Resource/Accuracy Tradeoffs in Software-Defined
Measurement

Masoud Moshref
moshrefj@usc.edu

Minlan Yu
minlanyu@usc.edu

Ramesh Govindan
ramesh@usc.edu

University of Southern California

ABSTRACT

Previous work on network measurements have explored several
primitives of increasing complexity for measurement tasks at in-
dividual nodes, ranging from counters to hashing to arbitrary code
fragments. In an SDN network, these primitives may require sig-
nificant bandwidth, memory and processing resources, and the re-
sources dedicated to these can affect the accuracy of the even-
tual measurement. In this paper, we first qualitatively discuss the
tradeoff space of resource usage versus accuracy for these different
primitives as a function of the spatial and temporal measurement
granularity, then quantify these tradeoffs in the context of hierar-
chical heavy hitter detection.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring

General Terms

Design, Measurement

Keywords

Data Center, Hierarchical Heavy Hitter, Software Defined Mea-
surement, Software Defined Networking

1. INTRODUCTION

Traffic measurement plays an important role in data center and
enterprise networks. Many management tasks such as traffic ac-
counting, traffic engineering, load balancing, and performance di-
agnosis [31 3 20, O] all rely on accurate and timely measurement
of a large variety of traffic at different time-scales. For example,
to perform traffic engineering [3]], we need to correctly detect large
flow aggregates in minutes and pick better routes for these flows.
To reduce the latency of partition/aggregate workloads in data cen-
ters, we need to quickly identify short traffic bursts in hundreds of
milliseconds (e.g., incast [20]).

Software-defined networks can enable programmable measure-
ment in networks [21]]. In this software-defined measurement ap-
proach, multiple measurement tasks can execute concurrently. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

HotSDN’13, August 16, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

SDN controller can orchestrate measurement collection at multiple
spatial and temporal scales, based on a global view of the network.

Previous work on network measurements [9] have ex-
plored several measurement primitives at switches/routers for mea-
surement tasks. Some tasks can be accurately measured using sim-
ple counters, while other tasks may need hash-based data struc-
tures (e.g., sketches). Finally, some tasks may require arbitrary
programmability at switches, namely, small code fragments per-
forming measurements.

These primitives require different amounts of resources. Coun-
ters occupy expensive TCAM memory, hash-based data structures
need SRAM, and code fragments require CPU for processing. All
of these three approaches differ in the amount of network band-
width they need to communicate intermediate measurement results
with the SDN controller. This resource usage is a function of the
time and spatial granularity at which measurement is required; intu-
itively, more resources are required to measure frequently varying
traffic or longer prefixes. When multiple measurement tasks are
run concurrently, the resources allocated to each task determines
its accuracy.

In this setting, an SDN controller must manage these resources
carefully in order to ensure accuracy of the measurement results. In
this paper, we first discuss these resource/accuracy tradeoffs for dif-
ferent primitives, and present a qualitative understanding of these
primitives, their resource usage, and their accuracy, as a function
of the spatial and temporal granularity of measurement. Then,
we take a concrete measurement task (the detection of hierarchi-
cal heavy hitters) and understand how to design software-based
measurement algorithms for this task, using the different primi-
tives that we have described. This, together with preliminary ex-
periments, gives us a better understanding of which primitives are
more accurate at which spatial and temporal granularities. It also
illustrates the division of labor between the controller and switches,
demonstrating the potential of software-defined measurement. For
future work, we will explore the design of a comprehensive system
that supports multiple concurrent measurement tasks and careful
controller-driven management of measurement resources.

2. RESOURCE/ACCURACY TRADEOFFS:
MOTIVATION AND CHALLENGES

In previous work [21]], we have identified the potential of software-
defined measurement (SDM) in SDNs. The programmability of
SDNs permits multiple concurrent measurement tasks to be con-
currently executed in an SDN. Moreover, an SDN controller can
dynamically adapt which measurements are performed at which
switch, possibly based on the traffic matrix. In the previous work,
we explored this capability by using sketch-based measurement for
localized detection tasks — measurement tasks that detect whether

a particular phenomenon (e.g., a super-spreader or a heavy hitter)
occurs at each of the switches in the network. In this paper, we
highlight the fact that measurement tasks can be realized using
different measurement primitives at individual switches, each of
which sits in a different point in the design space for SDM. More-
over, our vision is global detection tasks, ones in which the mea-
surement results from a single switch will not, in general, suffice
to detect the existence of the phenomenon [. An example of such
a task is hierarchical heavy hitter detection, which identifies the
longest IP prefixes with aggregate traffic above a certain threshold,
with the additional property that none of the sub-prefixes have traf-
fic that exceeds the threshold. We describe this measurement task
in more detail in Section B.1]but first discuss various measurement
primitives below.

Measurement primitives:

(1) Counting: The flow-based switches (e.g., OpenFlow) allow
operators to flexibly specify the flows to monitor based on dif-
ferent packet fields (e.g., source and/or destination IP addresses),
and count the number of bytes or packets for these flows. These
switches are already implemented by various vendors (e.g., HP,
NEC). Since these flow-based counters are maintained in a power-
hungry TCAM, we can only use a limited number of TCAM entries
for measurement.

Flow-based switches only update flow-based counters, and rely
on the controller to perform analysis on these counters. Based on
the analysis of the counters, the controller then periodically adjusts
the measurement rules at the switches. Due to the delay and band-
width constraints between the controller and the switches, the con-
troller can only achieve accurate analysis for measurements at large
time-scales (e.g., seconds). In addition, since the controller ad-
justs the rules based on the traffic history, this approach only works
for traffic that changes at time-scales larger than the periodicity at
which the controller adapts measurements.

(2) Hashing: Recent work [9] proposed to implement hash-
based data structures at switches to count traffic. These hash-based
switches are not implemented in today’s switches but are feasible
to implement with existing commodity switch components. Most
of the counters in these switches are stored in SRAM, which is
cheaper and larger than TCAM.

These hash-based switches extract summaries of the traffic (e.g.,
count unique elements and calculate flow size distribution [[13]]),
and then transfer the results to the controller for further analysis. In-
tuitively, hash-based switches can cope with more traffic variability.
The controller can also periodically reconfigure the data structures
at switches according to the traffic characteristics. Since these so-
lutions still rely on sending all the counters to the controller for
analysis, they can only support measurement analysis at relatively
large time granularities.

(3) Programming: We can further leverage the local CPU at switches
to run simple measurement programs to collect and analyze more
data at switches (e.g., [19])). These switches are harder to imple-
ment in practice, but when implemented, can significantly improve
the switch measurement capabilities.

If we can perform local analysis at the switches locally, we can
easily support small time-scale measurement and highly variable
traffic at line speed. However, for global detection tasks, we still
need the controller to collect the measurement data from these swit-
ches and perform the global analysis.

'We focus on a single switch case in this paper as the base for
multiple switch case discussed in Section[@

The tradeoff between resource usage and accuracy. These dif-
ferent primitives have different expressivity and each primitive is
suitable for measurements at different spatial and temporal granu-
larities. Put differently, a given measurement task can be achieved
with different accuracy by using different primitives; e.g., for highly
variable traffic, counting may be less accurate than hashing. Now,
these primitives use different types (CPU, memory, network) and
amounts of resources for measurement tasks. In the future, if SDNs
were to support all three primitives for measurement, an interesting
design challenge for SDM would be to manage resources across
multiple concurrent tasks. Implicitly, the resource allocated to a
particular measurement task (e.g., TCAM space for counters, band-
width limits for transmitting measurements to the controller) con-
strains the accuracy of the results.

For example, to monitor the traffic from source IP prefix 10.1.1.5
in a data center, the operator may want to save a rule on a top-of-
rack switch. However, if there are insufficient TCAM entries, the
controller can sacrifice accuracy by saving the rule at the aggregator
switch or merge the rule with another one and monitor 10.1.1.4/31,
for example. The other option is to switch to a hash-based approach
and use SRAM resources of the switch. Each of the aforementioned
solutions represents a different resource/accuracy tradeoff.

Thus, understanding these resource/accuracy tradeoffs for SDM
and designing methods to manage measurement resources is an im-
portant research challenge for future SDNs. In this paper, we take
the first step towards this challenge, by exploring these questions
for hierarchical heavy hitter detection.

3. CASESTUDY: HIERARCHICAL HEAVY
HITTERS

In this section, we use identifying hierarchical heavy hitters (HHH)
to show how to support different measurement requirements us-
ing different switch primitives under different resource constraints.
Table [Tl summarizes the design space for resource/accuracy trade-
offs. When the traffic is stable, we can leverage the controller to in-
stall monitoring rules and the flow-based switches to collect coun-
ters. When the traffic is variable, hash-based switches which col-
lect counters for all the prefixes at line speed have higher accuracy.
In order to detect HHHs at smaller time-scales, we must leverage
programmable switches while using the controller for configuring
these switches.

3.1 The hierarchical heavy hitter problem

Operators need to detect important traffic in the network for ac-
counting, traffic engineering [3]], and anomaly detection. One way
to define important traffic is the heavy hitter (HH) along certain di-
mensions. For example, we can define heavy hitters as the source
IP prefixes that contribute more than a fraction 7' of link capacity
over the past epoch of p seconds. Figure [I] shows an example of
bandwidth usage percentage for each IP prefix during an epoch.
With a threshold of 10%, there are a total of six heavy hitters as no-
tated in double circles. However, reporting all heavy hitter prefixes
can be redundant; for example, reporting 01* as a heavy hitter is
not as useful as reporting its descendent 010 which contributes the
most to the traffic volume.

Therefore, Hierarchical Heavy Hitters (HHH) are introduced in
[7] to denote the longest IP prefixes that contribute a large amount
of traffic (based on threshold T) after excluding any HHH descen-
dants in the prefix tree. For example, in Figure [l prefix 00% is a
HHH as IPs 000 and 001 collectively have large traffic, but prefix
0** is not a HHH because excluding descendent HHHs (00* and
010) its traffic is less than the threshold. Note that the prefix tree
can be defined on one or multiple packet fields such as source and

Sec| Traffic | Time-scale | Switch Controller

3.2l Stable Large Flow-based: counters for some prefixes Max-Cover algorithm to pick the prefixes to monitor

13.3I] Variable | Large Hash-based: one Count-Min sketch for each | Configure sketches to reduce resource usage
prefix length

[3.4l] Variable | Small Programmable: identify HHs with sketches or | Extract HHHs from HHs
space-saving algorithm

Stable Multiple Flow-based: counters for selected prefixes and | Pick the prefixes and time-scales to monitor
time-scales

3.5][Variable | Multiple Programmable: counters/sketches with expo- | Configure prefixes to monitor/sketches to reduce re-
nential buckets for all time scales source usage

Table 1: Understanding the design space for identifying HHHs with different traffic stability and in different time-scales

Figure 1: A prefix tree (trie) of source IPs where the number
on each node shows the fraction of link capacity used by the
associated IP prefix. With threshold 10, the nodes in double
circles are heavy hitters and the nodes with shaded background
are hierarchical heavy hitters.

destination IPs. In this paper, we focus on one-dimensional prefix
tree on the source IP field.

The difficulty of identifying HHHs highly depends on the traf-
fic stability. For example, operators often set up rate limiters to
backup traffic, making it stable in volume. In other settings too
(high performance computing [4]]), inter-process communications
vary slowly if ever. For such slowly-varying traffic, the HHH at
one epoch is likely to stay as a HHH in the next epoch. In con-
trast, individual virtual machines can send ad-hoc large flows. The
partition/aggregation traffic is also bursty (e.g., incast [20])). HHHs
caused by these traffic are often harder to catch because they ap-
pear suddenly and often require in-time detection. As a result, it
is harder for the remote controller to collect timely measurement
information and analysis than switches.

Different network management tasks need to detect HHHs in
different time-scales (i.e., epoch sizes). To perform traffic engi-
neering, we need to detect and route large flows in minutes [3] or
seconds [33]. To set up optical links on demand [10]], we need to un-
derstand the traffic matrix in seconds. For troubleshooting perfor-
mance problems, operators care about the HHHs both in hours/days
for identifying permanent problems, and in seconds or milliseconds
for identifying network congestion and packet losses. Due to the la-
tency and bandwidth overhead of sending measurement data to the
controller, we need to leverage the switches to help for small time-
scale HHHs while relying on the controller for larger time-scale
HHHs.

3.2 Stable traffic and large time-scale

When traffic is stable and the time-scale is large, we propose to
leverage flow-based switches to count traffic for different prefixes
and report these counters to the controller. The controller can then
analyze these counters to identify HHHs. It also adjusts the coun-
ters based on the traffic history to improve HHH detection in the
next epoch. This adjustment works for relatively stable or slowly

varying traffic where history can guide finding future HHHs. Be-
sides, this solution works for large time-scale because its accuracy
depends directly on the number of available counters and the con-
trol loop latency: the number of counters is limited by the amount
of expensive power-hungry TCAMs at the switches and control net-
work bandwidth. Sending the counters to the controller every epoch
uses control network bandwidth, and at larger time-scales, more
control traffic can be sent per epoch (for fixed control traffic band-
width). For example with 256Kbps link, we can send 16K two-
byte counters in 1 second epochs while only 1.6K are available in
0.1 second. The control loop latency is the delay from sending the
counters to the controller at the switches to the end of installing the
new counting rules and includes the propagation delay, controller
algorithm delay and switch rule installation delay. The counter ad-
justments are only valid if this latency is much smaller than the
time-scale.

Max-Cover HHH algorithm on flow-based switches: To pick
which prefixes to monitor, given a limit on the number of counters
(i.e., a resource limit), we propose Max-Cover HHH algorithm that
runs in each epoch in the controller. The algorithm works based
on the assumption that with slowly-varying traffic, the HHHs in the
previous epoch are likely to stay as HHHs in the next epoch and
new HHHs appear where the traffic is large.

As aresult, given the counters for prefixes in the previous epoch,
we first pick the monitored prefix with maximum traffic and mon-
itor its two children instead. Since, we do not have records of the
counters for children in the previous epoch, we just assign half of
the parent’s traffic to each child@ For example in Figure [I the
controller monitored four prefixes in the previous epoch: 0%*, 10%,
110, 111. Prefix 0** uses maximum bandwidth (26%), so we mon-
itor its children 00* and 01* and assign 13% to each child.

Second, if the total number of monitoring prefixes goes beyond
the resource limit, we pick a pair of sibling prefixes in the set with
the minimum total traffic and monitor their parent instead to de-
crease monitoring prefixes. For example in Figure [Il suppose we
can monitor at most four prefixes in each epoch. We have five
monitoring prefixes after splitting the node 0**, so we pick sibling
nodes 110 and 111 and monitor their parent 11*.

The algorithm continues splitting and merging until there is no
pair of sibling prefixes whose total traffic is less than the maximum
traffic. For Figure [[lexample, the algorithm continues by splitting
node 01* to 010 and 011 with 6.5% estimated traffic and merging
10* and 11* to 1#*. At this step, there is no pair of sibling pre-
fixes in the monitored set, whose total traffic is smaller than the
maximum traffic of the monitored nodesf

2In future work, we will explore better ways to estimate the traffic
based on the traffic history.

3 Note that this is based on the estimated traffic volume because
the real ones are unknown to the controller.

With the monitoring prefix set generated by the Max-Cover al-
gorithm, we can easily calculate the traffic of all the ancestors of
prefixes in the monitoring prefix set. We call these ancestors to-
gether with prefixes in the monitoring prefix set the coverage set.
The Max-Cover algorithm tries to maximize the traffic in this set
and based on its assumptions maximizes the probability of finding
HHHs.

3.3 Variable traffic and large time-scale

For large threshold 7', the HHHs are mostly among prefixes with
shorter length covering many servers, whose traffic are often more
stable due to statistical multiplexing. However, when we decrease
the threshold 7', there are more HHHs with longer prefixes, whose
traffic may change more frequently (e.g., it is more likely that a
single VM sends bursty flows). When the traffic changes signifi-
cantly over time, accuracy may be compromised because the con-
troller can no longer pick the right prefix set to monitor based on
the traffic history. A solution is to monitor more prefixes which is
expensive because it uses more TCAM:s.

An alternative is to track the traffic for those prefixes with vari-
able traffic by leveraging hash-based switches. Hash-based switches
use SRAM memory that can be larger than TCAM memory (mil-
lions vs thousands of counters) and is cheaper. For example, we
can implement Count-Min sketches on hash-based switches, which
leverages multiple hash functions to approximate the traffic of dif-
ferent IP prefixes in a compact way [8]]. To detect HHHS, the switch
maintains one Count-Min sketch for each level of the prefix tree and
exports the sketches to the controller every epoch. The controller
then traverses down the prefix tree and identifies the HHHs [[7]. We
compare the accuracy of this proposal with Max-Cover algorithm
for equal cost switches in Section[d]

However, maintaining sketches for all prefix lengths takes too
many resources (both switch memory and the bandwidth to the
controller), especially when the threshold 7" is small which requires
more accurate traffic approximation. To reduce the resource usage,
the controller must use counters for prefixes with slowly-varying
traffic while using sketches for prefixes with more variable traffic.
We can also leverage the controller to configure the resource usage
across the sketches. For example, if the controller is sure that only
one prefix needs more accurate traffic counters, it can use fewer
resources for general sketches and instantiate a specific sketch for
that prefix to save memory and bandwidth. We have left a detailed
exploration of these to future work.

3.4 Variable traffic and small time-scale

For detecting HHHs in small time-scales, the bandwidth over-
head and delay of sending the counters or sketches to the controller
every epoch become too large. Therefore, we need to run a simple
piece of code using programmable switches to report heavy hitters
to the controller, and the controller can analyze these heavy hitters
to extract HHHs.

There are two approaches to report heavy hitters with different
code complexity and efficiency: (1) we can leverage Count-Min
Sketch to collect counters for prefixes at each prefix length as in
Section B3l and then pick the largest ones as heavy hitters, and
reports them to the controller in each epoch. (2) We can run the
Space-Saving algorithm on the programmable switches. We
maintain counters for a list of IPs at the switch. When the switch
receives a packet whose source IP is not listed, it adds a counter for
this IP. If the list becomes full given the monitoring budget (e.g.,
switch memory size), the switch picks the counter with minimum
value and replaces it with the counter for the new IP. In each epoch,
the switch reports heavy hitters based on the list of counters. The
second approach runs more complex code at switches than the first

approach, but is faster and more accurate with less memory us-
age [6]].
3.5 Multiple time-scales

Identifying HHHs in multiple time-scales is an example of sup-
porting multiple measurement tasks and is even more challenging.
We can track the HHHs in each time-scale separately, but as the
resources are limited, it is important to optimize the resource al-
location by leveraging the shared information among tasks. We
propose three approaches in the increasing order of complexity at
switches:

(1) The controller decides both which prefix to measure and at
which time-scale for stable traffic. The controller can decide
which prefix to measure by leveraging the Max-Cover algorithm
we proposed in Section[3:2] The controller can also decide which
time-scales to measure based on the stability of the traffic. For
example, if the traffic is slowly-varying at small time-scales, the
controller can install rules at the switches to monitor only large
time-scales. This approach only requires flow-based switches and
has lower bandwidth overhead, but it depends on the traffic stabil-
ity.

(2) The controller decides the prefix set to measure and the
switch monitors each prefix in all time-scales. With programm-
able switches, we can measure the traffic volumes for a prefix across
multiple time-scales using exponential bucketing [19]. For each
prefix, the switch maintains counters for exponentially increasing
time-scales (e.g., for 1, 2, 4 seconds, etc.). The controller can com-
bine these buckets together to estimate the traffic in any time-scale.
This approach is more accurate than the first approach, but requires
programmable switches and more bandwidth to collect traffic at all
time-scales.

(3) The switch maintains sketches at all time-scales; the con-
troller configures the parameters for sketches for variable traf-
fic. We can replace the counter in the sketches with the exponen-
tial buckets to monitor traffic at all time-scales [18]]. This approach
can handle variable traffic at multiple time-scales because switches
keep track of all the traffic at all time-scales, but it needs the most
bandwidth and is more complex than the two previous approaches.

For future work, we will explore the tradeoffs of the three ap-
proaches and identify the right primitives at switches with the best
accuracy and efficiency.

4. PRELIMINARY EVALUATION

We compare the accuracy of flow-based and hash-based HHH
detection algorithms for single switch with equal switch resource
usage cost. We use Max-Cover algorithm (Section for flow-
based switches and hierarchical Count-Min sketches (Section B.3)
for hash-based switches. The simulation uses the CAIDA packet
trace in different time-scales (500ms and 5s) and runs for 3
minutes with 10 warm-up epochs. We change the threshold value
from 1% to 10% as the fraction of the maximum amount of traffic
in all measurement epochs. We size the SRAM memory for the
hash-based switch based on the switch control network bandwidth
(1 Mbps, 256 Kbps and 64 Kbpsﬂ) used for sending two bytes coun-
ters. Then we use an equal-cost TCAM memory for Max-Cover
algorithm assuming that each TCAM entry is 80 times more ex-
pensive than SRAM [16]. For example if we have 256 Kbps, 8K
counters can be reported per 0.5 second epoch. So Count-Min will

4 At larger capacities, the tradeoff happens for smaller time-scales.
However, we believe the chosen numbers are fair considering the
number of switches, measurement tasks and other control traffic in
the data centers.

have d = 4 hash functions each with w = 80 counters for each pre-
fix length, but Max-Cover can only have 100 TCAM entries. To
maintain the accuracy in Count-Min hashes for small bandwidth
and thresholds, we set minimum w to 2 /threshold [8] and just trim
the prefix tree to satisfy the bandwidth constraint. We compare the
accuracy of algorithms using precision and recall calculated using
a ground truth that monitors all IPs.

Figure shows that for a large threshold, Max-Cover algo-
rithm has good recall and lower traffic overhead (recall it uses 80
times fewer counters) compared to the Count-Min sketch. How-
ever, with smaller threshold, its accuracy drops and it is better to
use Count-Min sketch. For example, for the threshold of 1% and
64Kbps control link bandwidth, Count-Min finds twice true HHHs
comparing to the Max-Cover algorithm (70% vs 30%). Note that
precision also follows the same trend (70% vs 35%) in Figure 2(b)}
We believe that this is because smaller thresholds create HHHs in
deeper levels of the prefix tree (smaller spatial granularity) which
are more variable and require Max-Cover algorithm to use more
TCAM entries to find them. Our experiments with injected HHHs
validate the effect of variability and level of HHHs on Max-Cover
algorithm.

Figure [2(c)| shows that for smaller epochs (0.5s), where we have
10 times fewer counters, the accuracy of both algorithms decreases.
However, our conclusions that 1) The accuracy of sketch-based
switches is better for restricted switch cost and small thresholds 2)
We can save control network bandwidth with Max-Cover algorithm
for large threshold and more expensive switches without losing ac-
curacy are still valid. To summarize, software-defined measure-
ment can optimize the resource usage by using the right primitives
based on the measurement task parameters and traffic properties.

S. RELATED WORK

Centralized HHH detection algorithms: There are many pro-
posals for HHH detection [7,[12}[17,23]] in one server that monitors
all the traffic. We propose a solution for the distributed case where
there are limited capabilities and resources for monitoring and the
general controller is connected to monitors with a limited link. In
future work, we will adapt the two-dimensional HHHs detection
algorithms in for our setting.

Software-defined measurement: The idea of controlling mea-
surement tasks for a single switch using a controller has also been
used in [[14} 211 22]]. ProgME [22]] and [14]] use flow-based switches
while OpenSketch [21] introduces a hash-based switch architec-
ture. Our work explores the right primitives to support different
measurement tasks at various time-scales for different traffic prop-
erties and resources at switches.

6. CONCLUSIONS AND FUTURE WORK

We have explored resource/accuracy tradeoffs for global detec-

tion tasks and multiple granularities, when different primitives (count-

ing, hashing, programming) are used at individual switches. Our
preliminary results indicate that at finer time-scales and with more
variability, hashing and programming offer better resource/accuracy
tradeoffs.

In the future, we will explore the following directions.

Exploring other primitives: We will explore sampling and

SNMP counters, and devise new primitives for programmable switch-

es. For the case of detecting hierarchical heavy hitters, for example,
combining sketches and sampling seems promising [13]].

Allocating resources among multiple measurement tasks: A
motivation for a software-defined measurement system is to serve
multiple measurement tasks while choosing the right resource/-

accuracy tradeoff for them. The resource allocation among these
measurement tasks plays an important part in the tradeoff algo-
rithm. For example, under high traffic variability, the controller
may decide to assign more resources to the hierarchical heavy hit-
ter detection task (to maintain its accuracy), taking away resources
from an invalid traffic detection task.

Extending primitives to multiple switches: In data centers, for
example, no single switch sees all the traffic, so some measurement
tasks such as detecting hierarchical heavy hitters require composing
measurements from multiple switches. For example, using coun-
ters, increasing the accuracy in one prefix may need more TCAM
entries in multiple switches if its sources are distributed in different
racks. For sketch-based switches, we need to implement compos-
able sketches to aggregate statistics from multiple switches [18].

7. REFERENCES
[1] CAIDA Anonymized Internet Traces 2012. http://www.

caida.org/data/passive/passive_2012_
dataset.xml.
[2] NetFlow. http://www.cisco.com/go/netflow/.
[3] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B.,
HUANG, N., AND VAHDAT, A. Hedera: Dynamic Flow
Scheduling for Data Center Networks. In NSDI (2010).
[4] BARKER, K. J., BENNER, A., HOARE, R., HOISIE, A.,
JONES, A. K., KERBYSON, D. K., L1, D., MELHEM, R.,
RAJAMONY, R., SCHENFELD, E., SHAO, S., STUNKEL,
C., AND WALKER, P. On the Feasibility of Optical Circuit
Switching for High Performance Computing Systems. In
Supercomputing (2005).
BENSON, T., ANAND, A., AKELLA, A., AND ZHANG, M.
MicroTE: Fine Grained Traffic Engineering for Data
Centers. In ACM CoNEXT (2011).
[6] CORMODE, G., AND HADJIELEFTHERIOU, M. Finding
Frequent Items in Data Streams. In VLDB (2008).

(5

—_—

[71 CORMODE, G., KORN, F., MUTHUKRISHNAN, S., AND
SRIVASTAVA, D. Finding Hierarchical Heavy Hitters in Data
Streams. In VLDB (2003).

[8] CORMODE, G., AND MUTHUKRISHNAN, S. An Improved
Data Stream Summary: The Count-Min Sketch and its
Applications. Journal of Algorithms 55, 1 (2005).

[9] CuRrTIS, A., MOGUL, J., TOURRILHES, J.,

YALAGANDULA, P., SHARMA, P., AND BANERJEE, S.
DevoFlow: Scaling Flow Management for
High-Performance Networks. In SIGCOMM (2011).

[10] FARRINGTON, N., PORTER, G., RADHAKRISHNAN, S.,
BAzzAz, H. H., SUBRAMANYA, V., FAINMAN, Y.,
PAPEN, G., AND VAHDAT, A. Helios: A Hybrid
Electrical/Optical Switch Architecture for Modular Data
Centers. In SIGCOMM (2010).

[11] FLAJOLET, P., AND MARTIN, G. N. Probabilistic Counting
Algorithms for Data Base Applications. Journal of Computer
and System Sciences 31,2 (1985).

[12] HERSHBERGER, J., SHRIVASTAVA, N., SURI, S., AND
ToTH, C. D. Adaptive Spatial Partitioning for
Multidimensional Data Streams. Algorithmica 46, 1 (2006).

[13] HUANG, G., LALL, A., CHUAH, C.-N., AND XU, J.
Uncovering Global Icebergs in Distributed Streams: Results
and Implications. Journal of Network and Systems
Management 19, 1 (2011).

[14] JoSE, L., YU, M., AND REXFORD, J. Online Measurement
of Large Traffic Aggregates on Commodity Switches. In
Hot-ICE (2011).

http://www.caida.org/data/passive/passive_2012_dataset.xml
http://www.caida.org/data/passive/passive_2012_dataset.xml
http://www.caida.org/data/passive/passive_2012_dataset.xml
http://www.cisco.com/go/netflow/

N

7 7=
0.8t =
7 7=
300 % [1C-1024
ks 27 C-256
041 7= = c-64
I \v-1024
0.2y 7 P \-256
; B =-64
0.0 0.1
Threshold
(a) Recall for 5s epoch
1 : T .
osf | /
£ 0.6 []C-1024
) 7 v/ C-256
04| 1
: ‘ ——C-64
ool | Z I 11024
<7 Y \\-256
oL 7 = M-64
0.01 0.05 0.1
Threshold

(c) Recall for 0.5s epoch

N |/]—] 7| =i
]
%: V=
0.8 7 %: O
; %: =
% vy = =
c ¢_
208 é 7B [Ic-1024
8 04l g 25 V) C-256
a O g= ——C-64
ZE I V1-1024
0.2y 78 th\-256
2 g: — VI-64
0 A l 4 /1—|
0.0 0.05 0.1
Threshold
(b) Precision for 5s epoch
1 B
0.8»1[ii 7
Z 7
5 06} ?“
so i | _ico
3 70 |Ac-256
o 04f ?E ——c-64
/= I V11024
0.2 gg P \-256
0 . 2= —_— M-64
0.01 0.05 0.1

Threshold
(d) Precision for 0.5s epoch

Figure 2: Recall comparison for Count-Min(C) and Max-Cover(M) for limited control link bandwidth(Kbps) and different thresh-

olds

[15] KUMAR, A., SUNG, M., XU, J. J., AND WANG, J. Data
Streaming Algorithms for Efficient and Accurate Estimation
of Flow Size Distribution. In SIGMETRICS (2004).

[16] LiAO, J. SDN System Performance, 2012. http://
pica8.org/blogs/?p=201.

[17] MITZENMACHER, M., STEINKE, T., AND THALER, J.

Hierarchical Heavy Hitters with the Space Saving Algorithm.

arXiv:1102.5540 (2011).

[18] PAPAPETROU, O., GAROFALAKIS, M., AND
DELIGIANNAKIS, A. Sketch-based Querying of Distributed
Sliding-Window Data Streams. In VLDB (2012).

[19] UYEDA, F., FOSCHINIL, L., BAKER, F., SURI, S., AND
VARGHESE, G. Efficiently Measuring Bandwidth at All
Time Scales. In NSDI (2011).

[20]

[21]

[22]

(23]

VASUDEVAN, V., PHANISHAYEE, A., SHAH, H., KREVAT,
E., ANDERSEN, D. G., GANGER, G. R., GIBSON, G. A.,
AND MUELLER, B. Safe and Effective Fine-Grained TCP
Retransmissions for Datacenter Communication. In
SIGCOMM (2009).

YU, M., LAVANYA, J., AND MIAO, R. Software Defined
Traffic Measurement with OpenSketch. In NSDI (2013).
YUAN, L., CHUAH, C.-N., AND MOHAPATRA, P. ProgME:
Towards Programmable Network MEasurement.
Transactions on Networking 19, 1 (2011).

ZHANG, Y., SINGH, S., SEN, S., DUFFIELD, N., AND
LuUND, C. Online Identification of Hierarchical Heavy
Hitters: Algorithms, Evaluation, and Applications. In IMC
(2004).

http://pica8.org/blogs/?p=201
http://pica8.org/blogs/?p=201

	Introduction
	Resource/Accuracy Tradeoffs: Motivation and Challenges
	Case Study: Hierarchical Heavy Hitters
	The hierarchical heavy hitter problem
	Stable traffic and large time-scale
	Variable traffic and large time-scale
	Variable traffic and small time-scale
	Multiple time-scales

	Preliminary Evaluation
	Related Work
	Conclusions and Future Work
	References

