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Abstract

Free probability theory started in the 1980s has attracted much attention lately in signal processing

and communications areas due to its applications in large size random matrices. However, it involves

with massive mathematical concepts and notations, and is really hard for a general reader to comprehend.

The main goal of this paper is to briefly describe this theory and its application in random matrices as

simple as possible so that it is easy to follow. Applying freeprobability theory, one is able to calculate

the distributions of the eigenvalues/singular-values of large size random matrices using only the second

order statistics of the matrix entries. One of such applications is the mutual information calculation of

a massive MIMO system.

Index Terms

Free probability theory, free random variables, massive MIMO, random matrices, and semicircular

distributions

I. INTRODUCTION

Free probability theory was started by Voiculescu in the 1980’s [1]–[3]. It is about calculating

moments (or distributions) of non-commutative random variables, such as, random matricies

where the matrix entries are classical random variables.

In classical probability theory, random variables are usually real-valued and can be extended

to be complex-valued. For convenience, let us say that they are real-valued. Therefore, they are

X.-G. Xia is with the Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA

(e-mail: xxia@ece.udel.edu).

February 26, 2019 DRAFT



2

commutative. For example, assumex1, x2 are two independent non-zero random variables and

E denotes the expectation. Then,

E(x1x2x1x2) = E(x2
1x

2
2) = E(x2

1)E(x2
2) > 0, (1)

no matter whetherx1 and/orx2 have0 mean or not, which is becausex1 andx2 are commutative.

However, if x1 and x2 are not commutative, then, the property (1) may not hold and two

natural questions are as follows. What will happen to (1)? What does the independence mean

to non-commutative random variables?

Free probability theory addresses the above two questions.It introduces freeness between

non-commutative random variables, which is analogous to the independence between classical

commutative random variables. It basically says that although E(x1x2x1x2) may not be equal

to E(x2
1x

2
2), it is 0 if x1 andx2 are free and both have mean0.

With this freeness, when a large number of free random variables are summed with proper

weights, it converges to the classical semicircular distribution. This is the free central limit

theorem similar to the classical central limit theorem, where Gaussian distribution corresponds

to semicircular distribution. Note that the eigenvalue distribution of a random matrix with entries

of independent Gaussian random variables (for simplicity,the matrix symmetricity is not specified

here) goes to semicircular distribution as well when the matrix size goes to infinity. This suggests

a connection between free random variables and large size random matrices. Free probability

theory says that, it indeed has a strong connection, i.e., random matrices of independent Gaussian

random variables become free when the matrix size goes to infinity. In other words, when the

size of matrices is large, these matrices are approximatelyfree.

Furthermore, the entries in random matrices can be replacedby free semicircular random vari-

ables (called deterministic equivalent). With the replacement, all the joint moments or cumulants

of random matrices can be calculated, which may lead to the calculations of the distributions of

the eigenvalues of the functions of these random matrices.

This is the reason why free probability theory has attractedmuch attention in wireless commu-

nications and signal processing areas. Massive MIMO systems have been identified as potential

candidates in future wireless communications systems. In massive MIMO systems, their channel

matrices are random of large sizes. Therefore, it is naturalto apply free probability theory to

do some of the difficult calculations, such as, channel capacity [14], [16], [18]. It is particularly
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interesting when some statistics of a channel matrix of large size, such as, the first two moments

(covariances) of the channel coefficients, are known, how wecalculate the channel performance

without performing Monte Carlo simulations that may be hardto do in practice when the channel

matrix size is large, such as, a massive MIMO channel.

The main goal of this tutorial paper is to briefly introduce free probability theory and its

application to large size random matrices so that an ordinary researcher in signal processing and

communications areas can easily understand.

In the following, we adopt most of the notations in Speicher [4]–[7]. All the results described

below are from [4]–[7] as well. The remainder of this paper isorganized as follows. In Section

II, we describe the basics of free random variables and the free central limit theorem without

proof. In Section III, we describe the calculations/relations of joint moments, cumulants, and

distributions of multiple free random variables. In Section IV, we describe random matrices and

the approximate distributions of their eigenvalues. In Section V, we describe free deterministic

equivalents for random matrices. We also describe how to calculate the Cauchy transforms of

random matrices using the second order statistics of their entries. In Section VI, we conclude

this paper.

II. FREE RANDOM VARIABLES

For convenience, in the following we will use as simple notations as possible, which may be

too simplified in terms of mathematical rigorousness.

Let x1, x2, ..., xn be n elements that may not be commutative, andE be a linear functional

on these elements so thatE(1) = 1. Examples of these elements are matrices andE is like the

expectation of a classical random variable.

Definition 1: Elements (or random variables)x1, x2, ..., xn are called free or freely indepen-

dent, if for anym polynomialspk(x), 1 ≤ k ≤ m, with m ≥ 2,

E(p1(xi1)p2(xi2) · · · pm(xim)) = 0, (2)

whenE(pk(xik)) = 0 for all k, 1 ≤ k ≤ m, and any two neighboring indicesil and il+1 are not

equal, i.e.,1 ≤ i1 6= i2 6= · · · 6= im ≤ n.

From (2), if x1 and x2 are free, thenE(x1x2x1x2) = 0 whenE(x1) = E(x2) = 0, where

m = 4, i1 = 1, i2 = 2, i3 = 1, i4 = 2, and polynomialspk(x) = x for 1 ≤ k ≤ 4. Comparing
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with (1) in the classical commutative case, independent real-valued random variables are not

free. The terminology “free” comes from the concept of free groups, where there is no any

nontrivial relation between any generating elements of a free group.

One might want to ask why, in the above definition, polynomials of the random variables

xk are used. It is for the convenience later in calculating their joint moments. Note that in free

probability theory context, it is not convenient to directly define density functions (or distribution

functions) for noncommutative random variables. However,as we can recall, in the classical

probability theory, if all the moments of a random variable are known, its characteristic function

can be often determined and therefore, its density functioncan be often determined as well.

Thus, calculating all the joint moments of free random variables may be sufficient for their joint

distributions. Its details will be described in Section III.

The setAk of all polynomialsp(xk) of xk including the identity element1 = x0
k is called the

subalgebra generated by elementxk for 1 ≤ k ≤ n. SubalgebrasA1,A2, ...,An are called free

if and only if elementsx1, x2, ..., xn are free. Clearly, when elementsx1, x2, ..., xn are free, for

anyn polynomialsp1(x), ..., pn(x), elementsp1(x1), ..., pn(xn) are free as well.

If elementsx1, x2, · · · , xn are free, they are called free random variables. With the above

freeness definition, although one may construct abstract free random variables using possibly

many mathematical concepts, it is not easy to show concrete examples of free random variables

at this moment.

Two setsS1 andS2 are called free if any element inS1 and any element inS2 are free. With

property (2), when{x1, x3} andx2 are free, it is easy to check thatE(x1x2) = E(x1)E(x2) and

E(x1x2x3) = E(x1x3)E(x2).

In many practical applications, we may need to deal with complex-valued random variables,

such as, complex Gaussian, where the complex conjugation∗ is usually used. In correspondence

with the complex conjugation, the above freeness becomes∗-freeness. We call thatx1, x2, · · · , xn

are∗-free, if (2) holds when the polynomialspk(x) in Definition 1 are changed to polynomials

pk(x, x∗) of two variables. Ifx = x∗, elementx is called self-adjoint. For example, whenx

is a matrix and∗ is the complex conjugate transpose operation, ifx is Hermitian, thenx is

self-adjoint. In this case,x can be diagonalized by a unitary matrix and all its eigenvalues are

real-valued.

Definition 2: 1) When two random variablesx1 andx2 have all the moments the same, i.e.,
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E(xm
1 ) = E(xm

2 ) for all positive integersm, they are called identically distributed or having

the same distribution.

2) For a sequence of random variablesxn, n = 1, 2, ..., we callxn converges tox in distribution

whenn goes to infinity, if all the moments ofxn converge to the moments ofx asn goes

to infinity, i.e., for any positive integerm,

lim
n→∞

E(xm
n ) = E(xm), (3)

which is denoted aslimn→∞ xn
distr
= x or xn

distr−→ x asn → ∞.

3) Let I be an index set. For eachi ∈ I, let x(i)
n , n = 1, 2, ..., be a sequence of random

variables. We call that(x(i)
n )i∈I converges to(x(i))i∈I in distribution, if

lim
n→∞

E(x(i1)
n · · ·x(ik)

n ) = E(x(i1) · · ·x(ik)) (4)

for all positive integersk and all i1, ..., ik ∈ I, which is denoted as

lim
n→∞

(x(i)
n )i∈I

distr
= (x(i))i∈I or (x(i)

n )i∈I
distr−→ (x(i))i∈I asn → ∞.

The definition in 2) is about the convergence in distributionfor a single sequence of random

variables and the definition in 3) is about the convergence indistribution for multiple sequences

of random variables jointly.

One of the most important results in classical probability theory is the central limit theorem.

It says that the summation of independent random variables of a totally fixed variance converges

to Gaussian random variable, when the number of the independent random variables goes to

infinity. For free random variables, it has the following free central limit theorem.

Theorem 1:Let xk, k = 1, 2, ..., be a sequence of self-adjoint, freely independent, and

identically distributed random variables withE(xk) = 0 andE(x2
k) = σ2. For a positive integer

n, let

Sn =
x1 + x2 + · · ·+ xn√

n
. (5)

Then,Sn converges in distribution to a semicircular elements of varianceσ2 asn → ∞, i.e.,

lim
n→∞

E(Si
n) =







σiCi/2, if i is even,

0, if i is odd,
(6)

whereCk is the Catalan number and the(2k)th moment of the semicircular distribution:

Ck =
1

2π

∫ 2

−2

t2k
√
4− t2dt =

1

k + 1

(

2k

k

)

. (7)
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The random variables in Theorem 1 is called a semicircular element in this contextand it,

after divided byσ, has the same distribution as the classical semicircular random variable of

density function

q(t) =







1
2π

√
4− t2, if |t| < 2,

0, otherwise.
(8)

Its mement of an even order has the form in (6) and an odd order is always0.

Note that semicircular distributions are the asymptotic distributions of the eigenvalues of

Hermitian Gaussian random matrices when the matrix size goes to infinity, which is called

Wigner’s semi-circle law and will be discussed in more details in Section IV later.

III. M OMENTS, CUMULANTS , AND CAUCHY TRANSFORMS

As mentioned earlier, it is not convenient to directly definea density function or probability

measure for a noncommutative random variable, and instead its all moments are defined and the

freeness is to simplify the joint moments between free random variables.

In order to see how moments are related to distributions of free random variables, let us first

see how in classical probability theory, a probability measure and its moments are related.

Let µ(t) be a probability measure on the real lineR. Assume its all moments are finite and

let mi be its ith moment for a positive integeri andφ(t) be its characteristic function, i.e.,

mi =

∫

R

tidµ(t), andφ(t) =
∫

R

eiτtdµ(τ), (9)

wherei
∆
=

√
−1. Then, it is easy to see

mi = i
−iφ(i)(0), andφ(t) =

∞
∑

i=0

mi
(it)i

i!
, (10)

whereφ(i)(t) stands for theith derivative ofφ(t). Furthermore, we can write

log(φ(t)) =

∞
∑

i=1

ki
(it)i

i!
with ki = i

−i di

dti
log(φ(t))

∣

∣

∣

∣

t=0

, (11)

whereki are called the cumulants ofµ(t). We will call them the classical cumulants. The moment

sequence{mi}i≥0 and the cumulant sequence{ki}i≥1 can be determined from each other:

mn =
∑

1·r1+···+n·rn=n
r1,...,rn≥0

n!

(1!)r1 · · · (n!)rnr1! · · · rn!
kr1
1 · · · krn

n (12)

kn =
∑

1·r1+···+n·rn=n
r1,...,rn≥0

(−1)r1+···+rn−1(r1 + · · · rn − 1)!n!

(1!)r1 · · · (n!)rnr1! · · · rn!
mr1

1 · · ·mrn
n . (13)
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Sometimes, cumulants may be easier to obtain than moments. In this case, one may first obtain

cumulants and then moments.

Since for noncommutative random variables, we start with their moments as we have seen so

far, it is very important to investigate moment and cumulantsequences for further calculations.

Before going to more details, let us see some basic concepts about partitions of an index set,

which plays an important role in free probability theory.

A. Partitions, Non-crossing Partitions, and Free-Cumulants

For a positive integern, we denote[n]
∆
= {1, 2, ..., n}. A partition π of set [n] meansπ =

{V1, ..., Vk} such thatV1, ..., Vk ⊂ [n] with Vi 6= ∅, Vi ∩ Vj = ∅ for all 1 ≤ i 6= j ≤ n, and

V1∪· · ·∪Vk = [n]. SubsetsV1, ..., Vk are called the blocks ofπ and#(π) denotes the number of

the blocks ofπ. P(n) denotes the set of all the partitions of[n]. A partition is called a pairing

if its each block has size2 and the set of all the pairings of[n] is denoted byP2(n).

Let π ∈ P(n) and{ki}i be a sequence. We denotekπ = kr1
1 kr2

2 · · · krn
n whereri is the number

of blocks ofπ of sizei. Then, the determination formulas in (12)-(13) of moments and cumulants

can be re-formulated as

mn =
∑

π∈P(n)

kπ, (14)

kn =
∑

π∈P(n)

(−1)#(π)−1(#(π)− 1)!mπ. (15)

For π ∈ P(n), denote the moment ofn random variablesx1, ..., xn with partitionπ as

Eπ(x1, ..., xn)
∆
=

∏

V ∈π
V=(i1,...,il)

E(xi1 · · ·xil), (16)

whereV = (i1, ..., il) means that setV has l distinct elements with increasing order asi1 <

i2 < · · · < il.

Whenπ ∈ P2(2k), i.e., π is a pairing of[2k], we have

Eπ(x1, ..., x2k) =
∏

(i,j)∈π

E(xixj). (17)

With this notation, for Gaussian random variablesX1, X2, ..., Xn, we have the following Wick’s

formula:

E(Xi1 · · ·Xi2k) =
∑

π∈P2(2k)

Eπ(Xi1, ..., Xi2k), (18)
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wherei1, ..., i2k ∈ [n].

Let π ∈ P(n). If there existi < j < k < l such thati andk are in one blockV of π, andj

andl in another blockW of π, we call thatV andW cross. If one cannot find any pair of blocks

in π that cross, partitionπ is called non-crossing. Denote the set of all non-crossing partitions

of [n] by NC(n) and the set of all non-crossing pairings of[n] by NC2(n).

The partition setP(n) of [n] is partially ordered via

π1 ≤ π2 if and only if each block ofπ1 is contained in a block ofπ2.

With this order,NC(n), as a subset ofP(n), is also partially ordered. The largest and the

smallest partitions in bothP(n) andNC(n) are [n] and{{1}, {2}, ..., {n}}, denoted as1n and

0n, respectively.

Definition 3: The following free cumulantsκn(x1, ..., xn) are defined inductively in terms of

moments by the moment-cumulant formula:

E(x1 · · ·xn) =
∑

π∈NC(n)

κπ(x1, ..., xn), (19)

where

κπ(x1, ..., xn)
∆
=

∏

V ∈π
V=(i1,...,il)

κl(xi1 , ..., xil). (20)

The above inductive definition is not hard to implement as follows.

For n = 1, we haveE(x1) = κ1(x1). Thus,κ1(x1) = E(x1).

For n = 2, we have

E(x1x2) = κ(1,2)(x1, x2) + κ(1),(2)(x1, x2) = κ2(x1, x2) + κ1(x1)κ1(x2).

Thus,

κ2(x1, x2) = E(x1x2)−E(x1)E(x2),

etc.

Let µ(π1, π2) be the Möbius function onP(n) [7], [8], [11] that has a recursion formula to

calculate. Then, we also have the following Möbius inversion formula:

κn(x1, ..., xn) =
∑

π∈NC(n)

µ(π, 1n)Eπ(x1, ..., xn). (21)
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The moment-cumulant formulas (19) and (21) for momemts and free-cumulants for noncumm-

tative random variables are in analogous to (14) and (15) (or(12) and (13)) for classical random

variables in classical probability theory.

Theorem 2:Random variablesx1, ..., xn are free if and only if all mixed cumulants ofx1, ..., xn

vanish. In other words,x1, ..., xn are free if and only if, for anyi1, ..., ip ∈ [n] = {1, 2, ..., n}
with ij 6= il for somej, l ∈ [p], we haveκp(xi1 , ..., xip) = 0.

The result in the above theorem significantly simplifies the calculations of the free cumulants

of multiple free random variables and therefore, helps to calculate the joint moments of multiple

free random variables. For example, ifx andy are free, then we have

κx+y
n

∆
= κn(x+ y, ..., x+ y)

= κn(x, ..., x) + κn(y, ..., y) + (mixed cumulants inx, y)

= κx
n + κy

n. (22)

Definition 4: Let I be an index set. A self-adjoint family(si)i∈I is called a semicircular family

of covariance matrixC = (cij)i,j∈I if C is non-negative definite and for anyn ≥ 1 and any

n-tuple i1, ..., in ∈ I we have

E(si1 · · · sin) =
∑

π∈NC2(n)

Eπ(si1 , ..., sin), (23)

where

Eπ(si1 , ..., sin) =
∏

(p,q)∈π

cip,iq . (24)

If C is diagonal, then(si)i∈I is a free semicircular family.

The above formula is the free analogue of Wick’s formula for Gaussian random variables.

If we let X1, ..., Xr be N × N matrices of all entries in all matrices i.i.d. Gaussian random

variables, then they jointly converge in distribution to a free semi-circular familys1, ..., sr of

covariance matrix(cij)1≤i,j≤r = Ir where Ir is the identity matrix of sizer, asN goes to infinity.

More details on random matrices will be seen in Section IV.

B. Cauchy Transforms and R-Transforms

As we have seen earlier, for classical random variables, their distributions or density functions

can be determined by their moment sequences or cumulant sequences as shown in (10) and
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(11). To further study noncommutative random variables, their moment and cumulant sequences

similarly lead to their analytic forms as follows.

Let x be a noncommutative random variable andmx
n = E(xn) and κx

n be its moments and

free cumulants, respectively. Their power series (moment and cumulant generating functions) in

an indeterminatez are defined by

M(z) = 1 +

∞
∑

n=1

mx
nz

n andC(z) = 1 +

∞
∑

n=1

κx
nz

n. (25)

Then, the following identity holds:

M(z) = C(zM(z)). (26)

The Cauchy transform ofx is defined by

G(z)
∆
= E

(

1

z − x

)

=
∞
∑

n=0

E(xn)

zn+1
=

∞
∑

n=0

mx
n

zn+1
= z−1M(z−1), (27)

and theR-transform ofx is defined by

R(z)
∆
=

C(z)− 1

z
=

∞
∑

n=0

κx
n+1z

n. (28)

If we let K(z)
∆
= R(z) + z−1, then K(G(z)) = z, i.e., K(z) is the inverse of the Cauchy

transformG(z).

If we let Gx(z) and Rx(z) denote the Cauchy transform and theR-transform of random

variablex, respectively, then, for two free random variablesx andy, from (22) we have

Rx+y(z) = Rx(z) +Ry(z). (29)

In case not bothRx(z) andRy(z) are well-defined on a region ofz, one may be able to find

the Cauchy transformGx+y(z) of x + y for free random variablesx and y from the Cauchy

transformsGx(z) andGy(z) of x andy as follows.

We shall see soon below that whenz is in the upper complex planeC+ ∆
= {c ∈ C|Im(c) > 0}

where C stands for the complex plane and Im stands for the imaginary part of a complex

numnber, a Cauchy transform is well-defined.

For anz ∈ C+, solve the following system of two equations for two unknownfunctionsωx(z)

andωy(z):

Gx(ωx(z)) = Gy(ωy(z)) andωx(z) + ωy(z)−
1

Gx(ωx(z))
= z. (30)
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Then,

Gx+y(z) = Gx(ωx(z)) = Gy(ωy(z)). (31)

If noncommutative random variablex is self-adjoint, then it has a spectral measureν on R

such that the moments ofx are the same as the conventional moments of the probability measure

ν. One can simply see it whenx is a Hermitian matrix and thenx can be diagonalized by a

unitary matrix and has real-valued eigenvalues. These real-valued eigenvalues are the spectra of

x that are discrete for a finite matrix but may become continuous whenx is a general operator

over an infinite dimensional space. In this case, we say that random variablex has distribution

ν.

Then, the Cauchy transformG(z) of x can be formulated as

G(z) =

∫

R

1

z − t
dν(t), (32)

andG(z) is also called the Cauchy transform ofν.

One can clearly see from (32) that Cauchy transformG(z) is well-defined whenz ∈ C
+. In

fact,G(z) is analytic inC+, i.e., it exists derivatives of all orders for anyz ∈ C+. Furthermore,

G(z) ∈ C−, the lower complex plane similarly defined asC+. In other words, a Cauchy transform

G(z) mapsC+ to C
−.

From (32), one can also see that the Cauchy transform excludes the real axisR for z, which is

because whenz ∈ R, the integration may not exist. After saying so, it may existin the generalized

function sense as ifz ∈ R, the Cauchy transform (32) becomes the Hilbert transform ofdν(t)/dt.

When probability measureν is compactly supported, i.e., it is supported on a finite interval,

not only its Cauchy transform is analytic inC+, but also itsR-transform is analytic on some

disk centered at the origin. This, however, may not be true for a general probability measureν.

For more details, see [6].

With a Cauchy transformG(z), its corresponding probability measure can be formulated by

the Stieltjes inversion formula as follows.

Theorem 3:Let ν be a probability measure onR and G(z) be its Cauchy transform. For

a < b, we have

− lim
τ→0+

1

π

∫ b

a

Im(G(t+ jτ))dt = ν((a, b)) +
1

2
ν({a, b}), (33)
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where ν((a, b)) and ν({a, b}) are the continuous and the discrete parts of the measureν,

respectively. Ifν1 and ν2 are two probability measures onR with equal Cauchy transforms,

i.e., Gν1(z) = Gν2(z), thenν1 = ν2.

This result tells us that Cauchy transforms and probabilitymeasures (distributions or random

variables) are one-to-one corresponding to each other.

If x andy are two free self-adjoint random variables with distributionsνx andνy, respectively.

The distribution ofx + y is called the free convolution of those ofx and y, which is denoted

by νx ⊞ νy.

As an example of Cauchy transform, whenν is semicircular with density functionq(t) in (8),

its Cauchy transform is, [6],

Gs(z) =
z −

√
z2 − 4

2
. (34)

IV. A PPLICATION IN RANDOM MATRICES

As mentioned in Introduction, random matrices with entriesof complex Gaussian random

variables are often used in wireless communications and signal processing. In particular, their

singular value (eigenvalue) distributions play an important role in analyzing wireless commu-

nications systems. This section is on applying free probability theory to random matrices of

large sizes. It tells us how to use the second order statistics of the entries of random matries to

calculate their asymptotic eigenvalue distributions.

A. GUE Random Matrices and Wigner’s Semi-Circle Law

Let XN be anN × N matrix with complex random variablesaij = xij + iyij as entries

such thatxij andyij are real Gaussian random variables,
√
Naij is a standard complex random

variable, i.e.,E(aij) = 0 andE(|aij|2) = 1/N and

1) aij = a∗ji,

2) {xij}i≥j ∪ {yij}i>j are i.i.d.

In this case,XN is Hermitian, i.e., self-adjoint.XN is called a Gaussian unitary ensemble (GUE)

random matrix. The following theorem is Wigner’s semi-circle law.
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Theorem 4:If {XN}N is a sequence of GUE random matrices, then, for any positive integer

k,

lim
N→∞

E(tr(Xk
N)) =

1

2π

∫ 2

−2

tk
√
4− t2dt

=







1
l+1

(

2l
l

)

, if k = 2l for some positive integerl,

0, if k is odd.

where tr stands for the normalized matrix trace, i.e.,tr(·) ∆
= Tr(·)/N with the conventional

matrix trace Tr.

SinceXN is Hermitian, it has spectra (eigenvalues)νN that is a random variable as well.

Sincetr(Xk
N) = tr(νk

N ), we have

lim
N→∞

E(tr(Xk
N)) = lim

N→∞

∫

R

tkdνN(t).

Thus, the above theorem says that the eigenvalues ofXN converge in distribution to the semi-

circular random variable. In fact, the convergence in distribution can be made stronger to the

almost surely convergence.

B. Asymptotic Freeness of GUE Random Matrices

For random matricesX as noncommuntative random variables, their linear functionalE used

in Section II is defined asE(tr(X)), i.e.,E(·) used before for a noncommutative random variable

x corresponds toE(tr(·)) for a random matrixX in what follows.

Definition 5: Let (XN)N and (YN)N be two sequences ofN ×N matrices. We say thatXN

andYN are asymptotically free if they converge in distribution totwo free random variablesx

andy, respectively, asN goes to infinity.

From Definitions 2 and 5,XN andYN are asymptotically free, if for any positive integerm

and non-negative integersp1, q1, ..., pm, qm we have

lim
N→∞

E(tr(Xp1
N Y q1

N · · ·Xpm
N Y qm

N )) = E(xp1yq1 · · ·xpmyqm),

for two free random variablesx andy.

For a sequence ofN ×N deterministic matrices(DN)N , if limN→∞ tr(Dm
N ) exists for every

non-negative integerm, we sayDN converges tod in distribution, whered is a noncommutative
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random variable and itsmth moment is the same as the limit. We also write it aslimN→∞DN
distr
=

d or DN
distr,−→ d.

With the above notations, the following theorem of Voiculescu improves Wigner’s semi-circle

law.

Theorem 5:AssumeX(1)
N , ..., X

(p)
N are p independentN × N GUE random matrices and

D
(1)
N , ..., D

(q)
N are q deterministicN ×N matrices such that

D
(1)
N , ..., D

(q)
N

distr−→ d1, ..., dq asN → ∞.

Then,

X
(1)
N , ..., X

(p)
N , D

(1)
N , ..., D

(q)
N

distr−→ s1, ..., sp, d1, ..., dq asN → ∞,

where eachsi is semicircular ands1, ..., sp, {d1, ..., dq} are free. The convergence above also

holds almost surely.

This result tells that independent GUE random matricesX
(1)
N , ..., X

(p)
N , {D(1)

N , ..., D
(q)
N } are

asymptotically free whenN is large. Furthermore,X(1)
N , ..., X

(p)
N asymptotically have the same

distributions as free semicircular elementss1, ..., sp do, and this is still true even when they are

mixed with deterministic matrices.

C. Asymptotic Freeness of Haar Distributed Unitary Random Matrices

For a general Hermtian random matrix, it can be diagonalizedby a unitary matrix and in

this case, the unitary matrix is random as well. Therefore, it is also important to study unitary

random matrices.

Let U(N) denote the group ofN×N unitary matricesU , i.e.,UU∗ = U∗U = IN . SinceU(N)

is bounded (compact), it has Haar meansuredU with
∫

U(N)
dU = 1. Thus,dU is a probability

measure (it can be understood as a uniform distribution). A Haar distributed unitary random

matrix is a matrixUN randomly chosen inU(N) with respect to Haar measure. One method to

construct Haar unitary matrices is as follows. First, take an N ×N random matrix whose entries

are the independent standard complex Gaussian random variables. Then, use the Gram-Schmidt

orthogonalization procedure to make it unitary.

A noncommutative random variableu is called Haar unitary if it is unitary, i.e.,uu∗ = u∗u = 1

andE(um) = δ0,m, i.e., 0 whenm > 0. A Haar unitary random matrix is Haar unitary, i.e., if

U ∈ U(N), thenE(tr(Um)) = 0 for m > 0 [6].
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Theorem 6:AssumeU (1)
N , ..., U

(p)
N are p independentN × N Haar unitary random matrices

andD(1)
N , ..., D

(q)
N areq deterministicN ×N matrices such that

D
(1)
N , ..., D

(q)
N

distr−→ d1, ..., dq asN → ∞.

Then, asN → ∞,

U
(1)
N , U

(1)∗
N , ..., U

(p)
N , U

(p)∗
N , D

(1)
N , ..., D

(q)
N

distr−→ u1, u
∗
1, ..., up, u

∗
p, d1, ..., dq,

where eachui is Haar unitary and{u1, u
∗
1}, ..., {up, u

∗
p}, {d1, ..., dq} are free. The convergence

above also holds almost surely.

A more special case is as follows.

Theorem 7:LetAN andBN be two sequences of deterministicN×N matrices withlimN→∞AN
distr
=

a andlimN→∞BN
distr
= b. Let UN be a sequence ofN ×N Haar unitary random matrices. Then,

AN , UNBNU
∗
N

distr−→ a, b asN → ∞,

wherea and b are free. This convergence also holds almost surely.

The above theorem says thatAN andUNBNU
∗
N are asymptotically free whenN is large.

D. Aymptotic Freeness of Wigner Random Matrices

Let µ be a probability measure onR andaij with i ≤ j be i.i.d. real random variables with

distributionµ. Let aij = aji for i > j, and

AN =
1√
N
(aij)1≤i,j≤N ,

which is self-adjoint (symmetry) and called Wigner random matrix (ensemble).

Theorem 8:Let µ1, ..., µp be probability measures onR with all moments exist and0 mean.

AssumeA(1)
N , ..., A

(p)
N arep independentN×N Wigner random matrices with entry distributions

µ1, ..., µp, respectively, andD(1)
N , ..., D

(q)
N areq deterministicN ×N matrices such that

D
(1)
N , ..., D

(q)
N

distr−→ d1, ..., dq asN → ∞,

and

sup
r,N

‖D(r)
N ‖ < ∞.

Then, asN → ∞,

A
(1)
N , ..., A

(p)
N , D

(1)
N , ..., D

(q)
N

distr−→ s1, ..., sp, , d1, ..., dq,
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where eachsi is semicircular ands1, ..., sp, {d1, ..., dq} are free.

As a special case,ANDNAN , EN
distr−→ sds, e, wheres is semicircular,sds ande are free, and

e can be arbitrary.

V. FREE DETERMINISTIC EQUIVALENTS AND RANDOM MATRIX SINGULAR VALUE

DISTRIBUTION CALCULATIONS

Let H be anN ×M wireless channel matrix, which is usually modelled as a random matrix,

with additive white Gaussian noise (AWGN) of varianceσ. Then, its mutual information is

C(σ) =
1

N
E

[

log det

(

IN +
HH∗

σ

)]

, (35)

where∗ stands for Hermitian operation. Letν(λ) denote the eigenvalue distribution (or spectra,

or probability measure) of matrixHH∗. Then, whenN is large,

C(σ) =

∫ ∞

0

log

(

1 +
λ

σ

)

dν(λ). (36)

On the other hand, the Cauchy transform of the probability measureν and matrixHH∗ is

G(z) =

∫ ∞

0

1

z − λ
dν(λ) = E(tr(zIN −HH∗)−1), (37)

where z ∈ C+. Assume thatG(z) exists as Im(z) → 0+, whose limit is denoted byG(ω)

with ω =Re(z). For semicircular distribution, from (34) one can see thatG(ω) exists when

ω =Re(z) > 2. Then, [15],

C(σ) =

∫ ∞

σ

(

1

ω
−G(−ω)

)

dω. (38)

The above formula tells us that, to calculate the mutual information of the channel with channel

matrix H, we only need to calculate the Cauchy transform of matrixHH∗.

As an example, ifHH∗ is a GUE random matrix, then, whenN is large, it is approximately

semicircular and its Cauchy transform has the form of (34) with a proper normalization. Thus, its

mutual information can be calculated. However, in applications,HH∗ may not be a GUE matrix.

We next introduce free deterministic equivalents to help tocalculate the Cauchy transforms of

large random matrices, such as the aboveHH∗, based on Speicher [4], [6], [9].
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A. Matrix-Wise Free Deterministic Equivalents

From Section IV, we know that when the entriesXij , i ≥ j, of anN×N self-adjoint (symmetry

for real-valued or Hermitian for complex-valued) matrixX are i.i.d. random variables, whenN

is large, it is approximately semicircular. It is also true for multiple such random matrices and

multiple deterministic matrices jointly.

For a non-adjoint random matrixX of i.i.d. Gaussian entries, it can be made into two

independent self-adjoint GUE matrices asY1 = (X + X∗)/
√
2 and Y2 = −i(X − X∗)/

√
2.

Then,X = (Y1 + iY2)/
√
2. In this case,X converges in distribution tos = (s1 + is2)/

√
2

for two free semicircular elementss1 and s2 with the same distribution. Whiles1 and s2 are

semicircular, we calls circular.

In [6], [9] it is proposed to replace these random matrices bysemicircular and circular elements

etc. Consider the following collections ofN × N matrices, where for each random matrix, its

entries of different random variables are i.i.d.:

X = {X1, ..., Xn1
} : independent self-adjoint matrices,

Y = {Y1, ..., Yn2
} : independent non-self-adjoint matrices,

U = {U1, ..., Un3
} : independent Haar distribued unitary matrices,

D = {D1, ..., Dn4
} : deterministic matrices.

Let

s = {s1, ..., sn1
} : free semicircular,

c = {c1, ..., cn2
} : free circular,

u = {u1, ..., un3
} : free Haar unitary,

d = {d1, ..., dn4
} : abstract elements,

Assume that the joint distribution ofD is the same as that ofd, andX,Y,U are independent

among each other. Also assume thats, c,u have their each individual distribution asymptotically

the same as that ofX,Y,U, respectively.

Let PN be a multi-variable polynomial ofX,Y,U,D. Then, whenN is large,

PN = P (X1, ..., Xn1
, Y1, ..., Yn2

, U1, ..., Un3
, D1, ..., Dn4

)
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can be replaced by

P�

N = P (s1, ..., sn1
, c1, ..., cn2

, u1, ..., un3
, d1, ..., dn4

)

andP�

N is called the (matrix-wise) free deterministic equivalentof PN . Then, we have, for any

positive integerk,

lim
N→∞

E(tr(P k
N)) = E((P�

N )
k).

Now let us go back to the matrixHH∗ in (35). Although matrixH is not self-adjoint itself,

but if we follow [4] and [6] and let

T =





0 H

H∗ 0



 , (39)

then, matrixT is self-adjoint. Furthermore,

T 2 =





HH∗ 0

0 H∗H



 , (40)

which includesHH∗ as a diagonal block. Using operator-valued free probability theory [6],

[9], it can be similarly treated as what is done in the previous sections. Note thatT 2 is just a

polynomial ofT but unfortunately not all entries in matrixT have the same distribution, which

makes the above matrix-wise free deterministic equivalentapproach difficult to use. In order to

deal with this problem, we next consider component-wise free deterministic equivalents.

B. Component-Wise Free Deterministic Equivalents and Cauchy Transform Calculation of Ran-

dom Matrices

This part is mainly from [4]. We considerN ×N random matricesX = (Xij) whereXij are

complex Gaussian random variables withE(Xij) = 0 andE(XijX
∗
ij) = σij/N , whereσij are

independent ofN . Now we replace all entriesXij in X by (semi)circular elementscij such that

E(cijc
∗
ij) = E(XijX

∗
ij) = σij/N (41)

where ifXij is real-valued (or complex-valued), then,cij is semicircular (or circular) with mean

0; if Xij and Xkl are independent, thencij and ckl are free; ifXij = Xkl, then cij = ckl;

andE(XijX
∗
kl) = E(cijc

∗
kl) = (E(c∗ijckl))

∗. Then, we form anN × N matrix of (semi)circular

elements asc = (cij). Matrix c is called the component-wise free deterministic equivalent of

matrix X.
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Let X1, ..., Xn1
be n1 random matrices, each of which is specified above, where all entries

of each of these matrices are independent from all entries ofall the remaining matrices. Let

c1, ..., cn1
be the component-wise deterministic equivalents ofX1, ..., Xn1

, and all elements in

ci are free from all elements incj when i 6= j. Let D1, ..., Dn2
be n2 deterministic matrices.

AssumePN is a multi-variable polynomial and

PN = P (X1, ..., Xn1
, D1, ..., Dn2

), (42)

P�

N = P (c1, ..., cn1
, D1, ..., Dn2

). (43)

We call thatP�

N is the component-wise free deterministic equivalent ofPN .

1) Independent Cases:Consider the case when every matrixXi is Hermitian/self-adjoint and

entriesXij for i ≥ j are all independent. It is explicitly shown in [18] thatlimN→∞(PN −
P�

N ) = 0, i.e., the matricesX1, ..., Xn1
, D1, ..., Dn2

have the same joint distribution as matrices

c1, ..., cn1
, D1, ..., Dn2

do. Thus,c1, ..., cn1
may be used to calculate the Cauchy transforms of

X1, ..., Xn1
when only the variances of the entries in matricesXi are used, asN is large.

We now consider a special example shown in [4]. LetX = (Xij) be anN×N Hermitian/self-

adjoint Gaussian random matrix withE(Xij) = 0 andE(XijX
∗
ij) = σij/N , and letc = (cij) be

its component-wise deterministic equivalent, i.e.,E(cij) = 0 andE(cijc
∗
ij) = σij/N . Note that

sinceXij = X∗
ji, we havecij = c∗ji as well. LetA be anN ×N deterministic matrix.

Consider the matrix sumY = A+X. We next show how to calculate the Cauchy transform

of Y by calculating that ofT = A+ c.

For anN × N deterministic matrixB = (Bij), define a mappingη that mapsB to another

N ×N deterministic matrixη(B) with its (i, j)th component as

[η(B)]ij
∆
= E(cBc) =

∑

k,l

E(cikBklclj) =
∑

k,l

E(cikc
∗
jl)Bkl = δi,j

∑

k

σikBkk, (44)

which shows thatη(B) is a diagonal matrix. Then, the Cauchy transformgT (z) of T can be

determined by solving the following fixed point equation [10], [4]:

gT (z) = tr(GT (z)), (45)

GT (z) = E

(

1

z − η(GT (z))− A

)

, (46)

whereE(B)
∆
= (E(Bij)). It is shown in [10] that there is exactly one solution of the above fixed

point equation with the proper positivity constriant.
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We next consider the case whenX is not Hermitian, such as the channel matrixH in (35),

where all entries ofX are independent. In this case, considerY = A+X and we next calculate

the Cauchy transform ofY Y ∗. To do so, define

T =





0 Y

Y ∗ 0



 =





0 A

A∗ 0



+





0 X

X∗ 0



 . (47)

Then,

T 2 =





Y Y ∗ 0

0 Y ∗Y



 . (48)

Since the eigenvalue distributions ofY Y ∗ andY ∗Y are the same, the Cauchy transform ofY Y ∗

is the same as that ofT 2. It is presented in [4] as follows.

For anM ×M matrix B = (Bij), define

EDM
(B)

∆
= diag(E(B11), · · · , E(BMM)),

where diag stands for theM ×M diagonal matrix with its arguments as its diagonal elements,

and also define

η1(B)
∆
= E(cBc∗) andη2(B)

∆
= E(c∗Bc). (49)

Note that since all the entry elements in matrixc are free from each other,E(cBc∗) = EDN
(cBc∗)

andE(c∗Bc) = EDN
(c∗Bc) as what is shown forη in (44).

Then, the Cauchy transformgT 2(z) of T 2 or Y Y ∗ is gT 2(z) = tr(GT 2(z)) andGT 2(z) can be

obtained by solving the following fixed point equations [13], [4]:

zGT 2(z2) = GT (z) = ED2N









z − zη1(G2(z
2)) −A

−A∗ z − zη2(G1(z
2))





−1

 , (50)

where

zG1(z) = EDN

[

(

1− η1(G2(z)) + A
1

z − zη2(G1(z))
A∗

)−1
]

, (51)

zG2(z) = EDN

[

(

1− η2(G1(z)) + A
1

z − zη1(G2(z))
A∗

)−1
]

. (52)
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2) Correlated Cases and Summary:When the entries in matrixX are correlated, similar

treatment as the above can be done [4]. One can still get the Cauchy transform ofY whenX

is Hermitain by solving the fixed point equation (45)-(46) and the Cauchy transform ofY Y ∗

whenX is not Hermitian by solving the fixed point equation (50)-(52), whereη(B) = E(cBc)

may not be diagonal as what is calculated in (44), andη1(B) and η2(B) may not be diagonal

either. An example of correlated entries inX is that each column vector (or row vector) ofX

is a linear transform of a vector of independent Gaussian random variables.

A simpler example of correlated cases is when random matrixX1 = BX whereB is a

deterministic matrix andX is a random matrix of independent entries. In this case,X1 can be

treated as a product of two matrices ofB andX and thus, was covered previously.

The above Cauchy transform calculation is only based on the covariances (the second order

statistics) of the entries of random matrixX. As we mentioned easlier, in this case one does not

need to implement Monte-Carlo simulations to do the calculations that may be not convenient

in practice whenX has a large size.

Going back to the mutual information in the beginning of thissection, we can just letA = 0

in the above to get the Cauchy transform ofHH∗ = Y Y ∗.

As a remark, the deterministic equivalents defined above arefrom [4], [6], [9], which we refer

to for any difference with those appeared in [12], [13].

VI. CONCLUSIONS

As mentioned in the beginning of this paper, the main goal here is to introduce free probability

theory and its application to random matrices as simple as possible. It is for a non-mathematics

major researcher in, for example, communications and signal processing areas. This paper is

mainly based on [4]–[7].

Free probability theory is about noncommutative elements or random variables, such as,

random matrices, in contrast to the conventional (real-valued or complex-valued) commutative

random variables in the classical probability theory. The freeness significantly simplifies the

calculations of the moments and therefore the distributions, and interestingly, random matrices,

when their size is large, do have the freeness asymptotically. Therefore, free probability theory

is naturally applied to calculate the asymptotic distributions of the eigenvalues/singular-values of

random matrices when their size is large, such as wireless channel matrices in massive MIMO
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systems. It is particularly interesting that the calculation only needs the second order statistics

of the matrix entries.

This paper is based on the author’s own understanding on freeprobability theory and by no

means the material covered in this paper is complete. More complete materials on this topic are

referred to [4]–[8], [11], [15], [17].
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