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“Everything is determined … by forces over which we have no
control.  It is determined for the insects as well as for the star.
Human beings, vegetables, or cosmic dust – we all dance to a
mysterious tune, intoned in the distance by an invisible piper.”
– Albert Einstein

INTRODUCTION
HIS MANUAL COVERS the physics of waves, sound, music, and
musical instruments at a level designed for high school physics. However,
it is also a resource for those teaching and learning waves and sound from
middle school through college, at a mathematical or conceptual level. The
mathematics required for full access to the material is algebra (to include

logarithms), although each concept presented has a full conceptual foundation that
will be useful to those with even a very weak background in math.

Solomon proclaimed that there is nothing new
under the Sun and of the writing of books there is no
end. Conscious of this, I have tried to produce
something that is not simply a rehash of what has
already been done elsewhere. In the list of references I
have indicated a number of very good sources, some
classics that all other writers of musical acoustic
books refer to and some newer and more accessible
works. From these, I have synthesized what I believe
to be the most useful and appropriate material for the
high school aged student who has neither a
background in waves nor in music, but who desires a
firm foundation in both. Most books written on the
topic of musical acoustics tend to be either very
theoretical or very cookbook style. The theoretical
ones provide for little student interaction other than
some end of the chapter questions and problems. The
ones I term “cookbook” style provide instructions for
building musical instruments with little or no
explanation of the physics behind the construction.
This curriculum attempts to not only marry the best
ideas from both types of books, but to include
pedagogical aids not found in other books.

This manual is available as both a paper hard
copy as well as an e-book on CD-ROM. The CD-
ROM version contains hyperlinks to interesting
websites related to music and musical instruments. It
also contains hyperlinks throughout the text to sound
files that demonstrate many concepts being developed.

MODES OF PRESENTATION
As the student reads through the text, he or she

will encounter a number of different presentation
modes. Some are color-coded. The following is a key
to the colors used throughout the text:

  Pale green boxes cover tables and figures
that are important reference material.

Notes Frequency
interval (cents)

Ci 0
D 204
E 408
F 498
G 702
A 906
B 1110
Cf 1200

Table 2.8: Pythagorean
scale interval ratios

  Light yellow boxes highlight derived
equations in their final form, which will be used for
future calculations.

† 

f1 =

T
m
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  Tan boxes show step-by-step examples for
making calculations or reasoning through questions.

Example
If the sound intensity of a screaming baby were

† 

1¥10-2 W
m 2  at 2.5 m away, what would it be at

6.0 m away?
The distance from the source of sound is greater by a
factor of 

† 

6.0
2.5 = 2.4 . So the sound intensity is decreased

by 

† 

1
(2.4)2 = 0.174 . The new sound intensity is:

† 

(1¥10-2 W
m 2 )(0.174) =

† 

1.74 ¥10-2 W
m 2

  Gray boxes throughout the text indicate
stopping places in the reading where students are
asked, “Do you get it?” The boxes are meant to
reinforce student understanding with basic recall
questions about the immediately preceding text. These
can be used to begin a discussion of the reading with
a class of students.

Do you get it? (4)
A solo trumpet in an orchestra produces a sound
intensity level of 84 dB. Fifteen more trumpets join
the first.  How many decibels are produced?

In addition to the “Do you get it?” boxes,
which are meant to be fairly easy questions done
individually by students as they read through the text,
there are three additional interactions students will
encounter: Activities , Investigations, and
Projects. Activities more difficult than the “Do you
get it?” boxes and are designed to be done either
individually or with a partner. They either require a
higher level of conceptual understanding or draw on
more than one idea. Investigations are harder still and
draw on more than an entire section within the text.
Designed for two or more students, each one
photographically exposes the students to a particular
musical instrument that they must thoroughly

consider. Investigations are labs really, often requiring
students to make measurements directly on the
photographs. Solutions to the “Do you get it?”
boxes, Activities, and Investigations are provided in
an appendix on the CD-ROM. Finally, projects
provide students with some background for building
musical instruments, but they leave the type of
musical scale to be used as well as the key the
instrument will be based on largely up to the student.

PHYSICS AND … MUSIC?

“Without music life would be a
mistake.”
– Friedrich Nietzsche

With even a quick look around most school
campuses, it is easy to see that students enjoy music.
Ears are sometimes hard to find, covered by
headphones connected to radios or portable CD
players. And the music flowing from them has the
power to inspire, to entertain, and to even mentally
transport the listener to a different place. A closer
look reveals that much of the life of a student either
revolves around or is at least strongly influenced by
music. The radio is the first thing to go on in the
morning and the last to go off at night (if it goes off
at all). T-shirts with logos and tour schedules of



IIINNNTTTRRROOODDDUUUCCCTTTIIIOOONNN

3

popular bands are the artifacts of many teens’ most
coveted event … the concert. But the school bell
ringing for the first class of the day always brings
with it a stiff dose of reality.

H. L. Mencken writes, “School days, I believe,
are the unhappiest in the whole span of human
existence. They are full of dull, unintelligible tasks,
new and unpleasant ordinances, brutal violations of
common sense and common decency.” This may
paint too bleak a picture of the typical student’s
experience, but it’s a reminder that what is taught
often lacks meaning and relevance. When I think back
to my own high school experience in science, I find
that there are some classes for which I have no
memory. I’m a bit shocked, but I realize that it would
be possible to spend 180 hours in a science classroom
and have little or no memory of the experience if the
classroom experience were
lifeless or disconnected
from the reality of my life.
Middle school and high
school students are a tough
audience. They want to be
entertained … but they
don’t have to be. What they
really need is relevance.
They want to see direct
connections and immediate
applications. This is the
reason for organizing an
introduction to the physics
of waves and sound around
the theme of music and
musical instruments.

It’s not a stretch either.
Both music and musical
instruments are intimately
connected to the physics of
waves and sound. To fully
appreciate what occurs in a
musical instrument when it
makes music or to

understand the rationale for the development of the
musical scales one needs a broad foundation in most
elements of wave and sound theory. With that said,
the approach here will be to understand music and
musical instruments first, and to study the physics of
waves and sound as needed to push the understanding
of the music concepts. The goal however is a deeper
understanding of the physics of waves and sound than
what would be achieved with a more traditional
approach.

SOUND, MUSIC, AND NOISE
Do you like music? No, I guess a better question

is, what kind of music do you like? I don’t think
anyone dislikes music. However, some parents
consider their children’s “music” to be just noise.
Likewise, if the kids had only their parent’s music to
listen to many would avoid it in the same way they
avoid noise. Perhaps that’s a good place to start then
– the contrast between music and noise. Is there an
objective, physical difference between music and
noise, or is it simply an arbitrary judgment?

After I saw the movie 8 Mile, the semi-
autobiographical story of the famous rapper Eminem,
I recommended it to many people … but not to my
mother. She would have hated it. To her, his music is
just noise. However, if she hears an old Buddy Holly
song, her toes start tapping and she’s ready to dance.
But the music of both of these men would be
considered unpleasant by my late grandmother who
seemed to live for the music she heard on the
Lawrence Welk Show. I can appreciate all three
“artists” at some level, but if you ask me, nothing

beats a little Bob Dylan. It’s
obviously not easy to define
the difference between noise
and music. Certainly there is
the presence of rhythm in the
sounds we call music. At a
more sophisticated level there
is the presence of tones that
combine with other tones in
an orderly and ... “pleasing”
way. Noise is often associated
with very loud and grating
sounds – chaotic sounds which
don’t sound good together or
are somehow “unpleasant” to
listen to. Most would agree
that the jackhammer tearing
up a portion of the street is
noise and the sound coming
from the local marching band
is music. But the distinction
is much more subtle than that.
If music consists of sounds
with rhythmic tones of certain
frequencies then the
jackhammer might be
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considered a musical instrument. After all, it
pummels the street with a very regular frequency. And
if noise consists of loud sounds, which are unpleasant
to listen to, then the cymbals used to punctuate the
performance of the marching band might be
considered noise. I suppose we all define the point
where music becomes noise a bit differently. Perhaps
it’s based on what we listen to most or on the
generation we grow up in or … make a break from.
But we need to be careful about being cavalier as I
was just now when I talked about “pleasing” sounds.
John Bertles of Bash the Trash® (a company dedicated
to the construction and performance of musical
instruments from recycled materials:
http://www.bashthetrash.com/   ) was quick to caution
me when I used the word “pleasing” to describe
musical sound. Music that is pleasing to one person
may not be pleasing to others. Bertles uses the
definition of intent rather than pleasing when
discussing musical sound. He gives the example of a
number of cars all blaring their horns chaotically at
an intersection. The sound would be considered noise
to most anyone. But the reason for the noise is not so
much the origin of the sound, but the lack of intent
to organize the sounds of the horns. If someone at the
intersection were to direct the car horns to beep at
particular times and for specific periods, the noise
would evolve into something more closely related to
music. And no one can dispute that whether it’s
Eminem, Buddy Holly, Lawrence Welk, or Bob
Dylan, they all create(d) their particular recorded
sounds with intent.

“There are two means of refuge from
the miseries of life: music and cats.”
– Albert Schweitzer

BEGINNING TO DEFINE MUSIC
Music makes us feel good, it whisks us back in

time to incidents and people from our lives; it rescues
us from monotony and stress. Its tempo and pace jive
with the natural rhythm of our psyche.

The simplest musical sound is some type of
rhythmical beating. The enormous popularity of the
stage show Stomp    http://www.stomponline.com/    and
the large screen Omnimax movie, Pulse
http://www.Pulsethemovie.com/    gives evidence for

the vast appreciation of this type of music. Defining
the very earliest music and still prominent in many
cultures, this musical sound stresses beat over
melody, and may in fact include no melody at all.
One of the reasons for the popularity of rhythm-only
music is that anyone can immediately play it at some
level, even with no training. Kids do it all the time,
naturally. The fact that I often catch myself
spontaneously tapping my foot to an unknown beat
or lie in bed just a bit longer listening contentedly to
my heartbeat is a testament to the close connection
between life and rhythm.

Another aspect of music is associated with more
or less pure tones – sounds with a constant pitch.
Whistle very gently and it sounds like a flute playing
a single note. But that single note is hardly a song,
and certainly not a melody or harmony. No, to make
the single tone of your whistle into a musical sound
you would have to vary it in some way. So you could
change the way you hold your mouth and whistle
again, this time at a different pitch. Going back and
forth between these two tones would produce a
cadence that others might consider musical. You
could whistle one pitch in one second pulses for three
seconds and follow that with a one second pulse of
the other pitch. Repeating this pattern over and over
would make your tune more interesting. And you
could add more pitches for even more sophistication.
You could even have a friend whistle with you, but
with a different pitch that sounded good with the one
you were whistling.

If you wanted to move beyond whistling to
making music with other physical systems, you
could bang on a length of wood or pluck a taut fiber
or blow across an open bamboo tube. Adding more
pieces with different lengths (and tensions, in the case
of the fiber) would give additional tones. To add more
complexity you could play your instrument along
with other musicians. It might be nice to have the
sound of your instrument combine nicely with the
sound of other instruments and have the ability to
play the tunes that others come up with. But to do
this, you would have to agree on a collection of
common pitches. There exist several combinations of
common pitches. These are the musical scales.

Here we have to stop and describe what the pitch
of a sound is and also discuss the various
characteristics of sound. Since sound is a type of
wave, it’s additionally necessary to go even further
back and introduce the idea of a wave.

http://www.bashthetrash.com
http://www.stomponline.com/
http://www.Pulsethemovie.com/
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“It is only by introducing the young to great literature, drama
and music, and to the excitement of great science that we open
to them the possibilities that lie within the human spirit –
enable them to see visions and dream dreams.”
– Eric Anderson

CHAPTER 1
WAVES AND SOUND

SK MOST PEOPLE
to define what a wave
is and they get a
mental image of a
wave at the beach.

And if you really press them for
an answer, they're at a loss. They
can describe what a wave looks
like, but they can't tell you what it
is. What do you think?

If you want to get energy from one place
to another you can do it by transferring it
with some chunk of matter. For example, if
you want to break a piece of glass, you don't
have to physically make contact with it
yourself. You could throw a rock and the
energy you put into the rock would travel on
the rock until it gets to the glass. Or if a
police officer wants to subdue a criminal, he doesn't
have to go up and hit him. He can send the energy to
the criminal via a bullet. But there's another way to
transfer energy – and it doesn't involve a transfer of
matter. The other way to transfer energy is by using a
wave.      A          wave        is         a        transfer         of         energy           without          a
transfer        of         matter    . If you and a friend hold onto both
ends of a rope you can get energy down to her simply
by moving the rope back and forth. Although the
rope has some motion, it isn't actually transferred to
her, only the energy is transferred.

A tsunami (tidal wave generally caused by an
earthquake) hit Papua New Guinea in the summer of
1998. A magnitude 7 earthquake 12 miles offshore
sent energy in this 23-foot tsunami that killed
thousands of people. Most people don't realize that
the energy in a wave is proportional to the square of
the amplitude (height) of the wave. That means that if
you compare the energy of a 4-foot wave that you
might surf on to the tsunami, even though the
tsunami is only about 6 times the height, it would
have 62 or 36 times more energy. A 100-foot tsunami

(like the one that hit the coast of the East Indies in
August 1883) would have 252 or 625 times more
energy than the four-foot wave.

Streaming through the place you're in right now
is a multitude of waves known as electromagnetic
waves. Their wavelengths vary from so small that
millions would fit into a millimeter, to miles long.
They’re all here, but you miss most of them. The
only ones you're sensitive to are a small group that
stimulates the retinas of your eyes (visible light) and
a small group that you detect as heat (infrared). The
others are totally undetectable. But they’re there.

WAVES, SOUND, AND THE EAR
Another type of wave is a sound wave. As small

in energy as the tsunami is large, we usually need an
ear to detect these. Our ears are incredibly awesome
receptors for sound waves. The threshold of hearing is
somewhere around 

† 

1¥10-12Watts /meter 2 . To
understand this, consider a very dim 1-watt night-
light. Now imagine that there were a whole lot more
people on the planet than there are now – about 100

A
Figure 1.1: Most people think of the ocean when
asked to define or describe a wave. The recurring
tumult is memorable to anyone who has spent t ime
at the beach or been out in the surf. But waves occur
most places and in many different forms, transferring
energy without transferring matter.
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times more. Assume there
was a global population
of 1 trillion (that's a
million, million) people.
If you split the light from
that dim bulb equally
between all those people,
each would hold a radiant
power of 

† 

1¥10-12Watts.
Finally, let's say that one
of those people spread that
power over an area of one
square meter. At this
smallest of perceptible
sound intensities, the
eardrum vibrates less
distance than the diameter
of a hydrogen atom! Well,
it's so small an amount of
power that you can hardly
conceive of it, but if you
have pretty good hearing,
you could detect a sound
wave with that small
amount of power. That's
not all. You could also
detect a sound wave a
thousand times more
powerful, a million times
more powerful, and even a
billion times more
powerful. And, that's before it even starts to get
painful!

I have a vivid fifth grade memory of my good
friend, Norman. Norman was blind and the first and
only blind person I ever knew well. I sat next to him
in fifth grade and watched amazed as he banged away
on his Braille typewriter. I would ask him questions
about what he thought colors looked like and if he
could explain the difference between light and dark.
He would try to educate me about music beyond top-
40 Pop, because he appreciated and knew a lot about
jazz. But when it came to recess, we parted and went
our separate ways – me to the playground and him to
the wall outside the classroom. No one played with
Norman. He couldn’t see and so there was nothing for
him. About once a day I would look over at Norman
from high up on a jungle gym of bars and he would
be smacking one of those rubbery creepy crawlers
against the wall. He would do it all recess … every
recess. I still marvel at how much Norman could get

out of a simple sound. He didn’t have sight so he had
to compensate with his other senses. He got so much
out of what I would have considered a very simplistic
sound. For him the world of sound was rich and
diverse and full. When I think of sound, I always
think first of Norman. He’s helped me to look more
deeply and to understand how sophisticated the world
of sound really is.

What about when more than one wave is present
in the same place? For example, how is it that you
can be at a symphony and make out the sounds of
individual instruments while they all play together
and also hear and understand a message being
whispered to you at the same time you detect
someone coughing five rows back? How do the sound
waves combine to give you the totality as well as the
individuality of each of the sounds in a room? These
are some of the questions we will answer as we
continue to pursue an understanding of music and
musical instruments.

Figure 1.2: The ear is an astonishing receptor for sound waves. A t
the smallest of perceptible sound intensities, the eardrum vibrates
less distance than the diameter of a hydrogen atom! If the energy i n
a single 1-watt night-light were converted to acoustical energy and
divided up into equal portions for every person in the world, i t
would still be audible to the person with normal hearing.
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TWO TYPES OF WAVES
Waves come in two basic types, depending on

their type of vibration. Imagine laying a long slinky
on the ground and shaking it back and forth. You
would make what is called a transverse wave (see
Figure 1.3). A transverse wave is one in which the
medium vibrates at right angles to the direction the
energy moves. If instead, you pushed forward and
pulled backward on the slinky you would make a
compressional wave (see Figure 1.4).
Compressional waves are also known as longitudinal
waves. A compressional wave is one in which the
medium vibrates in the same direction as the
movement of energy in the wave

Certain terms and ideas related to waves are easier
to visualize with transverse waves, so let’s start by
thinking about the transverse wave you could make
with a slinky. Imagine taking a snapshot of the wave
from the ceiling. It would look like Figure 1.5. Some
wave vocabulary can be taken directly from the
diagram. Other vocabulary must be taken from a
mental image of the wave in motion:

CREST: The topmost point of the wave medium or
greatest positive distance from the rest position.

TROUGH: The bottommost point of the wave
medium or greatest negative distance from the rest
position.

WAVELENGTH (l ): The distance from crest to
adjacent crest or from trough to adjacent trough or
from any point on the wave medium to the adjacent
corresponding point on the wave medium.

AMPLITUDE (A): The distance from the rest
position to either the crest or the trough. The
amplitude is related to the energy of the wave. As the

energy grows, so does the amplitude. This makes
sense if you think about making a more energetic
slinky wave. You’d have to swing it with more
intensity, generating larger amplitudes. The
relationship is not linear though. The energy is
actually proportional to the square of the amplitude.
So a wave with amplitude twice as large actually has
four times more energy and one with amplitude three
times larger actually has nine times more energy.

The rest of the vocabulary requires getting a
mental picture of the wave being generated. Imagine
your foot about halfway down the distance of the
slinky’s stretch. Let’s say that three wavelengths pass
your foot each second.

Figure 1.4: A compressional wave moves t o
the right while the medium vibrates in the
same direction, right to left.

fi

fi

Figure 1.3: A transverse wave moves to the
right while the medium vibrates at right
angles, up and down.

Amplitude

Amplitude

Wavelength

Wavelength

Crest

Trough

Rest
position

Figure 1.5: Wave vocabulary

 vocabulary

David Lapp
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Figure 1.6: The energy of the vibrating tuning fork
violently splashes water from the bowl. In the air, the
energy of the tuning fork is transmitted through the air and
to the ears.

FREQUENCY (f): The number of wavelengths to
pass a point per second.  In this case the frequency
would be 3 per second. Wave frequency is often
spoken of as “waves per second,” “pulses per second,”
or “cycles per second.” However, the SI unit for
frequency is the Hertz (Hz). 1 Hz = 1 per second, so
in the case of this illustration, f = 3 Hz.

PERIOD (T): The time it takes for one full
wavelength to pass a certain point. If you see three
wavelengths pass your foot every second, then the
time for each wavelength to pass is 

† 

1
3  of a second.

Period and frequency are reciprocals of each other:

† 

T =
1
f

     and     

† 

f =
1
T

SPEED (v)  Average speed is always a ratio of
distance to time,

† 

v = d / t . In the case of wave speed,
an appropriate distance would be wavelength, l . The
corresponding time would then have
to be the period, T. So the wave
speed becomes:

† 

v =
l
t

     or     

† 

v = lf

SOUND WAVES
If a tree falls in the forest and

there’s no one there to hear it, does it
make a sound? It’s a common
question that usually evokes a
philosophical response. I could argue
yes or no convincingly. You will
too later on. Most people have a
very strong opinion one way or the
other. The problem is that their
opinion is usually not based on a
clear understanding of what sound is.

I think one of the easiest ways
to understand sound is to look at
something that has a simple
mechanism for making sound. Think
about how a tuning fork makes
sound. Striking one of the forks
causes you to immediately hear a
tone. The tuning fork begins to act

somewhat like a playground swing. The playground
swing, the tuning fork, and most physical systems
will act to restore themselves if they are stressed from
their natural state. The “natural state” for the swing,
is to hang straight down. If you push it or pull it and
then let go, it moves back towards the position of
hanging straight down. However, since it’s moving
when it reaches that point, it actually overshoots and,
in effect, stresses itself. This causes another attempt
to restore itself and the movement continues back and
forth until friction and air resistance have removed all
the original energy of the push or pull. The same is
true for the tuning fork. It’s just that the movement
(amplitude) is so much smaller that you can’t visibly
see it. But if you touched the fork you could feel it.
Indeed, every time the fork moves back and forth it
smacks the air in its way. That smack creates a small
compression of air molecules that travels from that
point as a compressional wave. When it reaches your
ear, it vibrates your eardrum with the same frequency
as the frequency of the motion of the tuning fork.
You mentally process this vibration as a specific
tone.   
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    A         sound          wave         is         nothing          more         than         a
compressional        wave       caused       by       vibrations   . Next time
you have a chance, gently feel the surface of a speaker
cone (see Figure 1.7). The vibrations you feel with
your fingers are the same vibrations disturbing the
air. These vibrations eventually relay to your ears the
message that is being broadcast. So, if a tree falls in
the forest and there’s no one there to hear it, does it
make a sound?  Well … yes, it will certainly cause
vibrations in the air and ground when it strikes the
ground. And … no, if there’s no one there to
mentally translate the vibrations into tones, then
there can be no true sound. You decide. Maybe it is a
philosophical question after all.

CHARACTERIZING SOUND
All sound waves are compressional waves caused

by vibrations, but the music from a symphony varies
considerably from both a baby’s cry and the whisper
of a confidant. All sound waves can be characterized
by their speed, by their pitch, by their loudness,
and by their quality or timbre.

The speed of sound is fastest in solids (almost
6000 m/s in steel), slower in liquids (almost
1500 m/s in water), and slowest in gases. We
normally listen to sounds in air, so we’ll look at the
speed of sound in air most carefully. In air, sound
travels at:

† 

v = 331 m
s + 0.6 m / s

°C
Ê 

Ë 
Á 

ˆ 

¯ 
˜ Temperature

The part to the right of the “+” sign is the
temperature factor. It shows that the speed of sound
increases by 0.6 m/s for every temperature increase of
1°C. So, at 0° C, sound travels at 331 m/s (about 740

mph). But at room temperature (about 20°C)
sound travels at:

† 

v = 331 m
s

+ 0.6 m / s
°C

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 20°C( )

= 

† 

343 m
s

(    This is the speed you should
assume if no temperature is given).   

It was one of aviation’s greatest
accomplishments when Chuck Yeager, on
Oct. 14, 1947, flew his X-1 jet at Mach
1.06, exceeding the speed of sound by 6%.
Regardless, this is a snail’s pace compared to
the speed of light. Sound travels through air
at about a million times slower than light,
which is the reason why we hear sound

echoes but don’t see light echoes. It’s also the reason
we see the lightning before we hear the thunder. The
lightning-thunder effect is often noticed in big
stadiums. If you’re far away from a baseball player
who’s up to bat, you can clearly see the ball hit
before you hear the crack of the bat. You can consider
that the light recording the event reaches your eyes
virtually instantly. So if the sound takes half a second
more time than the light, you’re half the distance
sound travels in one second (165 meters) from the
batter. Next time you’re in a thunderstorm use this
method to estimate how far away lightning is
striking. Click    here    for a demonstration of the effect
of echoes.

Do you get it? (1.1)
Explain why some people put their ears on railroad
tracks in order to hear oncoming trains

Figure 1.7: The front of a speaker cone faces upward
with several pieces of orange paper lying on top of i t .
Sound is generated when an electric signal causes the
speaker cone to move in and out, pushing on the air
and creating a compressional wave. The ear can detect
these waves. Here these vibrations can be seen as they
cause the little bits of paper to dance on the surface o f
the speaker cone.
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Do you get it? (1.2)
The echo of a ship's foghorn, reflected from the cliff
on a nearby island, is heard 5.0 s after the horn is
sounded. How far away is the cliff?

The pitch of sound is the same as the
frequency of a sound wave. With no hearing losses or
defects, the ear can detect wave frequencies between 20
Hz and 20,000 Hz. (Sounds below 20 Hz are
classified as subsonic; those over 20,000 Hz are
ultrasonic). However, many older people, loud concert
attendees, and soldiers with live combat experience
lose their ability to hear higher frequencies. The good
news is that the bulk of most conversation takes
place well below 2,000 Hz. The average frequency
range of the human voice is 120 Hz to approximately
1,100 Hz (although a baby’s shrill cry is generally
2,000 - 3,000 Hz – which is close to the frequency
range of greatest sensitivity … hmm, interesting).
Even telephone frequencies are limited to below
3,400 Hz. But the bad news is that the formation of
many consonants is a complex combination of very
high frequency pitches. So to the person with high
frequency hearing loss, the words key, pee, and tea
sound the same. You find people with these hearing
losses either lip reading or understanding a
conversation by the context as well as the actual
recognition of words. Neil Bauman, a hearing expert
at     www.hearinglosshelp.com    , offers the following
information:

“Vowels are clustered around the
frequencies between about 300 and 750 Hz.
Some consonants are very low frequency,
such as j, z, and v – at about 250 Hz. Others
such as k, t, f, s, and th are high frequency
sounds and occur between 3,000 and 8,000
Hz. All of these consonants are voiceless ones
and are produced by air hissing from around
the teeth. Most people, as they age, begin
losing their hearing at the highest frequencies
first and progress downwards. Thus, the
above consonant sounds are the first to be
lost. As a result, it is most difficult to

distinguish between similar sounding words
that use these letters. Furthermore, the
vowels are generally loud (they use about
95% of the voice energy to produce). The
consonants are left with only 5% to go around
for all of them. But it is mostly the consonants
that give speech its intelligibility. That is why
many older people will say, ‘I can hear people
talking. I just can't understand what they are
saying.’”

One important concept in music is the octave –
a doubling in frequency. For example, 40 Hz is one
octave higher than 20 Hz. The ear is sensitive over a
frequency range of about 10 octaves: 20 Hz Æ 40 Hz
Æ 80 Hz Æ 160 Hz Æ 320 Hz Æ 640 Hz Æ
1,280 Hz Æ 2,560 Hz Æ 5,120 Hz Æ 10,240 Hz Æ
20,480 Hz. And within that range it can discriminate
between thousands of differences in sound frequency.
Below about 1,000 Hz the Just Noticeable
Difference (JND) in frequency is about 1 Hz (at the
loudness at which most music is played), but this
rises sharply beyond 1,000 Hz. At 2,000 the JND is
about 2 Hz and at 4,000 Hz the JND is about 10 Hz.
(A JND of 1 Hz at 500 Hz means that if you were
asked to listen alternately to tones of 500 Hz and
501 Hz, the two could be distinguished as two
different frequencies, rather than the same). It is
interesting to compare the ear’s frequency perception
to that of the eye. From red to violet, the frequency of
light less than doubles, meaning that the eye is only
sensitive over about one octave, and its ability to
discriminate between different colors is only about
125. The ear is truly an amazing receptor, not only
its frequency range, but also in its ability to
accommodate sounds with vastly different loudness.

The loudness of sound is related to the
amplitude of the sound wave. Most people have some
recognition of the decibel (dB) scale. They might be
able to tell you that 0 dB is the threshold of hearing
and that the sound on the runway next to an
accelerating jet is about 140 dB. However, most
people don’t realize that the decibel scale is a
logarithmic scale. This means that for every increase
of 10 dB the sound intensity increases by a factor of
ten. So going from 60 dB to 70 dB is a ten-fold
increase, and 60 dB to 80 dB is a hundred-fold
increase. This is amazing to me. It means that we can
hear sound intensities over 14 orders of magnitude.
This means that the 140 dB jet on the runway has a
loudness of 1014 times greater than threshold. 1014 is
100,000,000,000,000 – that’s 100 trillion! It means
our ears can measure loudness over a phenomenally
large range. Imagine having a measuring cup that
could accurately measure both a teaspoon and 100
trillion teaspoons (about 10 billion gallons). The ear
is an amazing receptor! However, our perception is
skewed a bit. A ten-fold increase in loudness doesn’t

www.hearinglosshelp.com
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sound ten times louder. It may only sound twice as
loud. That’s why when cheering competitions are
done at school rallies, students are not very excited by
the measure of difference in loudness between a
freshmen class (95 dB) and a senior class (105 dB).
The difference is only 10 dB. It sounds perhaps twice
as loud, but it’s really 10 times louder. (Those lungs
and confidence grow a lot in three years!)

Do you get it? (1.3)
When a passenger at the airport moves from inside a
waiting area to outside near an airplane the decibel
level goes from 85 dB to 115 dB. By what factor has
the sound intensity actually gone up?

The quality of sound or timbre is the
subtlest of all its descriptors. A trumpet and a violin
could play exactly the same note, with the same pitch
and loudness, and if your eyes were closed you could
easily distinguish between the two. The difference in
the sounds has to do with their quality or timbre.
The existence of supplementary tones, combined with
the basic tones, doesn’t change the basic pitch, but
gives a special “flavor” to the sound being produced.
Sound quality is the characteristic that gives the
identity to the sound being produced.

DETAILS ABOUT DECIBELS
It was mentioned earlier that the sensitivity of

the human ear is phenomenally keen. The threshold
of hearing (what a young perfect ear could hear) is

† 

1¥10-12Watts /meter 2 . This way of expressing sound
wave amplitude is referred to as Sound Intensity (I).
It is not to be confused with Sound Intensity Level
(L), measured in decibels (dB). The reason why
loudness is routinely represented in decibels rather
than 

† 

Watts /meter 2 is primarily because the ears
don’t hear linearly. That is, if the sound intensity
doubles, it doesn’t sound twice as loud. It doesn’t
really sound twice as loud until the Sound Intensity is
about ten times greater. (This is a very rough
approximation that depends on the frequency of the
sound as well as the reference intensity.) If the sound
intensity were used to measure loudness, the scale
would have to span 14 orders of magnitude. That

means that if we defined the faintest sound as “1”, we
would have to use a scale that went up to
100,000,000,000,000 (about the loudest sounds you
ever hear. The decibel scale is much more compact
(0 dB – 140 dB for the same range) and it is more
closely linked to our ears’ perception of loudness.
You can think of the sound intensity as a physical
measure of sound wave amplitude and sound intensity
level as its psychological measure.

The equation that relates sound intensity to sound
intensity level is:

† 

L = 10 log I 2

I1

L ≡ The number of decibels I2 is greater than I1
I2 ≡ The higher sound intensity being compared
I1 ≡ The lower sound intensity being compared

Remember, I is measured in 

† 

Watts /meter 2 . It is
like the raw power of the sound. The L in this
equation is what the decibel difference is between
these two. In normal use, I1 is the threshold of
hearing, 

† 

1¥10-12Watts /meter 2 . This means that the
decibel difference is with respect to the faintest sound
that can be heard. So when you hear that a busy
intersection is 80 dB, or a whisper is 20 dB, or a class
cheer is 105 dB, it always assumes that the
comparison is to the threshold of hearing, 0 dB. (“80
dB” means 80 dB greater than threshold). Don’t
assume that 0 dB is no sound or total silence. This is
simply the faintest possible sound a human with
perfect hearing can hear. Table 1.1 provides decibel
levels for common sounds.

If you make I2 twice as large as I1, then

† 

DL @ 3dB . If you make I2 ten times as large as I1,
then 

† 

DL = 10dB . These are good reference numbers to
tuck away:

† 

   Double  Sound  Intensity @ +3dB    

   10 ¥  Sound  Intensity = +10dB

Click    here    to listen to a sound intensity level reduced
by 6 dB per step over ten steps. Click    here    to listen
to a sound intensity level reduced by 3 dB per step
over ten steps.
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Source of sound
Sound
Intensity
Level (dB)

Sound
Intensity

† 

W
m2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

Threshold of hearing 0

† 

1¥10-12

Breathing 20

† 

1¥10-10

Whispering 40

† 

1¥10-8

Talking softly 60

† 

1¥10-6

Loud conversation 80

† 

1¥10-4

Yelling 100

† 

1¥10-2

Loud Concert 120

† 

1
Jet takeoff 140

† 

100

Table 1.1 Decibel levels for typical sounds

FREQUENCY RESPONSE OVER THE
AUDIBLE RANGE

We hear lower frequencies as low pitches and
higher frequencies as high pitches. However, our
sensitivity varies tremendously over the audible
range. For example, a 50 Hz sound must be 43 dB
before it is perceived to be as loud as a 4,000 Hz
sound at 2 dB. (4,000 Hz is the approximate
frequency of greatest sensitivity for humans with no
hearing loss.) In this case, we require the 50 Hz sound
to have 13,000 times the actual intensity of the
4,000 Hz sound in order to have the same perceived
intensity! Table 1.2 illustrates this phenomenon of
sound intensity level versus frequency. The last
column puts the relative intensity of 4,000 Hz
arbitrarily at 1 for easy comparison with sensitivity at
other frequencies.

If you are using the CD version of this
curriculum you can try the following demonstration,
which illustrates the response of the human ear to
frequencies within the audible range Click    here    to
calibrate the sound on your computer and then click
here    for the demonstration.

Frequency
(Hz)

Sound
Intensity
Level (dB)

Sound
Intensity

† 

W
m 2( )

Relative
Sound
Intensity

50 43

† 

2.0 ¥10-8 13,000
100 30

† 

1.0 ¥10-9 625
200 19

† 

7.9 ¥10-11 49
500 11

† 

1.3¥10-11 8.1
1,000 10

† 

1.0 ¥10-11 6.3
2,000 8

† 

6.3¥10-12 3.9
3,000 3

† 

2.0 ¥10-12 1.3
4,000 2

† 

1.6 ¥10-12 1
5,000 7

† 

5.0 ¥10-12 3.1
6,000 8

† 

6.3¥10-12 3.9
7,000 11

† 

1.3¥10-11 8.1
8,000 20

† 

1.0 ¥10-10 62.5
9,000 22

† 

1.6 ¥10-10 100
14,000 31

† 

1.3¥10-9 810

Table 1.2: Sound intensity and sound
intensity level required to perceive
sounds at different frequencies to be
equally loud. A comparison of relative
sound intensities arbitrarily assigns
4,000 Hz the value of 1.

Example
The muffler on a car rusts out and the decibel level
increases from 91 dB to 113 dB. How many times
louder is the leaky muffler?

The “brute force” way to do this problem would be to
start by using the decibel equation to calculate the
sound intensity both before and after the muffler rusts
out. Then you could calculate the ratio of the two.
It’s easier though to recognize that the decibel
difference is 22 dB and use that number in the decibel
equation to find the ratio of the sound intensities
directly:

† 

L = 10 log I 2

I1

† 

22dB = 10 log I 2

I1
 fi  2.2 = log I 2

I1

Notice I just dropped the dB unit. It’s not a real unit,
just kind of a placeholder unit so that we don’t have
to say, “The one sound is 22 more than the other
sound.” and have a strange feeling of “22 … what?”

† 

102.2 =
I 2

I1
 fi  I 2 = 102.2 I1  fi   

† 

I2 = 158I1

So the muffler is actually 158 times louder than
before it rusted out.



WWWAAAVVVEEESSS   AAANNNDDD   SSSOOOUUUNNNDDD

13

Do you get it? (1.4)
A solo trumpet in an orchestra produces a sound
intensity level of 84 dB. Fifteen more trumpets join
the first. How many decibels are produced?

Do you get it? (1.5)
What would it mean for a sound to have a sound
intensity level of -10 dB

Another factor that affects the intensity of the
sound you hear is how close you are to the sound.
Obviously a whisper, barely detected at one meter
could not be heard across a football field. Here’s the
way to think about it. The power of a particular
sound goes out in all directions. At a meter away
from the source of sound, that power has to cover an
area equal to the area of a sphere (4πr2) with a radius
of one meter. That area is 4π m2. At two meters away
the same power now covers an area of
4π(2 m)2 = 16π m2, or four times as much area. At
three meters away the same power now covers an area
of 4π(3 m)2 = 36π m2, or nine times as much area.
So compared to the intensity at one meter, the
intensity at two meters will be only one-quarter as
much and the intensity at three meters only one-ninth
as much. The sound intensity follows an inverse
square law, meaning that by whatever factor the
distance from the source of sound changes, the
intensity will change by the square of the reciprocal
of that factor.

Example
If the sound intensity of a screaming baby were

† 

1¥10-2 W
m 2  at 2.5 m away, what would it be at

6.0 m away?
The distance from the source of sound is greater by a
factor of 

† 

6.0
2.5 = 2.4 . So the sound intensity is decreased

by 

† 

1
2.4 2( )

= 0.174 . The new sound intensity is:

† 

1¥10-2 W
m 2( ) 0.174( ) =

† 

1.74 ¥10-3 W
m 2

Another way to look at this is to first consider
that the total power output of a source of sound is its
sound intensity in 

† 

Watts /meter 2  multiplied by the
area of the sphere that the sound has reached. So, for
example, the baby in the problem above creates a
sound intensity of 

† 

1¥10-2W /m2 at 2.5 m away.
This means that the total power put out by the baby
is:

† 

Power = Intensity ¥ sphere  area

† 

fi  P = 1¥10-2 W
m2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 4p 2.5m( )2[ ] = 0.785 W

Now let’s calculate the power output from the
information at 6.0 m away:

† 

P = 1.74 ¥10-3 W
m2

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 4p (6.0m)2[ ] = .785 W

It’s the same of course, because the power output
depends on the baby, not the position of the observer.
This means we can always equate the power outputs
that are measured at different locations:

† 

P1 = P2  fi  I1( ) 4pr1
2( ) = I2( ) 4pr2

2( )

fi

† 

 I1r1
2 = I 2r2

2
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Do you get it? (1.6)
It’s a good idea to make sure that you keep the
chronic sound you’re exposed to down under 80 dB. If
you were working 1.0 m from a machine that created
a sound intensity level of 92 dB, how far would you
need move away to hear only 80 dB? (Hint: remember
to compare sound intensities and not sound intensity
levels.)
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ACTIVITY
ORCHESTRAL SOUND

You can hear plenty of sound in a concert hall
where an orchestra is playing. Each instrument
vibrates in its own particular way, producing the
unique sound associated with it. The acoustical power
coming from these instruments originates with the
musician. It is the energy of a finger thumping on a
piano key and the energy of the puff of air across the
reed of the clarinet and the energy of the slam of
cymbals against each other that causes the
instrument’s vibration. Most people are surprised to
learn that only about 1% of the power put into the
instrument by the musician actually leads to the
sound wave coming from the instrument. But, as you
know, the ear is a phenomenally sensitive receptor of
acoustical power and needs very little power to be
stimulated to perception. Indeed, the entire orchestra
playing at once would be loud to the ear, but actually
generate less power than a 75-watt light bulb! An
orchestra with 75 performers has an acoustic power of
about 67 watts. To determine the sound intensity

level at 10 m, we could start by finding the sound
intensity at 10 m:

† 

I =
67W

4p 10m( )2 = 0.056 W
m2 .

The sound intensity level would then be:

† 

L = 10 log
0.056 W

m2

1¥10-12 W
m2

Ê 

Ë 

Á 
Á 
Á 

ˆ 

¯ 

˜ 
˜ 
˜ 

= 107.5dB .

Table 1.3 lists the sound intensity level of various
instruments in an orchestra as heard from 10 m away.
You can use these decibel levels to answer the
questions throughout this activity.

Orchestral
Instrument

Sound Intensity
Level (dB )

Violin (at its quietest) 34.8
Clarinet 76.0
Trumpet 83.9
Cymbals 98.8
Bass drum (at its
loudest)

103

Table 1.3: Sound intensity l eve l s
(measured at 10 m away) for various
musical instruments

1. How many clarinets would it take to equal the acoustic power of a pair of cymbals?
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2. If you had to replace the total acoustic power of a bass drum with a single light bulb, what wattage would
you choose?

3. How far would you have to be from the violin (when it’s at its quietest) in order to barely detect its sound?

4. If the sound emerges from the trumpet at 0.5 m from the trumpet player’s ear, how many decibels does he
experience during his trumpet solo?



WWWAAAVVVEEESSS   AAANNNDDD   SSSOOOUUUNNNDDD

17

5. If the orchestra conductor wanted to produce the sound intensity of the entire orchestra, but use only violins
(at their quietest) to produce the sound, how many would need to be used? How about if it were to be done
with bass drums (at their loudest?

6. The conductor has become concerned about the high decibel level and wants to make sure he does not
experience more than 100 dB. How far away from the orchestra must he stand?

7. If he doesn’t use the one bass drum in the orchestra, how far away does he need to stand?
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WAVE INTERFERENCE

T’S INTRIGUING THAT at a lively party
with everyone talking at once, you can hear
the totality of the “noise” in the room and
then alternately distinguish and concentrate on
the conversation of one person. That is
because of an interesting phenomenon of

waves called superposition. Wave superposition
occurs when two or more waves move through the
same space in a wave medium together. There are two
important aspects of this wave superposition. One is
that    each         wave         maint      ains        its        own        identity        and        is
unaffected       by       any       other        waves       in       the       same       space   . This
is why you can pick out an individual conversation
among all the voices in the region of your ear. The
second aspect is that     when       two       or        more        waves       are       in
the       same        medium,       t      he       overall       amplitude       at       any       point
on       the        medium       is       simply       the       sum       of       the       individual
wave       amplitudes       at       that       point   . Figure 1.8 illustrates
both of these aspects. In the top scene, two wave

pulses move toward each other. In the second scene
the two pulses have reached the same spot in the
medium and the combined amplitude is just the sum
of the two. In the last scene, the two wave pulses
move away from each other, clearly unchanged by
their meeting in the second scene.

When it comes to music, the idea of interference
is exceptionally important. Musical sounds are often
constant frequencies held for a sustained period. Sound
waves interfere in the same way other waves, but
when the sound waves are musical sounds (sustained
constant pitches), the resulting superposition can
sound either pleasant (consonant) or unpleasant
(dissonant). Musical scales consist of notes (pitches),
which when played together, sound consonant. We’ll
use the idea of sound wave interference when we
begin to look for ways to avoid dissonance in the
building of musical scales.

I

Figure 1.8: Wave superposition. Note in the middle drawing that the wave shape is simply the
arithmetic sum of the amplitudes of each wave. Note also in the bottom drawing that the two
waves have the same shape and amplitude as they had before encountering each other.
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ACTIVITY
WAVE INTERFERENCE

In each of the following two cases, the wave pulses are moving toward each other. Assume that each wave pulse
moves one graph grid for each new graph. Draw the shape the medium would have in each of the blank graphs
below.
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“Music should strike fire from the heart of man, and bring
tears from the eyes of woman.”
– Ludwig Van Beethoven

CHAPTER 2
RESONANCE, STANDING WAVES,

AND MUSICAL INSTRUMENTS
HE NEXT STEP in pursuing the physics of music and musical
instruments is to understand how physical systems can be made to vibrate
in frequencies that correspond to the notes of the musical scales. But
before the vibrations of physical systems can be understood, a diversion
to the behavior of waves must be made once again. The phenomena of

resonance and standing waves occur in the structures of all musical instruments. It
is the means by which all musical instruments … make their music.

Why is it that eight-year-old boys have such an
aversion to taking baths? I used to hate getting in the
tub! It was perhaps my least favorite eight-year-old
activity. The one part of the bathing ritual that made
the whole process at least tolerable was … making
waves! If I sloshed back and forth in the water with
my body at just the right frequency, I could create
waves that reached near tidal wave amplitudes. Too
low or too high a frequency and the waves would die
out. But it was actually easy to find the right
frequency. It just felt right. I thought I had discovered
something that no one else knew. Then, 20 years
later, in the pool at a Holiday Inn in New Jersey with
a group of other physics teachers, I knew that my
discovery was not unique. Lined up on one side of the
pool and with one group movement, we heaved our
bodies forward. A water wave pulse moved forward
and struck the other side of the pool. Then it reflected
and we waited as it traveled back toward us, continued
past us, and reflected again on the wall of the pool
right behind us. Without a word, as the crest of the
doubly reflected wave reached us, we heaved our
bodies again. Now the wave pulse had greater
amplitude. We had added to it and when it struck the
other side, it splashed up on the concrete, drawing the
amused and, in some cases, irritated attention of the
other guests sunning themselves poolside. As a child
pushes her friend on a playground swing at just right
time in order to grow the amplitude of the swing’s
motion, we continued to drive the water wave
amplitude increasingly larger with our rhythmic
motion. Those who were irritated before were now
curious, and those who were amused before were now
cheering. The crowd was pleased and intrigued by

something they knew in their gut. Most had probably
rocked back and forth on the seat of a car at a
stoplight with just the right frequency to get the
entire car visibly rocking. Many had probably had the
experience of grabbing a sturdy street sign and
pushing and pulling on it at just the right times to
get the sign to shake wildly. They had all experienced
this phenomenon of resonance.

To understand resonance, think back to the
discussion of the playground swing and tuning fork
restoring themselves to their natural states after being
stressed out of those states. Recall that as the swing
moves through the bottom of its motion, it
overshoots this natural state. The tuning fork does
too, and both of the two will oscillate back and forth
past this point (at a natural frequency particular to the
system) until the original energy of whatever stressed
them is dissipated. You can keep the swing moving
and even increase its amplitude by pushing on it at
this same natural frequency. The same could be done
to the tuning fork if it were driven with an audio
speaker producing the fork’s natural frequency.
Resonance occurs whenever a physical system is
driven at its natural frequency. Most physical systems
have many natural frequencies. The street sign, for
example can be made to shake wildly back and forth
with a low fundamental frequency (first mode)
or with a higher frequency of vibration, in the
second mode. It’s easier to understand how musical
instruments can be set into resonance by thinking
about standing waves.

Standing waves occur whenever two waves with
equal frequency and wavelength move through a
medium so that the two perfectly reinforce each other.

T
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In order for this to occur the length of the medium
must be equal to some integer multiple of half the
wavelength of the waves. Usually, one of the two
waves is the reflection of the other. When they
reinforce each other, it looks like the energy is
standing in specific locations on the wave medium,
hence the name standing waves (see figure 2.1).
There are parts of the wave medium that remain
motionless (the nodes) and parts where the wave
medium moves back and forth between maximum
positive and maximum negative amplitude (the
antinodes).

Standing waves can occur in all wave mediums
and can be said to be present during any resonance.
Perhaps you’ve heard someone in a restaurant rubbing
a finger around the rim of a wineglass, causing it to
sing. The “singing” is caused by a standing wave in
the glass that grows in amplitude until the pulses
against the air become audible. Soldiers are told to
“break step march” when moving across small bridges
because the frequency of their march may be the

natural frequency of the bridge, creating and then
reinforcing a standing wave in the bridge and causing
the same kind of resonance as in the singing wine
glass. A standing wave in a flat metal plate can be
created by driving it at one of its natural frequencies at
the center of the plate. Sand poured onto the plate
will be unaffected by and collect at the nodes of the
standing wave, whereas sand at the antinodes will be
bounced off, revealing an image of the standing wave
(see figure 2.2).

Resonance caused the destruction of the Tacoma
Narrows Bridge on November 7, 1940 (see Figure
2.3). Vortices created around its deck by 35 - 40 mph
winds resulted in a standing wave in the bridge deck.
When its amplitude reached five feet, at about 10 am,
the bridge was forced closed. The amplitude of motion
eventually reached 28 feet. Most of the remains of
this bridge lie at the bottom of the Narrows, making
it the largest man-made structure ever lost to sea and
the largest man-made reef.   

Figure 2.1: A time-lapse view of a standing wave showing the nodes and antinodes present. It i s
so named because it appears that the energy in the wave stands in certain places (the antinodes).
Standing waves are formed when two waves of equal frequency and wavelength move through a
medium and perfectly reinforce each other. In order for this to occur the length of the medium
must be equal to some integer multiple of half the wavelength of the waves. In the case of th i s
standing wave, the medium is two wavelengths long (4 half wavelengths).

ANTINODES

NODES
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Figure 2.2: A flat square metal plate is driven in four of its resonance modes. These photographs
show each of the resulting complicated two-dimensional standing wave patterns. Sand poured onto
the top of the plate bounces off the antinodes, but settles into the nodes, allowing the standing
wave to be viewed. The head of a drum, when beaten, and the body of a guitar, when played,
exhibit similar behaviors.
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The Tacoma Narrows Bridge on November 7 ,
1940. Workers on the construction of the
bridge had referred to it as “Galloping Gertie”
because of the unusual oscillations that were
often present. Note nodes at the towers and i n
the center of the deck. This is the second
mode.

Vortices around its deck caused by winds o f
35 – 40 mph caused the bridge to begin rising
and falling up to 5 feet, forcing the bridge t o
be closed at about 10 am. The amplitude o f
motion eventually reached 28 feet.

The bridge had a secondary standing wave i n
the first mode with its one node on the
centerline of the bridge. The man in the photo
wisely walked along the node. Although the
bridge was heaving wildly, the amplitude at the
node was zero, making it easy to navigate.

At 10:30 am the oscillations had f inally
caused the center span floor panel to fal l
from the bridge. The rest of the breakup
occurred over the next 40 minutes.

Figure 2.3: The Tacoma Narrows Bridge collapse (used with permission from University of Washington
Special Collection Manuscripts).

http://www.lib.washington.edu/specialcoll/tnb/
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Since the collapse of the Tacoma Narrows
Bridge, engineers have been especially conscious of
the dangers of resonance caused by wind or
earthquakes. Paul Doherty, a physicist at the
Exploratorium in San Francisco, had this to say
about the engineering considerations now made when
building or retrofitting large structures subject to
destruction by resonance:

“The real world natural frequency of large
objects such as skyscrapers and bridges is
determined via remote sensor
accelerometers. Buildings like the Trans-
America Pyramid and the Golden Gate
Bridge have remote accelerometers attached
to various parts of the structure. When wind
or an earthquake ‘excites’ the building the
accelerometers can detect the ‘ringing’
(resonant oscillation) of the structure. The
Golden Gate Bridge was ‘detuned’ by having
mass added at various points so that a standing
wave of a particular frequency would affect
only a small portion of the bridge. The
Tacoma Narrows Bridge had the resonance
extend the entire length of the span and only
had a single traffic deck which could flex. The
Golden Gate Bridge was modified after the
Narrows Bridge collapse. The underside of
the deck had stiffeners added to dampen
torsion of the roadbed and energy-absorbing
struts were incorporated. Then mass
additions broke up the ability of the standing
wave to travel across the main cables
because various sections were tuned to
different oscillation frequencies. This is why
sitting in your car waiting to pay the toll you
can feel your car move up a down when a
large truck goes by but the next large truck
may not give you the same movement. That
first truck traveling at just the right speed may
excite the section you are on while a truck of
different mass or one not traveling the same
speed may not affect it much. As for the
horizontal motion caused by the wind, the
same differentiation of mass elements under
the roadbed keeps the whole bridge from going
resonant with Æolian oscillations.
Just envision the classic Physics experiment

where different length pendulums are hung
from a common horizontal support. Measured
periodic moving of the support will make only

one pendulum swing depending on the period
of the applied motion. If all the pendulums had
the same oscillation you could get quite a
motion going with a small correctly timed
force application. Bridges and buildings now
rely on irregular distributions of mass to help
keep the whole structure from moving as a
unit that would result in destructive failure.
Note also on the Golden Gate the secondary
suspension cable ‘keepers’ (spacers) are
located at slightly irregular intervals to
detune them. As current structural
engineering progresses more modifications of
the bridge will be done. The new super bridge
in Japan has hydraulically movable weights
that can act as active dampeners. What is
earthquake (or wind) safe today will be
substandard in the future.”

The collapse of the Tacoma Narrows Bridge is
perhaps the most spectacular example of the
destruction caused by resonance, but everyday there
are boys and girls who grab hold of street sign poles
and shake them gently – intuitively – at just the right
frequency to get them violently swaying back and
forth. Moreover, as mentioned previously, all musical
instruments make their music by means of standing
waves.

To create its sound, the physical structure of
musical instruments is set into a standing wave
condition. The connection with resonance can be seen
with a trumpet, for example. The buzzing lips of the
trumpet player create a sound wave by allowing a
burst of air into the trumpet. This burst is largely
reflected back when it reaches the end of the trumpet.
If the trumpet player removes his lips, the sound
wave naturally reflects back and forth between the
beginning and the end of the trumpet, quickly dying
out as it leaks from each end. However, if the player’s
lips stay in contact with the mouthpiece, the reflected
burst of air can be reinforced with a new burst of air
from the player’s lips. The process continues,
creating a standing wave of growing amplitude.
Eventually the amplitude reaches the point where
even the small portion of the standing wave that
escapes the trumpet becomes audible. It is resonance
because the trumpet player adds a “kick of air” at the
precise frequency (and therefore also the same
wavelength) of the already present standing sound
wave.
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INTRODUCTION TO MUSICAL INSTRUMENTS

F YOU DON’T play a musical instrument,
it’s humbling to pick one up and try to create
something that resembles a melody or tune. It
gives you a true appreciation for the musician
who seems to become one with his
instrument. But you certainly don’t have to be

a musician to understand the physics of music or the
physics of musical instruments. All musicians create
music by making standing waves in their instrument.
The guitar player makes standing waves in the strings
of the guitar and the drummer does the same in the
skin of the drumhead. The trumpet blower and flute
player both create standing waves in the column of air

within their instruments. Most kids have done the
same thing, producing a tone as they blow over the
top of a bottle. If you understand standing waves you
can understand the physics of musical instruments.
We’ll investigate three classes of instruments:

• Chordophones (strings)
• Aerophones (open and closed pipes)
• Idiophones (vibrating rigid bars and pipes)

Most musical instruments will fit into these three
categories. But to fully grasp the physics of the
standing waves within musical instruments and
corresponding music produced, an understanding of
wave impedance is necessary.

I
Figure 2.4:
Chordophones are
musical instruments
in which a standing
wave is initially
created in the strings
of the instruments.
Guitars, violins, and
pianos fall into this
category.

Figure 2.5:
Aerophones are
musical instruments
in which a standing
wave is initially
created in the column
of air within the
instruments.
Trumpets, flutes, and
oboes fall into this
category.

Figure 2.6:
Idiophones are
musical instruments
in which a standing
wave is initially
created in the physical
structure of the
instruments.
Xylophones,
marimbas, and chimes
fall into this
category.
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MUSICAL INSTRUMENTS AND
WAVE IMPEDANCE

The more rigid a medium is the less effect the
force of a wave will have on deforming the shape of
the medium. Impedance is a measure of how much
force must be applied to a medium by a wave in order
to move the medium by a given amount. When it
comes to standing waves in the body of a musical
instrument, the most important aspect of impedance
changes is that they always cause reflections.
Whenever a wave encounters a change in impedance,
some or most of it will be reflected. This is easy to
see in the strings of a guitar. As a wave moves along
the string and encounters the nut or bridge of the
guitar, this new medium is much more rigid than the
string and the change in impedance causes most of the
wave to be reflected right back down the string (good
thing, because the reflected wave is needed to create
and sustain the standing wave condition). It’s harder
to see however when you consider the standing wave

of air moving through the inside of the tuba. How is
this wave reflected when it encounters the end of the
tuba? The answer is that wave reflection occurs
regardless of how big the impedance change is or
whether the new impedance is greater or less. The
percentage of reflection depends on how big the
change in impedance is. The bigger the impedance
change, the more reflection will occur. When the
wave inside the tuba reaches the end, it is not as
constricted – less rigid, so to speak. This slight
change in impedance is enough to cause a significant
portion of the wave to reflect back into the tuba and
thus participate and influence the continued
production of the standing wave. The part of the wave
that is not reflected is important too. The transmitted
portion of the wave is the part that constitutes the
sound produced by the musical instrument. Figure 2.7
illustrates what happens when a wave encounters
various changes in impedance in the medium through
which it is moving.

A .

B .

C .

D .

Before

Before

Before

Before

After

After

After

After

Figure 2.7: Wave pulse encountering medium with different impedance
A. Much greater impedance fi  Inverted, large reflection.
B. Slightly greater impedance fi  Inverted, small reflection.
C. Much smaller impedance fi  Upright, large reflection.
D. Slightly smaller impedance fi  Upright, small reflection.
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 “After silence that which comes nearest to expressing the
inexpressible is music.”
Aldous Huxley

CHAPTER 3
MODES, OVERTONES, AND HARMONICS

HEN A DESIRED note (tone) is played on a musical instrument,
there are always additional tones produced at the same time. To
understand the rationale for the development of consonant musical
scales, we must first discuss the different modes of vibration
produced by a musical instrument when it is being played. It doesn’t

matter whether it is the plucked string of a guitar, or the thumped key on a piano,
or the blown note on a flute, the sound produced by any musical instrument is far
more complex than the single frequency of the desired note. The frequency of the
desired note is known as the fundamental frequency, which is caused by the first
mode of vibration, but many higher modes of vibration always naturally occur
simultaneously.

Higher modes are simply alternate, higher
frequency vibrations of the musical instrument
medium. The frequencies of these higher modes are
known as overtones. So the second mode produces
the first overtone, the third mode produces the second
overtone, and so on. In percussion instruments, (like
xylophones and marimbas) the overtones are not
related to the fundamental frequency in a simple way,
but in other instruments (like stringed and wind
instruments) the overtones are related to the
fundamental frequency “harmonically.”

When a musical instrument’s overtones are
harmonic, there is a very simple relationship between
them and the fundamental frequency. Harmonics are
overtones that happen to be simple    integer    multiples
of the fundamental frequency. So, for example, if a
string is plucked and it produces a frequency of
110 Hz, multiples of that 110 Hz will also occur at
the same time: 220 Hz, 330 Hz, 440 Hz, etc will all
be present, although not all with the same intensity.
A musical instrument’s fundamental frequency and all
of its overtones combine to produce that instrument’s
sound spectrum or power spectrum. Figure 3.1
shows the sound spectrum from a flute playing the
note G4. The vertical line at the first peak indicates its
frequency is just below 400 Hz. In the musical scale
used for this flute, G4 has a frequency of 392 Hz.
Thus, this first peak is the desired G4 pitch. The
second and third peaks are also identified with vertical
lines and have frequencies of about 780 Hz and
1,170 Hz (approximately double and triple the lowest
frequency of 392 Hz). This lowest frequency occurring

when the G4 note is played on the flute is caused by
the first mode of vibration. It is the fundamental
frequency. The next two peaks are the simultaneously
present frequencies caused by the second and third
modes of vibration. That makes them the first two
overtones. Since these two frequencies are integer
multiples of the lowest frequency, they are harmonic
overtones.

When the frequencies of the overtones are
harmonic the fundamental frequency and all the
overtones can be classified as some order of harmonic.
The fundamental frequency becomes the first
harmonic, the first overtone becomes the second
harmonic, the second overtone becomes the third
harmonic, and so on. (This is usually confusing for
most people at first. For a summary, see Table 3.1).
Looking at the Figure 3.1, it is easy to see that there
are several other peaks that appear to be integer
multiples of the fundamental frequency. These are all
indeed higher harmonics. For this flute, the third
harmonic is just about as prominent as the
fundamental. The second harmonic is a bit less than
either the first or the third. The fourth and higher
harmonics are all less prominent and generally follow
a pattern of less prominence for higher harmonics
(with the exception of the eighth and ninth
harmonics). However, only the flute has this
particular “spectrum of sound.” Other instruments
playing G4 would have overtones present in different
portions. You could say that the sound spectrum of
an instrument is its “acoustical fingerprint.”   

W
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Mode of
vibration

Frequency name (for
any type of
overtone)

Frequency name
(for harmonic
overtones)

First Fundamental First harmonic
Second First overtone Second harmonic
Third Second overtone Third harmonic
Fourth Third overtone Fourth harmonic

Table 3.1: Names given to the frequencies
of different modes of vibration. The
overtones are “harmonic” if they are
integer multiples of the fundamental
frequency.

TIMBRE, THE QUALITY OF SOUND
If your eyes were closed, it would still be easy to

distinguish between a flute and a piano, even if both
were playing the note G4. The difference in intensities
of the various overtones produced gives each
instrument a characteristic sound quality or
timbre (“tam-brrr”), even when they play the same
note. This ability to distinguish is true even between
musical instruments that are quite similar, like the
clarinet and an oboe (both wind instruments using
physical reeds). The contribution of total sound
arising from the overtones varies from instrument to
instrument, from note to note on the same instrument
and even on the same note (if the player produces that
note differently by blowing a bit harder, for example).
In some cases, the power due to the overtones is less
prominent and the timbre has a very pure sound to it,

Figure 3.1: The “sound spectrum” of a flute shows the frequencies present when the G4 note i s
played. The first designated peak is the desired frequency of 392 Hz  (the “fundamental
frequency”). The next two designated peaks are the first and second “overtones.” Since these and
all higher overtones are integer multiples of the fundamental frequency, they are “harmonic.”
(Used with permission. This and other sound spectra can be found at
http://www.phys.unsw.edu.au/music/flute/modernB/G4.html      )   
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like in the flute or violin. In other instruments, like
the bassoon and the bagpipes, the overtones
contribute much more significantly to the power
spectrum, giving the timbre a more complex sound.

A CLOSER LOOK AT THE
PRODUCTION OF OVERTONES

To begin to understand the reasons for the
existence of overtones, consider the guitar and how it
can be played. A guitar string is bound at both ends.
If it vibrates in a standing wave condition, those
bound ends will necessarily have to be nodes. When
plucked, the string can vibrate in any standing wave
condition in which the ends of the string are nodes
and the length of the string is some integer number of
half wavelengths of the mode’s wavelength (see
Figure 3.2). To understand how the intensities of
these modes might vary, consider plucking the string
at its center. Plucking it at its center will favor an
antinode at that point on the string. But all the odd
modes of the vibrating string have antinodes at the
center of the string, so all these modes will be
stimulated. However, since the even modes all have
nodes at the center of the string, these will generally
be weak or absent when the string is plucked at the
center, forcing this point to be moving (see Figure
3.2). Therefore, you would expect the guitar’s sound
quality to change as its strings are plucked at different
locations.

An additional (but more subtle) explanation for
the existence and intensity of overtones has to do
with how closely the waveform produced by the
musical instrument compares to a simple sine wave.
We’ve already discussed what happens when a flexible
physical system is forced from its position of greatest
stability (like when a pendulum is moved from its
rest position or when the tine of a garden rake is
pulled back and then released). A force will occur that
attempts to restore the system to its former state. In
the case of the pendulum, gravity directs the
pendulum back to its rest position. Even though the
force disappears when the pendulum reaches this rest
position, its momentum causes it to overshoot. Now
a new force, acting in the opposite direction, again
attempts to direct the pendulum back to its rest
position. Again, it will overshoot. If it weren’t for
small amounts of friction and some air resistance,
this back and forth motion would continue forever. In
its simplest form, the amplitude vs. time graph of
this motion would be a sine wave (see Figure 3.3).
Any motion that produces this type of graph is
known as simple harmonic motion.

Not all oscillatory motions are simple harmonic
motion though. In the case of a musical instrument,
it’s not generally possible to cause a physical
component of the instrument (like a string or reed) to
vibrate as simply as true simple harmonic motion.

Instead, the oscillatory motion will be a more
complicated repeating waveform (Figure 3.4). Here is
the “big idea.” This more complicated waveform can
always be created by adding in various intensities of
waves that are integer multiples of the fundamental
frequency. Consider a hypothetical thumb piano tine
vibrating at 523 Hz. The tine physically cannot
produce true simple harmonic motion when it is
plucked. However, it is possible to combine a
1,046 Hz waveform and a 1,569 Hz waveform with
the fundamental 523 Hz waveform, to create the
waveform produced by the actual vibrating tine. (The
1,046 Hz and 1,569 Hz frequencies are integer
multiples of the fundamental 523 Hz frequency and do
not necessarily have the same intensity as the
fundamental frequency). The total sound produced by
the tine would then have the fundamental frequency of
523 Hz as well as its first two overtones.

mode 1

mode 2

mode 3

mode 4

mode 5

Figure 3.2: The first five modes of a
vibrating string. Each of these (and all other
higher modes) meets the following criteria:
The ends of the string are nodes and the
length of the string is some integer number
of half wavelengths of the mode’s
wavelength. The red dashed line indicates
the center of the string. Note that if the
center of the string is plucked, forcing th i s
spot to move, modes 2 and 4 (and all other
even modes) will be eliminated since they
require a node at this point. However, modes
1, 3, and 5 (and all other odd modes) w i l l
all be stimulated since they have antinodes
at the center of the string.

String center
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The remainder of this section provides
visualization for the timbre of a variety of musical
instruments. Each figure provides two graphs for a
particular instrument. The first graph is a histogram
of the power spectrum for that musical instrument.
The first bar on the left is the power of the
fundamental frequency, followed by the overtones. Be
careful when comparing the relative strength of the
overtones to the fundamental and to each other. The
scale of the vertical axis is logarithmic. The top of
the graph represents 100% of the acoustic power of
the instrument and the bottom of the graph represents

80 dB lower than full power (

† 

10-8 less power). The
second graph is a superposition of the fundamental
wave together with all the overtone waves. Three
cycles are shown in each case. Notice that where
graphs for the same instrument are shown that this
acoustical fingerprint varies somewhat from note to
note – the bassoon almost sounds like a different
instrument when it goes from a very low note to a
very high note.

You can click on the name of the instrument in
the caption to hear the sound that produced both
graphs.

Figure 3.5: E5 played on the     VIOLIN    . Note the dominance of the fundamental frequency. The
most powerful overtone is the 1st, but only slightly more than 10% of the total power. The
higher overtones produce much less power. Of the higher overtones, only the 2nd overtone
produces more than 1% of the total power. The result is a very simple waveform and the
characteristically pure sound associated with the violin.
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Figure 3.3: The sine wave pictured here
is the displacement vs. time graph of the
motion of a physical system undergoing
simple harmonic motion.

Figure 3.4: The complicated waveform
shown here is typical of that produced by a
musical instrument. This waveform can be
produced by combining the waveform of the
fundamental frequency with waveforms
having frequencies that are integer
multiples of the fundamental frequency.
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Figure 3.6: F3 played on the     CLARINET   . Note that although all harmonics are present, the
1st, 3rd, 5th, and 7th harmonics strongly dominate. They are very nearly equal to each other i n
power. This strong presence of the lower odd harmonics gives evidence of the closed pipe
nature of the clarinet. The presence of these four harmonics in equal proportion (as well as
the relatively strong presence of the 8 th harmonic) creates a very complex waveform and the
clarinet’s characteristically “woody” sound
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Figure 3.7: B4 played on the    BAGPIPE   . There is a strong prominence of odd harmonics
(through the 7 th). This is a hint about the closed pipe nature of the bagpipe’s sound
production. The 3rd harmonic ( 2nd overtone) is especially strong, exceeding all other mode
frequencies in power. Not only is the third harmonic more powerful than the fundamental
frequency, it appears to have more power than all the other modes combined. This gives the
bagpipe its characteristic harshness.
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Figure 3.8: F2 played on the    BASSOON    . Note that the fundamental frequency produces far
less than 10% of the total power of this low note. It’s also interesting to note that the first
five overtones not only produce more power than the fundamental, but they each
individually produce more than 10% of the total power of this note. This weak fundamental
combined with the dominance of the first five harmonics creates a very complex waveform
and the foghorn-like sound of the bassoon when it produces this note.
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Figure 3.9: B4 played on the    BASSOON    . The power spectrum is much different for this high
note played on the same bassoon. Over two octaves higher than the note producing the
power spectrum in Figure 3.8, the first two harmonics dominate, producing almost all the
power. The third and fourth harmonics produce far less than 10% of the total power and a l l
the remaining higher harmonics produce less than 1% combined. The result is a s imple
waveform with an almost flute-like sound.
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Figure 3.11: D5 played on the    TRUMPET   . The fundamental frequency and the first two
overtones dominate the power spectrum, with all three contributing over 10% of the total
power. The next five harmonics all contribute above 1% of the total power. However, even
with the much greater prominence of the 3rd through 7 th overtones, when compared to the
bassoon’s B4 note, the waveform graphs of the trumpet D5 and the bassoon B4 are
surprisingly prominent.
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Figure 3.10: Bb
3 played on the    TRUMPET   . Like the F2 note on the bassoon, the fundamental

frequency here produces less than 10% of the total power of this low note. Also like the
bassoon’s F2, the first five overtones here not only produce more power than the
fundamental, but they each individually produce more than 10% of the total power of th i s
note. There are significant similarities between the two power spectra, but the seeming
subtle differences on the power spectra graph become far more obvious when either
comparing the two waveform graphs or listening to the notes.
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ACTIVITY
INTERPRETING MUSICAL INSTRUMENT POWER SPECTRA

In this activity, you will view the power spectrum graphs for a pure tone as well as three musical instruments: a
flute (open end), a panpipe (closed end), and a saxophone. The power spectra are presented randomly below. For each
power spectrum you will be asked to:

• Match the power spectrum to one of four waveform graphs.
• Make a general statement about the timbre of the sound (pure, complex, harsh, clarinet-like, etc.).
• Match the power spectrum to the correct musical instrument or to the pure tone.

1. a. Which of the waveforms shown at the end of
this activity corresponds to this power
spectrum? Explain.

b. Describe the timbre of this sound. Explain.

c. Predict which, if any, of the musical instruments listed above produced this power spectrum. Explain.

_____________________________
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2. a. Which of the waveforms shown at the end of
this activity corresponds to this power
spectrum? Explain.

b. Describe the timbre of this sound. Explain.

c. Predict which, if any, of the musical instruments listed above produced this power spectrum. Explain.

_____________________________

3. a. Which of the waveforms shown at the end of
this activity corresponds to this power
spectrum? Explain.

b. Describe the timbre of this sound. Explain.

c. Predict which, if any, of the musical instruments listed above produced this power spectrum. Explain.

_____________________________
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4. a. Which of the waveforms shown at the end of
this activity corresponds to this power spectrum?
Explain.

b. Describe the timbre of this sound. Explain.

c. Predict which, if any, of the musical instruments listed above produced this power spectrum. Explain.

_____________________________
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BEGINNING TO THINK ABOUT MUSICAL SCALES

OW THAT YOU know a bit about
waves and even more so about the
sound waves that emerge from
musical instruments, you’re ready to
start thinking about musical scales.
In some cultures, the music is made

primarily with percussion instruments and certain
common frequencies are far less important than
rhythm. But in most cultures, musical instruments
that produce sustained frequencies are more prominent
than percussion instruments. And, for these
instruments to be played simultaneously, certain
agreed upon frequencies must be adopted. How did
musicians come up with widely agreed upon common
frequencies used in musical scales? How would you
do it? Take a moment to consider that question before
you move on. What aspects of the chosen frequencies
would be important in the development of your scale?

Use the space below to make some proposals for
what you believe would be important as you begin to
build a musical scale.

N

Now show your proposals to a neighbor and have that person provide feedback concerning your ideas. Summarize
this feedback below.
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 BEATS

NE WAY TO tune a guitar is to
compare the frequencies of various
combinations of pairs of the guitar
strings. It’s easy to tell whether two
strings are different in frequency by as
little as a fraction of one hertz. And,

it’s not necessary to have a great ear for recognizing a
particular frquency. This type of tuning is dependent
on the type of wave intereference that produces
beats. In the same way as two slinky waves will
interfere with each other, either reinforcing each other
in constructive interference or subtracting from
each other in destructive interference, sound
waves moving through the air will do the same. With
sound waves from two sources (like two guitar
strings), constructive interference would correspond to
a sound louder than the two individually and
destructive interference would correspond to a quieter
sound than either, or perhaps … absolute silence (if
the amplitudes of the two were the same). Figure
3.12 attempts to illustrate this. Two tuning forks
with slightly different frequencies are sounded at the
same time in the same area as a listening ear. The
closely packed black dots in front of the tuning forks
represent compressions in the air caused by the
vibrations of the forks. These compressions have
higher than average air pressure. The loosely packed
hollow dots in front of the tuning forks represent
“anti-compressions” or rarefactions in the air, also
caused by the vibrations of the forks. These
rarefactions have lower than average air pressure.

When the top tuning fork has produced 17
compressons, the bottom has produced 15. If the time
increment for this to occur were half a second, a
person listening to one or the other would hear a
frequency of 34 Hz from the top tuning fork and
30 Hz from the bottom tuning fork. But listening to
the sound from both tuning forks at the same time,
the person would hear the combination of the two
sound waves, that is, their interference. Notice that
there are regions in space where compressions from
both tuning forks combine to produce an especially
tight compression, representing a sound amplitude
maximum – it’s especially loud there. There are other
locations where a compression from one tuning fork
is interfering with a rarefaction from the other tuning
fork. Here the compression and the rarefaction
combine to produce normal air pressure – no sound at
all. At locations in between these two extremes in
interference, the sound amplitude is either growing
louder or quieter. You can see in the bottom of the
diagram that there is a rhythm of sound intensity
from loud to silent to loud, over and over. This is the
phenomenon of beats. In the half second that the
diagram portrays there are two full cycles of this
beating, giving a beat frequency of 4 Hz. The ear
would perceive the average frequency of these two
tuning forks, 32 Hz, getting louder and quieter four
times per second (note that this beat frequency
is the difference in the frequency of the
two tuning forks) .

O

Si lent Si lentLoud Loud

Compression Rarefaction

Figure 3.12: Beats. The two tuning forks have slightly different frequencies. This causes the sound
waves produced by each one to interfere both constructively and destructively at various points. The
constructive interference causes a rise in the intensity of the sound and the destructive interference causes
silence. This pattern is repeated over and over causing the phenomenon of beats.
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The beat frequency decreases as the two frequencies
causing the beats get closer to each other. Finally, the
beat frequency disappears when the two frequencies are
identical. This is why it is so easy to tune two guitar
strings to the same frequency. You simply strum
both strings together and then tune one until no beat
frequency is heard. At that point, the two frequencies
are the same. Click on the following links to hear
demonstrations of beats caused by various
combinations of audio frequencies:

300 Hz and 301 Hz
300 Hz and 302 Hz
300 Hz and 305 Hz
300 Hz and 310 Hz

CRITICAL BANDS AND
DISSONANCE

In addition to considering the issue of beats when
choosing frequencies for a musical scale, there is also
the issue of critical bands. When sound enters the
ear, it ultimately causes vibrations on the basilar
membrane within the inner ear. Different frequencies
of sound cause different regions of the basilar
membrane and its fine hairs to vibrate. This is how
the brain discriminates between various frequencies.
However, if two frequencies are close together, there
is an overlap of response on the basilar membrane – a
large fraction of total hairs set into vibration are
caused by both frequencies (see figure 3.13).

When the frequencies are nearly the same, they can’t
be distinguished as separate frequencies. Instead an
average frequency is heard, as well as the beats
discussed above. If the two frequencies were 440 Hz
and 450 Hz, you would hear 445 Hz beating at 10
times per second. If the lower frequency were kept at
440 Hz and the higher one were raised slowly, there
would come a point where the two frequencies were
still indistinguishable, but the beat frequency would
be too high to make out. There would just be a
roughness to the total sound. This dissonance would
continue until finally the higher frequency would
become distinguishable from the lower. At this point,
further raising the higher frequency would cause less
and less dissonance. When two frequencies are close

enough to cause the beating and roughness described
above, they are said to be within a critical band on the
basilar membrane. For much of the audible range, the
critical band around some “central frequency” will be
stimulated by frequencies within about 15% of that
central frequency.

SUMMARY
When two tones with similar frequencies, f1 and

f2, are sounded in the same space, their interference
will cause beats, the increase and decrease of perceived
sound intensity – a throbbing sensation. The
perceived frequency is the average of the two
frequencies:

† 

f perceived =
f1 + f2

2
The beat frequency (rate of the throbbing) is the
difference of the two frequencies:

† 

fbeat = f1 - f2

Example
If two people stood near each other and whistled,
one with a frequency of 204 Hz and the other with a
frequency of 214 Hz, what would people near them
hear?

The observers would hear a pitch that was the average
of the two frequencies, but beating at a frequency
equal to the difference of the two frequencies:

Given: f1 = 204 Hz
f2 = 214 Hz

Find: The perceived and beat frequencies

† 

f perceived =
f1 + f2

2
=

204Hz + 214Hz
2

= 209Hz

† 

fbeat = f1 - f2 = 204Hz - 214Hz = 10Hz

When considering the frequencies to use for a
musical scale, critical bands should be considered.
Two frequencies that stimulate areas within the same
critical band on the basilar membrane will produce
either noticeable beats (if they are similar enough to
each other) or other dissonance undesireable in music.

The observers would hear the frequency of
209 Hz getting louder and softer 10 times per
second.

440 Hz    880 Hz 440 Hz 450 Hz

Figure 3.13: The closer two frequencies are
to each other, the more overlap there w i l l
be in the response of the basilar membrane
within the inner ear.

David Lapp
Beats Movie
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 “The notes I handle no better than many pianists. But the
pauses between the notes – ah, that is where the art resides.”
– Arthur Schnabel

CHAPTER 4
MUSICAL SCALES

HE PHOTOGRAPH OF the piano keyboard in Figure 4.1 shows several
of the white keys with the letter C above them. The keys are all equally
spaced and striking all keys in succession to the right from any one C key
to the next C key would play the familiar sound of “Do – Re – Me – Fa
– So – La – Ti – Do.” That means every C key sounds like “Doe” in the

familiar singing of the musical scale.   
T

Figure 4.1: The repeating nature of the musical scale is illustrated on a piano keyboard.

    C4       D4       E4       F4       G4       A4       B4       C5

 261.63 Hz  293.66 Hz  329.63 Hz   349.23 Hz  392.00 Hz   440.00 Hz  493.88 Hz   523.25 Hz

       C1                   C2                   C 3                    C4                    C5                   C6                  C7                  C8
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The reason for the equally spaced positioning of
the C’s is because there is a repetition that takes place
as you move across the piano keyboard – all the C
keys sounds alike, like “Do.” And every key
immediately to the right of a C key sounds like
“Re.” So if you want to understand the musical
scale, you really only need to look at the relationship
between the keys in one of these groupings from C to
C (or from any key until the next repeated key).

The particular frequencies chosen for the musical
scale are not random. Many keys sound particularly
good when played together at the same time. To help
show why certain pitches or tones sound good
together and why they are chosen to be in the scale,
one grouping of notes has been magnified from the
photograph of the piano keyboard. The seven white
keys (from C4 to B4 represent the major diatonic
scale). The black keys are intermediate tones. For
example, the black key in between D4 and E4 is
higher frequency (sharper) than D4 and lower frequency
(flatter) than E4. This note is therefore known
synonymously as either “D4 sharp” (D4

#) or “E4 flat”
(E4

b). Including these five sharps or flats with the
other seven notes gives the full chromatic scale.
The frequency of the sound produced by each of the
keys in this chromatic scale (as well as for the first
white key in the next range) is shown on that key. It
will help to refer back to this magnified portion of
the keyboard as you consider the development of the
musical scale.

CONSONANCE AND SMALL
INTEGER FREQUENCY RATIOS

“All art constantly aspires towards
the condition of music.”
– Walter Pater

The opposite of dissonance is consonance –
pleasant sounding combinations of frequencies.
Earlier the simultaneous sounding of a 430 Hz tuning
fork with a 440 Hz tuning fork was discussed. If the
430 Hz tuning fork were replaced with an 880 Hz
tuning fork, you would hear excellent consonance.
This especially pleasant sounding combination comes
from the fact that every crest of the sound wave
produced by the 440 Hz tuning fork would be in step
with every other crest of
the sound wave produced
by the 880 Hz tuning
fork. So doubling the
frequency of one tone
always produces a second
tone that sounds good
when played with the

first. The Greeks knew the interval between these two
frequencies as a diapson. 440 Hz and 880 Hz sound
so good together, in fact, that they sound … the
same. As the frequency of the 880 Hz tone is
increased to 1760 Hz, it sounds the same as when the
frequency of the 440 Hz tone is increased to 880 Hz.
This feature has led widely different cultures to
historically use a one arbitrary frequency and another
frequency, exactly one diapson higher, as the first and
last notes in the musical scale. Diapson means
literally “through all.” If you sing the song,
Somewhere Over the Rainbow, the syllables Some-
where differ in frequency by one diapson. As
mentioned above, frequencies separated by one
diapson not only sound good together, but they sound
like each other. So an adult and a child or a man and a
woman can sing the same song together simply by
singing in different diapsons. And they’ll do this
naturally, without even thinking about it.

The next step in the development of the musical
scale is to decide how many different tones to
incorporate and how far apart in frequency they should
be. If a certain frequency and another one twice as
high act as the first and last notes for the scale, then
other notes can be added throughout the range. Two
reasonable constraints are that the frequencies chosen
will be fairly evenly spaced and that they will sound
good when played together.

Constraints for Choosing
Frequencies for a Musical Scale

 • Even Spacing
 • Consonance when Played

Together

The Greek mathematician, Pythagoras,
experimented plucking strings with the same tension,
but different lengths. This is easy to do with a
monochord supported by a movable bridge (see figure
4.2). He noticed that when two strings (one twice as
long as the other) were plucked at the same time, they
sounded good together. Of course he didn’t know
anything about the difference in the frequencies
between the two, but he was intrigued by the
simplicity of the 2:1 ratio of the lengths of the two
strings. When he tried other simple ratios of string

lengths (2:1, 3:2, and 4:3)
he found that he also got
good consonance. We now
know that if the tension
in a string is kept
constant and its length is
changed, the frequency of
sound produced when the

L2L1

Figure 4.2: A monochord . The movable
bridge turns its one vibrating string into two
vibrating strings with different lengths but
the same tension.
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string is plucked will be inversely proportional to its
change in length – twice the length gives half the
frequency and one-third the length gives three times
the frequency. So a frequency of 1,000 Hz sounds
good when sounded with
2,000 Hz 

† 

2,000
1,000 = 2

1( ) , 1,500 Hz 

† 

1,500
1,000 = 3

2( ) , and
1,333 Hz 

† 

1,333
1,000 @ 4

3( ) . One of the theories given for
this consonance is that the frequencies will neither be
similar enough to cause beats nor be within the same
critical band.

We’re now in a position to pull together the
ideas of modes, overtones, and harmonics to further
explain the consonance of tones whose frequencies are
ratios of small integers. Recall that one theory for
consonance is that simultaneously sounded
frequencies will neither be similar enough to cause
beats nor be within the same critical band. A second
theory for this consonance is that many of the
overtones of these two frequencies will coincide and
most of the ones that don’t will neither cause beats
nor be within the same critical band.

Theories for Consonance
Between Two Frequencies with
Small Integer Ratios

 • The frequencies will neither
be similar enough to cause
beats nor be within the same
critical band.

 • Many of the overtones of
these two frequencies will
coincide and most of the
ones that don’t will neither
cause beats nor be within the
same critical band.

The following two examples illustrate these theories for the
consonance between two frequencies with small integer ratios.

Think of a musical instrument that produces
harmonic overtones (most instruments do). Let’s
consider two fundamental frequencies it can produce:
f1, = 100 Hz and another frequency, f2, = 200 Hz. f2
has a ratio with f1 of 2:1. The table to the right and
graph below show the harmonics for each frequency.
Notice that all of the harmonics of f2 are identical to a
harmonic of f1.

Frequency 1 (Hz) Frequency 2 (Hz)

f1 = 100 f2 = 200

2f1 = 200 2f2 = 400

3f1 = 300 3f2 = 600

4f1 = 400

5f1 = 500

6f1 = 600

0                       f1                     2f1                    3f1                     4f1                    5f1                    6f1

0                                               f2                                             2f2                                           3f2
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You can see similar circumstances between
another combination of the instrument’s fundamental
frequencies: f1 = 100 Hz and f2, = 150 Hz.

† 

f2
f1

= 150Hz
100Hz = 3

2 , so f2 has a ratio with f1 of 3:2. The
table to the right and graph below show the
harmonics for each frequency. The match of
harmonics is not quite as good, but the harmonics of
f2 that don’t match those of f1 are still different
enough from the harmonics of f1 that no beats are
heard and they don’t fall within the same critical band.

Frequency 1 (Hz) Frequency 2 (Hz)

f1 = 100 f2 = 150

2f1 = 200 2f2 = 300

3f1 = 300 3f2 = 450

4f1 = 400 4f2 = 600

5f1 = 500

6f1 = 600

0                       f1                     2f1                    3f1                    4f1                     5f1                    6f1

0                                   f2                                 2f2                                3f2                                4f2
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ACTIVITY
CONSONANCE

Do the same types of graphs as shown on the previous page, but for pairs of frequencies that are in ratios of other
small integers: 

† 

f2

f1
=

4
3

 and  f2

f1
=

5
4

. Make each graph long enough so that there are at least eight harmonics

showing for f2.

Compare the level of consonance that you believe exists between each of the above pairs of frequencies. Also
compare the consonance between each of these two pairs of frequencies with those pairs shown on the previous page.
Finally, rank the four pairs of frequencies in the order you believe them to be in from most to least consonant and
explain your ranking.

RANKING OF FREQUENCY RATIOS FROM MOST TO LEAST CONSONANT

Frequency
Ratio

Consonance

Most

Least

EXPLANATION OF RANKING
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A SURVEY OF HISTORIC MUSICAL SCALES

OU SHOULD NOW be able to
verify two things about musical
scales: they are closely tied to the
physics of waves and sound and they
are not trivial to design. Many scales
have been developed over time and in

many cultures. The simplest have only four notes and
the most complex have dozens of notes. Three of the
most important scales are examined here: the
Pythagorean Scale, the Scale of Just Intonation, and
the Even Temperament Scale.

THE PYTHAGOREAN SCALE
It has already been mentioned that Pythagoras

discovered the consonance between two strings (or
frequencies, as we know now) whose lengths were in
the ratio of two small integers. The best consonance
was heard with the 2:1 and 3:2 ratios. So Pythagoras
started with two strings, one twice as long as the
other and the tones from these strings were defined as
the highest and lowest tones in his scale. To produce
intermediate tones, he used ratios of string lengths
that were 3:2. To get this ratio a string length could
be multiplied by 3/2 or divide by 3/2. In either case,
the original string and the new string would have
length ratios of 3:2. There’s one catch though. In
multiplying or dividing a length by 3/2, the new
length might be shorter than the shortest string or
longer than the longest string. However, this really
isn’t a problem since a length that is either too long
or too short can simply be cut in half or doubled in
length (even repeatedly) in order to get it into the
necessary range of lengths. This may seem a bit
cavalier, but remember that strings that differ by a
ratio of 2:1 sound virtually the same. This sounds
more complicated than it really is. It’s easier to
understand by simply watching the manner in which
Pythagoras created his scale.

Let’s give the shortest string in Pythagoras’ scale
a length of 1. That means the longer one has a length
of 2. These two strings, when plucked, will produce
frequencies that sound good together. To get the first
two additional strings we’ll multiply the shorter
length by 3/2 and divide the longer length by 3/2:

† 

1•

† 

3
2

=
3
2

† 

2 / 3
2

= 2 • 

† 

2
3

=
4
3

In order of increasing length, the four string lengths
are 1, 4/3, 3/2, 2. These also represent the numbers
you would multiply the first frequency in your
musical scale by in order to get the three additional
frequencies. These are represented (to scale) in the
following graph.

If 100 Hz were chosen as the first note in this simple
musical scale, the scale would consist of the
following frequencies: 100 Hz, 133 Hz, 150 Hz, and
200 Hz. This simple four-note scale is thought to
have been used to tune the ancient lyre. Pythagoras
however expanded the notes of this simplistic scale
by creating two new string lengths from the
intermediate lengths, 4/3 and 3/2, making sure that
the string length ratio continued to be 3:2.

† 

4
3

/ 3
2

=
4
3

 •

† 

2
3

=
8
9

† 

3
2

 •

† 

3
2

=
9
4

Neither 8/9 nor 9/4 are between 1 and 2 so they must
be adjusted by either multiplying or dividing these
lengths by two (recall this type of adjustment will
lead to tones that sound virtually the same).

† 

8
9

 •

† 

2 =
16
9

† 

9
4

/2 =
9
8

The string lengths (or frequency multipliers) in order
of increasing size is now 1, 9/8, 4/3, 3/2, 16/9, 2.
These are represented (to scale) in the following
graph.

This scale, with five different notes, is known as the
pentatonic scale and has been very popular in
many cultures, especially in Eastern music. But
modern Western music is based on seven different

Y
1                      

† 

4
3          

† 

3
2                                    2

1       

† 

9
8             

† 

4
3          

† 

3
2                  

† 

16
9               2
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notes, so we’ll go through the process once more,
adjusting the last two lengths so that there are two
additional lengths in a 3:2 ratio.

† 

16
9

/ 3
2

=
16
9

• 2
3

=
32
27

† 

9
8

• 3
2

=
27
16

The final collection of string lengths (or frequency
multipliers) in order of increasing size is now 1, 9/8,
32/27, 4/3, 3/2, 27/16, 16/9, 2. These are represented
(to scale) in the following graph.

This is one version of the Pythagorean Scale
(other ways of building the scale lead to a different
order of intervals). Whether you think of the intervals
on the graph as string lengths or as frequencies, you
can easily verify with a pocket calculator that there
are many ratios of small integers meaning that
combinations of many of the frequencies lead to high
levels of consonance. You should also notice that the
intervals are not uniform. There are mostly larger
intervals, but also two smaller intervals (between the
second and third note and between the sixth and
seventh note). In every case, to get from one
frequency to the next across a large interval, the first
frequency must be multiplied by 9/8 (for example,

† 

32 /27 ⋅ 9 /8 = 4 /3 and  4 /3 ⋅ 9 /8 = 3/2). In both
cases of moving across the smaller intervals, the first
frequency must be multiplied by 256/243. Lets look
at these two intervals more carefully:

† 

9
8

= 1.125 and  256
243

= 1.053

Looking at the decimal representations of these two
intervals shows that the larger is an increase of a little
over 12% and the smaller is an increase of just less
than half that (5.3%). The larger of these intervals is
known as a whole tone, W  and the smaller is
known as a semitone , s (semi, because it’s
about half the increase of a whole tone).
(Whole tones and semitones are synonymous with

the terms whole steps and half steps). Going up
Pythagoras’ scale then requires a series of different
increases in frequency:

W   s   W   W   W   s   W

If you were to start with a certain frequency, calculate
all the others in the scale and then play them in
succession it would sound like the familiar “Do – Re
– Me – Fa – So – La – Ti – Do” except that it would
start with Ray. The more familiar string of tones
beginning with “Doe” (the note “C”) would then
have to have the following increases in frequency
intervals:

  W   W   s    W  W  W   s
 C1  D  E  F  G  A  B C2
Do Re M e Fa So La Ti Do

This is familiar to musicians, but most non-
musicians have probably not noticed the smaller
increase in pitch when going from “Me” to “Fa” and
from “Ti” to “Do.” Try it. Do you hear the difference
in the intervals?

There are seven different notes in the Pythagorean
scale (eight if you include the last note, which is one
diapson higher than the first note, and thus essentially
the same sound as the first). In this scale, the eighth
note has a ratio of 2:1 with the first note, the fifth
note has a ratio of 3:2 with the first note, and the
fourth note has ratio of 4:3 with the first note. This
is the origin of the musical terms the    octave    the
perfect       f ifth   , and the    perfect       fourth   . (Click on
the interval name to hear two notes separated by that
interval.) This is why, for example, “G” sounds good
when played with either the upper or the lower “C.” It
is a fifth above the lower C and a fourth below the
upper C.

Ci D E F G A B Cf

1

† 

9
8

† 

81
64

† 

4
3

† 

3
2

† 

27
16

† 

243
128

2

Table 4.1: The Pythagorean Scale
Intervals for a C major scale. Multiplying
the frequency of a particular “C” by one
of the fractions in the table gives the
frequency of the note above that fraction.

1       

† 

9
8  

† 

32
27        

† 

4
3          

† 

3
2            

† 

27
16    

† 

16
9               2
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It’s also interesting to look at the ratios between
individual notes. Table 4.2 shows the full list of
frequency intervals between adjacent tones.

Note change Frequency ratio
C Æ D 9/8
D Æ E 9/8
E Æ F 256/243
F Æ G 9/8
G Æ A 9/8
A Æ B 9/8
B Æ C 256/243

Table 4.2: Pythagorean Scale
interval ratios. Note there are
two possible intervals
between notes: 9/8 (a whole
tone) and 256/243 (a
semitone).

Do you get it? (4.1)
Assuming C5 is defined as 523 Hz, determine the
other frequencies of the Pythagorean scale. Show
work below and fill in the table with the appropriate
frequencies.

THE JUST INTONATION SCALE
The scale of Just Intonation or Just Scale

also has a Greek origin, but this time not from a
mathematician, but from the spectacular astronomer,
Ptolemy. Like Pythagoras, Ptolemy heard consonance
in the frequency ratios of 2:1, 3:2, and 4:3. He also
heard consonance in the frequency ratio of 5:4. He
found that groups of three frequencies sounded
particularly good together when their ratios to each
other were 4:5:6. His method of generating the
frequency intervals of what we now know as the C
major scale was to group the notes of that scale into
triads each having the frequency ratios of 4:5:6.

4 5 6
Ci E G
G B D
F A Cf

Let’s start with Ci and give it a value of 1. That
automatically makes Cf = 2. In order to get the
Ci:E:G frequency ratios to be 4:5:6 we can represent
C1 as 4/4. Then E would be 5/4 and G would be 6/4,
or 3/2. So now we have the first three frequency
ratios:

Ci D E F G A B Cf

1

† 

5
4

† 

3
2

2

With the next triad (G,B,D) we’ll start with G = 3/2
and multiply this ratio by 4/4, 5/4, and 6/4 to get the
next set of 4:5:6 frequency ratios.

† 

G =
3
2

• 4
4

=
12
8

=
3
2

† 

B =
3
2

• 5
4

=
15
8

† 

D =
3
2

• 6
4

=
18
8

=
9
4

This last value for D is more than double the
frequency for C1, so we have to divide it by two to
get it back within the octave bound by Ci and Cf.
Therefore, 

† 

D = 9 /4( ) / 2 = 9 /8 . Now we have two
more frequency ratios:

Note C5 D E F G A B C6

Freq.
(Hz)

523
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Ci D E F G A B Cf

1

† 

9
8

† 

5
4

† 

3
2

† 

15
8

2

With the last triad (F,A,Cf) we’ll have to start with
Cf because it’s the only one we know the value of. In
order to the get the next set of 4:5:6 frequency ratios,
this time we’ll have to multiply Cf’s value by 4/6,
5/6, and 6/6.

† 

F = 2 • 4
6

=
8
6

=
4
3

† 

A = 2 • 5
6

=
10
6

=
5
3

† 

C f = 2 • 6
6

=
12
6

= 2

The complete scale of frequency ratios is:

Ci D E F G A B Cf

1

† 

9
8

† 

5
4

† 

4
3

† 

3
2

† 

5
3

† 

15
8

2

Table 4.3: Just Scale Intervals
for a C major scale. Multiplying
the frequency of a particular “C”
by one of the fractions in the
table gives the frequency of the
note above that fraction.

It’s also interesting to look at the ratios between
individual notes. For example, to get from C to D,
the C’s frequency must be multiplied by 9/8, but to
get from D to E, D’s frequency must be multiplied by
10/9. Table 4.4 shows the full list of frequency
intervals between adjacent tones.

Note change Frequency ratio

C Æ D 9/8
D Æ E 10/9
E Æ F 16/15
F Æ G 9/8
G Æ A 10/9
A Æ B 9/8
B Æ C 16/15

Table 4.4: Just Scale interval
ratios. Note there are three
possible intervals between
notes: 9/8 (a major whole
tone), 10/9 (a minor whole
tone), and 16/15 (a
semitone).

The largest of these ratios, 9/8 (12.5% increase), is
the same as the Pythagorean whole tone. In the Just
scale it is known as a major whole tone. There is
another fairly large interval, 10/9 (11.1% increase),
known as a minor whole tone. The smallest,
interval, 16/15 (6.7% increase), while slightly
different from the smallest Pythagorean interval, is
also called a semitone.

Some of the names of small integer ratios of
frequencies that produce consonance have already been
discussed. These and others are listed, in order of
decreasing consonance, in the Table 4.5.
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Frequency
Ratio

Interval Interval name

2/1 C Æ C Octave

3/2 C Æ G Perfect       fifth

4/3 C Æ F Perfect       fourth

5/3 C Æ A Major       sixth

5/4 C Æ E Major       third

8/5 E Æ C Minor       sixth

6/5 A Æ C Minor       third

Table 4.5: Just Scale interval
ratios and common names.
Click on any of the names to 

   hear the interval played.

Tables 4.2 and 4.4 give the interval ratios
between notes within one octave of either the
Pythagorean or the Just scales. However, if the
frequencies within a particular octave are too low or
too high, they can all be adjusted up or down one or
more octaves, either by starting with the first “C” of
the desired octave and multiplying by each of the
frequency ratios or simply by multiplying each
frequency in the above scale by the appropriate integer
(this integer would be 2 if you wanted to produce the
next higher octave).

Do you get it? (4.2)
C4 is the frequency or note one octave below C5
(523 Hz). Calculate the frequencies of the notes in the
Just scale within this octave.

A PROBLEM WITH TRANSPOSING
MUSIC IN THE PYTHAGOREAN AND
JUST SCALES

One of the problems with both the Pythagorean
and the Just scales is that songs are not easily
transposable. For example, if a song were written in
the key of C (meaning that it starts with the note, C)
and you wanted to change it so that it was written in
the key of F, it wouldn’t sound right. It wouldn’t be
as easy as transposing all the notes in the song up by
three notes (C Æ F, F Æ B, etc.) because of the
difference in intervals between various notes. Let’s
say the first two notes of the song you want to
transpose are C and F and you want to rewrite the
song in the key of F. Using Table 4.2, the increase in
frequency for the first note (C Æ F) is:

† 

9
8

• 9
8

• 256
243

= 1.33.

If the newly transposed song is to have the same
basic sound, then every note in the song should
change by that same interval, but going from F Æ B
is actually an interval of:

† 

9
8

• 9
8

• 9
8

= 1.42.

The Just scale has the same problem. One attempt at
a solution would be to add extra notes (sharps and
flats) between the whole tones on both scales so that
there were always choices for notes between the
whole tones if needed for transposing. So going from
C to F or from F to B would be an increase of five
semitones in both cases. But there is still the
problem of the two different whole tone intervals in
the Just scale. And in both scales, there is the
problem that the semitone intervals are not exactly

Note C4 D4 E4 F4 G4 A4 B4 C5

Freq.
(Hz)
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half the interval of the whole tones, so the idea of
creating additional notes between the whole tones
doesn’t fully solve the problem of being able to
seamlessly transpose music. There are also mistuned
interval issues as well with both scales that will be
dealt with later, but first we’ll look at the perfect
solution to the transposing problem – the Equal
Tempered scale.

THE EQUAL TEMPERAMENT
SCALE

The Equal Temperament scale attempts to correct
the frequency spacing problem without losing the
benefits of the special intervals within the two
previous scales. It includes the seven notes of the
previous scales and adds five sharps (for a total of 12
semitones), but it places them so that the ratio o f
the frequencies of any two adjacent notes i s
the same. This is not as simplistic as it may seem
at first glance. It is not the same as taking the
frequency interval between two C’s and dividing it by
12. This would not lead to the condition that two
adjacent frequencies have the same ratio. For example:

† 

13/12
12 /12

=
13
12

 but  14 /12
13/12

=
14
13

 and  13
12

=
14
13

Instead, it means that multiplying the frequency of a
note in the scale by a certain number gives the
frequency of the next note. And multiplying the
frequency of this second note by the same number
gives the frequency of the note following the second,
and so on. Ultimately, after going through this
process twelve times, the frequency of the twelfth
note must be an octave higher – it must be twice the
frequency of the first note. So if the multiplier is “r”,
then:

† 

r ⋅ r ⋅ r ⋅ r ⋅ r ⋅ r ⋅ r ⋅ r ⋅ r ⋅ r ⋅ r ⋅ r = 2

† 

fi    r12 = 2    fi    r = 212 = 1.05946

Click    here    to see a table of all frequencies of the notes
in the Equal Temperament Scale.

Example
The note, D, is two semitones higher than C. If C6 is
1046.5 Hz, what is D7 on the Equal Temperament
Scale?

Solution:
• Think about the problem logically in terms of

semitones and octaves.

D7 is one octave above D6, so if D6 can be
found then its frequency just needs to be
doubled. Since D6 is two semitones higher
than C6, its frequency must be multiplied twice
by the Equal temperament multiplier.

• Do the calculations.
1. 

† 

D6 = 1046.5Hz ¥ (1.05946)2

† 

= 1174.7Hz

fi

† 

D7 = 2D6 = 2(1174.7)Hz

= 

† 

2349.3Hz

or alternately

† 

D7 = 1046.5Hz ¥ (1.05946)14

= 

† 

2349.3Hz

With the extensive calculations in this section it
would be easy to lose sight of what the purpose of
the last few pages was. Let’s step back a bit. You
know music when you hear it. It is a fundamentally
different sound than what we call noise. That’s partly
because of the rhythm associated with music, but also
because the tones used sound good when played
together. Physically, multiple tones sound good
together when the ratio of their frequencies is a ratio
of small numbers. There are many scales that
endeavor to do this, including the Just scale, the
Pythagorean scale, and Equal Temperament scale, all
discussed above. In Western music the Equal
Temperament scale is the most widely used. Its
twelve semitones all differ in a ratio of 

† 

212  from each
adjacent semitone. All notes of the major scale are
separated by two semitones except for E and F, and B
and C. These two pairs are separated by one semitone.
The # indicates a sharp (see Table 4.6).
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1 2 3 4 5 6 7 8 9 10 11 12
C C# D D# E F F# G G# A A# B

Table 4.6: The notes of the 12-tone Equal
Temperament scale. All notes are separated
by two semitones (a whole tone) except for E
and F , and B  and C . The # indicates a
“sharp.”

Now remember the ancient discovery of frequency
ratios of small numbers leading to pleasant sounds
when the two frequencies are played together. This
has not been entirely sacrificed for the purpose of
mathematical expediency. It turns out that

† 

212( )
7

= 1.498  which is about 0.1% different from
1.5 or 3/2 (the perfect fifth). So in the Equal
Temperament scale, the seventh semitone note above
any note in the scale will be close to a perfect fifth
above it. That means C still sounds good with the G
above it, but D# also sounds just as good when played
with the A# above it (see figure 4.3). The next best
sounding combination, the perfect fourth, occurs
when two notes played together have a frequency ratio
of 4/3. It conveniently turns out that 

† 

212( )
5

= 1.335
(less than 0.4% different from a perfect fourth). So
the fifth semitone higher than any note will be higher
by a virtual perfect fourth (see figure 4.3).

Do you get it? (4.3)
In one suggestion for a standard frequency, C4 is
256 Hz. In this particular standard, what would be the
frequency of E4 on each of the following scales?
a. Pythagorean:

b. Just:

c. Equal Temperament

C    C #Db     D      D #Eb     E        F      F #Gb     G     G #Ab     A      A #Bb    B       C

Octave

Perfect Fifth

Perfect Fourth Perfect Fourth

Perfect Fifth

Figure 4.3: The chromatic scale with various consonant musical intervals
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A CRITICAL COMPARISON OF
SCALES
 An important question is how large can the
percentage difference from perfect intervals be before
the difference is detected or unacceptable? A more
precise method for comparing frequencies is with the
unit, cents. Musically, one cent is 1/100 of an Equal
Temperament semitone. And since there are 12
semitones per octave, one cent is 1/1200 of an
octave. But remember that this is still a ratio of
frequencies, so it’s not as simple as saying that one
cent is equivalent to 2 divided by 1200. Rather, any
two frequencies that differ by one cent will have the
same frequency ratio. So after the frequency ratio “R”
of one cent is multiplied by itself 1,200 times, the
result is 2.

† 

fi  R(1cent)( )1200
= 2

† 

fi  R(1cent) = 2
1

1200 = 1.000578

The frequency ratio equivalent to two cents would be:

† 

fi  R(2cents) = 2
1

1200Ê 
Ë 
Á ˆ 

¯ 
˜ 2

1
1200Ê 

Ë 
Á ˆ 

¯ 
˜  fi  R(2cents) = 2

2
1200

Finally, the frequency ratio of I cents would be:

† 

R = 2
I

1200

And the corresponding number of cents for a
particular frequency ratio can be found by taking the
logarithm of both sides of this equation:

† 

log R = log 2
I

1200Ê 
Ë 
Á ˆ 

¯ 
˜   fi   log R =

I
1200

log 2

fi

† 

I =
1200logR

log2

Example
The perfect fifth is a frequency ratio of 1.5. How
many cents is this and how does it compare with the
fifths of the Just, Pythagorean, and Equal Tempered
scale?

Solution:
• Do the calculations.

 

† 

I =
1200 log R

log 2
=

1200 log 1.5( )
log 2

=

† 

702cents

• Make the comparisons.
Just scale: identical.
Pythagorean scale: identical.
Equal Tempered scale: 2 cents less.

Of course, all of this is only useful if there is
some understanding of how many cents a musical
scale interval can differ from one of the perfect
intervals before it becomes detected or unacceptable.
With that in mind, a musician with a good ear can
easily detect a mistuning of 5 cents and a 10 to 15
cent deviation from perfect intervals is enough to be
unacceptable, although at times musicians will often
intentionally deviate by this much for the purpose of
artistic interpretation. Table 4.7 compares several
important ideal musical intervals with their equal
tempered approximations.

Interval Frequency
ratio

Frequency
ratio (cents)

Equal Temp.
scale (cents)

Octave 2 : 1 1200 1200
Fifth 3 : 2 702 700

Fourth 4 : 3 498 500
Major sixth 5 : 3 884 900
Major third 5 : 4 386 400
Minor sixth 8 : 5 814 800
Minor third 6 : 5 316 300

Table 4.7: A comparison of ideal intervals
with their approximations on the Equal
Tempered scale. Note the large deviations
from ideal for the thirds and sixths.
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Because of its equal intervals, the Equal
Temperament scale makes transposing music very
simple. For example, someone with only a marginal
understanding of the scale could easily take a melody
written in the key of C and rewrite it in the key of F
by simply increasing every note’s frequency by five
semitones. This is a major advantage over the scales
with unequal intervals. But a close look at Table 4.7
illustrates why many musicians take issue with the
approximations necessary to make these intervals
equal. Although its octave is perfect and its fifth and
fourth differ from the ideal by only 2 cents, the equal
tempered sixths and thirds all differ from the ideal
anywhere from 14 to 16 cents, clearly mistuned and
noticeable by anyone with a good ear.

The frequency interval unit of cents is especially
useful in analyzing the musical scales. In the
following example, Table 4.2 is redrawn with the
frequency intervals expressed in cents rather than
fractions. This leads to a quick way to analyze the
quality of the various consonant intervals. Using

† 

I = 1200 log R / log 2I to convert the intervals gives:

Notes Frequency
interval (cents)

Ci 0
D 204
E 408
F 498
G 702
A 906
B 1110
Cf 1200

Table 4.8: Pythagorean
scale interval ratios
expressed in cents

It’s clear that the interval between Ci and G is 702
cents – a perfect fifth. It’s almost as clear to see that
the interval between D and A

† 

906cents - 204cents = 702cents( )  is also a perfect
fifth. The additive nature of the cents unit makes it
easy to judge the quality of various intervals. Table
4.8 shows the values of various important intervals
in the Pythagorean scale.

Interval Interval
name

Frequency
ratio (cents)

Ci Æ Cf Octave 1200
Ci Æ G Fifth 702
D Æ A Fifth 702
E Æ B Fifth 702
F Æ C Fifth 702
Ci Æ  F Fourth 498
D Æ G Fourth 498
E Æ A Fourth 498
G Æ Cf Fourth 498
Ci Æ E Major third 408
F Æ A Major third 408
G Æ B Major third 408

Table 4.9: An evaluation of the
Pythagorean intervals. Note the
abundance of perfect fifths and
fourths, but also the very
poorly tuned thirds.

Table 4.9 shows why the Pythagorean scale is so
important. Within the major scale, there are four
perfect fifths and four perfect fourths (there are many
more of both if the entire chromatic scale is used).
However, the three major thirds differ by 22 cents

† 

408cents - 386cents( )  from the perfect major third,
noticeably sharp to most ears. This is the reason that
Pythagoras felt the major third was dissonant. The
minor third is a problem in the Pythagorean scale as
well. Going from E to G is an increase of 294 cents
(see Table 4.8), but the perfect minor third, 6/5, is
316 cents (see Table 4.7). So the Pythagorean major
third is 22 cents sharp and the minor third is flat by
the same amount. This 22-cent interval is actually
21.5 cents (due to rounding errors) and is known as
the syntonic comma, d. One way to deal with this
particular mistuning is to compromise the position of
the E. Decreasing it a bit would help the consonance
of both the major third (C to E) and the minor third
(E to G). This and similar adjustments made to other
notes in the scale are known as meantone tuning.
There are different types of meantone tuning, but the
most popular appears to be quarter-comma
meantone tuning. In this version, every note,
except for C, is adjusted by either 1/4, 2/4, 3/4, 4/4,
or 5/4 of the syntonic comma (see Table 4.10)
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Pythagorean
Note

Quarter-comma
Meantone
adjustment

C none
D

† 

- 2
4 d

E

† 

-d
F

† 

+ 1
4 d

G

† 

- 1
4 d

A

† 

- 3
4 d

B

† 

- 5
4 d

C none

Table 4.10: Quarter-
comma Meantone
adjustments to the
Pythagorean scale.

“If I were not a physicist, I would probably be a musician. I
often think in music. I live my daydreams in music. I see my
life in terms of music.”
– Albert Einstein

“When I hear music, I fear no danger. I am invulnerable. I
see no foe. I am related to the earliest times, and to the latest.”
– Henry David Thoreau
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ACTIVITY
CREATE A MUSICAL SCALE

Now that you’ve had some time to look at various musical scale constructions as well as to consider the merits
of these various scales, it’s time to try your hand at it. In this activity, you will design an equal-tempered musical
scale. Your goal is to discover one that has both a reasonable number of total intervals as well as many consonant
intervals. You may choose any number of intervals except for the commonly used twelve intervals.

1. What is the number of intervals in your equal-tempered scale?  _________

2. What is the size of your equal-tempered interval? Express this as a decimal interval increase as well as the
number of cents per interval.

3. In the space below, indicate the presence of the following consonant intervals in your scale: fifth, fourth,
major third, minor third, major sixth, and minor sixth. State how many of your equal-tempered intervals are
equivalent to these consonant intervals. (Do not consider that a particular consonant interval exists unless it
is within 0.01 of the perfect interval.)

Fifth:

Fourth:

Major third:

Minor third:

Major sixth:

Minor sixth:
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4. Evaluate each of the consonant intervals in your scale, considering a 5-cent or less deviation to be perfect
and a 6 – 15 cent deviation to be acceptable.

5. Compare the quality of your equal tempered scale to that of the 12 tone equal tempered scale. Consider both
the presence and quality of the consonant intervals as well as the number of total intervals.
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ACTIVITY
EVALUATING IMPORTANT MUSICAL SCALES

INTRODUCTION
You’ve seen that the process of building or choosing a particular musical scale is not trivial. It should be clear

now that there is no such thing as perfect tuning. This was shown for the 12-tone Equal Temperament scale in
Table 4.7 and for the Pythagorean scale in Table 4.9. During this activity you will be asked to evaluate the pros and
cons of three types of scales: the Just Scale, the Quarter-comma Meantone scale, and variants of the Equal Tempered
Scale.

CALCULATIONS (EXPLAIN THE PROCESS YOU’RE USING THROUGHOUT AND
SHOW ALL CALCULATIONS CLEARLY)
THE JUST SCALE

1. Transform Table 4.3 so that the Just scale frequency intervals are expressed in cents.

Just scale
notes

Frequency
interval (cents)

Ci

D
E
F
G
A
B
Cf

2. Now create a table in which you identify all fifths, fourths, major thirds and minor thirds in the Just scale.
What are the best and worst aspects of the Just scale when compared to the Pythagorean scale and 12-tone
Equal Tempered scale?
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THE QUARTER-COMMA MEANTONE SCALE
3. Use Tables 4.8 and 4.10 to create a table showing the frequency intervals in the Quarter-comma Meantone

scale

Quarter-comma
Meantone scale

notes

Frequency
interval
(cents)

Ci

D
E
F
G
A
B
Cf

4. Now create a table in which you identify all fifths, fourths, major thirds and minor thirds in the Quarter-
comma Meantone scale. What are the best and worst aspects of the Quarter-comma Meantone scale when
compared to the Pythagorean scale, Just scale, and 12-tone Equal Tempered scale?
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OTHER EQUAL TEMPERED SCALES
The 12-tone Equal Temperament scale is a compromise between the consonance of perfect intervals and the

utility of equal intervals. Some have wondered why the fifth and the fourth work so well, but the other intervals
don’t. The reason is simply that in deciding to use 12 tones, the spacing between some notes just happens to be very
close to that of the consonant intervals. Other equal interval temperaments have been proposed over time, including
those with 19, 31, and 53 tones. Remember that although these have 19, 31, and 53 notes, respectively, the range
from the first note until the note following the last note is still one octave (1200 cents). The first step is to
determine the interval between notes in the three scales.

5. What is the interval (in cents) between notes on each of the following equal temperament scales?
a.  19 tone b.  31-tone c.  53-tone

6. Now determine the number of steps in each of these Equal Temperament scales required for the following
intervals: perfect fifth, perfect fourth, major third, major sixth, minor third, and minor sixth. Finally,
indicate the deviation of each of these intervals from the ideal interval as shown in column 3 of Table 4.7.

19-tone Equal
Temperament

Interval
Number
of steps
on the
scale

Deviation
from ideal
interval
(cents)

Perfect
Fifth

Perfect
Fourth
Major
third

Major
sixth

Minor
third

Minor
sixth

31-tone Equal
Temperament

Interval
Number
of steps
on the
scale

Deviation
from ideal
interval
(cents)

Perfect
Fifth

Perfect
Fourth
Major
third

Major
sixth

Minor
third

Minor
sixth

53-tone Equal
Temperament

Interval
Number
of steps
on the
scale

Deviation
from ideal
interval
(cents)

Perfect
Fifth

Perfect
Fourth
Major
third

Major
sixth

Minor
third

Minor
sixth
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7. Rank the three Equal Tempered scales against each other in terms of the quality of their tuning of the major
consonant intervals.

8. Thinking of the piano keyboard, explain carefully what the chief problem of these Equal Temperament
scales are.

9. What are the best and worst aspects of the    best    of the three Equal Tempered scales when compared to the
Quarter-comma Meantone scale, Pythagorean scale, Just scale?
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Cel lo

Viola

Vio l in

       C1                   C2                   C 3                    C4                    C5                   C6                  C7                  C8
(Hz) 33                   65                   131                  262                  523                1046                2093               4186

Harp

 “Words make you think a thought. Music makes you feel a
feeling. A song makes you feel a thought.”
– E.Y. Harbug

CHAPTER 5
CHORDOPHONES

(STRINGED INSTRUMENTS)

HE YEAR WAS 1968, the event was Woodstock, one of the bands was
The Grateful Dead, the man was Jerry Garcia, and the musical instrument
he used to make rock and roll history was the guitar – a chordophone
(stringed instrument). Instruments in this class are easy to pick out. They
have strings, which either get plucked (like guitars), bowed (like violins),

or thumped (like pianos). It includes all instruments whose standing wave
constraint is that at each end of the medium there must be a node.
Technically this includes drums, but because of the two dimensional nature of the
vibrating medium, the physics becomes a lot more complicated. We’ll just look at
true strings.

T
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THE FIRST MODE
The simplest way a string can vibrate in a

standing wave condition is with the two required
nodes at the ends of the string and an antinode in the
middle of the string (see Figure 5.1).

This is the first mode. The length of the string (in
wavelengths) is half a wavelength (see Figure 5.1).
That means that for the string length, L:

† 

L =
1
2

l  fi  l = 2L .

Now frequency, in general, can be found
using

† 

f = v /l , so for the first mode of a stringed
instrument:

† 

f1 =
v

2L
.

WAVE SPEEDS ON STRINGS
Wave speed on strings depends on two factors:

the tension in the string and the “linear mass density”
of the string. Tightening or loosening the strings
with the tuners can change their tension . It takes
more force to pluck a taut string from its resting
position. And with more force acting on the taut
string, the more quickly it will restore itself to its
unplucked position. So, more tension means a
quicker response and therefore, a higher velocity for
the wave on the string.

The wave velocity can also be affected by the
“heaviness” of the string. Strictly speaking, it’s the
linear mass density of the string that causes this
effect. Linear mass density is the amount of mass per

length of string (in 

† 

kg /m ). The greater this density,
the greater the overall mass of a particular string will
be. Most people have noticed that the strings on a
guitar vary in thickness. The thicker strings have
greater mass, which gives them more inertia, or
resistance to changes in motion. This greater inertia
causes the thicker, more massive strings to have a
slower response after being plucked – causing a lower
wave velocity.

It should be clear that higher tension, T, leads to
higher wave speed (see Figure 5.2), while higher
linear mass density, m, leads to lower wave speed (see
Figure 5.3). The two factors have opposite effects on
the string’s wave velocity, v. This is clear in the
equation for string wave velocity:

† 

    v =
T
m

    

Recall the frequency for the first mode on a string is

† 

f1 = v / 2L . Combining this with the expression for
the string’s wave velocity, the fundamental frequency
of a stringed instrument becomes:

† 

    f1 =

T
m

2L
    

This complicated looking equation points out three
physical relationships that affect the fundamental
frequency of a vibrating string. Since string tension is
in the numerator of the equation, frequency has a
direct relationship with it – if tension increases, so
does frequency. However, since both linear mass
density and length are in denominators of the
equation, increasing either of them decreases the
frequency. The following graphic illustrates these
three relationships

† 

    T ↑  fi  f ↑

    m ↑  fi  f Ø     
    L ↑  fi  f Ø

String length, L

l

Figure 5.1: First mode of vibration.
This is the simplest way for a string t o
vibrate in a standing wave condition.
This mode generates the fundamental
frequency.
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THE SECOND MODE
Now lets look at the next possible

mode of vibration. It would be the
next simplest way that the string could
vibrate in a standing wave pattern with
the two required nodes at the end of the
string (see Figure 5.4)

We can figure out the frequency of the
second mode the same way as before.
The only difference is that the string
length is now equal to the wavelength
of the wave on the string. So, for the
frequency of the second mode of a
string:

† 

f =
v
l

 fi  f2 =

T
m

L

You should notice that this is exactly
twice the frequency of the first mode,

† 

f2 = 2 f1 . And, when you pluck the
guitar string, both modes are actually
present (along with many even higher
modes, as discussed earlier).

String length, L
Figure 5.4: Second mode o f
vibration. This is the next
simplest way for a string t o
vibrate in a standing wave
condition.  This mode
generates the first overtone.

Figure 5.2: Changing a string’s tension changes i t s
frequency of vibration. When a tuner either tightens or
loosens a string on a violin its frequency of vibration
changes. The equation for the fundamental frequency of a
vibrating string, 

† 

f1 = T /m( ) / 2L , shows the connection
between string tension and frequency. Since tension is in the
numerator of the square root, if it increases, so will the
string’s frequency.

Figure 5.3: Changing a string’s linear mass density, m ,
changes its frequency of vibration. Two strings with the same
tension, but different mass will vibrate with different
frequency. The equation for the fundamental frequency of a
vibrating string, 

† 

f1 = T /m( ) / 2L , shows the connection
between linear mass density and frequency. Since linear mass
density is in the denominator of the square root, if i t
increases, the string’s frequency decreases. The thicker and
heavier strings on the violin are the ones that play the lower
frequency notes.
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Do you get it? (5.1)
a. In the space below, draw the string vibrating in

the third mode:

b. Now write the equation for the frequency of the
third mode. Explain how you arrived at this
equation.

c. In the space below, draw the string vibrating in
the fourth mode:

d. Now write the equation for the frequency of the
fourth mode. Explain how you arrived at this
equation.

e. Finally, look for a pattern in these four
frequencies and write the equation for the nth mode
frequency.

Figure 5.5: A two-stringed musical instrument
from Java with very large tuners. See movie

David Lapp
below.
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SOUND
PRODUCTION IN
STRINGED
INSTRUMENTS

If you were to remove a
string from any stringed
instrument (guitar, violin,
piano) and hold it taut outside
the window of a moving car,
you would find very little
resistance from the air, even
if the car were moving very
fast. That’s because the
string has a very thin profile
and pushes against much
less air than if you held a marimba bar of the same
length outside the car window. If you stretched the
string in between two large concrete blocks and
plucked it you would hear very little sound. Not only
would the string vibrate against very little air, but
also because of the huge impedance difference between
the string and the concrete blocks, its vibrations
would transmit very little wave energy to the blocks.
With so little of its energy transmitted, the string
would simply vibrate for a long time, producing very
little sound. For the non-electric stringed instrument
to efficiently produce music, its strings must couple
to some object (with similar impedance) that will
vibrate at the same frequency    and    move a lot of air.
To accomplish this, the strings of guitars, violins,
pianos, and other stringed acoustic instruments all
attach in some fashion to a soundboard. Figure 5.6
shows the strings of a guitar stretched between the
nut and the bridge. Figure 5.7 shows a magnified
image of the bridge
attachment to the top of
the guitar. As a string
vibrates it applies a force
to the top of the guitar,
which varies with the
frequency of the string.
Since the impedance
change between the
string and the bridge is
not so drastic as that
between the string and
the concrete blocks,
much of the wave energy
of the string is
transmitted to the bridge
and guitar top, causing
the vibration of a much
greater surface area. This,
in turn, moves a
tremendously greater
amount of air than the

string alone, making the vibration clearly audible.
Electric stringed instruments use a different

method for amplification. Try strumming an electric
guitar with its power turned off and the sound
produced will be similar to that of the taut string
between the two concrete blocks. But turn on the
power and the sound is dramatically increased. The
string of an electric guitar vibrates over the top of up
to three electromagnetic pickups. The pickup consists
of a coil of wire with a magnetic core. As the string
(which must be made of steel) vibrates through the
pickup’s magnetic field, it changes the flux of the
magnetic field passing through the core. And since
the flux change is at the same frequency as the
vibrating string, this becomes a signal, which can be
amplified through a loud speaker. The string is not
coupled directly to any soundboard, and will thus
vibrate for a far longer time than that of its acoustic
cousin.

Figure 5.7: Tension from the stretched guitar strings causes a downward
force on the bridge, which moves the entire face of the guitar at the
same frequency as that of the strings. This larger movement of air
greatly amplifies the nearly inaudible sound of the strings alone.

Figure 5.6: The energy used to pluck the strings of the guitar
is transferred to the top of the guitar as the strings vibrate
against the bridge.

Bridge Nut



GGGUUUIIITTTAAARRR   PPPHHHYYYSSSIIICCCSSS

66

INVESTIGATION
THE GUITAR

INTRODUCTION
It is believed that the origin of the guitar was in

Egypt more than 3,000 years ago. The modern guitar
pictured above has its strings tuned to E2, A2, D3, G3,
B3, and E4. In order to get intermediate frequencies,
the strings are “fretted.” Pressing a finger down on the

space above the fret changes the length of a particular
string with negligible change to the tension in the
string. The new string length is measured from the
fret to the bridge. The length of the unfretted strings
(from nut to bridge) is 0.65 m.   

Nut

Bridge

Unfretted
string
length
= 0.650 m

Finger
posit ion
above
fret

Fretted
string
length



GGGUUUIIITTTAAARRR   PPPHHHYYYSSSIIICCCSSS

67

CALCULATIONS (EXPLAIN THE PROCESS YOU’RE USING THROUGHOUT AND
SHOW ALL CALCULATIONS CLEARLY)

1. The frequency of C2 is 65.406 Hz. Use this frequency and the even temperament scale to calculate the
frequencies of all the unfretted strings
E2:

A2:

D3:

G3:

B3:

E4:

2. Give some justification, based on the idea of consonant intervals, for choosing these particular notes for the
tuning of the six strings on the guitar.

3. Calculate the speed of the second harmonic wave on the E2 string.

4. The linear mass density of the A2 string is 

† 

0.0085kg /m . Calculate the tension in this string.
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5. Make measurements on the photograph to the right to calculate the frequency of the E2
string fretted as shown to the right. You should notice that the frequency is now the
same as A2 string. How close are you to A2?

6. If you had a tuning fork that had the frequency of E2, you could use it to make sure your
E2 string was tuned perfectly. If the E2 string were out of tune by say, 3 Hz, you would
hear a beat frequency of 3 Hz when sounded together with the tuning fork. Then you
could tighten or loosen the string until no beats were heard. What could you do then to
make sure the A2 string was tuned correctly?

7. Now calculate the length for the E2 string and the A2 string to have the frequency of D3.
On the photograph to the right, show where you would fret both strings (indicate in the
same way as shown on the E2 string).

8. Finally, calculate the string lengths and corresponding fret positions for the:
a.  D3 string to have the frequency of G3.

b.  G3 string to have the frequency of B3.

c.  B3 string to have the frequency of E4.

 E2    D3    B3
    A2     G3    E4
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9. a.  How many    semitones    higher is A2 from E2?  __________

b.  How many frets did you have to go down on the E2 string to get the frequency of A2?  __________

c.  Use your answers to “a” and “b” to make a statement about how you think the placement of frets is
determined. As evidence for your hypothesis, include information from your answers in problems 7 and 8.

The photographs in the following three questions show popular chords guitar players use. The white dots still
represent the places where strings are fretted. All strings are strummed except those with an “x” over them.

10. a. List the notes played when this chord is strummed:

_____   _____   _____   _____   _____   _____

b. Why does this chord sound good when its notes are played?

11. a. List the notes played when this chord is strummed:

_____   _____   _____   _____   _____   _____

b. Why does this chord sound good when its notes are played?

12. a. List the notes played when this chord is strummed:

_____   _____   _____   _____

b. Why does this chord sound good when its notes are played?

E2
A2
D3
G3
B3
E4

E2
A2
D3
G3
B3
E4

E2
A2
D3
G3
B3
E4

X
X
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BUILDING A THREE STRINGED GUITAR

OBJECTIVE:
To design and build a three stringed guitar based on the physics of musical scales and the

physics of the vibrating strings.

MATERIALS:
• One 80 cm piece of 1” x 2” pine
• Approximately 10 cm of thin wood molding
• Three #4 x 3/4” wood screws
• Three #14 screw eyes
• Approximately 3 meters of 30 - 40 lb test fishing line
• One disposable 2 - 4 quart paint bucket
• Seven thin 8” plastic cable ties
• Small wood saw
• Screwdriver
• Small pair of pliers
• Wood glue
• Metric ruler or tape

PROCEDURE

1. Sand the corners and edges of the 80 cm piece of pine. This will be the neck of the
guitar.

2. Screw the wood screws into one end of the neck. They should be evenly spaced and
approximately 2 cm from the end of the board. The heads should stick up just enough to
get a loop of fishing line around them.

3. Put the screw eyes into the other end of the board (in line with the wood screws),
making sure that they do not interfere with each other when they are rotated
(they will need to be staggered). Screw them in only enough so that they
are stable. They will be tightened later when the fishing line is
attached.

4. Cut two 4-cm long pieces of molding. Glue each of these to the
neck 3-cm in from each of the two sets of screws (on the side of the
screws closer to the middle of the neck). These are the nut and the
bridge.

5. Measure the distance in between the nut and the bridge. Use this
distance along with the intervals of one of the musical scales discussed
to calculate the placement of frets. The frets will be used to shorten the
lengths of the strings so that they can produce all the frequencies within the major
scale of one octave.

6. Place a cable tie at each fret position. Tighten it with pliers and cut off the excess end of the
cable tie.

7. Cut strings from the fishing line in 1-meter increments. Tie a knotted loop into one end of each
string.
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8. For each string, place the knotted loop over the wood screw and pull the other end tight, wrapping it
clockwise several times around the appropriate screw eye. While maintaining the tension in the string, loop
it through the screw eye and tie a knot.

9. If necessary, cut notches in the bottom of the paint bucket edges so that the neck can lie flush against the
paint bucket bottom. Position the paint bucket about equidistant between the bridge and the fret closest to
the bridge. Glue the bottom of the paint bucket to the neck. Let dry.

10. Choose the string that will produce the lowest frequency. Rotate the eyehook screw attached to it
(clockwise) while plucking the string in order to achieve the desired tone.

11. Fret the lowest frequency string so that it is a fifth higher than its fundamental frequency. Using beats, tune
the next string to this frequency.

12. Fret the second string so that it is a fourth higher than its fundamental frequency. Again use beats to tune
the third string to this frequency.

13. Play the guitar. With the open strings you can play an octave, a fifth, and a fourth. You can also play tunes
and other intervals by using the frets.
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“The Irish gave the bagpipes to the Scotts as a joke, but the
Scotts haven't seen the joke yet.”
– Oliver Herford

CHAPTER 6
AEROPHONES

(WIND INSTRUMENTS)

TANDING WAVES ARE created in the column of air within wind
instruments, or aerophones. Most people have a more difficult time
visualizing the process of a wave of air reflecting in a flute or clarinet as
opposed to the reflection of a wave on the string of a guitar. On the guitar,
for example, it’s easy to picture a wave on one of its strings slamming into

the bridge. The bridge represents a wave medium with obviously different
impedance than that of the string, causing a significant reflection of the wave. It may
not be as obvious, but when the wave of air in a wind instrument reaches the end of
the instrument, and all that lies beyond it is an open room, it encounters an
impedance change every bit as real as the change seen by the wave on the guitar
string when it reaches the bridge. The openness beyond the end of the wind
instrument is a less constricted environment for the wave (lower impedance), and
because of this change in impedance, a portion of the wave must be reflected back
into the instrument.

S

Bb Tuba

Trombone

Flute
fF

       C1                   C2                   C 3                    C4                    C5                   C6                  C7                  C8
(Hz) 33                   65                   131                  262                  523                1046                2093               4186

Trumpet
fFBassoon

fF Clarinet
fF



WWWIIINNNDDD   IIINNNSSSTTTRRRUUUMMMEEENNNTTTSSS

73

To initially create the sound wave
within the aerophone, the player directs a
stream of air into the instrument. This air
stream is interrupted and chopped into
airbursts at a frequency within the audible
range. The interruption is accomplished by
vibrating one of three types of reeds: a
mechanical reed, a “lip reed,” or an “air
reed.”

THE MECHANICAL REED
Instruments like the clarinet, oboe,

saxophone, and bagpipes all have
mechanical reeds that can be set into
vibration by the player as he forces an air
stream into the instrument. Most of us have
held a taut blade of grass between the
knuckles of our thumbs and then blown air
through the gaps on either side of the grass
blade. If the tension on the grass is just
right and the air is blown with the necessary
force, the grass will start shrieking. The air
rushing by causes a standing wave to be
formed on the grass blade, the frequency of
which is in the audible range. You can
change the pitch of the sound by moving
the thumbs a bit so that the tension is
varied.

The mechanical reeds in wind
instruments (see Figure 6.2) can be set into
vibration like the grass blade, except that
the length of the tube largely governs the
frequency of the reed. Figure 6.3 illustrates
the vibration mechanism for the mechanical
reed/tube system.   

Figure 6.1: The
clarinet is in the
woodwind class
of aerophones.
The player blows
across a small
reed, which
causes the reed to
vibrate. The
vibrating reed
allows bursts of
air into the body
of the clarinet.
The bursts of air
are responsible
for the resulting
standing wave of
air that becomes
the distinctive
sound produced
by the clarinet.

Figure 6.2: A clarinet mouthpiece and reed. By holding her mouth in just the right position and
with just the right tension, the clarinet player causes the reed to vibrate up and down against
the mouthpiece. Each time the reed rises, creating an opening above the mouthpiece, a burst o f
air from the player enters the clarinet. The length of the clarinet largely controls the frequency
of the reed’s vibration.
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LIP AND AIR REEDS
Not all wind instruments use a mechanical reed.

Brass instruments like the trumpet, trombone, and
tuba use a “lip reed” (see Figure 6.4). Although the
lips are not true reeds, when the player “buzzes” his
lips on the mouthpiece of the instrument they cause
the air stream to become interrupted in the same way
as the mechanical reed does. The same type of
feedback occurs as well, with low-pressure portions of
the sound wave pulling the lips closed and high-
pressure portions forcing the lips open so that another
interrupted portion of the air stream can enter the
instrument.

1. The puff of air the player initially b lows
through the instrument begins to pull the
reed toward the body of the instrument and
creates a region of high pressure that
moves toward the end of the instrument.

2. When the high-pressure region reaches
the lower, normal air pressure at the end o f
the instrument it is largely reflected. This
causes the reflected pulse to be a negative
or low-pressure pulse and has the effect o f
pulling the reed toward the body of the
instrument, closing the gap sharply.

3. The low-pressure pulse is reflected from
this closed end of the instrument and
moves back to the other end. When i t
reaches the higher, normal air pressure, i t
largely reflects again, this time as a high-
pressure pulse.

4. When the high-pressure pulse reaches
the reed, it forces it open and allows the
air from the player to enter and reverse the
direction of the high-pressure pulse. This
pattern of feedback makes it easy for the
player to keep the reed frequency at the
same frequency as that of the pressure wave
inside the instrument.

FIGURE 6.3: VIBRATION MECHANISM FOR THE MECHANICAL REED/TUBE SYSTEM

Figure 6.4:
While the
trumpet
player’s lips
are not a true
“reed,” when
they buzz
against the
mouthpiece,
they provide
the same
frequency of
airbursts as a
mechanical
reed.
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The last method for interrupting the air stream of
a wind instrument is with an “air reed” (see Figure
6.5). As the player blows a steady air stream into the
mouthpiece of the recorder, the air runs into the sharp
edge just past the hole in the top of the mouthpiece.
The air stream gets split and a portion of the air
enters the recorder, moving down the tube and
reflecting back from its open end, as in the case of
other wind instruments. However, rather than
interrupting the air stream mechanically with a
wooden reed or with the lips of the player, the
reflected air pulse itself acts as a reed. The low and
high-pressure portions of this sound wave in the
recorder interrupt the player’s air stream, causing it to
oscillate in and out of the instrument at the same
frequency as the standing sound wave. Other wind
instruments that rely on the “air reed” include flutes,
organ pipes and even toy whistles. This, by the way,
is the mechanism that people use when they use their
lips to whistle a tune.

Regardless of the type of reed used, wind
instruments all create sound by sustaining a standing
wave of air within the column of the instrument. The
other major distinction between wind instruments is
whether there are two ends open (open pipes) or only
one end open (closed pipes).

OPEN PIPE WIND INSTRUMENTS
Recorders and flutes are both examples of open

pipe instruments because at both ends of the
instrument there is an opening through which air can
move freely. Since the air at both ends of the column
is relatively free to move, the standing wave
constraint for this class is that both ends of the
air column must be a displacement
antinode.

The simplest way a column for air in an open
pipe to vibrate in a standing wave pattern is with the
two required antinodes at the ends of the pipe and a
node in the middle of the pipe (see Figure 6.6). This
is the first mode of vibration.

The length of the pipe (in wavelengths) is 

† 

1/2l
(think of it as two quarters joined at the ends).
Therefore:

† 

L =
1
2

l  fi  l = 2L  (same as for strings).

We can find the frequency like we did before by
using

† 

f = v /l . Thus, for the first mode of an open
pipe instrument:

† 

f1 =
v

2L
.

The speed, v, of waves in the pipe is just the speed of
sound in air, much simpler than that for the string.
The frequency of a particular mode of an open pipe
depends only on the length of the pipe and the
temperature of the air.

Now let’s look at the next possible mode of
vibration. It is the next simplest way that the column
of air can vibrate in a standing wave pattern with the
two required antinodes at the ends of the pipe (see
Figure 6.7).

Pipe length, L
Figure 6.6: First mode of vibration.
This is the simplest way for a
column of air to vibrate (in an open
pipe) in a standing wave condition.
This mode generates the fundamental
frequency.

Figure 6.5: The “air reed.” A portion o f
the air stream entering the recorder
moves down the tube and reflects back
from its open end, as in the case o f
other wind instruments. However, rather
than interrupting the air stream
mechanically with a mechanical reed or
with the lips of the player, the reflected
air pulse itself acts as a reed. The l o w
and high-pressure portions of this sound
wave in the recorder interrupt the
player’s air stream, causing it t o
oscillate in and out of the instrument at
the same frequency as the standing sound
wave.
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We can figure out the frequency of this second mode
the same way as before. The only difference is that
the pipe length is now equal to one wavelength of the
sound wave in the pipe. So for the frequency of the
second mode of an open pipe:

† 

f =
v
L

 fi  f2 =
vsound

L
.

You should notice that, as with the modes of the
string, this is exactly twice the frequency of the first
mode, 

† 

f2 = 2 f1 .

Do you get it? (6.1)
a. In the space below, draw the air vibrating in the

third mode:

b. Now write the equation for the frequency of the
third mode. Explain how you arrived at this
equation.

c. In the space below, draw the air vibrating in the
fourth mode:

d. Now write the equation for the frequency of the
fourth mode. Explain how you arrived at this
equation.

e. Now look for a pattern in these four frequencies
and write the equation for the nth mode frequency.
Explain how you arrived at this equation.

CLOSED PIPE WIND INSTRUMENTS
The trumpet

and the clarinet are
both examples of
closed pipe wind
instruments,
because at one end
the player’s lips
prevent the free
flow of air. Since
the air at the open
end of the column
is relatively free to
move, but is
constricted at the
closed end, the
standing wave
constraint for
closed pipes is that
the open end o f
the air column
must be a
displacement
antinode and
the closed end
must be a node.

Pipe length, L
Figure 6.7: Second mode of vibration.
This is the next simplest way for a
string to vibrate in a standing wave
condition. This mode generates the
first overtone.

Figure 6.8: The Panpipe i s
a closed pipe instrument
popular among Peruvian
musicians.
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The simplest way a column of air in a closed
pipe can vibrate in a standing wave pattern is with the
required antinode at the open end and the required node
at the closed end of the pipe (see Figure 6.9). This is
the fundamental frequency, or first mode.

The length of the pipe (in wavelengths) is 

† 

(1/4)l .
So, for the first mode of a closed pipe:

† 

L =
1
4

l  fi  l = 4L .

We can find the frequency as we did before by
using

† 

f = v /l . Thus, for the first mode of a closed
pipe instrument:

† 

f1 =
vsound

4L
.

Now let’s look at the next possible mode of
vibration. It is the next simplest way that the column
of air can vibrate in a standing wave pattern with the
required antinode at the open end and the required node
at the closed end of the pipe (see Figure 6.10).

We can figure out the frequency of this next
mode the same way as before. The pipe length is now
equal to 

† 

3/4  the wavelength of the sound wave in the
pipe:

† 

L =
3
4

l  fi  l =
4
3

L .

And the frequency of the next mode of a closed pipe
is:

† 

f =
v
l

 fi  f =
vsound

4
3

L
 fi  f =

3vsound
4L

.

You should notice a difference here between the
modes of strings and open pipes compared to the
modes of closed pipes. This second mode is three
times the frequency of the fundamental, or first mode.
This means that this harmonic is the third harmonic.
The second harmonic can’t be produced with the
standing wave constraints on the closed pipe. This is
actually true for all the even harmonics of closed
cylindrical pipes. However, if the closed pipe has a
conical bore or an appropriate flare at the end (like
the trumpet), the spectrum of harmonics continues to
be similar to that of an open pipe.

Do you get it? (6.2)
a. In the space below, draw the air vibrating in the

mode after the third:

b. Now write the equation for the frequency of the
next higher mode after the third. Explain how you
arrived at this equation.

c. In the space below, draw the air vibrating in the
mode two higher than the third:

Pipe length, L
Figure 6.9: First mode of vibration.
This is the simplest way for a column
of air to vibrate (in a closed pipe) in a
standing wave condition. This mode
generates the fundamental frequency.

Pipe length, L

Figure 6.10: Second mode of vibration.
This is the next simplest way for a
string to vibrate in a standing wave
condition.  This mode generates the first
overtone.
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d. Now write the equation for the frequency of the
mode two higher than the third. Explain how you
arrived at this equation.

e. Now look for a pattern in these four frequencies
and write the equation for the nth mode frequency.
Explain how you arrived at this equation.

THE END EFFECT
Everything said about open and closed pipes is

basically true so far. However, there is one little issue
that needs to be dealt with. Otherwise, the music you
make with any aerophone you personally construct
will be flat – the frequency will be too low. A
musician with a good ear could tell there was a
problem. The problem is with the open ends of these
pipes. When the standing wave in the column of air
reaches a closed end in a pipe there is a hard
reflection. However, when the same standing wave
reaches the open end of a pipe, the reflection doesn’t
occur so abruptly. It actually moves out into the air a
bit before reflecting back. This makes the pipes
acoustically longer than their physical length. This
“end effect” is equal to 61% of the radius of the pipe.
This end effect must be added to the length of the
closed pipe and added twice to the length of the open
pipe.

Example
Let’s say you wanted to make a flute from one-inch
PVC pipe. If the lowest desired note is C5 on the
Equal Temperament Scale (523.25 Hz), what length
should it be cut?

Solution:
• Identify all givens (explicit and implicit) and

label with the proper symbol.
Given: f1 = 523.25 Hz

n = 1 (Lowest frequency)
v = 343 m/s (no temperature given)

r = 

† 

0.5inch( ) 2.54cm
1inch

Ê 

Ë 
Á 

ˆ 

¯ 
˜ 

 

† 

= 1.27cm = .0127m

• Determine what you’re trying to find.
Length is specifically asked for
Find: L

• Do the calculations.

1.

† 

f1 =
v

2Lacoust.
 fi  Lacoust. =

v
2 f1

=
343m / s

2 523.5 1
s( )

† 

= 0.328m

2. 0.328 m is the desired acoustic length of
the pipe, which includes the end effect on
both ends of the pipe. Therefore, the pipe
must be cut shorter than 0.328 m by two
end effects.

† 

Lphys. = Lacoust. - 2(end  effect)

† 

fi  Lphys. = 0.328m - 2(.61¥ .0127m)

= 

† 

0.312m
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Do you get it? (6.3)
You want to make a 4.0-cm diameter tube, closed at
one end, that has a fundamental frequency of 512 Hz
and the temperature is 30° C.
a. What length will you cut the tube?

b. If you blew across the tube a lot harder to produce
the next mode, what would be the new frequency?

c. Now if the bottom of the tube were cut off so that
the tube was open at both ends, what would be the
new fundamental frequency?

CHANGING THE PITCH OF WIND
INSTRUMENTS

In equations for both open and closed pipe wind
instruments, the variables that can change the
frequency are the number of the mode, the speed of
sound in air, and the length of the pipe. It would be
difficult or impossible to try to control the pitch of
an instrument by varying the temperature of the air,
so that leaves only the number of the mode and the
length of the pipe as methods for changing the pitch.
Some wind instruments, like the bugle, have a
single, fixed-length tube. The only way the bugle
player can change the pitch of the instrument is to
change the manner in which he buzzes his lips, and
so change the mode of the standing wave within the
bugle. The standard military bugle is thus unable to
play all the notes in the diatonic scale. It typically is
used to play tunes like taps and reveille, which only
require the bugle’s third through sixth modes: G4, C5,
E5, G5. In order to play all notes in the diatonic or
chromatic scale, the tube length of the wind
instrument must be changed. The trombone
accomplishes this with a slide that the player can
extend or pull back in order to change the length of
the tube. Other brass instruments, like the trumpet
and tuba, accomplish this change in length with
valves that allow the air to move through additional
tubes, thereby increasing the overall length of the
standing wave. Finally, the woodwinds change tube
length by opening or closing tone holes along the
length of the tube. An open hole on a pipe, if large
enough, defines the virtual end of the tube.

MORE ABOUT BRASS
INSTRUMENTS

The trumpet, trombone, and French horn are all
closed pipes with long cylindrical sections and should
therefore only be able to produce odd harmonics. The
length of a Bb trumpet is 140 cm. A closed cylindrical
pipe with the same length produces a fundamental
frequency of 61 Hz. It’s higher modes are odd integer
multiples of this first harmonic (see Table 6.1).
However, as with all brass instruments, the
mouthpiece and the bell have a significant effect on
the resonant frequencies. The cylindrical piece of pipe
without a bell or mouthpiece will reflect all of its
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standing wave modes at the same point – the end of
the pipe. But add a bell to the pipe and the modes will
reflect at different points. The lower the frequency of
the mode, the earlier it “sees” the flare of the bell. So
the lower frequency modes become shorter in
wavelength as a result of the bell. This shorter
wavelength increases the frequencies of the lower
modes (see Figure 6.11). The mouthpiece also has an
effect. It is approximately 10 cm long and has its
own fundamental frequency of about 850 Hz. This
frequency is known as the popping frequency because
of sound that “pops” from the mouthpiece if it is
removed from the trumpet and struck against the
hand. However, the mouthpiece retains some of its
identity even when it is inserted into the trumpet. It’s
presence affects the frequencies of the trumpet’s
higher modes, decreasing their frequency and also
increasing their prominence in the total spectrum of
the trumpets sound. Together, the bell and
mouthpiece cause the sound production of the
trumpet, trombone, and French horn to be like that of
an open pipe (having all harmonics instead of just the
odd ones – see Table 6.1). The presence of these
modified resonance modes provides greater feedback to
the player and enhances his ability to “find” a
particular mode. The lowest note the Bb trumpet is
designed to play is Bb

3 (233 Hz). The actual
“harmonic” frequencies that a high quality Bb trumpet
is able to produce are shown in table 6.1.

Mode Frequency within
a closed 140 cm
cylindrical pipe
(Hz)

Frequency
within the Bb

trumpet (Hz)

1 61 not playable
2 184 230
3 306 344
4 429 458
5 551 578
6 674 695
7 796 814
8 919 931

Table 6.1: Resonant mode frequencies for a
closed 140 cm cylindrical pipe vs. those
obtained by the Bb trumpet, also 140 cm
long, but with a bell and mouthpiece
(Berg, Stork)

Clearly the frequencies are neither truly harmonic nor
are they notes in the scale of equal temperament, but
they are close enough that a good trumpet player can
“lip up” or “lip down” the frequency with subtle lip
changes as he listens to other players in a band or
orchestra.

Table 6.1 shows that the interval between the
two lowest notes produced by the trumpet is
approximately a fifth (ªBb

3 to ªF4). That leaves six
missing semitones. In order to play these missing
notes, the player uses the valves on the trumpet (see
Figure 6.12). When the valves are not depressed, air
flows only through the main tube. However, when a
valve is pressed down, the air is forced to flow
through an additional tube linked to that tube (Figure
6.13). The three tubes lengthen the trumpet by an
amount that changes the resonant frequency by a
semitone, whole tone, or a minor third (three
semitones). By using valves in combination, the
trumpet can be lengthened by an amount that changes
the resonant frequency by four, five, or six semitones.

Figure 6.11: The bell of a brass instrument
causes lower modes to reflect prior t o
reaching the end of the instrument. This
smaller wavelength for the lower modes
increases their frequencies, forcing them t o
approach the harmonicity of an open pipe.

Figure 6.12: Each trumpet
valve has two paths
through which air can
flow. When the valve i s
not depressed, it allows air
to flow through the
primary tube. When the
valve is depressed, air i s
forced through different
chambers that divert i t
through an additional
length of tube. This
additional length causes
the standing sound wave t o
be longer and its frequency
to be lower.
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MORE ABOUT WOODWIND
INSTRUMENTS

The woodwinds are so named because originally
they were mostly constructed from wood or bamboo.
Wood is still preferred for many modern woodwinds,
however metal is used in constructing flutes and
saxophones and plastic is used to make recorders. To
change the pitch of the woodwind, tone holes along
the side of the instrument are covered and uncovered
to produce the desired pitch. The simplest way to
look at the function of a tone hole is that, if it is
open, it defines the new end of barrel of the
instrument. So, a single pipe can actually be turned
into eight different acoustic pipes by drilling seven
holes along the side of the pipe. The length of any
one of these eight virtual pipes would simply be the
distance to the first open hole (which the wave sees as
the end of the pipe). Consider making the placement
of the holes so that the standing waves produced had
frequencies of the major scale. If a tone were generated
in the pipe with all the holes covered and then the
holes were released one by one, starting with the one
closest to the actual end of the pipe and working
backward, the entire major scale would be heard.

It’s not as easy as it sounds though. Choosing
the position of a hole, as well as its size, is not as
trivial as calculating the length of a pipe to produce a
particular frequency and then drilling a hole at that
point. Think about the impedance difference the wave
in the pipe experiences. It’s true that when the
standing wave in the instrument encounters an open
hole it experiences a change in impedance, but if the
hole were a pinhole, the wave would hardly notice its
presence. On the other hand, if the hole were as large
as the diameter of the pipe, then the wave would
reflect at the hole instead of the true end, because
there would be no difference between the two and the
hole would be encountered first. So the open hole
only defines the new end of the pipe if the hole is
about the same size as the diameter of the pipe. As

the hole is drilled
smaller and smaller,
the virtual (or
acoustic) length of
the pipe approaches
the actual length of
the pipe (see Figure
6.14). Structurally
it’s unreasonable to
drill the holes as
large as the diameter.
And if the bore of the
instrument were
larger than the
fingers, then drilling
large holes would
require other

engineering solutions to be able to fully plug the
hole (see Figure 6.15).

It gets even more complicated. Even the presence
of closed holes has an effect on the standing wave.
The small amount of extra volume present in the
cavity under the closed hole (due to the thickness of
the pipe) causes the pipe to appear acoustically longer
than the actual length of the pipe. And don’t forget
the end effect at that first open hole. Even the
presence of the open holes past the first one have an
effect. If they are spaced evenly they will tend to
reflect lower frequencies more strongly than higher
ones. Indeed, the presence of these open holes leads to
a cutoff frequency. Above this critical frequency,
sound waves are reflected very little, giving the
woodwinds their characteristic timbre.

Figure 6.13: Pressing one or more of the trumpet’s three valves
provides additional tubing to lengthen the standing sound wave. This
photo transformation of the trumpet (courtesy of Nick Deamer, Wright
Center for Innovative Science Education) helps to visualize the role o f
each valve on the trumpet.
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Figure 6.14: A hole drilled on the side o f
a pipe changes the acoustic length of the
pipe. The larger the hole, the closer the
acoustic length will be to the hole
posi t ion.
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So the question is, can the equations for the
frequencies of standing waves within an open or
closed pipe be used to determine the position and size
of tone holes? The answer is … no, not really. The
consequences of so many different factors leads to

complicated equations that give results that are only
approximations. Actual woodwind construction is
based on historic rules of thumb and lots of trial and
error.

Figure 6.15: From the recorder to the clarinet to the saxophone, tone holes go from small and
simple to small and complex to large and complex. As the instrument grows in length and
diameter, the tone holes get further apart and must also grow in diameter. Compare the s imple
tone holes of the recorder, which can be easily covered with the player’s fingers to the tone holes
of the saxophone, which must be covered with sophisticated multiple, large diameter hole closer
systems.
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INVESTIGATION
THE NOSE FLUTE

INTRODUCTION
The nose flute is a curious musical instrument. Actually it is only part of a musical instrument, the remainder

being the mouth cavity of the player. To play it, the rear of the nose flute is placed over the nose and open mouth of
the player and air is forced out of the nose. The nose flute directs this air across the mouth in the same way that one
might direct air over the top of a soda bottle to produce a tone. The result is a clear, pleasing, flute-like tone. Click
here    to listen to the nose flute. These are available at a variety of sites, including one selling them for only $.99 per
nose flute:    http://www.funforalltoys.com/products/just_for_fun_3/nose_flute/nose_flute.html   

Nose cover

Mouth cover

Front View

Rear View

http://www.funforalltoys.com/products/just_for_fun_3/nose_flute/nose_flute.html
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QUESTIONS AND CALCULATIONS (MAKE CLEAR EXPLANATIONS
THROUGHOUT AND SHOW ALL CALCULATIONS CLEARLY)

1. What type of musical instrument classification fits the nose flute? Be specific, indicating the vibrating
medium and how the pitch of the nose flute is changed.

2. If you and another person nearby both played nose flutes, could you produce beats? How would you do it?

3. What are the similarities and differences between whistling and playing the nose flute?

4. Is the pitch range for the nose flute fixed or different for various players? Explain.
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5. If you played the nose flute, what is the lowest theoretical note on the Equal Tempered Scale that you
personally would be able to get? (You will need to make a measurement to answer this question.)

6. What two things could you do to produce a tone an octave and a fifth above the lowest theoretical frequency
calculated in the previous problem?
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INVESTIGATION
THE SOUND PIPE

INTRODUCTION
The sound pipe is a fun musical toy. To operate the sound pipe, you simply hold one end and twirl the sound

pipe in a circle. The movement of the end not being held causes a low-pressure region in the air. This is due to the
Bernoulli Effect and is also the explanation for how the perfume atomizer works. In the case of the atomizer, air
puffed past the tube connected to the perfume creates a low-pressure region above the tube, thus causing the perfume
to rise into the path of the puffed air. In the case of the sound pipe, the low-pressure region caused by its motion
draws air into the pipe. Depending on how fast it is twirled, it is possible to make four different audible frequencies.
The inside diameter of the sound pipe is 2.5 cm. Both ends of the sound pipe are open.

QUESTIONS AND CALCULATIONS (SHOW ALL WORK)
1. What type of musical instrument classification fits the sound pipe? Be specific, indicating the vibrating

medium.

2. What is the relationship between the four possible audible frequencies?

3. When you twirl this sound pipe, what is the lowest pitch you could produce?

74 cm
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4. What are the other three frequencies this sound pipe is capable of producing? What notes do the four
possible frequencies represent? You can listen to all four frequencies    here   .

5. In order to most easily use the sound pipe to play music, you would really need several sound pipes of
different lengths. Let’s say you wanted to be able to play all the notes within a C major scale.
a. First determine what length to cut from this sound pipe so that it produces the frequency of the C

closest to the fundamental frequency of this sound pipe.

b. Now calculate what the lengths the other six sound pipes would have to be in order to produce a full
C-major scale (assume the fundamental frequency will be used for each pipe).
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6. Imagine you had two sound pipes identical to the one in the photograph. If 1.0 cm were cut from one of
them, what specifically would be heard if they were both twirled so that they were resonating in the second
mode?

7. Another company produces a sound pipe of the same length, but only 2.0 cm in diameter. If the sound
pipes from both companies were twirled so that they produce standing waves vibrating in the third mode,
what specific sound would be heard?
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INVESTIGATION
THE TOY FLUTE

INTRODUCTION
The inexpensive toy flute pictured here is a

slightly tapered metal tube, open at both ends. There
is also an opening near where the mouth is placed as
well as six tone holes. The length of the flute from
the opening on top near the mouth to the end of the
flute is 29.5 cm. The diameter of the end of the flute

is 1.0 cm and it increases to 1.4 cm at the position of
the tone hole closest to the mouth. The walls of the
pipe are very thin – less than 0.1 cm. The diameters
of the tone holes in order, starting from the one
closest to the mouth are: 0.6 cm, 0.6 cm, 0.6 cm,
0.5 cm, 0.7 cm, and 0.5 cm.

CALCULATIONS (EXPLAIN THE PROCESS AND REASONING YOU’RE USING
THROUGHOUT. SHOW ALL CALCULATIONS CLEARLY)

1. a. What is the lowest note the flute is designed to play?

b. How would this note change if the flute were played outside on a hot day with the temperature of 37°C
instead of inside at room temperature?

2. How many tones could be produced with this flute if only the first mode were used? Explain.

Tone holes

29.5 cm

Mouth Position
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3. Let’s assume for this question that the tone holes were all the same diameter as the pipe (at the position
that the tone hole is drilled in the pipe). If played only in the first mode, could the flute produce a tone an
octave or more higher than the lowest possible frequency?

4. When this actual flute is played in the first mode, with all the tone holes uncovered, it produces a note 11
semitones higher than the note produced when all the tone holes are covered. Explain why the flute is
unable to play notes an octave or more higher than the lowest possible frequency.

5. What would you have to do with this flute (without drilling anymore holes) in order to produce tones an
octave or more higher than the lowest possible frequency?

6. It is possible (although it doesn’t sound very pleasant) to produce the third mode with this flute. What is
the highest note the flute is capable of playing?
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 INVESTIGATION
THE TRUMPET

INTRODUCTION
The trumpet is a closed pipe with a

predominantly long cylindrical section. If it were
cylindrical throughout its length it would only be
able to produce odd harmonics. However, as with all
brass instruments, the mouthpiece and the bell have a
significant effect on the resonant frequencies. The bell
increases the frequency of the lower modes and the
mouthpiece decreases the frequency of the higher
modes. The mouthpiece also increases the prominence
of particular frequencies. Together, the bell and
mouthpiece cause the sound production of the trumpet
to be like that of an open pipe. The Bb trumpet is 140
cm and the lowest note it is designed to play is Bb

3
(233 Hz). The actual “harmonic” frequencies that a
high quality Bb trumpet is able to produce are shown
in the table below:

Mode Freq. (Hz)
2 230
3 344
4 458
5 578
6 695
7 814
8 931

Frequencies obtained by
the Bb trumpet (Berg,
Stork)

Clearly the frequencies are not truly harmonic nor are
they notes in the Equal Temperament Scale, but they
are close enough that a good trumpet player can “fine
tune” the frequency with subtle lip changes as he
listens to other players in a band or orchestra.

The table shows rather large intervals (the
interval between the second and third harmonic is
about a fifth). In order to play smaller intervals, the
player uses the valves on the trumpet. When the
valves are not depressed, air flows through them in
the main tube. However, when a valve is pressed
down, the air is forced to flow through an additional
tube section. The three tubes lengthen the trumpet by
an amount that changes the resonant frequency as
follows:

• Valve 1 (valve closest to player’s mouth) – 1
whole tone.

• Valve 2 – 1 semitone
• Valve 3 – minor third (three semitones)

By using valves in combination, the trumpet can be
lengthened by an amount that changes the resonant
frequency by four, five, or six semitones. 

Bel l

Mouthpiece

Valves
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CALCULATIONS (EXPLAIN THE PROCESS AND REASONING YOU’RE
USING THROUGHOUT. SHOW ALL CALCULATIONS CLEARLY)

1. If the bell and mouthpiece of the trumpet were not present and the trumpet was still 140 cm long,
what would be the frequencies and approximate notes of the first four modes?

2. There is a frequency, known as the pedal tone that is not normally played on the trumpet. It is the
fundamental frequency (first harmonic) for the trumpet. What is this frequency?

3. Use the table on the previous page to discuss, as quantitatively as you can, how closely the modes
of the trumpet are to being harmonic.

4. With the bell and mouthpiece in place, what is the effective length of the trumpet?
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5. Recall that the ratio of frequencies between notes that are separated by one semitone is 1.05946.
So from semitone to semitone, the frequencies increase or decrease by 5.946%. The ratios between
lengths of pipes that play consecutive semitones have a similar relationship. Calculate the lengths
of each of the three tubes that can be activated by the valves of the trumpet.

6. The trumpet valves can be used in combination to change the resonant frequencies by more than
three semitones. Use the results from the previous problem to determine the extra lengths of
tubing in the trumpet when multiple valves are pressed at the same time to lower the resonant
frequency by four, five, or six semitones.

7. Now assume that the trumpet actually had six valves and the trumpet could be lengthened by an
amount that changed the resonant frequency by one two, three, four, five, or six semitones.
Calculate the length of individual tubes that would change the resonant frequencies by four, five,
and six semitones.
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8. Compare the extra tube lengths (producing true semitone intervals) that you calculated in the last
problem with the sums of tube lengths that the trumpet actually uses to make four, five, and six
semitone interval adjustments.
a. Why is there a discrepancy?

b. Without making any adjustments, would the notes produced by the trumpet sound flat or would
they sound sharp when making four, five, and six semitone interval adjustments? Why?

9. The photograph to the right
shows the three valves, the extra
tube sections connected to each of
them, and two adjusters for the
lengths of the tube sections
connected to the first and third
valves. Why would there be a need
for these adjusters?

10. Indicate which mode is played and which valve(s) would be pressed to produce each of the
following notes.
a.  G4

b.  F3

c.  E5

d.  C4

Adjusters for the lengths of the
first and third valve tube sections.

Tube sections connected
to the three valves.
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11. The brass pipe pictured to the right
has few of the trumpet’s attributes.
There is no mouthpiece, no bell, and
no valves, but it is a brass tube that
you could buzz your lips into. What
are the four lowest notes that would
be possible to blow on this pipe?

12. Now assume that the pipe is fitted with a bell and transformed into the horn pictured below.
a. What would happen to each of the frequencies of the notes calculated in the previous problem?

b. What other change in the sound production of the horn would occur?

11.0 cm
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BUILDING A SET OF PVC PANPIPES

OBJECTIVE:
To design and build a set of panpipes based on the physics of

musical scales and the physics of the vibrating air columns.

MATERIALS:
• One 10-foot length of 1/2” PVC pipe
• Small saw or other PVC cutter
• Fine sand paper
• Eight rubber or cork stoppers
• Approximately 1 meter of thin, 1-inch wide wood trim
• Strong, wide, and clear strapping tape
• Metric ruler or tape

PROCEDURE

1. Decide which notes the panpipes will play. The panpipes
pictured to the right consist of the C4 major scale plus a
C5 note (C4, D4, E4, F4, G4, A4, B4, C5) on the Equal
Tempered scale.

2. Decide which scale you will use and then calculate the
frequencies your panpipe will have.     Do       all       calculations       and
check        work       before        making       any       cuts   .

3. Calculate the length of each of your pipes to the nearest
millimeter, assuming the panpipes will be used in the first
mode. Keep in mind the end effect as well as the fact that
the stoppers will not only block the bottoms of the pipes,
but stick up inside of them a bit too. Before making your
length calculations you should check how far the stoppers
enter the pipe when they are snuggly in place.

4. Carefully cut each of the pipes. Make sure that each pipe
is cut precisely to the number of millimeters calculated.
Mistakes in this part of the procedure will be audibly detectable and may not be correctable.

5. Sand the rough edges of the pipes caused by cutting them.

6. Insert a stopper into one end of each of the pipes. Gently blow over the top of each pipe, listening for those
that may be too flat or too sharp. A stopper may be moved a small distance in or out of a pipe in order to
tune it slightly.

7. Lay the pipes side by side, with their tops all flush. Measure the distance across the set of pipes. Cut four
pieces of wood trim to this length. Sand the edges of the trim.

8. Place two pieces of cut trim on each side of the set of pipes; one pair 3-4 cm below the tops of the pipes
and another pair 3-4 cm above the bottom of the shortest pipe. Wrap strapping tape tightly (several times)
around each pair of trim strips. Wrap one piece of tape around the panpipe between the two pairs of wood
trim.

9. Play the panpipes! You can play tunes and experiment by listening to octaves, fifths, fourths, and other
intervals.
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“Music should strike fire from the heart of man, and bring
tears from the eyes of woman.”
– Ludwig Von Beethoven

CHAPTER 7
IDIOPHONES

(PERCUSSION INSTRUMENTS)

T’S PRETTY HARD to pass by a set of wind chimes in a store and not give
them a little tap. And few of us leave childhood without getting a child’s
xylophone for a gift. The sounds produced when pipes or bars are tapped on
their sides are fundamentally different from the sounds produced by the
instruments in the previous two categories. That’s because the frequencies of

higher modes in vibrating pipes and bars are not harmonic. Musical instruments
consisting of vibrating pipes or bars are known as idiophones.

BARS OR PIPES WITH BOTH ENDS
FREE

In a bar whose ends are free to vibrate, a standing
wave condition is created when it is struck on its side,
like in the case of the marimba or the glockenspiel.
The constraint for this type of vibration i s
that both ends of the bar must be

antinodes. The simplest way a bar can vibrate with
this constraint is to have antinodes at both ends and
another at its center. The nodes occur at 0.224 L and
0.776 L. This produces the fundamental frequency
(see Figure 7.1).

I

Timpani

Marimba

       C1                   C2                   C 3                    C4                    C5                   C6                  C7                  C8
(Hz) 33                   65                   131                  262                  523                1046                2093               4186

Steel Pan (tenor)
fF Xylophone
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The mode of vibration, producing the next higher
frequency, is the one with four antinodes including
the ones at both ends. This second mode has a node in
the center and two other nodes at 0.132 L and 0.868 L
(see Figure 7.2).

The mathematics used to describe this particular
vibration of the bar is pretty complicated, so I’ll just
present the result. (Fletcher and Rossing in The
Physics of Musical Instruments, Vol. 2, pp 56 – 64
give a full mathematical development). If the bar is
struck on its side, so that its vibration is like that
shown, the frequency of the nth mode of vibration will
be:

† 

fn =
pvK
8L2 m2

Where: v = the speed of sound in the material of
the bar (Some speeds for common
materials are shown in Table 7.1.)

Material Speed of sound, v  (m/s)

Pine wood 3300
Brass 3500
Copper 3650
Oak wood 3850
Iron 4500
Glass 5000
Aluminum 5100
Steel 5250

Table 7.1: Speed of sound for
sound waves in various materials
(Aski l l )

L = the length of the bar
m = 3.0112 when n = 1, 5 when n = 2,

7 when n = 3, … (2n + 1)

† 

K =
thickness  of  bar

3.46
 for rectangular bars

or

 K =

† 

(inner  radius)2 +  (outer  radius)2

2
for tubes

Do you get it? (7.1)
a. In the space below, draw the third mode of

vibration for a copper tube (both ends free), with
an outer diameter of 2.5 cm, an inner diameter of
2.3 cm and a length of 50 cm.

b. Now calculate the frequency of the second mode
for this bar.

Figure 7.1: First mode of vibration. This
is the simplest way for a bar or pipe t o
vibrate transversely in a standing wave
condition with both ends free. This mode
generates the fundamental frequency.

Bar length, L

Figure 7.2: Second mode of vibration.
This is the next simplest way for a bar
or pipe to vibrate in a standing wave
condition with both ends free. This
mode generates the first overtone.

Bar length, L
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BARS OR PIPES WITH ONE END
FREE

Another type of
vibration for bars is
when one of the ends is
clamped, like in a
thumb piano. The free
end is struck or plucked,
leading to a standing
wave condition in
which the constraint
is that the clamped
end is always a
node and the free
end is always an
antinode. The
simplest way the bar
can vibrate is with no additional nodes or antinodes
beyond the constraint. This produces the fundamental
frequency (see Figure 7.3).

The next mode of vibration, producing the next
higher frequency, is the one with two antinodes and
two nodes including the node and antinode at each end
(see Figure 7.4).

The expression for the nth frequency of the
clamped bar looks identical to that of the bar with free
ends. The only difference is in the value of “m”. If the
bar is plucked or struck on its side, so that its
vibration is like that shown, the frequency of the nth

mode of vibration will be:

† 

fn =
pvK
8L2 m2

Where: m = 1.194 when n = 1, 2.988 when n = 2,
5 when n = 3, … (2n - 1)

And all other variables are defined identically
to those of the bar with free ends equation.

Do you get it? (7.2)
a. In the space below, draw the third mode of

vibration for an aluminum bar, with a thickness
of 0.75 cm and a length of 50 cm.

b. Now calculate the frequency of the second mode
for this bar.

Figure 7.4: Second mode of vibration.
This is the next simplest way for a bar
or pipe to vibrate in a standing wave
condition with both ends free. This
mode generates the first overtone.

Bar length, L

Bar length, L

Figure 7.3: First mode of vibration. This
is the simplest way for a bar or pipe t o
vibrate transversely in a standing wave
condition with only one end free. This
mode generates the fundamental frequency.
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As mentioned earlier, the frequencies of the
modes of transversely vibrating bars and pipes are
different from those of vibrating strings and air
columns in that they are not harmonic. This becomes
obvious when looking at the last two equations for
transverse vibration frequency of bars and pipes. In
both cases, 

† 

fn µ m2 , where fn is the frequency of the
nth mode and m is related to the specific mode. For
transversely vibrating bars and pipes with free ends:

† 

f2

f1
=

52

3.01122 = 2.76 and 

† 

f3

f1
=

72

3.01122 = 5.40.

Do you get it? (7.3)
Use the space below, to calculate the relationships
between the frequencies of different modes of
transversely vibrating pipes and bars. Complete the
table below with your results.

TOWARD A “HARMONIC”
IDIOPHONE

It was shown earlier that a transversely vibrating
bar with both ends free to move has a second mode
vibration frequency 2.76 times greater than that of the
first mode. The third mode has a frequency 5.40 times
greater than that of the first mode. These are
obviously not harmonic overtones. Recall, that the
interval for one semitone on the 12-tone Equal
Tempered scale is 

† 

1.05946. And 

† 

1.05946( )12
= 2 .

This relationship can be used to find the number of
12-tone Equal Tempered semitones that separate the
modes of the transversely vibrating bar:

† 

log 1.05946( )12
= log 2  fi  12 log 1.05946( ) = log 2

† 

fi  log 2
log 1.05946( )

= 12 .

Or more generally, the number of 12-tone Equal
Tempered semitones for any interval is equal to:

† 

Equal  Tempered  semitones =
log interval( )
log 1.05946( )

So for the transversely vibrating bar the interval
between the first and second mode is:

† 

log 2.76( )
log 1.05946( )

= 17.6  semitones .

And the interval between the first and third mode is:

† 

log 5.40( )
log 1.05946( )

= 29.2  semitones .

These clearly do not match the 12 semitones of
the octave, the 24 semitones of two octaves or the 36
semitones of three octaves, but there are other
combinations of consonant intervals that could be
considered. 19 semitones would be equivalent to an
octave plus a fifth and 17 semitones would be
equivalent to an octave plus a fourth, either of which
would be consonant. And 29 semitones would be
equivalent to two octaves plus a fourth. This is pretty
close to the 29.2 semitones of the third mode, but it’s
really a moot point because the third mode ends up
dying out so quickly anyway. The real concern is for
the second mode which is much more persistent. The
second mode is not only inharmonic; it isn’t even
musically useful as a combination of consonant
intervals. This causes unmodified idiophones to have
less of a clearly defined pitch than harmonic

Both Ends Free One End Free
Mode Multiple

of f1

Mode Multiple
of f1

1 1 1 1
2 2.76 2
3 5.40 3
4 4
5 5
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instruments. However, a simple modification can be
made to the bars of xylophones and marimbas to
make the second mode harmonic.

Figures 7.1 and 7.2 show that the center of the
transversely vibrating bar is an antinode in the first
mode and a node in the second mode. Carving out
some of the center of the bar makes it less stiff and
decreases the frequency of the first mode. However, it
has little effect on the second mode, which bends the
parts of the bar away from the center. An experienced
marimba builder can carve just the right amount of

wood from under the bars so that the first mode
decreases to one-quarter of the frequency of the second
mode (see Figure 7.5). The xylophone maker carves
away less wood, reducing the frequency of the first
mode to one-third the frequency of the second mode.
Both modifications give the instruments tones that
are clearly defined, but the two octave difference
between the first two modes on the marimba gives it
a noticeably different tone than the xylophone’s
octave-plus-a-fifth difference between modes.

Figure 7.5: The second mode o f
xylophone and marimba bars i s
made harmonic by carving wood
from the bottom center of the bar.
This lowers the fundamental
frequency of the marimba bars t o
one-quarter the frequency of the
second mode and lowers the
fundamental frequency of the
xylophone bars to one-third the
frequency of the second mode.

David Lapp
View a 20 minute movie about the Javanese Gamelan. Click the box above.
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INVESTIGATION
THE HARMONICA

INTRODUCTION
Many people may consider the harmonica to be a

wind instrument. But the harmonica makes all its
sound by means of reeds, bound at one end, that are
driven to vibrate by the breath of the player. There are
no resonant tubes or pipes. In the photograph above
you can see ten holes in the front of the harmonica
through which you can either blow air into or draw
air from.

The harmonica’s history can be traced back to a
musical instrument called the “aura.” In 1821, 16-
year-old Christian Friedrich Buschmann registered the
aura for a patent. His instrument consisted of steel
reeds that could vibrate alongside each other in little
channels. Like the modern design, it had blow notes.
However, it had no draw notes. Around 1826 a
musical instrument maker named Richter changed the

design to its modern style – ten holes with 20 reeds,
and tuned to the diatonic scale (Buschmann’s design
used the chromatic scale).

For as little as $2.00 apiece educators may
purchase inexpensive harmonicas from Hohner, Inc.

Hohner        Contact   :
Johnna Cossaboon
Marketing Communications Manager
Hohner, Inc./HSS
1000 Technology Park Drive
Glen Allen, VA  23059
804-515-1900 ext. 3043
804-515-0840 FAX
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QUESTIONS AND CALCULATIONS

1. If the chrome cover is taken off the harmonica, the reed plates can be seen, joined to the comb. The top
photograph shows the top of the harmonica. Notice that you can see the channels in which the blow reeds
vibrate. The reeds are attached to
the underside of the metal plate
and if you look carefully, you
can see the point of attachment.
The free end of the blow reed is
the end farthest from where the
mouth blows. If the harmonica
is now turned over, it appears as
the bottom photograph and you
can see the draw reeds above the
channels in which they vibrate.
You can also see the points of
attachment. The free end of the
draw reed is the end closest to
where the mouth blows.
Plucking the reeds produces a
sound that is hardly audible.
a. Use the photographs to

explain how the reeds are
driven to vibrate and what
the mechanism is for the production of sound from the harmonica?

b. Why must the reeds be mounted on the particular sides of the reed plates that they are attached to?

comb Reed point of attachment

Top
view

Bottom
view
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2. A close look at the draw reeds
shows that they all have evidence
of being filed (the blow reeds do
too). Some of the reeds are filed
up near the point of attachment
and others have been filed at their
free ends. Some reeds are filed in
both regions. The file marks
have the appearance of being
random, but they are actually intentional. Filing the
end of a reed causes it to behave like a shorter reed.
Filing the reed near the point of attachment causes it
to behave like a thinner reed.
a. What does filing the end of a reed do to the

frequency of the reed when it is vibrating?

b. What does filing the reed near the point of attachment do
to the frequency of the reed when it is vibrating?

c. In the magnified section, you can see that the reed on the left has been filed at both the end and near the
point of attachment. The end shows a greater degree of filing. Propose a scenario to explain why both
parts of the reed would be filed and why the end would have a greater degree of filing done on it.
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3. The lowest note on this harmonica is C4. The length of this reed is 1.60 cm. How long would a reed
identical to those in this harmonica need to be to play C3?

4. The blow and draw notes for the C major harmonica are shown on the photograph on the first page of this
activity. There are three ways to look at the organization of notes on the harmonica. One way is as a
system of chords (two or more consonant notes played at the same time). A second way to look at the note
structure is by thinking of it as based around the major scale. Finally, the harmonica can be thought of in
terms of an abundance of octaves. Explain how each of these viewpoints is valid. Remember that you can
get your mouth around multiple holes and you can also use your tongue to block air from moving through
unwanted channels.
a. A system of chords

b. The major scale

c. An abundance of octaves
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5. The figure below shows an E major harmonica. The first draw hole note is an E. Use your answers from the
previous question to decide on and fill in the other blow holes and all the draw holes. Use the space below
the figure to fully explain your rationale.

E

E
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INVESTIGATION
THE MUSIC BOX ACTION

INTRODUCTION
The heart of any music box is the action. One part of the action consists of a small metal cylinder with tiny

metal projections attached to it. The other part of the action is a flat piece of metal with a set of thin metal tines,
each of which can be plucked by the metal projections on the cylinder as it turns. In most cases the drum is attached
to a coiled spring, which can be wound up to provide energy for the drum to rotate for a few minutes. When the
action is firmly attached to the music box and wound up, it will play a clearly audible and recurring tune during the
time the drum is in motion. Click    here    to hear this music box action. An inexpensive action can be purchased for
$3.75 or only $1.85 each when ordering 50 or more at: 
http://www.klockit.com/product.asp?sku=GGGKK&id=0309301913064849755057   

Rotating metal
cylinder with
metal stubs.

Metal plate
with bendable
metal tines.

Spring-driven
drive turns the
metal cylinder

Gap between
the cylinder
and the tines is
too small for
the metal stubs
to pass freely.

http://www.klockit.com/products/dept-166__sku-GGGKK.html
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QUESTIONS AND CALCULATIONS (SHOW ALL WORK)
1. What type of musical instrument classification fits the music box action? Be specific, indicating the

vibrating medium.

2. What is the means for changing the pitch of the music box?

3. How many different tones are possible with this particular music box action? Explain.

4. Each tine actually creates a pitch one semitone different from its adjacent tines. The longest of the tines
creates a C5 pitch. If the tines were all uniformly thick, what percentage of the length of the longest tine
would the shortest tine be?
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5. The photograph to the
right shows the
underside of the metal
plate holding the tines.
The measurement
increments are
millimeters. How does
the percentage of the
length of the shortest
tine compare to your
calculation in the
previous problem.

6. Explain the reason for
the discrepancy.

For the last two problems, assume the metal is steel and the tines are uniformly thick.
7. What would be the thickness of the longest tine?

8. What note would the shortest tine actually play?
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BUILDING A COPPER PIPE XYLOPHONE

OBJECTIVE:
To design and build a xylophone-like musical

instrument based on the physics of musical scales and
the physics of the transverse vibrations of bars and
pipes.

MATERIALS:
• One 10-foot long piece of 1/2” copper pipe
• Pipe cutter
• Rubber foam self stick weather seal
• Metric ruler or tape

PROCEDURE
The 10-foot piece of copper is long enough to

make a full C5 (or higher) major scale, plus one pipe
an octave higher than the lowest note. There will still
be pipe left over to use as a mallet. To determine the
lengths of the pipes, you will use the equation for the
frequency of a pipe with transverse vibrations:

† 

fn =
pvL K
8L2 m2

1. Measure the inner and outer diameter of the pipe to the nearest half-millimeter. Use the corresponding radii
to calculate the radius of gyration (K)

2. Decide what notes the xylophone will play. The xylophone pictured above consists of the C5 major scale
plus a C6 note (C5, D5, E5, F5, G5, A5, B5, C6) on the Equal Tempered scale. If a full chromatic scale or
more than one octave is desired a higher scale must be chosen.

3. Calculate the frequencies you will use.     Do       all       calculations       and       check        work       b      efore        making       any       cuts   .

4. The speed of sound in copper is 3650 m/s. Calculate the length of each of your pipes to the nearest
millimeter, assuming the first mode of vibration.

5. Carefully cut each of the pipes. Make sure that each pipe is cut precisely to the number of millimeters
calculated. Mistakes in this part of the procedure are not correctable and will be audibly detectable.

6. Measure in 22.4% of its length from both ends of each pipe and place a mark. These are the positions of the
nodes in the standing wave for the first mode of vibration.

7. Cut two 3-cm pieces of the foam weather strip for each pipe and attach at the nodes of the pipes. Place each
pipe on a surface so that it rests on the weather seal.

8. Cut two 20-cm pieces of copper pipe from what is left of the 10-foot piece. These will be the mallets for
the xylophone. Wrap one end of each mallet several times with office tape. The more tape used, the
mellower the tone.

9. Play the xylophone! You can play tunes and experiment by listening to octaves, fifths, fourths, and other
intervals.

This “xylophone,” made from a s ingle
10-foot length of 1/2” copper pipe plays
the C5 major scale.



REFERENCES
AUTHOR TITLE PUBLISHER COPY-

RIGHT
COMMENTS

Askill, John Physics of Musical Sounds D. Van Nostrand Company,
Inc., New York

1979 Chapter 5 has the nicest inductive approach to scale building
of the bunch. Sound spectra provided for dozens of
instruments. Lots of good practice questions at the ends of the
chapters.

Backus, John The Acoustical
Foundations of Music

W. W. Norton & Company,
Inc., New York

1969 This is one of the “classics” on musical acoustics. It is
comprehensive, but very readable. Backus gives considerable
detail to the sound production of many instruments.

Benade, Arthur H Fundamentals of Musical
Acoustics

Oxford University Press,
New York

1976 This is the most classic book on musical acoustics. Chapters
17 – 24 give an exhaustive, yet very readable treatment of
many musical instruments. Benade’s experimental results are
widely used as references in other books, but the treatment is
more complete here.

Berg, Richard E
Stork, David G

The Physics of Sound Prentice Hall, Inc., NJ 1982 Chapter 9 covers musical scale development very completely.
Chapters 10 – 14 also do a very complete conceptual coverage
of various classes of musical instruments.

Fletcher, Neville H
Rossing Thomas D

The Physics of Musical
Instruments

Springer-Verlag, New York 1998 Especially technical treatment from first principles of most
classes of musical instrument. Its mathematical rigor makes it
unsuitable for those without an extensive and strong
background in calculus.

Gibson, George N
Johnston, Ian D

“New Themes and Audiences
for the Physics of Music”

Physics Today January
2002

A seven-page article discussing the development of a
university musical acoustics course for non-science majors.

Hall, Donald E Musical Acoustics (third
edition)

Brooks/Cole, Pacific Grove,
CA

2002 A very thorough modern textbook with an excellent breadth of
and depth into musical topics. End of chapter exercises and
projects are perfect for generating ideas. Highly recommended.

Hopkin, Bart Musical Instrument Design See Sharp Press, Tucson, AZ 1996 An excellent resource for those interested in building a wide
range of musical instruments with lots of “tricks of the trade.”
It is not just a “cookbook” style of construction, but explains
the physics as well.

Hopkin, Bart Making Simple Musical
Instruments

Lark Books, Asheville, NC 1995 Great illustrations and photographs complement this
collection of about 20 very eclectic instruments. Step-by-step
instructions, as well as difficulty level, accompany each
instrument.
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Hutchins, Carleen M
(provides
introduction)

The Physics of Music:
Readings from Scientific
American

W. H. Freeman and
Company, San Francisco

1978 Five slim chapters on different classes of instruments that are
both conceptually and technically very strong and appropriate
for the high school level.

Johnston, Ian Measured Tones: The
Interplay of Physics and
Music

Institute of Physics
Publishing, London

1989 Pretty standard content for a book on musical acoustics, but
not as thematic and predictable as other similar works.
Johnston gives considerably more attention to the historical
development of the physics of music.

Moravcsik, Michael J Musical Sound: An
Introduction to the Physics
of Music

Paragon House Publishers,
New York

1987 This book assumes the reader has NO knowledge of music,
physics, or any math higher than simple computation. It is a
great comprehensive reference for the non-science reader.

Neuwirth, Erich Musical Temperaments Springer-Verlag/Wien, New
York

1997 A thin volume (70 pages) that provides a very complete
coverage of the characteristics of musical scales, but nothing
else. Comes with a CD-ROM (PC only) containing sound
files.

Rossing, Thomas D
Moore, Richard F
Wheeler, Paul A

The Science of Sound (third
edition)

Addison Wesley, Reading,
MA

2002 This is an exhaustive “must have” resource. The Science of
Music and Musical Instruments would describe the book
better. Well suited for high school through graduate school.
Highly recommended

Sethares, William A Tuning, Timbre, Spectrum,
Scale

Springer-Verlag, London 1997 Chapter 3 (Musical Scales) does an excellent and
mathematically exhaustive treatment of various scales. The
rest is beyond the scope of the high school student.

Taylor, Charles Exploring Music: The
Science and Technology of
Tones and Tunes

Institute of Physics
Publishing Inc., Philadelphia

1992 Excellent explanation of the shortcomings of various scales.
Excellent survey of the physics of many instruments.

Waring, Dennis Making Wood Folk
Instruments

Sterling Publishing Co.,
Inc., New York

1990 Chapters for simple stringed, wind, and percussion
instruments as well as a chapter for more complex stringed
instruments. Lacking physical explanations, it is fairly
“cookbook” in style. A good source for ideas though.

White, Harvey E
White, Donald H

Physics and Music:
The Science of Musical
Sound

Saunders College/ Holt,
Rinehart and Winston,
Philadelphia

1980 This is really the Physics of Waves with a strong emphasis
on Music. Good, comprehensive coverage, but the Doppler
Effect and Interference seem a bit out of place here.

Yost, William A Fundamentals of Hearing Academic Press, San Diego 2000 Technical and exhaustive treatment of all aspects of hearing.
Teachers may be most interested in the physiology of the ear,
which is treated here in much greater depth than in a typical
acoustics book
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PHYSICS OF MUSIC AND MUSICAL INSTRUMENTS WEBSITES
Website Address Description Comments

http://asa.aip.org/discs.html   Auditory Demonstrations
compact Disc

This is the least expensive ($26) place to find this CD-ROM of very useful
auditory demonstrations. It includes 39 demonstrations and is produced by the
Acoustical Society of America.

http://hyperphysics.phy-   
astr.gsu.edu/hbase/sound/soucon.h   
tml#c1   

The sound and hearing portion of
Georgia State University’s
Hyperphysics project

Nice tutorials on many topics within sound and hearing, including much on the
physics of music. Concise, navigable, and some interactivity. Students would
benefit from exploring this site.

http://www.angelfire.com/tx/myq   
uill/Harmonica.html   

Diatonic Harmonica Reference A comprehensive treatment of the harmonica

http://www.bashthetrash.com    Musical instrument construction
from recycled/reused materials

This is a non-technical, but useful site to get some ideas for building different
types of musical instruments from very inexpensive items (many you would
normally throw away) around most any house.

http://www.carolenoakes.co.uk/In   
strumentLibrary.htm    

Photographs of musical
instruments

There are many high quality photographs here of musical instruments by their
class. While there are no descriptions, all images are clickable to reveal larger
versions

http://www.exhibits.pacsci.org/m    
usic/Instruments.html   

Musical instrument families This is a nice glossary of information about the various musical instrument
families that includes the following sections for each family:

• How the sounds are made
• How the pitch is changed
• Examples of instruments in the family

http://www.klockit.com/product.a   
sp?sku=GGGKK&id=0309301913   
064849755057   

Music box actions A page from Klockit.com where music box actions can be purchased for $3.75
each or as low as $1.85 each when purchased in lots of 50 or more.

http://www.mfa.org/artemis/collec   
tions/mi.htm    

Online collection of musical
instruments from the Boston
Museum of Fine Arts

A wide variety of musical instruments from many cultures can be viewed here.
Images are high resolution and can be zoomed.

http://www.physicsclassroom.co   
m/Class/sound/soundtoc.html   

A tutorial on sound waves and
music from The Physics
Classroom

A fairly detailed set of tutorials geared for the high school audience. Good
reinforcement with many animations and multiple choice, check-yourself
problems.
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http://www.ehhs.cmich.edu/~dhav   
lena/   

Homepage of an amateur musical
instrument maker

There are dozens of plans here for making simple musical instruments. There are
also lots of links to other musical instrument building sites.

http://www.phys.unsw.edu.au/mu   
sic/   

Homepage for the University of
South Wales Music Acoustics
website

An excellent site for in depth study of many classes of instruments and individual
instruments. There are many sound files (mp3’s and wav’s) that are available as
demonstrations. Many, many good links as well.

http://www.Pulsethemovie.com/   Homepage for the large screen
movie, Pulse

An excellent movie that explores the rhythmic music from many different
cultures. It will change the way in which you look at and describe music. The
website includes a 25-page curriculum guide probably most appropriate for middle
school students.

http://www.stomponline.com/   Homepage for the stage
performance, STOMP

The performers do a 95-minute show celebrating rhythm. As the website says,
“STOMP is a movement, of bodies, objects, sounds - even abstract ideas. But
what makes it so appealing is that the cast uses everyday objects, but in non-
traditional ways.” The website also has educational materials related to the show.

http://www.synthonia.com/artwhi   
stling/   

A history of and physical
description of human whistling.

This is a mostly historical, but comprehensive coverage of Kunstpfeifen
(“artwhistling”). Very little is written about one of the most available and used
musical instruments – the human whistle. This is a nice overview.

http://www.tuftl.tufts.edu/mie/   Homepage for the Musical
Instrument Engineering Program
at Tufts University

The Musical Instrument Engineering Program at Tufts University is a both a
research and teaching program. It contains useful information for those interested
in developing a program for designing musical instrument and understanding
musical acoustics.

http://www.windworld.com    Homepage for Experimental
Musical Instruments

Experimental Musical Instruments is an organization devoted to unusual musical
sound sources. There is a quarterly newsletter, an online store with many books,
CD’s, and supplies, lots of interesting articles and an especially impressive list of
links to those active in the field of experimental musical instruments.
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PHYSICS OF MUSIC RESOURCE VENDORS

VENDOR PRODUCT AND COST COMMENTS

Arbor Scientific
PO Box 2750
Ann Arbor, MI  48106-2750
800-367-6695
http://www.arborsci.com/Products_Pages/So   
und&Waves/Sound&WavesBuy1B.htm    

Sound Pipes
1-11 $2.75 each
12 $1.95 each

These open-ended corrugated plastic pipes are about 30” long and 1” in diameter. A
fundamental tone is produced when the sound pipe is twirled very slowly. Twirling
at progressively higher speeds allows for the production of the next four harmonics
(although the advertised fifth harmonic is quite hard to get). These are a lot of fun
and very useful for talking about harmonics and the physics of open-end pipes.

Candy Direct, Inc.
745 Design Court, Suite 602
Chula Vista, CA 91911
619-374-2930
http://www.candydirect.com/novelty/Whistle-   
Pops.html?PHPSESSID=f5df897f67e7d525ea   
dbcedfe4703e96   

Whistle Pops
32 $16.45

These are candy slide whistles that really work. However, since they are candy
(except for the slide), once you use them you have to either eat them or dispose of
them.

Century Novelty
38239 Plymouth Road
Livonia, MI 48150
800-325-6232
http://www.CenturyNovelty.com/index.aspx?   
ItemBasisID=444478&IndexGroupID=27&Ite   
mID=259422    for siren whistles
or
http://www.CenturyNovelty.com/index.aspx?   
ItemBasisID=824&IndexGroupID=27&ItemI   
D=744    for two tone whistles

2” Siren Whistles
1-11 $0.59 each
12-35 $0.40 each
36+ $0.30 each

Two tone Whistles
1-11 $0.12 each
12-35 $0.10 each
36+ $.06 each

These 2” long Siren Whistles are fun to play with, can be used to discuss the
production of sound, and can be used to discuss the siren effect that harmonicas and
accordions use to produce tones.

The Two Tone Whistles are 2.5” long and almost an inch wide. They are cheaply
made, but can still be used when discussing closed pipes, beats, and dissonance.

Creative Presentation Resources, Inc.
P.O. Box 180487
Casselberry, FL 32718-0487
800-308-0399
http://www.presentationresources.net/tfe_mus   
ic_noisemakers.html   

Groan Tubes
$1.29 each

Plastic Flutes
$0.99 each

The Groan Tubes are 18 inches long and have a plug inside that can slide down the
tube whenever it is inverted. The plug is equipped with a reed that vibrates as air
moves past it as the plug slides down the tube. The tube is closed acoustically at
one end and open at the other. The changing pitch produced as the plug moves down
the tube makes it useful for investigating the relationship between pitch and length
in a closed pipe.

http://www.arborsci.com/Products_Pages/Sound&Waves/Sound&WavesBuy1B.htm
http://www.candydirect.com/novelty/Whistle-Pops.html?PHPSESSID=f5df897f67e7d525eadbcedfe4703e96
http://www.CenturyNovelty.com/index.aspx?ItemBasisID=444478&IndexGroupID=27&ItemID=259422
http://www.CenturyNovelty.com/index.aspx?ItemBasisID=824&IndexGroupID=27&ItemID=744
http://www.presentationresources.net/tfe_music_noisemakers.html


Hezzie Group
3322 Sleater Kinney Road NE
Olympia, WA 98506
360-459-8087
http://www.hezzie.com/cgi-   
bin/shop.pl/page=hezzieinstruments.html   

Plastic Slide Whistles
1-23 $1.25
24 $20.00

The Slide Whistles are very cheaply made and do not work very well as slide
whistles. However, if the end of the whistle is cut off and the slide removed, the
whistles can be used to explore the differences between open and closed pipes (see
this article).

Johnna Cossaboon
Marketing Communications Manager
Hohner, Inc./HSS
1000 Technology Park Drive
Glen Allen, VA  23059
804-515-1900 ext. 3043

Harmonicas
$2.00 each

(This is an educational price
that you can receive by
contacting the Marketing
Communications Manager
directly)

These harmonicas are exceptionally well made for the cost. They can be dissected to
investigate the physics of vibrating bars. Although the harmonica’s reeds are driven
continuously with air, as opposed to the plucked bars in a thumb piano the physics
is very similar. Additionally, the process of tuning a bar can be investigated, since
nearly all the reeds show evidence of scraping at the base or the tip in order to flatten
or sharpen the note. Finally, musical intervals can be investigated while studying
the rationale for the placement of the notes.

Klockit
N2311 County Road H
P.O. Box 636
Lake Geneva, WI 53147
800-556-2548
http://www.klockit.com/products/dept-   
166__sku-GGGKK.html   

Music Box Actions
1-4 $3.75 each
5-9  $2.95
10-24 $2.55
25-49 $2.25
50+ $1.85

The Music Box Actions are an excellent resource for both introducing the physics of
sound production, the use of a sound board for amplification, and for showing the
relationship between the length of a vibrating bar and the corresponding frequency of
vibration. There are many tunes to choose from and orders of mixed tunes can be
made. Choose actions with housings that can be removed.

Talking Devices Company
37 Brown Street
Weaverville, NC 28787
828-658-0660
http://www.talkietapes.com/   

Talkie Tapes (sample packs)
2 $2.00
50 $20.00
75 $30.00
100 $40.00
125 $50.00
Lots of other ordering
options are also available

These Talkie Tapes are 18” long red plastic strip audio recordings. They have ridges
on one side and running a thumbnail over the ridges causes an audible message to be
heard (“happy birthday,” for example). Doing this while holding the tape against a
plastic cup or piece of paper causes considerable amplification. These are very
surprising for those who have never seen them before and an excellent tool for
discussing sound production, sound-board amplification, and the physics of
phonograph records..

The Nash Company
2179 Fourth Street
Suite 2-H
White Bear Lake, MN USA 55110
http://www.nashco.com/noseflutes.html   

4 $3.40
8 $6.40
12 $9.25
24 $18.00
48 $35.00
100 $70.00

Nose Flutes have physics that is similar to the slide whistle. The one-piece plastic
device fits over the nose and partially open mouth. Blowing gently through the nose
causes air to be directed across the opening of the mouth. Changing the shape
(length) of the mouth (which is the resonant cavity in this wind instrument) causes a
change in pitch. This provides for a very tactile reinforcement of the relationship
between the length of a closed pipe and its corresponding resonant frequency.
Extensions can also be made to the physics of whistling.

http://www.hezzie.com/cgi-bin/shop.pl/page=hezzieinstruments.html
http://www.klockit.com/products/dept-166__sku-GGGKK.html
http://www.talkietapes.com
http://www.nashco.com/noseflutes.html


“In most musical instruments
the resonator is made of
wood, while the actual sound
generator is of animal origin.
In cultures where music is
still used as a magical force,
the making of an instrument
always involves the sacrifice
of a living being. That being’s
soul then becomes part of the
instrument and in times that
come forth the “singing
dead” who are ever present
with us make themselves
heard.”
- Dead Can Dance
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