Highly Scalable Parallel Sorting

Edgar Solomonik and Laxmikant V. Kalé

Department of Computer Science
University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA
E-mail: solomon2 @illinois.edu,
kale @illinois.edu

Abstract— Sorting is a commonly used process with
a wide breadth of applications in the high performance
computing field. Early research in parallel processing
has provided us with comprehensive analysis and theory
for parallel sorting algorithms. However, modern super-
computers have advanced rapidly in size and changed
significantly in architecture, forcing new adaptations to
these algorithms. To fully utilize the potential of highly
parallel machines, tens of thousands of processors are
used. Efficiently scaling parallel sorting on machines of
this magnitude is inhibited by the communication-intensive
problem of migrating large amounts of data between
processors. The challenge is to design a highly scalable
sorting algorithm that uses minimal communication, max-
imizes overlap between computation and communication,
and uses memory efficiently. This paper presents a scal-
able extension of the Histogram Sorting method, making
fundamental modifications to the original algorithm in
order to minimize message contention and exploit overlap.
We implement Histogram Sort, Sample Sort, and Radix
Sort in CHARM++ and compare their performance. The
choice of algorithm as well as the importance of the
optimizations is validated by performance tests on two
predominant modern supercomputer architectures: XT4
at ORNL (Jaguar) and Blue Gene/P at ANL (Intrepid).

I. INTRODUCTION

Algorithms for sorting are some of the most well-
studied and optimized algorithms in computer science.
Parallel sorting techniques, despite being well analyzed
in a vast amount of literature, have not been sufficiently
tested or optimized on modern high performance super-
computers. Good scaling and performance of parallel
sorting is necessary for any parallel application that
depends on sorting. ChaNGa [1], an n-body Barnes-Hut
tree-based gravity code [2], is an example of a highly
parallel scientific code that uses sorting every iteration.

The problem posed by parallel sorting is significantly
different and more challenging than the corresponding
sequential one. We begin with an unknown, unsorted dis-
tribution of n keys over p processors. The algorithm has
to sort and move the keys to the appropriate processor

so that they are in globally sorted order. A globally
sorted order implies that every key on processor k is
larger than every key on processor k — 1. Further, at
the end of execution, the number of keys stored on
any processor should not be larger than some threshold
value % ~+ tinresn (dictated by the memory availability
or desired final distribution).

We will describe a new algorithm grounded on the
basic principles of Histogram Sort [3] that can perform
and scale well on modern supercomputer architectures.
Using our optimized implementation, we are able to
achieve an estimated 46.2% efficiency on 32,768 cores
of BG/P (which corresponds to a speedup of roughly
15,000). For a communication intensive algorithm such
as sorting, this is a fairly impressive efficiency. Addi-
tionally, the algorithm handles uniform as well as highly
non-uniform distributions of keys effectively.

Section 2 describes various parallel sorting algorithms
as well as the original Histogram Sort. Section 3 docu-
ments the optimizations we applied to the algorithm in
order to achieve better scaling. These include our probe
determination algorithm, all-to-all optimizations, and
exploitations of overlap of communication with local
sorting and merging. Section 4 introduces the specifics
of our implementation, describes the machines we use
for testing, and analyzes the scaling and comparative
speed of our parallel sorting algorithm. Section 5 will
suggest conclusions that can be drawn from our work
as well as potential areas for improvement.

II. PREVIOUS WORK

Previous work has produced many alternative solu-
tions to address the problem of parallel sorting. The
majority of parallel sorting algorithms can be classified
as either merge-based or splitter-based. Merge-based
parallel sorting algorithms rely on merging data be-
tween pairs of processors. Such algorithms generally
achieve a globally sorted order by constructing a sort-
ing network between processors, which facilitates the
necessary sequence of merges. Splitter-based parallel
sorting algorithms aim to define a vector of splitters
that subdivides the data into p approximately equal-
sized sections. Each of the p — 1 splitters is simply a
key-value within the dataset. Thus for splitter s;, where
1€40,1,2,....p—2}, loc(s;) € 0,1,2,...,n is the total
number of keys smaller than s;. Splitter s; is valid if,
(7/ + 1)% - %tthresh < ZOC(Si) < (Z + 1)% + %tthresh-
Once these splitters are determined, each processor can
send the appropriate portions of its data directly to the
destination processors, which results in one round of
all-to-all communication. Notably, such splitter-based
algorithms utilize minimal data movement, since the
data associated with each key only moves once.

Merge-based parallel sorting algorithms have been
extensively studied, though largely in the context of
sorting networks, which consider n/p ~ 1. For n/p >
1, these algorithms begin to suffer from heavy use of
communication and difficulty of load balancing. There-
fore, splitter-based algorithms have been the primary
choice on most modern machines due to their minimal
communication attribute and scalability. However, newer
and much larger architectures have changed the prob-
lem statement further. Therefore, traditional approaches,
including splitter-based sorting algorithms, require re-
evaluation and improvement. We will briefly detail some
of these methods below.

A. Bitonic Sort

Bitonic Sort, a merge-based algorithm, was one of
the earliest procedures for parallel sorting. It was intro-
duced in 1968 by Batcher [4]. The basic idea behind
Bitonic Sort is to sort the data by merging bitonic
sequences. A bitonic sequence increases monotonically
then decreases monotonically. For n/p = 1, O(lgn)
merges are required, with each merge having a cost of
©(lgn). The composed running time of Bitonic Sort for
n/p = 1 is ©(lg” n). Bitonic Sort can be generalized
for n/p > 1, with a complexity of ©(nlg” n). Adaptive
Bitonic Sorting, a modification of Bitonic Sort, avoids
unnecessary comparisons, which results in an improved,
optimal complexity of ©(nlgn) [5].

Unfortunately, each step of Bitonic Sort requires
movement of data between pairs of processors. Like
most merge-based algorithms, Bitonic Sort can perform
very well when n/p (where n is the total number of
keys and p is the number of processors) is small, since
it operates in-place and effectively combines messages.
On the other hand, its performance quickly degrades as
n/p becomes large, which is the much more realistic
scenario for typical scientific applications. The major
drawback of Bitonic Sort on modern architectures is
that it moves the data O(lgp) times, which turns into
costly bottleneck if we scale to higher problem sizes
or a larger number of processors. Since this algorithm
is old and very well-studied, we will not go into any
deep analysis or testing of it. Nevertheless, Bitonic
Sort has laid groundwork for much of parallel sorting
research and continues to influence modern algorithms.
One good comparative study of this algorithm has been
documented by Blelloch et al. [6].

B. Sample Sort

Sample Sort is a popular and widely analyzed splitter-
based method for parallel sorting [7], [8]. This algorithm
acquires a sample of data of size s from each processor,
then combines the samples on a single processor. This

processor then produces p—1 splitters from the sp-sized
combined sample and broadcasts them to all other pro-
cessors. The splitters allow each processor to send each
key to the correct final destination immediately. Some
implementations of Sample Sort also perform localized
load balancing between neighboring processors after the
all-to-all.

1) Sorting by Regular Sampling: The Sorting by
Regular Sampling technique is a reliable and practical
variation of Sample Sort that uses a sample size of
s = p — 1 [9]. The algorithm is simple and executes
as follows.

1) Each processor sorts its local data.

2) Each processor selects a sample vector of size p—1
from its local data. The kth element of the sample
vector is element % X % of the local data.

3) The samples are sent to and merged on processor
0, producing a combined sorted sample of size
p(p—1).

4) Processor 0 defines and broadcasts a vector of p—1
splitters with the kth splitter as element p(k + 3)
of the combined sorted sample.

5) Each processor sends its local data to the appro-
priate destination processors, as defined by the
splitters, in one round of all-to-all communication.

6) Each processor merges the data chunks it receives.

It has been shown that if n is sufficiently large, no
processor will end up with more than 2?" keys [9]. In
practice, the algorithm often achieves almost perfect
load balance.

Though attractive for its simplicity, this approach is
problematic for scaling beyond a few thousand proces-
sors on modern machines. The algorithm requires that
a combined sample p(p — 1) keys be merged on one
processor, which becomes an unachievable task since it
demands ©(p?) memory and work on a single proces-
sor. For example, on 16,384 processors, the combined
sample of 64-bit keys would require 16 GB of memory.
Despite this limitation, due to the popularity of Sorting
by Regular Sampling, we provide performance results
of our implementation of the algorithm (see Figure 7).
For a more thorough description and theoretical analysis
of Sample Sort, refer to Li er al. [10].

2) Sorting by Random Sampling: Sorting by Ran-
dom Sampling is an interesting alternative to Regular
Sampling [8], [11], [6]. The main difference between
the two sampling techniques is that a random sample
is flexible in size and collected randomly from each
processor’s local data rather than as a regularly spaced
sample. The advantage of Sorting by Random Sampling
is that often sufficient load balance can be achieved
for s < p, which allows for potentially better scaling.
Additionally, a random sample can be retrieved before

sorting local data, which allows for overlap between
sorting and splitter calculation. However, the technique
is not wholly reliable and can result in severe load imbal-
ance, especially on a larger amount of processors. Since
Sorting by Random Sampling is marginally different
from Sorting by Regular Sampling, we do not present
results for this version of Sample Sort.

C. Radix Sort

Radix Sort is a sorting method that uses the binary
representation of keys to migrate them to the appropriate
bucket in a series of steps. During every step, the
algorithm puts every key in a bucket corresponding to
the value of some subset of the key’s bits. A k-bit radix
sort looks at k bits every iteration. Thus a 16-bit radix
on 64-bit keys would take 4 steps and use 26 buckets
every step. The algorithm correctly sorts the keys by
starting with the less significant bits of the keys and
moving the keys out of the lower indexed buckets first.

Radix Sort can be parallelized simply by assigning
some subset of buckets to each processor [6], [12]. In ad-
dition, it can deal with uneven distributions efficiently by
assigning a varying number of buckets to all processors
every step. This number can be determined by having
each processor count how many of its keys will go to
each bucket, then summing up these histograms with
a reduction. Once a processor receives the combined
histogram, it can adaptively assign buckets to processors.

Radix Sort is not a comparison-based sort. However,
it is a reasonable assumption to equate a comparison
operation to a bit manipulation, since both are likely
to be dominated by the memory access time. Never-
theless, Radix Sort is not bound by @("1}%"), as any
comparison-based parallel sorting algorithm would be.
In fact, this algorithm’s complexity varies linearly with
n. The performance of the sort can be expressed as
@(b?”), where b is the number of bits in a key [12]. This
expression is evident in that doubling the number of bits
in the keys entails doubling the number of iterations of
Radix Sort.

The main drawback to parallel Radix Sort is that
it requires multiple iterations of costly all-to-all data
exchanges. The cache efficiency of this algorithm can
also be comparatively weak. In a comparison-based
sorting algorithm, we generally deal with contiguous
allocations of keys. During sequential sorting (specif-
ically in the partitioning phase of Quicksort), we it-
erate through keys with only two iterators and swap
them between two already accessed locations. Com-
munication in comparison-based sorting is also cache
efficient because we can usually copy sorted blocks
into messages. In Radix Sort, at every iteration any
given key might be moved to any bucket (there are

64 thousand of these for a 16-bit radix), completely
independent of the destination of the previously indexed
key. However, Thearling et al. [12] propose a clever
scheme for improving the cache efficiency during the
counting stage.

Nevertheless, Radix Sort is a simple and commonly
accepted approach to parallel sorting. Therefore, despite
its limitations, we implemented Radix Sort and analyzed
its performance.

D. Histogram Sort

Histogram Sort is another splitter-based method for
parallel sorting [3]. The extension and optimization of
this approach will be the focus of this paper. We describe
the original formulation of this algorithm here.

Like Sample Sort, Histogram Sort also determines a
set of p — 1 splitters to divide the keys into p evenly
sized sections. However, it achieves this task more
accurately by taking an iterative approach rather than
simply collecting one big sample. The procedure begins
by broadcasting k (where k > p — 1) splitter guesses,
which we call a probe, from the initiating processor to
every other processor. These initial guesses are usually
spaced evenly over the data range. Once the probe is
received, the following steps are performed.

1) Each processor sorts its local data.

2) Each processor determines how many of its keys
fit into every range produced by the guesses,
creating a histogram.

3) A reduction sums up these histograms from every
processor. Then one processor analyzes the data
sequentially to see which splitter guesses were sat-
isfactory (fell within %tthresh of the ideal splitter
location).

4) If there are any unsatisfied splitters, a new probe
is generated sequentially then broadcasted to all
processors, returning to step 2. If all splitters have
been satisfied, we continue to the next step.

5) The desired splitting of data has been achieved,
so the p — 1 finalized splitters and the numbers of
keys expected to end up on every processor are
broadcasted.

6) Each processor sends its local data to the appro-
priate destination processors, as defined by the
splitters, in one round of all-to-all communication.

7) Each processor merges the data chunks it receives.

We used Histogram Sort as the basis for our work
because it has the essential quality of only moving the
actual data once, combined with an efficient method for
dealing with uneven distributions. In fact, Histogram
Sort is unique in its ability to reliably achieve a de-
fined level of load balance. Therefore, we decided this
algorithm is a theoretically well suited base for scaling

sorting on modern architectures. Throughout this paper,
we will present adaptations and optimizations to this
algorithm in order to improve its performance, but we
will rely on the skeleton description presented above.

III. OPTIMIZATIONS

The performance of Histogram Sort can be improved
by techniques that reduce the number of histogram-
ming iterations needed, overlap communication with
computation whenever possible, and minimize network
contention. We present a series of optimizations aimed
at satisfying these goals and eliminating scaling bottle-
necks.

A. Probe Determination

The probe determination algorithm needs to be effi-
cient since it is only executed by one processor, which
gives it a high potential of becoming a bottleneck.
The desire for quick convergence to the correct splitter
locations is counterbalanced by the necessity to keep
the splitter guess generation logic simple and quick.
Additionally, we aim to design and test a general method
that can handle any distribution.

We generally set aside one processor to determine
the probe. This processor keeps track of bounds for all
the desired splitters. The ideal location (the number of
total keys smaller than the splitter) of the ¢th splitter
is W. Whenever a histogram arrives (as in step 3
of Histogram Sort), we iterate through the results and
update the desired splitter information to either narrow
the range for the next guess or declare the splitter as
achieved. By declaring a splitter as achieved, we mean
that a splitter guess has partitioned the data within a
satisfactory threshold (%tthresh) from the target location
of the splitter.

The size of the generated probe varies depending on
how many splitters have yet to be resolved, but we hold
k, as previously defined, to be an upper bound for the
number of new guesses. If the distribution is uneven,
it is very likely that many desired splitters will end
up being bound within the same interval (their ideal
locations being in between the locations of the same
two previous splitter guesses). We take a basic approach
and subdivide any interval containing s unachieved
splitters with |s x %J guesses, where u is the total
number of unachieved splitters. We do not spend time
interpolating the data. Instead, we distribute the guesses
evenly over the interval. This method takes minimal time
to generate a probe, while guaranteeing convergence. An
interpolation technique decreases the average time for
achieving each splitter, but usually increases the time
until the last splitter is achieved.

This paper will consider a splitter guess satisfactory if
it falls within some threshold of the ideal location of the

splitter. Unless stated otherwise, it can be assumed that
tihresh = ﬁ (10%). This threshold means each splitter
is achieved if a splitter guess location is within ﬁ of
the splitter’s ideal location. We do not try to attain exact
splitting of data (setting a threshold of zero) because we
are not aware of any practical applications that demand
this criterion. One method for exact splitting is proposed
by Cheng et al. [13].

If p is large, we reserve a single processor for the
probe generation work. This choice increases the amount
of data on each other processor by n/p?. However,
as long as the work necessitated by this extra data is
smaller than the probe generation cost, offloading the
probe analysis to a single processor reduces the critical
path.

B. Sort and Histogram Overlap

From a scalability perspective, an obvious drawback
of the original Histogram Sort algorithm is that during
the reduction and probe generation period, all processors
except one are idle. Since the reduction as well as the
probe analysis and production operate with data of size
p, the overhead of this stage will inevitably increase as
we attempt to use the algorithm on larger machines.

Most approaches to comparison-based parallel sorting
begin by sorting the local data first. However, we noticed
that Histogram Sort presents an opportunity to overlap
communication with computation by sorting while the
reduction happens. Rather than sort first and spend
time searching for every splitter guess afterward, we
determine the locations of guesses within the local data
by treating them as if they were Quicksort pivots and
performing one iteration of Quicksort. An iteration of
Quicksort swaps keys until all of the keys smaller than
the pivot are separated from the ones larger than the
pivot. We will refer to this task as splicing the data. This
process is implemented by iterating from the start of the
array and from the end of the array until the two iterators
meet somewhere in the middle. The point at which the
two iterators collide is the point where the pivot belongs.
Because our pivots are actually splitter guesses, every
iteration of Quicksort can effectively determine where
the guess fits in the local data. Thus, without having to
first fully sort the keys, we can efficiently identify the
locations of the guesses.

Now, each processor can utilize the reduction and
probe generation time for sorting the local data in pieces.
If additional probes need evaluation, we can search
for any guesses that are in the range of the sorted
data and calculate where the rest of the guesses fit by
again splicing the data. Figure 1 might help visualize
this process by providing a time line of the flow of
events on a few processors. Every line demonstrates

9,500,000 10,487,230 11,481,827 12,476,424
| 4 , i

Time In Microseconds

13,471,022 14,465,619 15,450,216 16,447,445
: ; | |

FEQ 1 I [

(0, 0) i] i
PE 750

(92, 88)
PE 1500
(92, BS)
PE 2250
(a4, 20)
PE 2000
(92, BE)
PE 2750
(a2, 89)

L L BN (NN D e e e IO | -
L. L IL D (NN NN ooem oo ooy ey .
L LILINL NN NN o e e
L L DL NN NN e sy ooy [AT T 17T B
L LIS N T T T e

Fig. 1: Timeline of Histogram Sort using the Projections tool. This run was done on Intrepid with 8 million 64-bit keys per core on
4096 cores. The orange (first color in order of appearance) is the probe fitting/splicing time. The green (second color) is the local
sorting time. The blue (third color) is a combination of local sorting and sending of data. The red (last color) is the merging work.

the periods of time spent performing each task on one
processor. This time line also reflects some features of
our implementation that have yet to be explained.

Since Quicksort is widely considered an optimal
sequential sort, our procedure determines the location of
any splitter guess with only a small overhead in choosing
a pivot. This strategy shortens the critical path of the
algorithm because the sequential probe determination
time and the reduction are now happening concurrently
with the local sorting. The effects of this adaptation
become more noticeable when scaling the sort since the
probe determination and reduction grow in cost.

We also implemented a few optimizations to this
approach in order to efficiently sort highly non-uniform
datasets. We found that simply selecting the middle
splitter guess as a pivot was insufficient. We could not
rely on the guess being close to the median of the data,
which is an important efficiency factor for Quicksort. To
solve this problem, we utilized a few concepts from the
Introsort sequential sorting technique, which is used by
the C++ Standard Library [14]. The Introsort algorithm
uses Quicksort until the subdivisions are small and then
finishes with a Heapsort. For Quicksort, it employs the
median-of-3 pivot selection, which looks at the first,
middle, and last elements of an array to select the pivot.
We extrapolated this approach to selecting even larger
samples of keys to find a good median. We focused on
dealing with comparatively large array sizes (8 million
keys), so the cost of finding a median of a larger
sample is small compared to the splicing cost. Then
we searched the probe to find a guess closest to that
median. Splicing small ranges also turned out to be
inefficient, so we defined a minimum range threshold for
splicing. If a guess was known to be in a range smaller
than the minimum threshold, we sort the array section
instead of splicing it and look up the guesses using a
binary search. These optimizations helped minimize the
sequential overhead of our method.

C. All-to-All Communication Optimization

The all-to-all communication stage can become the
most time consuming part of the algorithm when the
number of processors is large. Simply sending out all of
the point to point messages at the same time can lead
to network overload and contention problems. If we do
weak scaling (keeping n/p constant), the amount of data
on the network varies in proportion to n, and the number
of messages varies in proportion to p?. Therefore the
all-to-all data movement is the most significant scaling
bottleneck of Histogram Sort.

We did not utilize any optimized CHARM++ or MPI
all-to-all calls [15], [16], because they do not allow for
sufficient overlap of communication with computation.
Instead, we propose a few simplistic but helpful opti-
mizations to the communication pattern, then focus on
preventing the all-to-all from becoming a bottleneck by
adapting the algorithm to accomplish significant overlap.

The first basic yet valuable optimization is to have
every processor send data in a varying order instead of
all cores sending data to processor O first and processor
p — 1 last. A simple and effective solution is to have
processor pj send the first message to processor Py
and wrap around with the last message being sent to
processor pi_1. This trivial fix can actually significantly
decrease contention on almost any network.

Another straightforward improvement is achieved by
staging the communication. Instead of sending all of
the messages out immediately, every processor sends
out some fraction of its messages in interleaving stages
dictated by the amount of data it had received. This
approach to collective communication prevents the net-
work from being overloaded, which can cause messages
to get delayed, and simplifies the problem of contention
on the network. We eventually extended this scheme
further by having processors send out one message every
time they receive a message. Communication staging
improved the all-to-all speed and scaling significantly
and completely prevented messages from being delayed.
This technique also reduces the memory footprint of the
algorithm when considering the use of message buffers.

Weak Scaling on Intrepid (Uniform Distribution)

T T

no overlap —»—
merge overlap

full overlap --->---

20 -

Time (sec)

1 1 1 1 1
512 1024 2048 4096 8192 16384 32768
No. of Cores

Weak Scaling on Jaguar (Uniform Distribution)

8 : : . . .
no overlap —»—
merge overlap
r full overlap ---*--- |
. 6| |
[&]
[0}
2
o O |
£
oL . |
3t B |
2 L I | . .
512 1024 2048 4096 8192 16384 32768
No. of Cores

Fig. 2: This figure demonstrates the effect of merge and all-to-all overlap as well as sort and all-to-all overlap. These runs were done

on Intrepid and Jaguar with 8 million 64-bit keys per core.

D. Merging and All-to-All Overlap

In the last phase of the algorithm, each processor
merges p chunks of sorted data that have been received
from all processors. The complexity of merging p sorted
arrays of total size n/p is ©(% 1gp). Since I stays
constant as we scale up, the lgp factor dictates the
relative growth of the work done in the merging stage.
Due to the expanding cost of the all-to-all and merge,
we designed our merging algorithm to be capable of
exploiting overlap between communication and compu-
tation.

There are two basic approaches to merging [arrays
into one. One is to do a [-way merge by iterating through
every array simultaneously and pushing and popping
elements into a heap of size [. Another approach is to
merge the arrays in pairs using a merge tree. In a [-
way merge there is a ©(lg!) cost for the insertion of an
element into the heap, whereas in the tree merge, every
element needs to be merged ©(lg!) times. Therefore,
both approaches result in the same asymptotic complex-
ity.

A [-way merge is easier to implement and can some-
times outperform a tree merge. Nevertheless, a proper
version of a tree merge minimizes any disadvantages
of the technique. A tree merge should be implemented
using two large arrays (each of size n/p) for the whole
of the incoming data in order to avoid unnecessary
memory allocations. The data should jump back and
forth between the two arrays as it gets merged.

There is an important reason for optimizing and
using a tree merge instead of merely utilizing a [-way
merge. A [-way merge requires all of the data to be
in place to begin, while a tree merge can start as soon
as two chunks of data arrive. In fact, the structure of
the tree enables us to merge some incoming data upon
arrival without any loss of efficiency. In other words,
the incoming arrays are being placed at leaf positions
of a full binary tree, and are being merged (moved

up the tree) with data in every full adjacent node. So
for the ith array that arrives, we can do m merges,
where m = maxs[i = 0(mod(2°))], i.e. every other
array can be merged immediately at least once, every
fourth array can be merged at least twice. This flexibility
means that we can merge while the data is arriving, and
therefore achieve significant overlap of computation and
communication.

This overlap greatly reduces the overhead of the
all-to-all communication and improves the scaling of
Histogram Sort. The benefit achieved by this merging
approach can be observed in Figure 2. The “no overlap”
plot is produced by a version of Histogram Sort with
no optimizations. The “merge overlap” implementation
exploits our all-to-all optimizations and the merging
scheme described above. The “merge overlap” version
performs noticeably better on both Intrepid and Jaguar.
The “full overlap” version is a further-optimized version
utilizing the technique described below.

E. Overlapping Sorting with All-to-All

Despite the all-to-all optimizations and merge overlap,
we still found that the bottleneck in our performance on
a large amount of cores was the mass communication
at the end. The algorithm described so far waits for the
end of histogramming phase before starting the all-to-
all communication. However, we took advantage of our
histogramming and sorting overlap technique in a way
that allowed us to initiate the data exchange even before
local sorting completes.

We found that on a large amount of processors, every
histogramming iteration generally determines a signifi-
cant portion of the total number of desired splitters. By
virtue of our splicing technique, we also know that most
of the local data has yet to be sorted. Thus, at each his-
togramming iteration, we also broadcast all determined
and bound ranges (range 7 is bound if splitters s;_; and
sk have been determined), allowing the all-to-all phase

25000000

20000000

15000000

10000000

SO00000

Bites Recelved Externally

[}

85000 105000 115000 125000

Communication ws Time

Time Interval {(1.000ms)

125000

145000 155000 165000

Fig. 3: Communication over Time of Histogram Sort using the Projections tool. This run was done on Intrepid with 8 million 64-bit
keys per core on 4096 cores. The plot shows the number of bytes received every millisecond.

to begin early. When a processor receives a bounded
range, it sorts the data inside the range and sends it out
immediately (the range has already been isolated due
to the bounding splitter guesses being used as splicing
pivots in a previous iteration).

A fundamental limitation to the benefit of this tech-
nique is that all p processors are sending messages to
the small subset of processors whose ranges have been
determined. This effect can result in contention near the
determined processors. Our solution was to only have
a fraction of the processors send their data out to any
processor owning a newly determined range. This opti-
mization is simply an adaptation of our original com-
munication staging scheme. To select which processors
send their data, we define some constant k..., Such
that for destination range r, every processor p;, where
i+r = 0(mod(keomm)), sends its data to the destination
processor p,. The rest of the processors would send
their messages later during the merging stage of the
algorithm. We also mirrored our varying-order sends
optimization (explained in the previous subsection) by
having every processor, p;, analyze the r,4; determined
ranges starting from destination range ¢ mod Totq1-

This optimization is especially useful in the case
of a relatively uniform distribution, since we are able
to send out messages before most of the sorting is
complete. It is also equally applicable if the data is
non-uniform and several iterations of histogramming are
required. In this scenario, we will gradually satisfy all
of the splitters, and send out new data at every iteration.
Therefore, we are able to execute the sorting stage, the
histogramming stage, and the all-to-all concurrently. In
Figure 3, we demonstrate the communication spread
achieved by overlapping sorting and merging with com-
munication. This plot reflects the total communication
on the network over time. We can see that the reception
of data is distributed over a long range of time. However,
there are spikes and dips in the plots, suggesting that
there is still room for improvement.

IV. PERFORMANCE RESULTS AND ANALYSIS

In this section, we will present our implementation
groundwork and details. We will also describe the ar-
chitectures of Jaguar and Intrepid in order to provide
a better understanding of our results. Finally, we will
present scaling and efficiency data accompanied by
analysis and explanations of performance.

A. Implementation Details

We implemented Radix Sort, Sample Sort, and His-
togram Sort using CHARM++. This programming model
choice allowed us to utilize the portability and flexibility
of the object based decomposition technique provided
by CHARM++, as well as the multitude of performance
and debugging tools provided by the framework [17],
[18]. A CHARM++ program specifies computation as a
collection of data-driven objects called chares that are
organized into indexed collections called chare-arrays.
The CHARM++ dynamic runtime system maps chares
onto processors, where they execute work in parallel
and communicate between each other using messages.
CHARM++’s message driven execution and ability to
flexibly overlap communication and computation was
also useful for our application. For example, we were
able to let the runtime system implicitly determine
whether a processor can continue sorting or if a message
with a new probe has arrived for analysis. We did not uti-
lize over-decomposition [19] in our tests, since it would
increase the total communication load. Nevertheless, our
code can be efficiently utilized by CHARM++ applica-
tions using over-decomposition, such as ChaNGa. The
sequential sorting algorithm used in Sample Sort and
Histogram Sort was the C++ Standard Library Sort,
which is as previously mentioned, Introsort.

Our Radix Sort implementation was consistent with
previous work. We decomposed the data and work
involved in the algorithm into a parallel chare array, with
each chare being responsible for a set of buckets. At
the beginning of every iteration, every chare calculates
what portion of its data would go to every bucket. A
reduction sums up these values and reports them to
a single main chare. This main chare determines the

number of buckets to assign to each chare to achieve
proper load balancing. After broadcasting these bucket
ranges to all of the chare array members, Radix Sort
executes an all-to-all data exchange. We applied the
communication optimizations discussed above (sending
order and staging) to Radix Sort. However, we were
unable to modify Radix Sort to achieve any further
communication and computation overlap.

We also implemented Sample Sorting by Regular
Sampling. The work was decomposed into a chare
array with one chare per processor. The samples were
collected on each chare and combined using a reduction.
The main chare was assigned to analyze the sample
then produce and broadcast the splitters. In order to
minimize the work done on the main chare, we designed
a specialized reduction that merges the samples at every
node in the reduction tree. This distributes the merging
work and leaves the main chare with ©(sp) merging
work instead of ©(splgp). The same all-to-all optimiza-
tions proposed for Histogram Sort were applied to this
algorithm as well. Notably, Sample Sort was the easiest
to implement of the three parallel sorting algorithms.

For Histogram Sort, the basic decomposition strategy
was similarly an array of chares. Every member of the
array has responsibility for some amount of the data. A
main chare is responsible for the production of probes
and analysis of reduction results. This chare can be
mapped either onto its own processor or on the same
processor as some member of the chare array. The C++
Standard Library Sort function is well optimized and
very efficient. By performing splicing, we are essentially
replicating the work of this function. Therefore, we tried
our best to optimize the efficiency of our code.

We simulate skewed distributions by performing a
binary AND between multiple keys to produce every
key. This approach is a commonly used test for seeing
how well a sorting algorithm handles non-uniform dis-
tributions [12]. We will mostly only refer to the case of a
single binary AND as a non-uniform distribution. Doing
two or more binary ANDs results in very clumped data,
which can become almost impossible to deal with as
we scale the total number of keys. For example, past
a few thousand processors, two AND operations would
result in the total number of zeros higher than n/p. For
Histogram Sort, instead of doing more ANDs, we will
analyze the case of lowering the threshold within which
the splitter locations are satisfied.

B. Architecture Information

Intrepid* is an installation of IBM’s Blue Gene/P
supercomputer at Argonne National Laboratory
(ANL) [20]. The installation contains 40 racks of 1024

*http://www.alcf.anl.gov/support/using ALCF/usingsystem.php

nodes, with each node containing 4 cores, giving us a
total of 163,840 cores. Every core is a PowerPC 450
running at 850 MHz, achieving a peak performance
of 3.4 GFLOPs per core. Each node has a total of 2
GB memory shared between the 4 cores with 3 levels
of cache. The network topology of Intrepid is a 3D
torus. The peak unidirectional bandwidth of a torus
link is 425 MB/sec. Therefore, a total bandwidth of 5.1
GB/sec is shared between the 4 cores of each node.

Jaguar®, at Oak Ridge National Laboratory (ORNL),
has 7,832 compute nodes in its XT4 partition, also with
4 cores per node, for a total of 31,328 cores. Each
node has a quad-core 2.1 GHz Barcelona AMD Opteron
processor with 8 GB of memory and a 3 level cache.
Every core has a peak performance of 8.4 GFLOPs.
Jaguar has a 3-dimensional mesh network. Each link
has a unidirectional bandwidth of 3.8 GB/sec, giving a
total of 45.6 GB/sec per node. However, the total node
bandwidth may be bound by the HyperTransport link
throughput, which is 6.4 GB/sec.

C. Analysis

Figure 4 plots the performance of Radix, Regular
Sample, and Histogram Sorts as well as the ideal scaling.
We derived the ideal plot by doing a sequential run on
Intrepid which sorted 16 million keys using the STL
library sort. We then scaled this run using the relation,
running time ~ nlen pRadix Sort has a large overhead
over Histogram Sort. This overhead is likely due to
the cache inefficient methods of Radix Sort, as well as
the number of times the algorithm looks at each key.
Note that we are using 64-bit keys, rather than 32-bit
keys, which has a significant effect on the performance
of Radix Sort since it requires double the number of
all-to-all stages. The scaling of Radix Sort also gets
bad at 4096 processors, probably due to the multiple
communication stages and lack of overlap between com-
munication and computation. Sample Sorting by Regular
Sampling seems to be slightly slower than Histogram
Sort but begins deteriorating in performance at 4096
processors once the combined sample gets bigger. At
8192 processors, the combined sample cannot fit into
one processor’s memory.

On the other hand, Histogram Sort is fairly close
to ideal and does not begin to deteriorate in scaling
until 8192 cores. Even past this point the deterioration
is gradual and slow all the way up to 32 thousand
processors. A better look at the speedup of this algorithm
can be seen in Figure 5. On Intrepid, we achieve over
80 percent efficiency until 512 cores, where it begins to
slowly deteriorate. At 32 thousand cores, we are barely
under 50 percent efficiency, which means we achieve a

Thttp:/nces.gov/computing-resources/jaguar/

Comparison to Ideal

50 T T L T
45 L Radix Sort i
Regular Sample Sort
40 | Histograsm Sort —— 4
Ideal Scaling ---e---
35 - no .
2 304 .
&2
2 25 .
= 20 B
15 r
10
5
1 1 1 1 1
512 1024 2048 4096 8192 16384 32768
No. of Cores

Fig. 4: This figure compares the performance of Histogram Sort, Sample Sort, and Radix Sort (16-bit radix) to the ideal performance.
These runs were done on Intrepid with 8 million 64-bit keys per core.

Scaling of Histogram Sort (Uniform Distribution)
1 T T T

IIntrepid e
Jaguar

0.8
g 06
c
2
°
] 04 -
0.2 i
O 1 1 1 1 1
512 1024 2048 4096 8192 16384 32768
No. of Cores

Scaling of Histogram Sort (Nonuniform Distribution)

1 T T T T T
Intrepid —»—
Jaguar
0.8 | i
3 06} i
c
2
QO
& 04r
0.2 i
0 1 1 1 1 1
512 1024 2048 4096 8192 16384 32768
No. of Cores

Fig. 5: This figure shows the proportion of maximum speedup achieved by Histogram Sort given uniform and non-uniform distributions.
These runs were done on Intrepid and Jaguar with 8 million 64-bit keys per core.

speedup of about 15,000. On Jaguar, the efficiency is a
bit worse. However, the execution time stays low and
scales well. Despite the lower speedup, Histogram Sort
actually performs almost three times faster on Jaguar
than on Intrepid. Both of these differences are probably
due to the fact that Jaguar has significantly faster cores
and finishes the sequential sorting much quicker.

Looking at the non-uniform distribution speedup
graph and the left graph of Figure 6, we can first
observe that the extra cost of finding splitters for a
skewed distribution is fairly small and the scaling is
roughly the same for either type of distribution. In fact,
the loss is virtually nothing for Jaguar, which is able
to handle the reductions very quickly and successfully
exploit overlap. On Intrepid, there is a slowly expand-
ing overhead, but the speedup curve has roughly the
same shape. These results indicate that the iterative
histogramming strategy and overlap achieve their goal
with a cost that is marginal with respect to the execution
time. Decreasing the splitter threshold increases the
number of iterations necessary to achieve sufficiently
good splitting. As shown by the right graph in Figure
6, the extra iterations are very cheap at 4k processors

and can actually be beneficial due to improvement to the
load balance of the merging stage. On the other hand,
at 16k processors every iteration adds a bit of overhead
(halving the threshold usually adds about one iteration).

Overall, Histogram Sort achieves good efficiency
and scaling up to about 4096 processors, then begins
to deteriorate in efficiency compared with the ideal.
However, we maintain good performance to 32k pro-
cessors in comparison to Radix Sort, which seems to
suffocate in efficiency at around 4096 processors, and
the original version of Histogram Sort, which shows
a continuously growing performance deficit (refer to
Figure 2). Our optimizations improve execution time for
any processor range and slow down the deterioration in
efficiency. Without all-to-all optimizations and overlap
of the merging work with communication, this type of
scaling could not be achieved. An instructive example
of this is reflected in Figure 2, as Jaguar stops scaling
at 4096 cores without optimizations. This sharp slope is
probably due to messages getting delayed and arriving
very late. Our strategies for communication optimization
and overlap of communication with computation are
able to distribute communication and prevent this type of

Weak Scaling of Histogram Sort (Uniform Distribution)

14 + Intrelpid — o
Intrepid (non-uniform)
12 L Jaguar 'Y I d

Jaguar (non-uniform) =

Time (sec)

512

1024 2048 4096

No. of Cores

8192 16384 32768

Histogramming Overhead on Intrepid
4 T T

3.5

16,3€|34 cores W'ﬂm
4,096 cores —— -

25 e

Time (sec)

15 F - o 4

05]
Il Il Il Il Il

16 8 4 2 1
Splitter Threshold Percentage (100*ty,esn/(N/P))

Fig. 6: The figure on the left shows the weak scaling of Histogram Sort given uniform and non-uniform distributions. The figure on
the right displays the histogramming overhead of decreasing the splitter threshold. These runs were done on Intrepid and Jaguar

with 8 million 64-bit keys per core.

Eelelelolel o

EE0000

Efelelelole sy

250000

200000

150000

piNelelole ey

Entry paint execution time

Tirme Profile Graph

t
142500

102500

112500 122500 122500

152500 1&250.0 172500

182500

192500

Time Interval {1.000ms)

Time Profile Craph

400000

350000

200000

250000

200000

150000

1000001

50000

Entry point execution time

o)
92500

122500

T T
102500 11250.0 122500 142500

Time Interval (1.000ms)

152500 16250.0

Fig. 7: Time Profile of Histogram Sort using the Projections tool. The first image demonstrates the utilization graph of the non-
optimized Histogram Sort. The second image shows the utilization graph of the optimized Histogram Sort. The colors are the same
as those in Figure 1. These runs were done on Intrepid with 8 million 64-bit keys per core on 4096 cores.

delay, as well as reduce the critical path of the algorithm.
A good visualization of these effects can be seen in the
time profiles shown in Figure 7. The large amount of
idle time (from approximately 14.25 to 17.5 seconds) in
the non-optimized version is due to the blocking all-to-
all communication stage. Our improved version avoids
this heavy cost by maximizing overlap.

The long first orange block in the time profile of
the optimized version is actually performing the first
splicing iterations. At first sight, these might seem to be
taking way too long. However, if we are trying to locate
the first p splitter guesses, the fraction of the total sorting

work done finding them is approximately %, or
&5, Thus for p = 4096 = 22 and n/p = 23, we do

roughly one half of the total sorting work just finding

the first p—1 splitter guesses. The amount of time spent
sending might also look to be taking much longer in the
optimized version, but it actually includes some of the
sorting. Due to our expedited communication strategy
we often still need to sort the data before sending it.

The time profiles provide us with information on how
close we get to peak performance in any given section
of the algorithm. The optimized version of Histogram
Sort is able to avoid being idle and stays at a high
percentage of peak during the histogramming stage and
the merging stage. Evidently, the non-optimized version
wastes a significant amount of time waiting for the
blocking communication. This difference is amplified
as we use more processors since the histogramming and
all-to-all stages become more expensive.

V. CONCLUSION

Our extensions to Histogram Sort have demonstrated
an improvement to the previous parallel sorting strate-
gies and shown good scaling results utilizing significant
portions of large modern supercomputers such as Blue
Gene/P and XT4. We employ methods which are all
generalizable to other architectures and adaptable to dif-
ferent histogramming and communication approaches.
Therefore, we think our methods can be realized as
improvements to previously established algorithms and
parallel programs.

The most practical benefit of our work is a potential
improvement for parallel scientific applications doing
parallel sorting. We have already used our optimizations
in one such application, a parallel cosmology simulation
code, ChaNGa. The histogramming and merging strate-
gies showed good performance and scaling in ChaNGa
and can likely improve the speed of other applications.

The performance benefits achieved by our optimiza-
tions prove the importance of smart communication
strategies and overlap of communication with computa-
tion to scaling on modern parallel machines. Our study
also demonstrates that scaling and parallel efficiency can
be improved by making concessions and adaptations to
the sequential algorithm in order to obtain better flow
and distribution of communication.

Future work might attempt to create an API for par-
allel sorting so that our algorithm or other strategies can
be easily interchanged and integrated into parallel code.
This task is non-trivial due to the unknown distribution
of data and the variety of applications of parallel sorting.

Histogram Sort might also be improved by adopting
a scheme introduced in a sequential sorting algorithm,
Super Scalar Sample Sort [21]. This sorting algorithm is
able to reduce the conditional branching cost of Quick-
sort by recursively collecting data samples and moving
the data into buckets defined by those samples. The al-
gorithm makes interesting use of predicated instructions
to quickly search through heaps. On certain processors,
Super Scalar Sample Sort outperforms the C++ Standard
Library Sort. Histogram Sort might benefit from using
this algorithm for local sorting by utilizing the probe
to define the buckets instead of collecting a sample.
The current technique of using elements of the probe
as Quicksort pivots yields a sequential overhead, while
this scheme might even yield a sequential speedup.

Attempts to further scale Histogram Sort to higher
numbers of cores will need to take more careful consid-
eration of the performance of the histogramming stage.
We have observed rapid growth in histogramming iter-
ation time at the 16k-32k processor range (an iteration
can take up to half a second on 32k cores). One way to
tackle this problem would be to utilize early knowledge

of defined ranges to split up the histogramming into
multiple sections. Once we determine a few middle
splitters, we can parallelize the creation and analysis
of probes efficiently by having a probe only target a
certain range of splitters. This approach should slice
up the bandwidth of the reductions at the cost of
increasing latency and contention on the network. More
importantly, it would significantly speedup the probe
analysis time by parallelizing the process.

As parallel machines continue to grow, we have
to reconsider widely accepted parallel algorithms and
paradigms since the challenges they are designed to
solve are quickly changing. The parallel sorting re-
search done 10 years ago is no longer good enough
for modern supercomputers, and our study will likely
not be sufficient for optimal scaling on future parallel
machines. However, we have tried to lay a framework
for parallel sorting algorithms that is highly scalable on
current supercomputers and has no inherent theoretical
flaw preventing it from scaling further.

ACKNOWLEDGEMENTS

This work was supported in part by DOE Grant DE-
FGO05-080R23332 through ORNL LCF. This research
used the Blue Gene/P at Argonne National Laborator%l,
which is supported by DOE under contract DE-ACO02-
06CH11357. The research also used Jaguar at Oak
Ridge National Laboratory, which is supported by the
DOE under contract DE-AC05-000R22725. Accounts
on Jaguar were made available via the Performance
Evaluation and Analysis Consortium End Station, a
DOE INCITE project.

REFERENCES

[1] Pritish Jetley, Filippo Gioachin, Celso Mendes, Laxmikant V.
Kale, and Thomas R. Quinn. Massively Parallel Cosmological
Simulations with ChaNGa. In Proceedings of IEEE International
Parallel and Distributed Processing Symposium 2008, 2008.

[2] J. E. Barnes and P. Hut. A hierarchical O(NlogN) force
calculation algorithm. Nature, 324, 1986.

[3] L. V. Kale and Sanjeev Krishnan. A comparison based parallel
sorting algorithm. In Proceedings of the 22nd International
Conference on Parallel Processing, pages 196-200, St. Charles,
IL, August 1993.

[4] K. Batcher. Sorting Networks and Their Application. volume 32,
pages 307-314, 1968.

[5] Gianfranco Bilardi and Alexandru Nicolau. Adaptive bitonic
sorting: An optimal parallel algorithm for shared memory ma-
chines. Technical report, Ithaca, NY, USA, 1986.

[6] G. Blelloch et al. A comparison of sorting algorithms for the
Connection Machine CM-2. In Proc. Symposium on Parallel
Algorithms and Architectures, July 1991.

[71 W.D. Fraser and A.C. McKellar. Samplesort : A sampling
approach to minimal storage tree sorting. Journal of the
Association for Computing Machinery, 17(3), July 1970.

[8] J.S Huang and Y.C Chow. Parallel sorting and data partitioning
by sampling. In Proc. Seventh International Computer Software
and Applications Conference, November 1983.

[9] H. Shi and J. Schaeffer. Parallel Sorting by Regular Sampling.
Journal of Parallel and Distributed Computing, 14:361-372,
1992.

[10] Xiaobo Li, Paul Lu, Jonathan Schaeffer, John Shillington,
Pok Sze Wong, and Hanmao Shi. On the versatility of parallel
sorting by regular sampling. Parallel Comput., 19(10):1079—
1103, 1993.

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

John H. Reif and Leslie G. Valiant. A logarithmic time sort for
linear size networks. J. ACM, 34(1):60-76, 1987.

Kurt Thearling and Stephen Smith. An improved supercomputer
sorting benchmark. In Proc. Supercomputing, November 1992.
David R. Cheng, Alan Edelman, John R. Gilbert, and Viral
Shah. A novel parallel sorting algorithm for contemporary
architectures. Submitted to ALENEX06, 2006.

David R. Musser. Introspective Sorting and Selection Algo-
rithms. Sortware: Practice and Experience, 27(8):983-993,
January 1997.

L. V. Kale, Sameer Kumar, and Krishnan Vardarajan. A frame-
work for collective personalized communication, communicated
to ipdps 2003. Technical Report 02-10, Parallel Programming
Laboratory, Department of Computer Science, University of
Illinois at Urbana-Champaign, 2002.

Rajeev Thakur and William D. Gropp. Improving the Perfor-
mance of Collective Operations in MPICH. Lecture Notes in
Computer Science, 2840:257-267, October 2003.

L.V. Kalé and S. Krishnan. CHARM++: A Portable Concurrent
Object Oriented System Based on C++. In A. Paepcke, editor,
Proceedings of OOPSLA’93, pages 91-108. ACM Press, 1993.
Chee Wai Lee, Terry L. Wilmarth, and Laxmikant V. Kalé.
Performance visualization and analysis of parallel discrete event
simulations with projections. Technical Report 05-19, Parallel
Programming Laboratory, Department of Computer Science,
University of Illinois at Urbana-Champaign, November 2005.
Submitted for publication.

Laxmikant V. Kale. Some Essential Techniques for Developing
Efficient Peta scale Applications . July 2008.

IBM Blue Gene Team. Overview of the IBM Blue Gene/P
project. IBM Journal of Research and Development, 52(1/2),
2008.

Peter Sanders and Sebastian Winkel. Algorithms ESA - 2004,
chapter Super Scalar Sample Sort, pages 784-796. Springer
Berlin / Heidelbeg, 2004.

