
Neighborhood Based Fast Graph Search in Large Networks

Arijit Khan
Dept. of Computer Science

University of California
Santa Barbara, CA 93106

arijitkhan@cs.ucsb.edu

Nan Li
Dept. of Computer Science

University of California
Santa Barbara, CA 93106

nanli@cs.ucsb.edu

Xifeng Yan
Dept. of Computer Science

University of California
Santa Barbara, CA 93106

xyan@cs.ucsb.edu

Ziyu Guan
Dept. of Computer Science

University of California
Santa Barbara, CA 93106

ziyuguan@cs.ucsb.edu

Supriyo Chakraborty
Dept. of Electrical Engineering

University of California
Los Angeles, CA 90095

supriyo@ee.ucla.edu

Shu Tao
IBM T. J. Watson
19 Skyline Drive

Hawthorne, NY 10532
shutao@us.ibm.com

ABSTRACT
Complex social and information network search becomes impor-
tant with a variety of applications. In the core of these applications,
lies a common and critical problem: Given a labeled network and
a query graph, how to efficiently search the query graph in the tar-
get network. The presence of noise and the incomplete knowledge
about the structure and content of the target network make it unre-
alistic to find an exact match. Rather, it is more appealing to find
the top-k approximate matches.

In this paper, we propose a neighborhood-based similarity mea-
sure that could avoid costly graph isomorphism and edit distance
computation. Under this new measure, we prove that subgraph sim-
ilarity search is NP hard, while graph similarity match is polyno-
mial. By studying the principles behind this measure, we found an
information propagation model that is able to convert a large net-
work into a set of multidimensional vectors, where sophisticated
indexing and similarity search algorithms are available. The pro-
posed method, called Ness (Neighborhood Based Similarity Search),
is appropriate for graphs with low automorphism and high noise,
which are common in many social and information networks. Ness
is not only efficient, but also robust against structural noise and in-
formation loss. Empirical results show that it can quickly and accu-
rately find high-quality matches in large networks, with negligible
cost.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search process; I.2.8
[Problem Solving, Control Methods, and Search]: Graph and
tree search strategies

General Terms
Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’11, June 12–16, 2011, Athens, Greece.
Copyright 2011 ACM 978-1-4503-0661-4/11/06 ...$10.00.

Keywords
Graph Query, Graph Search, Graph Alignment, RDF

1. INTRODUCTION
Recent advances in social and information science have shown

that linked data pervade our society and the natural world around
us [36]. Graphs become increasingly important to represent com-
plicated structures and schema-less data such as wikipedia, free-
base [15] and various social networks. Given an attributed network
and a small query graph, how to efficiently search the query graph
in the target network is a critical task for many graph applications.
It has been extensively studied in chemi-informatics, bioinformat-
ics, XML and Semantic Web. SPARQL [27] is the state-of-the
RDF query language for Semantic Web. SPARQL requires ac-
curate knowledge about the graph structure to write a query and
also it performs an exact graph pattern matching. However, due to
the noise and the incomplete information (structure and content) in
many networks, it is not realistic to find exact matches for a given
query. It is more appealing to find the top-k approximate matches.

Unfortunately, graph similarity measures such as subgraph iso-
morphism, maximum common subgraphs, graph edit distance, miss-
ing edges that are appropriate for chemical structures and biolog-
ical networks, are not suitable for entity-relationship graphs and
social networks. There are two challenging issues for these graph
theoretic measures. First, entity-relationship graphs and social net-
works have quite different characteristics from physical networks.
They are not governed by physical laws and often full of noise, thus
making strict topological similarity examination nearly impossible.
How the entities are connected in these networks are not as im-
portant as how closely these entities are connected. Second, these
graphs are very large and complex with a lot of attributes associ-
ated. If accuracy is to be ensured, the algorithms developed for
edit distance and missing edges are not scalable. These two is-
sues motivate us to invent new graph similarity measures that are
less sensitive to structure changes, and have scalable indexing and
search solutions.

Figure 1(a) shows a graph query to “Find the athlete who is from
‘Romania’ and won ‘gold’ in ‘3000m’ and ‘bronze’ in ‘1500m’
both in ‘1984’ olympics.1.” Compare this query against a possi-
ble match in FreeBase (Olympics) shown in Figure 1(b), it is ob-
served that these two graphs are by no means similar under tra-
ditional graph similarity definitions. Graph edit distance between

1http://en.wikipedia.org/wiki/Maricica_Puică

Romania

1984

(a) Query

(b) Match in Freebase

Bronze Gold1500m 3000m

Romania

Maricica Puica

1984Bronze 1500m 3000m Gold

Figure 1: Top-1 Match for Query (a) in FreeBase

these two graphs is 7. The size of their maximum common graph
is 3. The number of maximum missing edges for the query graph
is 4. However, “Maricica Purca” in Figure 1(b) is a good match for
the query shown in Figure 1(a), because she has all these attributes
quite close to her in Figure 1(b). In practice, it is hard to come up
with a query that exactly conforms with the graph structures in the
target network due to the lack of schemas in linked data. However,
it is easy to write a query like Figure 1(a), where a user connects
entities with possible links. As long as the the proximity between
these entities is approximately maintained in a query graph, the
system shall be able to deliver matches like Figure 1(b).

The above approximate query form can serve as a primitive for
many advanced graph operators such as RDF query answering, net-
work alignment, subgraph similarity search, name disambiguation
and database schema matching. For example, based on partial in-
formation related to one person, e.g. his friends, one can align his
physical social circle with his cyber social network on Facebook. In
many cases, nodes in social or information networks have incom-
plete information or even anonymized information. Nevertheless,
the partial neighborhood information available from a query graph
will be helpful to identify entities in the target network.

Clearly, there is a need to adopt approximate similarity search
techniques to solve the above problem. In bioinformatics, approxi-
mate graph alignment has been extensively studied, e.g. PathBlast
[21], Saga [33]. These studies resort to strict approximation defini-
tion such as graph edit distance, whose optimal solution is expen-
sive to compute. Since they are targeting a relatively small biolog-
ical networks with less than 10k nodes, it is difficult to apply them
in social and information networks with thousands or even millions
of nodes. As illustrated in NetAlign [23], in order to handle large
graphs with 10k nodes, one has to sacrifice accuracy to achieve bet-
ter query response time. Recently there have been other studies on
approximate matching with large graphs, i.e., TALE [34], SIGMA
[24] and G-Ray [35]. However, both TALE and SIGMA consider
the number of missing edges as the qualitative measure of approxi-
mate matching and hence, the techniques cannot capture the notion
of proximity among labels, as shown in Figure 1. G-Ray, on the
other hand, tries to maintain the shape of the query by allowing
some approximation in the match. Unfortunately, shape is not an
important factor in entity-relationship graphs.

In this paper, we introduce a novel neighborhood-based similar-
ity measure by vectorizing nodes according to the label distribution
of their neighbors. We further extend the similarity notion to graph
by finding the embeddings in the target graph that maximize the
sum of node matches. This graph matching technique avoids com-
plicated subgraph isomorphism and graph edit distance calculation,
which becomes infeasible for large graphs. It is observed that so-

cial/information networks usually have more diversified node la-
bels and therefore less auto-isomorphic structure, but may contain
more noise. Our objective function can provide better similarity
semantics for graphs with various random noise. It simplifies the
procedure of graph matching, leading to the development of an ef-
ficient graph search framework, called Ness (Neighborhood Based
Similarity Search). With the introduction of scalable indices built
on vectorized nodes and an intelligent query optimization tech-
nique, Ness can quickly and accurately find high-quality matches
in large networks, with negligible time cost.

Our contributions. We propose a novel similarity search problem
in graphs, neighborhood-based similarity search, which com-
bines the topological structure and content information together
during the search process. The similarity definition proposed in
this work is able to avoid expensive isomorphism testing as much
as possible. The principles to derive appropriate functions to fit this
definition are carefully examined. We found that the information
propagation model satisfies these principles, where each node prop-
agates a certain fraction of its labels to its neighbors, and thereby
we could convert each node into a multidimensional vector, where
sophisticated indexing and similarity search algorithms are avail-
able. That is, we successfully turn a graph search problem into a
high-dimension index problem.

We first identify a set of rules to define approximate matches
of nodes based on their neighborhood structure and labels. These
rules are important since the query may not always have complete
information about the exact neighborhood structure in the target
graph. The approximate node match concept is further extended
to subgraph similarity search, i.e. multiple node alignment for a
given query graph. We prove that under this measure, subgraph
similarity search is NP hard. However, in comparison with graph
isomorphism, which is neither known to be solvable in polynomial
time nor NP-hard, graph similarity match is proved to be polyno-
mial. We demonstrate that, without performing subgraph isomor-
phism testing, it is possible to prune unpromising nodes by itera-
tively propagating node information among a shrinking candidate
set, which significantly reduces query execution time.

We further analyze how to index the vector structure as well as
optimize query processing to speed up similarity search. The infor-
mation propagation model and the neighborhood vectorization ap-
proach keep the index structure much simpler than the graph itself,
thus making it easy to be updated dynamically for graph changes
arising from node/edge insertion and deletion.

In summary, we propose a completely new graph similarity search
framework, Ness, to define and determine approximate matches in
massive graphs. As tested in real and synthetic networks, Ness is
able to find high-quality matches efficiently in large scale networks.

2. PRELIMINARIES
A labeled graph G = (VG, EG, LG) has a label set LG and each

node u ∈ VG is attached with a set of labels. The label set of a node
u in G is denoted by L(u) ⊆ LG. For the sake of simplicity, we
assume there are no labels and weights on the edges. Nevertheless,
the proposed techniques could be extended for graphs with labeled
or weighted edges. Given two labeled graphs G and G′, G is called
subgraph isomorphic to G′, if there exists a subgraph H of G′,
such that G is isomorphic to H . Formally, we define subgraph
isomorphism as follow.

DEFINITION 1 (SUBGRAPH ISOMORPHISM). A subgraph iso-
morphism is an injective function f : VG → VG′ , s.t., (1) ∀u ∈

VG, L(u) ⊆ L(f(u)), and (2) ∀(u, v) ∈ EG, (f(u), f(v)) ∈
EG′ .

DEFINITION 2 (EMBEDDING). Given a graph G and a query
graph Q, an embedding of Q is an (injective) function f : VQ →
VG, such that, ∀v ∈ VQ, L(v) ⊆ L(f(v)), where f(v) ∈ V (G).

In this work, we only studied the one-to-one node matching for
a query graph Q and the node labels are preserved in the em-
bedding. However, our cost function and algorithms can be ex-
tended to include other matching and node label similarity scenar-
ios. Given two graphs G and Q, there might be many possible
embeddings. Certainly, the quality of an embedding depends on
whether it preserves the connections and labels in the query graph
or not. Subgraph isomorphism actually defines an exact embed-
ding, written as fe. The “quality” of an embedding can be defined
in various ways; i.e., for a given label-preserved embedding f , we
can count the number of edge mismatches, Ce = |{(u, v) ∈ EQ :
(f(u), f(v)) �∈ EG}|, as the embedding’s quality. In general, for
a cost function C : f → R , we define the top-k graph similarity
search problem as below.

PROBLEM STATEMENT 1. Given a graph G and a query graph
Q, find the top-k embeddings with respect to a cost function C.

The edge mismatch cost function Ce has been studied in [38, 34,
24]. Unfortunately, it cannot differentiate the case where two nodes
are close to each other but there is no direct edge between them.

a

c b

b c

a bc

a v1 v2 v3

u1 u3 u2

u'1 u'3 u'2

f2

f1

Q

G

Figure 2: Problem with Edge
Mismatch Cost Function

ab

d
a

d
ce

cf
h

g

u

Figure 3: Information Prop-
agation Model

Figure 2 shows one example. There are two label-preserved em-
beddings f1 and f2 of the query graph Q in a target graph G. In f1
and f2, there is no edge connecting a and b. Thus, Ce will assign
equal cost to both embeddings. On the other hand, the graph edit
distance between f1 and Q is 2, whereas it is only 1 between f2 and
Q. Although, intuitively it is observed that f1 is a better match than
f2, because the nodes with labels a and b are only 2-hops away in
f1, whereas they are disconnected in f2. This observation inspires
us to develop a neighborhood-based similarity measure that dis-
counts how nodes are exactly connected, but focuses on the prox-
imity among the labels carried by these nodes. It needs to achieve
the following two objectives: (1) The cost function should identify
approximate embeddings, and (2) it must be easy to compute. In
the next section, we will define the neighborhood-based similarity
cost function and the complexity analysis of that function.

3. NEIGHBORHOOD-BASED GRAPH SIM-
ILARITY

In order to solve the problem raised by the edge mismatch cost
function, we define a novel neighborhood-based similarity measure
by comparing the h-hop neighbors of a node, defined as follows.

DEFINITION 3 (h-HOP NEIGHBORS). Given a graph G and
a node u ∈ V (G), the h-hop neighborhood of u is the set of nodes
v whose distance from u is less than or equal to h.

To compare the neighborhoods of two nodes, we resort to an in-
formation propagation model [22] that is able to transform neigh-
borhoods into vectors in a multidimensional space, where sophisti-
cated indexing and fast similarity search algorithms are available.

3.1 Information Propagation Model
Figure 3 shows the information propagation model to character-

ize the neighborhood information around node u. The label infor-
mation encoded in u’s neighbors is propagated to u through differ-
ent paths and accumulated at u. One could use the accumulated
information and its strength as a vector to describe the neighbor-
hood of u. The neighborhood vector of u is denoted by R(u),
which consists of a set of tuples, R(u) = {〈l, A(u, l)〉}, where l is
a label present in the neighborhood of u and A(u, l) represents the
strength of label l at node u in a graph.

There are many different mechanisms to propagate information.
However, not every one is valid for graph similarity search. Any
valid one must comply with the following principle,

PROPERTY 1 (COST FUNCTION). For a graph similarity cost
function C, given an exact embedding fe, C(fe) must be equal to 0.

Here, we consider a simple but effective information propagation
model so that the derived neighborhood-based similarity measure
satisfies the above principle. It propagates information along the
shortest paths between two nodes with exponential decay to the
length. Eq. 1 describes the formula of A(u, l) in R(u) = {〈l,
A(u, l)〉} that represents the h-hop neighborhood of node u in a
graph.

A(u, l) =
h∑

i=1

αi
∑

d(u,v)=i

I(l ∈ L(v)), (1)

where I(l ∈ L(v)) is an indicator function which takes value one
when l is in the label set of v and zero otherwise. d(u, v) is the
distance between u and v. α is a constant called the propagation
factor. It is between 0 and 1, whose optimum value will be dis-
cussed later. Eq. 2 confines Eq. 1 to an embedding f in G by only
considering the vertices and the shortest paths in f .

Af (u, l) =
h∑

i=1

αi
∑

v∈Vf ,d(u,v)=i

I(l ∈ L(v)). (2)

Using this information propagation model, we shall formulate the
neighborhood-based cost function.

3.2 Neighborhood-based Cost Function
Given a query graph Q and its embedding f in the target graph

G, we can apply the information propagation model to propagate
labels in Q and f . Since vertices in f might not be directly con-
nected, we will consider all of the shortest paths connecting these
vertices during propagation. To derive the neighborhood-based
cost function CN (f), we first compute the difference between the
neighborhood vectors Rf (u) and RQ(v), representing the neigh-
borhoods u and v in the embedding and the query graph, respec-
tively.

CN (v, u) =
∑

l∈RQ(v)

M(AQ(v, l), Af (u, l)), (3)

where M(x, y) is a positive difference function as given below.

M(x, y) =

{
x− y, if x > y;

0, otherwise.

The reason to adapt a positive difference function is that if the em-
bedding f in G carries more labels than Q, we shall not penalize it.
Only when there are labels and edges missed in f , CN(v, u) will re-
turn a positive value. Note that, the summation in Equation 3 is con-
sidered over all labels l present in RQ(v), i.e. {l : AQ(v, l) > 0}.
For brevity, we simply denote this by l ∈ RQ(v) in Equation 3,
and the same notation will be used in the remaining of the paper.

Given an embedding f , we aggregate the differences for all pairs
(v, u), where u = f(v). The neighborhood based graph similarity
cost CN (f) is given as follows.

CN(f) =
∑
v∈VQ

CN(v, f(v)) (4)

a

cb

b

a

b

G Q

f2
u1

v1

f1

u’2

v2

u3

u2

Figure 4: Neighborhood
Based Similarity Cost

a

bc

c

a

c

G Q

f

b

dad

Figure 5: Example of False
Positive

Figure 4 provides an example of neighborhood based graph match-
ing cost. In graph G, label b is propagated to node u1 from node
u2 and u′

2, via the corresponding shortest paths respectively. As-
sume α = 0.5 and h = 2, we have AG(u1, b) = 0.5 + 0.25 =
0.75. We can derive the neighborhood vectors for other nodes in G:
RG(u1) = {〈b, 0.75〉, 〈c, 0.5〉}, RG(u2) = {〈a, 0.5〉, 〈c, 0.25〉},
RG(u3) = {〈a, 0.5〉, 〈b, 0.75〉} and RG(u

′
2) = {〈c, 0.5〉, 〈a, 0.25〉}.

Similarly, RQ(v1) = {〈b, 0.5〉} and RQ(v2) = {〈a, 0.5〉}.
In Figure 4, we have two possible embeddings f1 and f2. Rf1(u1)

= {〈b, 0.5〉} and Rf1(u2) = {〈a, 0.5〉}. Hence, CN(f1) = (0.5−
0.5) + (0.5 − 0.5) = 0. For f2, we match v1 to u1 and v2 to
u′
2. We have Rf2(u1) = {〈b, 0.25〉} and Rf2(u

′
2) = {〈a, 0.25〉}.

Therefore, CN(f2) = (0.5 − 0.25) + (0.5 − 0.25) = 0.5. Note
that, for the embedding f2, node u3 will not contribute any labels
to Rf2 since it does not participate in the matching. However, it is
on the shortest path from u′

2 to u1, thus propagating labels between
u′
2 and u1.
We must mention that the vectorization of the neighborhoods and

the comparison among these vectors can be done in various ways.
However, the final cost function must satisfy the basic property of
C (Property 1) to avoid false negatives for exact embeddings. The
following theorem shows that CN follows this property.

THEOREM 1. For an exact embedding fe, CN (fe) = 0.

PROOF. For an exact embedding fe, if (v1, v2) ∈ EQ, then
(fe(v1), fe(v2)) ∈ EG. Thus, the shortest distance between the
node pairs fe(v1), f(v2) in fe cannot be higher than the shortest
distance between the node pairs v1, v2 in Q. Hence, it follows from
Eq. 1 that ∀l, v, Af (fe(v), l) ≥ AQ(v, l). Therefore, based on Eq.
3 and Eq. 4, CN(fe) = 0.

Theorem 1 ensures that there is no false negatives for exact em-
beddings. However, there might be some false positives as shown
in Figure 5. In this example, if h = 1, CN(f) = 0, although f is
not an exact embeddings of Q. Fortunately, if we increase h to 2,
CN(f) > 0. In real-life graphs that have low automorphism and
more distinct labels in nodes, false positives can mostly be avoided,
as shown in our experiments and in the following Lemma.

LEMMA 1. Given a graph G and a query graph Q, if each of
their nodes has a distinct label, for any inexact embedding f , ∀h >
0, α > 0, CN(f) > 0.

PROOF. Omitted.

Our definition of neighborhood-based cost function is robust against
structural differences and other forms of noises. As long as two
close labels in a query graph are close enough in the target graph,
we consider it as a potential match. We can also rank the embed-
dings based on the proximity of their labels in the target graph com-
pared to that in the query graph. Thus, even if there exists no exact
embedding of the query graph, the cost function can identify the
closely approximate matches and rank them based on their struc-
tural differences.

We formally define our problem statement as follows.

PROBLEM STATEMENT 2. [Neighborhood-Based Top-k Sim-
ilarity Search] Given a target graph G and a query graph Q, find
the top-k embeddings with respect to the cost function CN .

In the following discussion, we show that the above problem is
NP-hard by reducing the clique problem to it.

LEMMA 2. Given a graph G and a query graph Q, ∀u ∈ VG, v ∈
VQ, |L(u)| = 1, |L(v)| = 1, if Q is a complete graph, then for all
inexact embeddings f , CN (f) > 0.

PROOF. Since ∀u ∈ VG, v ∈ VQ, |L(u)| = 1, |L(v)| = 1, for
any inexact embedding f , each node u = f(v) has only one label,
which is same as the label of node v in Q. Since, Q is a complete
graph, there exists at least one node f(v) in f and a label l such
that the number of 1-hop neighbors of v in Q that has label l is
more than the number of 1-hop neighbors of f(v) in f with label
l. Hence, AQ(v, l) > Af (f(v), l). Therefore, it follows from the
definition of CN that, CN(f) > 0.

THEOREM 2. Neighborhood-Based Top-k Similarity Search is
NP-hard.

PROOF. Let us consider the case where |L(u)| = 1, |L(v)| =
1, ∀u ∈ VG, v ∈ VQ, and Q is a complete graph. Suppose the
top-1 match f can be identified in polynomial time. Given f , it can
also be verified in polynomial time, whether CN (f) = 0. Now,
if CN(f) = 0, by Lemma 2, there exists a clique of size of Q in
the target graph G. So, it is possible to solve the clique problem
in polynomial time. However, we know that, the clique decision
problem is NP-hard [10], therefore we have a contradiction. Hence,
the similarity search problem is NP-hard.

The graph isomorphism problem is neither known to be solvable
in polynomial time nor NP-complete. However, given two graphs
Q and G of same size, it is possible to determine in polynomial
time, if G itself is an embedding of Q with cost CN(f) = 0. We
call this problem as the Graph Similarity Match problem. Thus,
we suspect that neighborhood-based similarity search might have
lower time complexity than graph theoretic measures such as graph
isomorphism and edit distance.

THEOREM 3. Graph Similarity Match is polynomial inn, where
n = |VQ|.

PROOF. Since G itself is an embedding f of Q, we can deter-
mine the individual node matching costs CN (v, u) in polynomial
time, for all v ∈ VQ, u ∈ VG. Next, we construct a flow network
and determine the minimum cost of maximum flow in that network
(see Figure 6). From the source node s, add a directed edge to each
node v in Q. The capacity of each of these edges is 1 and the cost
is 0. Similarly, from each node u in G, add a directed edge to the
sink node t. The capacity and cost of each of these edges are 1
and 0 respectively. From each node v in Q, add a directed edge
to each node u in G, if L(v) ⊆ L(u). The capacity and cost of
this edge are 1 and CN(v, u) respectively. Due to the capacity con-
straints, each node in Q can be matched with at most one node in
G, and also only one node of Q can be matched with same node
in G. Clearly, if the maximum flow in this network is n and the
minimum cost of the maximum flow is 0, then G is an embedding
of Q with cost CN(f) = 0. However, this flow problem can be
solved using the Ford and Fulkerson algorithm [11] in O(n3) time.
Therefore, given two graphs Q and G of the same size, it is possi-
ble to determine in polynomial time, if G itself is an embedding f
of Q with cost CN(f) = 0.

s

v1

v2

vn

u1

u2
t

un

G

1,0 1,0

Q
1,CN(v1,u1)

Figure 6: Flow Network to Solve Graph Similarity Match

3.3 Propagation Factor: α
In the information propagation model described in Eq. 1, the

propagation factor, α, should be less than 1 in order to reflect the
relation that the strength A(u, l) of label l at node u decreases with
the increase of distance. However, we find the top-k embeddings
by repeatedly matching the individual nodes from G and Q that sat-
isfies a cost threshold ε (The detailed procedure will be discussed
in the next section). Now, if α is large, each node will propagate
a high fraction of labels to its neighbors and this can increase the
number of false positives at the initial node matching stage, thus
slowing down the overall search process. In Figure 7, for α = 0.5
and h = 2, we get RG(u) = {〈a, 0.25 + 0.25〉} = {〈a, 0.5〉} and
RQ(v) = {〈a, 0.5〉}. Thus, node u ∈ G will be reported as a
match of node v ∈ Q even for cost threshold ε = 0. Clearly, this is
a false positive.

To solve this problem, we do not employ a uniform propagation
factor for different labels. Instead, for each label l, we select an
optimum α(l). For a given label l, let us assume that, the maximum
number of one-hop neighbors with label l, of any node in G is
n(l). To consider the worst case, let us assume that, some node u
in G has no one-hop neighbor with label l; but it has n2(l) two-hop
neighbors with label l, n3(l) three-hop neighbors with label l and
so on. Therefore, the strength of label l at node u in G will be as

follow,

AG(u, l) =
h∑

i=2

ni(l)αi(l)

<
n2(l)α2(l)

1− n(l)α(l)
(5)

To avoid false positive, we want AG(u, l) < AQ(v, l) = α(l) as
shown in Figure 7. Hence, α(l) < 1

n(l)+n2(l)
.

In the next section, we will introduce an iterative method to find
the top-k embeddings in a large graph.

4. SEARCH ALGORITHM
In this section, we introduce a scalable iterative approach to find

the top-k graph embeddings. Our goal is not to enumerate all the
possible embeddings f in G for a given query graph, whose cost is
prohibitive. Instead of enumerating f , we directly use AG(u, l) to
bound Af (u, l) since AG(u, l) ≥ Af (u, l).

LEMMA 3. Given a query graph Q and its embedding f in G,
∀l, u ∈ Vf , AG(u, l) ≥ Af (u, l).

PROOF. Omitted.

Lemma 3 shows that AG(u, l) in the neighborhood vector RG(u)
cannot be lower than Af (u, l) of the same label l in the neighbor-
hood vector Rf (u), where f is a subgraph of G.

THEOREM 4. Given a query graph Q and its embedding f in
G, ∑

v∈VQ

∑
l∈RQ(v)

M(AQ(v, l), AG(f(v), l)) ≤ CN (f)

PROOF. It follows from Lemma 3 so that M(AQ(v, l), Af (u, l)) ≥
M(AQ(v, l), AG(u, l)).

Theorem 4 shows that without enumerating embeddings of Q in
the target graph G, we can derive the lower bound: M(AQ(v, l),
AG(u, l)), where u is a possible match of v in G.

aa

u

v
AG(u, a) = 0.5

a

AQ(v, a) = 0.5

G Q

Figure 7: False Positive for
High α

a

c

b

c

a

b

G Q

u

v

c

d
d

a

bb

c

u’

Figure 8: Node Matching Ex-
ample

Our algorithm works by iteratively pruning unpromising nodes
in the target graph.

1. Match the individual nodes of the query graph with some
nodes in the target graph, which satisfies a predefined cost
threshold ε (See Eq. 7).

2. Discard the labels of the unmatched nodes in the target graph.

3. Propagate the labels only among the matched nodes from the
previous step. Recompute the neighborhood vectors RG(u)
only for the matched nodes. Repeat Step 1 until convergence.

During each iteration, we remove the labels of the unmatched
nodes in the target graph G and then recompute the neighborhood
vectors only for the matched nodes. Since the modified target graph
has more unlabeled nodes compared to the previous iteration, it will
decrease AG(u, l). With this new and reduced set of neighborhood
vectors and using the same cost threshold ε, we determine the in-
dividual node matches with the nodes of the query graph. There-
fore, some additional nodes in G will be unmatched at each iter-
ation. The iteration continues until there is no unmatched nodes
found. For real life graphs, with less automorphism and more dis-
tinct labels, we can unlabel most of the unpromising nodes using
this technique. Thus finding the top-k embeddings from the set of
remaining matched nodes of G becomes almost trivial.

To determine the runtime complexity of our iterative search algo-
rithm, let us denote the number of promising nodes present before
i-th iteration as ni and the number of unpromising nodes discov-
ered at i-th iteration as ki; where i ≥ 1. Clearly, n1 = n and
ni+1 = ni − ki. If there are total r iterations,

∑r
i=1 ki = O(n).

Let the complexity of iteration i be Ti. In the first iteration, for
each node, it needs to propagate its labels at h hops. Thus, T1 =
O(nldh), where l is the average number of labels, dh is the average
number of h-hop neighbors for each node in G. However, for each
of the subsequent iterations, it is not necessary to perform such
propagation for all the nodes in the graph. Rather, the number of
unpromising nodes at iteration i+ 1, for i ≥ 1, can be determined
by either propagating the remaining ni+1 nodes’ labels, or by sub-
tracting the effect of ki unpromising nodes from previous iteration.
Hence, Ti+1 = O(min{ni+1, ki}ldh), for i ≥ 1. Therefore, the
overall runtime complexity of our search algorithm is given as fol-
low.

T1 +

r∑
i=2

Ti = O(nldh) +

r−1∑
i=1

O(min{ni+1, ki}ldh)

= O(nldh) +

r−1∑
i=1

O(kild
h)

= O(nldh) (6)

In practice, it converges much faster. Next, we shall discuss the
details of the iterative algorithm and the algorithm to find the top-k
embeddings from the nodes filtered by the iterative algorithm.

4.1 Node Match
Given the target graph G and the query graph Q, we compute

the vectors RG(u) and RQ(v) for all nodes u ∈ VG, v ∈ VQ,
considering their h-hop neighborhoods. For each node pair u ∈
VG, v ∈ VQ, s.t. L(v) ⊆ L(u), we calculate the node matching
cost, cost(u, v) as the difference of their neighborhood vectors,

cost(u, v) =
∑

l∈R(v)

M(AQ(v, l), AG(u, l)). (7)

Figure 8 shows an example. Assume α = 0.5 and h = 2.
We get RG(u) = {〈b, 0.5〉, 〈c, 0.25 × 2〉} = {〈b, 0.5〉, 〈c, 0.5〉},
and similarly, RG(u

′) = {〈b, 1〉, 〈c, 0.25〉}. Meanwhile, for the
query graph Q, we have RQ(v) = {〈b, 0.5〉, 〈c, 0.25〉}. Hence,
cost(u, v) = 0 and also cost(u′, v) = 0 following the above equa-
tion.

Now, for each node v ∈ VG, we maintain a list of nodes u ∈ VG,
such that L(v) ⊆ L(u) and cost(u, v) ≤ ε. Here, ε is a predefined
cost threshold. The value of ε will be discussed shortly.

4.2 Top-k Search
In order to find the top-k graph embedding, we initialize the cost

threshold ε to a small value ε0 ≥ 0 and perform the above men-
tioned iterative procedure until it terminates. Given the matched
nodes, if we cannot find at least k embeddings from them, with cost
CN(f) ≤ ε|VQ| each; then the threshold cost ε is doubled and we
repeat the above procedure, until the k embeddings are found. Oth-
erwise, we find the top-k embeddings among the matched nodes.
Note that, at this point, any embedding formed by all unmatched
nodes will have a cost CN(f) > ε|VQ|. However, it is possible to
have some embedding with a few matched and unmatched nodes,
and the cost of such embeddings might also be CN (f) ≤ ε|VQ|.
The problem is eliminated as follow. We set ε equal to the highest
cost of the discovered top-k embeddings and then run the algorithm
again (this step will find top-k embeddings whose node cost might
be higher than ε). In this case, any embedding formed by at least
one of the unmatched node will have a cost more than that of any of
the top-k embeddings found earlier. Hence, the top-k embeddings
identified only using the matched nodes will be the best top-k em-
beddings. The complete algorithm is given below.

Algorithm 1 Top-k Search

Input: Target graph G, query graph Q, a positive integer k.
Output: Top-k matches f based on the cost metric CN .
procedure
1: ε← ε0, compute RG(v),∀v ∈ VQ

2: list0(v) = {u : u ∈ VG ∧ L(v) ⊆ L(u)}
3: i ← 1, start with original graph G and compute RG(u),∀u ∈

VG

4: for all v ∈ VQ do
5: listi(v) = {u : u ∈ VG ∧ L(v) ⊆ L(u) ∧ cost(u, v) ≤ ε}
6: end for
7: (list, i) = Iterative Unlabel(list, i, G,Q)
8: if k matches of cost CN (f) ≤ ε|VQ| can be found in {u : u ∈

listi(v)∀v ∈ VQ} then
9: report top-k matches and stop

10: else
11: ε← 2ε
12: go back to step 2
13: end if

Algorithm 2 Iterative Unlabel (list, i, G′, Q)

procedure
1: if |listi(v)| < |listi−1(v)| for some v ∈ VG′ then
2: for all u ∈ VG′ do
3: if u �∈ listi(v)∀v ∈ VQ then
4: unlabel u
5: end if
6: end for
7: recompute R(u)∀u ∈ VG′
8: (list, i) = Iterative Unlabel(list, i+ 1, G′, Q)
9: else

10: return (list, i)
11: end if

From the final list of matched nodes for each node in VQ, how
can we find embeddings with cost CN(f) ≤ ε|VQ| each (line 8
of Algorithm 1)? One simple technique is to consider all possible
combinations from the lists and verify their costs. When the num-
ber of matched nodes in each of the final lists is small, it is not time

consuming to check. However, when the lists are long, we can do
better than brute force enumeration using dynamic programming.

After a final list of matched nodes list(v) for each v ∈ VQ

is generated, we perform the propagation once more among the
matched nodes; however this time we propagate the node id’s in-
stead of labels. After this propagation, each matched node u in G
will have its neighboring nodes (denoted as neighbor(u)) within
h hops who have influence on the cost (Eq. 1).

The final embeddings can be formed as follows. We select a node
u ∈ list(v) for some v ∈ VQ and initialize a set Possible_Match
= neighbor(u). We have two situations: (1) within h hops of u,
there is no f(v′) ∀v′ �= v in Q. (2) ∀v′ �= v of Q, we try to
identify a match u′ inside Possible_Match and extend this set
by adding neighbor(u′) and also eliminating the node u′ from
Possible_Match. For the first situation, we could derive the cost
for node u,

∑
l∈L(v) AQ(v, l). We can recurse among these two

situations to find the embeddings. In this way, we can find the
low-cost embeddings without enumerating all possible combina-
tions among the nodes in the final lists.

5. INDEXING
The most expensive parts of Ness are the computation of RG(u)

for all u in G (Line 3 of Algorithm 1) and the determination of
list1(v) for all v in VQ (Line 5 of Algorithm 1). However, the com-
putation of RG(u) can be done off-line by performing a breadth
first search up to h-hops from each node in G. Its time complexity
is O(|VG| · dh), where d is the average degree of each node.

To speed up the computation of list1(v) for all v ∈ VQ, we use
two types of simple index structures. In the first type of indexing,
we build a hash table corresponding to each label. The nodes in
G are hashed based on their labels. Given a query node v, we use
this hash structure to quickly identify the set of possible matches
u, such that L(v) ⊆ L(u). If the labels of v are very selective,
there will be a limited number of possible matches u and we can
quickly determine the nodes u among these matches, for which
cost(u, v) ≤ ε.

Algorithm 3 Neighborhood Based Indexing
Off-line Procedure
1: pre compute RG(u) = {〈l, AG(u, l)〉} for all u ∈ VG

2: for all label l do
3: create sorted list S(l) of nodes in descending order of

AG(u, l), such that ui(l) is i-th node in S(l)
4: end for

On-line Procedure
1: i← 1
2: sum(i)←

∑
l∈R(v)

M(AQ(v, l), AG(ui(l), l))

3: if sum(i) ≤ ε then
4: i← i+ 1
5: go to step 2
6: else
7: verify ∀uj(l) if cost(uj(l), v) ≤ ε, j < i, l ∈ RQ(v)
8: end if

However, if the labels of v are not very selective and there are
many possible matches using the hashing technique discussed above,
we use the second index structure, which is built on the neighbor-
hood vector RG(u) following the principle of Threshold Algorithm
[12]. The neighborhood vector RG(u) = {〈l, AG(u, l)〉} for each
node u ∈ VG is pre computed. Next, for each label l, we generate
a sorted list S(l) of nodes u in descending order of their AG(u, l)

values. Let us denote the node at position i from the top of S(l)
as ui(l). In the online phase, we start from the top of the each
sorted list S(l) in parallel and go to the next position in the sub-
sequent iteration. For some position i from the top, we compute,
sum(i) =

∑
l∈RQ(v)

M [AQ(v, l), AG(ui(l), l)]. Assume at itera-

tion i = i1, sum(i1) becomes greater than the cost threshold ε.
Then, we terminate this iterative procedure and verify for all nodes
uj(l), where j < i1, l ∈ RQ(v), if cost(uj(l), v) ≤ ε. For
each v ∈ VQ, we need to verify only O((i1 − 1)|l|) nodes for their
cost; where |l| denotes the number of labels in RQ(v). This can
reduce the complexity of the online algorithm significantly. The
complete procedure for neighborhood based indexing is given in
Algorithm 3.

Proof of Correctness. Let us denote Si(l) as all the nodes up to
position i from top of the sorted list S(l), i.e. Si(l) = {uj(l), 1 ≤
j ≤ i}. The following lemma will be useful to prove the correct-
ness of our indexing algorithm.

LEMMA 4. If sum(i) > ε, then for all u �∈ {Si−1(l) : l ∈
RQ(v)}, cost(u, v) > ε.

PROOF. It follows directly from the fact that, each S(l) is a
sorted list of nodes u in descending order of AG(u, l) values.

Therefore, in Algorithm 3, we start from i = 1 and find the
smallest i, for which sum(i) > ε. Following the previous lemma,
for any node u �∈ {Si−1(l) : l ∈ RQ(v)}, we can eliminate them
without actually computing cost(u, v).

We note that, our indexing can be easily implemented in a disk-
based manner for very large graphs. Also we can apply external
memory breadth first search algorithms, e.g., Ulrich Meyer [1] and
Lars Arge [2], to compute the neighborhood vectors RG(u) for all
the nodes.

Dynamic Update. Our indexing structure can efficiently accom-
modate dynamic updates in G, i.e., insertion/ deletion of nodes,
edges and labels. If a node u is added or deleted in G, it will
only change the vectors of u’s h-hop neighbors. We only need to
propagate the labels of these nodes and modify their neighborhood
vectors. They also need to be updated in the sorted lists of label l
for all l ∈ L(u). The addition/ deletion of a label can be handled
similarly. If an edge (u1, u2) is added/ deleted in G, we need to
update vectors for the h− 1 hop neighbors of both u1 and u2.

6. QUERY OPTIMIZATION
In this section, we eliminate the non-discriminative labels both

from the target and query graphs at the initial stage of our match-
ing algorithm to make the technique more efficient. The efficiency
of the algorithm “Iterative Unlabel” is related to the number of in-
dividual node matches for each node in the query graph. If there
exists some node which is not very selective in terms of its own
labels or the labels present in its neighborhood, there will be many
matches corresponding to that node at the initial stage of our algo-
rithm. In order to eliminate the problem posed by these nodes, we
first eliminate all the non-discriminative labels both from the target
graph and the query graph, and then we also ignore the nodes in the
query graph, which do not contain sufficient number of discrimi-
native labels in themselves and in their neighborhoods. These non-
discriminative labels are considered at the last stage of our match-
ing algorithm, i.e., when we search for the final matches. In the
following discussion, we shall clarify the notion of discriminative
and non-discriminative labels in the perspective of node and graph
matches.

?

? Andre
Magic in
the Water

The Lotus
Eater

Bright
Angel

Sheila
McCarthy

S.
McCarthy

Andre

Magic in
the Water

Thomas
Burstin

(a) Query

(b) Match_1 (c) Match_2

S.
McCarthy

Andre

Magic in
the Water

Thomas
Burstin

Figure 10: Top-2 Matches (Query 1)

?

John
Waters

(a) Query

(b) Match_1 (c) Match_2

Stephen
Spielberg

John
Waters

Stephen
Spielberg

John
Waters

Maratha
Plimpton

Darren E.
Burrows

Stephen
Spielberg

Pecker The Goonies Cry-Baby Amistad

Figure 11: Top-2 Matches (Query 2)

AG(u, l)

(b) heavy-tail(a) heavy-head

of

 n
od

es

AG(u, l)

Pruned

Not Pruned

AQ(v, l)AQ(v, l)

of

 n
od

es

Figure 9: Discriminative (Heavy-Head) vs. Non-Discriminative
(Heavy-Tail) Distribution

Let us consider the distribution of AG(u, l) values of some label
l, <l,AG(u, l)> ∈ RG(u), for different nodes u ∈ VG. Fig-
ure 9 shows one example. For a label l, we plot the different
AG(u, l) values along the X-axis. The Y -axis shows the number
of nodes u having that particular AG(u, l) value in their neigh-
borhood vector RG(u). The distribution in Figure 9(a) is skewed
towards the smaller values of AG(u, l), whereas Figure 9(b) is
skewed towards the higher values of AG(u, l). We call them as
heavy-head and heavy-tail distributions respectively. Given a query
node v, since we prune all the nodes u in G for which

∑
l∈RQ(v)

M [AQ(v, l), AG(u, l)] > ε, the labels with heavy-head distribu-
tion have more pruning power than those with heavy-tail distribu-
tion. Therefore, we should retain labels with heavy-head distribu-
tion for node match, as those labels are more discriminative.

7. EXPERIMENTAL RESULTS
In this section, we present the experimental results to demon-

strate the effectiveness and the efficiency of the neighborhood based
similarity search technique on a number of real-life and synthetic
graph datasets including DBLP, Intrusion, Freebase and WebGraph.
In order to evaluate the effectiveness, we show two possible appli-
cations - RDF query answering and network alignment. We test
the robustness of our approach by providing the accuracy of the
best matches for queries of different sizes and under the presence
of random noise. The efficiency and scalability of our approach are
also investigated. All experiments are performed using a single
core in a 40GB, 2.50GHz Xeon server.

7.1 Graph Data Sets
DBLP Collaboration Graph. The DBLP collaboration graph is
downloaded from www.informatik.uni-trier.de/∼ley /db. There are
684K distinct authors and 7M co-author edges among them. We
consider the name of each author as the label of that node. There
are 683, 927 distinct labels in DBLP. We use the DBLP dataset for
efficiency test.

Freebase Entity Relationship Graph. Freebase is a large col-
laborative knowledge base of structured data harvested from many
sources including Wikipedia. We downloaded the ‘film’ entity rela-
tionship graph data from http://download.freebase.com/datadumps
/2010-10-07. This graph has 172K nodes, each representing an
entity, i.e., actor, movie, director, producer and so on. An edge
represents the relationship between two entities. Names of entities
are treated as labels. There are total 579K edges and 159, 514 dis-
tinct labels in this graph. Freebase graph is used for effectiveness,
robustness and efficiency analysis.

Intrusion Alert Network. This network contains the anonymous
log data of intrusion alerts in a computer network. It has 200K
nodes and 703K edges where each node is a computer and an edge
means a possible attack such as Denial-of-Service and TCP Service
Sweep. Each node has 25 labels (computer generated alerts in this
case) on average. There are around 1, 000 types of alerts. We use
this graph for robustness and efficiency experiments.

WebGraph with Synthetic Labels. We downloaded the uk-2007-
05 web graph data from http://webgraph.dsi.unimi.it [4]. This web
graph is a collection of UK web pages. For our experiments, we use
a subset that contains 10M pages (i.e. nodes) and 213M hyperlinks
(i.e. edges). We uniformly assign 10, 000 synthetically generated
labels across various nodes, such that each node gets one label. We
test the scalability of our approach on this graph.

7.2 RDF Query Answering
In addition to the query shown in Figure 1, we show two more

examples using the Freebase graph dataset.

Query 1: Who did cinematography for at least two ‘Sheila Mc-
Carthy’ movies, one of them being ‘Andre’? The person was also
cinematographer of the movie ‘Magic in the Water’.

Here, we would like to emphasize that, ‘Sheila McCarthy’ did
not act in the movie ‘Andre’. However, as discussed earlier, this
type of inaccuracy is common, since the user may not have the ac-

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2

A
C

C
U

R
A

C
Y

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(a) Accuracy (Intrusion)

0.05

0.10
0.15

0.25

0.50

1.0

 0 0.05 0.1 0.15 0.2

E
R

R
O

R
 R

A
T

IO

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(b) Error Ratio (Freebase)

 0

 0.1

 0.2

 0.3

 0.4

 0 0.05 0.1 0.15 0.2

E
R

R
O

R
 R

A
T

IO

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(c) Error Ratio (Intrusion)

Figure 12: Robustness of Network Alignment

 1

 2

 3

 4

 5

 6

 0 0.05 0.1 0.15 0.2

A
V

G
 #

 O
F

IT
E

R
A

T
IO

N
S

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(a) Top-k Search (Algorithm 1)

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35

 0 0.05 0.1 0.15 0.2

A
V

G
 #

 O
F

IT
E

R
A

T
IO

N
S

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(b) Iterative Unlabel (Algorithm 2)

 0.1

 0.5

 1

 3
 5

 0 0.05 0.1 0.15 0.2

SE
A

R
C

H
 T

IM
E

 (
SE

C
)

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(c) Online Search Time

Figure 13: Convergence of Online Search Algorithm (DBLP)

curate information, or there can be some noises in the target graph.
Using our approach, we get the following top-2 answers for this
query, as shown in Figure 10.

Query 2: Which actors have appeared in both a "John Waters"
movie and a "Steven Spielberg" movie?

The query and the corresponding top-2 matches are shown in
Figure 11. Here, we would like to emphasize that, actors in the
Freebase dataset are not directly connected with the directors and
cinematographers; rather via some movies. To write a SPARQL
query, we need to maintain this structural property. However, given
the query graph as shown in Figure 11, which does not maintain
this structural property; we still obtain the results, where the em-
beddings are very close to the query graph.

7.3 Network Alignment
We perform network alignment for query graphs of different

sizes and in the presence of various amount of noise. For these
experiments, three different sets of query graphs are used with di-
ameters 2, 3, 4 and the number of nodes 100, 150, 200 respectively.
These query sets will simulate the situation when we align a small
social network to a large one. In each query set, we randomly se-
lect 100 subgraphs with the specified diameters and nodes from the
original graph datasets. Then we introduce noise by adding edges
to the query graphs, which are not present in the original graph.
The noise ratio is defined as the number of edges added divided
by the original number of edges present in the query graph. We
use propagation depth 2 and α is selected as described earlier in
Section 3.3.

The robustness of our approach in the presence of random noise
is measured using two metrics. The accuracy is defined as the num-
ber of correctly identified nodes of the target graph in all the top-1
matches divided by the total number of nodes in all query graphs
in the corresponding query set. The accuracy is 1 for both DBLP
and Freebase datasets with different amounts of noise, since these
graphs have more number of distinct labels. The accuracy vs. noise

ratio plots for Intrusion dataset is shown in Figure 12(a). The accu-
racy remains at a relatively high level when the noise ratio increases
up to 0.2.

We also measure the error ratio, which is defined as the number
of incorrectly identified nodes of the target graph in all the top-1
matches divided by the total number of nodes in all query graphs
in the corresponding query set. The lower is the error ratio, the
more distinguishable the nodes are in terms of their neighborhood
structure and contents. The error ratio remains close to 0 for DBLP
graph at different amount noise. The error ratio vs. noise ratio plots
for Freebase and Intrusion are shown in Figure 12(b) and 12(c) re-
spectively. It can be observed that the error ratio remains at a rela-
tively low level for Freebase graph, when the noise ratio increases
up to 0.2. Hence, these experiments indicate that DBLP and Free-
base is less automorphic compared to the Intrusion network.

7.4 Efficiency Results
We provide the running time of our algorithm for different datasets

in Table 1. For these experiments, we randomly select query graphs
with 50 nodes and diameter 2 from the original graph datasets. The
vectorization and indexing is performed with propagation depth 2
and the search algorithm is used to identify the top-1 matches. It
can be observed that our algorithm is very efficient for large graph
datasets. The on-line phase for Intrusion graph requires more time
because the average number of labels per node is much higher than
that in other graphs. This leads to more time used for cost compu-
tation (Eq. (7)).

We also verify the convergence rate of our ‘Top-k Search’ and
‘Iterative Unlabel’ algorithms for various network alignment exper-
iments discussed earlier. The convergence rate of these algorithms
is measured as the average number of iterations required before
they terminate. When the noise ratio is increased, our algorithm
requires more iterations to satisfy the cost threshold. Thus, the cor-
responding running time also increases as shown in Figure 13 for
the DBLP dataset. Moreover, it requires more time to identify the

 1

 2

 3

 4
 5

 0 0.05 0.1 0.15 0.2

A
V

G
 #

 O
F

IT
E

R
A

T
IO

N
S

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(a) Convergence (Freebase)

 0.1

 0.5
 1

 5
 10

 30
 60

 0 0.05 0.1 0.15 0.2

SE
A

R
C

H
 T

IM
E

 (
SE

C
)

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(b) Search Time (Freebase)

 1
 1.2

 1.5

 1.8
 2

 2.2

 2.5

 0 0.05 0.1 0.15 0.2

A
V

G
 #

 O
F

IT
E

R
A

T
IO

N
S

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(c) Convergence(Intrusion)

 0
 50

 100
 150
 200
 250
 300
 350

 0 0.05 0.1 0.15 0.2

SE
A

R
C

H
 T

IM
E

 (
SE

C
)

NOISE RATIO

QUERY DIAMETER=2
QUERY DIAMETER=3
QUERY DIAMETER=4

(d) Search Time (Intrusion)

Figure 14: Convergence of Online Search Algorithm (Freebase & Intrusion)

matches of a larger query graph. The convergence plots for Free-
base and Intrusion networks are given in Figure 14.

Dataset 2-hop Indexing Top-1 Search
(Off-line) (Online)

DBLP 1, 733 sec 0.06 sec
(0.7M, 7M, 0.7M)

Freebase 280 sec 0.22 sec
(0.2M, 0.6M, 0.2M)

Intrusion 227 sec 1.6 sec
(0.2M, 0.5M, 1K)

WebGraph 5, 125 sec 0.26 sec
(10M, 213M, 10K)

Table 1: Efficiency: Off-line Indexing and Online Search

7.5 Neighborhood-based Cost Function Prop-
erties

Recall that we proved in Theorem 1 that our neighborhood-based
cost function ensures there is no false negatives when the cost thresh-
old is set to 0. In this subsection, we investigate the false positive
rate by using our neighborhood-based cost function with threshold
set to 0. This experiment is performed on DBLP, Freebase and In-
trusion datasets. In particular, for each dataset, we select 100 small
query subgraphs with 10 nodes each from the original graph. For
each of the query graphs, by using 2-hop propagation, we identify
all matches with cost = 0. Among these matches, we manually ver-
ify if there is any false positives, i.e. a match which is not graph
isomorphic with the query graph. The percentage of false positives
is calculated as the number of false positives divided by the total
number of matches obtained. We show the results in Table 2. It
can be seen that using our cost function with cost threshold set to
0, the percentage of false positives on real-life social/ information
networks is very small.

Dataset False
Positive

DBLP 0%
Freebase 0%
Intrusion 0.3%

Table 2: False Positive
Ratio

Dataset Search with Search w/o
Index&Op- Index&Op-
timization timization

DBLP 0.06 sec 9.63 sec
Freebase 0.22 sec 1.75 sec

Table 3: Benefits of In-
dex and Optimization

As we have discussed earlier, the higher the value of h is, the
lower the number of false positives will be. Therefore, for a tar-
get graph, we can employ error ratio as a cost function and learn
the satisfactory value of h from training queries generated from the

target graph. DBLP graph is used in this experiment. We use a
training set of 100 small query graphs (with 10 nodes each) gen-
erated from the DBLP graph. The queries are generated in such
a way that the labels in the query nodes are mostly not unique.
Some noise is also added in these query graphs as explained ear-
lier. Next, we start with h = 0 and gradually increase h until the
error ratio becomes less than a small value. We show the results
for DBLP graph in Figure 15. It can be observed that, by setting
h = 2, we can reduce the error ratio to an acceptable level when the
noise ratio is below 0.1. This indicates that for the real-life social/
information networks with few auto-morphism and many distinct
labels, we only need a small propagation depth to make the error
ratio close to zero.

7.6 Pruning Capacity of Search Algorithm
We verify the pruning capacity of our Top-k search algorithm

with respect to the number of distinct labels present in the target
graph. For this experiment, we use a subgraph extracted from the
WebGraph dataset, which contains 1, 000 nodes and 14, 067 edges.
We vary the number of distinct labels from 1 to 800. Given a ran-
domly extracted query graph with the number of nodes |VQ| = 8, 10
and 12 respectively, we check how many subgraphs need to be ver-
ified during the “final match” phase of our approach. The smaller
this number is, the more powerful the pruning of our algorithm is.
We plot the number of subgraphs need to be verified in the “final
match” phase vs. the number of distinct labels in Figure 16. Note
that the Y axis is in log scale. It can be observed that, when there
is only 1 distinct label in the entire graph, we need to verify about
1025 subgraphs for a query graph with 8 nodes during the “final
match” phase. However, as the number of distinct labels increases,
the number of subgraphs that we need to verify decreases rapidly.
For 800 distinct labels, we only need to verify a very small num-
ber of subgraphs (e.g. 12 subgraphs when |VQ| = 8) in the “final
match” phase of our approach. Thus, our algorithm can be very ef-
ficient on graphs with few automorphisms and many distinct labels.

7.7 Indexing and Query Optimization
In Table 3, we compare the running time of our online search

algorithm with that of a linear scan with no indexing and query
optimization. Each of the query graphs has 50 nodes and diameter 2
for this experiment. It can be observed that, our indexing and query
optimization techniques can significantly speed up online search.

We also compare the index construction time of dynamic update
with the cost of rebuilding the whole index when the target graph
is modified. The propagation depth is 2 for these experiments. The
results for DBLP dataset are shown in Figure 17. As we can see,
for a wide range of updates in the target graph, it is more efficient
to update the index structure rather than re-indexing the graph. The

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

 0 1 2 3

E
R

R
O

R
 R

A
T

IO

PROPAGATION DEPTH

NOISE RATIO = 0
NOISE RATIO = 0.05
NOISE RATIO = 0.10
NOISE RATIO = 0.15

Figure 15: Satisfactory h Value (DBLP)

 1
 5

 10

 15

 20

 25

 30

 35

 1 10 100 800

O

F
SU

B
 G

R
A

PH
S

(1
0x)

OF DISTINCT LABELS

|VQ|=8
|VQ|=10
|VQ|=12

Figure 16: Pruning Capacity (WebGraph)

 5

 20

 50

 200

 500

 1000

5 10 15 20

T
IM

E
 (

SE
C

)

% NODE UPDATE

Dynamic Update
Re-Index

Figure 17: Dynamic Update Index (DBLP)

results also indicate that our index structure is very efficient against
dynamic updates in the target graph.

7.8 Scalability
We show the scalability of our approach on the WebGraph dataset.

The vectorization time as a function of the number of nodes in the
graph is shown in Figure 18(a). Figure 18(b) shows the change
trends of the online search time with respect to the number of nodes.
The propagation depth is 2 for indexing and we identify the top-1
matches using our search algorithm. Each of the query graphs has
10 nodes and diameter 3 for this experiment. As it can be observed,
for a graph with 10 million nodes, our approach can return the top-
1 match in 0.11 second. The corresponding index building time is
also tolerable. Both the index building time and the online search
time is roughly linear in the number of nodes. These results show
that our technique is highly scalable for large scale information/
social networks.

 300

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0.5 1.5 3 5 7 10

T
IM

E
 (

SE
C

)

OF NODES (M)

(a) Vectorization Time

 0.03

 0.05

 0.07

 0.09

 0.11

 0.5 1.5 3 5 7 10

T
IM

E
 (

SE
C

)

OF NODES (M)

(b) Search Time

Figure 18: Scalability Results (WebGraph)

8. RELATED WORK
Graph search has been studied in different contexts such as graph

isomorphism, graph indexing, structure matching, etc. In XML,
where the structures encountered are often trees and lattices, queries
built on path expression become popular [28] and their correspond-
ing indices have been developed [9].

In bioinformatics, exact and approximate graph alignment has
been extensively studied, e.g., PathBlast [21], Saga [33], NetAlign
[23], IsoRank [32]. They are targeting relatively small biological
networks with less than 10k nodes. It is difficult to apply them in
social and information networks with thousands or even millions of
nodes. Kernel based graph matching techniques are also proposed,
e.g., common walks [16, 18], shortest path [5], limited-size sub-
graphs [19] and subtree patterns [20]. Recently, Shervashidze et. al
[25] proposed fast subtree pattern kernel based on the Weisfeiler-
Lehman method. Kernel methods do not support subgraph search
well.

For subgraph search, Shasha et al. [31] extend the path-based
technique for full-scale graph retrieval; Yan et al. propose gIndex
[37] using frequent subgraphs. These studies inspired new graph
index structures such as δ-Tolerance Closed Frequent Subgraphs
[8], Tree [40], and GCoding[41]. He et al. [17] develop a closure
tree index to perform approximate graph search. Tian et al. [33]
design a fragment based index to assemble an approximate match.
Shang et al. introduce an efficient algorithm for testing subgraph
isomorphism [29]. Ferro et al. propose a novel indexing scheme,
SING [26], based on locality information. All these methods are
built strictly on graph structures, not good for approximate search
shown in Figure 1.

There have been significant studies on inexact graph matching on
attributed graphs [30, 7]. Tong et al. [35] propose the best-effort
pattern matching in large attributed graphs. It finds the best match
not based on the proximity among the labels, rather based on the
shape of the query graph. Tian et al. [34] proposed an approximate
subgraph matching tool, called TALE, with efficient indexing and
high pruning capabilities. Mongiov̀i et. al. introduce a set-cover-
based inexact graph matching technique, called SIGMA [24]. Both
techniques only use edge misses to measure the quality of graph
matching. Therefore, they are not appropriate for the proximity
based search scenario studied in this work. There have been some
recent work on inexact graph matching, i.e., simulation based cubic
time graph pattern matching [13], homomorphism based subgraph
matching [14], Belief propagation based net alignment [3], edge-
edit-distance based subgraph indexing technique [39] and graph
partition based subgraph identification scheme [6].

9. CONCLUSIONS
In this paper, we defined a new graph similarity measure, neigh-

borhood based graph similarity, and proposed an information prop-
agation model to convert a large network into a set of multidimen-
sional vectors, where sophisticated indexing and similarity search
algorithms are available. We proved, under this measure, that sub-
graph similarity search is NP hard, while graph similarity match
is polynomial. We introduced a criterion to select the best prop-
agation rate with respect to different node labels in a graph. We
further investigated the techniques to index the neighborhood vec-
tors and to compress them by deleting non-discriminative labels,
thus optimizing the query processing time. The proposed method,
called Ness, is not only efficient, but also robust against structure
changes and information loss. Empirical results show that it could
quickly and accurately find high-quality matches in large networks,
with negligible time cost. In future work, it will be interesting to
consider the graph alignment problem, when the node labels in two
graphs are not exactly identical, i.e the same user can have slightly
different usernames in Facebook and Twitter.

10. ACKNOWLEDGMENTS
This research was sponsored in part by the U.S. National Science

Foundation under grant IIS-0954125 and by the Army Research
Laboratory under cooperative agreement W911NF-09-2-0053 (NS-
CTA). X. Yan was supported in part by the Open Project Program
of the State Key Lab of CAD&CG (Grant No. A1001), Zhejiang
University. The views and conclusions contained herein are those
of the authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the Army Research
Laboratory or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notice herein.

11. REFERENCES
[1] D. Ajwani, U. Meyer, and V. Osipov. Improved external

memory bfs implementation. In ALENEX, 2007.
[2] L. Arge, G. S. Brodal, and L. Toma. On external-memory

mst, sssp and multi-way planar graph separation. In
Workshop on Algorithmic Theory, Vol. 1851 of LNCS, pages
433–447. Springer, 2000.

[3] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and
Y. Wang. Algorithms for large, sparse network alignment
problems. ICDM, 0:705–710, 2009.

[4] P. Boldi and S. Vigna. The WebGraph framework I:
Compression techniques. In WWW, pages 595–601, 2004.

[5] K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on
graphs. In ICDM, pages 74–81, 2005.

[6] M. Brocheler, A. Pugliese, and V. S. Subrahmanian. Cosi:
Cloud oriented subgraph identification in massive social
networks. ASONAM, 0:248–255, 2010.

[7] S. Chaudhury, K. Ganjam, V.Ganti, and R. Motwani. Robust
and efficient fuzzy match for online data cleaning. In
SIGMOD, 2003.

[8] J. Cheng, Y. Ke, W. Ng, and A. Lu. FG-Index: Towards
verification-free query processing on graph databases. In
SIGMOD, pages 857 – 872, 2007.

[9] C. Chung, J. Min, and K. Shim. APEX: An adaptive path
index for xml data. In SIGMOD, pages 121–132, 2002.

[10] S. Cook. The complexity of theorem-proving procedures. In
STOC, pages 151–158, 1971.

[11] J. Edmonds and R. M. Karp. Theoretical improvements in
algorithmic efficiency for network flow problems. Journal of
the ACM, 19(2):248–264, 1972.

[12] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, pages 102–113, 2001.

[13] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph
pattern matching: From intractable to polynomial time.
PVLDB, 3(1):264–275, 2010.

[14] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph
homomorphism revisited for graph matching. PVLDB,
3(1):1161–1172, 2010.

[15] Freebase. http://www.freebase.com.
[16] T. Gärtner, P. A. Flach, and S. Wrobel. On graph kernels:

Hardness results and efficient alternatives. In COLT and the
7th Kernel Workshop, 2003.

[17] H. He and A. Singh. Closure-tree: An index structure for
graph queries. In ICDE, page 38, 2006.

[18] H.Kashima and A.Inokuchi. Kernels for graph classification.
ICDM Workshop on Active Mining, 2002.

[19] T. Horváth, T. Gärtner, and S. Wrobel. Cyclic pattern kernels
for predictive graph mining. In KDD, pages 158–167, 2004.

[20] J. J. Ramon and T. Gärtner. Expressivity versus efficiency of
graph kernels. In First Int. Workshop on Mining Graphs,
Trees and Sequences, pages 65–74, 2003.

[21] B. P. Kelley, B. Yuan, F. Lewitter, R. Sharan, B. R.
Stockwell, and T. Ideker. Pathblast: a tool for alignment of
protein interaction networks. Nucleic Acids Res, 32:83–88,
2004.

[22] A. Khan, X. Yan, and K.-L. Wu. Towards proximity pattern
mining in large graphs. In SIGMOD, 2010.

[23] Z. Liang, M. Xu, M. Teng, and L. Niu. Netalign: a
web-based tool for comparison of protein interaction
networks. Bioinformatics, 22(17):2175–2177, 2006.

[24] M. Mongiovì, R. D. Natale, R. Giugno, A. Pulvirenti,
A. Ferro, and R. Sharan. Sigma: a set-cover-based inexact
graph matching algorithm. J. Bioinformatics and
Computational Biology, 8(2):199–218, 2010.

[25] N. N. Shervashidze and K. M. Borgwardt. Fast subtree
kernels on graphs. pages 1660–1668. Curran, 2010.

[26] R. D. Natale, A. Ferro, R. Giugno, M. Mongiovì,
A. Pulvirenti, and D. Shasha. Sing: Subgraph search in
non-homogeneous graphs. BMC Bioinformatics, 11:96,
2010.

[27] E. Prudhommeaux and A. Seaborne. Sparql query language
for rdf. Technical report, W3C, 2007.

[28] C. Qun, A. Lim, and K. Ong. D(k)-index: An adaptive
structural summary for graph-structured data. In SIGMOD,
pages 134–144, 2003.

[29] H. Shang, Y. Zhang, X. Lin, and J. Yu. Taming verification
hardness: An efficient algorithm for testing subgraph
isomorphism. In VLDB, pages 364–375, 2008.

[30] L. Shapiro and R. Haralick. Structural descriptions and
inexact matching. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 3:504–519, 1981.

[31] D. Shasha, J. T.-L. Wang, and R. Giugno. Algorithmics and
applications of tree and graph searching. In PODS, pages
39–52, 2002.

[32] R. Singh, J. Xu, and B. Berger. Global alignment of multiple
protein interaction networks with application to functional
orthology detection. PNAS, 105(35):12763–12768, 2008.

[33] Y. Tian, R. McEachin, C. Santos, D. States, and J. Patel.
SAGA: a subgraph matching tool for biological graphs.
Bioinformatics, 23(2):232–239, 2006.

[34] Y. Tian and J. M. Patel. Tale: A tool for approximate large
graph matching. In ICDE, pages 963–972, 2008.

[35] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In
KDD, pages 737–746, 2007.

[36] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and
search in social networks. Sience, 296:1302–1305, 2002.

[37] X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent
structure-based approach. In SIGMOD, pages 335–346,
2004.

[38] X. Yan, P. S. Yu, and J. Han. Substructure similarity search
in graph databases. In SIGMOD, pages 766–777, 2005.

[39] S. Zhang, J. Yang, and W. Jin. Sapper: Subgraph indexing
and approximate matching in large graphs. PVLDB,
3(1):1185–1194, 2010.

[40] P. Zhao, J. Yu, and P. Yu. Graph indexing: tree + delta >=
graph. In VLDB, pages 938–949, 2007.

[41] L. Zou, L. Chen, J. Yu, and Y. Lu. A novel spectral coding in
a large graph database. In EDBT, pages 181–192, 2008.

