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Abstract 

This article presents the solution to the problem of scalar longitudinal waves within the framework of 

electromagnetic potential A  without introducing any additional members into the canonical field 

Lagrangian or the Maxwell equations that ensure the existence of a longitudinal wave component. The Lame 

equation for the electromagnetic field is obtained, which describes transverse and longitudinal waves, as well 

as the Fock-Podolsky wave equation for longitudinal electroscalar waves that do not have a magnetic 

component.  It is shown that the terms of the Lorentz gauge condition describe a four-dimensional volume 

deformation of the electromagnetic field. 
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1. Introduction 

There is a problem of longitudinal waves in electrodynamics. From the perspective of 

quantum electrodynamics, the transmission of the Coulomb force is produced by longitudinal 

photons. However, according to Maxwell’s theory of the electromagnetic field (EMF), 

electromagnetic waves are transverse, and a plane electromagnetic wave in a vacuum does not have 

a longitudinal component. Therefore, in quantum electrodynamics the transmission of the Coulomb 

force is performed by zero-spin transverse photons, which are considered «unphysical». However, 

the longitudinal interaction itself is physically observable, and real longitudinal scalar waves are 
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needed to explain its propagation in space with finite velocity. Hence, numerous attempts to extend 

the standard electrodynamics have been made since Omura (1956), Aaronov and Bohm (1963), and 

others until a recent review and analysis of this problem by Modanes (2017). Recent years articles 

[1-9] are devoted to the problem of the existence of scalar longitudinal waves. The results of 

experiments on the detection of scalar longitudinal waves of artificial and natural origin are 

described in [10-13]. 

All attempts to introduce a scalar component into electrodynamics can be divided into two 

the path. On the first the path (Omura, Aaronov and Bohm, Fok and Podolsky, and others) new 

terms are introduced into the Lagrangian of the electromagnetic field, which ensure the appearance 

of a longitudinal component in the equations of field motion. On the second the path new scalar 

terms that provide a description of the longitudinal waves are introduced into Maxwell‘s equations, 

on the basis of their gradient invariance. For this purpose, either the scalar potential of a new 

physical field [8, 9] is introduced into Maxwell’s equations or the already known electromagnetic 

potential [2-6] is used, Thus, all known attempts to solve the problem are reduced to the 

introduction of new additional terms into Lagrangian or into the EMF equations. 

The existence of longitudinal expansion/contraction waves implies the existence of an 

elastic continuum (electromagnetic vacuum). However, in Maxwell's theory the electromagnetic 

vacuum is incompressible. This property is reflected in the EMF description in the form of an 

antisymmetric tensor the trace of which equals  zero. Hence, attempts have been made to introduce 

an elastic continuum by analogy with a continuous elastic medium. An example would be 

electrodynamics based on Foka-Podolsky Lagrangian [7], in which an electromagnetic analogue of 

the Lame equation or the dynamic Navier-Stokes equation is constructed. This representation of an 

elastic continuum corresponds to the ideas accepted in quantum electrodynamics in regard to 

electromagnetic vacuum as plasma, consisting of virtual electrons and positrons.  In such plasma, 

transverse and longitudinal waves can propagate.  

In electrodynamics, there is also a problem of violation of Newton's third law related to the 

longitudinal interaction of currents. This led to the appearance of a hypothesis about the existence 

of a «scalar (potential) magnetic field» [15], introduction of which into Maxwell's electrodynamics 

makes it possible to preserve the fulfillment of Newton's third law and describe the longitudinal 

interactions of currents. The existence of the "scalar magnetic field" is confirmed by different 

authors who have conducted experiments on the longitudinal interaction of currents [14-16]. 

In the articles [8, 9] the problem of longitudinal interaction is solved by introducing of the 

four-dimensional scalar potential of a new physical field into the electrodynamics This scalar 

potential is independent and is not related to Maxwell's electromagnetic potential by differential 
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relations. The connection between this potential and the classical theory is realized at the level of 

sources of the electromagnetic field - charges and currents. Thus, this is an additive theory in regard 

to the Maxwell’s theory. However, the introduction of new physical entities makes sense only when 

the solution to the problem is impossible in other ways. 

The aim of this article is to solve the problem of scalar longitudinal waves within the 

framework of the canonical electromagnetic potential A  without introducing any additional terms 

into Lagrangian or into the EMF equations that ensure the existence of a longitudinal wave 

component.  

EMF and electric charges are considered in a vacuum. The space-time geometry is taken in 

the form of pseudo-Euclidean Minkowski space (ct, ix, iy, iz). The four-dimensional 

electromagnetic potential is defined as ),/( AA ic , where φ and A are the scalar and vector 

potentials of the EMF. The four-dimensional current density is defined as ),( JJ ic , where ρ and 

J are the electric charges density and current density. 

 

2. Antisymmetric tensor of the electromagnetic field and Maxwell's equations 

EMF in four-dimensional form is described by the canonical antisymmetric tensor of the 

second rank: 

 AA ][F       (1) 

This antisymmetric tensor is a four-dimensional (covariant) rotor the components of the tensor 
][F  

are the derivatives of the scalar φ and vector A of EMF potentials, which are defined as the strength 

components of the electric field E and the magnetic field induction B: 

AE t    zxyyxyzxxzxyzzy AAAAAA )()()(  AB  

The Maxwell’s equations are obtained from the tensor (1) in the form of its four-dimensional 

divergence under one of the indices to which the field source is equated [17] 


J ][F . Let us 

write these equations in vector form: 

0/ E    or  0/  At     (2) 

JEB  02

1
t

c
  or  JAA  022

11
ttt

cc
 (3) 

 From the EMF tensor (1), in the form of the well-known tensor identity 

0  FFF  for an antisymmetric tensor, follow two more of Maxwell’s equations: 

   0 B  or  0)(  A      (4) 
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0 BE t  or  0 AA tt

 
  (5) 

 

3. Asymmetric and symmetric tensors and Lagrangians of the electromagnetic field 

For the existence of longitudinal waves of expansion/contraction of EMF, there must be an 

elastic continuum (electromagnetic vacuum). In the theory of continuous media, an elastic medium 

is described by a symmetric tensor.  Let us consider the possibility of describing such an 

environment for EMF The definition of a canonical antisymmetric tensor  AA ][F  

includes an asymmetric tensor of the second rank
 A , which is a four-dimensional derivative of 

the electromagnetic potential. Let us denote it as  AF  and write this tensor in the matrix 

form: 


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













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zzyzxzz

zyyyxyy

zxyxxxx

ztytxtt
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1
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    (6) 

This asymmetric tensor can be uniquely decomposed into symmetric and antisymmetric tensors 

2/2/ )(][  FFF   . Then the canonical antisymmetric EMF tensor can be written in the form 

)(][ 2  FFF  . It is clear from this decomposition that, in addition to the antisymmetric tensor 

 AA ][F , one can justifiably include a symmetric tensor  AA )(F  into the 

EMF description, more precisely, this tensor is implicitly contained in the canonical description of 

EMF 
)(][ 2  FFF  . In the theory of continuous media, the antisymmetric displacement tensor 

of a medium is associated with its rotation as a whole, and the symmetric tensor is connected by 

longitudinal and shear deformations of the medium. Using this analogy, the antisymmetric tensor 

][F , which is a four-dimensional covariant rotor, can be associated with the four-dimensional 

rotation of the EMF, and the symmetric tensor )(F  can be associated with four-dimensional 

deformations of the EMF. Let us write the symmetric EMF tensor )(F  in the matrix form: 


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


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
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
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




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yzzyyyxyyxyyt

xzzxxyyxxxxxt

zztyytxxtt
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c

AAAAAAi
c

AAAAAAi
c

Ai
c

Ai
c

Ai
cc

2)()()(
1

)(2)()(
1

)()(2)(
1

)(
1

)(
1

)(
11

2
2

)(









F

  (7) 
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The diagonal components of this tensor describe a four-dimensional volumetric deformation of the 

EMF and represent a four-dimensional divergence of the electromagnetic potential 


A . The 

Lorentz gauge condition   0 


A  is widely used in electrodynamics. Thus, the physical essence of 

the Lorentz gauge condition is the elimination of four-dimensional volume deformation from the 

EMF equations. Naturally, when the condition 0 


A , is imposed, longitudinal waves and 

interactions of longitudinal currents are excluded from electrodynamics. 

The divergence of the electromagnetic potential 


A  is a scalar and is used in most research 

papers to modify the Maxwell’s equations. This is done by introducing its three-dimensional terms, 

in the form of additional terms, into Maxwell's equations. Since this divergence is already contained 

in the EMF equations, its reintroduction is pointless. 

  The energy-momentum tensor 
][][  FFT AS  corresponds to the antisymmetric tensor 

 AA ][F  obtained in [18]. From this energy-momentum tensor, in the form of its linear 

invariant, follows the canonical Lagrangian of free EMF: 

)/(
2

1
])(2/)(2[

4

1 222222 BcEcL tAS  AA   

The symmetric tensor  
 AA )(F  describes the four-dimensional deformation of the 

EMF. This tensor corresponds to the energy-momentum tensor describing this deformation energy. 

The energy-momentum tensor is obtained from the tensor )(F  by the method described in [18] 

)()(  FFT S . From this energy-momentum tensor, in the form of its linear invariant, follows the 

EMF Lagrangian associated with the four-dimensional deformation of EMF: 

])()(
1

2)
1

2[(
4

1 22

2

2

2 ikkittS AA
cc

L   A  

The description of the total energy of the EMF can be obtained in the form of an energy-momentum 

tensor following from an asymmetric tensor  AF . A linear invariant of the energy-momentum 

tensor 
 FFT NS  is the total Lagrangian of EMF associated with the four-dimensional 

deformation and the EMF rotation: 

)(
1

2)
1

(
2

2

2 ikkittNS AAA
cc

L    

It is obvious that LNS=LAS+LS. The components of the Lagrangians LS, LAS and LNS present the 

components of the EMF energy. The components of the LAS represent the energy of the four-

dimensional rotation of the EMF. The components LS represent the energy of four-dimensional 
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deformation of EMF. The components of the LAS are components of the total energy of the EMF. It 

is interesting to note that in the complete Lagrangian LNS there are no constituent parts of the total 

energy 2)( At and 2)(  . This is due to the fact that these types of energy are included into 

Lagrangians LS and LAS with different signs hence, these types of energy are fictitious. Lagrangians 

LS, LAS and LNS can be applied in quantum electrodynamics. 

 

4. The equations of the electromagnetic field and longitudinal waves 

The total four-dimensional divergence of the symmetric tensor )(F  can be nonzero, so we 

equate it with the four-dimensional source of EMF 






J 2/)( FF  This equation is 

equivalent to the equations 


JAA  )(  and 


J )(F . Let us write down this four-

dimensional divergence of the symmetric tensor in three-dimensional form: 

02
/

1
2   Attt

c
      (8) 

JAAA  022

1
)(

1
ttt

cc
     (9) 

Eq. (8) is scalar and analogous to the Maxwell’s Eq. (2).  Eq. (9) is a vector equation and analogous 

to the Maxwell’s Eq. (3).  Eq. (9) can be written in the form: 

      ttt ccc JAAA
2

0

22 )(2    (10) 

In this form Eq. (10), represents  a complete electromagnetic analogue of the Lame equation or the 

Navier-Stokes dynamic equation describing the wave motion of a continuous medium in the linear 

theory of elasticity [19]: 

GUUU  2

2

2

1 )( tt
 

where U is the displacement vector of the medium, υ1 is the velocity of longitudinal waves, υ2 is 

the velocity of transverse waves, and G is the external forces. A comparison of the Lame equation 

with Eq. (10) shows that the propagation velocity of longitudinal EMF waves is c 21 . By the 

methods adopted in the theory of elasticity [19], the waves described by Eq. (10) can be 

decomposed into longitudinal and transverse waves. In the articles [8-9], the Lame equation was 

taken as the basis for constructing electrodynamics with a longitudinal component. For this purpose 

a new independent scalar potential is introduced in electrodynamics. In our case, the 

electromagnetic analogue of the Lame equation for EMF automatically follows from the EMF 

tensor without resorting to any additional physical entities and hypotheses, Thus, Eq. (10) shows 
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that the electromagnetic analogue of the Lame equation already exists in electrodynamics and its 

introduction with the help of field Lagrangian is not required. 

For the static case, Eqs. (8) and (10) can be written in the form: 

0/        (11) 

JAA  0)(2       (12) 

Eq. (11) for the static case coincides with the Maxwell‘s Eq. (2) and describes the Gaussian law for 

a constant potential electric field. The Eq. (12) differs from the Maxwell’s Eq. (3) for the stationary 

case by the presence of the first term with the divergence of the vector potential. This term 

represents the gradient of the hypothetical «scalar (potential) magnetic field» introduced by 

Nikolaev [15] into Maxwell's Eq. (3) in order to explain the longitudinal interaction between steady 

currents and the observance of Newton's third law in electrodynamics. Eq. (12) coincides with the 

equation given in [16]. In this paper, Eq. (12) was constructed empirically on the basis of 

experimental results by supplementing the Maxwell‘s equation.  In this article Eq. (12) is obtained 

strictly mathematically, as a consequence of the divergence of the symmetric EMF tensor 
)(F . 

Thus, Eq. (9) eliminates the problem of violating of Newton's third law in electrodynamics. 

Eqs. (8) and (9) can be written in the form: 

022
/)

1
(

1
  Atttt

cc
 and        JAAA  022

)
1

(
1

ttt
cc

 

Applying the Lorentz gauge 0/ 2  Act  to them, we will obtain Maxwell's canonical 

equations in the Lorentz gauge [17]: 

02
/

1
 tt

c
  JAA  02

1
tt

c
 

Let us take the rotor from both sides of Eq. (9) and obtain the canonical wave equation for 

the magnetic induction B: 

JAA  02
)()(

1
tt

c
   or   JBB  02

1
tt

c
  (13) 

Let us take the divergence from both sides of Eq. (8) and the time derivative of Eq. (9). In 

the result of summation of these equations and applying simple the transformations we will obtain 

the canonical wave equation for the electric field intensity E: 

JAA tttttt
cc

 0022
/)

1
()

1
(   or JEE ttt

c
 002

/
1

  (14) 

Let us take the divergence of both sides of Eq. (10) and  we will obtain the wave equation: 

2/)
1

()(
2

1
202

 


ttt
cc

JAA    (15) 
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This equation describes the longitudinal waves of the divergence of the vector potential or the wave 

of the hypothetical «longitudinal (scalar) magnetic field» of Nikolaev. A distinct feature of these 

waves is the absence of the component of magnetic induction B in them. Therefore, these waves 

correspond to the name of longitudinal electroscalar waves. 

Taking the time derivatives of both sides of Eq. (8) and the divergence from both sides of 

Eq. (9) and adding the results, we will obtain the equation: 

        



tttttt

ccc
 JAA ))

1
(

1
)

1
((2

1
222

0

  или  









JA  )

1
(2

1
2

0

tt
c

 (16) 

This equation is the equation of longitudinal (electroscalar) waves of the divergence of the 

electromagnetic potential known in the electrodynamics of Foka-Podolsky and others [7-9]. The 

left-hand side of Eq. (16) can be zero for an electromagnetic potential that is not equal zero.  Then 

Eq. (16) can be written in the form of two free-standing equations: 










JA  0)

1
(2

1
2

0

tt
c

      or     0)
1

(
2

 

Att
c

      and   0 


J  

From this equation it follows that the wave equation of electroscalar waves 0)/( 2  


Actt

 is 

just as fundamental as the current density conservation equation 0 


J . This means that the 

motion of charges in accordance with the equation 0 


J  always excites the longitudinal  

waves 0)/( 2  


Actt

. 

Thus, Eqs. (8) and (9) describe longitudinal interactions of charges and currents.  All the 

basic canonical wave equations of electrodynamics follow from them. Eq. (10), which is an 

electromagnetic analogue of Lame or Navier-Stokes equation of the isotropic elastic medium 

motion, shows the general laws of motion of all kinds of matter. This analogy allows us to consider 

the field of the four-dimensional electromagnetic potential A  as a physical medium in which 

electromagnetic waves propagate due to the dynamic deformation of this medium. Consequently, 

the field of electromagnetic potential  A  can be identified as a «physical vacuum» or 

«electromagnetic vacuum», which is the source of virtual photons and other elementary particles. 

 

5. Conclusion 

The problem of longitudinal interaction in electrodynamics can be solved on the basis of the 

canonical electromagnetic potential A  without involving additional physical entities and 

hypotheses. To solve this problem, it is proposed to apply the expansion of the four-dimensional 

derivative of the electromagnetic potential into symmetric and antisymmetric tensors. From the 
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antisymmetric tensor follow Maxwell's canonical equations. From the symmetric tensor follow the 

Lame equation for the electromagnetic field, which describes the transverse and longitudinal 

interactions from the symmetric tensor follow all the basic canonical EMF equations, as well as the 

Fock-Podolsky wave equation for longitudinal electroscalar waves that do not have a magnetic 

component. It follows from the symmetric tensor that the terms of the Lorentz gauge condition 

describe a four-dimensional volume deformation of the EMF. 
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