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Preface

While the finite element method has been used in many fields of engineering
practice for over thirty years, it is only relatively recently that it has begun to be
widely used for analysing geotechnical problems. This is probably because there
are many complex issues which are specific to geotechnical engineering and which
have only been resolved relatively recently. Perhaps this explains why there are
few books which cover the application of the finite element method to geotechnical
engineering.

For over twenty years we, at Imperial College, have been working at the
leading edge of the application of the finite element method to the analysis of
practical geotechnical problems. Consequently, we have gained enormous
experience of this type of work and have shown that, when properly used, this
method can produce realistic results which are of value to practical engineering
problems. Because we have written all our own computer code, we also have an
in-depth understanding of the relevant theory.

Based on this experience we believe that, to perform useful geotechnical finite
element analysis, an engineer requires specialist knowledge in a range of subjects.
Firstly, a sound understanding of soil mechanics and finite element theory is
required. Secondly, an in-depth understanding and appreciation of the limitations
of the various constitutive models that are currently available is needed. Lastly,
users must be fully conversant with the manner in which the software they are
using works. Unfortunately, it is not easy for a geotechnical engineer to gain all
these skills, as it is vary rare for all of them to be part of a single undergraduate or
postgraduate degree course. It is perhaps, therefore, not surprising that many
engineers, who carry out such analyses and/or use the results from such analyses,
are not aware of the potential restrictions and pitfalls involved.

This problem was highlighted when we recently gave a four day course on
numerical analysis in geotechnical engineering. Although the course was a great
success, attracting many participants from both industry and academia, it did
highlight the difficulty that engineers have in obtaining the necessary skills
required to perform good numerical analysis. In fact, it was the delegates on this
course who ufged us, and provided the inspiration, to write this book.

The overall objective of the book is to provide the reader with an insight into
the use of the finite element method in geotechnical engineering. More specific
aims are:
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- To present the theory, assumptions and approximations involved in finite
element analysis;

- To describe some of the more popular constitutive models currently available
and explore their strengths and weaknesses;

- To provide sufficient information so that readers can assess and compare the
capabilities of available commercial software;

- Toprovide sufficient information so that readers can make judgements as to the
credibility of numerical results that they may obtain, or review, in the future;

- To show, by means of practical examples, the restrictions, pitfalls, advantages
and disadvantages of numerical analysis.

The book is primarily aimed at users of commercial finite element software both
in industry and in academia. However, it will also be of use to students in their
final years of an undergraduate course, or those on a postgraduate course in
geotechnical engineering. A prime objective has been to present the material in the
simplest possible way and in manner understandable to most engineers.
Consequently, we have refrained from using tensor notation and presented all
theory in terms of conventional matrix algebra.

When we first considered writing this book, it became clear that we could not
cover all aspects of numerical analysis relevant to geotechnical engineering. We
reached this conclusion for two reasons. Firstly, the subject area is so vast that to
adequately cover it would take many volumes and, secondly, we did not have
experience with all the different aspects. Consequently, we decided only to include
material which we felt we had adequate experience of and that was useful to a
practising engineer. As a result we have concentrated on static behaviour and have
not considered dynamic effects. Even so, we soon found that the material we
wished to include would not sensibly fit into a single volume. The material has
therefore been divided into theory and application, each presented in a separate
volume.

Volume 1 concentrates on the theory behind the finite element method and on
the various constitutive models currently available. This is essential reading for any
user of a finite element package as it clearly outlines the assumptions and
limitations involved. Volume 2 concentrates on the application of the method to
real geotechnical problems, highlighting how the method can be applied, its
advantages and disadvantages, and some of the pitfalls. This is also essential
reading for a user of a software package and for any engineer who is
commissioning and/or reviewing the results of finite element analyses.

This volume of the book (i.e. Volume 1) consists of twelve chapters. Chapter
1 considers the general requirements of any form of geotechnical analysis and
provides a framework for assessing the relevant merits of the different methods of
analysis currently used in geotechnical design. This enables the reader to gain an
insight into the potential advantage of numerical analysis over the more

Preface / xiii

‘conventional’ approaches currently in use. The basic finite element theory for
linear material behaviour is described in Chapter 2. Emphasis is placed on
highlighting the assumptions and limitations. Chapter 3 then presents the
modifications and additions that are required to enable geotechnical analysis to be
performed.

The main limitation of the basic finite element theory is that it is based on the
assumption of linear material behaviour. Soils do not behave in such a manner and
Chapter 4 highlights the important facets of soil behaviour that ideally should be
accounted for by a constitutive model. Unfortunately, a constitutive model which
can account for all these facets of behaviour, and at the same time be defined by
a realistic number of input parameters which can readily be determined from
simple laboratory tests, does not exist. Nonlinear elastic constitutive models are
presented in Chapter 5 and although these are an improvement over the linear
elastic models that were used in the early days of finite element analyses, they
suffer severe limitations. The majority of constitutive models currently in use are
based on the framework of elasto-plasticity and this is described in Chapter 6.
Simple elasto-plastic models are then presented in Chapter 7 and more complex
models in Chapter 8.

To use these nonlinear constitutive models in finite element analysis requires
an extension of the theory presented in Chapter 2. This is described in Chapter 9
where some of the most popular nonlinear solution strategies are considered. It is
shown that some of these can result in large errors unless extreme care is exercised
by the user. The procedures required to obtain accurate solutions are discussed.

Chapter 10 presents the finite element theory for analysing coupled problems
involving both deformation and pore fluid flow. This enables time dependent
consolidation problems to be analysed.

Three dimensional problems are considered in Chapter 11. Such problems
require large amounts of computer resources and methods for reducing these are
discussed. In particular the use of iterative equation solvers is considered. While
these have been used successfully in other branches of engineering, it is shown
that, with present computer hardware, they are unlikely to be economical for the
majority of geotechnical problems.

The theory behind Fourier Series Aided Finite Element Analysis is described
in Chapter 12. Such analysis can be applied to three dimensional problems which
possess an axi-symmetric geometry but a non axi-symmetric distribution of
material properties and/or loading. It is shown that analyses based on this approach
can give accurate results with up to an order of magnitude saving in computer
resources compared to equivalent analyses performed with a conventional three
dimensional finite element formulation.

Volume 2 of this book builds on the material given in this volume. However,
the emphasis is less on theory and more on the application of the finite element
method in engineering practice. Topics such as obtaining geotechnical parameters
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from standard laboratory and field tests and the analysis of tunnels, earth retaining
structures, cut slopes, embankments and foundations are covered. A chapter on
benchmarking is also included. Emphasis is placed on explaining how the finite
element method should be applied and what are the restrictions and pitfalls. In
particular, the choice of suitable constitutive models for the various geotechnical
boundary value problems is discussed at some length. To illustrate the material
presented, examples from the authors experiences with practical geotechnical
problems are used. Although we have edited this volume, and written much of the
content, several of the chapters involve contributions from our colleagues at
Imperial College.

Allthe numerical examples presented in both this volume and Volume 2 of this
book have been obtained using the Authors’ own computer code. This software is
not available commercially and therefore the results presented are unbiased. As
commercial software has not been used, the reader must consider what implications
the results may have on the use of such software.

London David M. Potts
November 1998 Lidija Zdravkovié¢

1. Geotechnical analysis

1.1  Synopsis

This chapter considers the analysis of geotechnical structures. Design requirements
are presented, fundamental theoretical considerations are discussed and the various
methods of analysis categorised. The main objective of the chapter is to provide a
framework in which different methods of analysis may be compared. This will
provide an insight into the potential advantages of numerical analysis over the
more ‘conventional’ approaches currently in use.

Cut slope Embankment

ey

Raft foundation

Piled foundation

75

Gravity wall Embedded wall

Figure 1.1: Examples of geotechnical structures
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1.2 Introduction

Nearly all civil engineering structures involve the ground in some way. Cut slopes,
earth and rockfill embankments, see Figure 1.1, are made from geological
materials. The soil (or rock) provides both the destabilising and stabilising forces
which maintain equilibrium of the structure. Raft and piled foundations transfer
loads from buildings, bridges and offshore structures to be resisted by the ground.
Retaining walls enable vertical excavations to be made. In most situations the soil
provides both the activating and resisting forces, with the wall and its structural
support providing a transfer mechanism. Geotechnical engineering, therefore, plays
a major role in the design of civil engineering structures.

The design engineer must assess the forces imposed in the soil and structural
members, and the potential movements of both the structure and the surrounding
soil. Usually these have to be determined under both working and ultimate load
conditions.

Traditionally geotechnical design has been carried out using simplified analyses
or empirical approaches. Most design codes or advice manuals are based on such
approaches. The introduction of inexpensive, but sophisticated, computer hardware
and software has resulted in considerable advances in the analysis and design of
geotechnical structures. Much progress has been made in attempting to model the
behaviour of geotechnical structures in service and to investigate the mechanisms
of soil-structure interaction.

At present, there are many different methods of calculation available for
analysing geotechnical structures. This can be very confusing to an inexperienced
geotechnical engineer. This chapter introduces geotechnical analysis. The basic
theoretical considerations are discussed and the various methods of analysis
categorised. The main objectives are to describe the analysis procedures that are
in current use and to provide a framework in which the different methods of
analysis may be compared. Having established the place of numerical analysis in
this overall framework, it is then possible to identify its potential advantages.

1.3 Design objectives

When designing any geotechnical structure, the engineer must ensure that it is
stable. Stability can take several forms.

Firstly, the structure and support system must be stable as a whole. There must
be no danger of rotational, vertical or
translational failure, see Figure 1.2.

Secondly, overall stability must be
established. For example, if a
retaining structure supports sloping
ground, the possibility of the
construction promoting an overall

slope failure should be investigated,
see Figure 1.3. Figure 1.2: Local stability

Geotechnical analysis / 3

The loads on any structural
elements involved in the construction
must also be calculated, so that these
may be designed to carry them safely.

Movements must be estimated,
both of the structure and of the . )
ground. This is particularly important .
if there are adjacent buildings and/or
sensitive services. For example, if an
excavation is to be made in an urban
area close to existing services and
buildings, see Figure 1.4, one of the
key design constr'flints is the effect -/
that the excavation has on the — H
adjacent structures and services. It
may be necessary to predict any
structural forces induced in these
existing structures and/or services. —_—

As part of the design process, it is
necessary for an engineer to perform Tunnel
calculations to provide estimates of
the above quantities. Analysis
provides the mathematical framework
for such calculations. A good
analysis, which simulates real
behaviour, allows the engineer to
understand problems better. While an
important part of the design process, analysis only provides the engineer with a
tool to quantify effects once material properties and loading conditions have been
set. The design process involves considerably more than analysis.

Slip
surface

Figure 1.3: Overall stability

— 10

Services

Figure 1.4: Interaction of structures

1.4 Design requirements

Before the design process can begin, a considerable amount of information must
be assembled. The basic geometry and loading conditions must be established.
These are usually defined by the nature of the engineering project.

A geotechnical site investigation is then required to establish the ground
conditions. Both the soil stratigraphy and soil properties should be determined. In
this respect it will be necessary to determine the strength of the soil and, if ground
movements are important, to evaluate its stiffness too. The position of the ground
water table and whether or not there is underdrainage or artesian conditions must
also be established. The possibility of any changes to these water conditions should
be investigated. For example, in many major cities around the world the ground
water level is rising.
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The site investigation should also establish the location of any services (gas,
water, electricity, telecommunications, sewers and/or tunnels) that are in the
vicinity of the proposed construction. The type (strip, raft and/or piled) and depth
of the foundations of any adjacent buildings should also be determined. The
allowable movements of these services and foundations should then be established.

Any restrictions on the performance of the new geotechnical structure must be
identified. Such restrictions can take many different forms. For example, due to the
close proximity of adjacent services and structures there may be restrictions
imposed on ground movements.

Once the above information has been collected, the design constraints on the
geotechnical structure can be established. These should cover the construction
period and the design life of the structure. This process also implicitly identifies
which types of structure are and are not appropriate. For example, when designing
an excavation, if there is a restriction on the movement of the retained ground,
propped or anchored embedded retaining walls are likely to be more appropriate
than gravity or reinforced earth walls. The design constraints also determine the
type of design analysis that needs to be undertaken.

1.5 Theoretical considerations

1.5.1 Requirements for a general solution

In general, a theoretical solution must satisfy Equilibrium, Compatibility, the
material Constitutive behaviour and Boundary conditions (both force and
displacement). Each of these conditions is considered separately below.

1.5.2 Equilibrium
To quantify how forces are transmitted through a continuum engineers use the
concept of stress (force/unit area). The magnitude and direction of a stress and the
manner in which it varies spatially indicates how the forces are transferred.
However, these stresses cannot vary randomly but must obey certain rules.
Before considering the concept of
stresses, an analogous example of the
problem of water flowing through a
tank full of sand is presented in
Figure 1.5. The tank full of sand has | = 1iijoororsroigiin oz
one inlet and two outlets. This figure /T outtet Outlet |}
indicates vectors of water velocity at
discrete points within the tank. The
size of the arrows represents the
magnitude of the flow velocity, while their orientation shows the direction of flow.
Due to the closer proximity of the left hand outlet to the inlet, more water flows in
this direction than to the right hand outlet. As would be expected, the flows are
very small in regions A, B and C. Such a result could be observed by using a
transparent tank and injecting dye into the flow.

Figure 1.5: Flow trajectories
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Similarly, a concrete beam, supported by two reactions on its lower surface and
loaded by a load L on its upper

surface, is presented in Figure 1.6. Beam L°ad|:L R

Clearly, for overall equilibrium the N B 1
reactions must be 2L/3 and L/3. What | Ao .. o2 iem—=ni . C
is not so clear, however, is how the ”,“B
load is transferred through the beam. ¥ 3 ¥

It is not possible to see how the load
is transmitted in this case. As noted
above, engineers use the concept of
stress to investigate the load transfer. Figure 1.6: Stress trajectories
Stresses are essentially fictitious

quantities. For example, the manner in which the major principal stress varies
through the beam is given in Figure 1.6. The length of the trajectories represents
the magnitude of the stress and their orientation its direction.

Whereas the velocity of flow is a vector with essentially three components, one
in each of the Cartesian coordinate directions, stress is a tensor consisting of six
components. In the same way as there are rules which govern the flow of water
through the tank, there are also rules which control the manner in which the stress
components vary throughout the concrete beam. Neglecting inertia effects and all
body forces, except self weight, stresses in a soil mass must satisfy the following
three equations (Timoshenko and Goodier (1951)):

Reaction: 2L/3 Reaction: L/3

do, 07, 0,

= Oy

x oy Tz ry=0 .
or, 0o, Ot

A A 1.1
R D
or,, aTy3+60'z:0 z
™ oy oz

The following should be noted:

- self weight, v, acts in the x direction;

- compressive stresses are assumed positive;

- theequilibrium Equations (1.1) are in terms of
total stresses;

- stresses must satisfy the boundary conditions (i.e. at the boundaries the
stresses must be in equilibrium with the applied surface traction forces).

Figure 1.7: Stresses on
a typical element

1.56.3 Compatibility

Physical compatibility

Compatible deformation involves no overlapping of material and no generation of
holes. The physical meaning of compatibility can be explained by considering a
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plate composed of smaller plate elements, as shown in Figure 1.8a. After straining,
the plate elements may be so distorted that they form the array shown in Figure
1.8b. This condition might represent failure by rupture. Alternatively, deformation
might be such that the various plate elements fit together (i.e. no holes created or
overlapping) as shown in Figure 1.8c. This condition represents a compatible
deformation.

a) Original b) Non-compatible ¢) Compatible

Figure 1.8: Modes of deformation

Mathematical compatibility

The above physical interpretation of compatibility can be expressed
mathematically, by considering the definition of strains. If deformations are
defined by continuous functions u, v and w in the x, y and z directions respectively,
the strains (assuming small strain theory and a compression positive sign
convention) are defined as (Timoshenko and Goodier (1951)):

—_Ou v 0w
x ox’ 7 oy’ Oz 12
ov  Ou ow Ov ow ou (1.2)

As the six strains are a function of only three displacements, they are not
independent. It can be shown mathematically that for a compatible displacement
field to exist, all the above components of strain and their derivatives must exist
(are bounded) and be continuous to at least the second order. The displacement
field must satisfy any specified displacements or restraints imposed on the
boundary.

1.5.4 Equilibrium and compatibility conditions
Combining the Equilibrium (Equations (1.1)) and Compatibility conditions
(Equations (1.2)), gives:

Unknowns: 6 stresses + 6 strains + 3 displacements =15
Equations: 3 equilibrium + 6 compatibility =9

To obtain a solution therefore requires 6 more equations. These come from the
constitutive relationships.
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1.5.5 Constitutive behaviour

This is a description of material behaviour. In simple terms it is the stress - strain

behaviour of the soil. It usually takes the form of a relationship between stresses

and strains and therefore provides a link between equilibrium and compatibility.
For calculation purposes the constitutive behaviour has to be expressed

mathematically:

Ao, [Dit Diz D1z Dis Dis Dis || A&,
Ao, Ds1 Dz Dz Das Dis Dis || A&,
Ao, Dn Dsa Dy Dia Dis Dss || Ag,

Aty - D4y Daz Das Das Das Das || Ay, (1.3)
Az, Ds1 Dsa Ds3 Dsa Dss Dss || Ay,
Az, | Dst Ds2 Des Des Des Des | Ay,
or
Ao = [D] Ae
For a linear elastic material the [D] matrix takes the following form:
[ (-p H H 0 0 0 ]
u (1-4) U 0 0 0
E H u (1- 1) 0 0 0 (1.4)
(+w| 0 0 0 (/2-pm) 0 0 :
0 0 0 0 (1/2-p) 0
L 0 0 0 0 0 (1/2-w)

where E and u are the Young’s Modulus and Poisson’s ratio respectively.

However, because soil usually behaves in a nonlinear manner, it is more
realistic for the constitutive equations to relate increments of stress and strain, as
indicated in Equation (1.3), and for the [D] matrix to depend on the current and
past stress history.

The constitutive behaviour can either be expressed in terms of total or effective
stresses. If specified in terms of effective stresses, the principle of effective stress
(0 =0'+0)) may be invoked to obtain total stresses required for use with the
equilibrium equations:

Ac’' =[D'] Ag;  Acy=[Dy] Ag; therefore Ao = (D'1H[D, ] Ae (1.5)

where [D, ] is a constitutive relationship relating the change in pore fluid pressure
to the change in strain. For undrained behaviour, the change in pore fluid pressure
is related to the volumetric strain (which is small) via the bulk compressibility of
the pore fluid (which is large), see Chapter 3.
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1.6 Geometric idealisation

In order to apply the above concepts to a real geotechnical problem, certain
assumptions and idealisations must be made. In particular, it is necessary to specify
soil behaviour in the form of a mathematical constitutive relationship. It may also
be necessary to simplify and/or idealise the geometry and/or boundary conditions
of the problem.

1.6.1 Plane strain

Due to the special geometric
characteristics of many of the
physical problems treated in soil
mechanics, additional simplifications
of considerable magnitude can be
applied. Problems, such as the
analysis of retaining walls, continuous
footings, and the stability of slopes,
generally have one dimension very
large in comparison with the other
two, see Figure 1.9. Hence, if the
force and/or applied displacement
boundary conditions are perpendicular to, and independent of, this dimension, all
cross sections will be the same. If the z dimension of the problem is large, and it
can be assumed that the state existing in the x-y plane holds for all planes parallel
to it, the displacement of any x-y cross section, relative to any parallel x-y cross
section, is zero. This means that w=0, and the displacements u and v are
independent of the z coordinate. The conditions consistent with these
approximations are said to define the very important case of plane strain:

Figure 1.9: Examples of plane
strain

20—)‘ DH D12 D14
A Oy ng D,, D, Ag,
o\ _| Dy Dy Dy Ag 1
= ! 7
Az,, D, D, D, ) (.7
At Dy, Dy, D, Ay)ry
Az, Dy, Dy Dy,

However, for elastic and the majority of material idealisations currently used
to represent soil behaviour Ds,=Ds=Ds,=Ds=Dg,=D,=0, and consequently
At =Ar,=0. This results in four non-zero stress changes, Ag,, Ao, , Ao, and Az,
It is common to consider only the stresses o,, o, and 7,, when performing

analysis for plane strain problems. This is acceptable if D,,, D, D\, D5y, Doy, Dy,
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D,,, D, and D,, are not dependent on o.. This condition is satisfied if the soil is
assumed to be elastic. It is also true if the Tresca or Mohr-Coulomb failure
condition is adopted (see Chapter 7) and it is assumed that the intermediate stress
g,=a,. Such an assumption is usually adopted for the simple analysis of
geotechnical problems. 1t should be noted, however, that these are special cases.

1.6.2 Axi-symmetry

Some problems possess rotational symmetry. For example, a uniform or centrally
loaded circular footing, acting on a homogeneous or horizontally layered
foundation, has rotational symmetry about a vertical axis through the centre of the
foundation. Cylindrical triaxial samples, single piles and caissons are other
examples where such symmetry may exist, see Figure 1.10.

GZ
]
i
R 4 G,
K{ 0
(AN
¥z
g i1
Circular footing Pile Triaxial sample

Figure 1.10: Examples of axi-symmetry

In this type of problem it is usual to carry out analyses using cylindrical
coordinates r (radial direction), z (vertical direction) and €& (circumferential
direction). Due to the symmetry, there is no displacement in the  direction and the
displacements in the » and z directions are independent of 8 and therefore the
strains reduce to (Timoshenko and Goodier (1951)):

U o, = v Ou. 0 (18)

where u and v are the displacements in the » and z directions respectively.

This is similar to the plane strain situation discussed above and, consequently,
the same arguments concerning the [ D] matrix apply here too. As for plane strain,
there are four non-zero stress changes, Ao, , Ao,, Ag, and Ar,..
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1.7 Methods of analysis

As noted above, fundamental considerations assert that for an exact theoretical
solution the requirements of equilibrium, compatibility, material behaviour and
boundary conditions, both force and displacement, must all be satisfied. It is
therefore useful to review the broad categories of analysis currently in use against
these theoretical requirements.

Current methods of analysis can be conveniently grouped into the following
categories: closed form, simple and numerical analysis. Each of these categories
is considered separately. The ability of each method to satisfy the fundamental
theoretical requirements and provide design information are summarised in Tables
1.1 and 1.2 respectively.

Table 1.1: Basic solution requirements satisfied by the various
methods of analysis

METHOD OF SOLUTION REQUIREMENTS
ANALYSIS
z Boundary
B = conditions
= £
5 g
= E Constitutive Force | Disp
S O behaviour
Closed form S S Linear elastic S S
Limit Rigid with a failure
equilibrium S NS criterion S NS
Rigid with a failure
Stress field S NS criterion S NS
@» Lower
£z | bound S NS | Ideal plasticity with S NS
= 8 Upper associated flow rule
bound NS S NS S
Soil modelled by
Beam-Spring springs or elastic
approaches S S interaction factors S S
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Table 1.2: Design requirements satisfied by the various methods of

analysis
DESIGN REQUIREMENTS
wall & Adjacent
Stability supports structures
METHOD OF
ANALYSIS ] =
: : | £ |z |E
-] [
st 2 | 5 |Z g |2 2
= 2 o 5 2w 'c_;_ g9 =
=Y b4 5 E c ] 2 £ 2’.
22| & & e a & & a
Closed form
(Linear elastic) || No No No Yes Yes Yes Yes
53 [
. B~ |B=
Limit s B e
a 2 o 2
equilibrium Yes A S 38 |Yes No No No
Q Q
2= |Ex
23 |25
Stress field Yes 2 s 2% }Yes No No No
g ] o
s S o ©
. Lower % E g F E g
- bound Yes 3 A8 5% |No No No
£z g 8 2 o
« S S o 8 o ©
Upper g 3 g g |3 £ 3 £
bound Yes 38 A8 o8 G % iNo No
Beam-Spring
approaches Yes No No Yes Yes No No
Full Numerical
analysis Yes Yes Yes Yes Yes Yes Yes

Full Numerical
analysis S S Any S S

S - Satisfied; NS - Not Satisfied

1.8 Closed form solutions

For a particular geotechnical structure, if it is possible to establish a realistic
constitutive model for material behaviour, identify the boundary conditions, and
combine these with the equations of equilibrium and compatibility, an exact
theoretical solution can be obtained. The solution is exact in the theoretical sense,
but is still approximate for the real problem, as assumptions about geometry, the
applied boundary conditions and the constitutive behaviour have been made in
idealising the real physical problem into an equivalent mathematical form. In
principle, it is possible to obtain a solution that predicts the behaviour of a problem
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from first loading (construction/excavation) through to the long term and to
provide information on movements and stability from a single analysis.

A closed form solution is, therefore, the ultimate method of analysis. In this
approach all solution requirements are satisfied and the theories of mathematics are
used to obtain complete analytical expressions defining the full behaviour of the
problem. However, as soil is a highly complex multi-phase material which behaves
nonlinearly when loaded, complete analytical sclutions to realistic geotechnical
problems are not usually possible. Solutions can only be obtained for two very
simple classes of problem.

Firstly, there are solutions in which the soil is assumed to behave in an isotropic
linear elastic manner. While these can be useful for providing a first estimate of
movements and structural forces, they are of little use for investigating stability.
Comparison with observed behaviour indicates that such solutions do not provide
realistic predictions.

Secondly, there are some solutions for problems which contain sufficient
geometric symmetries that the problem reduces to being essentially one
dimensional. Expansion of spherical and infinitely long cylindrical cavities in an
infinite elasto-plastic continuum are examples.

1.9 Simple methods
To enable more realistic solutions to be obtained, approximations must be
introduced. This can be done in one of two ways. Firstly, the constraints on
satisfying the basic solution requirements may be relaxed, but mathematics is still
used to obtain an approximate analytical solution. This is the approach used by the
pioneers of geotechnical engineering. Such approaches are considered as ‘simple
methods’ in what follows. The second way, by which more realistic solutions can
be obtained, is to introduce numerical approximations. All requirements of a
theoretical solution are considered, but may only be satisfied in an approximate
manner. This latter approach is considered in more detail in the next section.
Limit equilibrium, Stress field and Limit analysis fall into the category of
‘simple methods’. All methods essentially assume the soil is at failure, but differ
in the manner in which they arrive at a solution.

1.9.1 Limit equilibrium

In this method of analysis an ‘arbitrary’ failure surface is adopted (assumed) and
equilibrium conditions are considered for the failing soil mass, assuming that the
failure criterion holds everywhere along the failure surface. The failure surface
may be planar, curved or some combination of these. Only the global equilibrium
of the ‘blocks’ of soil between the failure surfaces and the boundaries of the
problem are considered. The internal stress distribution within the blocks of soil is
not considered. Coulomb’s wedge analysis and the method of slices are examples
of limit equilibrium calculations.
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Example: Critical height of a vertical cut
Wsinf3
w H
Weosp

Failure criterion: t = ¢'+0o'tan ¢'

Figure 1.11: Failure mechanism for
limit equilibrium solution

The actual distributions of ¢ and 7 along the failure surface ‘ac’, presented in
Figure 1.11, are unknown. However, if / is the length of the failure surface ‘ac’,
then: , , , ,
[rdl = [c¢'dl + [o'tang’ dl = ¢'l + tang' [o'd] (1.9
Q 0 0 0

where ¢’ and ¢’ are the soil’s cohesion and angle of shearing resistance

respectively.
Applying equilibrium to the wedge ‘abc’, i.e. resolving forces normal and
tangential to failure surface ‘ac’, gives:

1
Jo'dl = Wsing
’ (1.10)
Jrdl = Weosp

0

Noting that W=VsyH*tanf and /=H/cosf, Equations (1.9) and (1.10) can be
combined to give:
2 c¢'cos¢’

H = ycos(f+¢') sinf3 (111

The value of the angle 8 which produces the most conservative (lowest) value of
H is obtained from oH/9p=0:

oH _ =2 c'cos@ cos(2B+ @) (112)
op y(sinBcos(f+¢")* '

Equation (1.12) equals zero if cos(2f+¢")=0. Therefore f§ = n/4-¢'/2.
Substituting this angle into Equation (1.11) yields the Limit equilibrium value
of H,:
2 ¢’ cosg’ 4c’

H, = - = —tan(n/4+¢p' /2 1.13
M yeos(m/4+ @ /2)sin(n/4-¢'/2) y ( ¢ /2) (1L13)
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In terms of total siress, the equation reduces to:

48,

Hy = (1.14)

where S, is the undrained strength. .
Note: This solution is identical to the upper bound solution obtained assuming a
planar sliding surface (see Section 1.9.3). The lower bound solution gives halfthe

above value.

1.9.2 Stress field solution

In this approach the soil is assumed to be at the point of failure everywhere and a
solution is obtained by combining the failure criterion with the equilibrium
equations. For plane strain conditions and the Mohr-Coulomb failure criterion this

gives the following:
Equilibrium equations:

oo 4 ot,,

X = O ;
ox o (1.15) °
or,, N 6ay _
Ox oy

Mohr-Coulomb failure criterion [
(from Figure 1.12): %

ol - o) =2c'cos@’ + (o] + 03) sing’ \&/UJ
G
(1.16) AN
. y o, G
Noting that:
s=c'coty’ +)i(a( +0y) Figure 1.12: Mohr’s circle of
=clcotyp' + Y (o,/+0)) stress

t= Y01 —o1)=1)(0, ~0,) + 1,17

and substituting in Equation (1.16), gives the following alternative equations for
the Mohr-Coulomb criterion:

t =ssing' (117

[Vi(o, ~ o'y’)2 + Tfy]o'5 = [c'cotp’ + )4 (o, +0,)] sing’  (1.18)

The equilibrium Equations (1.15) and the failure criterion (1.18) provide three
equations in terms of three unknowns. It is therefore theoretically possible to obtain
a solution. Combining the above equations gives:
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(1 +sing’ cos?.é?)—oi +sing’ sin?,é’ﬁ + 25 sing'(cos28 00
Ox oy 0

- Sin29-§£) =0
Y

(1.19)

sing’ sinZZHQ£ +(1—sing’ cosZé’)—ai +28 sin(p/(sinzﬁﬁ + cos2<9§£) =y
Ox oy dy Ox

These two partial differential equations can be shown to be of the hyperbolic
type. A solution is obtained by considering the characteristic directions and
obtaining equations for the stress variation along these characteristics (Atkinson
and Potts (1975)). The differential equations of the stress characteristics are:

Y~ [0~ (n /4= /2)]

g" (1.20)

Ey = tan[@+(n/4-¢'/2)]

Along these characteristics the following equations hold:
ds —2stang’'df = y(dy - tang’ dx) (121)

ds +2stang'd@ = y(dy +tang'dx)

Equations (1.20) and (1.21) provide four differential equations with four
unknowns x, y, s, and 8 which, in principle, can be solved mathematically.
However, to date, it has only been possible to obtain analytical solutions for very
simple problems and/or if the soil is assumed to be weightless, y=0. Generally, they
are solved numerically by adopting a finite difference approximation.

Solutions based on the above equations usually only provide a partial stress
field which does not cover the whole soil mass, but is restricted to the zone of
interest. In general, they are therefore not Lower bound solutions (see Section
1.9.3).

The above equations provide what appears to be, and some times is, static
determinacy, in the sense that there are the same number of equations as unknown
stress components. In most practical problems, however, the boundary conditions
involve both forces and displacements and the static determinacy is misleading.
Compatibility is not considered in this approach.

Rankine active and passive stress fields and the earth pressure tables obtained
by Sokolovski (1960, 1965) and used in some codes of practice are examples of
stress field solutions. Stress fields also form the basis of analytical solutions to the
bearing capacity problem.

1.9.3 Limit analysis
The theorems of limit analysis (Chen (1975)) are based on the following
assumptions:

- Soil behaviour exhibits perfect or ideal plasticity, work hardening/softening
does not occur. This implies that there is a single yield surface separating
elastic and elasto-plastic behaviour.
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- Theyield surface is convex in shape and the plastic strains can be derived from
the yield surface through the normality condition.

- Changes in geometry of the soil mass that occur at failure are insignificant.
This allows the equations of virtual work to be applied.

With these assumptions it can be shown that a unique failure condition will
exist. The bound theorems enable estimates of the collapse loads, which occur at
failure, to be obtained. Solutions based on the ‘safe’ theorem are safe estimates of
these loads, while those obtained using the ‘unsafe’ theorem are unsafe estimates.
Use of both theorems enable bounds to the true collapse loads to be obtained.

Unsafe theorem
An unsafe solution to the true collapse loads (for the ideal plastic material) can
be found by selecting any kinematically possible failure mechanism and
performing an appropriate work rate calculation. The loads so determined are
either on the unsafe side or equal to the true collapse loads.

This theorem is often referred to as the ‘Upper bound’ theorem. As equilibrium
is not considered, there is an infinite number of solutions which can be found. The
accuracy of the solution depends on how close the assumed failure mechanism is
to the real one.

Safe theorem
If a statically admissible stress field covering the whole soil mass can be found,
which nowhere violates the yield condition, then the loads in equilibrium with
the stress field are on the safe side or equal to the true collapse loads.

This theorem is often referred to as the ‘Lower bound’ theorem. A statically
admissible stress field consists of an equilibrium distribution of stress which
balances the applied loads and body forces. As compatibility is not considered,
there is an infinite number of solutions. The accuracy of the solution depends on
how close the assumed stress field is to the real one.

If safe and unsafe solutions can be found which give the same estimates of
collapse loads, then this is the correct solution for the ideal plastic material. It
should be noted that in such a case all the fundamental solution requirements are
satisfied. This can rarely be achieved in practice. However, two such cases in
which it has been achieved are (i) the solution of the undrained bearing capacity
of a strip footing, on a soil with a constant undrained shear strength, S, (Chen
(1975)), and (i1) the solution for the undrained lateral load capacity of an infinitely
long rigid pile embedded in an infinite continuum of soil, with a constant
undrained shear strength (Randolph and Houlsby (1984)).
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Example: Critical height of a vertical cut in undrained clay
Unsafe solution (Upper bound)

r Rigid

w l Y
H '\ Thin plastic
5 shear zone
e Rigid

2 Yield condition 1 = §,

Figure 1.13: Failure mechanism for
unsafe analysis

Rigid block ‘abc’ moves with respect to the rigid base along the thin plastic shear

zone ‘ac’, Figure 1.13. The relative displacement between the two rigid blocks is
u. Internal rate of energy dissipation is

=uS, H/cosp (1.22)
Rate of work done by external forces is:
= Y H?uysing (1.23)
Equating equations (1.22) and (1.23) gives:
H =48, /(ysin2f) (124

Becal.lse this is an unsafe estimate, the value of Bwhich produces the smallest value
of H is required. Therefore:

OH _  8S, cos2p
ap y sin’2p (1.25)

.Equation. (1.25) equals zero if cos2f=0. Therefore p=nr/4 which, when substituted -
in Equation (1.24), gives:

Hypy =4S, /y (1.26)

Safe solution (Lower bound)

Stress dis'continuities are assumed along lines ab and ac in Figure 1.14. From the
Mohr s circles, see Figure 1.14, the stresses in regions 1 and 2 approach yield
simultaneously as H is increased. As this is a safe solution, the maximum value of

H is required. This occurs when the Mohr’s circles fi j
/ orzones | and 2
yield condition. Therefore: Justreach the

H,y =28, /y (1.27)
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X
o,=Yy

c*
Yield condition 1=S,

Mohr's circle for Mohr's circle
zone 1,at depthH  forzone2
S, / /
N
S, /

Point circle
for zone 3

Figure 1.14: Stress field for safe
solution

1.9.4 Comments

The ability of these simple methods to satisfy the basic solution requirements is
shown in Table 1.1. Inspection of this table clearly shows that none of the methods
satisfy all the basic requirements and therefore do not necessarily produce an exact
theoretical solution. All methods are therefore approximate and it is, perhaps, not
surprising that there are many different solutions to the same problem.

As these approaches assume the soil to be everywhere at failure, they are not
strictly appropriate for investigating behaviour under working load conditions.
When applied to geotechnical problems, they do not distinguish between different
methods of construction (e.g. excavation versus backfilling), nor account for in situ
stress conditions. Information is provided on local stability, but no information on
soil or structural movements is given and separate calculations are required to
investigate overall stability.

Notwithstanding the above limitations, simple methods form the main stay of
most design approaches. Where they have been calibrated against field observation
their use may be appropriate. However, it is for cases with more complex soil-
structure interaction, where calibration is more difficult, that these simple methods
are perhaps less reliable. Because of their simplicity and ease of use it is likely that
they will always play an important role in the design of geotechnical structures. In
particular, they are appropriate at the early stages of the design process to obtain
first estimates of both stability and structural forces.
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1.10 Numerical analysis

1.10.1 Beam-spring approach

This approach is used to investigate soil-structure interaction. For example, it can
be used to study the behaviour of axially and laterally loaded piles, raft
foundations, embedded retaining walls and tunnel linings. The major
approximation is the assumed soil behaviour and two approaches are commonly
used. The soil behaviour is either approximated by a set of unconnected vertical
and horizontal springs (Borin (1989)), or by a set of linear elastic interaction
factors (Papin ez al. (1985)). Only a single structure can be accommodated in the
analysis. Consequently, only a single pile or retaining wall can be analyzed.
Further approximations must be introduced if more than one pile, retaining wall or
foundation interact. Any structural support, such as props or anchors (retaining
wall problems), are represented by simple springs (see Figure 1.15).

Props/anchors
represented by
springs

| "

J

% v Soil represented by
springs/interaction
%E%gg;;g h/{g\/—' factors
Soil represented by
springs/interaction '3 %
factors

Figure 1.15: Examples of beam-spring problems

To enable limiting pressures to be obtained, for example on each side of a
retaining wall, ‘cut offs’ are usually applied to the spring forces and interaction
factors representing soil behaviour. These cut off pressures are usually obtained
from one of the simple analysis procedures discussed above (e.g. Limit
equilibrium, Stress fields or Limit analysis). It is important to appreciate that these
limiting pressures are not a direct result of the beam-spring calculation, but are
obtained from separate approximate solutions and then imposed on the beam-
spring calculation process.

Having reduced the boundary value problem to studying the behaviour of a
single isolated structure (e.g. a pile, a footing or a retaining wall) and made gross
assumptions about soil behaviour, a complete theoretical solution to the problem
is sought. Due to the complexities involved, this is usually achieved using a
computer. The structural member (e.g. pile, footing or retaining wall) is
represented using either finite differences or finite elements and a solution that
satisfies all the fundamental solution requirements is obtained by iteration.

Sometimes computer programs which perform such calculations are identified
as finite difference or finite element programs. However, it must be noted that it
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is only the structural member that is represented in this manner and these programs
should not be confused with those that involve full discretisation of both the soil
and structural members by finite differences or finite elements, see Section 1.10.2.

As solutions obtained in this way include limits to the earth pressures that can
develop adjacent to the structure, they can provide information on local stability.
This is often indicated by a failure of the program to converge. However,
numerical instability may occur for other reasons and therefore a false impression
of instability may be given. Solutions from these calculations include forces and
movements of the structure. They do not provide information about global stability
or movements in the adjacent soil. They do not consider adjacent structures.

It is difficult to select appropriate spring stiffnesses and to simulate some
support features. For example, when analysing a retaining wall it is difﬁcult. to
account realistically for the effects of soil berms. Retaining wall programs using
interaction factors to represent the soil have problems in dealing with wall friction
and often neglect shear stresses on the wall, or make further assumptions to deal
with them. For the analysis of retaining walls a single wall is considered in
isolation and structural supports are represented by simple springs fixed at one end
(grounded). It is therefore difficult to account for realistic interaction betwegn
structural components such as floor slabs and other retaining walls. This is
particularly so if ‘pin-jointed” or ‘full moment’ connections are appropriate. As
only the soil acting on the wall is considered in the analysis, it is difficult to model
realistically the behaviour of raking props and ground anchors which rely on
resistance from soil remote from the wall.

1.10.2 Full numerical analysis

This category of analysis includes methods which attempt to satisfy all theoretical
requirements, include realistic soil constitutive models and incorporate boundary
conditions that realistically simulate field conditions. Because of the complexities
involved and the nonlinearities in soil behaviour, all methods are numerical in
nature. Approaches based on finite difference and finite element methods are those
most widely used. These methods essentially involve a computer simulation of the
history of the boundary value problem from green field conditions, through
construction and in the long term.

Their ability to accurately reflect field conditions essentially depends on (i) the
ability of the constitutive model to represent real soil behaviour and (ii) correctness
of the boundary conditions imposed. The user has only to define the appropriate
geometry, construction procedure, soil parameters and boundary conditions.
Structural members may be added and withdrawn during the numerical simulation
to model field conditions. Retaining structures composed of several retaining walls,
interconnected by structural components, can be considered and, because the soil
mass is modelled in the analysis, the complex interaction between raking struts or
ground anchors and the soil can be accounted for. The effect of time on the
development of pore water pressures can also be simulated by including coupled
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consolidation. No postulated failure mechanism or mode of behaviour of the
problem is required, as these are predicted by the analysis. The analysis allows the
complete history of the boundary value problem to be predicted and a single
analysis can provide information on all design requirements.

Potentially, the methods can solve full three dimensional problems and suffer
none of the limitations discussed previously for the other methods. At present, the
speed of computer hardware restricts analysis of most practical problems to two
dimensional plane strain or axi-symmetric sections. However, with the rapid
development in computer hardware and its reduction in cost, the possibilities of full
three dimensional simulations are imminent.

It is often claimed that these approaches have limitations. Usually these relate
to the fact that detailed soils information or a knowledge of the construction
procedure are needed. In the Authors’ opinion, neither of these are limitations. If
a numerical analysis is anticipated during the design stages of a project, it is then
not difficult to ensure that the appropriate soil information is obtained from the site
investigation. It is only if a numerical analysis is an after thought, once the soil data
has been obtained, that this may present difficulties. If the behaviour of the
boundary value problem is not sensitive to the construction procedure, then any
reasonable assumed procedure is adequate for the analysis. However, if the
analysis is sensitive to the construction procedure then, clearly, this is important
and it will be necessary to simulate the field conditions as closely as possible. So,
far from being a limitation, numerical analysis can indicate to the design engineer
where, and by how much, the boundary value problem is likely to be influenced
by the construction procedure. This will enable adequate provision to be made
within the design.

Full numerical analyses are complex and should be performed by qualified and
experienced staff. The operator must understand soil mechanics and, in particular,
the constitutive models that the software uses, and be familiar with the software
package to be employed for the analysis. Nonlinear numerical analysis is not
straight forward and at present there are several algorithms available for solving
the nonlinear system of governing equations. Some of these are more accurate than
others and some are increment size dependent. There are approximations within
these algorithms and errors associated with discretization. However, these can be
controlled by the experienced user so that accurate predictions can be obtained.

Full numerical analysis can be used to predict the behaviour of complex field
situations. It can also be used to investigate the fundamentals of soil/structure
interaction and to calibrate some of the simple methods discussed above.

The finite element method and its use in analysing geotechnical structures is the
subject of the remaining chapters of this book.

1.11. Summary

1. Geotechnical engineering plays a major role in the design of nearly all civil
engineering structures.
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2. Design of geotechnical structures should consider:
- Stability: local and overall;
- Structural forces: bending moments, axial and shear forces in
structural members;
- Movements of the geotechnical structure and adjacent ground;
- Movements and structural forces induced in adjacent structures
and/or services.

3. For a complete theoretical solution the following four conditions should be
satisfied:

- Equilibrium;

- Compatibility;

- Material constitutive behaviour;
- Boundary conditions.

4. Tt is not possible to obtain closed form analytical solutions incorporating
realistic constitutive models of soil behaviour which satisfy all four
fundamental requirements.

5. The analytical solutions available (e.g. Limit equilibrium, Stress fields and
Limit analysis) fail to satisfy at least one of the fundamental requirements. This
explains why there is an abundance of different solutions in the literature for
the same problem. These simple approaches also only give information on
stability. They do not provide information on movements or structural forces
under working load conditions.

6. Simple numerical methods, such as the beam-spring approach, can provide
information on local stability and on wall movements and structural forces
under working load conditions. They are therefore an improvement over the
simpler analytical methods. However, they do not provide information on
overall stability or on movements in the adjacent soil and the effects on
adjacent structures or services.

7. Full numerical analysis can provide information on all design requirements. A
single analysis can be used to simulate the complete construction history of the
retaining structure. In many respects they provide the ultimate method of
analysis, satisfying all the fundamental requirements. However, they require
large amounts of computing resources and an experienced operator. They are
becoming widely used for the analysis of geotechnical structures and this trend
is likely to increase as the cost of computing continues to decrease.

2. Finite element theory for
linear materials

2.1  Synopsis

This chapter introduces the finite element method for linear problems. The basic
tl.leory is described and the finite element terminology is introduced. For
simplicity, discussion is restricted to two dimensional plane strain situations,
However, the concepts described have a much wider applicability. Sufficient
information is given to enable linear elastic analysis to be understood.

2.2 Introduction

The finite element method has a wide range of engineering applications.
Consequently, there are many text books on the subject. Unfortunately, there are
few books that consider specifically the application of the finite element method
in geotechnical engineering. This chapter presents a basic outline of the method
with particular attention to the areas involving approximation. The discussion is’
restricted to linear elastic two dimensional plane strain conditions. Only continuum
elements are considered and attention is focussed on the ‘displacement based’
finite element approach. The chapter begins with a brief overview of the main
stages of the method and follows with a detailed discussion of each stage.

2.3  Overview
The finite element method involves the following steps.

Element discretisation
This is the process of modelling the geometry of the problem under
Investigation by an assemblage of small regions, termed finite elements. These
elements have nodes defined on the element boundaries, or within the element.

Primary variable approximation
A primary variable must be selected (e. g. displacements, stresses etc.) and rules
as to how it should vary over a finite element established. This variation is
expressed in terms of nodal values, In geotechnical engineering it is usual to
adopt displacements as the primary variable.

Element equations

Use of an appropriate variational principle (e.g. Minimum potential energy) to
derive element equations:
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[K:]{Adg} = {ARg} 2.1

where [Kj] is the element stiffness matrix, {Adg}, is the vector of incremental
element nodal displacements and {AR} is the vector of incremental element
nodal forces.

Global equations
Combine element equations to form global equations

[Ksl{Adg} = {ARg} 2.2)

where [Kj] is the global stiffness matrix, {Adg} is the vector of all incremental
nodal displacements and {ARg} is the vector of all incremental nodal forces.
Boundary conditions
Formulate boundary conditions and modify global equations. Loadings (e.g.
line and point loads, pressures and body forces) affect {ARy}, while the
displacements affect {Adg}.
Solve the global equations
The global Equations (2.2) are in the form of a large number of simultaneous
equations. These are solved to obtain the displacements {Adg} at all the nodes.
From these nodal displacements secondary quantities, such as stresses and
strains, are evaluated.

2.4 Element discretisation

The geometry of the boundary value problem under investigation must be defined
and quantified. Simplifications and approximations may be necessary during this
process. This geometry is then replaced by an equivalent finite element mesh which
is composed of small regions called
finite elements. For two
dimensional problems, the finite
elements are usually triangular or
quadrilateral in shape, see Figure
2.1. Their geometry is specified in 7

terms of the coordinates of key L_.X

points on the element called nodes. ¢

For elements with straight sides

these nodes are usually located at 7+ Noded 4 Noded
the element corners. If the elements

have curved sides then additional

nodes, usually at the midpoint of

each side, must be introduced. The

set of elements in the complete 6Noded & Noded

mesh are connected together by the . o
element sides and a number of Figure 2.1: Typical 2D finite elements

nodes.
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In order to refer to the complete finite L.
element mesh, the elements and nodes must be |, 1o
numbered in systematic manner. An example of
a numbering scheme for a mesh of 4 noded
quadrilateral elements is shown in Figure 2.2.
The nodes are numbered sequentially from left to i
right and from bottom to top; the elements are
numbered separately in a similar fashion. To
describe the location of an element in the mesh,
an element connectivity list is used. This list
contains the node numbers in the element,
usually in an anticlockwise order. For example,
the connectivity list of element 2 is 2, 3, 7, 6.

When constructing the finite element mesh
the following should be considered.

Figure 2.2: Flement and
node numbering

- The geometry of the boundary value problem
must be approximated as accurately as
possible.

- If there are curved boundaries or curved
material interfaces, the higher order
elements, with mid-side nodes should be
used, see Figure 2.3.

- In many cases geometric discontinuities
suggest a natural form of subdivision. For
example, discontinuities in boundary
gradient, such as re-entrant corners or cracks,
can be modelled by placing nodes at the
discontinuity points. Interfaces between
materials with different properties can be
introduced by element sides, see Figure 2.4.

- Mesh design may also be influenced by the
applied boundary conditions. If there are
discontinuities in loading, or point loads,
these can again be introduced by placing
nodes at the discontinuity points, see Figure
2.5.

In combination with the above factors, the
size and the number of elements depend largely
on the material behaviour, since this influences
the final solution. For linear material behaviour Figure 2.3: Use of higher
the procedure is relatively straightforward and order elements
only the zones where unknowns vary rapidly
need special attention. In order to obtain accurate

b) Curved material interface
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Wall

Re-entrant .
Material elements Surcharge

comer
to be excavated l
¥ A 4

Soil

Figure 2.5: Effect of boundary

Figure 2.4: Geometric :
conditions

discontinuities

solutions, these zones require a refined mesh of smaller elements. The situatior} is
more complex for general nonlinear material behaviour, since the final solution
may depend, for example, on the previous loading history. For.such problems tbe
mesh design must take into account the boundary conditions, the mater'lal
properties and, in some cases, the geometry, which all vary j[hro.ughout the solution
process. In all cases a mesh of regular shaped elements will give the best resplts.
Elements with widely distorted geometries or long thin elements should be avoided

(see Figure 2.6 for example).

\

30 Elements

36 Elements

a) Ill-conditioned mesh b) Well conditioned mesh

Figure 2.6: Examples of good and bad meshes
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2.5 Displacement approximation
In the displacement based finite element method the primary unknown quantity is
the displacement field which varies over the problem domain. Stresses and strains
are treated as secondary quantities which can be found from the displacement field
once it has been determined. In two dimensional plane strain situations the
displacement field is characterised by the two global displacements # and v, in the
x and y coordinate directions respectively.

The main approximation in the finite element
method is to assume a particular form for the way Y L
these displacement components vary over the m
domain under investigation. Clearly, this assumed
variation must satisfy the conditions of
compatibility. Over each element the displacement
components are assumed to have a simple
polynomial form, where the order of the polynomial
depends on the number of nodes in the element. The ; _
displacement components are then expressed in J
terms of their values at the nodes. For example, Figure 2.7: Three noded
consider the displacement equations for the three element
noded triangular element shown in Figure 2.7:

u=ata,xtasy

v =btb,x+by (2.3)

The six constants a, - b, can be expressed in terms of the nodal displacements
by substituting the nodal coordinates into the above equations, and then solving the
two sets of three simultaneous equations which arise:

U, = a;+aX +a3y,.

U, = a+x;+a3y; (2.4)
= 4t ax, tay,

v, = b t+byx; +by,
v, = b+bx;+by, 2.5)
= bl + bem + b3ym

The above simultaneous equations are solved for @, ~ b, in terms of the nodal
displacements u; , u; , u,, , v; , v;and v, to give:

{z} = [N]{ul uj U, v; vj V”’}T = [N]{:} (26)

where the matrix [V] is known as the matrix of shape functions. The displacement
components z and v are now expressed in terms of their values at the nodes. For
three and four noded elements there is, therefore, a linear variation of displacement
across the element, see Figure 2.8. For the higher order six and eight noded
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elements the displacement field varies
quadratically across the element.

The accuracy of a finite element
analysis depends on the size of the . : Eloment
elements and the nature of the /
displacement approximation. For the '
accuracy to increase as the elements x
become smaller, the displacement

approximation must satisfy the following
compatibility conditions.

> _Displacement
™ variation

Figure 2.8: Linear variation of
displacements across a 4 noded
element

- Continuity of the displacement field.
In order to avoid gaps or overlaps
occurring when the domain is loaded,
the displacement components must
vary continuously within each
element and across each element side.
This can be achieved by ensuring that
the displacements on an element side
depend only on the displacements of
the nodes situated on that side, see

Figure 2.9.

- The displacement approximation
should be able to represent rigid body “igure 2.9: Continuity of
movement. Examples of such displacement field

movements are translations and
rotations. Such displacements do not
induce strains in an element. Displacement

- The displacement approximation Approximation
should be able to represent constant
strain rates.

The simple polynomial approximation
presented above satisfies these
compatibility conditions.

The essential feature of the element-

wise approximation is that the variation Figure 2.10: Variation of
of the unknown displacements Wlthm.an displacement across a mesh of
element is expressed as a simple function 4 noded elements

of the displacements at the nodes. The

problem of determining the displacement field throughout the finite element mesh
is, therefore, reduced to determining the displacement components at a finite
number of nodes. These nodal displacements are referred to as the unknown
degrees of freedom. For two dimensional plane strain problems there are two
degrees of freedom at each node: the u and v displacements.
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2.5.1 Isoparametric finite elements

The choice of the finite elements to be used for two dimensional problems depends
largely on the geometry being modelled and the type of analysis required. For
geotechnical problems, the main requirement is that the element types should be
useful for all the geometric situations that may arise, including cases where
structures have curved boundaries or curved material interfaces. Both triangular
and quadrilateral types of elements could equally well be used, since both of these
types are easily modified, by the addition of mid-side nodes, to accurately
represent curved edges. As the finite element equations are slightly easier to
formulate for the quadrilateral family of isoparametric elements, these will be used
for any of the derivations presented in this book. This does not imply that
quadrilateral elements are in any way superior to triangular elements. In fact, some
experts are of the opinion that triangular elements are superior. For completeness,
the derivation of the interpolation and shape functions for triangular elements is
presented in Appendix II.1 of this chapter.

An 8 noded quadrilateral
isoparametric element is
shown in Figure 2.11. This
element is widely used in
geotechnical finite element
software. It can be used as a ;
general shaped quadrilateral «.-n
element with curved sides.  a)Parent Element b) Global Element
The global element is derived  Figyre 2.11: 8 noded isoparametric
from a parent element which element
has the same number of nodes,
but is defined with respect to a natural coordinate system. Figure 2.11 shows the
configuration of the parent element. The natural coordinates S, 7 for this element
satisfy the conditions -1<S<1, -1<7<1.

The basic procedure in the isoparametric finite element formulation is to
express the element displacements and element geometry in terms of interpolation
functions using the natural coordinate system. The term isoparametric arises from
the fact that the parametric description used to describe the variation of the
unknown displacements within an element is exactly the same as that used to map
the geometry of the element from the global axes to the natural axes.

For the element shown in Figure 2.11 the global coordinates of a point in the
element can be expressed by coordinate interpolations of the form:

8 8
x=YNx, ; y= XNy 2.7

i=1 i=1
where x; and y, are the global coordinates of the eight nodes in the element, and &V,
i=1,..,8, are called interpolation functions. For isoparametric elements the
interpolation functions are expressed in terms of the natural coordinates S and T
which vary from -1 to +1. To construct the interpolation functions for the eight
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noded isoparametric element, the following properties are used. Firstly, there isone
interpolation function corresponding to each node in the element and each function
is quadratic in the natural coordinates S and 7. Secondly, the interpolation function
N, isequalto ] atnode 1 (S=-1, T=-1) and is equal to zero at the other seven
nodes; a similar relation holds for the interpolation functions N,, N;, ..., N;. Using
these properties it can be shown that the interpolation functions take the form:

Mid - side nodes: Corner nodes:

Ny=J(1-8*)(1-T) Ny =Y(=-8)Y1-T)= )N~ )4 Ng
No=%(1+8)(1-T%) N, = (+S(A-T)- 4 N- 1N, (2.8)
No=h(1=-SH(1+T) N, =+ S)(A+T)- B N -4 N,

Ng= /(1= S)1-T%) Ny= ) (=-8Y1+T)= )N, =} Ny

Since the element is isoparametric, the displacements within the element are
interpolated in the same way as the geometry. Therefore, the above interpolation
functions N,, N,, ..., N; are used as the shape functions in Equation (2.6).
Consequently, the displacements within the 8 noded isoparametric element are also
assumed to be quadratic in S and 7.

The main advantage of the isoparametric formulation is that the element
equations need only be evaluated in the parent element coordinate system. Thus,
for each element in the mesh the stiffness matrix integrals can be evaluated by a
standard procedure. The integrations need only be performed over a square, with
S and T varying between -1 and +1. The boundary conditions can be determined
in a similar fashion. If gravity loads are applied, the nodal forces are determined
from element integrals, which can again be reduced to integrals over the parent
element. If stress boundary conditions are applied, the nodal forces are determined
from integrals over the boundary of the mesh. In this case, the integrals can be
reduced to line integrals over the sides of the parent element.

For all types of finite elements the best results are obtained if the elements have
reasonable shapes. Wildly distorted elements may lead to different forms of
inaccuracy. For example, in the case of isoparametric elements difficulties may be
encountered if the distortions lead to a non-unique mapping between the global and
parent elements. For the quadrilateral isoparametric element described above, the
following points should be observed.

- To avoid a non-unique global to parent element mapping, all the interior
angles, at the element corners, should be smaller than 180°. In particular, the
best results are obtained if these angles lie between 30° and 150°.

- If an element becomes thin, the stiffness coefficients corresponding to the
transverse degrees of freedom are considerably larger than those corresponding
to the longitudinal displacements. This results in numerical ill-conditioning of
the system equations which can lead to large errors in the solution. To avoid
this the ratio between the longest and shortest sides of an element should be
smaller than 5:1. For anisotropic materials, if the longitudinal direction of the
element is parallel to the stiffest material direction, this ratio may be exceeded.
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- The location of mid-side nodes greatly affects the uniqueness of the global to
parent element mapping. For elements with curved sides, experience has shown
that the best results are obtained if the radius of curvature of each side is larger
than the length of the longest side.

2.6 Element equations

Element equations are those that govern the deformational behaviour of each

element. They essentially combine the compatibility, equilibrium and constitutive
conditions.

Displacements: As noted above, the chosen displacements are assumed to be

given by:
Au Au
s o 0 N 1 Y S
Strains: The strains corresponding to these displacements follow from

Equation (1.2):

Ae, = - A Au) L Ae, = O(Av) _O0(Au)  O(Av)
ox : GyT oy x (2.10)
Ae.=Ay,.=Ay, =0 ; {Ag} = {Agx Ag, Ay, AEZ}T

s Ay =

Combining Equations (2.9) and (2.10) for an element with # nodes leads to:

- - | Au

Mg Mg Ny g | A,

Ag ox Ox ox A :

¥ N, oN, oN, |0

ey |0 =0 S22 0 Ay,
Ay [~ Y oy &y (2.11)

A g*»" ON, ON, ON, ON, ON, ON_ ||

: gy ox dy ox T oy ox |7

00 0 0 .. .. 0o i

- vll

or more conveniently:

{A g} = [B]{Ad}” (2.12)

where the matrix [B] contains only derivatives of the shape functions V,, while
{Ad}, contains the list of nodal displacements for a single element.

If isoparametric elements are being used, the shape functions are identical to
the interpolation functions, see Section 2.5.1, and N, depend only on the natural
coordinates S and 7. Consequently, the global derivatives oN; / dx, dN; / dy in
Equation (2.11) cannot be determined directly. However, using the chain rule
which relates the x, y derivatives to the S, T derivatives gives:

AN A
5 e 2 a1

where [J] is the Jacobian matrix:




32 / Finite element analysis in geotechnical engineering: Theory

o

_ |38 as
[/] = & o (2.14)

8T or

Hence, on inverting Equation (2.13), the global derivatives of the interpolation
functions are given by:

ON;. oy y[oN.
ox |_ 1| Br as|es
o [T e axflew, @19
oy or aS]\ et
where |J| is the Jacobian determinant:
g = Eo 2o 2.16)
os or oS or

The coordinate derivatives in Equations (2.15) and (2.16), which arise from the
Jacobian transformation, can be found by differentiating the isoparametric relations
given by Equation (2.7).

Constitutive model: The constitutive behaviour can be written as in Equation
(1.3):

(Ao} = [D]{ael (2.17)

where {A6}T =[Ag, Ao, At,, Ac]

For isotropic linear elastic materials the constitutive matrix [D] takes the form
given in Section 1.5.5 of Chapter 1. The form of the matrix for transversely
isotropic materials is presented in Chapter 5.

To determine the element equations for linear material behaviour, the principle
of minimum potential energy is invoked. This principle states that the static
equilibrium position of a loaded linear elastic body is the one which minimises the
total potential energy. The total potential energy of a body is defined as:

Total potential energy (E) =Strainenergy (W) - Workdone by the appliedloads (L)

The principle of minimum potential energy states that for equilibrium:
SAE = 3AW -8AL = 0 (2.18)
The strain energy, AW, is defined as:
AW =1 [{a E}T{A o} dvol = 1 [{A E}T[D]{A g} dvol 2.19)

Vol Vol

where the integrations are over the volume of the body.
The work done by applied loads, AL, can be divided into contributions from
body forces and surface tractions and can, therefore, be expressed as:
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AL= [{ad}'{AF} dVol + [{Ad} (AT} dSf (2.20)
where: v

{Ad}" ={Au,Av} = displacements;

{AF}T ={AF,,AF,} =body forces;

{AT}' ={AT,, AT,} = surface tractions (line loads, surcharge pressures);
Srf1s that part of the boundary of the domain over which the surface tractions
are applied.

Combining Equations (2.19) and (2.20) the total potential energy of the body
becomes:

AE =1 [{a&}'[D]){ae} dvol - [{ad}' {AF} dvol - [{ad} (AT} dSif 221

Vol Vol Srf

The essence of the finite element method is now to discretise the problem into
elements. This has two effects. Firstly, the potential energy is replaced by the sum
of the potential energies of the separate elements:

N
AE = Y AE, 2.22)
i=1
where N = number of elements. Secondly, the variation of the displacements can
be expressed in terms of nodal values using Equation (2.9). Equation (2.21)
therefore becomes:

oo e AT oY) 2 ] o] oot~
7| faywyar) ass

(2.23)
i
where the volume integral is now over the volume of an element and the surface
integral is over that portion of the element boundary over which surface tractions
are specified. The principal unknowns are the incremental nodal displacements

over the whole mesh, {Ad},. Minimising the potential energy with respect to these
incremental nodal displacements gives:

BAE = g({éAd}I),[ | [BY'[DI[B] dVol {Ad}, ~ [[N]'{AF} dVol -

sJ/[N]T {AT} dSif], =0 : (2.24)

which is equivalent to a set of equations of the form:

2[ K] (faa},), - o) (29
where: [Kz] = [,,[BI"[D][B] dVol = Element stiffness matrix;

{ARg} = [, [INI'{AF} dVol+ [, AN1"{AT} dSrf= Right hand side load
vector.
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Thus the problem is reduced to determining and summing the separate element
equilibrium equations:

[KE]{Ad}n = {ARE} (2.26)

The element stiffness matrix for isoparametric elements is evaluated using the
natural coordinate system. The isoparametric coordinate transformation gives:

dvol = tdxdy=1|J|dSdT (227

where for plane strain problems the thickness ¢ is unity and the element stiffness
matrix, [Kg], becomes:

K= _}‘ '}It[B]T[D][B]lll dsdr (2.28)

In Equation (2.28) |J] is given by Equation (2.16) and represents the determinant
of the Jacobian matrix arising from the mapping between global and parent
elements. The explicit evaluation of Equation (2.28) cannot usually be performed,
except for very special element shapes. It is therefore convenient to use a
numerical integration procedure.

2.6.1 Numerical integration %)
To evaluate the element stiffness matrix and |
right hand side vector, integrations must be
performed. The explicit evaluation of these
element integrals cannot usually be
performed, except for special cases, and
therefore a numerical integration scheme is
employed.y For example, consider the one
dimensional integral, [} Ax)dx, shown
graphically in Figure 2.12a. The simplest /(%) .

way to perform numerical integration is to : \
split the x range of the integral (i.e. -1<x <I)

-1 X, 1 X

i

a) Integration using Trapezoidal rule

into a number of equal steps of size a and 3 5 =

assume that the area under the curve is equal '

to the sum of the trapezoidal areas | .
S XXy Xy ]

a(fix)+f(x.))/2. Such a procedure is often

referred to as the Trapezoidal rule. This  b) Gaussian integration

procedure can be refined to obtain the

greatest accuracy for the minimum number Figure 2.12: Examples of
of function evaluations, f(x;), and several numerical integration
different procedures are available.

Essentially, the integral of a function is replaced by a weighted sum ofthe function
evaluated at a number of infegration points (sampling points). For example,
consider a one dimensional integral with three integration points, Figure 2.12b:
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_}]f<x)dx - :i:W,-f(x,) CWF ) AW () AW f (k) (2.29)

where: W, are weights;
Sx;) are the values of the function at the three integration points x,_, , 5.

The values of the weights, W, and the location of the integration points, x;,
depend on the nature of the integration scheme being used. The number of
integration points determines the integration order. The higher order of integration
gives the more accurate T
integration process. 217.1.%2 L.1)
Unfortunately, the number
of function evaluations
also depends on the
integration order, so the 5

0.57I
0.57I

cost of an analysis will Parent Element Global Element
increase when a higher 4) 2x2 order
order integration is
employed. This becomes onlom "
particularly important for " .
two and three dimensional 0.77L s
integrals where an array of 0.771 AN
integration points is x x
required. For example, for ¢
. . Parent Element Global Element
a two dimensional
generalisation of the b) 3x3 order
integral discussed above,
an array of 3x3 integration Figure 2.13: Location of Gauss points

points would be required.
For three dimensional element this increases to a 3x3x3 array.

The most common numerical integration scheme is Gaussian integration and
the integration points are often referred to as Gauss points. For Gaussian
integration the optimum integration order depends on the type of element being
used and on its shape. Experience has shown that for the 8 noded isoparametric
element either a 2x2 or a 3x3 order should be used. Figure 2.13 illustrates the
locations of the Gauss points in the parent element and an example of their
positions in a global element for the 2x2 and 3x3 integration orders. 2x2 and 3x3
integration orders are often referred to as reduced and full integration, respectively.

For nonlinear problems (see Chapter 9), the element stiffness matrix at a
particular increment may, in general, depend on the stresses and strains determined
at the previous increment. Since the stiffness matrix is determined by numerical
integration and the element equations are referred to the integration points, it is
also convenient to restrict evaluation of the stresses and strains to these points.
Hence, in many programs the output listings provide values of stresses and strains
at integration points.
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2.7 Global equations
The next stage in the formulation of the finite element equations is the assembly
of the separate element equilibrium equations into a set of global equations:

[Ko]{ad},; = {ARe) 230)
where: [Kg] = the global stiffness matrix;
{Ad},; = a vector containing the unknown degrees of freedom (nodal

displacements) for the entire finite element mesh;
the global right hand side load vector.

I

{ARG}

As each element stiffness matrix is formed according to the procedure
described in Section 2.6, it is then assembled into the overall global stiffness
matrix. This assembly process is called the direct stiffness method. The terms of the
global stiffness matrix are obtained by summing the individual element
contributions whilst taking into account the degrees of freedom which are common
between elements. This process is described in more detail in Section 2.7.1. The
terms of the right hand side load vector are obtained in a similar manner by
summing the individual loads acting at each node. Further details of the load vector
are given in Section 2.8 and in Chapter 3.

Itis clear from Equation (2.28) that, if the constitutive matrix [D] is symmetric,
the element stiffness matrices and hence the global stiffness matrix will also be
symmetric. This situation occurs for a wide range of material behaviour, including
linear elastic material behaviour. The non-zero terms of the global stiffness matrix
arise from the connections between the degrees of freedom through the elements.
From the geometry of the mesh, each degree of freedom is only connected to a
small number of other degrees of freedom; hence, the global stiffness matrix will
contain many zero terms. In addition, most of the zero terms will be outside a
diagonal band, see Section 2.7.1. The assembly, storage and solution schemes used
for the global stiffness matrix take into account its symmetric and banded structure.

2.7.1 The direct stiffness assembly method

The essence of the direct stiffness method is to assemble the individual terms of the
element stiffness matrix, [Kg], into the overall global stiffness matrix, [Kg],
according to the global degree of freedom numbering scheme. At the element level,
the stiffness matrix terms correspond to the relative stiffness between the degrees
of freedom contained in the element. At the mesh level, the stiffness matrix terms
correspond to the relative stiffness between the degrees of freedom over the whole
mesh. For this reason the size of the global stiffness matrix will depend on the total
number of degrees of freedom and the non-zero terms will occur from the
connections between the degrees of freedom through the elements.

To illustrate the stages of the assembly process it is convenient to consider a
mesh of 4 noded elements with only one degree of freedom at each node (note: for
two dimensional analyses there are usually two degrees of freedom at each node).
With only one degree of freedom at each node the stiffness matrices are much
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simpler and the assembly process is easier to describe. In such a situation ‘degree
of freedom’ may be associated with ‘node number’.

Th'e numbering of the degrees of freedom and the form of the stiffness matrix
for a single 4 noded element is illustrated in F igure 2.14. It is assumed that all the

stiffness matrices are symmetric and therefore only the diagonal and upper triangle
of terms are indicated.

4 3
Kll Klz K13 K14
K, K, K
[ KE] _ 22 23 24
SYM Ky K,
1 2 K44

Figure 2.14: Stiffness matrix for a single element

If this single element becomes part of a mesh of elements then, with respect to
the global degree of freedom numbering, the stiffness matrix will take the form
shown in Figure 2.15. The numerical values of the stiffness terms remain the same
but the quantities they represent in global terms become different. For example, 11’;
Figure 2.14 the stiffness term X, refers to element degree of freedom 1, whereas
in Figure 2.15 the same degree of freedom becomes global degree of freedom 2;
hence the contribution of the element to the global value of Ky, isequal to X,. The
1mpqrtant thing to note here is that each row and column of the element stiffhess
matrix corresponds to each degree of freedom of the element.

9 10 11 12

[ { (]
L ’ 2 3 4 K, Ky

~3
@0

K27 K26

P ; I’ KE] - K33 K37 K36
: SYM K,, K

7 3 Koo

Figure 2.15: Element stiffness matrix in terms of global degrees of
freedom

The assembly process can now be demonstrated using the stiffness matrices
expressed in terms of the global degrees of freedom. Figure 2.16 shows a simple
mesh containing two elements and the degree of freedom numbers. The stages of
Figure 2.16 show the complete assembly of the global stiffness matrix for this
simple mesh. It should be noted that there is some re-ordering of the terms due to
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differences between the standard element numbering and the degree of freedom
numbering. In addition, the terms in the global stiffness matrix corresponding to
the degrees of freedom which are common to more than one element arise from
summing the contributions from the respective elements. For degrees of freedom
occurring in only one element there is only one term assembled into the global

stiffness matrix.
1 3 5
L 1 ( 2
2 4 B

a) Two element mesh

—Klll | Kllz l Klla 1 K1l4 l | |
Kll‘ Kll2 K1]4 Kll3 1K712 |K213 | K214 | l
Kzlz K214 K213 N | l K3‘3 l K3]4 | l
Kl, K, ] kL]
K IR N
A A I R N
Stiffness matrix for .
element 1 Global stiffness matrix
b) Assembly of element 1
KKK ke ]
K. K K2 K2 l KZ‘Z ‘ K;3 I K214 , l ) ,
? K324 K}Z KZ l ‘ K3, + K ‘ Ky + K4 |K35 K
RS I B | KKK (K
Kss | st I I |K§5 K3,
. | | K
Stiffness matrix for _ ' )
element 2 Global stiffness matrix

c) Assembly of element 2
Kll K12 Kl3 Kl4

Ky Ky Ky
[K‘]= Ky Ky Kys Ky
¢ K Kis Ky
SYM Ky Ky
K

66

d) Final assembled structure of the global stiffness matrix

Figure 2.16: Assembly procedure for a simple mesh with two
elements
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The structure of the global stiffness matrix becomes particularly important if
efficient use is to be made of the computer storage, as is discussed in Section 2.9.
At this stage, a few points can be made concerning the structure of the assembled
stiffness matrix shown in Figure 2.16d. The non-zero terms in the global stiffness
matrix arise only from the connection between degrees of freedom through the
elements. Thus for each row in the global stiffness matrix, the last non-zero term
corresponds to the highest degree of freedom to which a particular degree of
freedom is connected. This property leads to a global stiffness matrix which is
generally sparse (i.e. the matrix has many zero terms) and banded (i.e. the non-zero
terms are concentrated along the main diagonal).

2.8 Boundary conditions

The final stage in setting up the global system of equations is the application of the
boundary conditions. These are the load and displacement conditions which fully
define the boundary value problem being analysed.

Loading conditions, line loads and surcharge pressures, affect the right hand
side of the global system of equations. If line or point forces are prescribed, these
can be assembled directly into the right hand side vector {AR}. If pressure
boundary conditions are defined, these must first be expressed as equivalent nodal
forces before being added to {AR}. As with the assembly process for the stiffness
matrix, the assembly of the right hand side vector is performed with respect to the
global degree of freedom numbering system. Body forces also contribute to
{AR}, as do the forces from excavated and constructed elements. These boundary
conditions are discussed in greater detail in Chapter 3.

Displacement boundary conditions affect {Ad},;. The equation corresponding
to the prescribed degree of freedom (displacement component) must be effectively
eliminated during the solution process, see Section 2.9. In all cases sufficient
displacement conditions must be prescribed in order to retain any rigid body modes
of deformation, such as rotations or translations of the whole finite element mesh.
Ifthese conditions are not satisfied, the global stiffness matrix will be singular and
the equations cannot be solved. For two dimensional plane strain problems at least
two nodes must have a prescribed displacement in the x direction and one node a
prescribed displacement in the y direction, or, alternatively, two nodes must have
a prescribed displacement in the y direction and one node a prescribed
displacement in the x direction.

2.9 Solution of global equations

Once the global stiffness matrix has been established and the boundary conditions
added, it mathematically forms a large system of simultaneous equations. These
have to be solved to give values for the nodal displacements {Ad},. There are
several different mathematical techniques for solving large systems of equations.
Most finite element programs adopt a technique based on Gaussian elimination.
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However, for three dimensional problems iterative techniques may be more cost
effective, see Chapter 11.

To illustrate the Gaussian elimination technique, one particular method of
solution is described. In this approach the stiffness matrix is stored as a “sky line
profile’ and inversion of the stiffness matrix follows a triangular decomposition.
It should be noted, however, that other procedures are available (Crisfield (1986)).

2.9.1 Storage of the global stiffness matrix

Because of the sparse and banded nature of the stiffness matrix it is not necessary
to store the complete stiffness matrix. Reductions in storage can be obtained by
taking into account the symmetry of the matrix and only storing the diagonal and
upper triangle of terms. This reduces the storage space by almost a hglf. As an
example, Figure 2.17 shows the structure of the global stiffness matrix and the
terms which need to be stored for a simple finite element mesh composed of four
4 noded elements. Again, for simplicity, it is assumed that there is only one degree
of freedom at each node.

12345678 9_

7 8 9 1/XX0XX 0000
J‘ 2] XXXXXO00 0

3 X 0XX00 0

4 XX 0XX 0

4 5 6 5 XXX XX
6| SYM X 0X X

l 7 XX 0

8 X X

! 2 3 9L X

a) Finite element mesh (1 DOF per node) b) Zero, Non-zero structure of [K]

Figure 2.17: Structure of the global stiffness matrix

1 23 45678 9, _123456789
1|l XX 0 XX 1
2 XX XXX 2
3 X 0XX0 3
4 XX 0XX 4
5 XXX XX 5 XXX XX
61 SYM X 0X X 6| SYM X 0X X
7 XX 0 BANDWIDTH 7 XX 0
8 X X 8 X X
9L X 9L X

Figure 2.19: Column-

Figure 2.18: Diagonal band
profile structure of [Kg/

structure of [Kg]

As pointed out in Section 2.7.1, the global stiffness matrix has a diagonal band
structure, see Figure 2.18. The last non-zero term in any row corresponds to the
highest degree of freedom number to which a particular degree of freedom is
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connected through an element. For example, the last non-zero term in row 4
corresponds to degree of freedom 8 and it is seen in Figure 2.17 that degree of
freedom 8 is the highest degree of freedom to which 4 is connected. Counting for
each column the number of terms above the diagonal term up to the last non-zero
term (column height) and taking the maximum value of this quantity over all the
columns, gives the bandwidth of the matrix. It is clear from Figure 2.18 that the
bandwidth measured column-wise is the same as measured row-wise and in this
example equals 5. An efficient compact storage scheme based on the band structure
is shown in Figure 2.18. In this case the stiffness matrix is stored row-wise as a two
dimensional array and the number of columns in the array is equal to the
bandwidth. Alternatively, the stiffness matrix could be stored column-wise, but this
has no effect on the storage requirements or the equation algorithm.

The band storage shown in Figure 2.18 requires space for a number of zero
terms which are contained within the band. Many of these terms are not required
by the solution algorithm and remain zero throughout the solution process; hence
they need not be stored. The most efficient storage scheme is based on the column-
profile shown in Figure 2.19. The column-profile contains the terms in each
column from the diagonal up to the last non-zero term and may contain zero terms
within the profile. Comparing Figures 2.18 and 2.19, it can be seen that the
column-profile scheme is essentially a variable bandwidth storage and the zero
terms between the profile and diagonal band are omitted. The zero terms within the
profile are essential in the solution algorithm and the storage locations normally
contain non-zero terms at the end of the solution process, see Section 2.9.2.

As noted above, the bandwidth for any degree of freedom is the difference
between the highest degree of freedom connected through an element to that
degree of freedom, and the degree of freedom itself. This difference therefore
depends on the way the degrees of freedom are numbered. There are several
algorithms available for renumbering the degrees of freedom to minimise the
bandwidth (Cuthill and McKee (1969), Gibbs et al. (1976), Everstine (1979)).

2.9.2 Triangular decomposition of the global stiffness matrix
The solution technique associated with the column-profile storage scheme is based
on a triangular decomposition of the global stiffness matrix. Formally, this
decomposition reduces the stiffness matrix to the following matrix product:

[%6]= {L][DM][L]T 231)

where [L] is a lower triangular matrix of the form:

1
Ly 1 (2.32)

-

.l.‘nl .1;)12 .L-nB : i.
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and [DM] is a diagonal matrix:

[DM] = D, (2.33)

n

In this section explanation is given of how the terms of [L] and [DM] are
derived from the terms of [K,;], and how [DM] and [L]" overwrite the diagonal and
off-diagonal terms of [ K], respectively, within the column-profile storage scheme.
To illustrate the process, a full » x n symmetric matrix will be considered:

Kll K12 Kl3 Kln

Ky Ky ... Ky,

[K]= Ky ... K, (2.34)

K

hn

Using the triangular factors defined by Equations (2.32) and (2.33) and forming
the matrix product given by Equation (2.31), transforms the [K] matrix into the
following form:

Dl LIZDI LI3DI o LlnDl
LfZDl +D2 L13L12D] +L23D2 o LlnLIZD] +L2)1D2
[K]: L%f&Dl +L223D2+D3 Hd LlnLl3Dl +L2nL23D2 +L3nD3
L%HDl + LénDZ + LinDS +"'+Dn

(2.35)
In order to determine the terms of the triangular factors [DM] and [L], the terms
of the matrix [K] given in Equations (2.34) and (2.35) need to be equated. The
order in which these equations are then solved characterises a number of different
solution algorithms. Some algorithms solve the equations by following the terms
in the rows of [K], some follow the columns of [K] and others modify all the terms
of [K] successively. Essentially, all these algorithms are equivalent and require the
same number of arithmetic operations. However, the column-wise technique has
certain advantages in that a smaller number of intermediate terms need to be
evaluated, consequently reducing the time of the calculation. The set of equations
to be solved is listed below:

D = Kn
L, = K,/D

2
Dz = Kzz - LD,

= K13 /Dl
= [K23 - L13L12D1]/D2

w

o~
2
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Dy = Ky~ L?3D1 - LizDz

L, = K, /Dl
L, =Ky, ~ L, L,]1/D, (2.36)
Ly, = [K3n - LlnLBD] - LGLzzDz]/D3

D, = Krm_L%nD] _LgnDZ_LinD3w"‘—L2 D

‘n-tn*"n-1

Each term of [DM] and [L] is obtained in sequence, using values of [K] and
values of [DM] and [L] which are previously determined. Hence, it is easy to see
how the values of [K] can be overwritten by [DM] and [L). Finally, the upper
triangle of the stiffness matrix will contain the terms:

D L, Ly ... L
Dy Ly .. Ly,

L
I~
g

[K]= 237

For the maximum efficiency there is some advantage in carefully ordering the
computations in each column. These are performed in three stages: firstly, the off-
diagonal terms are modified by an inner product accumulation; secondly, the off-
diagonal terms are divided by a corresponding diagonal term and, thirdly, a new
diagonal term is found. This is shown in the set of Equations (2.36).

2.9.3 Solution of the finite element equations

Having determined the triangular factors [DM] and [L] of the global stiffness
matrix [K], the solution of the finite element equations can be performed in three
stages. The process solves Equation (2.30), now written in the form:

(L] oM] L] {ad) = {AR) (2.38)

where {Ad} is the vector of unknown degrees of freedom and {AR} is the right
hand side vector of prescribed nodal forces. Setting

{Ad") = [DM][L]T{Ad} (2.39)
the first stage of the solution process finds {Ad “ as:

{ad"} = [L]{AR) (2.40)
by forward substitution. Then, setting

{Ad') = [L]T{AR} (2.41)
gives: -1

{Ad'} = [DM] { Ad"} (2.42)
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The final stage of the solution process then determines

{ad} = [L]‘T{Ad'} (2.43)
by backward substitution. The three stages of the solution technique are performed
with the triangular factors [DM] and [L], which are stored in column-profile form
in a one-dimensional array. The decomposed stiffness matrix remains unchanged
throughout the solution process and all the calculations are performed on.the right
hand side vector. Hence, the same solution process could be repeated w1th'many
different load vectors, without having to re-decompose the stiffness ma'trlx. Tg
illustrate this solution process, each of the three stages is considered in detail
below.

STAGE 1: Forward substitution
This stage solves a set of equations of the form:

1 Ad" [,
Ly, 1 0 |ladyl | f
L, Ly 1 Adlt =11 (2.44)

L, Ly Ly, - 1||Ad)] \f,

In

which lead, simply by forward substitution, to:

Ad]” — f‘l

Ady = fz_leAdé’

Ady = f3—L,3Ad{’—— L,,Ad] (2.45)
PR

Ad) = f,= X LbdY

Since the terms of [L] are stored in column-profile form, some of the terms
indicated in Equations (2.44) and (2.45) may be outside the column-profile and are
therefore zero. In practice, the forward substitution sums indicated in Equation
(2.45) are only evaluated over the number of terms of [L] within the column-

profile.

STAGE 2: Invert diagonal matrix
In this stage the simple equation is solved:

D Adl)  [Ady
D, 0 Ady|  |Ady
D, Ady =4 Ady (2.46)
0

Cp \Aar| | Adr

which gives:
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Adl = Ad'/D,
Ad; = Ady/D,
Ad] = AdJ'/D, 2.47)
Ad = Ad'/D,

STAGE 3: Backward substitution
Finally, a set of equations is solved, of the form:

I Ly Ly . L,)[ad) (ad;
Lyy ... Ly, ||Ad, Ad}

1 ... Ly, {Ad, p=1Ad! (2.48)
1 ||Ag,| |Aa

which lead, by backward substitution, to the solution:

Ad, = Ad)
Adn-] = Ad);—l - Ln—l,n Adn
Adn~2 = Adr:—2 - Ln—2,n—lAdn—] - Lan}:Adn (249)

Il

Ad, Ad!~ 3 L,Ad,

k=2
The backward substitution sums indicated in Equation (2.49) are only evaluated
over the number of terms of [L] which lie within the column profile.

The solution process described above is extremely efficient and has the
advantage that the decomposed stiffness matrix remains unchanged. This fact is
particularly important for nonlinear problems which are solved by iteration. In this
case successive solution estimates can be obtained by modifying the right hand side
load vector, using a stiffness matrix which needs to be decomposed into triangular
factors only once.

2.9.4 Modification due to displacement boundary conditions

In most finite element calculations displacement boundary conditions are defined
in order to restrict rigid body movements, or to restrain part of the structure. These
conditions imply that certain degrees of freedom are prescribed and the system of
equations:

[Ks{ad),, = {ARq] (2.50)

needs to be modified in order to enforce these conditions. To see the effect on the
system of equations when a particular degree of freedom, for example Ad, is
prescribed, Equation (2.50) is written in the full form (Equation (2.51)). In this
case, the force term AR; becomes unknown and is usually required in the solution
as a reaction term:
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K, .. K, .. K,](Ad) (AR
ko NAg Lo lAR, (2.51)

K/‘l . Kl/ - n J J
K, - K, .. K,||Ad,] |AR,

Since Ad; is prescribed, the /* equation in system (2.51) is not required and can
be replaced by the simpler equation:

Ad; = q, (2.52)
where q; is the prescribed value. In addition, each other equation contains a term
K;Ad, which is also known and can therefore be transferred to the right hand side.
Performing these two operations, Equation (2.51) reduces to :

K, .. 0 .. K,][Ad] [AR-Ka,

0 .1 .0 [Ad,}=JAa; (2.53)
K, .. 0 .. K, ||Ad, AR, - K,a,
Thus the prescribed degree of freedom is taken into account by replacing the
™ row and column in [K;] by zeros, the diagonal term by 1 and updating the right
hand side vector by simple correction terms. This method has the advantage that
the symmetry of the stiffness matrix is not destroyed and, hence, the modifications
can easily be made within the compact column-profile storage scheme before the
solution process. However, this method, as it stands, has two important
disadvantages. The first is that the terms of [ K] are overwritten by 0's and 1's and
hence the value of the reaction force AR; cannot be found later by back
substitution. The second disadvantage occurs for incremental or iterative
techniques where the values of the prescribed degrees of freedom change. In such
cases, the modifications to the right-hand side vector cannot be performed, because
the required terms of [K;] are not saved, and a complete new global stiffness
matrix must be formed at each stage.

The above disadvantages are avoided by a simple modification of the standard
decomposition and solution procedures. First, it is assumed that the stiffness matrix
is effectively replaced by the matrix shown in Equation (2.53). However, the terms
in the /® row and column of [Kg;] are not actually changed. During the
decomposition of [Kg] the terms associated with the j® row and column of [K ] are
skipped over during the calculations (since they are assumed to be zero), and the
remaining columns are decomposed as before. Prior to the solution process, the
right-hand side vector is modified using the prescribed values and the correct terms
from [K;]. Then finally, during the solution process, the 7" row and column of [K;]
are again effectively ignored. This technique clearly allows the reaction forces to
be calculated by simply back-substituting the solution into the appropriate
equations stored within the decomposed [K].
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2.10 Calculation of stresses and strains

Once the global equations have been solved and values of the nodal displacements
obtained, secondary quantities, such as stresses and strains, can be evaluated.
Strains can be found using Equation (2.11) and these can then be combined with
the constitutive matrix, [D], to obtain stresses, see Equation (2.17).

2.11 Example

To illustrate the application of the Line of symmetry
finite element method, the boundary ;
value problem of a strip footing on an
isotropic linear elastic soil, as shown |

in Figure 2.20, is considered. The :
footing has a width of 12m and the i ﬁzéf)f o
soil has a Young's modulus £ = 10000 |

kN/m?, and a Poisson's ratio u = 0.4.

As there is a vertical plane of

symmetry through the centre of the

footing, the finite element analysis

needs to consider only half of the Figure 2.20: Footing problem

Footing

problem.

The finite element mesh used to
analyse this problem is shown in | pasting [AF=AF0
Figure 2.21. It consists of 42 eight B Fﬂ
noded isoparametric elements. Only I
the soil is discretised into finite | by 4
elements. The foundation is A,FAFﬁOW Au=AF =0
represented by appropriate boundary '
conditions. As it is necessary to g d
analyse a finite domain, the mesh \ \\
extends 20m horizontally and 20m b K
vertically. - o

With finite element analyses, it is
necessary to specify an x (horizontal)  Figure 2.21: Finite element mesh
and y (vertical) boundary condition at for strip footing problem
each node on the boundary of the
mesh. This boundary condition can be either a prescribed nodal displacement or
a nodal force. For the strip footing problem, it is assumed that both the
displacements Au and Av, in the horizontal and vertical directions, are zero for all
nodes along the bottom boundary of the mesh, see Figure 2.21. Consequently
nf)dal reactions (forces) will be generated in both the horizontal and verticai
directions as aresult of the analysis. On the vertical side boundaries, the horizontal
displacement, Aw, and the vertical force, AF,, have been assumed to be zero. The
AF, =0 condition implies that there can be no vertical shear stress on these
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boundaries and the nodes are, therefore, free to move in the vertical direction.
Horizontal reactions will, however, be generated at the nodes as a result of the
analysis. Along the top boundary of the mesh, from the edge of the strip footing
to the right hand side boundary, both the vertical, AF),, and horizontal, AF,, nodal
forces are assumed to be zero. This implies a stress free surface which is free to
move both vertically and horizontally.

The boundary condition applied to the mesh boundary immediately below the
position of the strip footing depends on whether the footing is rigid or flexible
and/or smooth or rough. Three different alternatives for this boundary condition
are shown in Figure 2.22.

Fooling J Footing Footin
Av=-10mm AF,=0 AF=AF=0 Av=-10mm Au=0 AF=AF=0 AF,=-100kPa AF, = 0 AF=AF=0
At x B . S— 4————’4—-——~4
Au=AF=0 Au=AF=0 Au=AF=0
a) Smooth rigid footing b) Rough rigid footing ¢) Smooth flexible footing

Figure 2.22: Footing boundary conditions

In Figure 2.22a the footing is assumed to be rigid and smooth. Consequently,
avertical displacement of 10mm (downward) and AF,=0 is prescribed at each node
beneath the position of the footing. In Figure 2.22b the same vertical displacement
boundary condition is applied, but instead of the horizontal force being zero, the
horizontal displacement Au = 0. This models a rough rigid footing. In both the
above cases a rigid footing is simulated by applying a uniform vertical
displacement to the footing. In Figure 2.22¢ a uniform surcharge pressure is
applied via the vertical nodal forces, AF,, to the nodes beneath the position of the
footing. In addition, the horizontal nodal forces, AF,, are assumed to be zero.
These boundary conditions therefore model a smooth flexible footing.

It should be noted that many finite element programs do not require that the
user specifies an x (horizontal) and y (vertical) boundary condition at each node on
the boundary of the mesh. In such a situation, the program will make an implicit
assumption. Usually, if' a boundary condition is not prescribed, the program will
assume that the appropriate nodal force is zero. For example, if only a vertical
displacement is specified at a particular node, the program will assume the
horizontal force AF, = 0.

Analyses with all three of the footing boundary conditions given in Figure 2.22
have been performed. The surface settlement profiles predicted by these analyses
are compared in Figure 2.23. To aid comparison, the vertical settlement, Av, has
been normalised by the settlement under the centre of the footing, Av,,.. The
settlement profiles for both the smooth and the rough rigid footings are very
similar.
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The analytical solgtion for a S
smooth flexible footing on an o x - coordinate
isotropic elastic half-space predicts o( 2 10 M _
that the vertical displacements are .| ‘
infinite. However, finite values are
predicted by elastic theory if the
elastic material has a finite depth. For
the situation analysed above, the
analytical prediction of the vertical
settlement at the edge of the footing is
0.057m. This compares favourably .
with the finite element prediction of Figure 2.23: Ground surface
0.054m. Finite element predictions settlements
closer to the analytical solution can be obtained if a more refined mesh is used.

Vectors of ground movement predicted by the finite element analysis of the
rough rigid footing are shown in Figure 2.24. These vectors indicate the
distribution of movements within the elastic soil. The contours of the major
principal stress, Agy, are shown in Figure 2.25.
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~a—a-  Smooth rigid footing

Rough rigid footing
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[ / \\ ——b—— 16kPa
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Figure 2.24: Vectors of Figure 2.25: Contours of
ground movement principal stress

2.12 Axi-symmetric finite element analysis

In the preceding discussion a plane strain situation has been assumed when
developing the finite element equations. The basic procedures are, however, similar
for plane stress, axi-symmetric and full three dimensional situations.

As discussed in Chapter 1, several geotechnical problems can be idealised as
axi-symmetric, e.g. axially loaded piles and circular foundations. In this type of
problem it is usual to adopt cylindrical coordinates » (radial direction), z (vertical
direction) and @ (circumferential direction), F igure 2.26, as opposed to the
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Cartesian coordinates used for plane strain analysis. r
There are four non-zero stresses (g, , 0., 0y and 7,.),
four non-zero strains (¢, , €, , & and y,.), and two
displacements (z and v) in the r and z direction,
respectively. The development of the finite element
equations is very similar to that presented for plane 2
strain situations.

The problem is discretised into finite elements in
the r-z plane. If isoparametric elements are used, the Figure 2. 26: Cylindrical
geometry of the elements is expressed using coordinates
Equation (2.7), with » and z replacing x and y
respectively. As with plane strain problems, the nodal degrees of freedom are the
displacements z and v. The formulation of the element equations follows the
procedure outlined in Section 2.6, but with Equation (2.10) replaced by:

Ag, = _ oAy ; Ag, = ”___8(;&\)) ; Ay = _Au
/4

Lo r (2.54)
o(Av) o(Au) | _ B
= A8y ALY Ay, =Ay,=0
A or oz Vro Vzo
Equation (2.11) replaced by:

N TiAu

WMy N N o i

or or or !

Ag, N, N, o N, A,
Aé'z _ ‘g— az .......... ——az sz (255)

Ay, ON, O8N, ON, ON, ON, ON, il....

Ag, & o oz or 77 oz o ||

Mooy Moy Ny | Am

L 7 ¥ I i Avn

all references to x and y replaced by » and z, respectively, and the thickness ¢ in
Equations (2.27) and (2.28) replaced by 2nr. The assembly and solution of the
global equations follow the procedures described in Sections 2.7 to 2.9.

The application of the finite element method to three dimensional problems is
discussed in Chapter 11.

2.13 Summary
1. The finite element method involves the following steps:
- Element discretisation;
- Selection of nodal displacements as primary variables;
. Derivation of element equations using minimum potential energy;
- Assembly of element equations to form global equations;
- Formulation of boundary conditions (nodal displacements and forces);
- Solution of global equations.
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2. For geotechnical analyses triangular or quadrilateral elements with curved sides
are usually employed.

3. Isoparametric elements are popular. In this formulation, both the element
displacements and element geometry are expressed using the same interpolation
functions which are expressed in terms of natural coordinates.

4. Numerical integration is used to establish the element stiffness matrix.
Consequently, stresses and strains are usually output at integration points.

5. The global stiffness matrix is symmetric if the constitutive matrix is symmetric.
The global stiffness matrix is also sparse and banded. These properties are used
to develop efficient storage algorithms.

6. Gaussian elimination is usually adopted to solve (invert) the global stiffness
matrix. This can involve triangulation of the matrix.

7. Care must be taken when dealing with prescribed displacements.

8. Stresses and strains are secondary quantities which are calculated from the
nodal displacements.

Appendix Il.1: Triangular finite elements

I1.1.1 Derivation of area coordinates

Derivation of shape and interpolation functions for triangular elements is shown
using the example of the three noded element, presented in Figure II.1. The
position of an interior point P, in global coordinates x and y, is determined by the
vector F

F=xi+yj=xj +y,j+EC +78, (I1.1)

where: [,/ = unit vectors in global
coordinate system x, y
€, = unit vectors in Jocal
coordinate system ¢, 7
& = gystem of local coordinates
coinciding with two sides
of a triangle. j
If, instead of &, y coordinates, normalized
coordinates are introduced, such as:
L = _Cf— s Ly = /A
13] } 132
where /;, and [y, are the lengths of sides 3,1
and 3,2 of the triangle in Figure II.1, then
new coordinates I, and L, vary only between 0 and 1. Equation (II.1) can now be
written as:

>

€

Figure Il.1: Three noded
triangular element

F=20 +yy) + 1, LE +1,L,E, (I12)

When /e, and /,,¢; are expressed in terms of global coordinates, i.e:
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Iye, = (x, - x3) i +(» —J’3)j

1,6, = (%, = x3) i+ (¥, ‘ya)j
then vector 7 becomes:

F=[Lx, + L, + (1= L, = L)x, 11 +

. (11.3)
[Ly + Ly, +(-1L - Lz)y3]J
The link between coordinates x and y and L,, i=1,2,3, is therefore:
x=Lx +Lyx, + Lyx, (11.4)

y=Liy+ Ly, + Ly,
where L,=1-L,-L,.
All three coordinates L, i=1,2,3, vary between 0 and 1 and represent

interpolation functions, N;, of a three noded triangle:
3

x=3% Nx;
! (I1.5)

The geometric meaning of these coordinates can be obtained by manipulating
Equation (I11.4), which can be written in the form:
X X%, XL

x
ye=\y ¥ ¥R (11.6)
1 1 1|4

Inverting Equation (I1.6) gives expressions for coordinates L;, i=1,2,3, in terms of

global coordinates:
L 1 (% b ¢ (1
Lyy=—/a, b, c,8x (IL.7)

L Aa3 by o |V

or
1 .

L =—/(a+bx+cy) , i=123 (11.8)
TR y

In Equation (I1.7), A is the determinant of the system of Equations (I1.6) and it can
be shown to represent the area of a triangle in Figure II.1. Parameters «;, b; and ¢;

are:
Q=X Y3 = X3y, Gy =XV XY A3 = XY, X)),

b=y, -y b=y~ b=y, -y, (11.9)
€ =X, — X, € =X =X, ¢y =X, — X

It can also be shown that the nominator in Equation (I1.8) represents areas of the
three triangles, marked as 1, 2 and 3, in Figure I11.2.
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Therefore the geometric interpretation
of the coordinates L,, i=1,2,3, is that they
represent the ratio of the area, 4,, of the
appropriate triangle, 1, 2 or 3, and the
total area of the element, 4; 3(0,0,1)

X

L=20 =123 (I.10)

Consequently, they are named ‘area

coordinates’. . .
Figure 11.2: Area coordinates of a

triangular element
[1.1.2 Isoparametric formulation
In the same way as for quadrilateral 7
elements, the isoparametric formulation is 301
also used for triangular elements. Figure
I1.3 shows a three noded isoparametric
parent triangular element and its global
derivative. The parent element is a right

angled triangle, in natural coordinates 7 100 20 s )

and S, where 0<T<1 and 0<S<1. Parent element Global element
Interpolation functions N, , i=1,2,3, .

can now be expressed in terms of natural Figure 11.3: Isoparametric

coordinates S and T as: triangular element

N=1-§S-T |
N,=§ (L11)
Ny=T

For higher order 6 noded triangular elements, Figure 11.4, it can be shown that
the interpolation functions become:

L
Mid - side nodes:
N,=4S(1-S-T) N
N, =48ST 6
N,=4T(1-8-T) 5
11.12 1
Corner nodes: ( ) 4
N, =1-8S-T x
N,=8
Ny,=T Figure /l.4: Six noded

triangular element

Figure IL.5 shows the location of Gauss integration points for a triangular
element for 3 and 7-point integration.
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T 1 T
6 5
1 1 4 .
S S
§:=0.16666 T=S, $=0.10128 T=S,
§:=0.66666 T,=S, 5,=0.79742 T=S,
S=S, T=S, $=S, T=S,
S=0.47014 T=S,
S5=S, T=S,
S.=0.05971 T=S,
§:=0.33333 T/=S,

Figure 11.5: Gauss integration points for
triangular element

3. Geotechnical considerations

3.1 Synopsis

This chapter discusses the enhancements that must be made to the standard finite
element theory, to enable realistic analysis of geotechnical problems to be made.
The modifications required to enable pore fluid pressures to be calculated in
undrained analysis are described. Special finite elements that can be used to model
structures and their interface with the ground are presented. Finally, a whole array
of boundary conditions that are relevant to geotechnical analysis are described. By
the end of this chapter the reader should have sufficient information to be able to
formulate linear finite element analysis of a wide range of geotechnical problems.

3.2 Introduction

In the preceding chapter the finite element theory for linear materials was
described. As presented, the theory is applicable to the analysis of any linear elastic
continuum. However, as it stands, there are severe limitations to its application in
geotechnical engineering, and without additional refinements only a very small
range of problems can be tackled. In particular, the constitutive behaviour is
formulated as a relationship between changes in total stress and strain, whereas in
geotechnical engineering it is usual to split the total stress tensor into effective
stresses and pore fluid pressures. It is also common practice to express the
constitutive behaviour in terms of effective stress parameters. Clearly, some
modifications to the standard theory are necessary for this to be accommodated.

Many geotechnical problems involve the interaction between structures and
soil. Consequently, in finite element analyses of these problems it is necessary to
model both the structure, the ground and the interface between them, see Figure
3.1. For example, when analysing tunnelling problems it is important to
realistically model the tunnel lining and its interface with the soil. If the lining is
of the segmental type, it will also be necessary to realistically model the interfaces
between the segments. In many cases this involves the use of special finite
elements in addition to the continuum elements described in Chapter 2.

In Chapter 2 only displacement, line loads and surface surcharge boundary
conditions were discussed. For structural engineering applications these boundary
conditions are sufficient to analyse a wide range of problems. However, for
geotechnical engineering a much wider range of boundary conditions is required
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brons/ )
Propsx \
o O <

a) Tunnels b) Propped wall

¢) Anchored wall
Figure 3.1: Examples of soil-structure interaction

if realistic analyses are to be performed. For example, many geotechnical problems
involve excavation and construction, see Figure 3.2. Many also involve changes
in pore water pressure. Special boundary conditions are often required to model
soil structure interaction.

This chapter describes how the above conditions can be accommodated in finite
element analyses. Their application in specific geotechnical problems is discussed
in Volume 2 of this book.

X [ R

o7 Tobe -, A To be
.7 conmstructed "~ excavated

e ~_ |

b) Basement excavation

a) Embankment construction

Figure 3.2: Examples of construction and excavation

3.3 Total stress analysis
In Chapter 2 the soil constitutive behaviour was expressed in the simple form:

{A o} = [D]{a &} (3.1)

where {Ac}=[Ac,, Ad,, Ad,, Aty, AT, At,]" and {Ae}=[Ag,, Ag), Ac:, Ay, Ay
Ay,.]" are the incremental total stress and strain vectors and [D] is thg assumed
relationship between these vectors. For the present considerations, [D] is assumed
to be the isotropic linear elastic matrix, given in Section 1.5.5 of Chapter 1.
Alternative constitutive matrices will be discussed in Chapters 5, 6, 7 and 8. As
noted in Chapter 1, it is necessary for Equation (3.1) to provide a relationship
between increments of total stress and strain, because the equilibrium equations are
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expressed in terms of total stress. The finite element formulation presented so far
can therefore be used to analyse the following two classes of problems:

- Fully drained problems in which there is no change in pore fluid pressure, Ap,
= (. This implies that changes in effective and total stress are the same, i.e.
{Ac'}={Ac}, and that the [D] matrix contains the effective constitutive
behaviour. For example, for isotropic linear elastic behaviour [D] will be based
on a drained Young's modulus, £’, and drained Poisson's ratio, '

- Fully undrained behaviour in which the [D] matrix is expressed in terms of
total stress parameters. For isotropic linear elastic behaviour [D] is based on an
undrained Young's modulus, £,, and an undrained Poisson's ratio, 4, .

In the second class of problems, if the soil is saturated there would be no
volume change. For an isotropic elastic soil this would be modelled by, ideally,
setting the undrained Poisson’s ratio, 4, , equal to 0.5. However, as can be seen by
inspection of the isotropic linear elastic [D] matrix given in Section 1.5.5, this
results in severe numerical problems as all terms of the [D] matrix become infinite.
To avoid such indeterminate behaviour it is usual to set the undrained Poisson’s
ratio to be less than 0.5, but greater than 0.49.

To illustrate the effect of a high
Poisson's ratio, a smooth flexible strip
footing resting on an isotropic elastic g :
layer of soil of finite depth has been )
analysed, using the finite element 100m
mesh shown in Figure 3.3a, for a 2 Finie clement mesh
range of Poisson'sratios. The analyses
are similar to those discussed in 101 — e Double precission

10m

» B | —% Single precissi
Section 2.11, except that the mesh 58 [ “w roiesqoey
. g; s
contains more elements and has a |
greater lateral extent. This enables %% b
more accurate solutions to be £5 sr
go

obtained. The boundary conditions ® *f
301

are the same as in Section 2.11. The 2 A
. . 1c007 1006 le005 00001 0001 001 0.1 1 =05

surcharge loadmg on the footmg was 0.4999999 0.499999 0.49999 0.4999 0499 049 0.4 =p

100kPa and the Young's modulus of b) Settlement under the corner of strip footing vs. Poisson's ratio

the soil £'=10000 kPa. Analyses were

performed with Poisson's ratio, u, Figure 3.3: Effect of Poisson’s ratio
ranging from 0 to 0.4999999. Two  on the behaviour of a smooth
sets of analyses were performed, in flexible strip footing

one set single, and in the other double

precision arithmetic was used. For single precision arithmetic seven significant
figures are used to represent real numbers, while in double precision fourteen
significant figures are used. Clearly, double precision arithmetic is more accurate
than single precision. The vertical settlement of the ground surface at the edge of
the strip footing is plotted against the value of Poisson's ratio in Figure 3.3b.




58 / Finite element analysis in geotechnical engineering: Theory

Also shown in Figure 3.3b, for comparison, are results from Poulos (1967) for
u=0,0.2,0.4 and 0.5. These have been obtained using the graphs given in the
paper, which are based on numerical integration of the basic elastic solution for a
point load. The results are, therefore, approximate. Overall, the predictions from
the finite element analyses agree well with those of Poulos.

Results from the finite element analyses using double precision arithmetic
indicate that once Poisson’s ratio exceeds 0.499, the value has little effect on the
prediction, which itself is in good agreement with that given by Poulos for #=0.5.
For the analyses with single precision arithmetic it was not possible to invert the
stiffness matrix for Poisson’s ratios greater than 0.49999, due to numerical
instability (i.e. a negative pivot occurred during the inversion process). In addition,
although a solution was obtained for x4 = 0.49999, it is in error, see Figure 3.3b.

These results show that, for this problem, if a value of Poisson’s ratio y = 0.499
is used, the results would be very similar to that for u = 0.5 The results also show
that the maximum value of 4 that can be tolerated without numerical instability
depends on the precision of the arithmetic. In this respect it should be noted that
most finite element software use double precision arithmetic. The maximum value
of u that can be used also depends on the algorithm used for inversion of the global
stiffness matrix and is also problem dependent. Consequently, there are no hard
and fast rules available as to the exact value of u that should be used to represent
undrained conditions. Some texts suggest using a value of x = 0.49 to represent
undrained conditions. As can be seen from Figure 3.3b this would result in a
modest error for the smooth flexible strip footing under investigation.

Another difficulty that arises with the analysis of nearly incompressible
materials (¢ ~0.5) is that, for many problems, predictions of changes in mean stress
(= (As,+Ao,+Ad;)/3) can have large errors. This problem is discussed in detail by
Naylor (1974), who shows that accurate results can be obtained by using reduced
Gaussian integration (see Section 2.6.1) and by using stress values sampled at the
integration points.

3.4 Pore pressure calculation
The results from the undrained analysis considered above are in terms of changes
in total stress. No information is provided on changes in pore fluid pressure.
However, in many situations the changes in pore fluid pressure are required. It is
also more convenient to express the constitutive behaviour in terms of effective
stress parameters. This is particularly valid for the more advanced constitutive
models, see Chapter 8. It would therefore be advantageous if undrained analyses
could be performed considering both the changes in effective stress and pore fluid
pressure and using a [D] matrix which is expressed in terms of effective stress
parameters. This can be done by invoking the principle of effective stress.
Consider the application of a load which causes a local change in total stress,
{Ac}, and change in strain, {A¢}, in an element of soil. If there is no drainage, an
excess pore fluid pressure, Apy, is established. The principle of effective stress
requires that:

-
i1
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where: {AG} - {AOJ} +{Aaf} (3.2
{ac,}={ap, ap; ap, 0 0 o) (3.3)

Since the solid and fluid phases of the soil deform together in the undrained
condition (i.e there is negligible relative movement between the two phases), the
strains, in the macroscopic sense, are the same in each phase. Relating the stress
components of Equation (3.2) to strain gives, in addition to Equation (3.1):

{Aa'} = [D’]{Ag} (3.4)

{ao,} = [D/]{Ae] (3.5
Substituting Equations (3.1), (3.4) and (3.5) into Equation (3.2) gives:

2] - [p]+[2/] 6

Equation (3.6) provides a relationship between the stiffness in terms of total stress,
[D], the stiffness in terms of effective stress, [D'], and the pore fluid stiffness, [Dy].
This last matrix, [Dy], is related to the bulk modulus of the pore fluid, X, which is
treated as a single phase. Two phase pore fluids, as occur in partially saturated
soils, can be included by a suitable choice of K. Since a fluid cannot transmit
shear, it is apparent from Equation (3.5) that [D] has the form (for the general
three dimensional stress situation):

_ 13 03
(2] K{% Oj (3.7
in which K, is a constant, 1, is a 3 x 3 matrix all elements of which are 1, and 0, is
a 3x3 null matrix. It is shown below how the equivalent bulk modulus of the pore
fluid, K, , is related to K. This follows from Naylor (1974).

If » is the soil porosity then, in a unit volume of soil, the pore fluid occupies a
volume # and the solid soil particles a volume 1-#. Let K, be the bulk modulus of
the solid soil particles. An increment in pore fluid pressure, Ap, causes
compression in both the pore fluid and the solid soil particles. The associated
increment in effective stress, {A¢'}, also causes, in general, a volume change in the
solid soil particles. However, as this stress must act through the particle contacts,
which have a small area, this volume change is likely to be small. If it is assumed
that this volume change is negligible, the total volume change per unit volume of
soil, Ag,, is given by:

_n (1-n)
AE‘,——;(—;—Apf-F P Ap, (3.9)

Substituting Equation (3.7) into (3.5) gives three identical equations:

or Ap, = K (Mg, +Ag, +Ag,)= K Ag,
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Ap,
Ag, = i (3.9)
Equating Equations (3.8) and (3.9) and re-arranging gives:
1
K D e et e
N Ul (3.10)
KK

Equation (3.10) can usually be simplified. K, is nearly always very much
greater then the bulk modulus of the soil skeleton (i.e. the bulk modulus of the soil
in the absence of pore fluid). If the pore fluid has a significant compressibility so
that K is also much greater than K, Equation (3.10) then simplifies to:

kX (3.11)

For saturated soils both K, and K, are much larger than the soil skeleton stiffness.
Their exact value may then be unimportant, and it is convenient to assume K,= K.
Consequently, Equation (3.10) reduces to:

K. =K, (3.12)

The above theory is valid for any porous material for which the principle of
effective stress applies and for which incremental [D] matrices (i.e. incremental
stress-strain laws) exist. Consequently, while it is valid for a simple isotropic linear
elastic soil, it is also applicable to the more advanced soil constitutive models
described in Chapters 7 and 8.

It is a straightforward process to combine the above theory with the finite
element method. Instead of specifying the components of the total stress
constitutive matrix, [ D], the components of the effective stress constitutive matrix,
[D'], and the pore fluid equivalent bulk modulus, K, , are specified. The two are
then combined using Equation (3.6) to give [D]. The calculation of element
stiffness, global stiffness assembly and solution of system equations follow the
standard procedure described in Chapter 2. The only other difference occurs when
calculating stresses. Here K, is used to calculate the change in pore fluid pressure,
Ap,, from the predicted volumetric strain, using Equation (3.9), and [D'] is used
to calculate the changes in effective stress, using Equation (3.4). The changes in
total stress can then be found by either summing the effective stress and pore fluid
pressure changes, or by using Equation (3.1). If K, is zero, as in a drained analysis,
the division into pore fluid pressure and effective stress components still occurs,
but the pore fluid pressures do not change during loading,.

When performing an undrained analysis, a value for K, must be set. In the
Authors’ experience, analysis involving saturated soil is unlikely to be sensitive to
the actual magnitude selected, as long as it is large. However, the use of too high
a value can lead to numerical instability. This occurs as the equivalent undrained
total stress Poisson's ratio, 4,, approaches 0.5. The Authors recommend setting X,
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to equal K, , where f8 has a value between 100 and 1000, and K, is the bulk
modulus of the soil skeleton, which can be calculated from the effective stress
parameters forming the [D'] matrix. For an isotropic linear elastic soil it can be
shown that the equivalent undrained total stress Poisson's ratio, p,, is related to the
drained (effective) Poisson’s ratio, 4’ and B by the following equation:

_ _ I+ | B
——— ,where 4=~ 22| 2 P
(1+24) where (1~2y')[(1+u')+ 3} (3.13)

Table 3.1 indicates how u, varies with Bfor u'=0.1and u'=023.

IL lll

Table 3.1: Equivalent values of M,

Hy
p 2'=0.1 1'=0.3
10 0.4520 0.4793

100 0.4946 0.4977

1000 0.4994 0.4998

For analysis involving the time dependent dissipation of excess pore water
pressures, coupled finite element analysis must be performed. Such analyses are
discussed in detail in Chapter 10.

3.5 Finite elements to model structural components
3.5.1 Introduction

Many geotechnical problems involve soil structure interaction, see Figure 3.1.
Therefore, when applying finite element analysis to such problems it is necessary
to include the structural components, e.g. retaining walls, props, anchors, tunnel
linings, foundations etc., in the finite element mesh. In theory, it is possible to use
the 2D continuum elements discussed in Chapter 2 to model these structural
components, but in practice this can have drawbacks. For example, in many
situations the dimensions of the structural elements are small compared to the
overall geometry and therefore, to model them with 2D continuum elements would
result in either a very large number of elements, or elements with unacceptable
aspect ratios.

In many instances the interest is not in the detailed distribution of stresses
within the structural members, but in the distribution of averaged quantities such
as bending moments, axial and shear forces. These can be obtained from the
stresses within the 2D continuum elements, but additional calculations are required.

To overcome these shortcomings, special finite elements have been developed.
These elements are formulated by essentially collapsing one, or more, dimensions
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of the structural component to zero. For example a retaining wall can be modelled
using a beam element which has no width. The element is formulated directly in
terms of bending moments, axial and shear forces and their associated strains.
Consequently, the quantities of engineering interest come directly from the finite
element analysis.

There are several different formulations available in the literature for these
special structural elements. This chapter describes a 3 noded isoparametric curved
Mindlin beam element which was developed by the numerical geotechnical
research group at Imperial College, Day (1990), Day and Potts (1990). This
element was developed to be compatible with the 2D elements described in
Chapter 2. It is therefore isoparametric and uses the same quadratic interpolation
functions as the 2D elements. It can accommodate axial stresses, bending moments
and shear stresses and their associated strains. If used in a plane strain or an axi-
symmetric analysis this element effectively becomes a shell element.

The impetus for developing a new element arose because those that exist in the
literature contain severe deficiencies. In particular, some cannot account for rigid
body movements. These deficiencies and the advantages of the new element are
discussed in detail by Day and Potts (1990).

3.5.2 Strain definitions
The strains for this particular beam element, shown in Figure 3.4, are defined as
follows (Day (1990)):

Axial strain:

duy, w 5
5=-t-tL (3.14) %\g;}
; f da(-ve)
Bending strain: j R
Yo
X = %? (3 . 1 5) 9% %o Note: Angles increase anticlockwise

Shear strain: Figure 3.4: Definition of terms and

:ﬂ_glw_, 9 316 axes
T (3.16)

where / is the distance along the beam, %, and w, are the displacements tangential
and normal to the beam, R is the radius of curvature, and & is the cross section
rotation. The definitions (3.14) to (3.16) are for a compression positive sign
convention.

It is useful to rewrite Equations (3.14) to (3.16) in terms of the displacements
u and v in the global x; and y; coordinate directions. The transformation of
displacements from global to local components is given by:

Y, = vsina+ucosa (3.17)
w, = vcosa-—usina '
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and noting that (Figure 3.4):

do 1 3.18

& R G.18)
gives the following expressions for Equations (3.14) to (3.16) in terms of the
global displacements:

Axial strain: &= —%cosa - %sina (3.19)
Bending strain: _d¢
g 2= (3.20)
du . d
Shear strain: V= qp Sme - —d%cosa +6 (3.21)

While the above strain terms are sufficient for plane strain analysis, additional
terms are required for axi-symmetric analysis, (Day (1990)):

Circumferential _ W sina —u, cosa

u
membrane strain: &y - - (3.22)
Circumferential
. . fcosa
bending strain: Xy = — (3.23)

o

where r, is the circumferential radius, see Figure 3.5, and u and v are re-defined as
the displacements in the directions normal and parallel to the axis of revolution.

3.5.3 Constitutive equation

The strain terms presented above are related to
the element forces and bending moments by the
expression:

{ac) =[D]{as] (3.24)

where {Ae}=[Ae;, Ay, Ay, Ae,, Ay, IT, {AG}=[AF,
AM, AS, AF,, AM,]", with the incremental
components being: AF - the meridional force,
AM - the bending moment, AS - the shear force,
AF,, - the circumferential force and AM,, - the
circumferential bending moment. For plane
strain analysis AF is the incremental in-plane
axial force, AF,, is the incremental out of plane force and Ae,= Ay, ~0.

For isotropic linear elastic behaviour, the [D] matrix takes the form:

Axis of revolution

Figure 3.5: Definition of r,
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EA EAu
(-4 (1-47%)
0 E]2 0 0 EI/JZ
(I-u7) (-7
[p]=| o 0  KGA 0 0 (3.25)
EAu 0 _EA
(1-4%) (- i)
0 EI,uz 0 o EI2
L (-4 (=47 |

The beam (or shell) properties are the moment of inertia, /, and cross sectional
area, 4. In plane strain and axi-symmetric analysis these are specified for a unit
width of the shell. E and u are the Young’s modulus and Poisson’s ratio and & is
a shear correction factor.

The distribution of shear stress across the cross sectional area of a beam (or
shell) in bending is nonlinear. The beam element formulation, however, uses a
single value to represent the shear strain. The correction factor, &, is a factor
applied to the cross sectional area so that the strain energy in the finite element
model, calculated over the area k4, is equal to the actual strain energy over the area
A. The shear correction factor is dependent on the shape of the cross section. For
arectangular section, k=5/6. Bending deflections of slender beams dominate their
behaviour and the solution is very insensitive to the value of £.

3.5.4 Finite element formulation
For finite element analysis the global displacements « and v, and the cross section
rotation, 6, are taken as nodal degrees of freedom. This means that for plane strain
and axi-symmetric analyses there are three degrees of freedom at each node,
compared to the two degrees of freedom for the continuum elements described in
Chapter 2.

The B matrix is defined as:

B,
BZ
v t=|5|{5] (3.26)
B,
B

Zy

where B, represents row i of the B matrix, and J is the vector of nodal
displacements and rotations (i.e. degrees of freedom) defined, for a 3 noded
element in Figure 3.6, as:

s={u v 6 w v, 6 u v 6} (3.27)
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1 3 2
———o—— 9

po U -1 0 +

a) Gobal coordinates b) Natural ordinate

Figure 3.6: Three noded beam (or shell) element

The coordinates and global degrees of freedom at any point on the element are
related to the nodal values using the shape functions, N,. Hence:

3 dx 3
= SNx — = Y N/x
X E X, gs El
3 y _ 3
= N.v. - = N :
y % iYi gs Zl Vi
3
u = SNy, o= N (3.28)
= ds i=1
v = 3Ny v _ iN
’;1 dS i=]
g = %N, _d_é‘ = i]\/g
i=l ds i=1

where the prime denotes the derivative with respect to s. The isoparametric shape
functions are defined by Equation (3.29):

Ny = 2s(s=1)
N, = %s(s+1) (3.29)
Ny = (I-57)

where s is the natural ordinate that varies from
-1 to +1 over the element length (Figure 3.6).
For brevity, it is written that S = sina and C =
cosa, where sina and cosa are calculated from
Figure 3.7 as:

sinag = _.1__ d_y
IJI ds
1 dy (3.30)
cosa = m = Figure 3.7: Transformation

of coordinates
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The determinant of J is calculated as:

|-

2 2
VE (Ex_) +(9X) (G31)
ds ds
Noting also that d/ = |J|ds (see Figure 3.7), the rows of the B matrix are:
B = —l—}-l{CN{ SN 0 CN4SN} 0 CNiSN; 0} (3.32)
B, = {0 0 N; 00N 0O N (3.33)

v

Bs, B, and B; can also be defined in terms of N, and N, However, when such a
formulation is used with full (3x3) integration, membrane and shear force locking
occurs. This is indicated by widely fluctuating axial and shear forces and is a
common problem with beam and shell elements. To overcome this problem a field
consistent approach is used. This is achieved by using substitute shape functions
for some of the terms in the strain equations (Day (1990)). These substitute shape
functions take the form:

- 1.1
= —(—-s
= 5G9
N, = L9 (3.34)
= —(— .0
2 % 3
Nyo= S

They are derived from a least
squares smoothed approximation
to the usual isoparametric shape 1o

Isoparametric shape function
_ __ . Substitute shape function

1.0

. . . ! Reduced !

functions given by Equations I‘g s I/intpl;trationl NO I Resad TN
. - . points | - [ : 1
(3.29). The substitute shape NG I poins .

4 H : . L ~ L ! L
functions coincide with thc? usual R e B . T
isoparametric shape functions at s o

a) End nodes b) Mid-point node

the reduced Gaussian integration
points, see Figure 3.8.

These shape functions are used
for the interpolation of & in
Equations (3.21) and (3.23), of u
in Equation (3.22) and for the calculation of r, in Equations (3.22) and (3.23). The
derivatives of the substitute shape functions are not used. The use of substitute
shape functions for only some of the terms in the strain equations is therefore
equivalent to selective reduced integration of these terms. Additionally, if reduced
(2 point) Gaussian integration is used to evaluate the stiffness matrix, the result is
independent of which shape functions have been used.

Figure 3.8: Substitute shape functions
for 3 noded element
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Using the substitute shape functions, N, , to define the variation of 8 over the
element in the definition of y, gives:

_ CN/! SN!  — CN! SN, — CN! SN —
B, = oy T 2 M2 _ ~
: { 7V v R v R Na} (39

For the circumferential (out of plane) strain terms the current radius, r,,, becomes:

3
v, = ;N,-x,» (3.36)
In the definition of ¢,, B, becomes:
1 — J— j—
B4=—r—0{zv] 00N, 00N, 00 (3.37)
and in the definition of y,,, B; becomes:
C — — —
Bs=r—{o ON,0OON, 00 N3} (3.38)

7]

The element stiffness matrix, [Kg], is given by (see Section 2.6):
&)= 'f h[B]T[D][B] di (3.39)

where [ is the length of the element and the constitutive matrix [D] is given by
Equation (3.25). The integral is evaluated in the natural ordinate system, see Figure
3.6, giving:

2] ] [ a0

while the use of substitute shape functions, as described above, prevents locking
of the solution for straight beam (shell) elements. Locking can still occur with
curved beam elements. The problem can be overcome by using reduced integration
for all strain terms.

3.5.5 Membrane elements

The beam element described above can be degenerated to form another element
which cannot transmit bending moments or shear forces. In plane strain and axi-
symmetric analyses it is a pin-ended membrane element, capable of transmitting
forces tangential to the surface only (membrane forces). It is essentially a spring,
but differs from a spring in that it can be curved and it is treated in the same way
as all other elements in the analysis.

This element has two degrees of freedom per node: the displacements « and v
in the global x,; and y,; directions respectively. In plane strain analysis the element
has only one strain term, the longitudinal strain, ¢, given by:



68 / Finite element analysis in geotechnical engineering: Theory

g,:—%‘lf——l“R—’ (3.41)
In axi-symmetric analysis the additional circumferential strain is given by:
g, =—— (3.42)
These definitions are the same as for beam elements ( Equations (3.14) and (3.22)).

The terms in the constitutive matrix, [D], are equal to the corresponding terms
in the beam element constitutive matrix and are as follows:

EA  Edu
1—-22) (-7 .
[D]= (EAZ) ( 0 (3.43)

(-4 (1=
The finite element formulation is similar to the formulation of these terms for
the beam element, Section 3.5.4. The usual isoparametric shape functions are,
however, used for the interpolation of # and r, in Equation (3.42) (i.e. the substitute
shape functions are not used).
The advantages of using an element of this type as opposed to the use of spring
boundary conditions (which are discussed subsequently in this chapter) are:

- Different behaviour can easily be specified through a constitutive law and an
elasto-plastic formulation. For example, a maximum axial force may be
specified by a yield function, F, of the form: F' = axial force = constant.

- In axi-symmetric analysis, hoop forces can provide significant restraint. These
are included in an analysis by using membrane elements. Spring boundary
conditions do not account for the effect of hoop forces.

Membrane elements are useful for the analysis of soil-structure interaction
problems. A constitutive law that does not allow tension can be used to model pin-
ended retaining wall props that fall out if the wall moves away from the prop after
installation. An element which can only resist tensile forces (i.e. not compression)
can be used to model flexible reinforcing strips, such as geofabrics, embedded in

the soil.

3.6 Finite elements to model interfaces

3.6.1 Introduction

In any soil-structure interaction situation, relative movement of the structure with
respect to the soil can occur. The use of continuum elements, with compatibility
of displacements, in a finite element analysis of these situations prohibits relative
movement at the soil-structure interface, Figure 3.9. Nodal compatibility of the
finite element method constrains the adjacent structural and soil elements to move
together. Interface, or joint elements as they are sometimes called, can be used to
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model the soil-structure boundary such as the
sides of a wall or pile, or the underside of a
footing. Particular advantages are the ability to
vary the constitutive behaviour of the soil-
structure interface (i.e. the maximum wall
friction angle) and to allow differential
movement of the soil and the structure, i.e. slip Figure 3.9: Soil-structure
and separation. Many methods have been interface using continuum
proposed to model discontinuous behaviour at elements

the soil-structure interface, as listed below.

- Use of thin continuum elements with
standard constitutive laws (Pande and
Sharma (1979), Griffiths (1985)), Figure
3.10.

- Linkage elements in which only the
connections between opposite nodes are
considered (Hermann (1978), Frank et al.
(1982)). Usually opposite nodes are
connected by discrete springs, Figure 3.11.

- Special interface or joint elements of either
zero or finite thickness (Goodman er al.
(1968), Ghaboussi ef al. (1973), Carol and
Alonso (1983), Wilson (1977), Desai ef al.
(1984), Beer (1985)), Figure 3.12.

- Hybrid methods where the soil and structure
are modelled separately and linked through
constraint equations to maintain Figure 3.11: Use of springs
compatibility of force and displacement at to model interface
the interface (Francavilla and Zienkiewicz
(1975), Sachdeva and Ramakrishnan (1981 ),
Katona (1983), Lai and Booker (1989)).

Figure 3.10: Use of
continuum elements to
model interface

Among these alternatives, the use of zero
thickness interface elements is probably the most
p}i)pular. Such an element has been developed by
the numerical geotechnical research group at £; . ;
Imperial College, Day (1990). A brief Flgu;,ftj};ai.elss,:;‘:geaa/
description of this element for 2D plane strain
and axi-symmetric conditions is presented in the following sections.

3.6.2 Basic theory

The isoparametric interface element is described by Beer (1985) and Carol and
Alonso (1983). The element (see Figure 3.13) with four or six nodes is fully
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compatible with four and eight noded
quadrilateral, and three and six noded
triangular, isoparametric 2D elements.

The interface stress consists of the
normal and shear components. The
normal stress, o, and the shear stress,
7, are related by the constitutive
equation to the normal and tangential ) 6_noded element b) 4-noded element
element strains, € and y:

A Tl _[ ] Ay s Figure 3.13: [soparametric interface
aof 1Pl ae (3.44) elements
For isotropic linear elastic behaviour the [D] matrix takes the form:
LR 545
=1 o K, (3.45)

where K, and K,, are the elastic shear stiffness and normal stiffness respectively.
The interface element strain is defined as the relative displacement of the top
and bottom of the interface element:

y o= Ay o= u —u® (3.46)
g = Ay, = V' -y*® (3.47)
where:
w, = vsina+ucosa
) (3.48)
v, = vcosa—usina

and u and v are the global displacements in the x,; and y,; directions respectively.

Hence:
bot _

y = (v =v)sing + (™ -u'?) cosa

bot (349)

g = (W v cosa - (™ -u)sina

3.6.3 Finite element formulation
Figure 3.14 shows a six noded interface element. The strains are defined as:

bot top
I U =y o
= .50
{} {} 020

The transformation of local to global displacements is written in matrix form

as (Figure 3.14):
U, cosa sina||u
= . (3.51)
v, —sina cosa |{v
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a) Global coordinates b) Natural ordinate

Figure 3.14: 6 noded interface
element

Substitution into Equation (3.50) gives:
7| | cosa sina 10— gtop
& —sina cosa || vt — ptop (3.52)

The global displacements (u, v) at any point in the element are expressed in
terms of the nodal displacements, using the isoparametric shape functions, N

I

U = Nyu; + N, + N

u* = Nu, + Nou, + N 3:33)
and v = Nov, + Ny, + Ny
ot 373 474 676 (354)
v = Ny, + N,v, + Ny
where the subscript refers to the node number.
The isoparametric shape functions, N,, are defined as:
Ny = N, = 2s(s=1
N, = Ny = Ls(s+1) (3.55)
N, = N, = (1-5%)

where s is the natural ordinate that varies from -1 to +1 over the element length
(Figure 3.14). Substitution of Equations (3.53) and (3.54) into (3.52) gives:

{i} =[B]{5} (3.56)

where 9 is the vector of nodal displacements (degrees of freedom) defined as:

{5}:{ U V) Uy V, Uy V3 U, Y, Us Vs U v()}T (3.57)
and
[B]: cosa sing| N, O N, O -N; 0 -N, O N, 0 -N, 0
—sina cosex|| 0 N O N, O -N; 0 -N, 0O N, 0 =N,

(3.58)
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The element stiffness matrix, [Kg], is given by (see Section 2.6):
[:] = [ 2] [P] 8] (359

where [ is the length of the element and the constitutive matrix [D] is given by
Equation (3.44) or (3.45). The integral is evaluated in the natural ordinate system,

see Figure 3.14, giving:
1 T
K. |=(|B| |D||B||J|ds (3.60)
[x:]= 1] 8] [2]2]]
where |J| is given by Equation (3.31). .

The coordinates of the top and bottom of the interface are defined in terms of
the nodal coordinates, using the shape functions (Equation (3.55)). For §mall
displacement analysis, in which the calculations are based on the original
geometry, coordinates x and y are:

xP = x"™ = Nix, + Nyx, + Nxs

ot (3.61)
Y o=y Ny, + Noyy + Niys

Il

and @
— = Nx, + Njx, + Ngx;
ds (3.62)

d t I3 !
"‘dy = Ny, + Ny, + Ngys
S

where the prime denotes the derivative with respect to s. The trigonometric
functions, sina and cosa, are given by Equation (3.30).

1l

3.6.4 Comments

[t has been found that zero thickness interface elements can suffer from numerical
instabilities if they have widely different stiffnesses from the adjacent continuum
and/or structural beam elements. This problem has been addressed by Day and
Potts (1994).

Zero thickness interface elements also present problems during mesh
generation, because adjacent nodes on each side of the element have identical
coordinates. Problems can also arise where interface elements intersect. An elegant
way of overcoming these problems is presented by Potts and Day (1991).

3.7 Boundary conditions

3.7.1 Introduction

The term Boundary conditions is used to cover all possible additional conditions
that may be necessary to fully describe a particular problem. The types of boundary
conditions can be classified according to their influence on the global system of
equations given by Equation (2.30):
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[Kel{ad},; = {ARs}

The first group of boundary conditions affects only the right hand side (i.e.
{AR}) ofthe system equations. These boundary conditions are loading conditions
such as Point loads, Boundary stresses, Body forces, Construction and Excavation.

The second group of boundary conditions affects only the left hand side (i.e.
{Ad},;) of the system equations. These are kinematic conditions such as
Prescribed displacements.

The final group of boundary conditions are more complex, since they affect the
whole structure of the system equations. These conditions include: Local axes,
which require a transformation of the stiffness matrix and the right hand side load
vector; Tied freedoms, which affect the numbering of the degrees of freedom and
the stiffness matrix assembly procedure; and Springs, which again affect the
stiffness matrix assembly procedure.

The following sections of this chapter describe in detail the boundary condition
options necessary for performing geotechnical finite element analysis. As noted in
Section 2.11, for plane strain (and axi-symmetric) problems it is necessary to
specify an x () and y (z) boundary condition at each node on the boundary of the
finite element mesh. This boundary condition can either be a prescribed nodal
displacement or a nodal force. It should be noted that many finite element
programs do not insist that the user specifies all these conditions. In such a
situation the program makes an implicit assumption for the unspecified nodal
conditions. Usually, if aboundary condition is not prescribed, the program assumes

that the appropriate nodal force is zero.

3.7.2 local axes
In most applications, the degrees of G Global
freedom at each node (e.g. the two I__,“a
nodal displacements for plane strain
or axi-symmetric problems) are
referred to the global system of axes.
Thus, for compatibility, the stiffness
matrices and load conditions are also
determined with respect to the global
axes. However, in order to apply
boundary conditions at an angle to the
global directions, it is sometimes
necessary to define a set of Local axes
at certain nodes. In such cases the
stiffness matrices and load conditions, for the elements containing the nodes with
local axes, need to be transformed.

As an example, Figure 3.15 shows a problem with a sliding boundary
condition. In this case, node 1 is required to move only parallel to the x, direction,

Iy Xy
o
Local axes

Global axes u,, v, are local degrees of freedom

Figure 3.15: Sliding boundary
condition
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