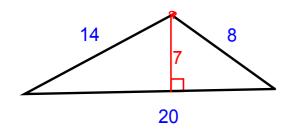
5-6: Area of a Triangle

9/15/16



Standard Area Formula

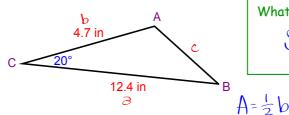
Area = $\frac{1}{2}$ bh

of the dependicular to that side from the opposite vertex

1. Find the Area

$$A = \frac{1}{2}(20)(7)$$
 $A = 70 \text{ units}^2$

2. Find the Area



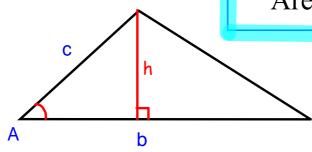
What are we given? SAS

A= 12 bh

What are we missing? height How can we find it? The $4.7 \cdot \sin 20 = \frac{h}{47} \cdot 4.7$

N=4.7.sin 20 $A = \frac{1}{2}bh = \frac{1}{2}(12.4)(4.7.\sin 20)$

RMAL FLOAT AUTO REAL DEGREE MP 9.966466977 A=9.97 units



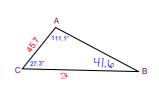
How we came up with this formula:

$$A = 1/2bh$$
find h:
$$sin(A) = h/c$$

$$csin(A) = h$$

$$A = 1/2 bcsin(A)$$

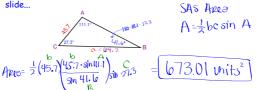
3. Find the Area



to use our SAS Aprez

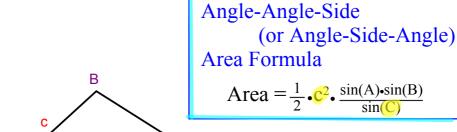
What are we missing? <u>Side</u> How can we find it? to Solve for side a use law of simes

Now that we have SAS, we can use our formula from the previous



How can we streamline this process by making up an equation?

Apre =
$$\frac{1}{2}b^2 \frac{\sin A \cdot \sin C}{\sin B}$$

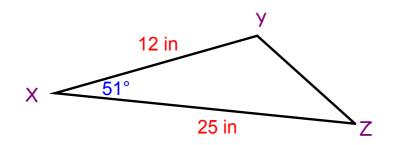


A C

How we came up with this formula: A = 1/2bh sinA = h/c csinA = h A = 1/2 bcsinA $\frac{sinB}{b} = \frac{sinC}{c}$ b c bsinC = csinB $b = \frac{csinB}{sinC}$ $A = 1/2 c \frac{csinB}{sinC}$ sinC

 $A = 1/2c^2 \frac{\sin B \sin A}{\sin C}$

4. Find the Area



Apres =
$$\frac{1}{2}(12)(25)\sin(51)$$

= 116.57 in^2

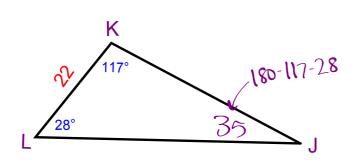
What are we given?

SAS

Which equation should we use?

Apro- 1 bcsin A

5. Find the Area



What are we given?

ASA

Which equation should we use?

Abec =
$$\frac{1}{2}C^2$$
. $\frac{\sin A \cdot \sin B}{\sin C}$

Area =
$$\frac{1}{2}(22)^2 \cdot \sin(28) \sin(17)$$

 $\sin 35$
= $176.49 \text{ unit } s^2$

3 Formulas for finding Area of a Triangle

Standard Area Formula
$$Area = \frac{1}{2}bh$$

Side-Angle-Side Area Formula
Area =
$$\frac{1}{2}$$
bc·sin(A)

Angle-Angle-Side
(or Angle-Side-Angle)
Area Formula

Area =
$$\frac{1}{2} \cdot c^2 \cdot \frac{\sin(A) \cdot \sin(B)}{\sin(C)}$$