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THE UNREASONABLE EFFECTIVENSS
OF MATHEMATICS IN THE NATURAL

SCIENCES
Eugene Wigner

Mathematics,  rightly  viewed,  possesses  not  only  truth,  but  supreme  beauty  cold  and
austere, like that of  sculpture, without appeal to any part of  our weaker nature, without
the gorgeous trappings of  painting or music, yet sublimely pure, and capable of  a stern
perfection  such  as  only  the  greatest  art  can  show.  The  true  spirit  of  delight,  the
exaltation,  the  sense  of  being  more  than  Man,  which  is  the  touchstone  of  the  highest
excellence, is to be found in mathematics as surely as in poetry.

- BERTRAND RUSSELL, Study of Mathematics 

There  is  a  story  about  two friends,  who were  classmates  in  high  school,  talking about  their  jobs.
One of them became a statistician and was working on population trends. He showed a reprint to his
former  classmate.  The  reprint  started,  as  usual,  with  the  Gaussian distribution and the  statistician
explained  to  his  former  classmate  the  meaning  of  the  symbols  for  the  actual  population,  for  the
average population, and so on. His classmate was a bit incredulous and was not quite sure whether
the  statistician  was  pulling  his  leg.  "How can  you  know that?"  was  his  query.  "And  what  is  this
symbol  here?"  "Oh,"  said  the  statistician,  "this  is  pi."  "What  is  that?"  "The  ratio  of  the
circumference of the circle to its diameter." "Well, now you are pushing your joke too far," said the
classmate, "surely the population has nothing to do with the circumference of the circle." 

Naturally, we are inclined to smile about the simplicity of  the classmate’s approach. Nevertheless,
when  I  heard  this  story,  I  had  to  admit  to  an  eerie  feeling  because,  surely,  the  reaction  of  the
classmate betrayed only plain common sense. I was even more confused when, not many days later,
someone came to me and expressed his  bewilderment [The remark  to be quoted  was made by F.
Werner when he was a student in Princeton.] with the fact that we make a rather narrow selection
when choosing the data on which we test our theories. "How do we know that, if we made a theory
which focuses its attention on phenomena we disregard and disregards some of the phenomena now
commanding our attention, that we could not build another theory which has little in common with
the present one but which, nevertheless, explains just as many phenomena as the present theory?" It
has to be admitted that we have no definite evidence that there is no such theory. 

The  preceding  two  stories  illustrate  the  two  main  points  which  are  the  subjects  of  the  present
discourse. The first point is that mathematical concepts turn up in entirely unexpected connections.
Moreover,  they often permit  an unexpectedly close and accurate description of  the phenomena in
these connections. Secondly, just because of  this circumstance, and because we do not understand
the  reasons  of  their  usefulness,  we  cannot  know  whether  a  theory  formulated  in  terms  of
mathematical concepts is  uniquely appropriate.  We are in a position similar to that of  a man who
was provided with a bunch of keys and who, having to open several doors in succession, always hit
on the right key on the first or second trial. He became skeptical concerning the uniqueness of  the
coordination between keys and doors. 



Most  of  what  will  be  said  on  these  questions  will  not  be  new;  it  has  probably  occurred  to  most
scientists in one form or another. My principal aim is to illuminate it from several sides. The first
point is that the enormous usefulness of mathematics in the natural sciences is something bordering
on  the  mysterious  and  that  there  is  no  rational  explanation  for  it.  Second,  it  is  just  this  uncanny
usefulness  of  mathematical  concepts  that  raises  the  question  of  the  uniqueness  of  our  physical
theories. In order to establish the first point, that mathematics plays an unreasonably important role
in  physics,  it  will  be  useful  to  say  a  few  words  on  the  question,  "What  is  mathematics?",  then,
"What  is  physics?",  then,  how mathematics  enters  physical  theories,  and last,  why the  success  of
mathematics in its role in physics appears so baffling. Much less will be said on the second point:
the uniqueness of the theories of physics. A proper answer to this question would require elaborate
experimental and theoretical work which has not been undertaken to date. 

WHAT IS MATHEMATICS?  

Somebody once said that philosophy is the misuse of a terminology which was invented just for this
purpose.[This statement is quoted here from W. Dubislav’s Die Philosophie der Mathematik in der
Gegenwart (Berlin: Junker and Dunnhaupt Verlag, 1932), p. 1.] In the same vein, I would say that
mathematics  is  the  science  of  skillful  operations  with  concepts  and  rules  invented  just  for  this
purpose. The principal emphasis is on the invention of  concepts. Mathematics would soon run out
of interesting theorems if these had to be formulated in terms of the concepts which already appear
in  the  axioms.  Furthermore,  whereas  it  is  unquestionably  true  that  the  concepts  of  elementary
mathematics and particularly elementary geometry were formulated to describe entities which are
directly  suggested  by  the  actual  world,  the  same  does  not  seem to  be  true  of  the  more  advanced
concepts, in particular the concepts which play such an important role in physics. Thus, the rules for
operations with pairs of  numbers are obviously designed to give the same results as the operations
with  fractions  which  we  first  learned  without  reference  to  "pairs  of  numbers."  The  rules  for  the
operations  with  sequences,  that  is,  with  irrational  numbers,  still  belong  to  the  category  of  rules
which  were  determined  so  as  to  reproduce  rules  for  the  operations  with  quantities  which  were
already  known  to  us.  Most  more  advanced  mathematical  concepts,  such  as  complex  numbers,
algebras, linear operators, Borel sets - and this list could be continued almost indefinitely - were so
devised that  they are  apt  subjects  on which the  mathematician can demonstrate his  ingenuity and
sense of  formal beauty. In fact, the definition of  these concepts, with a realization that interesting
and  ingenious  considerations  could  be  applied  to  them,  is  the  first  demonstration  of  the
ingeniousness  of  the  mathematician who defines them. The depth of  thought which goes into the
formulation of the mathematical concepts is later justified by the skill with which these concepts are
used.  The  great  mathematician  fully,  almost  ruthlessly,  exploits  the  domain  of  permissible
reasoning  and  skirts  the  impermissible.  That  his  recklessness  does  not  lead  him into  a  morass  of
contradictions  is  a  miracle  in  itself:  certainly  it  is  hard  to  believe  that  our  reasoning  power  was
brought,  by  Darwin’s  process  of  natural  selection,  to  the  perfection  which  it  seems  to  possess.
However, this is not our present subject. The principal point which will have to be recalled later is
that  the  mathematician  could  formulate  only  a  handful  of  interesting  theorems  without  defining
concepts beyond those contained in the axioms and that the concepts outside those contained in the
axioms  are  defined  with  a  view  of  permitting  ingenious  logical  operations  which  appeal  to  our
aesthetic  sense both  as  operations and also  in  their  results  of  great  generality and simplicity.  [M.
Polanyi, in his Personal Knowledge (Chicago: University of  Chicago Press, 1958), says: "All these
difficulties are but consequences of  our refusal to see that mathematics cannot be defined without
acknowledging its most obvious feature: namely, that it is interesting" (p. 188)]. 

The complex numbers provide a particularly striking example for the foregoing. Certainly, nothing
in our experience suggests the introduction of these quantities. Indeed, if  a mathematician is asked
to  justify  his  interest  in  complex  numbers,  he  will  point,  with  some  indignation,  to  the  many



beautiful theorems in the theory of equations, of power series, and of analytic functions in general,
which owe their origin to the introduction of complex numbers. The mathematician is not willing to
give  up  his  interest  in  these  most  beautiful  accomplishments  of  his  genius.  [ The  reader  may  be
interested, in this connection, in Hilbert’s rather  testy remarks about intuitionism which "seeks to
break  up  and  to  disfigure  mathematics,"  Abh.  Math.  Sem.,  Univ.  Hamburg,  157  (1922),  or
Gesammelte Werke (Berlin: Springer, 1935), p. 188.] 

WHAT IS PHYSICS? 

The physicist is interested in discovering the laws of  inanimate nature. In order to understand this
statement, it is necessary to analyze the concept, "law of nature." 

The world around us is of baffling complexity and the most obvious fact about it is that we cannot
predict  the  future.  Although  the  joke  attributes  only  to  the  optimist  the  view  that  the  future  is
uncertain,  the  optimist  is  right  in  this  case:  the  future  is  unpredictable.  It  is,  as  Schrodinger  has
remarked, a miracle that in spite of  the baffling complexity of the world, certain regularities in the
events could be discovered. One such regularity, discovered by Galileo, is that two rocks, dropped
at the same time from the same height, reach the ground at the same time. The laws of  nature are
concerned with such regularities. Galileo’s regularity is a prototype of  a large class of regularities.
It is a surprising regularity for three reasons. 

The first reason that it is surprising is that it is true not only in Pisa, and in Galileo’s time, it is true
everywhere on the Earth, was always true, and will always be true. This property of the regularity is
a  recognized  invariance  property  and,  as  I  had  occasion  to  point  out  some  time  ago,  without
invariance  principles  similar  to  those  implied  in  the  preceding  generalization  of  Galileo’s
observation,  physics  would  not  be  possible.  The  second  surprising  feature  is  that  the  regularity
which we are discussing is independent of so many conditions which could have an effect on it. It is
valid no matter whether it rains or not, whether the experiment is carried out in a room or from the
Leaning Tower, no matter whether the person who drops the rocks is a man or a woman. It is valid
even  if  the  two  rocks  are  dropped,  simultaneously  and  from  the  same  height,  by  two  different
people. There are, obviously, innumerable other conditions which are all immaterial from the point
of  view  of  the  validity  of  Galileo’s  regularity.  The  irrelevancy  of  so  many  circumstances  which
could  play  a  role  in  the  phenomenon observed  has  also  been  called  an  invariance.  However,  this
invariance  is  of  a  different  character  from  the  preceding  one  since  it  cannot  be  formulated  as  a
general  principle.  The  exploration  of  the  conditions  which  do,  and  which  do  not,  influence  a
phenomenon is part of  the early experimental exploration of a field. It is the skill and ingenuity of
the experimenter which show him phenomena which depend on a relatively narrow set of relatively
easily  realizable  and  reproducible  conditions.  [ see,  in  this  connection,  the  graphic  essay  of  M.
Deutsch, Daedalus 87, 86 (1958). A. Shimony has called my attention to a similar passage in C. S.
Peirce’s Essays in the Philosophy of  Science (New York: The Liberal Arts Press, 1957), p. 237.] In
the  present  case,  Galileo’s  restriction of  his  observations  to relatively heavy bodies was the most
important  step  in  this  regard.  Again,  it  is  true  that  if  there  were  no  phenomena  which  are
independent of all but a manageably small set of conditions, physics would be impossible. 

The preceding two points, though highly significant from the point of view of the philosopher, are
not the ones which surprised Galileo most, nor do they contain a specific law of nature. The law of
nature is contained in the statement that the length of  time which it takes for a heavy object to fall
from a given height is independent of the size, material, and shape of the body which drops. In the
framework  of  Newton’s  second  "law,"  this  amounts  to  the  statement  that  the  gravitational  force
which acts on the falling body is proportional to its mass but independent of the size, material, and
shape of the body which falls. 



The  preceding  discussion  is  intended  to  remind us,  first,  that  it  is  not  at  all  natural  that  "laws  of
nature"  exist,  much less  that  man is  able  to  discover  them. [E.  Schrodinger,  in  his  What  Is  Life?
(Cambridge: Cambridge University Press, 1945), p. 31, says that this second miracle may well be
beyond human understanding.] The present writer had occasion, some time ago, to call attention to
the  succession  of  layers  of  "laws  of  nature,"  each  layer  containing  more  general  and  more
encompassing laws than the  previous  one  and its  discovery constituting a  deeper  penetration into
the structure of  the universe than the layers recognized before.  However, the point which is  most
significant  in  the  present  context  is  that  all  these  laws  of  nature  contain,  in  even  their  remotest
consequences, only a small part of our knowledge of the inanimate world. All the laws of nature are
conditional  statements  which  permit  a  prediction  of  some  future  events  on  the  basis  of  the
knowledge of the present, except that some aspects of the present state of the world, in practice the
overwhelming majority of the determinants of the present state of the world, are irrelevant from the
point  of  view of  the  prediction.  The  irrelevancy  is  meant  in  the  sense  of  the  second  point  in  the
discussion  of  Galileo’s  theorem.  [ The  writer  feels  sure  that  it  is  unnecessary  to  mention  that
Galileo’s theorem, as given in the text,  does not  exhaust  the content  of  Galileo’s observations in
connection with the laws of  freely falling bodies.] 

As regards the present state of the world, such as the existence of the earth on which we live and on
which Galileo’s experiments were performed, the existence of the sun and of all our surroundings,
the laws of nature are entirely silent. It is in consonance with this, first, that the laws of nature can
be  used  to  predict  future  events  only  under  exceptional  circumstances  -  when  all  the  relevant
determinants of the present state of the world are known. It is also in consonance with this that the
construction of machines, the functioning of which he can foresee, constitutes the most spectacular
accomplishment of the physicist. In these machines, the physicist creates a situation in which all the
relevant  coordinates  are known so that  the behavior  of  the machine can be predicted.  Radars and
nuclear reactors are examples of such machines. 

The  principal  purpose  of  the  preceding  discussion  is  to  point  out  that  the  laws  of  nature  are  all
conditional  statements  and  they  relate  only  to  a  very  small  part  of  our  knowledge  of  the  world.
Thus, classical mechanics, which is the best known prototype of a physical theory, gives the second
derivatives  of  the  positional  coordinates  of  all  bodies,  on  the  basis  of  the  knowledge  of  the
positions,  etc.,  of  these  bodies.  It  gives  no information on the  existence,  the  present  positions,  or
velocities  of  these  bodies.  It  should  be  mentioned,  for  the  sake  of  accuracy,  that  we  discovered
about  thirty  years  ago  that  even  the  conditional  statements  cannot  be  entirely  precise:  that  the
conditional statements are probability laws which enable us only to place intelligent bets on future
properties of  the inanimate world, based on the knowledge of  the present state. They do not allow
us to make categorical statements, not even categorical statements conditional on the present state
of  the  world.  The  probabilistic  nature  of  the  "laws  of  nature"  manifests  itself  in  the  case  of
machines also, and can be verified, at least in the case of nuclear reactors, if  one runs them at very
low  power.  However,  the  additional  limitation  of  the  scope  of  the  laws  of  nature  which  follows
from their probabilistic nature will play no role in the rest of the discussion. 

THE ROLE OF MATHEMATICS IN PHYSICAL THEORIES  

Having refreshed our minds as to the essence of mathematics and physics, we should be in a better
position to review the role of mathematics in physical theories. 

Naturally, we do use mathematics in everyday physics to evaluate the results of the laws of nature,
to apply the conditional statements to the particular conditions which happen to prevail or happen to
interest  us.  In  order  that  this  be  possible,  the  laws  of  nature  must  already  be  formulated  in
mathematical  language.  However,  the  role  of  evaluating  the  consequences  of  already  established



theories is not the most important role of  mathematics in physics. Mathematics, or, rather, applied
mathematics,  is  not  so much the master  of  the situation in this  function:  it  is  merely serving as a
tool. 

Mathematics does play, however, also a more sovereign role in physics. This was already implied in
the statement, made when discussing the role of  applied mathematics, that the laws of nature must
have  been  formulated  in  the  language  of  mathematics  to  be  an  object  for  the  use  of  applied
mathematics. The statement that the laws of nature are written in the language of mathematics was
properly made three hundred years ago; [ It is attributed to Galileo.] it is now more true than ever
before. In order to show the importance which mathematical concepts possess in the formulation of
the laws of  physics, let us recall, as an example, the axioms of  quantum mechanics as formulated,
explicitly, by the great physicist, Dirac. There are two basic concepts in quantum mechanics: states
and observables.  The states are vectors  in Hilbert  space,  the observables self-adjoint  operators on
these vectors. The possible values of the observations are the characteristic values of the operators -
but we had better stop here lest we engage in a listing of  the mathematical concepts developed in
the theory of linear operators. 

It is true, of  course, that physics chooses certain mathematical concepts for the formulation of  the
laws of nature, and surely only a fraction of all mathematical concepts is used in physics. It is true
also  that  the  concepts  which  were  chosen  were  not  selected  arbitrarily  from  a  listing  of
mathematical terms but were developed, in many if  not most cases, independently by the physicist
and recognized then as having been conceived before by the mathematician. It is not true, however,
as  is  so  often  stated,  that  this  had  to  happen  because  mathematics  uses  the  simplest  possible
concepts  and  these  were  bound  to  occur  in  any  formalism.  As  we  saw  before,  the  concepts  of
mathematics are not chosen for their conceptual simplicity - even sequences of pairs of numbers are
far  from  being  the  simplest  concepts  -  but  for  their  amenability  to  clever  manipulations  and  to
striking, brilliant  arguments. Let  us not forget that  the Hilbert  space of  quantum mechanics is the
complex  Hilbert  space,  with  a  Hermitean  scalar  product.  Surely  to  the  unpreoccupied  mind,
complex  numbers  are  far  from  natural  or  simple  and  they  cannot  be  suggested  by  physical
observations. Furthermore, the use of  complex numbers is  in this case not a calculational trick of
applied mathematics but comes close to being a necessity in the formulation of the laws of quantum
mechanics.  Finally,  it  now begins to appear that  not only complex numbers but so-called analytic
functions are destined to play a decisive role in the formulation of quantum theory. I am referring to
the rapidly developing theory of dispersion relations. 

It  is  difficult  to  avoid  the  impression  that  a  miracle  confronts  us  here,  quite  comparable  in  its
striking nature to the miracle that the human mind can string a thousand arguments together without
getting itself into contradictions, or to the two miracles of the existence of laws of nature and of the
human mind’s capacity to divine them. The observation which comes closest to an explanation for
the  mathematical  concepts’  cropping  up  in  physics  which  I  know is  Einstein’s  statement  that  the
only physical theories which we are willing to accept are the beautiful ones. It stands to argue that
the concepts of  mathematics, which invite the exercise of so much wit, have the quality of beauty.
However, Einstein’s observation can at best explain properties of  theories which we are willing to
believe and has no reference to the intrinsic accuracy of the theory. We shall, therefore, turn to this
latter question. 

IS THE SUCCESS OF PHYSICAL THEORIES TRULY SURPRISING? 

A possible explanation of the physicist’s use of mathematics to formulate his laws of nature is that
he  is  a  somewhat  irresponsible  person.  As  a  result,  when  he  finds  a  connection  between  two
quantities  which  resembles  a  connection  well-known  from  mathematics,  he  will  jump  at  the



conclusion that the connection is that discussed in mathematics simply because he does not know of
any other similar connection. It is not the intention of the present discussion to refute the charge that
the physicist  is  a  somewhat irresponsible person.  Perhaps he is.  However,  it  is  important  to point
out that the mathematical formulation of the physicist’s often crude experience leads in an uncanny
number of  cases  to an amazingly accurate description of  a large class of  phenomena. This shows
that the mathematical language has more to commend it than being the only language which we can
speak; it shows that it is, in a very real sense, the correct language. Let us consider a few examples. 

The  first  example  is  the  oft-quoted  one  of  planetary  motion.  The  laws  of  falling  bodies  became
rather well established as a result of experiments carried out principally in Italy. These experiments
could not be very accurate in the sense in which we understand accuracy today partly because of the
effect  of  air resistance and partly because of  the impossibility, at that time, to measure short time
intervals.  Nevertheless,  it  is  not  surprising  that,  as  a  result  of  their  studies,  the  Italian  natural
scientists  acquired  a  familiarity  with  the  ways  in  which  objects  travel  through  the  atmosphere.  It
was Newton who then brought the law of freely falling objects into relation with the motion of the
moon, noted that the parabola of  the thrown rock’s path on the earth and the circle of  the moon’s
path in the sky are particular cases of the same mathematical object of an ellipse, and postulated the
universal law of  gravitation on the basis of  a single, and at that time very approximate, numerical
coincidence. Philosophically, the law of gravitation as formulated by Newton was repugnant to his
time  and  to  himself.  Empirically,  it  was  based  on  very  scanty  observations.  The  mathematical
language in which it was formulated contained the concept of  a second derivative and those of  us
who have tried to draw an osculating circle to a curve know that the second derivative is not a very
immediate concept.  The law of  gravity which Newton reluctantly established and which he could
verify with an accuracy of about 4% has proved to be accurate to less than a ten thousandth of a per
cent  and  became  so  closely  associated  with  the  idea  of  absolute  accuracy  that  only  recently  did
physicists  become  again  bold  enough  to  inquire  into  the  limitations  of  its  accuracy.  [  see,  for
instance, R. H. Dicke, Am. Sci., 25 (1959).] Certainly, the example of  Newton’s law, quoted over
and over  again,  must  be  mentioned first  as  a  monumental  example  of  a  law,  formulated in terms
which  appear  simple  to  the  mathematician,  which  has  proved  accurate  beyond  all  reasonable
expectations. Let us just recapitulate our thesis on this example: first, the law, particularly since a
second  derivative  appears  in  it,  is  simple  only  to  the  mathematician,  not  to  common  sense  or  to
non-mathematically-minded  freshmen;  second,  it  is  a  conditional  law  of  very  limited  scope.  It
explains  nothing  about  the  earth  which  attracts  Galileo’s  rocks,  or  about  the  circular  form of  the
moon’s orbit, or about the planets of the sun. The explanation of these initial conditions is left to the
geologist and the astronomer, and they have a hard time with them. 

The second example is that of ordinary, elementary quantum mechanics. This originated when Max
Born noticed that some rules of computation, given by Heisenberg, were formally identical with the
rules  of  computation  with  matrices,  established  a  long  time  before  by  mathematicians.  Born,
Jordan, and Heisenberg then proposed to replace by matrices the position and momentum variables
of the equations of classical mechanics. They applied the rules of matrix mechanics to a few highly
idealized  problems  and  the  results  were  quite  satisfactory.  However,  there  was,  at  that  time,  no
rational evidence that their matrix mechanics would prove correct under more realistic conditions.
Indeed, they say "if the mechanics as here proposed should already be correct in its essential traits."
As  a  matter  of  fact,  the  first  application  of  their  mechanics  to  a  realistic  problem,  that  of  the
hydrogen atom, was given several months later, by Pauli. This application gave results in agreement
with  experience.  This  was  satisfactory  but  still  understandable  because  Heisenberg’s  rules  of
calculation  were  abstracted  from  problems  which  included  the  old  theory  of  the  hydrogen  atom.
The  miracle  occurred  only  when  matrix  mechanics,  or  a  mathematically  equivalent  theory,  was
applied to problems for which Heisenberg’s calculating rules were meaningless. Heisenberg’s rules
presupposed that the classical equations of motion had solutions with certain periodicity properties;



and the equations of motion of the two electrons of the helium atom, or of the even greater number
of  electrons  of  heavier  atoms,  simply  do  not  have  these  properties,  so  that  Heisenberg’s  rules
cannot be applied to these cases. Nevertheless, the calculation of the lowest energy level of helium,
as carried out a few months ago by Kinoshita at Cornell and by Bazley at the Bureau of Standards,
agrees with the experimental data within the accuracy of the observations, which is one part in ten
million. Surely in this case we "got something out" of the equations that we did not put in. 

The same is true of  the qualitative characteristics of  the "complex spectra," that  is,  the spectra of
heavier  atoms.  I  wish  to  recall  a  conversation  with  Jordan,  who  told  me,  when  the  qualitative
features  of  the  spectra  were  derived,  that  a  disagreement  of  the  rules  derived  from  quantum
mechanical  theory  and  the  rules  established  by  empirical  research  would  have  provided  the  last
opportunity  to  make a  change in  the  framework  of  matrix mechanics.  In other  words,  Jordan felt
that we would have been, at least temporarily, helpless had an unexpected disagreement occurred in
the theory of  the helium atom. This was, at that time, developed by Kellner and by Hilleraas. The
mathematical formalism was too dear and unchangeable so that,  had the miracle of  helium which
was  mentioned  before  not  occurred,  a  true  crisis  would  have  arisen.  Surely,  physics  would  have
overcome that crisis in one way or another. It is true, on the other hand, that physics as we know it
today  would  not  be  possible  without  a  constant  recurrence  of  miracles  similar  to  the  one  of  the
helium  atom,  which  is  perhaps  the  most  striking  miracle  that  has  occurred  in  the  course  of  the
development of elementary quantum mechanics, but by far not the only one. In fact, the number of
analogous miracles is  limited,  in our view, only by our willingness to go after  more similar ones.
Quantum mechanics had,  nevertheless,  many almost equally striking successes which gave us the
firm conviction that it is, what we call, correct. 

The  last  example  is  that  of  quantum  electrodynamics,  or  the  theory  of  the  Lamb  shift.  Whereas
Newton’s  theory of  gravitation still  had obvious  connections  with  experience,  experience entered
the  formulation  of  matrix  mechanics  only  in  the  refined  or  sublimated  form  of  Heisenberg’s
prescriptions.  The  quantum  theory  of  the  Lamb  shift,  as  conceived  by  Bethe  and  established  by
Schwinger,  is  a purely mathematical theory and the only direct contribution of  experiment was to
show the existence of a measurable effect. The agreement with calculation is better than one part in
a thousand. 

The preceding three examples, which could be multiplied almost indefinitely, should illustrate the
appropriateness  and  accuracy  of  the  mathematical  formulation  of  the  laws  of  nature  in  terms  of
concepts chosen for their manipulability, the "laws of nature" being of almost fantastic accuracy but
of strictly limited scope. I propose to refer to the observation which these examples illustrate as the
empirical  law of  epistemology. Together with the laws of  invariance of  physical theories, it  is  an
indispensable  foundation  of  these  theories.  Without  the  laws  of  invariance  the  physical  theories
could have been given no foundation of fact; if the empirical law of epistemology were not correct,
we would lack the encouragement and reassurance which are emotional necessities, without which
the  "laws  of  nature"  could  not  have  been  successfully  explored.  Dr.  R.  G.  Sachs,  with  whom  I
discussed the empirical law of epistemology, called it an article of faith of the theoretical physicist,
and it  is  surely that.  However, what he called our article of  faith can be well supported by actual
examples - many examples in addition to the three which have been mentioned. 

THE UNIQUENESS OF THE THEORIES OF PHYSICS 

The empirical nature of the preceding observation seems to me to be self-evident. It surely is not a
"necessity of thought" and it should not be necessary, in order to prove this, to point to the fact that
it applies only to a very small part of our knowledge of the inanimate world. It is absurd to believe
that the existence of mathematically simple expressions for the second derivative of the position is



self-evident,  when  no  similar  expressions  for  the  position  itself  or  for  the  velocity  exist.  It  is
therefore surprising how readily the wonderful gift contained in the empirical law of epistemology
was taken for granted. The ability of the human mind to form a string of 1000 conclusions and still
remain "right," which was mentioned before, is a similar gift. 

Every empirical law has the disquietire which will be discovered, will fuse into a single consistent
unit, or at least asymptotically approach such a fusion. Alternatively, it is possible that there always
will be some laws of nature which have nothing in common with each other. At present, this is true,
for  instance,  of  the  laws  of  heredity  and  of  physics.  It  is  even  possible  that  some of  the  laws of
nature  will  be  in conflict  with each other in their  implications,  but  each convincing enough in its
own domain so that  we may not  be willing to abandon any of  them. We may resign ourselves to
such a state of  affairs  or our interest  in clearing up the conflict  between the various theories may
fade  out.  We  may  lose  interest  in  the  "ultimate  truth,"  that  is,  in  a  picture  which  is  a  consistent
fusion into a single unit of the little pictures, formed on the various aspects of nature. 

It may be useful to illustrate the alternatives by an example. We now have, in physics, two theories
of  great power and interest: the theory of  quantum phenomena and the theory of  relativity. These
two theories have their roots in mutually exclusive groups of phenomena. Relativity theory applies
to  macroscopic  bodies,  such  as  stars.  The  event  of  coincidence,  that  is,  in  ultimate  analysis  of
collision,  is  the primitive event  in the theory of  relativity and defines a  point  in  space-time, or at
least  would  define  a  point  if  the  colliding  panicles  were  infinitely  small.  Quantum theory  has  its
roots in the microscopic world and, from its point of view, the event of coincidence, or of collision,
even if  it takes place between particles of  no spatial extent, is not primitive and not at all sharply
isolated  in  space-time.  The  two  theories  operate  with  different  mathematical  concepts  -  the  four
dimensional Riemann space and the infinite dimensional Hilbert space, respectively. So far, the two
theories  could  not  be  united,  that  is,  no  mathematical  formulation  exists  to  which  both  of  these
theories  are  approximations.  All  physicists  believe  that  a  union  of  the  two  theories  is  inherently
possible and that  we shall  find it.  Nevertheless, it is possible also to imagine that no union of  the
two theories can be found. This example illustrates the two possibilities, of  union and of  conflict,
mentioned before, both of which are conceivable. 

In order to obtain an indication as to which alternative to expect ultimately, we can pretend to be a
little more ignorant than we are and place ourselves at a lower level of knowledge than we actually
possess.  If  we  can  find  a  fusion  of  our  theories  on  this  lower  level  of  intelligence,  we  can
confidently expect that we will find a fusion of our theories also at our real level of intelligence. On
the other hand, if  we would arrive at mutually contradictory theories at a somewhat lower level of
knowledge,  the  possibility  of  the  permanence  of  conflicting  theories  cannot  be  excluded  for
ourselves either.  The level  of  knowledge and ingenuity is  a continuous variable and it  is  unlikely
that  a  relatively  small  variation  of  this  continuous  variable  changes  the  attainable  picture  of  the
world from inconsistent  to  consistent.  [This passage was written after  a great  deal  of  hesitation.
The writer is convinced that it is useful, in epistemological discussions, to abandon the idealization
that the level of  human intelligence has a singular position on an absolute scale. In some cases it
may even be useful to consider  the attainment  which is possible at the level of  the intelligence of
some other species. However, the writer also realizes that his thinking along the lines indicated in
the text was too brief  and not subject to sufficient critical appraisal to be reliable.] 

Considered from this point of  view, the fact that some of  the theories which we know to be false
give such amazingly accurate  results  is  an  adverse  factor.  Had we somewhat  less  knowledge,  the
group of phenomena which these "false" theories explain would appear to us to be large enough to
"prove" these theories. However, these theories are considered to be "false" by us just for the reason
that  they  are,  in  ultimate  analysis,  incompatible  with  more  encompassing  pictures  and,  if



sufficiently many such false theories are discovered, they are bound to prove also to be in conflict
with each other.  Similarly,  it  is  possible  that  the theories, which we consider to be "proved" by a
number of  numerical  agreements which appears to be large enough for us, are false because they
are in conflict with a possible more encompassing theory which is beyond our means of discovery.
If  this were true, we would have to expect conflicts between our theories as soon as their number
grows beyond a  certain  point  and as  soon as  they cover  a  sufficiently  large number  of  groups of
phenomena. In contrast  to the article of  faith of  the theoretical physicist mentioned before, this is
the nightmare of the theorist. 

Let us consider a few examples of "false" theories which give, in view of their falseness, alarmingly
accurate descriptions of  groups of  phenomena. With some goodwill, one can dismiss some of  the
evidence which these examples provide.  The success of  Bohr’s early and pioneering ideas on the
atom  was  always  a  rather  narrow  one  and  the  same  applies  to  Ptolemy’s  epicycles.  Our  present
vantage point gives an accurate description of  all phenomena which these more primitive theories
can describe. The same is not true any longer of  the so-called free-electron theory, which gives a
marvelously  accurate  picture  of  many,  if  not  most,  properties  of  metals,  semiconductors,  and
insulators.  In  particular,  it  explains  the  fact,  never  properly  understood  on  the  basis  of  the  "real
theory,"  that  insulators  show a  specific  resistance  to  electricity  which  may be  1026  times  greater
than  that  of  metals.  In  fact,  there  is  no  experimental  evidence  to  show  that  the  resistance  is  not
infinite  under  the  conditions  under  which  the  free-electron  theory  would  lead  us  to  expect  an
infinite  resistance.  Nevertheless,  we  are  convinced  that  the  free-electron  theory  is  a  crude
approximation which should be replaced, in the description of all phenomena concerning solids, by
a more accurate picture. 

If viewed from our real vantage point, the situation presented by the free-electron theory is irritating
but is not likely to forebode any inconsistencies which are unsurmountable for us. The free-electron
theory  raises  doubts  as  to  how  much  we  should  trust  numerical  agreement  between  theory  and
experiment as evidence for the correctness of the theory. We are used to such doubts. 

A much more difficult and confusing situation would arise if we could, some day, establish a theory
of  the phenomena of  consciousness, or of  biology, which would be as coherent and convincing as
our present theories of the inanimate world. Mendel’s laws of inheritance and the subsequent work
on  genes  may  well  form  the  beginning  of  such  a  theory  as  far  as  biology  is  concerned.
Furthermore,, it is quite possible that an abstract argument can be found which shows that there is a
conflict  between such a  theory and the  accepted principles  of  physics.  The argument  could be of
such abstract  nature that  it  might not be possible to resolve the conflict,  in favor of  one or of  the
other  theory,  by  an  experiment.  Such  a  situation  would  put  a  heavy  strain  on  our  faith  in  our
theories  and  on  our  belief  in  the  reality  of  the  concepts  which we form.  It  would give  us  a  deep
sense  of  frustration  in  our  search  for  what  I  called  "the  ultimate  truth."  The  reason  that  such  a
situation  is  conceivable  is  that,  fundamentally,  we  do  not  know  why  our  theories  work  so  well.
Hence, their accuracy may not prove their truth and consistency. Indeed, it is this writer’s belief that
something  rather  akin  to  the  situation  which  was  described  above  exists  if  the  present  laws  of
heredity and of physics are confronted. 

Let  me  end  on  a  more  cheerful  note.  The  miracle  of  the  appropriateness  of  the  language  of
mathematics  for  the  formulation  of  the  laws  of  physics  is  a  wonderful  gift  which  we  neither
understand  nor  deserve.  We  should  be  grateful  for  it  and  hope  that  it  will  remain  valid  in  future
research and that it will extend, for better or for worse, to our pleasure, even though perhaps also to
our bafflement, to wide branches of learning. 


