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PREFACE

The present monograph is concerned with the relationship be-
tween the obtained test score and the underlying trait or ability
involved in taking the test. It is shown that this relationship is a
function of the difficulties and intercorrelations of the items of
which the test is composed; the relationship is not a simple one.
The resultant theory of mental test scores is more appropriate and
more powerful in the area for which it is intended than is a direct
application of the classical theory of errors, starting with the
broad assumption that test score and ‘‘true score’’ differ by nor-
mally distributed, independent errors of measurement. The pres-
ent theory of test scores starts with assumptions designed to fit
certain testing situations, and proceeds to investigate the shapes
of the frequency distributions of test scores, of true scores, and
of errors of measurement, and further, the relation of these vari-
ables to the ‘‘ability’’ involved in taking the test. The conclusions
reached do not in general contradict the basic formulas already
firmly established in mental test theory, such as the Spearman-
Brown formula and the formula for correction for attenuation.
A number of new conclusions are reached, however. Some of them
are at variance with certain commonly held conceptions; for ex-
ample, it is found that the regression of test score and of true
score on ‘‘ability’’ is in general necessarily curvilinear and that
the errors of measurement have a binomial distribution that is not
independent of true score.

The theory presented here is directly applicable only to tests
composed of free-response items. The theoretical extension to
cover items that may be answered correctly by guessing is straight-
forward mathematically but seems to require assumptions that
may be poorly fulfilled in actual practice. A number of conclusions
of general validity nevertheless can be reached. For the sake of
brevity and clarity, this extension is not presented here, but the
broad outlines of such an extension will suggest themselves to the
reader.

The main function of the present monograph is to outline the
framework of a logical structure (mathematical model) that, it is
hoped, will serve as a basis for further development of our under-
standing of test scores and their relation to the trait to be meas-
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ured. It is believed that the test technician will see much here that
is relevant to the practical problems of selecting the items for
building a test to be used for a specific purpose. In particular,
he should find of interest the discussion on the discriminating
power of the test at various ability levels, although much more
remains to be done on this important problem. After the test has
been built and administered, much will also be found in the present
theory that is relevant to the interpretation of the scores actually
obtained. :

It will be helpful if the reader has some familiarity w1th inte-
gral caleulus and with the mathematics of frequency distributions.
The latter subject is covered by many texts, such as that by S. S.
Wilks, to which specific reference will be made, or such as the
recent ‘‘Introduction to the Theory of Statisties’” by A. M. Mood
(McGraw-Hill, 1950).

The present monograph, except for numerous revisions of a
fairly superficial nature, was presented as a doctoral dissertation
at Princeton University in March, 1951. The writer wishes to
express to his adviser, Professor Harold Gulliksen, and to Pro-
fessor Ledyard R. Tucker his great appreciation for their inter-
~ est, advice, and criticism. Several of the developments presented
here have arisen from Professor Tucker’s suggestions. Thanks
are also due to Professor John Tukey for h1s suggestions on a
recent draft of the manuscript.

The raw data used as a basis for empirical verlﬁcatlon of the
theoretical results were kindly loaned by Dr. Liynnette B. Plumlee,
who had painstakingly gathered them for other research purposes.
Acknowledgment is due Dr. Dorothy C. Adkins for her valuable
editorial work; also to Mrs. Ruth Blackman, Miss Henrietta Gal-
lagher, Miss Lorraine Luther, Miss Braxton Preston, and Mrs.
Mary Evelyn Runyon of the Educational Testing Service for their
excellent work in connectlon with the computing, typmg, and
proofreading. ‘ ‘

Support for a large part of this work was provided by the
Educational Testing Service. Special thanks are due Dr. Henry
Chauncey for his generous interest. :

'FRE_DERIC M. Lorp
February, 1952 '
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PART 1
INTRODUCTION

A mental trait of an examinee is commonly measured in terms
of a test score that is a function of the examinee’s responses to a
group of test items. For convenience we shall speak here of the
“‘ability’’ measured by the test, although our conclusions will apply
to many tests that measure mental traits other than those properly
spoken of as ‘‘abilities.”’

The ability itself is not a directly observable variable; hence
its magnitude, in terms of whatever metric may be chosen, can
only be inferred from the examinee’s responses to the test items.
The test score most commonly used as a measure of ability is the
sum of the item scores when each response is scored 0 or 1. The
metric provided by such a score has the serious disadvantage that
it is largely a function of the particular characteristics of the items
that happen to compose the particular test administered. An illus-
tration of this statement is the fact that two tests of the same
ability administered to the same group of examinees may yield two
score distributions of entirely different shapes. If one of these
distributions were skewed positively and the other negatively, for
example, one might be tempted to conclude that the group was com-
posed predominantly of incompetent individuals in the former
case or of highly competent ones in the latter. As shown by this
illustration, it is not possible to consider the test score as simply
“‘ability’’ plus or minus an independent, normally distributed error
of measurement.

It would be desirable to define as a measure of ability some
function of the item scores that will remain invariant for any
examinee, even though the items composing the test are changed.
Because of the inevitable presence of errors of measurement, it is
of course impossible to determine with complete precision such
an invariant measure of ability for a given examinee from data
on a finite number of test items. In spite of this indeterminacy, it
is nevertheless possible under certain conditions to define a metric
for ability such that the frequency distribution of ability in the
group tested will remain the same even though the composition of

1



2 A THEORY OF TEST SCORES

the test is changed. Furthermore, the bivariate frequency distri-
bution of test score and ability will then be completely determined
as a function of the usual item statisties. If this invariant metrie
is accepted as a useful metric for describing the underlying ability
measured and if in any given case the actual data are found upon
examination to meet the necessary theoretical conditions, the result
is that all the properties of the test scorein relation to the under-
lying ability will thus have been expressed as functions of the
‘usual item statistics.. ‘

~ In this way answers to such questlons as the followmg can be
attempted: Under what circumstances, -if any, can platykurtie,
‘rectangular, or U- shaped distributions of test scores be expected?
Do equal units of test score correspond to equal units of ability, as
here defined? Does the standard error of measurement vary with
the ability level of the examinees tested and, if so, in what fashion?
‘How much do examinees having a given test score vary in ab111ty?
What is the discriminating power of the test for examinees at
various specified ability levels? How does the possibility of guess-
ing the correct answers to the test items affect the properties of
the. test score? In general, how do changes in item difficulty or
item intercorrelation affect the answers to these questions, and
Jhow can the items that compose the test be selected in such a way
as to achieve any desired result?

- The present monograph attempts to develop a theory of test
scores that will throw light on these and other questions. The corre-
spondence of certain of the theoretical results with observed results
on actual test data is checked in an empirical study reported in
Part ITT.

' Lawley (20, 21) has published a number of 1mportant theo-
retical developments, similar to certain of those to be given here,
for the special case where (1) certain item difficulty indices have
.a.normal frequency distribution for the items composing the test,
(2) the item intercorrelations are all equal, and (3) the items
cannot be answered correctly by guessing. Lawley (and also the
present writer) assumes the probability that an examinee will
answer an item correctly to be a normal-ogive function of the exam-
inee’s ability (see Xquation 2). More recently, Carroll (2) has
offered a similar theoretical development based on the. less usual
‘assumption that this probabﬂlty is a linear function of ability
within certain limits and is equal to 0 or 1 outside these limits.
‘Carroll requires that.all items have the same correlation with the
trait measured, but he does not restrict the distribution of item
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difficulties, nor does he rule out the case where the items can be
answered correctly by guessing.

The normal-ogive assumption that will be used here previously
has been applied with considerable. success by Tucker in a theo-
retical study (36) of the effect on test validity of changes in the
intercorrelation of the items, and in a second study (37) to predict
how different groups of examinees will perform on an item. Brog-
den (1) has made similar assumptions in a theoretical and numeri-
‘cal study of the relation of item intercorrelation and of item
difficulty distribution to test validity and reliability.* Cronbach and
Warrington (4) have recently made use of similar assumptions to
infer- valuable generalizations about the-diseriminating power of
‘certain.multiple-choice tests at various levels of test score:

* The gsame assumptions are used in Lord, F. M. The relation of the rehabmty of
multlple ChOICe tests to the distribution of 1tem dlfﬁcultles Psychometrika, 1952 17



PART II

THEORETICAL TREATMENT
A. RESTRICTIONS, ASSUMPTIONS, AND DEFINITIONS

Al. Restrictions on the Scoring Method

Consideration will be restricted to the situation where the
examinee attempts every item in the test and the responses are all
scored either O or 1. Let o; (¢ =1, 2, ..., n) represent the score
assigned to item ; so z; is a dichotomous variable that can assume
only the values 1 or 0. It will be convenient to use the language
of achievement testing and to speak of these alternatives as
corresponding to ‘‘correct’” and ‘‘incorrect’’ item responses,
respectively.

Consideration will be restricted further to the case where the
test score (s) is the sum of the scores on the » items of which the
test is composed:

s = Sz, (1)

Here and elsewhere all summations are over the item subseripts
,7(=1,2, . . ., n) unless otherwise specified. (A summary of
the notation is provided in the Appendix for easy reference.)

A2. Definition of ‘“ Ability’’

For present purposes, any useful definition of the underlying
ability measured by the test must be in terms of observable vari-
ables. Since, in the final analysis, the only observable variables
under consideration are the item responses, any operational defi-
nition of ability, for present purposes, must consist of a statement
of a relationship between ability and item responses.

The relationship to be used here for this purpose may be stated
as follows: the probability that an examinee will answer an item
correctly is a normal-ogive function of his ability. Denoting this

probability for the i-th item by P,, this relationship may be stated
more explicitly:

4



THEORETICAL TREATMENT 5

¢ — ai
bs

P4=/N(y)d@, (2)

— 0

where ¢ is the measure of ability, a; and b, are values characteriz-
ing the item, y is simply a variable of integration, and N(y) is the
normal frequency function,

N 1 et ol
= — 2
(y) NG e 2, (8)
The notation 4(y,) will be used to indicate the area of the
standardized normal curve lying above the given point, y,. Thus,
because of the symmetry of the normal curve, we may write

Pi=A (17;—“) . 4)

When P, is plotted as a function of ¢, we obtain the curve that
Tucker has called the item characteristic curve, and that Lazars-
feld (22) and others have called the trace line of the item.

The relationship expressed by (2) has been widely used in
psychophysics in other connections and in recent years has been
used to represent the probability of answering a test item correctly
by Guilford (11), Richardson (32), Mosier (26,27), Ferguson (7),
Lawley (20, 21), Lorr (24), Tucker (36), Cronbach and Warring-
ton (4), and others. This relationship, indeed, is implicitly as-
sumed whenever a tetrachoric correlation is calculated between
a test item and a dichotomized, normally distributed measure of
ability.

It should be noted that the relationship given by (2) is reason-
able only in the case of free-response items that cannot be answered
correctly by guessing. An item requiring the examinee to add a
column of figures, for example, would probably meet these require-
ments. If the examinee is not able to add correctly, guessing will
be of little help to him in obtaining the correct sum. The present
theory may be amplified to cover multiple-choice items, but this
extension will not be treated here.

In order to use Equation (2), the values of a; and b, for each
item must first be determined. If no further assumptions are made,
this presumably could be achieved approximately, in actual prac-
tice, by the following approach, suggested by Tucker: (1) Start
with a test consisting of a very large number of items all sup-
posedly measuring the same ability, ¢. (2) Obtain the test score
of each individual in a very large group of examinees. (3) Assume
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that this score is highly related to ¢ (not necessarily linearly), so
that examinees having identical scores may be treated for practical
purposes as having identical values of ¢. (4) Record for each item
the percentage of examinees at each given score level who answer
the item correctly; these percentages may conveniently be consid-
ered as plotted as a function of the score, thus constituting the
item characteristic curve. (5) If possible, transform the score
scale until all the item characteristic curves are normal ogives, to
a close approximation. (6) Determine the values of a; and b; by
standard methods of probit analysis [Guilford, 11, 173; also Fin-
ney (9), who presents maximum-likelihood methods for dealing
with a variety of problems in this area]. If step 5 is possible, then
this procedure will define a measure of ability for our present
purpose; if step 5 is impossible, the theory outlined in the present
paper will be inapplicable.

Further attention will be given to the item charaecteristic curve
in the next section, after a further restriction on the data to be
considered has been discussed.

A3. Restriction on the Population of Examinees

First let us limit consideration to a sample of examinees so
large that sampling problems need not enter into the discussion.
Such problems, while of practical importance, would unnecessarily
complicate the theoretical picture.

If ability has been empirically defined for any given set of data
by the six steps outlined in the preceding section, the frequency
distribution of ability in the group tested will have been deter-
mined by this procedure. If a mathematical frequency curve can
be fitted to this distribution, it is possible to go ahead with the
theoretical development along the lines to be presented. For many
developments, it will be more profitable, however, to restrict atten-
tion to the case where ability is normally distributed in the group
of examinees tested. A normal distribution of ability will be as-
sumed when not otherwise specified. Many of the formulas to be
obtained, however, will nevertheless be valid for the general case
when no restriction is placed on the distribution of ability in the
group tested; attention will be called to the generality of these
formulas when they are presented.

In any case, the scale of measurement for ability may be chosen,
without loss of generality, so that the mean (M) and standard
deviation (o) of ¢ are, respectively, 0 and 1:

M,=00,=1 (5)
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The assumption of a normal distribution of ability in the group
tested will simplify the determination of the values of @; and b; for
each item. Tucker (36, Equations 10 and 14) has given the for-
mulas necessary for expressing a; and b; in terms of the item dif-
ficulty, p; (percentage of correct answers in the total group of
examinees) and of the biserial correlation, R, between item re-
sponse and ability. In our notation, his results are

1
V1+b;
pi = A(hi), (7)
where h; = a;R..
100
<
£ .75-
c
<
S 50
[+
‘e
2>
= .25
o)
o
<
3
a.
-00 L T T T T
-3 -2 =i (o] i 2 3
Ability (c)
Item Characteristic Curve When ki = — 562 and B¢+ = .531
FIGURE 1

It Will be assumed henceforth, unless otherwise specified, that
RZ < 1. We may then write

K:= V1—R2 (8)
g = h,]{iR,C . (9)
Let us use (6) and (7) to eliminate @; and b; from the equation for
the item characteristic curve (4) so as to obtain the follow-
ing formula, which will be most convenient for our further
development :

. P; = A(g). (10)

It should be borne in mind that both ¢, and P; are functions of c.
Figure 1 is presented to provide an illustration of an item
characteristic curve. The curve, calculated from (10), represents
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an item for which #; = —.562 and R; = .531 (item 44 of Part III).
The curve is asymptotic to P, =0 and P, = 1.

The numerical values of item characteristic curves may be
determined approximately in practice from appropriate empirical
data without the use of probit analysis methods. The actual nu-
merical value of %; can readily be obtained for any given set of
data from the item difficulty, by means of (7). An approximation
to the value of R; perhaps can be obtained from the biserial corre-
lation of the item with score on a very long test of the ability
under consideration, after this biserial correlation has been cor-
rected for attenuation due to the unreliability of the test. A more
accurate method of determining R; will be discussed in the follow-
ing section.

A4. Restriction on the Nature of the Test

In order to utilize the item characteristic curve for much fur-
ther development, it is necessary to make some assumption con-
cerning the probability that an examinee at a given level of ability
will answer both of two items correctly. Here consideration will
be limited to tests composed of items such that the ability under-
lying the test is the only common factor in the matrix of tetrachoric
item intercorrelations [see Wherry and Gaylord (38) for a dis-
cussion of the reasonableness of such a restriction]. From this
restriction it follows that, for fixed ¢, P; is independent of P,,
where ¢ and j represent any two different test items.

Since ¢ is the common factor in the matrix of tetrachoric item
intercorrelations, we see that R? is the communality of the i-th
item in this matrix. The numerical values of R; may therefore be
determined directly from this matrix by factor analysis methods.

Ab. Alternative Assumptions and Restriclions

Before proceeding with our development, it will be of interest
to point out, as Brogden (1, 202, footnote) has done, that there
is another, mathematically equivalent set of assumptions that
might well be used instead of those outlined in the three preceding
sections. Just as the response data on two items may be repre-
sented by a 2 X 2 table, such as is used in calculating tetrachoric
correlations, so may the response data on # items be represented
bya2x2 X ...X2table in #» dimensions containing 2" cells. The
equivalent set of assumptions is as follows:

(a) The 2" frequencies in the multivariate distribution of the
item responses are such as could have arisen by the
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dichotomization of each of the variables in a normal multi-
variate population.

(b) The correlations between the variables in the normal
multivariate population have only one common factor.

It is worth pointing out that it is possible (although excessively
difficult in practice) to test whether or not any given set of data
conforms to these two requirements. The first of these two require-
ments cannot be contradicted by the data unless » = 3, the second
unless »n = 4.

B. THE BIVARIATE DISTRIBUTION OF TEST
SCORE AND ABILITY

Bl. The Frequency Distribution of Scores for Examinees at a
Gwen Level of Ability

Since ¢ is the only common factor of the tetrachoric item inter-
correlations, it follows, as already has been pointed out, that P;
and P; (14 4) are independent when ¢ is fixed. It is thus seen,
for example, that the probability of success on both items ¢ and j
is P,P;; that the probability of success on one and failure on one
is P,Q; + Q.P,, where ;=1 — P,; and finally that the probabil-
ity of failure on both items is @,@; Generalizing this result to »
items, we find that the probability of success on s items out of =,
for examinees at a given level of ability, is given by the sum of
the appropriate terms in the expansion of the product

TH(Q:+ P). (11)

(It must be borne in mind here that P; and @, are functions of ¢, as
shown by Equations 10 and 9.) Since the score is the number of
items answered correctly, the terms of the expansmn of (11)
represent the distribution of test scores (s) at a given level of
ability. If we denote this conditional distribution of s by f,., we
obtain by expanding (11) the result that

fs.c = z%ns'PiHn—sQi (S = 07 17 LR n)’ (12)
where ILP, is the product of the values of P; for any s values of 4,
I,_,Q: is the product of the values of @, for the remaining #n — s

values of 4, and =* is the sum of the (”) = ___n[___ such’
: : : S sl(n—38)!
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possible products. If all items are equivalent, so that all P; are
equal, (11) reduces to the familiar binomial expression, and (12)
becomes, upon dropping subscripts,

o (:‘ )PSQ"—S. (13)

The conditional distribution of s for fixed ¢ is not dependent
in any way on the distribution of ability in the particular group
of examinees that happen to be under consideration. Equations
(11), (12), and (13) will remain valid whether or not the distri-
bution of ¢ is normal in the group tested. If ¢ is not normally
distributed, however, the values of R, necessary for computing
P; and @; must be obtained by the method of Section A2, not by
the method of Section A3 or of Section A4.

B2. The Bwariate Frequency Distribution of Test Score
and Ability

‘We are now in a position to achieve a fundamental objective—
to find the bivariate frequency distribution of test score and ability.
The desired distribution will of course be (39, 17) the product of
the conditional distribution of (12) and the marginal distribution
of ¢:

fes = N(e)fso (s=0,1,...,n), (14)

where f,. is the expression given in (12). It should be noted that,
for given values of ¢ and s, f,, is a function only of the item diffi-
culties and the tetrachoric item intercorrelations, and hence the
values of f,; can be calculated from actual item analysis data.

If for a moment the requirement that the distribution of ¢ shall
be normal in the group of examinees under consideration be
dropped and the distribution be allowed to take any arbitrary
form, f,, the same line of argument that already has been used
leads to a general formula for the bivariate distribution of ability
and test score, as follows:

foo = fS*ILPIL Qs (s = 0,1,...,n). (15)

The values of R, necessary for computing the expression under
the summation sign in (15) must be obtained by the method of
Section A2 when f, is not normal.

The reader may wish to refer at this point to Tables 7, 8, and
9, at the end of this monograph, which provide numerical examples
of the bivariate distribution of test score and ability.
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B3. The Regression of Test Score on Ability

Since the probability that an examinee at a given level of ability
will answer a certain item correctly is denoted by P;, his expected
number of correct answers on an n-item test is £P,. In other terms,
the average score of examinees at a given level of ability is

M,. = 3P, (16)

Equation (16) is the usual expression for the mean of the distri-
bution given by (12) (17, Vol. I, 122). Since P; is a function of ¢,
(16) is the equation for the regression of test score on ability.
Like the conditional distribution of s in (12), the equation for
the regression curve is valid even if ¢ is not normally distributed
in the group of examinees tested.

Figure 2 may be referred to at this point as providing illus-
trative examples of the regression of test score on ability for four
hypothetical tests. The curvilinearity of this regression has been
deduced previously by Brogden (1, 207).

Obviously the regression curve must be the sum of the » item
characteristic curves—in this case, of # normal ogives. If all the
items have equal difficulties and equal intercorrelations, we have,
dropping the subscript ¢, M,, = nP, and the regression curve is
directly proportional to the item charaecteristic curve, as repre-
sented by P.

The slope of the item charaecteristic curve, and hence of the
regression curve, is always positive, but the curves are practically
horizontal for extreme values of ¢. If an item is sufficiently highly
correlated with ability, however, the item characteristic curve
will be practically vertical in some part of the range. This state-
ment remains true no matter how ability is defined or what metric
is used to measure it, and no matter what general form is assumed
for the item characteristic curve. Since the regression curve must
be the sum of the item characteristic curves, it is seen that the
regression is inevitably curvilinear and, in particular, that it will
be very strongly curved if the items are all of equal difficulty and
have sufficiently high intercorrelations.

~ Any given group of examinees may, to be sure, have a limited
range of ability within which the regression might appear to be
approximately rectilinear. A derivation indicating the extent to
which the regression curve will appear to be rectilinear in any
given group of examinees will be presented in Section BS.
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B4. The Regression of Ability on Test Score

The other regression curve—the regression of ability on test
score—can be written down in the form of a definite integral if

e
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Test 1: All items of 50% difficulty; all Test 2: All items of 509 difficulty; all
item tetrachoric intercorrelations = .06; item tetrachoric intercorrelations = .20;
test reliability = .80. test reliability = .94.
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-3 .2 a1 0 1 2 3 -3 -2 -1 0 1 2 3
Criterion Ability Score Criterion Ability Score

Test 3: All items of 14% difficulty; all Test 4: Item difficulties rectangularly

_item tetrachoric intercorrelations =.20; distributed; all item tetrachorie inter-
test reliability = .91. correlations = ,20 (reliability mnot
. computed).

Discrimination Index (---) and Standard Error of Measurement (.....) at Various
Levels of Ability, and also Regression of Test Score on Ability ( ), for Four
Hypothetical 100-Item Tests

FIGURE 2

desired. The integration cannot in general be carried out, how-
ever, and the integral itself is not readily manipulable.

It will be seen in the following section that as the number of-

items-in the test is increased without limit, the scatter of the cases
about the regression of test score on ability will vanish. As the

LN
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number of items is increased, therefore, the regression of ability
on test score will approach the regression of test score on ability
as a limit. Since the shape of the latter regression does not change
if the number of items is increased without change in their average
characteristics, it follows that the regression of ability on test
score has an ogive shape, at least whenever the test contains a
large number of items.

As an approximation to the regression of ability on test score
for the particular case where all items are equivalent, one might
possibly use the modal value of ¢ for fixed s, as found by taking
the partial derivative of f,, with respect to ¢ and setting the result
equal to zero. Now,

oP; R;

Dropping subscripts, it is found from (14), (13), and (17),

af“ n 8 — N—8— E —_ —
W=<3)P 1Q 1N(c)[K(s nP)N (g) cPQjI. (18)
Setting this derivative equal to zero, we see that the modal value
of ¢ for fixed s is the value of ¢ that satisfies the equation

KcPQ = R(s — nP)N(g). (19)

This equation may be solved by successive approximation methods.
It may be noted that the solution constitutes a maximum likelihood
estimate of an examinee’s ability score (¢) from his obtained test
score (s) when it is given that ¢ is normally distributed in the
group tested.

B5. The Standard Error of Measurement at a Specified
Ability Level

The standard error of measurement for examinees at a specified
level of ability is the standard deviation of f,,, which can be shown
to be (17, Vol. 1, 122)

Osc = VZEPiQ; = \/'n'(MPMQ - O'Pz): (20)

where
1 1
Mp=- 3P, Mq=--30, - (21)

ERY

and :
o = _i. SPE—-Mp2 . . (22)
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As in the case of the regression equation, the formulas for the
standard error of measurement at any given ability level remain
valid irrespective of the frequency distribution of ability in the
group tested.

It may be seen from (20) that the standard error of measure-
ment will be practically zero for extreme positive or negative
values of ¢. This conclusion fits in with the fact that, for any
given test, at least in theory, and usunally in practice, there always
exist individuals whose ability is so low that the test would not
be discriminating for them, and other individuals whose ability is
so high that the test would likewise not be discriminating for them.
These are the examinees who are practically sure to get zero scores
on the one hand, or perfect scores on the other. Obviously, the
standard error of the test scores is practically zero for such
examinees. Furthermore, this conclusion would necessarily be
reached irrespective of any assumptions that may have been made
in the present monograph.

It is thus seen that the standard error of measurement of the
test scores is necessarily smallest for those examinees for whom
the test is least discriminating. Although the average of the
standard errors of measurement, over all ability levels in the
group of examinees tested, may be a useful measure of the dis-
criminating power of the test for the group as a whole, the stand-
ard error of measurement corresponding to a given ability level
1s thus seen to be very far from a suitable measure of the discrim-
inating power of the test for examinees at or near this ability level.
An appropriate index of discriminating power for this purpose
will be developed in Section C.

Let us consider for a moment the ‘‘relative score’’ or propor-
tion of correct answers, which will be denoted by 2, where

2 =

S
—. (23)
When % becomes infinite, the relative score (2) becomes the ‘‘rela-
tive true score’’ which will be denoted by ¢, i.e.,

. N S
b= me=lme &)
The true score for a given test is usually defined as the average
score that would be obtained on an infinite number of ‘‘equivalent”’
forms of the test. The same definition (in terms of relative scores)
must be used here if it is desired to consider £ not merely as the
relative score on an infinitely long test, but more specifically as
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the relative true score corresponding to the actual relative score
obtained on a specified test of finite length.

Sinee the standard deviation of z will be 1/n times the standard
deviation of s, we see from (20) that the standard error of meas-
urement for relative score at a given level of ability is

0n = 1/ _:; (MpMo — 6°). (25)

Letting » = « in (25), it is seen that o, , = 0. This result has been
pointed out by Brogden (1) and others. Thus the important con-
clusion is reached that true score and ability have a perfect cur-
vilinear correlation. If the scale of measurement for the true scores
is transformed so as to give the distribution of the transformed
true scores the same shape as the distribution of ¢, then the trans-
formed true scores will be identical with ¢. In particular, if ¢ is
normally distributed in the group tested, the value of ¢ for each
examinee will be identically equal to his normalized true score.
Although in practice the examinee’s true score is not available for
this purpose, the actual test score may be substituted for the true
score if the number of items is sufficiently large.

We are now in a position to see that ¢ provides a scale of
measurement for the underlying ability that may be considered
to be invariant for any given group of examinees even though the
difficulties and intercorrelations of the items in the tests adminis-
tered to the group are changed, provided the common factor of the
item intercorrelations remains the same. This invariance of ¢ is
seen in the fact that, except for errors of measurement, the same
value of ¢ will be obtained for each examinee in a given group of
examinees, irrespective of the difficulties and intercorrelations of
the test items and irrespective of the corresponding differences in
the shapes of the test score distributions, provided always that
all tests are measures of the same underlying ability.

Since true score and ability have a perfect curvilinear corre-
lation, it follows that the standard error of measurement at a given

ability level is the same as the standard error of measurement
at a giwen true score level:

Os.c = UOs.t. (26)

The standard deviation of ¢ (o,,) for individuals having a given
test score can be expressed in terms of definite integrals derived
from (14). The resulting expressions have so far been too intract-
able to be of interest here, however. The standard error of meas-
urement for examinees at a specified level of actual test score,
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which recently has been investigated by Mollenkopf (25,13, 115-
126), is a still different statistic and should not be confused with
0.5y 00y OT 0., as discussed here.

B6. The Product-Moment Correlation Between Test Score
and Ability

The product-moment correlation between test score and ability
may be obtained from Equation (14) by the usual method of inte-
gration. The same result is commonly obtained much more easily,
however, from the usual formula for the correlation between sums.
The result is:
20’{7’1;0 . (27)

Tes = Te(Zz) = -
s

Here o;, the standard deviation of z;, may be calculated from the
item difficulties by the usual formula:

o= Vi ; ()
7:, the product-moment or point-biserial (16, 18) correlation be-
tween ¢ and z;, may be calculated from the biserial correlation R,
by means of the usual equation relating biserial and point-biserial
correlation coefficients:

Nh) g . . ' (29).
V Pigi .

and o,, the standard deviation of the test score, may be calculated
from the usual formula for the standard deviation of sums,

s = 0Oy = TJ . 30
(o] Oss, 4/ , iao,/r,j (30)

where 7 is the product-moment (fourfold-point) correlation be-
tween x; and z;. If 7 = 4, r;;is here taken to be 1; otherwise the value
of r; may be calculated from the usual fourfold table or from r,/,
the tetrachoric correlation between z; and x, by means of the
standard formula (6, 124), which in our notation is :

iy = A2 (hi’ h!}' T4 ) = Dil; , o ' (31)
., V Di2ipig;
where 7 _
T Aa(hy Ry i) = fsz(u, virg)dvdu, . (32) \
he " hy C

W}ie,l;'é:N ;’(u, vy ry) is -the.normal bivariate frequenéy function for
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standardized variables % and v whose intercorrelation is r;. In
the present case, 4,(h, hy; 1) is the proportion of examinees an-
swering both items 4 and j correctly. Values of 4,(u,, v,; r) are
tabled by Pearson (29, Vol. II).

Using Equations (27) through (30), the correlation of test score
with ability may be written

oo = 2DV (k) (33)
\/220’.;0']'7'1']'
B7. The Curvilinear Correlation of Test Score on Criterion

Score; the Test Reliability

The correlation ratio of test score on ability is, of course, iden-
tical with the curvilinear correlation calculated from the best-fit-
ting regression curve, since this curve passes through all the con-
ditional means, M,,. By definition this correlation ratio is equal

to (3, 280)
E 802
mo= g/ 1- 20D - (34)

where E(o,.2) denotes the expected or average value of o,,2 for
the total group of examinees. Now, o,,=0,; (26); and the aver-
age value of o0,,2 is the square of the statistic that in test
theory is commonly called the ‘‘standard error of measurement’’
(S.E.peas.). It is well known that

S.Eimeas. = 05 V1—rg, (35)

where 1, is the test reliability. Substituting (35) in (34) the inter-
esting result follows that the curvilinear correlation of test score
on ability is equal to the square root of the test reliability:

oo = VTss . (36)

This result is a consequence of the well-known fact that r,, = V74 .

The test reliability may be considered as the correlation of the
actual test with a second, hypothetical, ‘“‘equivalent’’ form. If the
score on the j-th item of the hypothetical equivalent test is denoted
by X; so that X;=0 or 1, and if it is assumed that the two test
scores have equal standard deviations, we have, by the usual for-
mula for the correlation of sums,

Tss = T (30, (3X,)
2. 2 020 x oix;
)

= (37)
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Equation (37) is the same as the basic equation from which KKuder
and Richardson (19, Equation 2) derive their reliability formula.

Since the equivalent test has only a hypothetical existence, the
values of ox; and 75.x; are known only by virtue of the definition of
equivalence. According to this definition,

O'Xj = O'j y (38)
the observed variance of the j-th item (see Equation 28); and
Teix; = Tij (@75]), (39)

the observed fourfold-point correlation (see Equation 31). The
value of 7,5, for our purposes may be determined from the require-
ment that the corresponding tetrachorie correlation, r,.x;, shall be
such that the correlation matrix whose elements are rj; = 7;,y; shall
have unit rank. We see from the definition of R, in Section A4 that

rla:q;Xi = R‘i2; (40)
hence, by (28) and (31),

Ao (hihi;RE) — pi
5 .

;

(41)

Teix; =

From Equations (30) and (36) through (41), we find the result
that .

ZAg(hi,hi;Riz) - Epf + EEaiom,-
i i i£j

Tss = 77802 = o2
s

E_Z)i — EAz (hi,hi;R,;z)
=1-2 $

— (42)

The expression given for the squared curvilinear correlation
coefficient in (42) may be verified, if desired, by evaluating by
direct integration the expected value (39, 29) of ¢%,,. Using (20),
it will be found that

E(0%,) = f(EPiQ,-)N(c)dc = 3p; — Tdo(hihi;R7P). (43)

—

Substitution of this result in (34) yields the same expression for
the curvilinear correlation coefficient as that given by (42).

An examination of (42) shows that any increase in B2 the com-
munality of the items, will be accompanied by an increase in the
curvilinear correlation, 7,,.. This result is of special interest in
view of Tucker’s demonstration (36) and Brogden’s results (1)
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showing that a progressive increase in the item intercorrelations
will lead at a rather early stage to a progressive decrease in the
product-moment correlation between test score and ability. This
behavior of the product-moment correlation results in part from
the fact that as the item intercorrelations increase, the regression
becomes more and more curvilinear, so that a straight line provides
a progressively poorer fit, even though the scatter of the cases
about the curved regression line is being continually reduced.

No simple analytic results for the other curvilinear correlation
(m6s)—that of ability on test score—have been obtained to date in
view of the rather intractable expression obtained for ¢,,. Nu-
merical values of 7, for a number of selected hypothetical tests
have been computed by Cronbach and Warrington by means of
numerical integration. Their results should throw considerable
light on the properties of this statistic.

BS. The Magnitude of the Practical Effect of the Curvilinear
Regression

As noted in Section B3, if the examinees tested all fall about
a section of the regression curve that is practically linear, the
essential curvilinearity of the regression has little practical effect.
A measure of the magnitude of this effect is provided by a com-
parison of the curvilinear correlation of test scores on ability with
the corresponding product-moment correlation coefficient. This
comparison will be made only for the case where the test is com-
posed of equivalent items, in order to avoid excessive mathemati-
cal complications.

First a formula for the product-moment correlation for the
case of equivalent items will be obtained. From (30), dropping
the subseripts 4 and § and remembering that r; = 1, is obtained

0s =V npg+ (P —n)pgr = V [1+ (n—1)r]npg. (44)

From (27), (28); and (44) the product-moment correlation is found
to be

_ rc\/—ﬁ
S Vitm-Dr

Tcs (45)

‘We next wish to have a formula for the curvilinear correlation,
7., for the case of equivalent items. In this case all values of
ry (1% 7) are equal and may be denoted by a single symbol, ~. If
the matrix of #}; is to have unit rank, the diagonal entries must also
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be equal to . Since the diagonal entries are the squares of the
factor loadings, we have for this special case :
R2=1r. (46)
For equivalent items, dropping the subscripts ¢ and j, Equa-
tion (31) becomes
y = A2(Bhir’) — p?

, B rq '
Replacing B in (43) by +" and eliminating 4,(h, h; ') from (43)
by using (47), we obtain

E(0s.0?) = npg(1—r). (48)

From (34), (44), and (48) is thus obtained the result that for
- equivalent items

(47)

1—r nr

1+ (n—1L)r 1+ (@w—-1Dr" (49)

7]802 =1

This result will immediately be recognized as the Spearman-Brown
formula for predicting the reliability of a test composed of =
equivalent items from the item intercorrelations, r.

Since we are dealing with population parameters and not with
sample statistics, there is no test of significance involved in com-
paring 7,, and 7, The most convenient procedure will be to exam-
ine the ratio 7,,%/r,>. From (45) and (49) follows the very simple
result that

C T
- . @

By (29) and (46),

el _ __PQr__ ___Dpgr (51)
T?  RANECR)  rN2(R)

In order to obtain a clearer idea of the magnitude of this ratio,
it will be helpful to expand r as a power series in +/. The usual
power series used to determine a tetrachoric correlation coefficient
from the frequencies in a fourfold table will serve our purpose
(30, 369). For equivalent items, this series is

= ok B (12— 1)

4s (b)) — p?
N2(h)
1

; . | o
%2 2 — 2,74 — 4 __ 2 2,5
g h (07 = B)2r7% b o (W — 6R2 4 B)2 5 + L (52)
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By (47), the left side of (52) is
B As(h, h;r') —p* _ par

N7(R) N(R) 59
From (51), (52), and (53) is obtamed
L h2r’+—(h2~— 12— g 2 - 3)2r8
120 (WA — 6h%+3)27% + | . (54)
If all items are of 50 per cent difficulty, = 0, and it follows that
77302 —_ 1 2 _3__ s A ‘ 4
S =1t (55)

This last equation shows that when all items are of 50 per cent
difficulty, #,, will be practically equal to r, unless the tetrachoric
item intercorrelations are much higher than is usual. In this
case, therefore, the effect of the curvilinearity of the regression
will be wholly negligible in actual practice. Equation (54), on the
other hand, shows that whenever the item difficulties differ by a
considerable extent from 50 per cent,—when k =1, say,—,, may
become considerably larger than r,, and the effect of the curvi-
linear regression may be quite noticeable in practice.

The reader may wish at this point to refer to Figure 2 and the
accompanying text for illustrations relating to these conclusions

C. THE DISCRIMINATING POWER OF THE TEST AT A
GIVEN LEVEL OF ABILITY

Cl. Deriwation of an Index of Discriminating Power

If a test is to be used for selecting those individuals havmg the
greatest amount of the ability measured by the test, a test is de-
sued that will discriminate accurately among examinees who are
near the cutting score. If all selected examinees are to be treated
alike and all rejected examinees are to be treated alike, irrespec-
tive of their test scores, then some measure of the diserimination
of the test among examinees near the cutting score 1s the only
correct measure of the:validity of the test: -

- Most of the more familiar statistics that suggest themselves as
measures of this type of diserimination turn -out on investigation
to be-wholly. unsatisfactory. The correlation r,, is of course unsuit-
able because it.is only a measure of the average degree of diserimi-
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nation over the entire group of examinees. The standard error of
measurement at a given level of ability (o,,) is usually thought of
as a direct measure of the discriminating power of the test at that
level; but we have already shown (at the beginning of Section B5)
that for a given test the standard error of measurement at various
levels of ability tends to be inversely related to the test’s diserimi-
nating power.

The standard deviation of ability at a given level of test score
(¢.,) would provide a good indication of discriminating power in
certain circumstances—for example, when a counsellor is consid-
ering the test score of a single individual for guidance purposes.
A refinement of this approach would be to use standard methods
of statistical estimation and set up for each test score a corre-
sponding confidence interval for ability, within which the true
ability score could be assumed to lie. The length or other proper-
ties of such confidence intervals could be taken as a measure of
the diseriminating power of the test for examinees at different
levels of test score.

In other circumstances, different indices of diserimination
would be required. For example, if we are trying to select the 40
examinees having the highest ability in a group of 100 examinees,
we might ask what proportion of the 40 best examinees on ability
would be found among the 40 examinees selected as having the
highest test scores. This proportion would serve fairly well as
an index of discriminating power for certain purposes. Still other
indices will suggest themselves for other purposes. In particular,
Cronbach and Warrington (4) have devised at least two such
indices and drawn important conclusions as to the relation between
test diseriminating power, as measured by these indices, and the
composition of the test, described in terms of the item difficulties
and intercorrelations. '

The discrimination indices discussed in the two preceding para-
graphs relate to the discriminating power of the test at a given
level of test score, as distinguished from the diseriminating power
at a giwen level of ability. This distinetion is strictly analogous
to the usunal distinction between the standard error of a true score
and the standard error of measurement, respectively. The former
type of index has great practical importance because in actual prac-
tice we know the examinees’ test scores exactly, but we know their
ability scores or true scores only approximately. Actual cutting
scores must be in terms of test scores, not of ability scores.

On the other hand, any good index of the discriminating power
of a test at a given level of test score must be based on some as-
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sumption or knowledge about the distribution of ability in the
group tested. If the entire group of examinees tested has a high
average level of ability, for example, the frequency distribution
of the ability levels of those examinees who obtain any given test
score will be different than if the entire group of examinees tested
has a low average ability level. The discriminating power of a
test at a given level of test score therefore is always a function of
the nature of the group tested and cannot be invariant from group
to group. If a certain test is intended to be administered to a wide
variety of groups whose characteristics cannot accurately be pre-
dicted in advance, it will be helpful in describing the actual or the
desirable properties of the test to consider some index of its dis-
criminating power at a giwen ability level—an index that will
remain invariant no matter to what group the test is administered.
An attempt will here be made to develop such an index.

A numerical example may serve to clarify the problem. Sup-
pose almost all individuals for whom ¢ = —5 obtain scores of either
0 or 1 and that their average score is 0.3. The standard error of
measurement for these examinees is small—perhaps 0.2—but it
may still be that examinees for whom ¢ = —3 obtain an average
test score of only 0.31. In such a case it is obvious that the test
does not diseriminate appreciably between examinees at the
¢ = —5 level and examinees at the ¢ = —3 level. Clearly any meas-
ure of diseriminating power at a given ability level must take into
account both the standard error of measurement and the slope of
the regression.

Many different measures of diseriminating power could be
defined. Let us start by comparing the distributions of test scores
that will be obtained by examinees at two different ability levels,
¢, and ¢;. At each ability level the distribution of test scores will
be approximately normal for sufficiently large =, and if ¢, is close
to ¢, these distributions will have approximately the same stand-
ard deviation. Under these conditions the amount of overlap of
the two score distributions—by overlap here is meant the extent
to which the areas of the two frequency distributions coincide—
will vary directly as a function of the difference between the means
(Ms.o, and M,.,) of the distributions when this difference is ex-
pressed in standard deviation units. In other words, we may use
as a measure of overlap the function

— !M&co - Ms.cl l

—_— (56)

DI

where the numerator is the absolute value of the difference between
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the means and the denominator is some appropriate average of
the standard deviations of the two distributions. ‘

The funection D’ measures the distance between the two means.
When ¢, is close to.c,, this distance may be considered to vary in
proportion to the distance ¢; — ¢,. Interest is not in ‘the distance
between the two means corresponding to any specified distance
¢, — Co, but rather in the rate at which D’ changes as a functlon of
€1 — Co. For any given value ¢ = ¢,, this rate is

l M, g M, l 1 ) l Ms.cl — M, I -1 OM,,C
R vy e = 4o Oc
- (57)

Obtalmng the indicated derivative from (16) and (17), usmg ‘the
expression for Tec given by (20), and denoting the rate by D, we
have

1
\/EP,,Q,L i Ki.

Both P, and g; are funections of ¢; so D is likewise a function of c.
D will be used as the measure of the diseriminating power of the
test at a specified level of ability (at a specified value of ¢, not of s).

Tt is seen that D is the ratio of the slope of the regression curve
to the standard deviation of the test scores at a fixed level of
ability. The standard deviation is always positive, and it will be
assumed that the slope of the regression will always be non-
negatlve It is seen that the diserimination index will be zero when
there is no discrimination and that the more the discrimination,
the higher the index, there being no upper limit to its possible
value. If the item dlﬂicultles and the values of R; are available
for any group of items meeting the assumptions made, the value
of D can be calculated from Equatmn (58) without excessive
difficulty.

It may be noted that D, like M,, and o,, from which it is
derived, is completely 1ndependent of the distribution of ability
in the group tested. This is an advantage when a general descnp-
tion of the test is desired without reference to any particular group
of examinées; it is a disadvantage if the eﬁ”ectwe discrimination
of the test for a specified group of examinees is desired. ‘Lawléy
(20) has derived an index of the effective discrimination of a test
at different levels of ability for a specified group of examinees.
The difference between ‘‘diseriminating power’’ and ‘‘effective
diserimination,’’ as the terms are used here, may be illustrated as
follows: A test may have low discriminating power for examinees

(gt) ' . (58)
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in.a certain range of ability. If in any given groip. of examinees
there are only a few individuals spread out thinly over this range
of ability, however, the rank order of these individuals on ability
may be more accurately determined by the test scores than is the
rank order of examinees in some.other range of ability where the
diseriminating power (58) of the test is greater, but where there
are many examinees of almost identical ability. The effective dis-
crimination is greatest where the rank order of the examinees is
most accurately determined.

C2. The Conditions for Maximum Discrimination ‘

The problem of how to choose test items so as to maximize the
discriminating power of the test at a specified ability level now
will be investigated. For this purpose it will be assumed that all
items have the same value of R;. The question of what distribution
of item difficulties will give optimum results under this assumption
will then be explored. -Since D is taken to be nonnegative, log D
may be: differentiated with respect to'g; (¢ =1,2, ..., n). Writing

=N( gi) we have ' :

e
P, ;
E e Ny, ‘ (60)
dlogD .. . (1—2P)N,
S ) A PR (61)

Setting the derivative equal to zero and transposing, we obtam n
sxmultaneous equations:.

(1—21%) CO2SPQs . '
= A G=12...,m. ()

Slnce the expressmn on the rlght is the same for all n. equatlons,
a cond1t10n for a maximum of D is that =
» .‘Al _~2P1"=' 1”72P2 : .. =i:£)”_ .. :'_‘: C (63)
gL 92 o In : :
N ow the absolute Value of g, is a smgle-valued functlon of
(1~ 2Pi)/ Gi-. Consequently (63) ‘requires: for a maxnnum of D
that all g ’s be equal in absolute value ‘ : T R

PR

NP R PA R (64
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'AUnder the conditions of (64), P,@Q,=P.Q,= ... =P,Q, and

N,=N,=...=N,; so that, dropping subscripts, Equation (58)
becomes

_ _VnEN_ (65)

—K~LPQ ,

Any value of g that maximizes D in Equation (65) will also maxi-
mize D in (58).

It may be shown mathematically, or much more simply by nu-

merical investigation of tabled values, that N /V PQ is a maximum
when g = 0 It is thus found that D is a maximum when g; = 0 for
all =.

When g; = 0, h; must equal R,c, and P, = 1/2. We thus reach the
conclusion that if it is desired to construct a test that will have the
greatest possible discriminating power for examinees at some given
level of ability, ¢ = c,, then all items should be of equal difficulty
such that half of those examinees whose ability score is ¢, will
answer each item correctly and half will answer it incorrectly.
Strictly speaking, this conclusion has been proved only for the
case where all R, are equal. It appears to be capable of broad gen-
eralization, however.

Similar or related conclusions have been reached by a number
of writers (33, 32, 12, 1, 8, 34, 4), starting with different premises
and proceeding with varying degrees of rigor. Empirical evidence
relating to this point is also available (23, 35, 32).

It should be noted that the conclusion reached in the present
paper is quite different from the frequent conclusion that, for ex-
ample, ‘‘If 30% of the applicants for a certain kind of work are
to be allowed to pass an examination, each item should be suf-
ficiently difficult that approximately 30% of the examinees will
know it’’ (5, 21-22). If a test is to be used to award a single
scholarship to the highest-scoring examinee in a group of 100 ex-
aminees, the solution would seem to be to use items that will be
answered correctly about half the time by the two most able candi-
dates, rather than to use items that will be answered correctly
by only one or two per cent of the total group of examinees.

In order to contrast these two different solutions, it may be
pointed out that, given that all items are of about 50 per cent
difficulty for the two most able candidates, it is still not possible
to state what proportion of the total group will answer each item
correctly. If, for example, all examinees in the total group are
of roughly equal ability, then in this extreme case, almost half
of the total group will answer each item correctly. If, on the
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other hand, the examinees in the total group are very hetero-
geneous in ability, then it might be that no one, except for the two
most able candidates, would answer any item correctly. It is thus
seen to be unreasonable to use the expected proportion of correct
answers among the total group of examinees as a basis for deter-
mining the optimum item difficulty level; for this proportion varies
with the heterogeneity of the group even when the ability of the
two most able candidates remains fixed. The optimum item diffi-
culty level must depend on the ability level of the examinees near
the cutting score, not on the ability levels of all examinees in the
group.

[When the examinee has 1 chance in k of answering each item
correctly by guessing, it might be expected that maximum dis-
crimination would be found, assuming equivalent items, at the level
of ability where the proportion of correct answers is (1 + 1/k)/2.
Mathematical investigation, which will not be given here, shows
that this is clearly not the case, but that the level of ability must
be appreciably higher than this. This conclusion is plausible in
view of the fact that multiple-choice items become more and more
unreliable as the proportion of correct answers decreases towards
a chance level. Similar conclusions have been reached independ-
ently by Cronbach and Warrington (4).]

C3. Numerical Illustrations of the Discrimination Index

Figure 2, for illustrative purposes, shows the diserimination
index as a function of ability for each of four hypothetical tests,
together with the regression curve of test score on ability. The
diserimination indices for Tests 1, 2, and 3 were calculated from
(65). The discrimination indices for Test 4, which has a rectangu-
lar distribution of item difficulties (p;), were found by using cer-
tain formulas published by Lawley (20). He assumes that all
values of R, are equal and that the values of h; are normally dis-
tributed. Under these assumptions, it may be shown that the item
difficulties (p;) will be rectangularly distributed when the mean
of the h’s is 0 and their standard deviation is 1(M, =0 and o, = 1).

Setting G = VK2 + 0,2 and dropping the subseript from R;, we
may write certain of Lawley’s results derived from the foregoing
assumptions as follows:

Mo = na(HzFe), ~ (66)

and

(67)

—_ — 2
Gol> = M, —nd, ( M, — Ro My — Re In ) .

¢ ' @ &
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From (66) we find that-

T wB - (My—Re\ .
o | . —EZ-Msc:_% N( _hG' ). T .. 'T '(_68)
The discrimination index for a test.characterized by given values

of R, M;, and ¢, may be obtained by using (67) and (68) in con-
Junctmn Wlth the followmg formula (cf. 57): .

10
Os0 OC

Test 1 is a 100-item test having a reliability of only about 80
and consisting -of  items all of 50 per cent difficulty (R = .243,
=0, M, =0). The regression is almost reetilinear within the
range of ability of the group tested; and the test is practically
equally diseriminating for all examinees within this range. Test 2
is. the same as Test 1 except that its rehablhty is about .96 (R =
447; 0, =0, M, = 0). The regressmn is more curved' and the dis-
crlmlnatmg power of the test is much higher for examinees of
average ability than for examinees at the extremes of ability in
the group tested. The standard error of measurement at different
levels of.ability is indicated by a dotted line for this test. Test 3
may be considered to be the same test as Test 2, but administered
to a less competent group of examinees (R = .447, 0,=0, M, =
1.07). We see here what happens when a test is foo difficult for
the group.tested: the regression of test score on ability is dis-
tinetly non-linear and the test has low -discriminating power for
the less competent examinees. The curves for Test 3 are actually
the same as, or continuations of, the curves for Test 2, except that
the scale on the base line is changed. Test 4 is the same as Test 2
except that the items here are not all of the same difficulty, the
item - difficulties (pi) ‘in Test 4 bemrr rectangularly distributed
(R-— 447, 0, =1, M, = 0). ,
For ‘purposes of: comparison,. F1gure 3 supemmposes the curves
shewmg the discrimination index-for each of five tests. . -The- test
for which ;2= 0 is the same as Test 2 in Figure 2.. The values of
h; in each.of the other tests are. normally distributed with M, =0,
and. the. value of R, for each’ 1tem is in all cases .447. Fach of the,
five tosts consists of 100 items.” The tests differ from each other,,
only in the vanablhty of the dlfﬁcultles of the test items, as meas-
ured by 0,2 The test fqr which 0;,, = 1.00 s the same as Test 4
in Figure 2—the values of p; in thls test have a rectangular dis- .
tribution. The, test for which ¢, = .40.is the one most nearly like
théaisual type (of fest havm«r a moderate spread ofiitem difficulty—

D = M. | ) o | (69)
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most ordinary tests, in the author’s experience, have values of
0,2 between .15 and ,50.

Figure 3 shows that the test composed solely of items of 50
per cent difficulty is more discriminating than any of the other
tests for examinees at any level of ability between ¢ = —2.5 and
¢ = +2.5. Since only about one per cent of the examinees will lie
outside this range of ability, these results suggest that many of

4 .

Discrimingtion Index (0)

0 T T T T T
=3 -2 -1 o] | 2 3

Ability (c)

The Discrimination Index as a Functxon of Ab1hty for Each of Flve Tests with
Specified Values of 632

i)

FIGURE 3

our tests could be improved by restmctmw the range of item diffi-
culty. [The readér may wish to refer to Davis (5) and Flanaganv
(10) for’ arguments opposing this point of view.] .It is, of course,
obv1ous ‘that the’ higher the item intercorrelations, the. 1ess dis-
crlmmatmg the test composed solely of items of 50 per. cent diffi-.
culty will. be for exammees at.the extremes of the ablhty scaIe It
would seem, however, that, in the ordinary type . of test the 1tem
mtercorrelatmns are not suﬁielenﬂy high to require a. spread of.
item difficulty values in order to obtain -optimum - diserimination..
Cronbach and Warrington (4) have independently-reached similar:
conclusions with respect to multiple-choice tests. Ok
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C4. Relation of the Discrimination Index to the Test Reliability
and to a Certain Maximum Likelihood Statistic

Let us consider the following function of D and expand it by
means of (69), using the symbol b,, for the derivative of M, with
respect to ¢:

D2 b
1+ D2 - 0'3,02+b802 )

Suppose now that some hypothetical test could be devised such
that for this test for some special group the values of b,, and of
0,. could be treated as roughly constant over the range of ability
in the group tested. In this hypothetical situation, b,, would be
the regression coefficient in the equation for predicting s from e,
and consequently, by the usual formula for a regression coefficient,

(70)

=T (1)

4

Similarly, o, , is the standard error of estimate, so we could write
0s.02 = 02(1 — re2). (72)

Choosing the units of measurement for ¢ so that ¢, = 1 and then
substituting (71) and (72) in (70), we would obtain for this hypo-
thetical case

D2

TEpr e (78)

If the regression of s on ¢ is approximately linear, 7,2 = r,> = 7,
(see Section B7); so finally, for this special case,

D2
1+ D2

This result suggests that the function D?/(1 + D?) might well be
used as a measure of the discriminating power of the test at a
given level of ability. The interpretation of this function would be
facilitated by its equivalence to the reliability coefficient of a cer-
tain hypothetical test. For example, if a given test has a diserimi-
nating power (D) of 3.0 for examinees at a given ability level, it
can be stated that the discriminating power of this test for such
examinees is the same as the discriminating power that would be
achieved at all ability levels by a hypothetical test, with the pos-
tulated properties, characterized by a reliability of r,, = 9/(1 +9)
=.90. ’ ’

= Ty (74)
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It may also be noted here that the writer has very recently
found for the case of equivalent items that the standard error of
the maximum likelihood statistic for estimating an examinee’s
ability from his responses to the test items (scored 0 or 1) is iden-
tically equal to the reciprocal of D. Further work with maximum
likelihood methods is in progress.

D. THE FREQUENCY DISTRIBUTION OF TEST SCORES

The univariate distribution of test scores, f,, may be obtained
by integrating (15) according to usual procedures:

fo = f fode = S* f fILPIL_Qde (s=0,1,...,n). (75)

Equation (75) is valid for any frequency distribution of ability
(f.) in the group of examinees tested. If ¢ is normally distributed,
the equation becomes

fo= 3% fN(c)HsPiIIn_sQidc (s=0,1,...,n). (76)

It should be noted that f, is not a function of ¢, which here serves
merely as a dummy variable.

Unfortunately, the indicated integration cannot in general be
performed directly, and consequently no simple algebraic expres-
sion for f, can be obtained. Nor has the writer as yet succeeded in
finding any representation of f, in series form that is sufficiently
rapidly convergent to be of much value. Numerical integration of
(76) is relatively easy, however, except for the amount of routine
work required to calculate the necessary products of P’s and @’s.
The ‘‘theoretical’’ distributions in Figures 5 through 11 at the
end of this monograph serve to illustrate the results obtained when
the values of f, are calculated from (76) for a variety of short
tests, using actual observed values of %; and R,

In the special case that occurs when all items are uncorrelated,
(76) is seen to reduce to

fs = Z¥pdl,_.q:, i

a generalization of the binomial. If all items are of equal difficulty,
we may drop the subscript ¢ and obtain for this special case

fo= ( Z’) p°’q"~*, which is the usual binomial.
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.- Another special case that is of interest occurs when all items are
of 50 per: cent d1fﬁeulty (h=0) and all values of R, are equal to
1/\/2 -In this ‘case: g¢ —¢, and - (76) becomes

)f N(c)4*(~ B (—)de (5=0,1,...,n), (T8)

where the superscripts are exponents and B(—c¢) =1 — A(—c).
Now

R :
o Al=e) = N(c); (79)

also 4(—c) =1 when ¢ = « and A(—c) = 0 when ¢ = —w. Conse-
quently, writing 4 = 4 (—c¢) and replacing N(c)dc in (78) by d4,
we obtain the result

R !
ol 1

fsv=h(t)/0Aa<1—A)”-'*dA. )

The integral in (80) is a beta function; so ﬁnally,v

f, = n! sifn—s)! 1
A s'(n—-s)' (n+1T — n+1

Since s can vary only from O to n, we have the result that in thls
special case s is rectangularly dlstrlbuted : :

The value for many general purposes of having an approxi-
mately rectangular distribution of test scores has been pointed out
by Ferguson (8). Ina previous article (15), Jackson and Ferguson
emphasize the value of having different specified shapes of score
distributions for different specified purposes. For example, if the
test is to be used merely to separate examinees into a successful
group and a failing group, it is desirable to have as few examinees
as possible with seores near. the cutting score: The most: desir-.
able distribution of scores for this purpose would therefore be a
U-shaped distribution with thé antimode at-the cutting score. Equa-
tion; (76) will give:such U-shaped distributions Whenever the .item
intercorrelations are sufficiently high. Apparently,. when ¢ is/nor-
mally distributed, R; must be greater than 1/V ‘2 before this can
occur, however. Such large values of R are seldom obtamed Wlth
most types of cognitive tests. -+ no LT

“Mhe results’ glven are’ sufficient to show that: the dlstrlbutlon'
of test scores cannot in general.be expected to.be normal; or even,
approximately normal. The guestion naturally arises as'to what

(s=0,1,. .., m). (81)
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possible shapes the frequency distribution f,, as-given in (76), rﬁay
assume. The answer is that this function may assume any shape
whatsoever, provided the item intercorrelations are sufficiently
high.

Suppose, for example, that it is desired to obtain the follow-
ing arbitrarily chosen frequency distribution for a five-item test:

, cumulative
s T © frequency
5 .25 1.00
4 .00 75
3 25 75
2 32 .50
1 .16 18
0

.02 02

1.00

Referring to a table of the normal curve, the required cumulative
frequencies are found to correspond to relative deviates of ),
+0.67, +0.67, +0.00, —0.92, and —2.05. A little thought will show
that if five items are selected that are perfectly correlated with ¢
and that have values of 7, equal to the last five of the six relative
deviates just listed, the resulting five-item test will have the re-.
quired frequency distribution of test scores. The same result may
be obtained from (76). This result, although of course useless
from a practical point of view, is given in order to show that there
is really no limit to the different shapes that may be assumed by
the frequency function of (76), provided the item intercorrelations
are sufficiently high. When the item intercorrelations are low, how-
ever, the test score distribution is necessarily not very different
from the generalized binomial (77), i.e., it is necessarily bell-shaped.
Next let us investigate the moments of f,. The mean of the test
score distribution can be found by simple algebra without making
any assumptions. As is well known, the mean test score is » times
the mean item difficulty : .
M, = Sp. S (8
‘This same result may be derived from (76), as follows: -
M= 3ef = [NOzEnpm Qo= [ Nie)Made. ! (8)

—_0 -
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Substituting the value for M,, from (16), we have

M, = §fN(c)P,.dc. (84)

This integral may be evaluated with a result that agrees with that
obtained algebraically and presented in (82).

The standard deviation of the test score distribution may like-
wise be derived without assumptions by simple algebra, as shown
in (30). This same result also may be obtained from (76) by
evaluation of the integrals in the formula

n
o2 = X s2fs — M2 (85)
8=0

The third and higher-order moments of the test score distribu-
tion cannot be expressed as simple functions of the item difficulties
and intercorrelations. These moments can be obtained by expand-
ing the necessary integrals by means of the infinite series developed
by Pearson (28), but the result is too cumbersome to be of much
practical value for present purposes. For any given numerical
case, these moments can be obtained by numerical integration,
as has been done for certain tests in Part III of the present
monograph.

In view of the obstacles encountered here, it appears that the
best practical method of obtaining further insight into the general
relation between the item statistics and the shape of the distribu-
tion of test scores is to examine the limiting frequency distribu-
tion approached by the score distribution as the number of items
becomes very large. This will be done in the following section.

It is of interest, now that a formula for the frequency distri-
bution of test scores has been obtained, to note that the line of
reasoning followed for this purpose is, in broad outline, the same
as that used by Lazarsfeld (22) in dealing with the problem of
latent structure, but opposite in direction. We have made certain
assumptions as to the shape of the item characteristic curve and
have derived the distribution of test scores, on the basis of these
assumptions, as a function of the frequency distribution of the
underlying ability in the group of examinees tested. Lazarsfeld,
on the other hand, starts with certain assumptions as to the shape
of the item characteristic curve (‘‘trace line’’) and attempts to
derive the distribution of the underlying ability (trait) in the group
of examinees tested as a function of the known distribution of
actual test scores. No entirely satisfactory general solution to the
problem of latent structure has as yet been found.
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E. THE LIMITING FREQUENCY DISTRIBUTION OF TEST
SCORES FOR LARGE »—THE FREQUENCY
DISTRIBUTION OF TRUE SCORES

El. Derwation of the Distribution

In discussing the limiting distribution of scores as # becomes
very large, we shall concern ourselves only with the relative score,
z=s/mn. When % is infinite, z becomes the same as the relative
true score, which is denoted by ¢.

It was seen from (25) that as #» becomes very large, all the fre-
quency of the bivariate distribution of z and ¢ becomes concen-
trated at the regression lines, which in this case coincide. Thus
for infinite #,

In the case of relative scores, the regression is seen from (16)
to be given by the average value of P:

M,, = % 3P, = M. (87)

Let us replace M, by the expression M (¢) to emphasize the fact
that M, is being considered as a function of ¢. It is seen from (86)
and (87) that the distribution of ¢ is the same as the distribution
of the funection M(c¢). If it is assumed that R,;s40, the inverse
function of M(¢) may be denoted by M~1(¢), so that ¢ = M~1(%).
If ¢ has the frequency distribution f(¢), the distribution of
t = M(c) may be found by the usual methods to be

fo= pra-1n] 20 (88)

When ¢ is normally distributed, we have

OM—1(t)
— ot )
Let us suppose that an infinite number of equivalent m-item
tests are administered, so that ¢ is the average relative score ob-
tained on all these tests. Since the tests are equivalent, we have,
as before,

fr=N[M~*(t)] (89)

t=M(c) = -

L p, . (90)
i=1
We find that (c¢f. Equation 17)

ot _ 12 RN(g)

—0—(3—~ m K; (91)
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L ' -1(f) o ) :
S =M-(t ,_.__(_- 3 . 1 A .

Imce ¢ (2) o 1s thg reciprocal of ’ghe expression on
the right side of (91). Substituting this result in (89), we obtain
finally :

mN[M—1(#)]

TN

In (92) g: 1s as usual (9) a funection of k,;, R, and ¢; but here ¢
is treated as a function of ¢, so that g, is a function of {. For pur-
poses of calculation, f; may perhaps best be computed from the
parametric equations:

- (92)

_ mN(c)

E—B“M i)’

where ¢ is the parameter. When the values of &; and R, are speci-
fied, actual values of the frequency distribution of relative true
scores can be calculated from these equations This has been done
for certain simple illustrative examples in the following section.

The cumulative frequenecy distribution of #, which we shall
denote by F(t), may be of interest; it is found from (89), by the
usual methods, to be

,t=M(c), | i(%)

M)

t . .
FU):/%dhi/wQMa (94)

The second integral is obtained from the first by the substitution
¢=M"*(t). Actual values of the cumulative frequency function
of relative true scores can be obtained fairly easily from (94).
Equation (94) is of particular interest, since it shows clearly that
the distribution of / can never be strictly normal. The distribution
will be approximately normal, however, whenever M (¢) is an ap-
proximately linear function of ¢ over the range in which most of
the cases occur. It is thus seen that ¢ will be approxnnately nor-
mally distributed.in just those cases where the regression of s on ¢
is practlcally linear over the range of the actual data, as discussed
in detail in Section B8. ‘

JThe frequency distribution of relative scores actually ap-
proaches the frequency distribution f, as a limit when x» becomes
infinitely large. This same result may be obtained from (76) by
finding the limit of the characteristic function as » becomes infinite.
Unfortunately, it has not been possible to- date to obtain any simple
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:expresswn for the amount of the discrepancy between f;. for any
given n, and f;.

We may note at this point that, because of the relation between
t and ¢, the distribution (f, ;) of aetual scores for a fixed true score
is the same as the distribution (f,.) of actual scores for the corre-
sponding fixed ability score. Consequently, f,, is the same general-
ized binomial as is given by (12).

E2. Illustrative Examples of the Distribution of Relatiwe
True Scores

Relative true scores are the relative scores that would be ob-
tained if the test were a perfectly reliable measuring instrument.
The algebraic difference between an examinee’s actual score and
his true score is the error of measurement. As indicated in the
preceding paragraph, the errors of measurement for any given
true score have a generalized binomial distribution. The errors
of measurement are not independent of the true score, since their
standard deviation and their frequency distribution are different
for different true scores. The usual proof that the errors of meas-
urement are uncorrelated with true scores remains valid in the
present context, however.

Figure 4 illustrates the effect on the shape of the true-score
distribution of increasing the correlation (R) of the items with
ability. The values of f; needed for drawing these distributions
were obtained from Equation (92). The distributions shown are for
relative true scores on tests composed of equivalent items of 50
per cent difficulty. When R = .20, the distribution, although platy-
kurtie, is so nearly normal that the best-fitting normal distribution
can hardly be drawn on the same graph; the standard deviation is
low, and only about a half of the possible range of scores is found
to oceur with any frequency in actual practice. When R = .45, the
distribution of scores is still roughly normal, and the entire range
of scores is utilized. When R = .65, the standard deviation has
increased further and the distribution, although still unimodal, is
nearly rectangular. The distribution becomes actually rectangular
when R = .707, as was.shown by (81). As the correlation increases
above .707, the distribution becomes more and more U- shaped as
indicated by the distribution for R = .80.

Actual tests having an average item difficulty of about 50 per
cérit would, .if: sufficiently long, produce frequéncy distributions
similar to the true-secore distributions illustrated.: If thé -average
item difficulty differed appreciably from 50 per cent, the actual
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score distributions would still resemble those illustrated except
that they would not be symmetrie.

— —~ Best fitting normal distribution

4

Score Score

Frequency Distributions of Relative Scores on Four Infinitely Long Tests Composed of
Equivalent Items of 50 Per Cent Difficulty Whose Correlations with Ability Are as
Indicated

FIGURE 4

F. THE BIVARIATE DISTRIBUTION OF SCORES ON
TWO TESTS MEASURING THE SAME ABILITY

" If the items in two tests have only a single common factor, the
distributions of the test scores (s; and s,) on the two tests will be
independent when c is fixed. The conditional bivariate d1str1but1on
of test scores will therefore be . : : :
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fs1s0.0 = for.cfso.c- (95)

The right side of this equation may be evaluated by (12).
The trivariate distribution of s;, S., and ¢ is therefore

fcusz = N(G)fsug.c; (96)

and the bivariate (marginal) distribution of the two test scores
can be found from this by integrating out the variable c:

«©

Fora0 =fN(C)f3112.ed0 . (87)

—

This result is too cumbersome in expanded notation for us to
draw any general theoretical conclusions from it. For a given
set of data, however, (97) can be handled by means of numerical
integration. This has actually been done as part of the empirical
investigation reported in the following sections. The resulting
bivariate score distributions are given in Tables 11 to 17 at the
end of this monograph.

In the special case where all items are of 50 per cent difficulty
and R; = /.5 for all items, the bivariate distribution of test scores
is found by direct integration (cf. 81) to be

N1 Ng

— 1 (31>(32)
forso = mAn+1f ni+n \’
(31+82/

[It may be noted that the second fraction in (98) is the general
term of a hypergeometriec distribution.] The bivariate distribution
of (98) is somewhat of a curiosity. The marginal distributions of
s, and s, are of course rectangular (81). The distribution of
8y + s,, obtained by summing the frequencies in (98) diagonally,
is also rectangular. The bivariate distribution has two modes: one
at the corner where s; = s, = 0; the other at the corner where
Sy = My, S2 = ne. The two antimodes are at the two remaining cor-
ners. The frequency surface represented by (98) may be well
characterized as saddle-shaped.

The regression of s, on s, for the special frequency surface of
(98) is found to be

(98)

M5y ='ﬂ_1_+_2'1e . (99)

It is obvious that in this special case the regression is linear. Ex-
amination of the appropriate formula shows, however, that in
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general the regression of one test score on another will not be
strictly linear, even though the two tests are parallel forms. This
conclusion is confirmed by the numerical integration of the appro-
priate formula for hypothetical values of h and R; chosen to repre-
sent two strictly parallel tests.

G. EXTENSION OF RESULTS TO MULTIPLE-
CHOICE ITEMS

When it is possible for the examinee to obtain the correct
answer to a test item by sheer guessing, it is no longer reasonable
to assume that the item characteristic curve is a normal ogive.
No matter how low.the ability of an examinee may be, he still has
some appreciable chance of answering such items correctly. The
formulas derived in the present article in general cannot be
applied to multiple-choice tests, or to other tests where guessing
plays a significant rele. Formulas parallel to those given here
have been Worked out for the multiple-choice case on the assump-
tion that guessing, whenever it occurs at all, is purely random.
Such an assumption seems reasonable for such a case as the Sonar
Pitch Memory Test with which Cronbach and Warrington are con-
cerned. In the case of most ordinary multiple-choice tests, how-
ever, this assumption is certainly only a rough approximation to
the real life situation and should not be expected to yield as good
agreement with empirical resu]ts as would be found in work with
free-response items.



PART III

EMPIRICAL VERIFICATION

H. THE PLAN

The theoretical results of Part II, Sections B and C, relating
test score to ability, cannot be checked empirically except by the
use of a test so long and so reliable that scores on this test, after
being normalized or transformed in some other way, can be satis-
factorily substituted for the unknown values of the ability score, c.
In view of the difficulty of securing a sufficiently long test that meets
the other criteria desirable for a first empirical study, the em-
pirical work done to date has related only to the theoretical results
of Part II, Sections D and F, where no measure of ability is in-
volved in the final results. The results to be checked are those of
(76) and (97), which give the univariate frequency distribution
of the test score and the bivariate distribution of two scores.

The empirical procedure involves essentially: (1) selection of
a number of short tests for which the examinees’ answer sheets are
available; (2) computation of the item statistics p; and R;; (3)
computation of f, and of £, by means of (76) and (97); and (4)
comparison of the theoretical results so obtained with the actual
univariate and blvarlate dlstrlbutlons of test scores.

1. THE DATA

In selectmg test data for the emp1r1ca1 study, three cons1dera-
tions were given paramount importance: (1) the test must be com:
posed of free-response items such that guessing by the examinee
could. have little effect on the correctness of his responses; (2)
the test items must insofar as possible have only one common
factor; and (3) the test must have been administered to a group
of examinees of such a nature that it would not-be unreéasonable
to assume ability (c¢) to' be normally distributed in the group
tested. These three considerations limited the choice among ‘the
readily available test data S0 drastlcally that’ other cons1derat10ns
were largely dlsrega,rded Eeo T

g
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It may be well to call attention to the third consideration. It is
obviously impossible to predlct anything about the shape of the
distribution of scores for a given group of examinees if nothmg
is known or assumed about the nature of the group tested, since
the distribution of ability, and hence the distribution of scores,
may take any shape whatsoever. It would be possible and desirable
to use the method of Section A2 to determine the actual frequency
distribution of ability in the group of examinees; however, this
method would have required the use of a very long test. In the
absence of such a test, it was necessary to assume that ability, as
defined. by the variable ¢, was at least approximately normally
distributed in the group tested. The success of the empirical veri-
fication undertaken may depend to a considerable extent upon the
appropriateness of this assumption.

The data used for the empirical verification were kmdly pro-
vided by Dr. Lynnette B. Plumlee, who had carefully collected
them for other research purposes (31). The available data were
the responses of each of four groups of male examinees to 80
free-response mathematics items covering the fields of algebra,
plane geometry, and trigonometry as taught in the usual high
school. The 80 items had been originally chosen so as to represent
the entire range of difficulty from p; = .10 to p; = .90.

Half of the 80 items were discarded since time apparently did
not permit all examinees to attempt to answer them. The 40 re-
maining items were next classified on the basis of subjective judg-
ment into the following categories: (1) verbally stated problems
to be solved by algebra, (2) algebra items stated in mathematical
form, (3) geometry items, and (4) trigonometry items. In order
to minimize the presence of group factors common to some items
but not to all, all except one of the items in each of the first, third,
and fourth categories were discarded, leaving 28 items for empiri-
cal study, 25 of which were algebra items stated in mathematical
form. The 25 algebra items covered elementary, intermediate, and,
to some extent, advanced algebra. The three remaining items repre-
sented three different areas, and hence seemed unlikely to intro-
duce any additional group factors.

Since the items had been administered to each of four groups
of examinees, it was desired to select one group for further study.
For this purpose the matrix of tetrachoric item intercorrelations
was computed for the first five test items, separately for each of
the four groups of examinees. An attempt was made to determine
the communalities, separately for each group, under the assump-
tion of a single common factor. The method of triads and the



EMPIRICAL VERIFICATION 43

iterated centroid method were used. In three of the four groups
one or more of the communalities were found either to exceed 1.0
or to be very close to 1.0. This result could be attributed to any one
of the following causes: (1) the very large sampling error of some
of the tetrachorics; (2) the existence of more than one common
factor among the items; or (3) non-normality of the distribution
of ability in the group tested, making the use of the tetrachorie
correlation coefficient inappropriate.

The fourth matrix yielded reasonable communalities. On this
basis it was decided to use the fourth group, composed of 136
examinees, for all further empirical work.

J. PROCEDURE
J1. Calculating the Item Statistics

The matrix of tetrachoric intercorrelations for the twenty-eight
items, as calculated for the fourth group, is presented in Table 4
at the end of this monograph. No entry was made in the correla-
tion matrix for nine cases where there was zero frequency in one
of the cells of the fourfold table used to calculate the.tetrachoric
correlation. (Strictly speaking, the tetrachoric correlation is
+1.00 for these nine cases; —1.00 in the case of the correlation
between items 54 and 6, +1.00 in each of the other eight cases. The
sampling error of these values is obviously excessive.)

The common factor loadings of the items were obtained by the
following procedure: (1) Estimated communalities were entered
in the diagonal. (2) The square root of the produect of the appro-
priate estimated communalities was entered in each of the nine
empty cells of the matrix. (3) Factor loadings on a single factor
were obtained by the centroid method. (4) The square of the
factor loading of each item was used as a new estimate of its
communality, and the whole process was iterated until the factor
loadings remained unchanged. The resulting factor loadings, to-
gether with the item difficulties, are given in Table 5. These two
values for each item are the only item statistics required by the
formulas that have been developed in the preceding sections. (The
allocation of the 28 items to various tests, as indicated by Table 5,
will be discussed in the next section.)

Table 6 gives the residual correlations after extraction of the
first factor. The standard deviation (computed from a grouped
frequency distribution) of all 378 residuals, including the 9 listed
in the footnote to the table, was found to be .17. This value may
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be compared with the sampling error of a tetrachoric correlation:
when the sample size is 136 and the true correlation is .30. Table'1

TABLE 1

Standard Error of the Tetrachorie Correlation Between Two
Ttems, for Specified Combinations of Item Difficulties,
‘When the True Correlation Is .30 and the . .
Number of Cases Is 136..

Ttem Item Difficulty v
Difficulty .16 50 .84
16 .20 15 17
50 a5 13 15
.84 17 15 .20

gives a few values of this sampling error for various combina-
tions of 1tem difficulties, as computed from the table prowded by:
Hayes ( 14).. .
1In view. of these standard errors, the obtained standard dev1a-
tion of the residuals indicates that any group factors in the matrix.
are of minor relative importance. This conclusion is borne out by,
a detailed study of the residuals, and also by the extraction of a
second centroid factor after estimated diagonal entries had been
inserted in the residual matrix. The sum. of squares of the un-.
rotated second factor loadings was found to be only 1.6 as com-
pared with the corresponding value of 7.5 for the first factor
loadings, indicating that the contribution of the second factor was
relatlvely small. ,
It is, unfortunate that the residuals are as Ia,rge as they are,‘:
since thls result means that the matrix of tetrachoric intercorrela-
tions cannot be accurately determined from the values of R,, as
required by the derivations in the preceding sections. This diffi-
culty presumably could have been avoided if more cases had been
available from Whlch to compute the tetrachoric correlations.

J2 Selectwn of Tests

Elght different combmahons of about ten 1tems each ‘were- Se-*
lected to serve as short tests to be used in the empirical Verlﬁcatlon 4
The allocation of the items to each of the- eight tests is indicated
ih Table 5; together with the difficultiesiand common factor:load-
ings of. the 1tems The elght tests may be ’brleﬂy summarlzed AE-
folows sy o 7 0 sl R . STENIN 35
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Test 2 — difficult items (p; = .09 to p, = .34).

Test 5 — items of medium difficulty (p; = .43 to p; = .68).

Test 8 — easy items (p; = .71 to p, = .90).

Test 8 — like Test 8, but slightly shorter.

Test 82— five ‘“easy’’ and five ‘‘difficult’’ items.

Test h —highly diseriminating items, irrespective of diffi-
culty (R; = .55 or more).

Test L —poorly discriminating items, irrespective of diffi-
culty (R; = .47 or less).

Test r —item difficulties rectangularly distributed.

The univariate frequency distribution of scores was investi-
gated for each test. Bivariate frequency distributions of test scores
were studied for the following seven pairs of tests: 2 and 5, 2 and 8,
5 and 8, 5 and 82, 8 and 7, 82 and r, h and L. No bivariate dis-
trlbutlon between any two tests contamlng identical items was
1nvest1gated :

J3 Obtammg the Theoretical Bivariate Frequency Dzsfmbutwn'
-« - of Test Score and Ability

Fifteen values of ¢ were selected for further caleulations:
¢=—35, —3.0, —2.5, —2.0, —1.5, —1.0, —0.5, 0.0, 0.5, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5. For éach item the ordinate (P;) of the item charac-
teristic curve was obtained for each of these values of ¢ from (7),
(8), (9), and (10).

- For each test, for each value of ¢, the theoretical conditional’
distribution of test scores was calculated from (12). An example
for w = 3 will clarify the method used. Suppose (for a given value
of ¢) P,=.5;, P,= .4, P,=.2. We know that the desired condi-
tional d1str1but10n is given by the appropriate’ successive terms
of the expansion of the product (.5+ .5)(.4+.6)(.2 +.8). . BEx:
pandmg this product while keeping separate the terms correspond-
ing to the separate values of s =0, 1, 2, 3, we have

(5+.5)(4+.6)(2+.8)= (2+.5+.3)(24.8) = .04+ .26 + 46 + .24,

The four terms obtained in this way are the conditional frequen-
cies of occurrence for s =3, 2, 1, and 0, respectively. The condi-
tional probablhty that all three 1tems W1ll be answered correctly,
for. example, is-given by the first term, .04. .

It.is convenient to consider the % +-1 conditional: frequencles of.
s for each of the 15 values of ¢ for any given test as forming a
matrix,-F, s, with »+ 1 rows-and 15 columns.: If*D, is a diagonal
matrixjwliose elements are:the fifteen values of N (c_)ﬁ, the matrix
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F, of the ordinates of the bivariate frequency distribution of s and
¢ is seen from (14) to be

Fco = Fs.ch'

Tables 7, 8, and 9 present, for the selected values of ¢, the theo-
retical ordinates of the bivariate distribution of test score and
ability for three of the eight tests, selected for illustrative pur-
poses. It should be noted that the values given in the table are
ordinates for the stated values of ¢, not cell frequencies corre-
sponding to class intervals of ¢; consequently the sum of a row
of tabled values does not give the marginal frequency of the test
score.

J4. Obtaining the Theoretical Umwvariate Distributions
of Test Scores

The theoretical univariate distribution of each test score may
be obtained from the bivariate distribution of test score and ability
by integration, as indicated in (76). It was found most satisfactory
in the present case to perform the numerical integration by use of
the trapezoidal rule:

7fd°=h(f23+f1+f2+. : +%"—>

co

approximately, where f is the function of ¢ to be integrated, f, is
the value of f when ¢ = ¢,, ¢, is the upper limit of integration, c,
is the lower limit of integration, and % is the difference between
any two successive values of ¢. In the present case, ¢, and ¢, may
be taken as —4.0 and +4.0, respectively, so that the ordinates f,
and f, are so small that they may be ignored. Since in our

case h =—%—, the trapezoidal rule for our purposes therefore re-
duces to

approximately. The adequacy of this method of numerical inte-
gration for present purposes was carefully checked, especially by
application of Simpson’s one-third rule.

The univariate frequency distribution of test score may thus
be obtained by summing separately each row of F,, and dividing
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by 2. These distributions are shown for three tests in the right-
hand columns of Tables 7-9. Tables 11-17 show the frequency dis-
tributions for all eight tests after multiplication of the relative
frequencies by the number of actual examinees, 136. The com-
parison of these theoretical distributions with the corresponding
actual distributions will be discussed at a later point.

J5. Obtaining the Theoretical Bivariate Frequency Distribution
for Two Subtest Scores

The theoretical bivariate distribution for two subtest scores
may be obtained from (97). This distribution may be considered
to be represented by a matrix F,,,, having », + 1 rows and #n, + 1
columns. If the integration of (97) is earried out by means of the
trapezoidal rule, we have

1 , 1 )
F8182 = '2_ FawF s9.¢c = —2‘F81.0F 80¢C
where the primed matrices are transposed.

The theoretical distributions of test scores obtained in this way
are presented in Tables 11-17 and discussed in Section K2.

K. COMPARISON OF THEORETICAL AND
ACTUAL RESULTS

K1. Comparison of Univariate Frequency Distributions of
Test Scores

The theoretical and obtained univariate distributions of scores
(except for Test 8, which is very similar to Test 8) are compared
graphically in Figures 5 through 11, and numerically in the mar-
gins of Tables 11 through 17. Table 10 shows the means and stand-
ard deviations of all the distributions, together with a measure
of skewness,

1 N
ag = WZ(S—MS)?,’

where N = 136, and a measure of kurtosis,

N
B—3 = S(s—M,)*t—3.

Nogt
For a symmetrical curve, a3 = 0; positive values of a; result from
positive skewness, negative values from negative skewness. For a
normal curve, B, — 3 = 0; positive values of 8, —3 result from
leptokurtosis, negative values from platykurtosis.
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We may pause here for a moment in order to note a few facts
about the shapes of the obtained score distributions: (1) The test
composed of difficult items produces a positively skewed distribu-
tion of scores; the tests composed of easy items produce negatively
skewed distributions. (2) Leaving these three highly skewed dis-
tributions out of consideration, we see that Test 82 has a meso-
kurtic distribution and that all other distributions are at least
somewhat platykurtic; that the highly diseriminating items pro-
duce a much more platykurtic distribution than do the poorly dis-
criminating items; and that the most platykurtic distribution is
produced by Test 5, which is composed entirely of items of about
50 per cent difficulty. (3) Although the tests are not all of exactly
the same length, it is obvious that the tests that contain many very
easy or very difficult items yield scores with relatively small stand-
ard deviations, whereas Test 5, composed entirely of items of
medium difficulty, produces scores having a relatively large stand-
ard deviation; also there is a particularly striking difference be-
tween Test & (composed of 10 highly discriminating items), which
yields scores having a standard deviation of 2.44, and Test L (com-
posed of 10 poorly discriminating items), which yields scores hav-
ing a standard deviation of 1.59. These results are specific to the
tests at hand, but the conclusions reached appear to be capable of
considerable generalization.

The standard error of as for a sample of 136 cases drawn at
random from a normal population is 0.21, the standard error of
B: — 3 in the same situation 0.41. Several of the distributions of
test scores presented here are distinetly nonnormal, however, and
these standard errors cannot be considered to be applicable in these
cases. It should be noted, furthermore, that no test of the statisti-
cal significance of the difference between theoretical and observed
statistics can be made in the present situation, in view of the fact
that the theoretical values have been calculated from the observed
data in such a way as to obscure completely the number of degrees
of freedom remaining for any statistical significance test. It is not
even possible to set a lower limit (above zero) to the number of
degrees of freedom remaining.

This situation is actually not a disadvantage, since we are
really not concerned with the statistical significance of the dif-
ference between theoretical and observed distributions. It may
as well be admitted from the start that the assumptions underlying
the theory will never be completely fulfilled by any set of data and
that consequently statistically significant differences are bound to
be found if only enough cases are used. The real issue is whether
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or not the difference between theoretical and observed distributions
is of practical significance. Since this question cannot be reduced
to a statistical test, the reader can perhaps best satisfy himself
by a visual examination of the figures presented.

The standard errors quoted, however, can be used to throw some
light on the practical significance of the differences in question as
long as it is borne in mind that no significance test is being made.
In no case do the theoretical values of a; differ from the observed
values by an amount as large as the standard error of the observed
values in samples from a normal population. The same statement
may be made for the standard deviation of the test scores (¢); and
also for B., except in the case of Test 8, where the difference is
slightly greater than the standard error. In the case of the mean
(M), the theoretical and the observed values are in every case
identical within a margin of .01.

Chi-square values have been calculated for the difference be-
tween theoretical and observed distributions, as shown in Table
10. In the calculation of these values, enough class intervals at
the extremes of the distributions were combined to secure a theo-
retical frequency of at least 5 for each interval. It must be empha-
sized that these values do not provide tests of statistical signifi-
cance, since the degrees of freedom appropriate for this purpose
are unknown. The probabilities that the obtained values of chi-
square would be exceeded in random sampling are given in Table 2

TABLE 2

Probability that Certain Values of Chi-Square, Having the Specified
Degrees of Freedom, Will Be Exceeded in Random Sampling

Chi- Degrees of
Square Freedom Probability
3.6 (Test 2) 5 61
5.5 (Test 5) 7 .60
.8 (Test 8) 6 99
7 (Test 8') 6 97
3.8 (Test 82) 6 .70
18.4 (Test %) 9 03
2.0 (Test L) 6 92
31 (Test r) 7 .88

for the case where the population parameters are not estimated
from the data. These probabilities are higher than would be ap-
propriate if the difference between theoretical and observed fre-
quency distributions were being tested for sigmificance.

The only test that has a rather large value of chi-square is
Test h. The theoretical and observed distributions of scores on
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this test have means, standard deviations, and values of o3 and
B that are very much alike, however. Examination of the histo-
grams of these two distributions (Figure 9) seems to indicate that
they differ only in an unsystematic fashion. In fact, the theoretical
distribution seems to provide about as good a fit to the observed
distribution as could be desired in view of the irregularities of the
latter. The conclusion that these irregularities are the result of
sampling fluctuations and are not due to peculiarities of the test
items is borne out by the fact that another group of examinees,
drawn at random from the same population, obtained a distribu-
tion of scores on the same test that shows no trace of the toothed
appearance of the actual distribution in Figure 9.
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Theoretical and Observed Distributions of Scores on Test r
(Rectangular Distribution of Item Difficulty)

y FIGURE 11

K2. Comparison of Bivariate Frequency Distributions of
Test Scores

The theoretical and observed bivariate distributions of scores
on the pairs of tests investigated are compared in Tables 11
through 17. The dotted lines in the tables indicate how grouping
was carried out for the computation of chi-square. The grouping
was planned (without reference to the obtained frequencies) in
such a way as to obtain theoretical frequencies of at least 9 cases
in each cell, and also to maintain as regular a pattern of cells as
possible without excessively coarse grouping.

As before, no significance test is possible with these data. Table
3, however, gives probabilities for the obtained values of chi-square
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TABLE 3

Probability that Certain Values of Chi-Square, Having the Specified
Degrees of Freedom, Will Be Exceeded in Random Sampling

Chi- Degrees of
Square Freedom Probability
.6 (Tests 2 & 5) 6 99
1.2 (Tests 2 & 8) 5 94
7.2 (Tests 5 & 8) 6 .30
3.5 (Tests 5 & 82) 8 .90
54 (Tests 8 & r) 7 .62
48 (Tests 82 & r) 7 .68
3.3 (Tests » & L) 7 .86

that may be interpreted in the same fashion as the probabilities
given in Table 2. It is seen that each of the theoretical distributions
provides an adequate fit to the corresponding observed distribution.

Figures 12 through 18 present a graphic comparison of theo-
retical and observed regressions. The values for plotting these
were obtained by computing the means of the columns and of the
rows in Tables 11 through 17. The theoretical regression is shown
only for the range of scores within which accurate regression values
could be determined by means of the simple method of numerical
integration described in Section J4. No further statistics relating
to these regression lines have been calculated. Judging from the
diagrams, however, we may say that the theoretical regressions
seem to provide a good fit to the observed data.
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PART IV
SUMMARY AND CONCLUSIONS

The theory developed here expresses the various properties and
characteristics of test scores, in relation to each other and in rela-
tion to the underlying trait measured, as functions of the difficul-
ties and intercorrelations of the items of which the test is com-
posed. The formulations and conclusions reached will be valid
for any set of test data that is compatible with the assumptions and
restrictions made. The theory developed facilitates and clarifies
the interpretation to be placed on test scores as measures of a
mental trait; it aids in the prediction of the properties of the test
scores that will be obtained when a specified test is administered
to a specified group of examinees; it indicates how items should
be selected in order to construct tests that will have optimum
properties for specific purposes.

Expressed in the language of achievement testing, the assump-
tions and restrictions underlying the development (outlined in
Sections Al, 2, 3, and 4) were as follows:

(1) All item responses are scored either 0 or 1.

(2) The test score is the sum of the item scores.

(3) The matrix of tetrachoric item intercorrelations has a
rank of one when appropriate communalities are inserted in the
diagonal.

(4) The number of examinees is sufficiently large that sampling
fluctuations arising from sampling of examinees may be ignored.

(5) There exists a measure of ability such that the probability
of a correct answer to any item is a normal-ogive function (see
Figure 1) of the examinee’s ability. This assumption, if it holds at
all, provides the definition of the scale of measurement to be used
for measuring ability. (This assumption implies that the test item
cannot be answered correctly by guessing.)

(6) The frequency distribution of ability in the group of ex-
aminees tested is Gaussian. (This assumption may be dispensed
with in the majority of the derivations.)

The fifth and sixth assumptions may be replaced by the follow-
ing single assumption (discussed in Section A5): The 2" frequen-
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cies in the multivariate distribution of the item responses are such
as could have arisen by the dichotomization of each of the variates
in some normal multivariate population. A two-item test will
always be compatible with these requirements. In the case of a
longer test, it is always possible to test whether or not a given set
of data is compatible with these requirements.

On this basis have been derived formulas for the bivariate dis-
tribution of test score and ability (Section B2), for the univariate
distribution of test score (Section D1), for the univariate distribu-
tion of true score (Section E1), and for the bivariate distribution
of scores on two tests of the same ability (Section F1). Various
other expressions have been derived, including those for the re-
gression of test score on ability (Section B3), for the standard
error of measurement at a given level of ability (Section B5), and
for the curvilinear correlation of test score on ability (Section BT7).
In particular, an index was devised for measuring the diserimi-
nating power of the test at any specified level of ability (Section C).

Investigation of the formulas obtained leads to the following
conclusions, among others:

(1) The regression of test score on ability is necessarily curvi-
linear (Section B3 and also Figure 2). The actual effect of this
curvilinearity may be negligible if the items are at a difficulty level
appropriate to the group tested and if they are not too highly
intercorrelated (Section B8); only in this case may the metrie
provided by the test scores be considered as providing units of
measurement that correspond to equal units of ability, as here
defined.

(2) The standard error of measurement on a given test is ordi-
narily least for those examinees for whom the test is least dis-
criminating, i.e., for those examinees who obtain near-zero or near-
perfect scores (Section B5 and also the diagram for Test 2 in
Figure 2).

(3) The errors of measurement have binomial, not normal, dis-
tributions. Although they are uncorrelated with true score, they
are not independent of true score, since the standard deviation and
skewness of their distribution vary depending on the true score
(Sections E1 and E2).

(4) Maximum discrimination at a given ability level, as defined
by the discrimination index developed here, is provided by a test
composed of items all of equal difficulty such that examinees at
the given ability level will have a fifty per cent chance of answering
each item correctly (Section C2).
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(5) There are strong indications, provided the item intercorre-
lations are not extraordinarily high, that a free-response test com-
posed entirely of items of fifty per cent difficulty will, in terms of
the diserimination index developed here (58), be more diseriminat-
ing for practically all examinees in the group tested than will any
test characterized by a spread of item difficulties. If the examinees
have a normal distribution of ability, for example, the former test
will be the most diseriminating for all examinees except those
who are more than, say, two-and-a-half standard deviations from
the mean (Section C3 and also Figures 2 and 3).

(6) The shape of the frequency distribution of test scores or of
true scores (Sections D and E, and also Figures 4-11) does not
necessarily reflect the shape of the frequency distribution of ability.
Sufficiently high tetrachoric item intercorrelations (.50 or higher)
will produce rectangular or U-shaped distributions of test scores
and of true scores even for groups having a normal distribution
of ability. [The construction of tests that will produce rectangular
or U-shaped score distributions has been urged more than once in
the recent literature (8, 15); this goal can be approached, but its
actual achievement, when the examinees have a normal distribution
of ability, requires higher item intercorrelations than are at pres-
ent usually obtained with most types of test items.]

The foregoing conclusions have been derived here only for the
case where the test items cannot be answered correctly by guessing.
The case where guessing occurs has been formulated in detail but
is not presented here.

An empirical study of seven short tests has shown very good
agreement between the univariate and bivariate test score distri-
butions actually obtained and the corresponding theoretical dis-
tributions predicted from the item difficulties and intercorrelations
by means of the formulas developed for this purpose.



Item

1}

33
50
26
26
29
40

#*

36
50
62
20
29
10
19

3 5 1 2

33 50 26 26
28 15 15
28 4 15
15 44 32
15 15 32
52 24 27 20
46 53 * *®
28 300 * *
16 18 —02 22
51 38 03 —08
34 38 30 20
52 25 47 30
12 56 25 13
22 22 41 41
28 22 14 14

22 -10 40 19 -02

02
56
26
41
24
36
27
69
-08
®

08
37

09 -05 -16 24
05 32 51 30
18 51 43 24
43 42 31 21
14 10 27 27
54 34 12 34
24 04 32 51
38 36 41 41
34 -06 —-30 -13
28 12 31 *
16 33 25 43
10 26 04 35

3

29
52
24
27
20

37
15
36
52
22
25
-03
00
#*

19
-18
21
25
24
17
41
29
48
-02
48
10
10

5

40
46
53

&
®

37

20
36
27
59
53
21
33
33
36
10
28
50
06
19
45
36
51
-05
42
56
20

6
@

28
30

&
@

15
20

10
30
42
58
07
25
~-08
22
10
25
24
38
29
48
10
36
#

14
12
41

8

36
16
18
-02
22
36
36
10

10
04
19
17
—06
-07
07
04
11
17
01
28
08
15
26
+05
30
17
19

9 10

50 62
51 34
38 38
03 30
-08 20
52 22
27 59
30 42
10 04
15

15
19 34
17 38
00 30
-07 30
-01 34
23 01
00 52
24 28
32 27
16 24
36 47
05 23
32 44
08 -11
33 46
13 35
30 21

TABLE 4

Tetrachorie Intercorrelations Among Twenty-Eight Items (decimal points omitted)

11

20
52
25
47
30
25
53
58
19
19
34

17
09
28
—09
10
28
24
24
39
42
19
51
-17
33
38
37

13 16 18
29 10 19

20 39
22 02

12 22 28 -10 09

56 22 22
25 41 14

40 -05
19 -16

13 41 14 -02 24

-03 00 *
21 33 33
07 25 08
17 06 07

19 -18
36 10
22 10
07 04

17 00 -07 01 23

38 30 30

34 01

17 09 28 -09 10

23 08
23 02
08 02
08 09 07
18 03 10
37 15 25
33 35 10
12 22 39
18 30 18
48 10 26
33 27 30
52 13 13
04 -02 06
14 20 41
33 23 12
21 09 23

08 18
09 03
07 10
16
16
21 11
24 00
07 -08
08 01
22 30
43 17
39 23
01 08
17 -12
28 29
02 14

44

26
18
51
43
24
25
50
24
17
24
28
24
33
35
10
24
00
33

-05
32
26
38
39

-31
43
21

45

41
43
42
31
21
24
06
38
01
32
27
24
12
22
39
07
-08
40
05

26
56
33
35
-28
26
33

46

24
14
10
27
27
17
19
29
28
16
24
39
18
30
18
08
-01
20
32
26

03
12
40
-11
47
08

41 17 50

48

36
54
34
12
34
41
45
48
08
36
47
42
48
10
26
22
30
40
26
56
03

49
58
15
48

50

27
24
04
32
51
29
36
10
15
-05
23
19
33
27
30
43
17
32
38
33
12
49

39
—23
46

53 54

69 -08
38 34
36 ~06
41 -30
41 -13
48 -02
51 -05
36 *
26 06
32 08
44 11
51 -17
52 04
13 02
13 06
39 01
23 08
45 21
39 -31
35 -28
40 -11
58 15
39 -23
—04
-04
53 00

26 54 26 -15

25 -03 38 -07

* Correlations are not recorded in cases where there is zero frequency in one cell of the fourfold table.

55 56 57

* 08 37
28 16 10
12 33 26
31 25 04

* 43 35
48 10 10
42 56 20
14 12 41
30 17 19
33 13 30
45 35 21
33 38 37
14 33 21
20 23 09
41 12 23

17 28 02.

-12 =29 14
33 39 19
43 21 41
26 33 17
47 08 50
48 26 25
46 54 -03
53 26 38
00 -15 ~07

38 42
38 29
42 29
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TABLE 5

Item Difficulties and Common Faector
Loadings for the Items Included in Each of the Eight Tests

Ttem Common Factor Loadings of Test Items
Item Diffi- Test Test Test Test Test Test Test Test

No. culty 2 5 8 8’ 82 h L r

54 .088 —.093 ... —.093
6 .096 .490 490

18 .096 .332 ... e - .332 - .332 ...

55 162 .655 e . Ce .655 .655 .

48 176 715 e e e 715 715 cee ces
5 199 7 17 717
9 272 409 - .. . 409 ... 409 ...

11 272 581 Ce - .. 581 581 .o e
3 .338 .549 .. . .o - .549 - 549

40 434 ... .593 - . ... .593 ... 593

53 441 .800 .800
5 471 .. 595 - - v 595 cen 595

46 .485 .437 437

16 522 .352 352

10 574 . .640 v ve I .640 e .640

56 .610 483
3 676 476 476

44 713 .. e 531 531 531 - ... cee

57 721 e - 465 465 ... ces 465

20 735 o .. .324 324 ... ees 324

45 750 - .. 485 485 485 ... .. -

50 .801 530 530
8 .801 .. - 299 299 - ... .299 ...

13 .809 . - 466 .466 466 e 466
1’ .868 . Ce 654 .654 .654 654 v
1 882 .. e 481 481 481 cen e
2 .882 495 495

39 .897 C . 114 114 v . 114 -

No. of items: 9 8 11 9 10 10 10 9




Ttem
No. 1 3 ¥
1 -03 11
3 -03 -05
5 11 -05
1 -06 -11 15
2 -06 -12 -14
3 -02 26 -04
5 =07 07 10
6 * 01 01
8 16 —00 00
9 23 28 14
10 20 —01 -00
11 -18 20 -10
13 -02 14 28
16 -13 03 01
18 -03 10 02
20 01 28 21
39 -06 03 -12
40 17 28 03
4 -09 11 19
45 09 16 13
46 -05 -10 -16
48 -11 15 —08
50 —08 —-05 -28
53 17 06 -12
54 -02 39 -00
55 * 08 27
56 -24 -10 04
57 07 -16 —02

1 2 3 5

-06 -06 —02 -07
-11 -12 26 07
15 -14 -04 10
08 04 *

04 *
03

08
04 -04

* * 03
* % 08 -15
-16 07 22 15
-17 -28 32 -02
-01 -12 -08 13
19 01 03 11
03 -10 -25 -12
24 24 17 08
02 -02 * 09
03 -18 04 13
-22 18 -23 02
22 01 -07 -14
18 -02 00 12
08 —-03 01 -29
06 05 —04 -12
-22 -01 07 -06
06 25 04 —02

6
»

01
01
*

®

-08
-15

-05
10
11
30

-16
08

—24
06
04

—04

-02
14
08
13

-16

TABLE 6
Residual Correlations Among Twenty-Eight Items After Extraction of the First Factor
(decimal points omitted)

8 9 10 11 13

16 23 20 -18 02

-00 28 —01 20 -14
00 14 -00 -10 28

-16 -17 -01 19 03
07 —28 -12 01 -10

22 32 08 -03 -25

15 02 13 11 -12

-05 10 11 30 -16
-02 -15 02 03

-11 05 -02
-03 08
-10

—02
-15 -11
02 -05 -03
03 02 08 -10
-16 -14 08 -12 07
-17 -21 09 09 -08
-03 -14 13 -28 -07
01 18 -06 03 13
—07 -24 14 -06 09
01 02 —-06 -07 08
-14 12 -04 -04 -11
15 02 -04 14 -02
-13 07 01 00 15
-01 -27 -11 -12 08

02 01 10 —06 -03
-26 -08 02 02 *
-00 * 17 -05 —18

02 19 -13 21 -12
-18 12 12 -13 18

02
08
10
03
05

-01 -07 04 15
12 05 -12 08
06 03 -05 -16

07 04 10 10
11 -09 10 -01

16 18 20

-13 -03 01
03 10 -28
01 02 21
24 —02 03
24 -02 -18

=17 * 04
08 09 13
08 24 06

-16 -17 —03

-14 -21 -14
08 09 13

-12 09 -28
07 —08 07

-10 02

-10 —04

—02 -04

01 06 12

06 05 02
16 -08 07
05 23 -09
15 04 -06

-15 02 01
08 12 26

-15 -14 13
01 03 04

-03 19 -04
06 -04 12

—07 08 -13

39 40

06 17
03 -28
-12 -03
-22 22
18 01
-23 07
02 -14
04 04
01 -07
18 24
—06 14
03 06
13 09
-01 06
06 05
12 02
04

04
-06 02
-14 11
-06 06
22 -02
11 01
14 02
09 26
—20 -06
-34 10
09 -09

44

—09
-11
19
18
-02
-00
12
-02
01
02
—06
—07
08
16
—08
07
—06
02

-31
09
-12
10

45 46

09 -05
16 10
13 -16
08 06
03 05
01 04
-29 -12
14 08
-14 15
12 —02
—04 04
04 14
-11 -02
05 15
23 04
-09 06
-14 —06
11 -06
-31 09
05

05
21 -28
07 11

-04 ~04 05
-26 24 07
08 -06 18
-05 10 -13
16 06 30

48 50

~11 -08
15 05
-08 28
-22 06
-01 25
07 04
-06 —02
13 -16
-13 01
07 27
01 -11
00 -12
15 08
-15 08
02 12
01 26
22 11
-02 01
-12 10
21 07
-28 -11
11

11
01 03
22 -18
01 11
-08 28
08 -28

53

17
—06
-12

02

01

10
—06
—03

02
—01
-07

04

15
-15
-14

13

14
—02

54 55 56 57

02 *-24 07
39 -08 -10 -16
-00 27 04 -02
-26 -00 02 -18
-08 * 19 12
02 17 -13 -12
02 -05 21 -13
*-18 -12 18
08 10 03 05
12 06 -07 11
-05 03 04 -09
-12 -05 10 10
08 -16 10 01
01 <03 06 -07
—03 19 04 08
04 —04 12 -13
09 -20 ~34 09
26 -06 10 -09

-04 26 08 -05 16

-04
05
01

-03

03
01
~13
01

-24 06 10 -06
-07 18 -13 30
22 01 -08 -08
-18 11 28 -28
03 01-13 01
06 -10 —03

06 12
06

06
10
-03

06
12 06

* Residuals are not recorded in cases where there is zero frequency in one cell of the fourfold table. The nine unrecorded residuals are .68, .57,
.66, .76, .64, .76, .68, .84, and —.95.
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TABLE 7

Bivariate Frequency Distribution of Ability and Score on Test 5 (Items of Medium Difficulty) Showing Frequency per 10,000;
also the Marginal Frequency Distribution of Test Score (f,)

89

Test Ability Beore (c)

Score [—356 —30 —25 —20 15 —10 —0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 5
3 . . . cee 1 20 118 289 351 244 108 33 !
7 . .. eee 1 20 158 508 720 512 210 55 10 1
6 .. .. 1 13 124 524 945 763 309 72 11 1 e
5 .. ven cee 8 81 414 972 988 448 101 13 1 - .
4 cee cee 5 51 288 830 1103 634 159 19 1 ces ..

3 vee 4 34 191 614 1020 783 255 35 2 . .
2 ies 3 23 121 401 765 753 339 63 5 .. .

1 2 14 68 220 444 515 306 82 9 cee .

0 6 27 80 159 199 143 52 8 1 ves

SHYO0OS ISHL A0 AYOHHL V



Test
Score

e
oHpwhoeme D

T MWD, - L L

. [ .o
T Y T =R T WM

—2.0

37
82
125
130
93
45
13

—-15

3
25
96

213
309
305
208
98
31
6

1

TABLE 8
Bivariate Frequeney Distribution of Ability and Score on Test 8 (Eas;

y Items) Showin,

Frequeney Distribution of Test Score (fs)

-1.0

31
174
427
615
576
369
165

51

11

1

Ability Score (c)

—05

173
614
974
905
548
227
65
13
2

0.0

515
1182
1205

719

278

73
14
2

0.5

903
1329
865
328
80
13

1

1.0

992
934
386
92
14

g Frequency per 10,000; also the Marginal

15

725
438
114

17

2.0

370
144
24

25

136
35

3.0

3.5

fs

195
244
205

47
~. 095
- 057

1032

.| 016

007

.. 1002

- loo1
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TABLE 9
" Bivariate Frequency Distribution of Ability and Score on Test 82 (Both Easy and Difficult Items) Showing Frequency per
10,000; also the Marginal Frequency Distribution of Test Score (f,)

Test . Ability Score (e)
es ' : :
Seore |—35 —30 —25 —20 -—-15 —10 —05 0.0 0.5 1.0 15 2.0 25 3.0 35| f,
10 .. e 1 7 20 28 21 10 31005
9 .. - 3 22 82 149 137 71 22 51025
.8 .. vee 4 38 167 354 371 200 59 11 1060
7 .. e e 7 58 264 620 730 429 128 20 2 ... 113
SO A B 1 10 82 369 906 1170 766 249 40 3 - ....|180
- B, . 1 10 88 409 1052 1461 1063 390 70 6 e - ... |228
4 .. . 6 56 283 787 1193 964 401 82 8 ... e - ... 1189
3 3 27 143 432 718 644 302 71 8 ... 1137
2 1 11 58 185 335 - 334 176 47 6 ... | 058
1 4 19 60 117 128 . 76 23 4 ... 022
0 4 12 ° 24 28 19 7 1 ... 005

oL’
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TABLE .10

Comparison of Theoretical (italics) and Actual Statistics for the Univariate Score
Distributions for the Eight Tests, Together With the Chi-Squares Between
Theoretical and Actual Frequencies

Kinds of Chi- Standard Skewness Kurtosis

Test Ttems Square Mean Deviation (as) (B:—3)
) 1.70 1.73 1.0 0.6
2 Difficult 362 1 1.65 1.0 0.6
di 421 207 —01 —08
5 Bffﬁeﬂlﬁ, 551 4o 2.13 0.0 —009
8.86 183  —1.0 1.0
8 Easy 075 ggs 183  —10 07
- Easy and 5.00 1.81 0.1 0.0
82 Difhoult 385 oo 1.83 00  —02
Highly , 3.93 2.44 05  —0.6
h Discriminating 1842 Y03 2.46 04  —06
: Poorly 543 1.59 ~0.3 —04
L Discriminating 199 s 159  —0.2 —0.2
Rectangular 3.07 447 1.97 0.1 —0.7
¥ Distribution : 4.47 2.00 0.1 —0.6
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TABLE 11

Scattel.' Diagram for Test 2 (Difficult Items) and Test 5 (Items of Medium
Difficulty) Showing Actual Frequencies (integers) and Theoretical

Frequencies (decimals)

Score on Test 2

Score on Test 5

0 1 2 3 4 5 6 7 8 | Total
9 :
8 01 01| 03
7 . 1 2 3
01 04 05| 11
6 |- 1 ... 1 2
. 03 05 11 11| 30
5 3 2 .. 5
01 03 07 14 19 15| 58
4 | e e 1 .. 2 .. 3 2 2|10
e 01 04 i 08 16 24 27 16| 98
1 1 2 3 5 3 3 2| 2
3 01 05 12 23 33 38 31 15| 159
. 2 2 2 4 4 6 .. 1|2
2 103 10 22 35 48 52 | 46 30 11| 256
1 3 13 8 6 4 5 1 .| 3
1|12 34 57 71} 71 58 { 39 19 05| 367
4 5 | 6 10 9 5 4 1 .| 4
0 |31 67! 83 76 58 37 i 19 07 01| 379
5 11 13 22 24 18 25 10 8 .o .
Total | 46 112 169 200 211 205 188 150 82—
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TABLE 12

73

Scatter Diagram for Test 8 (Easy Items) and Test 2 (Difficult Items) Showing
Actual Frequencies (integers) and Theoretical Frequencies (decimals)

Seore on Test 8

Score on Test 2

0 1 2 3 4 5 6 7 8 Total
3 5 4 5 4 2 2 1 .. 26
11 |20 44 | 52 50 42 30 1.8 07 01 26.4
7 5 10 6 4 1 .. 2 35
10 (53 82 i 76 56 35 19 08 03 332
19 8 .. 5 1 2 .. 25
9 |73 87 61 33 16 07 03 28.0
|10 6 4 2 22
8 175 68 35 15 05 01 20.0
7 3 . 2 1 13
7 163 44 16 05 0.1 12.9
4 3 1 .. 8
6 |45 24 07 01 7.8
|3 U | 4
5127 12 03 42
g | 1 .. 1
15 05 01 22
g |0 o 1 1
07 03 1.0
1 .- 1
2 103 . 0.3
1 .
0 .
|44 31 21 20 0 5 2 3 .. .
Total|381 369 252 160 101 57 29 10 01 .. |N=136
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TABLE 13

Scatter Diagram for Test 8 (Easy Items) and Test 5 (Items of Medium
- Difficulty) Showing Actual Frequencies (integers) and Theoretieal
Frequencies (decimals)

Score on Test 8

Score on Test 5
0 1 2 3 4 5 6 7 8 Total
e e b .1 18 8 15 4| 2
1 03 07 { 16 29 | 45 58 | 63 44| 264
1 .. 1 415 7 i6 8 {3 a3
10 | o1 08 22 | 38 54 | 64 65 52 26| 330
I 76 3 6 2 .| 25
04 16 34} 49 54 | 50 39 23 08| 279
g |1 3 4 8 3 12 o | 22
07 22 35 42 38 ! 29 18 08 03| 201
;|1 3 3 1 4 1 13
08 22 30 29 20} 12 05 03 12.9
6 2 2 13 8
08 18 2.0 15 1.0 04 0.1 7.6
s | 2 2 4
07 12 11 07 03 ; 01 41
gl 1 1
05 07 05 03 01 2.2
g | o 1 1
03 03 01 01 0.8
1 1
2 101 01 .. 0.3
1
0 . §
5 11 13 22 2 18 25 10 '8
Total| 45 11.2 166 20.0 209 205 188 148 80| N=136
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TABLE 14 ,
Secatter Diagram for Test 8 (Easy Items) and Test r (Item Difficulties
Rectangularly Distributed) Showing Actual Frequencies (integers)
and Theoretical Frequencies (decimals)
Score on Test 8
0 1 2 3 4 5 6 7 8 9| Total
e 1 1
9 § 01 05 14| 20
e 1 5 3 9
8 01 07 24 42| 75
1 2 5 7 15
7 0.1 0.5 290 49 61 137
6 3 4 11 | 18
. ' 01 04 : 15 39 71 65| 19.6
E 1 i1 4 (12 3 |2
2 03 11i{ 29 57 i 78 54| 231
© . e 1 4 9. 4. 4 1 23
§ 01 07 290 42 6.5 68 37| 241
2 o e 1 2 5 9 9 1 |27
. 01 04 14 29 46 56 46 19 215
2 1 e 1 2 2 4 4 1 1 |16
) .. 03 07 16 27 34 33 22 0.7] 148
1 S T | 1 1 1 e el 4
01 03 07 12 15 15 12 05 0.1 72
0 LR oo 1 1 “ee “oo voe 2
01 03 04 04 0.3 01 0.1 1.8
eee 1 e 2 5 11 21 28 40 28
Total| | 01 08 22 57 112 190 202 37.0 30.1|N=136
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TABLE 15

Scatter Diagram for Test 82 (Both Easy and Difficult Items) and Test 5 (Items
of Medlum Difficulty) Showing Actual Frequencies (integers) a.nd
Theoretical Frequencies (decimals)

Score on Test 5

1 2 3 4 5 6 7 8 | Total
. N | 1
10 01 03 03| 07
e 1 1 2 4
9 01 03 07 11 12| 34
e e 14 1 .| 6
8. 01 05 11 19 26 19| 82
e 12 2 4 5 2 | 16
7 01 03! 08 18 & 29 38 37 20| 154
& e eee ... 1 3 B 5 5 2 3 | 23
- 6 101 05 14! 27 42 i 52 52 | 37 15| 245
& 1 1 6 3 7 709 1 .| 35
g 5104 16 35 54 63 | 58 45 24 08|°309
g 1 2 2 {10 2 3 1 . 21
S 4 108 29 48] 56 50 i 37 20} 10 03| 260
11 5 3 i 4 7 1 21
3 |12 30 38> 34 24 14 05 % 01 15.9
2 1 1 1 1 6
2111 20 20! 14 08 03 01 78
e 2l 2
1107 10 07! 04 01 29
e 1 1
0 {03 03 01 07
5 11 13 22 2 " 18 25 10 8 _
Total 46 114 166 199 214 205 189 148 80 |N=136
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TABLE 16

Seatter Diagram for Test 82 (Both Easy and Difficult Jtems) and Test » (Item
Difficulties Rectangularly Distributed) Showing Actual Frequencies
(integers) and Theoretical Frequencies (decimals)

11

10

Score on Test 82
o

Total

Score on Test r

0o 1 2 3 4 5 6 7 8 .9 | Total
e 1 1
01 03 01} 05
e e e 12 1| 4
01! 03 05 10 11 05| 35
e 1 . 2 1 2 .| s
01 04 | 11 18 23 19 05| 82
1 ..t 5 4 {5 1 .. 16
03 07 18 30 38 i 34 20 04| 154
e 1 3 1 6 6 3 3 .. o°23
03 10 24 44 | 57 531 35 15 03| 243
cer . 4 5 10 7 5 4 ... .| 3
01 08 27! 53 71 | 68 48 | 23 07 01| 307
e 12 9 6 2 1 2
03 16 41 60 60 | 44 23 ! 08 01 25.6
1 2 5 7 4 1 ... i1 21
04 19 37! 41 31 18 07 ! 01 15.8
1 1 2 1 1 6
05 16 23! 19 11 04 01 8.0
e a1 1 .. 2
04 08 1.0 ! 05 03 01 31
e a1 . 1
01 03 01 01 . 7
2 4 16 27 28 21 18 15 9 1 | .
19 73 151 212 242 235 193 136 7.6 20/N=
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TABLE 17

Secatter Diagram for Test L (Low Validity Items) and Test 5 (High Validity
Items) Showmg Actual Frequencies (integers). and Theoretical
" Frequencies (decimals)

Score on Test L
0 1 2 3 4 5 6 7 8 9 10| Total
e e i1 1
10 01 03 0707 03 2.0
0 U | 2 2 . 2 7
01 04 10 1512 03 45
8 3 1 4
03 08 18 231i 15 03 6.9
e .. 3 2 8 2 .. 15
00 05 15 29 30: 16 03 9.9
< & 2 3 1 6
< 03 10 24 39 35: 15 03 12.9
8 138 5 {6 4 i2 . 20
5 5 01 05 16 37 | 48 35! 14 01 15.8
E 4 W .l 2 3 12 2 i3 .. 11
K 03 10 27 48 | 53 33! 11 01 185
_ 1 6 2 8 7 4 28
3 04 16! 38 57 | 52 27 07 01 20.3
. 1 3 5 6 {4 5 1 25
2 01 08 26 . 49 57 | 42 18 04 20.5
. 1 3 4 1 1 1 11
1 03 14 31 46 44 | 26 08 01 17.3
1 1 1 3 1 1 .. .|l 8
0 03 10 18! 19 14 | 07 01 171
_ 1 4. 13 19 30 31 28 8 2 .. )
Total 0.7 39 11.0 215 309 325 233 102 18 .. . |N=136




APPENDIX

SUMMARY OF NOTATION

A(y,) = f N(y)dy = the area of the normal curve lying above
arfy given point y,.

A (Uov,;7) = f f N,(u,v;r)dvdu (the frequency in a specified
region of the bivariate normal distribution).
B(y,) =1— 4(y,)-
¢ = the ‘‘underlying ability measured by the test’’; the com-
mon factor of the matrix of tetrachoric item intercorre-
lations.
D = the discrimination index at a specified level of ability.
e = the base of the system of natural 1ogar1thms
exp(y) = .
E (y) = the expected or average value of any variable, y
fu = the bivariate frequency distribution of any two vari-
ables, # and v.
f. = the univariate frequency distribution of any Varlable, .
fu» = the conditional frequency distribution of any Varlable,
u, for a fixed value of another variable, v.
- I, = the cumulative frequency distribution of t
h,— Ry
9= K,
h, = a measure of the difficulty of item ¢, defined in terms
of p; by the relation p;, = 4 (h,).

t = subseript indicating the ¢-th item; ¢ =1,2, ..., n. In.
M, o, s, ete., t is used to stand for z,. '

j = subseript 1nd10at1ng the j-th item; 7=1,2, ..., n In
M, i Tiy Tios € ete., j is used to stand for ;. '
=v1=RE.

k = the number of ch01ces In a multlple ch01ce item.
M, = the mean of any variable, y.
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M, , = the conditional mean of any variable, «, for a fixed value
of another variable, v; the regression of % on v.
M(c) = M, = the mean of the values of P; for any given value

of c.
n = number of items in the test.
N(y) =__1:e —%¥*= the normal probability density function
T .
for a standardized variable y; the normal curve ordinate
- at any point, y. _
N(y;M0) = exp| — —1—(y — M)? | = the normal frequency
o
function of any variable, y, with mean M and standard
deviation o.
1 w? + v —2ruv ] .
Ny(up;r) = —_——exp| — = the normal bi-
Ry e S

variate frequency function for any pair of standard-
ized variables, # and v, whose correlation is 7.
= the ‘‘item dliﬁculty” the proportlon of all examinees
answering item 4 correctly.
P, = A(g,) = the probability that an examinee at a given
level of ability will answer item 4 correctly (P;1is a funec-

tion of ¢).
- g=1—p;
Qi:]-_P“

7., = the correlation between any variables, » and v (except
-where otherwise indicated).
i r,, = the parallel-forms reliability of the test score.
r,, = the product-moment (point-biserial) correlation between
¢ and z;.
/ R, = biserial correlation of #; and ¢; loading of item ¢ on the
- common factor (c), as calculated from the matrix of
tetrachoric item intercorrelations.
r,/ = tetrachoric correlation between items ¢ and j.
ry = the product-moment (fourfold-point) correlation be-
tween z; and z;.

n
s = 3z, = the test score.
t = Lim 2z = the ‘‘relative true score’’; the proportion of

correct answers on an infinitely long test.
# = any variable.
v = any variable.
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x; = the score on item 4; ;= 0 or 1.
y = any variable.

8 ) . .
g=- = the ‘‘relative score’’; the proportion of items an-

swered correctly.
7, = the curvilinear correlation or correlation ratio of test
score on ability.
1I,, 11, _, (see explanation of Equation 12).
o, = V/p:iq; = the standard deviation of z;.
o, = standard deviation of any variable, y.
3* (see explanation of Equation 12).
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