K

II
. Th~

Important thmg to note here is that each row and column of the element stiffness
matrix corresponds to each degree of freedom of the element.

Figure 2. 15: Element stiffness matrix in terms of global degrees of
freedom

5 6 7

1 2 ]

The assembly process can now be demonstrated using the stiffness matrices
expressed in terms of the global degrees of freedom. Figure 2.16 shows a simple
n:esh containing two elements and the degree offreedom numbers. The stages of
Figure 2.16 show the complete assembly of the global stiffness matrix for this
simple mesh. It should be noted that there is some re-ordering of the terms due to

(2.30)

where: [KG]
{.6..d} IlCi

the global stiffness matrix;
a vector containing the unknown degrees of freedom (nodal
displacements) for the entire finite element mesh;

{.6..Rc;} the global right hand side load vector.

As each element stiffness matrix is formed according to the procedure
described in Section 2.6, it is then assembled into the overall global stiffness
matrix. This assembly process is called the direct stiffness method. The terms ofthe
global stiffness matrix are obtained by summing the individual element
contributions whilst taking into accountthe degrees offreedom which are common
between elements. This process is described in more detail in Section 2.7.1. The
terms of the right hand side load vector are obtained in a similar manner by
summing the individual loads acting at each node. Further details ofthe load vector
are given in Section 2.8 and in Chapter 3.

It is clear from Equation (2.28) that, ifthe constitutive matrix [D] is symmetric,
the element stiffness matrices and hence the global stiffness matrix will also be
symmetric. This situation occurs for a wide range ofmaterial behaviour, including
linear elastic material behaviour. The non-zero terms ofthe global stiffness matrix
arise from the connections between the degrees of freedom through the elements.
From the geometry of the mesh, each degree of freedom is only connected to a
small number of other degrees of freedom; hence, the global stiffness matrix will
contain many zero terms. In addition, most of the zero terms will be outside a
diagonal band, see Section 2.7.1. The assembly, storage and solution schemes used
for the global stiffness matrix take into account its symmetric and banded structure.
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differences between the standard element numbering and the degree of freedom
numbering. In addition, the terms in the global stiffness matrix corresponding to
the degrees of freedom which are common to more than one element arise from
summing the contributions from the respective elements. For degrees of freedom
occurring in only one element there is only one term assembled into the global

stiffness matrix.

The structure of the global stiffness matrix becomes particularly important if
efficient use is to be made of the computer storage, as is discussed in Section 2.9.
At this stage, a few points can be made concerning the structure of the assembled
stiffness matrix shown in Figure 2.16d. The non-zero terms in the global stiffness
matrix arise only from the connection between degrees of freedom through the
elements. Thus for each row in the global stiffness matrix, the last non-zero term
corresponds to the highest degree of freedom to which a particular degree of
freedom is connected. This property leads to a global stiffness matrix which is
generally sparse (i.e. the matrix has many zero terms) and banded (i.e. the non-zero
terms are concentrated along the main diagonal).

a) Two element mesh

Stiffness matrix for
element 1 Global stiffness matrix

b) Assembly of element 1

2.8 Boundary conditions
The final stage in setting up the global system ofequations is the application ofthe
boundary conditions. These are the load and displacement conditions which fully
define the boundary value problem being analysed.

Loading conditions, line loads and surcharge pressures, affect the right hand
side of the global system of equations. If line or point forces are prescribed, these
can be assembled directly into the right hand side vector {ilRo}. If pressure
boundary conditions are defined, these must first be expressed as equivalent nodal
forces before being added to {ilRo}. As with the assembly process for the stiffness
matrix, the assembly ofthe right hand side vector is performed with respect to the
global degree of freedom numbering system. Body forces also contribute to
{ilRc;} , as do the forces from excavated and constructedelements. These boundary
conditions are discussed in greater detail in Chapter 3.

Displacement boundary conditions affect {ild}nc, The equation corresponding
to the prescribed degree offreedom (displacement component) must be effectively
eliminated during the solution process, see Section 2.9. In all cases sufficient
displacement conditions must be prescribed in order to retain any rigid body modes
of deformation, such as rotations or translations of the whole finite element mesh.
Ifthese conditions are not satisfied, the global stiffness matrix will be singular and
the equations cannot be solved. For two dimensional plane strain problems at least
two nodes must have a prescribed displacement in the x direction and one node a
prescribed displacement in the y direction, or, alternatively, two nodes must have
a prescribed displacement in the y direction and one node a prescribed
displacement in the x direction.

2.9 Solution of global equations
Once the global stiffness matrix has been established and the boundary conditions
added, it mathematically forms a large system of simultaneous equations. These
have to be solved to give values for the nodal displacements {ild}nG' There are
several different mathematical techniques for solving large systems of equations.
Most finite element programs adopt a technique based on Gaussian elimination.
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d) Final assembled structure of the global stiffness matrix

Figure 2. 16: Assembly procedure for a simple mesh with two
elements

Stiffness matrix for
element 2
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However, for three dimensional problems iterative techniques may be more cost

effective, see Chapter 11.
To illustrate the Gaussian elimination technique, one particular method of

solution is described. In this approach the stiffness matrix is stored as a 'sky line
profile' and inversion of the stiffness matrix follows a triangular decomposition.
It should be noted, however, that other procedures are available (Crisfield (1986)).

2.9.1 Storage of the global stiffness matrix
Because of the sparse and banded nature of the stiffness matrix it is not necessary
to store the complete stiffness matrix. Reductions in storage can be obtained by
taking into account the symmetry of the matrix and only storing the diagonal and
upper triangle of terms. This reduces the storage space by almost a half. As an
example, Figure 2.17 shows the structure of the global stiffness matrix and the
terms which need to be stored for a simple finite element mesh composed of four
4 noded elements. Again, for simplicity, it is assumed that there is only one degree

of freedom at each node.

(2.31 )

connected through an element. For example, the last non-zero term in row 4
corresponds to degree of freedom 8 and it is seen in Figure 2.17 that degree of
freedom 8 is the highest degree of freedom to which 4 is connected. Counting for
each column the number of terms above the diagonal term up to the last non-zero
term (column height) and taking the maximum value of this quantity over all the
columns, gives the bandwidth of the matrix. It is clear from Figure 2.18 that the
bandwidth measured column-wise is the same as measured row-wise and in this
example equals 5. An efficient compact storage scheme based on the band structure
is shown in Figure 2.18. In this case the stiffness matrix is stored row-wise as a two
dimensional array and the number of columns in the array is equal to the
bandwidth. Alternatively, the stiffness matrix could be stored column-wise, butthis
has no effect on the storage requirements or the equation algorithm.

The band storage shown in Figure 2.18 requires space for a number of zero
terms which are contained within the band. Many of these terms are not required
by the solution algorithm and remain zero throughout the solution process; hence
they need not be stored. The most efficient storage scheme is based on the column­
profile shown in Figure 2.19. The column-profile contains the terms in each
column from the diagonal up to the last non-zero term and may contain zero terms
within the profile. Comparing Figures 2.18 and 2.19, it can be seen that the
column-profile scheme is essentially a variable bandwidth storage and the zero
terms between the profile and diagonal band are omitted. The zero terms within the
profile are essential in the solution algorithm and the storage locations normally
contain non-zero terms at the end of the solution process, see Section 2.9.2.

As noted above, the bandwidth for any degree of freedom is the difference
between the highest degree of freedom connected through an element to that
degree of freedom, and the degree of freedom itself. This difference therefore
depends on the way the degrees of freedom are numbered. There are several
algorithms available for renumbering the degrees of freedom to minimise the
bandwidth (Cuthill and McKee (1969), Gibbs et al. (1976), Everstine (1979)).

2.9.2 Triangular decomposition of the global stiffness matrix
The solution technique associated with the column-profile storage scheme is based
on a triangular decomposition of the global stiffness matrix. Formally, this
decomposition reduces the stiffness matrix to the following matrix product:

1 2 3 4 5 6 7 8 9
8 9 1 xxoxxo 0 0 0

'-r 2 xxxxx 0 0 0

3 X 0 X X 0 0 0

4 xxoxxo

5 6 5 xxxxx
6 SYM X 0 X X

7 X X 0

8 X X
2 3

X9

4

a) Finite element mesh (1 DOF per node) b) Zero, Non-zero structure of [K,;]

Figure 2. 17: Structure of the global stiffness matrix

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

1 X X 0 xx 1 xx xx
2 xx xxx 2 xxxxx
3 X o x x 0 3 X 0 X X
4 X X 0 X X 4 X X 0 X X

5 XXXX x

\ BA®WIDlli

5 XXXX X

6 SYM X 0 X X 6 SYM X 0 X X

7 X X 0 7 X X 0

8 X X 8 X X

9 X 9 X

7

As pointed out in Section 2.7.1, the global stiffness matrix has a diagonal band
structure, see Figure 2.18. The last non-zero term in any row corresponds to the
highest degree of freedom number to which a particular degree of freedom is

where [L] is a lower triangular matrix of the form:

Figure 2. 18: Diagonal band
structure of [KcJ

Figure 2. 19: Column­
profile structure of [KcJ

['L21 0

[L]= ~31 L32
....

LI/l LI/2 LI/3 .. I

(2.32)
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and [DM] is a diagonal matrix:

(2.33)
o

L'n = K'n/DJ
~n = [K2n - LJnLJ2]/D2
L3n [K3n - Lln L13 DJ - L2n L23 D2] / D3

(2.36)

Using the triangular factors defined by Equations (2.32) and (2.33) and forming
the matrix product given by Equation (2.31), transforms the [K] matrix into the
following form:

In this section explanation is given of how the terms of [L] and [DM] are
derived from the terms of [KG]' and how [DM] and [LF overwritethe diagonal and
off-diagonal terms of[Kd, respectively, within the column-profile storage scheme.
To illustrate the process, a full n x n symmetric matrix will be considered:

KII KI2 Kl3 Kin
K22 K23 K2n

[K] = K33 K3n (2.34)

Knn
(2.37)

[

DI LI2 L l3 •.. Llnj
D2 L23 ... L2n

[K] = D3 '" L3n

Dn

For the maximum efficiency there is some advantage in carefully ordering the
computations in each column. These are performed in three stages: firstly, the off­
diagonal terms are modified by an inner product accumulation; secondly, the off­
diagonal terms are divided by a corresponding diagonal term and, thirdly, a new
diagonal term is found. This is shown in the set of Equations (2.36).

Each term of [DM] and [L] is obtained in sequence, using values of [K] and
values of [DM] and [L] which are previously determined. Hence, it is easy to see
how the values of [K] can be overwritten by [DM] and [L]. Finally, the upper
triangle of the stiffness matrix will contain the terms:

L,,,DJ

L1"L]2 DI + L2"D2
LI"L13 D] + L2nL23D2 + L3n D3

L13 D,
L13 LI2 D] + L23 D2
L~3DI + Il;.3 D2+ D3

D, L12DI

L~2DI + D2

[L][DM1[Lr{~d} = {~R} (2.38)
where {~d} is the vector of unknown degrees of freedom and {~R} is the right
hand side vector of prescribed nodal forces. Setting

2.9.3 Solution of the finite element equations
Having determined the triangular factors [DM] and [L] of the global stiffness
matrix [Kd, the solution of the fmite element equations can be performed in three
stages. The process solves Equation (2.30), now written in the form:

(2.35)
In order to determine the terms ofthe triangular factors [DM] and [L], the terms

of the matrix [K] given in Equations (2.34) and (2.35) need to be equated. The
order in which these equations are then solved characterises a number of different
solution algorithms. Some algorithms solve the equations by following the terms
in the rows of [K], some follow the columns of [K] and others modify all the terms
of [K] successively. Essentially, all these algorithms are equivalent and require the
same number of arithmetic operations. However, the column-wise technique has
certain advantages in that a smaller number of intermediate terms need to be
evaluated, consequently reducing the time of the calculation. The set ofequations
to be solved is listed below:

{~d 11 } = [DM][Lr{~d}
the first stage ofthe solution process finds {~d /1 as:

{~d 11 } = [Lr{~R }

by forward substitution. Then, setting

(2.39)

(2.40)

K]2 ID,
K22 - L~2D,

(2.41 )

K13 ID,
[K23 - L13 L12 D] ]ID2

gives:
(2.42)
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STAGE 3: Backward substitution
Finally, a set of equations is solved, of the form:

The final stage of the solution process then determines

{~d} = [Lr{~d'} (2.43)
by backward substitution. The three stages ofthe solution technique are performed
with the triangular factors [DM] and [L], which are stored in column-profile form
in a one-dimensional array. The decomposed stiffness matrix remains unchanged
throughout the solution process and all the calculations are performed on .the right
hand side vector. Hence, the same solution process could be repeated wIth many
different load vectors, without having to re-decompose the stiffness matrix. To
illustrate this solution process, each of the three stages is considered in detail

below.

STA GE 1: Forward substitution
This stage solves a set of equations of the form:

!'o..d; ~d;'/DI

~d~ ~d~'/D2

!'o..d; ~d;'/D3

!'o..d~ !'o..d~'/Dn

which lead, by backward substitution, to the solution:

(2.47)

(2.48)

which lead, simply by forward substitution, to:

(2.44)

~dll

~dll_1

!'o..dll_2

~dl;

= ~d';_1 - LII_I,II~dll

= !'o..d':_2 - LII_2,1I_I~dll_1 - LII_2/,~dll

= ~d; - fLlk~dk
kc2

(2.49)

Since the terms of [L] are stored in column-profile form, some of the terms
indicated in Equations (2.44) and (2.45) may be outside the column-pr~file and ~re
therefore zero. In practice, the forward substitution sums indicated III EquatIOn
(2.45) are only evaluated over the number of terms of [L] within the column-

profile.

J;
12 - LI2~d~'

13 - L13~d{'- L23~d~'

n-I

~d~' In - L Lkn!'o..dt
kc I

STAGE 2: Invert diagonal matrix
In this stage the simple equation is solved:

j{
!'o..d' \ {!'o..d"}o ~d~ ~d~'

D3 !'o..d; = !'o..d;'
.. ... . ..

Dn !'o..d~ !'o..d~'

which gives:

(2.45)

(2.46)

The backward substitution sums indicated in Equation (2.49) are only evaluated
over the number of terms of [L] which lie within the column profile.

The solution process described above is extremely efficient and has the
advantage that the decomposed stiffness matrix remains unchanged. This fact is
particularly important for nonlinear problems which are solved by iteration. In this
case successive solution estimates can be obtained by modifying the right hand side
load vector, using a stiffness matrix which needs to be decomposed into triangular
factors only once.

2.9.4 Modification due to displacement boundary conditions
In most finite, element calculations displacement boundary conditions are defined
in order to restrict rigid body movements, or to restrain part of the structure. These
conditions imply that certain degrees of freedom are prescribed and the system of
equations:

(2.50)

needs to be modified in order to enforce these conditions. To see the effect on the
system of equations when a particular degree of freedom, for example !'o..dj , is
prescribed, Equation (2.50) is written in the full form (Equation (2.51». In this
case, the force term !'o..Rj becomes unknown and is usually required in the solution
as a reaction term:
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2.10 Calculation of stresses and strains
Once the global equations have been solved and values ofthe nodal displacements
obtained, secondary quantities, such as stresses and strains, can be evaluated.
Strains can be found using Equation (2.11) and these can then be combined with
the constitutive matrix, [D], to obtain stresses, see Equation (2.17).

where Q is the prescribed value. In addition, each other equation contains a term
.I

Kt-.d which is also known and can therefore be transferred to the right hand side.U J'

Performing these two operations, Equation (2.51) reduces to :

Since t-.di is prescribed, thej'h equation in system (2.51) is not required and can
be replaced by the simpler equation:

t-.dJ = ai (2.52)

Thus the prescribed degree of freedom is taken into account by replacing the
j'h row and column in [Kd by zeros, the diagonal term by 1 and updating the right
hand side vector by simple correction terms. This method has the advantage that
the symmetry ofthe stiffness matrix is not destroyed and, hence, the modifications
can easily be made within the compact column-profile storage scheme before the
solution process. However, this method, as it stands, has two important
disadvantages. The first is that the terms of [KG] are overwritten by O's and 1's and
hence the value of the reaction force t-.Ri cannot be found later by back
substitution. The second disadvantage occurs for incremental or iterative
techniques where the values of the prescribed degrees offreedom change. In such
cases, the modifications to the right-hand side vector cannot be performed, because
the required terms of [Kd are not saved, and a complete new global stiffness
matrix must be formed at each stage.

The above disadvantages are avoided by a simple modification ofthe standard
decomposition and solution procedures. First, it is assumed that the stiffness matrix
is effectively replaced by the matrix shown in Equation (2.53). However, the terms
in the j'h row and column of [Kd are not actually changed. During the
decomposition of[Kd the terms associated with thefh row and column of[Kd are
skipped over during the calculations (since they are assumed to be zero), and the
remaining columns are decomposed as before. Prior to the solution process, the
right-hand side vector is modified using the prescribed values and the correct terms
from [Kd. Then finally, during the solution process, thefh row and column of[Kd
are again effectively ignored. This technique clearly allows the reaction forces to
be calculated by simply back-substituting the solution into the appropriate
equations stored within the decomposed [KG].

E = 10000 kNinr
fl =0.4

Line Of,symmetry

Footing
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Figure 2.20: Footing problem

Figure 2.21: Finite element mesh
for strip footing problem

2.11 Example
To illustrate the application of the
finite element method, the boundary
value problem ofa strip footing on an
isotropic linear elastic soil, as shown ~/7;:<r-~----'~-~-;-~-~--l-~~_

in Figure 2.20, is considered. The
footing has a width of 12m and the
soil has a Young's modulus E = 10000
kN/m2

, and a Poisson's ratio f1 = 0.4.
As there is a vertical plane of
symmetry through the centre of the
footing, the finite element analysis
needs to consider only half of the
problem.

The finite element mesh used to
analyse this problem is shown in
Figure 2.21. It consists of 42 eight
noded isoparametric elements. Only
the soil is discretised into finite
elements. The foundation is II/F~=O

represented by appropriate boundary ,
conditions. As it is necessary to
analyse a finite domain, the mesh
extends 20m horizontally and 20m
vertically.

With finite element analyses, it is
necessary to specify an x (horizontal)
andy (vertical) boundary condition at
each node on the boundary of the

mesh. This boundary condition can be either a prescribed nodal displacement or
a nodal force. For the strip footing problem, it is assumed that both the
displacements!1u and !1v, in the horizontal and vertical directions, are zero for all
nodes alon~ the bottom boundary of the mesh, see Figure 2.21. Consequently,
nodal reactIOns (forces) will be generated in both the horizontal and vertical
directions as a result ofthe analysis. On the vertical side boundaries, the horizontal
displacement, !1u, and the vertical force, !1Fy, have been assumed to be zero. The
!1Fy =0 condition implies that there can be no vertical shear stress on these

(2.53)[K

0 K

j
j

t-.dIjt-.RI - K]Qi)
]1 •• •• In] .I .

o :: i' :: 0 ~di = ~Qi

Kn] :: 0 :: K'1I1 ~dn ~RIl-K'!iai
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boundaries and the nodes are, therefore, free to move in the vertical direction.
Horizontal reactions will, however, be generated at the nodes as a result of the
analysis. Along the top boundary of the mesh, from the edge ofthe strip footing
to the right hand side boundary, both the vertical, boFy, and horizontal, boFx , nodal
forces are assumed to be zero. This implies a stress free surface which is free to
move both vertically and horizontally.

The boundary condition applied to the mesh boundary immediately below the
position of the strip footing depends on whether the footing is rigid or flexible
and/or smooth or rough. Three different alternatives for this boundary condition
are shown in Figure 2.22.

x - coordinate

Rough rigid footing

Smooth rigid footing

Smooth flexible footing

FootingThe analytical solution for a
smooth flexible footing on an 0.2

isotropic elastic half-space predicts t-------i'-__--"'---=~:'----2':"_0-------'25

that the vertical displacements are -0.2.

infinite. However, finite values are -0.4 .

predicted by elastic theory if the -0.6

elastic material has a finite depth. For
-0.8

the situation analysed above, the ~1

analytical prediction of the vertical ~ -It-.......-....

settlement at the edge ofthe footing is -1.2·

0.057m. This compares favourably
with the finite element prediction of Figure 2.23: Ground surface
0.054m. Finite element predictions settlements

closer to the analytical solution can be obtained if a more refined mesh is used.
Vectors of ground movement predicted by the finite element analysis of the

rough rigid footing are shown in Figure 2.24. These vectors indicate the
distribution of movements within the elastic soil. The contours of the major
principal stress, boa], are shown in Figure 2.25.
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2.12 Axi-symmetric finite element analysis
In the preceding discussion a plane strain situation has been assumed when
developing the finite element equations. The basic procedures are, however, similar
for plane stress, axi-symmetric and full three dimensional situations.

As discussed in Chapter 1, several geotechnical problems can be idealised as
axi-symmetric, e.g. axially loaded piles and circular foundations. In this type of
problem it is usual to adopt cylindrical coordinates r (radial direction), z (vertical
direction) and e (circumferential direction), Figure 2.26, as opposed to the

Figure 2.22: Footing boundary conditions

In Figure 2.22a the footing is assumed to be rigid and smooth. Consequently,
a vertical displacement of 1Omm (downward) and M x=0 is prescribed at each node
beneath the position ofthe footing. In Figure 2.22b the same vertical displacement
boundary condition is applied, but instead of the horizontal force being zero, the
horizontal displacement bou = O. This models a rough rigid footing. In both the
above cases a rigid footing is simulated by applying a uniform vertical
displacement to the footing. In Figure 2.22c a uniform surcharge pressure is
applied via the vertical nodal forces, My, to the nodes beneath the position ofthe
footing. In addition, the horizontal nodal forces, boFx , are assumed to be zero.
These boundary conditions therefore model a smooth flexible footing.

It should be noted that many finite element programs do not require that the
user specifies anx (horizontal) andy (vertical) boundary condition at each node on
the boundary of the mesh. In such a situation, the program will make an implicit
assumption. Usually, if a boundary condition is not prescribed, the program will
assume that the appropriate nodal force is zero. For example, if only a vertical
displacement is specified at a particular node, the program will assume the
horizontal force boFx = O.

Analyses with all three ofthe footing boundary conditions given in Figure 2.22
have been performed. The surface settlement profiles predicted by these analyses
are compared in Figure 2.23. To aid comparison, the vertical settlement, bov, has
been normalised by the settlement under the centre of the footing, bovmax . The
settlement profiles for both the smooth and the rough rigid footings are very
similar.

. ,

Figure 2.24: Vectors of
ground movement

D.Cl",
20kPa
16kPa

14kPa
lOkPa

8 kPa
6 kPa
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Figure 2.25: Contours of
principal stress
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all references to x and y replaced by rand z, respectively, and the thickness t in
Equations (2.27) and (2.28) replaced by 21Ir. The assembly and solution of the
global equations follow the procedures described in Sections 2.7 to 2.9.

The application of the finite element method to three dimensional problems is

discussed in Chapter 11 .

Equation (2.11) replaced by:

aNI aNz aNn ~UI

0 0 0 ~VI
ar ar ar

rl aNI aN2 0 aNn ~uz

0 0
~s" az az az ~vz (2.55)
~~z =- aNI aNI aNz aN2 aNn aNn

8z ar az ar az ar
NI 0 Nz 0

Nz 0 ~un

r r r ~vn

(ILl )

1']

y

3
j r

x

i

r= xT+Y1= xi +Y31 + qe\ + 17 ez

where: t, I = unit vectors in global
coordinate system x, y

e~, e-; = unit vectors in local
coordinate system (, '1

(, '1 = system oflocal coordinates
coinciding with two sides
of a triangle.

If, instead of(, '1 coordinates, normalized
coordinates are introduced, such as:

Appendix 11.1: Triangular finite elements
11.1.1 Derivation of area coordinates
Derivation of shape and interpolation functions for triangular elements is shown
using the example of the three noded element, presented in Figure n.1. The
position of an interior point P, in global coordinates x and y, is determined by the
vector F:

2. For geotechnical analyses triangular or quadrilateral elements with curved sides
are usually employed.

3. Isoparametric elements are popular. In this formulation, both the element
displacements and element geometry are expressed using the same interpolation
functions which are expressed in terms of natural coordinates.

4. Numerical integration is used to establish the element stiffness matrix.
Consequently, stresses and strains are usually output at integration points.

5. The global stiffness matrix is symmetric ifthe constitutive matrix is symmetric.
The global stiffness matrix is also sparse and banded. These properties are used
to develop efficient storage algorithms.

6. Gaussian elimination is usually adopted to solve (invert) the global stiffness
matrix. This can involve triangulation of the matrix.

7. Care must be taken when dealing with prescribed displacements.
8. Stresses and strains are secondary quantities which are calculated from the

nodal displacements.

(2.54)

z

Cartesian coordinates used for plane strain analysis.
There are four non-zero stresses (aI" a;, ao and Tr;),

four non-zero strains (Cl' , Cz , CII and Yrz) , and two
displacements (u and v) in the rand z direction,
respectively. The development ofthe finite element
equations is very similar to that presented for plane
strain situations.

The problem is discretised into finite elements in
the r-z plane. If isoparametric elements are used, the Figure 2.26: Cylindrical
geometry of the elements is expressed using coordinates
Equation (2.7), with rand z replacing x and y
respectively. As with plane strain problems, the nodal degrees of freedom are the
displacements U and v. The formulation of the element equations follows the
procedure outlined in Section 2.6, but with Equation (2.10) replaced by:

__ 3(LlU) . Ll = _ 3(LlV) . llB = _ LlU
llB,. - 3 ,Bz 3' 11r z r

Ll = - 3(LlV) _ 3(LlU) . Ll = Ll = 0
Y,., 3 3' Yrll Yzo. r z

Figure 11. 1: Three noded
triangular element

(11.2)r = xi +Y3J + 131 L1e1+ 132 Lzez

When 131 e-1 and 132e-; are expressed in terms of global coordinates, i.e:

where 131 and 132 are the lengths of sides 3,1
and 3,2 of the triangle in Figure n.l, then
new coordinates L I and Lz vary only between 0 and I. Equation (ILl) can now be
written as:

2.13 Summary
1. The finite element method involves the following steps:

Element discretisation;
Selection of nodal displacements as primary variables;
Derivation of element equations using minimum potential energy;
Assembly of element equations to form global equations;
Formulation ofboundary conditions (nodal displacements and forces);
Solution of global equations.
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Figure 11.3: Isoparametric
triangular element

3(0,0,1)

T

~3(Q1)'l~
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Parent element Global element

Figure /1.2: Area coordinates of a
triangular element

(11.10)

(1I.l2)

i = 1,2,3L =-.1.
I A'

Mid - side nodes:

N4 = 4S (1- S - T)

Ns = 4S T

N6 =4T(1-S-T)

Corner nodes:

NI = 1-S-T

N 2 =S

N] =T

Therefore the geometric interpretation
of the coordinates L;, i=1,2,3, is that they
represent the ratio of the area, A;, of the
appropriate triangle, I, 2 or 3, and the
total area of the element, A:

Consequently, they are named 'area
coordinates' .

11.1.2 Isoparametric formulation
In the same way as for quadrilateral
elements, the isoparametric formulation is
also used for triangular elements. Figure
11.3 shows a three noded isoparametric
parent triangular element and its global
derivative. The parent element is a right
angled triangle, in natural coordinates T
andS, whereO~Td andO~S~l.

Interpolation functions Ni , i=1,2,3,
can now be expressed in terms of natural
coordinates Sand T as:

NI = l-S- T
N 2 = S (11.11)
N 3 = T

For higher order 6 noded triangular elements, Figure HA, it can be shown that
the interpolation functions become:

Figure 11.4: Six noded
triangular element

Figure 1I.5 shows the location of Gauss integration points for a triangular
element for 3 and 7-point integration.

(llA)

(11. 9)

(11.6)

(11.3)

(11.8)

(ll.7)

(11.5)

a3 = XIY2 - X2YI

b3 =Y\ - Y2

a2 = X]Y\ - xIY]

b2 =Y3 - YI

3

Y = I Niy; , N; = L;
;::;1

a\ = X2Y] - X]Y2

bl = Y2 - Y]

l)lel = (XI-X)) i +(YI- Y))]

l)2eZ = (x2 -x)) i +(Yz - Y))]

The geometric meaning of these coordinates can be obtained by manipulating
Equation (llA), which can be written in the form:

then vector rbecomes:

r = [Llxl + L2x2 + (1 L1 - L2)X3] T+

[LIYI + L2Y2 +(1- LI - ~)Y3]]

or
1

L;=-(a;+bix+c;y), i=1,2,3
2~

In Equation (ll.7), ~ is the determinant ofthe system ofEquations (ll.6) and it can
be shown to represent the area of a triangle in Figure H.1. Parameters ai, bi and Ci

are:

where L]=1-L I - Lz.

All three coordinates L i , i=1,2,3, vary between 0 and 1 and represent
interpolation functions, Ni' of a three noded triangle:

3

x=IN;Xi
j::;!

The link between coordinates x andy and L i , i=1,2,3, is therefore:

x = Llxl + L2x2+ ~X3

Y = LIYI + L2Y2 + L3Y3

It can also be shown that the nominator in Equation (ll.8) represents areas of the
three triangles, marked as 1,2 and 3, in Figure H2.

Inverting Equation (ll.6) gives expressions for coordinates L i , i=1,2,3, in terms of
global coordinates:
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Figure 11.5: Gauss integration points for
triangular element

T

S,=O.16666
S,=O.66666

S3=S,

T,=S,
T,=S,
T3=S,

s

T

S,=O.10128
S,=O.79742

sJ=s,
S4=0.47014
Sj=s,
S,=O.05971
S7=O.33333

T,=S,
T,=S,
TJ=S,
T,=S"
T,=S4
T,,=S4
T,=S,

s

3. 1 Synopsis
This chapter discusses the enhancements that must be made to the standard finite
element theory, to enable realistic analysis of geotechnical problems to be made.
The modifications required to enable pore fluid pressures to be calculated in
undrained analysis are described. Special finite elements that can be used to model
structures and their interface with the ground are presented. Finally, a whole array
ofboundary conditions that are relevant to geotechnical analysis are described. By
the end ofthis chapter the reader should have sufficient information to be able to
formulate linear finite element analysis of a wide range of geotechnical problems.

3.2 Introduction
In the preceding chapter the finite element theory for linear materials was
described. As presented, the theory is applicable to the analysis ofany linear elastic
continuum. However, as it stands, there are severe limitations to its application in
geotechnical engineering, and without additional refinements only a very small
range of problems can be tackled. In particular, the constitutive behaviour is
formulated as a relationship between changes in total stress and strain, whereas in
geotechnical engineering it is usual to split the total stress tensor into effective
stresses and pore fluid pressures. It is also common practice to express the
constitutive behaviour in terms of effective stress parameters. Clearly, some
modifications to the standard theory are necessary for this to be accommodated.

Many geotechnical problems involve the interaction between structures and
soil. Consequently, in finite element analyses of these problems it is necessary to
model both the structure, the ground and the interface between them, see Figure
3.1. For example, when analysing tunnelling problems it is important to
realistically model the tunnel lining and its interface with the soil. If the lining is
of the segmental type, it will also be necessary to realistically model the interfaces
between the segments. In many cases this involves the use of special finite
elements in ~ddition to the continuum elements described in Chapter 2.

In Chapter 2 only displacement, line loads and surface surcharge boundary
conditions were discussed. For structural engineering applications these boundary
conditions are sufficient to analyse a wide range of problems. However, for
geotechnical engineering a much wider range of boundary conditions is required
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lOOm

a) Finite element mesh

Figure 3.3: Effect of Poisson's ratio
on the behaviour of a smooth

flexible strip footing

expressed in terms of total stress. The finite element formulation presented so far
can therefore be used to analyse the following two classes of problems:

Fully drained problems in which there is no change in pore fluid pressure, llPr
= O. This implies that changes in effective and total stress are the same, i.e.
{llu' }={llu}, and that the [D] matrix contains the effective constitutive
behaviour. For example, for isotropic linear elastic behaviour [D] will be based
on a drained Young's modulus, E', and drained Poisson's ratio, fl'.
Fully undrained behaviour in which the [D] matrix is expressed in terms of
total stress parameters. For isotropic linear elastic behaviour [D] is based on an
undrained Young's modulus, E" , and an undrained Poisson's ratio, fl" .

In the second class of problems, if the soil is saturated there would be no
volume change. For an isotropic elastic soil this would be modelled by, ideally,
setting the undrained Poisson's ratio, fl,,, equal to 0.5. However, as can be seen by
inspection of the isotropic linear elastic [D] matrix given in Section 1.5.5, this
results in severe numerical problems as all terms ofthe [D] matrix become infinite.
To avoid such indeterminate behaviour it is usual to set the undrained Poisson's
ratio to be less than 0.5, but greater than 0.49.

To illustrate the effect of a high
..J.Q!l!,.

Poisson's ratio, a smooth flexible strip 1111~~111±±~~~~§footing resting on an isotropic elastic ~]
layer of soil of finite depth has been
analysed, using the finite element
mesh shown in Figure 3.3a, for a
range ofPoisson's ratios. The analyses 110r-----------~

are similar to those discussed in 100 ~Doubl'p",d,,;on

S . 2 11 h h h t --tr- Single precissionectlon . ,except t at t e mes §~ 90 • Poo1o'(967)

. I d h • 80contams more e ements an as a ~.~
"08 70

greater lateral extent. This enables ~i 60
a"

more accurate solutions to be ~~ '0

obtained. The boundary conditions ~ 0 40

are the same as in Section 2.11. The 30*-__-t=__---~
20 '=-...,-':-::-:----L...,-----:c-,L-:-:--L.-~--'------.I

surcharge loading on the footing was 04~;~;901:;~~~9 ~~~::9 ~~;;~ ~.~;~ ~~~ ~; I: ~5"

100kPa and the Young's modulus of b) Settlement under the corner of strip footing vs. Poisson's ratio

the soil E'=I 0000 kPa. Analyses were
performed with Poisson's ratio, fl,
ranging from 0 to 0.4999999. Two
sets of analyses were performed, in
one set single, and in the other double
precision arithmetic was used. For single precision arithmetic seven significant
figures are used to represent real numbers, while in double precision fourteen
significant figures are used. Clearly, double precision arithmetic is more accurate
than single precision. The vertical settlement of the ground surface at the edge of
the strip footing is plotted against the value of Poisson's ratio in Figure 3.3 b.

/.-<.

c) Anchored wall

/.-<. To be
excavated

b) Basement excavation

b) Propped wall

,..-------"
,,' To be

constructed

Figure 3.2: Examples of construction and excavation

a) Embankment construction

a) Tunnels

Figure 3. 1: Examples of soil-structure interaction

3.3 Total stress analysis
In Chapter 2 the soil constitutive behaviour was expressed in the simple form:

{lla} = [D]{llc} (3.1)

where {llu}=[llux , lluy, llu" llTxy, llTxz , llTyz]T and {lle}=[llex, lley, lle" llyxy, llyw
lly zF are the incremental total stress and strain vectors and [D] is the assumed
re~tionship between these vectors. For the present considerations, [D] is assumed
to be the isotropic linear elastic matrix, given in Section 1.5.5 of Chapter 1.
Alternative constitutive matrices will be discussed in Chapters 5, 6, 7 and 8. As
noted in Chapter 1, it is necessary for Equation (3.1) to provide a relationship
between increments oftotal stress and strain, because the equilibrium equations are

ifrealistic analyses are to be performed. For example, many geotechnical problems
involve excavation and construction, see Figure 3.2. Many also involve changes
in pore water pressure. Special boundary conditions are often required to model

soil structure interaction.
This chapter describes how the above conditions can be accommodated in finite

element analyses. Their application in specific geotechnical problems is discussed

in Volume 2 of this book.
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or:

Since the solid and fluid phases of the soil deform together in the undrained
condition (i.e there is negligible relative movement between the two phases), the
strains, in the macroscopic sense, are the same in each phase. Relating the stress
components of Equation (3.2) to strain gives, in addition to Equation (3.1):

(3.2)

(3.3)

(3.6)

(3.4)

(3.5)

(3.7)

[D']{ L'l &}

[Df]{L'l&}

{~a} = {~al} +{~af}

{Llerr} = {LlPr ~PJ ~Pr 0 0 O}T
where:

Substituting Equations (3.1), (3.4) and (3.5) into Equation (3.2) gives:

Equation (3.6) provides a relationship between the stiffness in terms of total stress,
[D], the stiffness in terms ofeffective stress, [D ' ], and the pore fluid stiffness, [Dr].
This last matrix, [Drl, is related to the bulk modulus of the pore fluid, Kr, which is
treated as a single phase. Two phase pore fluids, as occur in partially saturated
soils, can be included by a suitable choice of Kr . Since a fluid cannot transmit
shear, it is apparent from Equation (3.5) that [DJ] has the form (for the general
three dimensional stress situation):

[Df ] = K{ ~33 ::]

n (1- n)
Llcv =-~Pj +--~Pj (3.8)

K
j

' K, .

Substituting Equation (3.7) into (3.5) gives three identical equations:

D.Pt = Ke(D.Ex + D.E:y + D.Ez) = KeD.E:v

in which Ke is a constant, IJ is a 3 x 3 matrix all elements of which are 1, and 03 is
a 3x3 null matrix. It is shown below how the equivalent bulk modulus of the pore
fluid, Ke , is related to Kr. This follows from Naylor (1974).

If n is the soil porosity then, in a unit volume of soil, the pore fluid occupies a
volume n and the solid soil particles a volume 1- n. Let K,. be the bulk modulus of
the solid soil particles. An increment in pore fluid pressure, ~Pj, causes
compression in both the pore fluid and the solid soil particles. The associated
increment in effective stress, {~(1/}, also causes, in general, a volume change in the
solid soil particles. However, as this stress must act through the particle contacts,
which have a small area, this volume change is likely to be small. If it is assumed
that this volume change is negligible, the total volume change per unit volume of
soil, ~E:", is given by:

3.4 Pore pressure calculation
The results from the undrained analysis considered above are in terms of changes
in total stress. No information is provided on changes in pore fluid pressure.
However, in many situations the changes in pore fluid pressure are required. It is
also more convenient to express the constitutive behaviour in terms of effective
stress parameters. This is particularly valid for the more advanced constitutive
models, see Chapter 8. It would therefore be advantageous if undrained analyses
could be performed considering both the changes in effective stress and pore fluid
pressure and using a [D] matrix which is expressed in terms of effective stress
parameters. This can be done by invoking the principle of effective stress.

Consider the application of a load which causes a local change in total stress,
{~(J"}, and change in strain, {~e}, in an element of soil. Ifthere is no drainage, an
excess pore fluid pressure, ~Pr' is established. The principle of effective stress

requires that:

Also shown in Figure 3.3b, for comparison, are results from Poulos (1967) for
fl = 0, 0.2, 0.4 and 0.5. These have been obtained using the graphs given in the
paper, which are based on numerical integration of the basic elastic solution for a
point load. The results are, therefore, approximate. Overall, the predictions from
the finite element analyses agree well with those of Poulos.

Results from the finite element analyses using double precision arithmetic
indicate that once Poisson's ratio exceeds 0.499, the value has little effect on the
prediction, which itself is in good agreement with that given by Poulos for fl = 0.5.
For the analyses with single precision arithmetic it was not possible to invert the
stiffness matrix for Poisson's ratios greater than 0.49999, due to numerical
instability (i.e. a negative pivot occurred during the inversion process). In addition,
although a solution was obtained for fl = 0.49999, it is in error, see Figure 3.3b.

These results show that, for this problem, ifa value of Poisson's ratio fl = 0.499
is used, the results would be very similar to that for fl = 0.5 The results also show
that the maximum value of fl that can be tolerated without numerical instability
depends on the precision of the arithmetic. In this respect it should be noted that
most finite element software use double precision arithmetic. The maximum value
of fl that can be used also depends on the algorithm used for inversion ofthe global
stiffness matrix and is also problem dependent. Consequently, there are no hard
and fast rules available as to the exact value of fl that should be used to represent
undrained conditions. Some texts suggest using a value of fl = 0.49 to represent
undrained conditions. As can be seen from Figure 3.3b this would result in a
modest error for the smooth flexible strip footing under investigation.

Another difficulty that arises with the analysis of nearly incompressible
materials (fl-0.5) is that, for many problems, predictions ofchanges in mean stress
(= (~iJx+~(Jy+~(Jz)l3) can have large errors. This problem is discussed in detail by
Naylor (1974), who shows that accurate results can be obtained by using reduced
Gaussian integration (see Section 2.6. I) and by using stress values sampled at the

integration points.
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Equating Equations (3.8) and (3.9) and re-arranging gives:

K = 1
e ~+ (l-n) (3.10)

K r K,

Equation (3.10) can usually be simplified. K,. is nearly always very much
greater then the bulk modulus of the soil skeleton (i.e. the bulk modulus ofthe soil
in the absence of pore fluid). If the pore fluid has a significant compressibility so
that K, is also much greater than Kr, Equation (3.10) then simplifies to:

KfKe =­
n

For saturated soils both Kr and K,. are much larger than the soil skeleton stiffness.
Their exact value may then be unimportant, and it is convenient to assume Kt =K,.
Consequently, Equation (3.10) reduces to:

K e = Kt (3.12)

The above theory is valid for any porous material for which the principle of
effective stress applies and for which incremental [D) matrices (i.e. incremental
stress-strain laws) exist. Consequently, while it is valid for a simple isotropic linear
elastic soil, it is also applicable to the more advanced soil constitutive models
described in Chapters 7 and 8.

It is a straightforward process to combine the above theory with the finite
element method. Instead of specifying the components of the total stress
constitutive matrix, [D), the components ofthe effective stress constitutive matrix,
[D'), and the pore fluid equivalent bulk modulus, K e , are specified. The two are
then combined using Equation (3.6) to give [D). The calculation of element
stiffness, global stiffness assembly and solution of system equations follow the
standard procedure described in Chapter 2. The only other difference occurs when
calculating stresses. Here Ke is used to calculate the change in pore fluid pressure,
b.Pt, from the predicted volumetric strain, using Equation (3.9), and [D') is used
to calculate the changes in effective stress, using Equation (3.4). The changes in
total stress can then be found by either summing the effective stress and pore fluid
pressure changes, or by using Equation (3.1). IfKe is zero, as in a drained analysis,
the division into pore fluid pressure and effective stress components still occurs,
but the pore fluid pressures do not change during loading.

When performing an undrained analysis, a value for Ke must be set. In the
Authors' experience, analysis involving saturated soil is unlikely to be sensitive to
the actual magnitude selected, as long as it is large. However, the use of too high
a value can lead to numerical instability. This occurs as the equivalent undrained
total stress Poisson's ratio, fl,,, approaches 0.5. The Authors recommend setting Ke
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to equal j3K'kel , where j3 has a value between 100 and 1000, and K'kel is the bulk
modulus of the soil skeleton, which can be calculated from the effective stress
parameters forming the [D') matrix. For an isotropic linear elastic soil it can be
shown that the equivalent undrained total stress Poisson's ratio, flu, is related to the
drained (effective) Poisson's ratio, fl', and j3 by the following equation:

;"" = A , where A = (I + j.l') [_j.l_'_ + 13]
(1+2A) (I-2j.l') (1+;.1') 3 (3.13)

Table 3.1 indicates how flu varies with j3 for fl' = 0.1 and;.1' = 0.3.

Table 3. 1: Equivalent values of Ji
u

Q flu

fl'=O.1 fl'=0.3

10 0.4520 0.4793

100 0.4946 0.4977

1000 0.4994 0.4998

For analysis involving the time dependent dissipation of excess pore water
pressures, coupled finite element analysis must be performed. Such analyses are
discussed in detail in Chapter 10.

3.5 Finite elements to model structural components
3.5.1 Introduction

Many geotechnical problems involve soil structure interaction, see Figure 3.1.
Th~refore, when applying finite element analysis to such problems it is necessary
to mclude the structural components, e.g. retaining walls, props, anchors, tunnel
linings, foundations etc., in the finite element mesh. In theory, it is possible to use
the 2D continuum elements discussed in Chapter 2 to model these structural
components, but in practice this can have drawbacks. For example, in many
situations the dimensions of the structural elements are small compared to the
overall geometry and therefore, to model them with 2D continuum elements would
result in ~ither a very large number of elements, or elements with unacceptable
aspect ratios.

In many instances the interest is not in the detailed distribution of stresses
within the structural members, but in the distribution of averaged quantities such
as bending moments, axial and shear forces. These can be obtained from the
stresses within the 2D continuum elements, but additional calculations are required.

To overcome these shortcomings, special finite elements have been developed.
These elements are formulated by essentially collapsing one, or more, dimensions
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3.5.2 Strain definitions
The strains for this particular beam element, shown in Figure 3.4, are defined as
follows (Day (I 990)):

(3.18)

(3.19)

(3.20)

(3.21 )

(3.22)

(3.23)
Bcosa

XIfI =--­
ro

(3.24)

da 1
=--

d! R

dB
XI=dT

du dv .
Cl =--cosa - -sma

df df

du. dvr =-sma - -cosa + 8
d! d!

WI sina - UI cosa U
E: = =--

If ~) ro

and noting that (Figure 3.4):

Axial strain:

Bending strain:

Shear strain:

Circumferential
membrane strain:

Circumferential
bending strain:

where ro is the circumferential radius, see Figure 3.5, and U and v are re-defined as
the displacements in the directions normal and parallel to the axis of revolution.

While the above strain terms are sufficient for plane strain analysis, additional
terms are required for axi-symmetric analysis, (Day (I 990)):

gives the following expressions for Equations (3.14) to (3.16) in terms of the
global displacements:

3.5.3 Constitutive equation
The strain terms presented above are related to
the element forces and bending moments by the
expression:

where {Lic}=[MhLiXh Liy, M v/' LixIfIF, {LitT}=[LiF,
LiM, LiS, LiFvn LiMv,]T, with the incremental
components being: LiF - the meridional force,

LiM - the bending moment, LiS - the shear force, ............ Axis of revolution

LiFv/ - the circumferential force and LiMIfI - the

circumferential bending moment. For plane Figure 3.5: Definition of r
ostrain analysis LiF is the incremental in-plane

axial force, LiFv/ is the incremental out of plane force and Licv/= LiXv/=O.
For isotropic linear elastic behaviour, the [DJ matrix takes the form:(3.17)

,,\~
~a(-ve)

Note: Angles increase anticlockwise

Figure 3.4: Definition of terms and
axes

UI v sina + U cosa
wI = vcosa-usina

(3.16)

(3.15)

(3.14)

Axial strain:

dUI WIE: -----
1- d! R

Bending strain:

dB
XI=dT

of the structural component to zero. For example a retaining wall can be modelled
usin a a beam element which has no width. The element is formulated directly inb

terms of bending moments, axial and shear forces and their associated strains.
Consequently, the quantities of engineering interest come directly from the finite
element analysis.

There are several different formulations available in the literature for these
special structural elements. This chapter describes a 3 noded isoparametric curved
Mindlin beam element which was developed by the numerical geotechnical
research group at Imperial College, Day (I990), Day and Potts (I990). This
element was developed to be compatible with the 2D elements described in
Chapter 2. It is therefore isoparametric and uses the same quadratic interpolation
functions as the 2D elements. It can accommodate axial stresses, bending moments
and shear stresses and their associated strains. If used in a plane strain or an axi­
symmetric analysis this element effectively becomes a shell element.

The impetus for developing a new element arose because those that exist in the
literature contain severe deficiencies. In particular, some cannot account for rigid
body movements. These deficiencies and the advantages of the new element are
discussed in detail by Day and Potts (I990).

Shear strain:

r =!:!:J..._ dWI +8
R d!

where! is the distance along the beam, UI and WI are the displacements tangential
and normal to the beam, R is the radius of curvature, and B is the cross section
rotation. The definitions (3. 14) to (3.16) are for a compression positive sign
convention.

It is useful to rewrite Equations (3.14) to (3.16) in terms of the displacements
U and v in the global Xc; and yc; coordinate directions. The transformation of
displacements from global to local components is given by:
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b) Natural ordinate
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[v]= 0 0 kGA 0 0 (3.25)
EAfJ

0 0
EA

0
(1- fJ2) (1_fJ2)

0
ElfJ

0 0
El

(1- fJ2) (1- fJ2)

Figure 3.6: Three noded beam (or shell) element

The coordinates and global degrees offreedom at any point on the element are
related to the nodal values using the shape functions, Ni' Hence:

Figure 3. 7: Transformation
of coordinates

(3.30)

3 dx 3

X 2: Ni Xi - 2: N:Xi
i=l ds i=l
3 dy 3

Y 2: NiYi 2: N:y,
;=1 ds ;=1
3 du 3

u 2: N,u, - 2: N:u, (3.28)
;=1 ds ;=}
3 dv 3

V 2: Ni V, - 2: N ,'v,
;=1 ds ;=}
3 de 3e 2: N,e, - 2:N,'e,

;=1 ds ;=1

sina
1 dy

PI ds

1 dx
cosa

PI ds

where the prime denotes the derivative with respect to s. The isoparametric shape
functions are defined by Equation (3.29):

1
NI 2"s(s-1)

N 2 ~s (s + 1) (3.29)

N 3 (1- S2)

where s is the natural ordinate that varies from
-1 to +lover the element length (Figure 3.6).
For brevity, it is written that S = sina and C =

cosa, where sina and cosa are calculated from
Figure 3.7 as:

(3.27)

SI BI

XI B2

Y B3 {8} (3.26)

s'f B4

X'f Bs

3.5.4 Finite element formulation
For finite element analysis the global displacements u and v, and the cross section
rotation, e, are taken as nodal degrees offreedom. This means that for plane strain
and axi-symmetric analyses there are three degrees of freedom at each node,
compared to the two degrees of freedom for the continuum elements described in
Chapter 2.

The B matrix is defined as:

The beam (or shell) properties are the moment of inertia, I, and cross sectional
area, A. In plane strain and axi-symmetric analysis these are specified for a unit
width of the shell. E and f1 are the Young's modulus and Poisson's ratio and k is
a shear correction factor.

The distribution of shear stress across the cross sectional area of a beam (or
shell) in bending is nonlinear. The beam element formulation, however, uses a
single value to represent the shear strain. The correction factor, k, is a factor
applied to the cross sectional area so that the strain energy in the finite element
model, calculated over the area kA, is equal to the actual strain energy over the area
A. The shear correction factor is dependent on the shape of the cross section. For
a rectangular section, k=5/6. Bending deflections of slender beams dominate their
behaviour and the solution is very insensitive to the value of k.

where Bi represents row i of the B matrix, and (j is the vector of nodal
displacements and rotations (i.e. degrees of freedom) defined, for a 3 noded
element in Figure 3.6, as:
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(3.37)

(336)

(3.38)

CN~

-lJf

3 -

1',) = L: Nixi
i=l

The element stiffness matrix, [KE ], is given by (see Section 2.6):

In the definition of E:VI ' B4 becomes:

I {-B4 =-- NI
To

For the circumferential (out of plane) strain terms the current radius, To, becomes:

and in the definition ofX'II' Bs becomes:

Using the substitute shape functions, Ni, to define the variation of () over the
element in the definition of y, gives:

(3.33)

The determinant of J is calculated as:

Bz = I~I {o 0 N; 0 0 N; 0 0 Nn

Bo, B
4

and Bs can also be defined in terms of Ni and N;'. However, when such a
f;rmulation is used with full (3x3) integration, membrane and shear force locking
occurs. This is indicated by widely fluctuating axial and shear forces and is a
common problem with beam and shell elements. To overcome this problem a field
consistent approach is used. This is achieved by using substitute shape functions
for some of the terms in the strain equations (Day (1990)). These substitute shape

functions take the form:

Noting also that d! = IJI ds (see Figure 3.7), the rows of the B matrix are:

B - -l-{CN' SN' 0 CN'SN' 0 CN'SN' o} ('1.32)
I - IJI I I 2 Z 3 3 ~

1 I
NI -(--s)

2 3
1 1 (3.34)N 2 -(-+ s)
2 3

N3

2
-
3

(3.39)

where! is the length of the element and the constitutive matrix [D] is given by
Equation (3.25). The integral is evaluated in the natural ordinate system, see Figure
3.6, giving:

(3.40)
1 T

[K El = f[B1[D l[B llJI ds
-I

while the use of substitute shape functions, as described above, prevents locking
of the solution for straight beam (shell) elements. Locking can still occur with
curved beam elements. The problem can be overcome by using reduced integration
for all strain terms.

3.5.5 Membrane elements
The beam element described above can be degenerated to form another element
which cannot transmit bending moments or shear forces. In plane strain and axi­
symmetric analyses it is a pin-ended membrane element, capable of transmitting
forces tangential to the surface only (membrane forces). It is essentially a spring,
but differs from a spring in that it can be curved and it is treated in the same way
as all other elements in the analysis.

This element has two degrees of freedom per node: the displacements u and v
in the global XI; and Yr; directions respectively. In plane strain analysis the element
has only one strain term, the longitudinal strain, Cl, given by:

o +1
S

b) Mid-point node

-1

1.0
N

0.5

__ Isoparametric shape function
___ . Substitute shape function

, +1
S '.

a) End nodes

-1

They are derived from a least
squares smoothed approximation
to the usual isoparametric shape
functions given by Equations
(3.29). The substitute shape
functions coincide with the usual
isoparametric shape functions at
the reduced Gaussian integration
points, see Figure 3.8.

These shape functions are used Figure 3.8: Substitute shape functions
for the interpolation of () in for 3 naded element

Equations (3.21) and (3.23), of u
in Equation (3.22) and for the calculation ofTo in Equations (3.22) and (3.23). The
derivatives of the substitute shape functions are not used. The use of substitute
shape functions for only some of the terms in the strain equations is therefore
equivalent to selective reduced integration ofthese terms. Additionally, if reduced
(2 point) Gaussian integration is used to evaluate the stiffness matrix, the result is
independent of which shape functions have been used.
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In axi-symmetric analysis the additional circumferential strain is given by:

These definitions are the same as for beam elements ( Equations (3.14) and (3.22)).
The terms in the constitutive matrix, [D], are equal to the corresponding terms

in the beam element constitutive matrix and are as follows:

(

Soil

Soil(~

Structure

Structure

Figure 3. 10: Use of
continuum elements to

model interface

--c;

Structure ) Soil

r --n- --c;

9 Structure () Soil

n'J

Figure 3.9: Soil-structure
interface using continuum

elements

<)

Use of thin continuum elements with
standard constitutive laws (Pande and
Sharma (1979), Griffiths (1985)), Figure
3.10.

Linkage elements in which only the
connections between opposite nodes are
considered (Hermann (1978), Frank et al.
(1982)). Usually opposite nodes are
connected by discrete springs, Figure 3.1l.
Special interface or joint elements of either
zero or finite thickness (Goodman et al.
(1968), Ghaboussi et al. (1973), Carol and
Alonso (1983), Wilson (1977), Desai et al.
(1984), Beer (1985)), Figure 3.12.
Hybrid methods where the soil and structure
are modelled separately and linked through
constraint equations to maintain Figure 3. 11: Use of springs
compatibility of force and displacement at to model interface
the interface (Francavilla and Zienkiewicz
(1975), Sachdeva and Ramakrishnan (1981),
Katona (1983), Lai and Booker (1989)).

model the soil-structure boundary such as the
sides of a wall or pile, or the underside of a
footing. Particular advantages are the ability to
vary the constitutive behaviour of the soil­
structure interface (i.e. the maximum wall
friction angle) and to allow differential
movement of the soil and the structure, i.e. slip
and separation. Many methods have been
proposed to model discontinuous behaviour at
the soil-structure interface, as listed below.

Among these alternatives, the use of zero
thickness interface elements is probably the most I..U---{C)---(JJ---<2:)---(Jv

popular. Such an element has been developed by

the n~merical geotechnical research group at Figure 3. 12: Use of special
Impenal College, Day (1990). A brief interface elements
description of this element for 2D plane strain
and axi-symmetric conditions is presented in the following sections.

3.6.2 Basic theory

The isoparametric interface element is described by Beer (1985) and Carol and
Alonso (1983). The element (see Figure 3.13) with four or six nodes is fully

(3.43)

(3.42)

(3.41 )du, w/
[; -----
1- dl R

Membrane elements are useful for the analysis of soil-structure interaction
problems. A constitutive law that does not allow tension can be used to model pin­
ended retaining wall props that fall out ifthe wall moves away from the prop after
installation. An element which can only resist tensile forces (i.e. not compression)
can be used to model flexible reinforcing strips, such as geofabrics, embedded in
the soil.

3.6 Finite elements to model interfaces
3.6.1 Introduction
In any soil-structure interaction situation, relative movement ofthe structure with
respect to the soil can occur. The use of continuum elements, with compatibility
of displacements, in a finite element analysis ofthese situations prohibits relative
movement at the soil-structure interface, Figure 3.9. Nodal compatibility of the
finite element method constrains the adjacent structural and soil elements to move
together. Interface, or joint elements as they are sometimes called, can be used to

[ D]=l(l~~2) (l~A;)1
EAf..l EA

(I-f..l2) (l-f..l2)

The finite element formulation is similar to the formulation ofthese terms for
the beam element, Section 3.5.4. The usual isoparametric shape functions are,
however, used for the interpolation ofu and ro in Equation (3.42) (i.e. the substitute
shape functions are not used).

The advantages of using an element ofthis type as opposed to the use of spring
boundary conditions (which are discussed subsequently in this chapter) are:

Different behaviour can easily be specified through a constitutive law and an
elasto-plastic formulation. For example, a maximum axial force may be
specified by a yield function, F, of the form: F = axial force ± constant.
In axi-symmetric analysis, hoop forces can provide significant restraint. These
are included in an analysis by using membrane elements. Spring boundary
conditions do not account for the effect of hoop forces.
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(3.53)

(3.52)

(3.54)
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cosa sina]{u
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_ u
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}
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'-- .....xo' u

a) Global coordinates

Substitution into Equation (3.50) gives:

Figure 3. 14: 6 noded interface
element

The global displacements (u, v) at any point in the element are expressed in
terms of the nodal displacements, using the isoparametric shape functions, Ni:

N 3u3 + N4 u4 + N6u6

Nju j + Nzuz + Nsus
and

v
top N3v3 + N4v4 + N 6v6

vbot Njvj + Nzvz + Nsvs
where the subscript refers to the node number.

The isoparametric shape functions, Ni, are defined as:

N j N 4 ~s (s-l)

Nz = Ns = ~s (s+ 1) (3.55)

N 3 = N 6 = (l-sz)

where s is the natural ordinate that varies from -1 to +1 over the element length
(Figure 3.14). Substitution of Equations (3.53) and (3.54) into (3.52) gives:

u,

(3.49)

(3.45)

v,

b) 4-noded element

u,

L4

v,

a) 6-noded element

Figure 3. 13: Isoparametric interface
(3.44) elements

(v
bot

_ v
toP

) sina + (u bot _ utoP ) cosa

(v
bot

_v toP ) cosa _ (u bot _utoP ) sina
r

r !'1u, u,bot _ uJop (3.46)

{; !'1v, v!ot - vJop (3.47)

where:

u, = v sina + u cosa
(3.48)

v, = v cosa- u sma

and u and v are the global displacements in the XG and YG directions respectively.
Hence:

[D]=[K, 0]o Kn

where K,. and K
Il

are the elastic shear stiffness and normal stiffness respectively.
The interface element strain is defined as the relative displacement of the top

and bottom ofthe interface element:

For isotropic linear elastic behaviour the [D] matrix takes the form:

compatible with four and eight noded
quadrilateral, and three and six noded
triangular, isoparametric 2D elements.

The interface stress consists of the
normal and shear components. The
normal stress, (J, and the shear stress,
T, are related by the constitutive
equation to the normal and tangential
element strains, [; and y:

3.6.3 Finite element formulation
Figure 3.14 shows a six noded interface element. The strains are defined as:

{r} __ {U,bot - uJoP } (3.50)
{; v!ot - vJoP

The transformation of local to global displacements is written in matrix form
as (Figure 3.14):

and

(3.57)

(3.56)

where f5 is the vector of nodal displacements (degrees of freedom) defined as:

(3.51 )
{

Ut} =[c~sa sina]{u}
v, -sma cosa v

(3.58)
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The element stiffness matrix, [KE], is given by (see Section 2.6):

where I is the length of the element and the constitutive matrix [DJ is given by
Equation (3.44) or (3.45). The integral is evaluated in the natural ordinate system,

see Figure 3.14, giving:

where IJI is given by Equation (3.31).
The coordinates of the top and bottom of the interface are defined in terms of

the nodal coordinates, using the shape functions (Equation (3.55)). For small
displacement analysis, in which the calculations are based on the original

geometry, coordinates x andy are:

The first group of boundary conditions affects only the right hand side (i.e.
{!'!.Rd) ofthe system equations. These boundary conditions are loading conditions
such as Point loads, Boundary stresses, Bodyforces, Construction and Excavation.

The second group of boundary conditions affects only the left hand side (i.e.
{!'!.d},,u) of the system equations. These are kinematic conditions such as
Prescribed displacements.

The final group ofboundary conditions are more complex, since they affect the
whole structure of the system equations. These conditions include: Local axes,
which require a transformation of the stiffness matrix and the right hand side load
vector; Tiedfreedoms, which affect the numbering of the degrees of freedom and
the stiffness matrix assembly procedure; and Springs, which again affect the
stiffness matrix assembly procedure.

The following sections ofthis chapter describe in detail the boundary condition
options necessary for performing geotechnical finite element analysis. As noted in
Section 2.11, for plane strain (and axi-symmetric) problems it is necessary to
specify an x (r) and y (z) boundary condition at each node on the boundary of the
finite element mesh. This boundary condition can either be a prescribed nodal
displacement or a nodal force. It should be noted that many finite element
programs do not insist that the user specifies all these conditions. In such a
situation the program makes an implicit assumption for the unspecified nodal
conditions. Usually, ifa boundary condition is not prescribed, the program assumes
that the appropriate nodal force is zero.

(3.62)

(3.61 )

(3.60)

(3.59)

The trigonometric

Nlx\ + Nzxz + Nsxs

NlYI + Nzyz + Nsys

xtop = x bot

ytop = ybot

dx

ds
dy = NN{y\ + N~yz + ;Ys
ds

where the prime denotes the derivative with respect to s.
functions, sina and cosa, are given by Equation (3.30).

and

U1 ,vI are local degrees of freedom

Figure 3. 15: Sliding boundary
condition

L
VG Global

degrees of
uG freedom

y~",O",
4 8 1

xG

Global axes

3.7.2 Local axes
In most applications, the degrees of
freedom at each node (e.g. the two
nodal displacements for plane strain
or axi-symmetric problems) are
referred to the global system of axes.
Thus, for compatibility, the stiffness
matrices and load conditions are also
determined with respect to the global
axes. However, in order to apply
boundary conditions at an angle to the
global directions, it is sometimes
necessary to define a set ofLocal axes
at certain nodes. In such cases the
stiffness matrices and load conditions, for the elements containing the nodes with
local axes, need to be transformed.

As an example, Figure 3.15 shows a problem with a sliding boundary
condition. In this case, node 1 is required to move only parallel to the XI direction,

3.6.4 Comments
It has been found that zero thickness interface elements can suffer from numerical
instabilities if they have widely different stiffnesses from the adjacent continuum
and/or structural beam elements. This problem has been addressed by Day and

Potts (1994).
Zero thickness interface elements also present problems during mesh

generation, because adjacent nodes on each side of the element have identical
coordinates. Problems can also arise where interface elements intersect. An elegant
way of overcoming these problems is presented by Potts and Day (1991).

3.7 Boundary conditions
3.7.1 Introduction
The term Boundary conditions is used to cover all possible additional conditions
that may be necessary to fully describe a particular problem. The types ofboundary
conditions can be classified according to their influence on the global system of
equations given by Equation (2.30):
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not prescribed, the global stiffness
matrix becomes singular and the -+

system equations cannot be solved.
To remove the rigid body modes, -+ 4crj

which for two dimensions consist of -+

two translations and one rotation, the -+

user should effectively prescribe the
values of at least three degrees of
freedom. Care should be taken,
particularly with the rotational mode,

that the prescribed displacements do Figure 3. 16: Removal of rigid body
restrain all the rigid body modes. modes
Figure 3.16 shows an example of a

plane strain body deformed by stress boundary conditions. The choice of
prescribed displacements, which restrain the rigid body modes, is not unique and
depends on the displacement solution required. Figure 3.16 shows the case where
the rigid body modes are removed by specifying three degrees of freedom: these
are u = 0, V = 0 at node 5 and v = 0 at node 6.

Problems involving symmetrical bodies and symmetrical boundary conditions
can be solved by analysing only half of the total body, see Section 2.11. For such
cases displacement boundary conditions can be applied to ensure that the line of
symmetry remains undeformed. These displacement conditions may also be useful
in removing certain rigid body modes.

The definition of a prescribed displacement component is equivalent to
specifying the value of a degree of freedom. Thus, if local axes are also specified
at certain nodes, the prescribed displacements refer to the displacement
components with respect to the new local system of axes. The application of the
prescribed displacements is performed simultaneously with the solution of the
global system of equations. For a detailed description of this process see Section
2.9.4. Only an outline of the technique is given here.

The global equilibrium Equations (2.30), can be partitioned in the form:

[KELcal ==[Qf[ KEtlobal[Q] (3.63)

where [Q] is a rotation matrix of direction cosines defined by the expression:

{Ad} global == [Q]{ Ad} local (3.64)

which relates the local displacements to the global displacements. For example, for
a 4 noded isoparametric element, the rotation matrix [Q] takes the form:

cosa j -sinal 0 0 0 0 0 0
sinal cosa j 0 0 0 0 0 0

0 0 cosaz -sinaz 0 0 0 0

[Q]==
0 0 sinaz cosaz 0 0 0 0

(3.65)
0 0 0 0 cosa3 -sina3 0 0
0 0 0 0 sina3 cosa3 0 0
0 0 0 0 0 0 cosa4 -sina4

0 0 0 0 0 0 sina4 cosa4
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where Xl makes an angle a with the global Xc axis. This is most easily achieved by
defining local axes Xl' Yl for node 1 and setting the second degree of freedom at
node 1 to zero (VI = 0).

If local axes are defined, it is necessary to transform the element stiffness
matrices and the load boundary conditions prior to assembling the global system
of equations. For 2D plane strain and axi-symmetric analyses the element stiffness
matrix [KE ] is transformed from global axes to local axes by:

where angles ai' az, a3, a4 define the orientation of the local axes with respect to
the global axes at each ofthe four nodes. In practice, the number ofmultiplications
performed in evaluating Equation (3.63) is greatly reduced by only processing the
non-zero sub-matrices ofthe matrix (3.65).

The transformation of the right hand side load vector can be performed in a
similar manner. Using the definition of {ARE} given in Section 2.6, the
transformed load vector becomes:

where [Q] is again of the form of Equation (3.65) (note: [Qll = [QF). The
transformation Equation (3.66) is indicated at the element level, however, in
practice it is more convenient to take account of the local axes in the assembled
right hand side vector, {ARd.

3.7.3 Prescribed displacements
In addition to the application of prescribed displacement conditions to represent
structural boundaries, a sufficient number of displacement components must be
specified to restrict any rigid body translations or rotations. If these conditions are

Thus the unknown displacements {Adu} can be calculated from a modified system
of global equilibrium Equations (3.68).

(3.67)

(3.68)

(3.69)

[Ku]{Adu} == {ARu}

{ARu} == {ARu} - [Kup ]{ Adp}

where

where Adu are the unknown degrees of freedom and Adp corresponds to the
prescribed displacements. The first matrix equation from Equation (3.67) gives:

(3.66){ } [ ]
T { }ARE == Q ARElocal global



(3.71 )

Nodal
displacements

----19 20 21 22

conditions to be applied to the mesh boundary immediately below the position of
the strip footing are shown in Figure 3.17. A vertical nodal force, llFy=P, is applied
to node B, on the line of symmetry, and zero horizontal nodal forces, llFx=O, are
applied to nodes on the boundary between A and B. In addition, the nodes between
A and B are constrained to move vertically by the same amount by using tied
freedoms. This is achieved in the finite element analysis by assigning a single
degree of freedom number to the vertical degree of freedom at each of the nodes
along the boundary between A and B.

In general, the set of tied displacement components are given a single degree
offreedom number, which appears only once in the assembled global equilibrium
equations. Thus, tying degrees offreedom alters the structure ofthe global stiffness
matrix and in some cases may increase the total profile (i.e. the number of terms
of [KG] which need to be stored).

As an example, Figure 3.18 shows
a problem of frictionless contact
between two bodies. The nodes 25,
26, 27, 28 in the upper body are
defined to be coincident with the
nodes 19, 20, 21, 22 respectively, of
the lower body. The problem is to
find the indentation stresses induced
from the weight of the upper body.
Since the two bodies are in contact, a
condition of no-penetration must be
specified for the contact zone. This
condition is most easily imposed by

Figure 3. 18: Frictionless contact
tying the degrees of freedom with a

problem
set of constraint equations:

The incorporation of the Equations (3.71) in the solution procedure is achieved by
simply numbering the displacement components at the tied nodes with the same
degree of freedom numbers. Thus, for example, V l9 and V 25 will be given the same
degree of freedom number.

Since the degrees of freedom (or displacements) are measured positive with
respect to the local system of axes at each node, the flexibility of this feature is
greatly increased if combined with the Local axes feature described in Section
3.7.2. Figure 3.19 shows the effective global constraints which can be achieved by
tying the two degrees of freedom at a single node and by adjusting the orientation
of the local axes XI, YI which make an angle a with the global axes Xc ,Yr;. The
global displacements (measured positive in the Xc, Ye; directions) are indicated by
u and v.

If the degrees of freedom are tied between two nodes, the effective global
constraints depend on the orientation of the local axes at both of the nodes. As an

Geotechnical considerations / 77

(3.70)

Footing

/:;v tied M' - 0- • •
B A

) ~
b>
=0

~

Figure 3. 17: Boundary conditions
for a smooth strip footing subject to

a vertical load P

3.7.4 Tied degrees of freedom
This boundary condition option allows a condition of equal displacement
components to be imposed at one or more nodes, whilst the magnitude of the
components remain unknown.

To explain where this concept might be useful, the problem of a smooth rigid
strip footing is considered. Such a situation is shown in Figure 3.17, where
symmetry has been assumed and half the footing is between nodes A and B. The
footing is subject to a vertical load, P,
and it is required to calculate the
magnitude of the resulting footing
settlement. The geometry and finite
element mesh are assumed to be the
same as that used for the example
discussed in Section 2.11. Because
the behaviour of the footing under a
given load is required, this load has to /:;u = Mi',

form part of the boundary conditions.
As the footing is rigid, it is also
required that it displaces vertically by
the same amount across its width.
Unfortunately, the magnitude of this
vertical displacement is not known, in
fact the reason for doing the analysis
is to determine just this quantity. One
solution to this problem is to use the
tied freedoms concept. The boundary

Hence, the Reactionforces corresponding to each prescribed displacement can also

be calculated.
In the solution scheme presented in Section 2.9 the application of prescribed

displacements is performed without re-arranging the global system ofequations as
implied by Equation (3.67). The equations corresponding to {Mp} are skipped
over whilst the Equations (3.68) are solved, and the coefficients of [KupF and [Kp]
are then used to determine the reaction forces.

If beam (shell) elements are being used to model structural components, these
elements have a rotational degree of freedom, e, in addition to the two
displacements, see Section 3.5.2. To realistically model the behaviour of the
structural components it may be necessary to prescribe values ofsome ofthe nodal

rotations.

Having determined {lldu} from Equation (3.68), the second matrix Equation

(3.67) gives:
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Figure 3.21: Spring between 2 nodes
(3.74)

Figure 3.22: Spring at a
single node

Figure 3.23: Continuous
spring along mesh

boundary

1/
d
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k'l sinBc~~~: s:nBs~~;: _sin~c~~~: -s:n~~~;:]t~~;,·} ={~:,:1 (3.72)
-cos-B -smBcosB cos B smBcosB !lu j M Xj

-sinBcosB -sin2B sinBcosB sin2B !lvI' M '
, YI

where e is the inclination of the spring to the global XG axis, see Figure 3.21. The
spring stiffness, k" multiplied by the trigonometric matrix above must be added to
the global stiffness matrix during the assemble process. It affects the terms relating
to the displacement degrees of freedom of nodes i and).

Secondly, springs can be applied at a single
node. Such an example is shown in Figure 3.22
which shows a symmetric excavation, with a 1 Line of symmetry
spring applied at node i to represent a prop. In
this situation it is implicitly assumed that the end
of the spring not attached to the node is
'grounded' and restrained from moving in any
direction. Such springs also contribute to the
global stiffness matrix. The equilibrium equation
for this spring is:

where, in general, e is the inclination of the
spring to the global XG direction. In the above
example e =0°. Again, the spring stiffness, k"
multiplied by the trigonometric matrix must be
added to the global stiffness matrix during the
assembly process.

The third option is to apply a continuous
spring along a part of the boundary ofthe mesh.
An example is shown in Figure 3.23 where such 1L>t-+-1-+-f-+--+---+----kJj

a spring is placed along the bottom boundary of
the mesh. It is important to note thatthese are not
discrete springs positioned at nodes, but are
continuous along the mesh boundary. They must
therefore be converted into equivalent nodal
springs before they can be assembled into the
global stiffness matrix. It can be shown that, for
a single element side, the contribution to the
global stiffness matrix takes the form:

v =-u

u=v

-v = u

-u =-v

effective global constraint

local axes effective global constraint

xtxP x~yf yfxf y~yr

Lt-A XI B x, uA= UB
uA= VB v

A
= ua VA= VB

L .-i
XI

A / Xl Y, B
UA= VB UA=~'i3 vA= VB lI

A
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B

L X~-r "A=-liJ vA=*uB vA=-vBuA=-uB

A XI YI

L arYl uA=-"s uA= "B vA""-vB "A= Ita
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<
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o

270

Figure 3. 19: Effective global
constraints for tying at a single

node

90

180

Figure 3.20: Effective global
constraints for tying between two

nodes

3.7.5 Springs
As an alternative to using membrane
elements to model structural
components which can sustain only
membrane (i.e. axial) forces, spring
boundary conditions can be used.
Springs are usually assumed to be
linear, with a constant stiffness, k"
and can be applied in finite element
analysis in three different ways.

Firstly, they can be placed
between two nodes in the mesh.
Figure 3.21 shows a very crude
excavation problem in which two
such springs are used. The first spring
spans between nodes i and } and
represents a prop. The second spring
spans between nodes m and nand
represents an end bearing pile. These
springs essentially act as linear two
noded membrane elements. They
therefore contribute to the global
stiffness matrix. The equilibrium
equation for the spring between nodes

i and} is:

h local axes
example, Figure 3.20 shows t e case ---.5!:- ------

where the degrees offreedom are tied 0

between two nodes labelled A and B.
The local axes at node A are, for f'
simplicity, chosen to be coincident 90 yl---J

with the global axes, and the local
axes at node B are varied. The 180 XltYI

orientation of the local axes, and
hence the degrees of freedom, are 270 r-

YI

+XI
again indicated by notation XI' YI; the
global displacements are given by U

and v.
A further option for defining tying

constraints is to tie the degrees of
freedom over a range of boundary
nodes as indicated in the strip footing u(nodeBJ.L)-"''''''-'=­

problem shown in Figure 3.17.
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and Srfis the element side over which the spring acts. Clearly, the above equa~ion

only contributes to the global stiffness terms of the nodes along.the .element side.
If the spring spans across more than one element, then the contnbutlo~ from e~ch

element must be added into the global stiffness matrix. The integral m EquatIOn
(3.74) can be evaluated numerically for each element side, in a similar fashion to
that described for boundary stress in Section 3.7.6.

(3.77)

(3.78)

N'2
o

o
N{where

N( = ~(I-S)

N~ = ~(l+S)

are interpolation functions for the element side. The Jacobian determinant for each
point on the element side is given by:

global element to the parent element. For example, for a 4 noded isoparametric
element, [N'] takes the form:
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[K.] = k.[ cos
2B sinB~o~B]

.\ .\ sinBcosB sm-B

where:

l ~~:.
1--~~~trcs;----2

(3.79)

(3.80)
2

X= IN/Xi
i~1

and Xi, Yi are the global coordinates of the two nodes on the element side.
The final stage in the calculation of the nodal forces is to evaluate Equation

(3.76) using an one dimensional Gaussian integration procedure, as described in
Section 2.6.1. In this procedure, the integral (3.76) is replaced by a weighted sum
of the integrand evaluated at a number of Gaussian integration points.

To determine the integration point value of the surface traction vector {~n,
the applied stress must be transformed according to the orientation of the surface
element at the integration point and the defined sign convention for stresses. One
such sign convention is that normal stresses (0-) are positive if oriented outwards
from the boundary of the body, while shear stresses (r) are positive if oriented in
a tangentially anticlockwise sense with respect to the boundary ofthe body. Using
this convention gives:

where the coordinate derivatives are obtained by differentiating the simplified
isoparametric relations:

(3.75)

4 3

3.7.6 Boundary stresses
Stress boundary conditions have to be
converted into equivalent nodal
forces. In many finite element
programs the calculation of the
equivalent nodal forces is performed
automatically for generally distributed
boundary stresses and for arbitrarily

shaped boundaries. c' 324' Example of stress. h' F' 3 24 tlgure. ,To Illustrate t IS, Igure . d d't'
boun ary con I IOnsshows an example of the type of

boundary stresses which may be defined. Between the points 1 and 2 a linea.rly
decreasing shear stress is applied; between points 2 and 3 a gener~lly varymg
normal stress is applied; the side 3 to 4 is stress-free; and between pomts 4 an? 1
a linearly increasing normal stress is applied. To determine the ~odal forces, which
are equivalent to the stress boundary conditions, the expressIOn ~or t~~ surface
traction contribution to the element right hand side load vector IS utIlIsed, see
Section 2,6:

(3.76) ifshear stresses are prescribed, where B1 is the angle between the boundary normal
and the global Xc; axis, and the subscript I denotes the integration point value. The
angle B1 is determined by inverting the expression:

where [N] is given by Equation (2.8), {~n is the increme~tal global surf~ce

traction vector (i.e. boundary stresses) and'Sri (i.e. Surface) IS the element side
over which tractions are prescribed. The integral (3.75) can be evaluated
numerically for each element side over which the tractions act. The first stage of
this process is to transform the surface integral (3.75) into an one dimensional form
in the natural coordinate system:

{ME} = }t[Nr{~T} jJ'1 ds
-I

where t is unity for plane strain problems and equals 2nr for axi-symmetric
problems, [N'] contains the interpolation functions on the element s!de, and IJ' I
is the Jacobian determinant obtained from mapping the element SIde from the

if normal stresses are prescribed, or

{ ~T } = T {-SineI }
I I case

I

(3.81 )

(3.82)



82 I Finite element analysis in geotechnical engineering: Theory Geotechnical considerations I 83

L

o +",L t""
LU
b) Linear stress

B) 3-noded element side

wm
L

a) Constant stress

+~L tauL

L-J
b) Linear stress

__L_

A) 2-noded element side

a) Constant stress

(3.83)
[

2 aN' jd 2:--'Yi
tan(e +90)=2= '01 as .

I dx 2 aN'
2:--' x,
'01 as at SI

which is obtained by differentiating Equation (3.80).
In all cases the equivalent nodal forces, which are calculated from Equation

(3.76), are initially referred to the global system of axes. Iflocal axes are defined,
the nodal forces are transformed accordingly, as described in Section 3.7.2.

Figure 3.25: Orientation of point
loading axes

(3.84)
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e !YG
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Figure 3.27: Body force loading
axes for sediment layer on a slope

{ME} = f [Nf{L'lFG } dVol
Vo{

where [N] is given by Equation (2.8), {L'lFd is the global body force vector and
Vol is the volume ofthe element. The body force vector {L'lFd is determined with
respect to the global axes by using:

Figure 3.26: Equivalent nodal forces for element side with
A) 2 nodes and B) 3 nodes

3.7.8 Body forces
Gravity loading, or body forces, play
an important role in most
geotechnical problems. In a similar
fashion to the other loading
conditions discussed above, the
application of body forces as a
boundary condition requires the
calculation ofequivalent nodal forces.
In most finite element programs the
calculation of nodal forces
corresponding to body forces is performed automatically. The body force can act
in any direction and its magnitude over the mesh can be varied.

To illustrate the application of body forces and the definition ofthe body force
axes, consider the example shown in Figure 3.27. This example shows a cross­
section of an embankment which lies on a slope and which is deforming under its
own weight. For convenience, the global axes are chosen to be parallel to the slope.
Thus in order to apply the gravitational field, a set of body force loading axes XB ,

YB must be defined, where XB makes an angle e with the global Xc; axis. The
gravitational fjeld is then defined with respect to the YB axis.

The nodal forces equivalent to the body force are calculated element-wise,
using the body force contribution to the right hand side vector, see Section 2.6:

Point loading
axes

~
p

A e

I

3.7.7 Point loads
A further option for applying traction boundary conditions is to apply discrete
nodal point loads. For plane strain and axi-symmetric analyses they are line loads,
with their length perpendicular to the plane of the mesh. This allows the user to
manually define stress boundary conditions over a range of the boundary, or to
define a point load at a single node. Point loads can be defined with respect to a set
of Point loading axes.

As an example, Figure 3.25 shows the case where a single point load is applied
at an angle to the boundary ofthe body. Ifpoint loads are defined over a part ofthe
mesh boundary and are required to
represent a continuous stress
distribution, the values of the point
loads must be calculated in a manner
consistent with mInimisIng the
potential energy of the body, as

described in Chapter 2. This requiresYG~
that the work done by the point loads,
in displacing the nodal points, is equal
to the work done by the continuous
stress distribution in deforming the Global x G

axes
boundary. The point loads must
therefore be calculated from an
integral ofthe form given in Equation
(3.75).

For simple element shapes and simple stress distributions the equivalent nodal
forces can be evaluated exactly. Some examples are illustrated in Figure 3.26 for
element sides with 2 and 3 nodes.

In all cases the point loads, which are initially defined with respect to the xI' ,
Yp point loading axes, or with respect to the boundary normal, are transformed to
the global system of axes. If local axes are defined, the nodal forces are
transformed again as described in Section 3.7.2.

(3.85)



Figure 3.28: Embankment
construction
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where i1y is the increment of bulk unit weight; fJ = 8 or 8+90° depending on
whether i1y refers to the XB or YE component of body force, respectively; and 8 is
the angle between the Xl! and Xc; axes.

The integral (3.84) is evaluated numerically over each element, by using the
procedure described in Section 2.6.1 for the element stiffness matrix. First, the
body force integral is transformed to the natural coordinate system:

(3.86)

where t equals unity for plane strain problems and t=2nr for axi-symmetric
problems; and IJI is the determinant of the Jacobian, given by Equation (2.16),
arising from the mapping between the global and parent elements. The global force
vector {i1Fd can be removed from the integral, since it is constant over the
element. The integral in Equation (3.86) is determined using a two dimensional
Gaussian integration procedure, as described in Section 2.6.1.

The above process is repeated for each element in the mesh and the individual
element nodal force vectors are combined to form an overall equivalent nodal force
vector. This overall force vector is initially referred to the global axes, so that if
local axes are also defined, the nodal forces are transformed accordingly, as
described in Section 3.7.2. Clearly, the units of body force, i1y, must be consistent
with the length units used to define the mesh geometry and the stress units used to
define the material properties (e.g. Young's modulus).

3.7.9 Construction
Many geotechnical problems involve the placing of new material, such as
embankment construction and backfilling behind a retaining wall. Simulation of
such activities in a finite element analysis is not straightforward. The software must
be able to accommodate the following:

Elements representing the material to be constructed must be present in the
original finite element mesh, but must be deactivated, either by prior
excavation, or at the outset of the analysis. On construction the elements are
reactivated.
Construction of material must be performed incrementally since, even for a
linear elastic material, superposition does not hold. When constructing an
embankment the layered construction procedure must be followed, with each
increment of the analysis simulating the construction of a layer of fill.
During construction, the elements representing the new material must have a
constitutive model which is consistent with its behaviour during construction.
Once constructed, the constitutive model should change to represent the
behaviour of the material once placed.
When an element is constructed, the addition of its weight to the finite element
mesh must be simulated by applying selfweight body forces to the constructed
element.
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When constructing material, the following procedure is recommended:

Divide the analysis into a set of increments and make sure that all elements to
be constructed are deactivated prior to the increment at which construction
starts.

For a particular increment the elements to be constructed are reactivated and
giv.en a constitutive model appropriate to the material behaviour during placing.
ThIS often means that the material has a low stiffness.
Nodal forces due to the self weight body forces of the constructed material are
calculated in a similar fashion to that explained for body forces in Section
3.7.8, and added to the right hand side load vector.
The global stiffness matrix and all other boundary conditions are assembled for
the increment. The equations are solved to obtain the incremental changes in
displacements, strains and stresses.
Before application of the next increment, the constitutive model for the
elements just constructed is changed to represent the behaviour of the fill
material once placed. Displacements of any nodes which are only connected to
the constructed elements (i.e. not connected to elements that were active at the
previous increment) are zeroed. Depending on the constitutive models used to
represent the constructed material, it may be necessary to establish state
parameters (e.g. hardening parameters for elasto-plastic models) and/or adjust
the stresses in the constructed elements. If the stresses are adjusted, then care
must be taken that equivalent changes are made to the accumulated right hand
side vector to ensure equilibrium is maintained.
App ly the next increment of analysis.

As an example, consider the
problem of constructing the
embankment shown in Figure 3.28.
The embankment has been split into
four horizontal layers of material and ~

therefore is constructed in four ~--t--+----,f--+--1----kJ:J

increm~nts. At the outset of the It:

analySIS all elements in the r----.-+--+--+--+--I-_--IktJ
embankment are deactivated. In
increment I, layer I is to be
constructed and therefore, at the
beginning of the increment, all the
elements in this layer are reactivated
(i.e. added to the active mesh) and
assigne~ a constitutive model appropriate to the material behaviour during placing.
Self weIght body forces are then assumed for these elements and the equivalent
nodal forces calculated and added to the incremental right hand side vector. The
global stiffness matrix and other boundary conditions are assembled and a solution
found. The incremental displacements calculated for the nodes connected to the
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3.7.11 Pore pressures

When performing analyses in which the total stresses are expressed in terms of
effective stresses and pore water pressures, see Section 3.4, it may be appropriate
to specify changes in pore water pressure.

c) :

b)

t t t t t t

T

a)

B

Figure 3.29: Simulation of
excavation

{RE} = f [Rna} dVol- f [NfrdVo1
Vo/ Vo/

(3.87)

Simulation of a stage of excavation
therefore involves determination of the
tractions, T, at the new soil boundary,
determination of the stiffness of the soil
mass B, and application of tractions, -T,
to that new soil boundary. Finite element
implementation of this process involves
determ ination of the nodal forces which
are equivalent to the tractions shown in
Figure 3.29c. These forces can be
calculated from the excavated elements
adjacent to the excavation boundary
usmg:

Specify the elements to be excavated for a particular increment.
Using Equation (3.87) determine the equivalent nodal forces to be applied to
the excavation boundary to simulate removal ofthe elements. Tag the elements
to be excavated as deactivated and remove them from the active mesh.
Assemble the remaining boundary conditions and the global stiffness matrix
using the. active mesh. Solve the finite element equations to give the
incremental changes in displacements, stresses and strains.
Add the incremental changes of displacements, stresses and strains to the
accumulated values existing before the increment to give the updated
accumulated values.
Perform the next increment of the analysis.

where {aj is the stress vector in the

element, y is the bulk unit weight and Vol is the volume of the excavated element.
Only the forces appropriate to the nodes on the excavated surface are placed in
{RE}· This calculation is repeated for all excavated elements adjacent to the
excavation boundary. This procedure is based on Brown and Booker (1985).

When simulating excavation in a geotechnical problem it is usual that structural
elements or supports are added as excavation proceeds. It is therefore necessary to
split the analysis into a sequence of increments. This is also necessary ifnonlinear
constitutive models are used. The procedure followed in the analysis is therefore
as follows:

constructed elements, but not connected to those elements forming the original
ground (i.e. all active nodes above line AB), are zeroed. A new constitutive model
appropriate to the behaviour of the fill once placed is then assigned to the elements
just constructed. Any material state parameters are then calculated and any stress
adjustments made (applicable to the more complex constitutive models discussed
in Chapter 8).

The procedure for construction of layers 2, 3 and 4 follows similar steps. The
final result is obtained by accumulating the results from each increment of the
analysis. Clearly, the results of the analysis will depend on the number and
therefore thickness ofthe construction layers. This is discussed in detail in Volume
2 of this book.

Deactivation of elements can be accounted for in one of two ways. The best
way is not to include the deactivated elements in the formulation of the finite
element equations. This means that no account is taken of their element stiffness
matrices or of the nodal degrees of freedom, which are only connected to
deactivated elements, during assembly ofthe global stiffness matrix and right hand
side vector. As far as the finite element formulation is concerned, it is as if the
deactivated elements do not exist. Although this is the recommended way of
dealing with deactivated elements, it implies that the finite element software must
have sophisticated book keeping arrangements for keeping track of data, as the
active mesh will change throughout an analysis. An alternative procedure, which
simplifies the book keeping, is to leave the deactivated elements in the active mesh,
but assume that they have a very low stiffness. The deactivated elements are often
called 'ghost elements'. In this procedure the elements do contribute to the element
equations and all degrees of freedom remain active. Their effect on the solution
depends on the stiffnesses that they assume. Most software that use this approach
automatically set low stiffness values for the ghost elements, or encourage the user
to set low values. However, care must be taken that the resulting Poisson's ratio
does not approach 0.5. Ifit does, the ghost elements become incompressible, which
can have a serious effect on the predictions.

Because of the complexities involved in simulating construction, many finite
element programs orientated towards structural engineering are unsuitable for
performing such analyses.

3.7.10 Excavation
Excavation of soil is involved in many geotechnical problems. Its simulation in a
finite element analysis can be summarised as follows. Figure 3.29a shows a body
of soil from which the shaded portion A is to be excavated, leaving the unshaded
portion B. No displacements or changes in stress occur if material is removed, but
replaced by tractions (T) which are equal to the internal stresses in the soil mass
that act on the excavated surface before A is removed, see Figure 3.29b. The
behaviour of B due to the excavation of A will be identical to the behaviour of B
when the tractions (T) are removed, for example by applying equal and opposite
tractions as indicated in Figure 3.29c.
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Figure 3.31: Excess pore water
pressures under smooth flexible

strip footing
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3.8 Summary
1. Drained analysis in which pore water pressures are ignored can be performed

by using effective stress material properties.
2. Undrained analysis can be performed in terms of total stress using total stress

material properties. Care must be taken when Poisson's ratio approaches 0.5.
3. Analysis can also be performed in which the total stress tensor is split into

effective stresses and pore fluid pressures. This enables undrained analysis to
be carried out using effective stress material properties in which the change in
effective stresses and pore water pressures are calculated. It also allows drained
analyses to be carried out, in which changes in the pore water pressures can be
prescribed.

4. It is often difficult to model structural elements using continuum finite
elements. Alternative structural elements are available. Beam/shell elements
can be used when the structural member can sustain bending moments and
axial and shear forces. Alternatively, if the structural element can only sustain
axial forces, membrane elements may be used. A detailed description of both
elements has been given.

5. The interface between structural elements and soil can be modelled in a variety
of ways. A special interface element which has zero thickness has been
described in this chapter. The use of this element in practical boundary value
problems is discussed in Volume 2 of this book.

6. There are three classes of boundary conditions that arise in finite element
analysis. The first class affects only the right hand side of the governing
equations. These conditions are loading conditions such as boundary stresses,
body forces, etc... The second class affects the left hand side of the governing
equations. These are kinematic conditions such as prescribed displacements.
The third class is more complex, since they affect the whole structure of the
system equations. These conditions include local axes, tied freedoms and
springs.

7. The following boundary conditions have been described in detail:
- Local axes;
- Prescribed displacements;
- Tied degrees of freedom;
- Springs;
- Boundary stresses;
- Point loads;
- Body forces;
- Construction;
- Excavation;
- Pore pressures.

(3.88)
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{RE} = - f [Br{ti o-r} dVal
Vol

where {tilTr} is given by Equation (3.3). Two scenarios often occur:
Firstly, a set change in the pore

water pressure in part of a finite
element mesh may be required. For
example, during excavation in layered
soils it may be necessary to de-water
granular layers to prevent bottom
heave, see Figure 3.30.

Secondly, dissipation of excess
Figure 3.30: Excavation de-watering

pore water pressures may be needed.
For example, consider a strip footing
which has initially been loaded under
undrained conditions. The original
part of the analysis could be
performed with the equivalent bulk
modulus of the pore water, K e , set to
a high value, see Section 3.4. Excess
pore water pressures would then be
calculated, see Figure 3.31. Once the
footing is loaded, Ke could be set to
zero and the excess pore water
pressures dissipated by specifying
changes equal and opposite to those
calculated during loading. An
estimate of the effects of full
consolidation could therefore be
calculated. However, no information
would be available about intermediate states during the consolidation process. Such
an approach is appropriate if the soil behaviour is linear elastic. An approximation
is involved if the constitutive behaviour is nonlinear. This arises because there is
an implicit assumption that stress changes are proportional throughout the
consolidation period. In practice, stress changes may be far from proportional.
Under the loaded footing pore water pressures will dissipate first at the edge,
causing a relatively rapid effective stress change in this region. The effective
stresses at the centre will change more slowly. The extent of the error involved
depends on the constitutive model. To model the consolidation process accurately,
coupled analyses should be performed, see Chapter 10.

In the finite element analysis it is necessary to specify changes in pore fluid
pressure in terms of equivalent nodal forces. It can be shown that for an element
with a specified change in pore fluid pressure, tipr, the equivalent nodal forces are

given by:
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Figure 4. 1: One dimensional
consolidation of Pappadai clav

(Cotecchia (1996))

VCL

A

C

Reloading

1.2
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beh.aviour of clay soils. Behaviour under one dimensional compression and when
subjected to shear under triaxial stress and strain conditions is presented. The
effects of the magnitude of the intermediate principal stress, the orientation ofthe
principal stresses and shearing to large strains on clay behaviour are then
discussed. Sand soils are considered in the same way and the differences in
behaviour noted. Although pure clay and sand soils do exist, many soils contain a
range o~ 'particle sizes from clay to sand, with their behaviour reflecting their
composItIon. In the last part of this chapter the behaviour of several of these soils
is compared. The chapter ends by summarising the more important facets of soil
behaviour which, ideally, should be reproduced by constitutive models.

4.3 Behaviour of clay soils

4.3.1 Behaviour under one dimensional compression
The behaviour of clays under one
dimensional compression is usually
investigated in an oedometer.
Typically a cylindrical sample of soil
60mm in diameter and 20mm high is
subjected to vertical compression,
while movement in the radial '"
direction is prevented. Results from a 0.8

test on reconstituted Pappadai clay
(Cotecchia (1996)) are shown Figure 0.6

4. I, where the vertical effective stress,
a,,', is plotted against the void ratio, e. 0.4·~1O:----~1O~0----1--L00-0---1O--.J000

As is the custom, the vertical effective cr; (kPa)

stress is plotted on a logarithmic
scale. The soil sample has been
subjected to compression with two
cycles of unloading/reloading.

In its initial condition, when

placed in the oedometer, the reconstituted clay is in a normally consolidated state
represented by point A in Figure 4.1. On loading (increasing av') the sample
compresses and its void ratio reduces travelling down the virgin consolidation line
(VC~) (i.~. A to B). At B the sample is unloaded and swells travelling along the
~we~h~g Ime BC. On reloading the sample moves along the line CDE. At point D
It reJoms the VCL and remains on this line with any further increase in vertical
stress. If unloaded again the soil will move along another swelling curve. For
example, when unloaded from point E the soil follows the line EF. It is generally
assumed that swelling loops, such as BCD and EFG ,are parallel.

Soil which is on the VCL is said to be normally consolidated because it has
never been subjected to a higher vertical stress. Soil on a swelling loop is defined
as overconsolidated, with an overconsolidation ratio (OCR) defined as av'max /av',

4.1 Synopsis
This chapter reviews real soil behaviour. It considers clay and sand soils and then
soils containing a range of particle sizes. The main facets of soil behaviour are
identified by considering results from laboratory tests. Data are presented without
prejudice from any theoretical framework, and can therefore be used to verify and
compare with the theoretical constitutive models described in subsequent chapters.

4.2 Introduction
The finite element theory presented in Chapter 2 assumed material behaviour to be
linear elastic. Unfortunately, real soils do not behave in such an ideal and simple
manner. If they did, failure would never occur and geotechnical engineers would
probably not be needed. Real soil behaviour is highly nonlinear, with both strength
and stiffness depending on stress and strain levels. For realistic predictions to be
made of practical geotechnical problems, a more complex constitutive model is
therefore required. As this involves nonlinear behaviour, further developments are
required to the finite element theory. These developments are presented and
discussed in Chapter 9.

Due to the complexity of real soil behaviour, a single constitutive model that
can describe all facets ofbehaviour, with a reasonable number of input parameters,
does not yet exist. Consequently, there are many models available, each of which
has strengths and weaknesses. In Chapters 5, 7 and 8 a variety of constitutive
models that have been, and still are, used to represent soil behaviour are described.
However, before delving into the complex theory behind these mathematical
models, it is useful to consider real soils and identify the important aspects oftheir
behaviour. Such information provides a framework which can then be used to
assess and compare the various different constitutive models.

Soil behaviour is a complex subject and it is not possible to cover every aspect
in a single chapter. Consequently, only the most important issues are discussed
here. It is assumed that the reader is familiar with soil mechanics and in particular
with conventional laboratory testing of soil samples and the manner in which the
results from such tests are presented. The aim is to summarise the more important
characteristics of soil behaviour as observed in laboratory tests, rather than to
introduce new concepts to the reader. The chapter begins by considering the
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Figure 4.4: Undrained Young's
moduli for Pentre clay

(Conno/ly (1999})

Figure 4.3: Effective triaxial stress
paths for laminated Pentre clay

(Connolly (1999))

overconsolidation ratio, with each
sample having a different OCR. At
this point all drainage valves were
closed and the samples were sheared
undrained to failure, by either
increasing or decreasing the axial
stress. The resulting effective stress ~

paths are shown in Figure 4.3. Several ~
important facets of soil behaviour are ~

evident in this plot. Firstly, the ~

effective stress paths for samples with
an OCR<3 bend to the left, having a
smaller mean effective stress at the
end of the test than they had at the
beginning. This implies that, when
sheared, the samples tried to contract,
however, as undrained conditions
were enforced this resulted in the
generation of compressive (positive)
pore water pressures. In contrast, the
stress paths for the heavily
overconsolidated samples (OCR~3) 300',------ _

bend to the right. This implies dilatant
behaviour and the generation of
tensile (negative) pore water ~ 200

pressures. ~
The stress states of all samples at "l'100

failure tend to plot on a straight line
which passes through the origin. This
line is often referred to as the critical
state line and is defined by an angle
of shearing resistance, {fe". The 300',----;O;;:-CR;;::.01-------------,

relevant {fc/ angles for the stress paths
shown in Figure 4.3 are 32° and 28° 200

for compression and extension ~

respectively. Although not evident in ''l'100

Figure 4.3, sometimes for heavily
overconsolidated clay the stress paths
pass above the critical state line
before they reach failure. This implies
a peak effective strength, in tenns of
a cohesion, c', and an angle of
shearing resistance, {f', greater than
that at ultimate failure.

veL
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Figure 4.2: Idealised behaviour of
clays in one dimensional

consolidation

where (Jv'max and (Jv' are the maximum
vertical effective stress the sample has
ever experienced and the current
vertical effective stress, respectively.
For an increment of vertical stress '" 1.0 Swelling line

nonnally consolidated soil suffers a
0.8

much larger change in void ratio than
an overconsolidated soil. This implies
that overconsolidated soils are much
stiffer than normally consolidated
soils. Overconsolidated soils
subjected to reloading experience a
rapid reduction in stiffness as their
stress state approaches the VCL.

To use results like those shown in
Figure 4.1 for design purposes
simplifications are often introduced. For example, it is often assumed that the VCL
is a straight line in e-IoglO(Jv' space, with a gradient Cc, and that the swelling loop
can be replaced with a single line ofgradient C" see Figure 4.2. However, such an
approach is not universally accepted. For example, some geotechnical engineers
advocate plotting the results in 10glOe-IoglO(Jv' space before making the idealisations
for the VCL and swelling loops, while others prefer to plot results in terms ofmean
effective stress instead of vertical effective stress and/or to use natural logarithms.
Some of these idealisation are discussed in greater depth in subsequent chapters.

4.3.2 Behaviour when sheared
The behaviour of soil when subjected to shear can be investigated in a range of
apparatuses (e.g. triaxial, true triaxial, direct shear, simple shear, torsional shear,
hollow cylinder etc.). However, the most common test perfonned on soils is the
conventional triaxial test, in which a cylindrical sample is subjected to a constant
radial stress, (J,., and then sheared by either increasing (triaxial compression), or
reducing (triaxial extension) the axial stress, (J" . Most tests are performed on
samples with a diameter of38mm and a height of76mm, although tests on larger
samples with diameters of 50mm or 100mm and heights of lOOm or 200mm are
sometimes performed (especially when the effects ofmacrofabric are of interest).
However, the latter tests are not popular for clay soils as pore pressure equalisation
within the sample takes more time and therefore the tests take much longer to
perform. Although there are loading platens at the top and bottom of the samples
which can affect the stress distribution within the sample, uniform stress and strain
conditions are assumed when interpreting the results.

Typical results from a series oftests perfonned on Ko consolidated samples of
clay from Pentre in Shropshire are shown in Figure 4.3 (Connolly (1999)). All
samples were Ko (i.e. no radial strain) normally consolidated from A to B, see
Figure 4.3. The samples were then Ko unloaded to a particular value of
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Figure 4.7 the equivalent tangent bulk
modulus, Kw,,' (=!'>.p'l!'>.cl')' normalised
by the mean effective stress, p', is
plotted against accumulated
volumetric strain from the start of the ~ 30

probing stage, Cv . The equivalent
tangent shear modulus, G'a"
(=!'>.(iJa' -iJ,.')/3M:,), normalised by p'
is plotted against accumulated triaxial
deviatoric strain from the start of the
probing stage, Cs (=2/3(6;,-£',)), in
Figure 4.8. Both of these plots
indicate that the soil stiffness
decreases as the sample is strained
and in this respect agree with the data
given in Figure 4.4 for Pentre clay.
However, they also show that the magnitude of the stiffness and the manner in
which it decays with strain depend on the direction ofthe probing stress path. Also
shown on Figure 4.8 is the value of the shear modulus, Gsei.\wic, obtained from
seismic tests performed at Bothkennar.
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4.3.4 Effect of the magnitude of the intermediate
principal stress

As noted above, the drained strength parameters ofPentre clay vary depending on
whether the clay is subjected to triaxial compression or extension. The differences
between these two types oftest are that in the compression tests the intermediate
principal stress, iJ2, is equal to the minor principal stress, iJ3, and the major principal
stress, iJ1, is vertical (i.e. a. = 00, where a is the angle between the direction of the

• •
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Figure 4.5: Dependence of kaolin
stiffness on stress level

(Soga et al. (1995))

94 I Finite element analysis in geotechnical engineering: Theory

For lightly overconsolidated samples the deviator stress (=(iJ,,'-iJ,.' )) reaches
a peak value and then reduces as ultimate failure is approached. This implies that
the undrained strength, S", which is defined as half the maximum deviator stress,
occurs before the full angle of shearing resistance has been mobilised. In contrast,
for the heavily overconsolidated samples the deviator stress obtains its highest
value at ultimate failure.

The variation ofsecant Young's modulus E" (=(iJ"-iJao)/(ca-c,,o), (where iJao and
eao are the axial total stress and the axial strain just prior to undrained shearing
respectively) with change in axial strain, Ca-Cao , are shown in Figures 4.4a and
4.4b, for the compression and extension tests respectively. These plots clearly show
that the soil becomes progressively less stiff as it is sheared. This occurs for all
samples, but is particularly marked for the lightly overconsolidated samples where
the stiffness drops by more than an order of magnitude.

It is also evident from Figure 4.4
that the stiffness magnitude depends

~12on OCR. However, it should be noted ~

that both OCR and the mean effective b 10 12_00_kP--,a'r-~"",",,,,,,,,~

stress,p' (=(iJ j '+iJz'+iJ/)/3), vary for ~ 8

each test. It is therefore not possible ;g
] 6 t:----o'.~.-,...-.............~_

to identify the influence of each of v

these parameters from the data ! 4 c3
-",OkP=;a.-;.>.-.-.--.-_~

presented. The effect on stiffness of ~ 2

stress level alone is shown in Figure
4.5 (Soga et al. (1995)), where the
results from four torsional tests on
isotropically normally consolidated
kaolin are presented. The tests differ
only in that the magnitude of the
consolidation stress changes. The
results indicate the typical decay of
stiffness with strain as shown in Figures 4.4a and 4.4b, but more importantly they
indicate a nonlinear relationship between stiffness and mean effective stress, p'.

From the above observations it is clear that the overconsolidation ratio and the
magnitude of the mean effective stress have a large influence on soil behaviour.

4.3.3 Effect of stress path direction
The direction of the stress path also affects the stiffness characteristics ofthe soil.
This has been investigated by Smith (1992) who performed a set oftriaxial probing
tests on Bothkennarclay, see Figure 4.6. All samples were first consolidated along
path ABC and then swelled to D. Ko conditions were applied over portions BC and
CD of this stress path. At point D the samples were allowed to age before being
sheared drained along a variety of stress path directions. The variation of stiffness
with strain for the probing stages ofthese tests is shown in Figures 4.7 and 4.8. In
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4.3.5 Anisotropv
For convenience, laboratory test data are usually interpreted assuming that the clay
behaves in an isotropic manner. This is evident in the data presented above, where
equivalent isotropic measures of stiffness have been used. In general, soil is
unlikely to be completely isotropic, because ofthe way in which it was originally
deposited. In fact, it is only likely to be isotropic in the plane normal to its direction
ofdeposition. Such a material is usually called 'cross anisotropic' or 'transversely
isotropic'. In such a material both strength and stiffness depend on both the
magnitude and orientation of the applied stresses. However, it is not easy to
investigate the anisotropic behaviour of clays in conventional laboratory triaxial
and shear box tests. This is one of the reasons why anisotropic effects have been
neglected in the past. However, in recent years special testing devices (e.g.
directional shear cell and hollow cylinder apparatus) have been developed to
investigate anisotropic effects and, consequently, limited data exist.

Data on the undrained shear 0.4 ,- __

strength of Ko consolidated
reconstituted Boston Blue clay are
given in Figure 4.9. These data come
from a series of tests performed in a

-"-directional shear cell by Seah (1990), ~ 0.2

in which similar samples were '-'1'

sheared with different orientations of
the major principal stress to the
direction of deposition, a (see insert
in Figure 4.9). In Figure 4.9 the
undrained shear strength, S,,,
normalised by the vertical
consolidation stress, O'p' (i.e. vertical
stress after Ko consolidationl
swelling), is plotted against a, for
normally consolidated clay and clay
with an OCR=4. It can be seen that
the undrained strength drops significantly, by up to 50%, as a increases, indicating
a strong anisotropic effect. If the clay was isotropic, the undrained strength would
be unaffected by the value of a.

There is also limited evidence that clay has an anisotropic stiffness. For
example, the ratios of horizontal to vertical Young's modulus, Eh'IEv', for a range
of clay soils are tabulated in Table 4.1. The data suggest that this ratio depends on
the clay type and its OCR, and varies with strain level during shearing.

4.3.6 Behaviour at large strains
Most laboratory testing devices cannot provide reliable data at large strains (>20%)
due to the existence of non-uniformities occurring in the sample. For example,
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major principal stress and the direction ofdeposition ofthe soil). In contrast, in the
extension tests the intermediate principal stress, 0'2' equals the major principal
stress, 0'1' and the latter stress now acts radially (i.e. a = 90°). Consequently, the
strength difference could result from the magnitude of the intermediate principal
stress, 0'2' or the orientation, a, of 0'1' or a combination of both. To separate the
effects of each of these differences, special tests must be performed. Results from
tests to quantify the effect of the orientation of the major principal stress are
discussed in the next section. The influence of the magnitude of the intermediate
principal stress, 0'2' is considered below.

In order to isolate the effect ofthe intermediate principal stress, a series oftests
should be performed in which only this quantity is varied, with all other parameters
remaining the same. However, it is not possible to satisfy this requirement in
conventional testing equipment and therefore tests must be performed in specialist
equipment (i.e. true triaxial, directional shear cell or hollow cylinder apparatuses).
To date, a comprehensive set of tests on a clay soil have yet to be performed,
however data exist for sands and for clay-sand mixtures and these are discussed
subsequently.

For clays, data exist from conventional triaxial and plane strain tests on the
same soil and it is of interest to compare such results. As noted above, for triaxial
compression 0'2 = 0'3 and a = 0°, while for plane strain compression a = 0° and the
intermediate stress 0'2 is somewhere between 0'1 and 0'3' Its exact value is difficult
to measure in plane strain tests, but the test data that are available suggest that
0.155[(0'2-0'3)/(0'1-0'3)]::::0.35. Vaid and Campanella (1974) tested similar samples
of Ko normally consolidated undisturbed Haney clay in both triaxial and plane
strain compression. In terms ofundrained strength, S,,, these tests indicated that in
plane strain the strength was some 10% higher than in triaxial compression (i.e.
S'/O'"c' values of 0.296 and 0.268 were obtained in plane strain and triaxial
compression respectively, where O'"c' is the vertical effective consolidation stress).
In terms ofthe peak angle of shearing resistance, rp', little difference was observed,
with plane strain and triaxial compression giving values of 31.6° and 29.8°.

Vaid and Campanella also performed plane strain and triaxial extension tests
on the same Haney clay. In triaxial extension 0'2 = 0'1 and a = 90°, while for plane
strain extension a = 90° and the intermediate stress 0'2 is again somewhere between
0'1 and 0'3' These results indicated that in plane strain S" was about 25% higher than
in triaxial extension (i.e. S" 100"c' values of 0.211 and 0.168 were obtained in plane
strain and triaxial extension respectively). Again, there were only small differences
in the peak angle of shearing resistance, with the plane strain and triaxial tests
giving 34.3° and 33.8° respectively.

A tentative conclusion from the above results from tests on clay is that the
value of the intermediate principal stress has a modest effect on S", but little effect
on rp'. For sands and sand-clay mixtures the effects on rp' appear to be greater, as
is discussed in later sections ofthis chapter. The above results also indicate that the
mode of shearing, compression or extension, and therefore the value of a has a
much larger effect on both S" and rp'.



Peak shear stress = 45 kPa
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consolidated to cr. = lOO kPa

98 I Finite element analysis in geotechnical engineering: Theory

Table 4. 7: Review of stiffness ratio for natural and reconstituted clays

Reference Soil Strain level (%) Eh'IE,,'

Ward et al. 0.2 1.4
(1959)

London clay
0.6 2.4

Kirkpatric and Reconstituted
very large 0.6 - 0.84

Rennie (1972) kaolin

Franklin and Reconstituted
very small 1.8 - 4.0

Mattson (1972) kaolin

Atkinson
London clay ~ 1 2

(1975)

Lo et al.
Leda clay 0.4 - 0.6 0.55

(1977)

Saada et al. Reconstituted 0.0001 1.25
(1978) Edgar kaolin 0.007 1.35

Yong and
Champlain clay 0.5 - 1.0 0.62

Silvestri (1979)

Graham and
Winnipeg clay ~3 1.78

Houlsby (1983)

Kirkgard and S.Francisco
large 1.2 - 1.8

Lade (1991) bay mud

samples tend to develop localised failure zones at large strains, within which the
stresses and strains cannot be reliably determined from the instrumentation.

The ring shear device was developed to overcome these shortcomings. In the
version of this apparatus developed by Bishop et al. (1971), a ring of soil with an
outer diameter of 152.4mm, an inner diameter of I01.6mm, and an initial thickness
of 19mm, is sheared torsionally by rotating the top of the sample, while keeping
the bottom fixed. During this process the vertical stress is usually maintained
constant. The results from such tests indicate that, for many clays, strength
decreases with large strains, dropping well below the peak strength observed at
small strains in triaxial tests, until a residual value is reached. A typical result from
such a test is shown in Figure 4.10 for London clay (Parathiras (1994)). It can be
seen that at large strains the residual shear stress that the soil can sustain is
approximately 50% ofthe peak value mobilised at much smaller strains. In terms
of drained strength this residual condition corresponds to a cohesion, c,'=2 kPa,
and an angle of shearing resistance, rp,'=12°. Typically, peak strength parameters
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of cp'=7 kPa and rpp'=20° are quoted ,",50

for London clay (Potts et al. (1997)). ~
d I ~ 25The reduction from peak to resi ua ~

conditions is usually associated with J 0

the clay particles in the shear zone re-oL -------:-.45,---------;:9::-0--
. h d' . f Displacement (mm)aligning themselves In t e lrectlOn 0

shearing.
Clearly, residual strength and the Figure 4. 70: Residual strength of

rate of loss of strength from peak to London clay (Parathiras (7994))
residual can be very important in
problems involving progressive failure and in situations where established failure
surfaces already exist (e.g due to geological processes), see Potts et al. (1990).

4.4 Behaviour of sands
Many ofthe features described above for clays also apply to sands. However, sands
possess additional complexities in their behaviour due their particulate nature and
mode of deposition. Sands are more permeable than clays and therefore require
shorter testing times. Consequently, more extensive testing of sands has been
performed. The results from these tests enable the effects of the magnitude of the
intermediate principal stress and of the anisotropic properties to be investigated in
detail.

4.4. 1 Behaviour under one dimensional compression
When considering the behaviour of a deposit of sedimentary clay, it is recognised
that the clay begins its existence in the form of a slurry and that its current state
results from a combination of consolidation and swelling stages. It may therefore
be considered that all parts of the deposit have a unique starting point, namely, the
clay slurry. However, such an assumption is not valid for sands, as sands can be
deposited at different rates, resulting in a range of initial densities which influence
subsequent behaviour.

Figure 4.11 shows the compression characteristics of two samples of Ticino
sand (Pestana (1994)): one initially in a dense state with eo = 0.6, the other in a
loose state with eo = 0.8. It should be noted that when attempting to set up identical
sand samples, it is difficult to achieve exactly the same initial void ratio every time,
either for a loose or a dense state. There is, therefore, a multiplicity of initial void
ratios of sand for the same stress point. When the two samples are compressed one
dimensionally, they follow normal compression lines (NCLs) which, at high values
of effective stress, approach a unique virgin compression line (VCL). As the
samples have different initial void ratios, the NCLs are not coincident. The VCL
is approached when the sand particles start to crush. The magnitude of the vertical
stress at which this occurs is dependent on the strength of the soil particles (Coop
(1990)). For example, for the loose Ticino sand, shown in Figure 4.11, the VCL
is reached only when the vertical effective stress exceeds 10 MPa. For the dense
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Figure 4. 13: Effective triaxial
stress paths for dense Dunkirk

sand (Kuwano (1998))

stress path to the right. The kink in the
stress path at which soil behaviour
changes from a compressive to a dilative
tendency is often referred to as the
'phase transformation point'. As the
OCR increases the initial contractive 200';;j'
tendency reduces and the dilative ~

tendency increases.
For the dense Dunkirk sand, shown

in Figure 4.13, a similar contractive
followed by dilative tendency is only
observed in the extension tests on
samples with OCRs of 1 and 2. For
extension tests on samples with a higher
OCR and for all compressive tests only a
dilative tendency is observed.

For both the loose and dense sands
the compression and extension tests
approach a respective common failure
line at large strains. Once this line is
reached both the loose and dense sands have a tendency to dilate and therefore
generate negative pore water pressures, which push the stress state further up the
failure line. Consequently, the samples keep on taking higher and higher deviator
stress and do not indicate a critical state condition as is usually observed for clays.
The tests are usually stopped when either the pore water cavitates, the test
apparatus reaches its load capacity, or when the samples become so non-uniform
that measurements ofstress and strain are unreliable. It is conceivable that a critical
state does exist at higher stress levels, but that this can only be reached in special
high pressure test apparatus. Such a hypothesis has been put forward by Coop
(1990) and is consistent with the existence of a unique VCL at high stresses.

For both the loose and dense sands the failure lines are well defined in both
triaxial compression and extension. These can be represented by straight lines in
Figure 4.12 and 4.13 which pass through the origin of stress space (i.e. c'= 0.0),
giving compression and extension strengths of rpe'= 33° and rpe'= 22° for loose Ham
River sand, and rpe'= 37° and rpe'= 25° for dense Dunkirk sand. At low stress levels
there is some experimental evidence to indicate that the failure lines are curved
rather than straight giving angles of shearing resistance rpe' and rpe' that vary with
mean effective stress (Stroud (1971».

It can be concluded from Figures 4.12 and 4.13 that the looser the sand and the
lower the OCR, the greater the initial contractive tendency on shearing. However,
at large strains this tendency reduces and is replaced by a dilatant one which pushes
the stress path along the failure line.

If the above tests had been performed drained, instead of undrained, the stress
paths would have been straight and failure would have occurred when they
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Figure 4. 12: Effective triaxial
stress paths for loose Ham River

sand (Kuwano (1998))

0.3

Figure 4. 11: One dimensional
behaviour of Ticino sand

(Pestana (1994))
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4.4.2 Behaviour when sheared
As with the behaviour under one dimensional compression, the behaviour of sand
subjected to shearing is also affected by its initial density. Stress paths from triaxial
compression and extension tests performed on loose Ham River sand (Kuwano
(1998» and dense Dunkirk sand (Kuwano (1998» are shown in Figures 4.12 and
4.13 respectively. Both of these plots
show results from a series of tests in
which the sand was one dimensionally
compressed and then unloaded from its
initial state to a series of OCR values,
before being sheared undrained in either
triaxial compression or extension. The
two figures, although for different sands,
indicate typical trends observed in sand
soils.

Considering the results from the
loose Ham River sand shown in Figure
4.12, the following trends are noted. For
all OCRs the stress paths for both the
compression and extension tests initially
bend to the left, indicating a contractant
tendency, which manifests itself in
positive (compressive) pore water
pressures. However, with further loading
this compressive tendency reduces and
becomes dilative, imposing negative
pore water pressures which bend the

sample an even higher vertical stress
is required, due to the greater number
of contact points compared to the
loose sample. Consequently, the stress
levels and behaviour associated with
most geotechnical structures usually
relate to the early parts of the normal
compression curves (NCLs).
Unloadinglreloading results in
hysteresis loops as discussed above
for clay, and, although not shown in
Figure 4.11, it is commonly observed
that unload/reload loops are parallel
when the data is plotted in e-loglOav'
space.
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4.4.3 Effect of the magnitude of the intermediate principal
stress

As noted above, the drained strength parameters of sand differ depending on
whether the sand is subjected to triaxial compression or extension. As stated in
Section 4.3.4, in compression tests the intennediate principal stress, 0'2, is equal to
the minor principal stress, 0'3, and the major principal stress, ai' is vertical (i.e. a =
0°). In contrast, in extension tests the intennediate principal stress, 0'2, equals the
major principal stress, 0'1, and the latter stress now acts horizontally (i.e. a = 90°).
Consequently, the strength difference could result from the magnitude of the
intermediate principal stress, 0'2, or the orientation, a, of 0'1' or a combination of
both. In order to investigate the influence of the magnitude of the intennediate
principal stress, 0'2' results from isotropically compressed drained true triaxial tests

Figure 4. 15: Undrained Young's moduli for dense Dunkirk sand
(Kuwano (1998))
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Figure 4. 14: Undrained Young's moduli
for loose Ham River sand

(Kuwano (1998))

intersected the Mohr-Coulomb failure line. The stress state would then remain at
this intersection point, regardless ofany further straining. During further straining
dilation would continue to occur with the rate of dilation being dependent on the
initial void ratio and OCR of the sample. Such dilation appears to continue until
large strains, when the sample becomes non-unifonn and the measurements
become unreliable.

The existence and location of a critical state for sand, while of academic
interest, is only relevant in practice to undrained problems, or where the sand is
kinematically constrained. As sands are usually highly penneable, undrained
conditions only occur when the loading is extremely fast, such as under seismic
loading. Kinematically constrained conditions might occur at the base of deep
foundations, such as piles, and for penetration problems such as interpreting the
results from cone penetrometers. For many geotechnical structures, such as shallow
foundations and retaining walls, sand behaves in a drained manner and the volume
changes at failure do not have a large influence on collapse loads and it is only the
inclination of the failure line (i.e. rp' ) that is important. This problem is discussed
further in Volume 2 of this book, when the analyses of boundary value problems
are considered.

The variation of secant 500,--------------~

Young's modulus, E", with axial
400

strain, Ca-Cam for the triaxial
compression and extension tests "'" 300 OCN

on loose Ham River sand are ~"-1,200

shown in Figure 4.14a and 4.14b
respectively. Similar plots for the
dense Dunkirk sand are shown in
Figures 4.15a and 4.15b. These
plots show similar trends to those
for Pentre clay given in Figure
4.4.

The effect on stiffness ofstress 400 OCR~I

level alone is shown in Figure
"'" 3004.16, where results from three ~ OCN

torsional shear tests on Ko "-1,200
OCR=3.7

normally compressed loose Ham
River sand are presented. The
tests differ only in that the
compression stress changes. The
results indicate a nonlinear
relationship between stiffness and
stress level. For further
interpretation of these tests the
reader is referred to Porovic and
Jardine (1994).
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prismatic samples of a range of sands 2.5

I h 'I • Toyoura sandand grave s. For eac sOl type a 2.0f- '" Ticinosand •

series of samples were normally _< • SLB sand • • • •

compressed with different ratios of ~1.5 • rh •
the vertical and horizontal effective "1 •• .f • t.. f!stress, a,,' lah'. The samples were then 1.0 et t:h
subjected to small cycles of both '"

0.5:-::----::-f-----f:--~-___;:~---::-I
vertical and horizontal loading from 0.0 0.5 1.0 1.5 2.0 2.5

a/fah'
which small strain values of E,,' and
Eh' could be calculated. The results
from three sands, Toyoura, SLB and Figure 4. 19: Stiffness anisotropy of
Ticino, are shown in Figure 4.19 sands (Kohata et al. (1997))

where the ratio E,,'IEh' is plotted against the ratio a,,'lah" If the samples were
isotropic E,,'IEh '=l, the greater the departure from this value the larger the
anisotropy.

The results show that for all three sands the degree of anisotropy changes with
a,,' lah'. The results also show that the amount ofanisotropy is much larger for SLB
sand than for both Toyoura and Ticino sand.

Cumbria sand
Relative density: 93 %
Cell pressure; 100 kPa

b

40

50

on dense Cumbria sand are
considered in Figure 4.17 (Ochiai and
Lade (1983)). In these tests the
orientation of the sample was
maintained the same and the major

~45 _
principal stress always acted in the :e-
vertical direction (i.e. a. = 0°). The
samples were all sheared in a similar
manner, with the exception that the
relative magnitude ofthe intermediate
principal stress differed from test to
test. In Figure 4.17 the relative

magnitude of the intermediate stress Figure 4.17: Effect of 'b' on rp/ for
is expressed by the value of b sand (Ochiai and Lade (1983))
(=(a2-a3)/(al-a3)) and is plotted
against the effective angle of shearing resistance, rp'. It can be seen that there is an
increase of up to 9° in rp' as the intermediate principal stress increases from being
equal to a3 (b = 0) towards a 1 (b = 1).
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4.4.5 Behaviour at large strains
Sands do not appear to suffer large reductions in their strength properties when
subjected to large strains. In this respect they differ from the behaviour of many
clay soils.

4.5 Behaviour of soils containing both clay and sand
While clays and sands have many facets ofbehaviour in common, there are several
important areas where they differ. In reality, soils seldom contain either all clay or
all sand sized particles. In fact, many soils contain a range of particle sizes and
their behaviour varies depending on their constitution. In this section the behaviour
of some of these soils will be compared and some of the controlling factors
identified.

4.5.1 Comparison of sedimentary soils
In this section the behaviour of the following nine sedimentary soils is compared:

1. Ham River sand (HRS) (Kuwano (1998)). This is a quartz based sand that was
prepared in a loose state with an initial void ratio eo = 0.8.

2. Dunkirk sand (DKS) (Kuwano (1998)). This is a quartz based sand with
approximately 10% calcareous shell fragments, prepared in a dense state with
an initial void ratio, eo = 0.65.

3. HRS + 10% (by weight) kaolin (HK) (Georgiannou (1988)). This was prepared
in a loose state with an initial void ratio eo = 0.8.

K, compressed Ham River sand
b = 0.3

20

50

4.4.4 Anisotropy
As noted for clays, the behaviour of isotropic soils is independent ofthe orientation
of the major principal stress, all other things being equal. Conversely, differences
in behaviour observed in tests performed with different values ofa (i.e. orientation
of the direction of a 1 with respect to the direction of deposition) provide an
indication of the degree ofanisotropy. Several sands have been tested in this way.

Results from a series of hollow
cylinder tests performed on Ko
normally compressed Ham River sand
are presented in Figure 4.18, in the
form of the peak angle of shearing
resistance, rpp' , against a. (Hight 40
(1998)). All the tests had b = 0.3 and C
were similar except for the value ofa.. ::e-
The results indicate a marked 30

variation of rpp' with a.. The effect of
changing a. is large, indicating a high
degree of anisotropy in the sand,
much larger than that observed for
clay soils.

Sands also exhibit anisotropic
stiffness behaviour. This can be seen
in Figure 4.19 which shows results Figure 4. 18: Effect of 'a/ on rp / for
from Kohata et al. (1997), who tested sand (Hight (1998))
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4. Silica silt (HPF4) (Ovando-Shelley (1986)). This is an angular silt, obtained
from pure quartz, which was prepared in a loose state with an initial void ratio
eo = 0.95.

5. Silica silt (HPF4) (Zdravkovi6 (1996)). This is the same silt as above, but
prepared in a dense state, with an initial void ratio eo = 0.65.

6. Artificial clay (KSS) (Rossato (1992)). This material was prepared by mixing
50% kaolin with 25% fine sand and 25% silt and consolidating it from a slurry.
The percentages quoted refer to proportion by weight.

7. Lower Cromer till (LCT) (Gens (1982)). This is reconstituted low plasticity till
which was consolidated from a slurry.

8. Pentre clay (PEN) (Connolly (1999)). This is a natural silty clay.
9. Bothkennar clay (BC) (Smith (1992)). This is a natural high plasticity clay.

HK

KSS

Kaolin

2

o 1":"=:::::::::::====;;;;;;;;:;;;;:;;:-HRHRSs--i

10 5'-:0~~~-:CIO'-:-0----:'20=-=O-"---"--~-:5-::-:00,---J

<5: (kPa)

Figure 4.22: Effect of clay content
on compressibility of soil

show the typical behaviour associated
with clay soils. The stress paths for
normally consolidated samples all
indicate a contractive tendency givim! ~ 4

L> ~

rise to positive, shear induced, pore "
6

water pressures. This contractive
tendency diminishes with increase in
OCR and after a critical OCR ofabout
3 is exceeded, the samples show a
tendency to try to dilate producing
negative, shear induced, pore water
pressures. All stress paths indicate a
well defined final state which
corresponds to critical state
conditions.

The behaviour of sand is illustrated by the results from HRS and DKS. With
dense DKS the shearing in compression leads to the mean effective stress
increasing for all OCRs, indicating a tendency to try to dilate and therefore the
generation ofnegative shear induced pore water pressures. The same behaviour is
observed at high OCRs when the sand is sheared in extension. However at low
OCRs the extension tests indicate an initial contractive tendency (positive shear
induced pore water pressures) followed by a tendency to try to dilate, and therefore
the generation of negative shear induced pore water pressures. For both the
compression and extension tests the effective stress paths travel along an inclined
failure line to high values of mean effective stress. Within a range of stresses
typically associated with geotechnical structures, they show no sign of reaching a
well defined final stress state. The large strain behaviour of loose HRS is similar
to that of the dense DKS. However, all the loose samples sheared in compression
show a tendency to try to contract with the generation of positive shear induced
pore water pressures on first shearing. On further shearing these samples revert to
a tendency to dilate, resulting in the generation of negative shear induced pore
water pressures.

It is interesting to compare the results from the tests on HRS and HK in more
detail. HK consists of90% HRS mixed with 10% kaolin. Both soils had an initial
void ratio of 0.8. It is evident that the addition of the small quantity of kaolin has
a marked effect on the shape of the stress paths. For the HK compression tests, the
onset of a tendency to try to compress and therefore generate positive excess pore
water pressures is abrupt and so intense that it results in a drop in deviatoric stress.
Quite large positive shear induced pore water pressures are generated before the
material undergoes phase transformation and begins to try to dilate. The effective
stress paths then travel up the failure line to large values of mean effective stress
in a similar manner to loose sands. Further tests were performed by Georgiannou
(1988) with different amounts of kaolin. Some of the results for Ko normally
consolidated samples are shown in Figure 4.24. Both triaxial compression and

1.0

HK

500

LeT

0.002 0.06
Particle size (mm)

BC

CLAY

Overconsolidated
Bothkennar clay-silt

2

100,---------,------:::;0

90

80

The grading curves for these
materials are compared in Figure
4.20. All soils have been tested in the

:0 70
laboratory in a standard triaxial ..E 60

d I ~50apparatus (Bishop an Wes ey .13
~ 40

(1975)). The samples were sheared !l 30

undrained in either compression or "" 20
. 10

extension after Ko consolidatIOn, 0,1-----

followed by Ko swelling to a range of
OCRs. In all cases, tests were
performed covering a typical range of
stresses encountered in engineering Figure 4.20: Grading curves for

different soilspractice.
Figure 4.21 compares the

compressibility of some of the above
soils under Ko conditions. It is evident
from this figure that the sands have
the lowest compressibility and that ~ 4

compressibility increases with clay "6

content. The Pentre clay, which
consists of both clay and silt sized
particles, shows a spread of volume
change behaviour, depending on 10 50 lOO 200

whether the samples were relatively <5: (kPa)

silty or clayey, or had laminated or Figure 4.27: Compressibilityof
marbled macro-structures. To different soils
emphasize the effect of clay content
on compressibility the results for HRS (0% kaolin), HK (10% kaolin), KSS (50%
kaolin) and kaolin (100% kaolin) are compared in Figure 4.22.

The effective stress paths observed in undrained triaxial compression and
extension, following Ko consolidation to a range of OCRs, are presented in Figure
4.23 for eight of the soils listed above. The results for LCT, KSS and Pentre clays
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Figure 4.25: Anisotropic stiffness
properties of silt

(Zdravkovic (1996))

Figure 4.24: Effect of clay content
on effective stress paths

(Georgiannou (1988))

extension tests on HRS/kaolin
mixtures, with 7.5% and 3.5% (by
weight) kaolin, are shown. For
comparison, results from tests on pure -;;- 200

HRS are also shown. Clearly the 2
addition of only a small quantity of
clay can have a major effect on soil
behaviour.

Comparing the behaviour of the
silt HPF4 with the other materials it is -200

evident that it follows the general
pattern established for sands. Loose
samples of HPF4 behave similarly to
loose HRS, and dense HPF4 responds
in the same way as dense DKS. The
dense HPF4 shows a strongly dilative tendency in compression and does not reach
a clear peak resistance or critical state in either compression or extension. A far
more contractive tendency is observed in extension, with the mean effective stress
falling by up to 50% before reaching the phase transformation point. In a similar
fashion to that observed for dense sands, the dense HPF4 exhibits a weaker
'memory' of its past stress history than do most clay soils. Consequently, when
tested in an overconsolidated state, its yielding characteristics appear to be less
clearly associated with those shown by normally consolidated samples.

Zdravkovic (1996) also performed
complex hollow cylinder tests on
dense HPF4 silt. From some of these

200
tests it was possible to determine the -;;-
anisotropic stiffness properties. ~ 150

Results for Ko consolidated silt with
an OCR= 1.3 are shown in Figure 4.25 ~

in the form of the variation of vertical
and horizontal Young's moduli, E,,'
and Eh" and shear modulus, Gl'h' with
increase in deviatoric strain, Ed • The
large differences between E,,' and Eh'
clearly indicate a strong anisotropic
behaviour. The decrease in stiffness
with increase in strain is typical of
most soils as discussed in the previous
sections of this chapter.

Hollow cylinder tests have also been performed on KSS and HK (Menkiti
Cl 995» and HRS (Hight Cl 998». One objective of these tests was to investigate
strength an isotropy. The variation ofthe angle ofshearing resistance, rp', with ex for
all these materials and the dense HPF4 are given in Figure 4.26. All tests were
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Figure 4.23: Effective stress paths in undrained triaxial compression
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Lagioia and Nova (1995)). Both samples were isotropically consolidated and then
sheared drained. The results shown in Figure 4.27a are for a sample consolidated
to a mean effective stress of 200kPa. When sheared the soil is initially very stiff,
but when the deviatoric stress reaches 1200 kPa the bonds begin to break and the
sample is unable to sustain further deviatoric stress and therefore the stress strain
curve shows a softening effect. At first, this softening is quite steep but with further
straining it becomes more moderate. After approximately 15% axial strain the
devaitoric stress increases and the material begins to harden. The behaviour from
then on resembles that of an unbonded sample of the same material. Different
behaviour can be observed in Figure 4.27b which shows the results for a similar
sample but this time isotropically consolidated to 1300 kPa before being sheared.
Again, the sample is initially very stiff. However, when the deviatoric stress
reaches nearly 1200 kPa and bond degradation begins, the deviator stress does not
reduce but remains constant. This behaviour continues until the axial strain reaches
approximately 10% at which point the material begins to harden again and behave
like an unbonded sample. The spiky nature ofthe stress strain curve up to an axial
strain of 10% is believed to reflect the erratic process involved in bond
degradation. The behaviour during this process is clearly dependent on the level
of the mean effective stress.

In both samples the stress-strain behaviour is approximately linear until bond
degradation begins in earnest when the deviator stress reaches 1200 kPa. Closer
inspection of this part of the loading curve indicates that the samples are behaving
in an approximately isotropic linear elastic manner.

4.5.3 Residual strength
It was noted in Section 4.3.6 that when clays are sheared to very large strains their
strength decreases from a peak value to a residual value. In terms of an angle of
shearing resistance, rp, it is not unusual for the residual value to be half ofthe peak
value for clays. Such a drop in strength at large strains is not observed for sands.
For soils containing both sand and clay sized particles the behaviour depends on
their clay content. This is illustrated in Figure 4.28a, which shows how the residual
angle of shearing resistance, rp,.', varies with clay fraction (% of clay in terms of
volume) for s~veral real soils. For low clay fractions « 20%) rp,.' is high, having
a value similar to the peak angle of shearing resistance. However, at clay fractions
greater than 40%, rp,.' is relatively small and much lower than the peak value. For
clay fractions between 20% and 40%, rp,.' is sensitive to the clay content.

Further data on residual strength is given in Figure 4.28b, where rp,.' are plotted
against plasticity index, Ip • As the value of the plasticity index reflects the clay
fraction this data indicate a similar trend to the data observed in Figure 4.28a.

The effect ofclay fraction on residual strength has been considered in detail by
Lupini et al. (1981). They show that at low clay fractions turbulent shearing
involves rolling and translation of soil particles, rather than direct sliding. In
contrast, for high clay fractions shearing can involve sliding between clay particles
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Figure 4.26: Variation of r/J / with a
for some soils

Figure 4.27: Stress-strain behaviour
of calcarenite (Lagioia (1994))

4.5.2 Residual soils
So far the discussion and data
presented in th is chapter have been
concerned with sedimentary soils.
Such soils are essentially eroded from
parent rock, transported by either
water or wind and then deposited in
a new location. In contrast, residual
soils are formed in-situ by weathering
of parent rock. The initial parent rock
is often quite strong, having a bonded
structure and therefore possessing
considerable cohesion. The
weathering process reduces the
number and the strength ofthe bonds.
As weathering is not a uniform
process, residual soils have a wide
variation in cohesive strength.
Clearly, the bonded structure of these
soils affects their behaviour. Due to
the highly variable nature of many
residual soils it is often difficult to
obtain an accurate picture of the
effects of bonding. This has led some
researchers to manufacture artificial
bonded soils (Maccarini (1987),
Bressani (1990).

As an example ofthe behaviour of
a residual soil, results from two
triaxial compression tests on Gravina
di Puglia calcarenite are shown in
Figure 4.27 (Lagioia (1994) and

performed with the intermediate
stress, Ch, having a value between (Jj

and (J]. The results show that rp' is
affected by the value of a. and
therefore that the soils are anisotropic.
They also indicate that the degree of
anisotropy reduces as the clay content
increases. For example, there is a
much larger variation in rp' for HRS
than there is for KSS.
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2. Overconsolidated soils experience a rapid reduction in stiffness when a stress
state associated with the pre-consolidation stress is reached.

3. On a change in the stress path direction the stiffness of the soil is likely to
increase. This increase depends on the amount that the stress path changes
direction. It is particularly noticeable ifthere is a complete reversal in direction
and the soil is unloaded.

4. Generally, heavily overconsolidated clays and dense sands attempt to dilate
(expand) on shearing, whereas lightly overconsolidated clays and loose sands
attempt to compress. However, loose sands may revert to a tendency to dilate
as failure is approached. The tendency to dilate also depends on mean effective
stress. At low stress levels there is a greater tendency to dilate, whereas at very
high stress levels even dense sands compress. Ifa fully saturated soil is sheared
undrained, volume changes are suppressed. However, the volume change
tendencies are still there and therefore negative shear induced pore water
pressures are generated in dilatant phases of soil behaviour and positive shear
induced pore water pressures occur during the compressive phases.

5. The shear stiffness reduces as the soil is sheared, i.e. due to an increase in
deviator stress and strain. This change in stiffness is particularly marked at the
beginning of shearing when the deviatoric strains are quite small.

6. A soil element fails when a certain stress state is reached. Such a stress state
forms part of a failure criterion. In conventional soil mechanics a Mohr­
Coulomb failure criterion is usually adopted. Undrained failure is not as well
defined for sands as for clays. Some soils show brittle behaviour, where their
capacity to sustain deviatoric stress reduces with further straining, after
reaching the failure criterion.

7. Many real soils contain a range of particle sizes and their behaviour depends
on their composition. A small amount of clay particles can have a large
influence on the behaviour of sands.

8. Most soils show some tendency to behave in an anisotropic manner.
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and that with straining the clay
particles become aligned. It is this
sliding and realignment that explains
the Iow residual strengths.

4.6 Concluding remarks
Ideally any constitutive model should
be able to simulate all the above
facets of soil behaviour. However,
only very advanced models are able
to do this. Some of these are
discussed in Chapter 8 where it is := 40

shown that, although they have the
ability to accurately reproduce soil
behaviour, they require many input
parameters, some of which are not
easily obtained from conventional site
investigation or laboratory test data.
Consequently, in practice a
compromise has to be made between
using an advanced model, which
requires the results from special
laboratory tests to define its
parameters, and simple models, which
may not reproduce all facets of soil
behaviour, but can be readily defined
from the available data. If the
compromise is towards using the simpler models, which is often the case, it is
important that the model can at least reproduce the soil behaviour that is dominant
in the problem under investigation. For example, ifthe problem is likely to involve
soil instability, then clearly it is important to model correctly the soil strength, for
example in slope stability and retaining wall design. However, if the concern is
over soil movements, it is more important to model accurately the stiffness
behaviour of the soil, for example when assessing movements adjacent to a multi­
strutted excavation.

4.7 Summary
From the preceding discussions the following important facets of soil behaviour
can be identified:

1. The stiffness, both bulk and shear, of a soil element increases as the soil
particles are pressed closer together, i.e. as the mean effective stress, p',
increases and/or the void ratio reduces.



(5.1)

(5.2)

Cl'1 = 100

Cl', = 50

Cl', = 100

Cl'3 = 50

50

50

100

100

p' = YJ(O'{ + O'~ + O'~)

Deviatoric stress:

Elastic constitutive models / 115

principal stresses (ai' a2 and a])
however, always act on the same
planes and have the same magnitude,
no matter which direction is chosen
for the coordinate axes. They are 50

therefore invariant to the choice of
axes. Consequently, the state of stress
can be fully defined by either
specifying the six component values
for a fixed direction of the coordinate
axis, or by specifying the magnitude
of the principal stresses and the
directions of the three planes on 50
which these principal stresses act. In
either case six independent pieces of
information are required.

For materials which are isotropic,
Le. whose properties are the same in
all directions, it is often convenient to F:
consider only certain aspects of the tgure 5. !: Effect of change of axes
stress tensor, rather than to have to on magmtude of stress components

specify. all six quantities. For example, if one is only interested in the magnitude
of maxImum and minimum direct stresses in the material, then only the principal
values (JI and a] are required. On the other hand, if one is interested in the overall
magnitude of the stress, all three principal stresses would be needed but not the
directio.ns of the planes on which they act. In geotechnical engineeri~g it is often
convenIent to work with alternative invariant quantities which are combinations of
the principal effective stresses. A convenient choice of these invariants is:

Mean effective stress:

Elastic constitutive models5.

5.1 Synopsis
When presenting the finite element theory in Chapter 2 the soil was assumed to
behave as an isotropic linear elastic material. This chapter and Chapters 6, 7 and
8 describe alternative constitutive models for soil behaviour. This chapter begins
with a short introduction to stress invariants. The remainder of the chapter is
devoted to elastic constitutive models. For completeness, both isotropic and
anisotropic linear elastic models are presented. Nonlinear elastic models in which
the material parameters vary with stress and/or strain levels are then described.

5.2 Introduction
The finite element theory presented in Chapter 2 assumed material behaviour to be
linear elastic. The review of real soil behaviour presented in Chapter 4 indicates
that such an assumption is unrealistic for soils. For realistic predictions to be made
ofpractical geotechnical problems a more complex constitutive model is required.

In this chapter and Chapters 6, 7 and 8 a variety of constitutive models that
have been, and still are, used to represent soil behaviour are described. This chapter
begins by introducing the concept of invariant measures ofstress and strain, which
are particularly useful when considering the behaviour of isotropic soils. The
remainder of the chapter is then devoted to elastic constitutive models which,
although of limited use, form a useful introduction to constitutive models. For
completeness, both isotropic and anisotropic linear elastic constitutive matrices are
given. Nonlinear elastic models in which the material parameters vary with stress
and/or strain levels are then described.

More advanced constitutive models, based on elasto-plasticity, are presented
in Chapters 6, 7 and 8. The extension of the finite element theory to deal with
nonlinear constitutive models forms the topic of Chapter 9. The usefulness and
applicability of the various constitutive models to real geotechnical problems is
discussed in Volume 2 of this book.

5.3 Invariants
The magnitudes of the components of the stress vector (i.e. a" ay, an Txy , Txn Tyz)

depend on the chosen direction of the coordinate axes, see Figure 5.1. The

Lode's angle:
(5.3)

This choice of invariants is not arbitrary because the above quantities have
geometric signifi~ance in principal effective stress space. The value of p' is a
me~sure. of the dIstance along the space diagonal (al'=(Jz'=a]'), of the current
devlat?nC plane from the origin, in principal effective stress space (a deviatoric
plane IS any plane perpendicular to the space diagonal). The value ofJ provides a
me~sure.of the distance of the current stress state from the space diagonal in the
devlatonc plane, and the magnitude ofedefines the orientation ofthe stress state
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Deviatoric Plane

within this plane. For example, consider the stress state represented by point P
(al'P, a/P, a3'P) which has invariantsp'P, J' and ePin Figure 5.2. The distance of
the deviatoric plane in which point P lies, from the origin, is p'P,[3, see Figure
5.2a. The distance ofP from the space diagonal in the deviatoric plane is given by
J',[2, and the orientation ofP within this plane by the value of ep, see Figure 5.2b.
On this figure, (a/)pr, (a/)pr and (aj,)pr refer to the projections of the principal
stress axes onto the deviatoric plane. As (JI'P;>(J2'P;>(J/P, P is constrained to lie
between the lines marked e = - 30° and e = +30°. These limiting values of e
correspond to triaxial compression (al'P ;> a/P= a3'P) and triaxial extension (aI'P
= a/ P ;> a/ P

) respectively.

Incremental deviatoric strain:

The basis for selecting the above quantities is that the incremental work
~W={a'r{~c}=p'~c" + J~Ed' The accumulated strain invariants are then given
by Cv = I~C" and Ed= I~Ed' The accumulated volumetric strain, cv, can also be
obtained from Equation (5.5), but with the incremental principal strains replaced
by the accumulated values. At first sight it might also seem that, by substituting the
accumulated principal strains for the incremental values in Equation (5.6), the
value of Ed can be obtained. However, in general, this is not so. The reason why
such an approach is incorrect is shown diagrammatically in Figure 5.3a, which
shows part ofa deviatoric plane in principal strain space. At position' a' an element
of soil has been subjected to no deviatoric strain, EJ = O. Some loading is applied
and the strain state moves to position 'b'. The incremental deviatoric strain is ~E}
and the accumulated deviatoric strain is Ed

b = ~E}. A further increment ofload is
applied which causes a change in the direction of the strain path. This causes the
strain state to move to position 'c', with an incremental deviatoric strain ~EJ. The
accumulated deviatoric strain is now given by EJ = ~E} + ~EJ, and is represented
by the length of the path 'abc' on Figure 5.3a. If an equation similar to Equation
(5.6) is evaluated with the principal accumulated strains corresponding to position
'c', it represents the length of the path 'ac'. This clearly does not reflect the
accumulated value of the incremental deviatoric strain as defined by Equation
(5.6). The paths 'abc' and 'ac' are identical only ifthe directions of~Edb and ~EJ
are the same in the deviatoric plane, see Figure 5.3b. Clearly, such a situation only
occurs if the strain path remains straight during loading. In general, such a
condition does not apply. It might, however, occur in some laboratory tests for
determining soil properties.

e=oo

b)

Deviatoric Plane

Figure 5.2: Invariants in principal stress space

(J'
3

a)

(J'
2

The principal stresses can be expressed in terms of these alternative invariants
using the following equations: Deviatoric plane Deviatoric plane

(5.4)

The above discussion is also applicable to the accumulated strain vector (cx> cy,
cz ' )'xy, )'xz, )'yz) and its principal values (Cl' C2 and C3)' It is also applicable to the
incremental strain vector (~cx , ~Cy , ~cz , ~)'xy , ~)'xz , ~)'yz)· However, for
geotechnical engineering only two alternative invariants are usually defined. A
suitable choice for these invariants is:

Incremental volumetric strain:
a) Change in the strain path direction b) Monotonic strain path direction

(5.5) Figure 5.3: Strain path directions in the deviatoric plane
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Following similar logic, it can also be shown that IffAJ if AJ is calculated
from an equation similar to Equation (5.2), but with the accumulated principal
stresses replaced by the incremental values.

Alternative definitions for stress and strain invariants can be, and are, used.
Some of these are discussed subsequently in Chapter 8.

5.4 Elastic behaviour
The basic assumption ofelastic behaviour, that is common to all the elastic models
discussed here, is that the directions ofprincipal incremental stress and incremental
strain coincide. The general constitutive matrix relates increments oftotal stress to
increments of strain:

L1CTx DJ! D!2 Dl3 D!4 D!S D!6 L1cx
L1CTy D 2! D 22 D 23 D 24 D 2S D 26

L1cy
L1CTz D 3! D 32 D 33 D 34 D 3S D 36 L1cz (5.7)
L1Txz D 41 D 42 D 43 D 44 D 4S D 46 L1yxz
L1Tyz D S! D S2 D S3 D S4 D ss D S6 L1yyz
L1Txy D 6! D 62 D 63 D 64 D 6S D 66 L1yxy

As noted in Section 3A, it is possible to divide the total stress constitutive
matrix [D], given above, into the sum of the effective stress matrix [D'] and the
pore fluid matrix [Dr]. Consequently, the constitutive behaviour can be defined
either by [D] or [D'].

Elastic constitutive models can take many forms: some assume the soil to be
isotropic, others assume that it is anisotropic; some assume the soil to be linear,
others that it is nonlinear, with parameters dependent on stress and/or strain level.
Several afthe models that have been used for geotechnical analysis are presented
below.

5.5 Linear isotropic elasticity
An isotropic material is one that has point symmetry, i.e. every plane in the body
is a plane of symmetry for material behaviour. In such a situation it can be shown
that only two independent elastic constants are necessary to representthe behaviour
and that the constitutive matrix becomes symmetrical. In structural engineering it
is common to use Young's modulus, E', and Poisson's ratio, Il', for these
parameters. Equation (5.7) then takes the form shown in Equation (5.8).

If the material behaviour is linear then E' and Il' are constants and the
constitutive matrix expressed as a relationship between accumulated effective
stresseses {(T'} and strains {G} is the same as that given in Equation (5.8). It is also
possible to express the constitutive matrix as a relationship between total stress and
strain, either on an incremental or accumulated basis. In this case the appropriate
parameters are the undrained Young's modulus, E,,, and Poisson's ratio, Ilu'
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1- Il' Il' Il' 0 0 0
L1CT; 1- )1' )1' 0 0 0 L1cx
L1CT;, 1- )1' 0 0 0 L1cy
L1CT; E' 1- 2)1'

0 0 L1cz

L1Txz (1 + )1')(1- 2)1') 2 L1yxz
L1Tyz sym 1- 2)1'

0 L1yyz
2L1Txy 1- 2)1' L1yxl'

2

(5.8)

For geotechnical purposes, it is often more convenient to characterize soil
behaviour in terms ofthe elastic shear modulus, G, and effective bulk modulus, K'.
Equation (5.7) then becomes:

L1CT; K'+'YJG K'-%G K'-%G 0 0 0 L1cx
L1CT; K' + 'YJ G K' - %G 0 0 0 L1cy
L1CT; K' +'YJG 0 0 0 L1cz

(5.9)L1Txz G 0 0 L1yxz
L1Tl'z sym G 0 L1yl'z
L1Txl' G L1yXl'

where

G=
E'

K'=
E'

(5.10)
2(1 + )1')

,
3(1- 2)1')

Again, it is also possible to express the constitutive matrix in terms of
undrained stress parameters. As water cannot sustain shear stresses, the undrained
and effective shear modulus are the same, hence the use of G without a prime in
Equations (5.9) and (5.10). Consequently, only K' has to be replaced by K

ll
in

Equation (5.9) to obtain the total stress constitutive matrix, [D].
These linear isotropic elastic models do not simulate any ofthe important facets

of soil behaviour highlighted in Chapter 4. They therefore have limited use for
analysing geotechnical problems. Their inability to reproduce even basic soil
behaviour is evident from the linear deviatoric stress - strain and deviatoric strain ­
volume strain curves that they predict for an ideal drained triaxial compression test,
see Figure SA. However, these models are often used to represent structural
elements (e.g. retaining walls, floor slabs etc.)
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Figure 5.4: Elastic prediction of a drained
triaxia/ compression test
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The above type of anisotropy is known as 'transverse isotropy', or 'cross­
anisotropy' or 'orthotropy' and reduces the number of unknown material
parameters to seven. The relationship between incremental stress and strain
components is given by matrix [D] in Equation (5.11):

A(l- j.J.~'pj.J~.\')E~ A(j.J~p + j.J.~pj.J~.\' )E~ Aj.J~1'(1 + j.J;,p)E;, 0 0 0

A(j.J;,p + j.J.~pj.J;,:,.)E;, A(l- j.J.~pj.J;,.\')E~ Aj.J~p(l+j.J~p)E;, 0 0 0

Aj.JI,.\' (1 + j.J;,p )E.~, Aj.J~.\' (1 + j.JI,p )E.~, A(l- j.J~pj.J~p)E.~, 0 0 0
0 0 0 Gp.\' 0 0
0 0 0 0 Gp.\' 0
0 0 0 0 0 GpI'

(5.11)

where

E./ - Young's modulus in the depositional direction;
Ep' - Young's modulus in the plane of deposition;
j.Js/ - Poisson's ratio for straining in the plane of deposition due to the stress

acting in the direction of deposition;
j.Jp./ Poisson's ratio for straining in the direction ofdeposition due to the stress

acting in the plane of deposition;
j.Jpp' - Poisson's ratio for straining in the plane of deposition due to the stress

acting in the same plane;
Gps - Shear modulus in the plane of the direction of deposition;
GpI' - Shear modulus in the plane of deposition.

However, due to symmetry requirements it can be shown that:

5.6 linear anisotropic elasticity
As shown in Chapter 4 soil behaviour is rarely truly isotropic, often exhibiting
anisotropy. Mathematically, if a material is fully anisotropic, the [D] matrix in
Equation (5.7) becomes fully populated. This implies that 36 independent
parameters are required to define the values ofDij' However, thermodynamic strain
energy considerations (Love (1927)) imply that the [D] matrix must be
symmetrical, i.e. D;j = Dj;, for i*j. The total number of independent anisotropic
parameters therefore reduces to 21.

Many materials, however, show limited forms of anisotropy. For soil deposits
it is often assumed that their anisotropic characteristics depend on the mode of
deposition and stress history. Soils that are deposited normally onto a plane are
likely to exhibit an axis of symmetry in the depositional direction, i.e. their
characteristics do not vary in the plane of deposition. In Figure 5.5 Cartesian
coordinates are allocated to a sediment such that the z-axis is in the direction of
sediment deposition, S, while x and y axes are in the plane of deposition, P.

and

A= 1
1 2 ' , 2 I I' ,2- flspflps - flspflpsflpp - flpp

(5.12)

(5.13)

z
x

eposition

Figure 5.5: Axes orientations for
considering transverse isotropy

Ej,
GpI' = 2(1 ') (5.14)+ flpp

This reduces the number of parameters required to define transversely isotropic
behaviour from seven to five. Matrix [D] in Equation (5.11) then reduces to the
symmetrical form of Equation (5.15).

Again, it is possible to express the constitutive matrix given by Equations
(5.15) in terms of undrained stress parameters. As the material parameters are
constant, the [D] matrices given in Equations (5.11) and (5.15) also relate
accumulated stresses and strains. While the model enables anisotropic stiffness to
be modelled, it does not satisfY any of the other important facets of soil behaviour
discussed in Chapter 4.
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( ,2 E;, )E' A(' ,2 E~)E' AJi,~'P(1+ Ji;,p)E.~, 0 0 0A 1- Jisl' -p; S Ji"l' + JiSI' E ss
A(1 ,2 E;, )E' AJi.~I'(1+ Ji;,P )El 0 0 0- Jisp E 's

S
,2 E? , 0 0 0A(1- Jipp --g;:)E.I,

P
Gp,I' 0 0

Gp.I' 0
E;,

2(1 + 2Ji;'P )

(5.15)
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5.7.2 Si-linear model
This model assumes that the bulk and shear stiffness are constant until the stress
state reaches the failure condition. Once this occurs, the tangential shear modulus,
G, is set to a very small value. Ideally, it should be set to zero, but if this is done
there would not be a one to one relationship between incremental deviatoric
stresses and strains. This would lead to ill conditioning of the finite element
equations and numerical instability. Therefore, in practice G is set to a small, but
finite value. The resulting stress-strain curves for this model are shown in Figure
5.6. Clearly, if on reaching failure the stress state is unloaded, the shear modulus
would revert to its initial pre-failure value.

where
pi J

(5.16)

5.7 Nonlinear elasticity
5.7.1 Introduction
A logical first step to improving the linear elastic models described above is to
make the material parameters depend on stress and/or strain level. By doing this
it is possible to satisfy several ofthe requirements discussed in Chapter 4. As there
are only two parameters required to define isotropic elastic behaviour, this is
relatively straightforward. However, it is much more difficult for anisotropic
behaviour as there are five material constants. Consequently, most ofthe nonlinear
elastic models that are currently in use assume isotropic behaviour.

When dealing with isotropic elasticity, the two material properties can be
chosen arbitrarily from E, fi, K or G. For geotechnical engineering it is often
convenient to use bulk modulus, K, and shear modulus, G. The reason for this is
that the behaviour ofsoil under changing mean (bulk) stress is very different to that
under changing deviatoric (shear) stress. For instance, under increasing mean stress
the bulk stiffness of the soil will usually increase, whereas under increasing
deviatoric stress the shear stiffness will reduce. Furthermore, inspection of
Equation (5.9) indicates that, for isotropic elasticity, the two modes ofdeformation
are decoupled, i.e. changes in mean stress, !j,p', do not cause distortion (no shear
strains) and changes in deviatoric stress do not cause volume change. While this
is clearly helpful when formulating a constitutive model, it must be noted that real
soils do not usually behave in this decoupled manner. For example, the application
of a pure deviatoric stress in a direct or simple shear test does inflict volumetric
straining.

Five particular nonlinear models are now presented. These are the bi-linear, K­
G, hyperbolic and two small strain stiffness models.

Figure 5.6: Bi-linear model

This model requires two elastic parameters, Ke and Ge (or the equivalent Ee and
fiJ, to define the pre-failure elastic behaviour. In addition, it requires parameters
to define the failure surface. For example, if a Mohr-Coulomb failure surface is
used, a further two parameters, cohesion c' and angle ofshearing resistance rp I, are
needed.

5.7.3 K - G model
In many respects this model is a logical extension of the bi-linear model. The
tangential (i.e. incremental) bulk, Kt, and shear, Gt, moduli are explicitly defined
in terms of stress invariants:

(5.17)

Gt = Gto + ac;p' + {Jc;J (5.18)

The model therefore needs five parameters, Kt,,, aK, Gt,,, aGand PG, to describe
material behaviour. These can be chosen to fit available soil data. As with the bi­
linear model, the parameters can be selected such that the tangential (incremental)
shear stiffness becomes very small when failure is approached. This is achieved by
settingpti negative. Values ofcohesion, c', and angle ofshearing resistance, rp', are
therefore used when determining the values of the five input parameters. The
model can also be used for unloading in much the same way as the bi-linear model.
A simple way of implementing this is to set PG to zero on unloading. The bulk
modulus, Kt , therefore remains unaffected, but the shear modulus, Gt , changes
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abruptly to a higher value. If subsequent reloading brings the stress state near to
failure again, fJ(j is reset to its former value. The resulting stress-strain curves for
this model are shown in Figure 5.7. This model is described in detail by Naylor et
at. (1981).

b

b) Transformation of
hyperbolic relation

a

a) Hyperbolic stress-strain curve

It may be noted that a and b are the intercept and the slope of the resulting
straight line, see Figure 5.8b. By plotting laboratory stress-strain data in the form
shown in Figure 5.8b it is easy to determine the values of the parameters a and b
corresponding to the best fit between a hyperbola (a straight line in Figure 5.8b)
and the test data.J

s"

Figure 5.7: K-G model

p'

where a l and a3 are the major and minor principal stresses, E: the axial strain and a
and b are material constants. It can be shown that ifa1 = a3 the reciprocal ofa is the
initial tangential Young's modulus, E;, see Figure 5.8a. The reciprocal of b is the
failure value of a l -a3, approached asymptotically by the stress-strain curve, see
Figure 5.8a.

Kondner and his coworkers showed that the values of the material properties
may be determined most readily if the stress-strain data from laboratory tests are
plotted on transformed axes, as shown in Figure 5.8b. Rewriting Equation (5.19)
in the same form gives:

5.7.4 Hyperbolic model
While the two models described above are essentially incremental in that they
directly define the change in tangential moduli, the hyperbolic model relates
accumulated stress to accumulated strain. Differentiation is then required to obtain
the equivalent incremental form for use in finite element analysis.

The original model is attributed to Kondner (1963), however, it has been
extensively developed by Duncan and his co-workers and is commonly known as
the 'Duncan and Chang' model (after Duncan and Chang (1970)). In its initial
form it was originally formulated to fit undrained triaxial test results and was based
on two parameters and the implicit assumption that Poisson's ratio was 0.5. With
use, further refinements were added and the model was applied to both drained and
undrained boundary value problems. The number of parameters needed to define
the model also increased to nine (Seed et al. (1975)).

The original model was based on the following hyperbolic equation:

(5.21)

For finite element use it is common to differentiate Equation (5.19) to obtain
the variation of the tangent Young's modulus, El, with stress level, (0"1-0"3):

E = a(0"1 - 0"3) = a
I aE: (a+bE:)2

As noted above, various further developments have been made to the original
formulation. In particular it has been extended to deal with drained behaviour.
While an improvement over linear elasticity, the model is incapable ofrepresenting
many of the important facets of soil behaviour discussed in Chapter 4.

A potential problem can arise with this model due to the assumption of a
constant Poisson's ratio. When shear failure is approached, the tangent Young's
modulus reduces to zero. Combining this with the constant Poisson's ratio results
in both the tangent shear and bulk moduli also reducing. While this is reasonable
for the shear modulus, it is not realistic for the bulk modulus. The only situation
where this does not occur is when Poisson's ratio is exactly 0.5. However, as
discussed in Chapter 3, it is not usually possible to use such a value in a finite
element analysis. Even for a value ofPoisson's ratio close to 0.5 the bulk modulus
reduces to a zero.

Figure 5.8: Hyperbolic model

5.7.5 Small strain stiffness model
The three models described above have been in existence for many years and were
developed to cover the complete stress-strain range from first loading all the way
to failure. In recent years, however, due to advances in electronic instrumentation,
it has been possible to measure the behaviour ofsoils more accurately. In particular
it has been found that soils undergo a large and rapid change in stiffness when
initially subjected to relatively small changes in strain. Such behaviour has been

(5.20)

(5.19)
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described in Chapter 4. Many of the constitutive models in existence could not
account for such behaviour and this, consequently, led to further developments.
One ofthe earliest models developed specifically to deal with the concept of small
strain behaviour was that described by Jardine et al. (1986). Because this model is
based on nonlinear isotropic elasticity, it is appropriate to briefly describe it here.

The secant expressions that describe the variation ofshear and bulk moduli are:

As noted above, this model was developed to simulate soil behaviour in the small
strain range. It was not intended to be used to deal with behaviour at large strains
when the soil approaches failure. Consequently, the model is usually used in
conjunction with a plastic model which deals with the large strain behaviour.
Elasto-plastic models are discussed in Chapter 6,7 and 8. The use ofthis model to
analyse real engineering structures is described in Volume 2 of this book.

;:c ~A+BOO{+g,{~Jr]

:~ ~R+sooHog,{'~IJrj

(5.22)

(5.23)

where

K R S( 5::) yl/ S OJl yl/-l (. 5::) yll
- = + cOSu - Slllu
Z 2.303

(5.27)

(5.28)

pI

5.7.6 Puzrin and Burland model
While the small strain stiffness model described above is capable ofmodelling soil
behaviour under small stress and strain perturbations, it is lacking in theoretical
rigour and fails to account for several important facets of real soil behaviour. In
particular, it does not account for the change in stiffness observed when the
direction of the stress path changes. However, its use by Jardine et al. (1986) to
investigate the behaviour of a range of geotechnical problems highlighted the
importance of modelling the small strain behaviour of soils. As a result,
considerable effort has, and still is, being directed at improving our understanding
of the mechanical processes controlling stress-strain behaviour of soils at small
strains.

Based on limited experimental
evidence, it has been postulated that, ai-a,

in stress space, the stress state is
surrounded by a small-strain region
(SSR), where the stress-strain
behaviour is nonlinear but very stiff
and fully recoverable, so that cycles
of stress form closed hysteretic loops.
Inside this r~gion the stress state is
surrounded by a smaller region where
the soil response is linear elastic (the

LER). When the stresses change, both Figure 5. 10: Kinematic regions of
these regions move with the stress high stiffness
state as illustrated by the dotted lines
in Figure 5.10. This concept ofkinematic regions ofhigh stiffness was put forward
by Skinner (1975) and developed by Jardine (1985, 1992).

Puzrin and Burland (1998) adopted the above framework and developed a
constitutive model to describe the behaviour of soil within the SSR. They assumed
behaviour within the LER to be linear elastic and that once the stress state was

(5.24)

(5.25)

(5.26)
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Figure 5.9: Variation of shear and bulk moduli with strain
level

To use this model in a finite element analysis, the secant expressions given by
Equations (5.22) and (5.23) are differentiated to give the following tangent values:

where, G.,ec is the secant shear modulus, K,ec the secant bulk modulus, pi the mean
effective stress, and the strain invariants Ed and Cv are given by:

and A, B, C, R, S, T, a, y, (j and '7 are all material constants. Due to the cyclic
trigonometric nature of Equations (5.22) and (5.23) it is common to set minimum
(Ed.min , Cv,min) and maximum(Ed,max , cv,max) strain limits below which and above
which the moduli vary with pi alone, and not with strain. Typical variations of
secant shear and bulk moduli for London clay are shown in Figure 5.9.
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Figure 5. 11: The stress regions
surrounding a local origin in J-p I

space
(5.33)

(5.31 )

(5.37)

(5.35)

(5.34)

(5.32)

(5.36)

x = IEvlKLER

v PSSR

X = a LER
e

a SSR

F (p' ,J) = 1+ n2(L1
2

_ (aSSR 1
2

= 0
SSR pI) p' )

x -1a= II

(Xli -xe )[ln(1+xlI -xe)r

R = [( l-_xe _ b)( (1 + Xli - xe)[I~(1 + XII - X e)])]
XII xe Xli 1

where KLER,ef and GLER,ef are values of the bulk and shear elastic moduli,
respectively in the LER, at the mean effective stress p"ef.

The value of the parameter a LER can be determined from an undrained triaxial
test as a LER = n JLERu, where JLERu is the value of the deviatoric stress at the LER
boundary and n = .f(KLER / G LER). The parameters f3 and y control the manner in
which the moduli depend on mean effective stress.

Behaviour within the SSR
The boundary to the SSR is also given by an ellipse:

where a SSR is a parameter defining the size of the SSR. It can be determined from
an undrained triaxial test as aSSR=nJSsRU, where JSSRu is the value of the deviatoric
stress at the SSR boundary, and n is defined above.

Between the LER and the SSR the elastic moduli depend both on mean
effective stress and on strain and obey the following logarithmic reductions:

where

in which XII is the normalised strain at the SSR boundary, X e the normalised strain
at the LER boundary, and b is the ratio of tangent modulus on the SSR boundary
to the value within the LER:

p'g/oha!

(5.30)

(5.29)

outside the SSR behaviour could be explained by conventional elasto-plasticity.
Their work therefore concentrated only on the behaviour within the SSR. As
published, the model is restricted to conventional triaxial stress space and therefore
must be extended to general stress space before it can be used in finite element
analyses. Addenbrooke et al. (1997) used such an extended version of this model
to investigate the influence of pre-failure soil stiffness on the numerical analysis
oftunnel construction. Although they used a simple Mohr-Coulomb elasto-plastic
model to represent soil behaviour beyond the SSR, their extension of the Puzrin
and Burland model is independent of how behaviour beyond the SSR is modelled.
This model is now presented.

Since the model is assumed to be
isotropic, it is formulated in terms of

dO :>
stress invariants, see Section 5.3. The ~\'b' ~e,

'0 <$'''
stress space surrounding a stress ~;s''l:> i..~"# :,,'r>'O

point, or local origin, is divided into ~~,,<$'<i

three regions, see Figure 5.11. The 4
first region is the linear elastic region SSR

(LER). In the second region, the small ER p'

strain region (SSR), the deviatoric _-"'-_+- L_o_ca__or-:ig_in ' -+

and volumetric stress-strain behaviour
is defined by a logarithmic curve
(Puzrin and Burland (1996)). Each of
these regions is bounded by an
elliptical boundary surface. Because
the deviatoric stress invariant, J, is
always positive, these surfaces plot as
half ellipses in Figure 5.11. In the final region, between the SSR boundary and the
plastic yield surface (which is defined independent of the pre-failure model), the
soil behaviour is again elastic, with the shear, G, and bulk, K, moduli being
associated with the SSR boundary. To be consistent with experimental data, see
Chapter 4, the stiffnesses in both the LER and SSR are mean stress dependent.

The equations defining soil behaviour are now presented. Note that p', J (the
mean and deviatoric stress invariants), E:v and Ed (the volumetric and deviatoric
strain invariants) are calculated from the local origin (see Figure 5.11).

Behaviour within the LER
The elliptical boundary to the LER is given by:

FLER (p', J) = I + n2 ( ;) 2 _ ( a~~R) 2 = 0

where aLER is a parameter defining the size of the LER. Within this boundary, the
shear and bulk moduli are defined by:
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and u is the incremental strain energy, which can be determined from an undrained
trixial test, being equal to O.5EssRuJssRu, where ESSRu and JSSRu are the deviatoric
strain and deviaoric stress on the SSR boundary, respectively.

stiffness model allows only shear stiffness reduction on deviatoric straining with
no volumetric straining, and bulk stiffness reduction on volumetric straining with
no deviatoric strain, while the Puzrin and Burland model forces shear and bulk
moduli reduction together, independent of straining.

Behaviour outside the SSR
Outside the SSR the moduli are the bulk modulus, K = bKLER, and the shear
modulus, G=bGLER. In future developments of the model it may be possible to use
a hardening/softening plastic model and associate the SSR boundary with initial
yielding. The elastic parameters G and K at the SSR boundary could then be related
to the elasto-plastic shear and bulk stiffness. Such an approach would essentially
define the parameter b which would then no longer be required as an input
parameter to the model. The principles behind such an approach are outlined by
Puzrin and Burland (1998).

Within this model, a stress path reversal results in the relocation of the local
stress origin at the reversal point, so reinvoking the small-strain high-stiffness
behaviour and enabling the model to simulate closed hysteretic loops. In this
respect, a stress path reversal is defined if the increment of normalised mean or
deviatoric stress is less than zero:

5.8 Summary
1. In general, six independent pieces of information are required to define the

state of stress. If the material is isotropic the magnitude of the stress can be
quantified using three independent stress invariants. These invariants can be the
three principal stresses or some combination ofthese. However, if the material
is anisotropic all six pieces of information are required. The above statements
also apply to strains.

2. Linear isotropic elastic models, which require only two material parameters, do
not reproduce any of the important facets of real soil behaviour identified in
Chapter 4. Linear cross-anisotropic elastic models, which require five material
parameters, do not really improve the situation, although they can reproduce
anisotropic stiffness behaviour.

3. Nonlinear elastic models, in which the material parameters vary with stress
and/or strain level, are a substantial improvement over their linear counterparts.
Due to the number of parameters involved, most nonlinear elastic models
assume isotropic behaviour. However, they still fail to model some of the
important facets ofreal soil behaviour. In particular, they cannot reproduce the
tendency to change volume when sheared. Also, because of the inherent
assumption ofcoincidence ofprincipal incremental stress and strain directions,
they cannot accurately reproduce failure mechanisms.

p'

(5.38)

J

Local origin

d(L) = P~SR dp' - p' dp~sR > 0
12-

PSSR P~SR

and

d( / )== J SSR dJ ~ J dJSSR > 0
SSR JSSR

where JSSR and P'SSR are the linear
projections of the current stress state
Jandp' on the SSR, see Figure 5.12.
According to this criterion the loading
reversal can occur at any stress state
within the SSR and not only on its
boundary.

A total of eight parameters are
required to define the model. These
are / I b / I / I K / I Figure 5. 12: Proiection of the, up, ,aLER P , aSSR p, LER P , J

GLER/p' ,jJ and y. However, as the bulk current stress state on SSR

and shear moduli depend on p', they can become very small as p' reduces.
Addenbrooke et al. (1997) therefore introduced minimum values G . and K .
which act as cut off values calculated from the above equations. mm mm

A major difference between this model and the small strain stiffness model
described in the previous section is that in this model both the shear and bulk
stiffness decay simultaneously as the stress state moves through the SSR. In
contrast, in the previous model the decay of shear and bulk stiffness depends only
on deviatoric and volumetric strains respectively. Consequently, the small strain
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Figure 6. 1: Uniaxialloading of linear
elastic perfectly plastic material

6.3 Uniaxial behaviour of a linear elastic perfectly plastic
material

Figure 6.1 shows a uniaxially loaded bar of an ideal linear elasto-plastic material,
which is loaded by applying a compressive axial strain, c. This figure also shows
the stress-strain curve for this bar. On first straining the bar behaves elastically and
its stress-strain response travels along the line AB. As the material is linear elastic,
the gradient of the line AB is given by the Young's modulus, E. If the straining
process is stopped before the stress in the bar reaches point B and the bar is
unstrained (i.e. unloaded), the stress-strain response moves back down the line BA.
Consequently, as long as the straining does not cause the stress to reach point B,
the bar behaves in a linear elastic manner and, when unloaded, returns to its
original undeformed state, with no permanent strains. Ifthe bar is strained beyond
CB, to point C, the stress strain curve passes through point B. At B the yield stress,
ay, is reached and the bar becomes plastic. There is no longer a linear relationship
between stress and strain and the stress in the bar remains constant and equal to ay.
If the bar is now unloaded it becomes elastic and the stress strain curve follows the
path CD, which is parallel to the path BA. When unloaded such that the axial stress
is zero, i.e. point D, there is still a strain in the bar. This strain is equivalent to the
plastic strain experienced when straining along the path BC and is given by cr!' =
Cc - CB' Thus the bar does not return to its original shape, but suffers a permanent
shortening. Ifthe bar is now reloaded, the stress strain curve re-traces the path DC
until point C is reached, at which point the axial stress equals the yield stress and
the bar becomes plastic again. It then moves along path CF. Clearly, ifthe straining
is not sufficient to take the stress to point C, the bar behaves linear elastically.
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6.2 Introduction
In the previous chapter some elastic constitutive models were presented. While
such models are relatively simple, they cannot simulate many of the important
characteristics of real soil behaviour. Improvements can be made by extending
these models using the theory of plasticity. The objective of this chapter is to
describe the concepts ofelasto-plastic behaviour and how it may be formulated for
use in finite element analysis.

The chapter begins by considering the uniaxial behaviour of a linear elastic­
plastic material. By using this simple problem as an example, the ideas of plastic
yield, hardening and softening are introduced. It is then shown that many of the
facets of real soil behaviour are consistent with such concepts and, therefore, that
the framework has considerable potential. While the uniaxial problem provides an
ideal introduction, the concepts of plasticity must be expressed in general stress
and strain space, ifthey are to be used to describe soil behaviour under multi-stress
conditions. The basic ingredients for a general elasto-plastic model are therefore
presented. These are then used to examine the behaviour of an elasto-plastic
material subjected to a biaxial stress state. The chapter finishes by deriving the
theoretical equations necessary for construction of the elasto-plastic constitutive
matrix for use in finite element analysis. Examples ofspecific elasto-plastic models
are given in Chapters 7 and 8.

6.1 Synopsis
This chapter introduces the framework and assumptions of elasto-plastic material
behaviour. Elastic perfectly plastic and elastic strain hardening/softening plastic
behaviour is defined. The concepts of yield and plastic potential surfaces and of
hardening and softening rules are introduced. It is shown that the framework can
simulate many of the facets of behaviour exhibited by real soils. The chapter
finishes by deriving the theoretical equations necessary for construction of the
elasto-plastic constitutive matrix.

Behaviour is reversible, and therefore elastic, on the inclined paths AB and DC,
whereas on the path BCF behaviour is not reversible. For example, it is impossible
to retrace the path CB. If, instead of subjecting the bar to strain controlled loading,
the bar is loaded by an increasing stress, it is impossible to apply a stress greater
than the yield stress ay. Any attempt to do so would result in infinite strains. A
material conforming to the idealised behaviour shown in Figure 6. I is called linear
elastic perfectly (or ideal) plastic.
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6.6 Relevance to geotechnical engineering
Although the above examples are for e

simple uniaxial conditions, they A

highlight the difference between the D.

three main forms of elasto-plastic
behaviour. It is interesting to compare
the behaviour described above, with
some ofthe more common features of
soil behaviour. For example, if the
stress-strain curve given in Figure 6.2
is re-plotted with the stress axis
horizontal and the strain axis vertical,
see Figure 6.4a, it bares some
resemblance to the behaviour
observed in an oedometer test, see
Figure 6.4b. Soil behaviour on a
swelling line is often assumed to be er

reversible and therefore is akin to
behaviour on an elastic unload-reload
loop (i.e. path CDC in Figure 6.4a).
Behaviour on the virgin consolidation
line is irreversible (i.e. it is only
possible to travel down the line, not
up it) and results in permanent strains.
It is therefore similar to behaviour
along the strain hardening path BCF
of Figure 6.4a.

Similarity also exists between the
strain softening behaviour given in Figure 6.3 and reproduced in Figure 6.5a, and
the shear stress - shear strain behaviour observed in a direct or simple shear test on
dense sand, shown in Figure 6.5b.

6.7 Extension to general stress and strain space
For the above concepts of elasto-plastic materials to be of general use, behaviour
must be formulated in general multi-axial stress and strain space. Because there are
six independent components of stress and six of strain, this presents a formidable
task. However, if the material can be assumed to be isotropic (i.e. properties
independent of orientation) and as yield is essentially dependent on stress
magnitude, simplifications can be achieved by working with invariants of stress
and strain. As noted in Chapter 5, three stress invariants are required to determine
the magnitude of stress. These invariants can be the principal stresses, or some
combination of these values. For plasticity it is usual to express behaviour in an
incremental form and to use accumulated stress and incremental strain invariants.
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Figure 6.2: Uniaxial loading of linear
elastic strain hardening plastic

material

Figure 6.3: Uniaxialloading of linear
elastic strain softening plastic

material

6.4 Uniaxial behaviour of a linear elastic strain hardening
plastic material

Figure 6.2 shows another idealised a
uniaxial stress-strain curve. Behaviour TApplied a yc '

strain s
of the bar when strained is similar to
that described above, but with one
subtle difference. Initially, ifthe bar is
strained it behaves elastically along
path AB. If it is strained beyond point
B to point C the initial yield stress aYE
is exceeded, but instead of the stress
remaining constant and equal to aYE,
as in Figure 6. I, it increases to a yC .

On unloading from point C the bar
becomes elastic again and follows the
linear path CD which is parallel to BA. As before, there is a permanent (plastic)
strain left in the bar when it is fully unloaded to point D, i.e. a = O. On reloading
the bar initially behaves elastically, path DC, until point C is reached, where it
becomes plastic. The yield stress at point C, ayC' is greater than that at B and has
increased as a result of the plastic straining from B to C. Eventually, if the bar is
strained to point F the stress strain curve becomes horizontal and the stress in the
bar remains constant. A material which behaves in this manner is called a linear
elastic strain (or work) hardening plastic.

6.5 Uniaxial behaviour of a linear elastic strain softening
plastic material

A third class of plastic material can
now be identified where the yield""TApplied

. aYB .
stress, instead of increasing during strain e

plastic straining, decreases. The
behaviour of such a material when
subjected to uniaxial straining is
shown in Figure 6.3. Behaviour is
again linear elastic on first loading
and during any unload - reload loops.
However, during plastic straining,
along path BCF, the yield stress
reduces. Such a material is called a
linear elastic strain (or work)
softening material.

From an engineering point of view, material that behaves in this brittle manner
is ofparticular concern because, if strained beyond its initial yield point (i.e. point
B in Figure 6.3), its yield stress reduces and its capacity to resist load diminishes.
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Figure 6.6: Yield function
presentation

b) Segment of yield surface

a 3

Impossible
stress state

F({a}. {k}»0

a) Yield curve

function has to be plotted in three
dimensional 0"1-0"2-0"3 space where it a l

fonns ayieldsurface, see Figure 6.6b.
The space enclosed by this surface is
called the elastic domain. The Elastic ~ Elasto-plastic

F({a), {k)~O
advantage of assuming isotropic F({a}, {k})<O

behaviour and therefore expressing
the yield function in terms of stress
invariants should now be apparent. If
such an assumption is not made, the
yield function has to be expressed in
tenns of six stress components and it
therefore forms a surface in six dimensional space. Clearly, it is not possible to
draw such a space and therefore visualisation of such a surface is difficult!

6.8.1 Coincidence of axes
The principal directions of accumulated stress and incremental plastic strain are
assumed to coincide. This differs from elastic behaviour where the principal
directions of incremental stress and incremental strain coincide.

Clearly, working in tenns ofinvariants considerably reduces the complexity of
the task of formulating elasto-plastic behaviour, because the number of stress and
strain parameters reduces from six to three. However, it comes at the cost of
assuming the material to be isotropic. To model anisotropic behaviour the
formulation must be in tenns of six independent stresses and six strains.

6.8 Basic concepts
To formulate an elasto-plastic constitutive model requires the following four
essential ingredients.

6.8.2 A yield function
In the uniaxial situations described in Sections 6.3 to 6.5 the yield stress, O"y,
indicates the onset ofplastic straining. In the multi-axial situation it is not sensible
to talk about a yield stress, as there are now several non- zero components ofstress.
Instead, a yield function, F, is defined, which is a scalar function of stress
(expressed in terms of either the stress components or stress invariants) and state
parameters, {k}:

6.8.3 A plastic potential function
In the uniaxial examples considered in Sections 6.3 to 6.5 it is implicitly assumed
that the plastic strains take place in the same direction as the imposed stress. For
the uniaxial case this is self evident. However, in the multi-axial case the situation
is more complex as there are potentially six components of both stress and strain.
It is therefore necessary to have some means of specifying the direction of plastic
straining at every stress state. This is done by means of aflow rule which can be
expressed as follows:

where de/' represents the six components of incremental plastic strain, P is the
plastic potential function and A is a scalar multiplier. The plastic potential function
is of the form:

where {m} is essentially a vector of state parameters the values of which are
immaterial, 'because only the differentials of P with respect to the stress
components are needed in the flow rule, see Equation (6.2).

Equation (6.2) is shown graphically in Figure 6.7. Here a segment of a plastic
potential surface is plotted in principal stress space. Because of the assumption of
coincidence of principal directions of accumulated stress and incremental plastic
strain, it is possible to plot incremental principal strains and accumulated principal
stresses on the same axes. The outward vector nonnal to the plastic potential
surface at the current stress state has components which provide the relative
magnitudes of the plastic strain increment components. This is more easily shown
in Figure 6.7b, where it is assumed that 0"2 = °and the plastic potential function is
plotted in two dimensional 0"1 - 0"3 space. It should be noted that the nonnal vector

(6.2)

(6.3)p({o-}, {m})= 0

(6.1)

This function separates purely elastic from elasto-plastic behaviour. In general,
the surface is a function of the stress state {O"} and its size also changes as a
function of the state parameters {k}, which can be related to hardening/softening
parameters. For perfect plasticity {k} is constant and represents the magnitude of
the stresses at yield. It is analogous to O"y in Figure 6.1. For hardening and softening
plasticity {k} varies with plastic straining to represent how the magnitude of the
stress state at yield changes. It is analogous to the curves BCF in Figures 6.2
(hardening) and 6.3 (softening). If the hardening or softening is related to the
magnitude ofthe plastic strains, the model is known as strain hardening/softening.
Alternatively, ifit is related to the magnitude of plastic work, the model is known
as work hardening/softening.

The value of the yield function F is used to identify the type of material
behaviour. Purely elastic behaviour occurs ifF( {O"}, {k}) < 0, and plastic (or elasto­
plastic) behaviour occurs ifF( {O"}, {k}) = 0. F( {O"}, {k}) >°signifies an impossible
situation. Equation (6.1) plots as a surface in a stress space. For example, if
Equation (6.1) is expressed in tenns of the principal stresses and 0"2 = 0, the yield
function can be plotted as shown in Figure 6.6a. Such a plot of the yield function
is called a yield curve. If 0"2 is not set to zero but is allowed to vary, the yield
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b) Plastic potential curve

with plastic straining along the path
BCF. At any point along this path the cry hardening
strains can be separated into elastic
and plastic components. It is then
possible to plot how the yield stress,
CJy , varies with plastic strain, El', as softening
shown in Figure 6.8. A relationship of
this type is called a hardening rule.
For the strain softening uniaxial rP
example discussed in Section 6.5 and
shown in Figure 6.3, the yield stress Figure 6.8: Examples of
reduces and again it is possible to plot hardening/softening rules
how CJy varies with plastic strain E: p.

This is also shown in Figure 6.8 and such a relationship is called a softening rule.
In multi-axial situations it is common to relate changes in size of the yield

surface to the components (or invariants) of the accumulated plastic strain. Such
hardening/softening rules are then called strain hardening/softening. Alternatively,
but less commonly, the change in size of the yield surface can be related to the
increase in plastic work, J1!l' = f {ur{L'>£P}. Such hardening/softening rules are
called work hardening/softening.

So in general, having accepted coincidence of principal directions of
accumulated stress and incremental plastic strain, three further pieces of
information are required to formulate an elasto-plastic model. A yield function
which signals when the material becomes plastic, and a plastic potential function
which determines the direction of plastic straining, are compulsory ingredients. If
the material hardens or softens, a hardening/softening rule is required. Specific
examples of such models are given in Chapters 7 and 8.

To indicate how the above concepts work in multi-axis stress conditions, a two
dimensional stress situation is now considered. For simplicity, associated
conditions are assumed, with the yield and plastic potential surfaces being given
by the same function.

O"I.Cleft!:Cle!,'
'.:-.Az)

0"3. CId{

Figure 6.7: Plastic potential
presentation

only provides an indication of the
relative sizes of the strain
components. The value of the scalar
parameter A in Equation (6.2)
controls their magnitude. A is
dependent on the hardening/softening
rule which is discussed later. In
general, the plastic potential can be a 0"3' "'d{

function of the six independent stress a) Segment of the plastic
potential surface

components and has a corresponding
surface in six dimensional stress
space, to which the components of a
vector normal to the surface at the
current stress state represent the relative magnitudes of the incremental strain
components.

Sometimes a further simplification is introduced by assuming the plastic
potential function to be the same as the yield function (i.e. P({u},{m}) =

F({u},{k})). In this case the flow rule is said to be associated. The incremental
plastic strain vector is then normal to the yield surface and the normality condition
is said to apply. In the general case in which the yield and plastic potential
functions differ (i.e. P({u},{m}) * F({u},{k})), the flow rule is said to be non­
associated.

Flow rules are of great importance in constitutive modelling because they
govern dilatancy effects which in turn have a significant influence on volume
changes and on strength, see Chapter 4. Whether or not the flow rule is associated
or non-associated also has a cost implication in finite element analysis. As shown
subsequently in this chapter, if the flow rule is associated, the constitutive matrix
is symmetric and so is the global stiffness matrix. On the other hand, if the flow
rule is non-associated both the constitutive matrix and the global stiffness matrix
become non-symmetric. The inversion of non-symmetric matrices is much more
costly, both in terms of storage and computer time.

6.8.4 The hardening/softening rules
The hardening/softening rules prescribe how the state parameters {k} vary with
plastic straining. This enables the scalar parameter, A, in Equation (6.2) to be
quantified. Ifthe material is perfectly plastic, no hardening or softening occurs and
the state parameters {k} are constant. Consequently, no hardening or softening
rules are required. In such materials A is undefined. This follows from the fact that
once the stress state reaches, and is maintained at, yield the material strains
indefinitely. However, for materials which harden and/or soften during plastic
straining, rules are required to specify how the yield function changes.

For example, in the uniaxial compression of a strain hardening material
discussed in Section 6.4 and shown on Figure 6.2, the yield stress, U y , increases

6.9 T.wo dimensional behaviour of a linear elastic
perfectly plastic material

For this material the yield surface is fixed in stress space and does not change
position when loading takes place. If the stress state remains below the yield
surface behaviour is entirely elastic. If the stress state reaches the yield surface
plastic straining occurs. It is not possible for the stress state to extend beyond the

yield surface.
Consider an element of soil acted upon by a two dimensional system ofstresses

CJ CJ as shown in Figure 6.9. Initially the sample is stress free at point '0'. The
x' y'

stress component CJx is then increased while keeping CJy=O until point 'a' is reached.
Because the stress state remains below (inside) the yield surface (curve), behaviour
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is entirely elastic. Although (Jy does not change, there is a strain cy due to the
Poisson's ratio effect (cy is likely to be negative if 0 < j1 < Yz). The strain Cl' can
only be zero ifPoisson's ratio, j1, is zero. The stress (Jx is then kept constant and (Jy

increased until it reaches the yield surface at point 'b'. While the stress remains
below the yield surface, behaviour is again elastic and the strain Cl' is controlled by
the elastic moduli. Once the yield surface is reached (point 'b'), it is not possible
to increase (Jl' any further. Plastic straining occurs. If the stress state is maintained
at point 'b', the plastic strains will keep increasing indefinitely. However, the ratio
between plastic strain components dc! and dc! is fixed by the gradient ofthe yield
surface (equal to the plastic potential in this case) at point 'b'. The element of soil
has failed.

simultaneously with the plastic strains (i.e. soil behaviour is elasto-plastic). With
further loading the gradient of the yield surface, and therefore the ratio of the
plastic strain components de!, and dc!, is likely to change. Eventually, the yield
surface stops hardening and failure occurs, similar to the perfect plasticity case
discussed above.
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Figure 6. 11: Two dimensional behaviour of a
linear elastic hardening plastic material
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If the element of soil considered above is part of the soil mass in a boundary
value problem, for example under the edge of a footing, it may be surrounded by
soil that is behaving elastically, with stresses below yield. In such a condition the
plastic straining of the element is restricted. Only when sufficient elements of soil
are failing so that a collapse mechanism develops, can the strains increase
indefinitely.

Figure 6.9: Two dimensional behaviour of a
linear elastic perfectly plastic material

6.10 Two dimensional behaviour of a linear elastic
hardening plastic material

In this case the position and/or size ofthe yield surface changes as plastic straining
occurs. If the yield surface changes size, but is always centred about the same
position, hardening is often called isotropic hardening, see Figure 6.10. If, on the
other hand, the yield surface does not change in size, but changes position in stress
space, it is called kinematic hardening. In general, hardening can include
components of both isotropic and kinematic hardening.

Following the same loading sequence on an element of soil as described in the
previous section, results in the same behaviour until the initial yield surface is
encountered at 'b', see Figure 6.11. With further increase in (Jy plastic straining
occurs and the yield surface expands (isotropic hardening) according to the
hardening law. As it is now possible to increase (Jy , elastic strains develop

If at stage'd' stress (Jl' is removed such that the stress path' d-a' is followed, the
stress strain curve follows the path 'd-e'. Behaviour is elastic on initial unloading
and remains so ifthe model is ofthe isotropic hardening type. Ifthe model is of the
kinematic hardening type unloading may be sufficient to invoke plastic behaviour
again, but such complications are not considered here. After complete unloading
there is a permanent strain, Cl" which is equal to the plastic strain c! generated
during loading from 'b' to 'd'. If (Jl' is then increased again, behaviour remains
elastic until the stress state reaches point 'd', when elasto-plastic behaviour is re­
initiated.

6.11 Two dimensional behaviour of a linear elastic
softening plastic material

In this case behaviour is similar to that for strain hardening, except that the size of
the yield surface reduces with increase in plastic straining.
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possible, to date, to develop an elasto-plastic model that can capture all the facets
of real soil behaviour and be defined by a limited set of input parameters that can
be readily obtained from simple laboratory tests. There are therefore many such
models currently in the literature. These range from simple to extremely
complicated models. Some are formulated in terms oftotal and others in terms of
effective stress. Some simple models will be discussed in Chapter 7, while more
complicated ones are the subject of Chapter 8.

The incremental stresses, {!'ltT}, are related to the incremental elastic strains,
{!'lee}, by the elastic constitutive matrix, [D], in the form:

6.13 Formulation of the elasto-plastic constitutive matrix
Having defined the basic ingredients of an elasto-plastic constitutive model, it is
now necessary to obtain a relationship between incremental stresses and
incremental strains in the form of Equation (2.17):

where [Del'] is used to distinguish that the constitutive matrix is elasto-plastic, as
opposed to purely elastic. The matrix [D] is retained to represent the purely elastic
matrix.

The incremental total strains, {!'le}, can be split into elastic, {!'lee}, and plastic,
{!'le P}, components to give:

(6.4)

(6.5)

Following the same loading sequence as described in Sections 6.9 and 6.10 for
perfect and strain or work hardening plasticity, results in the same behaviour until
the initial yield surface is encountered at 'b', see Figure 6.12. Once the initial yield
surface is encountered, plastic straining occurs and the size of the yield surface
reduces (isotropic softening). It is therefore not possible for uy to remain at the
value associated with point 'b'. Any attempt to do so results in indefinite plastic
strains. If, instead of controlling u y attention is switched to controlling [;y (i.e.
switch from stress to strain boundary conditions), the strain softening stress-strain
curve shown above can be followed. If at some stage during plastic straining [;y is
reduced, the soil behaves elastically (i.e. path 'c-d'). If [;y is then increased again,
the unloading path Cc-d') is retraced until the soil yields again (at point 'c'). The
yield stress is now lower than it was initially.

Figure 6. 12: Two dimensional behaviour of a
linear elastic softening plastic material

Figure 6. 13: Real soil
behaviour involving hardening

and softening

The incremental plastic strains, {!'le"}, are related to the plastic potential
function, P( {tT},{m}) = 0, via the flow rule given by Equation (6.2). This can be
written as:

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

{!'lo-} = [D]{!'lse}

Combining Equations (6.5) and (6.6) gives:

{!'lo-} = [D]( {!'l s} - {!'l sp})

or alternatively:

where A is a scalar. Substituting Equation (6.9) into Equation (6.8) gives:

{!'lo-} = [D]{!'l s} _ A[D]{ ape{~~{m}) }

When the material is plastic the stress state must satisfy the yield function
F( { tT}, {k} ) = O. Consequently, dF( { tT}, {k} ) = 0 which, on using the chain rule of
differentiation, gives:

6.12 Comparison with real soil behaviour
To simulate the behaviour of real soil it is necessary to have a model that involves
both strain hardening and softening, see
Figure 6.13. (J

It should be noted that one of the
fundamental differences between elastic and
elasto-plastic behaviour is that in the former
strain increments are proportional to stress
increments, whereas in the latter strain
increments are a function ofthe current stress
state and therefore the strain increments are
not likely to be in the same directions as the
applied stress increments.

In the above discussion it is implicitly
assumed that elastic behaviour is linear. El+-~s_ti_c---<~..:rr_d_e+~+-~n-=-g__S_o_ft_en_in-=g=-----+

However, this is not realistic and it is
possible to combine nonlinear elasticity with
the elasto-plastic framework. Due to the
complex nature of soil it has not been
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This equation is known as the consistency equation (or condition). It can be
rearranged to give:

dF( {CT}, {k}) ={OF({;~{k})f{L'i CT} +{ OF({~l' {k})f{M} = 0 (6.11)

(6.18)

The form of the parameter A given by Equation (6.14) depends on the type of
plasticity (e.g. perfect plasticity, strain hardening/softening plasticity or work
hardening/softening plasticity).

Substituting Equation (6.13) into (6.10) gives:

[D]{ OP({~~{m})}{ OF({;~{k}) f[D]{L'iS}

{L'iCT} = [D]{L'is}- T (6.15)

{OF({;~{k})} [D]{ OP({~~{m})}+ A

Comparison of Equations (6.4) and (6.15) gives the elasto-plastic constitutive
matrix [Dep

] as:

(6.20)

{
OF({CT},{k})}T {M}

{L'i CT} = _ -"--_o_k_--"-----;;:-_

{OF({;~{k})}T

Combining Equations (6.10) and (6.12) gives:

{
of({CT}, {k})}T [D]{L'i s}

A = OCT

{OF({;~{k}) f[D]{ OP({~~{m})}+A

where

A = _l-{OF({CT},{k})}\~~k}
A ok

[D]{OP({a},{m})}{OF({a},{k} )}T [D]

[Dep]=[D]- OCT OCT

{OF({~{k}) f[D]{ OP({~{m})}+A

(6.12)

(6.13)

(6.14)

(6.16)

Strain hardening/softening plasticity
In this case the state parameters, {k}, are related to the accumulated plastic strains,
reP}. Consequently, Equation (6.14) can be written as:

A = _l-{OF({CT},{k})}T o{k} {L'isP}
A ok o{sP}

If there is a linear relationship between {k} and reP} so that

o{k} = a constant (i.e. independent of {sP}) (6.19)
o{sP}

then on substitution into Equation (6.18), along with the flow rule given by
Equation (6.9), the unknown scalar, A, cancels and A becomes determinant.

If there is not a linear relationship between {k} and {eP}, the differential ratio
on the left hand side of Equation (6.19) is a function of the plastic strains and
therefore a function of A. When substituted into Equation (6.18), along with the
flow rule given by Equation (6.9), the A's do not cancel and A becomes
indeterminant. It is then not possible to evaluate the constitutive matrix [Dep].

In practice all strain hardening/softening models assume a linear relationship
between the state parameters {k} and the plastic strains {e P }.

Work hardening/softening plasticity
In this type of plasticity the state parameters, {k}, are related to the accumulated
plastic work, wP, which is dependent on the plastic strains. It can be shown,
following a similar argument to that presented above for strain hardening/softening
plasticity, that as long as there is a linear relationship between the state parameters
{k} and the plastic work, wP, the parameter A defined by Equation (6.14) becomes
independent of the unknown scalar, A, and therefore is determinant. If the
relationship between {k} and wP is not linear, A becomes a function of A and it is
not possible to evaluate the constitutive matrix [Dep

].

Ifthe elastic constitutive matrix, [D], is symmetric, which it is for isotropic and
cross anisotropic elasticity, then the elasto-plastic constitutive matrix, [Dep ], given
by Equation (6.16), is also symmetric if its numerator, given by:

[D]{ OP({~~{m})}{ OF({;~{k})r[D]

is symmetric. It is a simple matter to show that this only occurs if:

Perfect plasticity
In this case the state parameters, {k}, are constants and consequently

(6.17)

which in turn gives A = O.

{OP({~~{m})} = {OF({;~{k})} (6.21)

which implies that the yield and plastic potential functions must be identical. As
noted earlier, this occurs in a special class of plasticity in which the flow ru le is
said to be associated. Substitution of a symmetric [Dep] for all elements in a finite
element mesh, into the assembly process, results in a symmetric global stiffness
matrix.
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For the general case in which the flow rule is non-associated and the yield and
plastic potential functions differ, the constitutive matrix [D"P] is non-symmetric.
When assembled into the finite element equations this results in a non-symmetric
global stiffness matrix. The inversion of such a matrix is more complex and
requires more computing resources, both memory and time, than a symmetric
matrix.

Some commercial programs are unable to deal with non-symmetric global
stiffness matrices and, consequently, restrict the type ofplastic models that can be
accommodated to those which have an associated flow rule.

6.14 Summary
1. Elasto-plastic theory provides probably the best framework available in which

to formulate constitutive models that can realistically simulate real soil
behaviour. Three types ofplastic behaviour are identified: perfect plasticity and
strain (or work) hardening and softening plasticity. These models assume
elastic behaviour prior to yield and can therefore utilise the benefits of both
elastic and plastic behaviour.

2. The elasto-plastic framework can incorporate both linear and nonlinear elastic
behaviour. Consequently, all the models described in Chapter 5 can be
incorporated.

3. Elasto-plastic models are based on the assumption that the principal directions
ofaccumulated stress and incremental plastic strain coincide. They require two
essential pieces and one optional piece of information for their definition. The
essential ingredients are a yield function, which separates purely elastic from
elasto-plastic behaviour, and a plastic potential (or flow rule) which prescribes
the direction of plastic straining. The optional ingredient is a set of
hardening/softening rules which describe how the state parameters (e.g.
strength) vary with plastic strain (or plastic work).

4. If the yield and plastic potential surfaces coincide, the model is said to be
associated (or to satisfy the normality condition). This results in a symmetric
constitutive matrix and consequently a symmetric global finite element stiffness
matrix. If such a condition does not hold, both matrices are non-symmetric.
This results in the use of greater computer resources, both time and memory,
for finite element analyses.

7. Simple elasto-plastic constitutive
models

7. 1 Synopsis
This chapter presents the basic equations for some simple elasto-plastic constitutive
models. Initially the Tresca and von Mises elastic perfectly plastic models are
described. These are expressed in terms oftotal stresses and apply to undrained soil
behaviour. Soil behaviour in terms of effective stresses is then considered and it is
shown how the well known Coulomb failure condition can be extended to give the
Mohr-Coulomb and Drucker-Prager models. The Mohr-Coulomb model is then
exte~ded by. introducing strain hardening/softening plasticity. The chapter
contmues by mtroducing the critical state framework for soil behaviour and the
basic assumptions ofthe popular Cam clay and modified Cam clay models. Some
us.eful m~dific~tions to this basic formulation are then discussed. The chapter ends
wIt~ a d.IScussIon on the importance of the shape of the plastic potential, in the
devIatonc plane, on plane strain behaviour.

7.2 Introduction
In this chapter the elasto-plastic framework presented in Chapter 6 is used to
construct some simple constitutive models. Initially the Tresca and von Mises
elastic perfectly plastic models are described. These models are expressed in terms
of total stress and apply to undrained soil behaviour. To describe general soil
behaviour, it is necessary to express the constitutive model in terms of effective
stresses. Using such an approach it is shown how the well known Coulomb failure
criterion can be extended to give the Mohr-Coulomb and Drucker-Prager models.
Although the above models are restricted in their ability to reproduce real soil
behaviour, as described in Chapter 4, they form the basis of classical soil
mechanics theory.
. Furt~er improv~ments to the simple constitutive models can be made by
mtroducmg hardenmg and/or softening plasticity. As an example, an extended
version of the Mohr-Coulomb model is described.

The ~ev~lopment of critical state constitutive models has provided a major
ad~ance mthe ~se ofplasticity theory in geomechanics. A relatively simple model,
usmg an assocIated flow rule, is able to predict, at least qualitatively, a great
number ofthe fundamental aspects of soil behaviour described in Chapter 4. This
has led to the development ofmany different critical state type constitutive models,
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each trying to improve the fit to real soil behaviour. The use of these models in
numerical analyses of geotechnical problems has become one of the most
characteristic features of computational geomechanics. After a brief introduction
to the basic assumptions behind critical state soil mechanics, the popular Cam clay
and modified Cam clay models are described. Both these models were initially
developed for triaxial stress space and further assumptions are needed before they
can be used to analyse boundary value problems, consequently their extension to
general stress conditions is explored. Some of the more popular modifications to
these models are also presented.

This chapter ends with a discussion on the importance of the shape of the
plastic potential in the deviatoric plane on the behaviour in plane strain boundary
value problems. It is shown that this shape governs the relative magnitude of the
intermediate principal stress (e.g. expressed by the value ofb or B) at failure, which
in turn controls the mobilised strength.

(7.3)

(7.4)

F({a}, {k}) = J cos () - S" = 0

~ I' = i\ oP({a},{m}) = i\ of({a},{k}) = 0
Cv op op

In principal total stress space this yield function plots as a regular hexagonal
cylinder, which has the space diagonal as its line of symmetry, see Figure 7.2. The
hexagonal shape, which has six-fold
symmetry in the deviatoric plane,
arises due to the six permutations of
the major and minor principal stress
(e.g. (Ja> (J" > (Je; (J" > (Ja > (Je; ... etc).
As this model is perfectly plastic there
is no hardening/softening law
required. The state parameter {k}=S"
is assumed constant (i.e. independent
of plastic strain and/or plastic work).

The only remaining piece of
information required to complete the
plastic part of the model is the plastic

Figure 7.2: Tresca yield surface in
potential function, P({(J},{m}). As
the model is intended to simulate the principal stress space

undrained behaviour of saturated clay, it should predict zero volumetric strains.
Since the soil can be purely elastic (i.e. below the yield surface), or purely plastic
(i.e. on the yield surface), both the elastic and plastic components ofthe volumetric
strain must be zero. This clearly constrains the choice of the plastic potential. A
convenient choice is to assume associated plastic flow and adopt the yield function
given by Equation (7.3) as the plastic potential. Remembering that incremental
plastic strains can be plotted on the same axes as accumulated stresses, see Section
6.8, then on Figure 7.1 the vector of incremental plastic strain is vertical (i.e.
normal to the yield surface). This implies no incremental plastic direct strains and
therefore no incremental plastic volumetric strain. A more direct way of showing
this is to differentiate the plastic potential function with respect to p. This gives:

equation can be evaluated. Consequently, for finite element analysis, it is more
convenient to rewrite Equation (7.2) in terms of the stress invariants, p, J and B
(see Equations 5.1 to 5.3), using Equations 5.4, to give:

(7.1)

1.3 Tresca model
It is usual practice to plot soil test T ,td'
results in terms of a two dimensional T

stress state, using a Mohr's circle of sul---:;--~-.LL--:;--"",,--­

stress. For example, if a conventional

triaxial test is performed, it is --+-.,.-f-----+.:;:-+-----+---::+
cr ,/),f.Pcommon to plot the results in terms of

the vertical and horizontal total
stresses, (Jv and (Jh, or the vertical and
horizontal effective stresses, (J,,' and
(Jh'. If testing a saturated clay, the
Mohr's circle of stress at failure is Figure 7.1: Mohr's circles of total

stressoften plotted in terms of total stress
and may look like that given in Figure 7.1. If two similar samples are tested at
different cell pressures, without allowing any consolidation, conventional soil
mechanics theory suggests that the Mohr's circles of stress at failure for the two
samples have the same diameter, but plot at different positions on the (J axis, see
Figure 7.1. A failure criterion is then adopted which relates the undrained strength,
S", to the diameter of the Mohr's circle at failure. Noting that in a conventional
triaxial test (Jt = (Jv and (J3 = (Jh, this can be expressed as:

In the Tresca model this failure criterion is adopted as a yield surface and the
yield function becomes:

(7.2)

For general stress states it is necessary to calculate all three principal stresses
((Ja, (J" and (JJ and determine the major, (JI, and minor, (J3' values before this

The choice of associated plastic flow with P( {u}, {m}) = F( {u}, {k}) therefore
satisfies the no plastic volumetric strain condition.

To complete the model it is only necessary to define the elastic parameters. As
there should be no elastic volumetric strains, Jl" '" 0.5. The model can therefore be
defined by specifying the undrained strength, S" , and the undrained Young's
modulus, E".
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where ex is a material parameter Figure 7.3: Van Mises yield surface
representing the shear strength of the in principal stress space

Construction of the elasto-plastic constitutive matrix [Dep] (Equation (6.16)),
requires the elastic constitutive matrix [D], which depends on E" and fJ" (see
Equation (5.8)), the partial derivatives of the yield and plastic potential functions,
3F( {u}, {k} )/3u and 3P( {u}, {m} )/3u, and the hardening and softening parameter
A, which is zero for perfect plasticity. To evaluate the partial derivatives of
F( {u}, {k} ) and P( {u}, {m}) use is made of the chain rule:

aF({o-} , {k}) _ aF({o-},{k}) ap + aF({o-},{k})..E!-+ aF({o-},{k})~
ao- - ap ao- aJ ao- ae ao- (7.5)

ap({o-},{m}) _ ap({o-},{m})~+ ap({o-},{m})..E!-+ ap({o-},{m}) ae
ao- - ap ao- aJ ao- ae ao-

The values of3p13u, 3JI3u and 3el3u are model independent and are evaluated
in Appendix VI!.l. For the Tresca model F( {u}, {k}) = P( {u}, {m}) and:

aF = ap = 0 aF = ap =cose aF = ap = -J sine (7.6)
ap ap 'aJ aJ ' ae ae

(7.9)

(7.10)

e= +300

Tresca

e~_300

Circumscribed Van Mises

Tf = c' + ()~ftanlp'

soil. This form ofthe yield function is often attributed to von Mises. In a deviatoric
plane this yield function plots as a circle.

The problem now is to relate the value of ex to the undrained shear strength of
the soil. The problem is shown schematically in Figure 7.4, which shows the
regular Tresca hexagon plotted in a
deviatoric plane. Also shown are two
von Mises circles, one which
circumscribes, and the other which
inscribes, the Tresca hexagon. If it is
accepted that the von Mises yield
function is an approximation to the
Tresca function, then a circle that
provides the best fit to the hexagon in (eret

Figure 7.4 is required. By comparing
Equations (7.3) and (7.7) the
following relationship is obtained:

where Tt and (Jilt' are the shear and normal effective stresses on the failure plane,

Figure 7.4: Comparison of Tresca
a =~ (7.8) and van Mises failure criteria in a

cose deviatoric plane

This equation enables the two yield functions to be matched at a particular
value of Lode's angle, e. For example, the circumscribed circle shown in Figure
7.4 touches the Tresca hexagon at e= ±30°. This gives ex = 1.155S". The inscribed
circle touches at e= 00 and therefore ex = S" . A better 'fit' circle may be that
associated with e= ± I SO, giving ex = 1.035S".

The model is completed by assuming associated flow conditions, with
P( {u}, {m} )=F( {u}, {k}), and therefore the plastic potential function is also given
by Equation (7.7). The elastic behaviour is controlled by assuming Poisson's ratio
fJ,,'" 0.5 and prescribing a Young's modulus E". The partial derivatives ofthe yield
and plastic potential functions required to evaluate the elasto-plastic constitutive
matrix [Dep] (Equation (6.16)), can be found from equation 7.5, with:

aF = ap = 0 aF = ap = 1 aF ap
ap ap aJ aJ ; ae = ae = 0

7.5 Mohr-Coulomb model
If the results of laboratory tests are plotted in terms of effective stresses, the
Mohr's circles of stress at failure are often idealised as shown in Figure 7.5. It is
usual to assume that the tangent to the failure circles from several tests, performed
with different initial effective stresses, is straight. This line is called the Coulomb
failure criterion and can be expressed as:

(7.7)F({o-},{k}) = J - a = 0

7.4 Von Mises model
It is evident from Figure 7.2 that, when plotted in three dimensional principal total
stress space, the Tresca yield surface has corners. In particular, the intersection of
the surface with a deviatoric plane (i.e. a plane normal to the space diagonal)
produces a regular hexagon which has its corners at triaxial compression and
extension points. These corners imply singularities in the yield function which
have in the past caused havoc when attempting to use the yield function to obtain
analytical (i.e. closed form) solutions to simple boundary value problems. These
corners can also cause difficulties in numerical analysis. For example, the partial
differentials ofthe yield and plastic potential functions required to define [De

p
], see

Equation (6. I6), are not uniquely defined at the corners. However, there are ways

that such difficulties can be overcome.
Due to the analytical difficulties

involved in using the Tresca criterion,
applied mathematicians have often
simplified the yield function
expression so that it plots as a circular
cylinder in principal stress space,
instead of a hexagonal cylinder, see
Figure 7.3. This can easily be
achieved by rewriting Equation (7.3)
in the following form:
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(7. I8)

Figure 7.7: Mohr's circle of
plastic strains

This can be verified by substituting
values for D.et = A3P( {(J'}, {m} )/M1'

and D.el' = A3P({(J'}, {m})!3(J/, with
PC{(J'}, {m}) given by Equation (7.12),
into Equation (7.15).

There are two drawbacks to this
approach. Firstly, the magnitude of the plastic volumetric strains (i.e. the dilation)
is much larger than that observed in real soils, and secondly, once the soil yields
it will dilate for ever. Real soil, which may dilate initially on meeting the failure
surface, will often reach a constant volume condition (i.e. zero incremental plastic
volumetric strains) at large strains.

The first drawback can be partly rectified by adopting a non-associated flow
rule, where the plastic potential function is assumed to take a similar form to that
ofthe yield surface, Equation (7.13), but with rp' replaced by v. This gives:

P( {eT'},{m}) = J - (app + p')gpp(e) = 0 (7.16)

volumetric strain. For this situation the
angle of dilation, v, defined by Equation
(7.15) and shown graphically in Figure
7.7, is equal to the angle of shearing
resistance, rp':

. _I ( D.&(' + D.&j') D.Sfv=sm - (7.15)
D.&(' - D.&j'

where
Sill V

gpp(e) = . e .
cose+ Sill SIllV (7.17)

.J3
and app is the distance of the apex of the plastic potential cone from the origin of
principal effective stress space. It is akin to c'/tanrp' in the yield function, see
Equation (7.13).

Noting that the plastic potential must also pass through the current stress state
which, because the soil is plastic, must be on the yield surface, the situation shown
in Figure 7.8 is obtained. In this figure, pc', Jc and Bc (not shown) are the stress
invariants at the current state of stress which is assumed to be on the yield surface.
As both the yield and plastic potential surface must pass through this stress state,
pc', Jc and Bc can be substituted into Equations (7.13) and (7.16) to obtain the
following equations:

Solving for app gives:

(7.14)

(7.13)

lp'

Figure 7.5: Mohr's circles of
effective stress

(7.11 )

e = sinrp'
g( ) sine sinrp'

cose+ .J3

o-{ - 0-; = 2c'cosrp' +(o-{ + o-;)sinrp'

where:

In principal effective stress space the
yield function (7.13) plots as an
irregular hexagonal cone as shown in
Figure 7.6. The six-fold symmetry
again arises from the possible
permutations of principal stresses.

It is of interest to note that if SlI is
substituted for c' and rp' is set to zero
in Equation (7.13), the Tresca yield
function given earlier by Equation
(7.3) is obtained.

As the Mohr-Coulomb model is

assumed to be perfectly plastic, there Figure 7.6: Mohr-Coulomb yield
is no hardening/softening law surface in principal stress space
required. The state parameter {k}=
{c' ,rp'} T is assumed constant, independent of plastic strain or plastic work.

To complete the plastic part of the model a plastic potential function,
P( {(J'}, {m} ), is required. Similar to the Tresca model, an associated flow rule, with
P( {(J'}, {m})=F( {(J'},{k}), could be adopted. As shown on Figure 7.5, the plastic
strain increment vector is then inclined at an angle rp' to the vertical and indicates
negative (i.e. tensile) direct plastic strains. This in turn results in a dilatant plastic

F( {eT'}, {k}) = o-{ - 0-; - 2c'cosrp' - (o-{ + o-;)sinrp' (7.12)

Following similar arguments to that put forward for the Tresca model, it is
more convenient to rewrite this equation in terms of stress invariants p', J and B.
Therefore, substituting Equation (5.4) into Equation (7.12) and rearranging gives:

F({eT'},{k}) = J _(_C'_+ p')g(e) = 0
tanrp'

This is often called the Mohr-
Coulomb failure criterion and in the present model is adopted as the yield function:

and the cohesion, c', and angle of
shearing resistance, rp', are material
parameters. Using the Mohr's circle
of stress, shown in Figure 7.5, and
noting that 0-1'=0-/ and 0-3'=0-1,"

Equation (7.10) can be rewritten as:
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(7.21 )

(7.23)

(7.22)

(7.24)

ap({d}, {m}) = 1
aJ

F({d},{k}) = J _(_C'_+ P')M fP = 0
tantp' .

(a + p') . sin v (s'nB- cosBsin vJ
1'1' zl I J3

[COSB+ sin~nvJ 3

ap({d},{m}) =_ (B)'
ap' gl'l"

ap({d},{m})
aB

where the values of 3p'13u', 3JI3u' and 3e/3u' are model independent and are
evaluated in Appendix VII.1, and:

aF({(}'},{k}) _ (B)' aF({(}'},{k}) =1
ap' g, aJ

aF( {(}'}, {k}) =(_C'_ + ') sintp' ( . B- cosBsintp')
aB I p 2 sm r:;

tantp (fl sinBsintp') v3cOSu+ J3

where MJp is a material constant. This form ofthe yield function is often called the
Drucker-Prager or 'extended von Mises' yield function. In the deviatoric plane it
plots as a circle.

7.6 Drucker-Prager model
As with the Tresca model described earlier, the Mohr-Coulomb yield function has
corners when plotted in principal effective stress space, see Figure 7.6. These
corners imply singularities in the yield function. In particular, the partial
derivatives with respect to the stress components, which are needed to define the
elasto plastic constitutive matrix [Dep], see Equation 6.16, are not unique at the
corners. Although these corners can be dealt with in finite element analysis, this
involves the use of some elaborate
computer code which inevitably
results in the use of more computer
resources. Consequently, earlier
pioneers of the subject sought
simplifications. The most common,
but not the only, way to overcome the
corner problem is to modify the yield
function so that it plots as a
cylindrical core, see Figure 7.9. This
can simply be achieved by replacing
g(e) in Equation (7.13) by a constant,
M Jp , (i.e. independent ofe). The yield Figure 7.9: Drucker-Prager yield
function then becomes: surface in principal stress space

(7.19)

(7.20)

J

Figure 7.8: Relationship between
the yield and plastic potential

functions

a _( cl. +P'.) g(BJ ,
pp - tantp' 'gpp(BJ - Pc

aF({(}'},{k}) aF({(}'},{k}) ap' + aF({(}'},{k}) aJ + aF({(}'},{k}) aB
a(}' ap' a(}' aJ a(}' aB a(}'

ap({(}'},{m}) = ap({(}'},{m}) ap' + ap({(}'},{m}) aJ + ap({(}'},{m}) aB
a(}' ap' a(}' aJ a(}' aB a(}'

P({(}'},{m}) = J _[(_C'_+ P:) g(BJ
tantp' gpp (Bc)

While the yield surface is fixed in P /-
J-B space, the plastic potential surface
moves so as to pass through the
current stress state. This is acceptable
as only the derivatives of the plastic
potential with respect to the stress
components are needed to form the ----"'===------<::=----1----'-:-------1>

e'l tanq,' p~ p'
elasto-plastic constitutive matrix r----'I
[Dep], see Equation (6.16). Ifv = rp', app I

Equation (7.20) becomes the same as
Equation (7.13) and associated
conditions arise. However, v < rp'
results in non-associated conditions,
and as v reduces less dilation is
generated. If v = 0°, zero plastic dilation (i.e. no plastic volume strain) occurs.
Consequently, by prescribing the angle of dilation, v, the predicted plastic
volumetric strains can be controlled.

Although the use of a non-associated flow rule enables the magnitude of the
incremental plastic volumetric strains to be restricted, the model still predicts
increasing volumetric strains, no matter how far the soil is sheared. This is
unrealistic and can give unreasonable predictions in some boundary value
problems. This is discussed in more detail in Volume 2 of this book. One way
around this problem is to allow the angle of dilation to vary with plastic strain.
Such a model is presented later in this chapter.

To summarise, the Mohr-Coulomb model requires 5 parameters. Three ofthese,
c', rp' and v, control the plastic behaviour, and the remaining two, E' and p',
control the elastic behaviour. If associated conditions are assumed, the number of
parameters reduces to 4, as v = rp'.

The partial derivatives of the yield and plastic potential functions required to
evaluate the elasto-plastic constitutive matrix can be found using the chain rule:

which, on substitution into Equation (7.16), gives the required plastic potential
function:
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(7.25)

Circumscribed
Drucker-Prager

(7.29)

Yield function

3P({o-'},{m}) =0 (7.31)
3e

3F({o-'}, {k}) =0 (7.30)
3e

Current plastic potential M JP

Ye::::.J_M,'J)

J

Figure 7. 11: Relationship between
the yield and plastic potential

functions

3F({o-'}, {k}) = 1
3J

3P({o-'},{m}) = 1
3J

3F({o-'},{k}) =-M
3p' .I;'

3P( {o-'},{m}) __ MPI'
3p' - .11'

P({d},{m}) = J _[(_CI
_+ pI) M Jp - p' + PIJMI';; =0

tantp' G MPI' G .I;
.II'

where M;ll' is the gradient of the
plastic potential function in J-p'
space, see Figure 7.11. If M;ll' = M;p

the yield and plastic potential
functions are the same and the model
becomes associated. M;/p can be
related to the angle of dilation, v, by -::::-~I::::'cl/-tan-<I>,LI--~Pc-;-,--------.p,

equating M;ll' = gpp(e), where gpp(e) app I
is given by Equation (7.17).

As with the Mohr-Coulomb
model, the elastic behaviour is
controlled by assuming a Young's
modulus, E', and Poisson's ratio, J1'.
The model therefore requires 5 parameters. The partial derivatives ofthe yield and
plastic potential functions, required to evaluate the elasto-plastic constitutive
matrix [Dep], are again determined from Equation (7.21), with:

Figure 7. 10: Drucker-Prager and
Mohr-Coulomb yield surfaces in the

deviatoric plane

sintp'
MJI' = g(e) = . e' I

e SIn SIntp
cos + .J3

This equation allows the two yield surfaces to be matched at a particular value
of the Lode's angle, e. For example, the circumscribed surface shown in Figure
7.10 touches the Mohr-Coulomb hexagon at e =- 30° (triaxial compression).
Substitution of e=- 30° into Equation (7.25) gives:

To use this model in geotechnical
engineering M/I' must be related to the
angle of shearing resistance, q/. The
problem is shown schematically in
Figure 7.10 where the irregular
hexagon of the Mohr-Coulomb
surface is compared with the circular
shape of the Drucker-Prager surface pc

. h d' . I T (ac')
In t e eVJatonc pane. wo
alternative Drucker-Prager circles are
shown, one circumscribes, while the
other inscribes, the irregular Mohr­
Coulomb hexagon. Assuming that the
Mohr-Coulomb surface is correct,
then the Drucker-Prager circle that provides the best fit to the hexagon is required.
Comparing Equations (7.13) and (7.24) gives:

(7.26)

(7.27)

(7.28)

MOc-300 _ 2.J3 sintp'
.II' - 3 . I-SIntp

Likewise, the Drucker-Prager circle which touches the Mohr-Coulomb hexagon
at e=+30° (triaxial extension) can be found by substituting e=+30° into Equation
(7.25) to give:

M
Oc+300 _ 2.J3 sintp'
;1' -
. 3 + sintp'

To find the value of M;I' for the inscribed circle, the value of eat which this
circle is tangential to the Mohr-Coulomb hexagon must first be determined. This
can be done by finding the value ofewhich produces a minimum value of M;I' in
Equation (7.25). Differentiating Equation (7.25) with respect to eand setting the
resulting expression to zero gives:

elllS _ _'I(sintpl)-tan --
.J3

Substituting this value of e into Equation (7.25) provides the value of M;/lS.
The model is completed by adopting a non-associated plastic potential function

of the form:

7.7 Comments on simple elastic perfectly plastic models
In the previous sections four simple linear elastic perfectly plastic models have
been considered. The difference between the Tresca and von Mises, and the Mohr­
Coulomb and Drucker-Prager models, is essentially their shape in the deviatoric
plane. Working from the conventional assumption that the strength is related to the
difference between major and minor principal stresses results in the Tresca model
(for total stress) and the Mohr-Coulomb model (for effective stress). The implicit
assumption in these models is therefore that yield and strength are independent of
the intermediate principal stress, rh This, in turn, leads to the yield and plastic
potential functions plotting as a hexagonal cylinder (Tresca) and a hexagonal cone
(Mohr-Coulomb) in principal stress space.

The von Mises and the Drucker-Prager models give a circular cylinder and a
circular cone respectively, when the yield and plastic potential surfaces are plotted
in principal stress space. This means that both yield and strength are dependent on
the intermediate principal stress, a2• Although this subtle difference might, at this
stage, seem to be academic, it can have some serious effects in the analysis of
boundary value problems. This is discussed further in Volume 2 of this book.
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(7.32)

(7.33)

, ,
ac' = cl' -c;

8E
d
P (El')

d CI)l

g(B)
tan rp'

= ~(~) [c' _(__c'_+ P')g(B) COSBCOSrp']
SIn rp' tanrp'

= 1
ape {a-'}, {m})

aJ
aF({a-'},{k})

ac'

aF({a-'},{k})
arp'

A = _(aF({a-'},{k}) arp' + aF({a-'},{k}) ac' Jap({a-'},{m})
arp' aEj' ac' aE:; aJ

Elastic parameters: E' and fJ' or the parameters for a nonlinear elastic model.

While this represents a substantial amount of input data, it does give the model
maximum flexibility. By suitable choice ofparameters it is possible to simplify the
model and only use some of its components. For example, if c;'=c/=c,' and
rp;' =rpp'=rp,' the model reduces to the conventional perfectly plastic Mohr-Coulomb
model described in Section 7.5. Likewise, if c'=c ' and m'=m ' and (Edp) =

I P 't"1 't"p . cpl

(Ej')'PPI = (E/')cp2 = (Ej')<pp2 = 0, then only the softening part of the model (i.e. zone
3) is active.

In each of the three zones mathematical expressions can be assigned to the
variation of c' and rp' with E,/ and therefore the hardening/softening rules can be
expressed in a piece-wise manner. This enables the parameter A, defined by
Equation (6.14), to be calculated, and this, with the partial differentials ofthe yield
and plastic potential functions, leads to the constitutive matrix [Del'].

In this context the yield and plastic potential derivatives are given by Equation
(7.21), together with Equations (7.22) and (7.23). The parameter A, for strain
hardening/softening, is derived from Equation (6.14) as:

exponentially). In general, the model requires the following input parameters:

Plastic parameters: c;', cl'" c,', rp;', rpp', rp,., (Edp)ePI, (E'/)ep2, (E'/)'PPI, (E/')'PP2, lfI,
Vr and either (E/)w (E/)<pr (linear softening), or a

c
, a~

(exponential softening)

Zone 1: Linear

The yield and plastic potential derivatives in Equation (7.32) are independent of
the three zones and, from Equations (7.13) and (7.16), these are:

The derivatives of rp' and c' depend on the distribution of these parameters in each
of the three zones:

Figure 7. 12: Hardening rules

, ,
, "

Cf - ---I------I------"i-~---

et CD : 0 i cD
, , ,

7.8 An elastic strain hardening/softening Mohr-Coulomb
model

To improve the Mohr-Coulomb
c'

model described in Section 7.5, the
strength parameters, c' and rp', and
the angle of dilation, v, can all be
allowed to vary with the accumulated
plastic strains. For example, a model
could be developed which assumes

'fJ'
the variation of c' and rp' with 'fJ~ _

accumulated deviatoric plastic strain" : : '
'fJ,- ---,------,-----~---

Ej', as shown in Figure 7.12. There 'fJi CD i 0 ,: cP
are three zones: in zone 1, c' and rp'
are assumed to increase linearly from
initial values (c;' and rp;') to peak
values (c/ and rp,,'); in zone 2, c' and
rp' remain constant and equal to the
peak values; in zone 3, c' and rp' reduce from the peak values to residual values (c,'
and rp,'), either in a linear or exponential manner. Consequently, stain hardening
occurs in zone 1, behaviour is perfectly plastic in zone 2, and strain softening
occurs in zone 3. The angle of dilation, v, is assumed to be proportional to the
angle of shearing resistance, rp', in zones 1 and 2 (i.e. v=lfIrp', were lfI is a constant),
whereas in zone 3 it is assumed to reduce from the peak value assumed in zone 2
to a residual value, Vr , in the same manner as rp' reduces (i.e. either linearly or

Unfortunately, there is little experimental data available to accurately quantify
the effect ofthe intermediate principal stress on soil behaviour. To investigate such
behaviour in the laboratory requires the use of complex test equipment, such as
hollow cylinder or true triaxial devices. The limited data that does exist suggests
that both yield and failure functions plot as smoothed surfaces (i.e. no corners) in
the deviatoric plane, with a shape somewhere between that of the hexagons and
circles shown in Figures 7.4 and 7.10. Alternative shapes could be used in the
above models. For example, in the Mohr-Coulomb model a simple way of
changing the shape in the deviatoric plane is to redefine the function g(e) given by
Equation (7.14). Examples of this are given in Section 7.9.2.

As conventional soil mechanics is based on the Tresca and Mohr-Coulomb
models, it seems sensible to use these models in preference to the von Mises and
Drucker-Prager models. This has the advantage that the finite element analysis is
then compatible with conventional soil mechanics, but has the disadvantage that
the software has to deal with the corners ofthe yield and plastic potential surfaces.

To increase the flexibility of the models, it is also possible to replace the linear
elastic with nonlinear elastic behaviour, by allowing the elastic constants to vary
with stress and/or stain level.
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(7.34)

A model similar to that described above was used, with nonlinear elastic
behaviour below the yield surface, to analyse the progressive failure ofCarsington
dam (Potts et al. (1990» and to investigate the delayed collapse of cut slopes in
stiff clay (Potts et al. (1997».

7.9 Development of the critical state models
Since the work of Coulomb (1776) and Rankine (1857), there has been a long
history of applications ofthe theory ofplasticity to geomechanics. Slip line theory
and the theorems of limit analysis are in frequent use. However, the development
of realistic constitutive models for soils has lagged significantly behind the
corresponding formulations for metals, in spite of the fact that the features of soil
behaviour mentioned previously, see Chapter 4, are clearly consistent with the
elasto-plastic framework. Early attempts of taking into account the frictional
character of geo-materials by extending the von Mises failure criterion (Drucker
and Prager, (1952», or by generalising the Mohr-Coulomb failure envelope, see
Figures 7.6 and 7.9, failed to model adequately many basic features of soil
behaviour (see Chapter 4). Also, adoption of associated flow rules implied the
prediction of excessive dilatancy during yield.

In the 1950's, several developments occurred which led towards the formulation
of the first critical state models. Drucker et al. (1957) suggested the existence of
a cap yield surface controlled by volume change, Roscoe et al. (1958) postulated
a behavioural framework based on the concepts of critical state and the existence
of a state boundary surface, and Calladine (1963) suggested the theory of
hardening plasticity as a basis for a consistent formulation of the models.

The first critical state models were the series of Cam clay formulations,
developed at the University of Cambridge, by Roscoe and his co-workers. The
formulation ofthe original Cam clay model as an elasto-plastic constitutive law is
presented by Roscoe and Schofield (1963) and Schofield and Wroth (1968).
Afterwards, Roscoe and Burland (1968) proposed the modified Cam clay model.
The first numerical implementations date back to the early 1970's (Smith (1970),
Simpson (1973) and Naylor (1975».

(7.35)

lnp'

d

b

Virgin consolidation line

/

a

A piece of clay, which is
b· d I fi Specific volumesu ~ecte to SOW, per ectly v '

drained isotropic (o-I'==o-z'==o-' 3) VI
compression, moves along a
trajectory in the v-Inp' plane (v ==
specific volume == l+e), which
consists of a virgin consolidation
line and a set of swelling lines, see
Figure 7.13. Initially, on first
loading, the soil moves down the
virgin consolidation line. If
subsequently unloaded from point
'b', it moves up the swelling line
'be'. If re-loaded, it moves back Figu:e 7. 1~: Behaviour. under
down this same swelling line until IsotropiC compression

point 'b' is reached, at which point it begins to move down the virgin
consolidation line again. If unloaded from point 'd', it moves up the swelling
line 'de'. The virgin consolidation line and the swelling lines are assumed to be
straight in v-lnp' space and are given by the following equations:

v + A (In p') == VI (virgin consolidation line)

v + K (In p') == v, (swelling line)

The values of K, A and VI are characteristics of the particular type of clay,
whereas the value ofv, is different for each swelling line. Volume change along
the virgin consolidation line is mainly irreversible or plastic, while volume
change along a swelling line is reversible or elastic.
The behaviour under increasing triaxial shear stress, q == 0-,,' -o-h' == f3J, is
assumed to be elastic until a yield value of q is reached, which can be obtained
from the yield function F({(T'},{k}) == O. As noted above behaviour is elastic
along swelling lines and therefore the yield function plots'above each swelling
line as shown in Figure 7.14. For Cam clay and modified Cam clay the yield
surface is assumed to take the form:

F({o-'},{k}) = _J_+ In(L) == 0 (Cam clay)
p'M

J
p;' (7.36)

F({o-'},{k}) = (_J_1 2

_(p;, -1)=0 (modified Cam clay) (7.37)
p'MJ ) p'

where p' is the mean effective stress (see Equation (5.1 », J is the deviatoric
stress (see Equation (5.2», M1 is another clay parameter, and Po' is the value of

7.9.1 Basic formulation in triaxial stress space
Both the Cam clay and modified Cam clay models were originally developed for
triaxial loading conditions. These models are essentially based on the following
assumptions:

rp; - rp;,

(ES)~~ -(ES)~;"

c/ -c~

Zone 3: Linear

8rp' ==
-----''---

8ES

8c'

3ES

Zone 2: Constant

3rp' == 0 3c' == 0
3E,~' 8E,f

Zone 3: Exponential

8 ' [E" (["I'rp _ (' ') -(l~ 'r 'dl'P;"J---a m m e8E P ~ Yr 'rp
J

8 ' [["I' (FI') ]_c_ = a ,(c' _ c') e- ac
'-'t/- ~d l.:j12

8E!: ,r p
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Inp'

p'

Sudden change in direction
ofplastic strain vector

a) No corner

Direction of incremental
plastic strain vector

J

// \ p'
/ ~

b) Corner introduced

Figure 7. 16: State boundary
surface

Figure 7. 17: Discontinuous nature
of the original Cam clay yield

surface

v

(7.39)

(7040)
dp' vp'

K=-=-
de,~ K

clay) or Equation (7.37) (modified
Cam clay).
As noted above, behaviour along a
swelling line is elastic. This means
thatthe elastic volumetric strain, £1'",
can be determined from Equation
(7.35):

This gives the elastic bulk modulus,
K, as:

In the original formulation, no
elastic shear strains are considered.
To avoid numerical problems and
to achieve a better modelling inside J

the state boundary surface, elastic
shear strains are usually computed
from an elastic shear modulus, G,
which is an additional model
parameter.

In the above form, both the Cam
clay and modified Cam clay models J

require five material parameters: VI , }(,

A, MJ and G. Sometimes an elastic
Poisson's ratio, jl, is specified instead
ofG.

The discontinuity of the yield
surface of the original Cam clay model
at J=O, see Figure 7.l5a, implies
difficulties . both theoretical and
practical. As the flow rule is associated,
isotropic stress changes at that point
cause non-zero shear strains, see Figure
7.17a. Although this can be avoided by
assuming that at this location there is a
corner to the yield surface and therefore that the incremental strain vector is
parallel to the p' axis, there is still a sudden jump in the plastic strain vector as the
deviatoric stress increases, see Figure 7.l7b. This model may also have problems
in predicting a reasonable stress response for some applied incremental strain
ratios. It was because of these problems that the modified Cam clay model was

p~ p'

p~ p'

I

I
I

I

I

Swelling line

'" Virgin cO;llsolidation
Ime

a) Cam - Clay

b) Modified Cam - Clay

/

G~\;/r M J
// I

///:C
/ I

// I
/ ,

/
/

/

Figure 7. 14: Yield surface

J

// I C
/ I

/ I
// I

// I
/

/
/

/
/

p~ lnp'

Figure 7. 15: Projection of yield
surface onto J-p / plane

(7.38)dp;, = del' _v_
P' I' A-K

()

Equation (7.38) therefore provides
the hardening rule.
When the soil is plastic (i.e. on the
Stable State Boundary Surface),
the plastic strain increment vector
is taken normal to the yield curve.
Consequently, the model is
associated, with the plastic
potential P( {(i'}, {m}) being given
either by Equation (7.36) (Cam

p' at the intersection ofthe current
swelling line with the virgin
consolidation line, see Figure
7.14. The projections of these
curves onto the J-p' plane are
shown in Figures 7.l5a and 7.l5b.
The Cam clay yield surface plots
as a logarithmic curve, whereas
the modified Cam clay yield
surface plots as an ellipse. The
parameter Po' essentially controls
the size of the yield surface and
has a particular value for each
swelling line. As there is a yield v
surface for each swelling line, the
yield function, given by either
Equation (7.36) or (7.37), defines
a surface in v-J-p' space, called
the Stable State Boundary J

Surface, see Figure 7.16. If the v­
J-p' state of the clay plots inside
this surface, its behaviour is
elastic, whereas if its state lies on
the surface it is elasto-plastic. It is
not possible for the clay to have a
v-J-p' state that lies outside this
surface.
Hardening/softening is isotropic
and is controlled by the parameter
Po' which is related to the plastic
volumetric strain, £/" by: J
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Figure 7.20: Undrained triaxial compression tests with
modified Cam clay model
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p'=200kPa and the material propeliies are based on Bothkennar clay, Allman and
Atkinson (1992). The model parameters are: v 1=2.67,J,=0.181,K=0.025, M j=O.797,
G=20000 MPa).
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Figure 7. 18: Volumetric behaviour of
Cam clay models

developed. By adopting an ellipse for the shape of the yield surface, see Equation
(7.37), the above problems are eliminated. As both the Cam clay and modified
Cam clay models share most oftheir features (except the yield surface shape), they
are considered here as the basic formulation of the critical state models. Some of
the consequences ofthe models are now examined.

In Figure 7.15, point C represents the point on the yield (and plastic potential)
curve with a horizontal slope. At that point, incremental plastic volumetric strains
are zero and the yield curve becomes stationary (no hardening/softening, see
Equation (7.38)). A point like C is the final state for a soil taken to failure,
independently of initial conditions. Such a state is called the critical state and has
long been identified as a basic feature of soil behaviour. The succession of critical
state points for different yield surfaces lies, due to the assumption of isotropic
hardening, on the straight line CSL, of slope MJ, in Figure 7. 15. The model makes
compatible, in a natural way, associated plasticity with a frictional envelope and
zero dilation for ultimate conditions.

Another feature of soil ' ..
. . d J dry or supercritical ' wet or subcnlical

behavIOur successfully predlcte (softening): (hardening) ,I
by both Cam clay models is the ':+-.-----
different volumetric response of :c
soil, depending on its stress i
history. If a soil element yields at :
a point to the right of C,
incremental plastic volumetric
strains are positive (compressive),
see Figure 7.18, and hardening
behaviour ensues (i.e. Equation
(7.38) predicts an increase in Po').
This side of the yield surface is
called wet or subcritical. Ifyielding takes place to the left ofC (dry or supercritical
side) the incremental plastic volumetric strains are negative (dilatant), see Figure
7.18, and softening behaviour results (i.e. Equation (7.38) predicts a decrease in
Po'). Therefore, the yield surface to the left of the critical state point acts also as a
failure surface.

These models also predict a unique state boundary surface, see Figure 7.16,
outside which no state of the soil is permissible and a unique specific volume ­
critical state stress relationship. This is in accordance with observations reported
in the literature (Rendulic (1936), Hvorslev (1937) and Henkel (1960)). The
consolidation/swelling behaviour and the yielding of soils at the pre-consolidation
pressure, Figure 7.13, is also well predicted.

To illustrate the ability of these models to simulate soil behaviour, predictions
for ideal drained and undrained triaxial compression tests on normally and
overconsolidated modified Cam clay are presented in Figures 7.19 and 7.20. These
predictions were obtained using the analytical expressions given in Appendix
VII.2. The soil samples are initially isotropically normally consolidated to
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(e) = sin!p~s
g e sinesin!p~, (7.41)

cos + .J3'
where qJcv' is the critical state angle of shearing resistance which replaces M; as an
input parameter. This expression gives the hexagon shown in Figure 7.21.
Equations (7.36) and (7.37) then become:

F({O-'},{k})=-J_+1n(L)=0 (Cam clay) (7.42)p'g(e) p~

F({o-'},{k}) (p'~e)r -(;~ -1) =0 (modified Cam clay) (7.43)

Critical state conditions then occur with a constant qJcs'. The discontinuity of the
Mohr-Coulomb expression at e= - 30° and e= +30° requires, usually, some ad

(7.46)

(7.47)

(7.48)

77I ( Pa )"'
27 3p'

CL =-----

1+ 2L(A)"'
27 3p'

g(B) = X(l + Y sin3Br z

f 2 . B(Jf )3/2 C - 0J2 /1 + r:::;:; sm3 2~ - L-
...;27

in which:

hoc rounding of the corners. Although sufficient as a first approximation, and
certainly superior to a circle, the Mohr-Coulomb criterion does not achieve a
perfect agreement with observed soil failure conditions.

Other failure surfaces have been suggested which are continuous and agree
better with experimental results in the deviatoric plane. Matsuoka and Nakai's
(1974) and Lade's (Lade and Duncan (1975)) are the best known, see Figure 7.21.
In terms of gee) Matsuoka and Nakai's surface can be expressed as:

g(B)=~Jf~ (7.44)

where Jdcan be obtained for a specific value of Lode's angle, e, by solving the
following cubic equation:

I 2 . f 3/2 _(CMN -3)J2 ,} + r:::;:; CMN sm3e(J2~) -(CMN -9) - 0 (7.45)
'1/27

9-3M2

C
MN

= J

213 M 3 _ M 2 +1
9 J J

where M! is the gradient of the critical state line in J-p' space, corresponding to
triaxial compression, e =- 30°. In terms of the critical state angle of shearing
resistance in triaxial compression, (qJc.\.,)H=-30, M; in Equation (7.45) can be
expressed as:

The Lade's surface can also be expressed by Equation (7.44), withJ
2
,(obtained

for a specific value of Lode's angle, e, and mean effective stress, p', from the
following equation:

in which:

where 711 and m are material properties, and Pa is atmospheric pressure.
As an alternative, Van Eekelen (1980) proposes a family of continuous

deviatoric plane yield surfaces (or plastic potentials). They are expressed as:

where X, Yand Z are constants. There are restrictions on Yand Z ifconvex surfaces

cr'2

cr'1

7.9.2 Extension to general stress space
The original critical state fonnulation
is based, almost exclusively, on Mohr Coulomb

laboratory results from conventional
triaxial tests. The portions of stress Circle

space in which these tests operate are
severely restricted as the intermediate
principal stress must be equal to either
the major or the minor principal
stress. Because of this, the basic
formulation is developed in terms of
q (=a]'-a3 ') and p'. For numerical
analysis, the models have to be cr 3'

generalised to full stress space by
making some assumption on the

shape of the yield surface and plastic Figure 7.21: Failure surfaces in the
potential in the deviatoric plane. The deviatoric plane
first generalisation (Roscoe and
Burland (1968)) is achieved by effectively replacing q by 1. This substitution is
made in Equations (7.36) and (7.37). In general stress space this is equivalent to
assuming that the yield and plastic potential surfaces (and hence the failure surface)
are circles in the deviatoric plane, see Figure 7.21. However, it is well known that
a circle does not represent well the failure conditions for soils, where a Mohr­
Coulomb type failure criterion is more appropriate. Roscoe and Burland (1968)
suagest that circular (in the deviatoric plane) yield surfaces should be used
co~bined with a Mohr-Coulomb failure criterion. This implies, however, that
critical state conditions can only be reached under triaxial compression conditions
(a/= a/).

In order to obtain a Mohr-Coulomb hexagon for the yield surface in the
deviatoric plane, M; in Equations (7.36) and (7.37) must be replaced by gee):
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are required. The substitution of gee) into Equations (7.42) and (7.43) provides a
flexible way to incorporate a desired shape for yield surfaces or plastic potentials
in the deviatoric plane. Circular, Lade and Matsuoka and Nakai surface shapes can
also be well approximated by Equation (7.48).

The importance of the model formulation in the deviatoric plane is highlighted
by Potts and Gens (1984). They demonstrate that the adoption ofa plastic potential
shape, gpp(e), in the deviatoric plane and a dilation angle, v, determines the value
of the Lode's angle at failure, er' in problems involving plane strain deformation.
They show that some ofthe plastic potential expressions proposed in the literature
do not guarantee realistic values ofel . They also indicate that it is often necessary
to have different shapes of the yield and plastic potential surfaces in the deviatoric
plane. For example, if the yield surface uses Equation (7.41), which gives a Mohr­
Coulomb hexagon in the deviatoric plane, then a different shape must be adopted
for the plastic potential, otherwise plane strain failure occurs with either e1=- 30°
(i.e. triaxial compression) or el = 30° (i.e. triaxial extension). The use of different
shapes of the yield and plastic potential surfaces in the deviatoric plane results in
a non-associated constitutive model. This problem is discussed in Section 7.12 of
this chapter.

The satisfactory modelling of many of the most important features of soil
behaviour, by very economical means in terms of hypotheses and parameters,
explains the success of the Cam clay models. Of course, when predictions are
compared quantitatively with experimental results, it is found that simple models
like these are not able to reproduce exactly the real behaviour of soils. It should be
pointed out, however, that this basic formulation often gives sufficiently accurate
predictions, particularly in absence ofstress reversals or stress rotations. Successful
results are reported in the prediction symposia of Montreal and Grenoble (Wroth
and Houlsby (1980) and Houlsby et al. (1982)). A lucid discussion of the
capabilities and shortcomings of the basic formulation and its relationship with
observed behaviour is presented in Wroth and Houlsby (1985). Even at present,
modified Cam clay remains the most widely used critical state model in
computational applications.

For completeness, the equations necessary to establish the constitutive matrix
[Dep ] are given in Appendix VII.3, for a modified Cam clay model with a Mohr­
Coulomb hexagon and a circle for the shapes of the yield and plastic potential
surfaces in the deviatoric plane, respectively.

7.9.3 Undrained strength
As noted previously, the material parameters used to define both Cam clay and
modified Cam clay models include the consolidation parameters (VI' I( and A), the
drained strength parameter (({Jc./ or M J) and its variation in the deviatoric plane, and
the elastic parameter (p or G). They do not involve the undrained shear strength,
81/ . As these models are often used to represent the undrained behaviour of soft
clays, whose strength is conventionally expressed in terms of 81/ , this can be
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inconvenient. The undrained shear strength, 81/ , can be derived from the input
parameters and the initial state of stress as shown in Appendix VH.4. The resulting
equations are:

Cam clay:

~. = (B) cosB OCR (1 + 2KNC)[ (1 + 2K(~JC) ]1- e(l-f)(IJ-I)
cy:" g 3 "(1+2K(~c)OCR (7.49)

Modified Cam clay:

~=g(B)cosBOCR C1+2K NC )[1+B2
][ 2(1,+ 2K2

c
) ]1- (7.50)

CY:'i 6" (1 + 2K:c ) OCR [1 + B 2
]

By using these equations it is possible to select input parameters (I( , A, and ({Jc./
or MJ) and initial stress conditions (OCR, KJ, so that the desired undrained
strength distribution can be obtained. In this respect care must be exercised because
the undrained strength is always zero when the initial vertical effective stress is
zero. A full discussion on this topic can be found in Volume 2 of this book.

7.10 Modifications to the basic formulation of critical
state models

A great number of modifications have been proposed to the basic formulation of
the critical state models described in Section 7.9. The motivation has been to try
to achieve a better agreement between predicted and observed soil behaviour and
to model new types of phenomena like, for instance, cyclic loading effects. The
ISSMFE (1985) reference is an excellent review ofelasto-plastic constitutive laws
available for soils, where the most important critical state modifications are
presented. Here, only those modifications actually used in numerical analyses are
discussed. As the critical state formulation is so pervasive in constitutive modelling
of soils, it is not easy to set the limits separating critical state models from other
types. A rather non-restrictive criterion is used here.

The following specific topics are considered: yield surface on the dry or
supercritical side, modifications due to K" consolidation, and modelling behaviour
inside the main yield surface.

7.10.1 Yield surface on the supercritical side
A drawback of the basic Cam clay formulation that became apparent very soon is
that the yield curves adopted, Figure 7.15, overestimate significantly failure
stresses on the supercritical (dry) side. Moreover, Hvorslev (1937) had found that
a straight line approximates satisfactorily the failure envelope for overconsolidated
soils. Figure 7.22 shows some experimental results indicating these points. It is not
surprising, therefore, that a straight line was adopted as the yield surface on the
supercritical side, see Figure 7.23, in one ofthe earliest computational applications
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7.10.2 Yield surface for Ko consolidated soils
The basic Cam clay formulation is based on results of tests performed on
isotropically consolidated samples. However, experimental evidence strongly
suggests (Parry and Nadarajah (1973), Tavenas and Leroueil (I977)) that for Ko
normally consolidated clays (i.e. consolidation under conditions of zero lateral
strain) yield surfaces are not centred on the J = 0 axis, but are rotated towards the
Ko consolidation line in stress space. Accordingly, various proposals have been
made for changing the classical yield surface to other shapes, more or less centred
on the Ko line (Ohta and Wroth (I976), Kavvadas and Baligh (I982), Sekiguchi
and Ohta (I 977), Mouratidis and Magnan (I983)).

In Sekiguchi and Ohta's models, the parameter 1/ = Jlp' is replaced by 1/'=
Jlp' -Je/po', where Joand Po' are the values of J and p' at the end of anisotropic
consolidation. This causes a rotation of the yield surface around the stress origin
resulting in a yield surface like that depicted in Figure 7.24a. Computational
applications using models of this type have been reported (Matsui and Abe (1981,
1982), Hata et al. (I985), Ohta et al. (I985)).

Figure 7.24: Yield surfaces for Ko consolidated soils
a) Sekiguchi and Ohta model; b) MELANIE model

Mouratidis and Magnan (I983) developed the constitutive model MELANIE,
based on the conceptual framework YLIGHT (Tavenas (1981)), which is based on
extensive experimental work carried out at the University ofLavaIon soft sensitive
Canadian clays. The main differences with the basic critical state formulation are:

A new yield locus centred on the Ko line, see Figure 7.24b;
A non-associated flow rule. The plastic strain increment vector, D;, bisects the
angle between the normal to the yield surface, n;, and the 1/ = constant line.

The model has been applied to analysis of geotechnical field problems usually
associated with construction of embankments on soft ground (Magnan et al.
(I982a, I982b), Magnan and Babchia (I985)).

The new shape of the yield surface is obviously caused by the anisotropy
developed during Ko consolidation. For these models to be fully consistent, they
should incorporate the development ofanisotropy with plastic strain, which results

a)

b)

p'

p~ p'

Yield surface

Modified Cam clay
,!

Failure surface

\
~--

Lower Cramer Till

Figure 7.23: Modifications to the
supercritical surface a) Hvorslev

surface; b) Cap model

J

ofCam clay models (Zienkiewicz and
Naylor (1973)). This new yield curve '" 100

is often termed the Hvorslev surface. ~ Hvorslev surface

If associated plasticity is adopted, an ~
OM

excessive dilatancy rate results, like in I

the classical Mohr-Coulomb or ~

Drucker-Prager models discussed in
Sections 7.5 and 7.6. Also, an
associated flow implies a Figure 7.22: Exp~r~men~alresults on
discontinuity at the critical state point. superCfltlcal sIde
Because of this Zienkiewicz and (after Gens (1982)),
Naylor (1973) use a non-associated
flow rule, with dilatancy increasing J

linearly form zero, at the critical state
point, to some fixed value at p'= O.
Similar formulations have been used
by Tanaka et al. (I986). This
approach has also been used at
Imperial College. In addition, the
numerical group at Imperial College
has also had success using the Cam
clay yield surface as the plastic
potential associated with the Hvorslev
surface.

The 'Cap models' (Di Maggio and
Sandler (I971) and Sandler et al.
(I 976)) can be considered basically as
critical state models, with modified
supercritical yield surfaces. The Cap
yield surface, see Figure 7.23b,
moves according to the changes in
plastic volumetric strain, but the
failure surface is fixed. No softening
behaviour is, therefore, predicted. The
simplicity and flexibility ofthe model
means that it has been used in a
number of numerical analyses (e.g.
Sandler and Rubin (1979), Chen and Baladi (I985) and Daddazio et al. (1987)).

Although modifications to the supercritical yield surfaces are necessary to
predict realistic failure stresses in that region, they are not generally implemented
in most software. This is probably all right if the computational application refers
to materials in the subcritical region (i.e. lightly overconsolidated clays). A general
model, however, should include a modification of the type described above, to
obtain realistic predictions in all cases.
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in a progressive change of the shape of the yield surface. "':lthough some models
of this type have been proposed (Hashigushi (1977), BanerJee et af. (1985)), t~ley

do not appear to have been used in numerical analyses. A model which does satisfy
this requirement, and which has been used in numerical analysis, is the MIT model.
This model is described in Chapter 8.

In absence of sufficient comparisons between these Ko formulations and the
basic one, it is not easy to evaluate the importance of incorporating the new type
of yield surfaces in the critical state models. On the one hand, they appear to
represent better the real behaviour of Ko consolidated clays,. but on th~ other hand
the classical Cam clay models have been often successful m modellmg the field
behaviour of natural clays (presumably Ko consolidated). A reported comparison
between the two types offormulation (Magnan et al. (1982)) involved the analysis
of an embankment on soft clay, using the modified Cam clay and MELANIE
models. The results of the comparison are inconclusive. Modified Cam clay
appears to predict better the displacements. Pore water pressures are well predicted
by either model. Without other comparisons and without id~ntifyingmore clos~ly

the causes for the prediction differences, it is not possible to reach defil1lte
conclusions about the advantages of adopting the models described in this section.

7.10.3 Elastic component of the model
One of the assumptions of the basic critical state formulation is that the elastic
volumetric strain increment is given by Equation (7.39). Assuming isotropy, this
assumption results in a nonlinear elastic model in which the bulk stiffness, K,
varies according to Equation (7.40). K is, therefore, proportional to p' and v
(= I+e), although the change in the latter variable is usually small and is sometimes
neglected.

The original critical state formulation does not impose any conditions on the
shear component of the elastic model. The first computational applications adopt
a constant Poisson's ratio, p, which results in a variable shear modulus, G, also
proportional to p':

G = 3(1- 2fJ) vp'
2(1 + fJ) K

However, Zytinski et at. (1978) demonstrate that this model is not conservative
and that energy may, therefore, be extracted from certain loading cycles. In
practice, this fact may not be too important ifmonotonic loading is considered, but
may become significant if the loading involves many stress reversals.
Consequently, a constant value of G is often adopted to ensure a conservative
elastic model. However, a constant G does not agree well with experimental
observations and may imply negative values of Poisson's ratio at low stresses,
which is physically unreasonable.

Houlsby (1985) studied the conditions for conservative elastic behaviour when:

G is proportional to mean effective stress, p', or
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G is proportional to the hardening parameter, Po', (i.e. the isotropic pre­
consolidation pressure).

Both these hypotheses are consistent with available experimental evidence. In the
first case, a conservative model is possible ifthe bulk modulus, K, is made slightly
dependent on deviatoric stress. Constant stress ratio lines, IJ =J/p', become
contours of constant elastic deviatoric strain. The second case involves
elastic/plastic coupling. Formulating the problem within the framework of a
thermomechanical approach to plasticity theory (Houlsby (1982)), it is found that
the assumption ofproportionality between G andPo' leads to a slight change in the
shape of the yield surface.

In any case, the above elastic models are, in general, too simple to represent
adequately the real behaviour of soil for stress states inside the yield surface.
Jardine et al. (1986) demonstrate the importance of adopting a realistic stiffness
variation to obtain proper patterns of displacement distributions in typical
boundary value problems. For problems involving monotonic loading, it may be
convenient to adopt a more complex nonlinear elastic model to represent the
behaviour of the soil inside the yield locus. At Imperial College the empirical
expressions given by Jardine et al. (1986), which are based on experimental
evidence, have been used with some success (Jardine and Potts (1988)). These
expressions are described in Chapter 5.

It is important to note that the unique relationship between critical state stresses
and specific volume (and therefore void ratio) does not hold, if the elastic model
departs from Equation (7.39), for the computation of elastic volumetric strains.

7.10.4 Plastic behaviour inside the main yield surface
As pointed out above, a simple elastic model is not sufficient to model
satisfactorily the behaviour of soil inside the yield surface. This is particularly
important when cyclic loading is considered, since irrecoverable, cumulative
behaviour should be accurately modelled ifrealistic predictions are to be made. To
achieve this, many different models have been proposed that use various forms of
plasticity: multi-surface, two-surface (Mroz et al. (1978)), bounding surface
(Dafalias and Herrmann (1982)), generalised plasticity (Pande and Pietruszczak
(1982), Nova and Hueckel (1981 )). Now, the basic critical state formulation has
a secondary role, merely providing an overall framework into which the different
models are inserted. Therefore, only a brief summary of the topic is presented in
this chapter.

The formulations used in numerical analyses can be divided into two groups:

Models in which cyclic loading effects are described by means of a separate
formulation which is added to a suitable static model (Van Eekelen and Potts
(1978), Zienkiewicz et al. (1978)).
Complete models in which cyclic loading effects are the consequence of the
overall formulation of the full model (Dafalias and Herrmann (1982), Prevost
(1978), Carter et al. (1982), Zienkiewicz et al. (1985), Pastor et al. (1985)).
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This relationship is then integrated to give the following expression for the plastic
potential:

(7.52)

(7.53)

- plastic volumetric strain rate

D = ;\..c:' /;\..cJ

;\..c\~) = ;\..c(, + 2;\..c{'

;\..cdl' = -L(;\..sl' - ;\..sl') - plastic deviatoric strain rate,J3 I 3

Figure 7.25: Cam clay model: a) dilatancy versus stress
ratio relation; b) plastic potential curve
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on the supercritical side, failure is achieved before the main yield locus is reached.
The Hvorslev surface modifications become, therefore, less necessary.

P( {o-'}, {m}) =-!-+ In( P: J= 0
pMJ Po

where Po' is a hardening/softening parameter defining the current size of the
surface, and M; is a material parameter defining the value of Yf where there is no
plastic volumetric strain increment, see Figure 7.25 and Section 7.9.1. Associated
flow conditions are assumed and Equation (7.53) is therefore used as the yield
surface, see Equation (7.36).

There are two main limitations with the mathematical expression given by
Equation (7.53). Firstly, as noted in Section 7.9.1) the curve has a singularity on
the mean effective stress axis for J = 0 and p'= Po', see Figure 7.25b. When the
stress state and loading history of a soil element are such that it is located at this

7.11 Alternative shapes for the yield and plastic potential
surfaces for critical state models

7.11.1 Introduction
In the original Cam clay model the shape of the plastic potential surface was
obtained by assuming a simple frictional form for the plastic work. Based on this
assumption and considering a triaxial state of stress, the dilatancy, D, varies
linearly with the stress ratio Yf = Jlp' (see Figure 7.25), where:

This distinction is important for computational applications. The second category
of models can describe more accurateJy the real behaviour of the soil, including
hysteresis effects, but they become costly if a large number of cycles (as in design
storms for offshore structures) must be considered.

Van Eekelen and Potts (1978) use the pore water pressure generated by cyclic
loading as the fatigue parameter of a separate formulation. Its increase per cycle
depends on the normalised stress amplitude of the cycle. The static ~a~ of the
model is a form ofthe critical state formulation called Drammen clay WIth Internal
yielding. An application to the problem of a gravity structure sUbj.ecte.d t~ a storm
loading of more than 3500 cycles is presented by Potts (1985). ZIenkIewIcz et al.
(1978) use the volumetric strain as the fatigue variable, the increase of which
depends on the total length of the deviatoric strain path. This densification model
coupled to a critical state formulation is used for the analysis of a layer of saturated
sand subjected to a horizontal earthquake shock (Zienkiewicz et al. (1981 )).

The same problem is used (Zienkiewicz et al. (1982)) to compare the results of
the densification model with two other constitutive models from the second group
(Dafalias and Herrmann (1982), Carter et al. (1982)). The pore water pressure
build-up predictions of the three models show significant differences, the faster
increase corresponding to the densification model.

A further development has been the introduction of a generalised plasticity­
bounding surface model in the basic critical state formulation (Zienkiewicz et al.
(1985), Pastor et al. (1985)). It leads to a model with relatively few parameters and
with a good predictive capacity. This model has been recently applied to the
analysis of 1D and 2D dynamic centrifuge models, resulting in good agreement
between computed and observed results (Tanaka et al. (1987), Zienkiewicz et al.
(1987)). The availability of simpler realistic models and increased computing
power have now made possible the use ofcomplete critical state models in analysis
of dynamic problems.

Although the main motivation behind these developments has been the proper
modelling of the dynamic behaviour of soils, there is scope for applications to
static problems. An example is the use ofPrevost's (1978) model in the analysis
of shield tunnelling in soft soils (Clough et al. (1983, 1985)). An interesting
comparison is performed between the predictions ofthis model and those obtained
using modified Cam clay. Both models yield basically similar results, with
marginally better predictions in the case of Prevost's model. This is perhaps due
to the loading/unloading process involved in the operation of advanced shield
tunnelling.

Sometimes, formulations assuming plastic yield inside the main yield surface
have been prompted by a desire to increase the robustness of non linear
computational applications. Naylor (1985) proposed a modification to the basic
critical state formulation which combines the mapping of bounding surface
plasticity with a parallel composite material model. As a result, the elasto-plastic
transition is smoother, improving numerical robustness and achieving a better
modelling ofsoil behaviour. The formulation has the interesting consequence that,
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(7.54)

in which A is a scalar multiplier and 6.e(' is the plastic strain increment vector, see
Sections 6.8.3 and 6.13. The dilatancy D can therefore be written as:

The objective is to establish an expression for the plastic potential,
P( {(J'}, {m} ), such that the plastic strain rates give a plot in the D-'1 plane of a line
of general slope f..lp- Moreover, the following constraints should be satisfied:

(7.55)

(7.56)

(7.57)

(7.58)

(7.59)

=-~
dp'

A oP({u'},{m})

D = 6.£;' = op'
6.£j A oP({u'},{m})

oJ

dp' =_~
p' D+ TJ

Rewriting this expression in terms of'1 and p' gives:

TJ=O => D~OCJ

TJ= M pJ => D=O

which imply that an isotropic material exhibits only plastic volumetric strains when
tested isotropically ('1=0), and the critical state condition must apply when the
stress ratio attains the value of ~'J in triaxial compression.

The differences between these conditions and those of the original Cam clay
model are in the free choice of the value of f..lp and that the line tends continuously
to D = 00 when the stress ratio '1 tends to zero.

One possible expression for the relation between the dilatancy and the stress
ratio, which satisfies the required conditions, is:

D= Jl (M, - TJ)(apMp./ +1)
p JJ TJ

in which ap is a parameter which defines how close to the '1 = 0 axis the curve must
start to bend towards D = 00. The mathematical expression of the plastic potential
curve in triaxial compression can then be obtained by substitution of Equation
(7.58) into Equation (7.56) and by integration. It is worth noting that two different
integral expressions can be obtained, depending on the value ofthe slope f..lp. One
is valid for any value of f..lp, except f..lp = 1, for which it is not defined, and the other
is valid for f.lp = 1. In practice, the first option can be considered to be the general
expression as the f.lp = 1 option can be closely reproduced by imposing f..lp to be
approximately equal to unity (e.g. 0.99999 or 1.00001). Consequently, only details
of this expression are given below.

The equation resulting from the integration of Equation (7.58) is:

( TJ)
i;,'

1+-1'-

P({d},{m})=..L- K
P2 =0

p;, (1+~) ~:l
KP1

point, there is a range ofpossible directions for the plastic strain rate vector. On the
contrary, for an isotropic material this vector is expected to be parallel to the p'
axis, giving infinite dilatancy. The second limitation is that the D-'1 relation has a
slope ofunity. While many real soils exhibit such a linear relationship, the gradient
is often not unity.

To overcome these limitations alternative mathematical expressions have been
postulated. For example, an ellipse, Equation (7.37), was used by Roscoe and
Burland (1968) and more recently a 'tear' shaped surface has been proposed by
Nova (1991). Desai (1980) proposed a generalised expression for the yield function
using a polynomial equation in terms of the three invariants ofthe stress tensor. It
can be shown that some of the well established yield functions can be obtained
with an appropriate choice of the non-zero coefficients of this polynomial. The
shapes of the yield and plastic potential surfaces vary significantly from model to
model. Unfortunately, the mathematical expressions adopted in most models do not
allow for a wide selection of shapes for the yield and plastic potential surfaces. As
these have a major influence on model predictions, it is important that they
accurately represent real soil behaviour. Real soils appear to exhibit a variety of
shapes and it is therefore desirable to adopt an expression which has flexibility.

In attempt to develop a plastic potential surface similar to that of the original
Cam clay model, but without the limitations described above, Lagioia et al. (1996)
have obtained a mathematical expression which is extremely versatile. Notonly are
the limitations of the original Cam clay model eliminated, but the new expression
can produce a wide range of shapes, varying from the original 'bullet' shape to the
'tear' shape, which is finding favour in more recent models. The majority of the
shapes currently in use in the literature can be modelled by means ofan appropriate
choice ofparameters. Because ofthe flexibility the new expression provides, it can
be used to define both the yield and plastic potential surfaces in a non-associated
model by simply using two sets of shape parameters. A brief description of this
new expression is now presented, for a more detailed description the reader is
referred to the original paper by Lagioia et al. (1996).

7.11.2 Development of a new expression in triaxial stress space
To begin with the development of the mathematical expression, triaxial
compression stress conditions are considered. As noted for Cam clay and modified
Cam clay in Section 7.9.2, several options are available to extend such an
expression to general stress conditions, and how these may be implemented in the
new expression is discussed subsequently.

As noted above for the Cam clay model, it is useful to examine the plastic
deformation by considering the variation of dilatancy, D, with stress ratio, '1
(=.J/p'). According to the classical theory ofplasticity, the derivatives ofthe plastic
potential surface provide the relative magnitudes of the plastic strain rates:

6.£!' = A OP({~;,;{m})
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where:
(7.60)

(7.61 )

(7.62)

and IJp is the normalised value of the stress ratio 17:

where: PF = (1- JlF)(KF] - Kn ) (7.66)

Kn
j..lJ(I-aJ')[I+ 1- 4aJ;(1- JlJ'} ] (7.67)
2(1- j..lF) JlF(1- a F)

K P2
JlJ.(I-aJ')[I_ 1- 4aF(1- JlJ'l ]
2(1- j..lF) j..lF(1-aF) (7.68)

rh _'l_
(7.69)M FI

Figure 7.26: Geometrica/ identification of curve parameters

(7.71)

(7.72)
a p *- 1

Ill' *- 1

If the expression is used to represent a yield surface, then the values of the two
parameters, j..lF and aF, are determined by fitting the experimental yield surface. It
is apparent that if a Cam clay type of surface is required, then ap (or aF) is chosen
to be a very small number. The smaller a the sharper the bullet shape for p'= Pp'

(or Po').
From the above equations it appears that there is no restriction on the choice of

the value of parameter Mp! (or MI</), whilst for j..lp (or j..lJ') and ap (or a/.) the
following restrictions apply:

The parameters Mp! and MJ<! are the values of the stress ratio corresponding to
a horizontal tangent to the curves in the J-p' plane. If the expression is used to
describe a plastic potential, i.e. Equation (7.59), Mp.! is related to the effective angle
of shearing resistance via the expression:

M = 2.[3 sin9:, (7.70)
PI 3 - sin9:s

whilst if it is used for a yield surface, Equation (7.65), MJ<! has to be chosen
geometrically. The parameters Pp' and Po' fix the size of the curves on the mean
effective stress axis. For a plastic potential, Pp' becomes a dummy parameter
because only the derivations ofthe equation are used. For a yield curve, Po' has the
usual conceptual meaning ofa state parameter (i.e. hardening/softening parameter,
see Section 7.9.1). The parameters j..lp, j..lF and ap, aF have already been described.
If the equation is used for defining a plastic potential, then ap fixes the proportion
of Mp! that the stress ratio must attain for the dilatancy to be equal to:

(7.63)

(7.64)

TJ - TJp---
Mp.!

I
I

5 I
~

jMpJ
D = 2MpJllp(l-ap )

~...., I

q I
I

apMPJ MpJ
I D=ooI

IIp

-5 Pr'
T]=J/p' p' (kPa)

a) b)

The Equation (7.59) is defined for positive values of IJp and for:

1+~:2:0
K p1

1+~:2:0
KP2

Four parameters are required to define the surface: ~'.!' pp', j..lp and ap . The
geometrical meaning of these four parameters is shown in Figure 7.26.

Ifnormality is assumed, Equation (7.59) also becomes the yield surface andpp'
becomes the hardening/softening parameter Po', see Section 7.9.1. However, if
non-associated conditions are assumed, the yield surface may take a similar form
to Equation (7.59), but with different values for the parameters Mj, j..l and a:

(
TJ) ~c2l+_F_

F({d},{k})=L- Kn =0
P

;, ( )i1

l+l F

K F1

(7.65)

Moreover, if j..lp < 1 or j..lF < 1 then j..lp or j..lF must satisfy the following conditions:

4ap . 4ar
Ill' > 7 ' IlF> 7 (7.73)

(1-apt+ 4a p (1-ar )-+4ar

Ifap < 1 (or aF < 1) and j..lp < I (or j..lF < 1) then the surface is rounded not only for
p'= Pp' (or p'= Po'), but also for p'= 0 and therefor the normalised stress ratio at the
origin is:
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(7.74)

(7.76)

(7.75)

and if ap > 1 (or aF > 1) then, no matter the value of !i,

A finite value of the normalised stress ratio y/p (or Y/F) at the origin is obtained in
all other situations. If a}, < 1 (or aF < 1) and !ip > 1 (or !iF > 1), the normalised
stress ratio y/p (or Y/f.) at the origin is:

(7.77)

In these conditions the yield curve or the plastic potential curve has a finite
value of stress ratio for p'= O. This property could be used to represent some form
of a cut off at high values of the stress ratio. It is apparent that if non-associated
conditions are assumed, care should be taken to ensure that the stress ratio values,
attained by the soil when satisfying the yield surface, are still valid for the plastic
potential.

By varying the parameters Up (a}.) and !ip (!iF) it is possible to obtain curves
with very different shapes. Figure 7.27 shows the effect of the variation of the
parameter ap for fixed values of the parameters !ip, Mp.! and pp' . It is apparent that
the variation of the parameter ap controls the rounding ofthe 'bullet' corner at p'=
pp'. This parameter also governs the relative proportions ofthe curve on either side
of the line with slope Mp.! and therefore whether the curve has a 'bullet' or a 'tear'
shape.

Figure 7.28: Effect of the parameter !Jp on the shape of the
curve

7.11.3 Generalisation of the expression

So far only triaxial compression stress states have been considered. The
simplest ,:ay to. generalise the expressions given by Equations (7.59) and (7.65)
to three dImensIOnal stress space is to replace y/p and Y/F with:

771' = 77(e) and 77F =_77_
gPP gee)

where gpp(e) and gee) can take any ofthe forms given in Section 7.9.2.
This model has been used in analysing the behaviour of structured soils under

triaxial conditions, Lagioia and Potts (1997).

7.12 The effect of the plastic potential in plane strain
deformation

As noted in Section 7.9.2, the shape ofthe plastic potential, gpp(e), in the deviatoric
plane can have a significant influence in problems involving plane strain
deformation. This can be understood as follows.

F~~ plane strain deformation, the out of plane strain increment <'1e
2

is, by
defillltlon, zero. If the soil is assumed to be elasto-plastic, then:
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Figure 7.27: Effect of the parameter ap on the shape of the
curve

<'1&2 = <'1&; + <'1&f =0 (7.78)

At failure, the elastic component <'1E:z" reduces to zero as there is no change in
stress. Consequently,

(7.80)

Figure 7.28 shows the effect of the variation of the parameter !ip for fixed
values of the parameters aI', Mp.! and pp'. As !ip becomes larger than unity, the
curve is characterised by a finite value of the stress ratio at the origin of stress
space.

Lagioia et al. (1996) show how, by suitable choice of parameters, the new
expressions can fit many ofthe well established curves given in the literature. They
also show how the new expressions can accurately fit experimental data.

(7.79)

. De.fining the angle ofdilation at failure by Equation (7.15) and using the result
gIven m ~quat~o~ (7.79), leads to the following expression for the Lode's angle of
the plastIC stram mcrements at failure:

e = tan -1 ( sin vJ
t.E

P J3
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(7.86)

(7.85)

sinv
tan()r =--

J3

/B) - MPP
gPP~ - JP

where M;ll' is independent of B. Substitution of Equation (7.85) into Equation
(7.83) gives:

(i) Drucker-Prager model
For this model the shapes of both the plastic potential and yield surfaces are
assumed to be circular in the deviatoric plane, see Equations (7.24) and (7.29),
giving:

The Lode's angle of the stress state at failure is therefore directly dependent on
the angle of dilation v. If v = 00, then Bat failure equals 00. A similar result is
obtained for the von Mises model in which the dilation is zero and therefore 0 at
failure is also zero.

8=+30'

8=0'

y

(7.81 )

The plastic strain increment direction is 8 = _30'
also normal to the projection of the plastic
potential curve on the deviatoric plane,
expressed as gpiB). Such a curve is shown
schematically in Figure 7.29, for one sixth of
the deviatoric plane. From this figure:

x = gpp(()) sin()

y = gpp(()) cos()

and therefore:

Combining Equations (7.80) and (7.82) gives:

8gpp (()) .
sin v 8() cos()- gpp(())sm()

J3 - 8g (())
~() sin()+ gp/())cos()

(7.88)

(7.87)

(ii) Mohr-Coulomb model
The shape of the plastic potential in the deviatoric plane, gpiB), is given by
Equation (7.17). Substituting this expression for gprCB) into Equation (7.81) gives:

dy = _ SlilV

dx J3
which, from Equation (7.82), results in:

() = tan- 1(sinv)
~Ii/' J3

(7.83)

x

Figure 7.29: Plastic potential
surface(7.82)

As the plastic strain increment vector is
normal to the plastic potential,

(7.84)

Substitution of the expression for gpp(B) and the angle of dilation, v, at failure
into the Equation (7.83) results in the value of the Lode's angle, Br' of the stresses
at failure. For example, if Equation (7.48) is adopted for the plastic potential and
it is assumed that there is no volume change at failure, v = 00 (i.e. at critical state
conditions), Equation (7.83) reduces to:

tan () = _ 3 ZY cos3()
(1 + Y sin3())

The solution ofthe above equation for Bgives the Lode's angle of the stress state
at failure, Br' for plane strain conditions with no dilation. Alternatively, Equation
(7.84) allows the selection of values of Z and Yto give a desired value of Br.

From the above considerations it may be concluded that the expression assumed
for gp/B), along with the required dilation angle, determines the value of the
Lode's angle Br for plane strain deformation. This holds no matter what expression
is assumed for the yield function. However, the expression for the yield function
determines the strength, Jr, mobilised at this Br value.

It is now of interest to examine the consequences of the above equations for
several of the models presented in this chapter.

As this expression is independent of B, the plastic strain increment direction is
constant in the deviatoric plane. Comparison of Equations (7.80) and (7.88)
indicates that the above value of B~l' is consistent with the plane strain condition.
Consequently, in this particular situation where the shape of the plastic potential
in the deviatoric plane is a straight line, the Lode's angle of the stress state at
failure is not uniquely determined, but may take any value between - 300and +300.
This is true no matter what value ofthe angle of shearing resistance, rp', is adopted.
A similar situation can be shown to occur for the Tresca model.

(iii) Critical state model
As noted in Section 7.9.2, various options are available for specifying the shape of
the yield and plastic potential surfaces in the deviatoric plane. If a circular shape
is assumed by specifying M; as a constant, then at failure, when critical state
conditions occur, the dilation is zero and consequently Equation (7.86) with v = 0°
is valid. Therefore failure occurs with a stress state corresponding to B= 00.

Alternatively, ifEquation (7.48) is used to define gpiB), the Lode's angle ofthe
stress state at failure can be obtained from Equation (7.84).



(7.89)

184 / Finite element analysis in geotechnical engineering: Theory

Problems occur if a Mohr-Coulomb hexagon is used. In this case gpp(B) is given
by Equation (7.41). Substituting this expression into Equation (7.82) gives:

B - _1(sin<p~s)
I' - tan --r::-

~E v3

As for the Mohr-Coulomb model, this expression is independent of e and the
plastic strain increment direction is constant in the deviatoric plane. However,
comparison of Equation (7.89) with Equation (7.80), with v = 0°, indicates that the
above value ofe~f' is not consistent with the plane strain condition which gives ed'
= O. The state of stress is therefore forced to either triaxial compression (e = - 30°),
or extension (e = +30°), where there is a corner in the plastic potential. Here, the
plastic strain increment direction is not uniquely defined and may accommodate
the condition stipulated by Equation (7.80). Clearly, this is unrealistic as most soils
fail with e between -10° and -25°. To overcome this problem an alternative
expression must be used for gpie), such as one of those given in Section 7.9.2. It
is, however, still possible to use the Mohr-Coulomb hexagon given by Equation
(7.41) to define the shape of the yield function in the deviatoric plane. In such a
situation the yield and plastic potential functions differ, leading to non-associated
conditions. The model outlined in Appendix VII.3 has the option for using a Mohr­
Coulomb hexagon and a circle for the shapes of the yield and plastic potential
functions in the deviatoric plane, respectively.

Finite element analyses have been performed by Potts and Gens (1984) to
quantify the above effects in boundary value problems involving plane strain
deformation. They used a form of the modified Cam clay model for their
predictions, and concluded:

The value of el' which is determined from the shape assumed for the plastic
potential, has a major influence on both pre-failure and failure predictions for
problems involving plane strain deformation.
It is the value of el at failure, as opposed to the actual shape of the plastic
potential, that has the dominating influence on soil behaviour. This implies that
two plastic potential functions, which have different shapes in the deviatoric
plane, but which produce the same elvalue, give similar predictions. The shape
of plastic potential is therefore important in the sense that it defines el'
The shape of the yield surface in the deviatoric plane appears to have a much
smaller effect on drained behaviour, as long as the correct value ofthe angle of
shearing resistance, CfJcs', is obtained at el' This applies to both the behaviour
before and at failure. Consequently, ifnormality is assumed, with the shape of
the yield function in the deviatoric plane being identical to that of the plastic
potential and giving the correct angle of shearing resistance, the same overall
behaviour can be obtained.
For undrained loading situations the plastic potential has little effect on both the
predicted pre-failure and failure behaviour, as long as the same undrained shear
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strength at failure is obtained at el' It should be remembered however that e
is directly dependent on the plastic potential. ' f

It may be concluded that great care must be exercised when developing general
constitutive models of soil behaviour, especially in the development of the plastic
potential and its shape in the deviatoric plane. Unfortunately, there are limited
experimental data available from which the plastic potential may be derived.
However, as noted above, it is the value of el which dominates the behaviour and
not the finer details of the actual shape of the plastic potential. Experimental data
(Green (1971), Hambly and Roscoe (1969), Henkel and Wade (1966), Cornforth
(1961), Menkiti (1995) and Zdravkovic (1996)) suggest that the value of ellies
approximately between 0° and -25°. It would therefore appear appropriate to
ensure that any assumed plastic potential defines a value of e

l
in this range.

7.13 Summary
1. Ofthe simple elastic perfectly plastic models described, the Tresca and Mohr­

Coulomb models are thought to be more appropriate than von Mises and
Drucker-Prager, because they are based on the same assumptions as
conventional soil mechanics.

2. It is important that the Mohr-Coulomb model has a non-associated flow rule.
If it assumes an associated flow rule, it is likely to overpredict the tendency for
the soil to dilate.

3. The Mohr-Coulomb model can be improved by allowing the strength
parameters, c' and CfJ', and the angle of dilation, v, to vary with deviatoric
plastic strain, EJ.

4. Critical state models (CSMs) are based on isotropic elastic strain
hardening/softening plasticity theory.

5. Conventionally, the consolidation and shearing behaviour of soils are
considered separately. CSMs are able to simulate both aspects of soil behaviour
and as such provide a significant advance in soil modelling over the simpler
Tresca and Mohr-Coulomb models.

6. The original CSMs (e.g. Cam clay and modified Cam clay) are formulated for
triaxial stress space. Additional assumptions are therefore required to generalise
the models for use in numerical analysis. This can, and has in the literature,
been done in several different ways. Because the manner in which the model
is generalised can have a major impact on predictions, it is important that the
procedure adopted is well understood.

7. Many modifications to the basic formulation have been made in the literature.
These include the provision of a Hvorslev surface on the supercritical side,
improved shapes for the yield and plastic potential surfaces, re-alignment ofthe
yield surface about the Ko consolidation line, modification of the nonlinear
elastic behaviour within the yield surface and the introduction of secondary
plasticity within the yield surface.

8. The basic CSMs require five input parameters. These include the consolidation
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parameters (VI' K and A), the drained strength parameter (rp' or M/), and the
elastic parameter (f.1 or G). They do not involve the undrained strength, SII ,
however, this can be derived from the input parameters and the initial state of
stress.

9. The shape ofthe plastic potential surface in the deviatoric plane and the dilation
angle, V, determine the value of the Lode's angle at failure, 8t , in problems
involving plane strain deformation.

or:
det s = (er; - p')(er~ - p')(er; - p') - (er; - p')r~z - (er:. - p')T~

( ' ') 2 2- erz - p Txy + TxVTyzTzx

Appendix VII. 1: Derivatives of stress invariants
Mean total stress:

a) +a 2 +a 3 a x +ay +a z

p= 3 3

{ ::} = t{I I I 0 0 o} T

Mean effective stress:

(VII. 1)

(VII.2)

(VII.3)

(VIIA)

Note: The values of .1 and 8 above are expressed in terms of effective stress,
however, if total stresses are substituted for effective stresses in these expressions,
the same numerical values of .1 and 8 are obtained and {3.1/3u} = {3.1/3u'} and
{3813u} = {38/3u'}.

Appendix V11.2: Analytical solutions for triaxial test on
modified Cam clay

Modified Cam clay is a popular constitutive model for representing normally to
moderately overconsolidated soils and is widely used in finite element analysis of
geotechnical problems. Due to the complexity ofthe model, there are few closed
form analytical solutions against which finite element programs can be calibrated.
This appendix presents solutions for ideal (i.e. no end effects) drained and
undrained triaxial tests. The model is fully defined with five parameters, K, A, VI ,

M/, and G, which are defined in Chapter 7.

Deviatoric stress:

I

.1 = {i-[(a;-aS +(a;-a;f +(a;-a;fJY
(VII.9)

(VII. 10)

2J

P'2M2
J

2.12 p'= +_0

P
,3 M2 12

J P

ape {a'}, {m})
a.1

ape {a'}, {m})
ap'

.1~ I

F({a'},{k}) = P({a'},{m}) = -~---0 -&+ 1= 0
p'- M; p'

= the hardening parameter, see Figure VII. 1;
= the mean effective stress;
= the deviatoric stress.

aF({a'}, {k})
a.1

aF( {a' }, {k})
ap'

Flow rule and plastic potential
Associated plasticity is assumed, with the yield function, F( {u'}, {k}), and plastic
potential function, P( {(J'}, {m}), given by:

where: Po'
p'
.1

The plastic flow directions and yield function gradients are obtained by
differentiating Equation (VII.9):

(VII.6)

(VII.7)

(VII.S)

1)] --1. -I (3J3 det sJ- -SIn ----
3 2 .13

I

= {~[(a; -a;f +(a; - er;f +(er; -er;f +T;y +T;x +T)~z JY

Lode's angle:

(J = tan-) [_1_(2 a~ - a~J3 a l - a 3

where:

(VU.II)

a~ - p' 'xy Tzx

dets = T xy er; - p' Tyz

Tzx Tyz er; - p'

1f the stress state remains plastic, the consistency condition (dF( {u'}, {k}) = 0)
must be satisfied. Differentiating Equation (VII.9) gives:

dp:, 2J dJ _ dp' + 2 dp'
p;' p'p;'M; p' P:,
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where K is the elastic bulk modulus. In
the original formulation ofmodified Cam Figure VII. 1: Virgin consolidation
clay no elastic deviatiorc strains are and swelling line
considered, implying an infinite value of
G. To avoid numerical difficulties and to achieve a better modelling inside the
yield surface, elastic deviatoric strains are usually calculated from a finite value of
G. Various alternatives have been proposed in the literature and three of these are
considered here:

Elastic behaviour
Elastic volumetric strains are given by:

Hardening /a w
Hardening is assumed to be isotropic and
dependent on the plastic volumetric

strain, ct, as:

(VILI5)

(VII.16)

, P;I
Pes =

I_ MI

J3

J = MIP;,
cs M

1-_,_1
J3

p', d' [ )S,~ = r~~=~ In 1+ JC,-J;
pi v P v p;J3

Elastic strains
Elastic volumetric strain

The elastic volumetric strains are given by integrating Equation (VILI3):

where PI;' (= P;' -li If3) is the intercept of the stress path with the P' axis. The
analytical solutions presented below give the values of volumetric strain, Cl' ,

deviatoric strain, Ed , and mean effective stress, pc', associated with any current
value of deviatoric stress, le . The critical state condition imposes limits to the
values ofPe) and le· These values are Pe./ and les, given by the intersection of the
critical state line and the drained stress path, and can be expressed as:

The value of Ed is divided into its plastic and elastic components, E/' and EJ
respectively, and similarly Cl' is divided into ct and cv". The following solutions
assume that over the limits of the integrals the specific volume is constant.

lnp'

Isotropic virgin
consolidation line

:x,
~2 -----~------~--

, ,
, ,
, ,
, ,
, ,
, ,

v

(VII. 12)

(VII.13)

dp;) -_v_d P
- 1 Cl'

P' /C-K
"

ds" = dp' =~ dip'
I' K vp'

G is a multiple of the hardening parameter, p,/ (G = g p,/).
G is specified using a constant Poisson's ratio, fl.
G is constant.

V11.2.1 Drained triaxial test
In this test a cylindrical sample of soil,
representing modified Cam clay, is
subjected to axial compression, while the
radial total stress is maintained constant
and no excess pore water pressures are
allowed to develop. The initial stresses in
the sample are given by p' = p;' and 1 =

li' These boundary conditions result in
the following stress path (see Figure
VII.2):

, J2 ,
Po = M 2 , + P (VII.l7)

JP

Combining this equation with Equation (VII. 14) and substituting in the expression
for G, enables the elastic deviatoric strain to be expressed as:

E " - If' dJ _ If' d/ _ If'M; J3p~ + J
d - r:; - --- dJ (VII.l8)

1,...;3G 1,J3gp;, I, g 3J2+M;(3p~2+2J3p~J+J2)

(VILI9)

El' = J3MI {tan-I[J(3+M;) + M I ]+
d g(3+ M7) 3M/p;' J3

3f M, ',[.J'(3+ M;) + 2f3M;p;.r +3M;p;'J};

Elastic deviatoric strain

CASE 1: G = g p,/
From Equation (VII.9):

Applying integration of partial fractions to Equation (VII.l8) gives:

Figure VII.2: Drained triaxial
compression stress path

J~ ----------------,
,,
,
,
I
I

13:
I

J j ------ :

I
I,,,
I

J

(VILI4)

p' = iJ + P;,

and

dp'=~
J3

1.
2.
3.
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CASE 2: Constant Poisson's ratio, fJ

The shear modulus, C, can be expressed using fJ and the expression for K given in

Equation (VII.l3):

c = 3vp'(1- 2j.J)
2(1 + j.J)K

(VII.20)

Plastic volumetric strain
The plastic volumetric strain can be obtained by substituting Equations (VILlI)

and (VII.14) into Equation (VII.l2):

(VII.26)

dEl' =A 3P({d},{m}) =A~'d[/) =A 3P({d},{m})
cl 3J ,2 M2' v 3p'P 1

-A(~_A)
d M2 ,2

P / P

(VII.25)

Combining the second of these equations with Equations (VII.9), (VII.I I) and
(VII.12) gives the following expression for the plastic scalar multiplier, A:

_1_ _I,.. 1 (VII.27)
M M

----;=~---"'/:-----;==- + / dJ
13M/p~ + J(M j -13) 13Mjp~ + J(M j +13)

Plastic deviatoric strains

The incremental plastic deviatoric and volumetric strains are related by:

Carrying out the integration gives the following expression for the deviatoric
plastic strain:

E l' _{_ 2 /I.-Kt _1[J(3+M;) M / ]
j - ---an +- +
, 13 vMj 3Mjp~ 13

/I.-K[ 1 13 In(13Mjp~+J(Mj-13))+ (VII.28)
v Mj(M j - 3)

I 13 In(13Mjp~ + J(M j +13))])1

1

Mj(M j + 3). . .~

Substituting Equation (VII.26) into the first part of Equation (VII.25) and then
removing theP' terms using Equations (VII. 14), gives the following expression for
the plastic deviatoric strain:

(VII.23)

(VlL22)

(VIL21)

4p' (p' _ p'.) 3+ M; _ (2pf, - P;'i ) 2

h h 01 3M 2 '3/ "'j

[ ]

/1,

Ee-f~- ~
cl - I

j
fie - fie !

'j

2p~ - P;'i +
fi -

Plastic strains
Plastic straining only begins when the stress path intersects the initial yield surface.
The position of the initial yield surface relative to the initial stress state depends on
the overconsolidation ratio, which defines the initial value ofPo' (i.e. P,,;'), Using
Equations (VII.9) and (VII.14) the intersect point, defined by py' and ~n is given

by the following expressions:

Jl' = positive root of

The elastic deviatoric strain can therefore be evaluated by combining this

Equation with Equation (VII.l4):

E" =J~ =J 2(1 + j.J)K dJ

cl /j13C /j313{Pf,+ fJ)U- 2j.J)

= 2(1 + j.J)K In[ 13p~ + Je J
3v(1- 2j.J) 13p~ + J,

CASE 3: Constant shear modulus

The elastic deviatoric strain is given by:
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V11.2.2 Undrained triaxial test
In this test a cylindrical sample of modified Cam clay is subjected to axial
compression, while the radial total stress is maintained constant and no volume
change is allowed. The initial stresses in the sample are given by p/ and J;. In the
derivations that follow use is made ofp,/, which is the mean effective stress on the
isotropic virgin consolidation line at the void ratio at which the undrained test is
being carried out, see Figure VII.1. The relationship between P'/ and the current
values ofP' and Po' can be obtained from the equations of the swelling and virgin
consolidation lines and is:

1

1 2\ -(pp:;)-{
c J, dJ M P, '"Ed = f--=-,-J f--r===~~dp'

J;J3G J3g Pi ()1-
p' ;, ~-1

Integration of Equation (VII.32) then results in the following:

p~.

(VlI,32)

Using the above equation to eliminate Po' from the yield function (Equation
(VII.9)) gives:

Kwhere ,; = 1- ­
A

(VII.29)

pi

(VII.33)

As Pl/' remains constant in an undrained test, Equation (VII.30) provides the stress
path in J - p' space once yielding occurs. Prior to yielding the stress path is
vertical, i.e. !'lp' = O.

The analytical solutions given below provide values of Ed and Je associated
with any current value ofPc'. The critical state condition imposes a limit to the
value ofpc', such that for initial stress states 'wet' of critical Pes' ,,; Pc' ,,; p/, and for
initial states' dry' of critical Pes' 2 Pc' 2 p/, where Pes' is the critical state value of
p'. Values ofJes and Pes' can be found from the intersection of the critical state line
and the undrained stress path given by Equation (VII.30):

(VII.34)

( ,)t( 1 )~ 1 --1
" J, dJ 2(1 + J.1) K M p~ p' 2';Ed = f--= J f dp'

Ji J3G 313 v (1-2J.1) pi (,)t
p' ~ -1

p'

Integrating this equation gives:

CASE 2: Constant Poisson's ratio, I.l

Differentiating the undrained stress path given by Equation (VII.30) to obtain an
expression for dJ, and using Equation (VII.20), the elastic deviatoric strain is given
by:

(VII.30)( p~)t .- -1
p'

J= p'MJ

At any stage during the test the pore water pressure can be determined from the
difference between the total and effective mean stress, using Equations (VII.14)
and (VII.30).

For convenience, Ed is divided into its plastic and elastic components, El and
EJ, respectively. Although there is no total volumetric strain, there are equal and
opposite elastic and plastic components, E,," and E,f.

, - P:,. - p~PC\' --I , Je, - M J -,'2' ' '2'
(VII.31)

E" 2(1 + J.1) M J ,; K [2 -1
1= ' tan
, 313 v (1- 2J.1)

CASE 3: Constant shear modulus

The elastic deviatoric strain is given by the following equation:

(VII.35)

Elastic deviatoric strains
CASE 1: G = gpo'

Using Equation (VII.29) to express Po' as a function of p' and Pl/' and
differentiating the undrained stress path given by Equation (VII.30) to obtain an
expression for dJ, the elastic deviatoric strain is given by:

(VII.36)
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Substituting this into the first part of Equation (VII.25) and using Equation
(VII.29) gives:

(VIIAI)

Ll

1.001.---='0=.1='---'0.-2-~0.~3--0::'-04:-----::0.5

K/'A

1.5,----------------,

lA

::;'1.3
'-,~

1.2

~:, {,--n+~,_'2;
The variation of Jp lJes with KIA is given in Figure VII.3. This shows that for

values of KIA > 0 the peak deviator stress~) exceeds Jes ' These results imply that
strain softening behaviour occurs for stress states 'dry' of critical.

(VII.37)

(VII.38)

I

(fY -1
I dp'

(~Y -2

p'

Ej = [2 ~
pi vpMJ

Plastic deviatoric strains
The incremental plastic volumetric and deviatoric strains are expressed in Equation
(VII.25). Noting that in an undrained test e"e = - e/', Equation (VII.13), which gives
de"e, can be combined with Equation (VII.25) to give the expression for A:

A = K dp'
v~_p:,

p,2 M; p'

Note: Due to the undrained condition, purely elastic behaviour occurs with no
change in p'. Consequently, at first yield py' = p;'. Integrating Equation (VII.38)
gives:

Figure VII.3: Jp /Jcs in undrained
triaxial test

(VIIA2)

I 1+ (~)t_l
ES =- 2Kr; tan-I (p:,)I -1 -1.. In _~===

vMJ p' 2 I

1- (~Y-I

p~.

pj

(VII.39)
Appendix V11.3: Derivatives for modified Cam clay model
Yield function
The shape of the yield surface in the deviatoric plane is assumed to be a Mohr­
Colulomb hexagon given by:

(B) = sinip:s
g B I . B' ,cos +,f3 Sill Slllipcs

Comparing the above expression for p/ with the expression for Pel" indicates
that~) occurs on the 'dry' side of the critical state. The ratio of Jp to Jes can be
found by dividing Equation (VIIAO) by Equation (VII.31), which gives:

Peak strength
In an undrained triaxial test the stress path follows Equation (VII.30). It is of
interest to identify the magnitude of the peak deviatoric stress, Jp, and the mean
effective stress at which it occurs, p/' and to compare Jp with Jes ' Differentiating
Equation (VII.30) with respect to p' and equating to zero, gives the expression for
pp'. Then~) can be found by substituting this value ofp/ into Equation (VII.30):

The yield surface is given by:

F({d},{k}) = (_J_)2 _(P:' -I) =0 (VIIA3)
p'g(B) p'

The differentials required to evaluate the elasto-plastic constitutive matrix [DCI']
(see Equation (6.16)) can be obtained from Equations (7.21), together with:

( )
1; ()I;~, _ I 2r;-1 . J = M I 2r;-1 _1_

Pp - P" 2r; , I' JP" 2r; 2r;-1 (VIIAO)
aF({d},{k})

ap'

aF({d},{k})
aJ

aF({d},{k})
ae

[ )2]1 1- _J_
p; (P'g(B)

2J

(p'g(B)r

2J2 icosBsinip:s -sine

p,2g(e) sinip:,1

(VII.44)
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The differentials required to evaluate [Dep] in Equation (6.16) can be obtained from
Equation (7.21), with:

Plastic potential
To avoid the problems outlined in Section 7.12, Equation (VII.43) is used for the
plastic potential, but the shape in the deviatoric plane is assumed to be circular.
This is achieved by replacing the variable 0 by the parameter 0({51), which
represents the Lode's angle at the point in stress space at which the gradients of the
plastic potential are required. The plastic potential therefore has rotational
symmetry and P( {u' }, {m}) is the surface of revolution generated by the
intersection of F( {u' }, {k}) with the plane 0 = 0({51). Therefore:

( )
2 (' )m - J _ Po -1 =0

P({d},{ }) - p'g(B(O"')) pi

For triaxial compression conditions, where 0 =- 30°, the following relationship
exists:

(VIL5!)

(VlI.52)P~ =(p~)~
P P"

(0"' - 0"')J = 1 3

J3
and from Figure VII. 1:

Modified Cam clay
The yield surface for this model is given by Equation (VII.43). The undrained
strength, S,,, is related to the deviatoric stress at failure,~, by (see Equation (7.8)):

SII = J j cosB (VIL50)

Appendix V11.4: Undrained strength for critical state
models

In this appendix expressions are given for undrained strength, SII, for both Cam
clay and modified Cam clay models. For both models the expressions are derived
following a similar procedure. Consequently, a detailed explanation is only
provided for the modified Cam clay model.

(VII.45)

(V1I.46)

[
) 2c

_ 1 1- J
- 7 (P'g(B(O"'))

2J

(p'g( B(0"'))r
= 0

ap({d},{m})

ap'

ap({d},{m})
aJ

ap({d},{m})

aB

Hardening parameter
The hardening parameter A required to evaluate the elasto-plastic constitutive
matrix is given by:

A = 1 aF({O"'},{k}) dk = _ 1 3F({0"'},{k}) d I

A ak A a ' Po'Po
(VlI.47)

where pi is the current value of the mean effective stress.
For an element ofsoil in the ground which has an initial vertical effective stress

{5,,;' and overconsolidation ratio OCR (= {5vm ' I {5,,;', where (5"m ' is the maximum
vertical effective stress that the element of soil has been subjected to), the
horizontal effective stress is given by:

(VII.53)

Noting that:

d ,= ' dsP _v_= ,_V_A ap({O"'},{m})
i]Jo Po v /l, _ K Po /l, - K ap' (VII.48)

where Ko
O

(' is the current value ofthe coefficient of earth pressure at rest. As noted
above, the maximum vertical and horizontal effective stress that the soil element
has ever experienced are given by:

(VII.54)

and:
aF( {O"'}, {k})

3p~ P'

where Ko
NC is the value of the coefficient of earth pressure at rest, associated with

normal consolidation.
Equations (VIL54) can now be used to define the stress invariants Jmand Pn;':

gives:

[ )2]A-_V_ p;) 1- J
- /l,-K p,2 (P'g(B(O"')) (VII.49)

, + 20"' 1+ 2KNC
I (I1'1JI hm .>- () OCR CY'

Pm = 3 - 3 VI

(VII.55)

(VII.56)
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Because the stress state associated with (Jvm', (Jhm', J,,, and Pm' is normally
consolidated, it must lie on the yield surface. Consequently, using Equation
(VIL43) we can write:

(VII.57)

If the soil element is normally consolidated, Ko
oC = Ko

NC and OCR = 1. Therefore,
Equation (VII.65) reduces to:

S = ' (e) e (l + 2K(~c) (1 + B2 i
1

-
f

(VII.66)
u 0-1'; g cos 3 2 )

Using Equation (VII.52) gives the following value for P,,':

Substituting Equations (VII.55) and (VII.56) into (VIL57) and rearranging
provides the following expression for the current hardening parameter Po':

(VII.68)

(VII.67)

and Ko
oC by the Mayne and Kulhawy (1982) expression:

K OC = K NC OCRsin!f'~"
() ()

Note
If the shape of the yield surface in the deviatoric plane is given by a circle, then
gee) = M;. Alternatively, gee) can be given by one ofthe expressions discussed in
Section 7.9.2.

The value of Ko
Nl' is often assumed to be given by laky's (1948) formula:(VIL58)

(VII.59)

where:

, = ,(p;if=0-' OCR (1+2K(~C)(1+B2)[ (1+2K2
c

) Jf
PI( Po p:J VI 3 (l + 2K(~c) OCR (1 + B 2)

(VII.60)

When the undrained strength is mobilised, the soil element is at the critical
state, with stresses Jcs and Pc./. These stresses are related by the equation:

(VII.69)

(VII.70)

Cam clay
The yield surface for this model is given by Equation (7.43):

J (p')F({a'},{k})=--+ln - =0
p'g(e) P~

Using the same procedure as outlined above for the modified Cam clay model,
gives the following expression for the undrained strength:

(1+2KNC )[ (1+2Koc) ]f (I-.':-)(B-I)
S = OCR 0-' gee) cose 0 0 e A
"VI 3 (l +2K(~C) OCR(VII.62)

(VII.61)J cs = P~, g(e)

which, on substitution in Equation (VII.43), gives:

Combining Equations (VII.52) and (VII.62) gives:

P;i;CS =( P~'I""J~ = 2
Pcs P"

Consequently,

K

I _ , (2);(Po Cl' - Pu

(VII.63)

(VI 1.64)

For normally consolidated conditions Equation (VII.70) reduces to:

(l + 2KNC ) (I-.':-)(B-I)
S" = 0-;,; g(e) cose 3 0 e A (VII.71)

Combining Equations (VII.50), (VII.60), (VII.61), (VII.62) and (VII.64) gives
the desired expression for S" :

S" = J"" cose

= OCR o-~ gee) cose(1+2K,;"C) (I + 8 2 )[ 2(1+2K,~)C) J1
" 6 (l+2K,~()OCR(I+B2)

(VII.65)



8. Advanced constitutive models

8.1 . Synopsis
In Chapter 7 simple elasto-plastic constitutive models of soil behaviour were
considered. Although these models are restricted in their ability to reproduce real
soil behaviour, they form the basis ofclassical soil mechanics theory. For example,
most foundation and earth pressure calculations rely on either the Tresca or Mohr­
Coulomb failure criteria. In this chapter a few of the more advanced soil models
that are currently available are considered. These models are so complex that they
must be combined with numerical analysis if they are to be used to investigate
boundary value problems. Modelling the limited tensile capacity of soils is
considered first and a constitutive model based on the framework of elasto­
plasticity is presented. Extension of the elasto-plasticity theory presented in
Chapter 6, to enable this model to be combined with other elasto-plastic
constitutive models and incorporated into finite element analysis, is then presented.
As an example ofa model with multiple yield and plastic potential surfaces Lade' s
double yield surface model is described. The chapter concludes by describing the
basic concepts of multi-surface kinematic 'bubble' models and bounding surface
plasticity models. The anisotropic MIT-E3 model is briefly described as an
example of the bounding surface plasticity model. The objective ofthe chapter is
to present an overview of these more complex models, rather than an in depth
description. This should give the reader an insight into the current state of the art
concerning constitutive modelling and of the direction of possible future
developments.

8.2 Introduction
As noted in Chapter 4, geotechnical materials exhibit irreversible behaviour, yield
phenomena and shear induced dilatancy. These features strongly suggest that
plasticity theory should be an appropriate framework for the description of the
behaviour of soil. This framework was presented in Chapter 6 and some simple
elasto-plastic models were presented in Chapter 7. While these simple models are
an improvement over linear and nonlinear elastic models, they cannot reproduce
all the important facets of real soil behaviour. To improve matters, more complex
elasto-plastic constitutive models are needed. Some of these advanced models are
reviewed in this chapter.
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As most geotechnical materials cannot sustain large tensile stresses, the
problem of modelling them as a material with limited tensile capacity often arises
in practice. For example, if a Tresca or a modified Cam clay model is adopted to
represent soil behaviour, unrealistic tensile stresses can occur. Several options are
available to correct for this deficiency. In this chapter some of these are described
and a model based on elasto-plasticity is presented, which can be combined with
any other constitutive model to ensure the soil can only sustain a predetermined
amount of tension. This introduces the problem of dealing with two yield and
plastic potential surfaces which are simultaneously active. Consequently, the
theory presented in Chapter 6 is extended to accommodate such behaviour for use
in finite element analysis.

Having developed a theory for multiple yield surface models, Lade's double
yield surface model is described. As noted in Volume 2 of this book, this model is
useful for representing the behaviour of fill material. The chapter concludes by
describing the basic framework for multi-surface kinematic 'bubble' models and
bounding surface plasticity models. As an example ofthe latter, a brief description
of the versatile MIT-E3 model is given. This model is highly complex, being able
to simulate both inherent and induced anisotropy. Currently this model is used for
research, but it does indicate what the future may hold.

All the models described in this chapter and in Chapter 7 are implemented in
the computer code ICFEP (Imperial College Finite Element Program) and are used
in examples presented subsequently in this volume and in Volume 2 of this book.

8.3 Modelling of soil as a limited tension material
8.3.1 Introduction
The structural nature of soil material is such that it can only sustain very little or
no tensile stresses, when compared to its capacity to sustain compressive stresses.
The same phenomena can also be observed with a fissured or jointed rock mass at
its various degrees of weathering. An appropriate constitutive model for such a
material should therefore not permit the soils tensile strength to be exceeded. It
should also control the way tensile cracks initiate and then develop.

To date, various approaches for dealing with a limited tension material in
numerical analysis exist. These include use ofan anisotropic stiffness (Zienkiewicz
and Cheng (1967)) and the stress transfer method (Zienkiewicz et al. (1968)). Both
these approaches have shortcomings (Nyaoro (1989)).

Three basic approaches can also be identified for dealing with the rotation of
the stress state upon tensile crack formation: (i) changing the anisotropic material
axes (Cope et al. (1980)); (ii) allowing additional cracks to form (De Borst and
Nauta (1984), (1985)) when rotation of the principal axis of tensile stress has
exceeded a certain threshold angle, say 30° to 45°; (iii) assuming that upon
formation of a second crack all stiffness at the respective point is lost (Nilson
(1982)). All three methods can be shown to have serious drawbacks when applied
to soil behaviour (Nyaoro (1989)).
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a) Tensile yield surface in principal stress space b) Shape oftensile yield surface in deviatoric plane

Figure 8.1: Tensile yield surface

(8.2)

(J~t
e= -300

e=+30 0

aF =_]
ap'

The intersection of this cone with a deviatoric plane produces the triangle
shown in Figure 8.1 b. As with the Tresca or Mohr-Coulomb yield surfaces, care
has to be taken at the corners of this yield surface because these correspond to
singularities, see Nyaoro (1989).

The stress derivatives of the yield function required to construct the elasto­
plastic constitutive matrix can be obtained from Equation (7.21), together with:

aF =_~ cos(B- 211:) (83)
aB.J3 3 .

In the above equations effective stresses are used and therefore it is effective
principal stresses that are being checked against the tensile strength. The model
could equally well be formulated in terms of total stresses.

Equation (8.2) defines a yield surface along which the stress state can flow
during tensile fracture. Such an approach enables the tensile crack to continuously
rotate if it so wishes, and therefore overcomes the problem of setting threshold
values of crack rotation. This yield surface plots as a triangular cone in principal
effective stress space, see Figure 8.la.

The yield function can then be written as:

2J. 211:
F( {O"'},{k}) = 7;, - p' - .J3 sm(B- 3) = 0

It therefore appears that there is scope for improvement in the modelling of
tensile failure. In this respect a realistic model of tensile fracturing should:

Allow for free rotation of the crack orientation;
Differentiate between the behaviour of closed pre-cracked surfaces and open
cracks;
Differentiate between the modes of straining associated with tensile cracking
and that of the intact material;
Accommodate elements within the material which simultaneously undergo
tensile and shear failure.

To the Authors' knowledge a constitutive model which satisfies all ofthe above
facets does not currently exist. However, a model developed at Imperial College
by Nyaoro (] 989) satisfies all but the second item above and provides considerable
improvement over the alternative approaches. This constitutive model, which is
based on elasto-plastic theory, allows for crack formation and subsequent rotation
in a systematic manner. It can be used in conjunction with any other material
model which describes the shear behaviour of the soil. For example, it can be used
with simple elastic, elasto-plastic (e.g. Mohr-Coulomb), or critical state (e.g.
modified Cam clay) models. The main features of this limited tension model are
presented below.

8.3.2 Model formulation
As noted in Chapter 6, if soil behaviour is elasto-plastic, the incremental
constitutive behaviour takes the form {~(T} = [Dep]{~e}. The elasto-plastic
constitutive matrix, [Dep

], is evaluated from the elastic matrix, [DJ, the stress
derivatives ofthe yield and plastic potential functions and the hardening/softening
laws, see Equation (6.16).

The constitutive behaviour for tensile fracturing has been developed within this
framework. The model, in its current form, is assumed to be perfectly plastic and
therefore does not have a hardening/softening law. However, there is no reason
why such a law could not be included. In fact, such a law would be desirable when
modelling soils with a finite tensile strength, because this strength must drop
rapidly (instantaneously) to zero when a crack opens. In subsequent sections the
yield and plastic potential functions are first presented, followed by a discussion
on how the model should be implemented.

8.3.2.1 Yield surface
Tensile cracking occurs ifthe minor principal stress, 0"3', equals the tensile strength,
To, (a negative quantity) of the soil, see Equation (5.4):

(8.4)

, ,2J. (B 211:) T
0"3 = P + r:: sm - - = 0

. -.;3 3
(8.1 )

8.3.2.2 Plastic potential
In this mode] crack strains are simulated by assuming that they are plastic and
therefore given by (see Equation (6.9)):

{Mcrack} = {~£P} = A{ ap({~;:{m})}
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p'

Elastic Domain

Limited tension
surface

Figure 8.3: Combination of limited
tension and plastic shear models of

soil behaviour

the two yield curves (i.e. along path J

'cd'). Once it reaches the intersection,
two possibilities arise. Firstly, the
stress path may move onto the shear
yield surface in the direction' db', in
which case behaviour is controlled by
the shear model. Alternatively, the
boundary conditions and material
behaviour might constrain the stress
state to remain at the intersection of
the two yield surfaces, in which case
both shear and limited tension models
are active simultaneously. In the latter
case, the theory given in Section 6.13
must be extended to accommodate
two yield and plastic potential
surfaces which are simultaneously active. Such an extension is presented in the
next section ofthis chapter. A similar choice is available for a stress path that first
reaches the shear yield surface. It can either remain on this surface, or it can move
towards the intersection and then onto the limited tension yield surface, or it can
reach the intersection and stay there. The nature of the two yield models and the
boundary conditions of the problem determine which option is taken.

8.4 Formulation of the elasto-plastic constitutive matrix
when two yield surfaces are simultaneously active

In Section 6.13 the relationship between incremental stresses and incremental
strains, when soil behaviour is governed by an elasto-plastic constitutive model
with a single yield surface, was derived. It was shown that such a relationship
could be written as:

(8.5)

Double crack:

Single crack:

{
ap({CT'},{m})} = ap({CT'},{m}) {ap '}+ ap({CT'},{m}) { aJ}

aa' ap' aa' aJ aa'

+ ap({CT'},{m}) { ae }
ae aa'

where A is a scalar multiplier and P({u'},{m}) is the plastic potential function
associated with tensile yielding. Evaluation of the plastic strains from Equation
(8.4) requires the stress derivatives of the plastic potential function. These can be
written as:

The above derivatives can be
determined if either an expression for er:)

.'" d&n
P({u'},{m}) is given, or,
alternatively, if its differentials with
respect to p', J and e are specified
directly. The latter alternative was
adopted by Nyaoro (1989) who er'

determined the differentials for the " 3

situations where one or two cracks
were operational, see Figure 8.2.
These correspond to the situations
where either one or two principal
stresses reach the tensile strength.

Although elegant, the approach
adopted by Nyaoro (1989) is Figure 8.2: Tensile crack orientation
unnecessary. A much simpler
approach, which results in exactly the same crack strains, is to assume associated
flow conditions and adopt the yield function given by Equation (8.2) as the plastic
potential. Equations (8.3), (8.4) and (8.5), along with stress derivatives given in
Appendix VII. 1, can then be used to calculate crack strains.

where [Del'] is the elasto-plastic constitutive matrix which is a function of the
elastic matrix [D], the stress differentials ofthe yield and plastic potential functions
and the hardening law, see Equation (6.16). In this section this theory is extended
to obtain an expression for the [Del'] matrix for elasto-plastic behaviour involving
two yield surfaces which are acting simultaneously.

As before, the incremental total strains, {~l'}, are split into elastic, {~l'e}, and
plastic, {~l'P}, components. In addition, the plastic component is subdivided into
plastic strains associated with each of the two yield surfaces, {~l'pl} and {~l'p2}.

This gives:

8.3.2.3 Finite element implementation
The above limited tension model can be combined with any other constitutive
model. For example, it could be used with the Mohr-Coulomb or Cam clay models.
In such cases the limited tension yield surface forms only part of a bounding
surface of elastic stress states. An example is given in Figure 8.3 where both a
plastic shear yield curve and a limited tension yield curve are shown. Ifan element
of soil has a stress state represented by point 'a' it is elastic, because it is beneath
both yield curves. If a stress increment is applied such that the stress state moves
in the direction' ab', the shear yield surface is met and elasto-plastic behaviour is
controlled by this surface and its associated plastic potential and hardening law.
Alternatively, if the direction of the stress path is 'ac', then the limited tension
yield surface is met and behaviour is controlled by this model. During fmther
straining the stress path may follow the limited tension curve to the intersection of

(8.6)

(8.7)
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(8.23)

(8.22)

(8.18)

(8.19)

(8.20)

(8.21)

(8.24)

(8.25)

(8.26)

(8.28)

(8.27)

(8.29)

llF2 = {~;} T [D]{ll e} - A I { ~;f[D]{ :;.} - A 2 { ~;f[D]{ ~;} - A l A2 = 0

(8.17)
where:

A =__1 {3F; }{llk }
I Al 3kl I

A =__l_{ 3F; }{ilk }
2 A

2
3k

2
2

Equations (8.16) and (8.17) can be written as:

A]L]] + A 2 L]2 = 1;

A]L2 ] + A 2 L 22 =~
where:

L1I =g;f [D] g;.} +A I

L22 ={~;f [D] g;} +A2

Ll2 =g;f [D] g;}
L2] ={~;r [D] g;}
T; =g;r [D] {lle}

0- =g;r [D] {ll e}

Equations (8.19) and (8.20) are two simultaneous equations with the two
unknowns Al and A 2 • Solution of these equations gives A] and A 2 as:

[Dep]=[D]_[D][{3~}{b}T +{3~}{b }TJ[D]n 3cy] 3cy 2

A2 = (LII 1; - L211;)/(LIIL22 - Ll2 L21 )

Substituting these two equations into Equation (8.13) gives [Dep] as:

where:

(8.9)

(8.8)

(8.10)

(8.11 )

(8.12)

(8.15)

(8.14)

{il c"1} =AI{ 3F;({i~{ml})}

{il EI'2} = A
2

{ 3P2 ( {i:}m2 })}

or alternatively:

The incremental plastic strains, {ilepl } and {ileP2 }, are related to the plastic
potential functions, PI({u},{mJ) and P2({u},{m2}), associated with each of the
yield surfaces via the respective flow rules. Consequently, they may be written as:

{il se} = [Dr l {il o-}

Combining Equations (8.7) and (8.8) gives:

{il o-} = [D] ({il e} - {il ePI
} - {il eP2

})

The incremental stresses {ilu} are related to the incremental elastic strains
{ill"} by the elastic constitutive matrix, [D], in the form:

A {3F;}T[D]{3~}_A {3F;}T[D]{3~}_A A =0
I 30- 30- 2 30- 30- I I

(8.16)

where AI and A 2 are scalars. For presentation purposes, the plastic potential
functions are written simply as PI and P2 in the following equations. Substituting
Equations (8.11) and (8.12) into (8.10) gives:

{ll o-} = [D]{ll e} - AI[D]g;.}-AJD]{~;} (8.13)

When the soil is plastic and both yield surfaces are active, the stress state must
satisfy both yield functions, i.e. FI({u},{kl})=O and Fi{u},{k2})=0. This
consistency condition gives ilFI ( {u}, {k l }) = ilF2( {u}, {k2 }) = 0, which, on using
the chain rule of differentiation, gives (note: the yield functions are simply written
as F I and F 2 in the subsequent text):

Substituting Equation (8.13) into Equations (8.14) and (8.15) yields:
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cr'I

p'
a)

Figure 8.5: Failure criterion

(8.31)

E= NPa[( 3p'1
2

+ 6(1 + j.!.) (_£Yj'" (8.30)Pa) (1-2j.!.) pJ
where Il is Poisson's ratio, Po is atmospheric pressure and N and cv are material
constants.

8.5.3 Elastic behaviour
The purely elastic response (i.e. zone 1) is described by isotropic elasticity and
therefore requires two independent elastic parameters. A stress dependent Young's
modulus, E, and a constant Poisson's ratio, Il, are adopted. In some of the earlier
versions of this model the choice of expression for E was non-conservative, with
the result that energy could be extracted from certain loading cycles (Zytinski et
al. (1978». Although in practice this may not be important, Lade and Nelson
(1987) derived an alternative expression for Young's modulus from theoretical
considerations based on the principle of conservation of energy. The resulting
expression is:

(i.e. into zone 1 in Figure 8.4b), behaviour is nonlinear elastic. Ifdirected into zone
2, behaviour is elasto-plastic, with the cap yield surface active. As this surface is
work hardening, it expands. The conical yield surface is dormant and therefore
does not move. If the stress path is directed into zone 3, both yield surfaces are
activated simultaneously. They both expand. Ifthe stress path is directed into zone
4, then the conical yield surface is activated and it expands/contracts. The cap
surface is dormant and remains fixed in space.

8.5.4 Failure criterion
The failure criterion has a curved J

shape in J-p' space, see Figure 8.5a,
and a rounded triangular shape in the
deviatoric plane, see Figure 8.5b. It is
expressed by the following equation:

where m and 1]1 are material constants.
The apex angle and the curvature of the failure surface increase with values of 1] I

and m respectively. For m = 0 the failure surface is straight in J-p' space. The
stress invariant 13 is given as:

b)

p'

_Cap yield
surface

a)

8.5.2 Overview of model
The model involves two work
hardening/softening yield surfaces, J

called the conical and cap yield
surfaces, see Figure 8.4. These
surfaces enclose the elastic domain. If
a soil is normally consolidated, it is
plastic and its state of stress is on both
yield surfaces, for example point 'a'
in Figure 8.4a. Ifit is then sheared, its
behaviour depends on the direction of
the stress path. If the stress path is Figure 8.4: Yield surfaces for Lade's
directed below both yield surfaces double hardening model

= L? {3F;} _L? { 3F2
}

_2 30- L 30-
=L {3F2 }_L {3F;}

II 30- 21 30-
As before, the values ofAl andA2 depend on the type ofplasticity, e.g. perfect,

strain hardening/softening, or work hardening/softening plasticity, see Section
6.13. Equation (8.29) results in a non-symmetric constitutive matrix ifeither ofthe
yield surfaces involves non-associated flow. Following a similar approach to that
presented above, it is a simple matter to extend the theory to deal with elasto­
plastic behaviour involving more than two yield surfaces which are active
simultaneously.

8.5 lade's double hardening model
8.5.1 Introduction
As an example of a constitutive model that involves two yield surfaces, Lade's
double hardening model (Lade (1977» is briefly described. This model is based on
concepts from nonlinear elasticity and isotropic work hardening/softening
plasticity theories. Although the model is applicable to general three dimensional
stress conditions, the input parameters can all be derived entirely from the results
ofstandard laboratory tests. This model is appropriate for simulating the behaviour
of granular soils.

Lade's double hardening model has been used extensively at Imperial College
for modelling the behaviour offill materials used in embankment construction. The
model's implementation into finite element analysis is not straight forward and is
described in detail by Kovacevi6 (1994). Only a brief overview of the model is
given in this chapter. Examples of the use of the model are given in Volume 2 of
this book.
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8.5.5 Conical yield function
As noted above, the plastic expansive strains, {~epl}, are governed by a conical
yield surface. Like the failure surface, it has curved meridians in J-p' space and a
smoothly rounded triangular cross-section in the deviatoric plane, see Figure 8.5.
It takes a very similar form to Equation (8.31):

F;({d},{kt})=27(~~3 -1J(~'r -Ht =0 (8.32)

where HI is work hardening/softening parameter which defines the size of the
surface. At failure HI = tll .
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work, while W;'IP is the accumulated plastic work associated with the conical yield
surface at peak strength.

8.5.8 Cap yield function
The yield surface corresponding to the plastic collapse strains, {~eP2}, forms a cap
on the open end ofthe conical yield surface, as shown in Figure 8.4. This cap yield
surface is shaped as a sphere, with its centre at the origin of principal stress space.
It is defined by the following equation:

(8.35)

where:
8.5.6 Conical plastic potential function
The plastic potential associated with the ai,Acj

conical yield surface (see Figure 8.6) takes
the form:

~((d), (m,}) ~ 27p' -[27 +{i;J}
(8.33)

where:

(

(J"' J~rh = pHI + R _3 + t
Pa

Plastic expansive
strain increment

12 = -((J";(J"~ + (J"~(J"~ + (J"~(J"{)

= J2 _ 3p'2

and H 2 is a work hardening parameter which defines the size of the surface.

8.5.9 Cap plastic potential function
The plastic potential function is obtained by assuming associated flow conditions,
therefore Pi {u'}, {m2}) = Fi {u'}, {k2}), where Fi {u'}, {k2}) is given by Equation
(8.35).

8.5.10 Cap hardening law
The work hardening parameter H 2 in Equation (8.35) is given by:

and p, Rand tare dimensionless parameters.
The flow rule for this part of the model is
therefore non-associated.

Figure 8.6: Yield and plastic
potential surfaces for plastic

'expansive'strains

(8.36)

a, /3, C and I are material parameters and {~epl} are the incremental plastic strains
associated with the conical yield surface. ~W;,t is the incremental plastic expansive

8.5.7 Conical hardening law
The work hardening parameter, Ht, in Equation (8.32) is given by:

I

HI = 17t[r;e(t-n]" ; q ~ 1

where:
c; = I(~WpI /WpIP )

~W;'I = {o}T {~d'I}

W;,lp = C Pa ((J"~ / Pc')!

q = a +P( (J"~ / Pa), q ~ 1

(8.34)

where C and pare dimensionless material parameters, and W;'2 is the accumulated
plastic work associated with the cap yield surface and is given by:

W;'2 = I(~W;'2) = I ({a'} T {L'. &P2})

8.5.11 Comments
A schematic diagram of the yielding process with both yield surfaces active is
shown for the triaxial plane in Figure 8.7, where the plastic strain increment
vectors are superimposed on the stress space. The total plastic strain increment is
calculated as the vector sum ofthe two components (={~e',t }+{~eP2}). In order to
obtain the total strain increment for the stress change from point A to point B, the
elastic strain component should be added (see Equation (8.7)). It is worth noting
that yielding resulting from outward movement of the cap does not result in
eventual failure. Failure is controlled entirely by the conical yield surface.
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Figure 8.8: Schematic illustration of
the bounding surface

8.6.2 Bounding surface plasticity
A bounding surface (see Figure 8.8) is defined in a similar way to that of a
conventional yield surface:

p'

(8.37)

Bounding surface
-- F({cr'},{k})=O
First yield surface

J

F( {o-'}, {k}) = 0

A plastic potential and a hardening/
softening rule are associated with this
surface. For a soil element with a
stress state on the bounding surface
(i.e. ff' in Figure 8.8), the bounding
surface acts in the same manner as a
conventional yield surface. For
example, if the soil element is
unloaded such that the stress state
moves inside the bounding surface,
purely elastic behaviour occurs.
Alternatively, ifthe element is loaded,
it remains on the bounding surface
and its elasto-plastic behaviour is
controlled by the bounding surface
(acting as a conventional yield
surface), the plastic potential, the
hardening/softening rule and the
elastic parameters.

If, on the other hand, the stress state ofthe soil element lies inside the bounding
surface, i.e. point CIo' in Figure 8.8, due to, for example, some previous history of
loading followed by unloading, the behaviour on subsequent straining departs from
that associated with classical elasto-plasticity, which would predict purely elastic
behaviour both for loading and unloading. In the bounding surface framework,
while elastic behaviour occurs if the soil element is unloaded, elasto-plastic
behaviour occurs on loading. To quantify the elasto-plastic behaviour on loading
requires the gradients of the yield function (aF({u'},{k})/Bo"') and the plastic
potential function (ap( {u'},{m} )/au') and a hardening modulus A (see Equation
(6.16)). In general, these quantities are related to those associated with the
bounding surface using mapping rules, which are dependent on the proximity of
the current stress state to the bounding surface.

Consider the situation in which a soil sample is subjected to loading and
unloading such that its current stress state corresponds to point CIo' in Figure 8.8.
Ifthe soil element is now loaded, it behaves elasto-plastically. Point CIo ' is therefore
associated with a change from elastic to elasto-plastic behaviour and is defined as
the most recent 'first yield point'. A 'first yield surface', which has a similar shape
to the bounding surface, but scaled down to pass through the current stress state
CIo ', is also established. In fact, this surface is used in the same way as a
conventional yield surface, to distinguish between loading and unloading when the

Figure 8. 7: Yielding
process with both yield

surfaces activated

Total plastic
strain increment

8.6 Bounding surface formulation of soil plasticity

8.6.1 Introduction
As discussed in Chapter 6 and used in Chapter 7, a conventional yield surface
separates elastic behaviour (i.e. stress states within the yield surface) from elasto­
plastic behaviour (i.e. stress states on the yield surface). Consequently, for stress
paths remaining within the yield surface only recoverable elastic straining occurs.
In reality, soils often exhibit non-recoverable behaviour on unloading and
reloading. For example, volumetric strains and pore water pressures accumulate
during drained and undrained cyclic deviatoric loading respectively. As such
loading moves the stress path below the yield surface, most conventional elasto­
plastic models are unable to recover the observed soil behaviour. In order to
overcome such deficiencies further development of the elasto-plastic framework

is necessary.
One such development is the introduction of the concept of bounding surface

plasticity (Dafalias (1975), Krieg (1975), Dafalias and Popov (1976)). In this
approach a bounding surface is defined. In many respects this surface resembles
a conventional yield surface, however, plastic straining is allowed for stress states
within the surface if loading occurs. The magnitude of this plastic straining is a
function of behaviour defined for stress states on the bounding surface and of the
proximity of the current stress state to the bounding surface.

A total offourteen parameters are required to characterise the behaviour ofthe
model. Three ofthese parameters are associated with the elastic response (N, CJJ and
/1); two are required for the plastic collapse strain component (C and p); and nine
are required for the plastic expansive strain component (1]1 , m, p, R, t, (X,j3, P and
!). Derivatives of the yield and plastic potential functions, necessary for the
construction of the elasto-plastic constitutive matrix in Equation (8.29), are given

in Appendix VIlLI.



214 / Finite element analysis in geotechnical engineering: Theory

soil element is strained from point (Jo'. As the first yield surface is homeothetic to
the bounding surface, with respect to the origin of stress space, the gradient of the
surface at point (Jo' is the same as the gradient of the bounding surface at the image
point if', see Figure 8.8. If the image point if' is located at the intersection of the
bounding surface with the straight line which passes though the stress state (Jo' and
the origin of stress space 0, as illustrated in Figure 8.8, it satisfies the simple radial
rule. The corollary is that this rule enables the image point, associated with any
stress state within the bounding surface, to be obtained by constructing a radial line
which passes through the stress point and the origin. Where this line intersects the
bounding surface defines the position of the image point. Other rules have been
used in the literature, but the simple radial rule has been shown to be appropriate
in many cases. A plastic potential, or more conveniently the gradients of a plastic
potential, apo( {(Jo'}, {moD/a(J', and a plastic hardening modulus, Ao' are defined
for the first yield point (Jo' and provide sufficient information to enable the elasto­
plastic behaviour to be evaluated on first loading from point (Jo'. Ifloading persists,
for example towards the image point if', as indicated in Figure 8.8, elasto-plastic
behaviour continues. To evaluate this behaviour again requires values ofthe yield
and plastic potential function gradients and the plastic hardening modulus A. For
the situation shown in Figure 8.8, where the stress state moves from (Jo' to (J', a
current load surface is defined, which passes through (J'. This surface is again
homeothetic to the bounding surface with respect to the origin. It is used in the
same way as a conventional yield surface to establish whether subsequent stress
changes cause loading or unloading. If loading occurs, it is also used as a yield
surface to evaluate aF({(J'},{k})/a(J'. It should, however, be noted that these
gradients are the same as those on the bounding surface at the image point if'. The
gradients of the plastic potential, ape {(J'}, {m} )la(J', and the plastic hardening
modulus, A, are obtained by interpolation between the equivalent values on the first
yield surface (i.e. associated with point (Jo') and the bounding surface (i.e. at the
image point if '), using scalar mapping functions which depend on the relative
position of the current load surface with respect to the first yield and bounding
surfaces. Ifloading continues, the above procedure is repeated until the stress state
reaches the bounding surface. If unloading occurs, behaviour becomes elastic. If
subsequently reloading occurs, a new first yield point and first yield surface are
established at the new reversal point.

During elasto-plastic behaviour with the stress state below the bounding
surface, the size and orientation of the bounding surface can change. This arises if
the hardening/softening parameters {k}, associated with the bounding surface
(8.37), are dependent on plastic strains.

In summary, the essential ingredients of a bounding surface model are the
definition ofthe bounding surface itself, the gradients ofthe plastic potential both
on the bounding and first yield surfaces, the plastic hardening modulus on the
bounding and first yield surfaces and the mapping functions which define how the
plastic potential gradients and the hardening modulus change as loading continues
from the first yield surface towards the bounding surface.
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8.7 MIT soil models
8.7.1 Introduction
As an example of a model based on the bounding surface plasticity concept, a
model developed at the Massachusetts Institute ofTechnology (MIT) is presented.
The model, named as MIT-E3, was developed by Whittle (1987) to describe the
behaviour of overconsolidated clays. This model evolved from MIT-El, a model
developed by Kavvadas (1982) for normally consolidated clays. Both models are
based on modified Cam clay (Roscoe and Burland (1968)). However, several
extension have been made to the basic critical state framework to enable the
representation of certain features of soil behaviour not realised by modified Cam
clay. The key features of MIT-El are an anisotropic yield surface, kinematic
plasticity and significant strain softening behaviour under undrained conditions.
The two additional features incorporated into MIT-E3 are small strain nonlinear
elasticity using a closed loop hysteretic stress-strain formulation, and bounding
surface plasticity, wherein plastic straining occurs within the conventionally
defined yield locus. Whittle (1993) demonstrated the ability of MIT-E3 to
accurately represent the behaviour of three different clays when subjected to a
variety of loading paths.

The constitutive laws for MIT-E3 were first published in Whittle (1987) and
were subsequently presented in Whittle (1991, 1993) and Hashash (1992). There
are differences between the equations shown in these publications. These
differences are described in Ganendra (1993) and Ganendra and Potts (1995) and
the correct form of each equation is disclosed. There are also certain ambiguities
and inaccuracies in the description ofMIT-E3 in all four publications. These are
also highlighted by Ganendra (1993) and Ganendra and Potts (1995) and either
corrected or explained in a clear, well defined manner.

8.7.2 Transformed variables
For a constitutive model to be able to reproduce anisotropic soil behaviour (i.e. a
different response when loaded in different directions), formulation in terms of
stress and strain invariants has to be abandoned. The use of invariants inevitably
leads to an isotropic formulation, which is what most of the currently existing
models assume. To deal with anisotropy, one has to use all six components of the
stress tensor and six components of the strain tensor, or some meaningful
combination of these components.

The constitutive laws for the MIT-E3 model are expressed in terms of
transformed variables, see Table 8.1. The transformed variables for any quantity
(e.g. stresses, strains) comprise a linear combination of the tensorial measures of
the quantity. They are analogous to their tensorial counterparts, since there is a
complete interchangeability between these two forms ofrepresenting any quantity.
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where Ko is the initial slope of the swelling
line in v-lnp' space after a load reversal and ~

"0

is a material property; t5 is a state variable ~
which is a measure of the difference between a)
the current stress state (P', s) and the stresses
at the load reversal point (p're" srev), and is p.' p'

B Inp' A
given by:

L
5 = Cn(lnX + OJX,r- j (8.39) Q-

with C, nand OJ being material properties.
Vector s = {s;}, i = 1, ... ,5, is the deviatoric 0

".g
stress vector expressed using transformed I-<

"0

variables, see Table 8.1. X and X, are state ~
variables defined as:

b)

where l'/, = s/p' and l'//ev = s/evlp"ev.
A constant Poisson's ratio (KIG constant) is used to describe the elastic shear

modulus, G. Thus there is no coupled volumetric/shear behaviour in the hysteretic
formulation. Another important feature of this formulation is that the hysteretic
behaviour is only a function of the last load reversal point and maintains no
memory of any previous loading history. As only two independent elastic
parameters K and G are used, the elastic part of the model is isotropic. It is the
plastic component of the model which simulates anisotropic behaviour.

It is important to emphasise, from the above formulation, that in the MIT-E3
model K is a variable and should be distinguished from the material property Ko :

where t5 depends on the last reversal point.
Whittle (1987) identified the load reversal point using a scalar strain amplitude

parameter, X, which is a measure of the strain history relative to the most recent
load reversal point. There are two definitions for X, depending on whether the
sample is in a drained or undrained condition:

Effective
Strain

Yield surface Plastic flow
Anisotropy

stress gradient direction

(P', s) (e, E) (Q, Q) (P, P) ( 1, b)

p'= e= Q= P=
(j~ + 0".:1 + (j~ Qx + Qy +Qz Px+Pv+~

1
E:x + E:y + E:z

3

s] = E]= Qj= Pj = h] =
20"_~ - (J"~ - 0-; 2E:y - E:x - E:z 2Qv - Qx - Qz 2Pv - Px - ~ 2bv - b, -bz

J6 J6 J6 J6 J6
s = E = Qz= Pz = h2 =2 2

20-; - o-~ 2E:z - E:x 2Qz - Qx 2~ - Px 2bz - b,

J2 J2 J2 J2 J2

83 = J2o-xy E3 = J2E:XY Q3 = J2QXY P3 = J2PXY b3 =J2 bxy

84 = J2o-yZ E4 = J2E:yZ Q4 = J2QyZ P4 = J2pvz b4 = J2 bvz

Ss = J2o-zx Es = J2E:zx Qs = J2Qzx Ps =J2~x bs = J2 bzx
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Table 8. 1: Transformed variables for MIT-E3 model

8.7.3 Hysteretic elasticity
The hysteretic elasticity formulation simulates the strongly nonlinear nature of
overconsolidated clays in an unload-reload cycle. Figure 8.9 illustrates the closed
symmetric hysteresis loop response of a sample which undergoes isotropic
unloading (point A to B) from the virgin consolidation line, VCL, followed by
reloading back to the VCL (B to A). Important characteristics of this response are:

The large initial stiffness and the subsequent drop in stiffness;
The continuous variation of stiffness both from A to B and from B to A;
The abrupt change in stiffness at B, notionally termed a load reversal point;
The absence of irrecoverable strains within a cycle.

The hysteretic formulation of elasticity used to realise these characteristics is
based on Hueckel and Nova (1979) and consists of(i) a criterion for identifying the
load reversal point and (ii) an expression for the tangential bulk stiffness, which is
a function of the current stress state and the load reversal point.

The MIT-E3 expression for elastic bulk modulus, K, is obtained by modifying
Equation (7040):



p'

x

aa

P = current stress state
C = intersection of bounding surface axis and current it plane
A = tip of the bounding surface
Cl = Centre ofbounding surface ellipsoid

s

5
F = L (s, - p'b,)' - c' p' (2a - p') = 0

i=l
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(8.42)

(8.43)

where E:" is volumetric strain and E={E;} , i=l, ... ,5, is a deviatoric strain vector
(see Table 8.1). A load reversal pointthen occurs when the magnitude ofxreduces,

i.e. 6.X < O.
The above definition ofX lays great emphasis on the volumetric behaviour of

the soil for determining the stress reversal point. However, if the model is
implemented in finite element analysis, it is difficult to check the zero volumetric
strain criterion for undrained behaviour. This is because the two standard methods
of incorporating undrained behaviour, using a bulk fluid compressibility or using
coupled consolidation, always result in a small amount of volumetric strain.
Therefore, Ganendra (1993) decided to implement a more robust expression for X:
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Although this expression does not have the same emphasis on volumetric strain as
Whittle's, the consequences of this discrepancy are thought to be small. Figure 8. 10: Geometry of the bounding surface for MIT-E3

8.7.4 Behaviour on the bounding surface
The bounding surface for the MIT-E3 model is an anisotropic form ofthe elliptical
modified Cam clay yield surface and is defined in generalised stress space using
transformed variables (see Figure 8.10):

where:
C is the ratio of semi-axes of the ellipsoid and is a material property;
a is a scalar variable which defines the size of the bounding surface;
b = {b;}, i=l, ... ,5, is a vector which describes the orientation of the bounding
surface and is variable, see Table 8.1;
s = {Si}, i=l, ... , 5, is the deviatoric stress vector expressed using transformed
variables, see Table 8.1.

The bounding surface is a distorted ellipsoid in six dimensional stress space,
with its longer axis along the direction p, see Figure 8.10. P is a vector which
indicates the principal direction of anisotropy and P= b + 1, where {1} T = {lOO
00 O}. P is initially orientated in the direction of consolidation and rotates as a
function of any subsequent loading, in a manner defined by the model's hardening
laws.

A virgin normally consolidated soil element lies at the tip of the bounding
surface, at a stress state:

(8.46)

(8.45a)

(8.45b)=Q = 2(s; - p'bJ

= Q = 2c2 (p' - a) - 2I(s; - p'bJb;
;=1

aF({d},{k})
ap'

aF({d},{k})
as;

p' =2a

s; = 2ab;

The gradient ofthe bounding surface function is defined by Qand Q = {Q;},
i= 1, ... , 5 (the spherical and deviatoric component respectively), such that:

The criterion for loading and unloading then becomes:

K Q M" + 2GIQ I"!.E; {:2 0 for loading
;=1 < 0 for unloading

Failure criterion
The failure criterion, at which critical state behaviour is exhibited, is defined in
generalised stress space by an anisotropic conical surface with its apex at the origin
and with its axis along the direction (1+(). This surface is labelled the critical state
cone and is illustrated in Figure 8.11. ;; = {(;}, i = 1, ... , 5 is a vector which defmes

(8.44)
5 ??

F = I(s; - p'b,)- - c-p'(2a- p') = 0
;=1
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the anisotropic nature ofthe failure criterion and is a material property. The critical
state cone is described by the equation:

(8.49a)

(8.49b)

where:
the parameter x is a scalar used to satisfy the above Ko criterion and is given by:

A. (I + 2K(~c K KJx =-- - -- (8.50)
A. - K 3(1- K(~c) 2G A.

There are two important properties of the critical state cone:

If the critical state angles of shearing resistance in triaxial extension and
compression are the same, i.e. CPTC' = CPTE', an isotropic Drucker-Prager failure
surface is described.
The direction of anisotropy of the bounding surface, b, does not generally
coincide with the direction ofanisotropy ofthe critical state cone, i;. This is true
even if the critical state condition is reached.

Flow rule
The flow rule satisfies two important criteria:

The model reaches a critical state at the critical state cone, i.e. it has plastic
deviatoric strains, but neither any plastic volumetric strains nor any strain
hardening/softening.
If initially virgin consolidated under Ko conditions such that the stress state is
at the tip of the bounding surface, any subsequent loading under Ko conditions
does not change the nonnally consolidated value of Ko (i.e. K"Hc). Kavvadas
(1982) showed that to satisfy this criterion in general, a non-associated flow
rule is required.

The flow rule is expressed directly in terms of the spherical, P, and deviatoric,
p= {PJ, i=l, ... , 5, components ofthe flow direction (the derivatives ofthe plastic
potential). No equation for the plastic potential, P({ IT'}, {m}), is presented:

and:
Kc,NC is a material property;
A is the slope of the virgin consolidation line and is a material property;
K is the slope of the swelling line, but is a variable (see Equation (8.41));
re is a scalar variable which is a measure of the proximity of the current stress
state to the critical state cone and is graphically illustrated in Figure 8.11. Ire I
denotes the absolute value of re, which is defined as:

(8.47)

(8.48)

Critical
state cone

p'

';1 = t(Cc - Ce)

k =t(Ce+Ce)

Bounding
surface

Critical
state cone

Critical/
state cone

s

O~----7f'--------'

0' = intersection of axis of critical state cone and current n plane

Rc = the projection of vector CP onto the critical state cone
R x = the projection of vector O'C onto the critical state cone

where k is a scalar material property which defines the size of the cone.

Figure 8. 11: Geometry of the bounding surface and the
critical state cone

Due to the restricted stress paths ofmost soil tests and in particular triaxial tests,
it is difficult to ascertain the location and size of the critical state cone in general
stress space for any particular soil. Whittle (1987) suggests that the axis ofthe cone
should lie in triaxial stress space (az-ax = axy = ayz = azx = 0), accordingly (i = 0 for
i* 1. The critical state cone is now described by the following expression:

Parameters (I and k can now be evaluated from the critical state values ofthe angle
of shearing resistance in triaxial compression, CPTC" and triaxial extension, CPTE"
using the equations:

where:
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where A is the plastic scalar multiplier obtained from the standard plasticity
equation (see Equation (6.13)). In this case:

where S/ is a material property which strongly influences the model's strain
softening behaviour. (r) == re if re> 0 ; = 0 if re < O.

A in Equation (8.52) is the elasto-plastic modulus which is specified as:

A==2c
2 1~ K(ap-S/2c2a(rc )x±Qbi ) (8.53)

/l, K 1=1

(8.56)
k- ±(bi -sr

CR 1=1r == __x_ == _--'--'-'- _
x a'R k

x

where:
( is a variable which affects the rate at which the size of the yield surface
changes;
lfIo is a dimensionless material property which controls the rate ofrotation ofthe
yield surface;
rx is a scalar variable which is a measure of the relative orientation of the yield
surface to the critical state cone; (r) == rx if rx > 0 ; == 0 if rx :': O.

The equation for ~ is derived from the consistency condition, see Ganendra
(1993), and is given as:

r; == .l(_l_.:i. -If/o(rx )L(2a - p} (8.55)
a 2c2 p' P a )

The scalar rx is graphically illustrated in Figure 8.11 and is defined as:

The values of rx imply the following:

rx == 1 the axis of the bounding surface coincides with the axis of the critical
state cone ((i == bJ;

0< rx < 1 the axis of the bounding surface lies inside the critical state cone;
rx = 0 the axis of the bounding surface is on the critical state cone;
r x < 0 the axis of the bounding surface is outside the critical state cone.

There are three important properties of Equation (8.54b), which controls the
rate ofrotation of the yield surface:

When the principal axes of stress, s, and anisotropy, b, coincide, there is no
rotation of the yield surface;
In general, as plastic deformation occurs, the principal axes ofanisotropy rotate
towards the principal stress axes;
The principal axes of anisotropy do not rotate outside the critical state cone.

(8.51)

(8.52)

5
KQI'1£" +2G LQ M i

A H
5

A + K Q P +2G L Q P;
i=I

where:

PRc is the vector between P and Rc

CRe is the vector between C and Rc

A ==c 2(2a- p')

B == ±(bi - S)(Si - p'bi )
;=]

C ==p'[e-±(bi-S)(bi-S)]
;=1

D == (B2+ AC)1I2

re == 1 implies that the current stress state is on the axis of the bounding surface;
o< re < 1 implies that the current stress state lies inside the critical state cone;
re == 0 implies that the current stress state is on the critical state cone;
re < 0 implies that the current stress state is outside the critical state cone.

The incremental plastic volumetric and deviatoric strains (!1E:,!' and 6.E('
respectively) are then obtained from the equations:

1'1£,~ == AP

I'1E/' == AP;

Hardening laws
The hardening laws consist oftwo equations: one controlling the change ofthe size
of the bounding surface, !1a., and another controlling the change of its orientation,
!1bi :

(8.57)

l'1a == a r;1'1&;"

I'1b == ()1.- ( - 'b) A P, If/o rx Si p i u&"a

(8.54a)

(8.54b)

8.7.5 Behaviour within the bounding surface
A stress state within the bounding surface represents overconsolidation. The plastic
behaviour at any overconsolidated point R, inside the bounding surface, is linked
to its image point I, on the bounding surface (see Figure 8.12). This image point
is described using a radial mapping rule. The loading condition for plastic strains,
Equation (8.46), is now rewritten as:

1 G 5 QI M {;?: 0 for loading
KQ 1'1.£" +2 L i 1

1=1 < 0 for unloading



(8.61 )

(8.62)

(8.64)

(8.63)

° (2 5 I QI)P = - 2e a re +~ 17, i

_(a- ao)Yg- --
I a
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I Q/ Q/
;=1

IIQIII =
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where:
hand y are material properties;
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These values ofA, P and P, Qand Q, and the current elastic moduli (K and G)
are used in Equations (8.52) and (8.51) to evaluate the plastic scalar multiplier and
the plastic strains respectively. These are then used to calculate the associated
stress change.

When plastic strains occur within the bounding surface, there is some hardening
ofthe bounding surface. To evaluate the amount ofhardening that occurs, a second
set ofplastic strains, labelled as pseudo plastic strains, are calculated. These strains
are calculated from the stress state at the image point, i.e. AI, pI and pI, and QI and
QI, and are substituted into Equations (8.52) and (8.51) to calculate the pseudo
plastic scalar multiplier and pseudo plastic strains respectively. The elastic moduli
used in these calculations are the moduli consistent with the image point, which
means that in Equation (8.38) the value ofp' should be the image point value (6
is unchanged). These pseudo strains are used in Equations (8.54) to evaluate the
changes in the hardening parameters a and b. It should be noted that all the terms
in Equations (8.54) should also be calculated from the stress state at the image
point.

Two important features of this formulation are that:

At first yield aois equal to aOi , thus A tends to ()() and there are no plastic strains;
As the stress state reaches the bounding surface, ao becomes equal to a, the
extra terms associated with bounding plasticity tend towards zero and the
plastic behaviour reverts to the normally consolidated formulation, i.e.
behaviour on the bounding surface.

Thus the bounding plasticity formulation gives a smooth transition from
perfectly hysteretic elastic behaviour at first yield, to normally consolidated
behaviour when the stress state reaches the bounding surface.

p'

(8.60)

2a
2uQ

Figure 8. 12: Geometry of the
bounding surface, load surface and

first yield surface for MIT-E3

p = pI +gIPO

P =p l

A = AI + g2 AO

(8.58)

(8.59)( "!> 1ftM {T 6'1'

a =a e
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The point at which the stress path first invokes plastic yielding, as designated
by Equation (8.57), is called 'the first yield point'. The surface similar in shape to
the bounding surface that passes through this point is called 'the first yield surface'
and its size is given by aOi ' This surface does not change for any subsequent stress
paths which have continuous plastic straining. To evaluate the behaviour of a
yielding sample, a surface, similar in shape to the bounding surface, is fitted
through the current stress state. This surface is called 'the load surface' and its size
is ao, see Figure 8.12. The elasto-plastic modulus, A, and flow directions, P andP,
are defined using equations:

where:
QI is the spherical component of the bounding surface gradient at the image

point;
QI = {Q/}, i = 1, ... , 5, is the deviatoric component of the bounding surface

gradient at the image point.

During purely elastic behaviour, Bounding surface, F

the size of the bounding surface
(dictated by the parameter a) (2a,2ab)

changes as a function of the
volumetric strain, E.:,,:

This equation can be integrated such
that if the change in volumetric
strain is !:J.E.:" , over time increment
!:J.t, and the values ofa at times t and
t+!:J.t are a l and al+!>I, then:

where:

pi and pI = {Pi}, i = 1, ... ,5, are the spherical and deviatoric components of the
flow direction at the image point respectively;
AI is the value of the elasto-plastic modulus at the image point;
pO and AO are variables which are a function of the current stress state and the
image point and are defined below;
gl and g2 are defined below and are scalar mapping functions which describe
the relative position ofthe first yield surface, the load surface and the bounding
surface.
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8.7.6 Comments
The 15 material parameters required to define the MIT-E3 model are summarised
in Table 8.2. Unfortunately, it is not easy to determine the values of all of these
parameters from conventional laboratory tests. Therefore, this model is currently
used mainly in research. However, other constitutive models ofthis type are likely
to be developed in the future, to enable more realistic simulation of observed soil
behaviour. Finite element analyses of boundary value problems with the MIT-E3
model are presented in Volume 2 of this book.

Table 8.2: MIT-E3 material parameters

IParameter IDescription I
Specific volume for a Ko normally consolidated sample at

V 100 p'=lOO kPa

Ko
NC Normally consolidate coefficient of earth pressure at rest

rpTC
,

Critical state angle of shearing resistance in triaxial compression

rpTE
,

Critical state angle of shearing resistance in triaxial extension

c Ratio of the semi-axes of the bounding surface ellipsoid

If! Parameter affecting rotation of bounding surface

A Slope of the VCL in v - lnp' space

Ko Initial slope of the swelling line in v - lnp' space

fJ Poisson's ratio

S, Parameter affecting the degree of strain softening

C Parameter affecting the hysteretic elasticity

n Parameter affecting the hysteretic elasticity

OJ Parameter affecting the hysteretic elasticity

y Parameter affecting the bounding surface plasticity

h Parameter affecting the bounding surface plasticity
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8.8 Bubble models
8.8.1 Introduction
As noted in Section 8.6, conventional elasto-plastic models, which assume elastic
behaviour within the yield surface, have difficulties in simulating the behaviour of
some soils when subjected to cycles of unloading and reloading. To improve the
modelling the concept of bounding surface plasticity was introduced and an
example of such a constitutive model (i.e. MIT-E3) was described in Section 8.7.
While such models are an improvement over conventional elasto-plastic models,
they still have some deficiencies. For example, during unloading soil behaviour is
assumed to be elastic and this restricts the degree of coupling between volumetric
and deviatoric component of behaviour.

A way of improving the framework further is to introduce a small kinematic
yield surface (bubble), which moves within the outer bounding surface. Within the
bubble behaviour is elastic, whereas outside the bubble it is elasto-plastic. As the
stresses change within the outer bounding surface, the bubble moves and hence the
term 'kinematic yield surface' . AI-Tabbaa(1987) and AI-Tabbaaand Wood (1989)
developed a model with a single kinematic yield surface, with the conventional
modified Cam clay yield surface acting as a bounding surface. Stallebrass and
Taylor (1997) extended this model, incorporating two nested kinematic yield
surfaces. The additional surface in their model is called a 'history' surface and was
added so that the model could simulate both yield at small strains and the effect of
recent stress history.

8.8.2 Behaviour of a kinematic yield surface
In this section the conceptual framework of bubble models is presented by
considering the behaviour of a model with a single kinematic yield surface. These
concepts are, however, easily extended to deal with models which have multiple
kinematic yield surfaces.

The main componellts of the model are an outer bounding surface and a
kinematic yield surface (bubble), which moves within the outer surface, see Figure
8.l3a. The bubble acts in the same way as a conventional yield surface in the sense
that purely elastic behaviour occurs for stress states which remain within the
bubble. However, if the stress state attempts to cross the perimeter of the bubble,
elasto-plastic behaviour is initiated and the bubble is dragged along the stress path.
This elasto-plastic behaviour is controlled by the bubble acting as yield surface, in
combination with a plastic potential and plastic hardening/softening law associated
with the bubble. Although the bubble moves within the outer bounding surface, it
never crosses it. When the stress state reaches the bounding surface the bubble is
orientated such that it lies completely within the surface. In such a condition the
bounding surface essentially acts as the yield surface and behaviour is controlled
by this surface and its associated plastic potential and plastic hardening/softening
law. In essence, if the stress state is on the bounding surface, the elasto-plastic
behaviour is exactly the same as would be obtained with a conventional elasto-
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Figure 8. 14: Single bubble model

When the soil is yielding, the consistency condition (i.e. dF j = 0) requires that:

and completely within the bounding surface when the stress state approaches the
bounding surface. It is also necessary to provide mapping functions which control
how the plastic modulus changes as the bubble moves. In this respect, it is
important to ensure that as the bubble approaches the bounding surface, this
modulus approaches that associated with the bounding surface.

To clarify the above qualitative description, the single bubble model proposed
by Al-Tabbaa and Wood (1989) is briefly described below.

8.9.1 Bounding surface and bubble
The modified Cam clay model has been described in Chapter 7. In the present
model the elliptical yield surface of the modified Cam clay model is used to
represent the bounding surface. The equation of this surface is written in a slightly
different form to that presented in Chapter 7:

F({(J",},{k})=(pl-~,r + ~2 -Pi2

=0 (8.65)
.I

The inner kinematic yield surface (i.e. bubble) is assumed to have the same
shape as the bounding surface, but to be of a smaller size. The equation for this
surface is:

8.9 AI-Tabbaa and Wood model
This model is fully described by Al-Tabbaa (1987) and Al-Tabbaa and Wood
(1989) and is a simple example of a single bubble model.

where Po' and Ja represent the stress state associated with the centre of the bubble
and R represents the ratio of the size of the bubble to that of the bounding surface,
see Figure 8.14.

p'

p'

a)

b)

f

,,

BUbbi~$--,

Bounding surface
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plastic model, in which the bounding J

surface acts as the yield surface.
The behaviour ofthe model is best

understood by considering the
example shown in Figure 8.13b. In
this example, a soil element is
assumed to be initially Ko normally
consolidated to a stress state
represented by point 'a' in Figure
8.13b. Since the soil element has been
subjected to normal consolidation, its J

behaviour has been controlled by the
bounding surface, and the relative
positions of the bonding surface and
bubble at the end ofconsolidation are
shown in Figure 8.13b. If the soil
element is now unloaded such that it
follows the stress path 'abed', the
sequence of events is as follows. On
first unloading from point 'a' the
stress path moves inside the bubble Figure 8. 13: Conceptual behaviour
and behaviour is elastic, with both the of bubble model
bubble and the bounding surface
remaining stationary in stress space. As the unloading continues, the stress path
traverses the inside of the bubble, promoting further elastic behaviour, until it
reaches the other side of the bubble at point 'b'. With further unloading the
behaviour of the soil element becomes e1asto-plastic. The bubble is now dragged
along the stress path and, because plastic strains are developed, both the bubble and
the bounding surface can change size (not shown in Figure 8.13) if their
hardening/softening laws are related to plastic strains and/or plastic work. After
unloading to point 'd' the relative positions ofthe bubble and bounding surface to
the stress state are as indicated in Figure 8.13b. Ifthe soil element is now reloaded
such that its stress state travels along the stress path 'def, it initially behaves
elastically because the stress path moves inside the bubble. Again, during this
period of elastic behaviour the bubble and bounding surface remain stationary.
With sufficient loading the stress state reaches the other side of the bubble, i.e.
point 'e' on Figure 8.13b, and elasto-plastic behaviour is initiated. Further loading
takes the stress state to point 'f, where the bubble meets the bounding surface.
Any subsequent loading causes the bubble and bounding surface to move together.

To fully define the model, information must be provided for the shape of the
bounding surface and its associated plastic potential and hardening/softening law.
Similar information must also be provided for the bubble. A translation rule,
controlling the movement and relative orientation of the bubble, is also required.
This rule must be carefully defined to ensure that the bubble becomes tangential
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Otherwise, behaviour is elasto-plastic, with the plastic potential assumed to be the
same as the yield function, given by Equation (8.66) (i.e. associated plasticity), and
the following hardening/softening law:

If the stress state is within the bubble, behaviour is governed by the isotropic
elastic constitutive equations, see Chapter 5, with a constant Poisson's ratio, j.1, and
a variable bulk stiffness given by:

K= P~
K

(8.68)

The first part of Equation (8.70) is the change in (Pa', Ja) due to a change in PO',
and the second part is associated with the translation along the vector r. The scalar
quantity T can be obtained by substituting Equation (8.70) into (8.67) and using
(8.66):

(8.71)

(8.72)

(8.73)

(8.74)
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8.9.3 Elasto-plastic behaviour
When the bubble and bounding surface are in contact, the expression for the plastic
strain increments can be obtained using Equation (6.9):

This expression is then generalised for the calculation of plastic strains whenever
they occur, i.e. whether or not the bubble and bounding surface are in contact:

where h is a scalar hardening parameter and, from Equation (8.72), when the
bubble and bounding surface are in contact:

However, the function ho, as written in Equation (8.74), is not completely
appropriate because it falls to zero at several singularity points, implying unlimited
plastic strains. For example, two singularity points exist for pi = Pili (e.g. at the top
and bottom of the bubble), where unlimited plastic shear strains would be
predicted.

Po' p'

(8.69)

(8.70)

>J/'T
BUbbl~c3~

C - current stress state
D - conjugate point with same

outward normal as C

Modified Cam clay
bounding surface

Figure 8. 15: Translation of bubble

dp~ = dCl~

p;, ;1,* -K*

Equations (8.68) and (8.69) differ slightly from the equivalent equations given in
Chapter 7 (i.e. equations 7.40 and 7.38) because AI-Tabbaa and Wood assume that
the virgin consolidation and swelling lines are straight in Inv-Inp', whereas in the
conventional formulation of modified Cam clay these lines are assumed to be
straight in v-Inp' space. Hence, ,.1* and 1/ are different to Aand K.

8.9.2 Movement of bubble
The bubble moves such that it
translates within the outer modified J

Cam clay bounding surface, following
a rule that guarantees that the bubble
and bounding surface can touch at a
common tangent, but never intersect.
This rule is illustrated graphically in
Figure 8.15 and it states that the
centre of the bubble should always
move along a vector r, which joins
the current stress state, C, to its
conjugate point on the bounding
surface, D.

The change in position of the
bubble, when plastic straining occurs, has two components: one is associated with
the translation of the bubble along the vector r, while the other is associated with
the change in size ofthe bubble due to isotropic hardening/softening. This implies
that when the bubble and bounding surface are in contact at the current stress state,
the vector r = 0 and the change in the position of the bubble is entirely due to
expansion/contraction. Thus the general expression for the change of position of
the bubble is:
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where H should be greater than zero.
Based on results of laboratory tests on speswhite kaolin, AI-Tabbaa and Wood

(1989) suggested a function for H in the form:

To overcome this deficiency, the hardening function is rewritten as:

h=h,,+H

( J
'fI

H- I B ,3
-~s- Po

.It" K max

(8.75)

(8.76)
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includes both bounding surface plasticity and hysteretic elasticity. Because of
its complexity and the difficulty in evaluating some of the fifteen input
parameters, it has limited practical application, however, it does indicate how
constitutive models might look like in the future.

5. The concept of kinematic yield surfaces has been presented as a way of
simulating hysteretic soil behaviour within the main bounding surface. Bubble
models, which are based on this concept, have been described and a particular
example presented.

where B is the component of the vector F in the direction of the normal to the
bubble at the current stress state, and /If is an experimentally determined positive
exponent. It should be emphasised that the choice of the function H is not unique
and depends on the type of soil that is being modelled.

8.9.4 Comments
This bubble model requires only 7 material parameters: V], ,1', K*, Mj, R, /If and
Poisson's ratio p. It was originally developed for triaxial stress space, but has been
extended by Stallebrass and Taylor (1997) to general stress space and enhanced to
include a second bubble. This model has been used in finite element analyses of
boundary value problems with limited success.

Appendix VIII. 1 Derivatives for lade's double hardening
model

Equations (8.14) to (8.29) show that the derivatives of the yield and plastic
potential functions, necessary to construct the elasto-plastic stiffness matrix for a
model with two active yield surfaces, are:

aF; a~ aFz apz aF; and aF;
a(]"' , a(]"' ' a(]"' , a(]"' 'ak] akz

In Lade's double hardening model the hardening parameters H] and H z depend
on incremental plastic work, flWpl and flWpz respectively, consequently {k]} =

{fl~}d and {kz} = {fl~)z}. The derivatives ofF] and F z with respect to k] and kz
can therefore be rewritten as:

Noting that fl~)] = {or {fleP ]} (see Equation (8.34)) and flWp2 = {or {flePZ }

(see Equation (8.36)), and substituting Equations (VIILl) into Equations (8.18)
gives:

Consequently, instead of requiring {aF/ak1} and {aF/akz} as listed above, the
derivatives {aH/aWp1 }, {aHz/aWpz }, {ap/au'} and {apz/au'} are needed.

The partial derivatives required to evaluate the elasto-plastic matrix [D"P] in
Equation (8.29) have been derived by Lade and Nelson (1984) and are as follows:

8. 10 Summary
I. Several constitutive models are available for dealing with the limited tensile

capacity of soils. A model based on the theory of elasto-plasticity has been
described in this chapter. This model is extremely flexible, allowing cracks to
form and then rotate. A particular strength of this model is that it can be
combined with other elasto-plastic models which concentrate on simulating
behaviour in compression.

2. The theory for dealing with two yield surfaces which are simultaneously active
has been described in this chapter. This theory could easily be extended to
account for additional active yield surfaces if required.

3. As an example of a double yield surface model, Lade's double hardening
model has been described. This model is particularly good at simulating the
behaviour ofgranular soils. It has two yield surfaces, one controlling expansive
strains and the other controlling collapse strains. Both surfaces are isotropic and
involve work hardening/softening. Elastic behaviour is nonlinear, but isotropic.
The model requires fourteen parameters, however, these can be obtained from
conventional laboratory tests. The model has practical applications.

4. The framework for bounding surface plasticity has been presented and as an
example ofa state of the art constitutive model, the MIT-E3 model has been
briefly described. This model is based on anisotropic elasto-plastic theory and

{~:: }{MI }

{~:: }{Mz}

= _{ aHI }{f..W }aw pi
pi

= _{ aHz }{f..W }aw pZp2

(VIII. I)

(VIII.2)
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Conical yield surface and plastic potential

1
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(VIII. 12)

_{ aHI }{.!!!L} = H; L In[,; e(l-O]{ au~ }aq ad q- Pa ad
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If 0"]' is expressed in terms of stress invariants, see Equation (SA):

, I 2 J . (e 211:)
u] = P +.J3 Sill - 3

Using the chain rule, it can be shown that:

Correction for {13F/13oJ
For the above reasons, the derivative ofthe conical yield function should be written
in the following form:

{ aF; }= Equation (VIII.3) _ {aH] }{~}acy' aq acy'

However, Kovacevi6 (1994) found thatthe above differentials failed to satisfy
the consistency condition, i.e. !1.FI = !1.F2 = O. This occurred when the conical yield
surface, F 1, was active. Inspection ofEquation (8.34), defining the work hardening
law for the conical yield surface, indicates that the hardening parameter is not only
dependent on the plastic work, but also on the stresses. Namely, the parameter q
is dependent on the minimum principal stress, 0"]'.

then:
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Derivatives ofthe stress invariants p', J and eare given in Appendix VII. 1, while:

Cap yield surface and plastic potential
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Correction for (13P/13oJ
Similarly, in deriving the derivatives of the plastic potential PI' Lade and Nelson
(1984) assume that the parameter 112 is a constant. However, according to Equation
(8.33), it also depends on 0"/, so that:

{ a~ } = Equation (VIIIA) + { 8~ }{ 8'h }acy' 8'h 8cy'

where:



Kovacevi6 (1994) found that with these corrections the consistency equations
were always satisfied. The only difficulty he found in implementing the model was
associated with the hardening parameter i;. For low values of i;the model response
to shearing is essentially elastic, but the conical yield surface expands rapidly. To
eliminate numerical difficulties, McCarron and Chen (1988) suggested that the
minimum initial value of i; should be 0.001. For the majority of applications
Kovacevi6 (1994) found this value to be appropriate. However, in some problems
he had to increase this minimum value.

=-~ In[c;e(l-n]

=L

9.1 Synopsis
This chapter describes how the finite element method can be adapted to deal with
the nonlinear constitutive models described in Chapters 5, 7 and 8. Several
strategies are available to do this. All strategies involve applying the boundary
conditions incrementally. In principle, if the solution increments are sufficiently
small all solution strategies should give similar predictions. However, as the
increment size increases, some solution schemes can result in extremely inaccurate
predictions. Three popular solution strategies are described. These are the tangent
stiffness, the visco-plastic and the modified Newton-Raphson schemes. These
schemes are then compared by analysing a range of geotechnical boundary value
problems. It is shown thatthe tangent stiffness and the visco-plastic approaches are
sensitive to increment size and can lead to inaccurate predictions, unless many
small solution increments are adopted. The modified Newton-Raphson scheme is
consistently shown to be both the most robust and most economical. This scheme
can be used with explicit or implicit stress point algorithms. Two such algorithms
are the 'substepping' and 'return' methods. The basic assumptions behind these
methods are described and the associated errors compared. Sufficient information
is given in the chapter to enable the basics of nonlinear finite element analysis to
be understood.

9. Finite element theory for
nonlinear materials

(VIII.l6)

{ :~~} = -(:;J'1}

{aTh} =p
aH1
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{::J
{~~}
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9.2 Introduction
To be able to use the elasto-plastic constitutive models, described in Chapters 5,
7 and 8, to represent soil behaviour in a finite element analysis, the theory, as
described in Chapter 2, must be extended. In Chapter 2 the soil was assumed to be
elastic and the constitutive matrix [D] was therefore constant. If the soil is
nonlinear elastic and/or elasto-plastic, the equivalent constitutive matrix is no
longer constant, but varies with stress and/or strain. It therefore changes during a
finite element analysis. Consequently, a solution strategy is required that can
account for this changing material behaviour. This strategy is a key component of
a nonlinear finite element analysis, as it can strongly influence the accuracy ofthe
results and the computer resources required to obtain them. Several different
solution strategies are described in the literature, however, there does not seem to
be a comparative study to establish their merits for geotechnical analysis. After
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assumed to be constant over each increment and is Applied load, R
calculated using the current stress state at the .. ..
beginning of each increment. This is equivalent to
making a piece-wise linear approximation to the
nonlinear constitutive behaviour. To illustrate the
application ofthis approach, the simple problem of
a uniaxially loaded bar of nonlinear material is
considered, see Figure 9.1. Ifthis bar is loaded, the
true load displacement response is shown in Figure
9.2. Th is might represent the behaviour of a strain
hardening plastic material which has a very small
initial elastic domain.
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9.4.2 Finite element implementation
In the tangent stiffness approach the applied load is split into a sequence of
increments. In Figure 9.2 three increments ofload are shown, ~Rl' ~Rz and ~R3'

The analysis starts with the application of M 1• The incremental global stiffness
matrix [Kc;] 1 for this increment is evaluated based on the unstressed state of the bar
corresponding to point 'a'. For an elasto-plastic material this might be constructed
using the elastic constitutive matrix [DJ. Equation (9.1) is then solved to determine
the nodal displacements {~d} I"G' As the material stiffness is assumed to remain
constant, the load displacement curve follows the straight line 'ab" on Figure 9.2.
In reality, the stiffness ofthe material does not remain constant during this loading
increment and the true solution is represented by the curved path 'ab'. There is
therefore an error in the predicted displacement equal to the distance 'b'b',
however in the tangent stiffness
approach this error is neglected. The
second increment ofload, ~Rz, is then
applied, with the incremental global
stiffness matrix [KGf evaluated using t - - - - - - - -

the stresses and strains appropriate to M 3 -1+ - - - "Kz- !~ cT -

the end of increment 1, i.e. point 'b" M z G
b' I

on Figure 9.2. Solution of Equation -[ - - - b I

(9.1) then gives the nodal I:
displacements {~dr,,(J. The load M 1 I I

I I
displacement curve follows the _ l<-=_---'I_--l__-+- ~

straight path 'b/c" on Figure 9.2. Ad l :Ad z I Ad 3 I
L..> nO L..> nO I L..> nO I

This deviates further from the true ----'1+--1>1+---+
solution, the error in the
displacements now being equal to the
distance 'c/c'. A similar procedure
now occurs when ~R3 is applied. The
stiffness matrix [Kc;] 3 is evaluated

(9.1)

9.3 Nonlinear finite element analysis
As noted in Chapter I, when analysing any boundary value problem four basic
solution requirements need to be satisfied: equilibrium, compatibility, constitutive
behaviour and boundary conditions. Nonlinearity introduced by the constitutive
behaviour causes the governing finite element equations to be reduced to the
following incremental form, see Equation (2.30):
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describing three popular solution strategies, the results of such a study are
presented in this chapter.

The tangent stiffness, visco-plastic, and modified Newton-Raphson (MNR)
schemes are described. The latter approach initially assumes an explicit
'substepping' stress point algorithm. Subsequently, implicit 'return' type
algorithms are discussed and compared with the 'substepping' scheme. The three
solution strategies are then used to analyse idealised drained and undrained triaxial
compression tests, a footing problem, an excavation problem, and a pile problem.
Soil behaviour is represented by a form ofthe strain hardeninglsoftening modified
Cam clay (MCC) constitutive model described in Chapter 7. This model and its
variants have been shown to provide a realistic description of clay behaviour and
have been widely used to analyse geotechnical boundary value problems (Gens and
Potts (1988)).

where [KGY is the incremental global system stiffness matrix, {~d}i"G is the vector
of incremental nodal displacements, {~Rdi is the vector of incremental nodal
forces and i is the increment number. To obtain a solution to a boundary value
problem, the change in boundary conditions is applied in a series of increments and
for each increment Equation (9.1) must be solved. The final solution is obtained
by summing the results of each increment. Due to the nonlinear constitutive
behaviour, the incremental global stiffness matrix [KGY is dependent on the current
stress and strain levels and therefore is not constant, but varies over an increment.
Unless a very large number of small increments are used this variation should be
accounted for. Hence, the solution of Equation (9.1) is not straightforward and
different solution strategies exist. The objective ofall such strategies is the solution
ofEquation (9.1), ensuring satisfaction ofthe four basic requirements listed above.
Three different categories of solution algorithm are considered next.

9.4 Tangent stiffness method
9.4.1 Introduction
The tangent stiffness method, sometimes called the variable stiffness method, is the
simplest solution strategy. This is the method implemented in the computer code
CRISP (Britto and Gunn (1987)), which is widely used in engineering practice.

In this approach, the incremental stiffness matrix [KGY in Equation (9.1) is
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Figure 9.4: Oedometer stress path
predicted by the tangent stiffness

algorithm
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Youngs modulus, E' 10,000 kN/m2

Poisson's ratio, f1 0.2

Cohesion, c' 0.0

Angle of shearing resistance, rp' 30°

Angle of dilation, v 30°

As the angles ofdilation, v, and shearing resistance, rp', are the same, the model
is associated (i.e. P( {(J'}, {m}) = F( {(J'}, {k} )). For this analysis the yield function
given by Equation (7.13) is written in non-dimensional form as:

element is needed. There is no discretisation error, the finite element program is
essentially used only to integrate the constitutive model over the loading path.

Firstly, it is assumed that the soil behaves according to a linear elastic perfectly
plastic Mohr-Coulomb model, see Section 7.5, with properties given in Table 9.1.

Table 9. 1: Properties for Mohr-Coulomb model

It is also assumed that the soil sample has an initial isotropic stress
0"v'=O"h'=50kN/m2 and that loading is always sufficiently slow to ensure drained
conditions.

Figure 9.4 shows the stress path 1,000'r-----------_--,-------_~
in J-p' space predicted by a tangent e'

stiffness analysis in which equal
increments of displacement were

600
applied to the top of the sample. '"
Each increment gave an incremental ~ 400

axial strain !J..e" = 3%. Also shown on
the figure is th,e true solution. This
was obtained by noting that initially
the soil is elastic and that it only
becomes elasto-plastic when it
reaches the Mohr-Coulomb yield
curve. In J-p' space it can be shown
that the elastic stress path is given
by:

Applied uniform displacement
8~ - - - - - - - - - - --,

Figure 9.3: Uniform one dimensional
compression of a sample

9.4.3 Uniform compression of a Mohr-Coulomb soil
To illustrate some of the above deficiencies, drained one dimensional loading of
a soil element (i.e. an ideal
oedometer test) is considered. This is
shown graphically in Figure 9.3.
Lateral movements are restrained and
the soil sample is loaded vertically by
specifying vertical movements along
its top surface. No side friction is
assumed and therefore the soil
experiences uniform stresses and
strains. Consequently, to model this
using finite elements, only a single

using the stresses and strains appropriate to the end of increment 2, i.e. point' c"
on Figure 9.2. The load displacement curve moves to point 'd" and again drifts
further from the true solution. Clearly, the accuracy ofthe solution depends on the
size ofthe load increments. For example, ifthe increment size was reduced so that
more increments were needed to reach the same accumulated load, the tangent
stiffness solution would be nearer to the true solution.

From the above simple example it may be concluded that in order to obtain
accurate solutions to strongly nonlinear problems many small solution increments
are required. The results obtained using this method can drift from the true solution
and the stresses can fail to satisfy the constitutive relations. Thus the basic solution
requirements may not be fulfilled. As shown later in this chapter, the magnitude
of the error is problem dependent and is affected by the degree of material
nonlinearity, the geometry of the problem and the size of the solution increments
used. Unfortunately, in general, it is impossible to predetermine the size ofsolution
increment required to achieve an acceptable error.

The tangent stiffness method can give particularly inaccurate results when soil
behaviour changes from elastic to plastic or vice versa. For instance, if an element
is in an elastic state at the beginning of an increment, it is assumed to behave
elastically over the whole increment. This is incorrect if during the increment the
behaviour becomes plastic and results in an illegal stress state which violates the
constitutive model. Such illegal stress states can also occur for plastic elements if
the increment size used is too large, for example a tensile stress state could be
predicted for a constitutive model which cannot sustain tension. This can be a
major problem with critical state type models, such as modified Cam clay, which
employ a v-logeP' relationship (v = specific volume,p'= mean effective stress, see
Chapter 7), since a tensile value ofP' cannot be accommodated. In that case either
the analysis has to be aborted or the stress state has to be modified in some
arbitrary way, which would cause the solution to violate the equilibrium condition
and the constitutive model.
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As this ratio is first evaluated at point 'c", which is above the Mohr-Coulomb yield
curve, the stress path sets off at the wrong gradient for increment three. This error
remains for all subsequent increments.

The Mohr-Coulomb yield curve is given by Equation (9.2), which, with the
parameters given in Table 9.1 gives:

J = 0.693p' (9.4)

Equating Equations (9.3) and (9.4) gives the stress state at which the stress path
reaches the yield surface. This occurs whenJ= 173kN/m2 andp'=250kN/m2

• Using
Equation (5.8) it can be shown that this occurs when the applied axial strain
e,,=3.6%. Consequently, the true solution follows the path 'abc', where 'ab' is
given by Equation (9.3) and 'bc' is given by Equation (9.4).

Inspection of Figure 9.4 indicates a discrepancy between the tangent stiffness
and the true solution, with the former lying above the latter and indicating a higher
angle of shearing resistance, rp'. The reason for this discrepancy can be explained
as follows.

For the first increment of loading the material constitutive matrix is assumed
to be elastic and the predicted stress path follows the path 'ab". Because the
applied incremental axial strain is only L'le,,=3%, this is less than e,,=3 .6% which is
required to bring the soil to yield at point 'b'. As the soil is assumed to be linear
elastic, the solution for this increment is therefore correct. For the second
increment ofloading the incremental global stiffness matrix [Kd 2 is based on the
stress state at the end of increment 1 (i.e. point 'b ' '). Since the soil is elastic here,
the elastic constitutive matrix [D] is used again. The stress path now moves to
point 'c". As the applied strain e"=(L'le,,I+L'le/)=6% is greater than e,,=3.6%, which
is required to bring the soil to yield at point 'b', the stress state now lies above the
Mohr-Coulomb yield surface. The tangent stiffness algorithm has overshot the
yield surface. For increment three the algorithm realises the soil is plastic at point
'c" and forms the incremental global stiffness matrix [Kd 3 based on the elasto­
plastic matrix, [Dep], consistent with the stress state at 'c". The stress path then
moves to point' d" . For subsequent increments the algorithm uses the elasto-plastic
constitutive matrix, [DCP], and traces the stress path 'd 'e".

The reason why this part ofthe curve is straight, with an inclination greater than
the correct solution, path 'bc', can be found by inspecting the elasto-plastic
constitutive matrix, [Dep], defined by Equation (6.16). For the current model the
elastic [D] matrix is constant, and as the yield and plastic potential functions are
both assumed to be given by Equation (9.2), the variation of [Dep] depends on the
values of the partial differentials of the yield function with respect to the stress
components. In this respect, it can be shown that the gradient of the stress path in
J-p' space is given by:

(9.6)
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Figure 9.5: Effect of the first
increment size on a tangent stiffness

prediction of an oedometer stress
path
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The error in the tangent stiffness 1.0001
approach can therefore be associated ~
with the overshoot at increment 2. If 800

lthe increment sizes had been selected 600

such that at the end of an increment ~
:::- 400

1
the stress path just reached the yield
surface (i.e. at point 'b'), the tangent
stiffness algorithm would then give
the correct solution. This is shown in
Figure 9.5 where, in analysis labelled
A, the first increment was selected
such that L'le,,=3.6%. After this
increment the stress state was at point
b, which is correct, and for increment
2 and subsequent increments the
correct elasto-plastic constitutive
matrix [Dep] was used to obtain the incremental stiffness matrix [](GY As the [Dep]
remains constant along the stress path 'bc', the solution is independent ofthe size
of the increments from point 'b' onwards. In analysis labelled B in Figure 9.5, a
much larger first increment, L'le,,=10%, was applied. This causes a large overshoot
on the first increment and results in a significant divergence from the true solution.
As noted above, once the stress state has overshot, making subsequent increments
smaller does not improve the solution.

It can be concluded that, for this particular problem, the tangent stiffness
algorithm is always in error, unless the increment size is such that at the end of an
increment the stress state happens to be at point 'b'. Because the solution to this
simple one dimensional problem is known, it can be arranged for this to occur, as
for analysis A in Figure 9.5. However, in general multi-axis boundary value
problems, the answers to which are not known, it is impossible to choose the
correct increment sizes so that overshoot never occurs. The only solution is to use
a very large number of small load increments and hope for the best.

Another source of error arising from the way the tangent stiffness method
works is that the answers depend on the way the yield function is implemented.
While it is perfectly acceptable, from a mathematical point of view, to write the
yield surface in either of the forms shown in Equations (7.13) or (9.2), the
predictions from the tangent stiffness algorithm will differ if, as is usually the case,
overshoot occurs. For the simple oedometer situation, this can be seen by
calculating the partial differentials in Equation (9.5), for the yield function given
by Equation (7.13). This gives:

(9.5)

8F({(J"'},{k})

8p' J
8F({(J"'} , {k}) p'

8J
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Figure 9.7: Example of an unloading
stress path using the tangent

stiffness algorithm

Figure 9.6: Effect of yield function
implementation on errors associated

with tangent stiffness algorithm

Table 9.2: Properties for modified Cam clay model

violates the basic postulates of elasto-plastic theory, see Chapter 6. When
unloaded, the soil sample should become purely elastic, and the correct stress path
is marked as path 'cr on Figure 9.7. Because the soil has constant elastic
parameters, this path is parallel to the initial elastic loading path 'ab'. The reason
for the error in the tangent stiffness analysis arises from the fact that when the first
increment of unloading occurs, the stress state is plastic, i.e. point 'c'. The
algorithm does not know that unloading is going to occur, so when it forms the
incremental global stiffness matrix, it uses the elasto-plastic constitutive matrix
[DCP]. The result is that the stress path remains on the yield surface after application
of the unloading increment. Since the soil is still on the yield surface, the same
procedure occurs for the second increment of unloading.

Because a constant value of M; has been used, the yield (and plastic potential)
surface plots as a circle in the deviatoric plane. A further simplification has been
made for the present analysis. Instead of using the slope of the swelling line to
calculate the elastic bulk modulus, constant elastic parameters, £'=50000 kN/m 2

and fJ = 0.26, have been used. This simplification has been made to be consistent
with results presented in the next section of this chapter. For the present
investigation, it does not significantly affect soil behaviour and therefore any
conclusions reached are valid for the full model. Again the initial stresses are
rr/=(J/7'=50kN/m2

, and the soil is assumed to be normally consolidated. This later
assumption implies that the initial isotropic stress state is on the yield surface.

Three tangent stiffness analyses, with displacement controlled loading
increments equivalent to ~t'a = 0.1 %, ~t'a = 0.4% and ~~, = 1% respectively, have
been performed. The predicted stress paths are shown in Figure 9.8. Also shown
in this figure is the true solution. Let us first consider the analysis with the smallest
increment size, ~~, = 0.1 %. Apart from the very first increment the results of this
analysis agree with the true solution. This is not so for the other two analyses. For
the analysis with ~t'a = 0.4% the stress path is in considerable error for the first
three increments. Subsequently the stress path is parallel to the true solution,

9.4.4 Uniform compression of modified Cam clay soil
The above one dimensional loading problem is now repeated with the soil
represented by a simplified form of the modified Cam clay model described in
Chapter 7. The soil parameters are listed in Table 9.2.

Specific volume at unit pressure on virgin consolidation line, VI 1.788

Slope of virgin consolidation line in v-logeP' space, A 0.066

Slope of swelling line in v-logeP' space, K 0.0077

Slope of critical state line in J-p' space, M; 0.693

900

p'

Prediction based
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600
p' (kPa)

" True solution

300

Prediction based
on YF (9.2)

Stress path for
analysis A

......

o a

As noted above, this equation J

gives the gradient of the resulting
stress path in J-p' space. Whereas
Equation (9.5) indicates that the
inclination depends on the amount of
overshoot, Equation (9.6) indicates
that the inclination is constant and
equal to the gradient of the Mohr­
Coulomb yield curve. The two results
are compared in Figure 9.6. The stress
path based on the yield function
written in the form of Equation (9.2)
appears to pass through the origin of
stress space, but to have an incorrect
slope, indicating too higher value of rp', but the correct c'. In contrast, the stress
path based on the yield function written in the form of Equation (7.13) is parallel
to the true solution, but does not pass through the origin of stress space, indicating
that the material has a fictitious c', but the correct rp'. Clearly, if there is no
overshoot, both formulations give the same result, which for this problem agrees
with the true solution. The reason for this inconsistency is that, in theory, the
differentials of the yield function are only valid if the stress state is on the yield
surface, i.e. F( {rr'}, {k} )=0. If it is not, it is then theoretically incorrect to use the
differentials and inconsistencies will arise. The implications for practice are self
evident. Two different pieces of software which purport to use the same Mohr­
Coulomb condition can give very different results, depending on the finer details
of their implementation. This is clearly yet another draw back with the tangent
stiffness algorithm for nonlinear analysis.

The analysis labelled A in Figure 6001r------------~

9.5 was performed with a first
increment ofaxial strain of~t'a=3.6%

and subsequent increments of 400

~t'a=l %. As the first increment just ~
brought the stress path to the yield ....,

200
surface, the results from this analysis
are in agreement with the true
solution. The situation is now
considered where, after being loaded
to point 'c', see Figure 9.5, the soil
sample is unloaded with two
increments of ~~,=-1%. The results
of this analysis are shown in Figure
9.7. The predicted stress path on
unloading is given by path 'cde', which indicates that the soil remains plastic and
the stress path stays on the yield surface. This is clearly incorrect as such behaviour
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individual unit. If the load is such that the induced stress in the unit does not cause
yielding, the slider remains rigid and all the deformation occurs in the spring. This
represents elastic behaviour. Alternatively, ifthe induced stress causes yielding, the
slider becomes free and the dashpot is activated. As the dashpot takes time to react,
initially all deformation occurs in the spring. However, with time the dashpot
moves. The rate of movement of the dashpot depends on the stress it supports and
its fluidity. With time progressing, the dashpot moves at a decreasing rate, because
some of the stress the unit is carrying is dissipated to adjacent units in the network,
which as a result suffer further movements themselves. This represents visco­
plastic behaviour. Eventually, a stationary condition is reached where all the
dashpots in the network stop moving and are no longer sustaining stresses. This
occurs when the stress in each unit drops below the yield surface and the slider
becomes rigid. The external load is now supported purely by the springs within the
network, but, importantly, straining of the system has occurred not only due to
compression or extension ofthe springs, but also due to movement ofthe dashpots.
If the load was now removed, only the displacements (strains) occurring in the
springs would be recoverable, the dashpot displacements (strains) being permanent.

9.5.2 Finite element application
Application to finite element analysis ofelasto-plastic materials can be summarised
as follows. On application of a solution increment the system is assumed to
instantaneously behave linear elastically. Ifthe resulting stress state lies within the
yield surface, the incremental behaviour is elastic and the calculated displacements

. are correct. If the resulting stress state violates yield, the stress state can only be
sustained momentarily and visco-plastic straining occurs. The magnitude of the
visco-plastic strain rate is determined by the value ofthe yield function, which is
a measure of the degree by which the
current stress state exceeds the yield
condition. The visco-plastic strains
increase with time, causing the _
material to relax with a reduction in I:!.R.I
the yield function and hence the I

visco-plastic strain rate. A marching -
technique is used to step forward in
time until the visco-plastic strain rate
is insignificant. At this point, the
accumulated visco-plastic strain and
the associated stress change are equal
to the incremental plastic strain and
stress change respectively. This
process is illustrated for the simple
problem of a uniaxially loaded bar of
nonlinear material in Figure 9.10.
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9.5 Visco-plastic method
9.5.1 Introduction
This method uses the equations of visco-plastic
behaviour and time as an artifice to calculate the
behaviour of nonlinear, elasto-plastic, time
independent materials (Owen and Hinton (1980),
Zienkiewicz and Cormeau (1974)).

The method was originally developed for linear
elastic visco-plastic (i.e. time dependent) material
behaviour. Such a material can be represented by a
network of the simple rheological units shown in
Figure 9.9. Each unit consists of an elastic and a
visco-plastic component connected in series. The
elastic component is represented by a spring and the
visco-plastic component by a slider and dashpot
connected in parallel. If a load is applied to the
network, then one of two situations occurs in each

however, there is still a substantial
error. Matters are even worse for the
analysis with the largest increment 400

size, .6..':,,= 1%. This has very large
~ 300

errors initially. -
The reason for the errors in these ...,

analyses is the same as that explained
above for the Mohr-Coulomb
analysis. That is the yield (and plastic
potential) derivatives are evaluated in
illegal stress space, i.e. with stress
values which do not satisfy the yield
(or plastic potential) function. This is
mathematically wrong and leads to
incorrect elasto-plastic constitutive
matrices. The reason why the errors are much greater than for the Mohr-Cou10mb
analyses is that the yield (and plastic potential) derivatives are not constant on the
yield (or plastic potential) surface, as they are with the Mohr-Coulomb model, but
vary. Matters are also not helped by the fact that the model is strain
hardeninglsoftening and, once the analysis goes wrong, incorrect plastic strains and
hardeninglsoftening parameters are calculated.

The comments made above for the Mohr-Coulomb model on implementation
of the yield function and on unloading also apply here. In fact, they apply to any
constitutive model because they are caused by flaws in the tangent stiffness
algorithm itself.
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For genuine visco-plastic materials the visco-plastic strain rate is given by:

o{c"P} =Yf( F({a},{k})) P({a},{m}) (9.7)
ot F;, o{a}
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5. This incremental stress change is added to the accumulated stress at
the beginning ofthe solution increment, {ufl:

(9.14)

where y is the dashpot fluidity parameter and Fo is a stress scalar to non­
dimensionalise F( {u}, {k} ) (Zienkiewicz and Cormeau (1974)). When the method
is applied to time independent elasto-plastic materials, both y and Fo can be
assumed to be unity (Griffiths (1980) and Equation (9.7) reduces to:

o{e'\"} =F({ }) {k}) P({a}),{m}) (9.8)
ot a , o{a}

6. These stresses are then used to evaluate the yield function,
F( {u}',{k}).

If the yield function, F( {u}', {k} )<0, the current integration point is
elastic. Therefore move to the next integration point (i.e. go to step 3). If
the yield function F({u}',{k})~O the visco-plastic strains must be
calculated:

The visco-plastic algorithm consists of the following steps:

1. At the beginning ofa solution increment, i, formulate the boundary conditions.
In particular, construct the incremental right hand side load vector {L'lRd.
Assemble the incremental global stiffness matrix [Kd using the linear elastic
constitutive matrix, [D], for all elements in the mesh. Zero the visco-plastic
strain increment vector, i.e. {L'lel'P} = O. Set t = (,.

2. Solve the finite element equations to obtain a first estimate of the nodal
displacements:

Move to next integration point (i.e. go to step 3).
End of integration point loop.

9. Calculate nodal forces equivalent to the change in incremental visco-plastic
strains and add them to the incremental global right hand side vector. The
elastic stress increment associated with the change in visco-plastic strains is
given by:

(9.15)

(9.16)

(
o{c'\"}Y= F({a}' {k}) P({a}1 ,{m})

ot ) , o{a}

8. Update the visco-plastic strain increment:

7. Calculate the visco-plastic strain rate:

(9.9)

(9.1 0)

Over a time step t to t+D.t the visco-plastic strain is given by:

I+!'.t a{ VP }
{L'le'\"} = f _e_ dt

I at

and for small time steps Equation (9.9) can be approximated to:

{L'le'\"} =D.t a{e
Vp

}
at

Loop through all integration points in the mesh and for each integration point:

3. Calculate the incremental total strains from the incremental nodal
displacements:

(9.11)

(9.12)

{L'l aVP} = [D] D.t ( o{;;\"}) I

The incremental global right hand side load vector then becomes:

{Md'+iIt = {L'lRd' + L: f[B]T[D] L'lt (o{e
VP

})' dVol
All Vol ot

elements

(9.17)

(9.18)

4. The elastic strains are now calculated as the difference between the
total strains, from Equation (9.12), and the visco-plastic strains. Note
that for the first iteration (i.e. t = to) the visco-plastic strains are zero.
The elastic strains are then used with the elastic constitutive matrix
[D] to evaluate the incremental stress change:

(9.13)

10. Set t = t+L'lt and return to step 2. This process is repeated until convergence is
obtained. When convergence is achieved, the displacements evaluated in step
2, Equation (9.11), hardly change from one time step to the next. The yield
function values, step 6, and the visco-plastic strain rates, step 7, become very
small and the incremental stresses, step 4, and strain increments, steps 3 and
8, become almost constant with time.

11. Once convergence is achieved the displacements, stresses and strains are
updated, ready for the next load increment:
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where a is a scaling factor which is input by the user. If a = 1 then Equation (9.24)
reduces to Equation (9.23) and the critical time step is used.

Mohr-Coulomb

True solution

0 0'-"'---3'-00--6-'--00---'-90-0-----"=1,2-00------11,500

p' (kPa)

Figure 9. 11: Oedometer stress path
predicted by the visco-plastic

algorithm

9.5.5 Uniform compression of a Mohr-Coulomb soil
As with the tangent stiffness method, the problem shown graphically in Figure 9.3,
with the soil properties given in
Table 9.1, is considered. Figure 9.11 1,000',-----------------,

shows the stress path in J-p' space
1 · 800predicted by a visco-plastic ana YSIS

in which equal increments of vertical 600 Visco-plastic solution\.

displacement were applied to the top ~

of the sample. Each increment gave ::: 400

an axial strain L'ie,,=3% and therefore 200

the predictions in Figure 9.11 are
directly comparable to those for the
tangent stiffness method given in
Figure 9.4. The results were obtained
using the critical time step, a=1, in
Equation (9.24)). It can be seen that
the visco-plastic predictions are in

9.5.4 Potential errors in the algorithm
Due to its simplicity, the visco-plastic algorithm has been widely used. However,
in the Authors' opinion, the method has severe limitations for geotechnical
analysis. Firstly, the algorithm relies on the fact that for each increment the elastic
parameters remain constant. The simple algorithm cannot accommodate elastic
parameters that vary during the increment because, for such cases, it cannot
determine the true elastic stress changes associated with the incremental elastic
strains, see Equation (9.13). The best that can be done is to use the elastic
parameters associated with the accumulated stresses and strains at the beginning
of the increment to calculate the elastic constitutive matrix, [D], and assume that
this remains constant for the increment. Such a procedure only yields accurate
results if the increments are small and/or the elastic nonlinearity is not great. A
more complex way around this problem is described later in this chapter, but this
involves the use ofa separate algorithm to deal with the nonlinear elastic response.

A more severe limitation ofthe method arises when the algorithm is used as an
artifice to solve problems involving non-viscous material (i.e. elasto-plastic
materials). As noted above, the visco-plastic strains are calculated using Equations
(9.15) and (9.16). In Equation (9.15) the partial differentials ofthe plastic potential
are evaluated at an illegal stress state {u}', which lies outside the yield surface, i.e.
F({u'},{k}»O. As noted for the tangent stiffness method, this is theoretically
incorrect and results in failure to satisfy the constitutive equations. The magnitude
of the error depends on the constitutive model and in particular on how sensitive
the partial derivatives are to the stress state. This is now illustrated by applying the
visco-plastic algorithm to the one dimensional loading problem (i.e. ideal
oedometer test) considered above for the tangent stiffness method.

(9.24)

(9.23)

(9.21 )

(9.22)

(9.20)

(9.19)

{e}' = {e}'-I + {L'i e}'

1t'1tc = -----;;:----------;;;:---
aF({o-},{k})T [D] ap({o-},{m})T + A

a{o-} a{o-}

aL'itc =-----;;:----------;=---
aF({a},{k}) T [D] ape {a},{m}) T + A

a{a} a{a}

where A is defined by Equation (6.14). For simple constitutive models, such as
Tresca and Mohr-Coulomb, the yield and plastic potential functions can be written
such that Equation (9.23) gives a constant value of the critical time step, which is
dependent only on the elastic stiffness and strength parameters. As these
parameters are constant, the critical time step has to be evaluated only once during
an analysis. However, for more complex constitutive models the critical time step
is also dependent on the current state of stress and strain and therefore is not
constant. It must therefore be evaluated for each integration point for each
iteration. It should be noted that when using the algorithm to solve elasto-plastic
problems (i.e. no time dependent plastic behaviour), the time step does not have
to be the same for all integration points during any particular iteration.

In order to be able to evaluate the potential of the visco-plastic algorithm, the
Authors have implemented the above procedure in the Imperial College Finite
Element Program (ICFEP). When dealing with elasto-plastic constitutive models
the time step is calculated from the following equation:

9.5.3 Choice of time step
In order to use the procedure described above, a suitable time step, L'it, must be
selected. If M is small many iterations are required to obtain an accurate solution.
However, if L'it is too large numerical instability can occur. The most economical
choice for L'it is the largest value that can be tolerated without causing such
instability. An estimate for this critical time step is suggested by Stolle and Higgins
(1989) and is given by:
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Figure 9. 13: A single increment of a
visca-plastic analysis

Only the solution with the smallest increment size (i.e. Lll',,=O.O 1%) agrees with
the true solution. It is instructive to compare these results with those given in
Figure 9.8 for the tangent stiffness method. In view ofthe accuracy of the analysis
with the Mohr-Coulomb model, it is, perhaps, surprising that the visco-plastic
algorithm requires smaller increments than the tangent stiffness method to obtain
an accurate solution. It is also of interest to note that when the increment size is too
large, the tangent stiffness predictions lie above the true solution, whereas for the
visco-plastic analyses the opposite occurs, with the predictions lying below the true
solution. The visco-plastic solutions are particularly in error during the early stages
ofloading, see Figure 9.12b.

To explain why the visco-plastic
solutions are in error, consider the
results shown in Figure 9.13. The
true solution is marked as a dashed

'2' 300 True solution
line on this plot. A visco-plastic 2 Initial yield and plastic

analysis consisting of a single ..., 200 potential surfac;,

increment, equivalent to At;, = 1%, is
performed starting from point 'a',
which is on the true stress path. To
do this in the analysis, the initial
stresses are set appropriate to point
'a': av'= 535.7 kN/m2 and ah'= 343.8
kN/m 2

• This loading increment
should move the stress path from
point 'a' to point 'e'. The line 'ae' therefore represents the true solution to which
the visco-plastic analysis can be compared. However, the visco-plastic analysis
actually moves the stress path from point 'a' to point 'd', thus incurring a
substantial error.

To see how such an error arises, the intermediate steps involved in the visco­
plastic algorithm are plotted in Figure 9.13. These can be explained as follows.
Initially, on the first iteration, the visco-plastic strains are zero and the stress
change is assumed to be entirely elastic, see Equation (9.13). This is represented
by the stress state at point 'b'. This stress state is used to evaluate the first
contribution to the incremental visco-plastic strains, using Equations (9.15) and
(9.16). These strains are therefore based on the normal to the plastic potential
function at 'b'. This normal is shown on Figure 9.13 and should be compared to
that shown for point 'a', which provides the correct solution. As the directions of
the normals differ significantly, the resulting contribution to the visco-plastic
strains is in error (note: along path 'ae' of the true solution, the normal to the
plastic potential does not change significantly, being very similar to that at point
'a'). This contribution to the visco-plastic strains is used to calculate a correction
vector which is added to the incremental right hand side vector, see Equations
(9.17) and (9.18). They are also used to update the hardening/softening parameter
for the constitutive model. A second iteration is performed which, due to the
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9.5.6 Uniform compression of modified Cam clay soil
The one dimensional loading problem was repeated with the soil represented by the
simplified modified Cam clay model described in Section 9.4.4. This model has
linear elastic behaviour and therefore the problem of dealing with nonlinear
elasticity is not relevant. In fact, it was because of this deficiency in the visco­
plastic algorithm that the model was simplified. The soil properties are given in
Table 9.2 and the initial conditions are discussed in Section 9.4.4.

Results from four visco-plastic analyses, with displacement controlled loading
increments equivalent to Llt;,=O.OI %, Llt;,=O.1 %, Lll',,=O.4% and Lll',,=l %, are
compared with the true solution in Figure 9.12. The results have been obtained
using the critical time step (i.e. a=l in Equation (9.24)) and the convergence
criteria was set such that the iteration process stopped when there was no change
in the fourth significant figure of the incremental stresses and incremental plastic
strains.

remarkably good agreement with the true solution. Even when the increment size
was doubled (i.e. Lll',,=6%), the predictions did not change significantly. Due to the
problem highlighted above, concerning evaluation of the plastic potential
differentials in illegal stress space, there were some small differences, but these
only caused changes in the fourth significant figure for both stress and plastic
strains. Predictions were also insensitive to values of the time step (0 < a ~ 1 in
Equation (9.24)).

The results were therefore not significantly dependent on either the solution
increment size or the time step. The algorithm was also able to accurately deal with
the change from purely elastic to elasto-plastic behaviour and vice versa. In these
respects the algorithm behaved much better than the tangent stiffness method.

It can therefore be concluded that the visco-plastic algorithm works well for
this one dimensional loading problem with the Mohr-Coulomb model. The Authors
have also found, as have others, that it works well for other boundary value
problems, involving either the Tresca or the Mohr-Coulomb model.

Figure 9. 12: Effect of increment size on the visca-plastic prediction
of an aedameter stress path
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Figure 9. 15: Effect of changing the
time step in visco-plastic analysis

the process. This is shown by the dotted lines in Figure 9.14. This occurs even
when convergence is achieved. This is confirmed by Figure 9.14 which shows that
only very small visco-plastic strains occur after iteration 2.

The above arguments suggest that 150r-----------------,

if the dominance of the first iteration
is suppressed, a better solution might 125

be obtained. A way ofdoing this is to
shorten the time step by reducing a

100
in Equation (9.24). This has the
effect of reducing the visco-plastic l

.:< 75
strain contribution calculated on each ::::
iteration, see Equation (9.16). The

50
downside of this approach is that
more iterations are needed to achieve

25
convergence. To investigate this
possibility and quantify its effect, the
analysis discussed above was
repeated with a values of0.5, 0.2 and
0.05. The results ofthese analysis are
presented in Figure 9.15, along with
the original analysis (a = 1) and the
true solution. Also noted on the
figure is the number of iterations 150r----------"'Tru-e-so'lu""'ti-on'

required to obtain convergence. The 100 inc = 0.01%

results show that the predictions 125 50 inc = 0.02%

become more accurate as a reduces, 20 inc = 0.05%
10 inc = 0.10%

in line with the hypothesis given lOO 5 inc ~ 0.20%

above, but that there is still a 1 inc= 1.00%

significant error, even if very small ~ 75

time steps are taken. The results also ::::
show that the number of iterations
increases rapidly as the time step
reduces.

The only way to further improve
the predictions is to use smaller
solution increments. As the
increments become smaller, the
stress states at which the visco-plastic
strains are calculated lie nearer to the Figure 9. 16: Effect of changing the
true solution and therefore the errors increment size in visco-plastic

are reduced. The single increment analysis
analysis presented in Figure 9.13 was repeated, but with more increments. Five
analyses, splitting the original ~ea=1% increment into 5, 10, 20, 50 and 100
smaller increments respectively, were performed. All analyses had a=1. The resu Its
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True solution

1.2

0.3

Figure 9. 14: Comparison of
incremental plastic strains from a
single increment of a visco-plastic

analysis and the true solution

correction vector, gives different incremental displacements (Equation (9.11)) and
incremental total strains (Equation (9.12)). The incremental stresses are also now
different as they depend on these new incremental total strains and the visco-plastic
strains calculated for iteration 1, see Equation (9.13). The stress state is now
represented by point 'c'. A second contribution to the visco-plastic strains is
calculated based on the plastic potential at point 'c'. Again, this is in error because
this is an illegal stress state. The error is related to the difference in direction ofthe
normals to the plastic potential surfaces at points 'a' and 'c'. This second
contribution to the incremental plastic strains is used to obtain an additional
correction vector which is added to the incremental right hand side vector,
Equation (9.18). A third iteration is then performed which brings the stress state
to point od' on Figure 9.13. Subsequent iterations cause only very small changes
to the visco-plastic strains and the incremental stresses and therefore the stress state
remains at point 'd'. At the end of the iterative process, the incremental plastic
strains are equated to the visco-plastic strains, see Equation (9.21). As the visco­
plastic strains are the sum of the contributions obtained from each iteration, see
Equation (9.16), and as each of these contributions has been calculated using the
incorrect plastic potential differentials (i.e. wrong direction of the normal), the
incremental plastic strains are in error. This is evident from Figure 9.14 which
compares the predicted and true incremental plastic strains. Since the hardening
parameter for the model is calculated from the plastic strains, this is also incorrect.
It is therefore not surprising that the algorithm ends up giving the wrong stress
state represented by point' d' in Figure 9.13.

The reason why the stress state at 1.5r-----~r-~~----~
Second iteration

point'd' has a lower stress ratio, Jlp',
than the correct solution, can be
explained as follows. The visco-

,-., 0,9 First iteration ~

plastic strain vector (normal to the ~ -.'
plastic potential surface) has a steeper ~." 0.6 /

gradient at point 'b' than it should,
compared to the true solution. This
implies a greater proportion of
deviatoric to volumetric visco-plastic
strain. The correction vector
calculated at the end of the first
iteration and used for the second
iteration therefore over corrects for
the deviatoric stress and under
corrects for the mean effective stress
and, consequently, gives point 'c'. As the visco-plastic strain vector has a
shallower gradient than it should have at point 'c', the reverse happens and the
second correction vector tends to compensate. However, as the yield function at
point 'b' is much larger than at point 'c' (i.e. the stress state is further from the
yield surface) the visco-plastic strain contribution on the first iteration dominates
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(9.25)
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process is determining the residual
load vector. At the end of each
iteration the current estimate of the -1
incremental displacements is M;

calculated and used to evaluate the -
incremental strains at each integration
point. The constitutive model is then
integrated along the incremental strain
paths to obtain an estimate of the
stress changes. These stress changes
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these forces and the externally applIed
loads (from the boundary conditions) gives the residual load vector. A difference
arises because a constant incremental global stiffness matrix [KGY is assumed over
the increment. Due to the nonlinear material behaviour, [KGl is not constant but
varies with the incremental stress and strain changes.

Since the constitutive behaviour changes over the increment, care must be taken
when integrating the constitutive equations to obtain the stress change. Methods
of performing this integration are termed stress point algorithms and both explicit
and implicit approaches have been proposed in the literature. There are many of
these algorithms in use and, as they control the accuracy ofthe final solution, users
must verify the approach used in their software. Two of the most accurate stress
point algorithms are described subsequently.

The process described above is called a Newton-Raphson scheme if the
incremental global stiffness matrix [Kd i is recalculated and inverted for each
iteration, based on the latest estimate of the stresses and strains obtained from the
previous iteration. To reduce the amount of computation, the modified Newton ­
Raphson method only calculates and inverts the stiffness matrix at the beginning
of the increment and uses it for all iterations within the increment. Sometimes the
incremental global stiffness matrix is calculated using the elastic constitutive
matrix, [D], rather than the elasto-plastic matrix, [Dep]. Clearly, there are several
options here and many software packages allow the user to specify how the MNR
algorithm should work. In addition, an acceleration technique is often applied
during the iteration process (Thomas (1984)).

9.6 Modified Newton-Raphson method
9.6.1 Introduction
The previous discussion of both the tangent stiffness and visco-plastic algorithms
has demonstrated that errors can arise when the constitutive behaviour is based on
illegal stress states. The modified Newton-Raphson (MNR) algorithm described
in this section attempts to rectify this problem by only evaluating the constitutive
behaviour in, or very near to, legal stress space.

The MNR method uses an iterative technique to solve Equation (9.1). The first
iteration is essentially the same as the tangent stiffness method. However, it is
recognised that the solution is likely to be in error and the predicted incremental
displacements are used to calculate the residual load, a measure of the error in the
analysis. Equation (9.1) is then solved again with this residual load, {lfI}, forming
the incremental right hand side vector. Equation (9.1) can be rewritten as:

[KGr({L'ld}~Gr = {'I/}J-J

from these analyses are compared with the original analysis in Figure 9.16. Very
small solution increments are required to obtain an accurate solution. If the soil
sample is unloaded at any stage, the analysis indicates elastic behaviour and
therefore behaves correctly.

It is concluded that for complex critical state constitutive models the visco­
plastic algorithm can involve severe errors. The magnitude ofthese errors depends
on the finer details of the model and, in particular, on how rapidly the plastic
potential differentials vary with changes in stress state. The errors also depend on
both the time step and size of solution increment used. The problems associated
with the implementation of a particular constitutive model, as discussed for the
tangent stiffness method, also apply here. As the plastic strains are calculated from
plastic potential differentials evaluated in illegal stress space, the answers depend
on the finer details of how the model is implemented in the software. Again, two
pieces of software which purport to use the same equations could give different
results.

The above conclusion is perhaps surprising as the visco-plastic algorithm
appears to work well for simple constitutive models of the Tresca and Mohr­
Coulomb types. However, as noted previously, in these simpler models the plastic
potential differentials do not vary by a great amount when the stress state moves
into illegal stress space.

The superscript 'j' refers to the iteration number and {lfI}O = {L'lRrY. This process
is repeated until the residual load is small. The incremental displacements are equal
to the sum ofthe iterative displacements. This approach is illustrated in Figure 9.17
for the simple problem of a uniaxially loaded bar of nonlinear material. In
principle, the iterative scheme ensures that for each solution increment the analysis
satisfies all solution requirements.

9.6.2 Stress point algorithms

9.6.2.1 Introduction
Two classes of stress point algorithms are considered. The substepping algorithm
is essentially explicit, whereas the return algorithm is implicit. In both the
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Figure 9. 18: Return algorithm
approach

9.6.2.4 Fundamental comparison
Potts and Ganendra (1994) performed a fundamental comparison of these two
types of stress point algorithm and some of their results are described in Appendix
IX.3. They conclude that both algorithms give accurate results, but, ofthe two, the
substepping algorithm is better.

Another advantage of the substepping approach is that it is extremely robust
and can easily deal with constitutive models in which two or more yield surfaces
are active simultaneously and for which the elastic portion of the model is highly
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space. In this respect some of the
Jearlier return algorithms broke this

rule and are therefore inaccurate. To
simplify this procedure for modified
Cam clay, Borja and Lee (1990)
assumed that the elastic moduli are
constant over an increment. Borja
(1991) describes a more rigorous
procedure that accounts for the true
variation of these moduli. Analyses
which make the former assumption
are called constant elasticity return
algorithms, whereas those that
correctly account for changes in
elastic moduli are called variable J
elasticity return algorithms. Further
details of the constant elasticity
return algorithm proposed by Borja
and Lee (1990) are given in
Appendix lX.2.

The basic assumption in these
approaches is therefore that the
plastic strains over the increment can
be calculated from the stress state at Figure 9. 19: Substepping approach
the end of the increment, as
illustrated in Figure 9.18. This is theoretically incorrect as the plastic response, and
in particular the plastic flow direction, is a function of the current stress state. The
plastic flow direction should be consistent with the stress state at the beginning of
the solution increment and should evolve as a function of the changing stress state,
such that at the end of the increment it is consistent with the final stress state. This
type of behaviour is exemplified by the substepping approach, as illustrated in
Figure 9.19. If the plastic flow direction does not change over an increment, the
return algorithm solutions are accurate. Invariably, however, this is not the case
and an error is introduced. The magnitude of any error is dependent on the size of
the solution increment.

(9.26)

9.6.2.2 Substepping algorithm
The schemes presented by Wissman and Hauck (1983) and Sloan (1987) are
examples of substepping stress point algorithms. In this approach, the incremental
strains are divided into a number of substeps. It is assumed that in each substep the
strains {!le,,_} are a proportion, !IT, of the incremental strains {!leinJ. This can be
expressed as:

It should be noted that in each substep, the ratio between the strain components
is the same as that for the incremental strains and hence the strains are said to vary
proportionally over the increment. The constitutive equations are then integrated
numerically over each substep using either an Euler, modified Euler or Runge­
Kutta scheme. The size of each substep (i.e. !IT) can vary and, in the more
sophisticated schemes, is determined by setting an error tolerance on the numerical
integration. This allows control of errors resulting from the numerical integration
procedure and ensures that they are negligible. Details of the substepping scheme
used by the Authors are given in Appendix IX.l.

The basic assumption in these substepping approaches is therefore that the
strains vary in a proportional manner over the increment. In some boundary value
problems, this assumption is correct and consequently the solutions are extremely
accurate. However, in general, this may not be true and an error can be introduced.
The magnitude of the error is dependent on the size of the solution increment.

substepping and return algorithms, the objective is to integrate the constitutive
equations along an incremental strain path. While the magnitudes of the strain
increment are known, the manner in which they vary during the increment is not.
It is therefore not possible to integrate the constitutive equations without making
an additional assumption. Each stress point algorithm makes a different assumption
and this influences the accuracy of the solution obtained.

9.6.2.3 Return algorithm
The schemes presented by Borja and Lee (1990) and Borja (1991) are examples
ofone-step implicit type return algorithms. In this approach, the plastic strains over
the increment are calculated from the stress conditions corresponding to the end of
the increment. The problem, of course, is that these stress conditions are not
known, hence the implicit nature of the scheme. Most formulations involve some
form ofelastic predictor to give a first estimate ofthe stress changes, coupled with
a sophisticated iterative sub-algorithm to transfer from this stress state back to the
yield surface. The objective of the iterative sub-algorithm is to ensure that, on
convergence, the constitutive behaviour is satisfied, albeit with the assumption that
the plastic strains over the increment are based on the plastic potential at the end
of the increment. Many different iterative sub-algorithms have been proposed in
the literature. In view of the Authors' previous findings, it is important that the
final converged solution does not depend on quantities evaluated in illegal stress
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nonlinear. In fact, most of the software required to program the algorithm is
common to any constitutive model. This is not so for the return algorithm, which,
although in theory can accommodate such complex constitutive models, involves
some extremely complicated mathematics. The software to deal with the algorithm
is also constitutive model dependent. This means considerable effort is required to
include a new or modified model.

In the numerical geotechnical research group at Imperial College the tendency
is, therefore, to employ the substepping approach. All examples given in both
volumes of this book, that are performed using the MNR approach with ICFEP,
use a modified Euler substepping algorithm, see Appendix IX. I.

9.6.3 Convergence criteria
As the MNR method involves iterations for each solution increment, convergence
criteria must be set. This usually involves setting limits to the size of both the
iterative displacements, ({.6.dLdi, and the residual loads, {1fI }i. As both these
quantities are vectors, it is normal to express their size in terms ofthe scalar norms:
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respectively. To be consistent with the analyses performed with the tangent and
visco-plastic algorithm, the analysis for the Mohr-Coulomb soil involved
displacement increments which gave incremental strains .6.,,-:,=3%, whereas for the
modified Cam clay analysis the increment size was equivalent to .6.£,,= I%.
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Figure 9.20: Oedometer stress paths predicted by the MNR
algorithm: a) Mohr-Coulomb and b) modified Cam Clay models

9.6.4 Uniform compression of Mohr-Coulomb and
modified Cam clay soils

The MNR method using a substepping stress point algorithm has been used to
analyse the simple one dimensional oedometer problem, considered previously for
both the tangent stiffness and visco-plastic approaches. Results are presented in
Figures 9.20a and 9.20b for the Mohr-Coulomb and modified Cam clay soils,

Often the iterative displacement norm is compared to the norms of the
incremental, 11 {.6.d}illd 11, and accumulated, 11 {d}lId 11, displacements. It should be
remembered that the incremental displacements are the sum of the iterative
displacements calculated for that increment so far. Likewise, the norm of the
residual loads is compared to the norms of the incremental, 11 {.6.Runl, and
accumulated, 11 {Rd 11, global right hand side load vectors. When running the
Authors' finite element code ICFEP, the convergence criteria is usually set such
that the iterative displacement norm is less than I% of both the incremental and
accumulated displacement norms, and the residual load norm is less than 1-2% of
both the incremental and accumulated global right hand side load vector norms.
Special attention has to be given to boundary value problems which only involve
displacement boundary conditions, as both the incremental and accumulated right
hand side load vectors are zero.

(9.27)

(9.28)

The predictions are in excellent agreement with the true solution. An unload­
reload loop is shown in each figure, indicating that the MNR approach can
accurately deal with changes in stress path direction. For the modified Cam clay
analysis it should be noted that at the beginning of the test the soil sample was
normally consolidated, with an isotropic stress p' = 50kPa. The initial stress path
is therefore elasto-plastic and not elastic. Consequently, it is not parallel to the
unload/reload path. Additional analysis, performed with different sizes of solution
increment, indicate that the predictions, for all practical purposes, are independent
of increment size.

These results clearly show that, for this simple problem, the MNR approach
does not suffer from the inaccuracies inherent in both the tangent stiffness and
visco-plastic approaches. To investigate how the different methods perform for
more complex boundary value problems, a small parametric study has been
performed. The main findings of this study are presented next.

9.7 Comparison of the solution strategies
9.7.1 Introduction
A comparison of the three solution strategies presented above suggests the
following. The tangent stiffness method is the simplest, but its accuracy is
influenced by increment size. The accuracy of the visco-plastic approach is also
influenced by increment size, if complex constitutive models are used. The MNR
method is potentially the most accurate and is likely to be the least sensitive to
increment size. However, considering the computer resources required for each
solution increment, the MNR method is likely to be the most expensive, the tangent
stiffness method the cheapest and the visco-plastic method is probably somewhere
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Table 9.3: Material properties for the modified Cam clay model

For drained triaxial tests, increments of compressive axial strain were applied
to the sample until the axial strain reached 20%, while maintaining a constant
radial stress and zero pore water pressure. The results are presented as plots of
volumetric strain and deviatoric stress, q, versus axial strain. Deviatoric stress q is
defined as:

(9.29)
~[(o-/-o-D2+(o-~-o-;)2+( o-;-o-i?]

for triaxial conditions

fiJq

For the undrained triaxial tests, increments of compressive axial strain were
applied to the sample until the axial strain reached 5%, while maintaining the radial
total stress constant. A high bulk compressibility of water, Kl , was introduced to
ensure undrained behaviour (= lOOK' skel, where K'skel is the effective bulk modulus
of the soil skeleton, see Section 3.4). The results are presented as plots of pore
water pressure, PI' and q versus axial strain. The label associated with each line in
these plots indicates the magnitude ofaxial strain applied at each increment ofthat

9.7.2 Idealised triaxial test
Idealised drained and undrained triaxial compression tests were considered. A
cylindrical sample was assumed to be isotropically normally consolidated to a
mean effective stress, p', of 200kPa, with zero pore water pressure. The soil
parameters used for the analyses are shown in Table 9.3.

Overconsolidation ratio 1.0

Specific volume at unit pressure on virgin consolidation line, VI 1.788

Slope of virgin consolidation line in v-Inp' space, A 0.066

Slope of swelling line in v-Inp' space, K 0.0077

Slope of critical state line in J-p' plane, M; 0.693

Elastic shear modulus, G I Preconsolidation pressure, Po' 100

resulted in 11 {IJI} nil < 10- 10
. The norm ofthe iterative displacements was less than

1% of the norm of the incremental displacements in all analyses.
The tolerances affect both the degree of convergence and the amount of

computer resources used. Parametric studies varying the number of iterations per
increment were undertaken, using both the MNR and visco-plastic approaches.
These studies confirmed that the values selected above were sufficient to ensure
that the solution had converged, but not too severe to cause excessive use of
computer resources.
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in between. It may be possible though, to use larger and therefore fewer increments
with the MNR method to obtain a similar accuracy. Thus, it is not obvious which
solution strategy is the most economic for a particular solution accuracy.

All three solution algorithms have been incorporated into the single computer
program, ICFEP. Consequently, much of the computer code is common to all
analyses and any difference in the results can be attributed to the different solution
strategies. The code has been extensively tested against available analytical
solutions and with other computer codes, where applicable. The program was used
to compare the relative performance of each ofthe three schemes in the analysis
of two simple idealised laboratory tests and three more complex boundary value
problems. Analyses of the laboratory tests were carried out using a single four
noded isoparametric element with a single integration point, whereas eight noded
isoparametric elements, with reduced integration, were employed for the analyses
ofthe boundary value problems. These analyses were performed, some years ago,
on either a Prime mini computer or a Sun workstation. The computer resources
required, expressed in terms of the equivalent central processor time on a Prime
750 mini computer, are compared. It may be noted that a Sun IPX workstation is
approximately 23 times faster than a Prime 750. Modem workstations are much
faster than these outdated machines, however, it is the relative times that are
important in the context of the present study.

As already shown, the errors in the solution algorithms are more pronounced
for critical state type models than for the simpler linear elastic perfectly plastic
models (i.e. Mohr-Coulomb and Tresca). Hence, in the comparative study the soil
has been modelled with the modified Cam clay model. To account for the
nonlinear elasticity that is present in this model, the visco-plastic algorithm was
modified to incorporate an additional stress correction based on an explicit stress
point algorithm, similar to that used in the MNR method, at each time step.

As both the MNR and visco-plastic algorithms involve iterations for each
increment, convergence criteria must be set. This involves setting limits to the size
of both the iterative displacements and out of balance loads. In the present study,
convergence tolerances were set for both these quantities. However, the critical
criterion turned out to be that concerning the out of balance nodal loads (i.e. the
residual load vector for the MNR method and the correction vector for the visco­
plastic method). In the excavation problem, which is essentially 'load controlled',
a convergence criterion expressed as 11 {IJI}/TII/II {Mdll<l% was used, where
11 {IJI} nil is the norm of the out of balance iterative nodal loads and II {Md 11 is the
norm ofthe applied incremental global right hand side load vector. For the triaxial,
footing and pile problems, which are 'displacement controlled', I1 {~Rd 11=0 and
therefore the magnitude of II {IJI}nil was critical. This quantity depends on the
dimensions of the problem and critical values of 0.5* 10-3 and 10-2 were used for
the footing and pile problem respectively. For the visco-plastic drained and
undrained triaxial tests, 10 and 50 iterations per increment were used, whereas 10
iterations were used for the MNR drained triaxial test analyses. For the MNR
undrained triaxial test analyses only one iteration was required. In all cases this
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respectively) is over predicted.
Figure 9.24 is a plot of p' versus q
for the undrained triaxial tests. The
analysis with an increment size of
0.5% axial strain gave unrealistic
results, predicting an increase in p'
and a value of q at failure over twice
as large as the analytical solution.
The analyses with smaller increment
sizes gave better results.

The results of the visco-plastic
undrained and drained triaxial test
analyses are shown in Figures 9.25
and 9.26 respectively. Inspection of
these figures indicates that the
solution is also sensitive to increment
size. Even the results from the
analyses with the smallest increment
size of 0.1 %, for the drained test, and
0.025%, for the undrained test, are in
considerable error.

It is of interest to note that results
from the tangent stiffness analyses
over predict the deviatoric stress at
any particular value of axial strain
for both drained and undrained tests.
The opposite is true for the visco­
plastic analysis, where q is under
predicted in all cases. This is similar
to the observations made earlier for
the simple oedometer test.

Values of deviatoric stress, q,
volumetric strain at failure (20%
axial strain), ,and central processor
unit (CPU) times are shown in Table
9.4 for selected drained triaxial test
analyses. Similarly, values ofq, pore
water pressure, Pt, mean effective
stress, p', at failure (5% axial strain)
and CPU times are given in Table 9.5
for selected undrained triaxial test
analyses. The numbers in parentheses
are the errors expressed as a
percentage ofthe analytical solution.

Analytical solution
Tangent stiffness

-- Analytical solution
---- MNR

10 20
Axial strain (%)

10 20
Axial strain (%)

_---- 2.0%
1.0%

'\.~~-- 0.5 %

#F"---- 0.5 %
£~'-------- 1.0%
:.<----- 2.0 %

2.0%r-----L -----
I 1.0 % __
I i/.--
I ,1,//
I/' A

(-: 0.5%
/1r,
I

° (--,-----.,.--,...----,

Figure 9.21: Modified Newton­
Raphson: Drained triaxia/ test

Figure 9.22: Tangent stiffness:
Drained triaxia/ test

analysis. The tests were deemed ideal °<;;'
as the end effects at the top and ~ ~
bottom of the sample were gJ

considered negligible and the stress ~
u 8

and strain conditions were uniform 'C N

~throughout. Analytical solutions for .~

both the drained and undrained A

triaxial tests are given in Appendix
~I.2. ~

Results from the MNR drained El

triaxial test analyses are compared .~ N

with the analytical solution in Figure 'B
"9.21. The results are not sensitive to ]

increment size and agree well with ~ '<t

the analytical solution. The MNR
undrained triaxial test analyses
matched the analytical solution and
the errors were negligible, even ifthe
analysis was carried out with just one
5% axial strain increment.
Accordingly, the undrained test
results are not presented graphically.
In an undrained triaxial test the radial
and circumferential strains are
always equal to minus half of the
axial strain. Consequently, all three
strains vary proportionally
throughout the test. Because such a
variation is consistent with the main ,....., 0

~assumption of a substepping stress
point algorithm (see Section 9.6.2.2), .~
the accuracy of the MNR analysis en N

depends only on the error tolerance _'1
controlling the number of substeps El-.::t

(see Appendix IX.l). In these ~
analyses the tolerance was set low,
(i.e. 0.01 %), and was the same for all
analyses. This explains why the
MNR analyses were independent of
increment size.

The tangent stiffness results are presented in Figure 9.22 for the drained test
and Figure 9.23 for the undrained test. The results of both tests are sensitive to
increment size, giving very large errors for the larger increment sizes. In both tests,
q at failure (20% and 5% axial strain for the drained and undrained tests
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Figure 9.26: Visco-plastic: Drained
triaxial test

Table 9.4: Results and CPU times for selected drained triaxial test
analyses

~I
2m

I~

Table 9.5: Results and CPU times for selected undrained triaxial test
analyses

9.7.3 Footing problem
A smooth rigid strip footing subjected to vertical

loading, as depicted in Figure 9.27, has been

analysed. The same soil constitutive model and _J~~~~~!~l_
parameters as used for the idealised triaxial test
analyses, see Table 9.3, have been employed to
model the soil which, in this case, was assumed to
behave undrained. The finite element mesh is shown
in Figure 9.28. Note that due to symmetry about the
vertical line through the centre of the footing, only
half of the problem needs to be considered in the
finite element analysis. Plane strain conditions are
assumed. Before loading the footing, the coefficient
ofearth pressure at rest, Ko, was assumed to be unity
and the vertical effective stress and pore water z

pressure were calculated using a saturated bulk unit
weight of the soil of 20 kN/m3 and a static water
table at the ground surface. The footing was loaded Figure 9.27: Geometry
by applying a series of equally sized increments of of footing
vertical displacement until the total displacement
was 25mm.

The load-displacement curves for the tangent stiffness, visco-plastic and MNR
analyses are presented in Figure 9.29. For the MNR method, analyses were
performed using 1, 2, 5, 10, 25, 50 and 500 increments to reach a footing
settlement of 25mm. With the exception of the analysis performed with only a

ANALYSIS TYPE q Pr pi CPU
Increment size kPa kPa kPa sec

Analytical 130.1 134.8 108.6

MNR,5% 130.3 134.82 108.6 85
(0.1%) (0.0%) (0.0%)

Tangent stiffness, 0.025% 133.9 133.08 111.5 195
(2.9%) (-1.2%) (2.4%)

Visco-plastic, 0.025% 128.31 123.22 119.5 774
(-1.4%) (-8.6%) (10.0%)

Visco-plastic, 0.05% 127.2 113.35 128.2 305
(-2.2%) (-15.9%) (18.0%)

0.5%

0.1 %

---------- 0.5 %
Analitical solution

1\ '----- ..w-------2{) 1.0 %

"~\ Axial strain (%)
\ ' ....
\ .... ,
\

\
\

\ ,
........ , ---- Visco-plastic solution

",,----- 0.1 %

1'::------.,-------.,-----.,-------,'_1.0 %

The size of the axial strain increment
used is indicated after the analysis
type.

For small increment sizes the
visco-plastic analyses tend to yield
results which are less accurate than
the corresponding tangent stiffness
analysis, even though the former
method requires more computer ~

resources than the later. Close
inspection ofthe results indicates that
the reason for the lack ofaccuracy of
the visco-plastic method is the use of
the elasto-plastic equations at illegal
stress states outside the yield surface,
as explained earlier in this chapter.
This results in failure to satisfy the
constitutive equations, see Section
9.5.6. The MNR approach is more
accurate and less dependent on
increment size than the other methods.

ANALYSIS TYPE q VOLUMETRIC CPU
Increment size kPa STRAIN sec

%

Analytical 390.1 5.18

MNR,2% 382.5 5.08 147
(-2.0%) (-1.8%)

Tangent stiffness, 0.5% 387.5 5.00 88
(-0.6%) (-3.4%)

Visco-plastic, 0.5% 156.2 2.05 204
(-60.0%) (-60.4%)

Visco-plastic, 0.1 % 275.2 3.76 701
(-29.4%) (-27.4%)
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rise and not reach a well defined
ultimate failure load for the analysis
with large applied displacement
increments. The results are
unconservative, over predicting the
ultimate footing load. There is also
no indication from the shape of the
tangent stiffness load-displacement
curves as to whether the solution is
accurate, since all the curves have
similar shapes.

The plot of pi versus q for the
Gauss point closest to the corner of
the footing is shown in Figure 9.30.
A line connecting the stress states at
the end of each increment of the 25
increment tangent stiffness analysis is presented. The analytical failure point for
this Gauss point is marked by an 'X'. The stress state at the end of all the MNR
analyses and the 1000 increment tangent stiffness analysis match this point. The
stress states at the end of the other tangent stiffness analyses are also plotted and
the label associated with each point is the number of increments used in the
analysis. The values ofpi and q are over predicted by the tangent stiffness analyses
using less than 1000 increments. For the 25 increment tangent stiffness analysis
they are over predicted by more than twenty times.

Visco-plastic analyses with 10, 25, 50, 100 and 500 increments were
performed. The 10 increment analysis had convergence problems in the iteration
process, which would initially converge, but then diverge. Similar behaviour was
encountered for analyses using still fewer increments. Results from the analyses
with 25 and 500 increments are shown in Figure 9.29. The solutions are sensitive
to increment size, but to a lesser degree than the tangent stiffness approach.

The load on the footing at a settlement of 25mm is plotted against number of
increments, for all tangent stiffness, visco-plastic and MNR analyses, in Figure
9.31. The insensitivity of the MNR analyses to increment size is clearly shown. In
these analyses the ultimate footing load only changed from 2.83 kN/m to 2.79
kN/m as the number of increments increased from 2 to 500. Even for the MNR
analyses performed with a single increment, the resulting ultimate footing load of
3.13 kN/m is still reasonable and is more accurate than the value of 3.67 kN/m
obtained from the tangent stiffness analysis with 200 increments. Both the tangent
stiffness and visco-plastic analyses produce ultimate failure loads which approach
2.79 kN/m as the number of increments increase. However, tangent stiffness
analyses approach this value from above and therefore over predict, while visco­
plastic analyses approach this value from below and therefore under predict. This
trend is consistent with the results from the undrained triaxial tests, where the
ultimate value ofq was over predicted by the tangent stiffness and under predicted

/
/

/
/ Critical state line

5m

• Stress state at the end of a
tangent stiffness analysis

X Analytical solution

/
/

50·

/
/

2 4
Mean effective stress, p' (kPa)

Figure 9.30: Stress paths under the
edge of footing

Figure 9.28: Finite element mesh for
footing analyses
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Figure 9.29: Footing load-displacement
curves

single increment, all analyses gave
very similar results and plot as a
single curve, marked MNR on this
figure. The MNR results are
therefore insensitive to increment
size and show a well defined
collapse load of2.8 kN/m.

For the tangent stiffness
approach, analyses using 25, 50,
100, 200, 500 and 1000
increments have been carried out.
Analyses with a smaller number
of increments were also
attempted, but illegal stresses
(negative mean effective stresses,
pi) were predicted. As the
constitutive model is not defined
for such stresses, the analyses had
to be aborted. Some finite element
packages overcome this problem
by arbitrarily resetting the
offending negative pi values.
There is no theoretical basis for
this and it leads to violation of
both the equilibrium and the
constitutive conditions. Although
such adjustments enable an
analysis to be completed, the final
solution is in error.

Results from the tangent
stiffness analyses are shown in
Figure 9.29. When plotted, the

<:t<
curve from the analysis with 1000 ",
increments is indistinguishable ~

'"
frhom those of t~f~MNR anallyses. .'1 M

T e tangent stl lness resu ts are ;;:
strongly influenced by increment ~

~
size, with the ultimate footing
load decreasing from 7.5 kN/mto
2.8 kN/m with reduction in the
size of the applied displacement
increment. There is also a
tendency for the load­
displacement curve to continue to
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10 S"

(9.30)

z(m)

3m

Figure 9.32: Geometry of
excavation problem

stress relief. The at rest earth pressure coefficient, K", was obtained by using the
equation:

Specific volume at unit pressure on the VeL, VI 20427

Slope of virgin consolidation line in v-Inp' space, A- 0.15

Slope of swelling line in v-Inp' space, K 0.03

Slope of critical state line in J-p' plane; M J 0.5

Poisson's ratio, Jl 0.3

Saturated bulk unit weight, Ysat 17.3 kN/mJ

Vertical effective stress, (Iv' 7.5z kN/m J

where z = the depth from original ground surface

Horizontal effective stress, (Ih ' (Iv' K"oC

Overconsolidated coefficient of earth pressure at rest, K"oC K"NC OCR052J6

Normally consolidated coefficient of earth pressure at rest K"NC= 0.63

Overconsolidation ratio, OCR I + 3.3331z

Pore water pressure, Pt 9.8z kN/m2

Table 9.7: Material properties for the excavation problem

where rp' is the angle of shearing resistance.

For all three solution methods
analyses have been performed using
I, 2, 3, 6, 12, 30, 60, 120 and 600
equally sized increments to excavate
to a depth of 3m. In addition, a
tangent stiffness analysis with 1200" 4m

increments has been completed. An '
elastic stiffness matrix was used for
the MNR analyses, see Section 9.6.
Results from the analyses with six
increments and above are presented in
Figure 9.34 as plots of vertical
displacement, U, at the crest of the excavation, versus depth ofexcavation, d. The
results from the MNR and visco-plastic analyses are not sensitive to increment size
and both methods produce results which plot very near to the solid curve indicated
on this figure. Results from the tangent stiffness analyses with 600 and 1200

SOLUTION TYPE NUMBER OF CPU TIME COLLAPSE
INCREMENTS sec LOAD

kN

MNR 10 15345 2.82

Tangent stiffness 500 52609 3.01

Tangent stiffness 1000 111780 2.82

Visco-plastic 25 70957 2.60

Visco-plastic 500 1404136 2.75
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9.7.4 Excavation problem
A 3m deep undrained excavation in modified Cam clay soil has been analysed. The
excavation was assumed to be very long and consequently plane strain conditions
were adopted. The soil properties are shown in Table 9.7, the geometry of the
problem in Figure 9.32 and the finite element mesh in Figure 9.33. The OCR
profile was obtained by assuming the soil had undergone 25 kPa vertical effective

by the visco-plastic approach. The CPU times and results for selected analyses are
shown in Table 9.6.

Table 9.6: CPU times and failure loads for the footing analyses

It can be shown that, for the material properties and initial stress conditions
adopted, the undrained strength of the soil, S,,, varies linearly with depth below the
ground surface (see Figure 9.27 and Appendix VHA). Davies and Booker (1973)
provide approximate solutions for the bearing capacity of footings on soils with
such an undrained strength profile. For the present situation their charts give a
collapse load of 1.91 kN/m and it can be seen (Figure 9.31) that all the finite
element predictions exceed this value. This occurs because the analytical failure
zone is very localised near the soil surface. Further analyses have been carried out
using a refined mesh in which the thickness ofthe elements immediately below the
footing has been reduced from O.lm to 0.03m. The MNR analyses with this mesh
predict an ultimate load of 2.1 kN/m. Clearly, if the mesh is further refined the
Davies and Booker solution will be recovered. For this refined mesh even smaller
applied displacement increment sizes were required for the tangent stiffness
analyses to obtain an accurate solution. Analyses with an increment size of
0.125mm displacement (equivalent to the analysis with 200 increments described
above) or greater, yielded negative values ofp' in the elements below the comer
of the footing and therefore these analyses could not be completed. The negative
p I values occur because the amplitude of the oscillations in the stress path about
the critical state line, see Figure 9.30, is further increased due to the refined mesh.
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Figure 9.36: Error in excavation
analysis against CPU time

Figure 9.37: Geometry and finite
element mesh for pile problem

Figure 9.38: Mobilised pile shaft
resistance against pile displacement

9.7.5 Pile problem
The problem of the mobilisation of
the stresses in the soil imlnediately ~ 0

e....-'1
adjacent to a pile shaft during drained 8
loading is considered. The behaviour J'j ~
of a segment of an incompressible 2m
diameter pile, well away from the
influence of the soil surface and pile
tip, is examined (see Figure 9.37).
This boundary value problem has
been discussed in detail by Potts and
Martins (1982) and the alternative
methods of representing the problem
in finite element analysis have been
explored by Gens and Potts (1984).
The soil is assumed to be normally
consolidated, with initial stresses
a,,'=ah '=200 kPa. The parameters for
the modified Cam clay model are the
same as used for the triaxial test and

bl d . . 'C Pile
footing pro em an are given 111 ~1!!mIrr1lllIII:i:i1I:::I:III==;=r::1=========Kt
Table 9.3. Axi-symmetric conditions .2.."'.
are applicable to this problem and the
finite element mesh is shown in
Figure 9.37. Loading of the pile has
been simulated in the finite element
analyses by imposing a series of
equal sized increments of vertical
displacement to the pile shaft to give
a total displacement of 100mm. The
soil was assumed to behave in a
drained manner throughout.

Results from analyses using all
three solution' strategies and with
varying numbers of increments are
presented in Figure 9.38, in the form
of mobilised shaft resistance, T,

against vertical pile displacement.
The MNR analyses with 20
increments and above plot as a single
curve on this figure and are represented by the upper solid line. MNR analyses with
smaller numbers of increments (i.e. with larger applied displacement increments)
showed minor differences with the above results between pile displacements of
25mm and 55mm. The MNR analysis with 5 increments is shown by the lower

- -.. - Tangent stiffness
- - Visco-plastic
-+- MNR

_'_m_

I 2
Depth of excavation, d (m)

T t t 'ffn (T) MNR 6 600---- angen S.I ess. {vp 6 600
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Figure 9.34: Settlement of
excavation crest against the depth

of excavation

Figure 9.35: Settlement of
excavation crest against number of

increments

(9.31)
8-8Error = correct

°correct

increments also plot near to this
curve. The tangent stiffness results
are strongly influenced by the
number of increments and the 120
increment analysis had displacements
over 2.5 times larger than that of the
6 increment analysis.

The final value of the vertical Figure 9.33: Finite element mesh for
displacement, U, (i.e. at the end of excavation problem
excavation) is plotted against number
of increments used in the analysis in
Figure 9.35. As the number of
increments increases, all methods S

~e~ ~predict a displacement, U, -
approaching 63.3mm and therefore ~. 0

this value may be taken as being El ""
"'correct'. It is evident from Figure Jl

9.35 that for any increment size the .@" 0
"ON

MNR and visco-plastic analyses ]
'Bproduce more accurate results than 'Jt

the tangent stiffness analysis. The
latter approach requires in excess of
100 increments before acceptable
results are obtained.

The accuracy ofeach analysis can
be expressed by the error in the
prediction of the final value of the
displacement, U. This error can be
written as:

where 6 is the predicted value of the
displacement U at the end of
excavation and 15correct is the correct
value which equals 63.3mm. Values
of this error are plotted against CPU
time for all analyses in Figure 9.36.
As expected, the error reduces as the
CPU time increases for all three
solution methods. The tangent stiffness method takes substantially more CPU time
for a similar solution accuracy. For example, the 120 increment tangent stiffness
analysis gives results which are similar to the 6 increment MNR analysis, but takes
approximately 4 times as long to perform.
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Figure 9.40: Error in pile analysis
against CPU time

expensive in terms of CPU time
consumed. As the MNR analyses
give accurate solutions with small 0

error values, typically less than 0.2%, ~ N

the results plot on the CPU time axis "
,~ 0in this figure. These CPU times .....

compare favourably with those ofthe
tangent stiffness analyses.

The relatively bad performance
of the visco-plastic strategy should
be noted. This contrasts to its better
performance for the footing and
excavation problems. However, both
these problems involved undrained soil behaviour, whereas for the pile problem
the soil is assumed to remain drained. The results from the triaxial tests also
indicate that the relative performance of the visco-plastic strategy is worse for
drained than undrained tests, see Figures 9.25 and 9.26. It may be concluded that
for the analyses with the modified Cam clay model the visco-plastic approach is
likely to be better behaved and less sensitive to the size of the solution increment
when soil behaviour is undrained than when the soil is drained.

9.7.6 Comments
Results from the tangent stiffness analyses of both the idealised triaxial tests and
the more complex boundary value problems are strongly dependent on increment
size. The error associated with the tangent stiffness analyses usually results in
unconservative predictions offailure loads and displacements in most geotechnical
problems. For the footing problem large over predictions of failure loads are
obtained, unless a very large number of increments (;;> 1000) are employed.
Inaccurate analyses based on too large an increment size produced ostensible
plausible load displacement curves. Analytical solutions are not available for most
problems requiring a finite element analysis. Therefore it is difficult to judge
whether a tangent stiffness analysis is accurate on the basis of its results. Several
analyses must be carried out using different increment sizes to establish the likely
accuracy ofany predictions. This could be a very costly exercise, especially ifthere
was little experience in the problem being analysed and no indication of the
optimum increment size.

Results from the visco-plastic analyses are also dependent on increment size.
For boundary value problems involving undrained soil behaviour these analyses
were more accurate then tangent stiffness analyses with the same increment size.
However, if soil behaviour was drained, visco-plastic analyses were only accurate
ifmany small solution increments were used. In general, the visco-plastic analyses
used more computer resources than both the tangent stiffness and MNR
approaches. For the triaxial tests, footing and pile problems, the visco-plastic

(9.32)

Tangent stiffness
Visco-plastic
MNR

--k-

IV

f
E

T -103.6
rror=----

103.6

where Tj for the 500 increment MNR analysis equals 103.6 kPa. This error is
plotted against CPU time in Figure 9.40 for all analyses. The results clearly show
that as well as being the least accurate, the visco-plastic analyses are also the most

solid line in the figure. The spread ofresults between the MNR analyses with 5 and
20 increments is therefore given by the shaded band. Because this band is small it
may be concluded that, as with the triaxial tests and footing and excavation
problems, the MNR results are insensitive to increment size.

Results from some of the tangent stiffness and visco-plastic analyses are also
shown on Figure 9.38. lfsmall increments of applied displacement (large number
of increments) are used, both these solution strategies give results which approach
those of the MNR analyses. However, analyses using both these approaches are
sensitive to increment size and analyses with larger increments of applied
displacement are inaccurate. The tangent stiffness over predicts and the visco­
plastic under predicts the mobilised shaft resistance for any given pile
displacement. The visco-plastic analyses predict that the mobilised pile shaft
resistance increases to a peak value and then slowly reduces with further pile
displacement. This behaviour is not predicted by the MNR analyses which show
that once the maximum shaft resistance is mobilised it remains constant. For the
tangent stiffness analyses with less than 100 increments the mobilised pile shaft
resistance continually climbs and no peak value is indicated.

Values of the mobilised pile shaft
resistance, Tj' at a pile displacement of
100mm (the end point on the curves ~

in Figure 9.38) are plotted against ~ ~

number of increments used in Figure c ~
'0 ~~A. _

9.39. As noted above, the MNR ~ § --It------l_.o-----...r~----~-...O------!.f'-:.:--~.-,-o=1-ll="''''''

results are insensitive to increment ~ -.-
~size, with Tj only increasing from ~;,:; .._

102.44 kPa to 103.57 kPa as the 0..

number of increments increases from
1 to 500. The results from the tangent
stiffness and visco-plastic analyses
are much more dependent on the size
ofthe applied displacement increment
and over 100 increments for the
tangent stiffness and 500 increments for the visco-plastic analyses are needed to
give reasonably accurate results.

As both the tangent stiffness and visco-plastic solutions approach those of the
MNR when the applied displacement increment reduces, the 500 increment MNR
analysis may be assumed 'correct'. The error in any analysis may therefore be
expressed as:
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analyses under predicted failure loads if insufficient increments were used and
were therefore conservative in this context.

For both the tangent stiffness and visco-plastic analyses the number of
increments to obtain an accurate solution is problem dependent. For example, for
the footing problem the tangent stiffness approach required over 1000 increments
and the visco-plastic method over 500 increments, whereas for the excavation
problem the former required only 100 and the later 10 increments. Close inspection
of the results from the visco-plastic and tangent stiffness analyses indicated that a
major reason for their poor performance was their failure to satisfy the constitutive
laws. This problem is largely eliminated in the MNR approach, where a much
tighter constraint on the constitutive conditions is enforced.

The results from the MNR analyses are accurate and essentially independent
of increment size. For the boundary value problems considered, the tangent
stiffness method required considerably more CPU time than the MNR method to
obtain results of similar accuracy, e.g. over seven times more for the foundation
problem and over three and a half times more for the excavation problem. Similar
comparisons can be found between the MNR and visco-plastic solutions. Thus not
withstanding the potentially very large computer resources required to find the
optimum tangent stiffness or visco-plastic increment size, the tangent stiffness or
visco-plastic method with an optimum increment size is still likely to require more
computer resources than an MNR analysis of the same accuracy. Though it may
be possible to obtain tangent stiffness or visco-plastic results using less computer
resources than with the MNR approach, this is usually at the expense of the
accuracy of the results. Alternatively, for a given amount of computing resources,
a MNR analysis produces a more accurate solution than either the tangent stiffness
or visco-plastic approaches.

The study has shown that the MNR method appears to be the most efficient
solution strategy for obtaining an accurate solution to problems using critical state
type constitutive models for soil behaviour. The large errors in the results from the
tangent stiffness and visco-plastic algorithms in the present study emphasise the
importance of checking the sensitivity of the results of any finite element analysis
to increment size.

9.8 Summary
1. For finite element analysis involving nonlinearmaterial behaviour, the loading

history must be divided into a number of solution increments and a separate
finite element solution obtained for each increment. The final solution is the
sum of the incremental solutions.

2. Even though the analysis is split into increments, care must still be taken
because the incremental global stiffness matrix is not constant but varies
during the increment. There is no universally accepted way ofdealing with this
and therefore several different algorithms exist.
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3. The tangent stiffness, visco-plastic and modified Newton-Raphson (MNR)
algorithms have been considered in this chapter.

4. It has been shown that for all nonlinear materials the tangent stiffness approach
can lead to large errors unless a large number of small solution increments are
used. Particular care must be taken ifthere is a change between loading and
unloading. Large errors occur if the constitutive model is of the critical state
type.

5. The visco-plastic algorithm works well for simple linear elastic perfectly
plastic models of the Tresca and Mohr-Coulomb type. However, for the more
complex hardening/softening critical state type models large errors can arise.
These errors are particularly severe in drained boundary value problems.

6. The errors in both the tangent stiffness and visco-plastic solutions have been
shown to arise because the plastic potential derivatives are evaluated at illegal
stress states. This is theoretically incorrect. It also leads to the scenario where
different pieces of software, which purport to use the same basic equations for
a particular constitutive model, can give very different solutions depending on
the finer details of the models implementation.

7. The MNR method has been shown to be free ofthe errors involved in the other
two methods. It produces solutions which are both accurate and reasonably
insensitive to the size of the solution increments.

8. The success of the MNR method depends very much on the accuracy of the
stress point algorithm. It is essential that this algorithm does not use
information evaluated in illegal stress space to formulate the final solution.

9. Two classes ofstress point algorithm were described, namely substepping and
return algorithms. Ofthese two, the substepping algorithms appear to be more
robust, user friendly and accurate.

10. Any finite element solutions presented in the remainder of this volume and
Volume 2 of this book are based on the MNR method, with a substepping
stress point algorithm.

Appendix IX.1 : Substepping stress point algorithm
IX.1.1 Introduction
As noted in Section 9.6, a key step in the modified Newton-Raphson solution
strategy is the determination of the residual load vector for each iteration. To
calculate this load vector it is necessary to determine the accumulated stress state
at the end of the previous iteration. This is done by calculating the incremental
strains at each integration point from the incremental displacements determined at
the end ofthe previous iteration, and then integrating the constitutive model along
these strain paths to obtain an estimate ofthe stress changes. These stress changes
are then added to the accumulated stresses associated with the beginning of the
increment. As discussed in Section 9.6, several stress point algorithms are available
for integrating the constitutive model along the incremental strain paths. In this
appendix a substepping algorithm is described. For presentation purposes a linear
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elastic strain hardening/softening plastic constitutive model is assumed. However,
a similar procedure can be applied ifthe elastic behaviour is nonlinear and/or if the
plasticity is work hardening/softening.

However, this is rarely the case, see Chapters 7 and 8, and consequently a more
refined estimate for a is required, which involves some form of iterative scheme.
This can be based on a Newton-Raphson or secant iteration approach. The latter
approach can be expressed by the following equation:

p'

(IX.S)

(IX.6)

(IX.7)

B

F({cro},{k})=O

~ _~.."o::-} __

{fl a e
} = a {fl a}

{flee} = a{fle}

_ _ F({o;)+aj fla},{k}) ( _ )a i +1 - a j a j a j _
1F( {o;) + a j fl a}, {k}) - F({o;) + a j _ 1 fl a}, {k})

where ao = 0 and a l = 1. The Authors have found such an algorithm, albeit in a
slightly modified form, to be both accurate and efficient.

Ambiguity can arise if the situation
exists where the stress state at the J

beginning of the increment is at yield,
i.e. F( {u,J, {k} )=0, and atthe end ofthe
increment exceeds yield, i.e.
F({uo+Llu},{k}»O. Two cases are
possible and these are shown
schematically in Figures IX.2 and IX.3.
In the first case, Figure IX.2, behaviour
is elasto-plastic over the entire stress

Figure IX.2: Initial stress state at
increment and a=O. In the second case,

yield, a = 0
Figure IX.3, the stress state initially
unloads, becoming elastic, i.e. moves
inside the yield surface. With further J

straining it becomes elasto-plastic and
ex is therefore not zero. To distinguish
between these two cases it is necessary
to calculate:

p'
If this quantity is positive, the case Figure IX.3: Initial stress state at
shown in Figure IX.2 exists and a = O.

yield, a;" 0
If it is negative, the case shown in
Figure IX.3 exists and care must be exercised to ensure that the correct value of ex
is obtained. This can be done by identifying a stress state inside the yield surface,
somewhere along the elastic path AB, and using this and the stress state at the end
of the increment as the initial conditions for the secant iteration algorithm, see
Equation (IX.S).

Having determined a, the purely elastic portions of the stress and strain
increments can be evaluated as:

8F({a,,}, {k}) lW

8a

p'

(IX. 1)

(IX.2)

(IX.3)

(IXA)

B

F( {cr},{k}) = 0

~

{fl a} = [D]{fl e}

These stress increments are then added to the accumulated stresses at the beginning
of the increment, {uo }, to obtain an estimate of the accumulated stress state, {u},
at the end:

The yield function is now checked
to see whether or not this stress state is J

acceptable. If F( {u}, {k} ),,;0 behaviour
is elastic and the elastic stress
increment {Llu} is correct. The next
integration point can then be
considered. However, if F({u},{k}»O
plastic yielding is indicated and {Llu} is
incorrect. A typical situation in which
the stress state is elastic at the
beginning of the increment, i.e. Figure IX. 1: Change from elastic to
F({ tTo }, {k} )<0, but violates yield at the elasto-plastic behaviour
end, is shown schematically in Figure
IX. I. It is then necessary to determine the portion of the stress increment {Llu}
(and therefore {Lle}) that lies within the yield surface (i.e. the part AB). This can
be expressed mathematically as finding the value of a that satisfies the following
equation:

IX.1.2 Overview
Having determined the incremental strains, {Lle}, for each integration point, the
objective of the stress point algorithm is to evaluate the associated incremental
stresses. Initially, the material is assumed to behave elastically and estimates ofthe
incremental stresses are determined by integrating the elastic constitutive matrix
[D] along the incremental strains for each integration point. As linear elasticity is
assumed, the matrix [D] is constant and the stress increments are given by:

where a is a scalar. A first guess for a may be obtained by a simple linear
interpolation of the yield function values F( {u}, {k}), which gives:

F( {ao+ a fl a},{k})
a = --:----:.-'---''---:--:-'----,-,----,---,-~

F( {ao+ a fl a}, {k}) - F( {ao}, {k})

This is theoretically correct if F({u},{k}) is a linear function of stress.
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The portion of the strain increment that remains, i.e. (1-a){t..e}, is associated with
elasto-plastic behaviour and it is therefore necessary to integrate the elasto-plastic
constitutive matrix [Dep] over this part of the strain increment. For most
constitutive models this cannot be performed analytically and some form of
approximation is required. In the substepping approach the strain increment
(1-a){t..e} is split into smaller substeps and various simplifications introduced.
The size of the substeps can be controlled by estimating the error involved in the
simplifications. Usually an Euler, modified Euler or Runge-Kutta scheme is used.
As an example, a modified Euler scheme with error control is described below.

IX.1.3 Modified Euler integration scheme with error control
The objective of this approach is to integrate the elasto-plastic constitutive matrix
[Dep] over the elasto-plastic strain step (1-a){t..e}. The scheme involves splitting
the strain step (1-a){t..e} into a series of smaller substeps, t..T(1-a){t..e} (where
O<t..T<; 1), and using a modified Euler approximation for each such substep. The
size of each substep is determined by estimating the error in the stress changes and
comparing this with a user-defined tolerance, SSTOL. The scheme described below
is based on that presented by Sloan (1987) and consists of the following essential
steps.

(lX.16)

(lX.17)

(lX.18)

(lX.23)

(lX.22)

(IX.24)t..~ew = jJt..T

{t..o-} = ~({t..o-I}+{t..o-Z})

{t..sP
} = ~({t..&('}+{t..sn)

{ilk} = ~({t..kl}+{t..kz})

{t..o-z} = [Dep({o-+t..o-1},{k+ilk1})] {t..s,.,.}

{t..sn = A({o-+t..o-l},{k+ilkJ,{t..S,,})ap({o-+~;I},{m2})

{t..kz} = {t..k({t..&f})}

It is now possible to obtain a more accurate modified Euler estimate ofthe
changes in stress, plastic strain and hardening/softening parameters as:

(IX.I9)

(lX.20)

(lX.2I)

For a given substep strain increment {t..ess } , the Euler estimates (i.e.
Equations (IX.l3) to (IX. IS)) have a local truncation error of order O(t..T2),

whereas the local error in the modified Euler estimates (i.e. Equations
(lX.19) to (Ix.2 I)) is ofthe order O(t..TJ

). Thus subtracting Equation (IX.I3)
from Equation (IX.I9) gives an estimate ofthe local error in stress as:

The relative error in stress for the substep can then be expressed as:

and this can be checked against a user defined tolerance SSTOL, which is
typically in the range of 10-2 to 10-5

. If R > SSTOL then the error in stress is
unacceptable and the substep size given by t..Tmust be reduced. If the new
substep size is expressed as:

where fJ is a scalar and the local error estimate is O(t..T 2
), then the error

estimate Enew , associated with t..Tnew , can be approximated as:

iv)

v)

(IX. 12)

(IX.8)

(IX.9)

(IX.IO)

(IX. 11)

{O"} = {O"()} + {t.. O"e}

{~ c,} = (1- a) {~c}

T = 0

~T = 1

Initialise parameters:

The procedure begins by assuming that only one substep is necessary.
Consequently t..T is set to unity.
Set the substep strain equal to:

i)

ii)

and calculate a first estimate ofthe associated stress and hardening/softening
parameter changes using a first order Euler approximation, namely:

(lX.2S)

{t..0"1} = [Dep({O"},{k})] {t..6"s,}

{t..s('} = A({o-},{k},{t..s,J) ap({~}~{ml})

{t..k]} = {t..k({t..&f})}

(IX.13)

(lX.I4)

(lX.IS)

Because it is required that:

(lX.26)

an estimate for fJ can then be found, by assuming {t../Tnew}" {t../T}, as:
iii) Using the above quantities the stresses and hardening/softening parameters

at the end of the substep are {/T}+{t../T1} and {k}+{t..k1} respectively. These
are then used to calculate a second estimate for the changes in stress and
hardening/softening parameters over the substep, namely:

/3= [SS~OLr (lX.27)
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and steps (ii) onwards repeated.
The above procedure stops when Tbecomes equal to 1.0.

and the next substep can be applied. Equation (IX.28) is again used to
calculate the value of 13 which is then substituted in Equation (IX.24) to
obtain the size of the next substep. As before, it is wise to restrict 13 to be
greater than 0.1 and in addition to make sure it does not exceed 2.0, i.e.
0.1 :0:13:0:2.0. Also, it is important to check that T+f:,.Tnew does not exceed 1.0.
If it does, then f:,.Tnew is set so that T+f:,.Tnew =1.0. f:,.T is then updated as:

As this procedure is approximate, a conservative choice for 13 is:

y,
fJ = 0.8[ SS~OL ] 2 (IX.28)

Adopting the factor of 0.8 reduces the number of substeps that are rejected
during the course of the integration process. In addition, it is also wise to
limit the range ofextrapolation implied by the above procedure by restricting
13 to be greater than O. I. Having defined 13, a new estimate ofthe substep size
b.Tnew can be calculated from Equation (IX.24) and the process from step (ii)
onward repeated with f:,.T=f:,.Tnew• IfR :0: SSTOL, the substep is acceptable and
the process moves to the next step.
The accumulated stresses, plastic strains and hardening/softening parameters
are now updated.

IX.1.4 Runge-Kutta integration scheme
In Section IX.l.3 a modified Euler scheme is described for integrating the elasto­
plastic constitutive matrix. This method is based on first and second order formulae
and varies the size ofeach substep in an effort to control the error in the integration
process. Higher order schemes can be used instead of the modified Euler scheme.
Sloan (1987) suggests a Runge-Kutta scheme which employs fourth and fifth order
formulae. While this produces a more accurate solution for integration over a fixed
sized substep as compared to the modified Euler scheme, it requires six evaluations
of the [Dep

] matrix and hardening/softening relationships for each substep as
compared to the two required by the modified Euler scheme. Consequently, for
each substep it is computationally more costly than the modified Euler scheme.
However, for a specific substep tolerance, SSTOL, the Runge-Kutta scheme allows
larger, and therefore requires fewer, substeps.

The Authors have programmed both the modified Euler and Runge-Kutta
schemes into their software and found that for a reasonable value of the substep
tolerance, SSTOL = 10.4, the modified Euler scheme is usually the most efficient
in terms of computer resources required. However, for some boundary value
problems and for highly nonlinear constitutive models the Runge-Kutta scheme is
more efficient. The Runge-Kutta scheme also becomes more efficient for more
stringent substep tolerances (i.e. SSTOL<10-4).

IX.1.5 Correcting for yield surface drift in elasto-plastic finite
element analysis

As noted above in Section IX.1.3, stage (vii), if the tolerance used to control the
size of the substeps (SSTOL) is too large compared to the yield function tolerance
(YTOL), the combination ofthe stresses given by Equation (IX.29) and hardening/
softening parameters given by Equation (Ix.31) after each substep may not satisfy
the yield condition IF( {(J},{k}) I :o:YTOL. This phenomenon is often referred to as
yield surface drift and, because it can lead to a cumulative error, must be corrected.
Several ways of achieving this correction have be~n proposed in the literature and
these are discussed and compared by Potts and Gens (1985). Potts and Gens show
that many ofthese methods can lead to substantial errors and they recommend an
alternative approach which is both consistent and accurate. This method is
described below.

The problem under consideration is illustrated schematically in Figure IXA. A
sample ofstrain hardening/softening elasto-plastic material is subjected to loading
which causes plastic deformation. The state of stress at an integration point is
expressed by {(J} and the associated hardening/softening parameters by {k}. At the
beginning ofa substep the stress state is represented by point A in Figure IXA and
it lies on the yield surface given by F( {(J}, {k} )=0. After the substep the stress state
becomes {(J+f:,.(J} and is represented by point B in Figure IXA. As the
hardening/softening parameters also change, i.e. {f:,.k}, the yield surface moves
from F( {(J}, {k} )=0 to F( {(J+f:,.(J}, {k+f:,.k} )=0. Owing to the tendency to drift the

(IX.29)

(IX.30)

(IX.3 I)

(IX.32)

(IX.33)

T= T+f:,.T

{k} = {k} + {f:,.k}

{u} = {u} + {f:,. u}

{eP} = {eP} + {f:,. eP}

Because of the approximations made in the above procedure, it is possible
that the stress state, given by Equation (IX.29), combined with the
hardening/softening parameters, given by Equation (IX.3 I), violates the yield
condition IF( {(J}, {k}) I :0: YTOL, where YTOL is again a user defined
tolerance. Whether or not this violation occurs depends on the nature of the
constitutive model and the combination of the values ofSSTOL and YTOL.
If it does occur, then the stresses, plastic strains and hardening/softening
parameters must be adjusted to satisfy the yield condition. An accurate
method for dealing with this is described in the following section of this
appendix. This is the approach adopted by the Authors. Alternatively, the
problem could be avoided by reducing the size of the substep even further
and repeating stage (ii) onward. This procedure is then repeated until the
yield criterion is satisfied.
Once the yield condition is satisfied, T can be updated, i.e.

vi)

vii)

viii)

ix)
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F( {od, {kcJ) = F({ CTB - i\. [D] ape{~~ {m}) },{kB + i\. L'.k (ap( {~~{m})) }j = 0

(IXo4I)

then expanding as a Taylor's series and neglecting terms in A2 and above, gives,
after some rearrangement:

As the corrected stress state must satisfy the yield condition:

i\. = F«(CTB),{kB })

{ aF«(;~{kJ)r[D]{ ape{~~{mJ) } - {aF( {~l' {k})r{L'.k( ap({~~{mJ)) }

(IXo42)

To evaluate A, values of3F( {u}, {k} )/Cju, 3P({U}, {m} )/3u and 3F( {u},{k} )/3k
are required. Strictly speaking, these should be evaluated at the corrected stress
state {ud, {kd. However, as this is the stress state that is being pursued, it is
unknown until A is determined. Consequently, an implicit situation arises which
is similar to that associated with a return stress point algorithm, see Section 9.6.2.3
and Appendix IX.2. Although solutions to this implicit problem are available, see
Appendix IX.2, it is usually sufficientto evaluate aF( {u}, {k} )/3u, 3P( {u}, {m} )/3u
and 3F( {u}, {k} )/3k either at the beginning (point A) or at the end (point B) of the
substep, or to use some weighted average of these values. In most finite element
analyses the substepping tolerance (SSTOL) is usually set sufficiently small to
prevent yield surface drift for the majority of the substeps for most integration
points. If drift does occur, the deviation from the yield surface (i.e. point B) is
usually small and the Authors' experience indicates that it makes little difference
which of the above options is chosen. However, it should be noted that if an
inadequate substep tolerance (SSTOL) is set, the deviation from the yield surface
at the end of the substep could be large and the stress state could be well into
illegal stress space. If this occurs and the option of evaluating 3F( {u}, {k} )/3u,
3P( {u}, {m D/ad' and 3F( {u}, {k})/ak at the end ofthe substep (i.e. point B) is used,
then substantial errors could occur and all of the problems identified in Sections
904, 9.5 and 9.7 are relevant. It is therefore advisable to evaluate the above
quantities at the beginning of the substep (i.e. point A).

Having evaluated A, the corrected stresses {ud, plastic strains {ecP } and
hardening/softening parameters {kd may be evaluated from Equations (IX.37) to
(IX.39). It should be noted that the value of A is determined by neglecting the N
and higher terms in a Taylor's expansion. If the corrections are small, this
procedure may be of sufficient accuracy. However, in general it is necessary to
check that the combination of the corrected stress state {ud, and
hardening/softening parameters {kd does in fact satisfies the yield condition

(IX.38)

(IX.39)

p'

(IX.37)

(IX.36)

(IX.34)

F({cr},{k})=O

B

Figure 1X.4: Yield surface drift

{£P} = {£P} + i\. {ap({CT},{m})}
c B aCT

where:

As there are changes to the plastic strains, there are also changes to the strain
hardening/softening parameters {k}:

where A is a scalar quantity. Combining Equations (IX.35) and (IX.36) gives:

predicted stress state represented by J

point B (i.e. {u+L'.u}) does not
necessarily lie on this new yield
surface, as shown in Figure IXo4. The
problem at hand is to decide in what
manner the stresses and hardening/
softening parameters at the end of the
substep (i.e. point B) should be
corrected so that the yield function is
satisfied.

In the following, the stress states, plastic strains and hardening/softening
parameters at the beginning (point A) and end (point B) ofthe substep are referred
to as {uA }, {eA"}, {kA } and {uB }, {el}' {kB } respectively. In addition {ud, {el}
and {kd represent the values of the stresses, plastic strains and hardening
parameters after correction.

If the stresses are corrected from {uB } to {uc}, then the stress correction
{uB } - {ud invokes an associated change in the elastic strains, given by:

Assuming no change in the substep total strains during the correction process
implies that the elastic strain changes must be balanced by an equal and opposite
change in the plastic strains. Therefore,

{L'.sP} = _{L'.se} = -[Dr1({CTd -{CTB }) (IX.35)

The plastic strain increments are proportional to the gradients of the plastic
potential P({U}, {m} )=0:
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algorithm to transfer from this stress state back to the yield surface. The basic steps
in a return algorithm are as follows.

i) Obtain an elastic predictor, {~a}tr, for the incremental stresses associated with
the incremental strains, {~e}, assuming purely elastic behaviour:

IX.2.3 Return algorithm proposed by Ortiz and Simo (1986)
The technique used by Ortiz and Simo (1986), to obtain the amount of plastic
straining and stress relaxation required to satisfy the yield condition, linearises the
plastic potential, P({a},{m}), and yield function, F({a},{k}), gradients at any
stress predictor ({aY' for the ph prediction) that exceeds yield, to obtain the

(IX.44)

(IX.45)

{O"t } = {O"o} + [D]({~ "'} - {~ ",P } )

{kI } {kJ+{~k}({O"I},{L1"'p})

{O"t}tr = {O"o} +[D]{~",} (IX.43)

where [D] is the elastic constitutive matrix and {a(,} are the accumulated
stresses at the beginning ofthe increment. As the superscript 'tr' implies, {a\} lr

refers to a trial solution.
ii) Ifthe trial solution does not exceed yield (i.e. F( {at} lr, {k})~O), this stress state

is accepted and there are neither any incremental plastic strains ({~eI)}=O) nor
any incremental changes in the hardening parameters ({~k}=O).

iii) If yield is exceeded (i.e. F( {a\} lr, {k} »0), plastic straining occurs. Plastic
strains ({~e')}) are evaluated such that the resulting stresses, {af}={ ao}+{~af}'
and hardening parameters, {kf}={ko}+{~kf}' satisfy the yield criterion
F( {af } , {kf } )=0. These stresses and hardening parameters are calculated from:

The important criterion in step (iii) is that the plastic strains, {~eP}, are based
on the stress conditions corresponding to {af}' Clearly, as {at} depends on {~eP},

see Equation (IX.45), an iterative procedure is required. The objective of the
iterative sub-algorithm is to ensure that, on convergence, the constitutive behaviour
is satisfied, albeit with the assumption that the plastic strains over the increment are
based on the gradients of the plastic potential at the end of the increment. Many
different iterative sub-algorithms have been proposed in the literature. In view of
the Authors' previous findings, see Sections 9.4,9.5, and 9.7, it is important that
the final converged solution does not depend on quantities evaluated in illegal
stress space. In this respect some ofthe earlier return algorithms break this rule and
are therefore inaccurate. An example of such an algorithm is that presented by
Ortiz and Sim~ (1986) and this is described in the next section of this appendix, in
order to demonstrate the likely magnitude of the errors involved. The algorithm
proposed by Borja and Lee (1990) for integrating a simple form ofmodified Cam
clay is then presented. This algorithm does not suffer from errors related to
evaluation of quantities in illegal stress space.

Appendix IX.2: Return stress point algorithm

IX.2.1 Introduction
As noted in Section 9.6 and Appendix IX.I, a key step in the modified Newton­
Raphson solution procedure is the integration ofthe constitutive model along the
incremental strains to obtain the associated incremental stresses. As discussed in
Section 9.6, several stress point algorithms are available for performing this task
and two of the most accurate are the substepping and return algorithms. The
substepping approach is described in Appendix IX.I and the return algorithm
approach is described in this appendix.

IX.2.2 Overview
In this approach, the plastic strains over the increment are calculated from the
stress conditions corresponding to the end ofthe increment, see Section 9.6. The
complication is that these stress conditions are not known, hence the implicit nature
of the scheme. Most formulations involve some form of elastic predictor to give
a first estimate of the stress changes, coupled with a sophisticated iterative sub-

F( {od, {kd )=0 to some close tolerance (YTOL). If this is not so, the correction
procedure must be repeated using an improved estimate of A. This improved
estimate can often be based on a simple linear scaling rule using the values of
F({aA},{kA}), F({aB},{kB}) and F({ad,{kd). An iterative procedure is then
involved in which A is continually updated until the corrected conditions {ad,
{eel'} and {kd satisfy the yield condition IF({ad, {ke}) I~ YTOL.

IX.1.6 Nonlinear elastic behaviour
In the above discussion it is assumed that purely elastic behaviour is linear and that
the elastic constitutive matrix [D] is constant. If this is not the case and the
elasticity is nonlinear, perhaps following one of the models described in Chapters
5, 7 and 8, the procedure described in Section IX. 1.2 must be modified. In
particular the initial stage of the calculation process, in which the elastic
constitutive matrix is integrated along the incremental strains, must be changed to
account for the nonlinear [D] matrix. This can be done by adopting the modified
Euler substepping algorithm described in Section IX.I.3, using the nonlinear elastic
[D] matrix rather than the elasto-plastic matrix [Del']. A check for yielding can then
be made after each substep and, if yield occurs, the secant algorithm (or its
equivalent) given by Equation (IX.5) can be used to evaluate the portion of the
substep which is purely elastic. This, with the number and size of the previous
substeps, allows (X to be evaluated. The remaining part of the incremental strains,
(1-(X){~e}, which involves elasto-plastic behaviour, can then be dealt with in a
similar fashion to that described in Section IX.I.3. However, when evaluating [Del']
the correct nonlinear elastic matrix [D] must be accounted for.
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From Equation (IXA4) the associated stress changes are:
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Figure IX. 6: Predictions for a
drained triaxial test

~400

~
'"
~
.~ 200...
.~
[;
o 0 f----....-'A------,;~

10 20
Axial strain (%)

-- Analytical solution
----- Simo & Ortiz

Using Equations (IXA7), (IXA8) and (IX. 50) the next predictions (i+ Iyh for
stresses, {O"i+l}tf, and hardening parameters, {ki+d, can be calculated. These are
then used to evaluate the new value of the yield function F( {O"j+dtr,{kj+d). Due to
the non linear nature of the constitutive model, the value ofF( {O"i+d tf, {ki+ I }) need
not, in general, equal zero. If F( {0";+1 }'r, {ki+d) is equal to zero (within a specified
tolerance) the prediction is accepted. If it is not, this prediction is used to obtain the
next prediction using the above procedure, which is repeated until the predicted
stress state satisfies the yield condition.

It should be noted that with this
algorithm the final result involves a
series of evaluations for the yield and
plastic potential derivatives in illegal
stress space. To indicate the errors
that can result from such a procedure,
the undrained and drained triaxial
tests described in Section 9.7.2 are
analysed with the modified Newton­
Raphson solution strategy, using the :;;.
above return algorithm. The results of :s
the drained tests are presented as plots g 2
of volumetric strain and deviatoric ~

stress versus axial strain, in Figure .~
IX.6. The label associated with each ~
line in these plots indicates the ~ 4
magnitude of axial strain applied in
each increment of that analysis. Also
shown in the figure for comparison
purposes are the analytical solutions.

Values of deviatoric stress, q, and
volumetric strain at failure (20% axial strain) and central processor unit times
(CPU) are shown in Table IX.l for selected analyses. The numbers in parentheses
are the errors expressed as a percentage of the analytical solution. The size of the
axial strain increment used is indicated after the analysis type. The results from
these analyses may be compared with those given in Figures 9.21,9.22 and 9.26
for analyses performed with the MNR (with a substepping algorithm), tangent
stiffness and visco-plastic solution strategies respectively. Such a comparison
reveals that the present results are similar to those from the visco-plastic analyses
and large under predictions of both volumetric strain and deviatoric stress occur
if large increment sizes are used. The predictions are also less accurate than the
tangent stiffness analyses of the same increment size. The present method is also
inefficient when comparing the CPU times required with the accuracy achieved.
The magnitudes ofthe errors shown here are similar to those presented in Ortiz and
Simo (1986) where errors of over 34% were presented for some of the problems
they considered.

(IXA8)

(IXA6)

(IXA9)

p'

{a) is the initial stress

{cr} lr is the elastic trial stress
{a/ } is the final stress

F; is the initial yield surface

F f is the final yield surface
• denotes point at which

flow gradients are
evaluated

{a)

{~k } = {k } _ {k} = /\.{8k({cyyr, {st})}
'tl ,tl' 8/\.

Figure IX. 5: Return algorithm of Ortiz and
Simo (1986)

{~S/:I} = {si:!} {sn = /\{ 8P;({CJ~:{m;})}

F({CYj+l}'r,{kitl}) F({cy;}tr,{k;}) + 8F({cya};,{k;}) {ilCY
jtl

}

+ 8F({cyyr,{k;}) {ilk}
3k Itl

= F({cyyr , {k
j
}) - 3F({CY1;,{k;}) [D]/\. 8P({CY1;,{k;})

+ 3F({cyyr,{k;}) A 3k({cy;}tf,{S/,})

3k 8/\.

To satisfy the yield criterion F( {O"j+1}tr, {ki+1})=0, Equation (IXA9) can therefore be
equated to zero and rearranged to give:

The resulting changes to the hardening/softening parameters are obtained by
differentiation ofthe hardening/softening laws with respect to /\, at the stress/strain
state consistent with the [ih prediction:

An estimate of the yield function for the (i+lyh state, F({O"j+l}tr,{kj+I }), is
obtained using Equations (IXA7) and (IXA8):

F({CY,)tr , {k;})
A=-----------'-"-'-'----'----'----'----------

3F( f ltr fk ') 3P(J ," {k 1) 3F({ ,tr {k ') 3k(J ,tr J .1',) (IX.50)
lail ,t iJ [D] la,l, iJ (5iJ ., if to"i. 'lc; J

3cy 3cy 3k 3A

changes in plastic strains, J

{~ej+n and stresses {~O"i+l}tr,

associated with the next
prediction. Successive
predictions are made until the
stress state drifts back onto the
yield surface, as shown
schematically in Figure IX.5.

To evaluate the plastic
strains a scalar plastic
multiplier, /\, is defined such
that:
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Table IX. 1: Resu/ts and CPU times for drained triaxial test analyses
using Ortiz and Simo (1986)

Equation (IX.51) and these values of {!Tt} and {kt} should also satisfy the yield
condition:

Substituting these equations into Equation (IX.51) and dividing it into two parts
consisting ofvolumetric plastic strains, E:';, and deviatoric plastic strains, El, gives:

F({CT'},{k}) = P({CT'},{m}) = J2? +p'(p'-P;J=O (IX. 53)
M-

J

The yield function gradients and plastic flow directions are written as:

BF({CT},{k}) BP({CT},{m})
= 2p' - p;'

Bp' Bp'
BF({CT},{k}) BP({CT},{m}) 2J

(IX.54)aJ BJ M2
J

BF({CT},{k}) BP({CT},{m})
-p'

Bp;, Bp;,

Obtaining values of {!Tf } and {kf } which satisfy Equations (IX.44), (IX.45) and
(IX.51) simultaneously is not straightforward for complex models. In particular,
the use ofthis type of return algorithm for a double yield surface model is difficult
(Borja et al. (1990)). Borja and Lee (1990) devised an iterative procedure for
obtaining such a solution for an associative form ofmodified Cam clay, where the
slope of the critical state line in J-p' space (MJ) is constant. This procedure
formulates {!Tt} and {kt} in terms ofthe scalar plastic multiplier, A, and iterates on
the value of A to satisfy yield.

The yield and plastic potential function is written as:

(IX. 52)

(IX.55)

F({CTf},{kf }) = 0

~EP = A BP({d},{m}) = A(2p'-p')
v Bp' 0

~EP = A BP({d},{m}) = A 2J
d BJ M2

J

The results for the undrained '" __ Analytical solution

triaxial tests are presented as plots of ~ 200 ------ Simo & Ortiz 0.025%

pore water pressure and deviatoric .~ '(;' 0.05 %

stress versus axial strain in Figure ., ~ lOO ~:???????~~-:~?-:-:-:~~~-:~-:-:F::~ ~:~~:
IX.7. These results also illustrate the Cl ¥'._-L._-!.-_-'--_-';;---_

0, 2 4
strong influence of increment size on ~ ;\_------~~~~~~~n_~:"!_.c:_=_0.5 %
the accuracy of the results. They can" 50 >,_ _ r::-::= 0.25 %

be compared with the predictions i~ lOO \>'--~~~~~~~~~~~-_-_-_-_-m_L __ 0.125 %
giveninFigures9.23and9.25forthe ~ '" ~0.05%

tangent stiffness and visco-plastic ~ ISO ';::::::--::----------::----:--~0.025 %

solution strategies.
The reason for the errors in the

results based on this return algorithm Figure IX. 7: Predictions for an
are related to the evaluation of the undrained triaxial test
yield and plastic potential gradients in
illegal stress space. It can be concluded that such a return algorithm should not be
used to perform analysis with complex soil models like modified Cam clay.

ANALYSIS TYPE q Volumetric CPU
Increment size (kPa) strain (%) sec

Analytical 390.1 5.18

MNR (Ortiz and Simo (1986)) 141.6 2.67 317
0.25% (-67.3%) (-48.3%)

MNR (Ortiz and Simo (1986)) 339.8 4.69 2697
0.02% (-12.9%) (-9.5%)

Substituting Equations (IX. 55) into Equation (IX.44) and dividing it into spherical
and deviatoric components gives:

where:

p'tr and jh are the spherical and deviatoric components of the elastic predictor
{!Trr

;

K and G are the elastic bulk and shear moduli respectively.

IX.2A Return algorithm proposed by Borja and Lee (1990)
The algorithm proposed by Borja and Lee (1990) is an iterative procedure to
evaluate a stress state {!Tf} such that the plastic strains evaluated from the flow
directions at this stress state result in sufficient stress relaxation and strain
hardening/softening to satisfy the yield criterion. This is illustrated in Figure 9.18
and expressed in the equation below.

{~GP} = A{ ape {CT~~ {kr }) } (IX.51)

where P( {!Tt}, {kt}) is the plastic potential at the stress state {!Tt}. Values of {!Tt} and
{k} can be evaluated from Equations (IX.44) and (IX.45) respectively, using these
vaiues of plastic strains. The value of {!Tt} should be the same as the value used in

dr KA ''= ,tr -K~EP = ,tr -KA(2 ,_ ')= P + Po
PPI' P P Po 1+ 2KA (IX.56)

(IX.57)
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Table IX. 2: Local Newton algorithm for computing the zero of F

Step Action

l. Initialise i=O and A j= 0;

2. Evaluate values ofpi, POI and J consistent with A j using Equations
(IX.56), (IX.60) and (IX.57) respectively. Equation (IX.60) is
solved using Table IX.3;

3. Compute value of Fj({ul},{k}) using Equation (IX.53).

4. If IF j({u l}, {k} ) I<YTOL then EXIT; ELSE;

5. Evaluate A j+i using Equation (IX.61);

6. i=i+1 and GOTO 2.

Consider Equation (IX. 56):

p' = prl' _ KA(2p' _ p~)

and differentiate it with respect to A:(IX.60)

(IX.59)

(IX.58)andK V li=-p
K

c;=_v­
1-K

Integrating this equation and substituting in Equation (IX.55a) and (IX.56) gives:

where:
pli and.P are the spherical and deviatoric components of the initial stress {uJ;
Poli is the initial value of the hardening parameter.

The elastic predictors pltr and J t
, are also evaluated using these values ofK and

G. The hardening law is:

Note that in Equations (IX.56) and (IX.57) the flow directions used to obtain the
values ofpi and J are the flow directions evaluated at pi and 1.

This procedure assumes that over any applied strain path K and G are constant.
This simplifies the governing equations such that pi and J can be expressed purely
as a function of A and the trial stresses pltr and J t,. The values of K and G used are
those evaluated from the initial stress:

(IX.61)

Thus pi, POI and J are expressed in terms of i\. A Newton iterative procedure is
used to obtain a value of A which gives values of pi, POI and J which satisfy the
yield function (IX.53), on the (i+l)'h iteration.

A j + i = A j -F;({o-'},{k}){ aF;({~2,{k})r
where:

A j and A j+i are the values of A for the 11h and (i+ l)'h iterations respectively;
Fl {u l

}, {k}) is the value of the yield function on the 11h iteration.

The values ofpi, POI and J consistent with this value of A are evaluated using
Equations (IX.56), (IX.60) and (IX.57) respectively. These values are substituted
into Equation (IX.53) and if the yield function F j+l is equal to zero (to within a
prescribed tolerance, YTOL), these values are accepted, otherwise the above
procedure is repeated until the yield criterion is met. The steps in this Newton
iterative procedure are shown in Table IX.2.

The yield function gradient used in Equation (IX.61) is evaluated at the z'h
iteration stress state and is derived from the equations below.

aF({o-l},{k}) = aF({o-'},{k}) ap' + aF({o-l},{k}) aJ + aF({o-'},{k}) ap~

aA ap' aA aJ aA ap~ aA

(IX.62)

ap' =-K(2p'_pl)-2KA ap' +KA ap~
aA 0 aA aA

This can be rearranged as:

ap' (.l- + 2A) _Aap~ = -(2p' _ pi )
aA K aA 0

Consider Equation (IX.60):

and differentiate it with respect to A:

ap~ = p' ~(2P' _ p' + 2A ap' _ A ap~)
aA 0'::> 0 aA aA

This can be rearranged as:

ap~ (_1_ + A) _2A ap' = 2p' _ p'
aA ,;p~ aA 0

Combining Equations (Ix'64) and (IX.66) gives:

ap' (.l- + 2A) _ Aap;) = _ ap;) (_1_ + A) + 2A ap'
aA K aA aA c;p;) aA

which, when simplified, gives:

(IX.63)

(IX.64)

(IX.65)

(IX.66)

(IX.67)
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Jp;, = _ r;p~ Jp'
JA K JA

Substituting Equation (IX.68) into Equation (IX.64) gives:

K(2p' - p~)

1+ A(2K + r;p~)

Substituting now this equation into Equation (IX.68) gives:

(IX.68)

(IX.69)

(IX.70)
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The differential in Equation (IX74) is obtained by differentiating Equation
(IX.73):

(IX.75)

If the value of Po(j+I) , calculated from Equation (IX.74) results in a value of HI+1

which is equal to zero (to within a prescribed tolerance, HTOL), this value is
accepted, otherwise the above procedure is repeated until this criterion is met. This
iterative procedure is a nested loop within the main loop described above for
evaluating the value ofA which gives values ofp' ,Po' and Jwhich satisfy the yield
equation. The procedure is depicted in the flow chart shown in Table IX.3.

Substituting Equations (IX.54), (IX.69), (IX.70) and (IX.7l) into (IX62) gives:

Step Action

l. Initialise) = 0 andpo(j)' = Po'i ;

2. Compute value of HI using Equation (IX.73);

3. If IHII < HTOL, GOTO 6, ELSE;

4. Evaluate PO(j+I)' using Equation (IX.74);

5. ) =)+ I and GOTO 2;

6. Accept value ofPo(j) , for line 2 of Table IX.2 and RETURN.

As noted above, this algorithm assumes that the elastic parameters are constant
over the increment and are evaluated using the stress state at the beginning of the
increment. This is an approximation as both the elastic bulk and shear stiffness can
vary in a modified Cam clay model. In this respect Borja (1991) has extended the
previous algorithm to deal with a limited form ofnonlinear elasticity. Use ofthese
algorithms with the MNR solution strategy leads to much more accurate
predictions compared to those from the Ortiz and Simo algorithm. A comparison
with the substepping algorithm described in Appendix IXl is given in Appendix
IX.3. A limitation of the Borja and Lee (1990) and Borja (1991) algorithms is that
they assume that the yield and plastic potential surfaces have a constant value of
M J and therefore form a surface ofrevolution about the mean effective stress axis.
As noted in Section 7.9.2, this severely limits the application of the model. While
in principal a return algorithm could be devised for a modified Cam clay model
with a Lode's angle edependency, it is likely to involve major modifications to the
algorithms. In fact, one of the major disadvantages of accurate return algorithms
is that each constitutive model must be dealt with individually. It is not possible to
set up a general algorithm which can deal with all forms of nonlinear constitutive
models. Models with multiple yield surfaces, nonlinear elasticity and bounding

Table IX. 3: Sub-local Newton algorithm for computing the zero of H

(IX.73)

(IX.72)

(IX.7l)

J

Jtr
J=---=--

1
2.J3GA

+ 0

Mj

3J =
JA

Consider Equation (IX57):

aF( {<T'}, {k}) = -(2p' _ p') K(2p' - p~) + r;p' p;,
aA 0 l+(2K+';p~)A

where
PO(j)' andpo(j+l)' are the values ofPo' for thej'h and (j+ l)'h iterations respectively;
HI is the value of H at the/' iteration.

Differentiating this equation with respect to A gives:

The correct value of Po' for any A gives a value of H equal to zero. Thus an
iterative procedure, similar to that used to find the value ofA which satisfies yield,
can be used. This means that for the (j+ l)'h iteration:

, , (JHI)-I
Po(j+l) = Po(j) - HI Jp;, (IX.74)

This equation can now be used in Equation (IX.6l).
The solution ofEquation (IX.60) to obtain a value ofPo' is not straightforward,

since Po' appears on both sides of the equality. Borja and Lee (1990) solved this
equation using a Newton iterative procedure and defined a function H such that:
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surface plasticity are difficult, but not impossible, to accommodate within the
return algorithm framework. Research is currently underway on this subject and
new advances are expected in the future. It should be noted that the substepping
approach does not suffer from the above shortcomings.

P
,f /I

e_ -p _ I'
Sv - K - -sI'

Thus Po,f can be evaluated as follows:

(IX.77)

IX.3.2 Fundamental comparison
To investigate the accuracy of the substepping and constant and variable elasticity
return algorithms the behaviour of ideal (i.e. no end effects) undrained and drained
triaxial tests are considered. These triaxial tests are described in detail in Section
9.7.2. The form ofthe modified Cam clay model used for these analyses, the input
parameters and the initial stress conditions are also given in Section 9.7.2.

IX.3.1 Introduction
A key step in the modified Newton-Raphson nonlinear solution strategy is the
integration of the constitutive model over a finite strain step. Algorithms for
performing such an integration are called 'stress point algorithms' and two such
algorithms, namely the substepping and return algorithms, are described in
Appendices IX. I and IX.2 respectively. In this appendix a comparison between
these two approaches is presented. This is done by considering results from"
analyses of undrained and drained ideal triaxial tests (see Section 9.7.2) and from
analyses of the pile problem described in Section 9.7.5.

Using Equation (VII.l 0) the plastic deviatoric strain, El, can be defined as:

£l' = 3P({a'},{m}) (3P({a'},{mD)-1 I' _ 2f I' (IX. SO)
J 3J 3p ' SI' - M;(p;/ _2p,f) Sv

(IX.78)

(IX.S2)

(IX.79)

(IX.SI)

P l'

P,f = p li e'" A-K
() ()

By rearranging Equation (VII.9) f can be expressed as:

f = Ml~p,f (p;,f _ p,f)

The elastic deviatoric strain, EJ, can be evaluated from G:

f-J i
El' - ---:=-_

J - J3G
Thus the total deviatoric strain can be written as:

f _Ji 2f
E = E e + El' = + sI'

J J J r:;3G M2(,f -2 ,f) v
'\/5 .1 Po P

Comparison of substepping and return
algorithms

Appendix IX.3:

IX. 3. 2. 1 Undrained triaxial test
The correct analytical solution for an undrained triaxial test is given in Appendix
VII.2. The relevant equations are Equation (VII.29), (VI1.30), (VII.31), (VII.33)
and (VI1.39). It is also possible to obtain analytical solutions consistent with the
assumptions of the constant and variable elasticity return algorithms.

Variable elasticity return algorithm

The solutions consistent with varying elastic moduli are obtained using the
equations shown above, except for Equations (Ix'77) and (IX.SI) which must be
replaced. These equations are used to evaluate the elastic strains ev" and EJ and are
explicit linear approximations of the nonlinear elastic stiffness. The equations
consistent with varying elastic moduli can be analytically derived and are as
follows.

where the superscript' i' refers to conditions at the beginning of an increment.
The elastic volumetric strain, e"e, is equal in magnitude but opposite in sign to

the plastic volumetric strain, e,f', during an increment of undrained loading. They
can be calculated using K:

Constant elasticity return algorithm

Solutions are derived by evaluating the values of El, Jf and Po,f associated with
any prescribed value ofp'f, where the superscript 'f refers to conditions at the end
of an increment. The elastic moduli K and G are calculated from the following
expressions:

K V "=-p
K

and G=gp;" (IX.76)

Equation (IX.77) is replaced by (see Equation (VII. 16)):

(IX.S3)

Equation (IX.Sl) is replaced by Equation (VII.33).

Results from the analyses using the different stress point algorithms are
compared with the correct solution in Figures IX.Sa and IX.9a, which show the
variation ofpore water pressure and deviatoric stress, q, with axial strain. For each
of the stress point algorithms a series of analyses have been performed. In each
analysis a single axial strain increment was applied, the magnitude ofwhich varied
between analyses.



(IX.86)

(IX.85)

(IX.84)

El' = ap({d},{m}) (ap({d},{mD)-1 I' _ 2Jf
I'

d all am' Cv - 2 f C
y M.I(p:, _ 2p rf

) v

The plastic deviatoric strains can be evaluated from the flow directions
Equations (VII. 10):

The elastic moduli K and G are calculated from the values of stress at the
beginning ofthe increment, using Equation (IX.76). The elastic volumetric strain
E:v", can be calculated using Equation (IX.77). The plastic volumetric strain can b~
obtained from:
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The elastic deviatoric strain, EJ, can be evaluated using Equation (IX.81).

Constant elasticity return algorithm

These solutions are derived by evaluating the values of Ed , f and Po'f associated
with any prescribed value ofp,f. .Fcan be determined from Equation (VII. 14). The
hardening parameter can be evaluated from Equation (VII.9):

At first, it may seem strange that the errors reduce for large strain increments.
However, a review ofthe situation indicates that for such large strain increments
a large proportion of the plastic strains occur at the end of the increment where the
stress state tends to a constant condition consistent with the critical state. The
implicit nature of the assumptions in the return algorithm approach therefore
becomes more reasonable and the error reduces.

Another anomaly is that the less rigorous constant elasticity analyses produce
more accurate predictions. Closer inspection ofthe results indicates that this arises
due to compensating errors. The use ofconstant elastic moduli based on conditions
at the beginning of the increment results in a stiffer elastic contribution to the
incremental material stiffness. This to some extent compensates for the softer
plastic contribution resulting from the implicit assumption in the return algorithm.

!X.3.2.2 Drained triaxia! test
The correct analytical solution for a drained triaxial test is derived in Appendix
VII.2. The relevant equations are Equations (VII.14), (VIl.15), (VII. 16), (VII. 19),
(VII.24) and (VII.29). It is also possible to obtain analytical solutions consistent
with the assumptions of the constant and variable elasticity return algorithms.
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The undrained (no volume change) nature of the problem results in a constant
ratio between radial and axial strain components. The strains are therefore varying
in a 'proportional' manner and consequently the substepping algorithm is correct
and independent of the size ofthe strain increment applied. This can be seen from
Figures lX.8a and IX.9a where the results from the substepping algorithm are
indistinguishable from the correct analytical solution and plot as a single curve.

Resu Its from the analytical expressions given above, which incorporate the
assumptions consistent with the constant and variable elasticity return algorithms,
are also shown on Figures IX.8a and IX.9a. There is a significant difference
between these results and the correct analytical solutions, with both pore pressure
and deviatoric stress being under predicted. This error increases and then decreases
with the size of the strain increment, as illustrated in Figures IX.8b and IX.9b,
where the error in pore water pressure and deviatoric stress respectively, expressed
as a percentage of the correct solution, is plotted against axial strain. Both sets of
results indicate significant departures from the correct solution. The errors in the
constant elasticity analyses reach a peak value of 13% for pore pressure and 7% for
deviatoric stress. The errors in the variable elasticity analyses are generally worse
and reach a peak value ofover 16% for pore pressure and 8% for deviatoric stress.
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Figure IX 12: Radial stress
versus axial strain
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IX.3.3 Pile problem
Th~ problem o~the mo.bilisation ofthe stresses in the soil immediately adjacent to
a p~le shaft du~mg dramed l~ading is considered. The behaviour of a segment of
an Inc.ompr~sslble 7.5 mm diameter model pile, well away from the influence of
~he soI!. surface and pile tip, is examined. A similar problem is described in detail
In S~ctlon 9.7.5. A modified Cam clay model, similar to that used for the triaxial
test, I~ use~ to represent the soil and the material parameters and initial conditions
are gIven In Table IXA.

which shows the variation of the total
radial stress with axial strain. This
indicates that although the radial stress is
consistent with the applied boundary '"'
conditions of 200 kPa at the beainnina ~b b

and end ofthe strain increment, there is a ~ 150
. ~

SIgnificant deviation during the course of '"
the increment. Integration of the 'BPl
constitutive equations along the curved
strain path ACD results in a constant
rad ial stress of 200 kPa.

Results of the analytical expressions,
which incorporate the assumptions
associated with constant and variable
elasticity return algorithms, are also
presented in Figures (IX. 10) and (IX. I 1)
and are si.milar to those obtained using the substepping approach, but give slightly
greater differences when compared with the correct analytical solution.
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Equation (IX.77) is replaced by Equation (IX.83);
Equation (IX.81) is replaced by Equation (VII.19).

Results from both stress point algorithms are compared with the correct
solution in Figures (IX. I0) and (IX. I I), which show the variation of deviatoric
stress and volumetric strain with axial strain. For each ofthe stress point algorithms
a series of analyses have been performed. In each analysis a single axial strain
increment was applied, the magnitude of which varied between analyses. In all
cases the radial total stress and pore water pressure were maintained constant.

Variable elasticity return algorithm
The solutions consistent with varying elastic moduli are obtained using the
equations shown above, except for Equations (IX.77) and (IX.81) which must be
replaced. These equations are used to evaluate the elastic strains E:,," and EJ
respectively, and are explicit linear approximations of the nonlinear elastic
stiffness. The equations consistent with varying elastic moduli can be analytically

derived and are as follows:

Results based on the substepping approach were obtained using a finite element
analysis with a single four noded element and one integration point. Each symbol
in Figures (IX. I0) and (IX. I I) represents the results from a single increment finite
element analysis. In contrast to the analyses of the undrained triaxial test, these
substepping results differ from the correct analytical solution. This arises because
the axial and radial strains do not vary 'proportionally' throughout the test, as can
be seen from the correct analytical solution shown in Figure (IX. I 1). For example,
for the analysis with an axial strain increment of 10% the substepping algorithm
assumes the 'proportional strain' path labelled AB in Figure (IX.ll). This differs
substantially from the correct path given by the curved response ACD. The errors
associated with integrating the constitutive equations along the' proportional' strain
path AB, as opposed to the correct path ACD, are illustrated in Figure (IX.12)

Table IX4: Material properties for the pile problem

Specific volume at unit pressure on the VCL, VI 3.765

Slope of VCL in V - Inp' space, A 0.25

Slope of swelling line in v - Inp' space, K 0.05

Slope of critical state line in J - p' space M 0.52, .I

Elastic shear modulus, G 18000 kPa

Initial overconsolidation ratio defined by Po'lp' 1.1136

Initial radial and hoop effective stresses u' and u I 200 kPa,,. ()

Initial vertical effective stress, u,,' 286 kPa

Figure IX 11: Drained triaxial
test: volumetric strain versus

axial strain

Figure IX. 10: Drained triaxial
test: deviatoric stress versus

axial strain
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(IX.87)

Results from the analyses are presented in Figures IX.13a and IX.14a, in the
form of radial effective stress, a,.', and shear stress, r, at the pile, plotted against
pile shaft displacement. When compared to the correct solution, the analyses based
on the different stress point algorithms show errors. These errors increase and then
decrease with the size of the solution increment, as illustrated in Figures IX.13 b
and IX.14b, where the error in a,.' and r respectively, expressed as a percentage of
the correct solution, is plotted against pile displacement. The errors are larger for
the return algorithm analyses than they are for the substepping approach. This is
particularly so for the shear stress shown in Figure IX.14, where errors as high as
17% are recorded for the return algorithm analyses. Since the mean effective stress
reduces as the pile is loaded, analyses using a variable elasticity return algorithm
would give a softer response to that presented above and therefore result in larger
errors.

An important feature of both these results and those of the undrained triaxial
test is that the errors from both stress point algorithms do not increase
monotonically with increasing solution increment size. This property means that
extreme vigilance should be exercised when investigating the effect of solution
increment size and a wide range of increment sizes should be examined.
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IX.3.4 Consistent tangent operators
Borja and Lee (199)) and Borja (1991) suggest the use of a consistent tangent
operator, [D]con, which results in a quadratic rate of convergence in the Newton­
Raphson method. This involves formulating a stiffness matrix, at each iteration of
an increment in a Newton-Raphson analysis, based on [D]con where the [D]COIl, to
be used for the (j+ I)'h iteration of the z'h increment, is:

where:
a! is the stress state obtained using the return algorithm at the end ofl1 iteration
of the z'h increment;
e! is the applied increment of strain at the lh iteration of the Z1h increment.

[D]con is a function of the return algorithm used and is in general asymmetric.
However, at the beginning ofthe increment (when) = 0 and e;o is the null vector),
[D]COIl is equal to the continuum elasto-plastic compliance matrix of the material,
[Dep

]. The elasto-plastic matrix is symmetric ifthe constitutive laws are associative.
There is considerable confusion as to why [D]COIl should be different to [DCP] and
why [D]con should not be symmetrical in general for an associative material.
Zienkiewicz and Taylor (1991) state that this difference is puzzling and is
undecided as to whether [D]COIl or [Dep ] should be used.

The difference between [D]con and [Dep ] can be attributed to the error resulting
from the assumptions used by the return algorithm associated with [D]con. This is
illustrated in Figures IX.8a and IX.9a where [D]COIl is related to the tangential
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To analyse this boundary value problem, finite element analyses were
performed using the Authors' finite element program ICFEP. This program has
options to use different stress point algorithms and for the work presented here
analyses were either performed using a substepping algorithm based on that
described in Appendix IX.1, orthe constant elasticity return algorithm ofBorja and
Lee (1990) described in Appendix IX.2. A variable elasticity return algorithm for
modified Cam clay is not implemented in the software, but its behaviour can be
assessed by qualitative comparison with the results from the constant elasticity

algorithm.
For each of the stress point algorithms a series of analyses were performed. In

each analysis the pile was loaded by imposing a single increment of vertical
displacement to the pile shaft, the magnitude of which varied between analyses.
The results from these analyses are compared with the correct solution which was
obtained by performing an analysis with a large number of small solution
increments. Analyses based on either stress point algorithm, using the small

solution increments, gave similar results.
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gradients of the return algorithm analyses in these stress-strain plots. [De!,] is
related to the tangential gradients of the correct analytical solution in these plots.
Clearly, ifthe return algorithm was able to integrate the material constitutive laws
accurately and give the correct analytical solution, there would be no difference
between [D]con and [Dep].

IX.3.5 Conclusions
Both substepping and return algorithms attempt to integrate the constitutive
equations over the strain increment derived from the modified Newton-Raphson
(MNR) procedure. To do this correctly the manner in which the strain components
vary during the increment must be known. Unfortunately, this information is not
provided by the MNR approach and consequently, a further assumption must be
made. The stress point algorithms differ in the nature of this assumption.

In the substepping approach the strains are assumed to vary 'proportionally'
(i.e. the ratio between the strain components remains constant) over the increment
and the constitutive equations are integrated along this strain path. If this
assumption is true, then this approach results in accurate predictions. However, if
this is not so, errors are introduced.

For the return algorithms the plastic' strains for the increment are calculated
from the plastic potential and stress conditions associated with conditions at the
end of the increment. This approximation is only strictly valid if the plastic flow
directions do not vary over the increment. This criterion is more stringent than the
substepping criterion of 'proportional' strain variation.

Two return algorithm approaches, one assuming constant and the other
assuming variable, elastic moduli over the increment have been considered in this
appendix. Both approaches result in similar errors, but often the former less
rigorous approach gives more accurate predictions. This arises as a result of
compensating errors.

Comparisons presented in this appendix have been made using analytical
solutions for simple idealised triaxial tests and by using results from finite element
analyses of the pile problem. For these problems it is concluded that for the same
solution increment size, analyses based on the substepping approach are more
accurate than those based on the return algorithm approach. As the solution
increment size is reduced, the results from both methods become similar and agree
with the analytical or correct solutions.

10. Seepage and consolidation

1O. 1 Synopsis
In the previous chapters, analysis has been restricted to either drained or undrained
soil conditions. While many problems can be solved making one, or a combination,
of these two extreme conditions, real soil behaviour is often time related, with the
pore water pressure response dependent on soil permeability, the rate of loading
and the hydraulic boundary conditions. To account for this behaviour, the seepage
equations must be combined with the equilibrium and constitutive equations. This
chapter briefly describes the basis behind such a coupled approach and presents the
finite element equations. It is then shown how the steady state seepage equations
can be obtained from these general consolidation equations. The hydraulic
boundary conditions relevantto geotechnical engineering are discussed afterwards.
Some nonlinear permeability models are presented, followed by a short discussion
on the numerical problems associated with unconfined seepage. The chapter
finishes by presenting an example of coupled finite element analysis.

10.2 Introduction
The theory presented so far in this book has been restricted to dealing with either
fully drained or undrained soil behaviour. While many geotechnical problems can
be solved by adopting such extreme soil conditions, real soil behaviour is usually
time related, with the pore water pressure response dependent on soil penneability,
the rate of loading and the hydraulic boundary conditions. To account for such
behaviour it is necessary to combine the equations governing the flow ofpore fluid
through the soil skeleton, with the equations governing the deformation of the soil
due to loading. Such theory is called coupled, as it essentially couples pore fluid
flow and stress strain behaviour together.

The chapter begins by presenting the theory behind the coupled finite element
approach. This results in both displacement and pore fluid pressure degrees of
freedom at element nodes. If the soil skeleton is rigid, the soil cannot deform and
the coupled equations reduce to the steady state seepage equations. It is therefore
a simple matter to establish the governing finite element equations for this situation
from the more general coupled equations. Only pore fluid degrees of freedom at
each node are relevant for seepage analyses.

As the flow of water within the soil skeleton is now being considered, the
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Confined flow

(10.3)

The equations of equilibrium:
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changes in pore fluid pressure and effective stress. A procedure for achieving this
is described below.

Using the principle of effective stress Equation (10. I) becomes:

where y" yy and yz are the components ofthe bulk unit weight of the soil acting
in the x, y and z directions respectively.
The constitutive behaviour, expressed in terms of effective stresses:

where [Np ] is the matrix of pore fluid pressure interpolation functions, similar to
[N]. The choice of [Np ] will be discussed subsequently. However, [Np ] is often
assumed to be equivalent to [N].

The analysis of time dependent consolidation requires the solution of Biot's
(Biot (194 I)) consolidation equations, coupled with the material constitutive model
and the equilibrium equations. The following basic equations have to be satisfied
for a soil saturated with an incompressible pore fluid:

{cl a} = [D']{!l &} + {cl Dj} (10.2)

where {!luf} T={!lPt, !lPt, !lPt' 0, 0, O} and !lp/is the change in pore fluid pressure.
In the finite element approach it is assumed that the nodal displacements and

the nodal pore fluid pressures are the primary unknowns. As before the incremental
displacements can be expressed in terms of nodal values using Equation (2.9). In
addition, it is assumed that the incremental pore fluid pressure, !lPt' can be
expressed in terms of nodal values using an equation similar to Equation (2.9):

Flow Clay

Unconfmed flow

., 0.3 Finite element formulation for coupled problems
When deriving the finite element equations in Chapter 2, it was assumed, when
evaluating the incremental strain energy in Equation (2.19), that the constitutive
behaviour could be written in terms of a relationship between increments of total

stress and strain:

hydraulic boundary conditions which control it must be accounted for. These
boundary conditions consist of either prescribed flows or changes in pore fluid
pressure. Some ofthe boundary conditions relevant to geotechnical engineering are
described in this chapter. In particular sources, sinks, infiltration and precipitation
boundary conditions are covered. The latter option accounts for the finite capacity
of soil to accommodate the entry of pore fluids from a boundary.

Although it is often assumed that the permeability ofsoil is constant, laboratory
and field tests show that this is not so. Fundamentally, one would expect the
permeability to depend on the size of the void space between the solid soil grains
and therefore depend on void ratio (or specific volume). Three nonlinear
permeability models are presented in this chapter. In one of these the permeability
varies with void ratio, whereas in the other two it varies with the mean effective

stress.
Two different types of pore fluid

flow can be identified: those which do
not involve a phreatic surface
(confined flow) and those which do
(unconfined flow), as shown in Figure
10. I. Problems which involve
unconfined flow require special
attention in numerical analysis, as it is
necessary to determine the position of
the phreatic surface. This is not
straight forward and a briefdiscussion
of how this may be achieved is given. Figure 10. 1: Examples of confined

The chapter ends by presenting an and unconfined flow
example of a coupled analysis.

{!l a} = [D]{!l &} (10.1) {!l a'} = [D']{!l &} (10.5)

If the material behaviour is defined in terms of total stress, as for example in the
Tresca model, obtaining the constitutive matrix [D] is relatively straight forward.
However, ifthe material behaviour is defined in terms of effective stress, which is
the preferred method in soil mechanics and follows from the principle of effective
stress, additional complications can arise. It has been shown in Chapter 3 how the
[D] matrix can be obtained from the effective matrix [D'] in the special cases of
fully drained and undrained soil behaviour. Ifsoil behaviour is somewhere between
these two extreme conditions, account must be taken ofthe time dependency ofthe

The equation of continuity, see Figure 10.2:

(10.6)

where VX' vy and Vz are the components of the superficial velocity of the pore
fluid in the coordinate directions, and Qrepresents any sources and/or sinks.
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Noting that the second term in this equation is equivalent to L1p(L1e" , gives:

Generalised Darcy's law:

(10.7)

Using Equation (10.2) this can be written in the following fom1:

L1W = +J [{t'> e}T[D']{t'> e} + {L1 CTf }{L1 e}] dVol
Vo!

t'>W =+J [{L1 E}T[D']{L1 E} + L1ptt'>el'] dVol
Vo!

(10.11)

(10.12)

(10.8)

(10.14)

(10.13)

The work done by the incremental applied loads M can be divided into
contributions from body forces and surface tractions, and can therefore be
expressed as (see Equation (2.20)):

t'>L = J {t'>d}T {t'>F} dVol + J {t'>d}T {t'>T} dSrf
~! ~1

Substituting Equations (10.12) and (10.13) into Equation (10.9) and following
a similar procedure to that outlined in Chapter 2 (i.e. Equations (2.21) to (2.25)),
gives the following finite element equations associated with equilibrium:

where h is the hydraulic head defined as:

{v} = -[k]{V'h}

h Pt (. . .)
= -y' + Xlc;x +Y1Gy + ZIGz

f

Vector {id={iGx , ic;y, ic;z}T is the unit vector parallel, but in the opposite
direction, to gravity; kij are the coefficients of the permeability matrix, [k], of
the soil. If the soil is isotropic with a permeability k, then kxx= kyy= kzz= k and
kxy= kxz= kyz= O.

or:

dvz
Vz +­

dz

(10.21)

[L(,] =i~ [LEl =i~ (1, {mHB]T[Np ] dVot} (10.16)
f

{t'>Rc;} = ~ {LlREL = i~[(J}N]T {LlF} dvot} +Cf/Nf {LlT} dsrf)J (10.17)

{m}T={11 100 O} (10.18)

where:

[KG]=!~ [KE1=~ (J,/B]T[D'][B]dvot) (10.15)
f

Using the principle of virtual work, the continuity Equation (10.6) can be
written as: ac:f [{V}T{V'(t'>PI)}+aLlPt]dVot-QLlPI =0 (10.19)

~ t '

J [-{V'h}T[k ]{V'(t'>PI)} + aB" LlPI] d Vot = Q t'>pt (10.20)
~ & '

Noting that {\7h} = (1/~t) \7Pt+ {id, and approximating Be/Bt as L1e/L1t, Equation
(10.20) can be written in finite element form as:

Substituting for {v} using Darcy's law given by Equation (10.7) gives:

(10.9)

(10.10)

1
dvy

_----+-I_V'-y_+ -dy-

ME = OL1W - ML = 0

L1W=+ J {t'>e}T{t'>CT} dVol
Vol

hf'-------------,---{I/
------ ..... :,

r---- --------

where L1£ is the incremental total potential energy, L1W is the incremental strain
energy and L1L is the incremental work done by applied loads. The incremental
strain energy term, L1W, is defined as:

Figure 10.2: Continuity conditions

As noted in Chapter 2 a more convenient form of the equations of equilibrium
expressed by Equation (1004) can be found by considering the principle of
minimum potential energy which states that (see Equation (2.18)):
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Equations (10.14) and (10.26) may now be written in the following incremental
matrix form:

10.4 Finite element implementation
Equation (10.27) provides a set of simultaneous equations in terms of the
incremental nodal displacements {~d} "G and incremental nodal pore fluid pressures
{~Pf}"G' Once the stiffness matrix and right hand side vector have been assembled,
the equations can be solved using the procedures described in Section 2.9.

As a marching procedure is necessary to solve for the time dependent
behaviour, the analysis must be performed incrementally. This is necessary even
ifthe constitutive behaviour is linear elastic and the permeabilities are constant. If
the constitutive behaviour is nonlinear, the time steps can be combined with
changes in the loading conditions so that the complete time history ofconstruction
can be simulated. The solution algorithms described in Chapter 9 can therefore be
used.

In the above formulation the permeabilities have been expressed by the matrix
[k]. If these permeabilities are not constant, but vary with stress or strain, the
matrix [k] (and therefore [tPG] and [nd) are not constant over an increment of an
analysis (and/or a time step). Care must therefore be taken when solving Equation
(10.27). This problem is similar to that associated with nonlinear stress-strain
behaviour where [Kd is not constant over an increment. As noted in Chapter 9,
there are several numerical procedures available for dealing with a nonlinear [Kd,
and, as demonstrated, some of these are more efficient than others. All the
procedures described in Chapter 9 (e.g. tangent stiffness, visco-plastic and Newton­
Raphson) can be modified to accommodate nonlinear permeability. However, the
Authors' experience is that the modified Newton-Raphson scheme, with a
substepping stress point algorithm, is the most accurate.

In Equation (10.3) the incremental pore fluid pressure within an element has
been related to the values at the nodes using the matrix of pore fluid shape
functions [~,]. If an incremental pore fluid pressure degree offreedom is assumed
at each node of every consolidating element, [Np ] is the same as the matrix of
displacement shape functions [N]. Consequently, pore fluid pressures vary across
the element in the same fashion as the displacement components. For example, for
an eight noded quadrilateral element, both the displacements and pore fluid
pressures vary quadratically across
the element. However, if the
displacements vary quadratically, the
strains, and therefore the effective
stresses (at least for a linear material),
vary linearly. There is therefore an
inconsistency between the variation of
effective stresses and pore water. Displacement DOF

pressures across the element. While 0 Displacement + pore fluid pressure DOF
this is theoretically acceptable, some
users prefer to have the same order of
variation of both effective stresses Figure 10.4: Degrees of freedom for
and pore water pressure. For an eight an eight noded element

(10.25)

(10.24)

(10.23)

(10.22)[<Tt] = ~ [<4 t = i~ (L [E]T;~][E] dVOIJ
. I

'f [<Tt] {Pt} lie; dt = [<Tt ][,8({PI} IIG h +(1- ,8)({Pt} ne;)1 ]~t
II

This approximation is shown
graphically in Figure 10.3. As WILG
varies over the time step M, the If2
integral on the left hand side of
Equation (10.25) represents the area
under the curve in Figure 10.3
between t l and tz. However, the
manner in which {PtL,G varies (i.e the
shape of the curve) is unknown, but
the value of (WtLdl is known while
the value of ({Pt} II(;)Z is being sought.
Equation (10.25) is therefore an
approximation of the area under the Figure 10.3: Approximation of pore
curve. For example, if(3=1 the area is fluid integral
essentially assumed to be (WtLdz~t.
Alternatively, if(3 = 0.5 the area is approximated by 0.5M [( {PtLdl+ ({PtLdz]. In
order to ensure stability of the marching process, it is necessary to choose (32.0.5
(Booker and Small (1975». Substituting Equation (l0.25) into (10.21) gives:

To solve Equations (10.14) and (10.21) a time marching process is adopted. If
the solution ({~d}"G , WtLdl is known at time t l , then the solution ({~dLG ,
WtLdz at time tz=tl+M is sought. To proceed it is necessary to assume:

where:
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freedom are the nodal pore fluid pressures. Ifthe permeabilties are constant and the
flow is confined, Equation (10.28) can be solved by a single inversion ofthe matrix
[tPd. As only pore fluid pressures are calculated, it is only possible to have
permeabilities varying with pore fluid pressure. If this is the case and/or ifthe flow
is unconfined, an iterative approach must be used to solve Equation (10.28).

If a particular piece of finite element software can deal with the coupled
formulation given by Equation (10.27), but not the steady state formulation given
by Equation (10.28), it is still possible to use it to obtain a steady state seepage
solution. This is achieved by giving the soil fictitious linear elastic properties and
applying sufficient displacement constraints to prevent rigid body motion. An
analysis is then performed applying the correct hydraulic boundary conditions and
sufficient time steps for steady state conditions to be achieved. Once steady state
conditions have been reached, soil deformations are zero and the solution is
therefore equivalent to that given by Equation (10.28).

10.6.2 Prescribed pore fluid pressures
This option allows the user to specify a prescribed incremental change in nodal
pore fluid pressure, {~Pr}IIG' As pore fluid pressure is a scalar quantity, local axes
are irrelevant. Prescribed changes in pore fluid pressures are dealt with in a similar
way to prescribed displacements, as described in Section 3.7.3.

10.6 Hydraulic boundary conditions
10.6.1 Introduction
With either coupled or steady state seepage analysis there are pore fluid pressure
degrees of freedom at the nodes, and for each node on the boundary of the mesh
(or of that part of the mesh consisting ofconsolidating elements) it is necessary to
specify either a prescribed pore fluid pressure or a prescribed nodal flow. If a
condition is not specified by the user, for one or several of the boundary nodes,
most software packages will assume a default condition. This usually takes the
form of zero nodal flow. Clearly, the user must be fully aware of the default
condition that the software assumes, and account for this when specifying the
boundary conditions for an analysis. Boundary conditions can also be prescribed
at internal nodes of the finite element mesh.

Prescribed values of incremental nodal pore fluid pressure affect only the left­
hand side (i.e. {~pr}'d of the system equations. They are dealt with in a similar
fashion to prescribed displacements. Prescribed nodal flow values affect the right
hand side vector (i.e. Q) ofthe system equations. They are treated in a similar way
to prescribed nodal forces. They can be specified in the form of sources, sinks,
infiltration and precipitation boundary conditions. It is also possible to tie nodal
pore fluid pressures in a similar manner to that described for displacements in
Chapter 3. Such boundary conditions will affect the whole structure ofthe system
equations. The various hydraulic boundary condition options that are useful for
geotechnical engineering are discussed below.

g
-
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ele ~ents

Cl y:con olida 'ng
ele nents

Figure 10.5: Choice of elements for
consolidating and non-consolidating

layers

This is the finite element equation for steady state seepage. The only degrees of

10.5 Steady state seepage
If the soil skeleton is assumed to be rigid, there can be no soil deformation and
only flow of pore fluid through the soil exists. Equation (10.14) is therefore not
applicable and Equation (10.21) reduces to:

-[~,]{Pr}nG =[nGJ+Q (10.28)

noded element this can be achieved by only having pore fluid pressure degrees of
freedom at the four corner nodes, see Figure lOA. This will result in the [NpJ
matrix only having contributions from the corner nodes and therefore differing
from [N]. Similar behaviour can be achieved by only having pore fluid pressure
degrees of freedom at the three apex nodes of a six noded triangle, or at the eight
corner nodes of a twenty noded hexahedron. Some software programs allow the
user to decide which of these two approaches to use.

It is possible to have some
elements within a finite element mesh
which are consolidating and some
which are not. For example, if a
situation where sand overlies clay is
being modelled, consolidating
elements (i.e. elements with pore
pressure degrees of freedom at their
nodes) might be used for the clay,
whereas ordinary elements (i.e. no
pore fluid pressure degrees of
freedom at the nodes) might be used
for the sand, see Figure 10.5. The
sand is then assumed to behave in a
drained manner by specifying a zero
value for the bulk compressibility of
the pore fluid, see Section 304. Clearly, care has to be taken to ensure the correct
hydraulic boundary condition is applied to the nodes at the interface between clay
and sand. Some software programs insist that the user decides which elements are
to consolidate and which are not at the mesh generation stage. Others are more
flexible and allow the decision to be made during the analysis stage.

In the theory developed above, the finite element equations have been
formulated in terms of pore fluid pressure. It is also possible to formulate the
equations in terms of hydraulic head, or in terms of excess pore fluid pressure. In
such cases the hydraulic head or excess pore fluid pressure at the nodes will
become degrees of freedom. It is important that the user is familiar with the
approach adopted by the software being used, as this will affect the manner in
which the hydraulic boundary conditions are specified.
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Figure 10.6: Prescribed pore fluid
boundary conditions

10.6.3 Tied degrees of freedom
This boundary condition option allows a condition ofequal incremental nodal pore
fluid pressure to be imposed at two or more nodes, whilst the magnitude of the
incremental nodal pore fluid pressure remains unknown. This concept is explained
in detail for displacements in Section 3.7.4 and therefore is not repeated here.
Because pore fluid pressure is a scalar quantity, there is only one tying option,
compared to the several that are available for displacement which is a vector, see

Figure 3.20.
As an example of the use of tied pore fluid pressure, consider the example of

two consolidating layers of soil, separated by interface elements shown in Figure
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Figure 10. 7: Tied pore fluid
pressures

Laye

Layer

10.7. Because interface elements have
zero thickness, they are not usually
formulated to account for
consolidation. In the situation shown Interface
in Figure 10.7, there is a set of nodes elements

along the underside ofsoil layer 1and
another set on the upper surface of
soil layer 2, corresponding to the
upper and lower side of the row of
interface elements respectively.
Because the interface elements do not
account for consolidation, there is no
seepage link between these two rows
of nodes and, unless a boundary
condition is specified for these nodes,
most software programs will treat each row as an impermeable boundary (i.e. zero
incremental nodal flow). If the interface is to be treated as a permeable boundary,
the solution is to tie the incremental pore fluid pressures of adjacent nodes across
the interface elements. For example, tie the incremental pore fluid pressures for
nodes AB, CD, ... , etc.

10.6.4 Infiltration
When it is necessary to prescribe pore fluid flows across a boundary of the finite
element mesh for a particular increment of the analysis, infiltration boundary
conditions are used. These flows are treated in a similar fashion to boundary
stresses as described in Section 3.7.6.

An example of an infiltration
boundary condition is shown in
Figure 10.8, where it is assumed that
rainfall provides a flow rate qll on the
soil surface adjacent to the
excavation. In general, the flow rate
may vary along the boundary over

------lit!
which it is active. To apply such a
boundary condition in finite element
analysis, the flow over the boundary
must be converted into equivalent

nodal flows. Many finite element Figure 10.8: Example of infiltration
programs will do this automatically boundary conditions
for generally distributed boundary
flows and for arbitrary shaped boundaries.

The nodal flows equivalent to the infiltration boundary condition are
determined from the following equation:

A

B

c

Although it is the incremental change in pore fluid pressure that is the required
quantity when solving Equation (10.27), it is often more convenient for the user
to specify the accumulated value at the end ofa particular increment. It is then left
to the software to work out the incremental change from the prescribed value,
given by the user for the end ofthe increment, and the value stored internally in the
computer, for the beginning of the increment. It is noted that not all software
packages have this facility. It should also be noted that some software packages
may use change in head or excess pore fluid pressure instead ofpore fluid pressure,
as the nodal degree offreedom. Consequently, the boundary conditions will have

to be consistent.
As an example of the use of

prescribed pore fluid pressures, '><'
consider the excavation problem i

, P
f
~O

shown in Figure 10.6. Throughout the
analysis it is assumed that on the right iD:---I---l--I4--1---+--+----+--<>
hand side of the mesh the pore fluid
pressures remain unchanged from
their initial values. Consequently, for
all the nodes along the boundary AB,
a zero incremental pore fluid pressure
(i.e. f"Pt = 0) is specified for every
increment of the analysis. The first
increments of the analysis simulate
excavation in front of the wall and it is assumed that the excavated surface is
impermeable. Consequently, no pore fluid pressure boundary condition is
prescribed along this surface and a default condition ofzero nodal flow is imposed.
However, once excavation is completed, as shown in Figure 10.6, the excavated
soil surface is assumed to be permeable, with a zero pore fluid pressure. Therefore,
for the increment after excavation has been completed, the final accumulated value
(i.e. Pt = 0) is specified along CD. As the program knows the accumulated pore
fluid pressure at the nodes along this boundary at the end of excavation, it can
evaluate f"Pt. For subsequent increments the pore fluid pressure remains at zero
along CD and consequently f"Pt= 0 is applied.
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(10.29) Tunnel problem

where Srfis the element side over which the infiltration flow is prescribed. As with
boundary stresses, this integral can be evaluated numerically for each element side
on the specified boundary range, see Section 3.7.6.

PI at all nodes more
compressive thanpjh:
pore fluid boundary
conditions adopted
at all nodes

Because PI more tensile
.--+-+- than P , zero flow
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b) Precipitation boundary
conditions in short term

d) Precipitation boundary
conditions in long tenn

lYmore tensile than Pjh:
tlow boundary
conditions adopted

PI more compressive than Pjh:
pore fluid boundary
conditions adopted

'Y'--+fl:::o::..:.:w from tunnel

a) Prescribed pore fluid pressure
as boundary condition in short term

c) Precipitation boundary conditions
at intennediate stage

Figure 10. 10: Precipitation boundary conditions in tunnel problem

After excavation for a tunnel, assuming the tunnel boundary to be impermeable,
the pore fluid pressure in the soil adjacent to the tunnel could be tensile, see
Volume 2 of this book. If for subsequent increments of the analysis (tunnel
boundary now permeable) a prescribed zero accumulated pore fluid pressure
boundary condition is applied to the nodes on the tunnel boundary, flow of water
from the tunnel into the soil would result, see Figure 10.1 Oa. This is unrealistic,
because there is unlikely to be a sufficient supply of water in the tunnel. This
problem can be dealt with using the precipitation boundary option with q" = 0 and
P/h = O. Initially (after excavation), the pore fluid pressures at the nodes on the
tunnel boundary are more tensile thanP/h, consequently a flow boundary condition
with q,,= 0 (i.e. no flow) is adopted, see Figure lO.lOb. With time the tensile pore
fluid pressures reduce due to swelling and eventually become more compressive
than P/h' When this occurs, the pore fluid stress boundary condition is applied, with
a magnitude set to give an accumulated pore fluid pressure at the end of the
increment equal to P/h, see Figure 10.1 Od; The pore fluid pressure checks are made
on a nodal basis for all nodes on the tunnel boundary for each increment. This
implies that the boundary condition can change at individual nodes at different
increments ofthe analysis. At anyone increment some nodes can have a prescribed
pore fluid stress boundary condition, while others can have a flow condition, see
Figure 10.10c.

Injection well
qinj

Extraction well / I
q"" / I

/ I
// / I

I1 I1 B

A

10.6.6 Precipitation
This boundary condition option allows the user to essentially prescribe a dual
boundary condition to part ofthe mesh boundary. Both an infiltration flow rate, q",
and a pore fluid pressure, Pjh, are specified. At the start of an increment, each node
on the boundary is checked to see if the pore fluid pressure is more compressive
than Pjh . If it is, the boundary condition for that node is taken as a prescribed
incremental pore fluid pressure !'!.Pj' the magnitude ofwhich gives an accumulated
pore fluid pressure equal to Pjh at the end of the increment. Alternatively, if the
pore fluid pressure is more tensile than Pjh , or if the current flow rate at the node
exceeds the value equivalent to q", the boundary condition is taken as a prescribed
infiltration with the nodal flow rate determined from qw The following two
examples show how this boundary condition may be used.

10.6.5 Sources and sinks
A further option for applying flow boundary conditions is to apply sources (inflow)
or sinks (outflow) at discrete nodes, in the form of prescribed nodal flows. For
plane strain and axi-symmetric analyses these are essentially line flows acting
perpendicularly to the plane of the finite element mesh.

An example of a source and sink
boundary condition is shown in
Figure 10.9 in the fonn of a simple
dewatering scheme, involving a row
of extraction wells (sinks) within an
excavation and, to limit excessive
settlements behind the retaining wall,
a row of injection wells (sources).
The effect of the extraction wells
could be modelled by applying a flow
rate equivalent to the pumping rate at
node A, and the effect of the injection
wells could be modelled by applying Figure 10.9: Example of sources
a flow rate equivalent to the injection and sinks boundary conditions

rate at node B.
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and therefore mean effective stress, or
depth. 1t is therefore convenient to
have the option to vary k spatially.
For example, options are often
available for varying k in a piece wise
linear fashion across a finite element
mesh. This option can be used to
simulate a permeability varying with
depth, see Figure 10.12 (note:
coefficient of permeability is plotted
on a log scale). With this model, the
permeability at an integration point
remains constant throughout an
analysis.

10.7.3 Linear anisotropic
permeability

In this model the permeability is
assumed to be direction dependent. A
set of permeability axes are defined
(xm , Ym , zm) and values for the coefficient of permeability in each direction
specified (kxlJ" kym , kzn,). This enables the permeability matrix in Equation (10.7) to
be obtained. It should be noted that this matrix is associated with the global
coordinate axes and therefore, if the material and global axes differ, the
permeability coefficients must be transformed. This is usually performed
automatically by the software. Again, it is useful to have the option of varying the
permeability values spatially.

10.7.4 Nonlinear permeability related to void ratio
In this model the permeability is assumed to be isotropic, but to vary as a function
of the void ratio. The following relationship between the coefficient of
permeability, k, and void ratio, e, is assumed:

where a and b are material parameters. With this model it is necessary to know the
void ratio at any stage of the analysis. This implies that the initial value at the
beginning of the analysis, must be input into the finite element program. '

From a fundamental point ofview, allowing the permeability to vary with void
ratio makes sense. However, there is often little laboratory or field data available
to determine the parameters a and b. Consequently, it is often convenient to adopt
an expression in which k varies with mean effective stress. Two such models are
presented below.

Low rain fall intensity
compared with permeability of soil;
no surface ponding

High rain fall intensity
compared with permeability of soil;
surface ponding

Figure 10. 11: Rainfall infiltration
boundary conditions

10.7.2 Linear isotropic permeability
This model assumes permeability to be isotropic and, at any point, defined by a
single value of k. However, in most soils the permeability varies with void ratio

10.7 Permeability models
10.7.1 Introduction
When performing coupled (or steady seepage) analysis it is necessary to input
permeability values for the soils undergoing seepage. For coupled analysis it is also
necessary to input the constitutive behaviour. Several options exist for specifying
permeabilities. For example, the soil can be assumed to be isotropic or anisotropic,
the permeabilities can vary spatially, or they can vary nonlinearly as a function of
void ratio or mean effective stress. Some ofthe models that the Authors find useful
are briefly described below.

Rainfall infiltration
In this case the problem relates to a
boundary which is subject to rainfall
of a set intensity. If the soil is of
sufficient permeability and/or the -----.lil

rainfall intensity is small, the soil can
absorb the water and a flow boundary a)

condition is appropriate, see Figure
10.11 a. However, if the soil is less
permeable and/orthe rainfall intensity
is high, the soil will not be able to
absorb the water, which will pond on
the surface, see Figure 10.11b. There
is a finite depth to such ponding, ----~m
which is problem specific, and b)

consequently a pore fluid pressure
boundary condition would be
applicable. However, it is not always
possible to decide which boundary
condition is relevant before an
analysis is undertaken, because the behaviour will depend on soil stratification,
permeability and geometry. The dilemma can be overcome by using the
precipitation boundary condition, with ql1 set equal to the rainfall intensity and Plb

set to have a value more compressive (i.e. equivalent to the ponding level) than Pli'

the initial value of the pore fluid stress at the soil boundary. Because Pli is more
tensile than Plb, a flow boundary condition will be assumed initially. If during the
analysis the pore fluid pressure becomes more compressive than Plb, the boundary
condition will switch to that of a prescribed pore fluid pressure.
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where k(} is the coefficient of permeability at zero mean effective stress and a is a
constant, incorporating the initial void ratio at zero mean effective stress and the
coefficient of volume compressibility, m". The derivation of the logarithmic law
therefore incorporates the assumption that m" is constant (Vaughan (1989)).

10.7.5 Nonlinear permeability related to mean effective stress
using a logarithmic relationship

Again the permeability is assumed to be isotropic, but to vary as a function of
mean effective stress, p', according to the following relationship:

(k) (-aI")In - = -ap' . k = k ek ,()
()

(10.31)

normal permeability is reduced by a large factor, R. Usually R takes a value
somewhere between 100 and 1000. If the accumulated pore fluid pressure is
between Pt] and Pj2' the permeability is found using a linear interpolation between
the two extreme values. Clearly, this approach requires an iterative algorithm. It
is therefore well suited to a nonlinear solution strategy of the modified Newton­
Raphson type.

Analysis involving a phreatic surface also require the use of the precipitation
boundary option, so that boundary nodes can automatically switch from a
prescribed pore fluid pressure to a prescribed flow.

The Authors' experience is that numerical instability can sometimes arise with
this approach and that more research is required to obtain a robust algorithm.

where again k() and a are material parameters.

10.7.6 Nonlinear permeability related to mean effective stress
using a power law relationship

This model has been derived assuming that the compression index, Cc, remains
constant (Vaughan (1989)). The relationship between permeability and mean
effective stress takes the form:

(10.33)

(10.34)

a--.

b=6a

FIxed, Impermeable boundary I
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10.9 Validation example
Closed form solutions for
consolidation problems are not easy
to obtain. This is especially true when
dealing with elasto-plastic materials.
Exact solutions have been found only
to problems involving linear elastic
materials, with simple geometry and
subjected to simple boundary
conditions.

One such problem is that of a
porous elastic half-space, subjected to
a load of intensity q over a width 2a,
under conditions ofplane strain. This
problem was used by the Authors as
one ofa series of validation exercises
when coupled analysis was first coded
into ICFEP. Some of the results from
these analyses are now presented.

Originally, the finite element mesh
shown in Figtjre 10.14 was used. The Figure 10.14: F.E. mesh for
boundary conditions employed are consolidation problem - I

noted on this figure. The water table was assumed to be at the ground surface. The
results are expressed in terms of the adjusted time factor, T:

T= et
a2

and the adjusted coefficient ofconsolidation, c:

K,

(10.32)

(+ve)
Pore pressure

K,IR

logk

,,,,,,,,
1--------:---
, ,

Pf2

10.8 Unconfined seepage flow
Situations which involve unconfined flow, where it is necessary for the software
to determine a phreatic surface, can be problematic, because there does not appear
to be a robust algorithm for finding and accommodating the phreatic surface. There
are several different algorithms available. Some ofthese involve adjustments to the
finite element mesh so that the phreatic surface follows a mesh boundary. Such
methods are not applicable to coupled consolidation analysis.

A more general approach is to reduce the permeability when the soil sustains
a tensile pore fluid pressure associated with a position above the phreatic surface.
A typical variation of pem1eability
with pore fluid pressure is shown in
Figure 10.13. If the accumulated pore logk=logk _(P-PIl) logR

, (PI' - PI I)
fluid pressure is more compressive
than Pfl' the soil's normal
permeability (e.g. given by one of the
models described above) is adopted.
However, if the accumulated pore
fluid pressure becomes more tensile
than PI2 , the soil is assumed to be Figure 10. 13: Variation of
above the phreatic surface and the permeability with pore fluid pressure
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b= 18a

Figure 10. 17: Variation of normalised excess
pore pressure

10.10 Summary
1. This chapter has considered the modifications to the finite element theory that

are necessary to enable time dependent soil behaviour to be simulated. This
invoIves combining the equations governing the flow ofpore fluid through the
soil skeleton, with the equations governing the deformation ofthe soil due to
loading.

2. The resulting finite element equations involve both displacement and pore
fluid pressure degrees of freedom at element nodes. In addition, to enable a
solution to be obtained, a time marching algorithm is necessary. This involves

T= 0.1

-- Schiffman et al., 1969
FE prediction, b=18a

FE prediction, b=6a

Nonnalized excess pore pressure,p""" Iq
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Figure 1O. 15: Variation of
normalised excess pore pressure

where G is the elastic shear modulus, k is the coefficient of permeability, Yj is the
bulk unit weight of the pore fluid, and t denotes time.

The load intensity q was applied in a very small time step (expressed in terms
of the adjusted time factor, !J.T, it was 1.15x10-5

), resulting in an undrained
response. Logarithmic time increments, typically five per 'log' cycle, were used
thereafter. The response during the first 'log' cycle was essentially undrained, and
the results for this' log' cycle are not presented.

The variation of normalised
excess pore fluid pressure, Pexcess Iq,
beneath the centre of the loaded area
is given in Figure 10.15 for the
specific case ofT= 0.1 and Poisson's
ratio 11=0. It can be seen that the
finite element prediction (open
squares) over predicts the excess
pore fluid pressure, particularly at
greater depths beneath the loaded
area. Because the closed form
solution, presented by the full line in
Figure 10.15 (Schiffman et al.
(1969)), was derived for an infinite
half-space, it was suspected that this
discrepancy was due to the close
proximity of the bottom andlor lateral boundaries in the finite element mesh. The
effect of the position of both boundaries on the predictions was investigated and,
surprisingly, it was found that the position of the lateral boundary has the greatest
influence. Results from the mesh shown in Figure 10.16, which has a similar depth
to that given in Figure 10.14, but three times the width, are shown in Figure 10.15
as solid squares. These results are in excellent agreement with the closed form
solution, except for a slight discrepancy at the base of the mesh.

In Figure 10.17 the variation ofnormalised excess pore fluid pressure,Pexces/q,
with adjusted time factor, T, is given for two specific points in the half-space, see
Figure 10.16. Two predictions were made, both using the mesh shown in Figure
10.16, with different forms ofthe element pore fluid pressure interpolation matrix,
[Np ]. Eight noded isoparametric elements were employed and in one analysis,
labelled as code 8, all eight nodes had a pore fluid pressure degree of freedom. In
the other analysis, labelled code 4, only the four corner nodes had pore fluid
pressure degrees of freedom. Consequently, in the code 8 analysis there was a
quadratic variation ofpore fluid pressure across each finite element, whereas in the
code 4 analysis the distribution was linear. Also shown in Figure 10.17 is the
closed form solution. It can be seen that the predictions from both finite element
analyses are in excellent agreement with the closed form solution. In addition,
there is very little difference between the predictions from the two finite element
analysis.
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an assumption ofthe magnitude of the average pore fluid pressure~ over each
time step. It is assumed that, at each node, the average pore. fl~ld pressure
durina the time step is linearly related to the values at the begmnmg and end
ofthebtime step. This involves the parameter /3. For numerical stability /3'.20.5.

3. Even for linear material behaviour analysis must be perfOlmed incrementally,
to accommodate the time marching process.

4. It is possible to have some elements within a finite element mesh which are
consolidating and some which are not.

5. If the soil skeleton is rigid, there can be no deformation and only flow of pore
fluid through the soil occurs. This results in a considerable reduc:ion in the
complexity ofthe governing finite element equations. Only pore flUid pressure
dearees of freedom need to be considered.

6. In ~oupled analysis hydraulic boundary conditions ~ust be consi~ered. These
consist of prescribed nodal pore fluid pressures, tied pore flUid freedoms,
infiltration sinks and sources and precipitation.

7. For all nodes on the boundary of the finite element mesh either a prescribed
pore fluid pressure or a flow boundary condition must be specified. If a
boundary condition is not set for a boundary node, most software packag.es
will implicitly assume that the node represents an impermeable boundary (l.e

a zero nodal flow condition).
8. It is also necessary to input the coefficients of soil permeability. The

permeability can take several different forms: it can be isot~opic or anisotro~ic,
it can vary spatially, or it can vary as a function of void ratl? or m~an e~fectlve

stress. In the latter case the permeability at each integratIOn pomt Will vary
during the analysis and the software must have the appropriate algorithms to

cope with this. . '
9. Problems involving unconfined seepage, in which the analySIS has to

determine the position ofa phreatic surface, can be accommodated. However,
at present the algorithms that are available are not robust, which can lead to
numerical instability. Further research is required.

10. The coupled theory presented in this chapter assumes the soil to be fully
saturated. Further complications arise if the soil is partly saturated.

11. 3D finite element analysis

11 .1 Synopsis
Although there are many geotechnical problems that can be approximated to either
plane strain or axi-symmetric conditions, some remain which are very three
dimensional. Such problems will therefore require full three dimensional numerical
analysis. This chapter describes how the theory already presented can be extended
to account for such behaviour. However, as it will be shown, the computer
resources required for such analysis are considerable. Two ways can be used to
reduce these resources. One way is to use iterative techniques to invert the global
stiffness matrix, as opposed to the direct methods used so far. While such methods
are recommended in the literature, it will be shown that, although they can lead to
economies for linear elastic analysis, they are unlikely to be helpful for nonlinear
analysis. The second way is to capitalise on any geometric symmetries that exist.
In particular, if the geometry is axi-symmetric, but the loading or material
behaviour is not, then the Fourier series aided finite element method can be used.
A brief outline of this method and quantification of the savings in computer
resources that can be achieved are described in Chapter 12.

11.2 Introduction
In the presentation ofthe finite elementtheory given in previous chapters, attention
has been restricted to either plane strain or axi-symmetric conditions. In both these
cases symmetry implies that displacements in one particular direction are zero. By
choosing global axes such that one of the axes coincides with the direction of zero
displacement, results in considerable simplifications. In finite element analysis it
means that it is only necessary to account for two displacement degrees offreedom
at each node, but more importantly, analysis can be performed over a
representative two dimensional slice of the problem.

However, in reality most geotechnical problems are three dimensional, and,
although in many, plane strain or axi-symmetric approximations are not
unreasonable, there are some which must be treated as three dimensional. This
implies that three components ofdisplacement must be accounted for and that the
complete three dimensional geometry must be considered. While theoretically this
does not pose any insurmountable problems, in fact the basic theory presented in
the previous chapters still holds, the quantity of data and the size of the various
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T= 1

T= -1

Figure 11.2: Parent element for a
20 noded hexahedron

U=l

s= -1
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Mid - side nodes:

N 9 1/4(1- S2)(1- T)(1- U)

N lO 1/4 (1- T 2 )(1 +S)(1- U)

NIl 1/4 (1- S2 )(1 + T)(1- U)

N 12 1/4(1- T2 )(1- S)(1- U)

Nil 1/4(1 U 2 )(1- S)(1- T)

N I4 1/4 (1- U 2)(1 + S)(1- T)

N 1S 1/4(1-U2 )(1+S)(1+T)

N I6 1/4 (1- U 2)(1- S)(1 +T)

NI? 1/4 (1- S2)(1- n(l + U)

N I8 1/4(1- T 2 )(1 + S)(1 + U)

N I9 1/4(1- S2)(1 + n(1 + U)

N 20 1/4 (1- T 2 )(1_ S)(1 + U)

Corner nodes:

NI 1/8 (1- S)(1- T)(l- U)

N 2 1/8(1+S)(I-n(l-U)

N] l/s(l + S)(1 + n(1- U)

N4 l/s(l- S)(1 +T)(l- U)

N s 1/8(1- S)(1- T)(1 +U)

N6 1/8(1 + S)(I- n(1 + U)

N? 1/8(1 +S)(l + T)(1 +U)

Ns l/s(1- S)(1 + T)(1 +U)

20

X = I Ni Xi
;=}

20

Y=INiYi
;=1

20

Z= I Nizi
;=1

by coordinate interpolations of the
form:

where Xi' Yi and Zi are the global
coordinates of the 20 nodes in the
element and Ni' i = 1, ... , 20, are the
interpolation functions. These
interpolation functions are expressed
in terms ofthe natural coordinates S, T
and U which vary from -1 to +1. They
take the following form:

a) Hexahedron

b) Tetrahedron

Figure 11. 1: 3D finite elements

vectors and matrices increases enormously. This has severe implications for
computer resources. For example, while an elasto-plastic finite element analysis
of a strip footing (plane strain) may take a matter of a few minutes on a fast
workstation, a similar analysis of a square footing (three dimensional) may take
many hours. Most of this extra time is involved in inverting the global stiffness
matrix. Consequently, mathematicians have investigated ways of improving the
inversion process. One way of doing this is to use iterative techniques to solve the
stiffness matrix equations, rather than direct methods. In this chapter we consider
one of these iterative approaches and make comparisons with the direct approach
described in Chapter 2.

Another way of simplifying the analysis is to capitalise on any geometric
symmetries that exist. One approach that does this is the Fourier series aided finite
element method. A briefdescription ofthis approach is given in Chapter 12 and the
economies that can be obtained, quantified by comparing predictions with those
obtained from conventional three dimensional analysis.

This chapter begins by describing the basis of conventional three dimensional
finite element analysis.

11.3 Conventional 3D finite element analysis
Conventional three dimensional finite
element analysis follows exactly the
same procedures as described in
Chapters 2, 9 and 10. The only
difference is that instead of analysing
a two dimensional slice ofthe original
boundary value problem, the whole
domain must be considered. This
involves discretising the geometry of
the problem into an assemblage of
three dimensional finite elements. The
most popular elements are tetrahedra
and hexahedra, see Figure 11.1. Their
geometry is specified in terms of the
coordinates of the element nodes. For
elements with plane faces these nodes
are usually located at the element
corners. If the elements have curved
faces, extra nodes, usually at the midpoint of each edge, must be introduced.

Ifthe elements are isoparametric, see Section 2.5.1, global elements are derived
from a parent element which has the same number of nodes, but is defined with
respect to a natural coordinate system. Figure 11.2 shows the configuration of the
parent element for a 20 noded hexahedron. For a global element derived from this
parent element, the global coordinates of a point in the element can be expressed
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Figure 11.4a: Plan view of 3D mesh for square footing
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quarter ofthe problem needs to be discretised into finite elements. A mesh, which
is coarser than the two dimensional mesh shown in Figure 11.3, is shown in Figure
11.4. This mesh has 416 twenty noded hexahedron elements, giving a total of220 1
nodes and therefore 6603 degrees of freedom (note: there are three degrees of
freedom per node).

Analyses have been performed to obtain the undrained load displacement
curves for the three shapes of footing. In all cases the soil was assumed to be
elasto-plastic, with a Tresca yield surface. The soil properties were: E=10000 kPa,
,u=0.45 and S,,=100 kPa. For the strip and circular footings the mesh shown in

Figure 11.3: Finite element mesh
for strip and circular footing
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where u, v and ware the displacements in the x,y andz directions respectively. For
4 noded tetrahedron and 8 noded hexahedron the displacements vary linearly,
whereas for 10 noded tetrahedron and 20 noded hexahedron the displacements vary
quadratically.

The development of the finite element equations then follows the same process
as described in Section 2.6, except that there are now six non-zero components of
stress and strain. When performing numerical integrations to evaluate the element
stiffness matrix (see Section 2.6.1), account must be taken of all three dimensions
and therefore more integration points are required. For example, for the 20 noded
hexahedron either 2x2x2 (reduced) or 3x3x3 (full) integration orders are used.

From the above discussion it is
bPclear that 3D analysis involves

considerably more elements, and
therefore nodes and integration
points, than comparable two
dimensional plane strain or axi­
symmetric analysis. It is therefore not
surprising that they require more
computer resources. As an example,
let us consider the analysis of strip,
circular and square smooth rigid
surface footings subjected to vertical
loading. As the strip and circular
footings are plane strain and axi­
symmetric respectively, they can be
analysed using a two dimensional
finite element mesh. Such a mesh is
shown in Figure 11.3 and consists of
145 eight noded elements, giving a
total of 482 nodes and therefore 964 degrees of freedom (note: there are two
degrees of freedom per node). Because of the line of symmetry acting vertically
through the centre line of the footing, the finite element mesh only considers half
the problem. The square footing cannot be approximated to two dimensions and
therefore a full three dimensional analysis is required. There are, however, two
vertical planes ofsymmetry acting through the footing and, consequently, only one

Since the element is isoparametric, the displacements within the element are
interpolated in the same way as the geometry. Therefore, the above interpolation
functions NI, N2, .•. , N2o, are used as the shape functions which express the
incremental displacements at any point within the element in terms of the values
at the nodes:
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Figure 11. 6b: Vertical cross-section
of 3D mesh for square footing
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Figure 11.6a: Plan view of 3D mesh for square footing
(8 noded elements)

centre node is connected, via its eight surrounding elements, to 26 other nodes,
whereas for the 20 noded elements the centre node is connected to 80 other nodes.

The load displacement curves obtained from the two square footing analyses
are shown in Figure 11.8. While the analysis with the 20 noded hexahedron
elements gives a limit load, the analysis with 8 noded hexahedron elements
continues to show increasing load with displacement. Therefore, although the latter
analysis uses less computer resources, it fails to provide an accurate prediction.
Similar behaviour is observed in plane strain analysis when analyses performed

~Circle (N!=5.87)

~ Strip (N!=5.19)
~ Square (N!=5.72)

o£.----L_-'----'-_--'---------'-_--'------'-_--'-------'

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
air, alB

2

4

Figure 11.5: Load-displacement
curves for square, circular and strip

footings

Figure 11.3 was used, whereas for the square footing the mesh shown in Figure
11.4 was used. Reduced, 2x2 for the strip and circular footing analyses and 2x2x2
for the square footing analysis, integration was used. Loading was simulated by
applying increments of vertical displacement to the footings.

The resulting load-displacement
curves are shown in Figure 11.5.
These will be discussed in more detail
in Volume 2 of this book. For the
present discussion we are interested in ~u 3

the computer resources required for
each analysis. In this respect, it should
be noted that all analyses were run on
the same work station. The run times
were 10 min, 60 min and 18 hours for
the strip, circular and square footings
respectively. The memory required
for the strip and circular footing
analyses was the same, 0.5 Mbytes.
For the square footing a much larger
requirement of 38 Mbytes was
needed. Although this is substantially larger than that required for the strip and
square footings, the workstation had sufficient memory and it was able to run the
analysis without having to resort to time consuming swapping between memory
and disc.

These results clearly show the massive increase in computer resources that are
required for three dimensional analyses. Comparing the strip and square footing
analyses, the latter required a 76 fold increase in memory and an 108 fold increase
in time. As most practical three dimensional geotechnical problems involve a more
complex geometry and soil stratigraphy than the simple footing problems analysed
above, they would require considerably more finite elements. The demand on
computer resources would be such that it would not be possible to perform
analyses unless a super computer is used, which would be so costly that analyses
could only be justified for a minority of practical problems.

One way of reducing the computer resources is to use 8 noded instead of 20
noded hexahedron elements. A mesh of such elements for the square footing
problem is shown in Figure 11.6. This consists of 1740 elements giving a total of
2236 nodes and 6708 degrees of freedom. The number of degrees of freedom is
therefore slightly higher than that of the analysis described above, using the mesh
shown in Figure 11.4. The analysis required 28 Mbytes of memory and a run time
of 14.5 hours. The reason for the reduction in memory, compared to the analysis
using 20 noded elements, is due to the reduction in band width of the global
stiffness matrix that arises by using 8 noded elements. This is evident from Figure
11.7, which compares the connectivities of the centre node of a block of eight 8
noded with a block of eight 20 noded elements. For the 8 noded elements the



332 I Finite element analysis in geotechnical engineering: Theory 3D finite element analysis I 333

3D mesh with 8-noded elements

(11.5)

Ki/L\d~c; + K2L\d;'c; + + KIn L\dn.G nG

K~IL\d~c; + K~2L\d;'G + + K 2n L\dn,G n(J

+ + +
K~]L\d'~G + K n2L\d2. + + K nn L\dn.G n(J G n(!

where [Kc;] is the global stiffness matrix, {L\d}"c; is the vector containing the
incremental nodal displacements and {Md is the global right hand side vector
containing equivalent incremental nodal forces. In finite element analysis it is
necessary to solve this equation for the unknown incremental nodal displacements.
Efficient direct solution techiques, described in Chapter 2, require elements of the
stiffness matrix to form a narrow band along the main diagonal, see Figure 2.19.
This narrow band entraps some zero terms, which must not be ignored because
they can become non-zero during the process of elimination. As the number of
elements increases, particularly in 3D problems (because of nodal connectivities,
see Figure 11.7), a large number ofzeros have to be stored within the band, which
automatically increases the requirements for computer memory. The advantage of
iterative methods is that they use only the non-zero terms in a solution process and
therefore none of the zero terms need to be stored.

Writing Equation (1 1.4) in an open form gives a system of simultaneous
Equations (11.5):

from which the unknown displacements can be expressed as:

b) Block of8 20-noded
elements

Central point

~ 3D mesh with 20-noded elements

Figure 11. 7: Node connectivities

10.-------------------,

a) Block of 8 8-noded
elements

with 4 and 8 noded quadrilateral
elements are compared. The analysis
with 4 noded elements fails to give an
accurate prediction of the collapse
load. The stiff behaviour of the linear
elements (4 noded for 2D and 8
noded for 3D analysis) is well
recognised in the literature and it is
therefore recommended that the
higher order quadratic elements are
used.

Alternative ways of reducing the
computer resources are therefore
required. Two such methods are
described in this book: iterative
techniques for the solution of the
global equations are presented in the
next section, while the pseudo 3D
analysis, in the form of the Fourier
series aided finite element method, is
the subject of Chapter 12.

o~--'---------'--...l-----'----L-_

o 0.05 0.1 0.15 0.2 0.25 0.3
S (m)

Figure 11.8: Load-displacement
curves for a square footing
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Iterative solution methods arrive at a solution to Equations (11.6) by essentially
making an initial guess at the answer:

and then iterating until the correct solution is obtained:

where: L\dillc; - unknown incremental displacement
k - number of iteration

Clearly, the success of such an approach depends on the initial guess and on how
this is modified on successive iterations. Equation (11.8) is usually known as a

11 .4 Iterative solutions
11.4.1 Introduction
Close examination of 3D finite
element analyses reveals that most of
the computer resources are used in inverting the global stiffness matrix. Therefore
considerable effort has been made in trying to find ways to streamline this process.
One approach that has recently been recommended in the literature is to use an
iterative solution technique, as opposed to the Gaussian elimination approach
outlined in Chapter 2.

In this section, the general process by which iterative solutions invert the
stiffness matrix is outlined. The conjugate gradient method, which is one of the
most popular iterative methods in current use, is then described. Finally, a
comparison of the performance of this method with that of Gaussian elimination

is given.

11 .4.2 General iterative solution
The formulation of a set of global stiffness equations in the form of Equation
(11.4) was presented in Chapter 2:

[Kc ]{ L\dLG = {Mc} (11.4)
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(11.15)

(11.17)

(11.19)

(11.20)

(11.21)

oQ =[K ']{b.d}k -{fiR} ={g}k =0
o{b.d}~G (, nG G

Equation (11.15) shows that the minimum of Q is the solution of Equation (11.4).
The general technique to minimise Q is to choose an initial vector {/:!"d}On(i' a

direction of minimisation VO and a step size 1",0 to get to {/:!"d} InG' Further iterations
can be written as:

{b.d}:~I={b.d}:G+7l{v}k (11.16)

The basis of the method is to choose {vVto be in the direction of the greatest
rate of change of Q, namely in the direction of the gradient. However, because the
gradient reflects the direction in which the system grows, and here the opposite is
required (i.e. minimisation ofQ), {V}k should be set in the direction opposite to the
direction ofthe gradient. Since Equation (11.15) shows that the gradient ofQ is the
residual vector {g}\ then {V}k = - {g }k. Generally:

{b.d} :;'1 = {b.d}:G + 7/ {bJ k

where: {bJ k = _{ g} k

To find 7Jk it is necessary to rewrite Q in terms of 7Jk:

Q({M};';'I) = Q({b.d};'G+ 7;/ {b}k)

= t({M}~G+if{b}k)T [KG] ({M}~G+if{b}k)

- ({b.d}~G+7/{b}k)T {fiRdk (11.18)

= {({M};'G)T {g}k -{({M};'Gf {fiRd k

+ r/ ({b}k)T {g}k +{(7;/)2({b}kf[KGHb}k

If {/:!"d}knG and {J}k are fixed from the previous iteration, Q has a minimum
dependent on 7Jk:

wherefrom:

r/ = _ ({b}k)T {g}k
({b}k)T[KG]{b}k

It is sometimes useful to express Equation (11.20) in an alternative form:
suppose that the out of balance forces {g}k+1 are computed from the first 'trial'
expression {/:!"d},~~1 which has the step 7J = 1. Then:

(11.9)

(11.11)

(11.1 0)

(11.14)

(11.13)

(11.12)

Jacobi iteration, or the 'method of simultaneous displacements', because every
element of the solution vector is changed before any of the new elements are used
in the iteration. It is the simplest procedure, but very often diverges and
consequently there are several different manipulations which can be applied to
ensure and accelerate convergence.

Adding and subtracting /:!"dinG(k) to the right hand side ofEquation (11.8) gives:

-I Kgb.d;:G(k) + fiR~
b.d:'G (k + 1) = b.d:dk) + --e!.j__~1:..----

K
-:-iiC----­
G

For equilibrium, i.e. the correct solution, {g}k should equal zero.
The second part of the right hand side of Equation (11.10) is generally written

as an iterative vector, {J}\ and Equation (11.10) becomes:

From here, the usual iterative form of Equation (11.9), for the total vector {/:!"d}"G'
can be written as:

where {g}k is a residual, or out of balance, vector generated at each iteration:

where, generally:

11.4.3 The gradient method
This group of iterative methods is based on the minimisation of the following
quadratic form (Ralston (1965)):

The matrix [Ka] in the iterative vector {J}k should be easily invertible in order to
speed up the iterative process. Equation (11.10) indicates that [Ka] should equal the
matrix of diagonal stiffness terms. However, sometimes an alternative matrix is
used to accelerate convergence. The simplest form of iteration is obtained for [Ka]

= [1] (i.e. the identity matrix). If [Kal;e[1] the process is known as scaled or pre­
conditioned.

Minimising this expression with respect to {/:!"d}nG gives:
Subtracting Equation (11.11) from (11.21) gives:
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(11.22) and bearing in mind condition (11.28) leads to:

As for the parameter lJk, the above expression can be simplified, in order to avoid
costly calculations with the [Kd matrix, to give the following expression for jJk:

The flow chart for the conjugate gradient method is given in Figure 11.9. As
before, if [Ka]=[1] the method is called 'basic', otherwise it is 'scaled' or 'pre­
conditioned' .

The iteration procedure normally terminates when a convergence criterion, p,
reaches a pre-set limit, tal. This convergence criterion is usually calculated as the
ratio of the norm of the residual vector and the norm of the right hand side load
vector:

(11.31)

(11.32)

(11.25)

so that the new expression for r/ becomes:

( {S} k ) T {g} k7/ = (11.23)
({S}k)T ({g}~;~I) _ {g}k)

To modify {g}k+l(lJ = I) to the new {g}k+l(lJk) a linear relationship is used, such

that:

{g} ;,;:) = 7/ {g} ;:~I) +(1-7/ ){g} k (11.24)

without having to resort to the computationally more expensive Equation (11.11).
The gradient method described here is based on an iterative vector, {o}, being

equal to the residual vector, - {g}, see Equation (11.17). However, it can also be
applied to the scaled, or pre-conditioned, gradient direction so that:

11.4.4 The conjugate gradient method
This is a two parameter extension of the gradient method, which involves an
iterative vector, {o}, of the form:

(11.33)

which is the main' conjugate gradient' condition. From here, multiplying Equation
(11.27) by [Kd {O}k-I gives:

({cf) T[KG]{O(1 = ({Or-f[KG]{O(1 +fJk({O(lf[KG]{O(1 (11.30)

which essentially means that the process involves generating a set of [Kd­
orthogonal (i.e. [Kd-conjugate) vectors and then minimising successively in the
direction of each of them, until reaching the final solution. It can be shown (see
Crisfield (1986» that the condition (11.28) leads to the orthogonality of the
residual vectors, such that:

11 .4.5 Comparison of the conjugate gradient and banded
solution techniques

This section compares the performance ofthe conjugate gradient (CG) and banded
(BD) solution techniques. As explained in Section 11.4.2, the advantage ofthe CG
approach is that it is only necessary to store the non-zero terms of the global
stiffness matrix, while for the banded solution some of the zero terms within the
band width must be stored. However, the drawback of the CG method is that the
inverted global stiffness matrix is never calculated. While this is not a disadvantage
in linear problems, it is for nonlinear problems, where the solution strategy
involves several solutions with the same global stiffness matrix, but different right
hand side load vectors (i.e. in the modified Newton-Raphson approach (MNR), see
Section 9.6).

First of all, the requirements for computer memory are investigated, by
considering blocks of elements with an equal number of elements on each face.
These are classified as n x n x n 3D meshes, where n is the number of elements in
each coordinate direction. Figure 11.10 shows how the memory requirement
increases with the 'number ofdegrees offreedom' (NDF), based on 3D meshes of
Ix lxI, 2x2x2, 5x5x5, 8x8x8, IOxlOxlO and 12xl2xl2 twenty noded hexahedron
elements. Memory is plotted against the NDF, which varies from 60 (1xlxl) to
24,843 (12xI2xI2). It can be seen that the CG solver is more beneficial once the
NDF exceeds approximately 1000.

(11.29)

(12.27)

(11.28)

(11.26){o} k = _[ K a] -I { g} k +If {o} k-I

{6Y = {6Y* +pk{Or-1

The parameter jJ is found from the condition that:

or
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Figure 11. 12: Times for a single
inversion of the stiffness matrix
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Figure 1,. 11: Boundary conditions
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Figure ". 10: Memory requirements
for CG and BD solvers
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For lower numbers of degrees of
freedom the memory requirement for
the CO method exceeds that for the
BD method. This occurs because two
storage vectors are required for the
CO method: one containing the non­
zero terms of the stiffness matrix and
the other containing the positions of
the terms in the stiffness matrix.

Solution times for a single
inversion of the global stiffness
matrix are considered next. This is
done by applying a point load to the
corner of the n x n x n meshes, see
Figure 11.11. The soil is assumed to
be isotropic linear elastic (Young's
modulus, £=1000 kPa) and therefore
the analyses are all linear. Two sets of
analysis were performed, one set
drained, with a Poisson 's ratio ,u=0.3,
and the other set undrained, with
,u=0.4998. For the CO solutions pre­
conditioning was performed, with
matrix [Ka] equal to the diagonal
matrix, [DM], of the global stiffness
matrix, [Kc;]. The convergence
tolerance was set to 0.001%. The
resu Its are presented in Figure 11.12
for both the CO and BD analyses. It
should be noted that the solution
times for the BD analysis are not
dependent on the Poisson's ratio,
whereas for the CO analysis the
number of iterations, and hence the
computer time, is. Inspection of
Figure 11.12 indicates that for
undrained analysis, the CO solver is
beneficial only for the very large
number of degrees of freedom (over
10,000), i.e. for over 1000 twenty
noded 3D elements. However, for the
drained analysis (,u=O.3) the CO
solver is always superior to the BD
solver.

1
Figure 11.9: Flow chart for the conjugate

gradient algorithm

O-th iteration:
k=O; 130 = 0
set {M}o = 0
then {g} 0 = -{MG}

,1,'

Solve {8}"=-[Kaf{g}'

Set f:= ({8(ng}'

1
If k1" 0:

Set 13'=
e' _({8()'{g} k·'

ek·'

1
Set {8}k = {8t + I3k{8}'"

Calculate 'trial' solution for Tl = I:

{M}:~= {M}:G+ {8}k

1
Calculate 'trial' residual:

I{g}(~~,) = [KGHM}:d- {MG}

1
Calculate 'step-length':

k _({8}k)'{g}k

Tl = ({8}')'({g}:~'j- {g}')

~

Adjust {M}~d and {g}'H to allow for
the new step length:

{M}~d = {M}~~ + (Tl
k- 1){8}k

{g}'" = Tl'{g}I:',j+ (I - Tl'){g}k

1
Calculate tolerance:

11 {g}' 11
,;; tolp=

11 {MG}II

I k=k+ll_I NO
YES J.

I End of iteration I
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which gives a new system of equations:

- The normalisation involves the following substitutions:

11.4.6 Normalisation of the stiffness matrix
Another problem when using iterative procedures arises when terms within the
stiffne~s ~atrix differ by several orders of magnitude. The iterative process then
finds It difficult to converge to a very tight tolerance. Such a situation arises if a
consolidation analysis is performed, becaJ.lse part of the stiffness matrix consists
ofthe structural stiffness, [Kd, (which are large numbers), while the other part has
terms defi.ned from the permea~ility coefficients, [epG] (which are small numbers),
see EquatIOn (10.27). One possible way ofovercoming this problem is to normalise
the stiffness matrix in some way, so that it brings all terms within the matrix to a
similar order of magnitude. Naylor (1997) suggested a very elegant form of
normalisation which retains the symmetry of the stiffness matrix but does not
require large computing resources. It consists of the following ste~s:

- The assembled stiffness equations of the form (1 1.5) are:

T~is type ofnormalisation has been implemented, with pre-conditioning using
the dla.gonal.terms of the normalised stiffness matrix to obtain [Ka]. As the
normalised diagonal terms are equal to unity, this is equivalent to [/(J=[l].
Analyses have been performed for the simple example of n x n x n 3D meshes
presented above. The number of iterations for a single inversion of the stiffness

both solver~. The mesh is given in Figure 11.4 and consists of 416 twenty noded
eleme.nts w~th 6603 d:grees of freedom. The soil is modelled as a Tresca type
materIal, With properties as given in Section 11.3 (i.e. £=10000 kPa, ,11=0.45,
SII= I 00 kPa). For the CO analysis the convergence tolerance for the CO algorithm
was .set at 0.0 I %. Both analyses gave the same results, but the CO analysis
reqUired 7 days ofcomputer time, whereas the BD analysis only required 18 hours,
for the same number of load increments in each analysis. Clearly, the BD analyses
was far more economical for this particular situation.
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-.- [K.] ~ [1]
--..- [K.] ~ [DM]

100 L--'----'---'---'~L_--'---L----'----'~-'--.-J

0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

Poisson1s ratio

150

200

400

500

450

Figure 11. 13: Influence of pre­
conditioning on the number of

iterations for the CG solver

Figure 11. 14: Sensitivity of a
solution to the value of Poisson's

ratio

The number of iterations required
for the drained (,11=0.3) analyses are
plotted against NDF in Figure 11.13.
Also shown on this Figure are
equivalent results obtained using [X,,]
= [I]. Comparison shows that pre­
conditioning with [DM] reduces the
number of iterations by about 20%.

From the results presented in
Figure 11.12 it is clear that the CO
solver is highly dependent on the
compressibility of the soil (i.e. the
value of Poisson's ratio). To
investigate this further, a series of
analyses using the 8x8x8 mesh, but
with different Poisson's ratios (e.g. ,11
of0.3, 0.4, 0.45, 0.48, 0.49, 0.495 and
0.499) have been performed. The
results are presented in Figure 11.14. g 350.:;;,
While the BD solver is insensitive to 13 300

the value of ,11, the number of E::: 250

iterations, and therefore computer
time, for the CO solver, both with
[DM] and [1] matrices, and with a
0.00 I % convergence tolerance,
increases rapidly once fl > 0.48.

As noted above, the drawback
with the CO (or any iterative) method
is that the global stiffness matrix is
never actually inverted. While this is
not a disadvantage for linear analyses, where only one solution of the stiffness
matrix is required, it can be a serious drawback for nonlinear analyses in which the
same global stiffness matrix needs to be solved for several different right hand side
load vectors. Such a situation occurs if the visco-plastic or modified Newton­
Raphson solution algorithms are used. In these methods the same stiffness matrix
is used for all iterations of a particular increment of the analysis (see Sections 9.5
and 9.6). If a BD solver is used, the global stiffness matrix can be inverted on the
first iteration and stored to be re-used on subsequent iterations. If the CO solver is
used, the same procedure for solving the global stiffness matrix must be repeated
for each new right hand side load vector and therefore for each iteration. This can
be very uneconomical and can result in the situation that although the CO solver
can solve the equations quicker, the BD solver wins because it does not have to
resolve the equations for each iteration of an increment. As an example, the
undrained bearing capacity of a smooth rigid square footing is calculated using
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400,-----------------,

Figure 11. 15: Influence of
normalisation on the number of

iterations for the CG solver

3. It is not advisable to use linear displacement elements in order to reduce the
computer resources required, because these elements are not able to accurately
reproduce limit loads. For geotechnical problems higher order (at least
quadratic) displacement elements should be used.

4. In the literature it is claimed that, by using an iterative method to solve the
global stiffness matrix equations, the computer resources required for full 3D
analysis can be reduced. This is certainly true if the analysis is linear, there is
a large number of degrees offreedom and the material is compressible. If this
is not the case, it is questionable whether there is any advantage in using such
a technique. For nonlinear problems, which can be solved in a reasonable time
it appears that direct solution techniques are faster than the iterative methods:
This arises because the iterative techniques do not actually evaluate the inverse
of the global stiffness matrix and therefore a full solution is required even if
only the right hand side load vector changes.
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matrix in drained analyses is
presented in Figure 11.15. Also
shown in Figure 11.15 are results
from Figure 11.13, which are based
on the original (un-normalised)
stiffness matrix. Comparison of these
results indicates that the normalisation
procedure reduces the number of
iterations and is therefore more
efficient. However, its effect is only
marginal compared to the analyses
with the original stiffness matrix and
pre-conditioning with [Ka]=[DM]. A
similar conclusion arises for
undrained analyses of the same
problem.

The Authors experience with the normalisation procedure when applied to other
boundary value problems is not conclusive. In some cases it is more beneficial than
the un-normalised approach, whereas in others it is not. In particular, it does not
always overcome the problems involved in coupled consolidation analysis
highlighted above.

11 .4.7 Comments
It can be concluded from the above comparisons that the CG method becomes
more economical than the BD method at solving the global stiffness equations as
the number of degrees of freedom increases and/or the soil is compressible.
However, because the global stiffness matrix is never actually inverted, the CG
method is not ideally suited to nonlinear finite element analysis. The Authors'
experience is that for nonlinear problems that are solvable in a realistic time (i.e.
with a run time less than a week), the BD solver is always more economical than
the CG solver. Of course, the situation may well change as computer resources
improve and it is possible to analyse larger 3D meshes, in which case the CG
approach may then become more effective.

11 .5 Summary
I. Full 3D finite element analysis does not involve any major developments to the

theory presented for 2D plane strain and axi-symmetric analyses. The main
differences are that the full 3D geometry must be discretised and that there are
now three, as opposed to two, displacement degrees of freedom at each node.

2. Full 3D finite element analyses require large amounts of computer resources,
both memory and time. With present day computers only very simple nonlinear
3D problems can be analysed.



12. Fourier series aided finite element
method (FSAFEM)

12.1 Synopsis
As described in Chapter 11, a conventional three dimensional (3D) finite element
analysis of a typical non linear geotechnical problem is complex and requires a
large amount of computer resources. The Fourier series aided finite element
method (FSAFEM) is a means of increasing the computational efficiency of the
conventional finite element method, for a special class onD problems which have
a geometry that does not vary in one of the coordinate directions (out of plane
direction), but whose material properties and/or boundary conditions do. This
efficiency is gained by assuming that the displacements in the geometrical out of
plane direction can be represented using a Fourier series and exploiting its
orthogonal properties. Two types ofFSAFEM exist, the continuous FSAFEM (i.e.
CFSAFEM) and the discrete FSAFEM (i.e. DFSAFEM) and they are described in
this chapter.

Fourier series aided finite element method / 345

All existing formulations of the FSAFEM have been based on linear elastic
material behaviour. Nonlinear problems have been analysed with some success
(Winnicki and Zienkiewicz (1979), Griffiths and Lane (1990». In these analyses
the nonlinear behaviour was dealt with using a finite element algorithm in which
the global stiffness matrix was based on the linear elastic material properties and
the non linearity was dealt with by modifying the right hand side of the governing
finite element equations. In addition, most of the past implementations of the
FSAFEM have assumed that the system forces and displacements have a symmetry
about the e = 0° direction, where e is the angular coordinate. This assumption
results in a large saving of computer resources required for an analysis and also
considerably simplifies the formulation. However, these assumptions are
restrictive. Recently a new nonlinear formulation has been developed (Ganendra
(1993), Ganendra and Potts (1995», which allows the stiffness matrix to be
updated during an analysis using the nonlinear material properties. It also places
no symmetry constraints on the variation of system forces and displacements.
However, options can be included to capitalise on any such symmetry if it exists.
The chapter begins by presenting the basic theory behind the FSAFEM, and then
describes its implementation.

Figure 12. 1:Cy/indrica/
coordinate system

(12.1 )

z

12.3 The continuous Fourier series aided finite element
method

12.3.1 Formulation for linear behaviour
The axi-symmetric geometry of the problem
domain allows a cylindrical coordinate
system to be defined (r-z-e, see Figure 12.1)
such that the r-z plane can be discretised
using a 2D finite element mesh. Thus the
distribution of variables in the r-z plane can
be described using nodal values and
conventional 2D finite element shape
functions. The distribution ofvariables in the
edirection can be described using a Fourier
series, e.g.. the incremental radial
displacement, !1u, can be written as:

12.2 Introduction
Conventional 3D analyses of nonlinear geotecnical boundary value problems
require large amounts of computer resources (Brown and Shie (1990». A large
proportion of these resources are involved in inverting the global stiffness matrix.
Consequently, one way ofeconomising on computer resources is to use an efficient
method of inverting this matrix. In this respect the use of iterative solution
techniques was described in Chapter 11, where it was shown that, for current
computer hardware technology, such techniques can result in economies for linear
problems, but are unlikely to result in savings for nonlinear problems. However,
the situation may improve with future developments in computer hardware.

Another way of simplifying 3D analyses is to exploit any geometrical
symmetries that exist. One approach that capitalises on such symmetries is the
Fourier series aided finite element method (FSAFEM). The theory behind this
method and its implementation is the subject of this chapter. Conventionally, the
FSAFEM has been applied to problems with an axi-symmetric geometry (but non
axi-symmetric loading and/or variation of material properties) and it is the
application of the method to such problems that is considered here. However, the
method can also be implemented for problems expressed in terms of Cartesian
geometries.

where !1uo, !1u! and !1u! are the O'h, I'h order cosine and l'h order sine harmonic
coefficients of variable !1u respectively.

Consider the displacements at a point, !1u, with components!1u, !1v, and!1w in
the r, z, and edirections respectively. Displacements!1u can be expressed in vector
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form in terms of the shape functions of the appropriate element in the 2D finite
element mesh, and the Fourier series of the nodal displacements of the element:

N;(± U:cosIB+u:sinWI
1=0 )

N;(± V/cosIB+V;'sinWI
'=0 )

N; (± w/cosW + w,'sinWI
'=0 )

(12.2)
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[Ko] 0 00 0 o 0 0 0 !:J.do !:J.Ro

0 [K l
] 0 0 0 o 0 0 0 !:J.d 1

', !:J.d 1
" !:J.R 1

' , !:J.R l
"

0 0 .. 0 0 o 0 0 0

0 0 o .. 0 o 0 0 0

0 0 o 0 [K I
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The incremental strains at a point, assuming a compression positive sign
convention, are defined in cylindrical coordinates as:

(12.5)

o

o

o

(12.6)

IN; ( /. , J-r-l-W; s1l11B + W; eoslB

(aN N)(- = Ja;:"- -7 lW;'eosf() + W;' sinle

aN (- = Ja;-lW;'eoslB + W;IsinlB

!'o.E:r
!'o.E:z
!:J.E:e
!'o.E:rz
!'o.E:re
!'o.E:zB

o

o

aN (, , Ja;:"-lV; eosf() + V; sinlB

IN ( , 'J-7 -V; sinlB+ V; eoslB

{!:J.&} =

o

N(- = J7lu/ eoslB + U/ sinlB

aN (- = Ja;-lU/eoslB + U/ sinlB

IN( / 'J-7l-U; sinlB +Ui eosf()

a(!'o.u)
ar

a(!'o.v)
az

!'o.u 1 a(!:J.w)-+---
r r aB

a(!'o.u) a(!'o.v)--+--
az ar

1 a(!'o.u) a(!'o.w) !'o.w---+----
r ae ar r

1 a(!:J.v) a(!'o.w)---+--
r aB az

Thus in the problem domain defined above, the incremental strains at a point can
be expressed in terms ofFourier series harmonic coefficients of incremental nodal
displacements and element shape functions:

!'o.d N _2

!'o.d N _1

where:
N; is the shape function of the ph node defined in the element;

U: ,V;' and w,' are respectively the rh cosine harmonic coefficient of radial,

vertical and circumferential incremental displacement at the ph node;

U: , r~' and w,' are respectively the rh sine harmonic coefficient of radial,
vertical and circumferential incremental displacement at the [1h node;
n is the number of nodes in the element;
L is the order ofthe harmonic series used to represent displacement and is equal
to the highest order harmonic used.

The ensuing procedure for formulating the stiffness matrix for the CFSAFEM
is undertaken in a manner similar to that for a full 3D analysis. However, as will
become evident, the CFSAFEM uncouples the full 3D stiffness matrix, which has
a form shown in Equation (12.3), into a series of smaller independent stiffness
matrices ofthe form shown in Equation (12.4). The variables that are solved for
in the CFSAFEM are the harmonic coefficients of incremental displacement at

each node in the 2D mesh, i.e. U: ,v;' , w,' , U: ,v;' , w,1 .

(12.3)
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These incremental strains can be rewritten as the sum of the product of a series
of strain matrices, [B], and vectors of harmonic coefficients of incremental
displacements. The resulting expressions can then be divided into two parts,
parallel symmetry terms and orthogonal symmetry terms. Parallel symmetry terms
consist of cosine harmonic coefficients of radial and vertical incremental
displacements and sine harmonic coefficients of circumferential incremental
displacements. Conversely, orthogonal symmetry terms consist of sine harmonic
coefficients of radial and vertical incremental displacements and cosine harmonic
coefficients of circumferential incremental displacements. Rearranging Equation
(12.6) in this manner gives:

where:

aNi
0 0

ar

{Mr}~t~}0
aNi

0
[El;] =- az and

N INiI 0
r r

aNi aNi
0

az ar (12.9)

(12.8)

The [D] matrix for a material relates the incremental stress vector {b.u} to the
incremental strain vector {b.e}, i.e:

It can be divided into four submatrices, [D 1J, [D I2 ], [D21 ], and [D22], in accordance
with the subdivision of the [B] matrix into two submatrices [B1] and [B2]. This
can be written in matrix form as:

(12.10)

(12.11){b.u} = [D] {b.e}

= f f {;\"u} T[B]T[D][B] {;\"u} dB r darea

= sf f{t [[Bl;}C~SkB]{Mn+[ [BY]SinkB]{Mt,,}}T[D].
-nl=1 k=O [B2i ]smkB -[B2; ]caskB

n {J. [[Bllj]Cas/B] ,I' [[Bl/]Sinle] 1'* 12: 2: I. {;\"d j }+ / {;\"d j } r dBdarea
j=1 1=0 [B2

j
]smle -[B2j]casle'

[IN 0 (0;' -~'J1
Vi

[B2;1~- --:

I

and {M!"} = Vi
INi aNi

I

-w/r az

n T
;\"W = f f {;\" &} {;\" eT} dB r darea

Note:
{b.d,"} and {b.d/,*} are the parallel and orthogonal fh order harmonic
coefficients of incremental displacement for the z'h node respectively, and
[Bl,'] and [B2,'] are the top and bottom sections ofthe fh order harmonic [B]
matrix for the Zih node respectively.

The incremental internal work done can now be written as:

aN
0 0_I caste

ar

0
aN

0;\"&,.
_I casle
az

;\"&z N IN

j~j
-;casle 0 -;casle

;\,,&g
IJ J. r r

(;\"s) = ;\"&IZ =-2: 2: aN aN IB 0_Icaste -'cas;= I 1=0 az ar
;\"G~,g

------- ------- -------
IN; . le (aN; N;). le;\,,&zo --sm 0 ---sm
r ar r

0 IN; . le aN; . le--sm -sm
r az

(12.7)

aNi' le 0 0

1
-sm
ar

0 aNi' le 0-sm
az

I:~,I
N' le 0 INi . le_Ism -sm

n L r r
-2: 2: aNi' le aN; . le 0;= I 1=0 -sm -sm

az ar
------- ------- -------
IN (aN N)-'caslB 0 - _I__' casle
r ar r

0
IN aN_I casle --'caslB
r az

Splitting the equation into two parts in this manner results in the [B] matrices
for each part having a similar form. The dashed lines in the matrices separate the
sine and cosine terms and split the [B] matrix into a top and bottom section. Note
that the cosine coefficient ofcircumferential incremental displacement is expressed
with a sign change. Thus the strains can be written as:

{b.s} = t ±[[Bl;}C~S/B] {b.dj'} +[ [Bl;]Sinte] {b.d!"}
i=1 1=0 [B2i ]smte -[B2i]coste



When integrating with respect to e, a large number of terms in the stiffness
matrix become zero due to the orthogonal properties of the Fourier series:

+

+

+

r darea

(12.16)
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The applied incremental loads are formulated as harmonic coefficients of
incremental nodal force using the equations in Appendices XII.I to XII.4. These
harmonic coefficients of nodal force are expressed as vectors {t,.R"} and {t,.R''*}:

{
{f':..R'*}} [[K'Y 0 ]{{f':..d"}}
{f':..R'**} - 0 [K')" {f':..d'**} (12.17)

In addition, it may be noted that [K')" = [K')". In this case the {t,.dl'} and {t,.d/"}
terms for each harmonic order can be solved independently, using the same
stiffness matrix. This form of uncoupling is called symmetric uncoupling. The
symmetrically uncoupled stiffness matrix for the rh order harmonic is:

[K~ r = [K~]" = f':..7tI I J[Bl;]T[DII ][Blj] + [B2;]T[Dzz HB2';] r darea (12.18)
i=l.l= I

The terms above the dashed line in Equation (12.15) give the independent
diagonal terms [l(')!' and [K')", and those below give the cross coupling terms [K')"I'
and [l('JP". It is noted that for materials with a [D] matrix which has zero off
diagonal submatrices, [D 12 ] and [D21 ], the cross coupling terms disappear and the
stiffness matrix reduces to the following form:

(12.15)

The stiffness matrix has been uncoupled into L+ I smaller stiffness matrices of
the form shown in Equation (12.4), with one independent set of equations for each
harmonic order. This form ofuncoupling is called harmonic uncoupling. However,
for each set of equations associated with a particular harmonic order the parallel
symmetry displacements, {t,.d/'}, and orthogonal symmetry displacements,
{t,.d/'*} , are coupled in the manner shown below:

where: t,. = 2 if 1= 0;
t,. = I if 1* O.

+ 1lfI f: -2{Mr} T[BI?]T[DI2][B2~]{MJ"}-2{Mr'} T[B2?]T[D21][Bl~]{Mn
~I~I .

± -{M/Y[BJ;]T[DI2 ][B2'j]{M;"} + {M/Y[B2;]T[D21 ][BI'j]{M;"}
'=1

{M/,Y[BJ;]T[D12 ][B2j ]{I'>dn - {M/,,} T[B2;]T[D21 ][BI'j ]{M;'}

MV=

llfII
;= I j= I
f.

I
'=1

(12.14)

f':..CJr 11
f':..E,

f':..CJz 11
f':..E_

f':..CJB [DII ]
11

[D12 ] f':..EB

f':..CJrz 11
f':..Erz (12.12)

- - - - - - - 11

f':..CJrB [D21 ]
11

[DnJ f':..ErB

f':..CJzB 11
f':..EzB

1sinkB coslB dB = 0 for all k and 1;

-n

1coskB coslB dB = 0 if k *" I, = 7t if k = 1*" 0, = 27t if k = 1= 0 .

-n

1sinkB sinlB dB = 0 if k *" I, = 7t if k=1 *" 0, = 0 ifk = 1= 0 ;

-n

Thus the incremental internal work done can now be simplified to:

I'>W = If If: ±{Mr}T
[k r [ ]

±[[Blj]COslBj[BI; ]coskB [DII ] [D12 ]
{Mr}

-n ;"lj=1 k=O [B2;]sinkB [D21 ] [D22 ] '=0 [B2j ]sinlB

+ ±{M/"}T [ [BI[]SinkBr [[Did [DI2 ]] ±[[BIj ]coslBj (M;'}
k=O -[B2; ]coskB [D2d [D22 ] '=0 [B2 j ]sinlB

+ ±{Mr}T [[BI;]COSkBr [[DII ] [D12 ]] ±[ [BI)]SintBj {M7'}
k=G [B2;]sinkB [D2d [D22 ] '=0 -[B2 j ]costB

+ ±{M/"}T [ [BI[]SinkBr [[DII ] [DI2 ]] ±[ [BI)]SinlBj {Mr'}
k=O -[B2; ]coskB [D2d [D22 ] '=0 -[B2 j ]coslB

r dBdarea

(12.13)
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Thus the equation for incremental internal work can be rewritten as:
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(12.19)

8=00

,

Pe= -Psin8

Pz

~
P, is the applied vertical force/unit length

Fz is axial force applied to the pile = 2nrPz

r is the radial coordinate of the node

symmetrical displacements in the e direction. The applied loads, {/',.R}, are
separated in a similar manner into parallel loads, {M*}, and orthogonal loads,
{!lR*'} .

a) Axial load on pile

-1-:'<_++ 6
>yZ~

Fx is lateral force applied to the pile = 2nrP

b) Lateral load on pile

{b.R I' J = {Ri R~ R:}T is the vector ofparallel rh order harmonic coefficients of

incremental force;

{b.R1"J = {Ri R~ -R:}T is the vector of orthogonal l'h order harmonic

coefficients of incremental force;
where:

Ri , R~ and R: are the rh cosine harmonic coefficient of radial, vertical and

circumferential incremental force respectively;

Ri , R~ and R: are the rh sine harmonic coefficient of radial, vertical and

circumferential incremental force respectively.

Thus for each harmonic order two sets of system equations can be written:

{/',.R1*} = [K1y {/',.d l*}

{MI**} = [K I
]" {/',.d l**}

The displacements can be solved for by inverting the stiffness matrix in a
similar manner to the conventional finite element method. An important feature of
this linear elastic formulation is the harmonic uncoupling. A consequence of this
uncoupling is that for any harmonic order the solution coefficients of
displacements are only non-zero if the applied coefficients of load for the same
order are non-zero. Thus the number ofharmonics required for an analysis is equal
to the number of harmonics required to represent the boundary conditions.

12.3.2 Symmetrical loading conditions
A symmetrical function of e, i (e), has the property that:

I,(B) = f( -B) (12.20)

P
z

= picos8 My = nrP'

Pz is the applied vertical force/unit length

AI" is the applied turning moment

c) Moment load on pile

and the Fourier series representation of such a function would only consist of the
zeroth (i.e. O'h) and cosine harmonic terms. An asymmetrical function of e,f".(e),
has the property that:

and the Fourier series representation of such a function would only consist of sine
harmonic terms.

The linear CFSAFEM formulation has divided the solution displacements,
{Lld}, into two parts, parallel symmetry displacements, {!la}, and orthogonal
symmetry displacements, {!la*}. The parallel symmetry displacements consist of
symmetrical displacements in the rand z coordinate directions and asymmetrical
displacements in the edirection. Conversely, orthogonal symmetry displacements
consist of asymmetrical displacements in the rand z coordinate directions and

fm(B) = - /',s( -B) (12.21)

Figure 12.2: Load components on pile

Many boundary value problems have a symmetry about the e= 00 direction,
such that the imposed boundary conditions consist ofpurely parallel symmetry or
orthogonal symmetry terms. For instance, the loading conditions applied to a pile
may consist of a combination of axial loading, lateral loading and turning moment
about an axis perpendicular to the direction of lateral loading. These boundary
conditions can be represented using parallel symmetry, if the direction of lateral
loading is parallel with the e= 00 direction, see Figure 12.2a-c. Hence, all previous
implementations ofthe CFSAFEM have been constrained to analyse either parallel
symmetry conditions (Winnicki and Zienkiewicz (1979)), or orthogonal symmetry
problems (Griffiths and Lane (1990)). If the applied loads in a problem do not
satisfy any symmetry about the e = 00 direction, then a non-symmetrical
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formulation is required, consisting ofboth parallel and orthogonal symmetry terms.
Analyses using only parallel or orthogonal symmetry terms benefit from the
reduced number of solution coefficients of displacements that have to be solved
for. This results in large savings in computer resources required for an analysis and
significantly simplifies the solution algorithms.

The previous implementations of the CFSAFEM have assumed that if the
applied loading conditions can be represented using either parallel or orthogonal
symmetry, then the resulting solution displacements will also satisfy parallel or
orthogonal symmetry, respectively. Though this may have been valid for the
particular cases analysed, it is not true in general. In the linear elastic formulation
presented above, this assumption has been shown to be true only for materials with
a [D] matrix which has zero off diagonal terms [D I2] and [DZI ], i.e an isotropic
linear elastic material. Due to the coupling of parallel and orthogonal terms, the
analysis of an anisotropic elastic material, with non-zero [D 12 ] and [Dzl ], would
require the full non-symmetrical formulation, irrespective of any symmetry in the
imposed loads.

The term parallel symmetry stems from the fact that it can be used to represent
a load in a direction parallel to the B = 00 direction, see Figure l2.2b. Similarly,
orthogonal symmetry can represent loads in a direction perpendicular to the B= 00
direction.
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matrix is symmetrically uncoupled. The criterion for this is that the off diaaonalb

terms in the [D] matrix are zero, as discussed in Section 12.3. I. This criterion is not
satisfied in general for elasto-plastic materials and thus questions the validity ofthe
above practice for nonlinear analyses.

An important feature of nonlinear CFSAFEM analyses is that hannonic
uncoupling no longer exists. The number of harmonics required to represent the
solution displacements is not just a function of the number of harmonics required
to represent the boundary conditions, but is also dependent on the material
nonlinearity. This feature cannot be reproduced with the linear elastic formulation
which, as noted above, only yields non-zero harmonics of displacement if a load
of the same harmonic order is applied. The anomaly is overcome by allowing the
corrective loads, applied by the procedure for nonlinear finite element analysis, to
have harmonics other than those associated with the applied boundary conditions.
Past practice has been to allow a greater number of harmonics of solution
displacement than is required to represent the boundary conditions. Though this
has given reasonable results, there has never been a rational for it. Increasing the
number of harmonics used in an analysis -increases both the amount of computer
resources used and the solution accuracy. Thus the number ofhannonics used in
an analysis is an important parameter which is based on a trade off between
solution accuracy and computer resources.

where [DO] , [D1]and [D/] are matrices containing the 0'\ rh order cosine and rh
order sine harmonic coefficients ofthe components of the [D] matrix respectively.
The number of harmonics used to represent the [D] matrix, M, need not be the
same as the number used to represent displacements, 1. These harmonic [D]
matrices can also be split into 4 parts representing [D II ], [D I2], [D21 ] and [DnJ
terms. Separating the cosine and sine harmonics of the [D] matrix allows Equation
(12.13) to be rewritten as:

12.3.4 New formulation for nonlinear behaviour
The linear fonnulation for the CFSAFEM assumes that the [D] matrix is constant
in the edirection. In general, this assumption is not valid for nonlinear material
behaviour, since the [D] matrix is now stress history dependent and the stresses
vary in the B direction. A new nonlinear formulation is proposed for the
CFSAFEM which incorporates a variation of [D] in the B direction.

The linear elastic CFSAFEM formulation of strain, in terms of a series of
products of harmonic coefficients of displacement and harmonic [B] matrices, is
used to formulate a system stiffness matrix as described by Equation (12.13).
However, the [D] matrix is no longer a constant, but varies with e. This variation
can be represented with a Fourier series for each component of the [D] matrix:

12.3.3 Existing formulations for nonlinear behaviour
All past implementations of the CFSAFEM have used the above formulation for
linear elastic behaviour with a constant material stiffness, [D] matrix, in the B
direction. No formulation has been developed for nonlinear material behaviour
with a variable [D] matrix in the B direction. However, nonlinear analyses have
been undertaken using the linear elastic formulation, in combination with a
solution strategy which continually adjusts the right hand side of the governing
finite element equations to cater for material nonlinearity. This is akin to using an
elastic stiffness matrix to solve an elasto-plastic problem. Considering the three
solution strategies described and compared in Chapter 9, only the visco-plastic and
MNR approaches can be used in this way. The tangent stiffness approach cannot
be employed because it involves the use of the elasto-plastic stiffness. The visco­
plastic approach was used by Winnicki and Zienkiewicz (1979) and Griffiths and
Lane (1990). However, as noted in Chapter 9, this method can be problematic for
highly nonlinear constitutive models. A better alternative is the use of the MNR
approach, with the stiffness matrix calculated using only the elastic part of the
constitutive matrix.

There is some scepticism aboutthe validity ofthe above approach for nonlinear
problems. It is argued that, since the formulation of the CFSAFEM assumes that
the [D] matrix is constant in the edirection, its use for a material which does not
satisfy this criterion is not valid. The popular practice of using purely parallel or
purely orthogonal symmetry terms in an analysis requires that the system stiffness

[D] = [DO] + [D I
] cosB+ [D I

] sinB+ [D 2
] cos2B+ [D 2

] sin2B+
-- --
[D/]cosIe+[D/]sinIe+ ... (12.22)
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+±{t1dt)T
k=O

where:
[DU]", [Dk,/]"p, [Dk,/]'''' and [Dk,/y' are the [D] matrices resulting from the de
integration that should be used to form the stiffness matrix relating the kth

harmonic coefficients of load with the rh harmonic coefficients of
displacement;
[Dk

,/]" is the [D] matrix that relates parallel loads to parallel displacements;
[Dk'/]"P is the [D] matrix that relates orthogonalloads to parallel displacements;
[Dk

'/]'''' is the [D] matrix that relates parallel loads to orthogonal displacements;
[Dk,/]O is the [D] matrix that relates orthogonalloads to orthogonal

displacements.

These [D] matrices have been split into four parts representing [D IJJ, [DlzL [DzI ]

and [D22 ] terms. The components of these matrices can be evaluated from the
following equations:

[Dk'/r

(M;")

(M;'*)

f1 f.f±{t1d/'}T [lBI7}COskBj I[[D;I:]COSmB[D;'~]COsmB] ±r[Blj]COS1B]
_,;=I/=lk=O [B2; ]sll1kB 11I=0 [D;;]cosmB[D;;]cosmB /00l[B2j]sinlB

+±{t1dr')T [[BI7]SinkBj I [[D;I;] COSmB[D;'~]COsmBJ ±r[Blj]COS1B]
k=O -[B27]coskB 11I=0 [D;;]cosmB[D;;]cosmB l=ol[B2j]sinlB

+±{Mr)T [[BI7]COskBj I [[D;I:] cosmB[D;'~] cosmB] ±r [Blj]SinlB]
k=O [ B27]sinkB 11I=0 [D;;]cosmB[D;;]cosmB l=ol-[B2j]coslB

+±(t1d/")T [[Bl7]SinkBj I [[D;I;] COSmB[D;I~]COsmB] ±r [Bl1j]SinlB]
k=O -[B27]coskB 11I00 [D;;JcosmB[D;;]cosmB l=ol-[B2j]coslB

+±{Mt)T [[BI~]COskBj I[[D;I;]SinmB[D;'~]SinmBj ±l[Blj.,].COS1B]
k=O [B2; ]sll1kB 11I=0 [Dill]' B[DIII]. B '=0 [B2 j]S1l11B

ZI Slllm zz sll1m

+±{t1d/")T [[BI7]SinkBj I [[D;':J SinmB[D;'~]SinmB. ±r[Bl1j]COS1B]

k=0 -[B27]coskB 11I=0 [D;;]sinmB[D;;] sinmB l=ol[B2j]sinlB

[
[BI:]COskBj I [[D{';J sinmB[D;'~] SinmBj ±r [BI.)]SinlB]
[B2; ]Sll1kB moO [D;;] sinmB[D;;] sinmB ,=ol-[B2 j ]coslB

+±(t1d/")T [[BI[]SinkBj Ir[n;':JsinmB[D;I~]SinmB.• ±r [BI.)]SinlB]
k=O -[B2; ]coskB moO [D;:] sinmB[D;;] sinmB ,=ol-[B2 j]coslB

r dBdarea

(12.32)

As with the linear formulation, the de integral is performed and a large number
of terms in the stiffness matrix are zero due to the orthogonal properties of the
Fourier series. For the linear formulation this integration was solved using the
standard solutions for the integration of the product of two Fourier series.
However, for the nonlinear formulation the corresponding integration is of the
product of three Fourier series and a new set of solutions has to be derived, see
Appendix XII.5. Thus the incremental internal work done can be written as:

[
+a[Dtl- /] +J3[Dtt'] -a[Dtz- /] - J3[Dtt]J

a[D;I-'] - J3[D;t'] +a[D;z-/] - J3[D;z"]

(12.25)

The non linear CFSAFEM stiffness matrix does not exhibit harmonic
uncoupling, i.e. the zero terms in Equation (12.4) are now non-zero. This explains
the important feature observed in nonlinear problems that solution displacements
have harmonic terms with orders different from that of the applied loads. The
harmonically coupled stiffness matrix from this formulation is very large and a
large amount of computer resources, similar to that for a full 3D analysis, is

~W= nfff
;=lj=1

+

+

+

where:
ex = I if k = I,
J3 = 1 if k = 1= 0,
± is + if k - 1 ;> 0,
+ is - if k - 1 ;> 0,

= Yz otherwise;
= Yz otherwise;
is - if k - 1< I;
is + if k - 1< l.
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(12.26)

(12.27)
11 L I I

~U = 2.: Ni [2.: (Ui cosl8+ Ui sinl8)]
i=1 1=0

U: is the Ith sine harmonic coefficient of radial displacement at the [1h node;

n is the number of nodes on each side of the interface;
L is the order of the harmonic series used to represent displacement.

The interface elements have three components of incremental strain:

6.Yp is the in plane shear strain;
6.[ is the in plane normal strain;
6.YII is the circumferential shear strain.

{ ~~;} = [~~i:: ~~:: ~]{~~}
~WI Q Q 1 6.w

For any point on the interface there are 2 sets ofdisplacements, top and bottom
displacements, each set describing the displacement on one side of the interface,
see Section 3.6. The incremental global displacements on each side ofan interface
element can be represented using isoparametric shape functions and a Fourier
series in the edirection, in a similar manner to the solid element formulation:

12.3.5 Formulation for interface elements
A formulation for zero thickness
isoparametric interface elements for the z, v
CFSAFEM has been developed based on
the 20 formulation of Day and Potts
(1994), see Section 3.6. The coordinate
system for the isoparametric six and four
noded element is presented in Figure
12.3. The global displacements are
defined in the same manner as for the
solid elements, using u, v, and w

displacement components. Local
displacements for the interface elements
have to be defined such that:

6.Ut is the incremental local tangential Figure 12.3: Coordinate system
displacement in plane r-z; for interface elements
6.vt is the incremental local normal
displacement in plane r-z;
6.Wt is the incremental local circumferential tangential displacement.

The relationship between incremental global and local displacements can be
expressed in matrix form as:

where:
Ni is the shape function of the [1h node defined in the element;

U: is the rh cosine harmonic coefficient of radial displacement at the [1h node;

required to invert it. The use ofthe linear CFSAFEM formulation to solve strongly
nonlinear problems also requires a large amount of computer resources, since the
elastic [D] matrix used in the formulation is very different from the true [Dep ]

matrix for the material, and a large amount of resources is required for the iterative
correction process to account for this error. A compromise is to use the nonlinear
formulation and omit the harmonically coupled terms, i.e. the k * I terms in
Equation (12.24), thus allowing the system equations for each harmonic order to
be solved individually. The error associated with this omission is corrected using
the nonlinear solution strategy in a similar manner to the error associated with the
linear formulation. Since the correct elasto-plastic stiffness matrix is used to solve
each set of harmonic system equations, the proposed partial nonlinear formulation
is expected to require less computer resources for its correction process than the
simple linear elastic formulation.

The nonlinear formulation is now able to yield a more rational criterion for the
symmetrical uncoupling of the system equations. For symmetrical uncoupling to
be valid the [DY'P and [DY" matrices must be zero. The four submatrices associated
with each of these two matrices contain either only the Qth and cosine harmonics,
or only sine harmonics. Thus the criterion the [D] matrix must satisfy for
symmetrical uncoupling is that the [D II ] and [D22] parts of the [D] matrix are
symmetric functions of e, and the [D 12] and [D21 ] parts are asymmetric functions
of e. The resulting [DY'P and [D]PO would then be zero. In a parallel symmetry
analysis the stresses associated with the top part ofthe [B] matrix,[Bl] (IT,. , IT: , ITII

and IT,.:), are symmetrical functions of e, while the stresses associated with the
bottom part, [B2] (IT,.II , ITzlI), are asymmetrical functions of e. The strains satisfy the
same symmetrical conditions. Thus a material can only be legitimately analysed
using purely parallel symmetry terms if it satisfies the [D] matrix criterion while
subjected to a stress and strain state associated with parallel symmetry. Similarly,
for a purely orthogonal symmetry analysis the [D] matrix criterion must be
satisfied for an orthogonal symmetry stress and strain state. An orthogonal
symmetry stress and strain state exists when the stresses and strains associated with
[Bl] are asymmetrical functions and those associated with [82] are symmetrical
functions of e.
The tangent stiffness solution strategy could be implemented using the full

non linear CFSAFEM formulation, but the accuracy of the solution would be
strongly influenced by both the size of the solution increment, as discussed in
Chapter 9, and the number of harmonics used to represent the applied loads, the
solution displacements and the [D] matrices.

It should be noted that the linear CFSAFEM formulation is a particular case of
the nonlinear CFSAFEM where the [D] matrix does not vary with e, i.e. only the
Qth harmonic [D] matrix exists.
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This can be simplified to give:

These can be related to the incremental global and local displacements as:

{

I'!.Yf' jl'!.u:ot I'!.u;op lr co.sa sina °1jI'!.U::: - I'!.u:::1
I'!. & = I'!.vrt - I'!.v;op = -sma cosa 0 I'!.v - I'!.v (12.28)

I'!.Ye I'!.w,bot - I'!.w;op 0 0 1 I'!.w bot I'!.w top

Using Equation (12.27) for the incremental global displacements gives:

t'"W= Jf I
-1t i=l

[D] I
j=1

[±[[Bl;]COSkB] {Mt*} + [ [Bli]SinkB] {Mtk**}JT
keO [B2i]sinkB -[B2i]coskB

[

I [[Bl.]COSlB] 1* [[Blj]SinlB] I" ]I J {M}+ {M}
'=0 [B2 j ]sinlB J -[B2 j ]coslB J

rdB darea

(12.33)

Similar to solid elements, the elasticity matrix [D] for the interface element can

be split into four parts:

{lld/*jT[Bl i ]T[Dll HB1j ]{M;*) + {M(*)T[B2 i ]T[D22 HB2j ]{M;*) +

{Mj'*jT[Bl i ]T[Dl d[B1j ]{Mr} + {M!**nB2 i ]T[D22 ][B2){Mn r darea

-- - .• - -- -- - - -- ---- ----- - -- - - --+ ._- -- ----.----- .------- - -----

-2{M?'}T[Blt ]T[D12 ][B2
1
]{Mt} - 2{M?**}T[B2 i ]T[D21 ][B1j ]{MJ'} +

_{M/*}T[Bli ]T[DIZ ][B2 j ]{M;"} + {M/'}T[B2i n Dzd[B1j J{M;**} +

{M/**} T[Bl i f[DI2 ][B2 j] {M;'} - {M/**} T[B2 i ]T[D21 ][B1j J{M;'} r darea

(12.34)

L1W=

nfII
i= 1j= I

±
hi

nfII
i=lj=l

L

L
1=1

12.3.6 Bulk pore fluid compressibility
Saturated clays are two phase materials consisting of a compressible solid phase,
the soil skeleton, and a highly incompressible fluid phase - the pore water.
Undrained behaviour is assumed if these clays are loaded quickly, such that there
is little dissipation of excess pore water pressure. This type of behaviour can be
modelled in a conventional finite element analysis by specifying a bulk pore fluid
compressibility, see Section 3.4. This formulation is now extended for use in
CFSAFEM analyses.

For linear elastic material behaviour the principle of effective stress gives, see
Equations (3.2) and (3.5):

Since both interface and solid element equations are harmonically uncoupled,
the system equations for each harmonic of a problem domain can be solved
independently, even if it consists of both types of elements. Similarly, if the [D I2]

and [D21 ] terms in both solid and interface elements are zero, symmetrical
uncoupling is also valid.

The linear elastic interface element formulation can be extended for nonlinear
behaviour using the same approach as for the solid element. The [D] matrix is
represented using a Fourier series and the equation for virtual work now yields a
hannonically coupled set of system equations. The [DJ matrix pertinent for each
harmonic combination ofequations is the same as those presented in Section 12.3.4
for the solid elements.

(12.32)

(12.31)

(12.30)

rh order

r}r+
co

'"

+sina

~l~N;
U;coslB+ U; sinlB

:~ "~ ±,~a +cosa VicoslB + V'sinlB (12.29)1 1

0 +1 w/coslB+ W/ sinlB

where:
{!:>d/*} and {!:>d/*,} are respectively the parallel and orthogonal
hannonic coefficients of incremental displacement for the l'h node;
[Rl;] is the top part of the strain matrix for the z'h node;
[B2J is the bottom part of the strain matrix for the 11h node, so that:

[
+cosa +sina 0][Bli]=Ni . _ [B2i]=Ni [0 0 +1]
±sma +cosa 0

where:
!:>r is the incremental in plane shear stress;f'
!:>(J is the incremental in plane normal stress;
!:>rl! is the incremental circumferential shear stress.

The interface element stresses and strains have been formulated in such a
manner that the resulting equation for the internal incremental work has the same
form as that for the solid element:

where:
l' is - for a top node and is + for a bottom node;
± is + for a top node and is - for a bottom node.

This can be written as:

2n I [[Bl;] COSlB] {Adl*} [ [BI;]' sinlB] {I'!.d'**}{I'!. 5} = L L Ll i + i
1=1 1=0 [B2i] sinlB -[B2i] coslB



Noting Equation (3.6), the second term in the above equation can be written as:

(12.43)

where:
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In an undrained material Ke is prescribed a very large value, such that the
volumetric strains are inhibited, see Section 3.4. There are two options for defining
Ke : to assign it a constant value, or to define it as a multiple of the bulk stiffness of
the soil skeleton. In the former option care must be taken in assigning the value of
Ke . It must be large enough to inhibit volumetric strains, but small enough to avoid
ill conditioning problems associated with a very large number in the stiffness
matrix. Finding a suitable value for Ke is particularly difficult when the bulk
modulus ofthe soil skeleton changes significantly during the course of an analysis.
Accordingly, the option for defining Ke as a multiple of the bulk modulus of the
soil skeleton is preferred, because these difficulties are avoided. A typical value for
Ke is one hundred to one thousand times the bulk stiffness of the soil skeleton.

However, considering the Fourier series formulation, Ke could now vary in the
edirection and would have to be expressed as a Fourier series:

M- =
K e = K~ + 2:: K~ cos!g+ K~ sin!g

1=1

(12.37)

(12.36)

(12.35){I'!. a} = [D]{I'!. c} + [Df]{1'!. c}

Accordingly, the incremental internal work done, IJ.W, can be expressed as:

I'!.W = f {I'!. c}T{I'!. a} dVol = f {I'!. c}T[D]{c} dVol + f {I'!. c}T{ry}Kc M:v dVol (12.38)

The first integral is the work done by the soil skeleton, which was calculated in
Sections 12.3.1 and 12.3.4. Therefore only the second integral, the work done by

the pore fluid, IJ.Wj , has to be evaluated.
Using Equation (12.8), I'!.E:I' can be expressed as:

gives:
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where {11} T= {Ill 0 0 0 }, Kc is the equivalent bulk modulus of the pore fluid and
IJ.CI' is the incremental volumetric strain. Combining Equations (12.35) and (12.36)

K~ , K: and K: are the 0'\ rh order cosine and !'h order sine harmonic

coefficients ofKe;

M is the number of harmonics used to represent Ke and need not be the same
as the number used to represent displacements, L.

Substituting this into the equation for IJ. Wf gives:

I'!.Wf = f J I ±(coslB {M/,}+sinlB {M/,,})[B1;]T{ryl}·
-1[ ;=1 1=0

I'!.&v = t ±{ryl}T [B1;](coslB {I'!.d/,} + sinlB {I'!.d/,,})
i=1 '=0

where {l/l}T = ( 1, 1, 1,0). From here IJ.Wjcan be written as:

I'!.W
f

= f Jt ±(coslB {M/*} + sinlB {M/**})T[B1;]T{ryl} Ke ·

. -n ;=1 1=0

t ±{ryl}T[Bl~] (coskB {Mn+ sinkB {Mr})rdBdarea
j=1 k=O

Carrying out the de integral gives:

(12.39)

(12.40)

o Mj I
(Kc + 2:: Kc coslg + K e sinlg) .

'=1

(12.44)

I'!.W
j

= f f f27t {I'!.d;oy [B17]T {ryl} Kc {ryl}T[Bl~HMn+
;= I j=1

I ±{ryl} T[BI~] (coskB {I'!.dr} + sinkg {I'!.d~**}) r dB darea
1=1 k=O

In the above constant Ke formulation, the pore fluid pressure is a symmetrical
function in a parallel analysis and an asymmetrical function in an orthogonal

analysis.

7t~ ({l'!.d/*}T[B1;]T {ryl} Ke {ryl}T[Bl'jHMr} + (12.41)

{Mi**}T[Bl;]T {ryl} Ke {ryl}T[Bl'jHM;**}) r darea

This equation gives the contributions to the global stiffness matrix associated with
the pore fluid compressibility. The system equations are obtained by adding these
fluid compressibility terms to the terms associated with the soil skeleton stiffness
calculated in Sections 12.3.1 and 12.3.4. The fluid compressibility terms are both
harmonically and symmetrically uncoupled and their contributions to the parallel
and orthogonal symmetry stiffness matrices are the same. For the rh harmonic it is:

The de integral is carried using the solutions for a triple Fourier series, as shown
in Appendix XII.5. From there:

I'!.Wf = I I f±{M/y[B1;]T {7]I} ±(aK:- k + jJK:+ k
) {7]I}T[Bl~] {dr}

1=1)=1 10 k=O

+± {Mi'Y[Bl;]T{7]I} ±(aK:- k
- jJK:+ k

) {7]I}T[BI~] {d7**)
~o ~ .

+±{Mi**) T[Bl;]T {7]1} ±(±aK:- k + jJK:+ k
) {7]I}T[BI~] {dr}

1=0 k=O .

+± {M/'}T[Bl;]T{7]I} ±(+aK:- k +jJK:+ k
) {7]I}T[BI~] {d7**} rdarea

'0 k=O . .
(12.45)

f f f [Bl:f{ryl} K e {7]l}T[Bl'j] rdarea
1=1 j=1

(12.42) where:
a = 1 if k =!,
fJ = 1 if k = ! = 0,
± is + if I - k ?: 0,
+ is - if! - hO,

= Yz otherwise;
= Yz otherwise;
is - if I - k < 1;
is + if!- k < I.



364 / Finite element analysis in geotechnical engineering: Theory Fourier series aided finite element method / 365

(12.47)

In general, there is neither harmonic nor symmetric uncoupling. The criterion for
symmetric uncoupling is that K e is a symmetrical function.

(12.49)

(12.50)

(12.51)

(12.52)

(12.53)
III r k kI N p! (I APt! coskB + APt! sinkB) r dBdarea

1=1 k=O

f Acv APt dVol = f ] f ±(cos/(} {Ad!'} + sinl(} {Adj"})T[B1;]T {7]1}·
-7[ i:::l 1=0

Ac,,={7]}T{Ac} (12.48)

The incremental strain vector {Ae} can be expressed in terms of the Fourier series
coefficients of incremental displacement as in Equation (12.8):

{A c} = f ±[[Bl;.]COSl(}] {Ad/'} + [ [BI;]Sin/(}J {Ad"'}
1=1/=0 [B2;]sinl(} -[B2;]cosIB I

The incremental volumetric strain at any point is defined as:

where:
'It is the bulk unit weight of the pore fluid;
{id is the vector parallel to gravity, where

ah

. - gh -1 {i(,'J }) . j~;){le;} - az -. ,{i(il} = ah
?JiJ- {i(i2} -a_ z
aB

[El;] = {a~:,; a~); rand [E2;] = [l~pi J

f APt a(~;,,) dVol- fV(APtY [k] {Viz} dVol = Q (APt)

Thus the incremental volumetric strain can be expressed as:

Acv = I t {r,I1}T[Bl;] (cos/(} {Ad!'} + sin/(} {Ad:'*})
i=1 '~O

The two governing equations are the equilibrium equation:

f {A &}T{A a} dVol + f Ac" APt dVol = external work done

and the continuity equation:

where [k] is the matrix ofpermeabilities and Q represents any sources and/or sinks,
see Chapter 10: Q is expressed as a Fourier series and the parallel and orthogonal

components are Q" = Q' and Q'" = Q' respectively.

The first integral in Equation (12.51) is the same as that for the incremental
internal work done by a solid element without consolidation, see Equation (12.38).
The second integral can be expressed in terms ofthe incremental nodal pore fluid
pressure and displacement Fourier series:

(12.46)

aNI';
--sin1ear
aNI'; I----a;- sin1e Pp + {i(i }

1Nl';
--cos1e

r

aNI';
--costear
aNI'; ,--cos1e Pj; +az .
-IN
--'-"sin1e

r

• 1 m I,
+ {'d=y-II

t 1=1'=0

"' L -, , .
Pt = I N pi (I Pp cosl() + Pp sml(})

;=1 1=0

apt
ar

I . I apt
-{VPt}+{'d=- -
Yf· Yf az

apt
rae

1 ."' L [[El;]COs1e], [[E1;]Sinte] I •=y-II I. Pfi+ I Pfi+{'d
f 1= 11=0 -[E2;]smte· [E2; ]coste .

P~; and P~; are respectively the lth cosine and sine coefficients of pore fluid

pressure for the z'h node;
m is the number of pore fluid pressure nodes in the element which is not
necessarily equal to the number of displacement nodes in the element, n.

The hydraulic gradient, {Viz}, can be defined as:

{Vh} =

where:
~)i is the element pore fluid shape function for the ,1h node;

12.3.7 Formulation for coupled consolidation
The behaviour ofsaturated soils under any loading condition is strongly influenced
by the rate at which the generated pore pressures are able to dissipate within the
soil mass. As noted in Chapter 3, the conventional finite element theory, described
in Chapter 2, can deal with either drained soil behaviour, where full pore fluid
pressure dissipation occurs, or undrained behaviour where no dissipation occurs.
The latter behaviour is achieved by introducing the effective bulk compressibility
ofthe pore fluid, as described in Section 3.4. Accounting for such behaviour in the
CFSAFEM was described in the previous section (i.e. Section 12.3.6). Often soil
behaviour cannot be simplified to being either fully drained or undrained, for
example when partial drainage occurs during a loading stage, followed by long
term consolidation. To account for such behaviour the equations governing the
flow ofpore fluid and the mechanical behaviour ofthe soil must be combined. The
finite element theory behind such a coupled approach was presented in Chapter 10.
In this section this theory is extended for use with the CFSAFEM. Initially, only
soil with a constant permeability is considered, but subsequently the theory is
extended to account for soils which have variable permeability.

The pore fluid pressures in the problem domain are described by the element
pore fluid shape functions and the Fourier series of the nodal pore fluid pressures
of the element:



where:

(12.58)

/** TIT I 1*(/':,.Pt; ) [E2;] [k2I ][El j ]ptj r darea

n f m 111 O*)T[ O]T[ 10] 0'
=- II 2(/':,.P/i El; kll][E) Ptj +

Yf 1=lj=1

+ (/':,.p~;)T[E2;]T[k22][E2~]p~; +

+ (/':,.p;*)T[E2;]T[k2J[E2I
j ]p;* r darea

fV(/':,.pt)T [k] VPr dVol

f 1* TIT 1 1*I (/':,.Pji) [El;] [kll][E1tlptj
1=1

/** TIT I 1**(!::,.Ptj ) [El;] [k ll ][Elj ]p/i
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The [kJ matrix is split into four parts in accordance with the two parts ofthe [E]
matrix and the dB integral is carried out. The hydraulic gradient has been divided
into to two parts, consisting of the pore fluid pressure and gravity components.
Accordingly, Equation (12.57) can be written in two parts:

---------------------- +

~ f f f ±(/':,.p~;)T[El;nk12][E2~]p~;'-
Yf ;=1 )=11=1

(/':,.P~;y[El;nkI2][E2~]p~; +

and

(12.54)
+{M!*y[Bl;]T {ryl} NI'! /':,.P~j r darea

= t f {Mr} T[L~]T!::"P~j +±{M:y[L;jf /':,.P~j + {M!*y[L;j]T /':,.P~
I=IFI 1=1

f /':,.c·" /':,.Pt dV01

= nf t f 2{MjoY[B17f {ryl} N pj /':,.P~j +±{M:y[Bl;f {ryl} N pj /':,.P~
1=1 )=1 1=1

and !::,. P~j and !::,. p~; are respectively the rh cosine and sine coefficients of

incremental pore fluid pressures for the ph node.
Carrying out the de integral and using the orthogonal properties of Fourier series

gives:

366 / Finite element analysis in geotechnical engineering: Theory

(12.59)

f V(/':,.Pt)T[k] {id dVol = 2nf f (/':,.p~*)T[E17n[kll]{iGI} + [k12 ]{iG2} ) r darea
1=1

= I (/':,.p~Y {nJ
i=! .

where {nJ = 2n J [EljOF ([kll]{iGJ} + [k I2]{id) r darea.

Both equations are harmonically uncoupled, with the gravity term only
affecting the 01h harmonic. This is correct if gravity acts in a fixed direction in the
r-z plane (i.e. z direction). If the direction of gravity acts out of this plane and is
dependent on rand e, the equations became more complex. The dashed line in
Equation (12.58) separates the components that are symmetrically uncoupled from
those that are coupled. Inspection of these terms reveals that the condition for
symmetric uncoupling is that the [k 12] and [k21 Jcomponents ofthe [k] matrix are
zero. Equation (12.58) can be written as:

T mm oroo
fV(iI,pt) [k] VPt dVol = I I (iI,P/i) [tP,j ]Ptj +

l=lj=1 (12.60)

±(iI,pj;)T[tP,/]I' P; +(il,pj;? [ clJ/r pj;' + (iI,pj;)T[clJ/]I'° pj;' + (iI,pj;')T[clJ/]"I' pj;
1=1

(12.56)

(12.55)I 1* I 1"*/':,.Pf = I1pj and I1pj = /':,.Pf

The first integral in Equation (12.52) can be treated in a similar manner to obtain

the equation:

f /':,.Pf /':,.s" dVol = t f (l1p~;)T[L~]{M;o*} +
I=IFI

±(/':,.P~;)T[L;j] {M!*} + (/':,.P~;*)T[L;j] {/':,.d,t**}
1=1

where [L1ijJT = 2n Jr [Bl/F {Ill} ~}j darea if 1= 0; = n Jr [Bl/F {Ill} Npj darea

otherwise.
This equation gives the terms that relate the applied incremental loads to the

incremental pore fluid pressures. These equations are both symmetrically and
harmonically uncoupled. The cosine harmonic coefficients of incremental pore
fluid pressure are only associated with the parallel loads, hence they are called the
parallel components of incremental pore fluid pressure. Simil~rly, the sine
coefficients are the orthogonal components of incremental pore flUId pressure:

The second integral in Equation (12.52) can be rewritten as:

fV(!::"pt)T [k] {Vh} dVol=

n{.m I. /':,. ./~ T[ [E1;]Coste]T + (!::,.pl;*)T[ [El;]Sinte]Tj.[kJ'
ffn ,~~ (Ptl) -[E2;]sinIB f [E2;]coste (12.57)

{
_l._.f ±[ [El~.}C~SkB]!::,.p;; +[ [E1.J JsinkB]/':,.p;;' +{ic;}} r dBdarea
Yt j=lk=O -[E2 j ]smkB . [E2j]coskB

where: [tP,7] =2~HEI?]T[kll][EI~] r darea
Yf .

[<ply =[<pI]" =~f{[EI;]}Tl[kld 0 J{[Elj]} rdarea
1/ 1/ Yf [E2;] 0 [k22 ] [E2Ij ]

[<Plyo=~f{[EI;.]}Tl 0 [k I2 ]J{[Elj.·.]}rdarea
11 Yf [E2;] -[k2d 0 [E2j]

[tP,/F =~.f{[EIi}}T
l

0 -[k I2 ]J{[El
/
j ]} r darea

Yt [E2;] [k2d 0 [E2)
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(12.65)

-a[k\-'] + ,B[kko+I]]{[El
k
]}

_1-_ __1-_ J r darea
±a[k;2-1

] - ,B[k;2+ /] [E2~]

±a[kkO-/] + ,B[k\+I]]{[El
k
. ]}

I- I- J r darea
a[k;2-1

] + ,B[k;2+ /] [E2~]

a[k\-I] + j3[k\+I]J{[El
k
]}_1-_ __1-_ J r darea

+a[k;;I]-j3[k;t] [E2~]

where [kG], [k ' ] and [k l ] are matrices containing the 01
\ lIb order cosine and I'b

order sine harmonic coefficients of the components ofthe [k] matrix respectively.
The solution to Equation (12.52) now involves the integral of the product of

three Fourier series. The solution is harmonically coupled and is similar to that for
a variable [D] matrix:

fV(l1pj )T[k] VPr dVol =

[
±(11/;) T ±[cP;lk Y (pk

') +±(l1pl;') T ±[4)lk],,( k") +Jf f 1=0 f k=O J /1 1=1 f hi 'I Pjl

1=1/=1 Ita (I1P~;)Tktl[cP;:kYO(pr)+~ (l1p~;')Tkt[cP;:krp(p;;)

In the above equations:
a. = 1 if k = I, = h otherwise;
fJ = 1 if k = 1=0, = h otherwise;
± is + if k - I ~ 0, is - if k - I < I;
+ is - if k - b 0, is + if k - 1<1.

Similarly, the solution for Equation (12.59) now involves the integral of the
product of two Fourier series, thus the gravity term affects all the harmonics:

f '17(L'lPt ) T [k] {ie;} dVol = 1t;~f 2(L'lp~i) T [EI7]T ([klod {iGl } + [k?2] {im}) +

~(A I')T(([EI/]T-[kl ] [E2 1]T[ I ~. (IT-I- IT I ~. J;';\ UPj; ; 1I - ; k21 ]llud+ [EIJl [k I2 ]-[E2;] [k22 ]j{l(d +

(L'lP~;')T(([E1i]T[kid + [E2i]T[kid}iUd + ([Elinki2] + [E2 i ]T[ki 2]}id J r darea

m 0 T f o\!. 1* T 1* 1** T 1**
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where:
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where:
PjO is Pj at time t = to;
I1Pj is the change in Pj over I1t;
fJ is the parameter that defines the average pore water pressure over the time
step, i.e. pr = PtO + fJ 11P('

For the simple constant [D] and constant [k] case, all the components of
Equations (12.5l)and (12.52) are harmonically uncoupled. If the criterion for
symmetric uncoupling is satisfied by both the [D] and the [k] matrices, the
resulting equations are also symmetrically uncoupled, with the orthogonal and
parallel equations having the same stiffness contributions. Thus for any harmonic
order we can combine Equations (12.51) and (12.52) and write them in matrix
form. For the parallell'b harmonic we get:

A simple time stepping approach is used to carry out the integral from time to
to t = to+l1t, see Chapter 10:

where ((nu» = nu if 1=0 ; = 0 otherwise.
The same equation can be used for the orthogonall'b harmonic. However, if

either the [D] matrix or the [k] matrix do not satisfy the symmetry criterion, both
orthogonal and parallel coefficients have to be solved simultaneously:

The material permeability may not be a constant and could vary with
stress/strain level. Accordingly, [k] could vary in the circumferential direction. In
this case [k] can be written as a Fourier series:
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The [Le;] terms in Equation (12.63) are unchanged since they are not affected
by [k] or [D]. However, the PlO terms now have to be multiplied with all the
harmonically coupled [lP(;] matrices. Since the equations are now harmonically
coupled, an equation with a form similar to that ofEquation (12.63) can be written
to relate any rh harmonic right hand side with any kth harmonic left hand side:

[Kgy «([L~irr») [K2; rp 0 fM''],,;«([ L~i ]») -j3L1t[cP~ky 0 - j3 L1t[ cP~k rp
{L1jJ}'LG

[K2;YO 0 [Kgr «([L~; ]1») {L1d k
"}IIG

0 _j3 L1t[ cP~k yo «([L~;]» ) - j3 L1t[ cP~k r {L1jJ;" L,c;

the harmonic uncoupling this storage requirement is likely to be considerably
smaller than that required for a comparable conventional 3D analysis.

Efficient data management routines are required to store data and to convert it
between harmonic coefficient and real values. Methods of specifying input
boundary conditions also have to be enhanced to provide a user friendly interface
with the finite element program. Significant modifications must also be made to
the nonlinear solution algorithm to enable the correct adjustment to be made to the
right hand side of the finite element equations. In the following subsections some
of these topics are considered in more detail. The material presented is based on
the Authors' experiences with implementing the CFSAFEM into the computer
code ICFEP.

where (( ([L e/]») = [L(il] if 1= k ; = 0 otherwise.

The general criterion for symmetric uncoupling in this case is that the [k ll ] and
[k22 ] parts of the [k] matrix are symmetric functions of e, and the [kd and [k2l ]

parts are asymmetric. As discussed previously regarding the nonlinear material
behaviour (i.e. elasto-plastic), CFSAFEM analysis of coupled problems can be
performed either using the constant [k] formulation or a compromised variable [k]
formulation, in which the harmonically coupled terms are ignored. In both cases
appropriate correction to the right hand side ofthe finite element equations will be
necessary if [k] is variable.

12.4 Implementation of the CFSAFEM
12.4.1 Introduction
From the formulation provided in the previous sections it is clear that the
CFSAFEM involves many extensions and enhancements ofthe conventional finite
element theory presented in Chapters 2, 10 and 11. In particular, the CFSAFEM
formulation is expressed in terms of Fourier series coefficients, while the
conventional finite element formulation is in terms of real values. This clearly has
implications for the computer code, the boundary conditions and the output from
an analysis.

Inclusion of the CFSAFEM into an existing finite element program involves a
considerable effort. There is a large increase in data storage requirements
compared to a conventional2D finite element analysis. This is due to the additional
coordinate direction, the two additional components ofstress and strain and the use
of a number of harmonic coefficients in a CFSAFEM analysis. However, due to

(12.68)

(12.69)

+

Xo = _1 f f(8) d8
2re -n

-I 1 n

X = - f f(8) coslBd8
re -n

I 1 n
X = - f f(8) sinlBd8

re -n

12.4.2 Evaluating Fourier series harmonic coefficients
All the variables used in a CFSAFEM analysis have to be expressed as Fourier
series, because the CFSAFEM is formulated entirely in terms of Fourier series
han~onic coefficients. This is a key component of the MNR solution strategy for
nonlmear CFSAFEM, since it is used to evaluate the right hand side corrective
loads, as described in Section 12.4.3. It is also used to interpret complex boundary
conditions and to formulate the partial nonlinear stiffness matrix, see Section
12.3.4. Thus a general approach has to be devised for expressing the distribution
of variables in the edirection as a Fourier series.

Consider a variable x which is a function of e. The harmonic coefficients have
to be evaluated such that x can be expressed as:

x = Xo + Xlcos8+ X lsin8+ X 2cos28+ X 2sin28+

XlcoslB+ XlsinlB+ ...

Ifthere is an explicit expression for x, i.e. x = j(e), then harmonic coefficients can
be evaluated from the equations:

Often there is no explicit expression for x, instead values of x at specific e
values are known, e.g. XI at el , X 2 at e2 , Xl at B] , ... , Xi at ei , .•. , XII at ell, where n
is the number of known values of x. There is no unique solution to this type of
problem, since an assumption has to be made regarding the value ofx between any
two specified values. Two methods are suggested: (i) the stepwise linear method
and (ii) the fitted method.

(12.67)
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12.4.2.1 The stepwise linear method
This method is based on an approach suggested by Winnicki and Zienkiewicz
(1979). Using the known values of x they assume a stepwise linear distribution
with e, see Figure 12.4. Thus the value of x at any value of e is:

8

(x,,8,)

Fourier series representation

(x,,82)

Figure 12.5: Fitted method

x

XI cosel sinel cosLel sinLel XO

X 2 cose2 sine2 cosLe2 sinLe2
Xl

x] cose, sine] cosLe] sinLe] Xl

(12.72)

--
11-1

XII_I cos 0,'-1 sinB;,_1 .... cosLB;'_1 sinLB;,_1 X 2

cosB;, sinB;,
n~l

x" .... cosLB;, sinLB;, X 2

12.4.2.2 The fitted method
In this method it is assumed that x can
be represented by a Fourier series that
passes through all known values ofx,
see Figure 12.5. The number of
harmonic terms used in the Fourier
series representation is an important
parameter. Ifthere are more harmonic
terms than known values of x, a
number of possible solutions exist. If

there. are l~ss ~armonic terms, a solution does not exist in general. A unique
solution eXists If the number of harmonic coefficients is equal to the number of
known :ralues. This condition is achieved by using a truncated Fourier series. The
harmolllc coefficients for ~he unique .solution can be obtained by substituting each
known value of x and e mto EquatIOn (12.68). This yields n equations with n
unknowns, where n is the number of unknown values specified and can be
expressed in matrix form as; ,

where L. is the order ofthe truncated Fourier series used (equal to Y:,(n-l)) and can
be reWrItten as:

8

(12.70)

(12.71)

Stepwise linear distribution
Fourier series representation

"X"'" ....

(x2 ,82)

X k = f (xit I -- Xi ~(cosko,tl - cosko,)

,=1 k-n(B;tl -B;)

X k = f (Xitl -xi!(sinkB;tl -sinkB;)
i=1 k-n(B;tl - B;)

where:

Equations (12.69) are then
integrated numerically to obtain the x X,~Xl' 81

)

harmonic coefficients and Bodels
integration rule is suggested. There is
a trade off between the error
associated with this numerical
integration and the amount of
computer resources required to
evaluate it.

This method is improved upon by Figure 12.4: Step wise linear method
carrying out the integration
analytically. This has the advantage of both eliminating any integration errors and
reducing the computer resources required. The integration is performed in
Appendix XI1.6 and the solutions are presented below:

(12.73)X= [H]X
where

x is the veotor of known values Xi;

X is the vector of unknown harmonic coefficients'
[H] is the harmonic transformation matrix that is ~ function ofthe evalues at
which x is known.

The .har~onic coefficients, X, can now be solved for by inverting [H] and
pre~ultlplymgxby [H]-I. If the evalues at whichx is known are unchanged, then
[H] IS unchanged. Thus a number of X corresponding to a number of x can be
obtained .very easily by premultiplying the various x by the same [H]'I.

~olutlons have been derived for the special case of having known x values at
eqmspaced e values, see Appendix XII.7. The number of known values n is
assumed to be odd such that the resulting truncated Fourier series has the'sa:ne

X,,+I =X I

e,,+1 = el + 2n

The harmonic coefficients obtained from Equation (12.69) would fit any
continuous function exactly, if an infinite number ofharmonic terms were used in
expression (12.68). This is impractical in any numerical algorithm and invariably
a finite number of terms is used. Usually a truncated Fourier series is used where
the higher order terms are ignored and sufficient terms are considered such that the
error associated with ignoring these higher order terms is small. Additionally, even
though the resulting Fourier series does not fit the stepwise linear distribution
exactly, it will still give a good representation ofx, which may even be better than
the stepwise distribution.



374/ Finite element analysis in geotechnical engineering: Theory Fourier series aided finite element method / 375

12.4.3.2 Right hand side correction
The corrective right hand side load is expressed as Fourier series coefficients of
nodal load. They are evaluated by comparing the coefficients of nodal load,
obtained from the imposed boundary conditions, with the coefficients ofnodal load
consistent with the trial solution displacements. The latter loads are obtained by
calculating, at a number of sampling points within the problem domain, the stress
changes associated with the solution displacements. This is performed by
substituting the harmonic solution displacement into Equation (12.8) to calculate
the real incremental strains at the sampling points. A stress point algorithm is used
to integrate the material constitutive laws along these strain paths to obtain the
incremental stresses, see Section 9.6.2. A volume integral has to be carried out to
obtain the harmonic coefficients ofnodal load consistent with the stress state in the
problem domain. The stresses at the sampling points are used to evaluate this
integral, the solution of which is presented in Appendix XII.3. The integral is
divided into two parts, a de integral and a darea integral, where'area' is the area
on the r-z plane.

The darea integral is carried out using a Gaussian integration technique and,
accordingly, the sampling points are located at Gaussian integration points in the
r-z plane. To perform the de integral it is necessary to know the e coordinates of
the sampling points. It is therefore convenient to situate the sampling points on a
number of constant e planes (slices). Their locations within each slice is
detennined by the Gaussian integration order used and the finite element mesh.
The de integral is carried out analytically, but requires the stresses to be expressed
as a Fourier series in the edirection. There is no definitive method ofobtaining the
Fourier series representation of stress from the stresses at the sampling points.
Similarly, there are no guidelines for the number and location of the slices in the
edirection. A rational approach is suggested below.

The number of slices used in an analysis should be influenced by the order of
the Fourier series required to represent stresses. If there were the same number of
slices as harmonic coefficients of stress in an analysis, a Fourier series
representation of stress could be obtained, which gives the appropriate stresses on
each slice. Theoretically, increasing the number of harmonics would not increase
the Fourier series accuracy since the stresses on the slices could already be
represented exactly. Conversely, increasing the number of slices means that the
Fourier series would not be able to represent the stresses on all the slices exactly
and the benefit ofthese additional slices cannot be fully realised. The Fourier series
used to represent stresses in a CFSAFEM analysis should have the same order as
the Fourier series used to represent forces and displacements. Harmonic
coefficients ofstress ofahigher order would not influence the CFSAFEM analysis,
as shown in Appendix XII.3. Thus it is proposed that the number of slices should
be the same as the number of harmonic coefficients used to represent forces and
displacements in a CFSAFEM analysis. It is also suggested that the slices are
equispaced around the circumference, in which case the efficient fitted method, see
Section 12.4.2.2, for obtaining harmonics can be used.

(12.74)

2n
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Figure 12.6: Location of x values
for equispaced fitted method
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This equispaced fitted approach is
the most efficient method for
obtaining harmonic coefficients. It is,
however, only applicable for the Xi

special case when the X values are
equispaced and the number of
harmonic terms (2L+ 1) is equal to n.
If these criteria are not satisfied, the X

i
+!

robust stepwise linear approach is
recommended, since this approach
places no limitation on either the
number of harmonic terms used, or
the location of the X values. In the
remainder of this chapter these
methods will simply be referred to as the fitted and stepwise approach.

12.4.3 The modified Newton-Raphson solution strategy

12.4.3. 1 Introduction
The MNR solution strategy for nonlinear CFSAFEM is an iterative procedure. For
any imposed boundary condition a trial solution is obtained by solving the system
equations associated with the current global stiffness matrix, as described earlier
in this chapter. It is acknowledged that there is possibly an error associated with
this trial solution and a corrective right hand side load is evaluated. This corrective
load is then used to obtain the next trial solution. The process is repeated until the
corrective loads are small. This procedure is very similar to the MNR procedure
for conventional nonlinear finite elements, see Chapter 9. However, the CFSAFEM
formulation is in terms ofFourier series coefficients. Thus the corrective right hand
side loads have to be expressed as Fourier series and are evaluated from the trial
solutions which are also expressed as Fourier series. The material constitutive laws
are used in the process of calculating these corrective loads. These laws are
expressed in terms of real values rather than harmonic coefficients. Thus a
procedure has to be developed which enables a harmonic correction load to be
evaluated from the harmonic trial solution, using the material constitutive laws.

number of sine and cosine harmonic terms. If the first x value, XI> is at e= 0°, the
subsequent known x values, Xi> will occur at e= (i-l)a, see Figure 12.6.

The harmonic coefficients can then be evaluated using equations:
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12.4.4 Data storage
The data storage required for CFSAFEM analysis differs from that ofconventional
finite element analysis in two important aspects. Firstly, for each nodal variable,
e.g. nodal displacement, it is necessary to store a number ofharmoniC coefficients,
as opposed to a single quantity. Likewise, for each variable at an integration point,
e.g. stress component, it is necessary to store a number of quantities, either in the
form of harmonic coefficients, or as real values one for each slice. At different
stages during the analysis each variable (e.g. nodal displacement or force, stress or
strain component) is needed either in harmonic form or as real value. However, it
is both very inefficient and cumbersome to store data in two different forms.
Consequently, efficient data management routines are required to store the data in
one form and to convert between harmonic coefficients and real values and vice
versa, see Section 12.4.2. The only decision then is in which form (real values or
harmonic coefficients) should each variable be stored. As the nodal variables in a
CFSAFEM analyses are expressed purely in terms of Fourier series harmonic
coefficients, it seems sensible that these values are stored as harmonic coefficients
and converted to real values when required for output purposes. The decision is
more difficult for the state variables stored at integration points, e.g. stresses,
strains and hardening parameters. The stress point algorithm requires these
variables to be expressed as real values, however the calculation of the harmonic
coefficients of nodal force, consistent with the stresses at the sampling points,
requires thatthe stresses are expressed as Fourier series. The data output algorithms
are also likely to require that these variables are expressed as Fourier series, so that
their values at any evalue can be exactly calculated. For these reasons, and to be
consistent with the storage of nodal variables, it seems appropriate to store the
harmonic coefficients.

An important property of any coefficients obtained using the fitted method is
that real values calculated from these coefficients are exactly equal to the real
values the coefficients were derived from, see Figure 12.5. This interchangeability
between the harmonic coefficients and real values dispenses of the need to store
both harmonic coefficients and real values of any variable. Coefficients obtained
using the stepwise method do not exhibit this property and there is a slight error,
6, when they are used to evaluate the real values that they were derived from, see
Figure 12.4. The magnitude of this transformation error reduces as the number of
harmonics used increases and, in practice, should be small.

A situation where the transformation error would be important is in the storage
of the soil state variables at sampling points on the predefined slices. The stress
point algorithm, and in practice the projecting back subalgorithm, in the nonlinear
solution strategy ensure that the state variables are consistent with the prescribed
strain path, see Chapter 9 and Appendix IX.I. These real values of the state
variables are then expressed and stored as harmonic coefficients, ready for use by
the CFSAFEM algorithms and the data output algorithms. When the stress point
algorithms next require these variables, it is critical that the exact real values are
evaluated, since even a small error could result in an illegal stress state, e.g.
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stresses exceeding yield. In this case the stress point and other associated
algorithms would not be valid and some arbitrary form of correction is required,
which could result in large errors. It is for this reason that the fitted method is
recommended in preference to the stepwise method when calculating the load
vector for the right hand side correction to the finite element equations.

12.4.5 Boundary conditions
As the CFSAFEM is formulated in terms of Fourier series coefficients, all
boundary conditions must be specified in this manner. However, for most practical
boundary value problems the boundary conditions are likely to be in terms of real
values (e.g. a displacement or force in a certain direction). Consequently, before
any analysis can be undertaken, these real values must be converted to an
equivalent Fourier series representation. Three options for specifying boundary
conditions are evident:

The user determines the Fourier series that is equivalent (or a good
approximation) to the real boundary condition, and inputs the harmonic
coefficients directly.
The user inputs a set of numbers representing the value of the boundary
condition at equispaced values ofe. The number of values must be equal to the
number of Fourier coefficients required. The computer program can then use
the fitted method (see Section 12.4.2.2) to obtain the required harmonic
coefficients.
The user inputs two sets of numbers. The first set contains values of the
boundary condition at a series of e values. The second set contains the
magnitudes of these evalues. The computer program then uses the stepwise
method (see Section 12.4.2.1) to obtain the harmonic coefficients.

In the Authors' experience all three ofthe above options should be available to the
user of a computer program. Examples of their use are given in Volume 2 of this
book.

12.4.6 Stiffness matrices
The partial nonlinear formulation, as described in Sections 12.3.4 and 12.3.7,
requires that the constitutive matrix [DJ and permeability matrix [K] are expressed
as a Fourier series. These harmonic matrices are required for every integration
point located in the r-z plane. To achieve this, for each integration point the real
[DJ and [K] matrices are calculated at the associated circumferential series of
sampling points, i.e. on each slice. The harmonic coefficients for these matrices can
then be obtained using the fitted method.

The partial nonlinear no symmetry CFSAFEM formulation results in a non­
symmetric stiffness matrix when the stiffness contribution for a parallel symmetry
load on an orthogonal symmetry displacement is not the same as that for the
corresponding orthogonal symmetry load on the corresponding parallel symmetry
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displacement. As this situation is generally applicable, the global stiffness matrix
must be inverted using a non-symmetric solver.

In all other situations, using the partial nonlinear CFSAFEM, the symmetry of
the global stiffness matrix depends on the nature ofthe constitutive matrix [D] and
permeability matrix [K]. For example, ifa non-associated elasto-plastic constitutive
model is employed, the global stiffness matrix is non-symmetric.

12.4.7 Simplifications due to symmetrical boundary conditions

12.4.7. 1 Introduction
As noted in Section 12.3.2, many boundary value problems have a symmetry about
the e= 0° direction, such that the imposed boundary conditions consist of purely
parallel or orthogonal symmetry terms. In the parallel symmetry case all
components of the boundary conditions in the rand z coordinate directions have
a symmetric variation with e, whereas the components in the edirection have an
asymmetric variation. Consequently, for all the rand z components of the
boundary conditions the sine terms in their Fourier series have zero coefficients,
and for the e components the zeroth and cosine terms have zero coefficients.
Conversely, for orthogonal symmetry the components of the boundary conditions
in the rand z direction have an asymmetric variation and those in edirection have
a symmetric variation with e. This results in zero values for the coefficients ofthe
zeroth and cosine terms associated with the rand z components of the boundary
conditions, and for sine terms associated with the components in the edirection.

Consequently, for either a parallel or orthogonal symmetry problem, almost
half of the harmonic coefficients are zero. The majority of previous
implementations ofthe CFSAFEM have capitalised on the above consequences and
have been coded to deal only with either parallel symmetry (e.g. Winnicki and
Zienkiewicz (1979)), or orthogonal symmetry (e.g. Griffiths and Lane (1990)), by
ignoring the harmonics associated with the zero coefficients. While such
approaches restrict the type of boundary value problem that can be analysed, they
lead to a large saving in computer resources required for an analysis and
significantly simplify the solution algorithms. This saving arises due to the fact that
only half of the Fourier series terms are considered. However, as noted in Section
12.3.2, 12.3.4 and 12.3.7, this approach of considering only parallel or orthogonal
terms is theoretically valid only iftwo requirements are met. The first requirement
is that the boundary conditions satisfy the appropriate symmetries, and the second
requirement is that the system equations are symmetrically uncoupled. The
criterion for this second requirement concerns the nature ofthe constitutive matrix
[D] and the permeability matrix [k], see Sections 12.3.2, 12.3.4 and 12.37. If the
second condition is not satisfied, it is then incorrect to perform an analysis with
only parallel or orthogonal symmetry terms, even ifthe boundary conditions satisfy
the symmetry requirements. In such a situation a full non-symmetric analysis,
accounting for all terms in the Fourier series, must be performed. An example
highlighting this problem is presented in the next section.
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Initial stresses can also present potential problems for parallel and orthogonal
symmetry analysis. Consider the situation in which the initial stresses in the soil do
not vary in the edirection. Here all the stress components can be represented by
a Fourier series when all the harmonic coefficients, except the zeroth hannonic, are
zero. However, from Appendix XII.3, zeroth harmonic components of {!'..0"1} (i.e.
!'..O"r, !'..O"z, !'..rrz and !'..O"o) yield parallel loads and zeroth harmonic components of
{!'..0"2} (i.e. M ro and M di) yield orthogonalloads. This questions the validity of
{0"1} initial stresses in an orthogonal analysis and {0"2} initial stresses in a parallel
analysis. This problem is partly overcome ifan incremental form ofthe CFSAFEM
is implemented, which is likely to be the case for analysing nonlinear problems. At
the beginning of an analysis, the initial stresses are assumed to be in equilibrium
with themselves and with the initial boundary stresses. The incremental form of
CFSAFEM then evaluates the stress changes, which should be consistent with the
applied nodal loads. Thus, irrespective of the actual values of stress, a parallel
analysis is valid if the stress changes do not yield an orthogonalload. Similarly an
orthogonal analysis is valid ifthere are no stress changes giving parallel loads. If
these conditions are not satisfied, a no symmetry analysis should be used. A no
symmetry analysis is also required ifon first loading from the initial stress state the
constitutive matrix [D] depends on the initial state of stress, see the example given
below in Section 12.4.7.2.

In a linear consolidation CFSAFEM analysis the gravity vector, {iG }, gives rise
to a zeroth harmonic flow term on the right hand side of the finite element
equations, see Section 12.3.7. This is consistent with the parallel symmetry
criterion for a symmetrical flow term. However, there is a conflict between the
gravity zero harmonic terms and the orthogonal symmetry criterion for an
asymmetrical flow term. This conflict can be resolved by specifying a hydrostatic
initial pore fluid pressure regime. The flow terms resulting from this regime
counterbalance the gravity flow terms such that there are no net symmetrical right
hand side flow terms. More generally, a linear or nonlinear consolidation
CFSAFEM requires that the initial pore fluid pressures and {id are consistent with
the symmetry of the analysis. If the symmetry criteria cannot be satisfied, a no
symmetry analysis should be undertaken.

It is the Authors' experience that all three options, e.g. parallel, orthogonal and
no symmetry, are useful and should be available in a general purpose finite element
code. Although a no symmetry analysis is considerably more expensive in terms
ofcomputer resources than either a parallel or orthogonal analysis, many problems
have to be analysed in this way because they do not satisfy all the requirements for
either a parallel or orthogonal analysis. Also, due to the uncertainties involved with
satisfying the requirements concerning the nature ofthe constitutive matrix [DJ, it
is often useful to compare no symmetry and the relevant parallel or orthogonal
symmetry analysis, to confirm that the requirements are satisfied. It should be
noted that when analysing problems with parallel or orthogonal symmetry only
half of the geometry (i.e. 0° <;; e <;; 180°) needs to be considered, while in a no
symmetry analysis the full geometry (i.e. 0° <;; e <;; 360°) must be used.
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Figure 12.9: Drained hollow
cylinder test
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It can be seen that the quasi axi­
symmetric and no symmetry CFSAFEM
results are identical. These results show
a much softer response and a higher
ultimate load to those from the undrained
analyses presented in Figure 12.8.
However, the orthogonal CFSAFEM
analysis gives very different results,
which are similar to those from the
undrained analyses. The reason for the
discrepancy is that in a drained problem
the zeroth har~onic coefficients ofradial
displacement are non-zero. However,
these are defined to be zero in an
orthogonal CFSAFEM formulation.
Thus, even though the boundary
conditions can be specified using
orthogonal symmetry, the correct
drained solution cannot be obtained. The
results tend towards the undrained
analysis results, which, due to the
incompressible material behaviour (i.e.

Figure 12.1: Material properties for hollow cylinder problem

Gens and Potts (1984). This can be seen in Figure 12.8, which shows the variation
ofthe moment, applied to the top of the sample, with angular rotation (i.e. twist).

The analyses are repeated assuming drained soil conditions, i.e. all parameters
and boundary conditions the same, except that the effective bulk modulus of the
pore fluid, Kc , is set to zero. The result of the two CFSAFEM analyses are
compared with the results from the quasi axi-symmetric analyses in Figure 12.9,
again in terms of moment versus rotation.

Overconsolidation ratio 1.0

Specific volume at unit pressure on virgin consolidation line, VI 1.788

Slope of virgin consolidation line in v-Inp' space, A 0.066

Slope of swelling line in v-Inp' space, K 0.0077

Slope of critical state line in J-p' space, M; 0.693

Isotropic initial stress 200kPa

Elastic shear modulus, G 18675kPa

Wan

Finite element mesh

Inner
pressure

......-Outer
pressure

z

Figure 12.7: Hollow cylinder sample
subjected to torsion

12.4.7.2 Examples of problems associated with parallel and
orthogonal analysis

To illustrate some of the problems associated with implementing a CFSAFEM
formulation for analysing either purely parallel or orthogonal symmetry problems,
and to emphasise the importance of having the option for a no symmetry analysis,
two examples are presented.

The first example considers
the hollow cylinder problem
described by Gens and Potts
(1984). This problem involves the r

analysis of a hollow cylinder soil
sample subjected to a torsional
displacement, while maintaining
the inner and outer pressures equal
and constant. In addition, the axial
strain is kept to zero and it is
assumed that there are no end Hollow cylinder sample

effects. As a consequence of this
latter assumption, stresses and
strains are independent of
coordinates z and e and it is
therefore possible to analyse a section ofthe sample as shown in Figure 12.7. Also
shown in this figure is the finite element mesh used to perform this analysis. It
represents a section of the hollow cylinder wall, with an inner radius of 100 mm
and an outer radius of 125 mm. The wall is divided into ten eight noded
isoparametric elements of equal radial size. To simulate the test conditions a
circumferential displacement is applied along the boundary CD, whereas the same
displacement component is held to zero along AB. No restriction is imposed on the
radial movements, but the vertical movements along AB and CD are set to zero.
To ensure strain compatibility, the applied displacements along CD have to be
proportional to the value of the r coordinate. Since the inner and outer pressures
remain unchanged, a zero normal pressure change is applied during the analysis to
boundaries AD and BC.

Gens and Potts (1984) analysed this problem using a special quasi axi­
symmetric finite element formulation. However, the boundary conditions described
above can be presented using orthogonal symmetry, with only the zeroth harmonic
terms. Analyses are therefore performed using both an orthogonal symmetry and
a no symmetry CFSAFEM formulation and the results are compared with those of
Gens and Potts (1984). In these analyses the modified Cam clay model is used to
represent the soil and the material parameters and initial stress conditions are given
in Table 12.1. Initially, undrained analyses are performed by specifying an
equivalent bulk modulus for the pore fluid, Kc, to be 100 times the bulk modulus
of the soil skeleton, see Section 3.4. The results of both the CFSAFEM analyses
(i.e. orthogonal and no symmetry) are identical and are in agreement with those of
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The reaction force on the disk due to the imposed displacement can be
evaluated. The net reaction force in the 8=00 direction can be obtained by adding
the first cosine harmonic coefficients of radial nodal reactions and subtracting the
first sine harmonic coefficients of circumferential nodal reactions, see Appendix
XIIA.

For case I, the soil is modelled as
modified Cam clay, using the soil
properties given in Table 9.3 and has
an initial isotropic stress state with
a,'=a/=al!'=200 kPa. It is assumed to ~

behave undrained during loading and "0 1000

this is silllulated by specifying a high j
bulk modulus ofthe pore fluid, KC' as
for the first example. The soil fails
under plane strain conditions and,
since an associated flow rule is used,
the Lode's angle at failure is 00

, see
Section 7.12. Forthese conditions, i.e.
the soil properties given in Table 9.3 Figure 12.12: Load-displacement
and an initial isotropic stress state of curves for pile section, case 1
200 kPa, the undrained shear strength
for the soil is 75.12 kPa, see Appendix VIIA. The shear strength of the interface
elements is also assigned a value of 75.12 kPa. The analytical limit load for this
problem is I 1.94SllD (Randolph and Houlsby (1984)), giving a value of 1794.07
kN. The results show that both parallel symmetry and no symmetry CFSAFEM
analyses are identical and are within half a percent of the plane strain analysis, as
shown in Figure 12.12. The limit load achieved is within one percent of the
analytical solution.

To illustrate the problems associated with the past implementations of the
CFSAFEM, wherein only the parallel symmetry terms in the formulation are
implemented, a further analysis, case 2, was performed. In case 2 the soil
properties are the same as case I, but there is a different initial stress regime: a,' =

a,,' = ao' = 138.22 kPa and Trl! = -69.0Ir kPa, where r is the radial coordinate and
an anticlockwise positive convention for 8 is used.

The plane strain analyses required the initial stresses to be expressed in the
global Xe; and Ye; directions, thus at any point the stresses defined above had to be
rotated in accordance with their location. To keep the undrained shear strength and
thus the limit load the same as in case I, the pre-consolidation pressure, Po', was
set to 210 kPa. This also results in the soil adjacent to the pile being normally
consolidated. The CFSAFEM analyses were carried out using the parallel
symmetry and no symmetry options and the load displacement curves are shown
in Figure 12.13. The no symmetry option agreed with the plane strain analysis, but

Radial displacement, u = 0 cos8 ;
Circumferential displacement, W = -0 sin8.

u=o
v=O

X,u

Plan view

I

a) Boundary conditions and mesh used
for plane strain pile section analysis

Vertical section

Figure 12. 10: Schematic view of
horizontally loaded pile section

z, v

t '"e, w UW __= -0 sine
U ocose
I r, U

i ]IIIIII I
,,
: b) Boundary conditions and mesh used

for CFSAFEM pile section analysis

Figure 12. 11: Boundary conditions
and meshes for pile section

analyses

high Kc value), have no radial displacements and under predict the correct drained
ultimate load by over 40%. This is an example of a problem where a no symmetry
analysis is required due to the material properties, even though the boundary
conditions can be specified using orthogonal symmetry.

The second example considers a
rigid horizontal disk pushed laterally
through a soil mass with a circular
boundary. This geometry is
representative of a horizontal section
across a laterally loaded pile, as
shown in Figure 12.10. It is assumed
that there are no vertical strains,
hence the problem can be analysed
using both the CFSAFEM and a plane
strain analysis. The boundary
conditions and typical meshes used
for both types of analyses are shown
in Figure 12.11.

Interface elements are located at
the disk-soil boundary so that various
interface conditions, e.g. rough,
smooth, rough with breakway,
smooth with breakway, can be
investigated.

The disk diameter, D, is 2m and
the boundary diameter is 40m. Only
the first Fourier harmonic coefficient
is required to represent the boundary
conditions for the CFSAFEM
analysis. However, in a nonlinear
analysis the solution displacements
have to be represented using more
harmonics, see Section 12.304. For the
present example ten harmonics are
used. If the direction of loading is in
the 8=00 direction, the boundary
conditions imposed have parallel
symmetry, if it is in the 8=1[12
direction they have orthogonal
symmetry, and if it is in any other
direction they have no symmetry. For
the present example the problem is displacement controlled, with a uniform
displacement in the 8=00 direction imposed on the rigid disk. A displacement 0 is
specified by prescribing the nodal displacements at the disk-soil interface to be:
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[Dep ]= [Dep]o =

Thus before loading the criterion for symmetrical uncoupling is satisfied and a
parallel symmetry analysis can be used. The [Dep

] matrices for case 2 and case 3
also suggest that, during loading ofcase 1, the symmetry criterion is still satisfied.
If the loading in case 1 causes a stress change at a point (r, B), such that its stress
state was equal to the nonnally consolidated stress state described in case 2, the
stress state at point (r, -B) would be the nonnally consolidated stress state
described in case 3. In this instance, the criteria for symmetrical uncoupling are
still valid, since the [D jj e

p ] and [D22"P] terms would be symmetric functions ofB and
the [DI/P] and [D21 "P] terms would be asymmetric functions ofB. Note that though
the [D I2"P] and [D2j "P] terms may be non-zero at any particular B coordinate, the
zeroth and cosine harmonic coefficients of [D 12

ep] and [D 21 "P] are zero, and the
symmetry criterion is satisfied.

Thus the criterion that the [D I2"P] and [D 2l e
p

] terms are asymmetrical functions of
B is also not satisfied and a no symmetry CFSAFEM analysis is again required.

The [Dep] matrix atthe beginning of the case 1 analysis is:
8040 60

Displacement (mm)

-- Limit load
- - - - - - Parallel symmetry: case 2
-- No symmetry: case 2 & 3

Parallel symmetry: case 3
+ Plane strain

20
o'------'------'------'-------..J

°

500

2000,------------------,

1500

Figure 12. 13: Load-displacement
curves for pile section,

case 2 and 3

there was a significant error in the
parallel symmetry analysis, which
gave a stiffer response initially and
reached a higher limit load. The limit
loads from the no symmetry and ~ 1000

plane strain analyses agreed with the "0

~analytical solution. -
Case 3 is similar to case 2, except

that the shear stress is now applied in
the opposite direction, i.e. Trll =69.0/r

kPa. The load-displacement curve for
the no symmetry analysis is the same
as for case 2. There is still an error in
the parallel symmetry analysis,
however, the load deflection curve is
now softer than for the no symmetry
analyses and the same limit load is reached, see Figure 12.13. The errors in both
case 2 and case 3 parallel symmetry analyses can be attributed to the symmetrically
coupled nature of the soil. This is an example of a problem where a no symmetry
analysis is required due to the material properties, even though the boundary
conditions could be specified using parallel symmetry. These results emphasise the
importance of the implementation of the no symmetry CFSAFEM formulation,
which was able to analyse both case 2 and case 3 accurately.

A no symmetry analysis should be undertaken if there is any doubt about the
validity of the symmetry criterion, discussed in Section 12.3.4, for the problem
considered. The symmetry criterion is that the material elasto-plastic [D"P] matrix
has [Dj I"P] and [D22"P] terms that are symmetric functions of B, and [D I2"P] and
[D 21 "P] terms that are asymmetric functions of B, see Section 12.3.1 for the
definition of [D"P]. Consider, for example, the [Dep] matrix for case 2 of the
normally consolidated material adjacent to the pile, at the beginning of the
analysis:

This [Dep] matrix is constant in the B direction and hence is equal to the zeroth
harmonic [Dep]0. Thus the criterion that the [D 12

ep] and [D2j
ep] terms are

asymmetrical functions ofBis not satisfied and a no symmetry CFSAFEM analysis
is required. Similarly, for case 3 the [Dep] matrix for the material adjacent to the
pile is:

48990 11640 11640

11640 48990 11640 12.5 The discrete Fourier series aided finite element
method

12.5.1 Introduction
The discrete FSAFEM is similar to the continuous FSAFEM and reduces a large
3D global stiffness matrix into a series of smaller uncoupled submatrices.
However, the discrete method considers a full 3D finite element mesh and employs
a discrete Fourier series to represent the nodal values offorce and displacement for
the succession of nodes on each circumference, corresponding to each 2D axi­
symmetric node. In contrast, the continuous method considers a 2D axi-symmetric
mesh and employs a continuous Fourier series to represent the variation of force
and displacement in the circumferential direction, for each 2D axi-symmetric node.

o :-5402 0
I

o :-5402 0
I

11640 11640 48990 0 :-5402 0

o 0 0 18680:-5402 0______________________L _

-5402 -5402 -5402 0 : 1770 0
I

o 0 0 0: 0 18680

[D ep ]= [Dep]o =
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The stiffness matrix, [K], can be partitioned into four submatrices [X], [Y], [YF
and [Z], in accordance with the two parts ofthe element displacements {i1u;} and
{i1ui+I }. Hence, Equation (12.76) can be rewritten as:

Since the material properties are assumed not to vary in the edirection, the
stiffness matrices for each element are identical, i.e. [KJ = [/(+1]. Thus the internal
incremental work done in the whole annular ring is:

full 3D analysis. Consider the shaded annular ring of n elements. Let these
elements be numbered from 0 to n-I anticlockwise and let the vertical planes be
numbered from 0 to n- I, such that the two vertical planes enclosing element i are
plane i and i+ 1, see Figure 12.14. Thus the incremental displacements in element
i are defined by the element shape functions and the incremental displacements on
plane i (i.e. {i1u;}) and on plane i+ I (i.e. {i1Ui+1}). The standard finite element
formulation for linear elastic behaviour, see Chapter 2, expresses the incremental
internal work, i1Wi , done by element i, in terms of the incremental nodal
displacements of the element, {i1u;} and {i1Ui+1}, and the stiffness matrix of the
element [KJ such that:

(12.76)

(12.75)i1W = {{i1u}T {i1u }T}[K]{{i1Ui } }
J J ,tl , {A }

DU,t]

M
/ ;i.H- r

z
a typical
element

--..

a) Elevation view of a typical vertical section

The first application of the discrete FSAFEM approach in geotechnical
engineering was by Moore and Booker (1982) to develop a boundary element for
use in deep tunnel problems. Subsequently, Lai and Booker (1991) used the
method to study the behaviour of laterally loaded caissons and Runesson and
Booker (1982 and 1983) used it in the study ofthe effects of consolidation and soil
layering on soil behaviour.

12.5.2 Description of the discrete FSAFEM method
The discrete FSAFEM described in this section is for an analysis consisting of
eight node constant strain brick elements. The method can be expanded to consider
twenty node linear strain brick elements, and such an extension is presented in Lai
and Booker (1991). The usual practice of using complex numbers in the
formulation is avoided, in order to simplify the description.

V

Expanding Equation (12.77) and using the periodicity of the axi-symmetric
geometry, where {i1u;} = {i1u n+;}, gives:

(12.79)

(12.77)

1 11- 1 - =
{i1ui } = I.z.: {Udcosika+ {Uk}sinika

"1/ n k=G

i1W = Jil
{~uY[X]{~Ui} + {~Ui-1}T[Y]{i1ui } + {~Uit JT[y]T {~Ui}

i=O (12.78)

+ {i1ui }T[Z]{i1ui }

Equation (12.78) is the equation solved directly in a full 3D analysis. This form of
the finite element formulation yields a single large global stiffness matrix, [ICe;],
which relates the vector of all the incremental nodal loads, {M}, to the vector of
all the incremental nodal displacements, {i1d}, as in Equation (12.3).

In the discrete Fourier series aided finite element method it is assumed that the
incremental nodal displacement {i1u;} on plane i can be evaluated from the discrete
Fourier series which represents the nodal displacement for that pseudo 2D node:

o

Figure 12. 14: Finite element
discretisatian far discrete FSAFEM

a typical
of elements

b) Plan view of a typical horizontal section

The problem domain is discretised using a mesh ofhexahedral finite elements
consisting of n evenly spaced wedges around the circular boundary in the e
direction, as shown in Figure 12.14. This is similar to a finite element mesh for a
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The orthogonal properties of a discrete Fourier series are:

where:

{Vd and {Vd are respectively vectors of the kth cosine and sine harmonic

coefficients of {l\u} expressed as a discrete Fourier series function;
a = 21r/n.

Equation (12.79) only describes incremental nodal displacements and cannot be
used to evaluate incremental displacements at intermediate values of e, i.e. it is
only valid for integer values of i. It is for this reason that the method is referred to
as the 'discrete' FSAFEM.

Introducing expression (12.79) into Equation (12.78) transforms the problem
from determining the unknown incremental nodal displacements to that of finding
the Fourier coefficients:

The incremental nodal displacements, and accordingly the harmonic
coefficients of incremental displacement, have three components, a radial, a
circumferential and a vertical component. Thus the two vectors ofnodal harmonic

displacements, {Ud and {Uk} ,can each be divided into two sub-vectors, a radial

and vertical component sub vector, and a circumferential component sub-vector:

(12.83)
([Y]sinla - [y]T sinla)

([Y]sinla-[y]T sinla)

+

+

i'1W = Ii:: {U,}T ([X] + [Y]cosla + [y]T cosla + [Z]) {V,}
'00

order, i, can be obtained by substituting 1= i in Equation (12.82). However, for
each harmonic order, both the sine and cosine coefficients of load and
displacement have to be solved simultaneously. This is similar to the symmetrically
coupled continuous FSAFEM, as shown in Equation (12.16).

Symmetric uncoupling is possible with the discrete method for an isotropic
linear elastic material. This is achieved by first regrouping the terms in Equation
(12.82) as:

{Vd =f{Un} and {Vk} ={{Un} (12.84)1{U~} {U~}

Expanding matrices [X], [Y], and [Z] accordingly, Equation (12.83) can be written
in the following form:

[X] ( ~ Ii:: {V,} cosila + {V,} sinilaJl'l/n '00

[Y] ( ~ Ii:: {V,} cosila + {V,} sinilaJl'l/n '00

[y]T (_I_Ii:: {V,} cosila + {V,} sinilaJ
l.J;; '00

[Z] ( ~. lIt {U,} cosila + {U,} sinilaJl'l/n '00

(12.80)

tlW = 'i::(_l_'i:: {Vk } cosika + {Vk } sinikaJ T
iool.J;; H

J
T

1"- 1 - =}-L: {V k } cosU -I)ka + {Vk } sinU - I)ka
l.J;; H

T

}_I_'II (Vd cosU + I)ka + {Vd sinU + l)kaJ
l.J;; koO

J
T

1"-1 - = .}-- L: {Vd cosika + {Vd smika
l.J;; H

(12.82)

The internal incremental work equation has been divided into n independent
expressions, one expression for each harmonic order, thus the large global stiffness
matrix has been uncoupled into n submatrices, as in Equation (12.4), i.e. the
equations are harmonically uncoupled. The stiffness matrix [/(] for any harmonic

1
fvrz,)t , J

(vf}

11-1
tlW = L:

'00

(12.85)

Each set of wedge shaped elements defined in the mesh is geometrically
symmetrical about a constant eplane through the middle of it. For an isotropic

(12.81)

n~ 1
L: cosika sinila = 0
i~O

n-l
2: cosikacosila =Oforl*-k, =nforl=k
;;;;0
!I-I
L: sinika sinila = 0 for I *- k, = n for I = k
;=0

Equations (12.81) are used to simplify Equation (12.80) such that:

tlW = Ii:: {U, }T[X]{U,} + {V, }T[Xj{V,}
'00

+ {V,} T[Y]{Vtlcosla + {V,}T[y]{V, }cosla - {V,}T[y]{V, }sinla + {U,} T[y]{V, }sinla

+ {V,} T[y]T {V, }cosla + {U, }T[y]T {V, }cosla + {V,} T[y]T {U, }sinla - {U,} T[y]T {U, }sinla
- -

+ {V,}T[Zj{V,} + {U,}T[Z]{V,}



(12.89)

{

{i1Rn} =2[rxll] + [Y11]coska [y21 ]T sinka ] {{U;Z}}
{i1R!} [Y21 ]sinka [X22 ] + [Y22 ]coska {V!}

and

{

{i1RIZ}} [[XII] + [YII]coska [y21 ]T sinka ]{ {VIZ}}

-{i1:!} =2 [Y21 ]sinka [X22 ]+[Y22 ]coska _{:!}
Thus the large global stiffness matrix has been harmonically and symmetrically

uncoupled. The procedure outlined above is for a linear elastic analysis. The
procedure can be extended to consider nonlinear behaviour by cornbining the linear
elastic formulation with a solution strategy which continually adjusts the right hand
side ofthe governing finite element equations, e.g. visco-plastic or MNR methods.

Fourier series aided finite element method / 391

is similar to the symmetrically uncoupled continuous FSAFEM stiffness matrix
shown in Equation (12.17). Thus the internal incremental work equation now
consists of 2n uncoupled vectors of harmonic incremental displacement
coefficients and n stiffness matrices. There are two vectors and one stiffness matrix
for each harmonic order. The stiffness matrix for the ph harmonic order is obtained
by substituting i for I in Equation (12.88).

The externally applied incremental loads can also be expressed as a discrete
Fourier series. Parallel loads can be obtained by mixing cosine coefficients of
radial and vertical loads with sine coefficients of circumferential load. Similarly,
orthogonalloads can be obtained, for example for the kth harmonic:

The principle of virtual work is then used to obtain the system equations which
consists of 2n separate equations (two equations for each harmonic order), for
example for the kth harmonic:

12.6 Comparison between the discrete and the
continuous FSAFEM

A key difference between the discrete and the continuous FSAFEM method is the
manner in which the variations in forces and displacements in the circumferential
direction are described.

The discrete method notionally considers a full three dimensional finite element
mesh defined in a cylindrical coordinate system. Thus the force and displacement
distribution in the circumferential direction is described using the standard finite
element approximation, i.e. the shape function of the pertinent element. Lai and
Booker (1991) state that 'the discrete method gives an exact representation (of
displacements) after a finite number of terms' . This statement is misleading since
it wrongly implies that the correct displacement field can be represented after a

(12.86)

(12.87)

(12.88)

+

JI .•. J

i1W=2I
/00

+

+

+

T [0 -[Y21 ]T_[V] - [V] = 2
ry21] 0

11-1
i1W =2I

/00
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Equations (12.86) are used to simplify Equation (12.85):

elastic material this implies that the element stiffness matrix has a symmetry such
that:

Parallel displacement terms can be obtained by mixing cosine coefficients of
radial and vertical displacement with sine coefficients of circumferential
displacement. Similarly, orthogonal displacements are sine coefficients of radial
and vertical displacement and cosine coefficients ofcircumferential displacement.
Using these terms Equation (12.87) can be rearranged such that:

{
{Un}T [[XII]+[YII]COSla [y21 ]T sinla ] {{Un}
{U1} [Y21 ]sinla [X22 ] + [Y22 ]cosla {U1}

{
{Un}T [X11]+[YII]cosla [Y2l f'sinla { {vn}

-{u!} [ [Y" j,inJa [X,,] + [Y" ]CO'la] -{U1}

The parallel displacement terms have been uncoupled from the orthogonal
displacement terms and the stiffness matrix for both set of terms is the same. This
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stress distribution, n = 10
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representation for radial stress
is correct at the sampling
points, but could be in error l 50

:;? 40between sampling points. o.
In a discrete FSAFEM ~ 30

. h . ]1 20analysis WIt constant stram ~
~ 10elements, the elements have a

constant width in the e
direction. If the number of
coefficients is equal to n, the
number of nodes is also equal
to n and they are located at e
coordinates ia. Due to the
linear nature of the
displacements, the stresses and strains within an element are constant. It is assumed
that these stresses represent the stress state at the centre of the element. This is
similar to the assumption made regarding the sampling point stresses for a
continuous FSAFEM analysis.

In a discrete FSAFEM analysis with linear strain elements, the elements still
have a constant width and the nodes are still equispaced in the e direction.
Similarly, if the number of coefficients in a discrete FSAFEM analysis is equal to
n, the number of elements is also equal to n. However, there would now be 2n
nodes, since these elements have mid-side nodes. Due to the quadratic nature ofthe
displacements, the stresses and strains within an element are linear. It is assumed
that the stresses at the end nodes are correct and there is a linear stress distribution
between them. The stresses at the mid-side node depend only on the stresses at the
end nodes.

The stress distribution from each of the three types of analyses are presented
in Figure 12.15, for n equal to ten. The difference between the desired stress and
the stress from these analyses is a measure of the error associated with these
analyses. This error, Err, is quantified using the equation:

where:
j(e) = the measured stress distribution;
Fce) = the postulated stress distribution.

The value of Err associated with each type of analysis is presented in Table 12.2.
For any value of n the continuous method and linear strain discrete method have
similar accuracies and the constant strain discrete method is substantially less
accurate. However, there are n unknown harmonic coefficients in the continuous
method and 2n unknown nodal values in the linear strain discrete method. Hence,
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a = 2nln,;
i is an integer and 0" i" n,-l;
n, is equal to the number of sampling points.

It is assumed that the stresses at the sampling points are correct, i.e. they are equal
to the measured stresses shown in Figure 12.15. Thus the Fourier series

finite number of Fourier series terms. The discrete method uses a discrete Fourier
series to represent nodal displacements and is able to exactly represent any
variation of nodal displacements in the circumferential direction. However, in
general these displacements would not represent the correct displacement field
exactly, due to the finite element approximation, and the solution accuracy would
increase with the number of nodes used.

The continuous FSAFEM uses a 2D axi-symmetric mesh and represents the
variation of nodal displacements and loads in the circumferential direction as a
continuous Fourier series. The accuracy of this representation depends on the
number of harmonic coefficients used in an analysis. For the special case of a
linear elastic continuous FSAFEM, the number of harmonics required in an
analysis is equal to the number of harmonics required to represent the boundary
conditions. In a discrete FSAFEM the distribution of nodal variables in the e
direction is represented using the nodal values and shape functions of the
appropriate annular ring of 3D brick elements. These nodal values are expressed
as a Fourier series which has the same number of coefficients as there are nodes.
Increasing the number of coefficients in a nonlinear discrete FSAFEM analysis
increases the number of nodes in the e direction and increases the solution
accuracy. Thus for both the continuous and discrete nonlinear FSAFEM the choice
regarding the number of harmonics used in an analysis is based on a trade off
between the solution accuracy desired and the computer resources required.

To assess the accuracy of the two FSAFEM, their ability to represent the
distribution of radial stress around a pile is considered. In particular, the
relationship between the number of harmonics or brick elements used and the
accuracy with which the resulting stress distribution can represent the chosen
distribution is examined.

The stress distribution around a laterally loaded pile was presented by Williams
and Parry (1984), using measurements from a model pile test. Only the variation
ofradial stress around the pile Cedirection) is studied and the variation in the radial
or vertical direction is not considered, thus the problem is one dimensional. The
study compared the continuous FSAFEM, the discrete FSAFEM with eight noded
constant strain brick elements and the discrete FSAFEM with twenty noded linear
strain brick elements.

As noted in Section 12.4.3 for the continuous FSAFEM, the number of
sampling points in the edirection is equal to the number of harmonic coefficients
used in the FSAFEM analysis, and the harmonic coefficients are obtained from the
sampling point stresses using the fitted method. The sampling points are
equispaced in the edirection and are located at ecoordinates ia, where:
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a conventional finite element analysis. 1t would only be possible if non axi­
symmetric interface elements were present, and it is unclear how either the discrete
FSAFEM or continuous FSAFEM could incorporate such behaviour. This criticism
of the continuous FSAFEM is therefor not valid.

Lai and Booker (1991) have also stated that 'problems concerning conformity
of elements is overcome' by using the discrete method rather than the continuous
method. This statement is not clear: the continuous method should have no element
conformity problems since the displacements at a boundary, calculated from either
element sharing that same boundary, are identical, if isoparametric elements are
used. However, both methods can be adapted to undertake an analysis consisting
of both full 3D elements and pseudo 2D FSAFEM elements, e.g. a core consisting
of full 3D elements surrounded by layers of pseudo 2D elements. In this case the
displacements between nodes at the boundary, which is between the pseudo 2D
discrete Fourier elements and the 3D elements, are described by both types of
elements using the finite element approximation, and thus they match. The
displacements in the edirection for a continuous FSAFEM analysis are described
by a continuous Fourier series. Thus at the boundary between the pseudo 2D
continuous Fourier elements and the 3D elements, the displacements are equal at
the nodal points of the 3D mesh, but do not match at intermediate values of e.

A further comparison
between the continuous and
discrete FSAFEM, and of the
influence of the number of
Fourier coefficients employed
in each method, can be made
using results for the horizontal
disk problem described in
Section 12.4.7.2. Ganendra
(1993) performed continuous
FSAFEM analyses of this
problem using the Authors'
finite element code (ICFEP).
He used the same boundary
conditions as described in
Section 12.4.7.2, but modelled
the soil as a Tresca material, with a shear modulus, G, of 3000 kPa, a Poisson' s
ratio, /1, equal 0.49 and an undrained shear strength, S", of 30 kPa. Two sets of
analyses were performed, one assuming a smooth, the other a rough, interface
between rigid disk and soil. Each set ofanalyses consisted ofa number of separate
analyses performed with a different number of Fourier harmonics. The results are
presented in Figure 12.17 in the form ofnormalised ultimate load, P" I SlID (where
P" is the ultimate load and D is the diameter of the disk), against number of
harmonics used in the analysis. Lai (1989) also analysed this same problem, but
used the discrete FSAFEM. His results are also shown in Figure 12.17. The
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Figure 12. 16: Four/er series
approximation of a square

wave

E"l Wh-<r-n =_32_

v ~l 0 (" /

n is the number of harmonic terms used
in the Fourier series

Discrete Fourier Discrete Fourier
ContinuousNumber of

series using 8 series using 20
harmonic terms Fourier series

node elements node elements

2 100.0 % 48.5 % 47.7%

5 30.9 % 21.9 % 19.4 %

8 14.5 % 10.2 % 17.8 %

10 17.5 % 6.8% 7.8%

Table 12.2: Summary of errors in the representation of radial stress
around pile

Some authors (e.g. Lai and Booker
(1991)) have stated that the continuous
FSAFEM could suffer from 'difficulties
associated with summing a large number of
Fourier terms, e.g. the Gibb's phenomenon'.
However, statements like this are ambiguous
since the Gibb's phenomenon does not
suggest such a problem. The Gibb's
phenomenon states that if a Fourier series is
used to represent a function which has a
discontinuity, the magnitude ofthe maximum
error, Err, ofthe Fourier series representation
in the vicinity of the discontinuity is largely
independent of the number of Fourier terms
used. This is illustrated in Figure 12.16 for a
square wave. The error Err is approximately
equal to 0.09 times the magnitude of the
discontinuity. However, while increasing the
number of Fourier terms does not reduce the
magnitude of Err, it does reduce the total
error in the vicinity of the discontinuity, i.e.
the area between the Fourier series and the
square wave is reduced. The Gibb's
phenomenon would only be relevant in a finite element analysis if a discontinuity
in displacements existed in the circumferential direction, and this is not feasible in

the stiffness matrix associated with the linear strain discrete method is larger than
for the corresponding continuous method. This would result in increased computer
resources required for an analysis. Thus it is concluded that the continuous
FSAFEM is probably the most efficient method.
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__ 3D (41 hours)
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The footing is displaced
horizontally and the horizontal
reaction on the foundation noted.
The results from the analyses,
expressed in terms of the ~

horizontal force on the footing <2

versus horizontal displacement, ~
.~ 3000

are given in Figure 12.20. :ii
Results from a full 3D analysis
and three CFSAFEM analyses,
each with a different number of
harmonics, are given. Also noted
on the figure are the run times
for each analysis. It can be seen Figure 12.20: Load-displacement curves
that all analyses produce very for a horizontally loaded circular footing

similar results, with a maximum
difference ofonly 1%. However, the CFSAFEM have much smaller run times. For
example, the CFSAFEM with five harmonics required approximately a tenth ofthe
time of the full 3D analysis.

A second series of analyses was then performed in which the footing was
displaced downwards, at an angle of 45 0 to the horizontal. As the displacement
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Figure 12. 19b: Vertical cross-section of a
3D mesh for a circular footing; also a

mesh for CFSAFEM analysis

P~
a) Horizontal load on a circular footing

b) Inclined load on a circular footing

Figure 12. 18: Loading schemes
for circular footing

12.7 Comparison of CFSAFEM and full 3D analysis
To investigate the benefits of the
CFSAFEM over full 3D analysis, a
rough rigid circular footing under
horizontal and inclined loading has been
analysed, using both approaches, see
Figure 12.18. The soil is assumed to
behave according to a Tresca yield
criterion, with E=10000 kPa, ,u=0.45 and
SI/=100 kPa. The mesh for the 3D
analysis is shown in Figures 12.19a and
12.19b. As there is a vertical plane of
symmetry, only one half of the problem
requires analysis. To be consistent, the
CFSAFEM analysis used a 20 finite
element mesh which was the same as the
vertical section of the 3D mesh shown in Figure 12.19b. Due to the symmetry
mentioned above, the CFSAFEM was run using the parallel symmetry option.

Figure 12. 19a: Horizontal cross-section of a 3D mesh for a circular
footing

analytical solutions for the limit loads for the rough and smooth interface cases are
11.945SI/D and 9.14SI/D respectively (Randolph and Houlsby (1984)). The rough
solution is exact, while the smooth solution is a lower bound. Inspection of Figure
12.17 indicates that the continuous FSAFEM is not strongly influenced by the
number of harmonics used, and reasonable accuracy is obtained if five or more
harmonic terms are used. The discrete method is very sensitive to the number of
harmonics employed, and ifless than ten harmonics are used significant errors are
obtained, e.g. the error is greater than 65% if 6 harmonics are used. These results
are indicative of the number of harmonics required to analyse a laterally loaded
pile accurately and suggest that (i) the continuous method is more economical in
terms of number of harmonics required and (ii) large errors can be obtained using
the discrete method if an insufficient number of harmonics are used.
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(XII.5)
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(XII.l)

;\"W = f ;\"d;\"F r dB
-IT

;\"d = ;\"do + t ;\"d k coskB+ ;\"dk sinkB
k=1

;\"F = ;\"Fo + t ;\"Fk coskB+ ;\"F k sinkB
k= I

J - - --

;\"W = 2rrr ;\"do ;\"Fo + rrr I ;\"d
k
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k

;\"F
k

k=]

Thus the work done is:

Appendix XI1.1 : Harmonic coefficients of force from
harmonic point loads

The applied incremental load, I'lF (component of force per unit circumference), at
any angle e is written in the form of a Fourier series:

where r is the radius of the circle described by the location of the node.
Substituting the Fourier series into the work equation gives:

(XII.4)

;\"W = f (;\"dO+ ±;\"dk coskO+ ;\"dk sinkO)(;\"pO + ±;\"Fk coskO+ ;\"pk Sinko)r dO
k=1 k=1
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Let the associated component of incremental nodal displacement, I'ld, be described
using a Fourier series:

Carrying out the integral and using the orthogonal properties of the Fourier series
gives:

5. An alternative to the continuous FSAFEM is the discrete FSAFEM. The theory
behind this approach and the difference between the two methods have been
discussed. The discrete method requires a full three dimensional finite element
mesh defined in cylindrical coordinates. The distribution of nodal variables in
the edirection is represented using the nodal values and shape functions of the
appropriate annular ring of 3D brick elements. These nodal values are
expressed as a discrete Fourier series which has the same number of
coefficients as there are nodes.

6. Comparison of the continuous and discrete FSAFEM indicates that the former
method is likely to be more economical. However, each method has its
advantages.

7. Comparison ofCFSAFEM and full 3D analysis shows that the former requires
considerably less computer resources to obtain answers of the same accuracy.
For the examples considered, savings in computer time are up to an order of
magnitude.

om

• v-V}
• H _u 3D (55 hours)

0.01 0.02 0.03 0.04 0.05 0.06

Horizontal, u, and vertical, v, displacement (m)

Figure 12.21: Load-displacement curves
for a circular footing under inclined

loading
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12.8 Summary
1. The continuous Fourier series aided finite element method (CFSAFEM) has

been described in detail in this chapter. This method provides a way of
reducing the computer resources required to analyse certain 3D problems. In
this approach a standard finite element discretisation is used in two dimensions,
while displacements are assumed to vary according to a continuous Fourier
series in the third dimension. In this chapter the method is applied to problems
having an axi-symmetric geometry, but non axi-symmetric distribution of soil
properties andlor loading conditions. A 2D finite element discretisation is used
in the r-z plane, with displacements varying according to a Fourier series in the
edirection.

2. A new formulation for the CFSAFEM for nonlinear material behaviour has
been described. A general approach has been adopted and no symmetry
constraints have been imposed. The definitions of, and requirements for,
symmetrical and harmonic coupling have been established and the associated
computational savings identified.

3. The definitions of parallel and orthogonal symmetry have been given and the
requirements for such symmetries to be valid have been discussed. One of the
requirements concerns the nature of the constitutive model. It is shown how
subtle changes in the constitutive behaviour can lead to violation of these
requirements and hence to erroneous results. It is advised that facilities to
undertake no symmetry, as opposed to parallel or orthogonal symmetry
analysis, are available within the computer code being used.

4. Extension of the CFSAFEM to include interface elements, the bulk
compressibility ofthe pore fluid and coupled consolidation has been presented.

increased, both the horizontal ~ 45000

and vertical loads on the il

foundation were recorded. The .9
:; 30000

results are shown in Figure ~
;12.21, in the form of horizontal ;::

load plotted against horizontal ]
~ 15000

displacement and vertical load
plotted against vertical 1
displacement. Results are given ~

for a full 3D analysis and for a
CFSAFEM analysis with 10
harmonics. The run times are
also noted on the figure. As with
the horizontal loading, both
analyses give similar predictions
and again the CFSAFEM is much faster. These two examples clearly show that the
CFSAFEM is more economical than a full 3D analysis.
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Using the principle of virtual work, the contributions to the harmonic coefficients
of incremental nodal force, !:lR, used in the right hand side of the FSAFEM
equations, are:

I'J.Ro == 2nl' I'J.Fo for the oth harmonic; The d! integral is carried out numerically, usually using a Gaussian integration rule.
Thus using the principle of virtual work the contributions to the harmonic
coefficients of incremental nodal force at the Z1h node, !:lRj , used in the right hand
side of FSAFEM equations, are:

I'J.R k == nl' I'J.Fk for the kth cosine harmonic;

I'J.R k == nl' I'J.Fk for the kth sine harmonic.

(XII.6)

Carrying out the de integral gives:

!:lW == f j~ N{2nr !:ld? !:lo-o + nr El !:ld/ !:l~ + !:ld;k I'J.~) d! (XII.1I)

Appendix X11.2: Obtaining the harmonics of force from
harmonic boundary stresses

Boundary stresses are prescribed over an axi-symmetric surface defined by a
section of the finite element mesh boundary. These stresses can be resolved into
global l', z and edirections to obtain ar , az , aI!, Trz , Trl! and Tzl! respectively. These
stresses can be expressed as a Fourier series, and the variation of each harmonic
coefficient along the boundary is described, for example, with a cubic spline
function. Thus for any component of incremental stress, !:la, at any point in the l'-z
plane, a Fourier series can be written such that:

Appendix X11.3: Obtaining the harmonics of force from
element stresses

The stress point algorithm evaluates the incremental stresses at integration points
within the problem domain. These stresses are expressed as a Fourier series, i.e:

L - =
{!:l o-} ={!:l o-0} +.2: {!:lo-k} coskB+ {!:lo-k} sinkB

k=1
° f. -k -

!:lo- ==!:lo- + L.: !:lo- coskB+ !:lo-k sinkB
k=1

(XII.7)

I'J.RjO == 2nl'f Ni 1'J.0-0 d!

I'J.R/ == nl' f Ni 1'J.00
k cl!

I'J.Rt == nl' f Ni 1'J.00k cl!

for the Oth harmonic;

for the k th cosine harmonic;

for the k th sine harmonic.

(XII.12)

(XII.13)

where d! is the incremental length in the l'-z plane along the boundary. Substituting
the Fourier series representation in this equation gives:

( - J( - JnN o/.k k /.--
6W = f f L.: Ni 6dj + L.: 6d, coskB + 6dj sinkB 60"° + L.: 60"1 coslB + 60"/ sinlB r dB dl

-J{ I-I k-l 1=1

The displacement over the axi-symmetric surface is described using the shape
functions of the appropriate finite elements and Fourier series of the nodal
displacement of the element. Thus for !:la the corresponding component of
incremental displacement, !:ld, can be written as:

!:ld == ~ Nj( I'J.d,o + 1:1 !:ldj
k coskB+ I'J.dj

k sinkB) (XII.8)

where:
N; is the shape function of the Z1h node defined in the mesh;

I'J.diO, I'J.dt and I'J.dt are the ot\ the kth cosine and the kth sine coefficients of

incremental displacement respectively, for the I'h node;
n is the number of nodes in the element.

The work done can then be written as:

(XII. IS)

(XII.16)

!{!:lo-IO}) /. r{!:lo-Ik} COSkB} j{I'J.a-]k} sinkB)
{I'J.a-}== +.2: ~ _ +_

{!:la-2°} k=1 l{!:la-2k} coskB {!:la-2 k} sinkB

The incremental internal work done by these stresses is:

where:

{!:leTI} = {!:lar !:laz !:laB !:larz}T and {!:leT2} = {!:larB l'J.aZB}T

Accordingly, the Fourier series representation can be divided using these two sub­
vectors, i.e:

where:
{!:liT} is the vector of incremental stress components;

{!:lo-j0}, {I'J.o-t} and {I'J.o{} are the vectors of the ot\ the kth cosine and thekth

sine coefficients of stress respectively.

Vector {!:liT} can be split into two sub-vectors, {!:liT I } and {!:liT2}, i.e:

{!:la}=={!:lo-r !:lo-z !:lo-o !:lo-rz:!:lo-rO !:lo-zO}T={{!:leT]} {!:leT2}r (XII.14)

(XII.9)
-n

!:lW == f!:ld!:lo- dal'ea == f J I'J.d!:lo- l' dBd!

(XI!.IO)
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The resultant incremental force in the B=O° direction, tlT/oo, is given by equation:

i1T/
oO = f i1j,. r cosfJ dfJ

Horizontal loads
Let tl./,. represent the incremental radial force per unit circumference on a node.
This can be expressed as a Fourier series:

(XII.2I)

(XII.23)

(XII.26)

(XII.27)

Resolving harmonic coefficients of nodal
force

-,

=L(L1F,0 + ktl i1F,k coskfJ + i1F,k sinkfJ)sinfJ r dfJ

l. - =
tl!,. = tlF,° + L: tlF,k coskfJ+ tlF,k sinkfJ

k=!

Appendix X11.4:

-,

= L(Moo+ktl i1F;;k coskfJ+i1Fo
k

SinkfJ]cOSfJ rdfJ (XII.25)
- -

= 1[r i1Fo! = i1R~

Thus the total incremental horizontal load in the (J=O° direction is:

-,

=L(L1F,0 + ~I i1F} coskfJ+i1F,k SinkfJ)c0SfJ rdfJ (XII.22)
- -

= nr i1F,1 = i1R;

Similarly, the resultant incremental force in the B=!;2n direction, tlTr"""'h", is:

i1T,
0

o+, = f i1j,. r sinfJ dfJ

= 1[r i1F,1 = tlR;

If tl!o represents the incremental circumferential force per unit circumference
on a node, the resultant incremental force in the B=O° direction, tlT,{FO, is given by:

i1T/=o = f - i1fo r sinfJ dfJ
-,

= L-(i10;0 + ~! i1F;;k coskfJ+ i1F;;k sinkfJ)sinfJ r dfJ (XII.24)

= =
= -1[r i1Fo! =-i1R~

Similarly, the resultant incremental force in the (J=!;2n direction, tlT/''''''h'', is:

i1T,.0=+' = f i1fo r cosfJ dfJ

tlTB=o = tlR1 _ tlR1
r r B

and the total incremental horizontal load in the (J=!;2n direction is:

where:
{tld} is the vector of incremental displacements;
[B] is the strain matrix.

Equation (XII. 16) can be expressed in a Fourier series form as:

, L [ I' T[[BI
/
] COSlfJ]T I" T[ [BI

/
] sinlfJ ]T]

tlW=f f L {tld} +{tld } .
-, 1=0 [B2 /] sinlfJ -[B2'] coslfJ

[{
{tl lTI

O

}} + ±{{tllTl
k

}COSkfJ} +f{tllTI
k
}SinkfJ}] r dfJ darea

{tllT2°} k=1 {tllT2k}coskfJ 1{tllT2k}sinkfJ

tlW = {tldO'}{LVlo'} + ±{i1d k'}{LVl k'} + {i1d k"}{LVl k"} (XII.19)
k=1

Thus using the principle of virtual work, the work done by both equations must be
the same and in addition the terms which are pre-multiplied by the same
coefficients of displacement can be equated. From here the contributions to the
harmonic coefficients of incremental nodal load, {fiR}, used in the right hand side
of the FSAFEM equations, are:

{
[BIo] )T{{i1UI

O
})

{i1Ro} = 2nI r darea for the Oth harmonic;
-[B2°] {i1 u2°}

,{[BI
/
])Tj{i1UI

/
}] h{i1R I

} = nI = r darea for the It parallel harmonic;
[B2'] {i1u2'}

{i1R I"} = nI{ [Bl/~ }Tf{i1Ul
1
}} r darea for the llh orthogonal harmonic.

-[B2] 1{i1u2 /}
(XII.20)

(XII. 17)

Using the orthogonal properties of the Fourier series, the Bintegral is carried out:

L {[BI/]}T{ {tlUI
/
}]tlW= f2n{tldo'}T[BIo]T{tluIo} + n L: {tldl'}T =

1=1 [B2'] {tlu2 /}
------------ + ----------------

-2n{tldo"}T[B20f {tl u2°} + n f {tld l"}T{ [BI
/
] }Tf{tlUI

/
}} r darea

1=1 -[B2/] 1{tlu2 /}

(XII. 18)

The work done by the coefficients of incremental nodal force consistent with
this stress state is:
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Axial loads
Let !i/z represent the incremental vertical force per unit circumference on a node.
This can be expressed as a Fourier series:

I - =
!ifz = IJ.F:0 + ! !iF:k coskB+ IJ.F:k sinkB (XII.28)

ko!

The total incremental force in the vertical direction, !iT" is given by the equation:

Using the above equations six standard integrals can be obtained for the solution
of the integral of the product ofthree Fourier series:

] sinkBsin/{}sinmB dB=] t(COS(k -/)8- cos(k + 1)8) sinmB dB
-1[ -1[

=0

] coskBcos/{}sinmB dB= ] t(COS(k -/)8+ cos(k + 1)8) sinmB dB
-n

Turning moments
As in the previous case for axial load, let !i/z represent the incremental vertical
force per unit circumference on a node, which can be expressed as a Fourier series.
The incremental turning moment about the B=lh.n axis, !ilvP'1t, is equal to:

Appendix X11.5: Fourier series solutions for integrating
the product of three Fourier series

Three standard integrals are used for the solution of the integral of the product of
two Fourier series:

.in 1t

!J.M2 = f Nz r cosB r dB
-n

= ]n (~o + ~111F.k coskB+I1F.
k

sinkB)cosB r
Z

dB (XII.30)
- -

= nrz l1F.l
= r I1R;

Similarly, for incremental turning moments about the B=O° axis, !iM is equal to:

IJ.Mo = ] Nz r sinB r dB
-n

= 1. (11F.° + ~I IJ.F.
k

coskB+ IJ.F:
k

sinkB) sinB r
Z

dB (XII.31)

= nrz IJ.F.I = r IJ.R;

(XII.33)

=0

=0

] sinkBcos/{}sinmB dB= ] !(sin(k -1)B+ sin(k + 1)8) sinmB dB
-1t -1t 2

=n(±a+fJ)
n n 1f sinkBsin/{}cosmB dB= f -(cos(k -/)8- cos(k +1)8) cosmB dB

-1t -n 2
=n(a-fJ)

n n 1
f coskBcos/{}cosmB dB= f -(cos(k -/)8+ cos(k + 1)8) cosmB dB

-n -n 2
=n(a+f3)

] sinkBcos/{}cosmB dB= ] t(Sin(k -/)B+ sin(k + 1)8) cosmB dB
-n

where:
a = 1 if Ik -/1 = m = 0; = lh. if Ik -/1 = m '* 0; = 0 otherwise;
fJ = I if Ik +/1 = m = 0 ; = lh. if 1k +/1 = m '* 0 ; = 0 otherwise;
± is + if k -I 2 0 ; is - if k -I < 1;
Ixl denotes absolute value ofx.

Appendix X11.6: Obtaining coefficients for a stepwise
linear distribution

The variable x is described by a stepwise linear distribution, see Figure 12.4, using
n discrete values ofx; at locations B;, e.g. XI at B1 , Xz at Bz , ... , X; at B;, ... , Xnat Bm
such that at any location Bthe value of X is:

x=x + (X;tl -x;)(B-B;) when B; <B<8;tl (XII.34)
I 8;tl -B;

The 01h harmonic is evaluated from:

(XII.29)

-n

= 1. (IJ.F.
0

+ ~l IJ.F.
k

coskB+ IJ.F.
k

sinkB)r dB

= 2nr IJ.F.0 = IJ.R~

n
f sinkBcos/{}dB = 0 for all k and 1

-1t

n
f sinkBsin/{}dB =Oifbof, =nifk=I;tO, =Oifk=I=O

-n
n

f coskBcoslBdB = 0 if k;t I, = n if k = l;t 0, = 2n if k = 1= 0

(XII.32)
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(XII.35)

- .(sink~tl -sinkBi - kB(B -B»)]
X, k cos I itl I

_ 1 ~ (Xitl -xi)(sinkBitl -sinkBi) kB kB) (XII.38)
- k7[::J k(~tl _~) XitlCOS itl +xicos i

The summation of the last two tenns in the expression is zero, giving:

(XII.37)

1t

(XII.39)
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x

Figure XII. 2: Asymmetrical
stepwise linear function
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Figure XII. 1: Symmetrical
stepwise linear function
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Simplifications can be made ifX varies in either a symmetric or non-symmetric
manner. If a symmetric function is stipulated, the specified values of X are
constrained to be located in half space °5: 8 5: rc. For each value ofx specified, a
symmetrical value is assumed in the half space -7[ < 8 < 0, i.e. for each Xi at 8i a
value of Xi at -8i is assumed, see Figure XII. I. The above equations can then be
used to obtain oth and cosine hannonic coefficients. Since the assumed distribution
is symmetric, the sine coefficients are zero.

SI'nce X = X and 8 = 81 the summation ofthe last two tenns in the expression11+1 1 n+1 ,

is zero, giving:

-k I n (Xit1 - xJ(COSk~tl - COSk~»)
X =-?-I

k-rci=l k(~tl-~)

Appendix XII. 7:

The kth sine hannonic is evaluated from:

x k =.!. j X sinkB dB
7[ -n

_ 1 11 B,S·+.' ( (Xitl -Xi)(B-~») . kB dB--I Xi + SIn
7[i=1 B ~tl-~

=.!.t B;JI (Xitl -Xi)B+~tIXi -~Xitl») sinkB dB
7[ i=1 B ~tl ~

_ 1 11 '1 ( _ )(sinkB + BCOSkB) _ coskB(B X -B.x »)B;+I- - I Xitl Xi 2 k k Itl I I It I
7[ ;= I ~t I - ~ k B;

_ 1 11 1 [ (sink~tl -sink~ _ kB (B, _B»)--I -B Xitl k cos Itl Itl I
kn 1=1 ~tl i

Similarly, if an asymmetric function is stipulated, the specified values ofX are
constrained to be located in the half space°< 8 < 7[. For each value ofX specified,
an asymmetrical value is assumed in the half space -7[ < 8 <0, i.e. for each X; at 8;
a value of -Xi at -8; is assumed, see Figure XII.2. The above equations can then be
used to obtain the sine harmonic coefficients. Since the assumed distribution is
asymmetric, the oth and cosine coefficients are zero.

Obtaining harmonic coefficients using
the fitted method

A Fourier series has to be found which passes through n discrete values of X (XI to
XII)' In order to have the same number of sine and cosine hannonics, n is
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constrained to be an odd number. Thus the order of the Fourier series required, L,

is equal to Yz(n-l):

The values ofx are equispaced in the region -1[ < 8 < 1[, i.e. xi is located at 8 =

(j-l)o:, see Figure 12.6. From here Equation (XIIAO) can be written such that for

any integer value):

Using the standard solution:

2 . x
Sill2

(XIIA7)
sin( L +±)a(j- i)

If/ij ==
2 . a(j - i)

Sill 2

sin(L+I)x
1 L 2
- + I cosb: == ----­
2 k=l

and if i *) then:

(XIIA 1)

(XIIAO)
L- =

X = XO + I x k coskB+ x k sinkB
k=1

L- =
x. == XO + I x k cosk(j -l)a+ x k sink(j -l)a

J k=1

The harmonic coefficients for this Fourier series can then be evaluated using

the equations:

° 1 nX =- I Xi
n i=1

Substituting L into the equation for 0: gives:

2rc 2rc
a==--;;== 2L+l

Equation (XIIA4) can be rewritten so that the summation of k is carried out first:

This can be proved by substituting Equations (XII.42) into Equation (XIIA 1),

which gives:

(XII.48)

Specified
x

Assumed

Specified
x

Assumed

Substituting this into Equation (XII.47) for If/ij gives:

_ sin n(j - i) _ 0
If/ij - 2' n(j - i) ­

SIll 2L+l

Equation (XIIA8) equals zero for i *) because (j- i) is an integer, and the sine of
any multiple of n is zero. If i=), then If/ij = (L+Yz) since the cosine of zero is 1.

Equation (XIIA6) can be written as:

x=~x(L+l)=x. (XIIA9)
J n J 2 J

Thus Equation (XIIA2) yields harmonic coefficients for a Fourier series which
satisfies Equation (XIIA1) for all values of).

Simplifications can again be made if X varies in either a symmetric or non­
symmetric manner. If a symmetric function is stipulated, then values ofX are only
specified in the half space -1[,,;8,,;0, i.e. only Xo to XL is specified and XU1 to XII is
obtained using the equation Xi = XII-i' This is illustrated in Figure XII.3. Equation
(XIIA2) can now be used to obtain the zeroth and cosine harmonic coefficients.
Since the assumed distribution is symmetric, the sine coefficients are zero.

(XIIA5)

(XIIA4)

(XIIA3)

(XIIA2)

- 2 n
X k == - I Xi cosk(i - l)a

n i=1

x k = ~ f. Xi sink(i - l)a
n i=1

2 n (1 L .. )
Xi =- I Xi -+ I coska(l- J)

n i=1 2 k=1

1 n 2 L n k (. .)
xi =- I Xi + - I I Xi cos a I - J

. n i=1 n k=1 i=1

Xi == ~ EXi +1:1 (; EXi coska(i - 1) coska(j -1)

+; EXi sinka(i -1) sinka(j -1»)

Noting that cosA cosB + sinA sinE == cos(A - B) Equation (XIIA3) can be simplified:

A parameter If/ij can now be defined such that Equation (XIIA5) becomes:

Figure X/I. 3: Symmetrical
function

7t

X.!.1:..!
2X,

Figure XI/.4: Asymmetrical
function

X"f
-7t

7t

X1!:J
2

X,
X,

I,I"'~ "'*~- ... _....;n
, .
~xn+l

T

-7t

(XIIA6)2 n
Xi =- I Xi l(/ii

n i=1

1 L
If/ij =- + I coska(i - j)

. 2 k=l

where:
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Similarly, if an asymmetric function is stipulated, then values of x are only
specified in the half space O<O<n and an asymmetrical value is assumed in the half
space -n<O<O, i.e. only Xl to XL is specified and XL+l to XII is ob.tained ~sing th.e
equation Xi = - XI/-i' Xo is constrained to be zero for an asymmetnc func.tlon. T~lls

is illustrated in Figure XII.4. Equation (XII.42) can now be used to obtam the sme
harmonic coefficients. Since the assumed distribution is asymmetric, the zeroth and

cosine coefficients are zero.
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List of symbols

This list contains definitions of symbols and an indication of the section in the
book where they first appear. Because of the large number of parameters that are
used, some symbols represent more than one quantity. To minimise any confusion
this may cause, all symbols are defined in the text, when they are first used.

a,b parameters for hyperbolic model (5.7.4)
b relative magnitude of the intermediate

principal stress (4.4.3)
h vector which describes the orientation of the

bounding surface in transformed variables (8.7)
C ratio of semi-axes of the bounding surface

ellipsoid in MIT-E3 model (8.7)
Cl soil cohesion (1.9.1)

I soil cohesion at peak strength (4.3.6)cl'
er' soil cohesion at residual strength (4.3.6)
C adjusted coefficient of consolidation (10.9)
dJ.; vector of element nodal displacements (2.3)
dll(i vector of global nodal displacements (2.3)
du vector of unknown displacements (3.7.3)

dl' vector of prescribed displacements (3.7.3)
cf'p visco-plastic component of displacement (9.5.2)
dj' ,d'" vectors of parallel and orthogonal symmetry

displacements respectively (12.3.1)
e void ratio (4.3.1)
eo initial void ratio (4.4.1)
e~ , e-; unit vectors in local coordinate system (f1.1.1 )

gee) gradient of the yield function in J-pl plane,
as a function of Lode's angle (7.5)

gp/e) gradient of the plastic potential function
in J-pl plane, as a function of Lode's angle (7.5)

g out of balance vector in iterative solution
procedures (11.4)

h parameter affecting bounding surface
plasticity in MIT-E3 model (8.7)
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h hydraulic head (l0.3) u/, w/ displacements tangential and normal to
i(,' vector defining the direction of gravity (l0.3) a beam element (3.5.2)
r,[ unit vectors in global coordinate system (ILl.I) u/, v/ displacement components in local
k, spring stiffness (3.7.5) coordinate system (3.6.2)
k vector of state parameters for yield function (6.8) u/op

, v/op displacement components for the top side
k permeability matrix (10.3) of an interface element (3.6.2)
I length of the failure surface (1.9.1) ulot, V/bot displacement components for the bottom side
I distance along beam element (3.5.2) of an interface element (3.6.2)
m vector of state parameters for plastic potential x,y,z Cartesian coordinates (1.5.3)

function (6.8.3) xI' ,Yp point loading axes (3.7.7)
m parameter for plastic expansive strains for z,r, () cylindrical coordinates (1.6.2)

Lade'model (8.5) A cross sectional area of a beam element (3.5.3)
n soil porosity (3.4) A parameter for small strain stiffness model (5.7.5)
n parameter affecting hysteretic elasticity in A elasto-plastic modulus (6.13)

MIT-E3 model (8.7) B strain matrix (2.6)

P parameter for plastic collapse strains for B parameter for small strain stiffness model (5.7.5)
Lade'model (8.5) C parameter for small strain stiffness model (5.7.5)

Po atmospheric pressure (8.5) C parameter for plastic collapse strains for

PI pore fluid pressure (3.4) Lade'model (8.5)

P
, mean effective stress (4.3.2) C parameter affecting hysteretic elasticity in

Pc
, mean effective stress at current stress state (7.5) MIT-E3 model (8.7)

Po
, hardening parameter for critical state models (7.9) Cl' compression index, i.e. inclination ofthe VCL

/ / the rh cosine and sine harmonic coefficients in e-log IOO'/ plane (4.3.1)
PI!' Pp C.I, swelling index, i.e. inclination of a swelling

respectively, of pore fluid pressure line in e-log IOO'/ plane (4.3.1)
at the z'h node (l2.3.7) CSL critical state line (7.9.1)

q deviatoric stress (9.7.2) D total stress constitutive matrix (1.5.5)
qo infiltration flow rate (l0.6.4) V' effective stress constitutive matrix (1.5.5)
f position vector (II.1.I) Del' elasto-plastic constitutive matrix (6.13)
s natural ordinate for beam element (3.5.4) DI pore fluid matrix (1.5.5)
s vector of transformed deviatoric stress DM diagonal matrix (2.9.2)

components (8.7) D dilatancy (7.11.1)
parameter for plastic expansive strains for E' drained Young's modulus (1.5.5)
Lade'model (8.5)

E" undrained Young's modulus (4.3.2)
(, critical time step for visco-plastic analysis (8.5.3) Eh' Young's modulus in horizontal direction (4.3.5)
v specific volume (7.9.1) E/ Young's modulus in vertical direction (4.3.5)
VI specific volume at unit mean effective stress E,v' Young's modulus in the depositional direction (5.6)

(parameter for critical state models) (7.9.1) E/ Young's modulus in the plane of deposition (5.6)
V 100 specific volume at p'=100 kPa E total potential energy (2.6)

(parameter for MIT-E3 model) (8.7) F vector of body forces (2.6)
vx , vy , Vz components of pore fluid velocity in Cartesian F meridional force for beam element (3.5.3)

coordinate directions (l0.3)
Fv' circumferential force for beam element (3.5.3)

u, v, w displacement components in x, y, Z F( {O'}, {k} ) yield function (6.8)
directions respectively (1.5.3) G elastic shear modulus (5.5)
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GSeL secant shear modulus (5.7.5) Li area coordinates (1I.1.1)

°IW/ tangent shear modulus (4.3.3) LER linear elastic region in stress space (5.7.6)

G"h shear modulus in vertical plane (4.5.1) L(i off diagonal submatrix in consolidation

GI'S shear modulus in the plane of the direction stiffness matrix (10.3)
of deposition (5.6) M bending moment for beam element (3.5.3)

GI'I' shear modulus in the plane of deposition (5.6) M,I' circumferential bending moment for beam
H I ,H2 hardening parameters for Lade's model (8.5) element (3.5.3)
I cross sectional moment of inertia of a M I gradient of the critical state line in J-p' plane

beam element (3.5.3) as a constant independent of Lode's angle (7.9.1)

II' plasticity index (4.5.3) Mw yield function parameter (7.6)
J Jacobian matrix (2.6) M 1'1' plastic potential function parameter (7.6).II'

J deviatoric stress invariant (5.3) N elastic parameter for Lade's model (8.5)
.l, deviatoric stress invariant at current stress state (7.5) N matrix of displacement shape or
I(E element stiffness matrix (2.3) interpolation functions (2.5)
[(i global stiffness matrix (2.3) Ni substitute shape functions (3.5.4)
[(u , [(I' diagonal components of the global stiffness NI' matrix of pore fluid pressure interpolation

matrix, corresponding to unknown and functions (10.3)
prescribed displacements respectively (3.7.3) OCR overconsolidation ratio (4.3)

[(up off diagonal terms of the global stiffness P( { (J}, {m} ) plastic potential function (6.8)
matrix (3.7.3) P parameter for plastic expansive strains for

[(u pre-conditioning matrix in iterative Lade'model (8.5)
solvers (11.4) P spherical component of the flow direction (8.7)

Kt bulk modulus of pore fluid (3.4) pi spherical component of the flow direction
K, bulk modulus of the solid soil particles (3.4) at the image point (8.7)

K'kel bulk modulus of the soil skeleton (3.4) P vector of deviatoric components of flow
Ke equivalent bulk modulus (3.4) direction, in transformed variables (8.7)
K, elastic shear stiffness of interface element (3.6.2) pI vector of deviatoric components of flow

K" elastic normal stiffness of interface element (3.6.2) direction at the image point, in transformed

K" coefficient of earth pressure at rest (4.3.2) variables (8.7)
KoHl' coefficient of earth pressure at rest for Q spherical component of the gradient of the

normally consolidated soil (7.9.3) bounding surface (8.7)
K()(' coefficient of earth pressure at rest for Q vector of deviatoric components of the0

overconsolidated soil (7.9.3) gradient of the bounding surface, in
K' effective bulk modulus (5.5) transformed variables (8.7)

Ks(!t: secant bulk modulus (5.7.5) QI vector of deviatoric components of the

KIWI tangent bulk modulus (4.3.3) gradient of the bounding surface at the image point,
Kn , KF2 parameters for an alternative shape for the in transformed variables (8.7)

yield function for critical state models (7.11 ) Q flow through sources and sinks (10.3)

KI'I,KI'2 parameters for an alternative shape for the Q rotation matrix of direction cosines (3.7.2)

plastic potential function for critical R parameter for small strain stiffness model (5.7.5)

state models (7.11 ) R parameter for plastic expansive strains for
L load on a beam (1.5.2) Lade'model (8.5)
L work done by the applied loads (2.6) R parameter for AlI-Tabbaa & Wood model (8.9)
L lower triangular matrix (2.9.2) RE vector of element nodal forces (2.3)
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Rc; vector of global nodal forces (2.3) YTOL yield function tolerance for drift (lX.I)
Rp right hand side load vector corresponding to a inclination ofthe major principal stress to

prescribed displacements (3.7.3) the vertical (4.3.4)
RII right hand side load vector corresponding to a parameter for small strain stiffness model (5.7.5)

unknown displacements (3.7.3) a parameter for plastic expansive strains for
RI' ,RI" parallel and orthogonal symmetry right hand Lade'model (8.5)

side load vectors respectively (12.3.1) a size of the bounding surface for MIT-E3
- - -
R/,R;,R~ the fh cosine harmonic coefficient of radial, model (8.7)

vertical and circumferential incremental force
a time step parameter in visco-plastic analysis (9.5.3)

respectively (12.3.1)
a parameter for defining the elastic portion

- - -
of the stress increment in the substepping

R/ , R; , R~ the fh sine harmonic coefficient of radial, stress point algorithm (IX. I)

vertical and circumferential incremental force aK , ac; parameters for K-G model (5.7.3)

respectively (12.3.1) ap , aF parameters for an alternative shape for the

S parameter for small strain stiffness model (5.7.5) yield and plastic potential functions for

S shear force for beam element (3.5.3) critical state models (7.11)

S,T natural coordinates (2.5.1) fJ inclination of failure surface to the vertical (1.9.1)

S, parameter affecting the degree of strain fJ parameter for plastic expansive strains for

softening in MIT-E3 model (8.7) Lade'model (8.5)

SII undrained shear strength (1.9.1) fJ parameter for iterative solver (11.4)

Sri surface of integration (2.6) fJr; parameter for K-G model (5.7.3)

SSR small strain region in stress space (5.7.6) fJp ,fJF parameters for an alternative shape for the

SSTOL substep tolerance in substepping stress yield and plastic potential functions for

point algorithm (IX-I) critical state models (7.11 )

T parameter for small strain stiffness model (5.7.5) y bulk unit weight (1.5.2)

T length of substep in substepping stress Y shear strain for beam element (3.5.2)

point algorithm (9.6.2) Y parameter for small strain stiffness model (5.7.5)

T adjusted time factor in consolidation Y parameter affecting bounding surface

analysis (10.9) plasticity in MIT-E3 model (8.7)

T vector of surface tractions (2.6) Yj bulk unit weight of pore fluid (10.3)

~) tensile soil strength (8.3) YX)' , Yxz , Yyz shear strain components in Cartesian

U: , V/ , w/ the fh cosine harmonic coefficients of radial
coordinates (1.5.3)

, Yrz , Yrll , YzlI shear strain components in cylindrical
vertical and circumferential displacement coordinates (1.6.2)
respectively, at the Z1h node (12.3.1) 6 parameter for small strain stiffness model (5.7.5)

- - -
U: , T~I , w/ the fh sine harmonic coefficients of radial, t5 vector of nodal displacements and

vertical and circumferential displacement
rotations for beam element (3.5.4)

respectively, at the Z1h node (12.3.1)
t5 iterative vector (11.4)

Val volume of integration (2.6)
e strain vector (1.5.5)

VCL virgin consolidation line (7.9.1)
ex,ey,ez direct strain components in Cartesian

W weight of a failing block (1.9.1)
coordinates (1.5.3)

W strain energy (2.6) ez , 0" ell direct strain components in cylindrical

Wj weights for numerical Gaussian integration (2.6.1 )
coordinates (1.6.2)

e" volumetric strain (3.4)
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Cl'!! volumetric elastic strain (7.9.1) of deposition (5.6)
e P volumetric plastic strain (7.9.1) J.1pp

,
Poisson's ratio for straining in the plane of"

G/ axial strain for beam element (3.5.2) deposition due to a stress acting in the
CII! circumferential membrane strain for beam same plane (5.6)

element (3.5.2) J.11" J.1r parameters for an alternative shape for the
G, deviatoric strain for triaxial stress space (4.3.3) yield and plastic potential functions for
GP component of plastic strain (6.3) critical state models (7.11)
GC component of elastic strain (6.13) J.1 elastic parameter for Lade's model (8.5)
ecrack crack strain (8.3) v angle of dilation (7.5)
el'jJ visco-plastic strain (9.5.2) (,11 system of local coordinates coinciding with
G, elasto-plastic portion of the strain increment in two sides of a triangle (lI.!.1)

substepping stress point algori~hm (IX. 1) p parameter for plastic expansive strains for

E:.\"S substep strains in substepping stress point Lade'model (8.5)
algorithm (9.6.2) (i total stress vector (1.5.5)

11 parameter for small strain stiffness model (5.7.5) (i' effective stress vector (1.5.5)

11 stress ratio (=J/p') (7.11.2) (it pore fluid stress vector (1.5.5)

11 parameter for iterative solver (11.4) (Jx , (Jy , (Jz direct stress components in Cartesian

111' , llr parameters for an alternative shape for the coordinates (1.5.2)
yield and plastic potential functions for (Jz , (Jr , (JII direct stress components in cylindrical
critical state models (7.11) coordinates (1.6.2)

111 parameter for plastic expansive strains for (J1 , (J2 , (JJ major, intermediate and minor principal stress (1.9.2)
Lade'model (8.5) av' , Oh' vertical and horizontal effective stress (4.3.1)

8 inclination of the major principal stress to the O'a' (J,. axial and radial total stress (4.3.2)
horizontal (1.9.2) aa' , (Jr' axial and radial effective stress (4.3.3)

8 Lode's angle (5.3) C5vc.:' vertical effective consolidation stress (4.3.4)
8c Lode's angle at current stress state (7.5) (Jy yield stress (6.4)
8t Lode's angle at failure (7.12) (J,/ normal effective stress on the failure plane (7.5)
I( inclination of swelling line in v-lnp' plane (Jtr trial stress in return algorithm (IX.2)

(parameter for critical state models) (7.9.1) Txy , Txz , Tyz shear stress components in Cartesian
1(0 initial slope of the swelling line in v-lnp' plane, coordinates (1.5.2)

MIT-E3 model (8.7) Trz , TrIJ , TzIJ shear stress components in cylindrical,
inclination of swelling line in Inv-lnp' plane coordinates (1.6.2)I(

(parameter for All-Tabbaa & Wood model) (8.9) Tt shear stress on the failure plane (7.5)
A inclination ofVCL in v-lnp' plane (parameter (j!' angle of shearing resistance (1.9.1)

for critical state models) (7.9.1) (j!cs' critical state angle of shearing resistance (4.3.2)
A' inclination ofVCL in Inv-lnp' plane (j!p' peak angle of shearing resistance (4.3.6)

(parameter for All-Tabbaa & Wood model) (8.9) (j!,.' residual angle of shearing resistance (4.3.6)
J.1' drained Poisson's ratio (3.3) (j!TC

, critical state angle of shearing resistance

J.111 undrained Poisson's ratio (3.3) in triaxial compression (8.7)

J.1,I'p
,

Poisson's ratio for straining in the plane of , critical state angle of shearing resistance(j!TE

deposition due to a stress acting in the in triaxial extension (8.7)
direction of deposition (5.6) XI bending strain for beam element (3.5.2)

J.1I'S
,

Poisson's ratio for straining in the direction of circumferential bending strain for beamXv'
deposition due to a stress acting in the plane element (3.5.2)
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If! parameter affecting rotation of bounding
surface in MIT-E3 model (8.7)

If! parameter for All-Tabbaa & Wood model (8.9)
OJ elastic parameter for Lade's model (8.5)
OJ parameter affecting the hysteretic elasticity

in MIT-E3 model (8.7)
If! vector of residual load (9.6)
Er! invariant deviatoric strain (5.3)
EJ elastic deviatoric strain (VII.2)
EJ plastic deviatoric strain (VII.2)
E vector of deviatoric strains in transformed

variables (8.7)
A scalar multiplier for plastic strains (6.8.3)
(/JG permeability submatrix in consolidation

stiffness matrix (10.3)

Index

A
AI-Tabbaa and Wood model; 229
alternative shapes for critical state
models; 175
analysis; I

geotechnical; I
limit; 15
numerical; 20

analytical solution for triaxial test on
modified Cam clay

drained; 188
undrained; 192

angle
dilation; 153
Lode's; 115, 151, 156, 167, 181,
186
principal stress rotation; 95, 103
shearing resistance; 13, 93, 96,
101,104,152,156,166,179

anisotropy; 97, 104
strength; 97, 104, 109
stiffness; 98, 105

area coordinates; 51
associated flow; 138, 145

Tresca; 149
van Mises; 151
Mohr-Coulomb; 152
Drucker-Prager; 156
critical state; 162, 170, 187

axi-symmetic
geometry; 9, 345
finite element analysis; 49, 63,
68
strain vector; 9, 50

stress vector; 9, 50

B
beam elements; 62

strains; 63
stresses; 63

beam-spring approach; 19
bearing capacity; 16
bending moment; 61, 63, 67
bi-linear elastic model; 122, 123
body forces; 73, 83
bonded soils; 110
boundary; 30, 70

conditions; 4, 11,39,72
stresses; 73, 80
value problem; 19,21

bounding surface function
MIT-E3; 218
All-Tabbaa & Wood; 229

bounding surface plasticity; 212
bubble models; 227
bulk modulus; 59, 95, 119, 123, 126

C
calcarenite; 110
Cam clay model; 161
Cartesian coordinates; 5, 6, 120
clay; 91

Boston Blue; 97
Bothkennar; 94, 106
Honey; 96
London; 98, 126
Pappadai; 91
Pentre; 92, 106
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cohesion; 13,93,98,110,123,152
compatibility; 5, 68
conjugate gradient iterative solver;
336
confined flow; 306
consistent tangent operators; 303
consolidation; 91, 96, 106
constitutive

behaviour; 7, 56
equation; 7, 63, 70

construction; 56, 73, 84
convergence; 260
coupled consolidation

20 finite element formulation;
306
Fourier series formulation; 364

critical state
conditions; 101, 107, 164, 182
line; 93, 167
soil model; 160, 173

cylindrical coordinates; 9, 49

D
Oarcy's law; 308
degree offreedom; 28, 67, 77
derivatives of stress invariants; 186
design; 2
deviatoric

component of the gradient ofthe
bounding surface for MIT-E3;
219
component of the plastic
potential for MIT-E3; 221
plane; 115, 117, 181
strain; 95, 109, 117
stress; 107, Ill, 115

dilatancy; 138
dilatant behaviour; 93, 101
direct stiffness method; 36
direct shear apparatus; 92
directional shear cell; 96
discretisation; 23, 24
displacement; 6, 62, 70

approximation; 27

boundary conditions; 45
Orucker-Prager model; 155

E
effective stress; 7, 58, 91, 99, 105
elastic

constitutive matrix; 32
constitutive models; 114

elasto-plastic behaviour; 132, 133,
139,143
elasto-plastic constitutive matrix for
single yield surface models; 143
elasto-plastic constitutive matrix for
double yield surface models; 205
element

connectivity list; 25
equations; 23, 31
stiffness matrix; 24, 33

embankment; 2, 83, 84
equilibrium equations

coupled consolidation; 307
finite element equations; 75
plane strain; 14
stresses in soil mass; 5

excavation; 56, 73, 86, 270

F
failure criterion

Lade's model; 209
MIT-E3 model; 219

finite element mesh; 24, 47, 57, 76,
84
fitted method; 373
footing; 47,57, 76, 267
Fourier series aided finite element
method

continuous; 345
discrete; 385

G
Gaussian

elimination; 39
integration; 35, 66, 81

global

coordinates; 29, 51, 62
displacements; 62, 63, 70, 74
element; 29
equations; 24,36, 75
stiffness matrix; 24, 36, 40

gradient iterative solver; 334
grading curves; 106

H
hardening

isotropic; 140
kinematic; 140
strain; 134
rules; 138
work; 134

hardening modulus; 144,206
Lade's cap; 211
Lade's conical; 210
MIT-E3; 222
Mohr-Coulomb; 159

harmonic coefficients
displacement; 346, 349
force; 352
permeability matrix; 368
pore fluid pressure; 364, 366
stiffness matrix; 355

harmonic uncoupling of stiffness
matrix; 351
hexahedral finite elements; 326
hollow cylinder apparatus; 92, 96,
104, 109,380
hydraulic head; 308, 364
hyperbolic model; 122, 124
hysteretic elastiCity; 216

I
image point; 214, 224
increment; 59, 63, 80, 84
infiltration; 315
integration

full; 35, 66
numerical; 34
reduced; 35, .67

interface elements; 68, 359

strains; 70, 360
stresses; 70, 360

interpolation functions; 29, 52, 62,
80,327
invariants; 114

stress; 115
strain; 116

isoparametric finite elements; 29,
53, 81
iterative solutions; 332

pre-conditioned; 334

J
Jacobian; 80, 84
Jacobi iteration; 334

K
kaolin; 94, 98, 105, 109
kinematic yield surface; 227

function for Al-Tabbaa &
Wood model; 229

K-G model; 122, 123

L
Lade's double hardening model; 208
limit analysis; 12, 15
limit equilibrium; 12
limited tension model; 201
linear elastic; 7

isotropic; 56, 60, 70, 118
anisotropic; 120

linear element; 78
linear finite element analysis; 23
local

axes; 73, 77, 82
coordinates; 51
displacements; 62, 70, 74

lower bound; 17

M
mapping rule; 213

radial; 223
membrane elements; 67, 78

strain; 68
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stress; 68
MIT-E3 model; 215
modified Cam clay model; 160, 161
modified Euler integration scheme;
280
modified Newton-Raphson method

2D finite elements; 256
Fourier series; 374

Mohr-Coulomb
failure criterion; 14
model; 151

N
natural axes; 29, 65, 67, 71, 80, 84
node;24,69, 73, 77,85
non-associated flow; 138, 146

Drucker-Prager; 156
Mohr-Coulomb; 153

nonlinear
elastic models; 122
finite element analysis; 238

normalisation; 95, 97
normalisation of stiffness matrix;
341
normality condition; 13 8; 178

o
oedometer; 91
orthotropy; 120

p

parent element; 29
particle crushing; 99
permeability models; 318
phase transformation; 101, 107, 109
plane strain

geometry; 8
strain vector; 8, 31, 63
stress vector; 8, 63
tests; 96

plastic potential function; 137, 143
critical state; 162, 166, 181
Drucker-Prager; 157
Lade's cap; 211

Lade's conical; 210
limited tension; 203
Mohr-Coulomb; 153, 159
Tresca; 149
von Mises; 151

plastic potential in plane strain
deformation; 181
plasticity

perfect; 133, 139
strain/work hardening; 134, 140
strain/work softening; 134, 141

point loads; 73, 82
pore fluid pressures; 58, 87,93, 100,
107
precipitation; 316
prescribed displacements; 39, 45, 74
principle of minimum potential
energy; 23, 32
principle of virtual work; 309
Puzrin and Burland model; 127

Q
quadrilateral elements; 25, 29

R
residual

soil; 110
strength; 98, III

retaining wall; 2, 4,8, 19, 102, 112
return algorithm; 258, 286

constant elasticity; 299
Borja & Lee; 290
Ortiz & Simo; 287
variable elasticity; 300

ring shear apparatus; 98
Runge-Kutta integration scheme;
283

S
safe theorem; 16
sand; 99

Cumbria; 104
Dunkirk; 100, 105
Ham River; 100, 105

Toyoura; 105
Ticino; 99

sedimentary soils; 105
shape functions; 27, 31,65,68, 71
shear forces; 61, 63, 66
shear modulus; 95, 109
silt; 106, 109
simple shear apparatus; 92
small strains; 105

model; 122, 125, 127
softening

isotropic; 142
rule; 138
strain; 134
work; 134

spherical component of the gradient
of the bonding surface for MIT-E3;
219
spherical component of the plastic
potential for MIT-E3; 221
springs; 68, 73, 78
steady state seepage; 312
stepwise linear method; 372
strain

definition; 6; 348
vector; 7

state boundary surface; 162
stress

definition; 5
vector; 7

stress path; 93, 100
stress point algorithm; 257
stress field; 12, 14
subcritical side of critical state yield
surface; 164
substepping algorithm; 258, 277
substitute shape functions; 66
supercritical side of critical state
yield surface; 164

T
tangent stiffness method; 238

modified Cam clay; 245
Mohr-Coulomb; 240

tetrahedral finite elements; 326
tied degrees offreedom; 73, 76, 314
total stress analysis; 56
transformed variables; 215, 216
transverse isotropy; 97, 121
Tresca model; 148
triaxial

apparatus; 92, 106
compression; 92, 95, 100, 108,
110,116
drained test; 95
extension; 92,95, 100, 108, 116
undrained test; 93, 100, 108,
124, 129

triangular elements; 27, 51, 70
true triaxial apparatus; 92
tunnel; 4, 19

U
unconfined flow; 306, 320
undrained; 7, 17, 57

analysis; 60
strength; 14

undrained strength for critical state
models; 168, 197
unsafe theorem; 16
upper bound; 16, 17

V
velocity of pore fluid; 307
virgin consolidation line; 161
visco-plastic method; 246

Mohr-Coulomb; 251
modified Cam clay; 252

visco-plastic strain; 248
void ratio; 91, 99, 102
volumetric strain; 95, 116
von Mises model; 150

y

yield function; 136, 143
Cam clay; 161
Drucker-Prager; 155
Lade's cap; 211
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Lade's conical; 210
limited tension; 202
modified Cam clay; 161
Mohr-Coulomb; 152
Tresca; 148
von Mises; 150

yield stress; 133, 134
yield surface drift; 283
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