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Abstract

Free probability theory started in the 1980s has attractechnattention lately in signal processing
and communications areas due to its applications in lame isindom matrices. However, it involves
with massive mathematical concepts and notations, andliy teard for a general reader to comprehend.
The main goal of this paper is to briefly describe this thearg #s application in random matrices as
simple as possible so that it is easy to follow. Applying fprebability theory, one is able to calculate
the distributions of the eigenvalues/singular-valuesaodé size random matrices using only the second
order statistics of the matrix entries. One of such appbeoatis the mutual information calculation of

a massive MIMO system.

Index Terms

Free probability theory, free random variables, massivéM@, random matrices, and semicircular

distributions

. INTRODUCTION

Free probability theory was started by Voiculescu in theQI98L]-[3]. It is about calculating
moments (or distributions) of non-commutative random atales, such as, random matricies
where the matrix entries are classical random variables.

In classical probability theory, random variables are Uguaal-valued and can be extended

to be complex-valued. For convenience, let us say that theyeml-valued. Therefore, they are
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commutative. For example, assumeg z, are two independent non-zero random variables and

E denotes the expectation. Then,
E(x129m129) = E(af23) = E(x])E(23) > 0, 1)

no matter whether, and/orz, have0 mean or not, which is because andz, are commutative.

However, if x; and z, are not commutative, then, the property (1) may not hold ava t
natural questions are as follows. What will happen to (1)7?atMoes the independence mean
to non-commutative random variables?

Free probability theory addresses the above two questibnstroduces freeness between
non-commutative random variables, which is analogous ¢oildependence between classical
commutative random variables. It basically says that algfoF (z;z.x122) may not be equal
to E(x3x3), itis 0 if z; andz, are free and both have meén

With this freeness, when a large number of free random Vi@salre summed with proper
weights, it converges to the classical semicircular dgtion. This is the free central limit
theorem similar to the classical central limit theorem, mh&aussian distribution corresponds
to semicircular distribution. Note that the eigenvaludrdisition of a random matrix with entries
of independent Gaussian random variables (for simplithymatrix symmetricity is not specified
here) goes to semicircular distribution as well when therixatze goes to infinity. This suggests
a connection between free random variables and large simma matrices. Free probability
theory says that, it indeed has a strong connection, iredora matrices of independent Gaussian
random variables become free when the matrix size goes tatynfin other words, when the
size of matrices is large, these matrices are approximétety

Furthermore, the entries in random matrices can be replagéee semicircular random vari-
ables (called deterministic equivalent). With the reptaeat, all the joint moments or cumulants
of random matrices can be calculated, which may lead to tlealleéions of the distributions of
the eigenvalues of the functions of these random matrices.

This is the reason why free probability theory has attrantedh attention in wireless commu-
nications and signal processing areas. Massive MIMO systeme been identified as potential
candidates in future wireless communications systems.dssive MIMO systems, their channel
matrices are random of large sizes. Therefore, it is nator@pply free probability theory to

do some of the difficult calculations, such as, channel dapfi], [16], [18]. It is particularly
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interesting when some statistics of a channel matrix ofdaige, such as, the first two moments
(covariances) of the channel coefficients, are known, hovcaleulate the channel performance
without performing Monte Carlo simulations that may be hardo in practice when the channel
matrix size is large, such as, a massive MIMO channel.

The main goal of this tutorial paper is to briefly introducedrprobability theory and its
application to large size random matrices so that an orgiregearcher in signal processing and
communications areas can easily understand.

In the following, we adopt most of the notations in Speich8[7]. All the results described
below are from [4]—-[7] as well. The remainder of this papeotiganized as follows. In Section
Il, we describe the basics of free random variables and & ¢entral limit theorem without
proof. In Section Ill, we describe the calculations/reat of joint moments, cumulants, and
distributions of multiple free random variables. In Sewtly, we describe random matrices and
the approximate distributions of their eigenvalues. Inti®ecV, we describe free deterministic
equivalents for random matrices. We also describe how toutze the Cauchy transforms of
random matrices using the second order statistics of tmires. In Section VI, we conclude

this paper.

Il. FREE RANDOM VARIABLES

For convenience, in the following we will use as simple nota as possible, which may be
too simplified in terms of mathematical rigorousness.

Let 1, zo,...,x,, ben elements that may not be commutative, atde a linear functional
on these elements so tha{1) = 1. Examples of these elements are matrices &rid like the
expectation of a classical random variable.

Definition 1: Elements (or random variables), z», ..., z,, are called free or freely indepen-

dent, if for anym polynomialspy(z), 1 < k < m, with m > 2,

E(pl ('ril )p2<xi2> o ‘pm(xim>> =0, (2)

when E(py(z;,)) = 0 for all k, 1 < k < m, and any two neighboring indicésandi,.,; are not
equal, i.e.,l <iy £ iy #£ - F iy < n.
From (2), if z; and z, are free, thenF(z zox125) = 0 when E(xy) = E(zy) = 0, where

m =4, 1 = 1,ip = 2,i3 = 1,44 = 2, and polynomialgy(xz) = = for 1 < k£ < 4. Comparing
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with (1) in the classical commutative case, independentuyaaed random variables are not
free. The terminology “free” comes from the concept of freeups, where there is no any
nontrivial relation between any generating elements oka fyroup.

One might want to ask why, in the above definition, polynosiial the random variables
x are used. It is for the convenience later in calculatingrtfgént moments. Note that in free
probability theory context, it is not convenient to dirgatlefine density functions (or distribution
functions) for noncommutative random variables. Howewasr,we can recall, in the classical
probability theory, if all the moments of a random variabte known, its characteristic function
can be often determined and therefore, its density funatem be often determined as well.
Thus, calculating all the joint moments of free random Jaga may be sufficient for their joint
distributions. Its details will be described in Section Il

The setA;, of all polynomialsp(z;) of z; including the identity element = z{ is called the
subalgebra generated by elemeptfor 1 < £ < n. Subalgebrasd;, A,, ..., A, are called free
if and only if elementsey, xo, ..., x,, are free. Clearly, when elements, z,, ..., x,, are free, for
any n polynomialsp;(x), ..., p,(z), elementsp;(xy), ..., p,(x,) are free as well.

If elementsxy,z,,---,x, are free, they are called free random variables. With thev@abo
freeness definition, although one may construct abstraet fandom variables using possibly
many mathematical concepts, it is not easy to show concret@@es of free random variables
at this moment.

Two setsS; andS, are called free if any element 8 and any element i, are free. With
property (2), wher{x, 23} andz, are free, it is easy to check thaY{x,xs) = FE(z1)E(x2) and
E(xi1x9x3) = E(x123)E(x9).

In many practical applications, we may need to deal with dempalued random variables,
such as, complex Gaussian, where the complex conjugati®misually used. In correspondence
with the complex conjugation, the above freeness becenfeeness. We call that;, =, - - - , z,,
are x-free, if (2) holds when the polynomiajs.(x) in Definition 1 are changed to polynomials
pr(x, zx) of two variables. Ifx = z*, elementz is called self-adjoint. For example, when
is a matrix andx is the complex conjugate transpose operation; i§ Hermitian, thenx is
self-adjoint. In this casey can be diagonalized by a unitary matrix and all its eigeraslare
real-valued.

Definition 2: 1) When two random variables andz, have all the moments the same, i.e.,
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E(z7") = E(2") for all positive integersn, they are called identically distributed or having
the same distribution.

2) For a sequence of random variablgsn = 1,2, ..., we callz,, converges ta: in distribution
whenn goes to infinity, if all the moments of,, converge to the moments efasn goes

to infinity, i.e., for any positive integer,

lim E(z,") = E(z™), 3)

n—oo
which is denoted atim,, ...z, "2 = or z, % 2 asn — co.
3) Let I be an index set. For eache I, let 2 n = 1,2,..., be a sequence of random

variables. We call thatz{");c; converges tqz(®),; in distribution, if

lim E(z0) ... g0y = B(z) ... x0) (@)

n—oo

for all positive integers: and alliq, ..., i, € I, which is denoted as

lim (20)ier "2 (2)ier or (20);e; Z8 (29),c; asn — oo,
n—oo

The definition in 2) is about the convergence in distributiona single sequence of random
variables and the definition in 3) is about the convergendagistribution for multiple sequences
of random variables jointly.

One of the most important results in classical probabiligary is the central limit theorem.

It says that the summation of independent random varialflagatally fixed variance converges
to Gaussian random variable, when the number of the indgmtndndom variables goes to
infinity. For free random variables, it has the followingdreentral limit theorem.

Theorem 1:Let x, k = 1,2,..., be a sequence of self-adjoint, freely independent, and
identically distributed random variables wiffi(x;) = 0 and E(x%) = o2. For a positive integer

n, let

Ti+Tpg+ -+ Ty
- . 5
N ©)

Then, S,, converges in distribution to a semicircular elemendf variances? asn — oo, i.e.,

S

0'Cije, if iis even

lim E(S!) = (6)
nreo 0, if 4 is odd
whereC), is the Catalan number and tligk)th moment of the semicircular distribution:
I 1 (2k
= — V4 —t2dt = —— . 7
Cs zw/_zt dat k+1<k) 0
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The random variable in Theorem 1 is called a semicircular element in this consexd it,
after divided byo, has the same distribution as the classical semicirculzdaia variable of

density function

SVA—t2 if |t <2,
gty =9 " , (8)
0, otherwise

Its mement of an even order has the form in (6) and an odd osdaiwiays0.
Note that semicircular distributions are the asymptotistributions of the eigenvalues of
Hermitian Gaussian random matrices when the matrix sizes goenfinity, which is called

Wigner’s semi-circle law and will be discussed in more dstai Section IV later.

[1l. M OMENTS, CUMULANTS, AND CAUCHY TRANSFORMS

As mentioned earlier, it is not convenient to directly defaneéensity function or probability
measure for a noncommutative random variable, and insteadl imoments are defined and the
freeness is to simplify the joint moments between free ramdariables.

In order to see how moments are related to distributionsed fandom variables, let us first
see how in classical probability theory, a probability mgasand its moments are related.

Let n(t) be a probability measure on the real liRe Assume its all moments are finite and

let m; be itsith moment for a positive integérand ¢(¢) be its characteristic function, i.e.,
mi= [ fdu(t). ando(t) = [ e"au), ©
R R

wherei 2 \/—1. Then, it is easy to see
i) N, @)
m; =i"'¢"(0), andg(t) = ;)m - (10)
where ¢ (t) stands for theth derivative of¢(t). Furthermore, we can write

os(o(0) = > k) < Log(0(0)

2
wherek; are called the cumulants pf¢). We will call them the classical cumulants. The moment

, (11)

t=0

sequencgm,};>o and the cumulant sequengg; };,~, can be determined from each other:

n!
n = kit -k 12
" Z R SR " (12)

l-ri4-4nrp=n
T1,.-,Tn >0

—1)rittra—l coery, — 1 In!
U Dl g

(1) (n)rary Loy ! "

k, =

L.ri++n-rp=n
715720
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Sometimes, cumulants may be easier to obtain than momentsisl case, one may first obtain
cumulants and then moments.

Since for noncommutative random variables, we start widirtmoments as we have seen so
far, it is very important to investigate moment and cumulseqquences for further calculations.
Before going to more details, let us see some basic concept# @artitions of an index set,
which plays an important role in free probability theory.

A. Partitions, Non-crossing Partitions, and Free-Cumutan

For a positive integer,, we denote[n| 2 {1,2,...,n}. A partition = of set[n| meansr =
{Vi,...,Vi} such thatVy, ...V, C [n] with V; # 0, V,NnV; =0 forall1 <i# j <n, and
ViU---UV, = [n]. Subsetd/, ..., V;, are called the blocks of and#(7) denotes the number of
the blocks ofr. P(n) denotes the set of all the partitions [@f. A partition is called a pairing
if its each block has sizé and the set of all the pairings 6] is denoted byP,(n).

Let 7 € P(n) and{k;}; be a sequence. We dendte= k}'k3? - - - kI~ wherer; is the number
of blocks ofr of sizei. Then, the determination formulas in (12)-(13) of momemt$ eumulants

can be re-formulated as

m, = Z kr, (14)
weP(n)

ko o= Y ()P (# () = 1)lm (15)
weP(n)

For = € P(n), denote the moment of random variables:, ..., z,, with partition = as

E(zy,...,x,) 2 H E(xzy - xy)), (16)

whereV = (iy,...,7;) means that set’ has! distinct elements with increasing order 4s<
Tg < -0 < Q.
Whenr € P,(2k), i.e., w is a pairing of[2k]|, we have
E(x1,...,x9) = H E(z;x;). a7

(i,5)em
With this notation, for Gaussian random variablég Xs, ..., X,,, we have the following Wick’s

formula:

E<X21 XZQk) = Z EW(Xi17"'7Xi2k)7 (18)
TEP2(2k)
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whereiy, ..., g € [n].

Let 7 € P(n). If there existi < j < k < [ such thati and & are in one block/ of 7, and
and/ in another blockV” of 7, we call thatl” andW cross. If one cannot find any pair of blocks
in 7 that cross, partitionr is called non-crossing. Denote the set of all non-crossegitpns
of [n] by NC(n) and the set of all non-crossing pairings|[ef by NCs(n).

The partition setP(n) of [n] is partially ordered via

m < my if and only if each block ofr; is contained in a block ofr.

With this order, NC(n), as a subset of(n), is also partially ordered. The largest and the
smallest partitions in bott®(n) and NC'(n) are[n| and{{1}, {2}, ...,{n}}, denoted ad,, and
0,, respectively.

Definition 3: The following free cumulants,,(z1, ..., z,) are defined inductively in terms of

moments by the moment-cumulant formula:

E(xlxn) - Z Kﬂ(xla--'axn)a (19)
TeNC(n)
where
KT, ey Tn) 2 H Ki(Ziy, oy ). (20)
Ven

The above inductive definition is not hard to implement atofes.
Forn =1, we haveE(x;) = ki(x1). Thus,k,(z1) = E(z1).

For n = 2, we have

E(x129) = ka2 (21, ¥2) + K1), 2) (T1, T2) = Ka(@1, T2) + Ki(21) k1 (22).

Thus,
Ko(T1,12) = E(1172) — E(21) E(22),

etc.
Let p(m, m2) be the Mdbius function orP(n) [7], [8], [11] that has a recursion formula to

calculate. Then, we also have the following Mobius invamsiormula:

K (21, oy ) = Z pu(m, 1) Er (21, ..., ). (21)
TeENC(n)

February 26, 2019 DRAFT



The moment-cumulant formulas (19) and (21) for momemts egeléumulants for noncumm-
tative random variables are in analogous to (14) and (15)1@y and (13)) for classical random
variables in classical probability theory.

Theorem 2:Random variables,, ..., x,, are free if and only if all mixed cumulants of, ..., z,,
vanish. In other wordsz, ..., z,, are free if and only if, for any,...,i, € [n] = {1,2,...,n}
with i; # 4, for somej, [ € [p], we havek,(z;,,...,x;,) = 0.

The result in the above theorem significantly simplifies takewations of the free cumulants
of multiple free random variables and therefore, helps toutate the joint moments of multiple

free random variables. For exampleifandy are free, then we have

KITY (x4 Yy, ...+ y)
= Kn(z,...,x) + Ku(y, ..., y) + (Mixed cumulants inz, y)
= K, + K. (22)
Definition 4: Let I be an index set. A self-adjoint family; ), is called a semicircular family
of covariance matrixC’ = (¢;;): jer if C' is non-negative definite and for amy > 1 and any

n-tuple iy, ..., i, € I we have

E(Sil Sln) = Z Eﬂ’(sip'“vsin)v (23)
TENCa2(n)
where
E7r<5i17 ceey Sm) = H Cip,z'q- (24)
(p,g)em

If C'is diagonal, theris;);c; is a free semicircular family.

The above formula is the free analogue of Wick’s formula fau&sian random variables.
If we let Xy,..., X, be N x N matrices of all entries in all matrices i.i.d. Gaussian @and
variables, then they jointly converge in distribution toraef semi-circular familysy, ..., s, of
covariance matrixXc;;)1<; j<, = |, where | is the identity matrix of size, as N goes to infinity.

More details on random matrices will be seen in Section V.

B. Cauchy Transforms and R-Transforms

As we have seen earlier, for classical random variableg, distributions or density functions

can be determined by their moment sequences or cumulanerseggl as shown in (10) and
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10

(11). To further study noncommutative random variablesirtmoment and cumulant sequences
similarly lead to their analytic forms as follows.

Let  be a noncommutative random variable anf = E(2") and x? be its moments and
free cumulants, respectively. Their power series (momedtamulant generating functions) in
an indeterminate are defined by

M(z) =1+ Z myz" andC(z) =1+ Z Kp2". (25)
n=1

n=1
Then, the following identity holds:
M(z) = C(zM(z)). (26)

The Cauchy transform of is defined by

A 1 _OOE(xn)_OO my 4 -1
G(z) _E<Z_x> _nzzo s _nZ:oZ"“ = 2 IM(z7Y), (27)
and theR-transform ofz is defined by
R(z) = — = HZ:O Ky g2 (28)
If we let K(z) 2 R(z) + z7%, then K(G(2)) = z, i.e., K(z) is the inverse of the Cauchy
transformG(z).

If we let G.(z) and R,(z) denote the Cauchy transform and tRetransform of random

variablez, respectively, then, for two free random variableandy, from (22) we have
R, 1y(2) = Ry(2) + Ry(2). (29)

In case not bottR,(z) and R,(z) are well-defined on a region af one may be able to find
the Cauchy transfornd-,,(z) of x + y for free random variables andy from the Cauchy
transformsG,(z) andG,(z) of x andy as follows.

We shall see soon below that wheris in the upper complex plang* £ {c € C|Im(c) > 0}
where C stands for the complex plane and Im stands for the imaginary @f a complex
numnber, a Cauchy transform is well-defined.

For anz € C*, solve the following system of two equations for two unkndwnctionsw,(z)
andw,(z):

Gi(wz(2)) = Gylwy(2)) andw,(2) + wy(2) — =———— = 2. (30)
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Then,
Goty(2) = Go(wa(z)) = Gy(wy(2)). (31)

If noncommutative random variable is self-adjoint, then it has a spectral measuren R
such that the moments afare the same as the conventional moments of the probabiéiisure
v. One can simply see it when is a Hermitian matrix and them can be diagonalized by a
unitary matrix and has real-valued eigenvalues. Thesevedakd eigenvalues are the spectra of
x that are discrete for a finite matrix but may become contisuwbenz is a general operator
over an infinite dimensional space. In this case, we say #ratam variabler has distribution
V.

Then, the Cauchy transfor@(z) of « can be formulated as

Gl2) = /R L), (32)

z—1

and G(z) is also called the Cauchy transform mf

One can clearly see from (32) that Cauchy transfé#tn) is well-defined when: € C*. In
fact, G(z) is analytic inC™, i.e., it exists derivatives of all orders for anye C*. Furthermore,
G(z) € C~, the lower complex plane similarly defined@s. In other words, a Cauchy transform
G(z) mapsC™* to C~.

From (32), one can also see that the Cauchy transform exxthdaeal axi® for z, which is
because when € R, the integration may not exist. After saying so, it may ekighe generalized
function sense as if € R, the Cauchy transform (32) becomes the Hilbert transforav¢f) /dt.

When probability measure is compactly supported, i.e., it is supported on a finiterirgke
not only its Cauchy transform is analytic i@i*, but also itsR-transform is analytic on some
disk centered at the origin. This, however, may not be trueafgeneral probability measure
For more details, see [6].

With a Cauchy transfornd:(z), its corresponding probability measure can be formulated b
the Stieltjes inversion formula as follows.

Theorem 3:Let v be a probability measure oR and G(z) be its Cauchy transform. For

a < b, we have

= lim L / MG+ )it = v((a,) + gy ({a, b)), (33)

T—0t T
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where v((a,b)) and v({a,b}) are the continuous and the discrete parts of the measure
respectively. Ify; and v, are two probability measures di with equal Cauchy transforms,
i.e., Gy, (2) = Gy,(2), theny, = vs.

This result tells us that Cauchy transforms and probahifigasures (distributions or random
variables) are one-to-one corresponding to each other.

If  andy are two free self-adjoint random variables with distribn8z, andv,, respectively.
The distribution ofz + y is called the free convolution of those ofandy, which is denoted
by v, BHu,.

As an example of Cauchy transform, whetis semicircular with density functioq(¢) in (8),
its Cauchy transform is, [6],

Gs(z) = ——F—. (34)

IV. APPLICATION IN RANDOM MATRICES

As mentioned in Introduction, random matrices with entriéscomplex Gaussian random
variables are often used in wireless communications angabkigrocessing. In particular, their
singular value (eigenvalue) distributions play an impoftrteole in analyzing wireless commu-
nications systems. This section is on applying free prditakiheory to random matrices of
large sizes. It tells us how to use the second order statisfithe entries of random matries to

calculate their asymptotic eigenvalue distributions.

A. GUE Random Matrices and Wigner's Semi-Circle Law

Let Xy be anN x N matrix with complex random variables; = z;; + iy;; as entries
such thatr;; andy;; are real Gaussian random variablg§ya;; is a standard complex random
variable, i.e.,E(a;;) = 0 and E(|a;;|*) = 1/N and

1) a;; = a;i,
2) {xij}ti>; U{yi}is; are iid.
In this case X is Hermitian, i.e., self-adjointX y is called a Gaussian unitary ensemble (GUE)

random matrix. The following theorem is Wigner’s semi-tartaw.
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Theorem 4:If {Xy}y is a sequence of GUE random matrices, then, for any positiegeér
k,

1 2
lim E(tr(Xy)) = —/ t*\v/4 — 2t
N—oo 2 _9
B (%), if k=21 for some positive integet
0, if £ is odd

where ¢ stands for the normalized matrix trace, i.e:(-) 2 Tr(-)/N with the conventional
matrix trace Tr.
Since X is Hermitian, it has spectra (eigenvalues) that is a random variable as well.

Sincetr(X%) = tr(v¥), we have

Thus, the above theorem says that the eigenvaluesyotonverge in distribution to the semi-
circular random variable. In fact, the convergence in digtion can be made stronger to the

almost surely convergence.

B. Asymptotic Freeness of GUE Random Matrices

For random matriceX as noncommuntative random variables, their linear funetié used
in Section Il is defined a&'(tr(X)), i.e., E(-) used before for a noncommutative random variable
x corresponds td(¢r(-)) for a random matrixX in what follows.

Definition 5: Let (Xy)y and(Yy)x be two sequences df x N matrices. We say thaX y
and Yy are asymptotically free if they converge in distributiontteo free random variables
andy, respectively, asv goes to infinity.

From Definitions 2 and 5Xy andY, are asymptotically free, if for any positive integer

and non-negative integefs, q1, ..., Pm, ¢m W€ have

lim E(tT(X]IGY]? .. 'X]%"LYJ‘\Z,"L)) = E(aPly™ - - - gPrym),

N—oo
for two free random variables andy.
For a sequence aV x N deterministic matrice$Dy )y, if limy_,o tr(D}}) exists for every

non-negative integet, we sayDy converges tal in distribution, wherel is a noncommutative
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distr

random variable and itsith moment is the same as the limit. We also write itiasy_,.. Dy =
dor Dy &% d.

With the above notations, the following theorem of Voicalesmproves Wigner's semi-circle
law.

Theorem 5:AssumeX](V1),...,X](§’) are p independentN x N GUE random matrices and
D}é), o D](\?) are ¢ deterministic’V x N matrices such that

DY, DWW X8 g . d, asN — co.

Then,

XV, x®P DY, D@ sy dy, ... dy @SN — oo,

where eachs; is semicircular and;, ..., s,, {ds, ...,d,} are free. The convergence above also
holds almost surely.

This result tells that independent GUE random matrié(é\é),...,X%”,{D](\P,...,D%)} are
asymptotically free whenV is large. FurthermoreX](\}), ...,X](é’) asymptotically have the same
distributions as free semicircular elements..., s, do, and this is still true even when they are

mixed with deterministic matrices.

C. Asymptotic Freeness of Haar Distributed Unitary Randoatrides

For a general Hermtian random matrix, it can be diagonalizgd unitary matrix and in
this case, the unitary matrix is random as well. Therefdrés also important to study unitary
random matrices.

LetZ/(N) denote the group oV x N unitary matriced/, i.e.,UU* = U*U = | y. Sinceld(N)
is bounded (compact), it has Haar meansdirewith fu(N) dU = 1. Thus,dU is a probability
measure (it can be understood as a uniform distribution). aarHlistributed unitary random
matrix is a matrixUy randomly chosen it/ (V) with respect to Haar measure. One method to
construct Haar unitary matrices is as follows. First, takeVax N random matrix whose entries
are the independent standard complex Gaussian randonblestid hen, use the Gram-Schmidt
orthogonalization procedure to make it unitary.

A noncommutative random variableis called Haar unitary if it is unitary, i.eyu* = v*u = 1
and E(u™) = 6om, i-.,0 whenm > 0. A Haar unitary random matrix is Haar unitary, i.e., if
U€cU(N), thenE(tr(U™)) =0 for m > 0 [6].
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Theorem 6:AssumeU](\}), ...,U](\f) are p independentN x N Haar unitary random matrices

and DE\}), ...,D](\‘}) are ¢ deterministicN x N matrices such that
DY, ..D@ &8 g d,asN — .

Then, asN — oo,

(q) distr

U, UG, U 0P DY, DY T g,y ity dyy ey dy,

where eachy; is Haar unitary andu,, ui}, ..., {up, vy}, {di, ...,d,} are free. The convergence
above also holds almost surely.
A more special case is as follows.

Theorem 7:Let Ay andBy be two sequences of determinisiNcx N matrices withim y_, o Anx distr

distr

a andlimy_., By = b. LetUy be a sequence af x N Haar unitary random matrices. Then,

AN, (]NBN(]>k disty — a, basN — o0,

wherea andb are free. This convergence also holds almost surely.
The above theorem says thal, andUyByUj, are asymptotically free whefV is large.

D. Aymptotic Freeness of Wigner Random Matrices

Let 1. be a probability measure dR anda;; with ¢ < j be i.i.d. real random variables with
distributiony. Let a;; = aj; for ¢ > j, and

1
An = \/—N(aij)lgi,jsm

which is self-adjoint (symmetry) and called Wigner randoratmnx (ensemble).
Theorem 8:Let p4, ..., 1, be probability measures dR with all moments exist and mean.
AssumeASé), o A%’) arep independentV x N Wigner random matrices with entry distributions

i, ..., thyp, rESPECtively, andD](\}), s DE\‘}) are ¢ deterministicN x N matrices such that
DY, . .D@ &R g d,asN — oo,

and

sup 1D < 0.
Then, asN — oo,
) distr

AW AR DO DO s, dy, . dy,
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where eachs; is semicircular and, ..., s,, {di, ..., d,} are free.
. dist . ..
As a special casedyDn Ay, Exy =2 sds, e, wheres is semicircularsds ande are free, and

e can be arbitrary.

V. FREE DETERMINISTIC EQUIVALENTS AND RANDOM MATRIX SINGULAR VALUE

DISTRIBUTION CALCULATIONS

Let H be anN x M wireless channel matrix, which is usually modelled as a oamdhatrix,

with additive white Gaussian noise (AWGN) of variangeThen, its mutual information is

C(o) = %E {logdet (IN + HH*)} , (35)

o
where* stands for Hermitian operation. Let\) denote the eigenvalue distribution (or spectra,

or probability measure) of matrikl H*. Then, when\ is large,

C(o) = /O " log (1 + g) dv(\). (36)

On the other hand, the Cauchy transform of the probabilitasueer and matrix H H* is

1 -1
G(2) :/0 Z_)\dl/()\) =FE(tr(zly — HH*)™), (37)

where z € C*. Assume thatG(z) exists as Iniz) — 0T, whose limit is denoted by~ (w)
with w =Re(z). For semicircular distribution, from (34) one can see thdt)) exists when
w =Re(z) > 2. Then, [15],

Clo) = /U h (% _ G(—w)) . (38)

The above formula tells us that, to calculate the mutualrmédgion of the channel with channel
matrix H, we only need to calculate the Cauchy transform of makfik*.

As an example, ifH H* is a GUE random matrix, then, wheW is large, it is approximately
semicircular and its Cauchy transform has the form of (34haiproper normalization. Thus, its
mutual information can be calculated. However, in appiocet, 7 H* may not be a GUE matrix.
We next introduce free deterministic equivalents to helgdtrulate the Cauchy transforms of

large random matrices, such as the abéVH*, based on Speicher [4], [6], [9].
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A. Matrix-Wise Free Deterministic Equivalents

From Section IV, we know that when the entri€s, i > j, of an N x N self-adjoint (symmetry
for real-valued or Hermitian for complex-valued) matix are i.i.d. random variables, whew
is large, it is approximately semicircular. It is also tr fnultiple such random matrices and
multiple deterministic matrices jointly.

For a non-adjoint random matriX of i.i.d. Gaussian entries, it can be made into two
independent self-adjoint GUE matrices Bs = (X + X*)/v2 and Y, = —i(X — X*)/v/2.
Then, X = (Y; +iY2)/V2. In this case,X converges in distribution ta = (s; + isy)/v/2
for two free semicircular elementg and s, with the same distribution. While; and s, are
semicircular, we calk circular.

In [6], [9] it is proposed to replace these random matricesdapicircular and circular elements
etc. Consider the following collections @f x N matrices, where for each random matrix, its

entries of different random variables are i.i.d.:
X ={Xy,...,X,,}: independent self-adjoint matrices
Y ={Y1,..,Y,,}: independent non-self-adjoint matrices
U ={Uy,...,U,,} : independent Haar distribued unitary matrices
D ={D,...,D,,}: deterministic matrices

Let

s ={s1,...,8,, 1 : free semicircular
c={cy,...,cn,} : free circular
u = {uy,..,u,, t : free Haar unitary

d={d,...,d,} : abstract elements

Assume that the joint distribution dD is the same as that ef, and X, Y, U are independent
among each other. Also assume that, u have their each individual distribution asymptotically
the same as that &, Y, U, respectively.

Let Py be a multi-variable polynomial oK, Y, U, D. Then, whenN is large,

Py =P(Xy, .., X0, Y1, o, Yoo, U,y oo, Upy, D,y ooy D)
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can be replaced by
O
PN = P(Sl, vy Snyy Cly ooey Cpgy U, ---uun37d17 ...,dn4)

and Py is called the (matrix-wise) free deterministic equivaleftPy. Then, we have, for any
positive integetk,
lim E(tr(PY)) = E((Py)").

N—oo
Now let us go back to the matrikk H* in (35). Although matrixH is not self-adjoint itself,
but if we follow [4] and [6] and let

0 H
T = , (39)
H* 0
then, matrixT is self-adjoint. Furthermore,
) HH* 0
T2 = , (40)
0 H*H

which includesH H* as a diagonal block. Using operator-valued free probgbihteory [6],
[9], it can be similarly treated as what is done in the presisactions. Note thaf? is just a
polynomial of T but unfortunately not all entries in matrik have the same distribution, which
makes the above matrix-wise free deterministic equivadg@miroach difficult to use. In order to

deal with this problem, we next consider component-wise ffeterministic equivalents.

B. Component-Wise Free Deterministic Equivalents and @adecansform Calculation of Ran-

dom Matrices

This part is mainly from [4]. We conside¥ x N random matrices{ = (X;;) whereX;; are
complex Gaussian random variables wittiX;;) = 0 and E(X;; X};) = 0;;/N, whereo;; are

independent ofV. Now we replace all entrieX;; in X by (semi)circular elements; such that
E(CijCz}) = E(XZJX:;) = O'Z'j/N (41)

where if X;; is real-valued (or complex-valued), then, is semicircular (or circular) with mean
0; if X;; and X}, are independent, therj; and ¢y, are free; if X;; = Xy, thenc;; = cp;

and E(X;; X;) = E(cijcyy) = (E(cjje))*. Then, we form anV x N matrix of (semi)circular
elements as = (¢;;). Matrix c is called the component-wise free deterministic equiviatén

matrix X.
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Let Xy,..., X,,, ben,; random matrices, each of which is specified above, wherendlies
of each of these matrices are independent from all entrieslldhe remaining matrices. Let
1, ..., Cp, D€ the component-wise deterministic equivalentsXef ..., X,,,, and all elements in
c; are free from all elements in; when: # j. Let Dy, ..., D,, be n, deterministic matrices.

AssumePy is a multi-variable polynomial and
Py = P(Xy,...X,,,D1,...,Dp,), (42)
Py = Plcy,....cn,, D1, ..., Dyy). (43)

We call thatPy is the component-wise free deterministic equivalenf’gf

1) Independent Case<Consider the case when every matiix is Hermitian/self-adjoint and
entries X;; for i > j are all independent. It is explicitly shown in [18] thhmy_,.(Py —
PY) =0, i.e., the matrices\, ..., X,,,, Dy, ..., D,,, have the same joint distribution as matrices
Clyeeey Cnyy D1y ooy Dy, dO. Thus, ey, ..., ¢,, may be used to calculate the Cauchy transforms of
X1, ..., X, When only the variances of the entries in matriéésare used, asv is large.

We now consider a special example shown in [4]. Ket= (X;;) be anN x N Hermitian/self-
adjoint Gaussian random matrix with(.X;;) = 0 and E(X;; X};) = 0;;/N, and letc = (c;;) be
its component-wise deterministic equivalent, i.B(c;;) = 0 and E(c;;c;;) = 0;;/N. Note that
since X;; = X
Consider the matrix sui™ = A + X. We next show how to calculate the Cauchy transform

we havec;; = cj; as well. LetA be anN x N deterministic matrix.

of Y by calculating that of' = A + c.
For an N x N deterministic matrixB = (B;;), define a mapping that mapsB to another

N x N deterministic matrix)(B) with its (i, j)th component as
[T}(B)] = E CBC ZE Cszklclg ZE Czkcjl Bkl (Sw Zgszkka (44)

which shows that)(B) is a dlagonal matrix. Then, the Cauchy transfogipi{z) of 7" can be

determined by solving the following fixed point equation J[1/@]:
gr(z) = tr(Gr(2)), (45)
1
6r(s) = (5 1) (a6)

—n(Gr(2) -
where E(B) 2 (E(B;j)). Itis shown in [10] that there is exactly one solution of theee fixed
point equation with the proper positivity constriant.
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We next consider the case whéhis not Hermitian, such as the channel matfxin (35),
where all entries ofX are independent. In this case, consitler= A+ X and we next calculate

the Cauchy transform of Y*. To do so, define

(0 Y) (0 A) (0 X)
T = = + . (47)
Y* 0 A0 X 0

. [yye o0
T2 — . (48)
0 Y*Y

Since the eigenvalue distributions By * andY*Y" are the same, the Cauchy transformyaf *

Then,

is the same as that @f?. It is presented in [4] as follows.
For anM x M matrix B = (B;;), define

Ep,,(B) £ diag E(Bn), -, E(Bar)),

where diag stands for th&/ x M diagonal matrix with its arguments as its diagonal elements
and also define
m(B) 2 E(cBc*) andny(B) £ E(c*Be). (49)

Note that since all the entry elements in matrixre free from each othek,(cB¢*) = Ep,, (¢Bc")
and E(c¢*Bc) = Ep, (c*Bc) as what is shown for in (44).

Then, the Cauchy transforgy:(z) of 72 or YY™* is gr2(z) = tr(Gr2(z)) andGr:2(z) can be
obtained by solving the following fixed point equations [1]]:

2Gre(2?) = Gr(z) = En, || 77 am(Ga(=%)) 4 2 . (50)
—A* z — z2me(G1(2?%))
where
_ ' * N
ZGl(Z) = EDN _(1 — nl(Gg(Z)) + AZ — ZT]Q(Gl(Z))A | s (51)
- ' * ]
ZGQ(Z) = EDN _(1 — 7]2(G1<Z)) + AZ —m (GQ(Z))A ) | . (52)
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2) Correlated Cases and SummaryWhen the entries in matriXX are correlated, similar
treatment as the above can be done [4]. One can still get theh@aransform ofY” when X
is Hermitain by solving the fixed point equation (45)-(46)datme Cauchy transform of Y*
when X is not Hermitian by solving the fixed point equation (50)X5&heren(B) = E(cBc)
may not be diagonal as what is calculated in (44), afd?) and n,(B) may not be diagonal
either. An example of correlated entries i is that each column vector (or row vector) &f
is a linear transform of a vector of independent Gaussiadaanvariables.

A simpler example of correlated cases is when random maisix= BX where B is a
deterministic matrix andX is a random matrix of independent entries. In this caéecan be
treated as a product of two matrices Bfand X and thus, was covered previously.

The above Cauchy transform calculation is only based on ¢har@ances (the second order
statistics) of the entries of random matrix As we mentioned easlier, in this case one does not
need to implement Monte-Carlo simulations to do the catouta that may be not convenient
in practice whenX has a large size.

Going back to the mutual information in the beginning of théstion, we can just let =0
in the above to get the Cauchy transformmeH* = YY™*.

As a remark, the deterministic equivalents defined abovérane [4], [6], [9], which we refer

to for any difference with those appeared in [12], [13].

VI. CONCLUSIONS

As mentioned in the beginning of this paper, the main goat Ieeto introduce free probability
theory and its application to random matrices as simple asipke. It is for a non-mathematics
major researcher in, for example, communications and bigrecessing areas. This paper is
mainly based on [4]-[7].

Free probability theory is about noncommutative elememtgandom variables, such as,
random matrices, in contrast to the conventional (reake@lor complex-valued) commutative
random variables in the classical probability theory. Theehess significantly simplifies the
calculations of the moments and therefore the distribsti@md interestingly, random matrices,
when their size is large, do have the freeness asymptotiddierefore, free probability theory
is naturally applied to calculate the asymptotic distridms of the eigenvalues/singular-values of

random matrices when their size is large, such as wirelessngt matrices in massive MIMO

February 26, 2019 DRAFT



22

systems. It is particularly interesting that the calcwlatonly needs the second order statistics
of the matrix entries.

This paper is based on the author’s own understanding onphiagability theory and by no
means the material covered in this paper is complete. Mamgptzie materials on this topic are
referred to [4]-[8], [11], [15], [17].
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