A Parallel Algorithm for Solving
a Tridiagonal Linear System with the ADI Method

Lixing Ma
Department of Computer Science
University of Nevada
Reno, NV 89557

Abstract

The Alternating Direction Implicit (ADI) method
is widely used in various discretized systems. In this
paper, a new parallel algorithm is developed to solve a
system of tridiagonal linear equations with the ADI
method for a large-scale heat conduction problem.
The theoretical analysis on the speedup and scalabil-
ity is also presented. When compared with Thomas’s
algorithm, this algorithm shows a good improvement
for parallel machines.
keywords: parallel algorithm, Alternating Direction
Implicit method, ADI

1 Introduction

The unsteady, three-dimensional heat conduction
equation, can be written in three spatial dimensions
as follows:
oT o*T 9’°T 0T
=5t ort 5r 1)
ot o0x2 Oy 022

If the Crank-Nicolson method is used to discretize

the above equation, it will contain seven unknowns
n+1 n+1 n+1 n+1 n+1 n+1
Tign s Tivn g Titve Tighaw Tigtam Tigles and

Tl.f”;,rklf 1» Where the last four unknowns prevent us from
putting it into a standard tridiagonal form [9], and
Thomas’s algorithm can not be directly used. There
are some matrix methods and iterative methods that
can be used to solve this discretization equation, but
the computation time is much longer than that of a
tridiagonal system. As a result, there is a distinct ad-
vantage in developing a scheme that will allow Equa-
tion (1) to be solved by means of tridiagonal form.
Such a scheme is the Alternating Direction Implicit
(ADI) method [1].

The ADI method usually introduces three time step
terms (t+ 3 At,t+ 2 At, t+ At) for a three-dimensional

Frederick C. Harris, Jr.
Department of Computer Science
University of Nevada
Reno, NV 89557
fredh@cs.unr.edu

problem and two time step terms (¢t + $At,t + At)

for two-dimensional problem. In this manner, Equa-
tion (1) can be discretized as three tridiagonal forms:

n+i
Tk —Thiw _ (2T o1 o1 .
% Ox2 dy? 922
n+3 n+3 1 2 1
Ti,j,k — Ti,j,k B o2Tnts3 g2rnts g2rnts
At - ox? + oy? + 022 ®)
3

2
Tntl _ it 32Tn+2 32Tn+2 92 m+1
i,J,k 0,5,k —a (3 3 +) (4)

% 02 + oy? 922

where 92/0z2, 92/0y?, and 8%/9z% are the central
differences in space. Equations (2), (3), and (4) al-
ways have only three unknowns, which allows for con-
struction of a tridiagonal matrix. First, Equation (2)
is used to solve Tz"Jrk1 /3 in the a-direction according to
the initial condition or the results of the last time step.

Then, Tz”fkl /3 is used in Equation (3) to solve Tz”sz /3

in the y-direction. Finally, Ti”.+k1 in the z-direction is
solved according to Equation (74) This is an overview
of the Alternating Direction Implicit (ADI) method.
Generally, these three equations can be represented in
a linear algebraic equation, namely:
a;%i—1 + bz +cixip1 = fi 1=1,...,n—1 (5)
The ADI scheme is unconditionally stable and
has second-order accuracy with a truncation error
of O[(At)%,(Az)?%, (Ay)?] for two dimensions and is
conditionally stable and with a truncation error of
O[(At), (Ax)?%, (Ay)?, (Az)?] for three dimensions [6].
The other advantage of the ADI scheme is that
Thomas’s algorithm can be used to find exact solu-
tion of Equation (5).
There are two major parallel algorithms that are
widely used for the ADI scheme. One is the domain de-
composition algorithm[12], and the other uses higher

Figure 1: Domain decomposition based on localized
inversion.

dimensional linear recurrences to solve the diatriangu-
lar linear system Equation (5)[13].

In the domain decomposition algorithm, the main
domain is divided into many subdomains, where the
number of subdomains is usually chosen to be a power
of 2. The data in a subdomain depend on other
domains only through the inner boundaries between
those domains. Within a subdomain, the nodal data
have a well-defined interdependency. A more effective
approach is to localize the line inversion algorithm and
implement a bona fide domain decomposition. If one
can break the line inversion across the whole domain
into local line inversions within the subdomains and
remove the interprocessor data dependency, then each
processor can work on the local line segment and the
execution can be carried out in parallel. With such
a parallel line inversion algorithm, it is possible to
achieve domain decomposition and parallel process-
ing by dividing the computational domain into subdo-
mains such as the division presented in Figure 1.

Figure 1 shows a domain decomposed into 4 x 4
subdomains with four processors in parallel. When
scanning in the horizontal direction, each processor
combines four horizontal subdomains to solve Equa-
tion (5) to obtain a new z; or T;. Based on those
values, Equation (5) is then solved in the vertical di-
rection in parallel.

Because the boundary node value of each horizon-
tal domain or vertical domain is always taken from
previous data, it will take more iterations to converge
if massively parallel processors are used. This is the
same problem that causes the Gauss-Siedel method to
be replaced by SOR.

In the second algorithm, the main domain is not
divided into subdomains. The goal is to provide a
parallel algorithm for solving the diatriangular linear
system in Equation (5), which also can be presented
in matrix form as:

Az = f (6)

where z and f are n-dimensional vectors and A is the
following n x n tridiagonal matrix:

b1 C1 0 0
a2 by c2 0 .. 0
A — 0 as b3 C3 0 0 (7)
0 i e e 0 an-1 bpo1 Cnt
0 0 an by

Matrix A can be decomposed into an LDU factor-
ization form. That is, you can determine a unit lower
triangular matrix L, a diagonal matrix D, and a unit
upper triangular matrix U such that A = LDU. The
matrices L, D and U can be specified as follows:

1 0 0

b 1 0 .. 0 o« 0
L=|0 I3 1 .. 0 |D= ?
0 Iy 1 0 0 dn
1 w O 0
0 1 w O 0
U= 0 0 1 w3 0
0 0 1 Un—1
0 0 1
where
d = b
dj = bj — ajcj,l/dj,l, 2 S] S n (8)
lj = (lj/dj_l, 2S]Sn
u; = Cj/dj,].S]Sn—].

From Equation (8), it is clear that the values of
l; and u; can be deduced immediately from the val-
ues of d;. For convenience of parallelization, let d; =
wj/wj_1, where wg = 1 andw; = b;. Substituting
dj = wj/wj_1 and dj_1 = wj_1/w;j_» in the equation
d; = bj—ajcj_1/d;j_1, the sequence wj is given by the
following second-order linear recurrence:

wy = 1
w1 = bl (9)
wj = bjwj_1 —ajci_1wj-2, 2<j<n

After the sequence wj; is obtained, all of the val-
ues in matrices L, D, and U can be obtained through
the relation in Equation (8). The solution to the lin-
ear system Az = b can be expressed by the following
recurrence:

X by
1 =
ail
i—1 s bs
i i .
T = Z —a—iz.’L'j—}-a—ii, 2Sl§n(10)

j=i—m+1

Solving this system of equations with a Divide and
Conquer approach (DAC) improved this algorithm.
Using DAC, the whole linear tridiagonal equation sys-
tem is divided into k subsystems with a matrix trans-
formation on matrix A. Then P processors are as-
signed to deal with each subsystem in parallel. This
method is complicated and needs many transforms to
take into account the effect of the internal boundary
node. To find the final solution of one linear system,
you have to solve several linear systems first. There-
fore in this paper, a new parallel algorithm is intro-
duced to solve the linear system Ax = b.

2 Modified Cyclic Reduction
2.1 Cyclic Reduction

Harold Stone presents the Cyclic Reduction method
for solving tridiagonal equations in his book [11]. His
method works extremely well for the Poisson matrix
whose diagonals contain only 1s and -2s. The idea
behind cyclic reduction is to sum three consecutive
equations as indicated here:

Ti—o — 2T+ = fia
Tic1 — 2T +Tip1 = [(11)
Ti —2Tip1 + Ti42 = fiq

Adding the first and third equations with the sec-
ond equation multiplied by two, x; 1 and x;41 are
eliminated, and Equation (11) becomes one equation
as indicated here:

Tio —2m; — T = fi1 +2fi + fiyr (12)

To solve the full system, all of the equations can be
reduced to Equation (12) for the first kind of bound-
ary condition or into the three equations in (11) for
the second kind of boundary condition. Then, back
substitution is used to solve all unknowns. Both the
reduction and back substitution steps can be done in
parallel.

Unfortunately, this scheme works only for the
steady, isotropic and uniform space step problem as
described in Equation (1), because the parameter ma-
trix does not contain just 1s and -2s. The important
thing to note is that the cyclic reduction method can
be modified and the idea can be generalized to other
types of matrices.

2.2 Modified Cyclic Reduction(MCR)

The general form of a tridiagonal matrix used in
the ADI method is represented in Equation (7). The

three consecutive equations are as follows:

ai—1Zi—2 + (=bic1ziz1) + i1z = fia
a;i%i—1 — biTi + ciTit1 = fi (13)
Tit1T; — bip1Tip1 + Cip1Tito = fin

In order to eliminate two unknowns z;_; and z;1,
we sum the first equation multiplied by a;/b;_1, the
third equation multiplied by ¢;/b;11 and the second
equation. After rearranging, Equation (13) becomes

agl)xi_Q - bgl)xi + cgl)me = fi(l) (14)

where
agl) = a;_10;/bi_1,
bgl) = b+ a;ci—1/bi—a,
cgl) = ci¢it1/bit1, and
AV = @/l fim + fit (csfbia) fin.

In order to obtain only one equation, the space steps
Az, Ay, and Az have to be adjusted in the discretiza-
tion of the Equation (1) so that the total number of
unknowns is equal to 2" — 1. In addition, it is strongly
recommended that you normalize the coefficient b;.
The first advantage of normalization is that the mem-
ory can be saved for storing b;. The second advantage
is that it helps you to avoid overflow if the problem
has huge numbers. For an isotropic and uniform space
step problem, a; and ¢; are usually identical and are
normalized more naturally. This is the correct choice,
but it only works for b; = 2. Because the matrix A is
diagonal dominant and b{” = b, and b{'"" = b — 2,
it will overflow after several steps of reduction. For a
typical Poisson equation, b§°’ is usually taken as 4 or
6.

2.3 Middle Node Algorithm for a Parallel
MCR

Let us consider the first kind of boundary condi-
tion for the ADI method while solving Equation (1).
In a specific direction, the number of nodes is equal
to 2n + 1. The first and the last nodes are known
because of the first boundary condition, therefore the
total number of unknown nodes is equal to 2n—1. This
number is also equal to the dimension of the matrix A
in Equation (5). Obviously, n — 1 is the total number
of times you perform cyclic reduction, at which time
you have only one equation left. Three nodes remain
in the last equation, zg, Zon»-1, and xan, where 2z is
counted from 0. These are the first node, the middle

j= a, f4 Z W~
4 C4 9 o
5| &
P Py 2 2
2 Pe = 3)
2 %
=4
=1 ay N VR % fs] <o
P Py P3 Py Ps Pg P7
f 5 3 6
= 1 b 3 u S o
XO Xl X2 X3 X4 XS Xﬁ X7 Xs

Figure 2: Scheme of the Middle Node Algorithm.

node, and the last node. The first node and the last
node are two known boundary values; therefore, the
middle node can be found through the last equation.
At the middle point, the line is cut in two parts and
the same method is used to find two middle node val-
ues. In a similar manner, find four, eight, sixteen,...,
middle nodes until all the unknown node values are
obtained. We call this algorithm the Middle Node Al-
gorithm. The basic formula of this algorithm is based
on the following equations

oDz —wit cPwie = £

@G-1) _(-1)
af” = % o) = (j—1>az;—2i)_lat G-1 G-
i 1-aqa, G gim1 T8 95-16
G-1) (G-1)
cz('O) = %’ c’('j) - (G-1) :j—l) t+2j;j1—1) G-1)
i 1-— a; Ci_2j—1 - a‘i+2j—1ci

(G—-1) ((G-1) (G-1) (G—-1) x(5-1)
a; jt_gj—1+ft +e; jt+2j—1
1—o0-D G- _ G-1) G-
i i—2i—1 Tiqoi—17i

1O =g, 19

(15)
Where j is the order of reduction step, 0 < j <n—1.
At j = 0, the equation is almost same as Equation (5),
the only difference is that each b; is normalized. There
are 2" ! nodes at j = 0. Each node also represents a
processor, and the processors execute code for Equa-
tion (15). Each node or processor is assumed to have
its own memory to store the information contained in
Equation (15), e.g. the parameters(a, ¢ and f) and

boundary values or neighbor data. For convenience,
the parallel algorithm is illustrated through the seven
node example in Figure 2.

There are two main procedures in the Middle Node
Algorithm: one is reduction and the other is middle
node solving. Let us look at the reduction procedure
first. At the level j = 0, seven processors normalize
their own equations in parallel, and a new a, ¢, and
f are obtained. Before entering the second level, this
data (a, ¢, and f) is sent in parallel from P1, P3,
P5 and P7 to all their neighbor processors. P1 and
P7 have only one neighbor, and P3 and P5 have two
neighbors each. In level j = 1, P2, P4 and P6 calculate
the new a, ¢, and f based on the data from level j = 0.
Then, P2 and P6 send a, ¢, and f to P4. At the highest
level j = 2, the procedure of reduction is completed
after a, ¢, and f are calculated by P4.

In most implementations of the ADI method, the
boundary values z¢ and xg are usually combined into
the right hand side (the f term) of Equation (5) in the
discretization of node 1 and node 7. But zg, xg and
their coefficients still remain in the left hand side of
the Equation (5). The advantage is to guarantee the
last equation is solvable. Otherwise, we need to solve
three equations at the highest level.

In the middle node solving procedure, P4 uses the
first equation of Equation (15) to find x4 and sends
the value to P2, P6, P3, and P5 at the level j = 2. P2
and P6 find z» and zg, respectively, in parallel. Then
P2 sends x» to its neighbors P1 and P3, and P6 sends
zg to P5 and P7. At the lowest level j = 0, P1, P3,
P5 and P7 find 21, 23, o5, and 7 in parallel. At this
point, all the unknowns in Equation (5) are solved.

For the second kind of boundary condition, the lin-
ear system is described in Equation (5). Because the
first and last nodes are also unknowns, three equa-
tions have to be solved in the final step. To do so, we
use the Crown Algorithm. The Crown Algorithm uses
27+ processors and is illustrated in Figure 3. The dif-
ference between the Middle Node Algorithm and the
Crown Algorithm is in the reduction procedure. They
are exactly same after the first three equations are
solved. The Crown Algorithm will not be discussed
further in this paper.

Sometimes, the number of processors is less than
the number of unknown nodes. This is often encoun-
tered when we use PVM [3] or MPI [4, 8, 10] to link
several workstations together as a parallel virtual ma-
chine. Figure 4 contains the pseudo code for when
there is a difference between the unknown node num-
ber and the processor number.

3 Performance

Speedup is an important parameter to consider
when evaluating the performance of a parallel algo-
rithm. It is normally defined as the ratio of the ex-
ecuting time for one processor to the executing time
for P processors. The executing time is the sum of
computation time, data communication time, and idle
time. The computation time of an algorithm (T¢q;)
is the time spent performing computation rather than
communicating or idling. The communication time of
an algorithm (T,.n,,) is the time that its tasks spend
sending and receiving messages. In the idealized mul-
ticomputer architecture, the cost of sending a mes-
sage between two tasks located on different processors
can be represented by two parameters: the message
startup time, which is the time required to initiate the
communication, and the transfer time per word. For
speedup analysis in this paper, we consider only com-
putation time and communication time. The opera-
tions of addition and multiplication are also assumed
to have the same operation time. In addition, because
there is no big data set that needs to be communicated
in the Middle Node Algorithm, the startup time is the
main part for T¢,,,,. We can roughly take the value of
Teom as some constant times Teqy [2].

For the Middle Node]?l)gorithm,()six operations
J J

k)

are needed to calculate a;”’ and ¢;”’, nine opera-

tions are needed to calculate fl-(j), and four opera-
tions are needed to calculate z;. If the number of
unknown nodes N is equal to 2F — 1, agj), 9 and
fz-(]) will be calculated 2N — log,(N + 1) times and

2

input:
N — number of unknown nodes

P — number of processors

a[i], c[i], f[i] — normalized matrix parameters for unknown
node i. i=1,2 ... N

x[0], x[N+1] — boundary node value from boundary condi-
tion
output:

find x[1], x[2], ..., x[N]

step 1:
create P tasks(procs) and get their task_id[i], i=1, 2, ..., P
find the level of unknown nodes In and level of tasks Ip
In =logy(N +1)
lp =logy (P +1)
assign a, ¢, f and x[0], x[N+1] to all tasks
fori=1toi=P,do
forj=(i—1) 2" P 4 1to (i +1)*2""® -1 do
assign a[j], c[j] and {[j] to task_id[i]
send x[0], x[N+1] to task-id[i].

step 2:
computing a, ¢, and f parallelly in each task_id[p],
p=1, ..., P without data communication
count =1

while count < In — Ip do
for i = (p — 1) % 2in=Ip 4 gc0unt ¢o (p — 1) x 2ln—Ip
J2In—IpHl gpeq, — gcount o
compute a, ¢, and f according to Equation (15)
count = count 4 1
end do

send a, ¢ and f to task_id[p-1](if p > 1)
and task-id[p+1](p < P)

step 3:
computing a, ¢ and f parallelly in each task_id[p],
p=1, ... ,P with data communication
count =1

while count < Ip do
if p%2count = 0 do
receive a, ¢, and f from p — 2¢ount—1 an{ p 4 2count—1
compute a, ¢, and f according to Equation (15)
if p%2count+1l — 0 send a, ¢ and f
to task-id[p — 2°°%™¥] and task_id[p + 2°°%™¢]
end do
count = count + 1
end while
step 4:
use Equation (15) to solve unknown nodes

Figure 4: Pseudo Code of the Middle Node Algorithm

Py Pg
fy Q ay fy ¢ ay fy
j=2
z >
P <]
PO P2 4 P,) PS E z
2| 2
i fo] < 2/ 6 S a/ 1 3/ fs| o a3 /1y é &
Po‘ P P, Py P, P; P P} Pg
1 2 3 4 4 7 8
j=0 f 2 3 5 6 i 8
Xo X1 Xy X3 X4 Xs Xq X7 Xg

Figure 3: Scheme of the Crown Algorithm for secondary boundary condition.

agj) has to be calculated N times. Therefore, the
total operations needed in this algorithm is equal to
46N —21log, (N +1), and the total calculation time is
equal to [46N — 21log, (N + 1)]T¢ai, where Teq; is the
time needed for a unique addition or multiplication
operation.

For the parallel algorithm, P processors are used
on N unknown nodes, where P = 2P — 1. If P is
less than N, there are 4(n +1)/(P + 1) — log,((IN +
1)/(P + 1)) — 3 times to calculate !, ¢, and 9
in each processor. Also there are (N + 1)/2tP — 1
times to calculate z;. Those operations are executed
independently—that is, without data communication.
Therefore, the total calculation time is (92(N+1)/(P+
1) — 21og,[(N +1)/(P + D)) Tear.

In the top L, — 1 layer, processors calculate a
cgj) fz.(’) and z; with data communication. Each pro-
cessor calculates only one node on one level. The total
time for calculation is equal to 25(log, (P +1) —1)Teq-

©)

T

For each node, the processor needs two sets of agj),

¢ and £, from both the left and the right neighbor
processors and sends x; to those neighbors. If the re-
ceiving procedure and sending procedure are assumed
to take the same time, the total time spent on data
communication is 3(log,(P + 1) — 1)T,,,. According
to the definition we have speedup equal to:

[46N — 211ogo(N + 1)]|T¢qi

(92531 — 21logy(FH1) + 2510y (PFH) Tear + 3(logy(F4H)) Teom

P+1 P+1

Figure 5 is the speedup graph with total unknown
node size equal to 2047 and three different constants
chosen to set communication speeds. It can be seen
from the figure that the Middle Node Algorithm has a
very good performance for the multiprocessor machine
with intra-processor communication.

30

"Tcom=40Tcal"
"Tcom=8QTecal"

Speedup

100 120

0 20 40 60 80
Number of Processors

140

Figure 5: Speedup Curves

4 Conclusion

When compared with the SOR method, our algo-
rithm with the ADI method is always stable even when
the matrix 4 in Equation (7) is not predominate. The
ADI method can be used for all kinds of thermal and
fluid problems while SOR can work only for a Poison
equation. Similar to SOR, the ADI method is also a
numerical method and needs a number of iterations
to converge to an exact solution. Because the ADI
method finds an exact linear equation solution in one
dimension, it can save iteration times to find a conver-
gent solution in the whole domain. Therefore, a good
parallel ADI algorithm can be used in many engineer-
ing and scientific computation aspects.

Thomas’s algorithm has been widely used in other
ADI method algorithms to solve the tridiagonal linear
equation on serial machines. The Middle Node Algo-

rithm presented in this paper is slower than Thomas’s
algorithm when only one processor is used. Both
algorithms have same order notation, O(n), in gen-
eral case, i.e. a;, b; and ¢; have different values for
i = 1,...,n. But in many cases, they have identical
value except for the two equations at boundary nodes,
i.e. t = 1 and n. In this case, the calculation opera-
tions to find a;, b;, and ¢; have to be taken only once
on each level, and the Middle Node Algorithm will be
much faster than Thomas’s algorithm. Our algorithm
is the best case with order O(log(n)) when we limit the
input to isotropic problems with unique space step.

For parallel processing, the Middle Node Algorithm
has the same speedup as the DAC algorithm when the
total number of processor is less than 63. In this range,
the effective processing speed will increase at the rate
of about 33%. There are two factors that affect the
speedup. One is the communication startup time. At
the current time, even for IBM SP2, the startup time
is almost 40 times of the calculation speed, which is
why this number was chosen for Figure 5. For the
Middle Node Algorithm, the speedup is cut mainly by
the second factor, which is the idle processor. The exe-
cuting processor number is cut in half as the level goes
up. To improve the performance of the algorithm, it
is good to choose the number of unknown nodes to be
much larger than the total number of processors. If
the problem is of the best case type, the speedup will
increase significantly. In addition, the scalability will
also improve, because the ratio of the data communi-
cation to the data calculation is much smaller.

The evaluation of parallel methods is a complicated
project [5, 7]. Both speedup and scalability are two of
the main parameters taken into account during the
evaluation. Unfortunately, they are only the paral-
lelization performance description of a specific algo-
rithm. Now people usually take the speed of the
same algorithm with one processor as the reference for
speedup calculation. This leads to some problems in
the final results. For example, the serial SOR method
could be 64 times fast than the serial Gauss-Siedel
method for some large-scale linear problem. A good
parallel Gauss-Siedel algorithm with 64 processors can
get a speedup of 64. It is still difficult to say whether or
not it is a good parallel algorithm. Therefore, a good
parallel algorithm for SOR must have a good order
and good convergence speed, in addition to speedup
and scalability.

In conclusion, we have developed a new parallel al-
gorithm that matches or outperforms the other meth-
ods in our comparison group. We have shown that
communication costs are the major part of its per-

formance impact. This leads us to believe that our
algorithm will be more significant in the future with
faster communication networks.

References

[1] John D. Anderson. Computational Fluid Dynam-
ics. McGraw Hill, 1995.

[2] Ian Foster. Designing and Building Parallel Pro-
grams. Addison-Wesley Publishing Company,
1995.

[3] Al Geist, Adam Beguelin, Jack Dongarra, We-
icheng Jiang, Robert Manchek, and Vaidy Sun-
deram. PVM: Parallel Virtual Machine — A
User’s guide and tutorial for networked parallel
computing. MIT Press, Cambridge, MA, 1994.

[4] Willaim Gropp, Ewing Lusk, and Anthony Skjel-
lum. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press,
Cambridge, MA, 1994.

[5] J. JAJ4. An Introduction to Parallel Algorithms.
Addison-Wesley Publishing Company, Reading,
MA, 1992.

[6] Wolfgang Kollman. Computation Fluid Dynam-
ics. Hemisphere Publishing Corporation, 1980.

[7] V. Kumar, A. Grama, A. Gupta, and G. Karypis.
Introduction to Parallel Computing: Design
and Analysis of Algorithms. The Ben-
jamin/Cummings Publishing Company, Inc.,
Redwood City, CA, 1994.

[8] Peter Pacheco. Parallel Programming with MPI.
Morgan Kauffman, San Francisco, CA, October
1996.

[9] Suhas V. Patankar. Numerical Hear Transfer and
Fluid Flow. Hemisphere Publishing Corporation,
1980.

[10] Marc Snir, Steve Otto, Steven Huss-Lederman,
David Walker, and Jack Dongerra. MPI: The
Complete Reference. MIT Press, Cambridge, MA,
1996.

[11] Harold S. Stone. High Performance Computer
Architecture. Addison-Wesley Publishing Com-
pany, 3rd edition, 1993.

[12] M. Wang and J.G. Georgiadis. Parallel computa-
tion of forced convection using domain decompo-
sition. Numerical Heat Transfer, Part B, 20:41—
59, 1991.

[13] M. Wang and S.P. Vanka. A parallel algorithm
for high order finite-difference solution of the un-
steady heat conduction equation, and its imple-
mentation on the CM-5. Numerical Heat Trans-
fer, Part B, 24:143-159, 1993.

