
An introduction to

Category Theory

with over 200 exercises

and solutions available

Harold Simmons

1 September 2010

This is the date this version was compiled

Contents

1 Introduction – How do I remove the number page viii

PART ONE DEVELOPMENT 1

1 Categories 3
1.1 Categories defined 3

Exercises 9
1.2 Categories of structured sets 10

Exercises 16
1.3 An arrow need not be a function 18

Exercises 23
1.4 More complicated categories 29

Exercises 32
1.5 Two simple categories and a bonus 33

Exercises 35

2 Basic gadgetry 36
2.1 Diagram chasing 36

Exercises 38
2.2 Monics and epics 39

Exercises 42
2.3 Simple limits and colimits 45

Exercises 47
2.4 Initial and final objects 47

Exercises 48
2.5 Products and coproducts 49

Exercises 57
2.6 Equalizers and coequalizers 58

iv Contents

Exercises 63
2.7 Pullbacks and pushouts 66

Exercises 72
2.8 Using the opposite category 73

Exercises 73

3 Functors and natural transformations 74
3.1 Functors defined 75

Exercises 77
3.2 Some simple functors 78

Exercises 80
3.3 Some less simple functors 81

3.3.1 Three power set functors 81
Exercises 83

3.3.2 Spaces, presets, and posets 83
Exercises 85

3.3.3 Functors from products 86
Exercises 87

3.3.4 Comma category 88
Exercises 89

3.3.5 Other examples 89
Exercises 89

3.4 Natural transformations defined 92
Exercises 94

3.5 Examples of natural transformations 95
Exercises 104

4 Limits and colimits in general 110
4.1 Template and diagram – a first pass 111

Exercises 116
4.2 Functor categories 116

Exercises 119
4.3 Problem and solution 120

Exercises 122
4.4 Universal solution 122

Exercises 126
4.5 A geometric limit and colimit 126

Exercises 131
4.6 How to calculate certain limits 132

4.6.1 Limits in Set 132
Exercises 136

Contents v

4.6.2 Limits in Pos 136
Exercises 139

4.6.3 Limits in Mon 140
Exercises 143

4.6.4 Limits in Top 143
Exercises 145

4.7 Confluent colimits in Set 145
Exercises 149

5 Adjunctions 150
5.1 Adjunctions defined 150

Exercises 154
5.2 Adjunctions illustrated 155

5.2.1 An algebraic example 156
Exercises 158

5.2.2 A set-theoretic example 158
Exercises 160

5.2.3 A topological example 160
Exercises 166

5.3 Adjunctions uncouple 166
Exercises 172

5.4 The unit and the co-unit 172
Exercises 176

5.5 Free and co-free constructions 176
Exercises 187

5.6 Contravariant adjunctions 188
Exercises 189

6 Posets and monoid sets 192
6.1 Posets and complete posets 192

Exercises 192
6.2 Two categories of complete posets 193

Exercises 195
6.3 Sections of a poset 195

Exercises 197
6.4 The two completions 197

Exercises 198
6.5 Three endofunctors on Pos 199

Exercises 200
6.6 Long strings of adjunctions 201

Exercises 203

vi Contents

6.7 Two adjunctions for R-sets 204
Exercises 206

6.8 The upper left adjoint 207
Exercises 210

6.9 The upper adjunction 211
Exercises 214

6.10 The lower right adjoint 214
Exercises 220

6.11 The lower adjunction 220
Exercises 223

6.12 Some final projects 223
References 225
Index 226

7 Stuff that has to be seen to 228

PART TWO SOLUTIONS 229

1 Categories 231
1.1 Categories defined 231
1.2 Categories of structured sets 231
1.3 An arrow need not be a function 237
1.4 More complicated categories 247
1.5 Two simple categories and a bonus 248

2 Basic gadgetry 249
2.1 Diagram chasing 249
2.2 Monics and epics 250
2.3 Simple limits and colimits 256
2.4 Initial and final objects 257
2.5 Products and coproducts 259
2.6 Equalizers and coequalizers 270
2.7 Pullbacks and pushouts 278
2.8 Using the opposite category 284

3 Functors and natural tansformations 285
3.1 Functors defined 285
3.2 Some simple functors 286
3.3 Some less simple functors 287

3.3.1 Three power set functors 287
3.3.2 Spaces, presets, and posets 288
3.3.3 Functors from products 292

Contents vii

3.3.4 Comma category 294
3.3.5 Other examples 297

3.4 Natural transformations defined 306
3.5 Examples of natural transformations 308

4 Limits and colimits in general 337
4.1 Template and diagram – a first pass 337
4.2 Functor categories 340
4.3 Problem and solution 342
4.4 Universal solution 344
4.5 A geometric limit and colimit 345
4.6 How to calculate certain limits 349

4.6.1 Limits in Set 349
4.6.2 Limits in Pos 350
4.6.3 Limits in Mon 353
4.6.4 Limits in Top 357

4.7 Confluent colimits in Set 357

5 Adjunctions 364
5.1 Adjunctions defined 364
5.2 Adjunctions illustrated 372

5.2.1 An algebraic example 372
5.2.2 A set-theoretic example 375
5.2.3 A topological example 377

5.3 Adjunctions uncoupled 381
5.4 The unit and the co-unit 386
5.5 Free and co-free constructions 392
5.6 Contravariant adjunctions 401

6 Posets and monoid sets 407
6.1 Posets and complete posets 407
6.2 Two categories of complete posets 408
6.3 Sections of a poset 409
6.4 The two completions 410
6.5 Three endofunctors on Pos 411
6.6 Long strings of adjunctions 413
6.7 Two adjunctions for R-sets 414
6.8 The upper left adjoint 414
6.9 The upper adjunction 418
6.10 The lower right adjoint 421
6.11 The lower adjunction 423

1

Introduction – How do I remove the
number

As it says on the box this book is an introduction to Category Theory.
It gives the definition of this notion, goes through the various associated
gadgetry such as functors, natural transformations, limits and colimits,
and then explains adjunctions. That material could probably be de-
veloped in 50 pages or so, but here it takes some 220 pages. That is
because there are many examles illustrating the various notions, some
rather straight forward but other with more content. There are also over
200 exercises.

The book is aimed primarily at the beginning graduate student. Thus
the book does not assume the reader has a broad knowledge of mathe-
matics. Most of the illustrations use rather simple ideas, but every now
and then a more advanced topic is mentioned.

The idea is that the book can be use by a single student or small
group of students to learn the subject on their own. The book will make
a suitable text for a reading group.

The book is aimed primarily at the beginning graduate student, but
that does not mean that other students of professional mathemticians
will not find it useful.

Every mathematician should at least know of the existence of cate-
gory theory, and many will need to use categorical notions every now
and then. For those groups this is the book you should have. Other
mathematicians will use category theory every day. That group has to
learn the subject sometime, and this is the book to start that process.

The book has been developed over several years. Several 10 hours
courses have been taught (not always by me) using some of the material.
In 2007, 2008, and 2009 I gave a course over the web to about a dozen
different Universities in England. This was part of MAGIC, the

Introduction – How do I remove the number ix

Mathematics Acces Grid Instructional Collaboration

cooperative of quite a few University Departmants of Mathematics in
England and Wales. (The course is still being taught but someone else
has taken over the wand.)

As I said earlier there are over 200 exercises scattered throughout the
book. I have also written a more or less complete set of solutions to
these exercises. To keep the book reasonable short and the cost down
these solutions are not included here. (With the solutions inckuded the
book would be over 420 pages.) However, these solutions are available
Details needed

@@@@@@@@@@@@@@@@@@@@@@@
The book is divided into six Chapters, each chapter is divided into sev-

eral Sections, and a few of these are divided into Blocks (Subsections).
Each chapter contains a list of Items, that is Definitions, Lemmas, The-
orems, Examples, and so on. These are numbered by section. Thus item
X.Y.Z is an Chapter X, Section Y , and is the Zth item in that section.
Where a section is divided into blocks the items are still numbered by
the parent section.

Each section contains a selection of Exercises. These are numbered
separately throughout the section. Thus Exercise X.Y.Z is in Chapter
X, Section Y , and is the Zth exercise of that section. Again, where a
section is divided into blocks the exercises are still numbered by the
parent section.
Mention various people.

PART ONE

DEVELOPMENT

1

Categories

This chapter gives the definition of ‘category’ in Section 1.1, and follows
that by four sections devoted entirely to examples of categories of various
kinds. If you have never met the notion of a category before, you should
quite quickly read through Definition 1.1.1 and then go to Section 1.2.
There you will find some examples of categories that you are familiar
with, although you may not have recognized the categorical structure
before. In this way you will begin to see what Definition 1.1.1 is getting
at. After that you can move around the chapter as you like.

Remember that it is probably better not to start at this page and read
each word, sentence, paragraph, . . . , in turn. Move around a bit. If there
is something you don’t understand, or don’t see the point of, then leave
it for a while and come back to it later.

Life isn’t linear, but written words are.

1.1 Categories defined

This section contains the definition of ‘category’, follows that with a
few bits and pieces, and concludes with a discussion of some examples.
No examples are looked at in detail, that is done in the remaining four
sections. Section 1.2 contains a collection of simpler examples, some of
which you will know already. You might want to dip into that section
as you read this section. In the first instance you should find a couple of
examples that you already know. As you become familiar with the cate-
gorical ideas you should look at some of the more complicated examples
given in the later sections.

The following definition doesn’t quite give all the relevant informa-

4 1. Categories

tion. There are a couple of restrictions that are needed and which are
described in detail in the paragraphs following.

1.1.1 Definition A category C consists of

• a collection Obj of entities called objects

• a collection Arw of entities called arrows

• two assignments Arw
source-

target
- Obj

• an assignment Obj
id - Arw

• a partial composition Arw ×Arw - Arw

where this data must satisfy certain restrictions as described below.

Before we look at the restrictions on this data let’s fix some notation.

• We let A,B,C, . . . range over objects.
• We let f, g, h, . . . range over arrows.

This convention isn’t always used. For instance, sometimes a, b, c, . . .
range over objects, and α, β, γ, . . . or θ, φ, ψ, . . . range over arrows. The
notation used depends on what is convenient at the time and what is
the custom in the topic under discussion. Here we will take the above
convention as the norm, but sometimes we will use other notations.

There are two assignments

source target

each of which attaches an object to an arrow, that is each consumes an
arrow and returns an object. We write

A
f - B

to indicate that f is an arrow with source A and target B. This is a
small example of a diagram. Later we will see some slightly bigger ones.

This terminology isn’t always used. Sometimes combinations of

A
f - B

source arrow target
domain morphism codomain

map

are used. Certainly morphisms (such as group morphisms) and maps

1.1. Categories defined 5

(such as continuous maps) usually are examples of arrows in some cate-
gory. However, it is better to use ‘arrow’ for the abstract notion, and so
distinguish between the general and the particular.

The word ‘domain’ already has other meanings in mathematics. Why
bother with this and ‘codomain’ when there are two perfectly good words
that capture the idea quite neatly. You will also see

f : A - B

used to name the arrow above. However, as we see later, you should not
think of an arrow as a function.

All three of the notations

A
idA idA 1A- A

are used for the identity arrow assigned to the object A. We will tend
to use idA. Notice that the source and the target of idA are both the
parent object A. Quite often when there is not much danger of confusion
id is written for idA. You will also find in the literature that some people
write ‘A’ for the arrow idA. This is a notation so ridiculous that it should
be laughed at in the street.

Certain pairs of arrows are compatible for composition to form another
arrow. Two arrows

A
f - B1 B2

g - C

are composible, in that order, precisely when B1 and B2 are the same
object, and then an arrow

A - C

is formed. For arrows

A
f - B

g - C

both of the notations

A
g ◦ f gf- C

are used for the composite arrow. Read this as

g after f

and be careful with the order of composition. Here we write g ◦f for the
composite.

6 1. Categories

Composition of arrows is associative as far as it can be. For arrows

A
f - B

g - C
h - D

various composites are possible, as follows.

A
(h ◦ g) ◦ f - D

A f - B h ◦ g - D

A f - B g - C h - D

A g ◦ f - C h - D

A
h ◦ (g ◦ f)

- D

It is required that the two extreme arrows are equal

(h ◦ g) ◦ f = h ◦ (g ◦ f)

and we usually write

h ◦ g ◦ f

for this composite. This is the first of the axioms restricting the data.
The second axiom says that identity arrows are just that. Consider

A
idA - A

f - B
idB - B

an arbitrary arrow and the two compatible identity arrows. Then

idB ◦ f = f = f ◦ idA

must hold.
Given two objects A and B in an arbitrary category C , there may be

no arrows from A to B, or there may be many. We write

C [A,B] or C (A,B)

for the collection of all such arrows. For historical reasons this is usually
called the

hom-set

from A to B, although

arrow-class

would be better. Some people insist that C [A,B] should be a set, not a
class. As usual, there are some variants of this notation. We often write

[A,B] for C [A,B]

1.1. Categories defined 7

especially when it is clear which category C is intended. Sometimes

HomC [A,B]

is used for this hom-set
We have seen above one very small diagram. Composition gives us a

slightly larger one. Consider three arrows
•

•
h

-

f
-

•

g
-

arrange in a triangle, as shown. Here we haven’t given each object a
name, because we don’t need to. However, the notation does not mean
that the three objects are the same. For this small diagram, the triangle,
the composite g ◦ f exists to give us a parallel pair

•
g ◦ f -

h
- •

of arrows across the bottom of the triangle. These two arrows may or
may not be the same. When they are

h = g ◦ f

we say the triangle commutes. We look at some more commuting dia-
grams in Section 2.1, and other examples occur throughout the book.

Examples of categories

In the remaining sections of this chapter we look at a selection of exam-
ples of categories. Roughly speaking these are of four kinds.

The first collection is listed in Table 1.1. These all have a similar
nature and are examples of the most common kind of category we meet
in practice. In each an object is a structured set, a set furnished, or
equipped, with some extra gadgetry, the furnishings of the object. An
arrow between two objects is a function between the carrying sets where
the function ‘respects’ the carried structure. Arrow composition is then
function composition. We look at some of these categories in Section 1.2.

Some categories listed in Table 1.1 are not defined in this chapter.
Some are used later to illustrate various aspects of category theory, in
which case each is defined when it first appears. Some categories are

8 1. Categories

Category Objects Arrows

Set sets total functions

Pfn sets partial functions

Set⊥ pointed sets point preserving functions

RelH sets with a relation relation respecting functions

Sgp semigroups morphism

Mon monoids morphism

CMon commutative monoids morphism

Grp groups morphism

AGrp abelian groups morphism

Rng rings morphism

CRng commutative rings morphism

Pre pre-ordered sets monotone maps

Pos posets monotone maps

Sup complete posets
W

-preserving

monotone functions

Join posets with all finitary joins ∨-preserving

monotone functions

Inf complete posets
V

-preserving

monotone functions

Meet posets with all finitary meets ∧-preserving

monotone functions

Top topological spaces continuous maps

Top? pointed topological spaces point preserving

continuous maps

Topopen topological spaces continuous open maps

VectK
vectors spaces over
a given field K

linear transformations

Set-R
sets with a right action
from a given monoid R

action preserving functions

R-Set
sets with a left action
from a given monoid R

action preserving functions

Mod -R right R-modules over a ring R morphisms

R-Mod left R-modules over a ring R morphisms

Table 1.1 Categories of structured sets and structure preserving
functions

1.1 Exercises 9

Category Objects Arrows

RelA sets binary relations

Posa posets poset adjunctions

Pospp posets projection embedding pairsbS presheaves natural transformations

on a given poset ScC presheaves natural transformations

on a given category C

Ch(Mod -R) chain complexes

Table 1.2 More complicated categories

listed but not used in this book, but you should be able to fill in the
details when you need to.

These simple examples tend to give the impression that in any cate-
gory an object is a structured set and an arrow is a function of a certain
kind. This is a false impression, and in Section 1.3 we look at some
examples to illustrate this. In particular, these examples show that an
arrow need not be a function (of the kind you first thought of).

An important messages of category theory is that the more important
part of a category is not its objects but the way these are compared, its
arrows. Given this we might expect that a category is named after its
arrows. For historical reasons this often doesn’t happen.

Section 1.4 contains some examples to show that the objects of a cat-
egory can have a rather complicated internal structure, and the arrows
are just as complicated. These examples are important in various parts
of mathematics, but you shouldn’t worry if you can not understand them
immediately.

Table 1.2 lists some of these more complicated examples looked at in
Sections 1.3 and 1.4.

Finally in Section 1.5 we look at two very simple kinds of categories.
These examples could be given now, but in some ways it is better if we
leave them for a while.

Exercises

1.1.1 Observe that sets and functions do form a category Set .

1.1.2 Can you see that each poset is a category, and each monoid is a
category? Read that again.

10 1. Categories

1.2 Categories of structured sets

The categories we first meet usually have a rather simple nature. Each
object is a structured set

(A, · · ·)

a set furnished with some extra gadgetry, its furnishings, and each arrow

(A, · · ·) - (B, · · ·)

is a (total) function

f : A - B

between the two carrying sets which respects the carried structure in
some appropriate sense. More often than not these structured sets are
‘algebras’. Thus the furnishings carried by A are a selection of nomi-
nated elements, and a selection of nominated operations on A. These
operations are usually binary or singulary, but other arities do occur.

You have already met

Grp Rng VectK

as given in Table 1.1, but you may not have realized that each of these
is a category. You should make sure that you understand the workings
of each of these as a category of ‘algebras’. You may have to puzzle a bit
over VectK , but later we look at some more general examples of this
nature, and that should help you.

To help with the general idea, in the first part of this section we look
at the category Mon of monoids. This has all the typical properties of
an ‘algebraic’ category. You may not have met monoids before, so this
example will serve as an introduction, and it is quite easy to understand.
Monoids are quite important in category theory. They can tell us quite
a lot about the structure of a particular category. Also, they can be used
to illustrate many aspects of category theory.

The exercises for the first part of this section look at several other
categories of structured sets, some of which are not ‘algebraic’ in this
intuitive sense. One of these

Top

is particularly important, and you should make sure you understand it.
It is important here and in many other parts of mathematics.

1.2. Categories of structured sets 11

1.2.1 Example A monoid is a structure

(R, ?, 1)

where R is a set, ? is a binary operation on R (usually written as an
infix), 1 is a nominated element of R, and where

(r ? s) ? t = r ? (s ? t) 1 ? r = r = r ? 1

for all r, s, t ∈ R. In other words, the operation is associative and the
nominated element is a unit for the operation. Monoids are sometimes
referred to as unital semigroups, or even semigroups. However, some-
times a ‘semigroup’ need not have a unit.

Usually we omit the operation symbol and write

rs for r ? s

but for the time being we will stick to the official notation.
A monoid morphism

R
φ - S

between two monoids is a function that respects the furnishings, that is

φ(r ? s) = φ(r) ? φ(s) φ(1) = 1

for all r, s ∈ R. (Notice that we have overloaded the operation symbol
and the unit symbol. That shouldn’t cause a problem here, but every
now and then it is a good idea to distinguish between the source and
target furnishings.)

It is routine to check that for two morphisms

R
φ - S

ψ - T

between monoids the function composite

R
ψ ◦ φ- T

is a morphism.
This gives us the category Mon of monoids (as objects) and monoid

morphisms (as arrows). The verification of the axioms is almost trivial.
Given a monoid R the identity arrow

R
idR - R

is just the identity function on R viewed as a morphism.

12 1. Categories

As suggested above many categories fit into this ‘algebraic’ form. Each
object is a structured set, and each arrow (usually called a morphism or
a map) is a structure respecting function. Almost all of the categories in
Table 1.1 fit into this kind, but one or two don’t.

In a sense the study of monoids is the study of composition in the
miniature. There is a corresponding study of comparison in the minia-
ture. That is the topic of the next example.

1.2.2 Example A pre-order ≤ on a set S is a binary relation that is
both reflexive and transitive. (Sometimes a pre-order is called a quasi-
order.) A partial order is a pre-order that is also anti-symmetric.

A

preset poset

is a set S furnished with a

pre-order partial order

respectively. Thus each poset is a preset, but not conversely.
When comparing two such structures

(R, ≤R) (S, ≤S)

we use the carrying sets R and S to refer to the structures and write ≤
for both the carried comparisons. Rarely does this cause any confusion,
but when it does we are a bit more careful with the notation.

Given a pair R,S of presets a monotone map

R
f - S

is a function, as indicated, such that

x ≤ y =⇒ f(x) ≤ f(y)

for all x, y ∈ R. It is routine to check that for two monotone maps

R
f - S

g - T

between presets the function composition g ◦ f is also monotone.
This gives us two categories

Pre Pos

where the objects are

presets posets

1.2. Categories of structured sets 13

respectively, and in both cases the arrows are the monotone maps. Each
identity arrow is the corresponding identity function viewed as a mono-
tone map.

Consider a pair R and S of posets. Each is a preset, so we have the
two collections of arrows

Pre [R,S] Pos[R,S]

in the categories. A few moment’s thought shows that, as functions sets
of functions, these two sets are the same. Technically, this shows that
Pos is a full subcategory of Pre .

The study of monoids is the study of composition in the miniature.
The study of presets is the study of comparison in the miniature.
What should we do to study these two notion together and in the

large? Category theory! In a sense every category is an amalgam of
certain monoids and presets, and that is a good enough reason why we
should always keep these two simple notions in mind.

From the examples we have seen so far it is easy to get the impression
that certain things always happen. The next example shows that some
categories can be awkward (and sometimes cantankerous).

1.2.3 Example We enlarge the category Set of sets and total func-
tions to the category Pfn of sets and partial functions. The objects of
Pfn are just sets

A,B,C, . . .

as in Set . However, an arrow

A
f - B

is a partial function from A to B. In other words, an arrow is a total
function

A B

X
∪

6
f

-

from a subset X of the source A. (This is an example where the use of
the word ‘domain’ for source can be confusing. The set X is the domain

of definition of the partial function.) Notice that we need to distinguish
between the total function f and the arrow f it determines. The notation
has been chosen to emphasize that distinction.

14 1. Categories

We wish to show that these objects and arrows form a category Pfn .
To do that we must first produce a composition of arrows.

Consider a pair of partial functions.

A
f - B

g - C

X
∪

6
f

-

Y
∪

6
g

-

How might we compose these? We somehow want to stick f and g to-
gether, but these functions are not composition compatible.

We extract a subset U ⊆ A by

a ∈ U ⇐⇒ a ∈ X and f(a) ∈ Y

(for a ∈ A). Since f is defined on the whole of U we restrict f to U .

A
f - B

g - C

X
∪

6
f

-

Y
∪

6
g

-

U
∪

6

f |U

-

Now we do have composition compatible functions. Thus we take

g ◦ f

to be that arrow (partial function) determined by

g ◦ f = g ◦ f |U

to produce a composition of arrows in Pfn .
Notice here how the symbol ‘◦’ is overloaded. On the right it is the

standard composition of total functions. On the left it is the defined
operation on partial functions. If at first you find this confusing then
write ‘•’ for the defined operation. Thus

g • f = g ◦ f |U

is its definition.
There is still some work to be done. For instance, we need to show that

this composition of arrows is associative. That is left as an exercise.

Once we see it the step from Set to Pfn is not so big. An arrow is
still a function, but we have to take a little more care with composition.

1.2. Categories of structured sets 15

We began this section by looking at the category Mon of monoids.
We conclude by looking at two categories attached to each monoid.

1.2.4 Example Let R be a fixed, but arbitrary, monoid. A

left right

R-set is a set A together with an action

R,A - A A,R - A

r, a - ra a, r - ar

where

s(ra) = (sr)a (ar)s = a(rs)
1a = a a = a1

for each a ∈ A and r, s ∈ R. Here the two definition are given in parallel.
These R-sets are the objects of two categories

R-Set Set-R

with left R-sets on the left and right R-sets on the right.
Given two R-sets A and B of the same handedness, a morphism

A
f - B

is a function f such that

f(ra) = rf(a) f(ar) = f(a)r

for each a ∈ A and r ∈ R. These are the arrows of the two categories.

This may look a quite simple example but it is useful. Many aspects
of category theory can be illustrated with these categories. We use them
quite a lot in this book. They are also module categories in miniature.
We can replace the monoid R by a ring and replace each set A by an
abelian group. This gives the categories

R-Mod Mod -R

of left and right modules over R, respectively. These categories have
quite a bit more structure, but we won’t go into that too much here.

16 1. Categories

Exercises

1.2.1 The category Pno described in this exercise may look less than
exciting, but it plays an important role in mathematics. (It was originally
discovered by Dedekind without the category theory.)

The objects of Pno are the structures (A,α, a) where A is a set,
α : A - A is a function, and a ∈ A is a nominated element. Given
two such structures a morphism

(A,α, a)
f - (B, β, b)

is a function f : A - B which preserves the structure in the sense
that

f ◦ α = β ◦ f f(a) = b

hold.
(a) Verify that Pno is a category.
(b) Show that (N, succ, 0) is a Pno-object (where succ is the successor

function).
(c) Show that for each Pno-object (A,α, a) there is a unique arrow

(N, succ, 0) - (A,α, a)

and describe the behaviour of the carrying function.

1.2.2 Consider pairs (A,X) where A is a set and X ⊆ A. For two such
pairs a morphism

(A,X)
f - (B, Y)

is a function f : A - B that respects the selected subsets, that is

f(x) ∈ Y

for each x ∈ X.
Show that such pairs and morphisms form a category.
We won’t give this category a name, but we will refer to at as the

category of sets with a distinguished subset.

1.2.3 Consider pairs (A,R) where A is a set and R ⊆ A×A is a binary
relation on A. Show that these pairs are the objects of a category. You
must find a sensible notion of morphism for such pairs.

1.2.4 A topological space (S,OS) is a set S furnished with a certain
family OS of subsets of S (called the open sets of the space). This

1.2. Exercises 17

family is required to contain both ∅ and S, be closed under ∩ (binary
intersection), and be closed under

⋃
(arbitrary unions).

A continuous map

(S,OS)
φ- (T,OT)

between two such spaces is a function

φ : S - T

such that

φ←(V) ∈ OS

for each V ∈ OT . Here φ← is the inverse image map given by

x ∈ φ←(V)⇐⇒ φ(x) ∈ V

for each V ∈ OT and x ∈ S.
Show that these spaces and maps form a category Top.

1.2.5 Let A be an arbitrary object of an arbitrary category C . Show
that C [A,A] is a monoid under composition.

1.2.6 Fill in the details missing from the description of Pfn . In partic-
ular, you should show that composition of partial functions is associative.

1.2.7 A pointed set is a set S with a nominated element which we
usually write as ⊥. An arrow

S
φ - T

between two such pointed sets is a function φ : S - T which respects
the nominated points, that is φ(⊥) = ⊥.

Almost trivially pointed sets with these arrows form a category Set⊥.
Try to show that Set⊥ and Pfn are ‘essentially the same’ category.

1.2.8 Verify that for each monoid R both

R-Set Set-R

are categories.
Can you see how each is a category of structured sets?

18 1. Categories

1.3 An arrow need not be a function

In this section we look first at a some examples to show that arrows may
not be the simple kind of things we have seen so far. Then we look at a
some general constructions for turning an old category into a new one.

In the next example an arrow is still a function, but not where you
might expect it to be.

1.3.1 Example The objects are the finite sets. An arrow

A
f - B

is a function

f : A×B - R

(with no imposed conditions). For each pair

A
f - B

g - C

of arrows we define

g ◦ f : A× C - R

by

(g ◦ f)(a, c) =
∑{

f(a, y)g(y, c) | y ∈ B
}

for a ∈ A, b ∈ B. A little work shows that this produces a category.

We did not give this category a name because it is not that important.
It is merely an example to illustrate that an arrow need not be a function
in the way you might expect it to be.

1.3.2 Example We have seen that the category Set of sets and func-
tions can be extended to Pfn by adding more arrows but keeping the
same objects. There is also a different extension to the category RelA.

Again the objects of RelA are just sets. However, a RelA-arrow

A
F - B

is a subset F ⊆ B ×A which we can think of as a relation from A to B.
In other words, RelA[A,B] is just this set of all such relations from A

to B. You should note the way the source and target have been set up.
This is not a mistake. It leads to a neater description of the category.

Before we can claim this is a category we must define the composition
of these arrows, and then check that the axioms are satisfied.

1.3. An arrow need not be a function 19

Consider an arrow F as above, so F ⊆ B × A. For a ∈ A and b ∈ B
we write bFa for (b, a) ∈ F . For two composible arrows

A
F - B

G - C

we defined the composition G ◦ F by

c(G ◦ F)a⇐⇒ (∃b ∈ B)[cGbFa]

for a ∈ A, b ∈ B. We show that a is G◦F related to c by passing through
a common element b ∈ B. It is easy to check that this composition is
associative, and the equality relation on a set gives the identity arrow.

The two categories Set and RelA are connected in a certain way
(which will be explained in more detail later). There is a canonical way

A
f - B > A

Γ(f)- B

of converting a Set-arrow into a RelA-arrow with the same source and
target. We simply take the graph of the function, that is we let

bΓ(f) a⇐⇒ b = f(a)

for a ∈ A, b ∈ B.

The next example is important in itself, and also provides a miniature
version of a central notion of category theory, that of an adjunction.

1.3.3 Example We modify the category Pos of posets, of Example
1.2.2, to produce a new category Posa. As with Pos, the object of
Posa are posets, but the arrows are different.

Given a pair S, T of posets, an adjunction from S to T is a pair of
monotone maps as on the left such that the equivalence on the right

S
f -

�
g

T f(a) ≤ b⇐⇒ a ≤ g(b)

holds for all a ∈ S and b ∈ T . We call

f the left adjoint g the right adjoint

of the pair, and sometimes write

f a g

to indicate an adjunction.

20 1. Categories

Here we use the more usual notation and write

S
f∗ -

�
f∗

T

to indicate an adjunction f∗ a f∗. Sometimes a harpoon arrow

S
f∗ a f∗

⇀ T

is used to indicate an adjunction. By convention, an adjunction points
in the direction of its left component. Thus S is the source and T is
the target. (You are warned that in some of the older literature this
convention hadn’t yet been established.)

Poset adjunction are the arrows of Posa.
This gives us the object and arrows of Posa, but we still have some

work to do before we know we have a category.
Consider a pair of adjunctions.

R
f∗ a f∗

⇀ S
g∗ a g∗

⇀ T

which ought to be composible. How should the composite

R
(g∗ a g∗) ◦ (f∗ a f∗)

⇀ T

be formed? The two left hand components are monotone maps that com-
pose to give a monotone map. Similarly the two right hand components
are monotone maps that compose to give a monotone map. Thus we
have a pair of monotone maps

R
g∗ ◦ f∗ -

�
f∗ ◦ g∗

T

going in opposite directions. We check that this is an adjunction and take
that as the composite. Almost trivially, this composition is associative,
and so we do obtain a category.

It is not so surprising that any given monotone map may or may
not have a left adjoint, and it may or may not have a right adjoint. It
can have neither, and it can have one without the other. What is a little
surprising is that it can have both adjoints where these are not the same.
In fact, arbitrarily longs strings of adjoints can be produced. A simple
example of this is given in Chapter 6.

Once we become familiar with categories we find that old categories
can be used to produce new categories. Let’s look at some examples.

1.3. An arrow need not be a function 21

1.3.4 Example Consider categories C and D . To help us distinguish
between these let us write

A,B,C. . . for objects of C f, g, h . . . for arrows of C

R,S, T . . . for objects of D θ, φ, ψ. . . for arrows of D

respectively. We form a new category, the product

C ×D

of C and D as follows. Each new object is an ordered pair of old objects

(A,R)

an object A from C and an object R from D . A new arrow

(A,R) - (B,S)

is a pair of old arrows

A
f - B R

θ - S

from the given categories. For composible new arrows

(A,R)
(f, θ)- (B,S

(g, φ)- (C, T)

the composite

(A,R)
(g ◦ f, φ ◦ θ)- (C, T)

is formed using composition in the old categories. Almost trivially, this
does give a category.

That’s not the most exciting example you have ever seen, is it? Here
is a more interesting construction.

1.3.5 Example Given a category C we form a new category where
the new objects are the arrows of C . This is the arrow category of C .

Consider the small graph

0

(↓)

1
?

with two nodes, here labelled 0 and 1, and with one edge. We use (↓)
to convert C into a new category

C ↓

the category of (↓)-diagrams in C . We think of (↓) as a template for

22 1. Categories

diagrams in C , and these diagrams are the objects of C ↓. Thus a new
object is a pair of old objects

A0

A1

α
?

and an old arrow between them. Given two new objects a new arrow

A0 B0

f -

A1

α
?

B1

β
?

is a pair of old arrows

A0
f0 - B0

f1 ◦ α = β ◦ f0

A1

α
?

f1

- B1

β
?

such that the square commutes. Composition of new arrows is performed
in the obvious way, we compose the two component old arrows. You
should check that this does give a category.

This is a simple example of a much more general construction, that of
a functor category. We look at this once we know what a functor

is. Other simple examples of this construction are given in the exercises.
The idea of the previous example is to view all the arrows of the old

category as the objects of the new category. Sometimes we want to do
a similar thing but using only some old arrows.

1.3.6 Example Given a category C and an object S we form the two
slice categories

(C ↓ S) (S ↓ C)

of objects

over S under S

1.3 Exercises 23

respectively. Each object of the new category is an arrow

to S from S

A S

S

α
?

A

α
?

of C . An arrow of the new category

A B S S

f - f -

S

α
?

S

β
?

A

α
?

B

β
?

is an arrow of C

A
f - B S

S

β
�

α -

A
f

-

α

�
B

β
-

for which the indicated triangle commutes. Composition of the new ar-
rows is obtained from composition of arrows in C

As with Example 1.3.5 this construction is a particular case of a more
general construction, that of a comma category. Before we can explain
that we need to understand the notion of a functor.

Exercises

1.3.1 Consider the strictly positive integers 1, 2, 3, · · · as object. For
two such integers m,n let an arrow

n - m

be an m×n matrix A (with real entries). Given two compatible matrices

n
B - k k

A - m

let the composite

n
A ◦B- m

be the matrix product AB. Show that this gives a category.
Can you show that this example is a bit of a cheat?

24 1. Categories

1.3.2 A directed graph, or simply a graph for short (and sometimes
called a network), is a pair

(N,E)

of sets together with a pair of assignments

E
σ -

τ
- V

(as with a category). Each member of N is a node, and each member of
E is an edge. For each edge e ∈ E we call

σ(e) τ(e)

the source node and the target node of e, and we write

a
e - b

to indicate that σ(e) = a and τ(e) = b. In general there are no other
conditions on these edges and nodes. In particular, there is no notion of
composing edges. Notice that (modulo size) each category is a graph.

A graph morphism

(N,E)
f- (M,F)

is a pair of functions

N
f0 - M E

f1 - F

such that

σ ◦ f1 = f0 ◦ σ τ ◦ f1 = f0 ◦ τ

hold. Of course, here there are two different source and two different
target assignments.

Show that, with the appropriate notion of composition, graphs and
their morphisms form a category.

1.3.3 Consider any pair of categories A and S . We form a new cate-
gory. The new objects are pairs

(A,R)

where A is an A-object and R is a S -object. A new arrow

(A,R)
(f, φ)- (B,S)

1.3. Exercises 25

is a pair of arrows

A
f - B R �

φ
S

from the two component categories where the S -arrow goes backwards.
Show that with the obvious composition this does form a category.

1.3.4 As in Exercise 1.2.8, each monoid R gives us a category Set-R
of (right) R-sets. We can also vary R to produce a larger category.

Each object is a pair

(A,R)

where R is a monoid and A is an R-set. Each arrow

(A,R)
(f, φ)- (B,S)

is a pair

A
f - B R �

φ
S

where φ is a monoid morphism and f is a function with

f(aφ(s)) = f(a)s

for each a ∈ A and s ∈ S.
Using the obvious composition, show that this does give a category.

1.3.5 Consider the category RelA of Example 1.3.2.
Show the defined composition is associative, and so it is a category.
Show also that

Γ(g ◦ f) = Γ(g) ◦ Γ(f)

for each pair of composible Set-arrows.

1.3.6 Consider any pair of Pos-arrows.

S
f -

�
g

T

(a) Show that f a g precisely when both idS ≤ g ◦ f and f ◦ g ≤ idT ,
where the two comparisons are pointwise.

(b) Show that if f a g then

f ◦ g ◦ f = f g ◦ f ◦ g = g

and hence g ◦ f is a closure operation on A and f ◦ g is a co-closure
operation on B.

26 1. Categories

1.3.7 Posets and certain adjoint pairs form another category Pospp.
The objects of Pospp are again just posets. A Pospp-arrow

A =======
(f, g)

⇒ B

is a Posa-arrow

A
f a g

⇀ B

for which g◦f = idA. These arrows are sometimes called projection pairs.
Show that these projection pairs are closed under composition, and

hence Pospp is a category.
(You see here a useful little trick. It can be helpful to draw arrows in

different, but related, categories in a different way. Thus here we have

Pos -

Posa ⇀

Pospp =========⇒
for the three different kinds of arrows.)

1.3.8 Consider the ordered sets Z and R as posets, and let

Z
ι - R

be the insertion.
(a) Show there are (unique) maps

R
λ -

ρ
- Z

such that

Z
ι a ρ

⇀ R
λ a ι

⇀ Z

are adjunctions.
(b) Show also that this composite is idZ in Posa and the other com-

posite, on R, is idempotent.
(c) Show that ι a ρ is a Pospp-arrow, but λ a ι is not.

1.3.9 For a poset S let LS be the poset of lower sections under inclu-
sion. (A lower section of S is a subset X ⊆ S such that

y ≤ x ∈ X =⇒ y ∈ X

for all x, y ∈ S.)

1.3. Exercises 27

(a) For a monotone map

T
φ - S

between posets, show that setting f = φ← (the inverse image map)
produces a monotone map

LT �
f = φ←

LS

in the opposite direction.
(b) Show that f has both a left adjoint and a right adjoint

f] a f a f[

where, in general, these are different.

1.3.10 Let C be an arbitrary category. In Example 1.3.5 we used (↓)
as a template to obtain a category C ↓ of certain diagrams from C . The
same idea can be used with other templates.

A wedge in a category C is a pair or arrows

A0

A1

�
A2

-

as shown. A wedge morphism

A0
f0 - B0

A2 f1

-
- B2

-

A1

?

f1

- B1

?

is a triple of arrows which make the two associated squares commute.
(a) Show that wedges and wedge morphisms form a category.
(b) This wedge example uses

•

•
�

•
-

as the template. Play around with other templates to produce other

28 1. Categories

examples of categories. For example, consider each of

• • •

•

-

•
-

• -�
•
-

•
�

•
-

•

-
�

and worry about which cells are required to commute.

1.3.11 Let 1 and 2 be the 1-element set and the 2-element set, respec-
tively. Describe the categories

(Set ↓ 1) (1 ↓ Set) (Set ↓ 2) (2 ↓ Set)

and show that you have met two of them already together with near
relatives of the other two.

1.3.12 Given a category C and two object S, T we form

S

A

αS

?

T

αT
?

S S

A

αS

?
f - B

βS

?

T

αT
?

T

βT
?

(S ↓ C ↓ T)

the butty category between S and T . Each ob-
ject of the new category is an object A of C

together with a pair of arrows from S and to
T . An arrow of the new category is an arrow f

of C to make the two triangles commute.

S

A f -

αS

�
B

βS
-

T
βT�αT

-

(a) Show that with the appropriate notion of
composition this gives a category.

(b) Can you show that for an appropriate
parent category C both the slice categories

(C ↓ T) (S ↓ C)

are instance of the butty construction?

1.4 More complicated categories 29

1.4 More complicated categories

From the examples we have seen so far you might conclude that category
theory is making a bit of a fuss. It is true that objects are not just
structured sets and arrows are not just functions, but the examples seem
to suggest that we don’t move too far from those ideas. Of course, as yet
far we have seen only comparatively simple examples of categories. One
of the original aims of category theory was to organize and analyse what
we now see as rather complicated categories. The simpler examples came
along later. In this section we look at a couple of examples of the more
complicated kind of category. You probably won’t understand these at
a first reading, but you should give it a go. You should come back to
these examples as you learn more about category theory.

1.4.1 Example Let S be any partially ordered set. We describe the
category Ŝ of presheaves on S. There is a more general notion where
S is replaced by an arbitrary category, but we save that for later. We
may think of Ŝ as the category of ‘sets developing over S’. At first sight
the structure of Ŝ looks quite complicated, but you will get used to it.

We think of S as a store of indexes i, j, k, . . . partially ordered

j ≤ i

to form a poset.
A presheaf on S is an S-indexed family of sets

A
(
A(i) | i ∈ S

)
together with a family of connecting functions

A A(i)
A(j, i)- A(j)

one for each comparison j ≤ i. Note these functions progress down the
poset. These functions have to fit together in a coherent fashion. Thus

A(i, i) = idA(i)

for each index i ∈ S, and the triangle

A(i)
A(k, i) - A(k)

A(k, j) ◦A(j, i) = A(k, i)

A(j)
A(k, j)

-

A(j, i)
-

commutes for all k ≤ j ≤ i. These are the objects of Ŝ . Note the way
the connecting functions are indexed.

30 1. Categories

An arrow

A
f - B

between two presheaves is an S-indexed family of functions

A(i)
fi- B(i)

such that

A(i)
fi- B(i)

j ≤ i fj ◦A(j, i) = B(j, i) ◦ fi

A(j)

A(j, i)
?

fj
- B(j)

B(j, i)
?

commutes for all comparisons j ≤ i in S. These arrows are composed in
the obvious way, we compose the corresponding functions at each index.
Of course, we have to show that the resulting squares commute, and
that this composition is associative, but that is straight forward.

In the previous example we used a poset S to index the constructed
category Ŝ . There is also a more general construction which converts an
arbitrary category C into the category Ĉ of presheaves of C . We look
at that briefly in Section 3.5. Such presheaf categories occur in many
places, and are not always recognized as such. For instance, Set-R and
Mod -R are two such categories.

The next example is important in homology.

1.4.2 Example Let R be a fixed ring and consider the category

Mod -R

of right R-modules. If you are not yet happy with Mod -R then you can
replaced it by the category AGrp of abelian groups. We construct a
new category

Ch(Mod -R)

out of the objects and arrows of Mod -R.
A chain complex, sometimes called a complex, over R is a Z indexed

family

A · · · - An+1
αn+1- An

αn- An−1
- · · ·

of objects and connecting arrows taken from Mod -R. These arrows have
to satisfy a certain condition which we come to in a moment.

1.4. More complicated categories 31

...

An+1

?

An

αn+1 ?

An−1

αn ?

...

?

Note the indexing of the objects. The indexes become
smaller as we move along the chain to the right. For this
reason it is sometimes convenient to think of the chain as
progressing downwards. However, for obvious reasons, a
chain is rarely printed in this form.

Also, it is customary to write d• for each connecting
arrow α• but in the first instance that can be confusing.

The value of each index is important. If we re-index by
moving each object 1-step along, then we get a different
complex. In particular, the object A0 plays a special role
in the complex. If we change the indexing then that role is
give to a different object, and we have a different complex.

The connecting arrows α• must interact in a simple way.
Given objects B and C of Mod -R the zero arrow

B
0 - C

sends each element of B to the zero element of C. (Strictly speaking, we
should label each zero arrow with its source and target, but that gets
a bit cumbersome.) Consecutive connecting arrows in the complex are
required to compose to 0, that is

αn ◦ αn+1 = 0

for each n ∈ Z.
Each complex A is an object of the new category Ch(Mod -R). Let’s

call it an Object to distinguish it from an object of Mod -R.
Given two Objects A and B, complexes from Mod -R, what is an Arrow

A
f - B

in Ch(Mod -R)? It is an indexed family of arrows of Mod -R

An+1 fn+1
- Bn+1

An

αn+1

?
fn - Bn

βn+1

?

An−1

αn
?

fn−1
- Bn−1

βn
?

32 1. Categories

such that at each step the corresponding square commutes, that is

fn ◦ αn+1 = βn+1 ◦ fn+1

for each n ∈ Z. (This is why we choose to write α rather than the
customary d for the connecting arrows.)

The structure of Ch(Mod -R) is now more or less obvious.
Given a pair

A
f - B

g - C

of Arrows, we have commuting squares

An+1
fn+1- Bn+1

gn+1- Cn+1 An+1
gn+1 ◦ fn+1- Cn+1

An

αn+1

?

fn
- Bn

βn+1

?

gn
- Cn

γn+1

?
An

αn+1

?

gn ◦ fn
- Cn

γn+1

?

as on the left, and the horizontal components of these compose in Mod -R
to give commuting squares as on the right. All these composites in
Mod -R provide the composite

A
g ◦ f - C

in Ch(Mod -R).
Verifying that Ch(Mod -R) is a category is now straight forward. It is

a simple exercise in diagram chasing which we look at in Section 2.1.

The gadget Ch(Mod -R) is central to homology theory. But what
is the point of setting it up as a category? It is because some of its
properties can be analysed by arrow-theoretic methods without getting
inside the internal structure of its Objects and Arrows. This is beyond
the scope of this book, but not that far beyond.

Exercises

1.4.1 Try to understand Example 1.4.1. To help with this consider the
particular cases where S is a 2-element set partially ordered in the two
different ways.

1.4.2 Try to understand Example 1.4.2. To help with this consider the
complexes A where only A−1, A0, A1 are non-trivial.

1.5 Two simple categories and a bonus 33

1.5 Two simple categories and a bonus

As we are going to see in a moment, every monoid is a category with a
simple object structure, and ever preset is a category with a simple arrow
structure. Every category is a certain kind of amalgam of monoids and
presets. Thus whenever you meet a new categorical notion it is worth
trying it out on monoids and presets. Sometimes this gives a little bit of
insight and sometimes not.

1.5.1 Example Each monoid (R, ·, 1) can be viewed as a category with
just one object. It doesn’t matter what this object is, and it doesn’t have
any internal structure. Let’s use

F

for this symbolic object. Don’t confuse this with the monoid R.
For each r ∈ R there is an arrow

F
r - F

and again this has no internal structure. In other words the arrows of
the category are the elements of R. Composition of arrows is just the
carried operation of R.

F

F
s ◦ r = sr

-

r -

F

s
-

The identity arrow

idF = 1

is just the unit of R. This construction does produce a category because
the operation on R is associative and 1 is a unit.

On its own this example is rather trite, but later we will add to it to
illustrate several aspects of category theory.

1.5.2 Example Each pre-ordered set (S,≤) can be viewed as a cate-
gory. The objects are the elements

i, j, k, . . .

of S. Given a pair of objects i, j there is an arrow

i - j

precisely when i ≤ j. Thus between any two objects there is at most one

34 1. Categories

arrow. The existence of the arrow indicates a comparison between the
objects. It is sometimes convenient to write

i
(j, i) - j

for this arrow. We have

id i = (i, i) since i ≤ i

(k, j) ◦ (j, i) = (k, i) since i ≤ j ≤ k ⇒ i ≤ k

so the construction does give a category.

Again this example looks rather feeble, but again we will add to it
later to produce more interesting structures.

In Section 1.3 and 1.4 we saw various ways of producing a new cate-
gory out of old categories. There is one very simple example of such a
construction. This could have been done earlier, but we have saved it
until the end of this chapter.

1.5.3 Example Each category C is a collection of objects and a col-
lection of arrows with certain properties. In particular, each arrow

A
f - B

has an assigned source and an assigned target. A formal trick converts
C into another category C

op
called the opposite of C . This category

C
op

has the same objects as C . Each arrow f of C , as above, is turned
into its formal dual

B
f

op

- A

to produce an arrow of C
op

. The formal composition of these formal
arrows is defined by

f
op
◦

op
g

op
= (g ◦ f)

op

for each composible pair

A
f - B

g - C

of arrows from the parent category C . A routine exercise (which you
should go through at least once) shows that C

op
is a category.

The process f > f
op

doesn’t actually do anything to the arrows.
We merely decide that the words ‘source’ and ‘target’ should mean their
exact opposites. Thus the change is merely formal rather than actual.

1.5 Exercises 35

This trick shows there is a lot of duality in category theory. Notions
often come in dual pairs

dog god

where a dog of a category C is nothing more than a god of its opposite
C

op
. We will see many example of this.

Sometimes the opposite category C
op

has properties rather different
to the parent C . For instance Set

op
is isomorphic to the category of

complete, atomic boolean algebra and complete morphisms. As a simpler
version of this the opposite of the category of finite sets is the category
of finite boolean algebras. (Both of these observations are instances of
Stone duality.)

Exercises

1.5.1 (a) Let R and S be monoids viewed as categories. What is the
product category?

(a) Let R and S be presets viewed as categories. What is the product
category?

1.5.2 Let S be a preset viewed as a category.
For an arbitrary element s ∈ S what are the slice categories (S ↓ s)

and (s ↓ S)?
For arbitrary elements s, t ∈ S what is the butty category (s ↓ S ↓ t)?

Be careful.

1.5.3 Each poset S is a category. What is the opposite S
op

?
Each monoid R is a category. What is the opposite R

op
?

1.5.4 Give a short and precise description of the category constructed
in Exercise 1.3.3.

2

Basic gadgetry

In this chapter we describe some of the basic gadgets of category theory.
We meet notions such as

diagram
monic epic
split monic split epic

isomorphism
initial final

wedge
product coproduct
equalizer coequalizer
pullback pushout

universal solution

some of which are discussed only informally. All of these notions are im-
portant, and have to be put somewhere in the book. It is more convenient
to have them together in one place, and here seems the ‘logical’ place to
put them. However, that does not mean you should plod through this
chapter section by section. I suggest you get a rough idea of the notions
involved, and then go to Chapter 3 (which discusses more important
ideas). You can come back to this chapter to fill in the missing details.

2.1 Diagram chasing

As in many part of mathematics, in category theory we sometimes have
to show that two things are equal. We don’t often, or even ever, have to
show that two objects are the same, but we often have to show that two
arrows are equal. The main technique for doing that is diagram chasing.

2.1. Diagram chasing 37

Roughly speaking, a diagram in a category is a collection of objects
together with a collection of arrows between these objects.

For instance, the following diagram
•

•

f -

•

g
-

•

h

? l

-

k -

has four objects (unnamed) and five arrows f, g, h, k, l. There are also
five composite arrows

g ◦ f h ◦ f l ◦ h ◦ f l ◦ h l ◦ k

and some of these may be equal. This diagram has three cells; the left
hand triangle, the right hand triangle, and the outer rectangle (lozenge).
Some of these cells may commute.

• The left hand triangle commutes if h ◦ f = k.
• The right hand triangle commutes if l ◦ h = g.
• The outer cell commutes if g ◦ f = l ◦ k.

Roughly speaking a diagram chase is a process by which we show that
a particular cell commutes knowing that other cells commute and using
certain other properties of the diagram.

2.1.1 Example For the diagram above, if the two triangles commute
then the outside cell commutes. We are given that

h ◦ f = k l ◦ h = g

and we must show that

g ◦ f = l ◦ k

holds. We can do that by equational reasoning. Thus

g ◦ f = (l ◦ h) ◦ f = l ◦ (h ◦ f) = l ◦ k

is a more or less trivial calculation.
However, it is more common to do this by chasing round the diagram

and noting that certain composites are equal. Thus
• •

•
f -

•
g
-

= •
f -

• = • •

•

h
?

l
-

• l
-

k
-

is what we trace out with our pencil and think whilst we are doing it.

38 2. Basic gadgetry

Since this example is so trivial it doesn’t matter which method we use.
For larger diagrams the chase is often easier to explain when talking to
someone. This is a bit unfortunate since no-one has yet devised a method
of writing down a diagram chase in an efficient manner.

Even with this simple diagram there are other questions to ask.

2.1.2 Example Consider the small diagram above.
(a) If the outer cell commutes then neither of the two triangles need

commute. This is because we could replace h by some other arrow with-
out altering f, g, k, l.

(b) If the outer cell commutes and the right hand triangle commutes,
then the left hand triangle need not commute. It is not hard to find an
appropriate example in Set . Simply let l collapse a lot of elements to
the same element.

(c) If the outer cell commutes, the right hand triangle commutes, and
l is monic, then the left hand triangle also commutes. We deal with this
in the next section.

(b) If the outer cell commutes and the left hand triangle commutes,
then the right hand triangle need not commute. It is not hard to find an
appropriate example in Set . Simply let the range of f be a small part
of its target.

(e) If the outer cell commutes, the left hand triangle commutes, and f
is epic, then the right hand triangle also commutes. We deal with this
in the next section.

We will take part in many diagram chases. For now I leave you with a
couple of simple exercises and one that you might think is a bit devilish.

Exercises

2.1.1 Consider the following diagram.

•
g - •

• -

f -

• -

--

•

h
-

• l

-

k -

Show that if the four inner triangles commute, then so does the outer
cell. Write down the argument in the form of equational reasoning and
in a pictorial form of the diagram chase.

2.2 Monics and epics 39

2.1.2 Consider the triangular pyramid of arrows.
•

•
� - •

-

•

- -
-

Show that if the three other faces commute then the back face commutes.

2.1.3 Consider a pentagram inscribed in a pentagon.
4

2 �

-

1
-

5 �

�

-�

3
�

�-

Suppose that the following triangles commute.

123 345 512 234 451

Show that a trip twice round the pentagram is equal to a trip once round
the pentagon.

2.2 Monics and epics

It is clear, as someone once said, that in the great categorical menagerie
all arrows have equal status, but some have more status than others. In
this section we look at some of these special arrows.

2.2.1 Definition In a category an arrow

B
m - A A

e - B

is, respectively,

monic epic

if for each parallel pair of arrows

X
f -

g
- B B

f -

g
- X

we have

m ◦ f = m ◦ g =⇒ f = g f ◦ e = g ◦ e =⇒ x = y

as appropriate.

40 2. Basic gadgetry

What are we getting at here? The following example gives the precur-
sors of monics and epics, but you mustn’t read too much into it. Later
we will see that it can suggest quite a false story.

2.2.2 Example Consider a category of structured sets. Each arrow is
(carried by) a total function between the carriers of the two objects.

(m) If

B
m - A

is injective as a function then it is monic as an arrow. To see this suppose

m ◦ f = m ◦ g

for some parallel pair

X
f -

g
- B

of arrows. We require f = g. Thus, since f and g are total functions it
suffices to show

f(x) = g(x)

for each x ∈ X. We have

m(f(x)) = (m ◦ f)(x) = (m ◦ g)(x) = m(g(x))

for each such x. But m is injective, that is

m(b1) = m(b2) =⇒ b1 = b2

for b1, b2 ∈ B, to give the required result.

(e) If

A
e - B

is surjective as a function then it is epic as an arrow. To see this suppose

f ◦ e = g ◦ e

for some parallel pair

B
f -

g
- X

2.2. Monics and epics 41

of arrows. We require f = g, that is

f(b) = g(b)

for each b ∈ B. Consider any such b ∈ B. Since e is surjective we have
b = e(a) for some a ∈ A. But now

f(b) = f(e(a)) = (f ◦ e)(a) = (g ◦ e)(a) = g(e(a)) = g(b)

to give the required result.

These examples show that

injective =⇒ monic surjective =⇒ epic

for appropriately nice categories. However, you are warned. Even in nice
categories these implications can be far from equivalences. There are
several quite common categories of structured sets in which an epic arrow
need not be surjective. Roughly speaking an arrow

A
e - B

is epic if the range e[A] of e is a ‘large part’ of B. Exercises 2.2.5, 2.2.6,
and 2.2.8 give examples of this. Of course, in many categories the notions
of ‘injective arrow’ and ‘surjective arrow’ don’t make sense.

Monics and epics are those arrows that can be cancelled on one side or
the other. If an arrow has a 1-sided inverse than it can be cancelled on
the appropriate side. This gives us special classes of monics and epics.

2.2.3 Definition A pair of arrows

B
s - A A

r - B

such that

r ◦ s = idB

are a

section retraction

respectively (as indicated by the initial letter).

It is not hard to show that each section is monic and each retraction
is epic. For this reason each such arrow is often referred to has a

split monic split epic

respectively. In some ways this is better terminology.

42 2. Basic gadgetry

As we said at the beginning of Section 2.1 rarely do we need to show
that two objects of a category are the same. But we often have to show
they are isomorphic.

2.2.4 Definition A pair of arrows

B
g - A A

f - B

such that

g ◦ f = idA f ◦ g = idB

form an inverse pair of isomorphisms. Each arrow is an isomorphism.

An arrow is an isomorphism if it has a 2-sided inverse, and hence each
isomorphism is both a split monic and a split epic. This gives us a short
hierarchy of kinds of arrows.

Arrow

Monic
⊂

-

Epic

�

⊃

Bimorphism
⊂

-
�

⊃

Split monic
∪

6

Split epic
∪

6

Isomorphism
∪

6

⊂

-
�

⊃

It is easy to see that an arrow that is both a split monic and a split epic is
automatically an isomorphism (and there is a stronger result). However,
an arrow that is both monic and epic need not be an isomorphism.

2.2.5 Definition A bimorphism is an arrow that is monic and epic.
Each isomorphism is a bimorphism, but there can be bimorphisms

which are not isomorphisms.
A category is balanced if each bimorphism is an isomorphism.

Monic and epics often have a role to play in a diagram chase. There
are some exercises to illustrate this.

Exercises

2.2.1 (a) Show that

section =⇒ monic retraction =⇒ epic

section+epic =⇒ iso retraction+monic =⇒ iso

2.2. Exercises 43

that is show that if an arrow satisfies the hypothesis then it satisfies the
conclusion.

(b) Show that if arrows

B
g - A

f - B
h - A

satisfy

h ◦ f = idA f ◦ g = idB

then g = h, and each arrow is an isomorphism.

2.2.2 (a) Consider a preset as a category. Show that every arrow is a
bimorphism.

(b) When is a poset balanced and when is a preset balanced?

2.2.3 Consider a monoid as a category. Which of the elements (when
viewed as arrows) are monic, epic, a retraction, a section, iso? When is
a monoid balanced?

2.2.4 Consider a composible pair of arrows.

A
m - B

n - C

Show that if both m and n are monic, then so is the composite n ◦m.
Show that if the composite n ◦m is monic, then so is m.
Find an example where the composite n ◦m is monic but n is not.
State the corresponding results for epics.
Obtain similar results (where possible) for the other classes of arrows

discussed in this section.

2.2.5 Consider the category Mon of monoids, and view N and Z as
additively written monoids. Show that the insertion

N ⊂
e - Z

is epic.

2.2.6 Consider the category Rng of rings. Show that the insertion

Z ⊂
e - Q

is epic.

44 2. Basic gadgetry

2.2.7 (a) Let C be a category of structured sets. Suppose C has a
particular object S which has a special element ? (usually not part of
the official furnishings) such that for each object A and element a ∈ A,
there is a unique arrow

S
α - A

with α(?) = a. Show that in C each monic is injective.
(This is a particular instance of a more general notion called a selector,

or sometimes a generator.)

(b) Show that in

Set , Pos, Top, Mon , Grp, Rng , Set-R

each monic is injective.

2.2.8 (a) In Top an isomorphism is usually called something else.
What is the name used?

Show that in Top each monic is injective.
Show that an arrow of Top that is bijective as a function need not be

an isomorphism.

(b) Let Top2 be the category of hausdorff spaces and continuous maps.
Show that the insertion

Q ⊂
e - R

is epic in this category.
More generally, show that if

T
ε - S

is an arrow of Top2 where the range ε[T] is dense in the target S, then
ε is epic.

If you are brave you can show that this result does not hold for Top1.

2.3 Simple limits and colimits 45

2.2.9 Consider the following cube of arrows a, b, . . . , l,m.

•
j - •

•

g
�

c
-

m6

•

k
�

•

f

6

l - •

•

b6

a -
e

�

•

d

6

h
�

(e) Show that if e is epic and if the other five faces commute, then the
back face commutes.

(m) Show that if m is monic and if the other five faces commute, then
the bottom face commutes.

2.2.10 In the following diagram suppose the four trapeziums commute.
• - •

• -
e -

•
�

•
?
- •
?

•
?

-

-

•
?

m
-

(a) Show that if the inner square commutes then so does the outer
square.

(b) Conversely, show that if e is epic, m is monic, and the outer square
commutes, then so does the inner square.

2.3 Simple limits and colimits

Limits and colimits (of the categorical kind) occur all over mathematics,
and concrete examples of these notions were being used before category
theory was invented. Different areas of mathematics tend to use different
terminology, mainly for historical reasons than natural cussedness, but
that is not too important. It was one of the first achievements of category
theory to codify and extract the essential content of these notions.

46 2. Basic gadgetry

Limit Template Colimit

(1) final object initial object

•
(2) binary product binary coproduct

•

(3) equalizer • -- • co-equalizer

•

(4) pullback •
-

•
-

•

(5) •
-

pushout

•
-

Table 2.1 Some simple limits and colimits

In the next four sections we look at the basic examples of these notions,
as given in Table 2.1. These examples can be set in a more general
context, but we don’t attempt that just yet. However, we can look at a
particular case of the general notion which you already know about.

Let S be a poset viewed as a category. It is usual to think of the
comparison as progressing upwards, that is i ≤ j means that i is below j.
However, to fit in with the categorical picture we think of the comparison
as progressing to the right. Thus

i ≤ j i - j

mean the same thing.
Let X be a subset of S. A

left solution right solution

for X is an element a ∈ S such that

a ≤ x x ≤ a

for each x ∈ X. A

limit colimit

2.3 Exercises 47

is a ‘best possible’ solution on the appropriate side. In other words, it is
a solution a such that

b ≤ a a ≤ b

for each solution b of the appropriate handedness.
You should recognize these notions under different names.

Exercises

2.3.1 What are these notions for a poset usually called?
What happens if X is empty?
What happens if X is a singleton?
What happens if X is a pair of elements?
What differences might occur if S is a preset?

2.4 Initial and final objects

In some categories some objects play special roles because they take up
extreme positions.

2.4.1 Definition An object S of a category C is, respectively

initial final

if for each object A there is a unique arrow

S - A A - S

as indicated. Here the uniqueness is important.
Sometimes a final object is said to be terminal.

You may not know this terminology, but you already know some ex-
amples.

2.4.2 Example (a) Consider the category Set of sets and let

1 = {?}

be a singleton set. For each set A there is a unique arrow

A - 1

the function that sends everything to ?. Thus 1 is a final object of Set .

48 2. Basic gadgetry

Let ∅ be the empty set. You will probably have to think about this,
but for each set A there is a unique arrow

∅ - A

(since the function doesn’t have any requirements that it must satisfy).
Thus ∅ is an initial object of Set .

(b) Consider the category AGrp of abelian groups. Let O be the triv-
ial group. For each abelian group A, the group O is uniquely embedded
in A, and there is a unique morphism

A - O

to O. Thus O is both initial and final in AGrp.

A category C may or may not have an initial object. It may or may
not have a final object. It can have one without the other. It can have
both. If it has both then these objects may or may not be the same. An
object that is both initial and final is often called a zero object.

It is easy to show that any two initial objects of a category are uniquely
isomorphic. For this reason we usually speak of the initial object rather
than an initial object. In the same way and two final objects are uniquely
isomorphic, and we speak of the final object.

It common to let 1 be the final object of a category (assuming this
exists). Because of certain special cases an arrow

1
a - A

to an object A is a global element of A. For instance, in Set these pick out
the members of a set in the usual sense. In more structured categories
these can pick out a special kind of member of an object.

Exercises

2.4.1 Show that in a category any two initial objects are uniquely
isomorphic. That is, if I, J are two initial objects, then there is a unique
arrow I - J , and this is an isomorphism.

State and prove the dual result concerning final objects.

2.4.2 Suppose that I is initial in C . Show that each C -arrow

A - I

is a retraction. Prove the corresponding result for final objects. Show

2.5 Products and coproducts 49

that if C has an initial object I and a final object F and an arrow

F - I

then I and F are isomorphic. In such a case we have a zero object.

2.4.3 Show that the category Pno has an interesting initial object but
a boring final object. What are these objects?

2.4.4 Show that the category Grp of groups has both an initial and
a final object, and these are the same.

Show that the category Rng of unital rings has both an initial and a
final object, and these are not the same.

Consider the categories Idm and Fld of integral domains and fields.

2.4.5 Show that for each set A there is a bijection between elements
of A and Set-arrows 1 - A. Show that for each pair of Set-arrows

A
f - B 1 - A

where the second represents the element a ∈ A, the composite

1 - A
f - B

represents the element f(a) ∈ B.

2.4.6 Let S be a poset and consider the category Ŝ of presheaves over
S (as described in Example 1.4.2).

(a) Show that this category has a final object 1.
(b) Show that for a presheaf A = (A,A) over S a global element

1 - A is a kind of choice function for A. It ‘threads’ its way through
the component sets A(s). Make precise the notion of ‘thread’.

2.5 Products and coproducts

We all know how to form the cartesian product

A×B

of two sets A and B, the set of all ordered pairs

(a, b)

for a ∈ A and b ∈ B. We also know that often when A and B carry
structures of a similar kind, the product A × B can be furnished with

50 2. Basic gadgetry

the same kind of structure. Groups, rings, topological spaces, and so on,
provide examples of this. In these cases we find that the two projections

(a, b)

A×B

a
�

A
�

B
-

b
-

are arrows in the appropriate category.
There is also a dual process which is not so clear.
Given two sets A and B we can form the disjoint union (sum)

A+B

of the sets, a larger set that includes copies of A and B with minimal
interference. Technically, we tag the elements of A and B to remember
their origin, and take the union of the tagged versions of the sets.

A+B =
(
A× {0}

)
∪
(
B × {1}

)
We then find that the two embeddings

a A B b

(a, 0)
-

A+B
�

-

(b, 1)
�

locate disjoint copies of the parent sets within the sum.
What about this dual process for structured sets? Given two groups,

or two rings, A and B, can we find a group or ring that includes copies
of A and B with minimal interference? It can be done but we have to
think a bit before we spot the construction. If you don’t know how to
do this then you should worry about it for a while.

What we can do here is look at a variant of this dual problem. Given
two abelian groups A and B we wish to find an abelian group that in-
cludes copies of A and B with minimal interference. This is easier.

Let’s suppose the two abelian groups are written multiplicatively.
Thus

(A, ·, 1) (B, ·, 1)

are the two structures. Let

A×B

be the cartesian product of these two groups. This, of course, is also an

2.5. Products and coproducts 51

abelian group. We have four morphisms.

a A B b

(a, 1)
-

A×B
�

-

(1, b)
�

(a, b)

A
�

a
�

b
-

B
-

The lower two are the projections. The upper two are the embeddings
which solve our problem.

There is something going on here, isn’t there? Category theory can
help to explain this. In all cases we are looking for a universal solution

to a particular kind of problem which comes in two forms, a left handed
version and a right handed version.

For the remainder of this section we fix a category C , and we fix a
pair of objects A and B of C . We place these as

A

B

to help with various diagrams we draw. (Just why we do this will become
clear when we look at more general constructions in Chapter 5.)

We are going to look at the left handed version and the right handed
version of the problem in parallel. Thus each definition and result that
we give is really two definitions or results in one. The left hand side gives
the left version and the right hand side gives the right version (in the
sense of ‘dexterous’ not ‘correct’).

2.5.1 Definition For a pair A,B of objects of a category C , a wedge

to from

the pair A,B is an object X together with a pair of arrows

A A

X

-

X

-

B

-

B

-

in the parent category C .

Often a wedge of this kind is called a

cone cocone

52 2. Basic gadgetry

depending on which side of the pair it lies. However, it is hardly worth
remembering which is which so we call both a wedge.

For a given pair there may be many wedges on one side or the other.
We look for a ‘best possible’ wedge, one that is as ‘near’ the pair as
possible. Technically, we look for a universal wedge. You will probably
need to read this next definition several times. Remember also that it is
two definitions in one, so in the first instance concentrate on one side.

2.5.2 Definition Given a pair A,B of objects of a category C , a

product coproduct

of the pair is a wedge

A A

S

pA -

S

iA-

B
pB
-

B
iB

-

with the following universal property.
For each wedge

A A

X

fA -

X

fA-

B
fB
-

B
fB

-

there is a unique arrow

X
m - S S

m - X

such that
A A

X m-

fA
-

S

pA
6

S

iA
?

m- X

fA
-

B

pB
?fB -

B

iB
6

fB

-

commutes. This arrow m is the mediating arrow (or mediator) for the
wedge on X.

2.5. Products and coproducts 53

There are a couple of things about this definition that you should
notice. Firstly, a product or coproduct is not just an object. It is an
object furnished with a pair of arrows. Secondly, the mediator is unique
for the given wedge on X. This has some important consequences.

2.5.3 Lemma Let

A A

S

pA -

S

iA
-

B
pB
-

B
iB

-

be a

product coproduct

wedge in the category C . Let

S
k - S

be any endo-arrow of S for which

pA = pA ◦ k k ◦ iA = iA

pB = pB ◦ k k ◦ iB = iB

hold. Then k = idS.

Proof We consider the given wedge both as a special wedge and an
arbitrary wedge. Thus there is a unique arrow, the mediator, such that

A A

S m-

pA
-

S

pA
6

S

iA
?

m- S

iA
-

B

pB
?pB -

B

iB
6

iB

-

commutes. Since idS makes these diagram commute we have m = idS .
But the arrow k makes this diagram commute, and hence k = idS .

This result leads to the essential uniqueness of the universal solution.

54 2. Basic gadgetry

2.5.4 Lemma For object A,B in a category C let

P I

A

pA
-

A

iA -

B

pB
-

B

iB

-

Q

qA

-

qB

-

J

jA

-
jB -

be a pair of

product coproduct

wedges. Then

P,Q I, J

are uniquely isomorphic over the wedges. There are unique arrows

P I

Q

f
?

g
6

J

f
?

g
6

such that

(1) pA = qA ◦ f pB = qB ◦ f (3) iA = g ◦ jA iB = g ◦ jB
(2) qA = pA ◦ g qB = pB ◦ g (4) jA = f ◦ iA jB = f ◦ iB

and in particular f and g are an inverse pair of isomorphisms.

Proof We look at the product, left hand, version and leave the coprod-
uct version as an exercise.

The object Q and the pair qA, qB form a product wedge for A,B. The
object P and the pair pA, pB form an arbitrary wedge for A,B. Thus
there is a unique mediator f satisfying (1). By reversing the roles of P
and Q there is a unique mediator satisfying (2). From (1, 2) we have

pA ◦ g ◦ f = qA ◦ f = pA =
pB ◦ g ◦ f = qB ◦ f = pb =

so that a use of Lemma 2.5.3 gives the left had equality

g ◦ f = idP f ◦ g = idQ

and the right hand equality follows by a similar argument.

2.5. Products and coproducts 55

The left hand part of this result shows that if a pair of objects has a
product then that gadget is essentially unique. Thus we often speak of
the product of a pair. Similarly, from the right hand part of this result,
we speak of the coproduct of a pair of objects.

In some categories not all products or coproducts exist. A pair of ob-
jects may have one of these gadgets without the other. The pair may
have both, or it may have neither. The existence of products and co-
products in some particular categories is looked at in Exercises 2.5.1
and 2.5.2. Here we look at a result which relates the categorical notions
to the concrete construction discussed at the beginning of this section.

2.5.5 Lemma Let A and B be a pair of sets. Then the

cartesian product disjoint union
A×B A+B

furnished with the canonical functions forms the

product coproduct

of the pair in Set .

Proof We look at the right hand, coproduct, version and leave the left
hand version as an exercise.

The elements of

A+B

are of two kinds

(a, 0) for a ∈ A (b, 1) for b ∈ B

where the tag 0 or 1 records the parent of the element. The embeddings

A

iA(a) = (a, 0)

A+B

iA ?

iB(b) = (b, 1)

B

iB
6

merely tag the input. We must show that these form a coproduct wedge.

56 2. Basic gadgetry

Consider any wedge

A

X

fA
-

B
fB

-

to some set X. We define

A+B
m- X

by

m(a, 0) = fA(a) m(b, 1) = fB(b)

for a ∈ A and b ∈ B. Trivially, the diagram

A

A+B

iA
?

m- X

fA
-

B

iB
6

fB

-

commutes. We must show that m is the only function that makes this
diagram commute.

Consider any function

A+B
h - X

with

h ◦ iA = fA h ◦ iB = fB

that is h makes the diagram commute. For a ∈ A and b ∈ B we have

h(a, 0) = h(iA(a)) = (h ◦ iA)(a) = fA(a) = m(a, 0)
h(b, 1) = h(iB(b)) = (h ◦ iB)(b) = fB(b) = m(b, 1)

and hence h = m, as required.

We finish this section with a few remarks on terminology and notation.
Strictly speaking the two notions we have described here are the

binary product binary coproduct

2.5 Exercises 57

respectively. There are more general notions that deal with an arbitrary
number of objects, not just two. The notations

A×B A+B

A
Q
B A

‘
B

are used for the object associated with the constructed wedge. Of course,
a use of ‘×’ does not mean that the object is constructed using a cartesian
product. In some categories the product and the coproduct produce the
same object (but not the same structuring arrows). For such cases

A⊕B

is a common notation. This is sometimes called a biproduct.

Exercises

2.5.1 As well as Top, choose a selection of the following categories.

Set , CMon , Mon , AGrp, Grp, CRng , Rng , Set-R, Mod -R, Pos

Show that each category has all binary products, and that each is given
by a cartesian product with the obvious projections.

2.5.2 Show that each of

Set , Pos, CMon , AGrp, Set-R, Mod -R, Top

has all binary coproducts.
Can you spot any similarities between the various constructions?

2.5.3 Each poset is a category.
What is the product of two elements?
What is the coproduct of two elements?

2.5.4 Show that Set⊥ has all binary products and binary coproducts.

2.5.5 Consider the category of sets with a distinguished subset.
Does this category have binary products.
Does it have binary coproducts.

2.5.6 Consider the category RelA of sets and relations of Example
1.3.2. Show this has all binary products and coproducts and give a de-
scription of these. (The product is not given by a cartesian product.)

58 2. Basic gadgetry

2.5.7 Let C be a category with a final object 1 and all binary products.
(a) Show that for each object A the three objects 1×A,A,A× 1 are

isomorphic.
(b) Show that for each triple A,B,C of objects, the two objects

(A×B)× C A× (B × C)

are isomorphic.

2.5.8 Let C be a category with all binary products and coproducts.
For objects A,B,C let

L = A× C +B × C R = (A+B)× C

to form two more objects. Show there is an arrow

L - R

and find an example to show that there need not be an arrow R - L.

2.5.9 In the category AGrp of abelian groups the cartesian product
of two objects implements both the product and the coproduct. Does
this work in Grp?

Consider the cartesian product A × B of two abelian groups. This
gives the coproduct of A and B in AGrp. Does this give the coproduct
of A and B in Grp?

2.6 Equalizers and coequalizers

When we first see their categorical definition, equalizers and coequalizers
are not something we immediately relate to our previous mathematical
experience. They are a couple little notion which help in certain cate-
gorical situations. However, once we become familiar with the idea we
begin to realize that we have seen particular instances of the notions.

There are two notions here, the left notion and the right notion. We
develop the two version in parallel. For instance, the following definition
is two definitions in one. As with other parallel developments at a first
reading concentrate on one side. Once you understand that come back
and do the other side. In this instance I suggest that the left hand,
equalizing, side is easier to relate begin with.

2.6. Equalizers and coequalizers 59

2.6.1 Definition Given a parallel pair

A
f -

g
- B

of arrows in a category C , an arrow

X
h - A B

h - X

makes equal the parallel pair if

f ◦ h = g ◦ h h ◦ f = h ◦ g

that is, the two composite arrows

X
f ◦ h-

g ◦ h
- B A

h ◦ f-

h ◦ g
- X

agree.

Any given parallel pair could be made equal, on one side or the other,
by many different arrows. We look for a ‘best possible’ coalescing arrow.

2.6.2 Definition Given a parallel pair

A
f -

g
- B

of arrows in a category C ,

an equalizer a coequalizer

is an arrow

S
k - A B

k - S

which makes equal f and g, and has the following universal property.
For each arrow

X
h - A B

h - X

which makes equal the parallel pair, there is a unique arrow

X
m - S S

m - X

such that

h = k ◦m h = m ◦ k

holds. This m is the mediating arrow (or mediator) for the arrow h.

60 2. Basic gadgetry

Read this definition a couple of times and compare it with Definition
2.5.2. Later, in Chapter 4, we will see that both notions are particular
instances of a more general notion.

For now we develop the idea of Definition 2.6.2. We follow a path quite
similar to that in Section 2.5. Here is the analogue of Lemma 2.5.3.

2.6.3 Lemma Each equalizer is monic. Each coequalizer is epic.

The proof of this is similar to that of Lemma 2.5.3, so we leave it as
an exercise. We use the result to obtain the analogue of Lemma 2.5.4.

2.6.4 Lemma For a parallel pair

A
f -

g
- B

of arrows in a category C let

S S

A

k
-

B

k -

T
l
-

T
l -

be a pair of

equalizers coequalizers

respectively. Then S, T are uniquely isomorphic over the wedges, In other
words, there are unique arrows

S

T

m
?

n
6

such that
(1) l = k ◦m (3) l = m ◦ k
(2) k = l ◦ n (4) k = n ◦ l

and in particular m and n are an inverse pair of isomorphisms.

Proof We look at the coequalizer, right hand, version and leave the
equalizer version as an exercise.

The arrow l makes equal f and g. The arrow k is the coequalizer of
f and g. Thus there is a unique mediator m satisfying (3). By reversing

2.6. Equalizers and coequalizers 61

the roles of l and k we see there is a unique mediator n satisfying (4).
From (3, 4) we have

n ◦m ◦ k = n ◦ l = k = idS ◦ k

and hence

n ◦m = idS

since k is epic. Similarly

m ◦ n = idT

to show that m and n are an inverse pair of isomorphisms.

The left hand part of this result shows that if a pair of arrows has an
equalizer then that gadget is essentially unique. Thus we speak of the
equalizer of a pair. Similarly, from the right hand part of this result, we
speak of the coequalizer of a pair of arrows.

Let’s now look at a few examples. Any given pair of arrows need
not have an equalizer, nor a coequalizer. In contrast to this for some
categories these gadgets always exist.

2.6.5 Example Let

A
f -

g
- B

be a parallel pair of functions, arrows in Set . Let

S = {a ∈ A | f(a) = g(a)}

be the set of elements of A on which f and g agree. Then the insertion

S ⊂
i - A

is the equalizer of f and g. To see that suppose the function

X
h - A

makes equal f and g. For each x ∈ X we have

f(h(x)) = (f ◦ h)(x) = (g ◦ h)(x) = g(h(x))

so that h(x) ∈ S, and hence the function

X
m - S

x - h(x)

is the required mediator.

62 2. Basic gadgetry

A similar idea can be used in several other categories.
The category Set also has all coequalizers. To obtain these we combine

two standard constructions which, at first sight, seem to have little to
do with category theory. Almost certainly you will know the content of
the following example, but you may not have seen it set out like this.

2.6.6 Example Let S be an arbitrary set, and let ∼ be an equivalence
relation on S. This relation partitions S into blocks (equivalence classes).
For each s ∈ S let [s] be the block in which s lives, and let

S/∼

be the set of all such blocks. Let

S
σ - S/∼

s - [s]

be the induced surjection.
Let

S
h - X

be any function. The kernel of h is the relation ≈ on S given by

s2 ≈ s2 ⇐⇒ h(s1) = h(s2)

for s1, s2 ∈ S. Trivially, this is an equivalence relation.
Now suppose ≈ includes ∼, that is

s1 ∼ s2 =⇒ h(s1) = h(s2)

for s1, s2 ∈ S. Under these conditions there is a commuting triangle

S
h - X

S/∼
h]
-

σ
-

for some unique function h]. This function is given by

h]([s]) = h(s)

for s ∈ S. The only problem is to show that h] is well-defined.

To produce a coequalizer we generate a certain equivalence relation.

2.6 Exercises 63

2.6.7 Example Let

A
f -

g
- B

be a parallel pair of functions, arrows in Set . Let be the relation on
B given by

b1 b2 ⇐⇒ (∃a ∈ A)[b1 = f(a) and b2 = g(a)]

for b1, b2 ∈ B. Let ∼ be the equivalence relation on B generated by .
(An explicit description of ∼ is not as easy as it looks.)

Using the construction of Example 2.6.6 we may check that the canon-
ical quotient

B - B/∼

is the coequalizer of the pair f, g (in Set).

A variation of this construction can be used in some Set-based cat-
egories. We first pass down to Set , produce a quotient set, and then
furnish this to produce an object of the parent category.

Exercises

2.6.1 Prove Lemma 2.6.3, and complete the proof of Lemma 2.6.4.

2.6.2 Complete the proof of Example 2.6.5. In other words, show that
the function m does make the relevant triangle commute, and it is the
only function to make that triangle commute.

2.6.3 Consider a parallel pair of morphisms

A
f -

g
- B

between groups (written multiplicatively).
(a) Let

E = {a ∈ A | f(a) = g(a)}

and let S be the subgroup of A generated by E. Show that the insertion

S ⊂ - A

is the equalizer of f and g in Grp.

64 2. Basic gadgetry

(b) Let

F = {f(a)g(a)−1 | a ∈ A}

and let K be the normal subgroup generated by F . Show that the canon-
ical quotient

B - B/K

is the coequalizer of f and g in Grp.

2.6.4 Write down the details missing from Example 2.6.6. (None of
these details are difficult, but you should at least list what is missing.)

2.6.5 Write down the details missing from Example 2.6.7.

2.6.6 Let

S
φ -

ψ
- T

be a parallel pair of continuous maps between topological spaces. Let

T
θ - T/∼

be the coequalizer in Set of the pair of functions φ and ψ.
Show there is a suitable topology on T/∼ for which θ becomes the

coequalizer of the pair φ, ψ in Top.

2.6.7 Consider the forgetful functor

Pre � Pos

from posets to presets. Eventually we will see that this exercise produces
the left adjoint to this functor.

(a) Let S is a pre-ordered set and let ∼ be the relation on S given by

a ∼ b⇐⇒ a ≤ b ≤ a

(for a, b ∈ S).
Show that ∼ is an equivalence relation on the set S.
Show that S is a poset precisely when ∼ is equality.

(b) Let S/∼ be the set of blocks of ∼ and let

S
η - S/∼

be the canonical quotient.

2.6 Exercises 65

Show that

[a] ≤ [b]⇐⇒ a ≤ b

for a, b ∈ S produces a well-defined partial order on S/∼.
Show that the function η is monotone.

(c) Consider any monotone map

S
f - T

from the preset S to a poset T .
Show that

a ∼ b =⇒ f(a) = f(b)

for all a, b ∈ S.
Show there is a unique monotone map f] such that the

S
f - T

S/∼
f]

-

η -

triangle commutes.

2.6.8 Consider a diagram

•
e - •

f -

g
- •

where e makes equal f and g. Suppose also there is a commuting diagram

•
e - •

p - •

•

e

?

g
- •

f

?

q
- •

e

?

where the bottom and top composites are identity arrows.
Show that e is the equalizer of f and g.

66 2. Basic gadgetry

2.7 Pullbacks and pushouts

As I said in Section 2.3, the notions discussed in Sections 2.4, 2.5, 2.6,
and this section are particular cases of a more general notion, that of a

limit colimit

of a diagram. In this section we begin to use the terminology and the
ideas behind this more general notion. This is not essential here, but it
will help when we look at the more general notion in Chapter 5.

Each of the gadgets we are interested in is the universal solution of a
problem posed by a diagram. For the simple gadgets of this chapter the
shape of the diagram - the template - determines the name of the gadget.
These templates are given in Table 2.1 of page 46 with the names

left universal solution right universal solution

for that shape. (The template for row (1) is there, but it’s empty.)
The diagram for a

pullback pushout

is a

left wedge right wedge

as in the table. This wedge poses a problem on the appropriate side.
As before, we develop the two notions in parallel. So each definition

or result is two for the price of one.

2.7.1 Definition Let

A A

C

-

C

-

B

-

B

-

be a wedge in a category C . A solution for the

left right

2.7. Pullbacks and pushouts 67

problem posed by the wedge is a wedge

A A

X

-

X

-

B

-

B

-

(of the opposite handedness) such that the square

A A

X

-

C

-

C

-

X

-

B

--

B

--

commutes.

Notice that we haven’t given each arrow a name. We are beginning to
work more and more in terms of diagrams, and we name an arrow only
when it becomes necessary. (It is also the case that we need not name
the objects, but let’s not go that far just yet.)

The problem posed by a wedge can have many different solutions. We
look for a ‘best possible’ solution.

2.7.2 Definition Let
A A

C

-

C

-

B

-

B

-

be a wedge in a category C . A

pullback pushout

for the wedge is a solution

A A

S

-

S

-

B

-

B

-

with the following universal property.

68 2. Basic gadgetry

For each solution
A A

X

-

X

-

B

-

B

-

there is a unique arrow

X
m - S S

m - X

such that the following diagram commutes. This

A A

X m-

-

S

-

S m-
-

X
-

B

--
B

--

arrow m is the mediating arrow (or mediator) for the wedge on X.

As always, each universal solution is essentially unique. To prove this
here we first obtain the analogue of Lemma 2.5.3.

2.7.3 Lemma Let
A A

S

-

C

-

C

-

S

-

B

--

B

--

be a

pullback pushout

square in the category C . Let

S
k - S

be any endo-arrow of S for which the two triangles

A A

S k-

-

S

-

S k-
-

S
-

B

--
B

--

commute. Then k = idS.

2.7. Pullbacks and pushouts 69

You should be able to see the proof of this immediately. We use the
result to obtain the analogue of Lemma 2.5.4.

2.7.4 Lemma For a wedge

A A

C

-

C
-

B
-

B

-

in a category C , let

S S

A
-

A
-

C
-

C
-

B

- -
B

-

-

T

-

-
T

-
-

be a pair of

pullback pushout

squares. Then S, T are uniquely isomorphic over the parent wedge. In
other words, there are unique arrows

S

T

m
?

n
6

such that all the triangles

S S

A
-

A
-

B

-

B

-

T

m

?

n

6
-

-
T

m

?

n

6

-
-

commute. In particular, m and n are an inverse pair of isomorphisms.

Proof We are given two solutions of the parent problem. Furthermore,
each is a universal solution. Thus the associated mediators are the arrows
m and n. We now apply Lemma 2.7.3 to the two compounds

n ◦m m ◦ n

to show these are

idS idT

respectively.

70 2. Basic gadgetry

If you found this proof a little hard to follow, try labelling the arrows
and re-work the argument using equational reasoning.

Let’s now look at a couple of examples of these notions.

2.7.5 Examples (a) In the category Set (of sets and functions) con-
sider a wedge of functions f, g as on the right. Consider also the product

A A A

P

p -

P

p -

C

f-

C

f-

B
q
-

B
g
-

q
-

B
g
-

wedge p, q of the two two sets A,B, as on the left. This gives us a square
of arrows, as in the centre, but this square need not commute.

Let

S = {z ∈ P | f(p(z)) = g(q(z))}

be the set of elements of P which arrive at the same place no matter
which route they take. Let

S ⊂
i - P

be the insertion of S in P . Then the wedge

A

S

p ◦ i-

B
q ◦ i
-

is the pullback of the parent wedge.
To see this observe first that, by construction, this wedge on S is a

solution to the problem posed by the parent wedge.
Consider any solution to the posed problem.

A

X

h -

C

f-

B
g
-

k
-

2.7. Pullbacks and pushouts 71

Using the product property we have a commuting diagram

A

X l-

h -

P

p6

B

q
?k -

for some unique function l. For each x ∈ X we have

f(p(l(x)) = (f ◦ p ◦ l)(x)
= (f ◦ h)(x)
= (g ◦ k)(x)
= (g ◦ q ◦ l)(x) = g(q(l(x)))

to show that l(x) ∈ S. We may now check that

X
l - S

x - l(x)

is the required unique mediating arrow.
(b) In the category Set (of sets and functions) consider a wedge of

functions f, g as on the left. Consider also the coproduct wedge i, j of

A A A

C

f -

P

f -

C

i-

P

i-

B
g
-

B
j
-

g
-

B
j
-

the two two sets A,B, as on the right. This gives us a square of arrows,
as in the centre, but this square need not commute.

Let be the relation on P given by

z1 z2 ⇐⇒ (∃c ∈ C)[z1 = (i ◦ f)(c) and z2 = (j ◦ g)(c)]

for z1, z2 ∈ B. Let ∼ be the equivalence relation on P generated by .
Let S = P/∼ and let

P
k - S

72 2. Basic gadgetry

be the canonical quotient. By construction the square

A

C

f -

s

k ◦ i
-

B
k ◦ j
-

g
-

commutes, and so we do have a solution to the posed problem. We need
to show it is a universal solution. This follows by a few calculations.

Did you spot anything about these two constructions?

Exercises

2.7.1 (a) Suppose the category C has all binary products and all
equalizers. Show that C has all pullbacks.

(b) Suppose the category C has all binary coproducts and all coequal-
izers. Show that C has all pushouts.

2.7.2 Let S be a poset which as a category has all pushouts. What
does this mean lattice theoretically. (There is a lattice theoretic notion
which matches the categorical notion, but is rarely recognized as such.)

2.7.3 Consider the following commuting diagram
• - • - •

•
?
- •
?
- •
?

of two inner cells and one outer cell.
Show that if each of the two inner cells is a pullback, then so is the

outer cell.
Show that if the outer cell and the right inner cell are pullbacks, then

the left inner cell is a pullback.
Sort out the corresponding results for pushouts.

2.7.4 Show that monics are stable across pullbacks, that is if

•
k- •

•

h
?

g
- •

f
?

is a pullback and f is monic, then h is monic.

2.8 Using the opposite category 73

2.7.5 Show that equalizers are stable across pullbacks, that is if

•
k- •

•

h
?

g
- •

f
?

is a pullback and f is is the equalizer of some pair, then h is the equalizer
of some other pair.

2.8 Using the opposite category

In Sections 2.2 to 2.7 we have looked at six pairs of gadgets, a left version
and a right version. By using the opposite category C

op
we can make

precise this left-right symmetry, and halve the work.
Consider any arrow

•
f - •

of a category C . Then

f is monic in C ⇐⇒ f
op

is epic in C
op

f is epic in C ⇐⇒ f
op

is monic in C
op

to show that one of the notions immediately gives the other one.
Consider any object

K

of a category C . Then

K is final in C ⇐⇒ K is initial in C
op

K is initial in C ⇐⇒ K is final in C
op

to show that one of the notions immediately gives the other one.
This duality is a useful trick. It can help to save work. For instance,

we have seen that each gadget discussed in this chapter is ‘essentially
unique’, but in each case we only did half the proof. This is because the
other half is the same argument carried out in the opposite category.

Exercises

2.8.1 Check that each of the gadgets of this chapter is the dual of a
similar gadget in the opposite category.

3

Functors and natural transformations

Eilenberg and MacLane invented (discovered) category theory in the
early 1940s. They were working on Čech cohomology and wanted to
separate the routine manipulations from those with more specific con-
tent. It turned out that category theory is good at that. Hence its other
name abstract nonsense which is not always used with affection.

Another part of their motivation was to try to explain why certain
‘natural’ construction are natural, and other constructions are not. Such
‘natural’ constructions are now called natural transformations, a term
that was used informally at the time but now has a precise definition.
They observed that a natural transformation passes between two gad-
gets. These had to be made precise, and are now called functors. In turn
each functor passes between two gadgets, which are now called cate-
gories. In other words, categories were invented to support functors, and
these were invented to support natural transformations.

But why the somewhat curious terminology? This is explained on
pages 29 and 30 of [9]

. . . the discovery of ideas as general as these is chiefly the willingness to make
a brash or speculative abstraction, in this case supported by the pleasure
of purloining words from philosophers: “Category” from Aristotle and Kant,
“Functor” from Carnap . . .

That, of course, is the bowdlerized version.
Most of the basic notions were set up in [6], and that paper is still

worth reading.
In this chapter we look at these two basic notions. We deal first with

the definition of functor, and then look at various examples these gad-
gets. After that we look at the definition of natural transformation and
conclude with several examples of these gadgets.

3.1 Functors defined 75

3.1 Functors defined

The basic belief of category theory is that whenever we conceive of a
collection of ‘objects’ - things we don’t want to take apart - we should,
at the same time, decide how these ‘objects’ are to be compared. We
then formalize a category. In other words, for any given category C we
should think of the arrows of C as those gadgets which compare the
objects. Furthermore, these arrows are just as important as, and some-
times more important than, the objects. To stay true to this principle
we must now ask a question. We have invented a collection of things
called categories. How should categories be compared? Functors are the
comparison gadgets.

3.1.1 Definition (Preliminary) Given a pair of categories

Src Trg

a functor

Src - Trg

A - FA

f - F (f)

consists of two assignments. One sends objects to objects, and the other
sends arrows to arrows.

As here it is customary to use the same letter for both assignments.
I find it helpful to use brackets in the arrow assignment but not in the
object assignment.

Of course, there is more to a functor than just a pair of assignments.
It is suppose to be a ‘morphism of categories’ in the sense that it must
respect the structure of the two categories. What can that mean?

The first bit is that a functor F must preserve identity arrows. For
each Src object A we must have

A
idA- A - FA

idFA- FA

that is

F (idA) = idFA

in equational form.
That part is easy, but now come the part that might be confusing.

76 3. Functors and natural transformations

The second bit is that a functor F must preserve composition of com-
posible arrows. But here there can be a twist in the tale. Given an arrow

A
f - B

in the source category Src, the arrow F (f) in the target category Trg

must pass between the two objects FA and FB of Trg . But there are
two ways it might do that. It can preserve the direction or it can reverse
the direction. This leads to two kinds of functors.

Covariant
A

f - B - FA
F (f)- FB

Contravariant
A

f - B - FB
F (f)- FA

For both kinds the source and target of an arrow are preserved as an
unordered pair. For a covariant functor the direction of the arrow is
always preserved, but for a contravariant functor the direction of the
arrow is always reversed.

Notice that is not sometimes preserved and sometimes reversed. It is
always one or the other.

3.1.2 Definition (In full) Given a pair of categories

Src Trg

a functor

Src - Trg

A - FA

f - F (f)

consists of two assignments. One sends objects to objects, and the other
sends arrows to arrows.

(Co) For a covariant functor composition is preserved as follows.

B Covariant FB

-

A
g ◦ f

-

f -

C

g
-

FA
F (g ◦ f)

-

F (f) -

FC

F (g)
-

F (g ◦ f) = F (g) ◦ F (f)

3.1 Exercises 77

(Contra) For a contravariant functor composition is preserved as fol-
lows.

B Contravariant FB

-

A
g ◦ f

-

f -

C

g
-

FA �
F (g ◦ f)

F (f)

�
FC

F (g)
�

F (g ◦ f) = F (f) ◦ F (g)

For both kinds identity arrows are preserved in the sense that

F (idA) = idFA

for each object A.

As mentioned before this definition, it doesn’t make sense to say a
functor is sometimes covariant and sometimes contravariant.

(There is a notion of a multi-functor with several input positions for
objects. Such multi-functors can be covariant in some input positions
and contravariant in the other input positions. The simplest example of
this is the 2-placed hom-functor. We meet this in the next section.)

In the main we deal with covariant functors and refer to these as func-
tors. Only when it is important do we specifically mention the variance
of a functor.

Exercises

3.1.1 Consider a pair S, T of monoids viewed as categories.
What is a covariant functor from S to T?
What is a contravariant functor from S to T?

3.1.2 Consider a pair S, T of presets viewed as categories.
What is a covariant functor from S to T?
What is a contravariant functor from S to T?

3.1.3 Show that for each pair Src and Trg of categories, covariant
functors

Srcop - Trg Src - Trgop

are just contravariant functors from Src to Trg .

3.1.4 Define the composite G ◦ F of two functors F and G (perhaps
of different variance), and show that the result is a functor.

How does the variance of G ◦ F relate to that of F and G?

78 3. Functors and natural transformations

Rng - AGrp forget the × -structure

Rng - Mon forget the +-structure

Mod -R - AGrp forget the action

Mod -R - Set-R forget the +-structure

CMon - Mon For all three

AGrp - Grp the commutative property

CRng - Rng is forgotten

Sup - Join - Pos
First forget arbitrary suprema but
retain joins, and then forget these

Inf - Meet - Pos

Table 3.1 Some forgetful functors

3.2 Some simple functors

In this section we look at some simple examples of functors. Most of these
are chosen merely to illustrate the notion, but one or two are important
in their own right.

Forgetful functors

Let C be any category of structured sets. Thus each object

(A, · · ·)

is a set furnished with some gadgetry, and each arrow

(A, · · ·) - (B, · · ·)

is a function between the two carrying sets. Arrow composition is just
function composition. Here we have a covariant functor

C - Set

which sends each object to its carrying set, and each arrow to its carrying
function. I know this is not very exciting, but the idea can help to clear
up a bit of confusion from time to time.

This is an example of a forgetful functor. There are a few more given
in Table 3.1. In each case something is forgotten (or ignored) as we
pass from the source category to the to the target category. In the first

3.2. Some simple functors 79

batch some structure is forgotten. In the second batch some property is
forgotten. In the third batch it is a mixture of structure and property
that is forgotten.

All of these forgetful functors are covariant. Occasionally we meet a
contravariant forgetful functor. Consider the functors

Posa
L- Pos Posa

R- Pos

which pick out the left and the right component of each arrow.

Hom-functors

The next two examples, one covariant and one contravariant, are very
important. We will meet them many times in several forms.

Let C be an arbitrary category. Let K be an object of C . For each
object A we have an arrow set

LA = C [K,A] RA = C [A,K]

(unless, of course, this collection is too big to be a set). Thus we have a
pair of object assignments

C - Set C - Set

A - LA A - RA

to the category of sets. These are the object assignments of a pair of
functors where each arrow

A
f - B

of C is sent to

C [K,A]
L(f)- C [K,B] C [B,K]

R(f)- C [A,K]
r - f ◦ r l - l ◦ f

that is

L(f)(r) = f ◦ r R(f)(l) = l ◦ f

respectively. Each of these is a

covariant contravariant

hom-functor, respectively. Of course, we should check that we do have
a pair of functors, and sort out the variance of each. This is not difficult
but it is worth setting down the two calculations in parallel.

80 3. Functors and natural transformations

Consider a pair of arrows

A
f - B

g - C

of C . Consider also arrows

K
r - A C

l - K

r ∈ LA l ∈ RC
respectively. Then(
L(g) ◦ L(f)

)
(r) = L(g)

(
L(f)(r)

) (
R(f) ◦R(g)

)
(l) = R(f)

(
R(g)(l)

)
= L(g)(f ◦ r) = R(f)(l ◦ g)
= g ◦ (f ◦ r) = (l ◦ g) ◦ f
= (g ◦ f) ◦ r = l ◦ (g ◦ f)
= L(g ◦ f)(r) = R(g ◦ f)(l)

to show that L is a covariant functor and R is a contravariant functor.
We should also show that

L(idA) = idLA R(idA) = idRA

but that is more or less trivial.

Exercises

3.2.1 For an arbitrary category C consider the arrow category C ↓ of
Example 1.3.5. Show there are three functors

C ↓
S -

T
- C

∆ - C ↓

between the categories. The functor ∆ is called the diagonal functor.

3.2.2 Let S be a poset viewed as a category. What is a contravariant
functor

S - Set

to Set? You have seen this notion before.

3.2.3 Let R be a monoid viewed as a category. What is a covariant
functor, and what is a contravariant functor

R - Set

to Set? Both these notions occur elsewhere in this book, but are de-
scribed in a different way.

3.3 Some less simple functors 81

3.2.4 In Example 1.3.2 we looked at the graph Γ(f) of a function
(between sets). Show that this is the arrow assignment of a functor, and
determine the variance of that functor.

3.2.5 In Example 1.3.4 we saw how to produce the product C ×D of
two categories. This enables us to think of 2-placed functors

C ×D - Trg

with two inputs. In particular, for a given category C we can view

C ×C
C [−,−]- Set

as a 2-placed functor. Think about this, and what it should mean.

3.3 Some less simple functors

In this section we look at some examples of functors with a bit more
content, although none of them are very complicated. Some of the ex-
amples may look a bit contrived, but each one is a miniature version of
something quite important.

3.3.1 Three power set functors

It may come as a surprise, but different functors can have the same
object assignment. In this block we look at three endo-functors on Set

Set - Set

where the object assignment of each sends a set A to its power set.

A - PA

Furthermore, two of these functors are covariant and one contravariant.
It is common to use the same letter as the name of both the object

assignment and the arrow assignment. Here we can’t do that. We use

Set

∃ -
� I

∀
-

Set

as the three names, where the two outer ones are covariant and the
central one is contravariant. The stacking of the functors is significant,
but that won’t become clear for some time. Also the use of ‘∃’ and ‘∀’

82 3. Functors and natural transformations

may look a bit pretentious, but in a more general setting these functors
really do have something to do with quantification. We will see just a
hint of this shortly.

For each set A we have

∃A = PA IA = PA ∀A = PA

as the three object assignments.
For the three arrows assignments consider any arrow of Set

A
f - B

a function between the two sets. We require three functions

PA
∃(f)- PB PA �

I(f)
PB PA

∀(f)- PB

where the central one reverses the direction. We set

∃(f)(X) = f [X] I(f)(Y) = f←(Y) ∀(f)(X) = f [X ′]′

for each X ∈ PA and Y ∈ PB. Here f [·] gives the direct image across
f , and f←(·) gives the inverse image across f . Notice that ∀(f) uses
the dual complement of the direct image (for (·)′ is complementation).

We find that

b ∈ ∃(f)(X)⇐⇒ (∃a ∈ A)[b = f(a) & a ∈ X]
b ∈ ∀(f)(X)⇐⇒ (∀a ∈ A)[b = f(a)⇒ a ∈ X]

for all X ∈ P and b ∈ B. Notice how the description matches the name.
We also have

a ∈ I(f)(Y)⇐⇒ f(a) ∈ Y

for all Y ∈ PB and a ∈ A.
It is not immediately clear that these constructions do give functors,

so we must check that.
For functions

A
f - B

g - C

we must show that

∃(g ◦ f) = ∃(g) ◦ ∃(f) I(g ◦ f) = I(f) ◦ I(g) ∀(g ◦ f) = ∀(g) ◦ ∀(f)

and the identity requirements. This is not hard, if you take a bit of care.

3.3 Exercises 83

Exercises

3.3.1 Consider the three constructions ∃, I,∀ on Set . Show that each
passes across composition in the required manner.

3.3.2 For each set A the power set PA is a poset under inclusion. Show
that for each function f , as on the left,

A
f - B PA

∃(f)-
� I(f)

∀(f)
-
PB

the three functions on the right form a double poset adjunction.

3.3.2 Spaces, presets, and posets

In this block we compare the category Top of topological spaces with
the categories Pre and Pos. We set up four functors.

Pre
⇑ -

�
⇓

Top
O-

Ξ
- Pos

The two on the left are covariant. They also form an adjunction, but
we won’t explain that until Chapter 4. The two on the right are con-
travariant. They are also naturally isomorphic, and we explain that
later in this chapter.

You should remember that a topological space need not be hausdorff.
The separation properties T0 and T1 play a minor role here.

We look first at the two covariant functors ⇑ and ⇓ on the left.
Consider an arbitrary preset A. An upper section of A is a subset

U ⊆ A such that

a ∈ U
a ≤ b

}
=⇒ b ∈ U

for all a, b ∈ A. Let ΥA be the family of all upper sections of A. This is
a topology on A, and is sometimes called the Alexandroff topology.

Let ⇑A be the preset A viewed as a topological space, that is with
ΥA as the carried topology. We think of ⇑A as an upgrading of A.
(It’s getting above itself.) This gives the object assignment of one of the
functors. The arrow assignment is more or less trivial.

84 3. Functors and natural transformations

For a topological space S with topology OS, the specialization order
of S is the comparison on S given by

r ≤ s⇐⇒ (∀U ∈ OS)[r ∈ U =⇒ s ∈ U]⇐⇒ r ∈ s−

for r, s ∈ S. Here s− is the closure of {s}. This specialization order is a
pre-order on S. (You might like to check that S is T0 precisely when ≤
is a partial ordering, and S is T1 precisely when ≤ is equality.)

Let ⇓S be the space S viewed as a preset, that is with its specialization
order as its carried comparison. We think of ⇓S as a downgrading of S.
(It isn’t making enough of its talents.) This gives the object assignment
of the other functor. The arrow assignment is more or less trivial.

The Exercises 3.3.3, 3.3.4, and 3.3.5 fill in some of the missing details.

Next we look at the two contravariant functors O and Ξ on the right.
For each space S let OS be its topology viewed as a poset under

inclusion. For each continuous map

T
φ - S

between spaces consider the inverse image function.

OS
O(φ) = φ←- OT

Almost trivially, this is monotone, and so gives us one of the functors.
Consider the 2-element set on the left

2 = {0, 1} O2 = {∅, {1}, 2}

together with the topology O2 on the right. This is Sierpiński space.
For a space S consider the set of continuous characters of S.

ΞS = Top[S, 2]

These are partially ordered pointwise, that is

p ≤ q ⇐⇒ (∀s ∈ S)[p(s) ≤ q(s)]

for p, q ∈ ΞS. For each continuous map

T
φ - S

between space let

ΞS
Ξ(φ) - ΞT

p - p ◦ φ

3.3 Exercises 85

for p ∈ ΞS. This gives us the other functor. Of course, there are a few
things to be checked. These are dealt with by Exercises 3.3.6 and 3.3.7.

Exercises

3.3.3 (a) For a preset A, what is the specialization order of ⇑A?
(b) For a space S, show that OS ⊆ Υ⇓S.

3.3.4 (a) Show that a monotone function

A
f - B

between presets is continuous relative to the two Alexandroff topologies.
Show that ⇑ is a functor.
(b) Show that a continuous map

S
φ - T

between spaces is monotone relative to the two specialization orders.
Show that ⇓ is a functor.

3.3.5 Let

θ : A - S

be a function from a pre-ordered set to a topological space.
Show that θ is monotone (relative to ⇓S) precisely when it is contin-

uous (relative to ΥA).
Show there is a bijection between

Pre [A,⇓S] Top[⇑A,S]

for arbitrary A and S.

3.3.6 Show that for each continuous map

T
φ - S

between spaces, the function O(φ) is monotone.
Show that O(φ) passes across composition, and hence O is a functor.
Show that the function Ξ(φ) does convert continuous characters into

continuous characters, and that Ξ(φ) is monotone.
Show that Ξ(φ) passes across composition, and hence Ξ is a functor.
Where have you seen some of these calculations before?

86 3. Functors and natural transformations

3.3.7 For an arbitrary space S and open set U ∈ OS, let

χS(U) : S - 2

be the characteristic function of U , that is

χS(U)(s) =

{
1 if s ∈ U
0 if s /∈ U

for s ∈ S.
Show that for each U ∈ OS the character χS(U) is continuous, and

hence we have an assignment

OS
χS - ΞS

between the two posets.
Show that χS is an isomorphism of posets. (This is more that showing

χS is a monotone bijection.)

3.3.3 Functors from products

In Section 2.5 we defined the notion of a product of two objects A and
B in a category C . This consists of a wedge

A

A×B
-

B

-

with certain properties. As we saw in Section 2.5 the object A × B

is unique only up to a certain canonical isomorphism. What happens
if we decide to change some of these selected objects and modify the
projections accordingly?

Suppose the category C has all binary products. For each pair A,B
of objects suppose we select, in some way or other, a product wedge for
that pair. This choice could be haphazard, but it still produces a functor.

Let R be some fixed object of C . For each object A consider a product
wedge, as on the right,

A

F = A×R A×R

pA -

R
qA
-

3.3 Exercises 87

together with the product object FA, as on the left. Thus we have an
object assignment

A - FA

on C . We show there is a corresponding arrow assignment

f - F (f)

so that the pair of assignments form an endo-functor on C .
Let

A
f - B

be an arrow of C . We have a diagram

A
f - B

FA

pA -

FB
pB

-

R
idR

-
qA
-

R

qB
-

using the selected product wedges. The product condition gives an arrow

FA
F (f)- FB

with certain properties. With a little bit of works we can check that this
gives an endo-functor on C .

Exercises

3.3.8 Using the mediating property for product wedges to complete
the details of the functorial product construction.

Show also that the coproduct construction gives an endo-functor on
the parent category.

3.3.9 If you are happy with the previous exercise, you can try this gen-
eralization. Let C be a category with all binary products, and consider
the assignment

C ×C - C

(A1, A2) - A1 ×A2

which attaches a product object to each pair of objects. Show that this
fills out to a functor.

88 3. Functors and natural transformations

3.3.4 Comma category

In this block we use two functors to produce a new category from three
old categories. This construction generalizes the two slice constructions
of Example 1.3.6.

We start with three categories and two functors

U
U - C �

L
L

where we think of U as the upper component and L as the lower com-
ponent. Using these we produce a category

(U ↓ L)

sometimes called a comma category. Each new object is a triple (conve-
niently written vertically)

AU UAU AU ∈ U

α α ∈ C

AL LAL

α
?

AL ∈ L

formed using an upper object AU from U , a lower object AL from L,
and a connecting central arrow α from C , as indicated. The new arrows

UAU UBU

f -

LAL

α
?

LBL

β
?

are formed using an arrow fU from U and an arrow fL from L such
that the square

AU
fU - BU

UAU
U(fU)- UBU

LAL

α
?

L(fL)
- LBL

β
?

AL
fL
- BL

commutes. You should check that this does produce a category and
generalizes the two slice constructions.

3.3 Exercises 89

Exercises

3.3.10 Fill in the details of the construction of the comma category.

3.3.11 (a) What is (U ↓ L) when both U and L are the identity endo-
functor on C ?

(b) For an object S of C describe the slice categories (C ↓ S) and
(S ↓ C) as comma categories.

3.3.12 For convenience let Com be the comma category (U ↓ L).
Construct three forgetful functors

Com - U Com - C ↓ Com - L

using the arrow category in the central one.

3.3.5 Other examples

Functors appear almost everywhere in mathematics. Exercises 3.3.13 to
3.3.18 give a few more examples.

Exercises

3.3.13 For a group A let δA be the derived subgroup (generated by
the commutators). In particular, A/δA is an abelian group. Show that
each of the two object assignments

A - δA A - A/δA

is part of a functor.

3.3.14 Consider a morphism between monoids.

S
φ - R

Using restriction of scalars we may view each (right) R-set A as an S-set.
The S-action ? is obtained from the R-action · by

a ? s = a · φ(s)

for each a ∈ A and s ∈ S.
(a) Show that this construction does convert the R-set A into an S-set.
(b) Show that the construction produces a functor

Set-S �
Φ

Set-R

which is trivial on objects and arrows.
(c) Try generalizing this construction using rings and modules.

90 3. Functors and natural transformations

3.3.15 You will have to think clearly to do this exercise.
We form a new large category MON . Each object of MON is a cat-

egory Set-R for some monoid R. The arrows of MON are the functors
between these categories. Show that the construction of Exercise 3.3.14
produces a contravariant functor

Mon - MON

from the small to the large.

3.3.16 Exercise 1.2.7 shows that the two categories Set⊥ and Pfn are
‘essentially the same’ category. Re-do that exercise to show there is an
inverse pair of functors passing between the two categories.

3.3.17 Each preset S can be converted into a poset in a canonical
fashion. We consider the relation ∼ on S given by

s1 ∼ s2 ⇐⇒ s1 ≤ s2 and s2 ≤ s1

for s1, s2 ∈ S. Almost trivially this is an equivalence relation on S, and
is equality precisely when S is a poset.

Let S/∼ be the corresponding set of blocks [s] for s ∈ S, and partially
order S/∼ by

[s1] ≤ [s2]⇐⇒ s2 ≤ s2

for s1, s2 ∈ S.
(a) Show that this construction of a poset S/∼ is well-defined, and

show that the canonical function

S - S/∼

is monotone.
(b) Show that

S - S/∼

is the object part of a functor Pre - Pos.

3.3.18 This exercise makes precise the notion of ‘freely generated by’
in appropriate circumstances. Later we look at a more general version
of this construction.

Suppose we have two categories Src and Trg and a forgetful functor
between them. It is customary not to give such a functor a name, but
here it will help if it does have one. You are allowed not to take the
following too seriously.

3.3 Exercises 91

Let

Src � ¿ Trg

be the forgetful functor. (Eventually you can forget ‘¿’ !)
Suppose to each Src-object A we attach a Trg -object FA and an

arrow

A
ηA- (¿ ◦ F)A

of Src with the following universal property.
For each Src-arrow

A
f - ¿S

where S is a Trg -object, there is a unique Trg -arrow

FA
f] - S

such that the triangle

A
f - ¿S

(¿ ◦ F)A

¿(f])

-

ηA -

commutes in Src.
(a) Show that

A - FA

is the object assignment of a functor Src - Trg .
(b) Show that for each Src-object A and Trg -object S the assignment

f - f]

Src[A, ¿S] - Trg [FA, S]

is a bijection, and describe its inverse.
(c) Where have you seen this construction before?

92 3. Functors and natural transformations

3.4 Natural transformations defined

As we have seen, each arrow of a category compares two objects, and
each functor compares two categories. Next we will see how each natural
transformation compares two functors.

How might we compare two functors F and G? Surely we want them
to pass between the same two categories

Src
F -

G
- Trg

in the same direction. It also seems reasonable to insist that they have
the same variance, either both are covariant or both are contravariant.
Given these condition, how might we compare F and G?

Consider an arbitrary object A of Src. The two functors pass this to
two objects FA and GA of Trg . We compare these objects in Trg . Thus
we look for an arrow

FA
τA - GA

of Trg . We do this for each object A of Src.

3.4.1 Definition (Preliminary) Given a parallel pair

Src
F -

G
- Trg

of functors of the same variance, a natural transformation

F
τ - G

is a family of arrows of Trg

FA
τA - GA

indexed by the objects A of Src.

Notice that each component arrow τA passes in the same direction,
from F to G in this case. Of course, there is more to a natural transfor-
mation than just an indexed family of arrows. The selected arrow τA is
required to be natural for variation of A. This is where we have to take
note of the common variance of F and G.

3.4. Natural transformations defined 93

3.4.2 Definition (In full) Given a parallel pair

Src
F -

G
- Trg

of functors of the same variance, a natural transformation

F
τ - G

is a family of arrows of Trg

FA
τA - GA

indexed by the objects A of Src, and such that for each arrow

A
f - B

of Src the appropriate square in Trg commutes

FA
τA - GA A FA

τA - GA

covariant contravariant

FB

F (f)

?

τB
- GB

G(f)

?
B

f

?
FB

F (f)

6

τB
- GB

G(f)

6

depending on the common variance of F and G.

This is quite a short definition, but it has some subtleties. This will
become clear as we look at various examples in the next section.

A natural transformation compares two functors. We refine the notion
to make precise the idea of two functors being ‘essentially the same’.

3.4.3 Definition A natural isomorphism between two functors F and
G is a natural transformation

F
τ - G

such that for each source arrow A the selected arrow

FA
τA - GA

is an isomorphism in the target category.

Sometimes two functors that are naturally isomorphic are said to be
naturally equivalent.

94 3. Functors and natural transformations

Exercises

3.4.1 (a) Consider the small graph (↓) as described in Example 1.3.5.
We may view this as a very small category with two objects and three
arrows. The two identity arrows have been omitted from the picture.

Show that the objects of C ↓ are essentially the covariant functors

(↓) - C

and the arrows of C ↓ are the natural transformations between these
functors.

(b) Show that each of the categories of Exercise 1.3.10 is the category
of functors

∇ - C

and natural transformations for some appropriate template category ∇.
(c) Can you see a generalization of this idea?

3.4.2 For an arbitrary poset S consider the category Ŝ of presheaves
on S, as defined in Example 1.4.1. Describe this as a category of functors
and natural transformations.

3.4.3 Let R be a monoid viewed as a category. Exercise 3.2.3 located
the functors of both variance.

R - Set

Now locate the natural transformations between these functors.

3.4.4 Let

F
τ - G

be a natural isomorphism between two functors. For each source object
A the arrow

FA
τA - GA

has an inverse in the target category.

FA �
σA

GA

Show that the family σ of arrows is a natural transformation.

3.5 Examples of natural transformations 95

3.5 Examples of natural transformations

In this section we look at several examples of natural transformation.
Some of these build on earlier examples of functors. The exercises give
further details and examples.

As a first example let’s have a look at some natural transformations
between hom-functors.

3.5.1 Example Let C be an arbitrary category, and let K and L be
arbitrary objects of C . These give hom-functors

[K,−] [L,−]

from C to Set .

C - Set

As is customary, here we can omit the name of the parent category on
the hom-functors. Consider an arbitrary arrow of C .

L
φ - K

For each object A of C we have an assignment

[K,A]
τA- [L,A]

l - l ◦ φ

given by composition in C . We show these functions form a natural
transformation between the two functors.

To do that we must consider an arbitrary arrow f of C , as on the left

l - l ◦ φ

A [K,A]
− ◦ φ
τA

- [L,A]

B

f
?

[K,B]

f ◦ −
? τB

− ◦ φ
- [L,B]

f ◦ −
?

f ◦ (l ◦ φ)
?

f ◦ l
?

- (f ◦ l) ◦ φ

and verify that the inner square commutes. To do that we take an arbi-
trary member

K
l - A

of the top left hand corner of the square and track it both ways to the

96 3. Functors and natural transformations

bottom right hand corner. We required that both paths give the same
member of [L,B]. Thus we require

(f ◦ l) ◦ φ = f ◦ (l ◦ φ)

which is immediate.

Work out the corresponding result for the contravariant hom-functors.
Exercises 3.5.1 and 3.5.2 deal with this and a more involved version.

By inspecting the construction of the natural transformation τ of Ex-
ample 3.5.1 we see that it is completely determined by one output

φ = τK(idK)

of one component of τ . There is more to this.

3.5.2 Example Let C be an arbitrary category, let

C
F - Set

be an arbitrary functor to Set . Let K be an arbitrary object of C . What
can a natural transformations

[K,−] - F

look like? We show they are in bijective correspondence with the ele-
ments of the set FK.

(a) Consider first any element k ∈ FK. This gives a family of functions

[K,A]
εA- FA

l - F (l)(k)

indexed by the objects A of C . This function εA is ‘evaluation at k’.
We check that the family

[K,−]
ε - F

is a natural transformation. To do that we must consider an arbitrary
arrow f of C , as on the left, and verify that the inner square commutes.

l - F (l)(k)

A [K,A]
εA

- FA

B

f
?

[K,B]

f ◦ −
? εB - FB

F (f)
?

F (f)
(
F (l)(k)

)?

f ◦ l
?

- F (f ◦ l)(k)

3.5. Examples of natural transformations 97

To do that we take an arbitrary member of the top left hand corner

K
l - A

of the square and track both ways to the bottom right hand corner. We
required that both paths give the same member of FB. Thus we require

F (f ◦ l)(k) = F (f)
(
F (l)(k)

)
for arbitrary f and l. But F is a covariant functor. so

F (f)
(
F (l)(k)

)
=
(
F (f) ◦ F (l)

)
(k) = F (f ◦ l)(k)

to give the required result.

(b) This gives us many examples of natural transformations from
[K,−] to F . Are there any more? In fact, we can show that every such
natural transformation is determined by a unique element of FK.

Consider an arbitrary natural transformation

[K,−]
τ - F

look at the K-component

[K,K]
τK- FK

and set

k = τK(idK)

to produce k ∈ FK. We show that τ is ‘evaluation at k’.
Consider an arbitrary object A of C and an arbitrary member

K
l - A

of [K,A]. We show that

τA(l) = F (l)(k)

holds. To do that we remember that the square

[K,K]
τK- FK

[K,A]

l ◦ −
?

τA
- FA

F (l)
?

commutes. By tracking the member idK of the top left hand corner we
obtain the required result.

98 3. Functors and natural transformations

Consider the natural transformation induced by k ∈ FK.

[K,−]
ε - F

When this is a natural isomorphism, we say the pair (K, k) is a pointwise

representation of F . We say F is representable when it has at least one
pointwise representation.

There is, of course, a contravariant version of this example, and in a
way that is more important.

Let C be an arbitrary category. A presheaf on C is a contravariant
Set-valued functor.

C
F - Set

Such presheaves F and G are compared via natural transformations.

G
τ - F

These presheaves, as objects, and natural transformations, as arrows,
form a category Ĉ , the Yoneda completion of C . Each object A of C

gives a presheaf on C

Â = C [−, A]

the contravariant hom-functor. These are the representable presheaves.
Let A be a fixed object of C , and let F be a fixed presheaf on C . The
basic Yoneda result characterizes the natural transformations

Â - F

from the representable to the arbitrary. They are essentially the elements
of the set FA. See Exercises 3.5.4 to 3.5.6. You might also want to have
another look at Exercises 3.4.2 and 3.4.3.

In Block 3.3.1 we set up three endo-functors

∃ I ∀

on Set . There are several natural transformations associated with these.

3.5.3 Example Let Id be the identity endo-functor on Set . Thus

IdA = A Id(f) = f

for each set A and function f . We set up two natural transformations

Id
η∃ - ∃ Id

η∀ - ∀

3.5. Examples of natural transformations 99

using the two indicated covariant endo-functors on Set . Thus for each
set A we require a pair a functions

A
η∃A - PA A

η∀A - PA

with appropriate properties. Notice that here we have omitted ‘Id ’. This
should not cause too much confusion.

We must produce η∃ and η∀ so that for each function f the two squares

A
η∃A- PA X A

η∀A- PA X

B

f

?

η∃B

- PB

∃(f)

?
f [X]
?

B

f

?

η∀B

- PB

∀(f)

?
f [X ′]′
?

commute. For each a ∈ A each of

η∃A(a) η∀A(a)

must be a certain subset of A. Given the other requirements, there isn’t
much choice.

The two natural transformations η∃ and η∀ of this last example don’t
look very interesting. However, in a more general setting they are quite
important. We look at this in Chapter 6.

Let’s now look at the contravariant power set functor. In the next
example we set up a natural isomorphism which again doesn’t look very
exiting. However, the idea has many important refinements. It is the
core of many representation results, especially when 2 is replaced by a
more complicated structure.

3.5.4 Example The inverse image functor I on Set is contravariant,
and is really a hom-functor in disguise. The set

2 = {0, 1}

induces a hom-functor [−, 2] on Set . Thus we have two endo-functors

Set
I -

[−, 2]
- Set

on Set , both of which are contravariant. We show that these two functors
are naturally isomorphic.

100 3. Functors and natural transformations

To do that we recall that for any set A its subsets are in bijective
correspondence with the characteristic functions on A. Thus, for each
X ∈ PA we let

χA(X) : A - 2

be given by

χA(X)(a) =

{
1 if a ∈ X
0 if a /∈ X

for a ∈ A. The assignment

PA
χA- [A, 2]

X - χA(X)

is a bijection. We show this is natural for variation of A. To do that we
must show that the inner square commutes

X - p = χA(X)

A PA
χA - [A, 2]

B

f
6

PB

f←
?

χB
- [B, 2]

− ◦ f
?

p ◦ f
?

f←(X)
?

- q

for an arbitrary arrow f , as on the left. Observe the contravariance here.
We track an arbitrary member X ∈ PA of the top left hand corner

both ways to the bottom right hand corner. This gives us two members
q and p◦f of [B, 2]. A calculation shows these are the same function.

Two compatible contravariant functors can be composed to produce
a covariant functor. This often happens when we produce a ‘representa-
tion’ of an algebra. Let’s look at a miniature version of that.

3.5.5 Example The inverse image functor I on Set can be composed

Π = I ◦ I

with itself to produce a covariant endo-functor on Set . Thus for each
set A we have

ΠA = P2A

the second power set of A, the family of all collections of subsets of A.
To describe the behaviour of Π on functions we fix some notation.

3.5. Examples of natural transformations 101

Each function f gives us two other functions

A
f - B

PA � I(f) = f← PA

P2A
Π(f)

- P2B

where the central one goes in the opposite direction. For the pair of sets

A B

we let

x ∈ A X ∈ PA X ∈ P2A y ∈ B Y ∈ PB Y ∈ O2B

be typical members of the indicated sets. We have

x ∈ I(f)(Y)⇐⇒ f(x) ∈ Y

for each Y ∈ PB and x ∈ A. This gives

Y ∈ Π(f)(X)⇐⇒ I(f)(Y) ∈ X ⇐⇒ f←(Y) ∈ X

for X ∈ P2A and Y ∈ PB.
For each set A let

A
ηA - PA

be the function given by

X ∈ ηA(x)⇐⇒ x ∈ X

for x,X as above. We show that

Id
η - Π

is a natural transformation.
We must show that the inner square commutes

x - ηA(x)

A
ηA - P2A

B

f
?

ηB
- P2B

Π(f)
?

Π(f)(ηA(x))
?

f(x)
?

- ηB(f(x))

for each function f as indicated on the left of the square. To do that, as

102 3. Functors and natural transformations

usual, we take an arbitrary member x of the top left hand component
and track it both ways to the bottom right hand component. Thus

ηB(f(x)) = Π(f)(ηA(x))

is the problem. This can be verified by a simple calculation.

As final example we look at one of the motivating ‘natural’ construc-
tions and its ‘unnatural’ mate.

3.5.6 Example Let K be a (commutative) field, and let VectK be the
category of vector spaces over K, or K-spaces for short. Each K-space
V is an abelian group, written additively, and furnished with an action

K,V - V

r, a - ra

satisfying the usual axioms. This is a left action, but since K is commu-
tative the difference between left and right hardly matters.

These K-spaces are the objects of VectK , and the arrows are the
corresponding linear transformations.

The field K is itself a K-space. Thus for an arbitrary K-space V we
may form the hom-set

V ∗ = VectK [V,K]

in VectK . It turns out that we can furnish V ∗ as a K-space to pro-
duce the dual space of V . In fact, (·)∗ is a contravariant endo-functor on
VectK . It is an enriched hom-functor.

We wish to investigate the interaction between a parent K-space V
and its dual space V ∗. To do that we fix some notation and terminology.

We let

r, s, t, . . . range over scalars , the members of K

a, b, c, . . . range over vectors , the members of V

α, β, γ, . . . range over characters, the members of V ∗

and we let

f, g, h, l . . .

range over linear transformations between K-spaces.
The elements of V ∗ are those functions

α : V - K

3.5. Examples of natural transformations 103

such that

α(0) = 0 α(a+ b) = α(a) + α(b) α(ra) = rα(a)

for all a, b ∈ V and r ∈ K. We add these pointwise and this, with the
obvious zero, furnishes V ∗ as an abelian group.

The action
K,V ∗ - V ∗

r, α - rα

is given by

(rα)(a) = r(α(a))

for r ∈ K,α ∈ V ∗, and a ∈ V . This converts V ∗ into a K-space.
Each finite dimensional K-space V is uniquely determined up to iso-

morphism. If V has dimension n ≥ 0 then the isomorphisms

Kn - V

are in bijective correspondence with the bases of V . The crucial fact,
which you should look up sometime, is as follows.

Let V be a finite dimensional K-space. Then the dual space V ∗ is finite di-
mensional with the same dimension. In particular V ∼= V ∗.

This suggest a problem.
Let V be finite dimensional. There is at least one isomorphism

V - V ∗

but is there a canonical one? To set up such an isomorphism we must
first select a base for V , and then the resulting isomorphism is hardly
canonical.

Now we come to what used to be the puzzling bit.
Each K-space V has a dual space V ∗ which itself has a dual space

V ∗∗. This is the second dual of V . We know that (·)∗∗ is a covariant
endo-functor on VectK (because it is the composite of two contravariant
endo-functors). Furthermore, it is easy to exhibit members of V ∗∗.

For each a ∈ V let

â : V ∗ - K

be the function given by

â(α) = α(a)

for α ∈ V ∗.
We can now check three facts.

104 3. Functors and natural transformations

(1) For each a ∈ V the functions â is a member of V ∗∗.
(2) For each K-space V the assignment

V
(·)̂- V ∗∗

is a linear transformation.
(3) The whole family of assignments (·)̂ is a natural transformation.

Thus for each finite dimensional K-space V the assignment of (2) is a
canonical isomorphism, independent of any choice of base.

You can see what the puzzle was. Why is it that the second dual seems
to have a ‘natural’ behaviour whereas the first dual doesn’t?

We will meet many more functors and natural transformations. Some
of these are quite complicated. The exercises give some hints of what
can happen.

Exercises

3.5.1 Consider arbitrary objects K,L of an arbitrary category C .
Show how a natural transformation

[−, L]
τ- [−,K]

can be induced by an arrow between K and L.

3.5.2 Let C be an arbitrary category and let

Q
p - P

be an arbitrary arrow of C . Let

R
s - S

be an arbitrary function (between sets). For each object A of C let

FA = Set [C [A,P], R] GA = Set [C [A,Q], S]

using hom-sets in the two different categories.
(a) Show that each of

A - FA A - GA

is the object assignment of a functor

C - Set

and determine the variance of each.

3.5 Exercises 105

(b) Use the arrow p and function s to produce a natural transformation
F - G.

3.5.3 Complete the details of Example 3.5.2.

3.5.4 Consider the notion of a presheaf as defined just after Example
3.5.2. Where have you seen examples of this before?

3.5.5 Consider an arbitrary category C , and arbitrary presheaf F on
C , an arbitrary object A of C , and an arbitrary element a ∈ FA.

For each set X consider the following assignment.

C [X,A]
aX- FX

k - F (k)(a)

Check that this is a function. In other words, show that the output does
live in FX. Show that the whole family a is a natural transformation.

3.5.6 Continuing with the notation of Exercise 3.5.5, consider an ar-
bitrary natural transformation

Â
τ - F

and let a = τA(idA). Check that a ∈ FA, and show that τ = a.

3.5.7 Describe the natural transformations η∃ and η∀ of Example 3.5.3.

3.5.8 Complete the calculation of Example 3.5.4.

3.5.9 (a) Do the calculation required to complete Example 3.5.5.
(b) By Example 3.5.4 the inverse image functor I is naturally isomor-

phic to the hom-functor [−, 2]. Thus Π is naturally isomorphic to the
endo-functor with

A - [[A, 2], 2]

as the object assignment. Write down the arrow assignment and re-do
Example 3.5.5 for this functor.

(c) Which version do you think is easier to understand?

3.5.10 Consider Example 3.5.6
(a) Write down all the axioms needed to set up VectK . (The axioms

for a field, for an additive abelian group, for an action, and for a linear
transformation.) It is instructive not to overload the notation. In other
words, distinguish between the various additions, and use a different
visible infix for each multiplication.

106 3. Functors and natural transformations

(b) Verify that the dual space V ∗ of a K-space is itself a K-space.
(You may now go back to the standard, overloaded, notation.)

(c) Show that (·)∗ is a contravariant endo-functor on VectK . In par-
ticular, you must decide how (·)∗ behaves on arrows of VectK .

3.5.11 Continuing with Example 3.5.6, verify the three facts (1, 2, 3).

3.5.12 Show that the functors O and Ξ of Block 3.3.2 are natural
isomorphic.

3.5.13 Consider the functors arising from the product construction,
as described in Block 3.3.3 and Exercises 3.3.8 and 3.3.9. Show that the
projection arrows form a natural transformations.

3.5.14 Let C be a category with all binary products. Let R,S be two
objects and let

F = −×R G = −× S

to obtain two endo-functors on C . Show that each arrow

R
φ - S

of C induces a natural transformation

F
φ• - G

between these functors. This involves some serious diagram chasing.

3.5.15 Let C be a category with all binary products and coproducts,
and let A,B,C be three arbitrary objects of C . Let

L = A× C +B × C R = (A+B)× C

to form two more objects.
Show that by fixing two of A,B,C, each of L and R is an endo-functor

of C , and there is a natural transformation L - R.
If you are brave you might try the 3-placed version of this, that is do

not fix two of A,B,C.

3.5.16 Recall the difference between a monoid and a semigroup. (A
semigroup need not have a unit.) Given a semigroup A let

FA = A ∪ {ω}

where ω is a new element not in A. Let

A
ι - FA

3.5 Exercises 107

be the insertion. Let ? be the operation on FA given by

a ? b = ab a ? ω = a = ω ? a ω ? ω = ω

for all a, b ∈ A.
(a) Show that (FA, ?, ω) is a monoid.
(b) Show that ι is a semigroup morphism.
(c) Show that for each semigroup morphism

A
f - B

to a monoid B, there is a commuting triangle

A
f - B

FA
f]
-

ι -

for some unique monoid morphism f].
(d) Show that F fills out to a functor. You will have to sort out its

source and target.
(e) Show that ι is natural for variation of A. You will have to insert a

couple of trivial functors.
(f) What happens if A already has a unit?

3.5.17 For an arbitrary set A think of A as an alphabet. Let FA be
the set of all words on A, finite lists

a = [a1, . . . , al]

for a1, . . . , al ∈ A. The empty word, with l = 0, is allowed.
(a) Show that FA is a monoid under concatenation.
(b) Show that F fills out to a functor. Make sure you write down the

source and target.
(c) Show that the assignment

A - FA

a - [a]

is a natural transformation. You will have to sort out the two functors
it passes between.

(d) Show that FA is the free monoid on the sets A in a sense that you
should make precise.

(e) What happens if A already carries a monoid structure?

108 3. Functors and natural transformations

3.5.18 Consider the two functors

A - δA A - A/δA

of Exercise 3.3.13 (where here only the object assignments are given).
(a) Show the canonical embedding ι and the canonical quotient κ

δA
ι - A A

η - A/δA

are natural for variation of A. You must describe explicitly the source
and target for each functor.

(b) Show that for each morphism from an arbitrary group A

A
f - B

to an abelian group B, there is a unique morphism

A/δA
f] - B

such that

A
f - B

A/δA

f]

-

η -

commutes.

3.5.19 Consider the ‘freely generated by’ construction of Exercise
3.3.18. Show that the family η of arrows is a natural transformation.

3.5.20 Let ∇ be an arbitrary category and think of this as a template.
Let C be an arbitrary category. These combine to give another category
C∇. The objects a of C∇ are the covariant functors

∇ - C

and the arrows are the natural transformations between these functors.
Show that this does give a category. The problem is to produce an

appropriate method of composing natural transformations.

3.5.21 The composition used in Exercises 3.5.20 is know as the ver-

tical composition of natural transformations. There is also a horizontal

composition. (Don’t ask what is vertical or horizontal about the two
constructions.)

3.5 Exercises 109

Consider three categories A,B ,C , four functors F,G,K,L, and two
natural transformations λ, ρ, as shown.

A

λ-F

? B

G

?

ρ-K

?C

L

?

Show that for each object A of A the following square commutes.

(K ◦ F)A
ρFA- (L ◦ F)A

(K ◦G)A

K(λA)

?

ρGA
- (L ◦G)A

L(λA)

?

Let

(K ◦ F)A
(ρ ? λ)A- (L ◦G)A

be the diagonal of this square. Show that this family (ρ ? λ)• is natural.
This gives the horizontal composite of

(K ◦ F)
ρ ? λ - (L ◦G)

of the two natural transformations between the composite functors.

3.5.22 Consider three categories A,B ,C , together with six functors
F,G,H,K,L,M , and four natural transformations λ, µ, ρ, σ, as shown.

A

λ- µ-F

? B

G
?

H

?

ρ- σ-K

? C

L
?

M

?

Using vertical and horizontal composition (as in Exercises 3.5.20 and
3.5.20) show that

(σ ? µ) ◦ (ρ ? λ) = (σ ◦ ρ) ? (µ ◦ λ)

holds.

4

Limits and colimits in general

In Chapter 2, Sections 2.3 – 2.7 we looked at some simple examples of
limits and colimits. These are brought together in Table 2.1 which is
repeated here as Table 4.1. In this chapter we generalize the idea.

Before we begin the details it is useful to outline the five steps we go
through together with the associated notions for each step. After that
we look at each step in more detail.

Template
This is the shape ∇ that a particular kind of diagram can have. It is
a picture consisting of nodes (blobs) and edges (arrows). The central
column of Table 4.1 lists a few of the simpler templates. Technically, a
template is often a directed graph, or more generally a category.

Diagram
This is an instantiation of a particular template ∇ in a category C .
Each node of ∇ is instantiated with an object of C , and each edge is
instantiated with an arrow of C . There are some obvious source and
target restrictions that must be met, and the diagram may require that
some cells commute. Thus we sometimes use a category as a template.

Posed problem
Each diagram in a category C poses two problems, the left (blunt end)
problem and the right (sharp end) problem. We never actually say what
the problem is (which is perhaps the reason why it is rarely mentioned)
but we do say what a solution is. The idea is to find a ‘best’ solution.

Solution
A solution for a diagram in C is a nominated object X of C together
with a collection of arrows. For a left solution all arrows start from X,

4.1 Template and diagram – a first pass 111

Limit Template Colimit

(1) final object initial object

•
(2) binary product binary coproduct

•

(3) equalizer • -- • co-equalizer

•

(4) pullback •
-

•
-

•

(5) •
-

pushout

•
-

Table 4.1 Some simple limits and colimits – a repeat of Table 2.1

and such a gadget is often called a cone. For a right solution all arrows
finish at X, and such a gadget is often called a co-cone. For both kinds
of solutions the arrows must make various triangles commute.

Universal solution
A universal solution is a particular solution through which each solution
(of that handedness) must pass via a unique mediating arrow. A limit
is a universal left solution. A colimit is a universal right solution.

We now begin to look at each these notions in more detail.

4.1 Template and diagram – a first pass

Roughly speaking a template is a collection of nodes, each drawn as a
•, and a collection of edges, each drawn as an arrow. Each edge passes
from a particular node (its source) to a particular node (its target). In
other words, a template is a directed graph. There may also be some
commuting conditions on the edges, in which case the template is a
category. We usually draw the edges as pointing from left to right.

112 4. Limits and colimits in general

We instantiate the template in a category C to produce a diagram in
C . We replace each node by an object of C and we replace each edge
by an arrow of C . We respect the source and target conditions and any
commuting conditions that the template requires. We look for the left
(blunt end) solutions or the right (sharp end) solutions. In particular,
we look for a universal solution on the appropriate side, to obtain a limit
(universal left solution) or a colimit (universal right solution).

Table 4.1 gives a few small templates. Let’s look at a few more exam-
ples that are not so simple.

4.1.1 Examples (1) Suppose we have a collection of nodes with no
edges. It is convenient of think of this collection arranged vertically.

...

•
•
•
•
...

There may be infinitely many of these, finitely many, or none at all.
A limit for a corresponding diagram is a product and a colimit is

a coproduct (sometimes called a sum). We have already seen the case
where there are zero, one, or just two nodes.

(2) Suppose we have a collection of nodes arranged in a line with an
edge between adjacent nodes.

· · · - • - • - • - • - · · ·

If there are only finitely many nodes then the posed problem isn’t inter-
esting (since any associated diagram has a left-most object and a right-
most object). Thus we may as well suppose there are infinitely many
nodes. We use the integers as nodes. This gives us three (or perhaps
four) different templates.

The template may have a left-most node and go off to the right

0 - 1 - 2 - 3 - 4 - · · ·

in which case it is the colimit (right universal solution) that is interesting.
The template may have a right-most node and go off to the left

· · · - 4 - 3 - 2 - 1 - 0

4.1. Template and diagram – a first pass 113

in which case it is the limit (left universal solution) that is interesting.
Notice that we have again used the natural numbers to label the nodes.

The template may go off to the left and the right

· · · - −3 - −2 - −1 - 0 - 1 - 2 - 3 - · · ·

· · · - 3 - 2 - 1 - 0 - −1 - −2 - −3 - · · ·
in which case we may use the integers to label the nodes in one of two
ways. Both these are useful in different circumstances. For a diagram of
this shape both the limit and the colimit may be interesting.

(3) The template may be a collection of zig-zags

...•
•

-

•
-

•
-

•
-

•
-

•
-

...

and may be finite or infinite. Even the finite case (with at least four
nodes) leads to interesting solutions.

(4) There are more complicated examples.

...
•

· · · •
-

• - •
-

•
· · · •

--

• - •

-

•
· · · •

-

• - •

-

-

•
· · · •

--

• -

...

This is a tree growing to the left and keeps growing for ever, but with
the edges pointing to the right. A limit is something that is put out on
the far left. What can that be?

114 4. Limits and colimits in general

...

· · ·
... •

... •
-

•
-

· · ·
... •

-

••
- -

•
-

· · · •
-

•• - •
-

· · ·
... •

- -

•
... •
- -

· · ·
... •
-

...

Table 4.2 A more exotic template

(5) Consider the template in Table 4.2. The nodes are arranged in
vertical layers each of which is infinite both ways, and there are in-
finitely many layers progressing leftwards. Each edge passes between
one layer and the next. Think of going through this graph from right to
left, moving backwards along the edges. Intuitively something is being
approached out on the far left. The notion of a limit makes this precise.

This template stops at the vertical layer on the right. We could also
continue the same pattern moving off to the right. This would not change
the limit (at the far left) but could have a dramatic impact on the colimit
(at the far right).

Let’s now try to make the idea of these examples precise.

4.1.2 Definition A template (of the first kind)

∇ = (I, E)

is a directed graph consisting of

nodes i, j, k, . . . in I edges e, f, g, . . . in E

where each edge

i
e - j

has a nominated source and target, each of which is a node.

4.1. Template and diagram – a first pass 115

This version says nothing about any commuting conditions in the
template. Later we will look at that condition. However, notice that all
the templates of Table 4.1 and Examples 4.1.1 do match this definition.

4.1.3 Definition Let ∇ = (I, E) be a directed graph viewed as a
template of the first kind. Let C be a category. A ∇-diagram in C is

• An I-indexed family of objects of C A =
(
A(i) | i ∈ I

)
• An E-indexed family of arrows of C A =

(
A(e) | e ∈ E

)
where each edge, as on the left. produces produces an arrow, as on the

i
e - j A(i)

A(e)- A(j)

right with indicated source and target restrictions.

In other words, this is just a ‘functor’ from ∇ = (I, E) but with any
commuting conditions ignored.

There aren’t many exercises concerned solely with templates, but the
following construction should be looked at.

Consider the notion of a directed graph as given in Definition 4.1.2.
Such a gadget consists of nodes and edges with two source and target
assignments. This looks a bit like the notion of a category. Each category
is a directed graph, but not conversely. A directed graph has no notion
of composition of edges, and no notion of identity edges. However, there
is a construction that converts each directed graph into a category.

4.1.4 Definition Let ∇ be a directed graph.
For each l ∈ N a path through ∇ of length l is a list of l edges

i(0)
e(1)- i(1)

e(2)- i(2) - · · · · · ·
e(l)- i(l)

where the target of each edge is the source of the next one. A path of
length 1 is just an edge. A path of length 0 is just a node.

We create a category Pth(∇), the category of paths through ∇.
The objects of Pth(∇) are the nodes of ∇.
The arrows of Pth(∇) are the paths through ∇.
Given two paths

i(0) - i(1) - · · · - i(l) j(0) - j(1) - · · · - j(m)

with i(l) = j(0) the composite path is

i(0) - i(1) - · · · - i(l) = j(0) - j(1) - · · · - j(m)

formed by sticking one path after the other.

There is something to be checked here, and this is not entirely trivial.

116 4. Limits and colimits in general

Exercises

4.1.1 Show that the construction Pth(·) does produce a category.
Make sure you verify all the required properties. This is an example

where the required identity properties are not immediately obvious.

4.1.2 Consider the following four different graphs.

1

(a) 0

-

3
-

2

-
-

1

(b) 0

-

2
-

3 �
-

1

(c) 0

-

2
-

3 �

�

In each case describe the generated category of paths.

4.1.3 Suppose the graph you start from is already a category. Do you
merely reconstruct the category?

4.1.4 Let ∇ be a directed graph viewed as a template. Let A be a
∇-diagram in some category C .

Show that A extends uniquely to a functor Pth(∇) - C .
Show that each functor Pth(∇) - C is the unique extension of

some ∇-diagram in C .

4.2 Functor categories

In this section we replace the directed graph (I, E) by a category ∇. We
think of ∇ as an indexing gadget, and to emphasize this we refer to the
objects i, j, k, . . . of ∇ as nodes and its arrows e, f, g, . . . as edges.

The following notion generalizes that of Example 1.3.5 and Exercise
1.3.10. You may want to look at those before you continue. You should
make sure you understand they are particular cases of the following.

4.2. Functor categories 117

4.2.1 Definition Let∇ be an arbitrary category viewed as a template.
Let C be an arbitrary category. These combine to produce the category

C∇

of ∇-diagrams in C .
Each object of C∇ is a functor

∇
A - C

from the template to C .
Given two such functors (objects of C∇)

∇
A -

B
- C

an arrow of C∇ from A to B

A
σ - B

is a natural transformation between the functors.
Given three such functors and two such natural transformations

∇ ∇ ∇
σ - τ -

C

A
?

C

B
?

C

C
?

the composite

∇ ∇
τ ◦ σ -

C

A
?

C

C
?

is given by

A(i)
(τ ◦ σ)i = τi ◦ σi- C(i)

for each index i.

There is something to prove here. We must show that the composite
τ ◦ σ of two natural transformations is a natural transformation, and
that this composition is associative. The proofs are straight forward,
but you should go through them. Because if you don’t you know what
will happen, don’t you!

118 4. Limits and colimits in general

As the terminology of Definition 4.1.2 suggests, for each category ∇
viewed as a template, and each category C , a ∇-diagrams in C is merely
a functor A from ∇ to C . In other words, such a diagram is

a family of objects A(i) of C a family of arrows A(e) of C

indexed by the

nodes edges

of ∇, respectively. As with a diagram over a directed graph we require
that each edge

i
e - j

of ∇ produces an arrow

A(i)
A(e)- A(j)

of C . We now also require that for each pair

i
e - j

f - k

of composible edges of ∇, the induced triangle in C

A(i)
A(f ◦ e)- A(k)

A(j)
A(f)

-

A(e) -

commutes. Finally, we now also require that

A(id i) = idA(i)

for each index i.
In many cases we don’t use an arbitrary category as a template. We

use a partially ordered set, or occasionally a pre-ordered set.
Let I be a pre-ordered set, let

i, j, k, . . .

range over I and think of these as nodes. We may view I as a category
in one of two ways. For each pair of nodes i, j there is at most one edge

i
(j, i) - j

4.2 Exercises 119

from i to j. There is such an edge precisely when there is a comparison
between i and j. We orientate these edges in one of two ways.

Upwards Downwards

i ≤ j i
(j, i) - j j ≤ i

Depending on which view we take such an arrow always points upwards
or always points downwards in the pre-ordered set.

4.2.2 Definition A pre-ordered set is directed or upwards directed if
for each pair i, j of nodes there is at least one node k with i ≤ k and
j ≤ k.

Sometimes we want a pre-ordered diagram that is directed to the
right (directed to the sharp end). In that case we index the diagram
by a directed pre-order with its edges pointing upwards. Sometimes we
want a pre-ordered diagram that is directed to the left (directed to the
blunt end). In that case we index the diagram by a directed pre-order
with its edges pointing downwards. We could achieve the same effect
using a downwards directed pre-order, but that rarely seems to be used.

Notice that when we use a pre-ordered set at a template we lie it in
its side, so that ‘upwards’ means ‘towards the right’.

To conclude this section let’s take a closer look at the way edges in a
preset are labelled. Since there is at most one edge between two indexes
we can use these to label the edge.

i
(j, i) - j

At first sight the two components of the edge seem to be the wrong way
round. But consider what happens when we compose two such edges.
The common node should disappear.

i
(k, i) - k

(k, j) ◦ (j, i) = (k, i)

j
(k, j)

-

(j, i) -

This convention is neater.

Exercises

Throughout these exercises ∇ and C are an arbitrary pair of categories.

4.2.1 Show that the construction of C∇ does produce a category.

120 4. Limits and colimits in general

4.2.2 For each C -object X let ∆X be the ∇-diagram with X at each
node and idX at each edge. Show that X - ∆X is the object assign-
ment of a functor

C - C∇

from C to C∇. This is the diagonal functor.

4.2.3 Describe typical arrows

∆X - A A - ∆X

where X is a C -object and A is a ∇-diagram.

4.3 Problem and solution

Let ∇ be a template, let C be a category, and let A be a ∇-diagram
in C . This diagram A is a collection of objects and arrows given by the
shape ∇. This diagram poses two problems in C , the blunt end problem
and the sharp end problem. When we draw the diagram we usually let
the arrows point from left to right, so it is more common to speak of the
left problem and the right problem.

The following definition is two definitions in one given in parallel.

4.3.1 Definition Let ∇ be a template, and let A be a ∇-diagram in
a category C . A

left right

solution is a C -object X together with a family of arrows

X
α(i)- A(i) A(i)

α(i)- X

indexed by the nodes of ∇, such that for each edge e of ∇

A(i) i A(i)

X

α(i) -

X

α(i)
-

A(j)

A(e)

?α(j)
-

j

e

?
A(j)

A(e)

? α(j)

-

the induced C -triangle commutes.

4.3. Problem and solution 121

A diagram may have many different left solutions or it may have none.
It may have many right solutions or it may have none. In general there
is little or no relationship between left solutions and right solutions. In
the next section, we make precise the notion of a ‘best’ left solution or
a ‘best’ right solution, but we don’t need to worry about that just yet.

4.3.2 Example Suppose the category C is a poset with its arrows
pointing upwards (to the right). One kind of diagram in C is simply a
subset S with the induced comparisons. Then a

left right

solution for S is merely a

lower upper

bound of S in the poset. The orientations here have got a bit twisted,
but that is just an historical accident.

Is there something missing in Definition 4.3.1? Suppose the template
imposes some commuting conditions on the diagram. Shouldn’t those
conditions be observed in the corresponding solutions? They are!

Suppose the template ∇ has composible edges

i
e - j

f - k

with

i
g = f ◦ e- k

as the composite edge. For a left solution we certainly require that the
three triangles commute.

A(i) A(i)

X α(j)-

α(i) -

A(j)

A(e)
?

X

α(i) -

A(i)

A(f)
?α(k)

-

A(i)

A(g)

?α(k)
-

But the notion of a diagram requires

A(g) = A(f) ◦A(e)

so that the fact that the two triangles on the left commute ensures that
the triangle on the right also commutes. For this reason sometimes only
a ‘generating part’ of a template is used.

122 4. Limits and colimits in general

4.3.3 Example Suppose we use the integers Z

· · · − 3 − 2 − 1 0 1 2 3 · · ·

as a poset template with its edges pointing upwards. We have an edge

n
(m,n)- m

for all n ≤ m in Z. In fact

(m,n) = (m,m− 1) ◦ (m− 1,m− 2) ◦ · · · ◦ (n+ 2, n+ 1) ◦ (n+ 1, n)

using the 1-step edges. Any Z-diagram requires

A(m,n) = A(m,m−1)◦A(m−1,m−2)◦· · ·◦A(n+2, n+1)◦A(n+1, n)

so, in practice, we often describe just the 1-step arrows

A(n+ 1, n)

for n ∈ Z.

On the whole we need not worry too much about the difference be-
tween a diagram indexed by a directed graph and one indexed by a
category. In fact, as we have seen each graph ∇ has an associated path
category Pth(∇) and these produce ‘equivalent’ diagrams in any cate-
gory. These two diagrams have the same solutions.

Exercises

4.3.1 Let∇ be a directed graph and let C be an arbitrary category. Re-
call that each ∇-diagram in C extends uniquely to a Pth(∇)-diagram,
and each Pth(∇)-diagram arises from a ∇-diagram

Show that such a corresponding pair of diagrams have exactly the
same left solutions and exactly the same right solutions.

4.3.2 Given a ∇-diagram A in a category C , describe the notions of
a left solution and a right solution using the diagonal functor.

4.4 Universal solution

Each diagram in a category poses two problems, the left problem and
the right problem. Each of these problems may have many solutions,
and in general there is no relationship between the left solutions and the
right solutions. We now look for a ‘best’ solution on either side. On any

4.4. Universal solution 123

particular side such a solution need not exists, but if there is one, then
all the ‘best’ solutions are canonically isomorphic.

A universal solution of a diagram is a particular solution that is as
economical as possible, in that it is as ‘near’ to the diagram as possible.
Here is the formal definition. As usual, it is two definitions in one.

4.4.1 Definition Let ∇ be a template and let A be a ∇-diagram in a
category C . A

left universal solution right universal solution

usually called a

limit colimit

for A is a particular solution

S
σ(i)- A(i) A(i)

σ(i)- S

such that for each solution

X
α(i)- A(i) A(i)

α(i)- X

there is a unique arrow

X
µ - S S

µ - X

such that for each node i the triangle

X X

S
σ(i)
-

µ -

A(i)

α(i)

-

A(i)
σ(i)
-

α(i)
-

S

µ

-

commutes. We call µ the mediator.

A limit or a colimit of a diagram need not exists. A diagram can have
one without the other. However, once we have a universal solution (left
or right) we can obtain all other solutions of the same handedness. We
simply weaken the universal solution by an arrow to (for left) or from
(for right) the carrying object, the apex of the universal solution.

Limits and colimits of diagrams (when they exist) are essentially
unique. To prove that for limits we make a preliminary observation.

124 4. Limits and colimits in general

4.4.2 Lemma Let ∇ be a template, let A be a diagram in a category
C , and suppose

S
σ(i)- A(i)

is a limit of that diagram indexed by the nodes i of ∇. Then this family
of arrows is collection-wise monic. That is, if

X
θ -

ψ
- S

is a parallel pair of arrows with

σ(i) ◦ θ = σ(i) ◦ ψ

for each node i, then θ = ψ.

Proof Consider any such parallel pair θ, ψ of arrows. Let

X
α(i)- A(i)

be the arrow given by

α(i) = σ(i) ◦ θ = σ(i) ◦ ψ

for node i. Consider any edge

i
e - j

of ∇. By passing through S we see that the triangle

A(i)

X

α(i)-

A(j)

A(e)

?α(j)
-

commutes, and hence we have a left solution of the diagram. Since S is
the apex of a universal left solution there is a unique arrow

X
µ - S

such that

α(i) = σ(i) ◦ µ

for each node i. Since both θ and ψ do this, we have θ = ψ.

4.4. Universal solution 125

This result has a simple consequence.

4.4.3 Corollary Let ∇ be a template, let A be a diagram in a category
C , and suppose

S
σ(i)- A(i)

is a limit of that diagram indexed by the nodes i of ∇. Suppose also that

S
ε - S

is an endo-arrow of S such that

σ(i) ◦ ε = σ(i)

for each node i. Then ε = idS.

Proof We apply Lemma 4.4.2 to the pair θ = ε and ψ = idS .

So far we have been careful to speak of a limit of a diagram. We can
now show that we needn’t be so cautious.

4.4.4 Theorem Let ∇ be a template, let A be a diagram in a category
C , and suppose each of

S
σ(i)- A(i) T

τ(i)- A(i)

is a limit of that diagram indexed by the nodes i of ∇. Then there is a
unique arrow

T
τ - S

such that

τ(i) = σ(i) ◦ τ

for each node i. Furthermore, τ is an isomorphism.

Proof Since the arrows σ(·) form a limit, and the arrows τ(·) form a
left solution, there is a unique arrow τ , with indicated type, such that

τ(i) = σ(i) ◦ τ

for each node i. This τ is just the mediator. By symmetry, there is a
unique arrow

S
σ - T

126 4. Limits and colimits in general

such that

σ(i) = τ(i) ◦ σ

for each node i.
Now consider the endo-arrow

ε = τ ◦ σ

of S. For each node i we have

σ(i) ◦ ε = σ(i) ◦ τ ◦ σ = τ(i) ◦ σ = σ(i)

and hence ε = idS by Corollary 4.4.3. By symmetry we have

τ ◦ σ = idS σ ◦ τ = idT

hence these mediators σ and τ are an inverse pair of isomorphisms.

This shows that if a diagram has a limit then that limit is essentially
unique. Thus we may speak of the limit of a diagram (when this does
exist). There is a similar result for colimits with the same proof but
where the arrows point the other way.

In the remaining three sections of this chapter we gather together a
random collection of examples to show how limits and colimits can be
calculated in appropriate circumstances.

Exercises

4.4.1 Find a simple example of a category where a diagram has two
distinct limits.

4.4.2 Show that in the familiar categories (Set ,Grp,Rng , . . .) limits
and colimits are not absolutely unique, only unique up to a canonical
isomorphism.

4.4.3 State and prove the right hand version of each of the three results
of this section.

4.5 A geometric limit and colimit

In this section we first look at a geometric example involving the circle
group and topological spaces. After that there is an exercise which is
similar in nature, but discrete and simpler.

4.5. A geometric limit and colimit 127

For the template we use the integers Z as a poset. There are two ways
to do this, upwards or downwards. Here we use the downward version.

· · · - 2 - 1 - 0 - −1 - −2 - · · ·

This helps with some of the calculations. Notice that the limit will occur
at the positive end of Z, and the colimit will occur at the negative end.
We look at a simple diagram in Top, the category of topological spaces.
We put the same space at each node, and the same map at each edge.

Let O be the circle group. We think of O as the circle in the cartesian
plane with radius 1 and centre at the origin. Each point on O is deter-
mined by its unique polar co-ordinate θ with 0 ≤ α < 2π. Here addition
(mod 2π) is important. Put a copy of O at each index. For each edge

O
δ - O

we take the doubling map

δ(α) = 2α (mod 2π)

for co-ordinate α. This function wraps the source circle twice round the
target circle. What can a left solution be?

The limit

The limit is some kind of topological space A furnished with a family of
functions

A
φm - O m ∈ N

such that

δ ◦ φm+1 = φm

for each m ∈ N. Thus, for each a ∈ A we have

φm(a) = 2φm+1(a) (mod 2π)

and hence

φm(a) = 2rφm+r(a) (mod 2π)

for each m, r ∈ N. Since we can divide any real number by 2, we seem
to have

φr(a) =
1
2r
φ0(a)

for all a ∈ A, r ∈ N. This is not right. We have forgotten the 2π aspect.

128 4. Limits and colimits in general

Suppose we have

φ0(a) = α

for some 0 ≤ α < 2π. Then one of

φ1(a) =
α

2
φ1(a) =

α

2
+ π =

α+ 2π
2

must hold, and these can arise from

φ2(a) =
α

4
φ2(a) =

α+ 4π
4

φ2(a) =
α+ 2π

4
φ2(a) =

α+ 6π
4

and so on. These possibilities are conveniently displayed as a tree

...
α

8

...
α+ 8π

8

α

4

...
α+ 4π

8

...
α+ 12π

8

α+ 4π
4

α

2

...
α+ 2π

8

...
α+ 10π

8

α+ 2π
4

...
α+ 6π

8

...
α+ 14π

8

α+ 6π
4

α+ 2π
2

α

and each a ∈ A with φ0(a) = α generates a branch of the tree. Each
point of A corresponds to a certain region of O.

The colimit

The colimit is easier, and we can give a full description of it.
We first look at some properties of a general right solution.

O
δ - O

S

φm
-φm+1 -

Thus we consider a space S furnished with a Z indexed family of func-
tions φm such that each indicated triangle commutes. In other words

2α ≡ β =⇒ φm+1(α) = φm(β)

for all coordinates α, β and all m ∈ Z. Here and below

λ ≡ ρ means λ = ρ (mod 2π)

4.5. A geometric limit and colimit 129

with all the usual properties. By a trivial induction the equivalence gives

2rα ≡ β =⇒ φk+r(α) = φk(β)

for all coordinates α, β, all k ∈ Z, and all r ∈ N. We need a variant of
this last result, namely

(?) 2mα ≡ β =⇒ φm(α) = φ0(β)

for all coordinates α, β and all m ∈ Z. Notice how this shows that the
map φ0 determines the whole of the structure of the solution.

We now show that any function

O
φ - S

to a space can be used to generate a solution. To prove this implication
suppose that

2mα ≡ β

holds. If m ≤ 0 then, with r = m the previous result gives

φk+m(α) = φk(β)

for all k ∈ Z. Thus we take k = 0. Suppose m ≤ 0, say m = −r for
r ∈ N. Then

0 ≤ 2mα = 2−rα ≤ α

so that

2−rα = β

and hence

α = 2rβ

holds. A version of the previous result now gives

φk+r(β) = φk(α)

for all k ∈ Z. Thus taking k = m gives the required result.
Consider the maps

O
ρm - O

given by

ρm(α) ≡ 2mα

for all m ∈ Z and coordinates α. In particular, note that ρ0 is the identity
function on O. We check that these maps furnish O as a right solution.

130 4. Limits and colimits in general

We have

ρm+1(α) ≡ 2m+1α

for all m ∈ Z and coordinates α. Let

β ≡ 2α

so that

2mβ ≡ 2m+1α

and hence

(ρm ◦ δ)(α) = ρm(β) ≡ 2mβ ≡ ρm+1(α)

so that

ρm ◦ δ = ρm+1

as required.
Finally, we show that O with these furnishings is the colimit of the

diagram. To do that consider an arbitrary right solution, as above. We
require a unique map

O
µ - S

such that

φm = µ ◦ ρm

for each m ∈ Z. By considering the case m = 0 we see that µ = φ0 is
the only possible map. We check that this does mediate.

Consider any m ∈ Z and any coordinate α. With

β ≡ 2mα

we have

(µ ◦ ρm)(α) = µ(β) = φ0(β)

so that

φm(α) = φ0(β)

is the requirement. This is precisely the result (?).
After reading this you might think this colimit example is a bit of a

cheat. You could be right.

4.5 Exercises 131

Exercises

4.5.1 For the template use Z as a poset. It doesn’t matter which way
you order Z, but you might find it easier to use the upwards version,
positives to the right and negatives to the left.

Consider the following diagram in Set . At each node place Z (so now Z
is playing two different roles). At each edge place the doubling function.

Z
d - Z

z - 2z

Show that the arrows of any left solution have a simple behaviour.
Describe the limit of the diagram. You should verify your claims.
Investigate the behaviour of an arbitrary right solution.
Show that when suitably furnished the dyadic rationals are the colimit

of the diagram.

4.5.2 For the template use Z as a linear order, and for convenience
let the edges point to the right, the positive end of Z. We look at a
Z-diagram in Pos, the category of posets.

At each node i place a copy of the 3-element poset A(i)

>

?

⊥

with a top, bottom, and a middle elements ?. For each successive edge
(i + 1, i) of the template Z, from node i to node i + 1, consider the
monotone map

> >

? - ?
-

⊥

-

⊥

that sends the three source elements to the central target element. This
gives the Z diagram in Pos.

Describe both the limit and the colimit of this diagram.

132 4. Limits and colimits in general

4.6 How to calculate certain limits

For many categories the objects are structured sets, and the arrows are
structure preserving functions. Each object is a single set, its carrier,
furnished with some structure, perhaps restricted by certain required
properties (axioms). Each arrow is a function between the carriers which
respects the structure in an appropriate fashion. For instance

Pos Mon Top

are three categories of this kind. For each such category C there is a
forgetful functor

C - Set

which sends each object to its carrier, and views each arrow as the
function. Often this functor is named U , for underlying.

In this section we show how to compute a limit in such a category C .
To do that we first compute the corresponding limit in Set , and then lift
back up to C . Thus we must first show how to calculate limits in Set .
The construction we give works for many categories of structured sets,
but not necessarily all. In the next section we look at certain colimits.

We recall the notation we have used throughout this chapter. We
assume we have a diagram in the category under investigation given by
a template ∇. We let i, j, k . . . range over the family I of nodes of ∇, and
we let e, f, g, . . . range over the family E of edges of ∇. The construction
works when ∇ is graph and when ∇ is a category.

4.6.1 Limits in Set

In this block we show how to compute the limit of a diagram in Set . This
then forms the basis for limits in the other three and similar categories.

We begin with a review of products in Set . Binary products are easy,
we take the cartesian product – the set of ordered pairs – of the two
component sets. Products of finitely many components are just as easy,
again we take the cartesian product of the components.

What about the product of an arbitrary indexed family

A =
(
A(i) | i ∈ I

)
of sets? Let ⋃

A

be the union of the family A. (It is often useful to tag each component

4.6.1. Limits in Set 133

A(i) so we have a disjoint union. But that is not needed here.) We look
at certain functions

I - ⋃
A

from nodes to elements.

4.6.1 Definition Let A be an I-indexed family of sets, as above. A
choice function for A is a function

a(·) : I - ⋃
A such that a(i) ∈ A(i)

for each node i ∈ I.

A choice function selects one member from each component set A(i).
When I is finite such a choice function can be coded as a tuple. When I
is not finite we need this more general idea.

4.6.2 Definition Let A be an I-indexed family of sets, let
∏

A be the
set of all choice functions for A, and for each node i ∈ I let∏

A
α(i)- A(i)

a - a(i) α(i)(a) = a(i)

be the ‘evaluation at i’ function.

Before you continue reading you might try to show that(∏
A

α(i)- A(i) | i ∈ I
)

is a product wedge in Set . Here we prove something more general.
We have a template ∇ with nodes I and edges E. Suppose also we

have a diagram in Set

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
which instantiates the template. We produce a limit of this diagram.

4.6.3 Definition Given a ∇-diagram (A,A), as above, a thread is a
choice function

a(·) : I -
⋃

A

such that

A(e)
(
a(i)

)
= a(j) for each edge i

e- j

of ∇.

134 4. Limits and colimits in general

A choice function merely selects a member from each component set
A(i). A thread ensures that these selections are compatible. If we pass
from one component A(i) to another A(j) using an edge A(e), then we
can take the selected element with us knowing that we will arrive at the
selected element at the end.

If E = ∅ then every choice function is a thread.

4.6.4 Definition Given a ∇-diagram (A,A), as above, let A be the
set of all threads, and for each node i ∈ I let

A
α(i)- A(i)

a - a(i) α(i)(a) = a(i)

be the ‘evaluation at i’ function.

By the observation before the definition, this does not conflict with
Definition 4.6.2. It extends the idea to a more general context.

4.6.5 Lemma Given a ∇-diagram (A,A), as above, the evaluation
functions furnish the set of threads as a left solution of the diagram.

Proof We must show that for each edge e the induced triangle,

A(i) i

A

α(i)- (
A(e) ◦ α(i)

)
(a) = α(j)(a)

A(j)

A(e)
?

α(j)
-

j

e

?

as on the left, commutes. In other words we require the equality on the
right for each a ∈ A. But since a is a thread we have(

A(e) ◦ α(i)
)
(a) = (A(e)

(
α(i)(a)

)
= (A(e)

(
a(i)

)
= a(j) = α(j)(a)

as required.

With this we have the result we want.

4.6.6 Theorem Given a ∇-diagram (A,A), as above, the evaluation
functions furnish the set of threads as a limit of the diagram.

Proof By Lemma 4.6.5 we already know that we have a left solution of
the diagram. Thus it suffices to show that this left solution is universal.

4.6.1. Limits in Set 135

To this end let
A(i) i

X

ξ(i)-

A(j)

A(e)
?

ξ(j)
-

j

e

?

be a typical part of an arbitrary left solution of the diagram. We require
a unique function

X
µ - A such that ξ(i) = α(i) ◦ µ

for each i ∈ I.
To obtain one such function set

µ(x)(i) = ξ(i)(x)

for each x ∈ X and i ∈ I. Since

ξ(i)(x) ∈ A(i)

we see that µ(x) is a choice function. For each edge e, as above, we have

A(e)
(
µ(x)(i)

)
= A(e)

(
ξ(i)(x)

)
=
(
A(e) ◦ ξ(i)

)
(x) = ξ(j)(x) = µ(x)(j)

to show that µ(x) is a thread. Thus we do have a function µ of the
required type. Finally, for each node i we have(

α(i) ◦ µ
)
(x) = α(i)

(
µ(x)

)
= µ(x)(i) = ξ(i)(x)

to show that

α(i) ◦ µ = ξ(i)

as required.
This deals with the existence of a mediating arrow. Now we must deal

with the uniqueness. To this end suppose we have a function ν with

α(i) ◦ ν = ξ(i)

for each node i. Consider any x ∈ X and the corresponding thread
a = ν(x). For each node i we have

ν(x)(i) = a(i)
= α(i)(a)
= α(i)

(
ν(x)

)
=
(
α(i) ◦ ν

)
(x) = ξ(i)(x) = µ(x)(i)

to show ν = µ, as required.

136 4. Limits and colimits in general

In the next three blocks we show how to calculate limits in certain cat-
egories C of structured sets. The process is the same for these categories.
In each case there is a forgetful functor

C - Set

to the category of sets. It merely forgets the structure. Given a diagram
in C this functor converts it into a diagram in Set . We calculate the
limit of that Set-diagram using the method of this block. The problem
then is to furnish that set and collection of arrows so that they form a
limit in C . This last part need some special properties of C .

Exercises

4.6.1 Let Set(D) be the category of sets with a distinguished subset,
as used in Exercise 1.2.2. Thus each object is a pair (A,R) where A is
a set and R is a subset R ⊆ A. The arrows are those functions which
preserve the selected subset.

Let ∇ = (I, E) be a template, and consider a ∇-diagram

A(D) =
(
(A(i), R(i)) | i ∈ I

)
A(D) =

(
A(e) | e ∈ E

)
in Set(D). By forgetting the distinguished subsets we have a ∇-diagram

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
in Set . Consider the limit of the diagram in Set , that is the set of
threads with the attached functions. Show that this can be furnished to
produce a limit of the diagram in Set(D).

4.6.2 Limits in Pos

We look at the category Pos of posets and monotone maps. We continue
with the notation of the previous block. Thus we have a template ∇ with
a collection I of nodes and a collection E of edges. These index objects
and arrows in Pos. We assume we have an instantiation of ∇

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
to form a diagram in Pos. Thus each A(i) is a poset, and for each edge

i
e- j

the arrow

A(i)
A(e)- A(j)

4.6.2. Limits in Pos 137

is a monotone map. Eventually we put these extra facilities to good use.
For the first step we forget the extra facilities and drop down to Set .

We look at the limit of this Set-diagram, the set of all threads

a : I -
⋃

A

together with the I-indexed family

A
σ(i)- A(i)

a - a(i)

of evaluation functions. Recall that a thread satisfies

A(e)
(
a(i)

)
= a(j)

for each edge e, as above. This family of equalities rephrases as

A(e) ◦ α(i) = α(j)

using the evaluation function α.
Our job is to furnish A as a poset, and check that each evaluation

function is monotone. In this way we produce a left solution of the Pos-
diagram. We then show that this solution is universal, a limit in Pos.

How can we partially order A? In other words, how can we compare
threads? In this kind of situation there is one trick that should always
be tried. We use the pointwise comparison. We let

a ≤ b⇐⇒ (∀i ∈ I)[a(i) ≤ b(i)]

for threads a and b. Notice how this works. For threads a and b we pass
to each poset A(i) in turn and carry out a comparison there. All of these
must give a positive answer.

Why does this give a partial order on A? Verifying the three properties
is routine. Let’s look at the antisymmetry. Consider threads a and b with
a ≤ b ≤ a. Then, for each i ∈ I, we have

a(i) ≤ b(i) ≤ a(i)

and hence a(i) = b(i), since A(i) is a poset. Thus a = b.
Next we show that each evaluation function α(i) is monotone, that is

a ≤ b =⇒ α(i)(a) ≤ α(i)(b)

for threads a and b. Since

α(i)(a) = a(i) α(i)(b) = b(i)

this is immediate.

138 4. Limits and colimits in general

This produces the furnishings. Why does it give us a left solution of
the diagram in Pos? We require each cell

A(i) i

A

α(i) -

A(j)

A(e)

?α(j)
-

j

e

?

to be a commuting triangle in Pos, for each edge e, as indicated. This
is certainly a triangle in Pos. We are given that each A(e) is monotone,
and we have ensured that α(i) and α(j) are monotone. This Pos-triangle
commutes because it commutes down in Set .

Our next job is to show that this left solution is universal in Pos.
To do that we compare it with an arbitrary left solution of the Pos-
diagram. Thus we assume given a poset X together with an I-indexed
family of monotone maps

X
ξ(i)- A(i)

such that the Pos-triangle

A(i) i

X

ξ(i) -

A(j)

A(e)

?ξ(j)
-

j

e

?

commutes for each edge e, as indicated. We require a unique mediator

X
µ - A

which, of course, must be monotone.
Think about this. If there is such a mediator µ then, by passing down

to Set , it can only be that function that works for the Set-diagram. If
that function turns out to be monotone, it will certainly make all the
required Pos-triangles commute, for they commute down in Set . Thus
we don’t have much choice. The Set-mediator is given by

µ(x)(i) = ξ(i)(x)

for each x ∈ X and i ∈ I. We have to show this function is monotone.

4.6 Exercises 139

Why does

x ≤ y =⇒ µ(x) ≤ µ(y)

hold for all x, y ∈ X? Consider such x, y ∈ X with x ≤ y. We are given
that each ξ(i) is monotone, so that

ξ(i)(x) ≤ ξ(i)(y)

and hence, by definition of µ, we have

µ(x)(i) ≤ µ(y)(i)

for each i ∈ I. Finally, remember that each of µ(x) and µ(y) is a thread,
so that this last universally quantified comparison gives

µ(x) ≤ µ(y)

as required.
The construction of this block is fairly typical. We will use it again

with minor variations to produce limits in two more categories.

Exercises

4.6.2 (a) Let Eqv be the category of equivalence relations. Each object
is a pair (A,∼) where A is a set and ∼ is an equivalence relation on A.
Make sure you understand the arrows. Exercise 1.2.3 will help.

(b) Let ∇ = (I, E) be a template, and consider a ∇-diagram

A(∼) =
(
(A(i),∼i) | i ∈ I

)
A(D) =

(
A(e) | e ∈ E

)
in Eqv . By forgetting the distinguished subsets we obtain a ∇-diagram

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
in Set . Consider the limit of the diagram in Set , that is the set of
threads with the attached functions. Show that this can be furnished to
produce a limit of the diagram in Eqv .

4.6.3 Let ∇ = (I, E) be a template. Let R be a monoid and let

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
be a ∇-diagram in Set-R. Show how the set of threads can be furnished
to produce a limit of this diagram.

140 4. Limits and colimits in general

4.6.3 Limits in Mon

In this block we show how the construction of Block 4.6.1 also produces
limits in Mon , the category of monoids. The general procedure is the
same as outlined at the beginning of Block 4.6.2. Starting from a dia-
gram in Mon , we pass to Set and take the limit of that Set-diagram.
The main problem is to furnish that Set-limit to become a limit of the
original Mon-diagram.

Recall that a monoid is a furnished set

(A, •, 1)

where ‘•’ is a binary operation on A, and 1 is a distinguished element.
These attributes must satisfy

(a • b) • c = a • (b • c) 1 • a = a = a • 1

for all a, b, c ∈ A. In general, we write

ab for a • b

but there is one case when we will explicitly show that operation symbol.
Monoids are the objects of Mon . The arrows are the monoid mor-

phism. Recall that a monoid morphism

(A, •, 1)
f- (B, •, 1)

is a function

f : A - B

between the carriers such that

f(ab) = f(a)f(b) f(1) = 1

for all a, b ∈ A.
As usual we have a template ∇ with a collection I of nodes and a

collection E of edges. We also have an instantiation

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
to form a Mon-diagram. Thus each A(i) is a monoid and each A(e) is a
monoid morphism. By passing to Set we obtain the set A of all threads

a : I -
⋃

A

together with the I-indexed family

A
α(i)- A(i)

4.6.3. Limits in Mon 141

of evaluation functions. Our first job is to furnish A as a monoid, and
check that each evaluation function is a monoid morphism.

How can we combine a pair of threads a and b to form

a ? b

a third thread? This is the case where we will explicitly indicate the
operation. Let

(a ? b)(i) = a(i)b(i)

for each i ∈ I. Notice how we use the operation onA(i). This construction
certainly gives a function

a ? b : I - ⋃
A

and it is a choice function since a(i)b(i) lives in A(i).
Why is a ? b a thread? Consider an arbitrary edge e from i to j. We

remember that A(e) is a monoid morphism. Thus

A(e)
(
(a ? b)(i)

)
= A(e)

(
a(i)b(i)

)
=
(
A(e)

(
a(i)

))(
A(e)

(
b(i)
))

= a(j)b(j) = (a ? b)(j)

as required. Why is this operation associative? Because(
(a ? b) ? c

)
(i) =

(
(a ? b)(i)

)
c(i)

=
(
a(i)b(i)

)
c(i)

= a(i)
(
b(i)c(i)

)
= a(i)

(
(b ? c)(i)

)
=
(
a ? (b ? c)

)
(i)

for all a, b, c ∈ A and i ∈ I. We need a distinguished element of A. We
set 1(i) = 1i for each i ∈ I. Here 1i is the distinguished element of A(i).
It is easy to check that this function 1 is a thread, and almost trivially,
we have

1 ? a = a = a ? 1

for each thread a. Thus we have furnished A as a monoid.
Why is each evaluation function

A
α(i)- A(i)

a monoid morphism? Because

α(i)
(
a ? b

)
=
(
a ? b

)
(i) = a(i)b(i) =

(
α(i)(a)

)(
α(i)(b)

)
for each a, b ∈ A.

142 4. Limits and colimits in general

This sets up the furnishings. Why does it give a left solution of the
Mon-diagram? To be a left solution we require that certain triangles
commute in Mon . These triangles do commutes in Set , and they are
triangles in Mon , so they commute in Mon .

Our main job is to show that this left solution is universal in Mon .
To do that we compare it with an arbitrary left solution of the Mon-
diagram. We assume given a monoidX together with an I-indexed family
of monoid morphisms

x
ξ(i)- A(i)

such that the Mon-triangle

A(i) i

X

ξ(i)-

A(j)

A(e)
?

ξ(j)
-

j

e

?

commutes for each edge e, as indicated. We require a unique mediator

X
µ - A

which, of course, must be a monoid morphism.
By passing to Set we see there is only one possible function µ we can

use. That given by

µ(x)(i) = ξ(i)(x)

for each x ∈ X and i ∈ I. Thus it suffices to show that this function µ is
a monoid morphism. For each x, y ∈ x and i ∈ I, remembering that ξ(i)
is a monoid morphism, we have

µ(xy)(i) = ξ(i)(xy)

=
(
ξ(i)(x)

)(
ξ(i)(y)

)
=
(
µ(x)(i)

)(
µ(y)(i)

)
=
(
µ(x) ? µ(y)

)
(i)

so that

µ(xy) = µ(x) ? µ(y)

to show that µ passes across the operation. The other requirement

µ(1) = 1

is even easier.
This kind of construction works in many algebraic categories. In fact,

the earlier Exercise 4.6.3 uses exactly the same technique.

4.6 Exercises 143

Exercises

4.6.4 (a) Let CMon be the category of commutative monoids. Show
that the construction of this block produces limits in CMon .

(b) Let Grp be the category of groups. Show that the construction of
this block produces limits in Grp.

(c) Let Rng be the category of unital rings. Show that Rng has limits
for ∇ = (I, E) diagrams.

4.6.5 A partially ordered monoid (a pom) is a structure

(A,≤, ·, 1)

where (A,≤) is a poset and (A, ·, 1) is a monoid, and

x ≤ a
y ≤ b

}
=⇒ xy ≤ ab

for all a, b, x, y ∈ A. These are the objects of the category Pom . A arrow
of Pom is a monoid morphism that is also monotone. For an arbitrary
template ∇ = (I, E) show that each ∇-diagram in Pom has a limit.

4.6.4 Limits in Top

In this block we show how the construction of Block 4.6.1 also produces
limits in Top, the category of topological spaces and continuous maps.
In topological circles a left limit is usually called an inverse limit. More
often than not the template is a partial order or even a pre-order, and
the indexing is contravariant. We won’t deal with that aspect here.

As usual we have a template ∇ of nodes I and edges

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
to form a Top-diagram. Thus each A(i) is a topological and each A(e) is
a continuous map. By passing to Set we obtain the set A of all threads

a : I - ⋃
A

together with the I-indexed family

A
α(i)- A(i)

of evaluation functions. Our first job is to convert A into a topological
space in such a way that each α(i) is continuous.

144 4. Limits and colimits in general

Consider any node i ∈ I and any open U ∈ OA(i) of that component.
We certainly require the inverse image set

i(U) = α(i)←(U) = {a ∈ A | a(i) ∈ U}

to be open. Thus we take the family of all these subsets of A as a subbase
of a topology on A. This ensures that each α(i) is continuous.

In the usual way this gives us a left solution of the diagram. This has
nothing much to do with the topological aspects. It’s merely that certain
triangles of function do commute.

Our main job is to show that this left solution is universal in Top.
To do that we compare it with an arbitrary left solution of the Top-
diagram. Thus we assume given a topological space X together with an
I-indexed family of continuous maps

X
ξ(i)- A(i)

such that the Top-triangle

A(i) i

X

ξ(i)-

A(j)

A(e)
?

ξ(j)
-

j

e

?

commutes for each edge e, as indicated. We require a unique mediator

X
µ - A

which, of course, must be a continuous map.
By passing to Set the only possible mediating function is given by

µ(x)(i) = ξ(i)(x)

for each x ∈ X and i ∈ I. Thus it suffices to show that this function µ

is continuous. To do that it suffices to show that for each subbasic open
set of A the inverse image across µ is open. Thus we require

µ←(i(U)) ∈ OR

for each node i ∈ I and open U ∈ OA(i). For each x ∈ X we have

x ∈ µ←(i(U))⇐⇒ µ(x) ∈ i(U) = α(i)←(U)

⇐⇒ α(i)(µ(x)) ∈ U

⇐⇒ µ(x)(i) ∈ U

⇐⇒ ξ(i)(r) = µ(x)(i) = U ⇐⇒ x ∈ ξ(i)←(U)

4.6 Exercises 145

to show that

µ←(i(U)) = ξ(i)←(U)

for each pair i and U . Since each ξ(i) is continuous this shows that each
µ←(i(U)) is open, for the required result.

Notice how this construction and proof works. To ensure that each
α(i) is continuous we need at least all the sets i(U) in the topology on
A. To show that a mediator µ is continuous we can’t deal with more
than the sets i(U).

Exercises

4.6.6 Let I be a discrete template (that is, just a set). Let A be an
I-diagram in Top (that is, an I-indexed family of topological spaces).
Describe the limit of A, and relate this to a standard topological notion.

4.7 Confluent colimits in Set

We have looked at examples of limits. In this section we see how to
calculate a certain kind of colimit. We work in the category Set of sets,
but the same method works for other categories of structured sets.

For this example we assume the template is a poset. Thus let I be a
poset with nodes

i, j, k, . . .

and for each comparison i ≤ j let

i
(j, i) - j

be the corresponding edge.
We assume I satisfies a certain restriction

4.7.1 Definition The poset I is directed if for each i, j ∈ I there is
some k ∈ I with i, j ≤ k.

The poset I is confluent if for each i, j, l ∈ I with l ≤ i, j, there is some
k ∈ I with i, j ≤ k.

Trivially, each directed poset is confluent, but there are confluent
posets that are not directed. For example each discrete set is conflu-
ent but not directed (if it has more than one node). Notice that if a

146 4. Limits and colimits in general

poset is directed then (by repeated use of this property) each finite sub-
set has at least one upper bound. Similarly, if a poset is confluent, then
each finite subset which has a lower bound also has an upper bound.

We assume the template poset I is confluent.
Let (A,A) be an I-diagram in Set . This is an I-indexed family of sets

A(i)

together with connecting functions

A(i)
A(j, i)- A(j)

one for each comparison i ≤ j in I. These functions must compose in the
usual way, that is

A(i, i) = idA(i) and A(k, j) ◦A(j, i) = A(k, i)

for i ≤ j ≤ k. To help with the later calculations it is convenient to write

A(i) - A(j)
x - x|j

for the function A(j, i). Thus

x|j = A(j, i)(x)

and we may think of this as the ‘restriction’ of x ∈ A(i) to j. Note that

x|i = x x|j|k = x|k

for i ≤ j ≤ k with x ∈ A(i).
To obtain the colimit of (A,A) we first produce the coproduct of A.

Consider the disjoint union of the sets A(i). We set this up with some
care. We let

qA =
⋃
{A(i)× {i} | i ∈ I}

that is we take the set of all pairs

(x, i)

for i ∈ I and x ∈ A(i). An element x may occur many times, but each
occurrence is tagged with an index. For each i ∈ I there is a function

A(i) - qA

x - (x, i)

and these functions structure qA as the coproduct of A in Set . The
proof of that is the discrete case of the following proof.

4.7. Confluent colimits 147

For the general situation we take a quotient of qA. Consider the re-
lation ∼ on qA given by

(x, i) ∼ (y, j)⇐⇒ (∃i, j ≤ k)[x|k = y|k]

for (x, i) and (y, j) from qA. Here the quantifier looks for a node k

which is an upper bound of the two given nodes. Trivially, this relation
is reflexive and symmetric. We show it is transitive, and hence is an
equivalence relation on qA. To do that we use the confluence of I.

Consider any situation

(x, i) ∼ (y, j) ∼ (z, k)

so that (x, i) ∼ (z, k) is required. We are given nodes l,m with

i, j ≤ l j, k ≤ m

x|l = y|l y|m = z|m

respectively. Now look how the nodes sit in I.
i

l
-

j
-

n
-

m
-

-

k
-

The nodes l,m have a lower bound and hence, by confluence, they have
some upper bound n. But now

x|n = x|l|n = y|l|n = y|n = y|m|n = z|m|n = z|n

to show that

(x, i) ∼ (z, k)

as required.
Since ∼ is an equivalence relation on qA we may take

L = qA/∼

the family of blocks (equivalence classes) of ∼ in qA. Let

qA - L

(x, i) - [x, i]

be the associated quotient function. For later observe that

[x, i] = [x|j, j]

for all nodes i ≤ j.

148 4. Limits and colimits in general

We show that the family of composite functions

A(i) - qA - L

x - (x, i) - [x, i]

structure L as the co-limit of the I-diagram A.
We first show that we do have a right solution of the diagram. Consider

any pair of nodes i ≤ j. We require that the inner triangle commutes.

x - [x, i]

A(i) - L[x|j, j]

A(j)

-
-

x|j

-

-

To prove that we track an element from the top left hand corner to the
top right hand corner by the short trip and the long trip. We require

[x, i] = [x|j, j]

and this is nothing more than the observation made above.
Now we show that we have a universal right solution. Consider any

right solution M where for nodes i ≤ j the commuting triangle

A(i)
αi - M

A(j)
αj

-
-

is a typical part of the structure. Thus we have

αj(x|j) = αi(x)

for each x ∈ A(i). We require a unique function

L
µ - M

such that for each node i the triangle

A(i)
αi - M

L
µ
-

-

commutes. If there is such a function µ, then

µ
(
[x, i]

)
= αi(x)

4.7 Exercises 149

for each i ∈ I and x ∈ A(i). This shows that there is at most one such
µ. To show there is at least one, it suffices to show that this assignment
is well-defined, that is

[x, i] = [y, j] =⇒ αi(x) = αj(y)

for i, j ∈ I and x ∈ A(i), y ∈ A(j). Assuming

[x, i] = [y, j]

we have

(x, i) ∼ ([y, j) to give x|k = y|k

for some node k with i, j ≤ k. But now

αi(x) = αk(x|k) = αk(y|k) = αj(y)

for the required result.

Exercises

4.7.1 Let I be a confluent poset and let (A,A) be an I-diagram in
Set-R for some monoid R. Thus for each node i the component A(i) is
an R-set, and for each pair i ≤ j of nodes the function

A(i)
A(j, i)- A(j)

is an R-morphism. Show that A has a co-limit in Mon .

4.7.2 Let I be a confluent poset and let (A,A) be an I-diagram in
Mon . Thus for each node i the component A(i) is a monoid, and for
each pair i ≤ j of nodes the function

A(i)
A(j, i)- A(j)

is a monoid morphism. Show that A has a co-limit in Mon .

4.7.3 The solution to the last part of Exercise 2.5.2 is a bit terse, and
doesn’t tell us anything. That is because at that stage we don’t have
enough machinery to produce the required coproducts, but we do now.

Consider any category of algebras. The category Mon will do. We
produce the coproduct AqB of two objects A,B in three stages. First
forget the carried structure and look at the coproduct in Set , the disjoint
union A ∪̇B. Next freely generate a monoid from this set. Finally take a
quotient of this free monoid to convert certain functions into morphism.

Fill in the details.

5

Adjunctions

The isolation of the notion of an adjunction is one of the most important
contributions of category theory. In a sense adjoints form the first ‘non-
trivial’ part of category theory, at least it can seem that way now that
all the basic stuff has been sorted out. There are adjunctions all over
mathematics, and examples were known before the categorical notion
was formalized. We have already met several examples, and later I will
point you to them.

In this chapter we go through the various aspects of adjunctions quite
slowly. We look at each part in some detail but, I hope, not in so much
detail that we lose the big picture.

There is a lot going on in adjunctions, and you will probably get
confused more than once. You might get things mixed up, forget which
way an arrow is supposed to go, not be able to spell contafurious, and
so on. Don’t worry. I’ve been at it for over 40 years and I still can’t
remember some of the details. In fact, I don’t try to. You should get
yourself to the position where you can recognize that perhaps there is
an adjunction somewhere around, but you may not be quite sure where.
You can then look up the details. If you ever have to use adjunctions
everyday, then the details will become second nature to you.

5.1 Adjunctions defined

When first seen in full categorical adjunctions can seem a bit daunting.
There is a lot going on but in many particular examples much of this
complexity can disappear. In this section we look at all the various com-
ponents and eventually arrive at the formal definition. Then in the later
sections we analyse the content of the notion. For most of this section

5.1. Adjunctions defined 151

we merely run through the various bits of gadgetry that make up an
adjunction. We don’t look at the restrictions imposed on these gadgets.

An adjunction is an interaction between two categories

Src Trg

which we may think of as the

source target

category. This is the conventional distinction, and it can help. These
categories play similar roles, but some of their attributes are in mirror
image.

We have two covariant functors

Src
F -

�
G

Trg

going between the two categories, but in opposite directions. These func-
tors are related in a certain way. We look at the details later. By con-
vention we call

F the left G the right

adjoint of the pair, and we write

F a G

to indicate this relationship. We also write any of

Src

F -
a�
G

Trg Src

F -
⊥�
G

Trg Src
-

F a G� Trg

to indicate the relationship. Usually the left functor is placed above the
right functor.

There are other notations used with adjunctions. Sometimes we write

F ∗ for F F∗ for G

where the position of the decoration indicates which is the left and which
is the right component. This can be useful when there is more than one
adjunction around. In those circumstances we sometimes write F for
the pair (F ∗, F∗). For the time being we will stick with F a G, but
eventually we will use some of this other notation.

152 5. Adjunctions

By convention we think of an adjunction as passing in the direction
of its left adjoint. We write any of

Src ⇀ Trg Src
F a G

⇀ Trg Src
F ∗ a F∗

⇀ Trg

for the adjunction making use of the harpoon arrow to alert us. This is
the conventional terminology and notation. Some of the older literature
was written before these conventions were established. You might find
that left and right are called something else, such as right and left.

The two functors can be composed to give endofunctors

G ◦ F on Src F ◦G on Trg

respectively. These composites are related to the corresponding identity
functors by natural transformations

IdSrc
η- G ◦ F F ◦G

ε- IdTrg

called the

unit co-unit

of the adjunction. Notice the left/right antisymmetry of these gadgets.
Consider any pair A and S of objects

A from Src S from Trg

respectively. An adjunction tries to compare these objects. Of course,
there isn’t a direct comparison, for they live in different worlds. To com-
pare them we move one of the objects to the other category, and do the
comparison there. Thus we use one of the two arrow sets

Src[A,GS] Trg [FA, S]

of the indicated category. Notice that the

left functor F right functor G

occurs in the

left position right position

of the appropriate arrow set. This helps us to remember which functor
is doing which job.

Each of the two arrow sets provides a place where we might compare

5.1. Adjunctions defined 153

the two objects. But which place should we use? It doesn’t matter, for
part of the gadgetry of an adjunction is an inverse pair of bijections

f - f]

Src[A,GS] Trg [FA, S]
g[� g

between the two arrows sets. Furthermore, and this is the crucial aspect
of an adjunction, these two assignment

(·)] (·)[

must be natural for variation of both A and S.
There is a lot going on here. In the next section we work through this

data again to see exactly what it means. Here is the formal definition.

5.1.1 Definition An adjunction(
F, G, (·)], (·)[

)
consists of a pair of covariant functors

Src

F -
a�
G

Trg

where, for each

Src-object A Trg -object S

the two transposition assignments

Src[A,GS]
(·)] -

�
(·)[

Trg [FA, S]

form an inverse pair of bijections, and each is natural in A and S.

Note that the data for an adjunction is not just a pair (F,G) of func-
tors. We also need the transposition assignments (·)] and (·)[. Of course,
we only need one of (·)] and (·)[, for each is the inverse of the other. The
unit and the counit aren’t mentioned in this definition, because we can
show that

ηA = (idFA)[εS = (idGS)]

do those jobs. It turns out that various selections of the data

F G (·)] (·)[η ε

154 5. Adjunctions

can be put together in different ways to form an adjunction. We look at
these various combinations in the following sections.

Exercises 5.1.1, 5.1.2, and 5.1.3 are rather straight forward. You have
seen most of the gadgetry before. Exercises 5.1.4, 5.1.5, and 5.1.6 are
more complicated, and you may have to return to them more than once.

Exercises

5.1.1 Each poset can be viewed as a category. Show that a poset
adjunction, as in Example 1.3.3, is a categorical adjunction.

5.1.2 Each set S can be converted into a preset in two extreme ways.
The discrete version uses equality as the comparison. For the indiscrete
version any two elements are comparable. Show that the forgetful functor

Set � Pre

has both a left and a right adjoint, and these are different.

5.1.3 Show that the forgetful functor

Set � Top

has both a left and a right adjoint, and these are different.

5.1.4 For a poset S let LS be the poset of lower sections of S (under
inclusion).

(a) Show that each monotone function

S
f - T

between posets induces a monotone function

LS � f← LT

via inverse image.
(b) Show that the monotone function f← has both a left adjoint and

a right adjoint, and in general these are different. One of these is given
by direct image, and the other isn’t.

5.1.5 Let ∇ be a category viewed as a template, let C be an arbitrary
category, and consider the diagonal functor.

C∇ �
∆

C

Show that C has a limit for each ∇-diagram precisely when ∆ has a
right adjoint, and sort out the corresponding result for colimits.

5.2 Adjunctions illustrated 155

5.1.6 Let

Src �
G

Trg

be a functor which does have a left adjoint. Show that each limit cone
in Trg is transported by G into a limit cone in Src.

5.1.7 Let

Src
F a G

⇀ Trg

be an adjunction, consider the product category Src×Trg , and consider
the two object assignments

(A,S)
F - Trg [FA, S]

Src ×Trg - Set

(A,S)
G
- Trg [A,GS]

to the category of sets. In what sense are the these the object assignments
of a pair of functors. Describe the arrow assignments.

5.2 Adjunctions illustrated

Definition 5.1.1 says what an adjunction is, but doesn’t tell us very much.
There are several hidden consequences of the definition. In the following
sections we take the definition apart, and look at the various components
of an adjunction in some detail. To do that it will help if there are some
examples we can look at. There are some simple examples. Exercises
5.1.2 and 5.1.3 give some of these, and we will see a few more. In this
section we look at two (or perhaps it’s three) examples with a bit more
content. The idea is that as you read the following sections you can use
these examples to illustrate what is going on. Thus you shouldn’t expect
to understand these examples immediately. Keep coming back to them
as you are learning the various aspects of adjunctions.

The two examples, an algebraic example and a topological example,
are miniature versions of more involved, and quite important, adjunc-
tions. I will say what these larger versions are, but at this stage we don’t
go into any details. There is also a rather simple set-theoretic example
(as a preliminary for the topological example). This is, perhaps, the best
example to start with. However, you should be careful with it. In some
ways it is too simple to bring out all of the different properties that an
adjunction can have.

156 5. Adjunction

5.2.1 An algebraic example

An involution algebra is a structure

(A, (·)•)

carried by a set A where (·)• is an involution on this carrier. In other
words (·)• is a 1-placed operation on A with

a•• = a

for each a ∈ A. An involution morphism between involution algebras

A
φ - B

is a function, as indicated, such that

φ(a•) = φ(a)•

for each a ∈ A. This gives us the category

Inv

of involution algebra and involution morphisms.
Let

Set � U Inv

be the underlying functor, the forgetful functor that loses the involution.
We show that U has adjoints on both sides

Set

Σ -
� U

Π
-

Inv

and these are quite different.
Before we begin to construct these adjoints let’s see where this example

comes from. There are three levels of generalization each of which is
worth analysing in its own right.

For the first level recall the notion of a (right) R-set for a monoid R.
An involution algebra is nothing more than an R-set for an appropriate
monoid R. (Can you see which one?) The forgetful functor

Set � Set-R

has both a left adjoint and a right adjoint. We look at this in Chapter
6. For the next level consider an arbitrary morphism

S
f - R

5.2.1. An algebraic example 157

between monoids. This induces a functor

Set-S � Set-R

called restriction of scalars. This functor has both a left adjoint and a
right adjoint. When S is the trivial monoid this example reduces to the
previous one. Finally let f , as above, be a ring morphism. This induces
a restriction of scalars functor between the module categories.

Mod -S � Mod -R

Again this has both a left adjoint and a right adjoint. In this case the left
adjoint is given by a tensor product, and the right adjoint is an enriched
hom-functor. All of these adjunctions are worth looking at sometime.

Here we concentrate on the involutary case. From now on in this block
the only algebras and morphisms we meet are involutary, so we drop the
qualifier ‘involution’.

To produce the two adjoints it will help if we let

Set Inv

X,Y, . . . Objects A,B, . . .

f, g, . . . , k, . . . Arrows φ, ψ, . . . , λ, . . .

range over the indicated gadgets.
We describe the initial parts of the two constructions in parallel.
For each set X let

ΣX = X +X ΠX = X ×X

that is

ΣX = {(x, i) |x ∈ X, i = 0, 1} ΠX = {(x, y) |x, y ∈ X}

the set of {0, 1}-tagged elements of X and the set of ordered pairs from
X. It is not hard to furnish each of these with an involution. For ΣX we
flip the tag, and for ΠX we swap the components.

We require both Σ and Π to be a functor to Inv . Given a function

Y
k - X

what should

ΣY
Σ(k)- ΣX ΠY

Π(k)- ΠX

be? We soon find the answer, but verifying that it does produce mor-
phisms takes a bit of work. Think about this before you continue.

158 5. Adjunction

This gives us two of the four components of each of the two adjunc-
tions. Next we require an inverse pair of assignments

f - f] φ - φ]

Set [X,UA] Inv [ΣX,A] Inv [A,ΠX] Set [UA,X]
ψ[� ψ g[� g

for each set X and each algebra A. This needs a some thought.
For the left hand bijection it helps if we set

a(i) =

{
a• if i = 1
a if i = 0

for each a ∈ A and tag i. In particular we have

a(i)• = a(1−i) = a•(i) φ(a(i)) = φ(a)(i)

for each a ∈ A, tag i, and morphism φ. For the right hand bijection
remember that φ is a morphism. You should now think about these
constructions for a while, and do Exercises 5.2.1 and 5.2.2.

Of course, this doesn’t quite prove that each of(
Σ, U, (·)], (·)[

) (
U, π, (·)], (·)[

)
is an adjunction. We need to show that each (·)] and each (·)[is natural.
However, let’s leave that until we have a better idea of what that means.

Exercises

5.2.1 Describe the action of Σ and Π on functions, and verify that
each result is a morphism.

5.2.2 Set up the two inverse pair of bijections (·)] and (·)[. At this
stage don’t worry about the required naturality.

5.2.2 A set-theoretic example

In this block we describe an easy example of an adjunction where the
category Set is both the source and target. We have met most of the
components before. We do this example here because in the next block
we produce an enriched version with Set replaced by Top. That has
more content, but much of the gadgetry is the same as this Set example.

Let I be a fixed set. We know that

−× I

is an endo-functor on Set . We show that this functor has a right adjoint.

5.2.2. A set-theoretic example 159

and this is another functor that we already know. It is the hom-functor
Set [I,−]. Thus, we attach to each set Y the set of all functions

I - Y

from I to Y . To do that we use what at first may seem an odd notation.
For each set Y let

I ⇒ Y

be the set of all functions from I to Y . This gives us two endo-functors

−× I I ⇒ −

on Set . Recall that each function

X2
k - X1 Y1

l - Y2

is sent to
X2 × I - X1 × I I ⇒ Y1

- I ⇒ Y2

(x, i) - (k(x), i) p - l ◦ p
respectively.

To show that

−× I a I ⇒ −

we at least require an inverse pair of bijections.

f - f]

Set [X, I ⇒ Y] Set [X × I, Y]
g[� g

for each pair X,Y of sets. This is an almost trivial exercise. In many
mathematical situations we wouldn’t even distinguish between f and f],
nor between g and g[. We should also prove that each of (·)] and (·)[is
natural. For this example, that is not difficult, but let’s leave it until we
have more of an understanding of what it entails.

For the record let us state the result we are aiming at.

5.2.1 Theorem For each set I, we have

−× I a I ⇒ −

an adjunction of endofunctors on Set .

As with any adjunction, this one has a unit and a counit

X
ηX- I ⇒ (X × I) (I ⇒ Y)× I

εY- Y

natural in X and Y , respectively. Here these are more or less obvious.

160 5. Adjunction

Exercises

5.2.3 Write down the definitions of (·)] and (·)[. These two assignments
are little more than inserting or omitting brackets.

5.2.4 Write down the unit and counit, and show that each is natural.

5.2.3 A topological example

In this block we re-do the adjunction of Block 5.2.2 with Set replaced
by Top. As we will see this is not entirely straight forward. We need to
impose appropriate conditions on the pivotal object I.

With this kind of result there are two interacting themes, a general and
a particular. The general theme is that of the categorical constructions
and calculations. Here we find that most of these have been done in
Block 5.2.2. That is why we did that simple example before this one.
The particular theme is that of handling the topological restrictions.
It is useful whenever possible to separate the two themes. Category
theory is good at handling the generalities. By separating these from
the particularities we see more clearly the specific content of a result.

As in the Set example, in this Top case there are three players, the
central fixed object I and the two varying objects X and Y . Here all
three of X, I, Y are topological spaces, and any functor we produce must
return topological spaces and continuous maps.

Let

(X,OX) (I,OI) (Y,OY)

be topological spaces with carried families of open sets, the topologies.
We know that the cartesian product X× I carries the product topology.
This is the smallest topology for which the two projections

X × I - X X × I - I

are continuous. Thus for each U ∈ OX and W ∈ OI the product U ×W
is open in X × I, and this set of products forms a subbase of the whole
topology. This space X × I with these two continuous projections form
a product wedge in Top. Thus we have an endo-functor

−× I

on Top. Our aim is to find a right adjoint to this functor. And we want
this to be an enriched hom-functor.

5.2.3. A topological example 161

For spaces I and Y let

I ⇒ Y

be the set of all continuous maps from I to Y . This is smaller than the
set of all functions from I to Y , so perhaps we should use a different
notation. But we won’t. However, if you do become confused then try a
slightly different notation. With I fixed this certainly gives a functor

Top
I ⇒ −- Set

but this isn’t good enough. The functor must output to Top, not just
Set . This means we have to find a way of topologizing (I ⇒ Y).

Let

KI

be the family of compact subsets K of I. Before we continue make sure
you know what a compact subset is. Don’t go all quasi; it’s bad for you!

5.2.2 Definition For K ∈ KI and V ∈ OY let

〈K,V 〉

be the set of continuous maps

I
θ - Y θ[K] ⊆ V

with the indicated property, that is θ(i) ∈ V for all i ∈ K. The compact

open topology on (I ⇒ Y) has the family of all 〈K,V 〉 as a subbase.

This certainly topologizes (I ⇒ Y), but we want (I ⇒ −) to be an
endofunctor on Top, so we also need an action on arrows.

Consider any map ψ between two space, as on the left.

Y1
ψ - Y2 (I ⇒ Y1)

Ψ- (I ⇒ Y2)
θ - ψ ◦ θ

This induces an assignment Ψ between the two functions spaces, as on
the right. We check that Ψ is continuous. Consider any K ∈ KI and
V ∈ OY2. We need

Ψ←
(
〈K,V 〉

)
to be open in I ⇒ Y1. But a simple calculation gives

Ψ←
(
〈K,V 〉

)
= 〈K,ψ←(V)〉

which, since ψ is continuous, is open in (I ⇒ Y1). (Do that calculation.)

162 5. Adjunction

This gives the arrow assignment for (I ⇒ −), and the functorial prop-
erties are almost immediate.

We have a pair of endo-functors on Top, but these don’t necessarily
form an adjoint pair. For that we need I to be a particular kind of space.

Read the following definition carefully.

5.2.3 Definition A topological space I is locally compact if for each
situation

r ∈ V ∈ OI

we have

r ∈W ⊆ K ⊆ V

for some K ∈ KI and W ∈ OI.

With these preliminaries we have the following. We prove this shortly.

5.2.4 Theorem For each locally compact space I, we have

−× I a I ⇒ −

an adjunction of endofunctors on Top.

Theorem 5.2.4 is important in its own right, but it also has an impor-
tant refinement. Consider the case where I is the real interval [0, 1], and
we modify the two spaces

X × I I ⇒ Y

to produce the

suspension space of X loop space of Y

respectively. A loop in the space Y is a continuous map

` : I - Y

with `(0) = `(1). We consider the set of all such loops as a subspace of
I ⇒ Y . We modify the product space X × I by pinching together all
points

(x, 0) for x ∈ X

and all points

(x, 1) for x ∈ X

5.2.3. A topological example 163

to obtain two pinch points. Technically we take a certain quotient space
of X × I. It can be shown that

Suspension a Loop

by adding to the proof of Theorem 5.2.1. (There are some technicalities
that I have omitted, but this description is not too far from the truth.)

The proof of Theorem 5.2.4 will take some time. We will do it in
little bits as we get to know the general categorical notions. The overall
method of proof is the same as for Theorem 5.2.1 with an extra layer of
complexity. We must check that various functions are continuous.

Throughout we fix I, an arbitrary locally compact space.
The first thing we must do is set up an inverse pair of assignments

φ - φ]

Top[X, I ⇒ Y] Top[X × I, Y]
ψ[� ψ

for arbitrary spaces X and Y . In fact we use the same trick as for the
Set case. Thus we set

ψ[(x)(i) = ψ(x, i) φ](x, i) = φ(x)(i)

for each x ∈ X and i ∈ I. Of course, we must show that φ] and ψ[are
continuous, but once we have done that the rest of the proof is trivial
(as for the Set case).

We look first at the construction

ψ[� ψ

since this doesn’t make use of the local compactness of I. We are given
a continuous function

X × I
ψ - Y

where X × I carries the product topology. Since ψ is continuous we see
that for each x ∈ X the function

ψ(x, ·) : I - Y

is continuous. Thus we may define a function

ψ[: X - (I ⇒ Y) by ψ[(x)(i) = ψ(x, i)

for each x ∈ X and i ∈ I. Our job is to show that ψ[is continuous,
where (I ⇒ Y) carries the compact open topology.

164 5. Adjunction

5.2.5 Lemma For each pair X and Y of topological spaces, and each
continuous map

X × I
ψ - Y

the induced function

X
ψ[- (I ⇒ Y)

as defined above is continuous.

Proof Consider any subbasic open set

〈K,V 〉

of (I ⇒ Y), where

K ∈ KI V ∈ OY

are the two components. We require

ψ←[
(
〈K,V 〉

)
to be open in X. Consider any member s of this set. We require

s ∈ U ⊆ ψ←[
(
〈K,V 〉

)
for some U ∈ OX. We have

ψ[(s) ∈ 〈K,V 〉

that is

ψ(s, i) = ψ[(s)(i) ∈ V

for i ∈ K. We now use the continuity of ψ and the compactness of K.

Next we look at the construction

φ - φ]

and this does make use of the local compactness of I.

5.2.6 Lemma Let I be a locally compact topological space. For each
pair X and Y of topological spaces, and for each continuous map

X
φ- (I ⇒ Y)

where (I ⇒ Y) carries the compact open topology, there is a continuous
map

X × I
φ] - Y

5.2.3. A topological example 165

given by

φ](x, i) = φ(x)(i)

for each x ∈ X and i ∈ I.

Proof Consider any V ∈ OY and any member

(s, r) ∈ φ]←(V)

of the inverse image of V across φ]. Remembering how X × I is topolo-
gized, it suffices to produce open neighbourhoods

s ∈ U ∈ OX r ∈W ∈ OI

such that

U ×W ⊆ φ]←(V)

holds. We satisfy the conditions in turn.
We know that

φ(s) : I - Y

is continuous, and hence

φ(s)←(V)

is open on I. But

φ(s)(r) = φ](s, r) ∈ V

so that

r ∈ φ(s)←(V)

and hence the local compactness of I gives

r ∈W ⊆ K ⊆ φ(s)←(V)

for some K ∈ KI and W ∈ OI. This W is one of the open sets we need.
The pair K and V give us a subbasic open set

〈K,V 〉

of I ⇒ Y . Thus, since φ is continuous, we see that

U = φ←
(
〈K,V 〉

)
is open in X. We check that this is the other open set we need.

166 5. Adjunctions

This sets up the inverse pair of bijections for a given pair X,Y . How-
ever, we need these bijections to be natural for variation of X and Y .
We can postpone a proof of that for a while until we have analysed the
general notion in more detail. However, I can tell you that the proof is
exactly the same as for the Set case. There is no more work to be done.

Exercises

5.2.5 Fill in the details required to show that I ⇒ − is an endo-functor
on Top. Many of the calculations are the same as for the Set case.

5.2.6 Complete the proof of Lemma 5.2.5. As a hint for a fixed s let i
range through K to obtain an open covering of K.

5.2.7 Complete the proof of Lemma 5.2.6. As a hint observe that for
i ∈ I we have

i ∈ K =⇒ i ∈ φ(s)←(V) =⇒ φ(s)(i) ∈ V

and hence s ∈ U .

5.2.8 For the Top adjunction write down the unit and the counit, and
show that each is natural.

5.3 Adjunctions uncouple

In this and the next two sections we look at various aspects of Definition
5.1.1. As we do this you should keep going back to the examples of
Section 5.2. This will help you understand the general notions. The Set

example is always a good place to start, but you should also investigate
at least one of the other two examples.

To form an adjunction the data

(F, G, (·)], (·)[)

must satisfy two requirements; the bijection requirement, and the nat-
urality requirement. The bijection requirement is easy to understand.
The naturality requirement needs to be looked at.

The naturality property can be split into several smaller parts. Fur-
thermore, these can be put together in different ways, sometimes in
conjunction with unit or co-unit properties, to determine an adjunction.
We begin to look at these combinations in this section.

5.3. Adjunctions uncouple 167

(Bij) For all

Src Trg

A objects S

A
f - GS arrows FA

g - S

from the indicated categories, both

(f])[= f (g[)
] = g

hold.

(Nat) For all

Src Trg

B A objects S T

B
k - A S

l - T
arrows

A
f
- GS FA

g
- S

from the indicated categories, both

(]) (G(l) ◦ f ◦ k)] = l ◦ f] ◦ F (k) G(l) ◦ g[◦ k = (l ◦ g ◦ F (k))[([)

hold.

Table 5.1 The various requirements for an adjunction

The bijection requirement, (Bij), is given in Table 5.1. It merely says
that for each pair of objects A ∈ Src and S ∈ Trg , the two assignments

f - f]

Src[A,GS] Trg [FA, S]
g[� g

form an inverse pair of bijections. Each of (·)] and (·)[determines the
other. Thus in any particular example it suffices to mention just one of
them, and say that it is a bijection. Its inverse is the other one.

The naturality requirement, (Nat), is more complicated. It says that
each of the transposition assignments (·)] and (·)[is natural. But what
does that mean?

168 5. Adjunctions

Recall that we may form a product category

Src ×Trg

whose objects are pairs

(A,S)

of objects A ∈ Src and S ∈ Trg . We won’t say what the arrows are just
yet, and you will see why in just a moment. The two functors F and G

give functors F and G

(A,S)
F - Trg [FA, S]

Src ×Trg - Set

(A,S)
G
- Src[A,GS]

to the category of sets. Now you can see that we have to be a bit careful.
Arrows sets have different variance, namely

[Contra , Co]

in the two positions. Technically we are dealing with a pair of functors

Srcop ×Trg
F -

G
- Set

where we use the opposite of Src. The naturality requirement (Nat) says
that (·)] and (·)[provide natural isomorphisms between F and G.

That does describe the requirements, but let’s look more closely.
Consider a pair of arrows from the two categories.

B
k - A S

l - T

Notice how we have anticipated the contravariance on the Src compo-
nent. The pair (k, l) form an arrow in the product category

Srcop ×Trg

which is the source of both F and G. Using (k, l) we obtain the pair of
commuting diagrams in Set given in Table 5.2. Each arrow

A
f - GS of Src FA

g - S of Trg

is sent to

B
G(l) ◦ f ◦ k- GT FB

l ◦ g ◦ F (k)- T

respectively

5.3. Adjunctions uncouple 169

Each pair (k, l) of arrows induce commuting diagrams

B
k - A S

l - T

(A,GS) (FA, S)

(B,GS)

− ◦ k

�
(A,GT)

G(l) ◦ −
-

(FB, S)

− ◦ F (k)

�
(FA, T)

l ◦ −
-

(B,GT)

λ

? − ◦ k
�

G(l) ◦ − -

(FB, T)

ρ

? − ◦ F (k)
�

l ◦ − -

where the components are as follows.

(A,GS) = Src[A,GS] (FA, S) = Trg [FA, S]

(B,GS) = Src[B,GS] (FB, S) = Trg [FB, S]

(A,GT) = Src[A,GT] (FA, T) = Trg [FA, T]

(B,GT) = Src[B,GT] (FB, T) = Trg [FB, T]

λ = G(l) ◦ − ◦ k ρ = l ◦ − ◦ F (k)

Table 5.2 Two commuting diagrams in Set

Now, for given k and l, consider the two paths from G to F.

f - f]

Src[A,GS] (·)] - Trg [FA, S]

Src[B,GT]
?

(·)] - Trg [FB, T]
?

l ◦ f] ◦ F (k)
?

G(l) ◦ f ◦ k
?

- (G(l) ◦ f ◦ k)]

The naturality of (·)] is that these two paths agree for all k, l, f . In the
same way, the naturality of (·)[is that the two paths

g[� g

Src[A,GS] � (·)[Trg [FA, S]

G(l) ◦ g[◦ k
?

Src[B,GT]
?

� (·)[Trg [FB, T]
?

(l ◦ g ◦ F (k))[� l ◦ g ◦ F (k)
?

agree for all k, l, g.

170 5. Adjunctions

The naturality requirement, (Nat), is given in Table 5.1. It is stated
as two identities

(]) ([)

in the arrows k, l, f, g. You should note the type and naming of these
arrows. We invoke these identities many times, and we can’t always use
matching letters. And sometimes we need only some of the arrows. In
this account we try to stick to the notation used in (Nat). However,
sometimes we have to use different letters for the arrows, and sometimes
these seem to appear out of position.

We know that if each component of a natural transformation is a
bijection, then the inverse is also natural. This simplifies (Nat).

5.3.1 Lemma In the presence of (Bij), each of the two identities (]),
([) of (Nat) implies the other.

Proof Assuming (]) let’s check ([). For this we need arrows k, l, g of
the indicated type. Let f = g[to obtain the fourth arrow. From (Bij) we
have g = f]. Using (]) at the second step we have

(G(l) ◦ g[◦ k)] = (G(l) ◦ f ◦ k)] = l ◦ f] ◦ F (k) = l ◦ g ◦ F (k)

so that

G(l) ◦ g[◦ k = (l ◦ g ◦ F (k))[

by a second use of (Bij).

This shows that in (Nat) only one of the two identities (]) and ([) is
needed. So why did we bother to state both? Because some particular
examples are best handled using one condition rather than the other. In
fact, we can go even further. We can decompose each of (]) and ([) into
two bits, and use various combinations of these bits. By taking either k
or l to be an identity arrow we obtain four instances of (]) and ([).

(] ↑) (G(l) ◦ f)] = l ◦ f] ([↑) g[◦ k = (g ◦ F (k)[

(] ↓) (f ◦ k)] = f] ◦ F (k) ([↓) G(l) ◦ g[= (l ◦ g)[

In these each occurring arrow has the type given in (Nat). Also, each
condition is quantified. For instance, (] ↑) says

For each pair of arrows

A
f - GS S

l - T

we have . . .

5.3. Adjunctions uncouple 171

and requires only two arrows, as indicated.
The following gives many of the combinations you may meet.

5.3.2 Lemma Consider a pair of functors

Src
F -

�
G

Trg

and a pair of assignments (·)] and (·)[satisfying (Bij). Then

(] ↑)⇐⇒ ([↓) (] ↓)⇐⇒ ([↑)

and the data forms an adjunction precisely when one of the four pairs

(] ↑), ([↑)
(] ↑), (] ↓) ([↑), ([↓)

(] ↓), ([↓)

of conditions hold.

Proof The proof of the top two equivalences is more or less the same
as that of Lemma 5.3.1. We take

k = idA l = idS

as appropriate. Similarly, each adjunction satisfies the four conditions
(] ↑,] ↓, [↑, [↓).

It remains to verify that any one of the four pairs ensures that we
have an adjunction. Let’s look at the pair (] ↑,] ↓). It suffices to show

(] ↑,] ↓) =⇒ (])

and then invoke Lemma 5.3.1. Consider arrows k, l, f as in (Nat). Using
(] ↑) and then (] ↓) we have

(G(l) ◦ f ◦ k)] = l ◦ (f ◦ k)] = l ◦ f] ◦ F (k)

as required. Notice that (] ↑) is applied to the pair

B
f ◦ k- GS S

l - T

which is allowed by the quantified condition.

As you can see, there are several combinations of the structured data

(F, G, (·)], (·)[)

which lead to an adjunction. It is best not to try to remember the details,
but merely that there are variants.

172 5. Adjunctions

Exercises

5.3.1 Definition 5.1.1 requires that the bijections (·)], (·)[are natural
for variation of both A and S. In Lemma 5.3.1 both A and S vary at the
same time. What happens if we fix one of A,S and let the other vary?
What conditions arise out of that kind of naturality?

5.3.2 Consider the two algebraic constructions of Subsection 5.2.1. For
both case show that each of the two assignments (·)] and (·)[is natural.
In each case draw the square that must commute.

5.3.3 Consider the set-theoretic construction of Block 5.2.2. Show that
each of the two assignments (·)] and (·)[is natural. In each case draw
the square that must commute.

5.3.4 Consider the topological construction of Subsection 5.2.3. Show
that the two assignments (·)] and (·)[are natural. In each case draw the
square that must commute. Did you notice something about the proof?

5.4 The unit and the co-unit

In Section 5.1 the unit and the co-unit of an adjunction made a brief ap-
pearance, but were not part of the official gadgetry discussed in Section
5.2. In fact, the unit and co-unit are important attributes of an adjunc-
tion, and can be more important than the transposition assignments.
When appropriately restricted they can determine the adjunction.

5.4.1 Definition Given an adjunction, as in Definition 5.1.1, we set

ηA = (idFA)[εS = (idGS)]

for each

Src-object A Trg -object S

to obtain arrows

A
ηA- (G ◦ F)A (F ◦G)S

εS- S

the

unit co-unit

of the adjunction.

This section is devoted to an analysis of these gadgets. Naturally, we
begin with their most important property.

5.4. The unit and co-unit 173

5.4.2 Lemma The unit and the co-unit of an adjunction are natural.

Proof We deal with the unit. The co-unit is dealt with in a similar way.
Consider any arrow

B
k - A

of Src. We must show that the square

B
ηB- (G ◦ F)B ηB = (idFB)[

A

k

?

ηA
- (G ◦ F)A

(G ◦ F)(k)

?
ηA = (idFA)[

commutes, that is we must check that

(G ◦ F)(k) ◦ ηB = ηA ◦ k

holds. To do this we use the identity ([) of (Nat) twice, but in different
instantiations.

Thus with

B
idB - B FB

F (k)- FA

FB
idFB
- FB

and then

B
k - A FA

idFA- FA

FA
idFA
- FA

we have

G(F (k)) ◦ (idFB)[= (F (k) ◦ idFB)[= (idFA ◦ F (k))[= (idFA)[◦ k

as required. The central step is a trivial property of identity arrows.

Once we know the unit or co-unit of an adjunction, we can retrieve
the transposition assignments.

174 5. Adjunctions

5.4.3 Lemma Given an adjunction, as in Definition 5.1.1, we have

f] = εS ◦ F (f) g[= G(g) ◦ ηA

for all arrows f and g as in (Nat).

Proof We verify the left hand equality. Given an arrow

A
f - GS

we apply (] ↓) with the following component arrows.

(k) A
f - GS (f) GS

idGS
- GS

Thus

f] = (idGS ◦ f)] = (idGS)] ◦ F (f) = εS ◦ F (f)

as required.

By remembering Definition 5.4.1 and setting

f = ηA g = εS

we obtain an important particular case of this result.

5.4.4 Corollary Given an adjunction, as in Definition 5.1.1, we have

εFA ◦ F (ηA) = idFA G(εS) ◦ ηGS = idGS

for each Src-object A and Trg-object S.

These are important identities, for in appropriate circumstances they
determine the adjunction.

5.4.5 Theorem Let

Src
F -

�
G

Trg

be a pair of functors, and let

IdSrc
η- G ◦ F F ◦G

ε- IdTrg

be natural transformations satisfying the identities of Corollary 5.4.4.
Then η and ε are the unit and co-unit of a unique adjunction F a G.

5.4. The unit and co-unit 175

Proof By Lemma 5.4.3, if this data does arise from an adjunction then

f] = εS ◦ F (f) g[= G(g) ◦ ηA

for all arrows

A
f - GS FA

g - S

of Src and Trg , respectively. Thus it suffices to show that these two as-
signments (·)], (·)[form an inverse pair of bijections which satisfy (Nat).

The given naturality of η ensures that

A
ηA- (G ◦ F)A

GS

f
?

ηGS
- (G ◦ F ◦G)S

G(F (f))
?

commutes. With this and one of the given conditions we have

(f])[= (εS ◦ F (f))[by the definition of (·)]

= G(εS ◦ F (f)) ◦ ηA by the definition of (·)[
= G(εS) ◦G(F (f)) ◦ ηA by the functorality of G
= G(εS) ◦ ηGS ◦ f by the above naturality
= idGS ◦ f by the given right hand identity
= f by the neutral property of idGS

to give one half of the bijection property. The other half (g[)] = g is
proved in the same way.

The required naturality can be verified in several ways. Let’s go for
(]). Consider arrows k, l, f as in (Nat). The naturality of ε ensures

(F ◦G)S
εS- S

(F ◦G)T

F (G(l))
?

εT
- T

l
?

commutes. Using this we have

l ◦ f] ◦ F (k) = l ◦ εS ◦ F (f) ◦ F (k) by the definition of (·)]

= l ◦ εS ◦ F (f ◦ k) by the functorality of F
= εT ◦ F (G(l)) ◦ F (f ◦ k) by the naturality from above
= εT ◦ F (G(l) ◦ f ◦ k) by the functorality of F
= (G(l) ◦ f ◦ k)] by the definition of (·)]

to give (]). The identity ([) can be verified in the same way.

176 5. Adjunctions

For any particular adjunction only some of the data

(F, G, (·)], (·)[, η, ε)

is needed. However, given an adjunction you should get into the habit
of working out what each component is.

Exercises

5.4.1 Show that the counit of an adjunction is natural.

5.4.2 Show how to retrieve the transposition (·)[from the unit η.

5.4.3 Do the other half of the proof of Theorem 5.4.5.

5.4.4 Consider the two algebraic constructions of Block 5.2.1.
Show that for each set X and algebra A there are assignments

X
ηX- (U ◦ Σ)X (Σ ◦ U)A

δA- A

(U ◦Π)X
εX- X A

ζA- (Π ◦ U)A

where δA and ζA are morphisms.
Show that each of the families η, ε, δ, ζ is a natural transformation.

5.4.5 For the two algebraic constructions of Block 5.2.1, verify directly
the identities of Lemma 5.4.3 and Corollary 5.4.4. In each case draw the
composite arrow that is dealt with.

5.4.6 For the set-theoretic and topological constructions of Block 5.2.2
and 5.2.3, verify directly the identities of Lemma 5.4.3 and Corollary
5.4.4. In each case draw the composite arrow that is dealt with.

5.5 Free and co-free constructions

Adjunctions can arise in several different guises and even disguises, and
some of these don’t look at all like the official notion. These differences
are probably the reason why the general notion wasn’t recognized earlier.
In this section we look at two such examples. You will recognize the
notions from earlier. They are the idea of the universal

free co-free

solution across a functor which now need not be forgetful.

5.5. Free and co-free constructions 177

I am going to describe the two notions in parallel. I suggest that you
read just one side first, and perhaps the free side is easier. Once you
are almost happy with that, go through the other side. You should note
the symmetry between the two sides. At the first reading do not try to
connect the ideas with that of an adjunction, even though some of the
notation is the same. We will sort that out later.

For both notions we again have a pair

Src Trg

of categories. But now we have just one functor

free co-free

Src �
G

Trg Src
F - Trg

depending on which side we are considering, as indicated. Often in par-
ticular examples this is a forgetful functor, but need not be.

The idea is that we want to convert each

Src-object A Trg -object S

into an object of the other category. Furthermore, we want to do this in
the most economical fashion. Thus we pose two problems, the

free problem co-free problem

respectively. (In fact, we don’t say what the problem is, we merely say
what a solution is.)

For the problem a solution is an arrow

A
f - GS FA

g - S

comparing a

Src-object A Trg -object S

with a transposed

Trg -object S Src-object A

respectively. Note the direction of the comparison. It is from Src to Trg

in both problems. The difference between the two problems is the object
that is transported to the other side.

178 5. Adjunctions

We look for a universal solution to the problem which applies to each

Src-object A Trg -object S

respectively. We might think of this as a uniform universal solution. Thus
we look for an object assignment

Src Trg Src Trg

A - FA GS � S

together with a selected arrow

A
ηA- (G ◦ F)A (F ◦G)S

εS- S

for each object. Observe that, as yet, part of the solution is just an object
assignment, not a functor. (Eventually we show that it is a functor, but
that is not part of the required solution.)

So far these gadgets merely select a solution to the problem. We want
a universal solution, a solution through which each other solution must
factor uniquely.

5.5.1 Definition The notions of a

free co-free

solution are defined in unison as in Table 5.3. You should read each
column separately, perhaps starting with the free (left hand) column.

This definition looks quite complicated. The way to remember it is

For each f there is a f] such
that the triangle commutes.

For each g there is a g[such
that the triangle commutes.

and then let the parent object A or S vary.
In due course we will see that having a free or co-free solution is

equivalent to the given functor having an adjoint on the appropriate
side. In fact, sometime Definition 5.5.1 is taken as the official definition
of an adjunction, and that is certainly a useful way of remembering some
of the facets of adjunctions. However, there are certain generalizations
of the notion of an adjunction (where the sets of arrows are given some
other structure). In those circumstances the free/co-free version doesn’t
work so well.

In this section we do two things. We show first how an adjunction
gives a free and a co-free solution. Then we show how every free and
co-free solution arises from an adjunction.

5.5. Free and co-free constructions 179

Free

Let

Src �
G

Trg

be a functor and consider

A - FA

an object assignment in
the other direction. A Src-
indexed family

A
ηA- (G ◦ F)A

of Src-arrows form a

G-free

solution if for each Src-arrow

A
f - GS

with S ∈ Trg , there is a
unique Trg -arrow

FA
f]
- S

such that

A
f - GS

(G ◦ F)A
G(f])

-

ηA -

commutes.

Co-Free

Let

Src
F - Trg

be a functor and consider

GS � S

an object assignment in
the other direction. A Trg -
indexed family

(F ◦G)S
εS- S

of Trg -arrows form a

F -co-free

solution if for each Trg -
arrow

FA
g - S

with A ∈ Src, there is a
unique Src-arrow

A
g[- GS

such that

FA
g - S

(F ◦G)S

εS

-

F (g[) -

commutes.

Table 5.3 Free and Co-Free solutions

180 5. Adjunctions

5.5.2 Theorem Let

Src

F -
a�
G

Trg

be an adjunction with associated gadgets in standard notation.
The object assignment F , the unit η, and the transposition (·)] provide

the data for a G-free solution.
The object assignment G, the co-unit ε, and the transposition (·)[pro-

vide the data for a F-co-free solution.

Proof We look at the free result.
Consider any arrow

A
f - GS

of Src. We first check that

A
f - GS

(G ◦ F)A
G(f])

-

ηA -

does commute (and then consider the required uniqueness). We use the
selection of arrows

A
idA - A FA

f] - S

FA
idFA
- FA

and then apply ([) of (Nat). Thus

G(f]) ◦ ηA = G(f]) ◦ (idFA)[◦ idA = (f] ◦ idFA ◦ F (idA))[= (f])[= f

as required.
For the uniqueness we consider any arrow

FA
g - S for which f = G(g) ◦ ηA

and show that, in fact, g = f]. We use the selection of arrows

A
idA - A FA

g - S

FA
idFA
- FA

5.5. Free and co-free constructions 181

and then apply ([) of (Nat). Thus

f = G(g) ◦ ηA
= G(g) ◦ (idFA)[

= G(g) ◦ (idFA)[◦ idA

= (g ◦ idFA ◦ F (idA))[= g[

and hence

g = (g[)] = f]

by a use of (Bij).

This shows that each adjunction gives universal solutions of both par-
ities. The more important result is that every universal solution must
arise from an adjunction.

5.5.3 Theorem Let

Src �
G

Trg

be a functor, and suppose

F η (·)]

is the data that provides a G-free solution. Then the object assignment
F fills out to a functor for which

F a G

with (·)] as the transposition assignment and η as the unit.

Proof The proof is quite long, but not very deep. There are many small
parts each of which is straight forward. The G-free solution says

For each arrow f (of a certain kind), there
is a unique arrow f] (to do a certain job).

and it is this uniqueness that is important. We use it some 8 or 9 times.
We must first produce an arrow assignment to create the functor F .

Consider any arrow

B
k - A

of Src, so that an arrow

FB
F (k)- FA

is required together with some appropriate properties.

182 5. Adjunctions

Let f be the composite

B
k - A

ηA- (G ◦ F)A

and consider the commuting square

B
k - A

(�)

(G ◦ F)B

ηB
?

G(f])
- (G ◦ F)A

ηA
?

provided by the G-free solution. Here we have

FB
f] - FA

and we take this to be F (k). Thus, we set

F (k) = (η ◦ k)]

for each Src-arrow k, as above.
This gives an arrow assignment. We show that F is a functor. We

check that F passes across composition, and preserves identity arrows.
Consider a composite

C
l - B

k - A with m = k ◦ l

in Src. We require

F (m) = F (k) ◦ F (l)

in Trg . Remember what F (m) is. It is the unique arrow

FC - FA

such that

C
m - A

(G ◦ F)C

ηC
?

G(F (m))
- G(◦F)A

ηA
?

5.5. Free and co-free constructions 183

commutes. But, by construction of F (k) and F (l), both of the squares

C
l - B

k - A

(G ◦ F)C

ηC
?

G(F (l))
- (G ◦ F)B

ηB
?

G(F (k))
- (G ◦ F)A

ηA
?

commute, and hence

C
m - A

(G ◦ F)C

ηC
?

G(F (k) ◦ F (l)) = G(F (k)) ◦G(F (l))
- G(◦F)A

ηA
?

commutes (for we know that G is a functor). The uniqueness now gives

F (k ◦ l) = F (m) = F (k) ◦ F (l)

which is what we want.
We must check that F preserves identity arrows, that is

F (idA) = idFA

for each object A of Src. But F (idA) is the unique arrow

FA
g - FA

such that

A
idA - A

(G ◦ F)A

ηA
?

G(g)
- (G ◦ F)A

ηA
?

commutes. Since

G(idFA) = id (G◦F)A

we see that

g = idFA

does make this latest square commute, and hence

F (idA) = g = idFA

by yet another appeal to the uniqueness.

184 5. Adjunctions

This gives us a functor F , and the commuting square (�) shows that
η is natural. We now check that

F a G

using the assignment (·)].
We look first at (Bij). Fix A ∈ Src and S ∈ Trg . We certainly have

an assignment

Src[A,GS] - Trg [FA, S]
f - f]

between the indicated arrow sets.We show that this is a bijection (and
then (·)[is its inverse). By definition of G-free, for each arrow

A
f - GS

the arrow

FA
g = f]- S

must ensure that

A
f - GS

(5)

(G ◦ F)A
G(g)

-

ηA -

commutes, and is the unique arrow to do this.
To show that (·)] is injective, suppose

f]1 = f]2

for two arrows taken from Src[A,GS]. Then

f1 = G(f]1) ◦ ηA = G(f]1) ◦ ηA = f2

as required. To show that (·)] is surjective, consider any arrow g taken
from Trg [FA, S]. Let

f = G(g) ◦ ηA

so that (5) commutes. But now, by the uniqueness we have

f] = g

to give the required result.

5.5. Free and co-free constructions 185

Next we verify (Nat). We already have (Bij) so it suffices to check (]).
To this end consider arrows

B
k - A S

l - T

A
f
- GS

and let

h = (G(l) ◦ f ◦ k)]

so that

h = l ◦ f] ◦ F (k)

is our problem. By construction, h is the unique arrow

FB
h - T

such that

B - A
f - GS

G(l)- GT

(G ◦ F)B
G(h)

-

ηB -

commutes. Now consider the diagram

B - A
f - GS

G(l)- GT

(G ◦ F)B

ηB
?

(G ◦ F)(k)
- (G ◦ F)A

G(f])

-

ηA -

and observe that the left hand square and central triangle do commute.
Since G is a functor, this gives a commuting triangle

B - A
f - GS

G(l)- GT

(G ◦ F)B
G(l ◦ f] ◦ F (k))

-

ηB -

and hence once again the uniqueness is the answer to our problem.

186 5. Adjunctions

Don’t go away just yet, for we haven’t quite finished. Read the state-
ment of the result again. This says that under the given circumstances
we have

F a G

with (·)] as the transposition assignment and with η as the unit. We still
have this last clause to verify.

We require

ηA = (idFA)[

for each object A of Src. With S = FA, consider the arrow

A
ηA - GS

of Src. What is the job done by η]. It is the unique arrow

FA
g - S

such that

A
ηA - GS

(G ◦ F)A
G(g)

-

ηA -

commute. But clearly, since

G(idFA) = idGS

we see that

g = idFA

does this job, and hence

η]A = idFA

by a final appeal to uniqueness. Since (·)[is the inverse of (·)], we have

ηA = (η]A)[= (idFA)[

as required.

Now you can relax, but not too much. You have to do the co-free
proof.

5.5 Exercises 187

Exercises

5.5.1 Finish the proof of Theorem 5.5.2. That is, do the co-free part.

5.5.2 Do the co-free analogue of Theorem 5.5.3.

5.5.3 In this exercise the forgetful functor has been omitted. You
should insert it where necessary.

Consider the algebraic construction of Block 5.2.1. Using the object
assignment X - ΣX given there, and the function

X
ηX - ΣX

given by Exercise 5.4.4, show that for each function

X
f - A

from a set to an algebra, there is a unique morphism

ΣX
f] - A

such that the following commutes in Set .

X
f - A

ΣX
f]
-

ηX
-

This shows that ΣX is the free algebra generated by X, via ηX .

5.5.4 In this exercise the forgetful functor has been omitted. You
should insert it where necessary.

Consider the algebraic construction of Block 5.2.1. Using the object
assignment X - ΠX given there, and the function

ΠX
εX - X

given by Exercise 5.4.4, show that for each function

A
g - X

from an algebra to a set, there is a unique morphism

A
g[- ΠX

188 5. Adjunctions

such that the following commutes in Set .

A
f - X

ΠX
εX
-

g[
-

This shows that ΠX is the co-free algebra co-generated by X, via εX .

5.5.5 Verify the free and co-free properties for the constructions of
Blocks 5.2.2 and 5.2.3.

5.6 Contravariant adjunctions

We have looked at adjoint pairs of covariant functors. There is a similar
notion for contravariant functors. In some ways this is easier because the
notions are completely symmetric between the two component functors.

5.6.1 Definition Let

Alg
S- Spc Alg �

A
Spc

be a pair of contravariant functors between a pair of categories These
form a contravariant adjunction if for each

Alg -object A Spc-object S

there is a bijective correspondence

Alg [A,AS] Spc[S,SA]
f - fσ

φα � φ

between the two arrow sets. Furthermore, this correspondence must be
natural for variation of A and S.

The notation here is chosen to be suggestive. The two categories

Alg Spc

are often of an

algebraic spatial

nature. Each of the two functors

A S

is named after its target.

5.6 Exercises 189

As with a covariant adjunction, each identity arrow

AS
idAS- AS SA

idSA- SA

can be transferred to the other side to produce arrows

A
h- (A ◦S)A S

η- (S ◦ A)S

the analogues of the unit. Often one or both of these form a representa-
tion of the parent object in terms of a gadget of the other kind. At the
heart of many representation result there is a contravariant adjunction.
Exercise 5.6.2 looks at some of the details of this.

The required naturality is worth looking at. Consider a pair of arrows

B
l - A T

λ - S

from the two categories. These induce square

f Alg [A,AS] � - Spc[S,SA] φ

f•
?

Alg [B,AS]
?

� - Spc[T,SB]
?

ψ•
?

between the arrow sets, which must commute. Here, for arrows f and φ
as indicated, we have

f• = A(λ) ◦ f ◦ l φ• = S(l) ◦ φ ◦ λ

and we require

f•α = fσ• φα• = φ•σ

to hold.

Exercises

5.6.1 In this exercise we first set up two contravariant functors

Pos
Υ- Top Pos �

O
Top

between the category of posets and monotone functions and the category
of topological spaces and continuous maps. We then show that these for
a contravariant adjunction.

(a) The functor O views the topology OS of a space S as a poset.
Where have you seen this functor before?

190 5. Adjunctions

(b) For each poset A let ΥA be the family of upper sections of A. For
each finite subset a of A let 〈a〉 be the subset of ΥA given by

p ∈ 〈a〉 ⇐⇒ a ⊆ p

for p ∈ ΥA. Show that these subsets form a base for a topology on ΥA.
(c) Show that for each monotone function

A
f - B

between poset, the inverse image map

ΥB
φ = f←- ΥA

is continuous (relative to the carried topologies), and hence Υ is a con-
travariant functor.

(d) Show that the two functors form a contravariant adjunction.
(e) Describe the two units and show that each is an arrow of the

appropriate category.
(f) Can you see a neater way of setting up this adjunction?

5.6.2 In this exercise we look at the idea of a schizophrenically induced
contravariant adjunction. Not all the details are dealt with, so we take
some on trust.

Suppose we have two Set-based categories.

Alg Spc

Thus each object is a furnished set and each arrow is a function of a
certain kind. In many examples one has an algebraic nature and the
other has a spatial nature, hence the notation used here. Suppose we
have a gadget F which lives in both categories. That is we have a set
that can be furnished in two ways to produce a Alg -object or a Spc-
object. This is the schizophrenic object.

For each

A ∈ Alg S ∈ Spc

we have arrows set

Alg [A,F] Spc[S,F]

in other words we have contravariant hom-functors

Alg - Set Spc - Set

5.6. Exercises 191

where the behaviour on arrows is via composition. The nature of F
enables us to enrich

SA = Alg [A,F] AS = Spc[S,F]

so that they are objects of

Spc Alg

respectively. This step is not routine; it is concerned with the non-
categorical aspects of the situation under analysis. We don’t worry about
the details here. When the construction works these enrichments are
compatible with composition, to give a pair of contravariant functors

Alg
S- Spc Spc

A - Alg

between the categories. The functorial behaviour is simply that of a
hom-functor. The enrichments are carried along almost without effort.

This exercise shows these functors form a contravariant adjunction.
(a) Show that for each pair of objects A ∈ Alg and S ∈ Spc there is

a bijective correspondence

Alg [A,AS] Spc[S,SA]
f < > φ

between the two arrow sets. (To do this observe that the function types
curries and then chip the inputs, but don’t make a meal of it.)

(b) Show that this correspondence is natural for variation of A and
S. You need only worry about the Set aspects.

(c) Write down the two units

A
hA- (A ◦S)A S

ηS- (S ◦ A)S

for arbitrary A ∈ Alg and S ∈ Spc.

6

Posets and monoid sets

In this last chapter we look at some examples of adjunctions. These are
divided into two groups. In Sections 6.1 – 6.6 we look at two ways that
a poset can be completed. In Sections 6.7 – 6.11 we look at two ways
that a set can be converted into an R-set for a given monoid R. For both
groups most of the details are left as an exercise.

Finally, in Section 6.12 several small projects are suggested. Each is to
modify one of the various adjunctions discussed earlier. All the answers
are known, but some of them are not as well-known as they should be.

6.1 Posets and complete posets

Let Pos be the category of posets and monotone maps. We have used
these on several occasions to illustrate various notions. We are concerned
here also with the class of complete posets, those which have all suprema
and all infima. At first sight these appear to form a subcategory of Pos,
but a closer look shows they are the objects of two categories. We need
to take some care with the comparison arrows between complete posets.
Each of these two subcategories is reflective in Pos. We look at the
details of these two reflections.

Exercises

6.1.1 Let

S
f - T

be a monotone map between to complete posets. Find a necessary and
sufficient condition that f has a right adjoint. What about the existence
of a left adjoint?

6.2 Two categories of complete posets 193

6.2 Two categories of complete posets

Let’s collect together the various standard notions that we need.

6.2.1 Definition Le S be an arbitrary poset, and let X be an arbitrary
subset of S. A(n)

upper lower

bound for X in S is an element a ∈ S such that

x ≤ a a ≤ x

for each x ∈ X.
The

supremum
∨
X infimum

∧
X

of X in S is an upper bound a such that

a ≤ b b ≤ a

for each other

upper lower

bound of X. In other words, it is the

least upper greatest lower

bound of X in S.

Of course, any given X ⊆ S need not have an upper bound in S. Even
if it does, it need not have a supremum in S. Similarly, it need not have
a lower bound, and even if it does, in need not have an infimum. Thus
the existence of such elements imposes a restriction on the poset S.

6.2.2 Definition A poset S is∨
-complete

∧
-complete

if ∨
X

∧
X

exists for each subset X of S.

The following simple observation is sometimes a surprise.

6.2.3 Lemma A poset S is
∨

-complete if and only if it is
∧

-complete.

194 6. Posets and monoid sets

The two properties of Definition 6.2.2 are equivalent. So why don’t we
simply refer to a complete poset rather than try to distinguish between
two kinds? That is the common practice, and we will follow that here.
However, when we try to make a category out of complete posets we
find there are at least two possibilities. For those categories we need the
terminology of Definition 6.2.2.

6.2.4 Definition Let S, T be a pair of complete posets. A∨
-morphism

∧
-morphism

between the two is a monotone map

S
f - T

such that

f(
∨
X) =

∨
f [X] f(

∧
X) =

∧
f [X]

for each X ⊆ S.

Here f [·] indicates the direct image function across f . Thus

f(
∨
X) =

∨
{f(x) |x ∈ X} f(

∧
X) =

∧
{f(x) |x ∈ X}

are the two extra restrictions on the monotone function f . However, a∨
-morphism need not be a

∧
-morphism, and conversely.

Almost trivially these respective morphisms are closed under compo-
sition, so the following makes sense.

6.2.5 Definition Complete posets are the objects of the two categories

Sup Inf

and the arrows are the∨
-morphisms

∧
-morphisms

respectively.

Trivially, we have a pair of forgetful functors

Pos � Sup Pos � Inf

and we aim to produce a left adjoint for each of these. Thus we require
two kinds of completion processes for posets.

6.2 Exercises 195

Exercises

6.2.1 When does ∨
∅
∨
S

∧
∅
∧
S

exists in a poset S, and in each case what is the element?

6.2.2 Find examples of a poset S and a subset X where X has

an upper a lower

bound but ∨
X

∧
X

does not exists. Can you find such examples in a finite poset?

6.2.3 Prove Lemma 6.2.3.

6.2.4 Find an example of a
∨

-morphisms that is not a
∧

-morphism.
Find an example of a monotone map between complete posets that is

not a
∨

-morphism.

6.3 Sections of a poset

To complete a poset we use certain of its subsets.

6.3.1 Definition Let S be an arbitrary poset. A subset X ⊆ S is

a lower section an upper section

of S if,

x ∈ X
y ≤ x

}
=⇒ y ∈ X x ∈ X

x ≤ y

}
=⇒ y ∈ X

for all x, y ∈ S.

Observe that

X lower =⇒ X ′ upper X upper =⇒ X ′ lower

where (·)′ produces the complement in S. Thus there is a bijective
correspondence between the lower sections and the upper sections of S.

196 6. Posets and monoid sets

6.3.2 Definition Let S be an arbitrary poset. For each X ⊆ S we let

↓X ↑X

be the

lower section upper section

generated by X. Thus

y ∈ ↓X ⇐⇒ (∃x ∈ X)[y ≤ x] y ∈ ↑X ⇐⇒ (∃x ∈ X)[x ≤ y]

for each y ∈ S.
We also let

↓a = ↓{a} ↑a = ↑{a}

be the principal

lower upper

section generated by the element a ∈ S. Thus

y ∈ ↓a⇐⇒ y ≤ a y ∈ ↑a⇐⇒ a ≤ y

for each y ∈ S.

The family of all lower sections of S is a poset under inclusion. We
use this poset as the object assignment of at least two functors.

6.3.3 Definition For each poset S we let LS be the poset of all lower
sections of S under inclusion.

It is easy to show that LS is closed under arbitrary unions and in-
tersection, and so LS is a complete poset. We use this to form two
completions of S.

6.3.4 Definition For each poset S and element a ∈ S we set

η∃S(a) = ↓a η∀S(a) = (↑a)′

to obtain the assignments

S
η∃S - LS S

η∀S - LS

respectively.

It is easy to show that each of η∃S and η∀S is monotone, although the
second one does require just a little bit more thought.

6.3 Exercises 197

Exercises

6.3.1 Show the following for an arbitrary poset.
The union of a family of lower sections is a lower section.
Each lower section is the union of a family of principal lower sections.
The intersection of a family of lower sections is a lower section.

6.3.2 Show that each of η∃S and η∀S is monotone.

What about the assignment a - ↑a?

6.4 The two completions

For each poset S the associated poset LS of lower sections is closed
under arbitrary unions and intersection, and so is a complete poset.
Also S is connected to LS by two different monotone maps η∃ and η∀.
We investigate the properties of these maps, and in due course we show
they are reflecting maps.

6.4.1 Lemma Let S be an arbitrary poset. We have

↓X =
⋃
η∃[X] (↑X)′ =

⋂
η∀[X]

for each subset X ⊆ S.

This ensures that η∃, η∀ are ‘sufficiently epic’ in the following sense.

6.4.2 Lemma For each poset S and each parallel pair

LS
g -

h
- T

of ∨
-morphisms

∧
-morphisms

to a complete poset T , we have

g ◦ η∃ = h ◦ η∃ =⇒ g = h g ◦ η∀ = h ◦ η∀ =⇒ g = h

respectively.

It is now easy to obtain the two completions. Notice how the following
gives two versions of ‘freely generated by’ a poset.

198 6. Posets and monoid sets

6.4.3 Theorem For each poset S and monotone map

S
f - T

to a complete poset T , there is a unique∨
-morphisms

∧
-morphisms

LS
f] - T

such that

S - T

LS
f]

-

η -

commutes where

η = η∃ η = η∀

for the respective cases.

Proof By Lemma 6.4.2 there is at most one such morphism f]. Thus
it suffices to exhibit one such morphism. For each X ∈ LS let

f](X) =
∨
f [X] f](X) =

∧
f [X ′]

for the respective cases. Almost trivially this function makes the triangle
commute. We must show that f] is a morphism of the appropriate kind.
Thus we required

f]
(⋃
X
)

=
∨
f][X] f]

(⋂
X
)

=
∧
f][X]

for each collection X of lower sections of S. These follow by straight
forward calculations but a little more care is required for the ∀-case.

Exercises

6.4.1 Prove Lemma 6.4.1.

6.4.2 Prove Lemma 6.4.2.

6.4.3 Complete the proof of Theorem 6.4.3.

6.5 Three endofunctors on Pos 199

6.5 Three endofunctors on Pos

In the usual way Theorem 6.4.3 induces a pair of functors

Pos - Sup Pos - Inf

each of which is the left adjoint to the corresponding forgetful functor.
In this section we look at the corresponding composite covariant endo-
functors in Pos

Pos - Sup - Pos Pos - Inf - Pos

together with an associated contravariant endofunctor. Curiously each
one has the same object assignment, namely

S - LS

the one that sends each poset to its poset of lower sections. This means
we have to devise different names to distinguish between the three.

The contravariant functor is the easiest to describe, as follows.

6.5.1 Definition For each poset S let

IS = LS

be the set of lower sections of S. For each monotone map

S
f - T

let

LS �
I(f)

LT
f←(Y) � Y

be the induced inverse image function.

It is a simple exercise to show that I(f) is monotone. (In fact, this is
a particular case of the observation that each continuous map between
topological spaces induces a monotone map between the topologies.) It
is just as easy to show that I is an endofunctor on Pos.

Next we deal with the two covariant endofunctors on Pos.

6.5.2 Definition For each poset S let

∃S = LS ∀S = LS

be the set of lower sections of S. For each monotone map

S
f - T

200 6. Posets and monoid sets

let

LS
∃(f)- LT LS

∀(f)- LT
X - ↓f [X] X -

(
↑f [X ′]

)′
be the modified direct image function and the twisted direct image func-
tion, respectively.

There are one or two things to be checked here. We first observe that

b ∈ ∃(f)(X)⇐⇒ (∃x ∈ S)[b ≤ f(x) & x ∈ X]

b ∈ ∀(f)(X)⇐⇒ (∀x ∈ S)[f(x) ≤ b⇒ x ∈ X]

for each X ∈ LS and b ∈ T . Using these we can check that each of ∃
and ∀ is an endofunctor on Pos. We can also check that these are the
functors induced by the completion functors

Pos - Sup Pos - Inf

respectively.
What is the point of this? There is more here than we first see.

6.5.3 Lemma For each monotone map

S
f - T

between posets, the three induced monotone maps

LS

∃(f) -
� I(f)

∀(f)
-
LT

form a double poset adjunction.

Proof We require

∃(f)(X) ⊆ Y ⇐⇒ X ⊆ I(f)(Y) I(f)(Y) ⊆ X ⇐⇒ Y ⊆ ∀(f)(X)

for all X ∈ LS and Y ∈ LT .

Exercises

6.5.1 Verify the explicit quantifier descriptions of ∃(f) and ∀(f).
Use these to show that each of ∃(f) and ∀(f) is monotone.
Use these descriptions to show that ∃ and ∀ are endofunctors on Pos.

6.5.2 Complete the proof of Lemma 6.5.3.

6.6 Long strings of adjunctions 201

6.6 Long strings of adjunctions

Lemma 6.5.3 shows that each monotone map

S
f - T

between a pair of posets induces two adjunctions

LS
∃(f) a I(f) a ∀(f)- LT

between the posets of lower sections. Thus we produce a monotone map
I(f) which has both a left and a right adjoint. Furthermore, a simple
example shows that these two adjoints need not be the same. Thus
there are strings of adjunctions of length 2. This suggests a question.
Can there be longer strings of adjunctions? In this section we see that
there are, and there is one very important example of such strings.

Suppose we start with a poset adjunction.

S
f -

�
g

T

We may apply the construction of Lemma 6.5.3 to each of f, g in turn,
and so produce two strings of adjunction of length 2.

LS

∃(f) -
� I(f)

∀(f)
-
LT LT

∃(g) -
� I(g)

∀(g)
-
LS

What is the connection between these two strings?

6.6.1 Lemma For each poset adjunction f a g, as above, we have

I(f) = ∃(g) ∀(f) = I(g)

and the two induced 2-strings can be merged.

Each 1-string adjunction f a g produces a 3-string adjunction

LS

∃(f) -
� I(f) = ∃(g)
∀(f) = I(g) -

�
∀(g)

LT

between the two posets of lower sections. And we may repeat this.

202 6. Posets and monoid sets

S
δ - LS

∃ -
� I

∀ -
L2S

∃2-
�∃I

I2-

� I∀
∀2-

L3S

∃3-
�∃2I
∃I2-
� I3

I2∀-
�I∀2

∀3-

L4S

∃4 -

...

� I4

...

∀4 -

Table 6.1 A poset development

Suppose we start with a 2-string f a g a h of adjunctions. This induces
a 5-string of adjunctions

LS ∃(f) a I(f) = ∃(g) a ∀(f) = I(g) = ∃(h) a ∀(g) = I(h) a ∀(h)- LT

between the two posets of lower sections. This indicates that we can
generate arbitrarily longs strings of adjunctions between posets.

We start from any monotone map between posets

S - T

which we need not name. We hit this once with the construction of
Lemma 6.6.1 to produce a 2-string between the first level completions.

LS ∃ a I a ∀ LT

Here we haven’t even written in the arrows. We now hit this with the
construction to produce three 2-two strings between the second level
completions, the posets of lower section of the poset of lower sections.

∃2 a I∃ a ∀∃
L2S ∃I a I2 a ∀I L2T

∃∀ a I∀ a ∀2

We know these merge to produce a 4-string of adjunctions.

L2S ∃2 a ∃I a I2 a I∀ a ∀2 L2T

Here we have made a choice in the way we name these arrows. We now
hit this to produce a 6-string of adjunctions.

L2S ∃3 a ∃2I a ∃I2 a I3 a I2∀ a I∀2 a ∀3 L2T

We hit this again to produce a 8-string, and then a 10-string, and so on.

6.6 Exercises 203

0 δ00 - 1

δ11 -

δ10

- 2

δ22 -

δ21 -

δ10

-
3

δ33 -

δ32 -

δ31 -

δ30

-

4 · · ·

1 � σ1
0 2

� σ2
1

�
σ2

0

3

� σ3
2

� σ3
2

�
σ3

0

4 · · ·

Table 6.2 The simplicial category

Of course, we haven’t yet checked that there are no more equalities
between the arrows beyond the ones we have indicated. To do that let’s
look at a particular case.

Suppose we start from

S
δ - LS

an arbitrary poset S and an arbitrary monotone map δ to its poset of
lower sections. By repeatedly hitting this we generate the development
of Table 6.1. Let’s consider a particular case of this. Let us take the
empty poset for S. Then each of

∅,L∅,L2∅,L2∅,L3∅, . . .

is linearly ordered with 0, 1, 2, 3, . . . members. We can think of them as
the natural numbers. There is only one possible map δ, the empty map.
Thus we generate the collection of monotone maps as in Table 6.2. This
is the simplicial category, an important gadget in algebraic geometry.

Exercises

6.6.1 Find an example of a monotone map f for which the two induced
monotone maps ∃(f),∀(f) are not the same.

6.6.2 Prove Lemma 6.6.1.

6.6.3 Look up the standard construction of the simplicial category and
check that it is the same as that in Table 6.2.

204 6. Posets and monoid sets

6.7 Two adjunctions for R-sets

In the second part of this chapter we look at the category Set-R of
R-sets and two adjunctions between it and the category Set of sets.
These adjunctions convert each set into a free R-set and the cofree R-
set, respectively. In this section we set up the basics and then get down
to business in the next sections.

We have seen the notion of a monoid before, but there is no harm in
repeating the definition.

6.7.1 Definition A monoid is a structure

(R, ·, 1)

where R is a set furnished with an associative binary operation and a
neutral element for the operation.

As is the custom, we usually hide the furnishings and speak of ‘a
monoid R’. We don’t display the operation symbol in compounds, we
write rs for r · s for elements r, s ∈ R. Using this convention we see that

(rs)t = r(st) 1r = r = r1

are the axioms for a monoid. Here, and below, we let r, s, t range over
R. Because of the associativity we often leave out brackets and write

rst

for the two left hand compounds.
You can think of a monoid as a ring with the addition missing. Much

of what we do here can be extended to rings, but sometimes that is quite
a bit more complicated.

We now fix a monoid R.

6.7.2 Definition A right R-set is a set A with a right R-action

A,R - A

a, r - ar

an operation that combines an element a ∈ A with an element r ∈ R to
return an element ar ∈ A. This action is required to satisfy

(as)r = a(sr) a1 = a

for each a ∈ A and r, s ∈ R.

6.7. Two adjunctions for R-sets 205

Notice that we are using concatenation for at least two different op-
erations. If you find this confusing then for a while insert a different
symbol for each different use of concatenation.

There is also a notion of a left R-set, where the action operates on the
other side. We don’t need those so here ‘R-set’ means ‘right R-set’.

6.7.3 Definition Given two R-sets A and B, an R-morphism

A
l - B

is a function l, as indicated, such that

l(ar) = l(a)r

for each a ∈ A and r ∈ R.
This gives us the category

Set-R

of R-sets and R-morphisms. Because here there is no danger of confusion
we often say ‘morphism’ in place of ‘R-morphism’.

We compare the category Set-R with the category

Set

of sets and functions. Since each R-set A is a set furnished with some
structure indexed by R, there is a forgetful functor

Set �U Set-R

which sends each R-set to its carrying set, and each R-morphism to
its carrying function. In other words U forgets all the structure. In the
following sections we show that U has a left adjoint and a right adjoint

Set

Σ -
� U

Π
-

Set-R

and so obtain two adjunctions

Σ a U a Π

which, for convenience, we refer to as the

upper lower

adjunction, respectively.

206 6. Posets and monoid sets

We could quite quickly demonstrate the existence of these adjunctions
but that is not the aim here. The purpose is to provide fairly simple
illustrations of all the various aspects of adjunctions. We look at all the
bits of gadgetry to see exactly what they do in these particular examples.

Many of the details are left as exercises.
Because the functor U is forgetful we often omit to name it. For in-

stance, for an R-set A we sometimes write ΣA or ΠA for (Σ ◦ U)A or
(Π ◦ U)A, respectively. If you find this confusing then insert U in the
places where you think it should be.

Several kinds of algebras, a set furnished with some operations, are
R-sets for a particular monoid R. We have met one of these before, and
Exercise 6.7.1 gives three more. You may find it helpful to sort out the
details for these particular monoids as you read the following sections.

Exercises

6.7.1 Consider the following four kinds of algebras.
(a) An involution algebra is a structure

(A, (·)•) a•• = a

as on the left where the identity on the right holds for all a ∈ A.
(b) An idempotent algebra is a structure

(A, (·)•) a•• = a•

as on the left where the identity on the right holds for all a ∈ A.
(c) An 2-step involution algebra is a structure

(A, (·)•, •(·)) a•• = •a •(a•) = (•a)• ••a = a

as on the left where the identities on the right holds for all a ∈ A.
(d) An 2-step idempotent algebra is a structure

(A, (·)•, •(·)) a•• = •a ••a = a• •(a•) = (•a)• = a

as on the left where the identities on the right holds for all a ∈ A.

Show that each of these kinds of algebras is an R-set for a particular
monoid R.

Produce another examples of this kind of algebra.

6.8 The upper left adjoint 207

6.8 The upper left adjoint

In this section we produce the functor Σ but, as yet, we don’t show it is
left adjoint to U . We also produce assignments

X
ηX- (U ◦ Σ)X (Σ ◦ U)

εA- A

for each set X and each R-set A. In due course we see that these are the
unit and the counit of the upper adjunction Σ a U . We don’t attempt a
direct analysis, we wander around gathering all the relevant properties.

6.8.1 Definition For each set X let

ΣX = X ×R

the set of ordered pairs (x, r) for x ∈ X, r ∈ R. Also let

ΣX,R - ΣX
(x, r), s - (x, rs)

for each x ∈ X and r, s ∈ R.

It is easy to check that ΣX with this action is an R-set. In due course
we will show that ΣX is the free R-set generated by X. On general
grounds it then follows that Σ is the object assignment of a functor
from Set to Set-R. Here we don’t rely on that. We produce the arrow
assignment directly.

6.8.2 Definition For each function

Y
g - X

between sets let

ΣY
Σ(g)- ΣX

be given by

Σ(g)(y, r) = (g(y), r)

for each y ∈ Y and r ∈ R.

We need to check that Σ(g) is an R-morphism, and the two assignment
combine to form a functor. These details are left as exercises.

We now produce assignments

X
ηX- (U ◦ Σ)X (Σ ◦ U)

εA- A

for each set X and each R-set A. These turn out to be the unit and the
counit of the upper adjunction Σ a U .

208 6. Posets and monoid sets

We begin by looking at η.

6.8.3 Definition For each set X let ηX as on the left

X
ηX- (U ◦ Σ)X ηX(x) = (x, 1)

be the function given by the assignment on the right for each x ∈ X.

This is just a function, it need not have any morphism properties.
Consider any (x, r) ∈ ΣX. Remembering the action on Σ we have

(x, r) = (x, 1r) = (x, 1)r = ηX(x)r

to show how ηX picks out a generating set of ΣX.

6.8.4 Lemma For each set X the assignment ηX is ‘sufficiently epic’.
That is,

f ◦ ηX = g ◦ ηX =⇒ f = g

for each parallel pair

ΣX
f -

g
- A

of R-morphisms.

The following shows that ΣX is the free R-set generated by X via ηX .

6.8.5 Theorem For each function

X
g - A

from a set X to an R-set A, there is a unique R-morphism

ΣX
g] - A

such that

X
g - A

ΣX
g]
-

ηX
-

commutes in Set .

As is usual in this kind of situation, we have omitted the underly-
ing functor U . If you find this confusing, then simply insert U at the
appropriate places

6.8. The upper left adjoint 209

How can we prove Theorem 6.8.5? By Lemma 6.8.4 there is at most
one such morphism g], so it suffices to exhibit one. Consider any element

(x, r) = ηX(x)r

of ΣX. Remembering that g] must be an R-morphism we have

g](x, r) = g](ηX(x)r) = g](ηX(x))r =
(
g] ◦ ηX

)
(x)r = g(x)r

which show us the only possible function that will work.
On general grounds Theorem 6.8.5 ensures that the object assignment

Σ of Definition 6.8.1 fills out to a functor

Set
Σ- Set-R

for which

IdSet
η•- (U ◦ Σ)

is natural. We can check that this functor Σ is the one we first though
of, and show by direct calculation that η is natural. For this second part
we need to check that each function g induces a commuting square

Y
ηY - ΣY

X

g
?

ηX
- ΣX

Σ(g)
?

in Set . This is more or less trivial.

Let us us now look at the counit. In some ways this is more interesting.

6.8.6 Definition For each R-set A let εA as on the left

(Σ ◦ U)A
εA- A εA(a, r) = ar

be the function given as on the right for each a ∈ A and r ∈ R.

This construction starts with an R-set A. We forget its structure to
produce a set UA and then we furnish that as an R-set using Σ. Thus
we obtain an R-set of pairs (a, r) for a ∈ A and r ∈ R. This shows that
the construction of εA does make sense, as a function. However, we need
to check that εA is an R-morphisms In other words, we required

εA
(
(a, r)s

)
=
(
εA(a, r)

)
s

for all a ∈ A and r, s ∈ R. This follows by unravelling the definitions.

210 6. Posets and monoid sets

We need to check that ε• is natural.

(Σ ◦ U)
ε•- IdSet-R

In other words, we need to check that for each R-morphism f the square

ΣA
εA - A

ΣB

Σ(f)
?

εB
- B

f
?

commutes. A proof of this is not exactly strenuous.

Exercises

6.8.1 Show that Definition 6.8.1 does produce an R-set ΣX.

6.8.2 Show Definitions 6.8.1, 6.8.2 give a functor from Set to Set-R.

6.8.3 Prove Lemma 6.8.4.

6.8.4 Prove Theorem 6.8.5.

6.8.5 Show that the arrow assignment of the functor Σ ensured by
Theorem 6.8.5 is that given by Definition 6.8.2.

6.8.6 Prove directly that the unit η is natural.

6.8.7 Show that the construction of Definition 6.8.6 does produce an
R-morphism.

6.8.8 Prove directly that the counit ε is natural.

6.8.9 Show that for each R-morphism

ΣX
f - A

from a free R-set to an arbitrary R-set, there is a unique function

X
f[- UA

such that

ΣX
f - A

(Σ ◦ U)A

εA

-

Σ(f[)
-

commutes in Set-R.

6.9 The upper adjunction 211

6.9 The upper adjunction

We have a pair of functors

Set
Σ -

�
U

Set-R

and our aim is to show that these form an adjoint pair. We have produced
natural transformations

X
ηX- (U ◦ Σ)X (Σ ◦ U)A

εA- A

which we hope will be the unit and counit of the adjunction. In fact,
Theorem 6.8.5 or Exercise 6.8.9 are enough to ensure we do have such
an adjunction. In this section we show that we don’t need either of those
results. We use Theorem 5.4.5. Thus we show

εΣX ◦ Σ(ηX) = idΣX U(εA) ◦ ηUA = idUA

for each set X and R-set A. These are not difficult to verify, but the left
hand identity does require a bit more care. Let’s have a look at that.

We need to understand out the composite

ΣX
Σ(ηX)- (Σ ◦ U ◦ Σ)X

εΣX- ΣX

for an arbitrary set X. Now ΣX is a set of ordered pairs (x, r) for x ∈ X
and r ∈ R. This means that

(Σ ◦ U ◦ Σ)X

is a set of ordered pairs (l, r) where l is already an ordered pair. Starting
with (x, r) ∈ ΣX we use Σ(ηX) to produce such a pair (l, r) in the
central component, and then hit this with εΣX to produce an ordered
pair in ΣX. We need to check that this is the starting ordered pair.

In the remainder of this section we look at the upper transitions to
obtain what is usually taken as the ‘official’ definition of an adjunction.
We set up an inverse pair of transformations

Set [X,UA]
(·)\-

�
(·)[

Set-R[ΣX,A]

for each set X and R-set A, and show these are natural for variations of
the objects. We also check directly various other properties associated
with such transitions.

212 6. Posets and monoid sets

At the function level what might the two transitions be?

g - g]

(X → A) (X ×R→ A)
f[� f

The simplest suggestion seems to be

g](x, r) = g(x)r f[(x) = f(x, 1)

for each x ∈ X and r ∈ R. We are going to check directly that these
are the correct functions. But before we do that let’s use what we have
already done to give a quick proof of correctness. By Lemma 5.4.3 we
know that we must have

g] = εA ◦ Σ(g) f[= U(f) ◦ ηX

for each function g and morphism f , as above. By unravelling these
compounds we see that the suggestions above are correct.

We now go through the details of the direct verifications.
Consider any function

g : X - A

as above. Thus X is an arbitrary set but A is (the carrier of) an R-set.
The suggested construction certainly gives a function

g] : ΣX - A

but we require this to be an R-morphisms, that is

g]
(
(x, r)s

)
= g](x, r)s

for each x ∈ X and r, s ∈ R. This follows by a simple calculation.
Next consider any morphism

ΣX
f - A

as above. The construction does give a function

f[: X - A

as we want.
We require these two transition to form an inverse pair, that is

g][= g f[
] = f

for each function g and morphism f , as above. These follow by simple
calculations, but the right hand one does have just a little more content.

6.9. The upper adjunction 213

Finally, we check the naturality of these two transition assignments.
Of course since each is the inverse of the other we need only check that
one is natural, but it is instructive to do both calculations.

We check the two conditions (]) and ([) of Tables 5.1 and 5.2. Those
tables uses a slightly different notation, so let’s start again.

For (]) consider the square

X Set [X,UA]
(·)] - Set-R[ΣX,A] A

Y

k

6

Set [Y,UB]

U(l) ◦ − ◦ k
?

(·)]
- Set-R[ΣY,B]

l ◦ − ◦ Σ(k)
?

B

l

?

induced by a function k and a morphisms l, as indicated. We must show
that this square commutes, that is(

U(l) ◦ g ◦ k
)] =

(
l ◦ g] ◦ Σ(k)

)
for each function

X
g - A

from the top left hand corner. To check this we evaluate both sides at
an arbitrary member (y, r) of ΣY , and remember that l is a morphism.

For ([) consider the square

X Set [X,UA] �
(·)[

Set-R[ΣX,A] A

Y

k

6

Set [Y,UB]

U(l) ◦ − ◦ k
?

�
(·)[

Set-R[ΣY,B]

l ◦ − ◦ Σ(k)
?

B

l

?

induced by a function k and a morphisms l, as indicated. We must show
that this square commutes, that is(

l ◦ f[◦ k
)

=
(
l ◦ f ◦ Σ(k)

)
[

for each morphism

ΣX
f - A

from the top right hand corner.To check this we evaluate both sides at
an arbitrary member y of Y .

214 6. Posets and monoid sets

This completes the discussion of

Σ a U

the upper adjunction.

Exercises

6.9.1 Verify the two identities involving η and ε that ensure we do
have an adjunction.

6.9.2 For the suggested transitions show that

g] = εA ◦ Σ(g) f[= U(f) ◦ ηX

do hold for each function g and morphism f , as above.

6.9.3 Show that for each function g, as above, the suggested function
g] is a morphism.

6.9.4 Show that (·)] and (·)[for an inverse pair of transitions.

6.9.5 Show that each of the transition (·)] and (·)[is natural.

6.10 The lower right adjoint

We now turn to the lower adjunction.

Π a U

Remember that the functors seem to go the wrong way, so the re-drawn
picture

Set-R
U -

�
Π

Set

might help us to avoid a bit of confusion. In this section we produce the
functor Π, but we don’t start to deal with the adjunction properties. We
also produce assignments

A
ηA- (Π ◦ U)A (U ◦Π)X

εX- X

for each R-set A and set X. Eventually we see that these are the unit and
the counit of the lower adjunction Π a U . However, as with the upper
adjunction we first wander around their properties getting to know them.

6.10. The lower right adjoint 215

The construction Π must convert an arbitrary set X into an R-set
ΠX. To do that we first need the carrier.

6.10.1 Definition For each set X let

ΠX = Set [UR,X]

the set of all functions

h : R - X

from the set R to X.

We need to furnish ΠX as an R-set. At first the construction and
notation we use might look odd, but you will soon see why we use it.

6.10.2 Definition For each set X, each function

h : R - X

and each r ∈ R, let

hr : R - X

be the function given by

hr(s) = h(rs)

for each s ∈ R.

This certainly produces an assignment

ΠX,R - ΠX
h, r - hr

and a couple of simple calculations shows that it is an R-action. This is
the object assignment of the functor. Here is the arrow assignment.

6.10.3 Definition For each function

X
g - Y

let

ΠX
Π(g)- ΠY

be the function given by composition, that is

Π(g)(h) = g ◦ h

for each h ∈ ΠX.

216 6. Posets and monoid sets

Of course, we need Π(g) to be an R-morphism, that is

Π(g)
(
hr
)

=
(
Π(g)(h)

)r
for each h ∈ ΠX and r ∈ R. This follows by evaluating both sides at an
arbitrary s ∈ R.

We need to know that the two assignments Π combine to form a
functor. In fact, at this stage there is nothing we have to prove. Observe
that at the Set level Π is just the hom-functor

Set [UR,−]

induced by the set R. We have checked that both the object assignment
and the arrow assignment do the right thing, so we have what we want.
This is an example of an enriched hom-functor.

We now produce assignments

A
ηA- (Π ◦ U)A (U ◦Π)X

εX- X

for each R-set A and set X. Eventually we see that these are the unit
and the counit of the lower adjunction Π a U .

What might these two assignments be? Once we think about it we see
that there is not much choice. Consider a ∈ A. We require a function

ηA(a) : R - A

which can be evaluated at an arbitrary r ∈ R. For εX consider any
h ∈ (U ◦Π)X, an arbitrary function

h : R - X

from which we must obtain an element of X. The choices are obvious.

6.10.4 Definition For each R-set A and set X let

A
ηA- (Π ◦ U)A (U ◦Π)X

εX- X

be the functions given by

ηA(a)(r) = ar εX(h) = h(1)

for each a ∈ A, r ∈ R and h ∈ ΠX.

We want ηA to be an R-morphism. Remembering how (Π ◦ U)A is
structured this requirement is

ηA(ar) = ηA(a)r

for all a ∈ A and r ∈ R. This can be checked by evaluating both sides
at an arbitrary member of R.

6.10. The lower right adjoint 217

There are some properties that η and ε must have. We look at η first.
We require the family η• of morphisms to be natural. Thus the square

A
ηA - ΠA

B

f
?

ηB
- ΠB

Π(f)
?

must commute for each morphism f . This requirement is

ηB ◦ f = Π(f) ◦ ηA

in equational form. To check this we evaluate both sides at an arbitrary
a ∈ A to produce a pair of functions

R - B

which must be equal. So we evaluate each of these at an arbitrary r ∈ R.
In the usual way the existence of a unit with an appropriate universal

property ensures we do have an adjunction.

6.10.5 Theorem For each R-set A, set X and morphism

A
f - ΠX

there is a unique function

UA
f] - X

such that

A
f - ΠX

(Π ◦ U)A
Π(f])

-

ηA -

commutes in Set-R.

Proof Let’s first show that there is at most one such function f].
Suppose there is some such f]. Then

Π(f]) ◦ ηA = f

and hence

Π(f])(ηA(a)) = f(a)

218 6. Posets and monoid sets

for each a ∈ A. This gives

f] ◦ ηA(a) = f(a)

by the construction of Π. Each of the two sides of this equality is a
function R - A, and hence we may evaluate at 1. Remembering the
construction of η this gives

f](a) = f](ηA(a)(1)) = f(a)(1)

to uniquely determine f].
We use this as the definition of the function f], so all that remains is

to show that the induced triangle does commute.

We now check the various properties of εX . Since U is the forgetful
functor we see that

ΠX
εX - X

is just a function, so we do not require any morphisms properties. We
do require that the whole family ε• is natural. The induced square

ΠX
εX - X

ΠY

Π(g)
?

εY
- Y

g
?

must commute, that is

εY ◦Π(g) = g ◦ εX

in equational form. To check this we evaluate both sides at an arbitrary
member h : R - X of the top left hand corner of the square.

These functions ε• are part of a co-free construction. Here are some
of the details of that.

6.10.6 Lemma For each set X the assignment εX is ‘sufficiently
monic’ in the sense that

εX ◦ k = εX ◦ l =⇒ k = l

for each parallel pair

A
k -

l
- ΠX

of R-morphisms.

6.10. The lower right adjoint 219

Proof Assuming

εX ◦ k = εX ◦ l

we have

εX
(
k(a)

)
= εX

(
l(a)

)
that is

k(a)(1) = l(a)(1)

for each a ∈ A. Each of k, l is a 2-step function

A - R - X

so we require

k(a)(r) = l(a)(r)

for each a ∈ A and r ∈ R. By remembering how ΠX is structured we
see how the above identity leads to this more general identity.

A few more calculations gives the following factorization result.

6.10.7 Theorem For each function

A
g - X

from an R-set A to a set X, there is a unique morphism

A
g[- ΠX

such that

A
g - X

ΠX
εX

-

g[
-

commutes in Set .

Proof By Lemma 6.10.6 there is at most one such morphism g[.
Whatever it is [is a 2-step function

A - R - X

which must be evaluated first at an arbitrary a ∈ A and then at an
arbitrary r ∈ R to return a value in X. There is an obvious choice for
such a function. A few calculations shows that this choice does work.

As set up in this section the families η• and ε• don’t seem to be doing
anything special. Of course, later we will see that they are the unit and
counit of an adjunction.

220 6. Posets and monoid sets

Exercises

6.10.1 Show that for each set X the construction of ΠX does produce
an R-set.

6.10.2 Show that the construction of Definition 6.10.3 does produce
an R-morphism.

6.10.3 Show that the construction of Definition 6.10.4 does produce a
morphism ηA.

6.10.4 Show that the family η• of morphism is natural.

6.10.5 Complete the proof of Theorem 6.10.5.

6.10.6 Show that the family ε• of morphism is natural.

6.10.7 Complete the proof of Lemma 6.10.6.

6.10.8 Complete the proof of Theorem 6.10.7.

6.11 The lower adjunction

We have a pair of functors

Set-R
U -

�
Π

Set

and our aim is to show that these form an adjoint pair. We have produced
natural transformations

A
ηa- (Π ◦ U)A (U ◦Π)X

εx- X

which we will show are the unit and counit of the adjunction. In fact,
Theorems 6.10.5 and 6.10.7 are enough to do this. However, in this
section we don’t take that route. We use Theorem 5.4.5. Thus we show

εΠA ◦ U(ηA) = idUA Π(εx) ◦ ηΠX = idΠX

for each R-set A and set X.
The left hand equality follows by evaluating each side at an arbitrary

a ∈ A. The calculations are straight forward. The right hand equality
follows by a similar method but does require a little more care.

6.11. The lower adjunction 221

We have a composite

ΠX
ηΠX- (Π ◦ U ◦Π)X

Π(εX)- ΠX

for an arbitrary set X. We evaluate this at an arbitrary member

h : R - X

of ΠX to produce another member of ΠX. We evaluate this at an arbi-
trary member r ∈ R and hope to show that the result is h(r).

In the remainder of this section we look at the ‘official’ definition of
an adjunction. We require an inverse pair of transitions

Set-R[A,ΠX]
(·)\-

�
(·)[

Set [UA,X]

for each R-set A and set X, and these must be natural for variations of
the objects. We also check directly various other properties associated
with such transitions. In fact, we already know what these assignments
must be, since they must fit into Theorems 6.10.5 and 6.10.7. Thus we
will show that the following two constructions do the job.

6.11.1 Definition For each R-set A and set X, and each

morphism function

A
f - ΠX A

g - X

we set

f](a) = f(a)(1) g[(a)(r) = g(ar)

for each a ∈ A and r ∈ R.

At the Set-level we do have

f] : A - X g[: A - R - X

and our job now is to check all the other requirements.
By Lemma 5.4.3 if Definition 6.11.1 is correct, then we must have

f] = εx ◦ U(f) g[= Π(g) ◦ ηA

for each morphism f and function g, as above. By unravelling these
compounds we see that the suggestions above are correct.

We now go through the various other details of the direct verifications.
At some point we have to show that these two transition form an

inverse pair, that is

f][= f g[
] = g

222 6. Posets and monoid sets

for each morphism f and function g. These are not difficult to verify,
but one of them does require a little bit of thought.

The next thing we should check is the (·)[does return a morphism.
To do this we remember how a co-free R-set ΠX is structured.

Finally, we check the naturality of these two transition assignments.
As usual, since each is the inverse of the other we need only check that
one is natural, but it is instructive to do both calculations.

We check the two conditions (]) and ([) of Table 5.1 and 5.2.
For (]) consider the square

A Set-R[A,ΠX]
(·)] - Set [UA,X] X

B

k
6

Set-R[B,ΠY]

Π(l) ◦ − ◦ k
?

(·)]
- Set [UB, Y]

l ◦ − ◦ U(k)
?

Y

l
?

induced by a morphism k and a function l, as indicated. We must show
that this square commutes, that is(

Π(l) ◦ f ◦ k
)] =

(
l ◦ f] ◦ U(k)

)
for each morphism

A
f - ΠX

from the top left hand corner. To check this we evaluate both sides at
an arbitrary member b ∈ B.

For ([) consider the square

A Set-R[A,ΠX] �
(·)[

Set [UA,X] X

B

k
6

Set-R[B,ΠY]

Π(l) ◦ − ◦ k
?

�
(·)[

Set [UB, Y]

l ◦ − ◦ U(k)
?

Y

l
?

induced by a morphism k and a function l, as indicated. We must show
that this square commutes, that is

Π(l) ◦ g[◦ k =
(
l ◦ g ◦ U(k)

)
[

for each function

A
g - ΠX

6.11 Exercises 223

from the top right hand corner. To check this we evaluate both sides
first at an arbitrary b ∈ B and then an arbitrary r ∈ R.

This completes the discussion of

U a Π

the lower adjunction.

Exercises

6.11.1 Verify the two identities involving ε and η that ensure we do
have an adjunction.

6.11.2 For the suggested transitions show that

f] = εx ◦ U(f) g[= Π(g) ◦ ηA

do hold for each morphism f and function g, as above.

6.11.3 Show that (·)] and (·)[form an inverse pair of transitions.

6.11.4 Show that for each function g, as above, the suggested function
g[is a morphism.

6.11.5 Show that each of the transition (·)] and (·)[is natural.

6.12 Some final projects

In this final sections I will suggest various problems you might want to
look at. In each case the solutions is known, but you will learn something
from your investigations. For most of the problems there is something
extra that has to be done.

There are various refinements of the constructions of Sections 6.1 –
6.4. For instance, suppose we do not need to fully complete a poset, but
require only suprema or infima for finite subsets. This can be obtained
by modifying the two constructions, but there is something extra that
has to be done. Such a completions may not be achievable in one step.
For another variant, suppose we want to produce suprema for directed
sets. What do we do?

There is another aspect of these completions that we should not ignore.
Suppose we want to complete a poset in some sense and that poset
already has some suprema or infima. Suppose we which to preserve some
of these in the constructed poset. What do we do? In the literature you
will find a construction, the MacNeille completion, which completes a

224 6. Posets and monoid sets

poset and preserves any suprema that the given poset may have. That
is not the answer, for that construction is not functorial.

There are two extensions of the constructions of Sections 6.7 – 6.11.
For the first of these consider an arbitrary monoid morphism

S
φ - R

between a pair of monoids. Associated with the two monoids we have a
pair of categories

Set-S Set-R

the S-sets and the R-sets respectively. Observe that if S is the singleton
monoid then φ is uniquely determined and Set-S is just Set .

The morphism φ induced a functor

Set-S �
Φ

Set-R

the restriction of scalars which we have met before. The construction of
Φ is part of Exercise 3.3.14. This functor has a left and a right adjoint

Set-S

Σ -
� Φ

Π
-

Set-R

which you should sort out. When S is the singleton monoid this reduces
to the double adjunction of Sections 6.7 – 6.11.

This can be generalized even further. Consider a ring morphism

S
φ - R

between a pair of rings. We have the two associated categories

Mod -S Mod -R

of modules over S and R, respectively. The morphism φ induces a functor

Mod -S �
Φ

Mod -R

also called restriction of scalars. This has a left and a right adjoint

Mod -S

Σ -
� Φ

Π
-

Mod -R

where Σ is given by a tensor product and Π is an enriched hom-functor.
There are several parts of mathematics, both algebraic and geometric,
where these functors are needed.

References

[1] Steve Awodey: Category theory, [This has been published by OUP]
[2] M. Barr and C. Well: Category theory for Computig science, Prentice Hall

(1990).
[3] M. Barr and C. Well: Toposes, Triples and Theories Springer (1985).
[4] A.J. Berrick and M.E. Keating: Categories and Modules, Cambridge Uni-

versity Press (2000).
[5] F. Borceux: Handbook of categorical algebra, three volumes, Cambridge

University Press (19??).
[6] S. Eilenberg and S. MacLane: General theory of natural equivalences,

Trans. Amer. Math. soc. 58 (1945) 231-294.
[7] Herrlich and Strecker – Look up

[8] F.William Lawvere and Stephen H.Schanuel: Conceptual Mathematics, A
first introduction to categories, Cambridge University Press (1997).

[9] Saunders Mac Lane: Categories for the working mathematician, Springer
(1971). There has been a second edition

[10] C. McClarty: Elementary categories, Elementary toposes OUP
[11] B. Mitchell: Theory of categories Academic Press (1965).
[12] B. Pareigis: Categories and functors Academic Press (1970).
[13] This bibliography is not yet finished. Some details are not

here, and I may have missed uou some books that shold be

here.

Index

R-morphism, 203

Set-R, a category, 203

abstract nonsense, 72

action

of a monoid on a set, 13

adjunction

poset, 17

arrow category, 19

biproduct, 55

butty category, 26

category of R-sets, 203

cell

of a diagram, 35

choice function, 131

co-unit

of an adjunction, 150

commuting diagram, 5

compact open topology, 159

confluent poset, 143

diagonal functor, 118

diagram, 2, 5, 35

commuting, 5

directed poset, 143

directed pre-ordered set, 117

element

global, 46

epic

split, 39

final object, 45

forgetful functor, 76

functor, 74

-hom, 77

forgetful, 76

furnished set, 5, 8

furnishings, 5, 8

global element, 46
graph, 22

morphism, 22

used as a template, 113

hom-functor, 77

hom-set, 4
horizontal composition, 106

initial object, 45
involution algebra, 154

kernel
of a function

as an equivalence relation, 60

locally compact space, 160
loop space, 160

lower section
of a preset, 24

make equal, 57

mediating arrow, 50, 57, 66, 121
mediator, 50, 57, 66, 121

monic
split, 39

monoid, 9, 202

monoid set, 202
monotone map, 10

morphism of R-sets, 203

natural for variation of, 90

naturally equivalent, 91

object
final, 45

initial, 45
terminal, 45

zero, 46

opposite

Index 227

of a category, 32

parallel pair of arrows, 5

partial function, 11

poset, 10
adjunction, 17

preset, 10

presheaf
on a category, 96

on a poset, 27
product

of two categories, 19

restriction of scalars, 155, 222
retraction, 39

section
a kind of arrow, 39

a kind of subset of a preset

lower, 24
upper, 81

semigroup, 9
sets

with a distinguished subset, 14

slice category, 20
solution

to a posed problem, 64

specialization order, 81
split epic, 39

split monic, 39

structured set, 8
suspension space, 160

template, 113
terminal object, 45

thread, 132

transposition assignment, 151

unit

of an adjunction, 150
universal solution

to a posed problem, 65
upper section

of a preset, 81

upwards directed pre-ordered set, 117

vertical composition, 106

wedge, 49

Yoneda completion, 96

zero object, 46

7

Stuff that has to be seen to

• Have a session of spell checking —- Some have been done.
• Eventually sort out all the internal references.
• Definition 1.1.1 starts right at the bottom of the page. Ask Silvia if I

can remove some of the space at beginning of chapter.
• Exercise 1.3.9 is repeated in detail in Chapter 6 – sort ouy.
• Make sure id is used for identity arrow, not id . Sort out the macros

for this.
• Sort out the display required for Exercise 1.3.12.
• Sort out the display required for Example 1.4.2. Need some spacing.
• Make sure there are no Index refs in the solutions.
• Check the colimit proof of Section 4.5.
• In Ch 5 Section 5 I prefer co-free to cofree. Sort this out. – Have done

but check for glizches.
• Decide whether Chapter 6 is going to be used. If it is not then all

refeferences to it have to be removed.
• End of Section 6.8 – What does this mean?
• Some files have not been set to ”zCATS”. This should be done.
• Remove all the red bits in the files

I couldn’t get the Appendix to work as I wanted it, that is one appendix
with several chapters of solutions cooresponding to the chapters of
development. So I renewed the chapter counter to start at 1 again.

PART TWO

SOLUTIONS

1

Categories

1.1 Categories defined

1.1.1 Not needed? �

1.1.2 These examples are dealt with in Section 1.5. �

1.2 Categories of structured sets

1.2.1 (c) Consider the function

f(r) = αr(a)

which sends each r ∈ N to the rth iterate of α applied to a. A routine
calculation show that this is a Pno-arrow. A simple proof by induction
shows that it is the only possible arrow. �

1.2.2 Consider a pair

(A,X)
f - (B, Y)

g - (C,Z)

of such morphisms. We show that the function composite g ◦ f is also a
morphism, that is

x ∈ X =⇒ g(f(x)) ∈ Z

for each element x of A. But the morphism property of first f and then
g gives

x ∈ X =⇒ y = f(x) ∈ Y =⇒ g(f(x)) = g(y) ∈ Z

for the required result. This doesn’t quite prove that we have a category,

232 1. Categories

but the other requirements – that arrow composition is associative, and
there are identity arrows – are just as easy. �

1.2.3 The appropriate notion of arrow

(A,R)
f- (B,S)

is a function between the carrying sets such that

(x, y) ∈ R =⇒ (f(x), f(y)) ∈ S

for all x, y ∈ A. This generalizes the idea used in Pre and Pos. �

1.2.4 Consider a pair of continuous maps

R
ψ - S

φ - T

between topological spaces. A simple calculation gives

(φ ◦ ψ)← = ψ← ◦ φ←

which is the required property. �

1.2.5 Let R = C [A,A]. We have a binary operation ◦ on R, namely
arrow composition. This operation is associative (by one of the axioms
of being a category). We also have a distinguished element idA of R,
namely the identity arrow on A. This is the required unit.

(Strictly speaking, this do not show that R is a monoid, for we don’t
know that R is a set. There are some categories for which C [A,A] is so
large it is not a set. This is rather weired but it shouldn’t worry us.) �

1.2.6 To show that Pfn is a category we must at least show that
composition of arrows is associative.

Consider three composible partial functions

A
f - B

g - C
h - D

X
∪

6
f

-

Y
∪

6
g

-

Z
∪

6
h

-

as indicated. We must describe

h ◦ (g ◦ f) (h ◦ g) ◦ f

1.2. Categories of structured sets 233

and show that they are the same. We need

A
g ◦ f - C

h - D A
f - B

h ◦ g - D

U
∪

6

g ◦ f |U

-

Y
∪

6
h

-

X
∪

6
f

-

V
∪

6

h ◦ g|V

-

where

a ∈ U ⇐⇒ a ∈ X and f(a) ∈ Y b ∈ V ⇐⇒ b ∈ Y and g(b) ∈ Z

for a ∈ A and b ∈ B. We also need

A
h ◦ (g ◦ f) - D A

(h ◦ g) ◦ f - D

L
∪

6

h ◦ (g ◦ f |U)|L

-

R
∪

6

h ◦ (g ◦ f |V)|R

-

where

a ∈ L⇐⇒


a ∈ U
and
(g ◦ f |U)(a) ∈ Z

 a ∈ Ra⇐⇒


a ∈ X
and
f(a) ∈ V


for a ∈ A. We show that L = R and that the two function composites
are equal.

For a ∈ L we have a ∈ U , so that f |U (a) = f(a). Thus, remembering
the definition of U we have

a ∈ L⇐⇒ a ∈ X and f(a) ∈ Y and (g ◦ f |U)(a) ∈ Z

for a ∈ A. Remembering the definition of V we have

f(a) ∈ V ⇐⇒ f(a) ∈ Y and g(f(a)) ∈ Z

and hence

a ∈ R⇐⇒ a ∈ X and f(a) ∈ Y and (g ◦ f |U)(a) ∈ Z

for a ∈ A. This shows that L = R.
Consider any a ∈ L = R. We have

a ∈ U f(a) ∈ V

so that (
g ◦ f |U

)
|L(a) =

(
g ◦ f |U

)
(a) = g(f(a))

to give

h ◦
(
g ◦ f |U

)
|L(a) = h(g(f(a)))

234 1. Categories

and (
(h ◦ g|V) ◦ f |R

)
(a)(h ◦ g|V)(f(a)) = h(g(f(a)))

that is

h ◦
(
g ◦ f |U

)
|L(a) = h(g((̄a))) =

(
(h ◦ g|V) ◦ f |R

)
(a)

to show that the two function composites are the same.
What about identity arrows? Every total function is also a partial

function. Each set A carries an identity function idA which is

A A

A

=
∪

6

idA

-

when viewed as a partial function.
Consider the composites

A
idA - A

f - B A
f - B

idA - B

A

=
∪

6

idA

-

X
∪

6

f

-

X
∪

6

f

-

B

=
∪

6

idB

-

where f is an arbitrary partial function. To compute these composites
we first use

a ∈ L⇐⇒ a ∈ A and idA(a) ∈ X a ∈ R⇐⇒ a ∈ X and f(a) ∈ B

(for a ∈ A) to extract L,R ⊆ A. Notice that, in fact

L = X = R

but for different reasons. The arrow composites are

A
f ◦ idA - B A

idB ◦ f - B

X
∪

6

f ◦ idA|X

-

X
∪

6

idB ◦ f |X

-

and these function composites are

f ◦ idA|X = f ◦ idX = f idX ◦ fX = idB ◦ f = f

to show

f ◦ idA = f = idB ◦ f

1.2. Categories of structured sets 235

as required. �

1.2.7 We set up a pair of translations between the two categories

Pfn
L-

�
M

Set⊥

and then show that each 2-step goes back to where it started.
We set

LA = A ∪ {⊥} MS = S − {⊥}

for each object A of Pfn and each object S of Set⊥. In other words,
L adjoints the distinguished point, and M removes the distinguished
point. Almost trivially we have

(M ◦ L)A = A (L ◦M)S = S

for each such A and S.
The way we deal with arrows is more intricate. For each arrow of Pfn

A
f - B

X
∪

6
f

-

we let

LA
L(f)- LB

a - f(a) for a ∈ X
a - ⊥ for a ∈ A−X
⊥ - ⊥

to obtain an arrow of Set⊥. In other words we set

L(f)(a) =

{
f(a) if a ∈ X
⊥ if a /∈ X

L(f)(⊥) = ⊥

for each a ∈ A. By the lower clause, this is an arrow of Set⊥.
Consider any arrow

S
φ - T

of Set⊥. We extract

X ⊆MS = S − {⊥}

236 1. Categories

by

X = S − φ←(⊥)

that is

s ∈ X ⇐⇒ φ(s) 6= ⊥

for s ∈ S. In particular, ⊥ /∈ X. Thus we have a partial function

MS
M(φ)- MT

X
∪

6

φ|X

-

controlled by the restriction of φ to X.
These constructions give

S
L(M(φ)f)- T

s - φ(s) for s ∈ X
s - ⊥ for s ∈MS −X
⊥ - ⊥

so that

L(M(φ) = φ

which is what we want.
For the other way round each partial function

A
f - B

as above gives a pointed arrow

LA
φ = L(f)- LB

which we convert back into a partial function. To do that we set

W = LA = φ←(⊥)

so that

a ∈W ⇐⇒ φ(a) 6= ⊥ ⇐⇒ a ∈ X

for each a ∈ A. Thus

W = X

with

φ|X = f

1.3 An arrow need not be a function 237

and hence

M(L(f)) = f

as required.

Do you think that Pfn and Set⊥ are ‘essentially the same’? �

1.2.8 Showing that each of

R-Set Set-R

is a category is easy. For both categories an object is a structured set(
A (αr | r ∈ R)

)
a set A furnished with an R-indexed family of 1-placed operations on A.
This family must satisfy

αs ◦ αr = αrs αs ◦ αr = αsr

for r, s ∈ R. Note the

covariance contravariance

here. For both categories an arrow(
A (αr | r ∈ R)

) f-
(
B (βr | r ∈ R)

)
is a function f between the carriers such that

f ◦ αr = βr ◦ f

for each r ∈ R. �

1.3 An arrow need not be a function

1.3.1 Let Rm be the vector space of column vectors with m real com-
ponents. Each m× n matrix A gives a linear transformation

Rn
A - Rm

x - Ax

and every linear transformation from Rn to Rm arises in this way from
a unique m× n matrix A. The composite

Rn
B - Rk

A - Rm

238 1. Categories

of two linear transformations is linear, and corresponds to the matrix
product AB. �

1.3.2 The main problem is to define the composition of graph mor-
phisms, and to show that this composition is associative.

Consider a pair of graph morphisms.

(N,E)
f- (M,F)

g- (L,G)

In more detail we have

E
f1 - F

g1 - G

N

ρE
?

f0

- M

ρF
?

g0

- L

ρG
?

where all the relevant Set-squares commute, that is

f0 ◦ ρE = ρF ◦ f1 g0 ◦ ρF = ρG ◦ g1

where ρ is σ or τ throughout. We observe that by composing both com-
ponents

E
g1 ◦ f1- G

N

ρE
?

g0 ◦ f0

- L

ρG
?

we have

g0 ◦ f0 ◦ ρE = g0 ◦ ρF ◦ f1 = ρG ◦ g1 ◦ f1

and hence we obtain a graph morphism. We take this as the composition
of two graph morphisms.

A trivial exercise shows that this composition is associative. �

1.3.3 Consider a composible pair of arrows of this category.

(A,R)
(f, φ)- (B,S)

(g, ψ)- (C, T)

In other words we have two pair of composible functions.

A
f - B

g - C R �
φ

S
ψ - T

1.3. An arrow need not be a function 239

The pair

(A,R)
(g ◦ f, φ ◦ ψ)- (C, T)

is the composite

(A,R)
(f, φ) ◦ (g, ψ)- (C, T)

in the category. Verifying the axioms is more of less trivial.
This is essentially the same as Example 1.3.4. The category S has

been replaced by its opposite S
op

. See Example 1.5.3. �

1.3.4 Consider a pair of arrows in this category

A
f - B

g - C

R �
φ

S �
ψ

T

where we have separated the two components. We show that the pair

(A,R)
(g ◦ f, φ ◦ ψ)- (C, T)

is an arrow, that is(
g ◦ f)

(
a(φ ◦ ψ)(t)

)
=
(
g ◦ f

)
(a)t

for each a ∈ A and t ∈ T . Consider such a pair a, t and let

b = f(a) s = ψ(t)

to produce b ∈ B and s ∈ S. Then(
g ◦ f)

(
a(φ ◦ ψ)(t)

)
= g
(
f(aφ(s)

)
= g
(
f(a)s

)
= g
(
bψ(t)

)
= g(b)t =

(
g ◦ f

)
(a)t

for the required result. �

1.3.5 To show the composition is associative consider three relations

A
F - B

G - C
H - D

240 1. Categories

between sets. For a ∈ A and d ∈ D we have

d
(
H ◦ (G ◦ F)

)
a d

(
(H ◦G) ◦ F

)
a

⇐⇒ (∃c ∈ C)[dHc(G ◦ F)a] ⇐⇒ (∃b ∈ B)[d(H ◦G)bFa]

⇐⇒ (∃c ∈ C, b ∈ B)[dHcGbFa] ⇐⇒ (∃b ∈ B, c ∈ C)[dHcGbFa]

so that a flip of quantifiers gives the required result.

Consider a pair of functions

A
f

Γ(f)
- B

g

Γ(g)
- C

with associated graphs. For a ∈ A and c ∈ C we have

c
(
Γ(g) ◦ Γ(f)

)
a⇐⇒ (∃b ∈ B)[cΓ(g)bΓ(f)a]

⇐⇒ (∃b ∈ B)[c = g(b) & b = f(a)]

⇐⇒ c = g(f(a)) ⇐⇒ cΓ(g ◦ f)a

for the required result. �

1.3.6 (a) Suppose first that f a g, that is

f(a) ≤ b⇐⇒ a ≤ g(b)

for a ∈ S and b ∈ T . Since

f(a) ≤ f(a) g(b) ≤ b(b)

a use of this equivalence one way or the other gives

a ≤ (g ◦ f)(a) (f ◦ g)(b) ≤ b

for the first required result.
Conversely, suppose the two comparisons hold (for all a ∈ S and

b ∈ T), and suppose

f(a) ≤ bn a ≤ g(b)

(for some a ∈ S and b ∈ T). Since both f and g are monotone we have

a ≤ (g ◦ f)(a) ≤ g(b) f(a) ≤ (f ◦ g)(b) ≤ b

to verify the equivalence.

(b) For each a ∈ S we have

a ≤ (g ◦ f)(a)

1.3. An arrow need not be a function 241

and hence

f(a) ≤ (f ◦ g ◦ f)(a)

since f is monotone. For each b ∈ T we have

(f ◦ g)(b) ≤ b

and hence

(f ◦ g ◦ f)(a) ≤ f(a)

as a particular case. This gives

f ◦ g ◦ f = f

and the other equality follows in a similar fashion. �

1.3.7 We are given two projection pairs

A
f∗ a f∗

f∗ ◦ f∗ = idA
⇀ B

g∗ a g∗
g∗ ◦ g∗ = idB

⇀ C

that is two adjunctions with the indicated equalities. These certainly
gives a composite adjunction

A
h∗ a h∗

⇀ C

where

h∗ = g∗ ◦ f∗ h∗ = f∗ ◦ g∗

are the two components. But now

h∗ ◦ h∗ = f∗ ◦ g∗ ◦ g∗ ◦ f∗ = f∗ ◦ idB ◦ f∗ = f∗ ◦ f∗ = idA

to show that h∗ a h∗ is a projection pair. �

1.3.8 (a) The two required adjunction properties are

Z
ι a ρ

⇀ R R
λ a ι

⇀ Z

m ≤ ρ(x)⇐⇒ m ≤ x λ(x) ≤ m⇐⇒ x ≤ m

for x ∈ R,m ∈ Z. From these we see that

λ(x) = bxc ρ(x) = dxe

the integer

floor ceiling

242 1. Categories

of x are the only possible functions and these do form adjunctions.
(b) For each m ∈ Z we have

λ(m) = m = ρ(m)

which gives all the required composite properties.
(c) This follows in the same way. �

1.3.9 For a given monotone map

T
φ - S

we require monotone maps

LT

f] -
� φ←

f[
-
LS

with

f](Y) ⊆ X ⇐⇒ Y ⊆ φ←(X)

φ←(X) ⊆ Y ⇐⇒ X ⊆ f[(Y)

for each X ∈ LS and Y ∈ LT .
For Y ∈ LT let

f](Y) = ↓φ[Y]

the lower section of S generated by the direct image of Y across φ. For
X ∈ LS and Y ∈ LT we have

f](Y) ⊆ X ⇐⇒ φ[Y] ⊆ X

⇐⇒ (∀t ∈ T)[t ∈ Y =⇒ φ(t) ∈ X]

⇐⇒ (∀t ∈ T)[t ∈ Y =⇒ t ∈ φ←(X)] ⇐⇒ Y ⊆ φ←(X)

as required.
For Y ∈ LT let

f[(Y) =
(
↑φ[Y ′]

)′
the complement of the upper section of S generated by the direct image

1.3. An arrow need not be a function 243

of the complement of Y across φ. For X ∈ LS and Y ∈ LT we have

X ⊆ f[(Y)⇐⇒ ↑φ[Y ′] ⊆ X ′

⇐⇒ φ[Y ′] ⊆ X ′

⇐⇒ (∀t ∈ T)[t ∈ Y ′ =⇒ φ(t) ∈ X ′]

⇐⇒ (∀t ∈ T)[φ(t) ∈ X =⇒ t ∈ Y]

⇐⇒ (∀t ∈ T)[t ∈ φ←(X) =⇒ t ∈ Y] ⇐⇒ φ←(X) ⊆ Y

as required. �

1.3.10 You will find it instructive to go through the following solution
of a more general exercise.

Let

∇ = (N,E)

be a graph (in the sense of Exercise 1.3.2). We let

i, j, k, . . . range over N e, f, g, . . . range over E

and think of these as stocks of indexes. As with any graph there is some
source and target data, namely

σ(e)
e - τ(e)

for each e ∈ E. We view ∇ as a template. For an arbitrary category C

we produce a new category C∇, the category of ∇-diagrams on C .
An object of C∇ is a pair

A =
(
A(i) | i ∈ N

)
A =

(
A(e) | e ∈ E

)
an

N -indexed family of objects E-indexed family of arrows

of C , respectively. These families must satisfy

A(σ(e))
A(e)- A(τ(e))

for each e ∈ E.
An arrow of C∇

(A,A)
φ - (B,B)

is an N -indexed family of arrows of C

A(i)
φi - B(i)

244 1. Categories

such that the C -square

A(σ(e))
φσ(e)- B(σ(e))

A(τ(e))

A(e)

?

φτ(e)

- B(τ(e))

B(e)

?

commutes for each e ∈ E.
Composition of arrows is done componentwise. Given arrows

(A,A)
φ - (B,B)

ψ - (C, C)

in C∇, we have components

A(i)
φi - B(i)

ψi - C(i)

for each i ∈ N . We take this composite as the ith component of ψ ◦ φ.

A(i)
(ψ ◦ φ)i = ψi ◦ φi - C(i)

Of course, we need to show that this does produce an arrow of C∇, in
other words that

A(σ(e))
(ψ ◦ φ)σ(e) - C(σ(e))

A(τ(e))

A(e)

?

(ψ ◦ φ)τ(e)

- C(τ(e))

C(e)

?

commutes for each e ∈ E. This square can be decomposed as

A(σ(e))
φσ(e) - B(σ(e))

ψσ(e) - C(σ(e))

A(τ(e))

A(e)

?

φτ(e)

- B(τ(e))

B(e)

?

ψτ(e)

- C(τ(e))

C(e)

?

and hence the required result is immediate.

1.3. An arrow need not be a function 245

A similar argument shows that this composition is associative. �

1.3.11 We have

(Set ↓ 1) is essentially Set

(1 ↓ Set) is essentially Set⊥

(Set ↓ 2) is essentially Sets with a distinguished subset

but with a restricted family of arrows

(2 ↓ Set) is essentially Sets with two distinguished points

where the third uses the correspondence between subsets and character-
istic functions. Let’s look at this third example.

Let

2 = {0, 1}

where here it is useful to think of 1 as ‘true’ and 0 as ‘false’. An object
of Set ↓ 2

A
α - 2

is a set A with a carried characteristic function α. This function α gives
a subset X ⊆ A where

a ∈ X ⇐⇒ α(a) = 1

for each a ∈ A. Furthermore this set X determines α since

α(a) =

{
1 if a ∈ X
0 if a /∈ X

for each a ∈ A. There is a bijective correspondence between characteris-
tic functions carried by A and subsets of A. (If you have never seen this
trick before, then take note. This and various generalizations are used
throughout mathematics.)

This shows that the objects of Set ↓ 2 are precisely the sets with
distinguished subset.

What is an arrow of Set ↓ 2?

A
f - B (A,X)

f - (B, Y)

2
β�α -

246 1. Categories

On the left we have the official version. It is a function f for which

α = β ◦ f

holds. On the right we have the unofficial version. It is a function f with

a ∈ X ⇐⇒ α(a) = 1⇐⇒ β(f(a)) = 1⇐⇒ f(a) ∈ Y

that is

a ∈ X ⇐⇒ f(a) ∈ Y

for each a ∈ A. An arrow of the category of sets is a function f with

a ∈ X =⇒ f(a) ∈ Y

for each a ∈ A. Thus the two categories have the same objects but
Set ↓ 2 has a more restrictive kind of arrow. �

1.3.12 (a) Consider a composible pair of arrows of (S ↓ C ↓ T) as on
the left. This is a commuting diagram.

S S

A f-

αS

�
B

βS

?
g- C

γS

-

A h -

αS

�
C

γS

-

T

βS
? γT�

αT -

T

γT�
αT -

Let

h = g ◦ f

be the function composite of f and g. To show that is an arrow of
(S ↓ C ↓ T) we must check that the diagram on the right commutes.
This is a simple exercise in diagram chasing (which we look at in more
detail in Section 2.1).

(b) An object I of a category is initial if for each object A there is
a unique arrow I - A. Not every category has such an object, but
many do. (The category Set has an initial object, and you might worry
a bit about what it is.) If I is an initial object of C then

(I ↓ C ↓ T) (C ↓ T)

are essentially the same category.
An object F of a category is final if for each object A there is a unique

1.4 More complicated categories 247

arrow A - F . Not every category has such an object, but many do.
(The category Set has a final object, and it is pretty obvious what it
is.) If F is a final object of C then

(S ↓ C ↓ F) (S ↓ C)

are essentially the same category.
We look at initial and final objects in Section 2.4. �

1.4 More complicated categories

1.4.1 Let’s look at the composition of arrows. Consider a pair of arrows

A
f - B

g - C

of Ŝ . How might we produce the composite arrow

A
h = g ◦ f- C

in Ŝ ? For each index i ∈ S we have a pair of functions

A(i)
fi- B(i)

gi- C(i)

between sets, and we can certainly form the function composite

A(i)
hi = gi ◦ fi- C(i)

at the index. We show this gives an arrow in Ŝ .
Consider any pair j ≤ i of comparable indexes. We have a pair of

commuting squares, as on the left

A(i)
fi- B(i)

gi- C(i) A(i)
hi- C(i)

A(j)

A(j, i)

?

fj
- B(j)

B(j, i)

?

gj
- C(j)

C(j, i)

?
A(j)

A(j, i)

?

hj
- C(j)

C(j, i)

?

and we require a commuting square, as on the right. This is a simple
exercise in diagram chasing.

There are several more little bits to be done, but all are just as easy.
This is a nice example of how convenient arrow-theoretic methods

can be. If we always had to expose the inner details of these objects and

248 1. Categories

arrows then some calculations could become a mess. By hiding these
parts we begin to get a clearer picture of what is going on. Of course,
there are times when we have to get inside a presheaf, but that doesn’t
mean we should do it all the time. �

1.4.2 Observe that a chain complex is a special kind of presheaf with Z
as the indexing poset. The conecting arrows are module morphisms with
the extra requirement is that if m+ 2 ≤ n then the conection morphism

An - Am

is zero.
Category theory can bring out similarities that are not so obvious

when we have to carry around lots of details. �

1.5 Two simple categories and a bonus

1.5.1 (a) The product as categories is the cartesian product as algebras.
(b) The product as categories is the cartesian product as presets. �

1.5.2 The category (S ↓ s) is the principal upper section of S above s.
The category (s ↓ S) is the principal lower section of S below s.
The category (s ↓ S ↓ t) is the convex section of S between s and t.

This could be empty if s � t. �

1.5.3 The category S
op

is the poset S turned upsidedown.
The category R

op
is the same set with a new operation ? given by

r ? s = s ? r

for r, s ∈ R. Here ? is the old operation. �

1.5.4 It is the category A× S
op

. �

2

Basic gadgetry

2.1 Diagram chasing

2.1.1 For the equational reasoning we need to label more arrows.

•
g - •

• r -

f -

• s -

q -p
-

•

h
-

• l

-

k -

The calculation on the left gives the equational version

h◦g ◦f = h◦q ◦p◦f = s◦r = l◦k

•
g - •

•
f -

•
h
-

• •

•
f -

•
q -p

-
•

h
-

• r - • s - •

• •

• l

-

k -

250 2. Basic gadgetry

and the diagram chase on the right give the same result. �

2.1.2 We label the arrows as follows

•

•

f

�
g - •

h

-

•

- r

-

p -

with q for the unlabelled arrow. Then

g ◦ f = r ◦ p ◦ f = r ◦ q = h

gives the required result. �

2.1.3 A trip twice round the pentagram is given by the sequence

1234512345

of corners. Because various triangles collapse the result is given by

12345123451

1345123451

135123451

13523451

1352451

135241

where at each step the underline indicates the triangle that collapses. �

2.2 Monics and epics

2.2.1 (a) For instance, consider a section s which is also epic. Since s
is a section we have a composite

B
s - A

r - B r ◦ s = idB

2.2. Monics and epics 251

which is an identity. This also shows that the parallel pair of arrows

r - B
s -

B s - A A

idA
-

agree, and hence

s ◦ r = idA

since s is epic. This show that r is the inverse of s.
(b) Simplify h ◦ f ◦ g is two ways. �

2.2.2 (a) In a preset there is no more than one arrow

i - j

between a given pair of elements. Thus for any parallel pair

i
-
- j

the two arrows are equal. This shows that every arrow is monic and epic.
(b) A poset is balanced precisely when it is discrete. A preset is bal-

anced precisely when the comparison is an equivalence. �

2.2.3 An element is monic or epic if it is cancellable on the appropriate
side.

An element is a retraction or a section if it has a one sided inverse on
the appropriate side.

An element is an isomorphism if it has a two sided inverse
A monoid is balanced precisely when the set of cancellable elements

is a group. �

2.2.4 Consider a pair of arrows to A.

X
k -

l
- A

Assuming both m,n are monic we have

n ◦m ◦ k = n ◦m ◦ l =⇒ m ◦ k = m ◦ l =⇒ k = l

which shows that n ◦m is monic. Assuming n ◦m is monic we have

m ◦ k = m ◦ l =⇒ n ◦m ◦ k = n ◦m ◦ l =⇒ k = l

252 2. Basic gadgetry

which shows that m is monic. �

2.2.5 It will help if we get a bit of notation sorted out. Let

(A, ·, ι)

be an arbitrary monoid written multiplicatively. Here we will display the
operation symbol. Consider any monoid morphism

(Z,+, 0)
f- (A, ·, ι)

from the additively written monoid Z. Thus

f(0) = ι f(m+ n) = f(m) · f(n)

for all m,n ∈ Z. Consider any situation

N ⊂
e - Z

f -

g
- A

where

f ◦ e = g ◦ e

that is

f(m) = g(m)

for all m ∈ N. We require f = g, that is

f(−m) = g(−m)

for all m ∈ N. But, taking it slowly, for m ∈ N we have

g(−m) = g(−m) · ι
= g(−m) · f(0)
= g(−m) · f(m+ (−m))
= g(−m) · f(m) · f(−m))
= g(−m) · g(m) · f(−m))
= g(−m+m) · f(−m))
= g(0) · f(−m))
= ι · f(−m)) = f(−m)

as required. Of course, the central equality is the crucial step. �

2.2.6 The format for this solution is like that of Solution 2.2.5, but now

2.2. Monics and epics 253

we have a few more algebraic identities we can use, and we don’t need
to mix the notation.

Consider any situation in Rng

Z ⊂
e - Q

f -

g
- A

where

f ◦ e = g ◦ e

that is

f(m) = g(m)

for all m ∈ Z. We require f = g, that is

f
(m
n

)
= g

(m
n

)
for all m,n ∈ Z with n 6= 0. Consider any non-zero n ∈ Z. We have

g

(
1
n

)
= g

(
1
n

)
· f(n) · f

(
1
n

)
= g

(
1
n

)
· g(n) · f

(
1
n

)
= f

(
1
n

)
and hence

g
(m
n

)
= g(m) · g

(
1
n

)
= f(m) · f

(
1
n

)
= f

(m
n

)
as required. �

2.2.7 Suppose the category C of structured sets has a selector (S, ?).
Consider any monic in C .

A
m - B

Consider a1, a2 ∈ A with m(a1) = m(a2). We show a1 = a2, and hence
show that m is injective. Consider the parallel pair

S
α1 -

α2

- A

with α1(?) = a1 and α2(?) = a2. Each of the two composites

S
m ◦ α1-

m ◦ α2

- B

254 2. Basic gadgetry

is uniquely determined by its value at ?. But

(m ◦ α1)(?) = m(a1) = m(a2) = (m ◦ α2)(?)

so that

m ◦ α1 = m ◦ α2

to give

α1 = α2

(since m is monic), and hence

a1 = α1(?) = α2(?) = a2

as required.

(b) It suffices to exhibit a selector for each of the categories.
For Set ,Pos,Top the 1-element structure will do.
For Mon we use the monoid (N,+, 0) with ? = 0.
For Grp we use the group (Z,+, 0) with ? = 1.
For Rng we use the ring of polynomials Z[X] with ? = X.
For Set-R we use R itself with ? = 1. �

2.2.8 An isomorphism in Top is usually called a homeomorphism.
See Exercise 2.2.7.
Consider a topological space S and let Sd be the set S as a discrete

space. The identity function on the set S is a bijective continuous map

Sd - S

but is not a homeomorphism (unless S is discrete).

(b) Let’s prove the general result. Consider any situation in Top2

T
ε - S

φ -

ψ
- R

where ε[T] is dense in S and where

φ ◦ ε = ψ ◦ ε

holds. We require φ = ψ. By way of contradiction suppose φ 6= ψ so that
φ(s) 6= ψ(s) for some s ∈ S. Since R is T2, this gives

φ(s) ∈ U ψ(s) ∈ V U ∩ V = ∅

for some pair U, V of open sets of S. We have

s ∈ φ←(U) ∩ ψ←(V)

2.2. Monics and epics 255

and both these sets are open in S. The intersection is non-empty, and
so must meet ε[T] (since ε[T] is dense in S). This gives some t ∈ T with

ε(t) ∈ φ←(U) ∩ ψ←(V)

that is

(φ ◦ ε)(t) ∈ U (ψ ◦ ε)(t) ∈ V

which is the contradiction since φ ◦ ε = ψ ◦ ε and U ∩ V = ∅. �

2.2.9 (e) Since e is epic an equality

j ◦ f ◦ e = m ◦ l ◦ e

will suffice. But we easily produce a sequence of equalities

j ◦ f ◦ e = j ◦ g ◦ b = · · · = m ◦ l ◦ e

by passing across each of the faces in turn.
(m) A dual version of (e). �

2.2.10 We label the arrows and various cells

•
f - •

(1)

• a-

e -

•
�
p

(4) (5) (2)

•

d
?

c- •

b
?

(3)

•

k

?

h
-

q
-

•

g

?
m
-

as shown. We are given that cells (1, 2, 3, 4) commute.

(a) Here we are also given that (5) commutes. A use of (2, 1, 5, 4, 3)
in that order gives

g ◦ f = m ◦ b ◦ p ◦ f = m ◦ c ◦ d ◦ f = m ◦ c ◦ q ◦ k = h ◦ k

to show that the outer cell commutes. You should also look at this in
the form of a diagram chase

(b) We have

m ◦ b ◦ a ◦ e = m ◦ b ◦ p ◦ f = g ◦ f m ◦ c ◦ d ◦ e = m ◦ c ◦ q ◦ k = h ◦ k

256 2. Basic gadgetry

using (1, 2) on the left hand side and (4, 3) on the right hand side.
Assuming the outer square commutes this gives

m ◦ b ◦ a ◦ e = g ◦ f = h ◦ k = m ◦ c ◦ d ◦ e

and hence

b ◦ a = c ◦ d

by the assumed cancellative properties of m and e. �

2.3 Simple limits and colimits

2.3.1 For an arbitrary subset X of a poset the

limit colimit

is denoted ∧
X

∨
X

and called the

greatest lower bound or infimum least upper bound or supremum

of X, provided these exists, of course.
When X is empty we have∧

∅ = > (top)
∨
∅ = ⊥ (bottom)

of the poset.
When X is a singleton we have∧

X = {s} =
∨
X

where s is the unique member of X.
When X = {a, b} we have∧

X = a ∧ b
∨
X = a ∨ b

the

meet join

of the pair.
When S is a preset each of these notions may not determine a unique

element, only a family of equivalent elements. �

2.4 Initial and final objects 257

2.4 Initial and final objects

2.4.1 Consider any initial object I in a category. Since I is initial there
is a unique endo-arrow

I - I

on I. We already know one example of such an arrow, namely the identity
arrow idI . Thus this is the only endo-arrow on I.

Consider any pair I, J of initial objects. There are unique arrows

I
f - J J

g - I

since

I is initial J is initial

respectively. The composite

g ◦ f f ◦ g

is an endo-arrow on

I J

respectively. By the previous observation we have

g ◦ f = idI f ◦ g = idJ

and hence f, g are an inverse pair of isomorphisms.

If F,G are two final objects, then there is a unique arrow F - G,
and this is an isomorphism. This is proved in exactly the same way, we
simply think of the arrows as pointing in the other direction. Equiva-
lently, we apply the ‘initial’ result to the opposite category. �

2.4.2 By the uniqueness of mediators the only endo-arrow of I is idI .
Consider any arrow

A
r
- I

and let

A �
s

I

be the unique arrow given by the initial property of I. Then r ◦ s is an
endo-arrow of I, and hence

r ◦ s = idI

258 2. Basic gadgetry

by the above remark.
By duality, each arrow

F
s - F

from a final object is a section.
Consider any arrow

F f - I

passing from a final object to an initial object. From above we know
there are arrows

F
� r

�
s

I

with

f ◦ s = idI r ◦ f = idF

and the usual argument gives s = r, so that f is an isomorphism. �

2.4.3 Exercise 1.2.3 shows that (N, succ, 0) is the initial object of Pno.
This fact is equivalent to the Peano axioms.

The trivial object, with just one element, is final. �

2.4.4 The trivial group is both initial and final in Grp.
The ring Z of integers is initial in Rng . The trivial ring, with 1 = 0,

is final.
The ring Z of integers is initial in Idm . There is no final object (as-

suming that 1 6= 0 must hold in an integral domain).
There is neither an initial object not a final object in Fld . However,

if we fix the characteristic then there is an initial object. �

2.4.5 In Set the final object 1 is the singleton set. It doesn’t matter
what its unique element is, so let

1 = {?}

here.
Each function

1
α - A

is uniquely determined by its only value

α(?)

2.5 Products and coproducts 259

which is an element of A, and every element is the unique value of some
such function. Thus we have a bijection between

Set [1, A] A

as required.
Now consider any composite

1
α - A

f - B

where α corresponds to the element a ∈ A, that is α(?) = a. The com-
posite f ◦ α corresponds to the element

(f ◦ α)(?) ∈ B

and this is just

f(α(?)) = f(a)

as required. �

2.4.6 (a) The presheaf with a singleton for each component set is the
final object 1.

(b) A global element

1 - A

of a presheaf A = (A,A) selects an element

a(i) ∈ A(i)

from each component set. This choice function a(·) must satisfy

A(j, i)
(
a(i)

)
= a(j)

for each j ≤ i. �

2.5 Products and coproducts

2.5.1 The ‘algebraic’ categories are straight forward. In each case we
take the cartesian product of the two carrying sets and then furnish this
in a fairly obvious way.

You may not have seen products in Pos before but they are con-
structed in the obvious way using cartersian products.

You will have seen products on Top before, and you have probably

260 2. Basic gadgetry

been puzzled by the strange construction of the product topology. The
categorical description explains this. Let S and T be a pair of topological
spaces. We require a space S × T and a pair

S × T

S

p

�
T

q
-

of continuous maps where this Top-wedge has a certain universal prop-
erty. We take the cartesian product S×T of the two sets. For the topo-
logical furnishings let’s try the smallest topology on S × T for which
both projections are continuous. Thus we take the smallest topology on
S × T for which each inverse image

p←(U) for U ∈ OS q←(V) for V ∈ OT

is open. This gives a subbase of the usual product topology. Why does
this give a product wedge in Top?

Consider any wedge

R

S

φ

�
T

ψ
-

in Top. Forget the topology for a moment. We have a wedge in Set and
a product wedge in Set . Thus there is a unique function θ such that

R

S �
p

φ

�
S × T

θ
?

q
- T

ψ
-

commutes. It suffices to show that this function θ is continuous, for then
we have a product wedge in Top. To do that it suffices to show that
θ←(W) is open in R for each subbasic open set W of S × T . There are
two kinds of such sets, and both are dealt with by the same argument.
For instance consider W = p←(U) for some U ∈ OS. For each point
r ∈ R we have

r ∈ θ←(W)⇐⇒ θ(r) ∈W = p←(U)
⇐⇒ (p ◦ θ)(r) ∈ U
⇐⇒ φ(r) ∈ U ⇐⇒ r ∈ φ←(U)

2.5. Products and coproducts 261

so that

θ←(W) = φ←(U)

which is open in R. �

2.5.2 The coproduct for each of

Set , Pos, Set-R, Top

can be obtained as a furnished disjoint union with the obvious insertions.
The coproduct for each of

CMon , AGrp, Mod -R

can be obtained as a furnished cartesian product with the obvious in-
sertions.

The coproduct for each of

Mon , Grp, CRng , Rng

is formed by a more complicated construction. Further details are given
by Exercise 4.7.3 �

2.5.3 For two elements a, b of a poset (with arrows pointing upwards)
the

meet a ∧ b join a ∨ b

is the

product coproduct

of the pair. �

2.5.4 For Set⊥-objects A and B the product in Set⊥ is given by the
cartesian product A×B with the obvious projections. The distinguished
element of A×B is (⊥,⊥). The proof of this is easier than, for instance,
the Mon case.

The coproduct is more interesting. Let

A
‘
B =

(
(A− {⊥}) + (B − {⊥}

)
∪ {⊥}

the disjoint union of the two point depleted sets with a point attached.
This set has three kinds of elements

(a, 0) for a ∈ A− {⊥} (b, 1) for b ∈ B − {⊥} ⊥

262 2. Basic gadgetry

and, of course, ⊥ is the distinguished point. The function

A
i - A

‘
B

a - (a, 0) for a ∈ A− {⊥}
⊥ - ⊥

is an arrow of Set⊥, and there is a similar arrow

B
j - A

‘
B

from B. These furnish A
‘
B as the coproduct. The proof is similar to

that for Set . �

2.5.5 For convenience let SetD be the category of sets each with a
distinguished subset. The product is constructed in routine way using
cartesian products. However, it is worth looking at some of the details.

This is one of the places where it is useful to distinguish between a
structure and its carrying set. Thus let

A = (A,X) B = (B, Y)

be a pair of objects of SetD . Let

A× B = (A×B,X × Y)

so this is certainly an object of SetD . By dropping down Set consider
the two projection functions, as on the left. This is a wedge in Set .

A A

A×B
p
-

A× B
p
-

B

q
-

B

q
-

In fact, it is a product wedge in Set . We easily check that p and q are
arrows of SetD , so we have a wedge in SetD , as on the right. We show
this is a product wedge in SetD .

Consider any object C = (C,Z) of SetD and wedge of SetD arrows,
as on the left.

A A A

C

f
-

A× B
p

-

C

f
-

A×B
p

-

C h-

f
-

A×B
p

-

B

q
-g -

B

q
-g -

B

q
-g -

2.5. Products and coproducts 263

By forgetting the carried structure we obtain a wedge of Set arrows, as
in the middle. But (p, q) are a product wedge in Set , so we obtain a
unique mediating Set-arrow, a function h, as on the right. It suffices to
show that h is a SetD arrow. That is a routine calculation.

The construction of the coproduct is not so obvious, but once we have
seen the product construction we can dualize. Let

A = (A,X) B = (B, Y)

be a pair of objects of SetD . Recall that in Set the coproduct

A+B =
(
A× {0}

)
∪
(
B × {1}

)
is the union of A and B where these sets have been tagged to make them
disjoint. The union

X + Y =
(
X × {0}

)
∪
(
Y × {1}

)
is a subset of A+B, and so

A+ B = (A+B,X + Y)

is an object of SetD . Consider the two insertions as on the left.

A A

A+B

i-

A+ B

i-

B

j
-

B
j
-

This is a coproduct wedge in Set . It is easy to check that i and j

are arrow of SetD , so we have a wedge in SetD , as on the right. By
mimicking the proof for the product wedge with the arrows reversed, we
see that we have a coproduct wedge in SetD . �

2.5.6 This is a teaser which almost everyone gets wrong the first time
they see it.

For sets A and B the product and coproduct in RelA are both carried
by the same set, but this is not the cartesian product A × B. It is the
disjoint union

A+B

of the sets. Recall that the members of A+B are tagged members of A
and B. Thus A+B has two kinds of elements

(a, 0) for a ∈ A (b, 1) for b ∈ B

264 2. Basic gadgetry

where the tag records where the element came from. We set up four
relations

A
� P

I
- A+B

Q-
�

J

B

and show that P,Q form a product wedge, and I, J form a coproduct
wedge. With z ranging over A+B we let

aPz ⇐⇒ z = (a, 0)⇐⇒ zIa

bQz ⇐⇒ z = (b, 1) ⇐⇒ zJb

for a ∈ A and b ∈ B.
To show that P,Q form a product wedge consider any wedge from an

arbitrary set X, as on the left. We require a pair of commuting triangles

A A

X

F
-

X M-

F
-

A+B

P
6

B

G -

B

Q
?G -

for some unique relation M , as on the right.
Remembering that z ∈ A+B can have only two forms, we see that

zMx⇐⇒


(∃a ∈ A)[z = (a, 0) & aFx]

or
(∃b ∈ B)[z = (b, 1) & bGx]

gives a relation M of the correct type. For a ∈ A and x ∈ X we have

a(P ◦M)x⇐⇒ (∃z)[aPzMx]⇐⇒ (a, 0)Mx⇐⇒ aFx

to show that

P ◦M = F

and hence the top triangle commutes. A similar argument shows that
the bottom triangle commutes.

To show the uniqueness of this mediating relation consider any relation

X N - A+B

where both

P ◦N = F Q ◦N = G

2.5. Products and coproducts 265

hold. For a ∈ A and x ∈ X we have

(a, 0)Nx⇐⇒ aP (a, 0)Nx⇐⇒ (∃z)[aPzNx]⇐⇒ a(P ◦N)x⇐⇒ aFx

and for b ∈ B we have

(b, 1)Nx⇐⇒ bGx

by a similar argument. This gives

N = M

for the required uniqueness.
The verification that I, J form a coproduct wedge is similar. �

2.5.7 (b) Let

L = (A×B)× C R = A× (B × C)

and consider the following diagram.

A×B
α - A

L

λ6

B
β -

R

σ6

C

µ
?
�

γ
B × C

ρ
?

δ
�

where each arrow is one of the structuring projections of one of the
product wedges. There are no commuting cells in this diagram.

We insert four mediating arrows.
Firstly we obtain

L
η - B × C A×B �

ζ
R

with

(1) δ ◦ η = β ◦ λ (3) β ◦ ζ = δ ◦ ρ
(2) γ ◦ η = µ (4) α ◦ ζ = σ

respectively. Notice that (1, 2) uniquely determine η, and (3, 4) uniquely
determine ζ. Secondly we obtain

L
φ - R L �

ψ
R

266 2. Basic gadgetry

with
(5) σ ◦ φ = α ◦ λ (7) µ ◦ ψ = γ ◦ ρ
(6) ρ ◦ φ = η (8) λ ◦ ψ = ζ

respectively. Notice that (5,6) uniquely determine φ, and (7, 8) uniquely
determine ψ.

We show that φ and ψ are an inverse pair of isomorphisms.
For the diagram

A

L

α ◦ λ -

A×B

α6

B

β
?β ◦ λ -

the unique mediator

L - A×B

must be λ. But with

ξ = ψ ◦ φ

we have

α ◦ ξ = α ◦ λ ◦ ψ ◦ φ = α ◦ ζ ◦ φ = σ ◦ φ = α ◦ λ

β ◦ λ ◦ ξ = β ◦ λ ◦ ψ ◦ φ = β ◦ ζ ◦ φ = δ ◦ ρ ◦ φ = δ ◦ η = β ◦ λ

using (8, 4, 5) on the top line, and (8, 3, 6, 1) on the bottom line. Thus

λ ◦ ξ = λ

since we have just verified that λ◦ξ has the required mediating property.
For the diagram on the left the unique mediator must be idL.

A×B

L

λ -

L

λ6

C

µ
?µ -

µ ◦ ξ = µ ◦ ψ ◦ φ
= γ ◦ ρ ◦ φ
= γ ◦ η = µ

But using (7, 6, 2) we have the equalities on the right. This with the
previous equality gives

ψ ◦ φ = ξ = idL

2.5. Products and coproducts 267

which is half of what we want. The other required equality

φ ◦ ψ = idR

follows by a similar argument. �

2.5.8 Let

L1 = A× C R1 = A+B

L2 = B × C R2 = C

so that

L = L1 + L2 R = R1 ×R2

are the two component objects.
Let

L1
α - A A

ιA - R1

L1
γ1 - C B

ιB - R1

L2
β - B

L2
γ2 - C

R
ρ1 - R1 L1

λ1 - L

R
ρ2 - R2 L2

λ2 - L

be the

projections insertions

which structure the various objects as

products coproducts

respectively.
We can fit these arrows together in two ways. Let’s look at both pos-

sibilities in parallel.
We have arrows

L1
δ11 = ιA ◦ α- R1 L2

δ12 = ιB ◦ β- R1

L1
δ21 = γ1 - R2 L2

δ22 = γ2 - R2

268 2. Basic gadgetry

which give commuting triangles

L1 R1

L

λ1 ?
µj - Rj

δj1
-

Li νi -

δ1i -

R

ρ1
6

L2

λ2
6

δj2

-

R2

ρ2?δ2i -

for i, j ∈ {1, 2}. In other words

We use the coproduct prop-
erties of L to produce a
unique mediator µj

We use the product proper-
ties of R to produce a unique
mediator νj

for the various cases. Observe that

µj ◦ λi = δji = ρj ◦ νi

(for i, j ∈ {1, 2}) uniquely determined µj and νi in terms of the δji, and
these in turn are determined by the given structuring arrows.

Next we interchange the roles of L and R to obtain commuting trian-
gles

R1 L1

L µ -

µ1 -

R

ρ1
6

L

λ1 ?
ν - R

ν1

-

R2

ρ2?µ2
-

L2

λ2
6

ν2

-

for unique mediators µ and ν. These are determined by

µj = ρj ◦ µ νi = ν ◦ λi

respectively. Either µ of ν does the required job.
In fact

µ = ν

as we now show. We have

ρj ◦ µ ◦ λi = µj ◦ λi = δji

for each i and j, so that

νi = µ ◦ λi

for each i, and hence µ = ν.

2.5. Products and coproducts 269

For the counterexample consider the lantern poset

>

a

-

c

6

b

�

⊥

6 -
�

viewed as a category (with arrows pointing upwards). Then

a ∧ c = ⊥ = b ∧ c a ∨ b = >

to give

l = (a ∧ c) ∨ (b ∧ c) = ⊥ r = (a ∨ b) ∧ c = c

and hence r � l. �

2.5.9 The answer to both questions is ‘No’.
Consider a pair of abelian groups A,B with the cartesian product

A × B of these. We know this gives the categorical product of the two
in both AGrp and Grp. Furthermore, we know that the two canonical
insertions

A
i - A×B �

j
B

i(a) = (a, 1) (1, b) = j(b)

gives the coproduct in AGrp. We show that for certain A,B this is not
the coproduct in Grp.

For both A,B we take a copy of the 2-element group. We let

A = {1, a} with a2 = 1 B = {1, b} with b2 = 1

for the two groups. Now let

C = 〈a, b | a2 = 1 = b2〉

that is C is the group of all words in the two letters a, b where both aa

and bb collapse to the empty word. The group operation is concatenation
followed by a successive collapsing of similar letters. For instance

ababab · babab = abababbabab = ababaabab = ababbab = abaab = abb = a

so that each word does have an inverse. Of course, C is not commutative
since ab 6= ba.

270 2. Basic gadgetry

Consider the diagram

A
i - A×B �

j
B

C
g�f -

where each of f, g sends the letter to the corresponding word of length 1.
Observe that each of f, g is a group morphism (in fact, an embedding).
We show there is no morphism

A×B
h - C

which makes the diagram commute. Thus A×B is not the coproduct of
A,B in Grp.

Observe that

(a, 1)(1, b) = (a, b) = (1, b)(a, 1)

in A×B. If there is such a morphism h then

ab = h(a, 1)h(1, b)
= h

(
(a, 1)(1, b)

)
= h(a, b)
= h

(
(1, b)(a, 1)

)
= h(1, b)h(a, 1) = ba

which is contradictory. In fact, C is the coproduct if A,B in Grp. �

2.6 Equalizers and coequalizers

2.6.1 The two parts of Lemma 2.6.3 are proved in the same way. Let’s
show that each equalizer is monic.

Consider an arrow m, as on the left, which is the equalizer of a

•
m - • •

p -

q
- •

parallel pair, as on the right. Thus

p ◦m = q ◦m

2.6. Equalizers and coequalizers 271

with the appropriate universal property. To show that m is monic con-
sider any parallel pair

•
f -

g
- •

with

m ◦ f = h = m ◦ g

where h is the common composite. We require f = g.

•
f -

g
- •

m - •
p -

q
- •

From the diagram above we have

p ◦ h = p ◦m ◦ f = q ◦m ◦ f = q ◦m ◦ g = q ◦ h

so that the universal property of m gives

h = m ◦ k

for some unique arrow k. This uniqueness ensure that f = g.

The proof of the equalizer version of Lemma 2.6.4 is the mirror image
of the coequalizer version. The proof can be obtained from the coequal-
izer version by changing one or two words and remembering that arrows
now point the other way.

The arrow l makes equal f and g. The arrow k is the equalizer of f
and g. Thus there is a unique mediator m satisfying (1). By reversing
the roles of l and k we see there is a unique mediator n satisfying (2).
From (1, 2) we have

k ◦m ◦ n = l ◦ n = k = k ◦ idT

and hence

m ◦ n = idT

since k is monic. Similarly

n ◦m = idS

to show that m and n are an inverse pair of isomorphisms. �

2.6.2 We have a particular insertion

S ⊂
i - A

272 2. Basic gadgetry

which automatically staisfies

i(s) = s

for each s ∈ S. For the given function

X
h - A

we have set up a triangle, as on the left

S ⊂
i- A S ⊂

i- A

m(x) = h(x)

X

m
6

h

-

X

n
6

h

-

for a certain function m as indicated. Trivially, for x ∈ X we have

i(m(x)) = m(x) = h(x)

so the triangle does commute.
Conversely, suppose we have some function n to make the triangle

commute, as on the right. Then for each x ∈ X we have

n(x) = i(n(x)) = h(x)

to show that n = m, and hence m has the required uniqueness. �

2.6.3 (a) Making use of Example 2.6.5 we have

E ⊂
j - S ⊂

i - A
f -

g
- B

where i ◦ j is the equalizer of the pair f, g in Set , where i is an injection
and hence monic, and where i is a group morphism.

Consider any group morphism

X
h - A

which does make equal f and g. Working first in Set we have a com-
muting triangle for some unique function n, as on the left.

E ⊂
j- S ⊂

i- A E ⊂
j- S ⊂

i- A

m = j ◦ n

X

n
6

h

-

X

n
6

h

-
m
-

2.6. Equalizers and coequalizers 273

With the composite arrow m we obtain the diagram, as on the right,
where by construction the left hand triangle commutes in Set , and

h = i ◦ j ◦ n = i ◦m

so the right hand triangle commutes, again in Set . We show that m is
a group morphism, so that the right hand triangle commutes in Grp.

Consider any x, y ∈ X. We require

m(xy) = m(x)m(y)

in A. But, i and h are group morphisms so that

i
(
m(xy)

)
= h(xy) = h(x)h(y) = i(m(x))i(m(y)) = i

(
m(x)m(y)

)
and i is an injection (monic in Grp), to give the required result.

This shows that h does factorize through i via some group morphism
m. We show that this is the only possible factorization. Thus suppose

h = i ◦ k

for some group morphism k. Then

i ◦ k = h = i ◦ j ◦ n = i ◦m

so that

k = m

since i is monic in Grp.

(b) We have a diagram

A
f -

g
- B

k - B/K

where k is the canonical quotient. For each a ∈ A we have

k
(
f(a)g(a)−1

)
= k(1) = 1

which leads to

k(f(a)) = k(g(a))

and hence k does make equal f and g. We show that k is the coequalizer
of f and g.

Consider any group morphism

B
h - X

274 2. Basic gadgetry

which does make equal f and g. For each a ∈ A we have

h(f(a)) = h(g(a))

so that

h
(
f(a)g(a)−1

)
= h(1) = 1

and hence

f(a)g(a)−1 ∈ ker(h)

to show

F ⊆ ker(h)

and hence

K ⊆ ker(h)

by the construction of K. This shows there is a unique morphism m for
which the triangle

B
h - X

B/K

m

-

k -

commutes, and this is precisely the mediating property we require. �

2.6.4 Since the function σ is surjective there can be at most one one
function h] to make the duagram commute. For s1, s2 ∈ S we have

[s1] = [s2] =⇒ s1 ∼ s2 =⇒ h(s1) = h(s2)

to show that the suggested function h] is well defined. For s ∈ S we have

(h] ◦ σ)(s) = h]
(
[s]
)

= h(s)

to show that the triangle commutes. �

2.6.5 Let

B
σ - B/∼

b - [b]

be the constucted quotient.
Consider any a ∈ A and let

b1 = f(a) b2 = g(a)

2.6. Equalizers and coequalizers 275

to obtain to elements of b with b1 b2. In particlar we have

b1 ∼ b2

so that

(β ◦ f)(a) = β(b1) = [b1] = [b2] = β(b2) = (β ◦ g)(a)

to show that β does make equal f and g.
Consider any function h which does make equal f and g. We show

that h factorizes unquely through β. Since β is surjective, there can be
at most one such factorizaton, so it suffices to show that one does exist.

We use Example 2.6.6 and Exercise 2.6.4. Suppose

b1 b2

for b1, b2 ∈ B. Then

b1 = f(a) b2 = g(a)

for some a ∈ A. This gives

h(b1) = h(f(a)) = h(g(a)) = h(b2)

and hence Example 2.6.6 gives a function h] for the factorization. �

2.6.6 For the given continuous maps

S
φ -

ψ
- T

we let

T
α - A

be the coequalizer of the two functions φ and ψ in Set . Recall that α is
surjective. We furnish A with the smallest topology OA for which α is
continuous. This is precisely the set of all W ⊆ A for which α←(W) ∈
OT . (You should check this. The topology is sometimes called the final
topology or the quotient topology on A.) We show that this continuous
map α is the coequalizer of the two maps φ and ψ in Top.

Trivially, α does make equal φ and ψ.
Consider any continuous map

T
θ - R

276 2. Basic gadgetry

which makes equal φ and ψ. At the Set level there is a unique function
µ such that the triangle

S
φ -

ψ
- T

α - A

R

θ

?

µ

�

commutes. It suffices to show that µ is continuous. Consider any U ∈
OR. We require

µ←(U) ∈ OA

that is

(α← ◦ µ←)(U) = α←(µ←(U)) ∈ OT

(by the definition of OA). But

α← ◦ µ← = (µ ◦ α)← = θ←

and θ←(U) ∈ OT since θ is continuous. �

2.6.7 (a) Since the comparison ≤ is refexive, the defied relation ∼ is
relexive. By rephrasinng the definition as

a ∼ b⇐⇒ a ≤ b and b ≤ a

we see that ∼ is symmetric. If

a ∼ b ∼ c

then

a ≤ b ≤ c and c ≤ b ≤ a

so that

a ≤ c and c ≤ a

to give

a ∼ c

to show that ∼ is transitive.
The preset S is a poset precisely when

a ≤ b ≤ a =⇒ a = b

2.6. Equalizers and coequalizers 277

that is

a ∼ b =⇒ a = b

and the converse implication always holds.
(b) To show that the comparison on S/∼ is well-defined suppose

[a1] = [a2] [b1] = [b2]

for elements a1, a2, b1, b2 ∈ S. We require

a1 ≤ b1 ⇐⇒ a2 ≤ b2

and clearly, by symmetry, a proof of one of the implications will do.
From the two assumed equalities we have

a1 ∼ a2 b1 ∼ b2

and hence

a1 ≤ b1 =⇒ a2 ≤ a1 ≤ b1 ≤ b2 =⇒ a2 ≤ b2

as required.
This shows that

S
η - S/∼

a - [a]

is well-defined and, trivially, it is monotone.
(c) Consider a monotone map

S
f - T

from the preset S to a poset T .
For a, b ∈ S we have

a ∼ b =⇒ a ≤ b ≤ a =⇒ f(a) ≤ f(b) ≤ f(a) =⇒ f(a) = f(b)

where the last step holds since T is a poset. Since η is surjective there
is at most one monotone map f] such that

S
f - T

S/∼
f]

-

η -

commutes. Thus it suffices to show that

f]([a]) = f(a)

278 2. Basic gadgetry

(for a ∈ S) gives a well-defined monotone function.
The implications above show that f] is well-defined, and a similar

argument shows that f is monotone. The universal property gives the
required function. For the general argument see Solution 3.3.18. �

2.6.8 We are given that e does make equal f and g. Consider any other
arrow h which makes equal f and g, as on the left. We must show that
h factorizes unquely through e.

• •

•
e- •

h

? f-

g
- • •

e- •

h

? p- •

•

e

?

g
- •

f

?

q
- •

e

?

Let

m = p ◦ h

and consier the right had diagram. We have

e ◦m = e ◦ p ◦ h = q ◦ f ◦ h = q ◦ g ◦ h = h

to show that h does factorize through e.
Conversely, suppose

h = e ◦ n

for some arrow n. Then

n = p ◦ e ◦ n = p ◦ h = m

to show the required unqueness. �

2.7 Pullbacks and pushouts

2.7.1 (a) Consider any wedge in C , as in the center. Consider also the

A A A

P

p
-

C

a-

P

p-
C

a-

Bq
-

B b
-

B b
-

q
-

2.7. Pullbacks and pushouts 279

product wedge of the two objects A,B, as at the left. These compose to
give a square, as at the right. Of course, this square need not commute.
Let

S
e - P

be the equalizer of the parallel pair

P
a ◦ p-

b ◦ q
- C

obtained form the square. We show that

A

S

p ◦ e-

C

a-

B
b
-

q ◦ e
-

is a pullback square.
Consider any commuting square

A

X

f
-

C

a-

B b
-

g
-

where the right hand side is the given wedge. Using the product property
we have

A

X h -

f
-

P

p
6

C

a
-

B

q
?

b

-

g -

f = p ◦ h g = q ◦ h

for some unique arrow h. But now

a ◦ p ◦ h = a ◦ f = b ◦ g = b ◦ q ◦ h

to show that h makes equal the parallel pair, and hence

h = e ◦m

280 2. Basic gadgetry

for some unique arrow

X
m - S

by the equalizing property. In particular, we have a commuting diagram

A

X m-

f
-

S e- P

p
6

C

a
-

B

q
?

b

-

g -

to show that the arbitrary square from X does factorize via m through
the constructed square from S. We must show that this is the only
possible factorization.

Suppose

f = p ◦ e ◦ n g = q ◦ e ◦ n

for some arrow

X
n - S

in place of m. Then

e ◦ n = h

by the uniqueness of h, and hence

n = m

by the uniqueness of m.
(b) This follows by a dual argument to that of (a). �

2.7.2 Assuming the arrows point up he poset, it has all pushouts pre-
cisely when it has joins of those pairs of elements which have a lower
bound. �

2.7.3 For the first part we are given a pair of pullbacks

• c- • a- •

•

r

?
d- •

q

?
b- •

p

?

2.7. Pullbacks and pushouts 281

where we have labelled he arrows. Consider a pair of arrows
•

• c - • a - •

f

-

p ◦ f = b ◦ d ◦ g

•

r

?
d -

g

-

•

q

?
b - •

p

?

with the indicating commuting properties. Using the right hand pullback
there is a unique arrow h for which
•

• a -

h
-

•

f

-

f = a ◦ h d ◦ g = q ◦ h

• d -

g

-

•

q

?
b - •

p

?

commutes, as indicated. This gives us a commuting diagram
•

• c - •

h

-

d ◦ g = q ◦ h

•

r

?
d -

g

-

•

q

?

and the left hand pullback provides a unique arrow m for which
•

• c -

m

-

•

h

-

h = c ◦m g = r ◦m

•

r

?
d -

g

-

•

q

?

commutes, as indicated.

282 2. Basic gadgetry

From equalities we have

f = a ◦ h = a ◦ c ◦m g = r ◦m

to show that we have produced a factorization o f and g through a
common arrow m. It remains to show that m is the only arrow that
does this job.

Consider any arrow n for which

f = a ◦ c ◦ n g = r ◦ n

holds. Then

f = a ◦ c ◦ n d ◦ g = d ◦ r ◦ n = q ◦ c ◦ n

and hence

c ◦ n = h

by the uniqueness of h. but now

c ◦ n = h r ◦ n = g

to give

n = m

by the uniqueness of m. �

2.7.4 Consider any parallel pair p, q of arrows that h makes equal.

h ◦ p = h ◦ q = l

•

•

p

?

q

? k- •

•

h

?

g
- •

f

?

We must show that p = q. By going round the square we find that

f ◦ k ◦ p = f ◦ k ◦ q

and hence, since f is monic, we have

k ◦ p = k ◦ q = r

2.7. Pullbacks and pushouts 283

say. This shows that both p and q make

•

• k -
-

•

r

-

•

h

?
g -

l

-

•

f

?

commutes, and hence p = q since the given square is a pullback. �

2.7.5 Suppose that f is the equalizer of the parallel pair p, q as indicated

•
k- •

•

h

?

g
- •

f

?
•

p ◦ g-
q ◦ g
- •

•

p

?

q

?

on the left. Since the given square does commute, we see that h makes
equal the composite parallel pair on the right, and we show that h ac-
tualy equalizes this pair.

• • •

• k- • • k- •

r

-
• k-

m
-

•

r

-

•

h
?

g-

l

-

•

f
?

•

h
?

g-

l

-

•

f
?

•

h
?

g-

l

-

•

f
?

•

p
?
q
?

•

p
?
q
?

•

p
?
q
?

Consider any other arrow l which does make equal this pair, as on the
left. Since f is the equalizer of p, q there is a unique arrow r which makes
the central diagram commute. Since the given square is a pullback there
is a unique arrow m which makes the right hand diagram commute.

284 2. Basic gadgetry

From these duagrams we have

g ◦ l = f ◦ r l = h ◦m r = k ◦m

and it is the central equality that most interests us. It suffices to show
that this is the only possible factorization of l through h.

Consider any arrow n for which

l = h ◦ n

holds. It suffices to show

r = k ◦ n

for then n = m by the uniqueness of m. Since the given square commutes
we have

f ◦ k ◦ n = g ◦ h ◦ n = g ◦ l

and hence the uniqueness of r gives the required result. a �

2.8 Using the opposite category

2.8.1 No solution needed? �

3

Functors and natural tansformations

3.1 Functors defined

3.1.1 A covariant functor from S to T is simply a monoid morphism
from S to T . A contravariant functor f from S to T is monoid ‘morphism’
that flips the elements, that is

f(rs) = f(s)f(r)

for r, s ∈ S. �

3.1.2 A covariant functor from S to T is simply a monotone map. A
contravariant functor f from S to T is an antitone map, that is

r ≤ s =⇒ f(s) ≤ f(r)

for r, s ∈ S. �

3.1.3 Consider a covariant functor

Srcop F- Trg

using the opposite on the source. Consider any arrow

A
f - B

of Src. This is an arrow

B
f - A

of Srcop, and the functor F sends it to an arrow

FB
F (f)- FA

286 3. Functors and natural transformations

of Trg . Thus F has flipped the direction of f . The other required prop-
erties (preservation of composition and identity arrows) are immediate,
to show that

Src
F - Trg

is a contravariant functor.
The other part is just as easy. �

3.1.4 The composite of two functors of the same variance produces a
covariant functor.

The composite of two functors of opposite variance produces a con-
travariant functor. �

3.2 Some simple functors

3.2.1 The functors S and T select the source and target of the arrow,
respectively. The diagonal functor ∆ send each object A to the identity
arrow idA. �

3.2.2 The Set-valued contravariant functors on the poset S are pre-
cisely the presheaves on S. �

3.2.3 The

covariant contravariant

Set-valued functors from R are precisely the

left right

R-sets. It is worth looking at the details of this, and the contravariant
case is potentially more interesting.

Consider such a contravariant functor. This must send each object of
R to some set. But since R (when viewed as a category) has just one
object, this object assignment produces a set, A say.

The functor must send each arrow of R (element of R) to a function
from A to A.

R
r - R - A �

αr
A

3.3 Some less simple functors 287

Let αr be the 1-placed operation on A assigned to r ∈ R. The con-
travariance

R A

-

R
sr

-

s -

R

r
-

A �
αsr

αs

�
A

αr
�

gives

αsr = αs ◦ αr α1 = idA

for each r, s ∈ R, where the right hand equality is the identity require-
ment. We now write each operation α as a right action

A
αr - A

a - ar

to get

a(sr) = (as)r a1 = a

and so produce a right R-set. �

3.2.4 This is more or less proved by Exercise 1.3.5. �

3.2.5 Remember that C [−,−] is contravariant in the left argument
and covariant in the right argument. So what we have here is really a
covariant functor

C op ×C
H- Set

from the ‘twisted product’ category. In detail, for arrows

B
f - A S

g - T

of C we have

H(f, g) = g ◦ − ◦ f

for the arrow behaviour of H. �

3.3 Some less simple functors

3.3.1 Three power set functors

3.3.1 Only ∀(·) is liable to cause trouble.

288 3. Functors and natural transformations

Given monotone maps

A
f - B

g - C

between sets, for each X ∈ PA we have(
∀(g) ◦ ∀(f)

)
(X) = ∀(g)

(
∀(f)(X)

)
= ∀(g)

(
f [X ′]′

)
= g[f [X ′]′′]′

= g[f [X ′]]′

= (g ◦ f)[X ′]′ = ∀(g ◦ f)(X)

as required. A similar proof can be done using the quantifier character-
ization. �

3.3.2 This is simpler than Exercise 1.3.9. A set is a discrete poset. �

3.3.2 Spaces, presets, and posets

3.3.3 The specialization order of ⇑A is the given comparison on A. �

3.3.4 (a) Consider a monotone map

A
f - B

between two presets, and an upper section V ∈ ΥB of the target. We
require f←(V) ∈ ΥA. Consider any x ≤ y in A with x ∈ f←(V). Then

f(x) ≤ f(y) f(x) ∈ V

so that f(y) ∈ V and hence y ∈ f←(V).
We have an object and an arrow assignment

Pre
⇑ - Top

which is trivial on arrows, so we do have a functor.

(b) Consider a continuous map between spaces

S
φ - T

and consider a comparison x ≤ y in S. We require φ(x) ≤ φ(y) in T .
Consider V ∈ OT with φ(x) ∈ V . We required φ(y) ∈ V . But

x ∈ φ←(V) ∈ OS x ≤ y

3.3.2. Spaces, presets, and posets 289

so that y ∈ φ←(V), as required.
We have an object and an arrow assignment

Top
⇓ - Pre

which is trivial on arrows, so we do have a functor. �

3.3.5 Suppose first that θ is monotone and consider any U ∈ OS. We
require θ←(U) ∈ ΥA. Consider elements x, y of A with

x ∈ θ←(U) x ≤ y

so that y ∈ θ←(U) is required. We have

θ(x) ∈ U θ(x) ≤ θ(y)

(since θ is monotone), and hence

y ∈ θ(U)

since each open set of S is an upper section of S.
Secondly, suppose that θ is continuous and consider elements x ≤ y

of A. We require θ(x) ≤ θ(y). For each U ∈ OS we have

θ(x) ∈ U =⇒ x ∈ θ←(U) =⇒ y ∈ θ←(U) =⇒ θ(y) ∈ U

where the central implication holds since θ is continuous and hence
θ←(U) ∈ ΥA.

These two implications show that the hom-sets

Pre [A,⇓S] Top[⇑A,S]

contain exactly the same functions. Thus there is a trivial bijection be-
tween the two sets. �

3.3.6 For U, V ∈ OS with U ⊆ V we require O(φ)(U) ⊆ O(φ)(V). But
for t ∈ T we have

t ∈ O(φ)(U) =⇒ φ(t) ∈ U ⊆ V =⇒ φ(t) ∈ V =⇒ t ∈ O(φ)(V)

for the required result.
For each pair of continuous maps

T
φ - S

ψ - R

we require

O(ψ ◦ φ) = O(φ) ◦ O(ψ)

290 3. Functors and natural transformations

that is

(ψ ◦ φ)←(U) = (φ← ◦ ψ←)(U)

for U ∈ OR. But for t ∈ T we have

t ∈ (ψ ◦ φ)←(U)⇐⇒ (ψ ◦ φ)(t) ∈ U
⇐⇒ ψ(φ(t)) ∈ U
⇐⇒ φ(t) ∈ φ←(U)
⇐⇒ t ∈ ψ←(φ←(U)) ⇐⇒ (φ← ◦ ψ←)(U)

for the required result.
Observe that a character

p : S - 2

is continuous precisely when

p←({1})

is open in S. This is because

p←(∅) = ∅ p←(2) = S

and these are open in S. For each continuous map φ and continuous
character p on the target we have a continuous character

Ξ(φ)(p) = p ◦ φ

since continuous maps are closed under composition.
To show that Ξ(φ) is monotone consider continuous characters p, q of

S with p ≤ q. Then for each t ∈ T we have

Ξ(φ)(p)(t) = p(φ(t)) ≤ q(φ(t))Ξ(φ)(q)(t)

to show

Ξ(φ)(p) ≤ Ξ(φ)(q)

as required.
Finally, for each pair of continuous maps

T
φ - S

ψ - R

we require

Ξ(ψ ◦ φ) = Ξ(φ) ◦ Ξ(ψ)

that is

Ξ(ψ ◦ φ)(r) =
(
Ξ(φ) ◦ Ξ(ψ)

)
(r)

3.3.2. Spaces, presets, and posets 291

for each continuous character r of R. But for such an r we have

Ξ(ψ ◦ φ)(r) = r ◦ (ψ ◦ φ)
= (r ◦ ψ) ◦ φ
= Ξ(ψ)(r) ◦ φ
= Ξ(φ)

(
Ξ(ψ)(r)

)
=
(
Ξ(φ) ◦ Ξ(ψ)

)
(r)

as required. �

3.3.7 To show χS(U) is continuous (for U ∈ OS) we require

χS(U)←(W) ∈ OS

for each W ∈ O2. Trivially we have

χS(U)←(∅) = ∅ χS(U)←(2) = S

so it suffices to deal with W = {1}. For each s ∈ S we have

s ∈ χS(U)←({1})⇐⇒ χS(U)(s) ∈ ({1})⇐⇒ χS(U)(s) = 1⇐⇒ s ∈ U

to give the required result.
For p ∈ ΞS with

U = p←({1}) ∈ OS

we have

p = χS(U)

and hence

OS
χS - ΞS

is a bijection. To show it is a poset isomorphism we require

U ⊆ V ⇐⇒ χS(U) ≤ χS(V)

for U, V ∈ OS. But we have

χS(U) ≤ χS(V)⇐⇒ (∀s ∈ S)[χS(U)(s) ≤ χS(V)(s)]

⇐⇒ (∀s ∈ S)[χS(U)(s) = 1 =⇒ χS(V)(s) = 1]

⇐⇒ (∀s ∈ S)[s ∈ (U =⇒ s ∈ V]

⇐⇒ U ⊆ V

as required. �

292 3. Functors and natural transformations

3.3.3 Functors from products

3.3.8 Let F = −×R. By construction, for each arrow

A
f - B

the arrow

FA
F (f)- FB

is the unique arrow for which

A
f - B

FA -

pA -

FB
pB

-

R
idR

-
qA
-

R

qB
-

commutes. For arrows

A
f - B

g - C

we require

F (g ◦ f) = F (g) ◦ F (f)

(together with a trivial observation to give F (id) = id).
We have several commuting cells

A
f - B

g - C A
g ◦ f - C

FA F (f)-

pA-

FB F (g)-

pB-

FC

pC-

FA F (g ◦ f)-

pA-

FC
pC
-

R
idR

-qA
-

R
idR

-qB
-

R
qC
-

R
idR

-qA
-

R

qC-

and the uniqueness of the central arrows give the required result. �

3.3.9 We have an object assignment

C ×C - C

A1, A2
- A1 ×A2

so we now require a companion arrow assignment. Consider any arrow

3.3.3. Functors from products 293

of C ×C , in other words a pair

A1
f1 - B1

A2
f2

- B2

of arrows of C . We have a diagram

A
f1 - B1

A1 ×A2

p1 -

B1 ×B2

q1

-

R
f2

-
p2
-

B2

q2-

where p1, p2, q1, q2 are the structuring projections. The product property
of the right hand wedge gives a commuting diagram

A1
f1 - B1

A1 ×A2 f1 × f2
-

p1 -

B1 ×B2

q1

-

A2
f2

-
p2
-

B2

q2
-

for some unique central arrow. This is often written f1 × f2, as shown,
and then

(f1, f2) - f1 × f2

is the arrow assignment.
To verify that we have a functor we need to show that the arrow

construction passes across composition. As usual, it is the uniqueness
that gives this.

Consider a composible pair

A1
f1 - B1

g1 - C1

A2
f2

- B2
g2

- C2

294 3. Functors and natural transformations

of arrows of C ×C . The commuting diagram

A1
f1 - B1

g1 - C1

A1 ×A2 f1 × f2
-

p1 -

B1 ×B2 g1 × g2
-

q1 -

C1 × C2

r1

-

A2
f2

-
p2
-

B2
g2

-
q2
-

C2

r2
-

ensures that

A1
g1 ◦ f1 - C1

A1 ×A2 (g1 × g2) ◦ (f1 × f2) -

p1
-

C1 × C2

r1

-

A2
g2 ◦ f2

-
p2 -

C2

r2

-

commutes, and hence

(g1 × g2) ◦ (f1 × f2) = (g1 ◦ f1)× (g2 ◦ f2)

by the uniqueness of the mediators. �

3.3.4 Comma category

3.3.10 We produce a composition of arrows in (U ↓ L) and check it is
associative. Consider two arrows of (U ↓ L)

UAU UBU UCU

f - g -

LAL

α
?

LBL

β
?

LCL

γ
?

3.3.4. Comma category 295

which ought to compose. In more detail we have

AU
fU - BU

gU - CU

UAU
U(fU)- UBU

U(gU)- UCU

LAL

α
?

L(fL)
- LBL

β
?

L(gL)
- LCL

γ
?

AL
fL
- BL

gL
- CL

where the two squares commute. Now consider composite arrows

AU
hU = gL ◦ fU- CU U

AL
hL = gL ◦ fL

- CL L

in the indicated categories. From above and using the functorial prop-
erties of U and L we see that the square

AU
hU - CU

UAU
U(hU)- UCU

LAL

α
?

L(hL)
- LCL

γ
?

AL
hL
- CL

commutes, and so we have an arrow

UAU UCU

h -

LAL

α
?

LCL

γ
?

of (U ↓ L). We take this as the composite

g ◦ f

of the given arrows. A diagram chase verifies the category axioms. �

3.3.11 (a)
(
IdC ↓ IdC

)
= C ↓.

296 3. Functors and natural transformations

(b) Using

C
IdC - C �

K
C C

K - C �
IdC

C

where K is the constant functor with

KA = S

for each C -object A, we have

(C ↓ S) = (IdC ↓ K) (S ↓ C) = (K ↓ IdC)

respectively. �

3.3.12 For the three cases the object

AU

α

AL

of Com is sent to the object

U C ↓ L

UAU

UAU LAL

LAL

α
?

of the indicated category. The arrow

UAU UBU

f -

LAL

α
?

LBL

β
?

of Com is sent to the arrow

U C ↓ L

UAU
U(fU)- UBU

AU fU- BU AL fL- BL

LAL

α
?

L(fL)
- LBL

β
?

of the indicated category. The composition properties are easy. �

3.3.5. Other examples 297

3.3.5 Other examples

3.3.13 Consider an arbitrary group A. We assume it is written multi-
plicatively. A commutator of A is an element

[x, y] = xyx−1y−1

for arbitrary x, y ∈ A. Thus A is abelian precisely when the unit 1 is the
only commutator. Observe that

[x, y]−1 = [y, x]

so the set of products of commutators is a subgroup δA of A. In partic-
ular, A is abelian precisely when δA is the trivial subgroup.

To show that the object assignment

A - δA

fills out to a functor we do a little bit more. We show there is a unique
commuting square

δA
ιA- A

δB

δ(f)
?

ιB
- B

f
?

for each group morphism f . Here ιA and ιB are the two embeddings.
If there is such a morphism δ(f) then it can only be

f |δA

the restriction of f to δA. We remember that

f(x−1) = f(x)−1

for each x ∈ A, and hence

f([x, y]) = [f(x), f(y)]

for each x, y ∈ A, so that

a ∈ δA =⇒ f(a) ∈ δB

which is what we want.
The uniqueness in the construction of δ(·) ensures that it passes across

composition of morphisms. For each pair of morphisms

A
f - B

g - C

298 3. Functors and natural transformations

we have a commuting diagram, as on the left

δA
ιA- A δA

ιA - A

δB

δ(f)
?

ιB- B

f
?

δC

δ(g)
?

ιC
- C

g
?

δC

δ(g) ◦ δ(f)

?

ιC
- C

g ◦ f

?

to give a commuting square as on the right. Thus

δ(g) ◦ δ(f) = δ(g ◦ f)

by the uniqueness of δ(g ◦ f).

For the second part we show there is a unique commuting square

A
ηA- A/δA

B

f
?

ηB
- B/δB

f/δ
?

for each group morphism f . Here ηA and ηB are the two canonical quo-
tient morphisms.

The notation

f/δ

is not to be taken too seriously.
Since ηA is surjective (epic in Grp) there can be at most one such

morphism f/δ. There is such a morphism precisely when

Ker(ηA) ⊆ Ker(ηB ◦ f)

that is

δA ⊆ Ker(ηB ◦ f)

that is

[x, y] ∈ Ker(ηB ◦ f)

for each x, y ∈ A. But we know

f([x, y]) = [f(x), f)y)] ∈ δB

3.3.5. Other examples 299

which gives the required result. The uniqueness in the diagram ensures
that we have a functor. �

3.3.14 (a) Given an R-set A we require

(a ? s) ? t = a ? (st)

for s, t ∈ S. But φ is a monoid morphism, so that

φ(s)φ(t) = φ(st)

and hence

(a ? s) ? t = (a · φ(s)) · φ(t) = a · (φ(s)φ(t)) = a · φ(st) = a ? st

as required.

(b) We must show that for each R-morphism

A
f - B

the function f is also an S-morphism, that is

f(a ? s) = f(a) ? s

for each a ∈ A and s ∈ S. But

f(a ? s) = f(a · φ(s)) = f(a) · φ(s) = f(a) ? s

for the required result. �

3.3.15 We have an object assignment and an arrow assignment

Mon MON

R - Set-R
φ - Φ

so it suffices to check that the arrow assignment passes across compo-
sition. But for each Mon-arrow φ the resulting functor Φ is trivial on
objects and arrows, so the requirement is satisfied. �

3.3.16 In Solution 1.2.7 we set up an inverse pair of translations

Pfn
L-

�
M

Set⊥

on both objects and arrows. We check these each of these is a functor.

300 3. Functors and natural transformations

We deal first with L, and it is only the passage across composition
that requires much thought. Consider a composible pair of arrows

A
f - B

g - C

in Pfn . Thus

L(g ◦ f) = L(g) ◦ L(f)

is required. The arrow composite g ◦ f is determined by

A B C

X
∪

6
f

-

Y
∪

6
g

-

U
∪

6

f |U

-

where X and Y are the respective domains of definition of f and g, and

U = f
←

(Y)

that is

a ∈ U ⇐⇒ a ∈ X and f(a) ∈ Y

for a ∈ A.
We adjoin a bottom ⊥ to each of A,B,C, and then set

L(f)(a) =

{
f(a) if a ∈ X
⊥ if a /∈ X

for each a ∈ A. There are similar descriptions of L(g) and L(g◦f) which
we write down in a moment. In all cases ⊥ is sent to ⊥.

Observe that

L(f)(a) ∈ Y ⇐⇒ a ∈ X and f(a) ∈ Y ⇐⇒ a ∈ U

for each a ∈ A.
We have

L(g)(b) =

{
g(b) if b ∈ Y
⊥ if b /∈ Y

for each b ∈ B. In particular, we have

L(g ◦ f)(a) =

{
g ◦ f |U (a) if a ∈ U
⊥ if a /∈ U

}
=

{
g(f(a)) if a ∈ U
⊥ if a /∈ U

3.3.5. Other examples 301

for each a ∈ A.
Finally, for each a ∈ A we have

L(g)
(
L(f)(a)

)
=

{
g
(
L(f)(a)

)
if L(f)(a) ∈ Y

⊥ if L(f)(a) /∈ Y

}

=

{
g
(
f(a)

)
if a ∈ X and f(a) ∈ Y

⊥ if not

}

=

{
g
(
f(a)

)
if a ∈ U

⊥ if a /∈ U

where the second equality follows by the observation above.
This shows that L passes across composition in the required fashion.

To show that M passes across composition consider a pair of arrows

R
ψ - S

φ - T

in Set⊥. We remove the bottom from each of R,S, T to obtain sets
MR,MS,MT and we let

M(ψ) = ψ|W M(φ) = φ|X

where these domains of definition are given by

r ∈W ⇐⇒ ψ(r) 6= ⊥ s ∈ X ⇐⇒ φ(s) 6= ⊥

for r ∈ R and s ∈ S. Similarly we have

M(φ ◦ ψ) = (φ ◦ ψ)|U

where U is given by

r ∈ U ⇐⇒ φ(ψ(r)) 6= ⊥ ⇐⇒ ψ(r) ∈ X

for each r ∈ R.

302 3. Functors and natural transformations

These constructions give us two arrows in Pfn .

MR
M(φ) ◦M(ψ) - MT MR

M(φ ◦ ψ)- MT

MR MS MT MR MT

W
∪

6

ψ|W

-

X
∪

6

φ|X

-

U
∪

6

(φ ◦ ψ)|U

-

V
∪

6

ψ|W |V

-

The left hand one is a composite in Pfn , whereas the right hand one is
the image of a composite in Set⊥.

The domain of definition V is given by

r ∈ V ⇐⇒ r ∈W and ψ|W (r) ∈ X

for r ∈ R. Since φ(⊥) = ⊥, for each r ∈ R we have

ψ(r) = ⊥ =⇒ φ(ψ(r)) = ⊥

and hence

ψ(r) ∈ X =⇒ r ∈W

to show that V = U . Thus the two arrows are

MR MT MR MT

U
∪

6

φ|X ◦ ψ|U

-

U
∪

6

(φ ◦ ψ)|U

-

which, since U ⊆ X, show that they are equal. �

3.3.17 This exercise extends the earlier Exercise 2.6.7.
(a) To show that the comparison on S/∼ is well-defined suppose

[s1] = [s′1] [s2] = [s′2]

for elements s1, s
′
1, s2, s

′
2 ∈ S. We require

s1 ≤ s2 ⇐⇒ s′2 ≤ s′2

and clearly, by symmetry, a proof of one of the implications will do.
From the two assumed equalities we have

s1 ∼ s′1 s2 ∼ s′2

3.3.5. Other examples 303

and hence

s1 ≤ s2 =⇒ s′1 ≤ s1 ≤ s2 ≤ s′2 =⇒ s′1 ≤ s′2

as required.
This shows that

S
ηS - S/∼

s - [s]

is well-defined and, trivially, it is monotone.
(b) Consider a monotone map

S
f - T

from a preset S to a poset T . We check there is a commuting triangle

S
f - T

S/∼
f]

-

ηS -

for some unique monotone map f].
Since ηS is surjective there is at most one such map f]. Thus it suffices

to show that

f]([s]) = f(s)

(for s ∈ S) gives a well-defined monotone function.
For s1, s2 ∈ S, since f is monotone, we have

[s1] = [s2] =⇒ s1 ≤ s2 ≤ s1

=⇒ f(s1) ≤ f(s2) ≤ f(s1) =⇒ f(s1) = f(s2)

where the last step holds since T is a poset. This shows that f is well-
defined. A similar argument shows that f is monotone.

This universal property induces the required functor. For the general
argument see Solution 3.3.18. �

3.3.18 (a) Consider an arbitrary arrow

A
f - B

of Src. We must produce an arrow

FA
F (f)- FB

304 3. Functors and natural transformations

and then check that the two assignments form a functor.
Consider the composite arrow

A
f - B

ηB- (¿ ◦ F)B

of Src. Applying the universal property to this arrow gives a commuting
square

A
f - B

(¿ ◦ F)A

ηA ?

¿(!)
- (¿ ◦ F)B

ηB?

for some unique arrow

FA ! - FB

of Trg . We take this arrow for F (f). Thus

F (f) = (ηB ◦ f)]

in terms of the given notation.
To show that F passes across composition consider a pair of arrows

A
f - B

g - C

of Src. Each of these gives a comuting square.

A
f - B

g - C

(¿ ◦ F)A

ηA
?

¿(F (f))
- (¿ ◦ F)B

ηB
?

¿(F (g))
- (¿ ◦ F)C

ηC
?

And the composite gives a similar commuting square

A
g ◦ f - C A

g ◦ f - C

(¿ ◦ F)A

ηA
?

¿(F (g ◦ f)
)- (¿ ◦ F)C

ηC
?

(¿ ◦ F)A

ηA
?

¿(F (g) ◦ F (f)
)- (¿ ◦ F)C

ηC
?

as on the left. The two commuting squares above combine to give the
commuting square on the right. The uniqueness of the fill-in arrow gives

F (g ◦ f) = F (g) ◦ F (f)

3.3.5. Other examples 305

as required.
The required identity property is almost trivial.

(b) For each arrow

FA
g - S

of Trg let

A
g[- ¿S

be the composite

A
ηA- (¿ ◦ F)A

¿(g)- ¿S

of Src.
Trivially, the triangle

A
g[- ¿S

(¿ ◦ F)A

¿(g)

-

ηA -

commutes, to show that

g[
] = g

by the uniqueness property of the (·)] construction.
Similarly, for each arrow

A
f - ¿S

of Src we have

f][= f

by the given commuting triangle.
This sets up an inverse pair

f - f]

Src[A, ¿S] Trg [FA, S]
g[� g

of bijections, and it is not too hard to show that each is natural for
variations of A and S. �

306 3. Functors and natural transformations

3.4 Natural transformations defined

3.4.1 (a) Consider the category

0
(↓)

1
?

where the two identity arrows have been omitted from the picture. Let
C be an arbitrary category. A covariant functor

(↓) - C

must select two objects A0, A1 of C and an arrow between them.

A0

A1

α
?

(It also selects the identity arrows on these two objects, but that is
not going to cause a problem.) There are no non-trivial composition
properties here. Thus such a functor is precisely an object of C ↓.

Consider two such functors
A0 B0

A1

α
?

B1

β
?

that is, two objects of C ↓. There are just two source objects, namely 0
and 1, so a natural transformation between these functors must select
two arrows

A0
f0- B0

A1
f1

- B1

of C . The naturality requires that the square

A0
f0- B0

A1

α
?

f1

- B1

β
?

commutes. Thus, a natural transformation is just an arrow of C ↓.

3.4. Natural transformations defined 307

(b) If you re-read Solution 1.3.10 you will find that the objects of
C∇ are esentially the ‘functors’ from the graph ∇ = (N,E), and the
arrows of C∇ are essentially the ‘natural transformations’ between these
‘functors’. The only problem is that ∇ is not a category and there are
no composition requirements. Don’t worry about that. Composition can
be dealt with later. �

3.4.2 A presheaf on S is a contravariant functor

S - Set

and an arrow between presheaves is a natural transformation between
these functors. �

3.4.3 We look at the contravariant case. Let A and B be a pair of
(right) R-sets viewed as functors from the 1-object category R. Since R
has just one object a natural transformation will be a single function

A
f - B

subject to certain conditions. For each arrow r of R (r ∈ R) the square

A
f- B

A

αr
6

f
- B

βr
6

must commute. Here αr and βr are the 1-placed operations on A and B
selected by r. Thus

f ◦ αr = βr ◦ f

is the required condition. In terms of elements and actions this is

f(ar) = f(αr(a)) = (f ◦ αr)(a) = (βr ◦ f)(a) = βr(f(a)) = f(a)r

so that f is just an arrow of Set-R. �

3.4.4 We must show that for each Src-arrow

A
f - B

308 3. Functors and natural transformations

the induced Trg-square

GA
σA- FA

GB

G(f)
?

σB
- Fb

F (f)
?

commutes. To do that consider the following diagram.

FA
τA- GA

σA- FA

FB

F (f)
?

τB
- GB

G(f)
?

σB
- FB

F (f)
?

The left hand square does commute, since we know that τ• is natural.
The outer cell commutes since we are given

σ• ◦ τ• = id•

and hence both trips from FA to FB are equal to F (f). But now

F (f) ◦ σA ◦ τA = σB ◦ τB ◦ F (f) = σB ◦G(f) ◦ τA

and hence since

τ• ◦ σ• = id•

we have

F (f) ◦ σA = F (f) ◦ σA ◦ τA ◦ σA = σB ◦G(f) ◦ τA ◦ σA = σB ◦G(f)

for the required result. �

3.5 Examples of natural transformations

3.5.1 Given an arrow

L
k - K

we certainly have a function

[A,L]
k ◦ −- [A,K]

3.5. Examples of natural transformations 309

for each object A. For this to be natural we require the square

A [A,L]
k ◦ −- [A,K]

B

f
6

[B,L]

− ◦ f
?

k ◦ −
- [B,K]

− ◦ f
?

to commute for each arrow f . This is trivially satisfied. �

3.5.2 Each of F and G is a composite of contravariant functors, and
hence each is a covariant functor.

We need an explicit description of the behaviour on arrows. Consider
an arrow

A
f - B

of C . This must produce a function

Set [C [A,P], R]
F (f) - Set [C [B,P], R]

mapping functions to functions. In other words, for each input function

C [A,P]
l - R

an output function

C [B,P] - R

is required. Thus we set

F (f)(l)(b) = l(b ◦ f)

for each arrow

B
b - P

of C .
There is a similar description of G.
For the natural transformation we require a function

Set [C [A,P], R]
τA - Set [C [A,Q], S]

for each object A of C . In other words, for each input function

C [A,P]
l - R

310 3. Functors and natural transformations

an output function

C [A,Q] - S

is required. Thus we set

τA(l)(a) = (s ◦ l)(p ◦ a)

for each arrow

A
a - Q

of C . Finally, we show that the square

A FA
τA - GA

B

f
6

FB

F (f)
?

τB
- GB

G(f)
?

commutes for each arrow f of C . In other words we require(
τB ◦ F (f)

)
(l) =

(
G(f) ◦ τ)A

)
(l)

for each member

C [A,P]
l - R

of FA. Thus we require(
τB ◦ F (f)

)
(l)(b) =

(
G(f) ◦ τ)A

)
(l)(b)

for each arrow

B
b - P

of C . But we have(
τB ◦ F (f)

)
(l)(b) = τB

(
F (f)(l)

)
(b)

=
(
s ◦ F (f)(l)

)
(p ◦ b)

= s
(
F (f)(l)(p ◦ b)

)
= s
(
(l(p ◦ b ◦ f)

)
= (s ◦ l)(p ◦ b ◦ f)

and(
G(f) ◦ τA

)
(l)(b) = G(f)

(
τA(l)

)
(b) = τA(l)(b ◦ f) = (s ◦ l)(p ◦ b ◦ f)

3.5. Examples of natural transformations 311

to give the required result. �

3.5.3 It remains to check the last bit of part (b), namely that

τA(l) = F (l)(k)

holds. We track idK round both sides of the given commuting square

idK - τK(idK) = k

[K,K]
τK

- FK

[K,B]

l ◦ −
? τA - FA

F (l)
?

F (l)(k)
?

l
?

- τA(l)

for the required result. �

3.5.3 The particular case where the category C is a poset is dealt with
in Example 1.4.1. �

3.5.5 This is the contravariant version of the first part of Example
3.5.2. �

3.5.6 This is the contravariant version of the second part of Example
3.5.2. �

3.5.7 For each set A we set

η∃A(a) = {a} η∀A(a) = {a}′

for each a ∈ A. �

3.5.8 We require

q = p ◦ f

but since each of these functions has target 2 is suffices to show they
output 1 at the same inputs. For each b ∈ B we have

q(b) = 1⇐⇒ χB(f la(X))(b) = 1
⇐⇒ b ∈ f←(X)
⇐⇒ f(b) ∈ X
⇐⇒ χA(X)(f)(b) = 1 ⇐⇒ (p ◦ f)(b) = 1

312 3. Functors and natural transformations

for the required result. �

3.5.9 (a) From the diagram in Example 3.5.5 we require

ηB(f(a)) = Π(f)(ηA(a))

for each a ∈ A. Each side of this equality is a member of aP2B. Thus,
for Y ∈ PB, we have

Y ∈ Π(f)(ηA(a))⇐⇒ f←(Y) ∈ ηA(a)
⇐⇒ a ∈ f←(Y)
⇐⇒ f(a) ∈ Y ⇐⇒ Y ∈ ηB(f(a))

to give the required equation.

(b) As in the question let I be the inverse power set endofunctor on
Set , and also let J be Set [−, 2], the endo-hom-functor on Set . We know
that the arrow behaviour of J is by composition. Thus we have

A JA q ◦ f J2A π

B

f

?
JB

J(f)

6

q

6

J2B

J2(f)

?

π ◦ J(f)
?

for each arrow f of Set , each q : B - 2, and each π : [A, 2] - 2.
In particular, we have

J2(f)(π)(q) = π(q ◦ f)

for each such f, π, q.
For each set A consider the ‘evaluation’ function

A
φA - J2A

given by

φA(a)(p) = p(a)

for each p : A - 2 and a ∈ A. We show this is a natural transforma-
tion. In other words we show that the square

A
φA - J2A

φB ◦ f = J2(f) ◦ φA
B

f
?

φB
- J2B

J2(f)?

3.5. Examples of natural transformations 313

commutes. For each a ∈ A and q : B - 2 we have

(φB ◦ f)(a)(q) = φB(f(a))(q) = q(f(a)) = (q ◦ f)(a)

and(
J2(f) ◦ φA

)
(a)(q) = J2(f)

(
φA(a)

)
(q) = φA(a)(q ◦ f) = (q ◦ f)(a)

to give the required result.

(c) On the whole the use of characters rather than subsets does lead
to neater results.

The statement in part (b) of the question that ‘I2 is naturally isomor-
phic to J2’ is a bit glib. It is true, but not entirely obvious. It can be
justified using horizontal and vertical composition of natural transfor-
mations. This is not something we can go into here, but we can give a
hint of what it is about.

We know we have an inverse pair of natural transformations

I

χ• -
�

ξ•

J

given by

χA(X)(a) = 1⇐⇒ a ∈ X a ∈ ξA(p)⇐⇒ p(a) = 1

χA(X)(a) = 0⇐⇒ a /∈ X a /∈ ξA(p)⇐⇒ p(a) = 0

for each set A,X ∈ PA, p : A - 2, and a ∈ A. We modify these in
several ways.

For each set A we may hit each of the arrows

IA
χA - JA IA �

ξA
JA

with each of the two contravariant functors I and J, and take particular
instances (by replacing the set A).

I2A �
I(χA)

(I ◦ J)A (J ◦ I)A
J(ξA)- J2A

I2A
χIA- (J ◦ I)A I2A �

ξIA (J ◦ I)A

(I ◦ J)A
χJA- J2A (I ◦ J)A �

ξJA
J2A

314 3. Functors and natural transformations

We can combine these in various ways. In particular, we may form

I2
ΓA = J(ξA) ◦ χIA-

�
∆A = I(χA) ◦ ξJA

J2

going via (J◦ I)A for Γ and (I◦J)A for ∆. We show that these are natural
transformations, and are inverses.

For an arbitrary arrow

A
f - B

consider the following two commuting squares.

I2A
χIA- (J ◦ I)A IA

ξA - JA

I2B

I2(f)

?

χIB

- (J ◦ I)B

J(I(f))

?
IB

I(f)

?

ξB
- JB

J(f)

?

The right hand square is an instance of the naturality of ξ• across the
arrow f . The left hand square is an instance of the naturality of χ•
across the arrow I(f).

Hitting the right hand square with J give a commuting diagram

I2A
χIA- (J ◦ I)A

J(ξA)- J2A

I2B

I2(f)

?

χIB

- (J ◦ I)B

(J ◦ I)(f)

?

J(ξB)
- J2B

J(f)

?

to show that Γ• is natural.
A similar argument shows that ∆• is natural.
To show that

I2
∆A ◦ ΓA- I2

is the identity consider any

X ∈ I2A = P2A X ∈ IA = PA

and let

Y = χA(X)

3.5. Examples of natural transformations 315

to use in the calculation. We have

X ∈
(
∆A ◦ ΓA

)
(X)⇐⇒ X ∈

(
I(χA) ◦ ξJA ◦ ΓA

)
(X)

⇐⇒ X ∈ I(χA)
((
ξJA ◦ ΓA

)
(X)

)
⇐⇒ X ∈ χ←A

((
ξJA ◦ ΓA

)
(X)

)
⇐⇒ Y = χA(X) ∈

(
ξJA ◦ ΓA

)
(X)

⇐⇒ Y ∈ ξJA

(
ΓA(X)

)
⇐⇒

(
ΓA(X)

)
(Y) = 1

⇐⇒
(
J(ξA) ◦ χJA

)
(X)(Y) = 1

⇐⇒ J(ξA)
(
χJA(X)

)
(Y) = 1

⇐⇒
(
χJA(X) ◦ ξA

)
(Y) = 1

⇐⇒ χJA(X)
(
ξA(Y)

)
= 1

⇐⇒ ξA(Y) ∈ X ⇐⇒
(
ξA ◦ χA

)
(X) ∈ X

and now we remember that(
ξA ◦ χA

)
(X) = X

to give (
∆A ◦ ΓA

)
(X) = X

as required.
A similar argument deals with ΓA ◦∆A.
In the same way we can show how η• and φ• are related.
Consider the following composite.

A
φA - J2A

∆A- I2A

For each a ∈ A and X ∈ IA we have

X ∈ (∆A ◦ φA)(a)⇐⇒ X ∈
(
I(χA) ◦ ξJA ◦ φA

)
(a)

⇐⇒ X ∈ I(χA)
(
(ξJA ◦ φA)(a)

)
⇐⇒ χA(X) ∈ (ξJA ◦ φA)(a)

⇐⇒ χA(X) ∈ ξJA
(
φA(a)

)
⇐⇒ φA(a)

(
χA(X)

)
= 1

⇐⇒ χA(X)(a) = 1

⇐⇒ a ∈ X ⇐⇒ X ∈ ηA(a)

316 3. Functors and natural transformations

and hence

∆A ◦ φA = ηA

to show how φ• determines η•. A similar argument gives

ΓA ◦ ηA = φA

and hence φ• and η• are equivalent. �

3.5.10 (a) Actually, you don’t need to write them down, you can look
them up in your favourite textbook on linear algebra. However, you
should count the overloading of the symbols. How many different op-
erations does ‘×’ stand for? How many multiplication operations are
indicated by juxtaposition? Don’t tell anybody, but this is done to con-
fuse the people in suits who think they know how to run things.

(b) We don’t need to do them all but we should at least look at the
crucial axiom on the action, namely that

r(α+ β) = rα+ rβ

for each scalar r and pair α, β of characters. Recall that this means that(
r(α+ β)

)
(a) =

(
rα+ rβ

)
(a)

for each vector a. Remembering how the operation are defined we have(
r(α+ β)

)
(a) = r

((
(α+ β

)
(a)
)

= r
(
α(a) + β(a)

)
= r
(
α(a)

)
+ r
(
β(a)

)
=
(
rα
)
(a) +

(
rβ
)
(a) =

(
rα+ rβ

)
(a)

for the required result. You should make sure that you know why each
step is valid. Also, you young things should realize how lucky you are.
When I was a lad there was only one size of bracket, which meant that
calculations like this were harder to read.

(c) Once you have a modicum of experience with categories and func-
tors this becomes a sybilean construction. We have to convert a linear
transformation between two spaces, as on the left,

V
f - W - W ∗

f∗ - V ∗

into a linear transformation between the two dual spaces, as on the right.
The direction of the linear transformation must swap round.

3.5. Examples of natural transformations 317

Consider a member γ ∈ W ∗, that is a character on W . As functions
we have a composite

V
f - W

γ - K

which we check is a character on V . However, we view K as a vector
space over itself, and then both f and γ are linear transformations. The
composite of two linear transformations is a linear transformation, so

V
f∗(γ) = γ ◦ f- K

is a linear transformation, a character on V . This gives us a function

f∗ : W ∗ - V ∗

which we show is a linear transformation between the two dual spaces.
We require

f∗(γ + δ) = f∗(γ) + f∗(δ) f∗(rγ) = rf∗(γ)

for each characters γ, δ on W ∗ and scalar r. We verify these by evaluation
at an arbitrary vector a ∈ V . Let’s check the right hand equality.

We have (
f∗(rγ)

)
(a) =

(
(rγ) ◦ f

)
(a)

=
(
rγ
)(
f(a)

)
= r
(
γ
(
f(a)

))
= r
((
γ ◦ f

)
(a)
)

= r
(
f∗
(
γ
)
(a)
)

=
(
rf∗(γ)

)
(a)

for the required result.
This shows that we certainly have a construction that converts a lin-

ear transformation into a linear transformation with the required type
(source and target). But why do we have a functor? We need to show
that various diagrams commute. However!

Notice that if we forget some of the carried structure we have a the
contravariant hom-functor

VectK
[−,K]- Set

induced by K. All the diagrams we must look at a diagrams of functions
(enriched in certain ways), so that hom-functor calculations give us the
required results.

318 3. Functors and natural transformations

What we have here is an enriched hom-functor. These occur all over
mathematics, so you have just seen a very useful trick.

Notice that if you had to do this exercise from scratch there would
by spondoodles of rather trivial calculations, and you might find it hard
to see the wood from the trees. Category helps to organize this kind of
thing. It chops the dead wood and grows the trees. �

3.5.11 We look at (1, 2, 3) in turn.
(1) We require

â(α+ β) = â(α) + â(β) â(rα) = râ(α)

for each scalar r, each vector a, and each pair of characters α, β. Re-
membering the definition of â these translate to

(α+ β)(r) = α(r) + β(r)
(
rα
)
(a) = r

(
α(a)

)
which are true by definition.

(2) We require

(a+ b)̂= â+ b̂ (ra)̂= râ
for each scalar r and pair a, b of vectors. The two equalities are verified
by evaluation at an arbitrary vector α. The conditions become

α(a+ b) = α(a) + α(b) α(ra) = r
(
α(a)

)
which are true.

(3) We must show that the square

V
(·)̂- V ∗∗

W

f
?

(·)̂- W ∗∗

f∗∗

?

commutes where f is an arbitrary linear trasformation. To do that we
take an arbitrary vector a ∈ V and track it both ways to the second
dual W ∗∗.

By definition we have

f∗∗(a) = a ◦ f∗

for each a ∈ V ∗∗. (We are beginning to run out of different types of
letters, but that won’t last long.)

3.5. Examples of natural transformations 319

Consider any a ∈ V . Then going via W we obtain

f(a)̂ ∈W ∗∗
so that

f(a)̂(γ) = γ(f(a)) = (γ ◦ f)(a)

for each γ ∈W ∗.
Going the other way we have

f∗∗(â) = â ◦ f∗
so that

f∗∗(â)(γ) =
(
â ◦ f∗)(γ) = â(f∗(γ)

)
= â(γ ◦ f) =

(
γ ◦ f

)
(a)

to give the required result. �

3.5.12 By Exercises 3.3.7 we have a bijection

OS
χS - ΞS

for each space S. It suffices to show that χS is natural for variation of
S. To this end consider the square

S OS
χS - ΞS

T

φ

6

OT

φ←

?

χT
- ΞT

− ◦ φ

?

induced by a continuous map φ, as on the left. We must show that the
square commutes. Thus we required

χT (φ←(U)) = χS(U) ◦ φ

for each U ∈ OS. These two functions can return only 0 and 1 as a
value. For each s ∈ S we have

χT (φ←(U))(s) = 1⇐⇒ s ∈ π←(U)⇐⇒ φ(s) ∈ U ⇐⇒ χS(φ(U)) = 1

which gives the required equality. �

3.5.13 Let’s consider the more complicated version, that dealt with by
Exercise 3.3.8.

320 3. Functors and natural transformations

For a category C we have two functors

C ×C
F-

G
- C

where

F (A1, A2) = A1 ×A2 F (A1, A2) = A1

are the two object assignments. (One thing you should be wary of here
is the two different uses of ‘×’. The first use gives the cartesian product
of the category C with itself, and the second gives the internal product
object in C .)

For each pair (A1, A2) of objects we have an arrow

F (A1, A2)
p(A1,A2)- G(A1, A2)

namely the projection arrow. We must show this is natural for variation
of (A1, A2).

Consider an arrow of C ×C , that is a pair of arrows of C as indicated
on the left of the following diagram.

A1 A2 F (A1, A2)
p(A1,A2)- G(A1, A2)

B1

f1

?
B2

f2

?
F (B1, B2)

f1 × f2

?

p(B1,B2)

- G(B1, B2)

f1

?

We must show that the square on the right commutes. But this is just one
of the commuting squares that determines the projection, as in Solution
3.3.8 (in a slightly different notation). �

3.5.14 We must first set up φA for an arbitrary object A of C . To do

3.5. Examples of natural transformations 321

that consider the diagram on the left.

R
φ - S R

φ - S

(1)

A×R

rA
6

A× S

sA
6

A×R

rA
6

φA- A× S

sA
6

(2)

A

pA
?

idA
- A

qA
?

A

pA
?

idA
- A

qA
?

This consists of two product wedges with the associated projections
rA.pA, sA, qA. The generating arrow φ has also been inserted. Using the
product property of A×S we see there is a unique arrow φA to produce
a pair of commuting squares as on the right. This is just idA × φ in
product notation. We have labelled the two squares for later use.

We must show that φ• is natural for variation of the object. Let’s set
up that problem.

Consider an arbitrary arrow f as on the left. We must show that the
square on the right commutes.

A A×R
φA- A× S

(?)

B

f
?

B ×R

f × idR
?

φB
- B × S

f × idS
?

How are we going to do this? Consider the diagram on the left.

R
φ - S R

φ - S

(rs)

A×R

rA
6

B × S

sB
6

A×R

rA
6

ψ- B × S

sB
6

(pq)

A

pA
?

f
- B

qB
?

A

pA
?

f
- B

qB
?

This is not the same as the first diagram. We have now varied the object
A along the arrow f . However, in the same way the product property
of B × S ensures there is a unique arrow ψ that makes both squares

322 3. Functors and natural transformations

commute, that is

(rs) sB ◦ ψ = φ ◦ rA
(pq) qB ◦ ψ = f ◦ pA

for some unique arrow ψ. In the square (?) we show that both trips from
A×R to B × S

(f × idS) ◦ φA φB × (f × idR)

satisfy (rs) and (pq), and hence must be equal.
We need a property of the product construction, namely that projec-

tions are natural.

R
idR - R S

idS - S

(3) (5)

A×R

rA
6

f × idR- B ×R

rB
6

A×R

saA
6

f × idS- B × S

sB
6

(4) (6)

A

pA
?

f
- B

pB
?

A

qA
?

f
- B

qB
?

Thus all four of these squares commute.
We are now ready to do the several small calculations.
With

ψ = (f × idS) ◦ φA

a use of (6, 2) and then a use of (5, 1) gives

(rs) sB ◦ ψ = sB ◦ (f × idS) ◦ φA = sA ◦ φA = φ ◦ rA
(pq) qB ◦ ψ = qB ◦ (f × idS) ◦ φA = f ◦ aA ◦ φA = f ◦ pA

to show that this ψ satisfies the two required conditions.
With

ψ = φB ◦ (f × idR)

a use of (1, 3) and then a use of (2, 4), with (3) and (2) in the B version,
gives

(rs) sB ◦ ψ = sB ◦ φB ◦ (f × idR) = φ ◦ rB ◦ (f × idR) = φ ◦ rA
(pq) qB ◦ ψ = qB ◦ φB ◦ (f × idR) = pB ◦ (f × idR) = f ◦ pA

to show that this ψ satisfies the two required conditions.
This completes the proof.

3.5. Examples of natural transformations 323

This and the next solution are a nice illustration of why reading and
writing proofs in category theory can be a bit tricky. Often many small
diagrams have to be looked at, and there is a tendency to combine these
into one big diagram, and so make it incomprehensible. �

3.5.15 If we fix two of the three inputs then each L and each R is a
composite of various known functors. However, let’s see if we can make
sense of the 3-placed version.

Let

A0 B0 C0

A1

α
?

B1

β
?

C1

γ
?

be a triple of arrows in C . What are the resulting arrows

L(A0, B0, C0) R(A0, B0, C0)

L(A1, B1, C1)

L(α, β, γ)
?

R(A1, B1, C1)

R(α, β, γ)
?

in C .
We look at L first. Consider the cells

A0 × C0 B0 × C0

A0

�
C0

-

B0

�
C0

-

A1

α
?

C1

γ
?

B1

β
?

C1

γ
?

A1 × C1

-
�

B1 × C1

-
�

where the unnamed arrows are the projections. The product property

324 3. Functors and natural transformations

provides two unique arrows

A0 × C0 B0 × C0

A0

�
C0

-

B0

�
C0

-

A1

α
?

C1

γ
?

B1

β
?

C1

γ
?

A1 × C1

α× γ

?

-
�

B1 × C1

β × γ

?

-
�

to makes the diagrams commute. This is just the functorial property of
the binary product.

Now consider the cell

L(A0, B0, C0)

A0 × C0

-

B0 × C0

�

A1 × C1

α× γ
?

B1 × C1

β × γ
?

L(A1, B1, C1)
�

-

where the unnamed arrows are the insertions. The coproduct property
provides a unique arrow

L(A0, B0, C0)

A0 × C0

-

B0 × C0

�

A1 × C1

α× γ
?

B1 × C1

β × γ
?

L(A1, B1, C1)

L(α, β, γ)

?�
-

for which the diagram commutes.
Here is the full diagram.

3.5. Examples of natural transformations 325

L(A0, B0, C0)

A0 × C0

-

B0 × C0

�

A0

�

C0

-

B0

�

C0

-

A1

α
?

C1

γ
?

B1

β
?

C1

γ
?

A1 × C1

α× γ

?

-

�

B1 × C1

β × γ

?

-

�

L(A1, B1, C1)

L(α, β, γ)

?�
-

This shows how the arrow L(α, β, γ) is obtained. The functorial prop-
erty is induced by the uniqueness of α× β, β × γ, and L(α, β, γ).

The behaviour of R on arrows is obtained in a similar way. Starting
from three arrows α, β, γ, as above, we use the cell on the left

A0 +B0 A0 +B0

A0

-

B0

�

A0

-

B0

�

A1

α
?

B1

β
?

A1

α
?

B1

β
?

A1 +B1

�
-

A1 +B1

α+ β

?�
-

to obtain the unique arrow α+ β and commuting diagram on the right.
Here the unnamed arrows are the insertions. We now introduce the arrow

326 3. Functors and natural transformations

γ to obtain a unique arrow R(α, β, γ) and commuting diagram

R(A0, B0, C0)

A0 +B0

�
C0

-

A0

-
B0

�

A1

α
?

B1

β
?

A1 +B1

α+ β

?�

-

C1

γ

?

R(A1, B1, C1)

R(α, β, γ)

?

-
�

where the new unnamed arrows are projections. The various unique-
nesses ensure that R passes across composition in the appropriate man-
ner to be a functor.

For the next part let

L = L(A,B,C) R = R(A,B,C)

for some arbitrary objects A,B,C. We produce an arrow

L - R

which, in due course, we show is natural for variation of the three objects.
So far we have managed without naming the various projections and

insertion, but now we have to. Thus let

A× C
l - A

u - A+B A× C
r - C

B × C
m- B

v - A+B B × C
s - C

A× C
i - L R

p - A+B

B × C
j - L R

q - C

be these various arrows.
The

coproduct property of L product property of R

3.5. Examples of natural transformations 327

produce unique arrows a, b, c, d such that

A× C A+B

L

i
?

a - A+B

u ◦ l
-

A× C c -

u ◦ l -

R

p6

B × C

j 6

v ◦m

-

C

q
?r -

A× C A+B

L

i
?

b - C

r
-

B × C d -

v ◦m -

R

p6

B × C

j 6
s

-

C

q
?s -

commute. With these the

product property of R coproduct property of L

produce unique arrows µ, ν such that

A+B A× C

L µ -

a -

R

p6

L

i
?

ν - R

c
-

C

q
?b -

B × C

j 6
d

-

commute. We first show that µ = ν.
Using the characterizing properties of µ of ν it suffices to show that

either

(µa) p ◦ ν = a (νc) µ ◦ i = c

or
(µb) q ◦ ν = b (νd) µ ◦ j = d

for then

ν = µ or µ = ν

respectively. For these, using characterizing properties of a and b or c

328 3. Functors and natural transformations

and d it suffices to show

(µai) p ◦ ν ◦ i = u ◦ l (νcp) p ◦ µ ◦ i = u ◦ l
(µaj) p ◦ ν ◦ j = v ◦m (νcq) q ◦ µ ◦ i = r

or
(µbi) q ◦ ν ◦ i = r (νdp) p ◦ µ ◦ j = v ◦m
(µbj) q ◦ ν ◦ j = s (νdq) q ◦ µ ◦ j = s

respectively. All of these follows by the previous six diagrams. For in-
stance

p ◦ ν ◦ i = p ◦ c = u ◦ l

gives (µai).
Let us write µ for this arrow. It remains to show that µ is natural for

variation of A,B,C.
To do that consider three arrows α, β, γ, as above. Let

λ = L(α, β, γ) ρ = R(α, β, γ)

so that we must show that the square

L(A0, B0, C0)
µ0- R(A0, B0, C0)

L(A1, B1, C1)

λ
?

µ1

- R(A1, B1, C1)

ρ
?

commutes. Here µ0 and µ1 are the two version of µ for the triple of
objects indicated by the index. We also use the various projections and
insertions for the two triples with a indexed version of the notation
above.

To show

µ1 ◦ λ = ρ ◦ µ0

we invoke the coproduct property of L(0) to observe that the pair of
equalities

µ1 ◦ λ ◦ i0 = ρ ◦ µ0 ◦ i0
µ1 ◦ λ ◦ j0 = ρ ◦ µ0 ◦ j0

will suffice. To prove these we invoke the product property of R(1) to

3.5. Examples of natural transformations 329

observe that the four equalities

p1 ◦ µ1 ◦ λ ◦ i0 = p1 ◦ ρ ◦ µ0 ◦ i0
q1 ◦ µ1 ◦ λ ◦ i0 = q1 ◦ ρ ◦ µ0 ◦ i0
p1 ◦ µ1 ◦ λ ◦ j0 = p1 ◦ ρ ◦ µ0 ◦ j0
q1 ◦ µ1 ◦ λ ◦ j0 = q1 ◦ ρ ◦ µ0 ◦ j0

will suffice. All four of these are proved in the same way. Let’s look at
the proof of the first.

Using various commuting cells and remembering that µ1 = ν1 we have

p1 ◦ µ1 ◦ λ ◦ i0 p1 ◦ ρ ◦ µ0 ◦ i0
= p1 ◦ µ1 ◦ i1 ◦ (α× γ) = (α+ β) ◦ p0 ◦ µ0 ◦ i0
= p1 ◦ c1 ◦ (α× γ) = (α+ β) ◦ a0 ◦ i0
= u1 ◦ l1 ◦ (α× γ) = (α+ β) ◦ u0 ◦ l0

and hence it suffices to show that the diagram

A0 × C0
α× γ- A1 × C1

l1 - A1

A0

l0
?

u0

- A0 +B0
α+ β

- A1 +B1

u1

?

commutes. To do this simply observe that the arrow α, as an upwards
diagonal, makes the two resulting cells commute. �

3.5.16 If you are a bit confused it’s probably because you have forgot-
ten the forgetful functor. Let Sgp and Mon be the the categories of
semigroups and monoids. We are concerned with two functors

Sgp
F-

�
¿

Mon

where ¿ is the given forgetful functor and F is the functor we are trying
to produce. (Technically, F is a left adjoint to ¿, but that’s for later.)
Let’s insert ¿ where it should appear.

(c) For each Sgp arrow

A
f - ¿B

330 3. Functors and natural transformations

where B is monoid, there is a commuting triangle

A
f - ¿B B

(¿ ◦ F)A
¿(f])

-

ιA -

FA

f]

-

for some unique Mon arrow f], as indicated. There is only one possi-
bility for f].

f]|A = f f](ω) = unit of B

The rest is now standard category theory where semigroups and monoids
need not be mentioned.

(d) For each Sgp arrow

A
f - B

there is a unique Mon arrow

FA
F (f)- FB

such that

A
f - B

(¿ ◦ F)A

ιA
?

(¿ ◦ F)(f)
- (¿ ◦ F)B

ιB
?

commutes. This follows from part (c) by setting

F (f) = (ιB ◦ f)]

for the given arrow f . By considering a composite

A
f - B

g - C

in Sgp with the induced commuting squares and by remembering the
uniqueness of F (·), we see that

F (g) ◦ F (f) = F (g ◦ f)

which more or less shows that F is a functor.

(e) The commuting square above shows the naturality of ι.

3.5. Examples of natural transformations 331

(f) If A already has a unit then this is forgotten and a new unit is
adjoined. The two are not coalesced. �

3.5.17 (a) Concatenation is associative, but not commutative. The unit
is the empty word.

(b) The functor

Set
F - Mon

goes from the category of sets to the category of monoids.
We need to describe the action

A
f - B - FA

F (f)- FB

on arrows. Given a Set arrow f , a function between sets, as above let

F (f) : FA - GB

be the function given by

F (f)(a) = [f(a1), . . . , f(al)]

for each list

a = [a1, . . . , al]

in FA. Almost trivially this is a monoid morphism, and the required
functorial properties are just as easy. Thus we do have a functor, as
above.

(c) We have a forgetful functor

Set � ¿ Mon

which sends each monoid to its carrying set. We show that the insertion

A
ιA- (¿ ◦ F)A

a - [a]

is natural for variation on A. In other words, for each function f , as on
the left,

A A
ιA- (¿ ◦ F)A

B

f
?

B

f
?

ιB
- (¿ ◦ F)B

(¿ ◦ F)(f)
?

332 3. Functors and natural transformations

the Set square on the right commutes. This is a trivial calculation. Both
trips round the square send each element a ∈ A to [f(a)] ∈ (¿ ◦ F)B.

(d) We show that for each function

A
f - B

from a set to a monoid, there is a unique monoid morphism

FA
f] - B

such that the triangle commutes.

A
f - ¿B B A

f - B B

(¿ ◦ F)A
¿(f])

-

ιA -

FA

f]

-

FA

f]

-

ιA -

FA

f]

-

On the left we have the official version, and on the right we have the
way it is usually written with the forgetful functor forgotten.

Given a function f we have to show two things: there is at most
one fill-in morphism f], and there is at least one fill-in morphism f].
Almost always with this kind of problem these two parts are dealt with
separately. Here is a useful way to handle the first part.

We show that ιA is ‘as epic as it can be’. We show that for each parallel
pair of monoid morphism

FA
g -

h
- C

we have

g ◦ ιA = h ◦ ιA =⇒ g = h

and hence there is at most one fill-in morphism.
Consider any element a ∈ FA. With

a = [a1, . . . , al]

we have

a = ιA(a1) _ · · ·_ ιA(al)

where · _ · is the operation on FA, that is concatenation. a Consider

3.5. Examples of natural transformations 333

any pair of morphism g, h, as above. We have

g(a)=g
(
ιA(a1) _ · · ·_ ιA(al)

)
=(g ◦ ιA)(a1) ? · · · ? (g ◦ ιA)(al)

h(a)=h
(
ιA(a1) _ · · ·_ ιA(al)

)
=(h ◦ ιA)(a1) ? · · · ? (h ◦ ιA)(al)

where ? is the operation of C. Thus if

g ◦ ιA = h ◦ ιA

then

g(a) = h(a)

and so g = h.
It remains to show that there is at least one morphism f] that make

the triangle commute. To do that we simple set

f](a) = f(a1) ∗ · · · ∗ f(al)

for each a ∈ FA (as above) where ∗ is the operation on B.

(e) If A is already a monoid then this structure is forgotten and a much
bigger monoid is produced. Even when A is the 1-element monoid, the
constructed monoid FA is infinite. �

3.5.18 (a) Solution 3.3.13 show that we have two functors

Grp
G-

F
- AGrp

given by

GA = δA FA = A/δA

for each group A. The diagrams in that solution show that ι and η are
natural.

(b) When B is abelian the subgroup δB is trivial. Thus the construc-
tion of f] is a particular case of the construction of f/δ given in the
latter part of Solution 3.3.13. �

3.5.19 As in Solution 3.3.18, the construction of the arrow assignment
ensures that

A
f - B

(¿ ◦ F)A

ηA ?

(¿ ◦ F)A
- (¿ ◦ F)B

ηB?

334 3. Functors and natural transformations

commutes for each arrow

A
f - B

of Src. This show that η is a natural transformation from the identity
endo-functor on Src to ¿ ◦ F . �

3.5.20 Consider three objects of C∇ and two arrows which ought to
be composible.

F
σ - G

τ - H

Thus we have three functors and two natural transformations. We re-
quire an appropriate composite

F
τ ◦ σ- H

of the two transformations.
For each object i of ∇ we have a composible pair of arrows

Fi
σi - Gi

τi - Hi

of arrows of C . We set

(τ ◦ σ)i = τi ◦ σi

to obtain a ∇-indexed family of arrows of C . We show this family is
natural for variation of i.

Consider any arrow e of ∇ and suppose this starts at i and finishes at
j. We know that the two squares on the left do commute.

Fi
σi - Gi

τi - Hi Fi
(τ ◦ σ)i- Hi

Fj

F (e)

?

σj
- Gj

G(e)

?

τj
- Hj

H(e)

?
Fj

F (e)

?

(τ ◦ σ)j
- Hj

H(e)

?

Hence so does the square on the right, to show the required naturality.
A similar argument shows that this composition is associative. �

Warning: Sometimes the symbol ‘◦’ is not used for the composition
of natural transformations described in the previous solution, but it is
used for the composition ? described in the next solution.

3.5. Examples of natural transformations 335

3.5.21 The naturality of ρ ensures that the B-square

B0 KB0
ρ0- LB0 FA

B1

g

?
KB1

K(g)

?

ρ1

- LB1

L(g)

?
GA

λA

?

commutes for each B-arrow g, as on the left. Each object A of A gives
us an arrow λA of B , as on the right. Taking this for g gives the required
commuting C -square. �

3.5.22 For an arbitrary A-object A consider the following diagram.

(K ◦ F)A
ρFA- (L ◦ F)A

σFA- (M ◦ F)A

(K ◦G)A

K(λA)

?
ρGA- (L ◦G)A

L(λA)

?
σGA- (M ◦G)A

M(λA)

?

(K ◦H)A

K(µA)

?

ρHA
- (L ◦H)A

L(µA)

?

σHA
- (M ◦H)A

M(µA)

?

Each of the four small squares commutes. This is four instances of the
result of Exercise 3.5.21. The diagonals of the top let and bottom right
squares are

(ρ ? λ)A (σ ? µ)A

respectively, and hence

(
(σ ? µ) ◦ (ρ ? λ)

)
A

is the composite diagonal.

336 3. Functors and natural transformations

The outside square commutes, and this is just

(K ◦ F)A
(σ ◦ ρ)FA- (M ◦ F)A

(K ◦H)A

K
(
(µ ◦ λ)A

)
?

(σ ◦ ρ)HA
- (M ◦H)A

M
(
(µ ◦ λ)A

)
?

using the construction of the vertical composition. The diagonal of this
square is (

(σ ◦ ρ) ? (µ ◦ λ))A

by the definition of horizontal composition.
Comparing the two descriptions of the full diagonal gives the required

result. �

4

Limits and colimits in general

4.1 Template and diagram – a first pass

4.1.1 Sticking paths end to end is associative, so composition in Pth(∇)
is associative. The only problem is to ensure that each object (node of
∇) has an identity arrow on Pth(∇). Each node has an associated path
of length zero, and sticking such a path on the end of some other path
doesn’t change that second path. Thus the required identity arrows are
the paths of length zero. �

4.1.2 (a) Let us label the four edges as follows.

1

0

(1, 0) -
3

(3, 1)
-

2 (3, 2)
-

(2, 0)
-

There are just 10 possible paths.

Paths of length Number of such paths

0 The four nodes 4
0, 1, 2, 3

1 The four edges 4
(1, 0), (2, 0), (3, 1), (3, 2)

2 The two formal composites 2
(3, 1) ◦ (1, 0) (3, 2) ◦ (2, 1)

This graph generates a category of four objects and 10 arrows. This
category is not a poset since there are two distinct arrows

(3, 1) ◦ (1, 0) (3, 2) ◦ (2, 1)

from 0 to 3.

338 4. Limits and colimits in general

(b) The graph is

1

0

(1, 0) -
2

(2, 1)
-

3 (3, 2)�(3, 0)
-

with the edges labelled. This generates a category

Paths of length Number of such paths

0 The four nodes 4
0, 1, 2, 3

1 The four edges 4
(1, 0), (2, 1), (3, 2), (3, 0)

2 The two formal composites 2
(2, 1) ◦ (1, 0) (3, 2) ◦ (2, 1)

3 The formal composite 1
(3, 2) ◦ (2, 1) ◦ (1, 0)

of four nodes an 11 arrows.

(c) The labelled graph is

1

0

(1, 0) -
2

(2, 1)
-

3 (3, 2)�(0, 3)

�

and this generates a category of four objects and infinitely many arrows,
as indicated in Table 4.1. We can cycle round the edges for ever. �

4.1.3 No! The generated category is bigger. For example consider the
category

0
(2, 0) - 2

1
(2, 1)

-

(1, 0) -

of three objects, three identity arrows (not shown), and three other ar-
rows where

(2, 1) ◦ (1, 0) = (2, 0)

in the category. In the graph there are (at least) two paths from 0 to 2,
namely

(2, 0) and (1, 0) followed by (2, 1)

4.1. Template and diagram – a first pass 339

Paths of length Number of

0 The four nodes 4
0, 1, 2, 3

1 The four edges 4
(1, 0), (2, 1), (3, 2), (0, 3)

2 The four formal composites 4
(2, 1) ◦ (1, 0) (3, 2) ◦ (2, 1)
(0, 3) ◦ (3, 2) (1, 0) ◦ (0, 3)

3 The formal composites 4
(3, 2) ◦ (2, 1) ◦ (1, 0)
(0, 3) ◦ (3, 2) ◦ (2, 1)
(1, 0) ◦ (0, 3) ◦ (3, 2)
(2, 1) ◦ (1, 0) ◦ (0, 3)

4 The formal composites 4
(0, 3) ◦ (3, 2) ◦ (2, 1) ◦ (1, 0)
(1, 0) ◦ (0, 3) ◦ (3, 2) ◦ (2, 1)
(2, 1) ◦ (1, 0) ◦ (0, 3) ◦ (3, 2)
(3, 2) ◦ (2, 1) ◦ (1, 0) ◦ (0, 3)

5 The formal composites ∞
(1, 0 ◦ (0, 3) ◦ (3, 2) ◦ (2, 1) ◦ (1, 0)
(2, 1) ◦ (1, 0) ◦ (0, 3) ◦ (3, 2) ◦ (2, 1)
...

Table 4.1 Paths for graph (c)

and these are not the same path.
The parent category is a quotent of the generated path category. �

4.1.4 Let ∇ be the graph with nodes i and edges e. A ∇-diagram in
the category C consists of

objects arrows

A(i) A(e)

indexed by the

nodes edges

respectively. For each edge

i
e - j

we require an arrow

A(i)
A(e)- A(j)

340 4. Limits and colimits in general

but there are no requirements that certain triangles must commute.
Now consider a functor Pth(∇) - C from the path category. This

certainly gives a famly of objects of C

A(i)

indexed by the objects of Pth(∇), the nodes of ∇. It also gives an arrow
of C

A(π)

for each arrow of Pth(∇), each path of through ∇. In particlar, we have
an arrow in C

A(e)

for each edge of ∇, each path in Pth(∇) of length 1. Thus there is a
∇-diagram embedded in the functor.

Each path π has a unique decomposition

i(0)
e(1)- i(1)

e(2)- i(2) - · · · · · ·
e(l)- i(l)

as a sequence of edges through ∇. The functorial properties ensure that

A(π) = A(e(l)) ◦ · · · ◦A(e(1))

to show the functor is uniquely determined by the embedded ∇-diagram.
Observe that more or less the same proof shows that each ∇-diagram

extends to a functor. �

4.2 Functor categories

4.2.1 This is just the same as Exercise 3.5.20. �

4.2.2 We must show that each arrow

X
f - Y

induces a natural transformation

∆X
∆(f)•- ∆Y

4.2. Functor categories 341

such that

(∆X)(i)
∆(f)i- (∆Y)(i) i

(∆X)(j)

(∆X)(e)

?

∆(f)j
- (∆Y)(j)

(∆Y)(e)

?
j

e

?

commutes for each edge e of ∇, as on the right. When we insert the
values of ∆X and ∆Y we see that a commuting square

X
∆(f)i - Y

X

idX
?

∆(f)j
- Y

idY
?

is required. Thus we set

∆(f)i = f

for each node i. �

4.2.3 We do both solutions in parallel.
A typical arrow in C∇

∆X - A A - ∆X

is a natural transformation, a family of arrows of C

(∆X)(i)
ξ(i)- A(i) A(i)

ξ(i)- (∆X)(i)

indexed by the nodes and such that

(∆X)(i)
ξ(i)- A(i) i A(i)

ξ(i)- (∆X)(i)

(∆X)(j)

(∆X)(e)

?

ξ(j)
- A(j)

A(e)

?
j

e

?
A(j)

A(e)

?

ξ(j)
- (∆X)(j)

(∆X)(e)

?

commutes for each edge e. When we insert the values of ∆X we see that

342 4. Limits and colimits in general

we require a commuting triangle

A(i) i A(i)

X

ξ(i) -

X

ξ(i)

-

A(j)

A(e)

?ξ(i) -

j

e

?
A(j)

A(e)

? ξ(i)

-

for each edge e. In other words such an arrow is just a

left right

solution for the diagram A. �

4.3 Problem and solution

4.3.1 Consider any∇-diagram and the corresponding Pth(∇)-diagram.
These have the same family

A(i)

of objects indexed by the nodes i of ∇. Each edge

i
e - j

of ∇ gives an arrow

A(i)
A(e)- A(j)

of the ∇-diagram, and this is also an arrow of the Pth(∇)-diagram.
However, there are more arrows in the Pth(∇)-diagram. Each path

i
π - j

in Pth(∇) gives an arrow

A(i)
A(π)- A(j)

in the Pth(∇)-diagram.
In the ∇-diagram there are no requiements that certain triangles com-

mute (for there is no notion of composition in the graph ∇).

4.3. Problem and solution 343

In the Pth(∇)-diagram each composite path requires that cerain tri-
angles commute. For example let π be the composite path

i(0)
e(1)- i(1)

e(2)- i(2) - · · · · · ·
e(l)- i(l)

of l edges. Then then the two arrows

A(i(0))
A(e(1))- A(i(1))

A(e(2))- A(i(2)) - · · · · · ·
A(e(l))- A(i(l))

A(i(0))
A(π)

- A(e(l))

must agree. The∇-diagram completely determines the Pth(∇)-diagram.
(You should also think of how the conditions on identity arrows are
handled in the Pth(∇)-diagram.)

At this point we have to decide whether we look at left solutions or
right solutions. The two discussions are entirely symmerical, so let’s look
at left solutions.

Consider a solution of each diagram with the same apex X. Each is a
family of arrows

X
ξ(i)- A(i)

indexed by the nodes of ∇. There are certain commuting conditions. All
the triangles

∇ Pth(∇)

A(i) i A(i) i

X

ξ(i) -

X

ξ(i) -

A(j)

A(e)

?ξ(i) -

j

e

?
A(j)

A(π)

?ξ(i) -

π

?

for each edge e of ∇ and each path π of Pth(∇). �

4.3.2 See Solution 4.2.3. �

344 4. Limits and colimits in general

4.4 Universal solution

4.4.1 Consider the 4-element pre-set
• •

• •
(which is not a poset). The set of the two upper elements has two distinct
limits (infima), namely each of the two lower elements. �

4.4.2 Consider any set X which is the limit or the colimit of some
diagram in Set . This means that X is suitably furnished to be the limit
or colimit. Now take any set Y of the same size together with a bijection
betweenX and Y . This bijection is an isomorphism in Set . By furnishing
Y in the obvious way Y becomes a limit of a colimit of the diagram.

In other categories we can use the same idea. We simply take an
isomorphic copy of the limit of colimit. �

4.4.3 Let

A(i)
σ(i)- S

be a colimit of a diagram indexed by the nodes i of a template.
If

S
θ -

ψ
- X

is a parallel pair of arrows with

θ ◦ σ(i) = ψ ◦ σ(i)

for each node i, then θ = ψ.
If

S
ε - S

is an endo-arrow of S such that

ε ◦ σ(i) = σ(i)

for each node i, then ε = idS .
If

A(i)
τ(i)- T

4.5 A geometric limit and colimit 345

is also a limit of the diagram then there is a unique arrow

S
τ - T

such that

τ(i) = τ(i) ◦ σ(i)

for each node i. Furthermore, τ is an isomorphism.
These are prove simply by reversing the arrows of the limit proofs. �

4.5 A geometric limit and colimit

4.5.1 Consider any left solution of the diagram.

A
fm - Z

This is a Z-indexed family of arrows, as indicated, such that

Z
d - Z

A
fm+1

-
fm -

commutes for each m ∈ Z. Thus

fm+1(a) = 2fm(a)

for each a ∈ A and m ∈ Z. By a trivial induction this gives

fm+r(a) = 2rfm(a)

for each a ∈ A,m ∈ Z, r ∈ N. Each value fm(a) of fm is in Z. The above
equality shows that the value is divisible by 2r for arbitrarily large r ∈ N.
Thus

fm(a) = 0

for each a ∈ A and m ∈ Z.
This shows that each left soloution has a rather simple structure.

Consider the singleton

L = {∗}

furnished with the constant functions

L
λm - Z

∗ - 0

346 4. Limits and colimits in general

for each m ∈ Z. Since

λm+1(∗) = 0 = 2× 0 = 2λm(∗)

this certainly gives a left solution of the diagram.
To show that this is the limit consider any left solution, as above. We

require a unique function

A
h - L

such that

fm = λm ◦ h

for each m ∈ Z. In fact, there is only one possible function h of the
indicated type, namely that given by

h(a) = ∗

for each a ∈ A. But now

(λm ◦ h)(a) = λm(∗) = 0 = fm(a)

to show that h is the required mediator.

Consider any right solution of the diagram.

Z
fm - A

This is a Z-indexed family of arrows, as indicated, such that

Z
d - Z

A

fm+1

-fm -

commutes for each m ∈ Z. Thus

fm(z) = fm+1(2z)

for all m, z ∈ Z. By a trivial induction this gives

fm(z) = fm+r(2rz)

for all m, z ∈ Z and r ∈ N. For later we need a refined version of this.
We require

(?) 2−mx = 2−ny =⇒ fm(x) = fn(y)

4.5. A geometric limit and colimit 347

for all m,n, x, y ∈ Z. To prove this suppose

2−mx = 2−ny

so that

2nx = 2my

holds. By symmetry we may suppose m ≤ n, so that n = m+r for some
r ∈ N. Thus

y = 2rx

and hence

fm(x) = fm+r(2rx) = fn(y)

as required.
The dyadic rationals D consists of those rationals of the form

2−mx

for m,x ∈ Z. Of course, this representation is not unique (which is why
we proved (?)).

For each m ∈ Z consider the function

Z
ρm - D

given by

ρm(x) = 2−mx

for each x ∈ Z. This gives a right soloution since

ρm+1(2x) = 2−m−1 × 2x = 2−mx = ρm(x)

for each m,x ∈ Z. We show that this is the colimit of the diagram.
Consider any right solution, as above. We require a unique function

D
h - A

such that

fm = h ◦ ρm

for each m ∈ N. If there is such a function h then it must satisfy

h(2−mx) = (h ◦ ρm)(x) = fm(x)

for each m,x ∈ Z. Thus there is only one possible function h.

348 4. Limits and colimits in general

Consider and d ∈ D. We may have

2−mx = d = 2−ny

for m,n, x, y ∈ Z. The result (?) gives

fm(x) = fn(y)

and hence we may set

h(2−mx) = fm(x)

to obtain a well-defined function of the required type. Finally, for each
m,x ∈ Z, we have

(h ◦ ρm)(x) = h(2−mx) = fm(x)

so that h does the required mediating job. �

4.5.2 Consider first any possible left solution of the problem. This is a
poset X together with a monotone map

X
α(i)- A(i)

for each node i. Of course, these various maps must combine in the
appropriate fashion. Thus for each pair i− 1, i of consecutive nodes the
composite

X
α(i− 1)- A(i− 1)

(i, i− 1)- A(i)

must be the map α(i). Thus

α(i)(x) = (i, i− 1)
(
α(i− 1)(x)

)
= ?

for each x ∈ X. This shows that each left solution is a poset X together
with the family

X
α(i)- A(i)

x - ?

of constant functions. In particular, the limit of the diagram is the 1-
element poset together with the maps that pick out ? at each node.

Next consider any possible right solution of the problem. This is a
poset X together with a monotone map

A(i)
α(i)- X

4.6 How to calculate certain limits 349

for each node i. These various maps must combine in the appropriate
fashion. Thus for each pair i, i+ 1 of consecutive nodes the composite

A(i)
(i+ 1, i)- A(i+ 1)

α(i+ 1)- X

must be the map α(i). Thus

α(i)(a) = (i+ 1, i)
(
α(i+ 1)(a)

)
= ?

for each a ∈ A(i). This show that for each right solution X each map
α(i) is constant with value ?. In particular, the colimit is the singleton
poset. �

4.6 How to calculate certain limits

4.6.1 Limits in Set

4.6.1 Let A be the set of threads. We furnish A with a distinguished
subset R to obtain an object (A,R) of Set(D). We let

a ∈ R⇐⇒ (∀i ∈ I)[a(i) ∈ R(i)]

for each thread a. We need to check various conditions.
For an arbitrary index i consider the conecting function

A
α(i)- A(i)

in Set . We check that this function is an arrow

(A,R)
α(i)- (A(i), R(i))

of Set(D). In other words that

a ∈ R =⇒ α(i)(a) ∈ R(i)

holds. But

α(i)(a) = a(i)

so this is an immediate consequence of the definition of R.
Next we observe that we have a solution of the diagram in Set(D).

This requires that certain triangles in Set(D) commute. But we know
that these triangles commute in Set , so there is nothing to prove.

We check that this solution is a universal solution in Set(D).

350 4. Limits and colimits in general

Consider any solution

(X,W)
ξ(i)- (A(i), R(i))

in Set(D). This is a Set(D)-object (X,W) and an I-indexed family
of Set(D)-arrows ξ(i). We are given that certain triangles in Set(D)
commute. We must show that there is a unique mediator

(X,W)
µ- (A,R)

in Set(D).
The trick is to forget the furnishings for a moment and drop down to

Set . We have a ∇-diagram in Set , a solution of the diagram based on
X, and a universal solution based on A. Thus if the Set(D)-situation
has a mediator, then it can only be the Set-mediator, given by

µ(x)(i) = ξ(i)(x)

for each x ∈ X and i ∈ I. In oher words, it suffices to show that this
function µ is a Set(D)-arrow, that is

x ∈W =⇒ µ(x) ∈ R

for each x ∈ X. Consider any x ∈ W . For arbitrary i ∈ I, we are given
that ξ(i) is a Set(D)-arrow. Thus

µ(x)(i) = ξ(i)(x) ∈ R(i)

which, since i is arbitrary, gives µ(x) ∈ R, as required. �

4.6.2 Limits in Pos

4.6.2 (a) An arrow

(A,∼)
f- (B,≈)

is a function f from A to B for which

a1 ∼ a2 =⇒ f(a1) ≈ f(a2)

for all a1, a2 ∈ A. Note this is only an implication, not an equivalence.

(b) Let A be the set of threads. We furnish A with an equivalence
relation ∼ to obtain an object (A,∼) of Eqv . We let

a ∼ b⇐⇒ (∀i ∈ I)[a(i) ∼i b(i)]

4.6.2. Limits in Pos 351

for each pair of thread a, b. Trivially, this is reflexive an symmetic, and
a few moment’s thought shows that it is transitive. Thus we do have an
equivalence relation.

We need to check various conditions.
For an arbitrary index i consider the connecting function

A
α(i)- A(i)

in Set . We check that this function is an arrow

(A,∼)
α(i)- (A(i),∼i)

of Eqv . In other words that

a ∼ b =⇒ α(i)(a) ∼i α(i)(b)

for all a, b ∈ A. But

α(i)(a) = a(i) α(i)(b) = b(i)

so this is an immediate consequence of the definition of ∼.
Next we observe that we have a solution of the diagram in Eqv . This

requires that certain triangles in Set(D) commute. But we know that
these triangles commute in Set , so there is nothing to prove.

We check that this solution is a universal solution in Eqv . Consider
any solution

(X,≈)
ξ(i)- (A(i),∼i)

in Eqv . This is a Eqv -object (X,≈) and an I-indexed family of Eqv -
arrows ξ(i). We are given that certain triangles in Eqv commute. We
must show that there is a unique mediator

(X,≈)
µ- (A,∼)

in Eqv .
The trick is to forget the furnishings for a moment and drop down to

Set . We have a ∇-diagram in Set , a solution of the diagram based on
X, and a universal solution based on A. Thus if the Eqv -situation has
a mediator, then it can only be the Set-mediator, given by

µ(x)(i) = ξ(i)(x)

for each x ∈ X and i ∈ I. In other words, it suffices to show that this
function µ is a Eqv -arrow, that is

x ≈ y =⇒ µ(x) ∼ µ(y)

352 4. Limits and colimits in general

for each x, y ∈ X. For each x, y ∈ X we have

x ≈ y =⇒ (∀i ∈ I)[ξ(i)(x) ∼i ξ(i)(y)]

=⇒ (∀i ∈ I)[µ(x)(i) ∼i µ(y)(i)] =⇒ µ(x) ∼ µ(y)

to give the required result. �

4.6.3 Let A be the set of threads. We must first furnish A with an
R-action.

Consider any a ∈ A and r ∈ R. For each node i set

(ar)(i) = a(i)r

to produce a function ar : I -
⋃

A. Almost trivially this is a choice
function. We must show that it is a thread. To this end consider the
R-morphism

A(i)
a(e)- A(j)

given by an edge e. Then, since a is a thread, we have

A(e)
(
(ar)(i)

)
= A(e)

(
a(i)r

)
= A(e)

(
a(i)

)
r = a(j)r = (ar)(j)

to show that ar is a thread.
We now require

(ar)s = a(rs) a1 = a

for arbitrary r, s ∈ R. For each node i, working in the R-set A(i), we
have (

(ar)s
)
(i) =

(
(ar)(i)

)
s =

(
a(i)r

)
s = a(i)(rs) =

(
a(rs)

)
(i)

to give the left hand requirement. The right hand requirement is easier.
Next we must show that each evaluation function

A
α(i)- A(i)

is an R-morphism. But for each a ∈ A and r ∈ R we have

α(i)
(
ar
)

=
(
ar
)
(i) = a(i)r = α(i)(a)r

to give the required result.
This shows that we do have a solution of the ∇-diagram in Set-R. It

remains to show that it is universal.
Consider any solution X in Set-R. Thus X is an R-set and each

function

X
ξ(i)- A(i)

4.6.3. Limits in Mon 353

is an R-morphism. By passing down to Set we know there is a unique
function

X
µ - A

for which the required triangles commute. It suffices to show that this
function is an R-morphism, that is

µ(xr) = µ(x)r

for each x ∈ X and r ∈ R. To do that we show that these two functions
agree at an arbitrary node i.

We know that

µ(x)(i) = ξ(i)(x)

for each x ∈ X and node i. Thus, for arbitrary r ∈ R, we have

µ(xr)(i) = ξ(i)(xr) =
(
ξ(i)(x)

)
r =

(
µ(x)(i)

)
r =

(
µ(x)r)i

for the required result. �

4.6.3 Limits in Mon

4.6.4 (a) Each commutative monoid is a monoid with an extra property.
The crucial observation is that any Mon-arrow between commutative
monoids is automatically a CMon-arrow. (Technically this says that
CMon is a full subcategory of Mon .)

For a template ∇ consider a ∇-diagram

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
in CMon . Thus each A(i) is a commutative monoid, and each A(e) is
a monoid morphism. By forgetting the commutative property we have a
diagram in Mon . We know this has a limit

A
α(i)- A(i)

carried by the set of threads. We show that A is commutative, and then
it is automatically a limit in CMon .

The operation ? on A is given by

(a ? b)(i) = a(i)b(i)

for each a, b ∈ A and i ∈ I. Since A(i) is commutative we have

(a ? b)(i) = a(i)b(i) = b(i)a(i) = (b ? a)(i)

354 4. Limits and colimits in general

which, since i is arbitrary, gives

a ? b = b ? a

to show that ? is commutative.

(b) Each group is a monoid with some extra structure. The crucial
observation, which takes a few moment’s thought to justify, is that any
Mon-arrow between groups is automatically a Grp-arrow. (Technically
this says that Grp is a full subcategory of Mon .)

For a template ∇ consider a ∇-diagram

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
in Grp. Thus each A(i) is a group, and each A(e) is a group. By forget-
ting the existence of inverses we have a diagram in Mon . We know this
has a limit

A
α(i)- A(i)

carried by the set of threads. We show that A is a group, and then it is
automatically a limit in Grp.

Consider any element a ∈ A. We produce an inverse of a in A, a thread
b ∈ A such that

a ? b = b ? a

that is

(a ? b)(i) = (b ? a)(i)

for each index i. For each index i we have

a(i)b(i) = 1(i) = b(i)a(i)

for a unique element b(i) ∈ A(i). In other words, b(i) is the unique
inverse of a(i) in A(i). This certainly gives us a choice function

b(·) : I -
⋃

A

but we need to show that b is a thread, that is with

A(e)
(
b(i)
)

= b(j)

for each edge

i
e- j

4.6.3. Limits in Mon 355

of ∇. We remember that a is a thread and A(e) is a group morphism.
Thus

a(j)
(
A(e)(b(i))

)
=
(
A(e)(a(i))

)(
A(e)(b(i))

)
= A(e)

(
a(i)b(i)

)
= A(e)(1(i)) = 1(j)

with (
A(e)(b(i))

)
a(j) = 1(j)

by a similar argument. But a(j) has a unique inverse in A(j), namely
b(j), and hence (

A(e)(b(i))
)

= b(j)

as required.
This shows that b ∈ A, and for each index i we have

(a ? b)(i) = a(i)b(i) = 1(i) = b(i)a(i) = (b ? a)(i)

and hence b is the inverse of a in A.
This shows that A is a group. The required arrow-theoretic properties

to show that A is the limit of the diagram are immediate, since they
hold in Mon .

(c) Each ring is a set which carries both a monoid structure, the
multiplication, and a group structure, the addition. Furthermore these
two structures interact to satisfy the associative laws.

For a template ∇ consider a ∇-diagram

A =
(
A(i) | i ∈ I

)
A =

(
A(e) | e ∈ E

)
in Rng . Thus each A(i) is a unital ring, and each A(e) is a ring mor-
phism. By forgetting all the structure, or the additive structure, or the
multiplicative structure we obtain diagrams in Set ,Mon ,Grp, respec-
tively. Each of these diagrams has a limit in its parent category. More
importantly, each of the limit structures is carried by the set of threads
through the diagram. This set of threads does not depend on the parent
category.

Let

A
α(i)- A(i)

be the limit of the Set diagram. Thus A is the set of threads and the α
are the evaluation functions. We show that this can be furnished to give
a limit in Rng .

356 4. Limits and colimits in general

As in parts (a,b) the furnishings on A are pointwise. Thus we furnish
A with an addition and a zero and with a multiplication and a one. As
in part (b) the addition furnishes A as a commutative group, and is in
part (a) the multiplication furnishes A as a monoid. We must check that
the associative laws hold. We require

a(b+ c) = ab+ ac (a+ b)c = ac+ bc

for threads a, b, c. To check these we evaluate at an arbitrary index i and
so pass down to A(i), where the corresponding equality does hold.

This furnishes A as a ring, and two calculations, as in parts (a,b)
show that each evaluation function α is a ring morphism. Furthermore,
all the required triangles commute, so we have produces a solution of
the diagram in Rng .

We show that this solution is universal, and so is a limit in Rng . To
do that consider any other solution

X
ξ(i)- A(i)

in Rng indexed by the nodes i of ∇. By forgetting the carried structure
this gives a solution of the diagram in Set , and hence there is a unique
function

X
µ - A

such that

ξ(i) = α(i) ◦ µ

for each index i. It suffices to show that this function µ is a ring mor-
phism. This is done as in the Mon case. �

4.6.5 Given a ∇-diagram in Pom in the usual notation, let A be the
set of threads. This set A can be furnished as a poset and a monoid by

x ≤ a⇐⇒ (∀i)[x(i) ≤ a(i)] (ab)(i) = a(i)b(i)

for all a, b, x ∈ A and index i. (We can now drop the use of ? for the
operation on A.) We show this is a pom.

Consider a, b, x, y ∈ A with x ≤ a and y ≤ b. Then

(∀i)[(xy)(i) = x(i)y(i) ≤ a(i)b(i) = (ab)(i)]

to verify the required comparison property. By now you should find the
required arrow-theoretic properties routine. �

4.6.4. Limits in Top 357

4.6.4 Limits in Top

4.6.6 In this case a thread is just a choice function for the I-indedex
family A. The topology as described in the subsection is just the standard
product topology on

∏
A. �

4.7 Confluent colimits in Set

4.7.1 By dropping down to Set we know that the corresponding I-
diagram has a colimit L. We show that this set L can be furnished to
form a colimit in Set-R.

We are given that each function

A(i)
A(j, i)- A(j)

x - x|j

is an R-morphism, that is

(xr)|j = (x|j)r

for each x ∈ A(i) and r ∈ R.
We know that L is the set of blocks [x, i] of a certain equivalence

relation ∼ on qA. We must produce an R-action on L. Given a block
[x, i] in L we wish to set

[x, i]r = [xr, i]

for each r ∈ R. We must show that this is well defined.
Consider two representatives

[x, i] [y, j]

of the same block. Thus

x|k = y|k

for some node i, j ≤ k. Since each A(k, ·) is an R-morphism we have

(xr)|k = (x|k)r = (y|k)r = (yr)|k

to show that

[xr, i] = [yr, j]

and hence the action is well-defined.
We need to show the action axioms, but that is straight forward.

358 4. Limits and colimits in general

This furnishes L as an R-set. Also, for each node i and x ∈ A(i), by
definition, we have

[xr, i] = [x, i]r

so that the connection function

A(i) - L

x - [x, i]

is an R-morphism.
This shows that we have a right solution to the diagram in Set-R.

We must show it is the universal right solution. To this end consider any
right solution

A(i)
αi - M

of the diagram. Here M is an R-set and each αi is an R-morphism.
Dropping down to Set we know there is a unique function such that

A(i)
αi - M

L

µ

-

-

commutes. It suffices to show that this function µ is an R-morphism,
that is

µ
(
[x, i]r

)
= µ

(
[x, i]

)
r

for each node i, element x ∈ A(i), and r ∈ R. But, since

µ
(
[x, i]

)
= αi(x)

we have

µ
(
[x, i]r

)
= µ

(
[xr, i]

)
= αi(xr) = αi(x)r = µ

(
[x, i]

)
r

as required. �

4.7.2 By dropping down to Set we know that the corresponding I-
diagram has a colimit L. We show that this set L can be furnished to
form a colimit in Mon .

We are given that each function

A(i)
A(j, i)- A(j)

x - x|j

4.7. Confluent colimits in Set 359

is a monoid morphism, that is

(xy)|j = (x|j)(y|j)

for each x, y ∈ A(i).
We know that L is the set of blocks [x, i] of a certain equivalence

relation ∼ on qA. We must produce a binary operation on L. Given a
pair of blocks

[x, i] [y, j]

in L we wish to set

[x, i] · [y, j] = [(x|k)(y|k), k]

where k is any node with i, j ≤ k. We must show that this is well defined.
Consider

[x1, i1] = [x2, i2] [y1, j1] = [y2, i2]

that is

x1|i = x2|i y1|j = y2|j

for some nodes

i1, i2 ≤ i j1, j2 ≤ j

from I. We must show that

[(x1|k1)(y1|k1), k1] = [(x2|k2)(y2|k2), k2]

where k1, k2 are any nodes with

i1, j1 ≤ k1 i2, j2 ≤ k2

respectively. Given such a pair k1, k2 of nodes we must show that(
(x1|k1)(y1|k1)

)
|l =

(
(x2|k2)(y2|k2)

)
|l

for at least one node l with k1, k2 ≤ l. Consider any node l with
i, j, k1, k2 ≤ l. We have(

(x1|k1)(y1|k1)
)
|l =

(
(x1|k1)|l

)(
(y1|k1)|l

)
= (x1|l)(y1|l) =

(
(x1|i)|l

)(
(y1|j)|l

)
with (

(x2|k2)(y2|k2)
)
|l =

(
(x2|i)|l

)(
(y2|j)|l

)
by a similar calculation. The relationship between the 1- and the 2-
components now gives the required result.

360 4. Limits and colimits in general

This furnishes L with a binary operation. A further calculation of this
kind shows that this operation in associative. And then another small
calculation shows that L is a monoid.

Next we must show that for each node i the connecting function

A(i) - L

x - [x, i]

is a monoid morphism, that is

[x, i] · [y, i] = [xy, i]

for each x, y ∈ A(i). Since both x, y are in A(i) this is immediate from
the definition of the operation on L.

This shows that we have a right solution to the diagram in Mon . We
must show it is the universal right solution. To this end consider any
right solution

A(i)
αi - M

of the diagram. Here M is a monoid and each αi is a monoid morphism.
Dropping down to Set we know there is a unique function such that

A(i)
αi - M

L

µ

-

-

commutes. It suffices to show that this function µ is a monoid morphism.
We know that

µ
(
[x, i]

)
= αi(x)

for each node i and x ∈ A(i). We require

µ
(
[x, i] · [y, j]

)
= µ

(
[x, i]

)
µ
(
[y, j]

)
for each pair i, j of nodes and elements x ∈ A(i), y ∈ A(j). Consider any
node k with i, j ≤ k. We have

µ
(
[x, i] · [y, j]

)
= µ

(
(x|k, k)(y|k, k)

)
= µ

(
(x|k)(y|k), k)

)
= αk

(
(x|k)(y|k)

)
= αk(x|k)α(y|k)

and

µ
(
[x, i]

)
µ
(
[y, j]

)
= αi(x)αj(y)

4.7. Confluent colimits in Set 361

so the required result follows by the given commuting diagrams that the
α• satisfy. �

4.7.3 We are given a A,B of monoids and wish to produce the coproduct
AqB in Mon? We do this in three steps.

For the first step we forget the structure, we drop down to Set and
produce the coproduct of the two carrying sets in Set . This, of course,
is just the disjoint union of the two sets. Let

A

A ∪̇B
i ?

B

j 6

be the coproduct in Set . Here A ∪̇B is merely a set and i, j are merely
functions, but with a certain property.

For the second step we remember that each set X freely generates a
monoid FX. This is saying the forgetful functor from Mon to Set has
a left adjoint. We don’t need an explicit description of FX. Let F be
the free monoid generated by A ∪̇B via a function η. Thus we now have
a commuting diagram in Set

A

A ∪̇B
i ?

η - F

λ
-

B

j 6
ρ

-

where A,B, F are monoids but the arrows are merely functions.
For the third step we take a certain monoid quotient

F k - AqB

and so obtain a commuting diagram in Set .

A

A ∪̇B

i
?

η- F k-

λ
-

AqB

l
-

B

j 6
r

-

ρ
-

362 4. Limits and colimits in general

The idea is that we take a quotient k so that the induced composite
functions l, r are monoid morphism. Furthermore, we take the smallest
quotient (that is, the quotient that causes the least amount of collapse)
for which the produced functions l, r are monoid morphisms.

Let’s see what this works. Consider a wedge in Mon , as on the left.

A A A

C

f
-

A ∪̇B
i ?

h - C

f
-

A ∪̇B
i ?

η - F h] -

λ
-

C

f

-

B
g

-

B

j 6
g

-

B

j 6
g

-

ρ
-

Here C is a monoid and f, g are monoid morphisms. We must show there
is a unique morphism m to obtain a commuting diagram in Mon .

A

AqB
l ?

m- C

f
-

B

r 6
g

-

By dropping down to Set we see there is a unique function h such
that the central diagram commutes in Set . This is because A ∪̇B is the
coproduct in Set .

We now have a function h from the set X = A ∪̇ B to a monoid C.
This must factor uniquely through the monoid F freely generated by
X. Thus we obtain a commuting diagram as on the right where h] is a
monoid morphism.

Notice that

h] ◦ λ = f h] ◦ ρ = g

so that these two composites functions are monoid morphisms. But k is
the smallest quotient for which k ◦ λ and k ◦ ρ are monoid morphism.
Thus h] factors uniquely through k to produce a commuting diagram

A

A ∪̇B

i
?

η - F k -

λ
-

AqB m -

l
-

C

f

-

B

j
6

g

-

r

-

ρ

-

where m is a monoid morphism.

4.7. Confluent colimits in Set 363

This doesn’t quite finish the proof for we must show that m is the
only morphism that does this job. To this end suppose

n ◦ l = f n ◦ r = g m ◦ l = f m ◦ r = g

for some morphism n. We require n = m. By tracking through the
various commuting diagrams we have

n ◦ k ◦ η ◦ i = f n ◦ k ◦ η ◦ j = g

and the same equalities hold with n replaced by m. Now i, j determine
the coproduct A ∪̇B of A,B in Set . Thus

n ◦ k ◦ η = m ◦ k ◦ η

by the uniqueness of the mediator. Next we remember that η freely
generates F from A ∪̇A. Thus

n ◦ k = m ◦ k

by the uniqueness of the mediator for that construction. Finally, since k
is surjective we have n = m, as required. �

5

Adjunctions

5.1 Adjunctions defined

5.1.1 Let S, T be a pair of posets viewed as categories.
A functor S - T is a function (the object function)

f : S - T

such that for each comparable pair a1 ≤ a2 of elements of S (arrow of
S) the corresponding pair of T are comparable f(a) ≤ f(a2) (an arrow
of T). Thus

a1 ≤ a2 =⇒ f(a1) ≤ f(a2)

for a1, a2 ∈ S. This is just a monotone map.
Consider a pair of monotone maps

S
f -

�
g

T

going in the opposite direction. These form a categorical adjunction if
for each a ∈ S and b ∈ T there is an appropriate correspondence between
the two arrow sets

S[a, g(b)] T [f(a), b]

given by the two elements. Each of these is no more than a singleton.
Thus the correspondence says that one is non-empty precisely when the
other is non-empty. This rephrases as

f(a) ≤ b⇐⇒ a ≤ g(a)

5.1. Adjunctions defined 365

for a ∈ S, b ∈ T , which is the defining property of a poset adjunction. �

5.1.2 Let

Set � U Pre

be the forgetfully functor. We produce a left adjoint and a right adjoint
to this functor.

Set

D -
� U

I
-

Pre

Each set X can be converted into a preset in two extreme ways.

DX = (X,=) IX = (X, ‖)

On the left we use equality as the comparison. This gives a poset. On
the right any two elements are comparable. This is not a poset if X has
least two elements. We call these the

discrete indiscrete

presets, respectively. This gives the object assignments of two functors.
Consider any function.

X
f - Y

We observe that f is monotone relative to both the discrete and the
indiscrete comparisons, that is

x = y =⇒ f(x) = f(y) f(x) ‖ f(y)

for all x, y ∈ X. This gives us the arrow assignments of two functors.
We use the same function but view it as a monotone map in two ways.

We now check the two adjunctions

D a U U a I

separately.

For the adjunction D a U we require an inverse pair of assignments

f - f]

Set [X,US] Pre [DX,S]
φ[� φ

for each set X and each preset S. In fact both (·)] and (·)[return the

366 5. Adjunctions

same function, so do form an inverse pair. The only thing we have to
check is that

DX
f] - S

is monotone for each function f , as above. This is trivial. Finally, for
D a U , we must check that the two assignments are natural. However,
nothing much is happening as we pass across a functor or an assignment,
so the naturality is immediate.

For the adjunction U a I we require an inverse pair of assignments

φ - φ]

Pre [S, IX] Set [US,X]
f[� f

for each preset S and each set X. In fact both (·)] and (·)[return the
same function, so do form an inverse pair. The only thing we have to
check is that

S
f[- IX

is monotone. But since IX is indiscrete, this is trivial. Finally, for U a I,
we must check that the two assignments are natural. However, nothing
much is happening as we pass across a functor or an assignment, so the
naturality is immediate. �

5.1.3 This is more or less the same as Solution 5.1.2 except we now use
topologies rather than pre-orders.

Let

Set � U Top

be the forgetfully functor. We produce a left adjoint and a right adjoint
to this functor.

Set

D -
� U

I
-

Top

Each set X can be converted into a topological space in two extreme
ways.

DX = (X,PX) IX = (X, {∅, X})

On the left we use discrete topology in which each subset is open. On

5.1. Adjunctions defined 367

the right we use the indiscrete topology in which only the two extreme
subsets are open. Naturally, we call these the

discrete indiscrete

spaced, respectively. This gives the object assignments of two functors.
Consider any function.

X
f - Y

We observe that f is continuous relative to both the discrete and the
indiscrete topologies. This gives the arrow assignments of two functors.
We use the same function but view it as a continuous map in two ways.

We now check the two adjunctions

D a U U a I

separately.

For the adjunction D a U we require an inverse pair of assignments

f - f]

Set [X,US] Top[DX,S]
φ[� φ

for each set X and each space S. In fact both (·)] and (·)[return the
same function, so do form an inverse pair. The only thing we have to
check is that

DX
f] - S

is continuous for each function f , as above. This is trivial. Finally, for
D a U , we must check that the two assignments are natural. However,
nothing much is happening as we pass across a functor or an assignment,
so the naturality is immediate.

For the adjunction U a I we require an inverse pair of assignments

φ - φ]

Top[S, IX] Set [US,X]
f[� f

for each space S and each set X. In fact both (·)] and (·)[return the
same function, so do form an inverse pair. The only thing we have to
check is that

S
f[- IX

368 5. Adjunctions

is continuous. But since IX is indiscrete, this is trivial. Finally, for U a I,
we must check that the two assignments are natural. However, nothing
much is happening as we pass across a functor or an assignment, so the
naturality is immediate. �

5.1.4 This is dealt with in excrutiating detail in the first part of Chapter
6. Not all of those details are necessary. You may want to decide which
of the quicker solutions you prefer. �

5.1.5 As in Chapter 4 we let i, j, . . . range over the objects of the
template category ∇ and refer to these as nodes. We use

i
e - j

as a typical arrow of ∇ and refer to this as an edge.
An object of C∇, a ∇-diagram in C , is a functor

∇
F - C

and so consists of a family of objects of C

F (i)

indexed by the nodes and a collection of arrows of C

F (i)
F (e)- F (j)

indexed by the edges. Various triangles in C are required to commute.
An arrow of C∇

F
η• - G

is just a natural transformation between the two functors. These are
composed in the obvious way.

For each object A of C we set

(∆A)(i) = A (∆A)(e) = idA

for each node i and each edge e. This gives a constant diagram. Each
arrow of C

A
η - B

gives a ‘constant’ natural transformation

∆A
η• - ∆B

5.1. Adjunctions defined 369

in the obvious way. This sets up a functor

C
∆ - C∇

and we are interested in the existence or not of a right adjoint to ∆.
Consider first an object A of C and an object F of C∇. What does

a member of

C∇[∆A,F]

look like? It is a family of arrows

A
α(i)- F (i)

indexed by the nodes of ∇ such that

A
α(i)- F (i) i

A

id
?

α(j)
- F (j)

F (e)
?

j

e
?

commutes for each edge e, as indicated on the right. In other words, this
is nothing more than a left solution to the diagram F .

Suppose now that we fix a particular solution

S
σ(i)- F (i)

and try to compare S with an arbitrary object A of C . How are the two
hom-sets

C [A,S] C∇[∆A,F]

related? There is an obvious assignment

µ - µ]

C [A,S] C∇[∆A,F]

in one direction. Given a C -arrow

A
µ - S

for each node i we let µ](i) be the composite

A
µ - S

σ(i)- F (i)

to produce a left solution of F . This gives us a family of assignments

C [−, S]
(·)]- C∇[∆−, F]

370 5. Adjunctions

as we let the object A vary through C . Notice that we have a pair of
contravariant functors

C - Set

and it is easy to show (·)] is a natural transformation between the two.
When is this natural transformation a natural equivalence? Precisely

when each solution

∆A
α(•)- F

arises from a unique arrow

A
µ - S

as µ]. This is simply saying that (S, σ) is a universal left solution, a limit
of F . Every ∇-diagram F in C has a limit precisely when there is an
object assignment

S � F

picking out the object which carries the limit. The required functorial
and adjunction properties follow by similar arguments. �

5.1.6 We use various aspects of the gadgetry of the adjunction.

Src[−, G−]
(·)] -

�
(·)[

Trg [F−,−]

Here F is the left adjoint of the given functor G.
Consider some diagram

TD T (i) T (e)

in Trg . Here i ranges over the nodes of the template and e ranges over
the edges. In this diagram certain triangles are required to commute.

We use the functor G to transport these objects and arrows to Src.

SD GT (i) GT (e)

Since G is a functor this is a diagram of the same template in Src.
Suppose

T
τ(i)- T (i)

is a limit of the diagram TD in Trg . Thus T is a fixed object and there
is an arrow τ(i) for each node i of the template. Various triangles are

5.1. Adjunctions defined 371

required to commute, those indexed by the edges e of the template. We
use G to transport this to Src

GT
G(τ(i))- GT (i)

and since G is a functor we certainly obtain a left solution of the diagram
SD in Src.

Consider any left solution

X
ξ(i) - GT (i)

of the diagram SD in Src. We must somehow produce a unique mediator

X
µ - GT

for which
GT

X

µ -

(C)

GT (i)

G(τ(i))

?ξ(i) -

commutes for each node i.
We use the transpositions

Src[X,GT (i)]
(·)] - Trg [FX, T (i)]

to obtain a family of arrows

FX
ξ(i)]- T (i)

in Trg . Since (·)] is natural, this is a left solution of the diagram TD in
Trg . Thus, since we have a limit of this diagram, here is a unique arrow
ν such that each triangle

T

FX

ν -

T (i)

τ(i)

?ξ(i)]
-

commutes.

372 5. Adjunction

Since the transposition

Src[X,GT]
(·)] - Trg [FX, T]

is a bijection we have

ν = µ]

for some unique arrow

X
µ - GT

of Src. It suffices to show that each triangle (C) commutes. But this
follows by the naturality of (·)] (or strictly speaking, by the naturality
of the inverse (·)[of (·)]. �

5.1.7 Both F and G are modified versions of the 2-placed hom-functor
Trg [−.−]. In particular, it is contravariant in the left hand argument.
Thus we really have a pair of functors

Src
op
×Trg - Set

using the opposite of Src. The details of the two arrow assignments are
given in Table 5.2 in Section 5.3. �

5.2 Adjunctions illustrated

5.2.1 An algebraic example

5.2.1 We deal with Σ first. We are given

ΣX = X +X = {(x, i) |x ∈ X, i = 0, 1}

for each set X. The carried involution fips the tag, that is

(x, i)• = (x, 1− i)

for each x ∈ X and tag i ∈ {0, 1}. Since

(x, i)•• = (x, 1− i)• = (x, i)

this does produce an involution algebra. For each function

Y
k - X

5.2.1. An algebraic example 373

the only sensible asignment

ΣY
Σ(k)- ΣX

(y, i) - (k(y), i)

is to leave the tag alone. Since

Σ(k)
(
(y, i)•

)
= Σ(k)

(
(y, 1− i)

)
= (k(y), 1− i) = (k(y), i)• =

(
Σ(k)(y, i)

)•
so that Σ(k) is a morphism. The functorial requirments are immediate.

Next we deal with Π. We are given

ΠX = X ×X = {(x, y) |x, y ∈ X}

for each set X. The carried involution swaps the components, that is

(x, y)• = (x, y)

for each x, y ∈ X. Trivially, this does produce an involution algebra. For
each function

Y
k - X

the only sensible asignment

ΠY
Π(k)- ΠX

(y, z) - (k(y), k(z))

is to apply the function to bothy components. Since

Π(k)
(
(y, z)•

)
= Π(k)

(
(z, y)

)
= (k(z), k(y))

= (k(y), k(z))• =
(
Π(k)(y, i)

)•
hence Π(k) is a morphism. The functorial requirments are immediate. �

5.2.2 We deal with Σ first. We require an inverse pair of assignments

f - f]

Set [X,UA] Inv [ΣX,A]
ψ[� ψ

for each set X and each algebra A. We set

f]
(
(x, i)

)
= f(x)(i) ψ[(x) = ψ(x, 0)

for each x ∈ X and tag i. There are some requirements we must check.

374 5. Adjunction

We need to show that f] is a morphism, that is

f]
(
(x, i)•

)
=
(
f](x, i)

)•
for each x ∈ X and tag i. To do that we remember that

a(i)• = a(1−i) = a•(i)

for each a ∈ A. With this we have

f]
(
(•x, i)

)
= f](x, 1− i) = f(x)(1−i) = f(x)(i)• =

(
f](x, i)

)•
as required.

For each x ∈ X and tag i we have

f][(x) = f](x, 0) = f(x)(0) = f(x)

ψ[
](x, i) = ψ[(x)(i) = ψ(x, 0)(i) = ψ(x, i)

to show that the two assignments form an inverse pair. The last step in
the lower calculations follows since ψ is a morphism.

Next we deal with Π. We require an inverse pair of assignments

φ - φ]

Inv [A,ΠX] Set [UA,X]
g[� g

for each set X and each algebra A. We set

φ](a) = φ(a)0 g[(a) = (g(a), g(a•))

for each a ∈ A. In φ] the (·)0 indicates the left hand component is
selected. We need to show that g[is a morphisms, that is

g[(a•) = g[(a)•

for each a ∈ A. But, remembering how ΠX is structured, we have

g[(a•) =
(
g(a•), g(a••)

)
=
(
g(a•), g(a)

)
=
(
g(a), g(a•)

)• = g[(a)•

as required
To show that these two assignments form an inverse pair consider any

a ∈ A. Let

φ(a) = (x, y)

where x, y ∈ X. Then, since φ is a morphism, we have

φ(a•) = φ(a)• = (y, x)

5.2.2. A set-theoretic example 375

so that

φ](a) = x φ](b) = y

to give

φ][(a) =
(
φ](a), φ](a•)

)
= (x, y) = φ(a)

for one of the required conditions. For the other, since

g[(a) = (g(a),−)

we have

g[
](a) = g(a)

as required. �

5.2.2 A set-theoretic example

5.2.3 For this and the next solution let us write L and R for the two
endofunctors on Set . Thus

LX = X × I RY = I ⇒ Y

for all sets X and Y . The arrow assignments are given in the subsection.
We require an inverse pair of bijections

f - f]

Set [X,RY] Set [LX, Y]
g[� g

for arbitrary X,Y .
Each member f of Set [X,RY] is a 2-step function which first con-

sumes an element x ∈ X and then an index i ∈ I to return an eventual
value f(x)(i) in Y . Each member g of Set [LX, Y] is a function which
consumes a pair (x, i) where x ∈ X and i ∈ I to return a value g(x, i)
in Y . The two transpositions merely shuffle brackets around. We have

f](x, i) = f(x)(i) g[(x)(i) = g(x, i)

for x ∈ X and i ∈ I. Normally in Mathematics we would hardly distin-
guish between f and f], nor between g and g[. �

5.2.4 We continue with the notation of Solution 5.2.3.
We require a pair of assignments

X
ηX- (R ◦ L)X (L ◦R)Y

εY- Y

376 5. Adjunction

where

(R ◦ L)X = I ⇒ (X × I) (L ◦R)Y = (I ⇒ Y)× I

for sets X and Y .
For each x ∈ X the value ηX(x) must be a function which consumes

some i ∈ I and returns a pair in X × I. Thus

ηX(x)(i) = (x, i)

is the only sensible suggestion. The function εY must consume a pair
(p, i) where p : I → Y and i ∈ I to return a member of Y . Thus

εY (p, i) = p(i)

is the only sensible suggestion. We show that each of these is natural.
Recall that the arrow assignments of L and R are given by

X2 X2 × I (x, i) Y1 I ⇒ Y1 p

- -

X1

k

?
X1 × I

L(k)

?
(k(x), i)
?

Y2

l

?
I ⇒ Y2

R(l)

?
l ◦ p
?

respectively.

To deal with η• we must show that

X2
ηX2- (R ◦ L)X2

X1

k

?

ηX1

- (R ◦ L)X1

(R ◦ L)(k)

?

commutes for an arbitrary function k, as on the left. Thus we require

ηX1 ◦ k = (R ◦ L)(k) ◦ ηX2

equivalently

ηX1

(
k(x)

)
= R

(
L(k)

)(
ηX2(x)

)
for each x ∈ X2. Each side of this equality is a function

I −→ (X × I)

5.2.3. A topological example 377

so we evaluate both at an arbitrary i ∈ I. We have

ηX1

(
k(x)

)
(i) = (k(x), i)

be the definition of η•. The behaviour of R gives

R
(
L(k)

)(
ηX2(x)

)
= L(k) ◦ ηX2(x)

so that

R
(
L(k)

)(
ηX2(x)

)
(i) = L(k)

(
ηX2(x)(i)

)
= L(k)(x, i) = (k(x), i)

by the behaviour of L, to give the required result.

To deal with ε• we must show that

(L ◦R)Y1
εY1- Y1

(L ◦R)Y2

(L ◦R)(l)

?

εY2

- Y2

l

?

commutes for an arbitrary function l, as on the right. Thus

εY2 ◦
(
(L ◦R)(l)

)
= l ◦ εY1

is the required equality. A typical member of (L ◦ R)Y1 is a pair (p, i)
where p : I → Y1 and i ∈ I. We have(

l ◦ εY1

)
(p, i) = l

(
εY1(p, i)

)
= l
(
p(i)

)
= (l ◦ p)(i)

for each such pair. We also have(
L ◦R

)
(l)(p, i) = L

(
R(l)

)
(p, i) =

(
R(l)(p), i

)
= (l ◦ p, i)

for each such pair. This gives(
εY2 ◦

(
(L◦R)(l)

))
(p, i) = εY1

((
L◦R

)
(l)(p, i)

)
= εY1(l ◦p, i) = (l ◦p)(i)

as required. �

5.2.3 A topological example

5.2.5 As in the block, it suffices to show that for a continuous map

Y1
ψ - Y2

378 5. Adjunction

between two spaces, the induced assignment

(I ⇒ Y1)
Ψ- (I ⇒ Y2)

θ - ψ ◦ θ
is continuous where each of the two functions spaces carries the compact
open topology. To do that we consider an arbitrary subbasic open set
〈K,V 〉 of (I ⇒ Y2) where K ∈ KI and V ∈ OY2, and show

Ψ←
(
〈K,V 〉

)
= 〈K,ψ←(V)〉

which is a subbasic open set of (I ⇒ Y1) For each function θ : I → Y1

we have

θ ∈ Ψ←
(
〈K,V 〉

)
⇐⇒ ψ ◦ θ ∈ 〈K,V 〉

⇐⇒ (∀i ∈ I)[i ∈ K ⇒ ψ(θ(i)) ∈ V]

⇐⇒ (∀i ∈ I)[i ∈ K ⇒ θ(i) ∈ ψ←(V)]

⇐⇒ θ ∈ 〈K,ψ←(V)〉

for the required result. �

5.2.6 As suggested in the partial proof of Lemma 5.2.5, we consider a
typical subbasic open set

〈K,V 〉

of I ⇒ Y , and show that

ψ←[
(
〈K,V 〉

)
is open in X. Here

K ∈ KI V ∈ OY

are the two components of the subbasic. We consider an arbitrary

s ∈ ψ←[
(
〈K,V 〉

)
and show that

s ∈ U ⊆ ψ←[
(
〈K,V 〉

)
for some open U ∈ OX.

For the considered point s we have

ψ[(s) ∈ 〈K,V 〉

that is

ψ(s, i) = ψ[(s)(i) ∈ V

5.2.3. A topological example 379

for each i ∈ K. For each i ∈ K we have

(s, i) ∈ ψ←(V)

so that, since ψ is continuous, we have

(s, i) ∈ Ui ×Wi ⊆ ψ←(V)

for some Ui ∈ OX and Wi ∈ OI. As i ranges through K the sets Wi

produce an open covering of K. Since K is compact this refines to a
finite covering

W = W1 ∪ · · · ∪Wm

of K indexed by some i(1), . . . , i(m) ∈ K. Let

U = U1 ∩ · · · ∩ Um

using the same indexes. We have

s ∈ U K ⊆W

with

U ×W ⊆ ψ←(V)

by construction. Also, for each x ∈ X we have

x ∈ U =⇒ (∀i ∈ K)[ψ(x, i) ∈ V]

=⇒ ψ[(x)[K] ⊆ V

=⇒ ψ[(x) ∈ 〈K,V 〉 =⇒ ψ←[
(
〈K,V 〉

)
to give

U ⊆ ψ←[
(
〈K,V 〉

)
for the required result. �

5.2.7 We continue with the partial proof of Lemma 5.2.6.
We start from any

(s, r) ∈ φ]←(V)

where V ∈ OY ,and produce

U ×W ⊆ φ]←(V)

such that both

s ∈ U ∈ OX r ∈W ∈ OI

380 5. Adjunction

hold. We already have

r ∈W ⊆ K ⊆ φ(s)←(V)

for some K ∈ KI and W ∈ OI. Observe that for i ∈ I we have

i ∈ K =⇒ i ∈ φ(s)←(V) =⇒ φ(s)(i) ∈ V

for each i ∈ I. This gives

φ(s)[K] ⊆ V

so that

φ(s) ∈ 〈K,V 〉

and hence

s ∈ U where U = φ←
(
〈K,V 〉

)
with U open in X. From the construction of U and W , for each x ∈ Xand
i ∈ I we have

(x, i) ∈ U ×W =⇒ (x, i) ∈ U ×K =⇒ φ](x, i) = φ(x)(i) ∈ V

and hence

U ×W ⊆ φ]←(V)

for the final requirement. �

5.2.8 For spaces X,Y we require continuous maps

X
ηX-

(
I ⇒ (X × I)

) (
(I ⇒ Y)× I

) εY- Y

to do a certain job. We use the idea of the set-theoretic example of Block
5.2.2. Thus we set

ηX(x)(i) = (x, i) εY (p, i) = p(i)

for each x ∈ X, i ∈ I, and p : I → Y .
It now looks as though we have quite a bit of work to do, but this is

an illusion.
Why are

ηX εY

continuous? Observe that

ηX = ψ[where ψ = idX×I εY = φ] where φ = idI⇒Y

and hence Lemmas 5.2.5 and 5.2.6 give the required continuity.

5.3 Adjunctions uncoupled 381

Why are

η• ε•

natural? We require that certain squares commute. But these are squares
in Set , and we know they commute by the set-theoretic example. �

5.3 Adjunctions uncoupled

5.3.1 We use the notation of this section as in Table 5.1.
Letting only A vary is equivalent to taking S = T with l = idS . For

this case (]) and ([) become (] ↑) and ([↓), and these are equivalent as
in Lemma 5.3.2.

Letting only S vary is equivalent to taking A = B with k = idA. For
this case (]) and ([) become (] ↓) and ([↑), and these are equivalent as
in Lemma 5.3.2. �

5.3.2 We use the notation and results of Solutions 5.2.1 and 5.2.2.

We deal with the Σ-construction first.

f - f]

Set [X,UA] Inv [ΣX,A]
ψ[� ψ

For each pair k (a function) and λ (a morphism), as indicated, we
must show that the two squares commute.

X Set [X,UA]
(·)] -

�
(·)[

Inv [ΣX,A] A

Y

k

6

Set [Y,UB]

U(λ) ◦ − ◦ k

? (·)] -
�

(·)[
Inv [ΣY,B]

λ ◦ − ◦ Σ(k)

?
B

λ

?

By tracking round the various squares we require(
U(λ) ◦ f ◦ k)

)] = λ ◦ f] ◦ Σ(k) λ ◦ ψ[◦ k =
(
λ ◦ ψ ◦ Σ(k)

)
[

for each arrow

X
f - UA Σ

ψ - A

382 5. Adjunctions

from the appropriate top corner. To verify these equalities we evaluate
at an arbitrary element

(y, i) ∈ ΣY y ∈ Y

respectively. We have(
U(λ) ◦ f ◦ k)

)](y, i) =
((
U(λ) ◦ f ◦ k)

)
(y)
)(i)

=
((
λ ◦ f ◦ k

)
(y)
)(i)

where at the last step we remember we are dealing with three functions.
Finally we have(

λ ◦ f] ◦ Σ(k)
)

(y, i) = λ
(
f]
(
Σ(k)(y, i)

))
= λ

(
f]
(
k(y), i

))
= λ

((
f ◦ k

)
(y)(i)

)
=
(
λ
((
f ◦ k

)
(y))

)(i)

=
((
λ ◦ f ◦ k

)
(y)
)(i)

to give the required left hand result. We also have(
λ ◦ ψ[◦ k)(y)

(
λ ◦ ψ ◦ Σ(k)

)
[
(y)

=
(
λ ◦ ψ[

)
(k(y)) =

(
λ ◦ ψ ◦ Σ(k)

)
(y, 0)

= λ
(
ψ(k(y), 0

)
=
(
λ ◦ ψ

)(
Σ(k)(y, 0)

)
=
(
λ ◦ ψ

)
(k(y), 0) =

(
λ ◦ ψ

)
(k(y), 0)

to give the required right hand result.

Next we deal with the Π-construction.

φ - φ]

Inv [A,ΠX] Set [UA,X]
g[� g

For each pair κ (a morphism) and l (a function), as indicated, we must
show that the two squares commute.

A Inv [A,ΠX]
(·)] -

�
(·)[

Set [UA,X] X

B

κ

6

Inv [B,ΠY]

Π(l) ◦ − ◦ κ

? (·)] -
�

(·)[
Set [UB, Y]

l ◦ − ◦ U(κ)

?
Y

l

?

5.3. Adjunctions uncoupled 383

By tracking round the various squares we require(
Π(l) ◦ φ ◦ κ

)] = l ◦ φ] ◦ U(κ) Π(l) ◦ g[◦ κ =
(
l ◦ g ◦ U(κ)

)
[

for each arrow

A
φ - ΠX UA

g - X

from the approriate top corner. To verify these we evaluate at an arbi-
trary element

b ∈ UB b ∈ B

respectively. We have(
Π(l) ◦ φ ◦ κ

)](b) (
l ◦ φ] ◦ U(κ)

)
(b)

=
((

Π(l) ◦ φ ◦ κ
)
(b)
)

0
= l
(
φ]
(
κ(b)

))
=
(

Π(l)
(
(φ ◦ κ)(b)

))
0

= l
(
φ
(
κ(b)

)
0

)
= l
((

(φ ◦ κ)(b)
)

0

)
= l
((

(φ ◦ κ)(b)
)

0

)
to give the required left hand result. We also have(

Π(l) ◦ g[◦ κ
)
(b) = Π(l)

(
g[
(
κ(b)

))
= Π(l)

(
g
(
κ(b)

)
, g
(
κ(b)

)•)
=
(
l
(
g
(
κ(b)

))
, l
(
g
(
κ(b)

)•))
=
(

(l ◦ g)
(
κ(b)

)
, (l ◦ g)

(
κ(b)•

))
and (

l ◦ g ◦ U(κ)
)
[
(b)

=
((
l ◦ g ◦ U(κ)

)
(b),

(
l ◦ g ◦ U(κ)

)
(b•)

)
=
((
l ◦ g

)(
κ(b)

)
,
(
l ◦ g

)(
κ(b•)

))
and

κ(b)• = κ(b•)

since κ is a morphism, to give the reqired right hand result. �

5.3.3 Let us use the notation

L = −× I R− = I ⇒ −

of Solutions 5.2.3 and 5.2.4.

384 5. Adjunctions

To show that (·)] we must check that the square

X1 [X1, RY1]
(·)]- [LX1, Y1] Y1

X2

k
6

[X2, RY2]

R(l) ◦ − ◦ k
?

(·)]
- [LX2, Y2]

l ◦ − ◦ L(k)
?

Y2

l

?

commutes for each pair of functions k and l. Here we need not indicate
Set since it is the only category involved. In terms of equations we must
show that (

R(l) ◦ f ◦ k
)] =

(
l ◦ f] ◦ L(k)

)
for each function

f : X1 −→ (I −→ Y1)

in the top left hand corner of the diagram. To do that the abbreviation

g = f ◦ k

will be useful.
Each side of this equation is a function that consumes a pair

(x, i) ∈ X2 × I = LX2

to return a value in Y2. We have(
R(l) ◦ f ◦ k

)](x, i) =
(
R(l) ◦ g

)
(x)(i)

= R(l)
(
g(x)

)
(i)

=
(
l ◦ g(x)

)
(i) = l

(
g(x)(i)

)
which evaluates the left hand side. We also have(

l ◦ f] ◦ L(k)
)
(x, i) =

(
l ◦ f]

)(
L(k)(x, i)

)
=
(
l ◦ f]

)(
k(x), i

)
= l
(
f]
(
k(x), i

))
= l
(
f(k(x))(i)

)
= l
(
g(x)(i)

)
which evaluates the right hand side, and verifies the equality.

The diagram for the naturality of (·)[is similar but with two arrows

� (·)[

5.3. Adjunctions uncoupled 385

pointing the other way. We have to show that

(
R(l) ◦ g[◦ k

)
=
(
l ◦ g ◦ L(k))[

for each function

g : X1 × I −→ Y1

in the top right hand corner. To prove the equality the abbreviation

f = l ◦ g

will be useful.
Each side of this equation is a 2-step function which first consumes

x ∈ X2 and then i ∈ I to return a value in Y2. We have

(
R(l) ◦ g[◦ k

)
(x)(i) = R(l)

(
g[(k(x))

)
(i)

=
(
l ◦ g[(k(x)

)
(i)

= l
(
g[(k(x)(i)

)
= l
(
g(k(x), i)

)
= f

(
k(x), i

)
which evaluates the left hand side. We also have

(
l ◦ g ◦ L(k))[(x)(i) =

(
f ◦ L(k))[(x)(i)

=
(
f ◦ L(k))(x, i)

= f
(
L(k)(x, i)

)
= f

(
k(x), i)

)
which evaluates the right hand side, and verifies the equality. �

5.3.4 At the function level the two assignment (·)] and (·)[are just the
same as those used in the Set-theoretic example of Subsection 5.2.2. The
naturality of these topological versions requires that certain squares in
Set must commute. These are just the same as the Set-theoretic squares,
and are dealt with in Solution 5.3.3. �

386 5. Adjunctions

5.4 The unit and the co-unit

5.4.1 We must show that the square commutes

εS =
(
idGS

)] (F ◦G)S
εS- S

εT =
(
idGT

)] (F ◦G)T

(F ◦G)(l)

?

εT
- T

l

?

for an arbitrary arrow l as on the right. In equational terms we must
show that

εT ◦ (F ◦G)(l) = l ◦ εS

holds. To do that we use (]) twice. We have

εT ◦ (F ◦G)(l) =
(
idGT

)] ◦ F (G(l))

= idT ◦
(
idGT

)] ◦ F (G(l))

=
(
G(idT) ◦ idGT ◦G(l)

)] = G(l)]

where the penultimate step is the first use of (]). We also have

l◦εS = l◦
(
idGS

)] = l◦
(
idGS

)]◦F (idGS) =
(
G(l)◦idGS ◦idGS

)] = G(l)]

where the penultimate step is the second use of (]). �

5.4.2 For each arrow

FA
g - S

we show that

g[= G(g)ηA

and to do that we use ([↓). Thus

G(g) ◦ η)A = G(g) ◦
(
idFA

)
[

=
(
g ◦ idFA

)
[

= g[

where the penultimate step uses ([↓). �

5.4.3 We must first show that for an arbitrary arrow

FA
g - S

5.4. The unit and co-unit 387

the second transpose g[] is just g. To do that we use an instance of the
naturality of ε• as given in Solution 5.4.1. We use the case l = g. Thus

g[
] =

(
G(g) ◦ ηA

)]
= εS ◦ F

(
G(g) ◦ ηA

)
= εS ◦

(
F ◦G

)
(g) ◦ F

(
ηA
)

= g ◦ εFA ◦ F
(
ηA
)

= g

where the penultimate step uses the naturality of ε and the ultimate
step uses one of the given conditions on η and ε.

It remains to verify ([). Using the notation of Table 5.1, a use of the
definition of (·)[gives(

l ◦ g ◦ F (k)
)
[

= G
(
l ◦ g ◦ F (k)

)
◦ ηB

= G
(
l ◦ g

)
◦
(
G ◦ F

)
(k)
)
◦ ηB = G

(
l ◦ g

)
◦ ηA ◦ k

where this last step use the naturality of η. Continuing we have(
l ◦ g ◦ F (k)

)
[

= G
(
l ◦ g

)
◦ ηA ◦ k = G(l) ◦G(g) ◦ ηA ◦ k = G(l) ◦ g[◦ k

using the definition of g[. �

5.4.4 We continue with the notation of Solutions 5.2.1, 5.2.2, and 5.3.2.

We deal with the Σ-case first. For each element of a set x ∈ X, each
element of an algebra a ∈ A, and each tag i we let

ηX(x) = (x, 0) δA(a, i) = a(i)

to obtain to function of the required type. We need to check that δA is
a morphism, that is

δA
(
(a, i)•

)
= δA(a, i)•

for each a ∈ A and tag i. But

δA
(
(a, i)•

)
= δA(a, 1− i) = a(1−i) = a(i)• = δA(a, i)•

to give the required equality.
To show that η, δ are natural we must check that a pair of squares

commute. These are induced by a function f in Set of a morphism φ in

388 5. Adjunctions

Inv , as indicated.

x - (x, 0)

X ηX - (U ◦ Σ)X

η

Y

f

?
ηY - (U ◦ Σ)Y

(U ◦ Σ)(f)

?

f(x)
?

- (f(x), 0)
?

May need to put in a table

a, i) - a(i)

(Σ ◦ U)A δA - A

δ

(Σ ◦ U)B

(Σ ◦ U)(φ)

?
δB - B

φ

?
φ(a(i))
?

(φ(a), i)
?

- φ(a)(i)

In both cases we take an arbitrary element of the top left hand corner and
track it both ways to the bottom right hand corner. The two resulting
elements must be the same. That condition for the η-square is trivial.
For the δ-square we need to recall that φ is a morphism.

Next we deal with the Π-case. For each elements of a set x, y ∈ X and
each element of an algebra a ∈ A we let

εX(x, y) = x ζA(a) = (a, a•)

to obtain to function of the required type. We need to check that ζA is
a morphism. But

ζA(a•) = (a•, a••) = (a•, a) = (a, a•)• = ζA(a)•

as required.
To show that ε, ζ are natural we must check that a pair of squares

5.4. The unit and co-unit 389

commute. These are induced by a function f in Set of a morphism φ in
Inv , as indicated.

(x, y) - x

(U ◦Π)X εX - X

ε

(U ◦ Σ)Y

(U ◦Π)(f)

?
εY - Y

f

?

(f(x), f(y))
?

- f(x)
?

May need table

a - (a, a•)

A ζA - (Π ◦ U)A

ζ

B

φ

?
ζB - (Π ◦ U)B

(Π ◦ U)(φ)

?
(φ(a), φ(a•))

?

φ(a)
?

- (φ(a), φ(a)•)

In both cases we take an arbitrary element of the top left hand corner and
track it both ways to the bottom right hand corner. The two resulting
elements must be the same. That condition for the ε-square is trivial.
For the ζ-square we need to recall that φ is a morphism. �

5.4.5 We deal first with the identities of Lemma 5.4.3.
We start with a set X, an algebra A, two functions f, g and two

morphisms ψ,ψ, as indicated,

X
f - UA ΣX

ψ - A

A
φ - ΠA UA

g - X

390 5. Adjunctions

and must show that

f] = δA ◦ Σ(f) ψ[= U(ψ) ◦ ηX
φ] = εX ◦ U(φ) g[= Π(g) ◦ ζA

hold. In other words, we must show that the following triangles commute.

ΣX
Σ(f)- (Σ ◦ U)A X

ηX- (U ◦ Σ)X

A

δA

?

f]
-

UA

U(ψ)

?

ψ[
-

UA
U(φ)- (U ◦ π)X A

ζA - (π ◦ U)A

X

εX

?

φ]
-

ΠX

Π(g)

?

g[
-

To do that we take an arbitrary element

(x, i) ∈ ΣX x ∈ X

a ∈ UA a ∈ A

for the top left hand corner, track it both ways to produce

f(x)(i) ∈ A ψ(x, i) ∈ UA

φ(a)0 ∈ X (g(a), g(a•)) ∈ ΠX

to give the required result.

Next we deal with the identities of Corollary 5.4.4. For each set X
and algebra A we must show that each of the composites

δσX ◦ Σ(ηX) U(δA) ◦ ηUA
εUA ◦ U(ζA) Π(εX) ◦ ζΠX

5.4. The unit and co-unit 391

is the identity arrow on the relevant carrier. To do that we calculate.

ΣX
Σ(ηX)- (Σ ◦ U ◦ Σ)X

δΣX- ΣX
(x, i) - (ηX(x), i) - ηX(x)(i)

UA
ηUA- (U ◦ Σ ◦ U)A

U(δ)- UA

a - (a, 0) - a(0)

UA
U(ζA)- (U ◦Π ◦ U)

εUA - UA

a - (a, a•) - a

ΠX
ζΠX- (Π ◦ U ◦Π)X

Π(εX)- ΠX
(x, y) -

(
(x, y), (y, x)

)
- (?, ?)

At the top we have ηX(x) = (x, 0) so that

ηX(x)(i) = (x, 0)(i) = (x, i)

by condidering the two cases for the tag. Next we have a(0) = a by
definition. The third composite is trivial. Finally we have

(?, ?) =
(
εX(x, y), εX(y, x)

)
= (x, y)

to complete the calculations. �

5.4.6 We use the notation of Solution 5.2.3. Thus we have

LX = X × I RY = I ⇒ Y

for sets or spaces X,Y .
For the first part we must show that for functions

X
f - RY LX

g - Y

both

f] = εY ◦ L(f) g[= R(g) ◦ ηX

hold. Thus we must evaluate the composites

LX
L(f)- (L ◦R)Y

εY- Y X
ηX- (R ◦ L)X

R(g)- RY

and remember that (·)] and (·)[merely shuffle brackets about. For
(x, i) ∈ LX we have(

εY ◦ L(f)
)
(x, i) = εY

(
L(f)(x, i)

)
= εY

(
f(x), i

)
= f(x)(i)

392 5. Adjunctions

as required. For x ∈ X we have(
R(g) ◦ ηX

)
(x) = R(g)

(
ηX(x)

)
= g ◦ ηX(x)

and then for i ∈ I we have(
R(g) ◦ ηX

)
(x)(i) =

(
g ◦ ηX(x)

)
(i) = g

(
ηX(x)(i)

)
= g(x, i)

as required.
For the second part we must show that

εLX ◦ L(ηX) = idX×I R(εY) ◦ ηRY = idI⇒Y

for arbitrary sets X and Y . For (x, i) ∈ LX we have(
εLX ◦ L(ηX)

)
(x, i) = εLX

(
L(ηX)(x, i)

)
= εLX

(
ηX(x), i

)
= ηX(x)(i) = (x, i)

as required. For each function p : I → Y we have(
R(εY) ◦ ηRY

)
(p) = R(εY)

(
ηRY (p)

)
= εY ◦

(
ηRY (p)

)
and this composite is a function I → Y . For each i ∈ Y we have(

R(εY) ◦ ηRY
)
(p)(i) = εY

(
ηRY (p)(i)

)
= εY (p, i) = p(i)

to give the required result. �

5.5 Free and co-free constructions

5.5.1 Consider any arrow

FA
g - S

of Trg . We first check that

FA
g - S

(F ◦G)S

εS

-

F (g[)
-

does commute (and then consider the required uniqueness). We use the
selection of arrows

A
g[- GS S

idS - S

GS
idGS
- GS

5.5. Free and co-free constructions 393

and then apply (]) of (Nat). Thus

εS ◦ F (g[) = idS ◦ (idGS)] ◦ F (g[) = (G(idS) ◦ idGS ◦ g[)] = (g[)] = g

as required.
For the uniqueness we consider any arrow

A
f - GS

for which

g = εS ◦ F (f)

and show that, in fact, f = g[. We use the selection of arrows

A
f - GS S

idS - S

GS
idGS
- GS

and then apply (]) of (Nat). Thus

g = εS ◦ F (f)
= (idGS)] ◦ F (f)
= idS ◦ (idGS)] ◦ F (f)
= (G(idS) ◦ idGS] ◦ f)] = f]

and hence

f = (f])[= g[

by a use of (Bij). �

5.5.2 Let us first state the result we must obtain,

Let

Src
F - Trg

be a functor, and suppose

G ε (·)[

is the data that provides a G-co-free solution. Then the object
assignment G fills out to a functor for which

F a G

with (·)[as the transposition assignment and ε as the co-unit.

394 5. Adjunctions

On several occassions we invoke the unique factorization provided by
the G-co-free property.

Our first job is to produce an arrow assignment to create the functor
G. Consider any arrow

S
l - T

of Trg . Let g be the composite

(F ◦G)S
εS- S

l - T

and consider the commuting square

(F ◦G)S
F (g[)- (F ◦G)T

S

εS
?

l
- T

εT
?

provided by the F -co-free solution. We set

G(l) = g[= (l ◦ εS)[

for each Trg -arrow l, as above. In other words, for each such arrow l we
take G(l) to be the unique Src-arrow such that

(F ◦G)S
(F ◦G)(l)- (F ◦G)T

S

εS
?

l
- T

εT
?

commutes. This uniqueness ensures that we have produced a functor G.
Consider arrows

R
k - S

l - T

5.5. Free and co-free constructions 395

of Trg . We have arranged that the following diagrams commute.

(F ◦G)R
(F ◦G)(k)- (F ◦G)S

(F ◦G)(l)- (F ◦G)T

R

εR
?

k
- S

εS
?

l
- T

εT
?

(F ◦G)R
(F ◦G)(l ◦ k) - (F ◦G)T

R

εR
?

l ◦ k
- T

εT
?

We are given that F is a functor, so that top composite is

F (G(l) ◦G(k))

and hence

G(l) ◦G(k) = G(l ◦ k)

by the given uniqueness. A similar argument shows that G preserves
identity arrows, and hence we do have a functor. Furthermore, the com-
muting square we have produced ensures that ε is natural.

We now begin to show that F a G using the given assignment (·)[.
For the time being fix A ∈ Src and S ∈ Trg , and consider the given

assignment

Src[A,GS] - Trg [FA, S]
g[� g

between the two arrow sets.We show that this is a bijection. By definition
of F -co-free, for each arrow

FA
g - S

the arrow

A
g[- GS

396 5. Adjunctions

is the unique arrow such that

FA
g - S

(5)

(F ◦G)S

εS

-

F (g[)
-

commutes. Suppose

g1
[= g2

[

for two arrows g1, g2 from Trg [FA, S]. Then

g1 = εS ◦ F (g1
[) = εS ◦ F (g2

[) = g2

to show that (·)[is injective. Consider any arrow f from Src[A,GS].
With

g = εS ◦ F (f)

we see that

FA
g - S

(F ◦G)S

εS

-

F (f) -

commutes, and hence g[= f by the uniqueness in (5). This shows that
(·)[is sujective, and hence we do have a bijection.

To show that (·)[is natural consider any square

A Src[A,GS] �
(·)[

Trg [FA, S] S

B

k

6

Src[B,GT]

G(l) ◦ − ◦ k
?

�
(·)[

Trg [FB, T]

l ◦ − ◦ F (k)
?

T

l

?

induced by a pair of arrows k and l, as indicated. We must show that
this square commutes, that is

G(l) ◦ g[◦ k =
(
l ◦ g ◦ F (k)

)
[

where g is an arbitrary arrow from the top right hand corner. Let

f = G(l) ◦ g[◦ k h = l ◦ g ◦ F (k)

5.5. Free and co-free constructions 397

so that

f = h[

is required. To verify this we show that f satisfies the unique property
of h[, namely that

FB
h - T

(F ◦G)T

εT

-

F (f) -

commutes. To verify this we use the commuting properties of two earlier
diagrams. Thus

εT ◦ F (f) = εT ◦ (F ◦G)(l) ◦ F (g[) ◦ F (k)
= l ◦ εT ◦ F (g[) ◦ F (k) = l ◦ g ◦ F (k) = h

as required.
This shows that we do have an adjunction F a G with (·)[as one of

the transpositions. It remains to show that the given ε is the co-unit of
this adjunction. We require

εS =
(
idGS

)]
or, equivalently,

(εS)[= idGS

since, by definition, (·)] is the inverse of (·)[. Since

(F ◦G)S
εS - S

(F ◦G)S

εS

-

F (idGS) -

commutes, the required equality follows by the given property of (·)[. �

5.5.3 Recall that we have

ΣX = {(x, i) | x ∈ X, i = 0, 1} ηX(x) = (x, 0)

for each set X and x ∈ X. Consider any function

X
f - A

398 5. Adjunctions

from X to an algebra A. We require a morphism

ΣX
f] - A

such that

f] ◦ ηX = f

and we must show there is only one such morphism.
Consider any x ∈ X with the two correspondeing members

(x, 0) = ηX(x) (x, 1) = ηX(x)•

of ΣX. If there is such a morphism f] then

f](x, 0) = (f] ◦ ηX)(x) = f(x)

and

f](x, 1) = f]
(
(x, 0)•

)
=
(
f](x, 0)

)• = f(x)•

where the third step uses the morphism property. This shows that there
is at most one swuch morphism f]. Exercise 5.2.2 shows that this f] is
a morphism, and we have checked that the triangle does commute. �

5.5.4 Recall that we have

ΠX = {(x, y) | x, y ∈ X} εX(x, y) = x

for each set X and x, y ∈ X. Consider any function

A
g - X

from an algebra A to X. We require a morphism

A
g[- ΠX

such that

εX ◦ g[= g

and we must show there is only one such morphism.
Consider any a ∈ A. We have

g[(a) = (x, y)

for some x, y ∈ X, and then

x = εX(x, y) = (ε ◦ g[)(a) = g(a)

5.5. Free and co-free constructions 399

to determine x. But now

(y, x) = (x, y)• = g[(a)• = g[(a•) =
(
g(a•), z

)
for some z ∈ X. The third step uses the morphism property of g[, and
the last step uses the previous observation. This gives

x = g(a) y = g(a•)

that is

g[(a) =
(
g(a), g(a•)

)
for each a ∈ A. This shows there is at most one such morphism g[.
Exercise 5.2.2 shows that this g[is a morphism, and we have checked
that the triangle does commute. �

5.5.5 We first deal with the Set example of Block 5.2.2. To do that we
gather together all the bits of gadgetry that we need.

We have a pair of functors

Set
F = −× I -

�
G = I ⇒ −

Set

although for the free case we need only the object assignment of F , and
for the co-free case we need only the object assignment of G.

For the free case the arrow assignment of G is given by composition

Z
l - Y - GZ - GY

p - l ◦ p
for functions as indicated. We also have functions

X
ηX- (G ◦ F)X = I ⇒ (X × I)

where

ηX(x)(i) = (x, i)

for each x ∈ X, i ∈ I. We do not need the naturality of this. For an
arbitrary function

X
f- (I ⇒ Y)

we must show there is a unique function

X × I
f]- Y

400 5. Adjunctions

such that

G(f]) ◦ ηX = f

holds. If there is such a function f] then for each x ∈ X, i ∈ I we have

f](x, i) = f]
(
ηX(x)(i)

)
=
(
f] ◦ ηX(x)

)
(i)

=
(
G(f])

(
ηX(x)

))
(i)

=
((
G(f]) ◦ ηX

)
(x)
)

(i) = f(x)(i)

to show there is at most one such function f]. Almost the same calcu-
lation shows that this function does make the triangle commute.

For the co-free case the arrow assignment of F is given by

Z
k - Y - FZ - FY

(z, i) - (k(z), i)

for functions k, as indicated, and z ∈ Z, i ∈ I. We also have functions

(F ◦G)Y = (I ⇒ Y)× I
εY- Y

given by evaluation, that is

εY (p, i) = p(i)

for p ∈ (I ⇒ Y), i ∈ I. We do not need the naturality of this. For an
arbitrary function

X × I
g - Y

we must show there is a unique function

X
g[- (I ⇒ Y)

εY ◦ F (g[) = g

holds. If there is such a function g[then for each x ∈ X, i ∈ I we have

g[(x)(i) = εY
(
g[(x), i

)
= εY

(
F
(
g[
)
(x, i)

)
=
(
εY ◦ F (g[)

)
(x, i) = g(x, i)

to show there is at most one such function gf lat. Almost the same cal-
culation shows that this function does make the triangle commute. �

5.6 Contravariant adjunctions 401

5.6 Contravariant adjunctions

5.6.1 (a) This functor occurred in Block 3.3.2 and the exercises there.
(b) For finite subsets a, b of A we have

〈a〉 ∩ 〈b〉 = 〈a ∪ b〉

and hence these subsets do form a base for a topology.
(c) For an arbitrary monotone function

A
f - B

between poset, the inverse image map

ΥB
φ = f←- ΥA

does send upper sections to upper section, and hence is a function of the
indicated type. To show that φ is continuous we show that the inverse
image function φ← sends basic open sets of ΥA to basic open sets of
ΥB. Consider any finite subset

a = {a1, . . . , am}

of A. Then, for each q ∈ ΥB we have

q ∈ φ←(〈a〉)⇐⇒ φ(q) ∈ 〈a〉
⇐⇒ a1, . . . , am ∈ f←(q)
⇐⇒ f(a1), . . . , f(am) ∈ q
⇐⇒ f [a] ⊆ q ⇐⇒ q ∈ 〈f [a]〉

and hence

φ←(〈a〉) = 〈f [a]〉

which is enough to show that φ is continuous.
(d) For an arbitrary poset A and space S we set up an inverse pair of

bijections

Pos[A,OS] Top[S,ΥA]
f - fσ

φα � φ

between the indicated arrow sets.
Consider any monotone function f , as indicated. Let

a ∈ fσ(s)⇐⇒ s ∈ f(a)

for each s ∈ S and a ∈ A. We first check that fσ always returns an

402 5. Adjunctions

upper section of A. Consider elements a ≤ b of A, and a point s of S.
Then, since f is monotone, we have

a ∈ fσ(s) =⇒ s ∈ f(a) ⊆ f(b) =⇒ b ∈ fσ(s)

to show that fσ(s) ∈ ΥA Now consider a finite subset

a = {a1, . . . , am}

of A. For each s ∈ S we have

s ∈ fσ←(〈a〉)⇐⇒ fσ(s) ∈ 〈a〉
⇐⇒ a ⊆ fσ(s)
⇐⇒ a1, . . . am ∈ fσ(s) ⇐⇒ s ∈ f(a1) ∩ · · · f(am)

and hence

fσ←(〈a〉) = f(a1) ∩ · · · f(am)

is open (since each f(ai) is open). Thus fσ is continuous.
This gives us an assignment in one direction. To obtain an assignment

in the other direction consider any continuous map φ, as indicated. Let

s ∈ φα(a)⇐⇒ a ∈ φ(s)

for each a ∈ A and s ∈ S. We first check that φα always returns an open
set of S. Consider element a ∈ A. Then for each s ∈ S we have

s ∈ φα(a)⇐⇒ a ∈ φ(s)
⇐⇒ {a} ⊆ φ(s)
⇐⇒ φ(s) ∈ 〈{a}〉 ⇐⇒ s ∈ φ←(〈{a}〉)

to show that φα(a) is open (since φ is continuous). Now consider elements
a ≤ b of A. For each s ∈ S we have

s ∈ φα(a) =⇒ a ∈ φ(s) =⇒ b ∈ φ(s) =⇒ s ∈ φα(b)

to show that φα is monotone.
This gives us the two assignments. We show that form an inverse pair.

Consider any monotone function f , as above. For a ∈ A, s ∈ S we have

s ∈ fσα(a)⇐⇒ a ∈ fσ(s)⇐⇒ s ∈ f(a)

to show that fσα = f for one of the inverse properties. A similar calcu-
lation shows the other inverse properties.

(e) For each element a ∈ A let

h(a) = 〈{a}〉

5.6. Contravariant adjunctions 403

that is

p ∈ h(a)⇐⇒ a ∈ p

for each p ∈ ΥA. This gives a function

h : A - O(ΥA)

and almost trivially it is monotone.
For each element s ∈ S let η(s) be the set of open sets neighbourhoods

of s, that is

U ∈ η(s)⇐⇒ s ∈ U

for each U ∈ OS. This gives a function

η : S - Υ(OS)

for almost trivially η(s) is an upper section of OS. We need to check
that η is continuous.

We show that for each basic open set of Υ(OS) the inverse image
across η is open in S. Each such basic open set has the form

〈{U1, . . . , Um}〉

for U1, . . . , Um ∈ OS. Thus

P ∈ 〈{U1, . . . , Um}〉 ⇐⇒ U1, . . . , Um ∈ P

for each upper section P of OS. For each s ∈ S we have

s ∈ η←
(
〈{U1, . . . , Um}〉

)
⇐⇒ η(s) ∈ 〈{U1, . . . , Um}〉

⇐⇒ U1, . . . , Um ∈ η(s)

⇐⇒ s ∈ U1 ∩ · · · ∩ Um

so that

η←
(
〈{U1, . . . , Um}〉

)
= U1 ∩ · · · ∩ Um

which is open in S.
(f) So far we have hardly mentioned the required functorality and

naturality conditions. That is because they are ensured by a more general
construction. Consider first the material of Subsection 3.3.2 and Exercise
3.5.2. Let 2 = {0, 1} with the sierpinski topology (that is {1} is open
but {0} is not). Let

ΞS = Top[S, 2]

404 5. Adjunctions

the set of continuous characters of S. We partially order ΞS with the
pointwise comparison. There is an obvious bijection between

OS ΞS

and Exercise 3.5.2 shows that this is natural. Thus the two functors

Top
O,Ξ- Pos

are naturally equivalent. In particular, we can replace O by the enriched
hom-functor Ξ = Top[−, 2].

Now view 2 as a poset with 0 < 1. Let

ΠA = Pos[A, 2]

the set of ‘monotone characters’ of A. There is an obvious bijection
between

ΥA ΠA

for we simply match each upper section of A with is characteristic func-
tion. We now use the sierpinski topology on 2 to furnish ΠA as a space,
the subspace of the product space. We check that the bijection above is
a homeomorphism. Thus we have two functors

Pos
Υ,Π- Top

and with a little bit of work, we see these are naturally equivalent. In
particular, we can replaceO by the enriched hom-functor Π = Pos[−, 2].

The object 2 lives in both categories. It is both a poset and a topo-
logical space. It is a schizophrenic object. Furthermore, it induces both
of the functors. With this observation we can check all the functorality
and naturality required for the contravariant adjunction. In fact, all the
calculation can be done down in Set . The details of this are given in the
next exercise. �

5.6.2 (a) Consider arrows

A
f - AS S

φ - SA

from the two arrow sets. These are functions in curried form.

f : A - S - F φ : S - A - F

By uncurrying these are essentially the same as the 2-placed functions

f : A× S - F φ : S ×A - F

5.6. Contravariant adjunctions 405

each of which consumes its inputs as a pair rather than one after the
other. We chip the order of these two inputs. Thus we say f and φ

correspond precisely when

f(a)(s) = φ(s)(a)

for each a ∈ A and s ∈ S. I bet you didn’t know that curry and chips
are part of the bread and butter of certain parts of mathematics.

(b) Consider a diagram induced by a Alg -arrow l and a Spc-arrow λ.

f � - φ

A Alg [A,AS] Spc[S,SA] S

B

l

6

Alg [B,AT]

A(λ) ◦ − ◦ l

?
Spc[T,SB]

S(l) ◦ − ◦ λ

?
T

λ

6

g � ? - ψ

Across the top we have a cooresponding pair f, φ of arrows, that is

f(a)(s) = φ(s)(a)

for each a ∈ A and s ∈ S. The functors give us a pair g, ψ of arrows at
the bottom. We must show that these correspond, that is

(?) g(b)(t) = ψ(t)(b) (?)

for each b ∈ B and t ∈ T .
We have

A(λ) = − ◦ λ S(l) = − ◦ l

since both A,S are enriched hom-functors. The two functions

g = A(λ) ◦ f ◦ l ψ = S(l) ◦ φ ◦ λ

must be matched. For each b ∈ B and t ∈ T we have

g(b) = A(λ)
(
f
(
l(b)
))

= f
(
l(b)
)
◦λ ψ(t) = S(l)

(
φ
(
λ(t)

))
= φ

(
λ(t)

)
◦l

so that

g(b)(t) = f
(
l(b)
)(
λ(t)

)
ψ(t)(b) = φ

(
λ(t)

)(
l(b)
)

406 5. Adjunctions

and hence the given correspondence between f, φ ensures the required
correspondence between g, ψ.

(c) For A ∈ Alg unit is induced by the identity arrow on SA.

A
hA- (A ◦S)A SA

idSA- S

Thus for each

p ∈ SA that is p : A - F

we have

hA(a)(p) = idSA(p)(a) = p(a)

so that hA(a) is ‘evaluation at a’. In the same way

ηS(s)(π) = π(s)

for each s ∈ S and π ∈ AS. �

6

Posets and monoid sets

6.1 Posets and complete posets

6.1.1 We show that f has a right adjoint precisely when f preserves
suprema, that is

f(
∨
X) =

∨
f [X]

for each subset X of S.
Suppose first that f a g, that is

f(a) ≤ b⇐⇒ s ≤ g(b)

for all a ∈ S and b ∈ B. Consider any subset X ⊆ S. For each b ∈ T we
have

f(
∨
X) ≤ b⇐⇒

∨
X ≤ g(b)

⇐⇒ (∀x ∈ X)[x ≤ g(b)]

⇐⇒ (∀x ∈ X)[f(x) ≤ b]⇐⇒
∨
f [X] ≤ b

to show that

f(
∨
X) =

∨
f [X]

as required.
Conversely, suppose f does preserve suprema. For each b ∈ T let

g(b) =
∨
X where x ∈ X ⇐⇒ f(x) ≤ b

to produce a function g : T - S. We easily check that g is mono-
tone, and we show that f a g as follows. Consider any b ∈ T with the
associated set X. For each a ∈ S we have

f(a) ≤ b =⇒ a ∈ X =⇒ a ≤ g(b)

408 6. Posets and monoid sets

to give one of the required implications. For the other we use the preser-
vation property of f . Thus if

a ≤ g(b) =
∨
X

then

f(a) ≤ f(
∨
X) =

∨
f [X] ≤ b

as required.
The map f has a left adjoint precisely when it preserves infima. �

6.2 Two categories of complete posets

6.2.1 When they exists we have∨
∅ = ⊥ =

∧
S

∧
∅ = > =

∨
S

respectively. �

6.2.2 Consider the following 4-element poset.
• •

• •
The set of two lower nodes has two upper bounds but no supremum. �

6.2.3 We require two implications, but by symmetry it suffices to verify
just one of them. Suppose the poset S has all suprema. We show that S
has all infima. Let X be an arbitrary subset of X. Let `(X) be the set of
all lower bounds of X. We must show that `(X) has a largest member.

Since S has all suprema we may take

a =
∨
`(X)

and show that a is the infimum of X. Consider any x ∈ X and y ∈ `(X).
We have

y ≤ x

by construction of `(X). Letting y range over `(X) we see that x is an
upper bound of `(X), and hence

a ≤ x

6.3 Sections of a poset 409

since a is the least upper bound of `(X). Letting x range over X this
shows that a ∈ `(X), as required. �

6.2.4 We use two subsets of the reals as posets. We draw these sets
pointing upwards, with larger number in higher positions. Consider the
following two posets.

S T

• 3 •

◦ 2
• 1

• 0 •

On the right we have all the real numbers from 0 to 3 including these
two end points. This poset T is complete (by the Dedekind completness
of the reals).

On the left we omit the central third, we include 1 but exclude 2. This
poset S is also complete. The only problem is to find the infimum of its
top half. That infiumum is 1, whereas the infimum of the coresponding
set in T is 2.

This observation shows that the inclusion of S into T is a
∨

-morphisms
but not a

∧
-morphism. �

6.3 Sections of a poset

6.3.1 Let X be any family of lower sections of the poset S. We show
that each of

⋃
X and

⋂
X is a lower section.

Consider any a ≤ x ∈
⋃
X . We have a ≤ x ∈ X for some X ∈ X . But

now a ∈ X ⊆
⋃
X to give a ∈

⋃
X .

Consider any a ≤ x ∈
⋂
X , and consider any X ∈ X . We have

a ≤ x ∈ X, so that a ∈ X, and hence a ∈
⋂
X .

Consider any lower section X and any x ∈ X. We have ↓ x ⊆ X, so
that ⋃

{↓ x | x ∈ X} ⊆ X

410 6. Posets and monoid sets

and the converse inclusion is immediate. �

6.3.2 For a, b in the parent poset we have

a ≤ b =⇒ a ∈ ↓b =⇒ ↓a ⊆ ↓b a ≤ b =⇒ b ∈ ↑a =⇒ ↑b ⊆ ↑a

to show that η∃ is monotone, but a - ↑a is antitone. Taking comple-
ments is antitone, so η∀ is monotone. �

6.4 The two completions

6.4.1 For the second part we have

y ∈ (↑X)′ ⇐⇒ y /∈↑ X
⇐⇒ ¬(∃x)[x ∈ X & x ≤ y]
⇐⇒ (∀x)[x ∈ X ⇒ x � y]

and
y ∈

⋂
η∀[X]⇐⇒ (∀x)[x ∈ X ⇒ y ∈ η∀(x)]

⇐⇒ (∀x)[x ∈ X ⇒ y ∈ ↑(x)′]
⇐⇒ (∀x)[x ∈ X ⇒ x � y]

for the required result. �

6.4.2 For the second part consider any Y ∈ LS and let X = Y ′ so that

↑X = Y ′

to give

Y = (↑X)′ =
⋂
η∀[X]

by Exercise 6.4.1. Thus, assuming that g, h are
∧

-morphisms, we have

g(Y) = g
(⋂

η∀[X]
)

=
∧

(g ◦ η∀)[X]

h(Y) = h
(⋂

η∀[X]
)

=
∧

(h ◦ η∀)[X]

which leads to the required result. �

6.4.3 We deal with the ∀-version, in other words we show

f]
(⋂
X
)

=
∧
f][X]

for each X ⊆ LS.

6.5 Three endofunctors on Pos 411

Remembering this definition of this f], for each t ∈ T we have

t ≤ f]
(⋂
X
)
⇐⇒ t ≤

∧
f
[(⋂

X
)′]

⇐⇒ (∀s ∈ S)
[
s ∈

(⋂
X
)′ ⇒ t ≤ f(s)

]
⇐⇒ (∀s ∈ S)

[
t � f(s)⇒ s ∈

(⋂
X
)]

⇐⇒ (∀s ∈ S)(∀X ∈ X)[t � f(s)⇒ s ∈ X]

and

t ≤
∧
f][X]⇐⇒ (∀X ∈ X)[t ≤ f](X)]

⇐⇒ (∀X ∈ X)(∀s ∈ S)[s /∈ X ⇒ t ≤ f(s)]

⇐⇒ (∀X ∈ X)(∀s ∈ S)[t � f(s)⇒ s ∈ X]

which gives the required result. �

6.5 Three endofunctors on Pos

6.5.1 In each case the ∃-version is straight forward but the ∀-version
need a little more care.

To produce the explicit description of ∀(f)(X) we remember how to
take a negation through quantifiers and connectives. We have

b ∈ ∀(f)(X)⇐⇒ b /∈ ↑f [X ′]

⇐⇒ ¬[b ∈ ↑f [X ′]]

⇐⇒ ¬(∃x ∈ S)[x ∈ X ′ & f(b) ≤ x]

⇐⇒ ¬(∃x ∈ S)[x /∈ X & f(b) ≤ x]

⇐⇒ (∀x ∈ S)[x ∈ X ⇒ f(b) ≤ x]

as required.

To show that ∀(f) is monotone consider lower sections X1 ⊆ X2 of S.
For each b ∈ ∀(f)(X1) and x ∈ S we have

f(x) ≤ b =⇒ x ∈ X1 =⇒ x ∈ X2

to verify that b ∈ ∀(f)(X2). The required implication also follows di-
rectly from the definition of ∀(f).

To show that ∀ is a functor consider any pair

R
g - S

f - T

412 6. Posets and monoid sets

of monotone maps between posets. We require

∀(f ◦ g) = ∀(f) ◦ ∀(g)

that is

∀(f ◦ g)(X) = ∀(f) ◦ ∀(g)(X)

for all X ∈ LR. Unravelling the definition we see that

↑(f ◦ g)[X ′] = ↑f [↑g[X ′]]

is required. Consider any c ∈ ↑f [↑g[X ′]]. We have

f(b) ≤ c

for some

b ∈ ↑g[X ′]

which gives

g(a) ≤ b

for some a ∈ X ′. Then

f(g(a)) ≤ f(b) ≤ c

to show that

c ∈ ∀(f ◦ g)(X)

and so otain one of the two required inclusions.
The other inclusion follows by a similar argument. �

6.5.2 A proof of the left hand equivalence is straight forward.
For the right hand equivalence consider any X ∈ LS and Y ∈ LT .

Then

Y ⊆ ∀(f)(X)⇐⇒ Y ⊆ (↑f [X ′])′

⇐⇒ ↑f [X ′] ⊆ Y ′

⇐⇒ f [X ′] ⊆ Y ′

⇐⇒ (∀x ∈ S)[x ∈ X ′ ⇒ f(x) ∈ Y ′]

⇐⇒ (∀x ∈ S)[f(x) ∈ Y ⇒ x ∈ X]

⇐⇒ (∀x ∈ S)[x ∈ f←(Y)⇒ x ∈ X]⇐⇒ f←(Y) ⊆ X

as required. �

6.6 Long strings of adjunctions 413

6.6 Long strings of adjunctions

6.6.1 There are many possible examples all with small posets. For
instance we have

∃(f)(∅) = ∅ ∀(f)(∅) =
(
↑f [S]

)′
so if ↑f [S] is not the whole of T then the two induced maps are different.
Thus

S
f - T

• - •
•

is a very small example. �

6.6.2 For Y ∈ LT and a ∈ S we have

a ∈ ∃(g)(Y)⇐⇒ (∃y ∈ T)[a ≤ g(y) & y ∈ Y]
⇐⇒ (∃y ∈ T)[f(a) ≤ y & y ∈ Y]
⇐⇒ f(a) ∈ Y ⇐⇒ a ∈ I(f)(Y)

to show ∃(g) = I(f).
For X ∈ LS and b ∈ T we have

b ∈ ∀(f)(X)⇐⇒ (∀x ∈ S)[f(x) ≤ b⇒ x ∈ X]
⇐⇒ (∀x ∈ S)[x ≤ g(b)⇒ x ∈ X]
⇐⇒ g(b) ∈ X ⇐⇒ b ∈ I(g)(X)

to show ∀(f) = I(g). �

6.6.3 You will probably find that the components are listed the other
way up with a left adjoint below its right adjoint. Show

δn+1
i+1 a σ

n+1
i a δn+1

i

and

∃(δni) = δn+1
i+1 ∀(δni) = δn+1

i

∃(δn+1
i) = δn+2

i+1 ∀(δn+1
i) = δn+2

i

for all 0 ≤ i ≤ n. This is a bit fiddly, but not difficult. �

414 6. Posets and monoid sets

6.7 Two adjunctions for R-sets

6.7.1 (a) Let R = {±1} under multiplication. For an R-set A let

a• = a(−1)

for each a ∈ A.
(b) Let R = {1, 0} under multiplication. For an R-set A let

a• = a0

for each a ∈ A.
(c) Let R = {±1,±i} under multiplication. For an R-set A let

a• = ai •a = a(−1)

for each a ∈ A.
(d) With ω3 = 1 let R = {1, ω, ω2} under multiplication. For an R-set

A let

a• = aω •a = aω2

for each a ∈ A.

Other roots of unity give many other examples of this kind. These
algebras usually need more than two carried 1-placed operations. As a
bit of entertainment look for a description using ϑ42 = 1. �

6.8 The upper left adjoint

6.8.1 We require (
(x, r)s

)
t = (x, r)(st)

for all ∈ X and r, s, t ∈ R. However, since R is associative, we see that
both sides evaluate to

(x, rst)

for the required result. �

6.8.2 For an arbitrary function

Y
g - X

we require

ΣY
Σ(g)- ΣX

6.8. The upper left adjoint 415

to be a morphism, that is

Σ(g)
(
(y, r)s

)
=
(
Σ(g)(y, r)

)
s

for each y ∈ Y and r, s ∈ R. But, remembering how ΣY and ΣX are
structured, we have

Σ(g)
(
(y, r)s

)
= Σ(g)(y, rs) =

(
g(y), rs

)
=
(
(g(y), r)

)
s =

(
Σ(g)(y, r)

)
s

as required.
We also require that the arrow assignment Σ passes across composi-

tion, that is

Σ(h ◦ g) = Σ(h) ◦ Σ(g)

for each pair

Z
g - Y

g - X

of composible sets. By evaluating at an arbitrary pair (z, r) ∈ ΣZ, we
see that this is almost immediate. �

6.8.3 Consider any morphisms

ΣX
f - A

to an arbitrary R-set. We have

(x, r) = ηX(x)r

for each (x, r) ∈ ΣX, and hence

f
(
(x, r)

)
= f

(
ηX(x)r

)
= f

(
ηX(x)

)
r =

(
f ◦ ηX

)
(x)r

since f is a morphism.
Applying this observation to a parallel pair of morphisms gives the

required result. �

6.8.4 We have seen that there is only one possible function g], that
given by

g](x, r) = g(x)r

for x ∈ X and r ∈ R. Since

(g] ◦ ηX)(x) = g]
(
ηX(x)

)
= g](x, 1) = g(x)1 = g(x)

we see that this function does make the triangle commute (in Set). Thus
it suffices to show that g] is a morphism.

416 6. Posets and monoid sets

We require

g]
(
(x, r)s

)
= g](x, r)s

for each x ∈ X and r, s ∈ R. Remembering the way ΣX is structured
we have

g]
(
(x, r)s

)
= g](x, rs) = g(x)rs =

(
g(x)r

)
s = g](x, r)s

as required. �

6.8.5 For an arbitrary function

Y
g - X

we apply Theorem 6.8.5 to the composite

Y
g - X

ηY - ΣX

to obtain Σ(g). Thus Σ(g) is the unique morphism for which the square

Y
g - X

Σ(g) =
(
ηX ◦ g

)]
ΣY

ηY
?

- ΣX

ηX
?

commutes. This is defined in equational form on the right. Evaluating
at an arbitrary (y, r) ∈ ΣY we have

Σ(g)(y, r) =
(
ηX ◦ g

)](y, r)
=
(
ηX ◦ g

)
(y)r

= ηX
(
g(y)

)
r

= (g(y), 1)r = (g(y), r)

which agrees with Definition 6.8.2. At the last step of this calculation
we remember ho ΣX is structured. �

6.8.6 As in the subsection, we must show that

ηX ◦ g = Σ(g) ◦ ηY

where

Y
g - X

6.8. The upper left adjoint 417

is an arbitrary function. To do that we evaluate both sides at an arbitrary
y ∈ Y . We have (

ηX ◦ g
)
(y) = ηX

(
g(y)

)
=
(
g(y), 1

)
and (

Σ(g) ◦ ηY
)
(y) = Σ(g)

(
ηY (y)

)
= Σ(g)

(
y, 1
)

=
(
g(y), 1

)
to give the required result. �

6.8.7 We require

εA
(
(a, r)s

)
=
(
εA(a, r)

)
s

for each a ∈ A and r, s ∈ R. But

εA
(
(a, r)s

)
= εA(a, rs) = a(rs)

(
εA(a, r)

)
s = (ar)s

so it suffices to remember that A is an R-set. �

6.8.8 As in the subsection, we must show that

εB ◦ Σ(f) = f ◦ εA

where

A
f - b

is an arbitrary morphism. To do that we evaluate both sides at an arbi-
trary (a, r) ∈ ΣA. We have(

εB ◦ Σ(f)
)
(a, r) = εB

(
Σ(f)(a, r)

)
= εB

(
f(a), r

)
= f(a)r

and

f
(
◦ εA

)
(a, r) = f

(
εA(a, r)

)
= f(ar)

so remembering that f is a morphism gives the required result. �

6.8.9 For a given morphism

ΣX
f - A

suppose there is a function

X
g - A

such that

εA ◦ Σ(g) = f

418 6. Posets and monoid sets

holds. For each (x, r) ∈ ΣX we have(
εA ◦ Σ(g)

)
(x, r) = εA

(
Σ(g)(x, r)

)
= εA

(
g(x), r

)
= g(x)r

to give

g(x)r = f(x, r)

for each such x and r. In particular, we have

g(x) = f(x, 1)

to show there is at most one such function g.
It suffices to show that this particular function does make the triangle

commute.
For this function g we have(

εA ◦ Σ(g)
)
(x, r) = g(x)r = f(x, 1)r = f(x, r)

where at the last step we remember that f is a morphism and the way
that ΣX is structured. �

6.9 The upper adjunction

6.9.1 Consider first the composite

ΣX
Σ(ηX)- (Σ ◦ U ◦ Σ)X

εΣX- ΣX

on ΣX. We must show that this is the identity function on ΣX.
For each

(x, r) ∈ ΣX

we have

Σ(ηX)(x, r) = (ηX(x), r)

where

ηX(x) = (x, 1)

by the definitions of Σ and η. Thus(
εΣX ◦ Σ(ηX)

)
(x, r) = εΣX(ηX(x), r) = ηX(x)r

by the definition of η. We now remember the action on ΣX to get(
εΣX ◦ Σ(ηX)

)
(x, r) = ηX(x)r = (x, 1)r = (x, r)

6.9. The upper adjunction 419

for the required result

Next consider the composite

UA
ηUA- (U ◦ Σ ◦ U)A

U(εA)- UA

on UA. In terms of functions he two components are

A
η - ΣA ΣA

ε - A

a - (a, 1) (a, r) - ar

so the composite is

A
η - ΣA

ε - A

a - (a, 1) - a1 = a

the identity on A, as required. �

6.9.2 For an arbitrary function

X
g - A

and x ∈ X we have(
εA ◦ Σ(g)

)
(x) = εA

(
Σ(g)(x)

)
= εA

(
g(x), r

)
= g(x)r

which agrees with the suggested g].
For an arbitrary function

X ×R
f - A

and (x, r) ∈ X ×R we have(
U(f) ◦ ηX

)
(x, r) = f

(
ηX(x, r)

)
= f(x, 1)

which agrees with the suggested f[. �

6.9.3 Remembering how ΣX is structured, we require(
g](x, r)

)
s = g]

(
(x, r)s

)
for each x ∈ X and r, s ∈ R. But(

g](x, r)
)
s =

(
g(x)r

)
s g]

(
(x, r)s

)
g](x, rs) = g(x)(rs)

so that fact that the target of g is an R-set gives the required result. �

6.9.4 For an arbitrary function

X
g - A

420 6. Posets and monoid sets

the equality

g][= g

is almost trivial.
For an arbitrary morphism

ΣX
f - A

and (x, r) ∈ ΣX we have

f[
](x, r) = f[(x)r = f(x, 1)r = f

(
(x, 1)r

)
= f(x, r)

as required. At the last two steps we remember that f is a morphism
and how ΣX is structured. �

6.9.5 For (]) we must show that(
U(l) ◦ g ◦ k

)] =
(
l ◦ g] ◦ Σ(k)

)
for each pair k, g of functions and morphism l, as indicated in the section.
To do that we evaluate both sides at an arbitrary (y, r) ∈ ΣY . Using
the definition of (·)] we have(
U(l) ◦ g ◦ k

)](y, r) =
(
l ◦ g ◦ k

)
(y)r = l

(
(g ◦ k)(y)

)
r = l

(
(g ◦ k)(y)r

)
since l is a morphism. We also have(

l ◦ g] ◦ Σ(k)
)
(y, r) =

(
l ◦ g]

)(
Σ(k)(y, r)

)
=
(
l ◦ g]

)(
k(y), r

)
= l
(
g]
(
k(y), r

))
= l
(
g
(
k(y)

)
r
)

to give the required result.
For ([) we must show(

l ◦ f[◦ k
)

=
(
l ◦ f ◦ Σ(k)

)
[

for each function k and pair f, l of morphisms, as indicated in the section.
To do that we evaluate bothy sides at an arbitrary y ∈ Y . Using the
definition of (·)[and Σ we have(

l ◦ f[◦ k
)
(y) = l

(
f[
(
k(y)

))
= l
(
f
(
k(y), 1

))
=
(
l ◦ f

)(
k(y), 1

)
and (

l ◦ f ◦ Σ(k)
)
[
(y) =

(
l ◦ f ◦ Σ(k)

)
(y, 1)

=
(
l ◦ f

)(
Σ(k)(y, 1)

)
=
(
l ◦ f

)(
k(y), 1

)

6.10 The lower right adjoint 421

to give the required result. �

6.10 The lower right adjoint

6.10.1 We require

(hr)s = hrs

for each function h : R → X and r, s ∈ R. But for each r, s, t ∈ R we
have

(hr)s(t) = hr(st) = h(r(st)) = h((rs)t) = hrs(t).

for the required result. �

6.10.2 For each pair of functions

R
h - X

g - Y

we require

Π(g)(hr) =
(
Π(g)(h)

)r
that is

g ◦ hr = (g ◦ h)r

for each r ∈ R. But for each r, s ∈ R we have

(g ◦ hr)(s) = g
(
hr(s)

)
= g
(
h(rs)

)
=
(
g ◦ h

)
(rs) = (g ◦ h)r(s)

for the required result. �

6.10.3 Remembering how ΠA is structured we require

ηA(as) = ηA(a)s

for each a ∈ A and s ∈ R. To verify this we evaluate both sides at an
arbitrary r ∈ R. Thus

ηA(as)(r) = (as)r = a(sr) = ηA(a)(sr) = ηA(a)s(r)

as required. �

6.10.4 Referring to the diagram we require

ηB ◦ f = Π(f) ◦ ηA

422 6. Posets and monoid sets

for an arbitrary morphisms f , as in the section. Thus we require

ηB
(
f(a)

)
= Π(f)

(
ηA(a)

)
for each a ∈ A. Remembering the definition of Π this is

ηB
(
f(a)

)
= f ◦ ηA(a)

so we evaluate both sides at an arbitrary r ∈ R. We have

ηB
(
f(a)

)
(r) = f(a)r

(
f ◦ ηA(a)

)
(r) = f(ηA(r)) = f(ar)

so that remembering that f is a morphism gives the required result. �

6.10.5 It suffices to show that the composite

Π(f]) ◦ ηA

is the given morphism f . To do that we first evaluate at an arbitrary
a ∈ A. This gives(

Π(f]) ◦ ηA
)
(a) = Π(f])

(
ηA(a)

)
= f] ◦ ηA(a)

by the construction of Π. This is a function R - A, so we evaluate
at an arbitrary r ∈ R to get(

Π(f]) ◦ ηA
)
(a)(r) = f]

(
ηA(a)(r)

)
= f](ar) = f(ar)(1)

by the construction of f].
We now remember that f is a morphism, and the way ΠX is struc-

tured. Thus(
Π(f]) ◦ ηA

)
(a)(r) = f(ar)(1) = f(a)r(1) = f(a)(r1) = f(a)(r)

to give the required result. �

6.10.6 Consider any morphism

A
k - ΠX

from an R-sets to a cofree R-set. Remembering how ΠX is structured
we have

k(a)(r) = k(a)(r1) = k(a)r(1) = k(ar)(1) =
(
εX ◦ k

)
(ar)

where the third equality holds since k is a morphism. �

6.10.7 We require

εY ◦Π(g) = g ◦ εX

6.11 The lower adjunction 423

for an arbitrary function

X
g - Y

between sets. To verify this we evaluate at an arbitrary function h : R→
X. Thus (

εY ◦Π(g)
)
(h) = εY

(
Π(g)(h)

)
= εY (g ◦ h)
= (g ◦ h)(1)
= g
(
h(1)

)
= g
(
εY (h)

)
=
(
g ◦ εX

)
(h)

for the required result. �

6.10.8 Consider the 2-step function g[given by

g[(a)(r) = g(ar)

for each a ∈ A and r ∈ R. We have(
εX ◦ g[

)
(a) = εX

(
g[(a)

)
= g[(a)(1) = g(a)

so the triangle does commute. It remains to show that g[is a morphism.
Remembering the way ΠX is structured, we require

g[(ar) = g[(a)r

for each a ∈ A and r ∈ R. To check this we evaluate both sides at an
arbitrary s ∈ R. Thus

g[(ar)(s) = g
(
(ar)s

)
g[(a)r(s) = g[(a)(rs) = g

(
a(rs)

)
which, since A is an R-set, gives the required result. �

6.11 The lower adjunction

6.11.1 For each a ∈ A we have(
εΠA ◦ U(ηA)

)
(a) = εΠA

(
ηA(a)

)
= ηA(a)(1) = a1 = a

to verify the left hand equality.
For each function h : R→ X we have(

Π(εX) ◦ ηΠX

)
(h) = Π(εX)

(
ηΠX(h)

)
= εX ◦ ηΠX(h)

424 6. Posets and monoid sets

and we must show that this is just the function h. To do that we evaluate
at an arbitrary r ∈ R. Thus(

Π(εX) ◦ ηΠX

)
(h)(r) = εX

(
ηΠX(h)(r)

)
= εX

(
hr
)

= hr(1) = h(r)

to give the required result. �

6.11.2 For the left hand equality we evaluate the compound

A
f - ΠX

εX - X

at an arbitrary a ∈ A. Thus(
εX ◦ f

)
(a) = εX

(
f(a)

)
= f(a)(1)

as required.
For the right hand equality we first observe that the compound

A
ηA- (Π ◦ U)A

Π(g)- ΠX

is a 2-step function

A - R - X

so we evaluate first at a ∈ A and then at r ∈ R. Thus we obtain(
Π(g) ◦ ηA

)
(a) = Π(g)

(
ηA(a)

)
= g ◦ ηA)(a)

followed by (
Π(g) ◦ ηA

)
(a)(r) = g

(
ηA(a)(r)

)
= g(ar)

for the required result. �

6.11.3 For each morphism

A
f - ΠX

we require

f][= f

that is

f][(a)(r) = f(a)(r)

for each a ∈ A and r ∈ R. But we have

f][(a)(r) = f](ar) = f(ar)(1) = f(a)r(1) = f(a)(r1) = f(a)(r)

6.11. The lower adjunction 425

as required. At the final couple of steps we remember that f is a mor-
phism and how ΠX is structured.

For each function

A
g - X

we require

g[
] = g

that is

g[
](a) = g(a)

for each a ∈ A. But we have

g[
](a) = g[(a)(1) = g(a1) = g(a)

as required. �

6.11.4 For the given function g we require

g[(ar) = g[(a)r

for each a ∈ A and r ∈ R. To verify this we evaluate both sides at an
arbitrary s ∈ R. Thus

g[(ar)(s) = g
(
(ar)s

)
g[(a)r(s) = g[(a)(rs) = g

(
a(rs)

)
to give the required result. �

6.11.5 To prove (
Π(l) ◦ f ◦ k

)] =
(
l ◦ f] ◦ U(k)

)
it is convenient to set

m = (f ◦ k)

so that m is a morphism. For each b ∈ B we have(
Π(l) ◦ f ◦ k

)](b) =
(
Π(l) ◦m

)](b) (
l ◦ f] ◦ U(k)

)
(b) = l

(
f]
(
k(b)

))
=
(
Π(l) ◦m

)
(b)(1) = l

(
f
(
k(b)

)
(1)
)

= Π(l)
(
m(b)

)
(1) = l

(
m(b)(1)

)
=
(
l ◦m(b)

)
(1) =

(
l ◦m(b)

)
(1)

to give the required result.

426 6. Posets and monoid sets

To prove

Π(l) ◦ g[◦ k =
(
l ◦ g ◦ U(k)

)
[

it is convenient to set

n = (l ◦ g)

so that n is a mere function. For each b ∈ B we have(
Π(l) ◦ g[◦ k

)
(b) = Π(l)

(
g[
(
k(b)

))
= l ◦

(
g[
(
k(b)

))
and hence for each r ∈ R we have(

Π(l) ◦ g[◦ k
)
(b)(r) =

(
l ◦
(
g[
(
k(b)

)))
(r)

= l
(
g[
(
k(b)

)
(r)
)

= l
(
g
(
k(b)r

))
= n

(
k(b)r

)
to evaluate the left hand side. In a similar way, for the right hand side
we have (

l ◦ g ◦ U(k)
)
[
(b)(r) =

(
n ◦ k

)
(br) = n

(
k(br)

)
which, since k is a morphism, gives the required result. �

