Institutionen fOr datavetenskap

Department of Computer and Information Science

Final thesis

Automated Validation of
User Equipment Connection States

by

Abdul Qudus

LIU-IDA/LITH-EX-A--14/065--SE

2014-12-01

Linkopings universitet

_ /

Linkdpings universitet Linkdpings universitet
SE-581 83 Linkoping, Sweden 581 83 Linkoping

Final Thesis

Automated Validation of
User Equipment Connection States

by

Abdul Qudus

LIU-IDA/LITH-EX-A--14/065--SE

2014-12-01

Supervisor: Erhan Ozurk

Examiners: Kristian Sandahl, Johan Aberg

ABSTRACT

Telecom today has become an essence of life. Everywhere we see people using their smart
phones for calling, checking email or accessing internet. To handle all these kinds of services
without any intrusion is a very challenging task. This study deals with software testing which
helps to ensure the quality of service to the end user. Software testing is an essential part in the
software development process. Software development for telecom domain might not look as
safety critical as of an airplane or nuclear reactor but it is arguably more complex. The main
focus of this study is to provide automation to the unit testing of different types of radio
connections that can be assigned to the end user based on the requested service and capacity of
the 3G network. This research is sponsored by Ericsson to improve the testing of User
Equipment Radio Connection Handling system that controls multiple possible radio connection
configurations. This research attempts to identify and test all possible transitions between radio
connection states. This will improve the existing manual state testing system, where changes in
connection states cause dramatic impacts on test fixtures. As a solution, an automatic test case
executor is proposed that generates possible transitions, which are later executed and verified
automatically.

ACKNOWLEDGEMENTS

First of all am very thankful to my parents and my wife for their constant support in every part
of life and during my studies, without their support completion of this work would not have be
possible. Research and implementation is not an easy task and cannot be done without the
support of others in which I would highly appreciate the effort of my examiners Kristian
Sandahl and Johan Aberg who were always there to assist me even with their busy schedules.
Efforts of my supervisor Erhan Oztuk cannot be ignored for his continuous support to me in
clarifying ambiguities and guiding me when I felt a bit lost. My team at Ericsson helped me a lot
in providing me feedback especially Antonio Fiallos. Special thanks to Philip Frick & Johan
Sjoberg who helped me in realizing the state transition table generator. Finally I would like to
pay sincere regards to my Managers for been flexible with my work so I can dedicate more time
to this research.

ii

TERMINOLGIES AND CONVENTIONS

Following conventions have been used throughout the report:

1.

w

o

Term “RNC Connection Handler” will be widely used throughout the report, which only
refers to the part of software that handles the connection configuration and transition of
connection states.

Initial state, start state and source state are used interchangeably.

Final state, end state and target state are used interchangeably.

RAB is a widely used term especially in Chapter 6, 7 and 8 which stands for Radio Access
Bearer.

RAB Establish, RAB_EST and RE used interchangeably.

RAB Release, RAB_REL and RR used interchangeably.

Channel Switch, CH_SW and CSW used interchangeably.

iii

TABLE OF CONTENTS

2 01 =T PSP i
ACKNOWIEAZEIMEINLES ...vuvcvaeeereesreessees e s essess s s s s s R R s e ii
Terminolgies and CONVENTIONS ...cuercrreesiesrereessersersesse s sessses s sesssssssessssssss s sssssssssessaees iii
BN 001 oY 0 ot U) o 0P 1
0 1 0] 7= o o) o 1
1.2 RESEAICH OVEIVIEBW ..o sees st ss s s s 1
1.3 System UNder TeSt (SUT) . sesssesssesssesssssssesssssss s sssssssssesssssssesssssssssssessssssssssssssssasees 3
1.4 ReSEAICH QUESTIONS . ..ouuiieerersetsresessetssrs s se s s bbb s st 5

2 STALE MACKINES ..t s s RS peR RS SREeREeRenEnnns 6
2.1 Finite State Machine (FSM) ... sess s sessses e sesssssssesens 6
PN v\ (T2 o R 0 =Y 0 1) o PP 6
S BN w1 (I 254 0] (03 1o 010 53 o]] (=) o VN0 7

3 SOFEWATE LESTINEG c.oueereereeerserereee s e ses s s e s s e R R s 11
3.1 MANUAL TESTINE wcvuceeereerreemeesreesrerseesressss s ses s sesssses e sss s e s s s s 12
3.2 AULOMALEA LESTING coueeueeeeeeesreesre e s s e s s e s s s s s 13
3.2.1 Symbolic Execution and test cases geNeration. ... sessssessesssesessesees 13
3.2.2 MOdel-DasSed tESTINE.....couurerrerrerrerrereereer e sessses s s s s ss s s s sesse s sasesaes 15
3.2.3 Data Driven TeStiNG....ssssssssssss s sssssssssns 17

4 UMTS OVEIVIEW wouitiieisiiisssisss st st s s s s b b s 18
4.1 UMTS ATCHITECTIUTE ... veieeereresereeeeseer s sessssesse s ss s s ss s s p s snn s 18
4.2 RAB and RAB combinations (UERCS) .. sessssessesssssssessesssssssesssssssssssssessssssesans 19
4.2.1 Radio Access Bearer (RAB) ... sesssssssessssssss st sessssssesssssssesans 19
4.2.2 RAB Combinations (UERCS) ..o essesssessssessessssssessssssssssesssssessssssessssssesans 22

ST 1= o 4 Lo 6 (o] (o] -0 23
5.1 ADNALYSIS ciruirereereerees s sess eSS R R R R e 23
TN D T ¥ o LT 23
LTI N 272 LD L o) o PP PP 24

(ST o5 (o 03 1<) o B DT Yol) 0]) o PP 25
7 Solution sketch and IMPlemMeNtatioN.. ... ssseees 28
7.1 Data Extraction and Transition table GENeration......... s 29
7.1.1 Establishment and Release GrOUPcoueeereeeesmeeersessessssssessesssesssesssssssesssssssesssssssessesses 31
7.1.2 Channel SWIitChiNg GIOUP ..o sesssesssssessss s sesssesssssssessssessesssssssesasssaes 32
7.1.3 Implementation of Transition Table GENETrator........ e remseessesssesesseens 34

7.2 Automated teSt CASE EXECULOT ...t s s s ss s sss s sasesaes 36
721 SIIMUIAEOT oottt ss s s s e s p s e 36
WA =5 (01 1L 0) 40

iv

7.2.3 Working of TeSt Case EXECULOTcrerrereerreemeesrensesssesssessssssessssssessessssessesssssssesssssssesssssssssasesses 41

8 Research Outcomes and EValuation ... sesssses s sessssssseees 43
8.1 Main OULCOIMES ..ot b b b bbb 43
8.1.1 In depth study of the ProbIEM. ... eees 43
8.1.2 Implement the sketched solution on a small Scale. ... 43
8.1.3 Effectiveness of the Proposed SOIULION. ... ssssseseesssesenes 45

LS T2 Y 1D U (o) o PP 47

LS 070 SR O 101w 010U oY1 U E= o) o PP 47
8.2.2 Implementation COMPLEXILY ... ererreereerremsresreeseessesserssssse s sesssss s ssssssssseees 47
8.2.3 Maintainability OVErhead. ... ss s ssssenes 48

L0 DTS00 17 o) 52
15200 R 2§ (=T (o) o U3 PP 52
0.2 LIMILAtIONS i s b 53
0.3 FULUTE WOTK oot ees s s s s s e e 53
0.4 EthICAL ASPECES coueererreeseeseesrersseese e es s s ss s R s R s e 53
9.5 ENVIroNmMENtal ASPECES ..oveuiruerrerresereerseesseesseessesssesse s sssssssesssssssessssssssssssssssssse s sssssssssseees 53
O 03 o) U] () USSP 55
I =10 (== o) 4 PSSP 57
12 GLOSSAIY courrueruerreesseessessseessessse s ssesssssseesse s sessse s s R RS SEEEREEeEReR R R R 59
13 LISE Of FIGUIES ot ss st sess s ssss s e s s s 60
S 19 U]) 1= o) (=T3PPSR 61
PN 0] 013 16 G NPT 63
A-1 To0OIS aNd LANGUAZES ..eureeerueeereerseesseesseessessseessessssssssssesssessessssssesssssssesssssssessssssssssssssssessssessesssssssesasesanes 63
A-2 UERC REEITICE Il ot s s 63

F S T - 1 W 00 o (= S PO PSP TSP 66
3-a. State and RADSJAVA .. s s s ss s 66

3-b. TransSition ANALYSIS.JAVA .. sesssessessssssesssessssssse s sssesssesssssssesssssssesssssssssasssaes 68

1 INTRODUCTION

This chapter contains the motivation, basic overview of the whole study. It will give a glance of
what the problem is, how it will be dealt with and what are the goals of this research.

1.1 MOTIVATION

Information Technology and Computer systems are playing a vital role in day-to-day life.
Technology around us is incorporated with computers in one way or the other and this has
increased day by day as new technology enters the market. Thousands of hardware and
software applications are involved in everyday activities like cars, air planes, traffic control
systems, medical & health care equipment, power plants and many more. Most of these
applications are safety critical and failure in such an application can be catastrophic. Hence
proper functioning of these applications is not only to secure business interests but also to keep
the environment secure for others. [1]

1.2 RESEARCH OVERVIEW

This research is to improve the basic test framework of Radio Network Controller (RNC), which
is one of the most complex network elements in UMTS (Universal Mobile Telecommunication
System). The purpose of this research is to ensure that all the transitions among connection
states are tested properly. RNC is a central unit that controls multiple Radio Base Stations (RBS).
For companies like Ericsson product shipment is time critical while keeping the quality of the
product at its best very little margin to leave faults in the software. To make it possible, a lot of
effort is required to develop working RNC software based on the market trends. But how can it
be assured that the developed software is performing exactly what it has been designed for? Has
the software been tested enough before release? Have the different sets of configuration been
tested? These are the questions that are related to software testing which is one of the biggest
dilemmas in the software development process. [2] [3]

Regardless how effectively and intelligently any software has been designed and implemented;
there will always be unforeseen defects present. These defects will appear once the software is
put into practical application. Even though some of the defects were removed during coding
while other were fixed during formal testing. It is not possible to overcome all the errors as they
are not visible with limited scope of any testing setup [2].

Kanglin mentioned in [2] “In April 1999, a software defect caused the failure of the Cape
Canaveral launch of a $1.2 billion military satellite. This has perhaps been the most expensive
software failure in the history of the software industry. It subsequently triggered a complete
military and industry review of the U.S. space launch programs, including software integration
and testing processes.”

The author further highlighted the event that happened at NASA in [2] “You may still remember
the loss of the NASA Mars Climate Orbiter in space in October 1999. That was due to the failure
of a part of the software to translate English units of measurement into metric units. In 2002, I
developed a module for an optical test instrument that validated there would be no mixture of
such measurement units. If the Mars Climate Orbiter had developed such a module, the
spacecraft would have been in orbit to this day.”

Reading the above failure cases, one can understand the reason that the software which usually
fails after release contains numerous bugs which were not identified properly during the
development. The reason might not only be that the software development process was chosen
poorly or not implemented properly. But it could have happened due to the lack of required
amount of testing which is a key component. Testing is indispensable for software development
but is expensive both in terms of cost and time as the authors says in [3] [4] that it can often
take more than 50% of development cost. Organizations like Ericsson, Motorola, IBM, Microsoft,
Apple are willing to put much of their development effort on testing the software; still there is
not guaranty that the software will be defect free.

One common misconception to make certain that the software is thoroughly tested is code
coverage. Higher code coverage indicates a better tested software as most of its decision
branches are covered. This is true up to some extent but not in all the cases. Sometimes code
coverage is very high even close to 100%, but it is does not mean that everything is tested and
ready for release. Software may have all the branches and decisions covered but there can be
some special cases, when using different set of inputs, code covers the same branches but
behaves abnormally. e.g.

Element element () ;
if (Conditionl == A)

element.addProperty (X) ;

if (Condition2 == B)

element.addProperty (Y);

if (Condition2 == C)

element.addProperty (Z)

In the above example 100% code coverage can ensure that all the conditions are tested. What if
property X and property Z are mutually exclusive so only one can be active at a time? This can
end up in a critical system error even though there is full code coverage.

Another point is manually adding testing cases is a laborious task [5]. This is a basic approach
that is used when there is no automated way of generating test cases. The problem here is only
basic functionally can be tested as it is a laborious task for the developer to manually add test
cases to cover all possible combinations of input especially when the size of the input has
polynomial increase on possible outputs.

Based on the inputs to any function the outputs may vary. It gets troublesome for the developer
to cover all the logic when there is a large combination of inputs. One solution is to automate
the task; that is to parse all the inputs, to generate all possible combinations of test cases.
However this can be complicated. Determining the right combination of inputs might not be as
simple as it sounds, especially when multiple constraints must be considered. Test case
generation is a very demanding task and requires most of the effort among other testing
activities; it has a very critical impact on the effectiveness and efficiency of the testing process

[3].

1.3 SYSTEM UNDER TEST (SUT)

This research is sponsored by Ericsson. The system which is under analysis is an RNC software
block which handles the connection states of the UE (User Equipment). It will be referred as
“RNC Connection State Handler” in this research. The UE can be either in Idle or Active state. In
Idle state, the UE is not transmitting or receiving any data, whereas when active it can be in any
of the states with either voice or internet or both services are used. The UE can transit between
these states based on its activity. The primary goal is to reduce the complexity of a test suite by
using test automation technique. The system is described using state machines where there is a
set of states and a number of events that triggers transitions from one state to another. The
problem with the system is that it suffers path/state explosion. Based on the inputs triggers,
there can be several outputs transitions; i.e. from one state there is a possibility to go to many
other states.

Figure 1-1 shows an example of a very basic state machine, which consists of only 3 states. The
circles are the states and the arrows represent transitions and each transition is triggered by an
input event or trigger (Chapter 2).

S1

S2

FIGURE 1-1: SIMPLE STATE MACHINE

Even a small state machine can be complicated considering the possibility of going from one
state to all other states with certain exception.

S1

FIGURE 1-2: 3-STATES STATE MACHINE

Consider adding one more state in this system with the possibility that transitions to and from
the new states is possible to all other states, the state machine will become something as shown
in Figure 1-3;

\ 4

w

FIGURE 1-3: 4-STATES STATEMACHINE

The above figures illustrate the increased complexity of the system just by adding a new state.
This is called the state/path explosion problem. The RNC Connection State handler consists of
more than hundred states (Chapter 6) so the number of possible transitions within the system
become very large. To test these transitions with manually written test cases will be tedious and
time wasting, thus requires some smart automation for testing.

1.4 RESEARCH QUESTIONS

A basic approach to understand the problem in hand is to identify the questions that need to be
answered during this research. The problem has been briefly explained in the previous section,
detailed problem description is given in Chapter 6.

This research comprises of the following questions:

* Is it possible to automate the basic test framework to traverse maximum possible
transitions?

* (Can the automated test framework adapt to the changes in the system, such as addition
or removal of states?

¢ Will this automation be effective both in terms of time and cost?

2 STATE MACHINES

This chapter gives some basic understanding of state machines and state explosion problem
that is required for this research.

2.1 FINITE STATE MACHINE (FSM)

Finite state machine (FSM) is widely used in a number of daily life applications: turnstiles,
garage doors, coffee machines, coin-operated machines, traffic signal controllers etc. All these
are examples of practical implementation of FSM. Beside this FSM is widely used in software
development to parse formal languages for example: an application that can search and
determine if one string is a sub-string of another. [6]

A basic consists of following elements

e States
¢ Transition
e Transition Table

2.2 STATES AND TRANSITIONS

token

unlocked
token

push

push

FIGURE 2-1: STATE MACHINE OF TURNSTILE

Figure 2-1 is an example of a very simple state machine of a turnstile [6]. The round ovals are
the states and there are two states in this machine;

e Locked
e Unlocked

Locked is the start state whereas unlocked is an intermediate state. At each state there are two
possible events/triggers

e Push
e Token

Both the triggers give different outcomes based on the state that the trigger is originated. At the
locked state, if a person tries to push the turnstile, it will stay locked no matter how many times
it is pushed but if a token is entered to the turnstile it will go to unlocked state.

At the unlock state if a person enters another token, it will still stay on the unlock state but if the
turnstile is pushed and the person walk through, the turnstile will to back to locked state.

All these transitions can be represented in a form of a table known as state transition table or
state/event table.

TABLE 2-1: TRNSITION TABLE OF TURNSTILE [6]

Current State Trigger/Event Next State
Locked Token Unlocked
Locked Push ----
Unlocked Token ----
Unlocked Push Locked

2.3 STATE EXPLOSION PROBLEM

Problem with Finite State Machine (FSM) it suffers from state explosion [7]. In an event/trigger
driven system, the possibility of having multiple input events on a single state that results in
different output leads the system in to state explosion. In this way the increase in state
transitions is polynomial based on all possible input triggers, as for each trigger a unique
transition path has to be defined [8].

Let’s take an example of a simple 3-state FSM as in Figure 2-2. Each state in FSM represents a
state on which the system can be at any instance of time. Keeping in mind the state explosion
explained by Ferdinand and Ruedi [8] desired FSM will be like something below;

remove(b) remove(a)

FIGURE 2-2: 3-STATE FSM

TABLE 2-2: TRANSITION TABLE FOR 3-STATE FSM

Current State Trigger/Event Next State
N Add(a) Sa
N Add(b) Sb
SO Remove(a) -=--
SO Remove(b) -=--
Sa Add(b)
Sa Add(a)
Sa Remove(b) -=--
Sa Remove(a) SO
Sb Add(a)
Sb Add(b)
Sb Remove(a) -=--
Sb Remove(b) So

SO is the start state in this FSM, on event add(a) the FSM is now in state Sa. From this point only
possibility is remove(a) which will take the machine back to S°. Same case goes for state Sb. Now
adding one more state Sab as shown in Figure 2-3. Transition from S2b is possible to both Sa and

Sb,

FIGURE 2-3: 4-STATE FSM

TABLE 2-3: TRANSITION TABLE FOR 4-STATE FSM

Current State Trigger/Event Next State
SO Add(a) Sa

SO Add(b) Sb

SO Remove(a) -=--

SO Remove(b) -=--

Sa Add(b) Sab
Sa Add(a)
Sa Remove(b) ----
Sa Remove(a) So
Sb Add(a) Sab
Sb Add(b)
Sb Remove(a) ----
Sb Remove(b) SO
Sab Add(a)
Sab Add(b)
Sab Remove(a) Sb
Sab Remove(b) Sa

In the above described FSMs, comparison between 3-state FSM and 4-state FSM shows that the
number of possible transitions has increased from 4 to 8 with the increase in the number of
state from 3 to 4. If two more states Sc and Sbc are add, the number of transitions will increase
even further and there will be more outgoing and incoming transition on states SP and SO as

shown in Figure 2-4: 6-State FSM.

FIGURE 2-4: 6-STATE FSM

TABLE 2-4: TRANSITION TABLE FOR 6-STATE FSM!

Current State Trigger/Event Next State
So Add(a) Sa
N Add(b) Sb
So Add(c) Se
Sa Add(b) Sab
Sa Remove(a) SO
Sb Add(a) Sab
Sb Add(c) She
Sb Remove(b) SO
Se Add(b) She
Sc Remove(c) SO
Sab Remove(a) Sb
Sab Remove(b) Sa
She Remove(b) Se
Sbe Remove(c) Sb

From the above table, it can be observed that increase in number of states increases the number
of transition in the system. But there are also other factors like number of events/triggers
possible on the state. Each event leads to a new transition, so more event on each state, more

possible outgoing transitions.

Similar is the case with the RNC Connection State Handler in which there are more than 100
states and a large number of transitions are possible in between those states. Detailed

explanation for the problem is given in Chapter 6.

1 Only valid transitions are shown in this table.

10

3 SOFTWARE TESTING

Software testing is the process to check any software whether it works according to the
requirements and while doing so does it show an abnormal behavior. IEEE Standard Glossary of
Software Engineering Terminology defines Testing as:

“The process of operating a system or component under specific conditions, observing or recording
the results, and making an evaluation of some aspects of the system or components” [9]

This is one of the major fields in Software industry which is indispensable for software
development process [3]. Untested software will not only work in an incorrect manner but will
also affect customer satisfaction and trust towards the software and its developer.

Software testing is a very vast field and cannot be covered in one chapter, only a brief overview
of some aspects like types and levels of testing is explained.

One of the methods of software testing is the boxed methods, and there are three types of boxed
methods of testing [9]

1. Black box:
It is done solely based on the requirements and specifications of the software, no
implementation details are needed.

2. White box:
It is based on the internal path structures and how is the software implemented. This
compliments the black box testing and required programming skills to implement.

3. Grey box:
This is a hybrid type of black box testing in which only we peek in to the box to get the
basic understanding of implementation so that effective black box testing can be
performed.

Regardless to what every method is selected for testing, there are different levels a software can
be tested, most commonly used are [9];

1. Unit:
Unit is the smallest possible piece of code in the software that is doing some action. In
Java or C++ unit can be class or a function.

2. Integration:
Units are integrated together to perform some specific task. Units as individual might be
working correctly but when integration is done there might be some faults introduced
that are captured on integration level testing.

3. System:
System is the highest level of integration in which all the part of software are bundled
and are tested on the target hardware. This includes functional tests, usability,
availability etc. types of tests.

4. Acceptance:
This is similar with the system testing but is done by the customer on the site where the
behavior of the software is tested in real environment.

Among all the activities in testing, test case generation is one of the most demanding task and is
also the crucial as the testing process is totally dependent on the quality of test cases [10] [11].

11

3.1 MANUAL TESTING

In order to understand the importance and necessity of automated testing, it is important to
have some idea about manual testing and its limitation [12]. Basic flow of manual test is show
below

Requirements

Manual
Test Desian

Test Cases

(@)

Test

---------- >
Manual Results

Test Execution

FIGURE 3-1: MANUAL TESTING [12]

As show in Figure 3-1, the tester has to first identify the test cases from the high level document
like requirement specification. A test specification document is generated based on those
identified test cases which later becomes an input for implementation of test cases in code. One
the test cases are implemented, the tester now has to execute the test cases manually either one
by one or in a suite that runs all the test cases. This process is not only time consuming but also
not very exciting for the developer to right all the test cases. Manual testing can be applied on all
the level and types explained earlier.

12

3.2 AUTOMATED TESTING

Types and levels explained before are ways of testing that can be executed both manual and
automatic. Best approach is to combine both automated and manual testing to get the best
results. This research is related to automated test case generation and execution. It is very
important to understand what test automation actually means. As author explains in [13] that
the meaning of automated testing is different from person to person depending on their
backgrounds and nature of software they are working with. For some it might be Test Driven
development TTD for others it might be Data driven Testing DDT or it might be scripted testing.

Test automation has become a key part of software development now a days. It is too expensive
to do manual testing as the magnitude of the applications are increasing with a lot of new
functionalities. It is hard to keep test coverage and risk reductions to a satisfactory level
according to [14].

In simple words, Test automation can be defined as “A software that is designed to test another
software.”

In the recent years, a great amount of work has been done in order to generate test cases
automatically. Numerous frameworks has been introduced in the market to generate test cases
based of different input artifacts such as program source code, software specification and
models, input/output data space etc. Although these techniques provide quite good test case
generation methods yet there is always a gap between what the software is expected to do and
what it actually does. Reason behind this is the increasing complexity of the software by having
multi-vendor components and running on different platforms [3].

Test automation is a fulltime task not just a sideline job as described by Nagle in [14]. Some
useful strategy is also defined in the mention source that help in making automation successful.
As the test cases can be generated using different types of input artifacts a few of the techniques
has been discussed in this research;

1. Symbolic Execution
2. Model-based
3. Data Driven Testing

3.2.1 SYMBOLIC EXECUTION AND TEST CASES GENERATION

According to Saswat and Mary [3], “Symbolic execution is a program analysis technique that
analyzes a program's code to automatically generate test data for the program.” This is white
box testing technique which performs a complete walkthrough of code, explores all the
branches. As King mentioned in [15] that symbolic execution uses symbolic values as program
inputs and program internal variables are represented as symbolic expressions. A symbolic
execution at any point includes;

1. Symbolic values: These are the symbolic expressions that represent the program values.
2. Path Constrains (PC): It is a Boolean formula which applies of the inputs meaning the
inputs must fulfill a certain criteria in order for a specific path to execute.
a. True: the path will continue.
b. False: path will not continue
3. Program Counter: This holds the pointer to the next statement that needs to be
executed.

13

To understand the flow an example is taken from [16] which explains the flow of symbolic
execution in a very simple way.

Figure 3-2(a) represents a source code that contains two variables x and y. It will swap the
values of x and y when x is greater than y so that x always has the smaller value.

Figure 3-2(b) is the symbolic execution tree of the code in (a). It shows the execution flow of the
code and the paths taken based on the conditions at a specific execution point in time. The node
are the statements from the code and the edges represents the transition based on the
conditions (Path Constrains: PC). The small number on the upper right corner is the program
counter which refers to the code statement in (a) that will be executed next. The top node PC is
set to true as there is not specific constrain on that statement and will be executed for the all the
execution flows.

Figure 3-2(c) is a table that shows possible Path Constrains and their execution flows based on
given program inputs.

1

ntx, y; X=X, y=Y
1 if(x > y){ PC: true
2 X =X+y; my \Fa‘lse
3y =Xy, 2 8
4 X = X-Y; X=X, y=Y X:X, y=
5 if(x-y>0) PC: X>Y PC: X <=Y
6 assert false;
7}
8 print(x, y) x=X+Y, y=Y ’

(a) PC: X>Y
4
Program x=X+Y, y=X

Path PC Input PC:X>Y

1,8 X<=Y X=1Y=1
1,2,3,4,5,8| X>Y & Y-X<=0 | X=2 Y=1 x=Y, y=X >

PC: X>Y
1,2,3,4,5,6| X>Y & Y-X>0 none
(© YN
6 8
x=Y, y=X x=Y, y=X
PC:X>Y&Y-X>0 PC:X>Y&Y-X<=0

(b)

FIGURE 3-2: SYMBOLIC EXECUTION FLOW [3] [16]

Saswat and Mary’s research [3] shows that symbolic executions has many practical
implementation and has gained much popularity in the recent years because of two major
reasons. 1) It is applicable to solve many real world problems that involves complex constrains.
Example of few constrain solvers are Z3, Yice and STP. 2) It required a large amount of
computational power which was a problem in 70’s but no longer an issue in the modern world.
Further in their research the authors explain different approaches to generate test data that
helps in improving code coverage, error reporting [17], load testing [18], fault localization [19],

14

regressing testing [20] and many more. But like all other approaches, symbolic executions suffer
from three major issues [3];

1. Path Explosion
2. Path Divergence
3. Complex Constrains

3.2.2 MODEL-BASED TESTING

Model-based testing (MBT) is a methods to generate test cases from the software model. In this
generation method, the insight of the system under test (SUT) is gathered using the formal
models and test cases are generated based on the gathered information. According to Wolfgang
in [3], there are three approaches which are widely considered for MBT;

1. Axiomatic approach
2. Finite state machine (FSM) approach
3. Labeled transition system (LTS) approach

There are several other approaches which are also being used in the market as explained in [12]
a few of them are

* Graphical test modeling approach
* Environment model driven approach
* System model driven approach

The purpose of all the MBT approaches is the same and that is to generated test cases from the
model based documentation [12]. All of these approaches are not discussed in the scope of this
research in order to keep it simple.

3.2.2.1 AXIOMATIC APPROACH

According to [3] Axiomatic approach is based on logic calculus. The author referred to existing
studies in the domain with the example of a conditional equation.

p(x) = f1(f2(x),c) = f3(x)

In the above equation

f1, f2 and f3 are the internal function of SUT
cis a constant

p is a predicate

X is a variable

The goal here is to find the values of x so that the given equation (SUT) can be tested in detail
[21].

3.2.2.2 FSM APPROACH

FSM approach treats the SUT as a state machine where the inputs and outputs are paired up to
formulate the transition table and selected transition from the table are executed to test the
coverage of the SUT functionality. All this information is extracted from the model of SUT so this
approach is prone to failure for incomplete modelled system or system with non-deterministic
state machine. Once the transition table has been generated from the mode, the tester (system
that is testing the SUT) considers the SUT as a black-box and injects series of inputs to the SUT
and validates the output generated for each input [3].

15

3.2.2.3 LTS APPROACH

According to in [4] Labeled transition system (LTS) consists of following

* Set of states

¢ Setoflabels

* Transition relation

¢ Initial state

* Quiescence (special state)

Where states model the system states and labelled transitions model the actions. The example
explained in [4] is about a Candy machine LTS. Figure 3-3 represent the LTE of the candy
machine where the interaction are but is the button interaction, choc and lig are labels for
chocolate and liquor candy respectively. This is the graph representation of transition system
with node as states and edges as transition. The states po, qo, o, u0, vO are the start states with
arrows coming from nowhere.

(713

Po

but lig(but choc
P "2

. u uy

lig but

vo
P2 ra
choc lig but T
P

U1

FIGURE 3-3: CANDY MACHINE LTS [4]

Quiescence is a special state in the system which is applicable in the situation when the SUT is
stuck at certain state and no output is generated. This is a special state which is like timeout
where the system can be continue the test process without handing. This give LTS an edge so it
can work also with non-deterministic machines. A set of inputs and expected outputs are
specified based on the system model of SUT. A criteria is defined based on which tests are
executed on the SUT. As SUT can be non-deterministic, some of the output may end up in special
quiescence cases but the system is already aware of that.At the end the system checks the union
of all the output from SUT with the set of expected outputs generated from model. If the SUT
outputs are a sub-set of Model output, the test is considered success.

3.2.2.4 TOOLS FOR MBT

There are many MBT tool available in the market both commercial and open source. These tool
might use the above mentioned MBT approaches or they can have their own implementations.
Wolfgang has mentioned about several tools in his research [3] but here only one will be
discussed that is Conformiq Designer.

Conformiq Designer, formally known as QTronic is one of the most popular MBT tool in the
market. It has been in the market since 2007 and is widely used in may industrial projects.
Conformiq designer has a custom implementation of LTS approach that makes it a very power
full tool for test selection procedure [3]. It can design test cases based on Use Case, Requirement
coverage, state chart coverage, activity diagram, control flow, statement coverage, all-path

16

coverage and more [22]. In can design test cases for various programming languages, TTCN-3
(The Testing and Test Control Notation Version 3) and manual test instructions [3]

3.2.3 DATA DRIVEN TESTING

Data Driven Testing (DDT) or Keyword driven testing is one of the most commonly used
automation technique as it is simple to implement and execute. But the overhead associated
with it is maintainability which is the difficult task [14].

Take Input and
perform Action

Actual vs.
Expected

FIGURE 3-4: DDT EXECUTION FLOW

As in Figure 3-4 DDT is based on some input data which triggers the code and generates the
required output. Input data can be an excel file with table of values or can be a simple text file
with input keywords. The tested system takes the input, performs the desired action and
compares the actual output with expected output to decide pass and failure cases. As the test
data is stored in files the scripts running the test can be reused with multiple SUTs and different
test data files [12].

All the above mentioned techniques of automation can be using individually or they can be
combined with each other in order to suit the requirements. In this research more focus is on
DDT combined with FSM approach of model-based testing.

17

4 UMTS OVERVIEW

UMTS stands for Universal Mobile Telecommunication System that is the 3rd generation of
mobile communication system which is originally based on 2G (GSM) system. [23] UMTS uses
Wideband Code Division Multiple Access (WCDMA) whereas GSM uses Time Division Multiple
Access (TDMA) radio scheme. WCDMA is spectral efficient both in term of performance and
capacity than TDMA. In WCDMA each user is assigned a specific code while transmitting and
receiving data over the air interface.

4.1 UMTS ARCHITECTURE

UMTS architecture is based on three major components.

1. User Equipment (UE)
2. Access Network (AN/UTRAN)
3. Core Network (CN)

4 N N
I
/Uu—— —_— Iu IU-CS=p> .
/ / PBX
1 NodeB-1
Ju-PS.
ﬁ RNC-1
i o A
Cell Phone s
lur ' .
Web Service
NodeB-2
Smart Phone \ /
- CN: Core Network
| | Uu \
E—’ - B
—
Laptop
RNC-2
UE: User Equipment
NodeB-3

AN: Access Network

» Uu: Air interface between UE and NodeB

> lub: Interface between NodeB and RNC

> lur: Interface between RNC and RNC

> lu-CS: Interface between RNC and CS Core Network
» lu-PC: Interface between RNC and PS Core Network

FIGURE 4-1: UMTS OVERVIEW
User Equipment (UE)

The device or Equipment that is used to access the network is called User Equipment (UE). UE
can be any device that needs to access to network to get desired service. Services include
internet connection, voice call or both. UE is consist of two logical parts

18

1. Universal Subscriber Identity Module (USIM):
[t is a module that contains a unique identifier for the UE so the network can easily
identify the User bases on it. This is called International Mobile Subscriber's Identity
(IMSD).

2. Mobile Equipment (ME):
ME is the hardware manufactured by the mobile manufacturing company like Samsung,
Apple or Nokia etc. which provides interface to use the networks services besides other
functionalities.

Access Network (AN or UTRAN)

Access network (AN) is a bridge that allows the UE to connect to the CN and access the services.
In UMTS the AN is called Universal Terrestrial Radio Access Network (UTRAN) as shown in
Figure 4-1. UTRAN consists of set of NodeBs and RNCs, NodeBs are connected with the RNC
using lub? interface whereas two RNCs are connected with each other using Iur3 interface.

Core Netwrok

Core Network (CN) is another network element in the system that can be connected to all types
of ANs 2G, 3G and 4G. The purpose of the CN is to provide speech or data services to the UE
using the AN. CN is connected to AN using Iu-PS or [u-CS* depending on the type of CN. The Iu
interface ends up at RNC in the AN.

4.2 RAB AND RAB COMBINATIONS (UERCS)

4.2.1 RADIO ACCESS BEARER (RAB)

RAB is a Radio Access Bearer which is used in 3G mobile communication to carry data from UE
to CN. This data can be control data (signaling between UE and CN) or user data (Data call or
Voice call). Different types of data services need different types of RABs e.g. For speech call a
Conversational (CS) RAB is required and for internet access a Streaming/Interactive (PS) RAB is
used. Both of these RAB groups can have different types of RAB based on the Quality of Service
(QoS) Architecture.

Radio Connection

Speech Call

Internet Connection

) Conversation
Streaming) Streaming RAE
D Tteract

NN AN

FIGURE 4-2: RAB TYPES AND RADIO CONNECTION

= Each RAB has different service requirements.

2 Jub is the interface between a NodeB and RNC.
3 [ur is the interface between two RNCs.
4 Ju-CS is interface between RNC and CS-CN Iu-PS is the interface between RNC and PS-CN.

19

= Some with Guaranteed bit rate (GBR) and some with non GBR.
= Low delay for conversational.

= Efficient usage of radio resources for interactive.

= Different priority for each RAB.

According to 3GPP QoS standards, UMTS Bearer consists of RAB and CN Bearer, the RAB itself is
based on Radio Bearer (RB) and lu-Bearer [24]

| UMTS i

CN
Gateway

TE TE

TE/MT Local UMTS Bearer Service External Bearer
Bearer Service Service
Radio Bearer lu Bearer Backbone
Service Service Bearer Service

yayd

FIGURE 4-3: UMTS QOS ARCHITECTURE [24]

Each RAB consists of a number of attributes like;

Traffic Class
Maximum bit rate
Guaranteed bit rate
Transfer Delay etc.

B w N e

In this research only two of the above attributes will be used Traffic Class, Maximum bit rate.
These two parameters are sufficient enough to make the decision which RAB class is required
by the user. The remaining parameters are used by the network system to control the traffic.

20

Traffic class: It defined the fundamental behavior of the RAB. There are four traffic classes

Conversational (CS)
Streaming (PS-Streaming)
Interactive (PS-Interactive)
Background (PS-Interactive)

W e

TABLE 4-1: TRAFFIC CLASSES [24]

Conversational class
Conversational real time

Traffic class

- Preserve time relation -
(variation) between
information entities of
the stream

Fundamental
characteristics

Conversational pattern
(stringent and low delay)

Example of the
application

- speech, video, ... -

Streaming class

Streaming real time

Preserve time
relation (variation)
between
information
entities of the
stream (i.e. some
but constant delay)

facsimile (NT)

streaming audio
and video

Interactive class
Interactive best
effort

Request response
pattern

Preserve payload
content

- Web browsing

Background
Background best
effort

Destination is not
expecting the
data within a
certain time

Preserve payload
content

background
download of
emails

Maximum bitrate: is the maximum kbps of Uplink (UL) and Downlink (DL) rate a specific RAB
can offer. This is dependent on the type of the RAB and services (CS or PS) which it is offering.
As this research is scoped around PS Interactive RAB, only PS RAB specific bitrate table is

shown.5
TABLE 4-2: INTERACTIVE BITRATE [24]

Max UL bitrate [m] kbps

16
24
32
64
128
144
256
384
512
1024
2048
3072
4096

16

24

32

64
128
144
256
384
512
1024
2048
3072
4096
6144
7168
8192
10240
12288
14336

Max DL bitrate [m] kbps

5 Remaining tables for other traffic classes can be viewed in 3GPP TR 25.993 V9.0.0 [24] Page26-28

21

4.2.2 RAB COMBINATIONS (UERCS)

Any number of the above mentions RABs can be combined to formulate RAB combinations.
Depending on each RAB or RAB combination selected for a connection, the RNC configures the
required parameters and selects appropriate RBs [24]. In this research, RAB combinations are
represented as UeRcs (User Equipment Radio Connection) thus each RAB Combination or UeRc
represent a unique state. Some example UeRcs in Table 4-3.

UeRc:0 #[Idle]

UeRc:2 #[Conversational CS Speech (12.2/12.2)]

UeRc:5 #[Interactive PS (64/64)]

UeRc:6 #[Interactive PS (64/128)]

UeRc:10 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/64)]
UeRc:15 #[Interactive PS (64/HS)]

UeRc:19 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/HS)]
UeRc:21 #[Interactive PS (URA/URA)]

UeRc:25 #[Interactive PS (EUL/HS)]

UeRc:26 #[Interactive PS (64/64) + Interactive PS (64/64)]

UeRc:27 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/64) +
Interactive PS (64/64)]

UeRc:54 #[Interactive PS (64/HS) + Interactive PS (64/HS)]
UeRc:123 #[Conversational CS Speech (12.2/12.2) + Interactive PS (EUL/HS)]

UeRc:124 #[Conversational CS Speech (12.2/12.2) + Interactive PS (EUL/HS) +
Interactive PS (EUL/HS)]

UeRc:125 #[Conversational CS Speech (12.2/12.2) + Interactive PS (EUL/HS) +
Interactive PS (EUL/HS) + Interactive PS (EUL/HS)]

UeRc:128 #[Interactive PS (EUL/HS) + Interactive PS (EUL/HS) + Interactive PS
(EUL/HS)]
TABLE 4-3: UERC LIST

Each UeRc state has a state number and it consists of one or more RABs. For example UeRc:6 has
one PS interactive RAB with 64Kbps Uplink and 128Kbps Downlink speed. Above mentioned
states are just a subset of UeRc States those exist in the system6. These states will be the input to
the test system that will generate a possible transition table based on the different RABs in each
state.

6 Complete List of UeRcs can be viewed in Appendix A-2

22

5 METHODOLOGY

To find the solution to the problem, simple software analysis, design and evaluation
methodologies are used.

5.1 ANALYSIS

First step is the analysis, a detailed study of the RNC Connection State Handler is conducted to
identify the key problems and following observations were made;

1. What the system is actually doing?

2. How complex is the system?

3. What is already being tested and how?
4. Whatis not tested and why?

The analysis of the RNC Connection State handler is done using the following sources as input:

1. 3GPP specification for RAB Combinations [24].

2. System documentation of the implemented system.

3. Code walkthrough.

4. Discussion with system engineers who were experts in the area.

Reading the 3GPP specification for RAB combination helped in understanding what are RABs
and RAB combinations and how they should be implemented in order to provide voice or data
services. This provided information of what to expect from the system and what to test.

System documentation and code walkthrough were done in order to understand the RNC
connection state handler implementation. The system from the production perspective is
implemented in a sophisticated way so that it fulfills the requirements of 3GPP specification.
From test perspective however, it was not so flexible when in come to add or remove RAB
combinations. Details about the actual system are not in the scope of this research and will not
be covered here. Some explanation about the behavior of SUT is explained with the explanation
of simulator in chapter 7.2.1

5.2 DESIGN

Based on the outcome of the system analysis, the problem is then broken down into two parts
for simplified handling.

1. Transition Table Generator
2. Test Executor

o Executor

o Simulator

Based on the connection states existing in the system, the first thing targeted was to generate a
transition table for the states that exist. For this the input used was connection states (RAB
combinations according to 3GPP) that has been implementation within the SUT. A program was
then sketched in order to parse the input states and generate a transition table. The states
where represented as logical sets. Each state can contain a number of RABs. This sketch was
later implemented as Java program which is independent of the actual SUT itself. Only a subset
of states have been considered to minimize the scope and complexity of this research.

23

Once the transition table generator was in place, came the next phase of using the generated
table. The goal here was to take the transition table and feed it to the SUT in a way that all the
transition in the transition table are executed and then validated. To make this possible,
Executor was designed which is written in C++. To verify the behavior and execution of the
executor on the real system was a challenge. The real system can only be run under Ericsson
specific environment. So the decision was made to implement a Simulator that will behave like a
stub and will give limited but similar output as the original SUT. Implementation details for both
executor and simulator are provided in chapter 7.2.

5.3 EVALUATION

For any decision a company makes, there is always a cost benefit analysis (CBA) performed.
Similarly is the case with this study is to see if implementing such an improvement will
ultimately provide any benefit or not. In this study a multi objective multi criteria (MOMC)
method has been chosen for qualitative evaluation. Following three criteria are considered;

1. Output validity.
2. Implementation complexity.
3. Maintenance overhead.

Output based evaluation is done on the output generated by the developed script compared to
the excepted outcomes that has been manually calculated by the system engineer based on the
inputs. For this evaluation a small subset of inputs were taken to generate the respective output.
Similar subset of inputs where given to the system engineer to calculate the desired outputs.
Then a comparison is done between the outputs provided by the system engineer and the script
generated outputs. There is no other way to do evaluation as this is how the previous test cases
were updated, a system engineer used to write down possible important transitions from the
newly added states and those where many added in the SUT to execute.

Second evaluation done is based on implementation complexity. This is to check how complex
and difficult it is to implement the proposed solution in the actual test environment. For this
decoupling of the proposed solution with the SUT and test framework was evaluated.

Third evaluation is related to maintainability of the scripts and executor code. This is done by
guessing what types of changing or updates can occur in the system and how will they effect the
proposed solution. As proposed by the authors in [25] there are many metrics to calculate the
maintenance efforts. Few of them are Maintainability Index (MI), Structure Measurements (SM)
and Code Smells

In this study we use Maintainability Index as a metric just to show some measurement effort. To
make work easy a 3rd party tool JHawk5 is used to measure the MI. However there are several
issue with the MI explained in [26] and the authors also suggest a maintenance model they have
proposed. The model uses five difference metrics Volume, Complexity per unit, Duplication, Unit
size and Unit testing. We will also consider volume i.e. line of code (LOC) metric.

24

6 PROBLEM DESCRIPTION

The problem under consideration is a well-known issue in state machines where there are a
large number of states and the number of transitions in between them grow polynomial. This
makes the system very huge and difficult to test all possible combinations.

In the RNC there are currently 177 RAB combinations, each map to one UE state which means
177 different possible states. These states are called UERC (User-Equipment Radio Connection).
From each state, there are possible transitions to all other states with some exceptions. As the
number of states increases, the possible transitions between the states increase as well.

Connection capabilities

o © o
O
o O O o ,
%, O O O o .
’v..\.,:.: o O “““““ I,/

7
~

eeescccccccssssssssscscccsssdesssccccccccsssssssscccccchossssscssccccssscsssssns

he /I UeRc State Transitions
/

FIGURE 6-1: UERC STATE EXPLOSION

Figure 6-1 is a graphical representation of how complex the system looks. Lower part of the
figure represents state transition for UeRc states. Each small oval represents one state and each
arrow represents a transition. An increased amount of complexity is observed because it is
possible to go from one state to many other states. Considering the orange state as the source
state, there are many target states to which the transition can be made and from all those target

25

states, a reverse transition also exists. Below is a table based on just 8 states in the actual
system and the resultant transitions are 22; almost three times to the number of input states
which keeps on growing with the increase input states.

TABLE 6-1: 8-STATES BASED TRANSITION TABLE

Source State Possible Trigger RAB added/remove/changed Target State
UeRc:0 RAB_EST > CONV_CS_SPEECH(12.2/12.2) UeRc:2
UeRc:0 RAB_EST - INT_PS(RACH/FACH) UeRc:4
UeRc:0 RAB_EST > INT_PS(64/64) UeRc:5
UeRc:0 RAB_EST - INT_PS(EUL/HS) UeRc:25
UeRc:2 RAB_REL > CONV_CS_SPEECH(12.2/12.2) UeRc:0
UeRc:2 RAB_EST > INT_PS(64/64) UeRc:10
UeRc:4 RAB_REL - INT_PS(RACH/FACH) UeRc:0
UeRc:4 CH_SW - PS_INT (64/64) UeRc:5
UeRc:4 CH_SW - PS_INT (EUL/HS) UeRc:25
UeRc:5 RAB_REL > INT_PS(64/64) UeRc:0
UeRc:5 CH_SW - PS_INT (RACH/FACH) UeRc:4
UeRc:5 RAB_EST > CONV_CS_SPEECH(12.2/12.2) UeRc:10
UeRc:5 CH_SW - PS_INT (EUL/HS) UeRc:25
UeRc:5 RAB_EST > INT_PS(64/64) UeRc:26
UeRc:10 RAB_REL > INT_PS(64/64) UeRc:2
UeRc:10 RAB_REL > CONV_CS_SPEECH(12.2/12.2) UeRc:5
UeRc:25 RAB_REL - INT_PS(EUL/HS) UeRc:0
UeRc:25 CH_SW - PS_INT (RACH/FACH) UeRc:4
UeRc:25 CH_SW - PS_INT (64/64) UeRc:5
UeRc:25 RAB_EST - INT_PS(EUL/HS) UeRc:62
UeRc:26 RAB_REL > INT_PS(64/64) UeRc:5
UeRc:62 RAB_REL - INT_PS(EUL/HS) UeRc:25

The upper part of Figure 6-1 explains further possible configurations on each UeRc state which
are called Connection Capabilities, where it is also possible to have a number of different
configuration on each UeRc state. This research focuses on the lower part in the figure which is
UeRc State Transition.

The reason that the SUT is really hard to test is because the transition from state to state is not
straight forward, there are many exception cases. These exception cases occur due to difference
in handling of CS RABs and PS RABs. There is a limit of four RABs per connection. The number of
CS and PS RABs that can exist in parallel varies according to existing state of the connection. For
example if a connection has one CS RAB and one PS RAB the possibilities are;

* CSRAB can be dropped but cannot be changed (according to design base) and no new CS
RAB can be added as there can only be one or no CS RAB in a connection.
* PS RAB can be changes to some higher or lower bit rates.
o While changing bitrate only uplink or downlink bitrate can change with a single
trigger.
* New PS RAB can be added with the same bitrate as the one existing.
* An existing PS RAB can be removed.

26

Keeping in mind that there are different kinds of CS and PS RABs, the above mentioned rules
apply to all of them which makes the testing more difficult. It depends on the input trigger at a
given state that what will be the next state. But there are some cases in which not all the triggers
are applicable.

Triggers are the condition which invoke the state transition. There are 3 types of triggers,

1. RAB Establish - Adding a new RAB to current connection.
2. RAB Release - Removing existing RAB from current connection.
3. Channel Switching - Changing data rate of existing PS RAB(s)

RAB Establish trigger comes with the RAB that need to be added to the current connection. It
can be a CS or PS RAB, but will be based on the current connection states as if there is already
existing CS RAB there can’t be a RAB Establish trigger with CS RAB indicator. A PS RAB however
can be added based on following conditions.

1. Ifthere is not PS RAB already existing then add the PS RAB
2. If there exist a PS RAB already in the connection only add if the PS RAB indicated in the
RAB Establish triggers matches the existing one.

RAB Release trigger is simple as the trigger comes with the RAB that needs to be removed. If the
CS or PS RAB mentioned in the trigger exists, the specific RAB will be removed from the
connection.

Channel switching trigger can only occur for PS RABs as no rate changing support of CS RABs.
This trigger contains two type of RAB information, the affected RAB ID and the new rates.

Each transition has guard conditions, these conditions are based on the input trigger, and the
resultant action depends the number of RABs in that state and data rate of each RAB that will be
affected by the trigger. These are described earlier as exception cases.

In the RNC Connection State Handler, there is a test framework that is performing some basic
tests. The problem with it is that the input transition has to be provided manually. So the
designer or tester has to manually write down which transition that needs to be tested. The test
framework then executes the desired transitions. At the end it just reports if the transition
passed or failed. Adding to the problem is that if the tester wants to test 10 new transitions and
the transition number 6 fails for some reason, the framework will skip the remaining and will
report failure. The problem with this approach is even if the failed test case is fixed, it is not
certain that all the remaining test cases will pass. If one of them fails, then same correction
process is repeated until all the test cases pass.

Another drawback with the existing testing approach is only certain states and transitions are
tested. This leads the system prone to errors which can cause serious problems and can be
really difficult to troubleshoot. Exploratory testing is too expensive if done manually.
Automating it can provide a stable solution to the problem.

In addition to the complexity of the system is the connection capabilities on each state. It is
possible that the connection is on the same states (same RAB combination) but then with
different connection capabilities. To keep it simple based on limited time and resources for this
research connection capability handling will not be included.

27

7 SOLUTION SKETCH AND IMPLEMENTATION

In this research, SUT is RNC connection state handler is a sub-system of RNC. This sub-system
handles all the activities related to UEs. i.e. connection establishment, connection release and
mobility etc. It also keeps track of all RAB states for each user and handles state changes
centrally in a generic way. This makes the system very flexible when new states are added or
existing states are removed. Test suites for this sub-system however are not as generic, where
addition and removal of states have to be updated manually.

States definition

¥

Transition Table
Generator

Generates the transition
table from given set of
input states.

Takes the Input State definition file, parses all the
states and stores them as string arrays

Starts from the beginning picks one state and
compares with all other states. Checks the Rab
difference and determines if transition is possible or
not.

Transition Table

{

After identifying all possible transition from given
set of input states, generates a transition table
output file.

Executor

Reads the transition table
and triggers and verifies all
transitions on the
Simulator or SUT

Takes the transition table file as input and parse all
the tranitions.

Send each transition to the Simulator or the actual
SUT and evaluates the Result

Result

Transition To Do

Simulates the SUT and
performs the requested
transition.

Receives one transition to do request as input
and tries to perform the tranition.

If success goes to a valid states and if fails goes to
an invalid state.

FIGURE 7-1: SOLUTION BREAKDOWN

28

The core focus of this research is to find a solution that automatically determine and validate
new transitions upon addition of new states. The problem as described in the previous chapter
is whenever a new state is added to the system, the incoming and outgoing transitions should be
manually added in the transition table and then specific test cases should be written. This is not
only time consuming but also a hectic task for the developer just to test as many transitions as
possible.

In this research, a Java based program to automate test case generation is used. The solution
consists of two steps;

1. Extracting information from the RAB combination table using a script and generating a
state transition table from it.
2. Automatic test case execution from the state transition table.

7.1 DATA EXTRACTION AND TRANSITION TABLE GENERATION

In the first step the input file containing the UeRc states is parsed. This is a plain text file which
contains all the states that are used in the system. The parsed information is then handled using
String Class in Java that provides a vast majority of string operations and container that will
help in filtering the data. The input file data looks as follow;

UeRc:5 #[Interact. PS (64/64) + SRB(3.4/3.4)]

UeRc:10 #[Conv. CS speech (12.2/12.2) + Interact PS (64/64) + SRB (3.4/3.4)]
UeRc:15 #[Interact. PS (64/HS) + SRB(3.4/3.4)]

UeRc:25 #[Interact. PS (EUL/HS) + SRB(EUL/3.4)]

TABLE 7-1: INITIAL INPUT DATA

Table 7-1 shows information is extracted from the RAB state definition class where for each
UeRc there is a lot of information and definition part but also a plain text (as above) which is
always in this format. It explains what the UeRc consists of. e.g. for state UeRc:10 we can see it
is a multi-RAB state. First RAB is Conversational CS Speech with 12.2 Kbps uplink and 12.2 Kbps
downlink speed. The second RAB is an Interactive PS Packet 64 Kbps uplink and 64 Kbps
downlink speed. This information is extracted and stored in a separate file which is used as an
input file. SRB is the Signaling Radio Bearer which is used for control signal between RNC and
UE. This has been removed during the extraction of data as it is basic part for all the states and
will always be there by default. Final input data is as shown in Table 7-2.

UeRc:5 #[Interact. PS (64/64)]
UeRc:10 #[Conv. CS speech (12.2/12.2) + Interact PS (64/64)]
UeRc:15 #[Interact. PS (64/HS)]
UeRc:25 #[Interact. PS (EUL/HS)]
TABLE 7-2: ACTUAL INPUT DATA (NO SRB)

To handle the problem in a more mathematical approach, each state is represented as a Set
which consists of zero to more RAB elements. Let's take a few examples

29

UeRc:0 = {}

where: {} is empty set also denoted as ¢

UeRc:10 = {rl,r2}

where: r1 = conv. CsS speech (12.2/12.2)
r2 = Interact. PS (64/64)

UeRc:2 = {rl}

where: r1 = conv. CsS speech (12.2/12.2)

EXAMPLE OF STATE SETS.

Representing the states in the form of sets makes it easy to find relationships between states
and it gets simpler to apply different conditions to compare the states. This helps to identify if
the transition from a state to another state is possible and if so what would be the trigger.

For Example

A = UeRc:10 = {rl,r2}
B = UeRc:2 = {rl}
where
Al = 2 and |B| =1
therefore
A/B = {r2}

So B->A transition is
B + {r2} = A

possible with addition

of r2

From the above example we can see transition from A (UeRc:10) to B (UeRc:2) is possible with

the Establishment Trigger for r2 (Interact. PS [64/64]).

Dividing the problem in two different groups those lead to state changing,

1.

Establish and Release

In this cases either a new RAB is established or an existing RAB is removed. So the
number of RABs in source and target states will always be different.

Channel Switching

UL/DL Rates of any exiting RAB is changed. So the number of RAB(s) are same in source

and target states.

30

7.1.1 ESTABLISHMENT AND RELEASE GROUP

Establishment and release group contains all the state transitions which are triggered based on
RAB Establishment or RAB Release.

RE: CS(12.2/12.2) RR: PS(64/64)

RE: PS(64/64)

UeRc:10
#RAB = 2

/122)

FIGURE 7-2: ESTABLISH AND RELEASE STATE MACHINE

RR: PS(64/64)

RE: PS(64/64)

Establish and Release triggers are applicable where there is a difference in number of RABs
between the source and target states. The difference should be of one. e.g.

No.of RABs in UeRc:0 = n0 = 0

No.of RABs in UeRc:2 = n2 = 1 (CS)

No.of RABs in UeRc:5 = n5 = 1 (PS)

No.of RABs in UeRc:10 = nl0 = 2 (CS + PS)

As illustrated in Figure 7-2 Transition from UeRc:0 to UeRc:2 and UeRc:5 is possible and vice
versa as difference of no.of RABs is 1 whereas no transition is possible in between UeRc:2 and
UeRc:5.

n2 - n0 =1
n5 - n0 =1
n2 - n5 = 0 (transition not possible)

Similarly from UeRc:2 and UeRc:5 to UeRc:10 the transition is possible and vice versa. Whereas
transition in between UeRc:0 to UeRc:10 is not possible (in one step)

nl0 - n2 =1
nl0 - n5 =1
nl0 - n0 = 2 (transition possible in two step)

In UeRc:10 to UeRc:0 case, the transition is still possible but in two step which will not be
considered here as the two single step transitions will be covered by two individual transitions.

The rule to find transition between states where RAB Establish and RAB release triggers are
applicable is as follow:

31

A = {rl, r2}

Al = 2
B = {rl}
Bl =1

B CA (B is the sub-set of A)
|[A] - |B|l] = 1 (mean Rab Establish and Release Trigger possible)

Therefore:
A/ B = {r2}

So B A transition is possible with RAB Establish {r2}
B + {r2} = A

and A =B transition is possible with Release {r2}
A/{r2} =B

Algorithm that will handle establishment and release cases (Algorithm 1):

Loop-1 For each state A in states
nA = no. of Rabs in A state
Loop-2 For each state B in states

nB = no.of Rabs in B state
if nB equals nA +1 AND B.subset(A) = true

r’ = diff (B, A)
update transition table with

A — B; Establish; r’

’

B = A; Release; r
end if
end Loop-2

end Loop-1

ALGORITHM 1: ESTABLISH AND RELEASE

This Group handles all the transition where Source and Target States has different number of
RAB and both source and target states has similar RABs except one. This also covers all the
transition From and To Idle State (UeRc:0)

7.1.2 CHANNEL SWITCHING GROUP

This group handles transitions based on channel switching which means changing an existing
RAB. Channel Switching is possible only if the Source and Target states have same number of
RAB provided that one of the RAB not common in both. There are some additional conditions on
the uncommon RAB in order to trigger channel switching.

Special RAB diff Criteria (RDC) that should be fulfilled by the uncommon RABs;

32

1. Change should be in either uplink or downlink rate at a time.
2. The rate change should be only one step up or down.
e.g. PS(64/64) to PS(64/128)
3. Channel switch to and from any PS RAB to PS RACH/FACH is possible.
4. Channel switch to and from any PS RAB to PS EUL/HS is possible.
5. Channel switch to and from any single PS RAB state to URA/URA is possible.

CSW: PS(64/128)
PS(64/384)

CSW: PS(64/64)
PS(64/128)

CSW: PS(64/128)
PS(64/64)

CSW: PS(64/384)
PS(64/128)

CSW: PS(64/128) CSW: PS(EUL/HS)
PS(EUL/HS) PS(64/128)

CSW: PS(64/64)
PS(EUL/HS)

CSW: PS(EUL/HS)
PS(64/384)

CSW: PS(EUL/HS
PS(64/64)

CSW: PS(64/384)
PS(EUL/HS)

FIGURE 7-3: CHANNEL SWITCING STATE MACHINE

The rule to find Channel Switching transition between two states can be explained as;

A = {rl, r2, r3}
[A] =3
B = {rl, r2, r4}
[B] =3

So:

N A= {rl, r2}

~~D
o P g
(o8]

(o8 R T

4
3

> oW
s
O — —

Note: r3 and r4 should fulfil the criteria mention above.

Therefore:
A B = (ANB) U (B / A
B A= (ANB) U (A / B)

Algorithm that will handle channel switching cases (Algorithm 2):

33

Loop-1 For each state A in states
n® = no. of Rabs in A state

Loop-2 For each state B in states

n® = no.of Rabs in B state
if nf equals n
r’ = diff (A, B)
r” = diff (B, A)
if r’ and r” passes criteria RDC
A — B; Channel i ; r’ to r”
B — A; Channel Switch; r” to r’
end if
end if
end Loop-2
end Loop-1
where RDC = RAB Diff criteria mentioned at the start of 7.1.2

ALGORITHM 2: CHANNEL SWITCH

7.1.3 IMPLEMENTATION OF TRANSITION TABLE GENERATOR

Transition table generator is implemented in Java, The code is divided into two main classes,
First class named as StateNamesAndRabs (see AppendixAppendix - A3-a) takes in the input file,
it parses the file and store the file UeRc names along with RAB names and RAB Rates in
ArraylList of String type. This is a simple class and just behaves as a container for the data which
makes it easy to parse the data. This class contains two data members;

nameOfState(ArrayList of String): which store the name for each state like UeRc:5, UeRc :10 etc.

stateRabs(ArrayList of ArrayList of String): contains RABs for each state e.g. for UeRc:5 RAB is
Single-RAB which is Interactive PS (64/64) whereas UeRc:10 is a Multi-RAB so it will store both
Conversational CS Speech 7(12.2/12.2) Interactive PS (64/64)7.

Once the extracted data is stored in the container class, now comes the complicated part to
generate the transition table from stored data. This action is done by the second class
TransitionAnalysis in Java code (see Appendix Appendix - A3-b). The parsing of transitions are
done in steps;

First task is to handle all the transition from Idle state (UeRc:0) to all other states with single-
RAB UeRc using Algorithm 1. It always possible from Idle state to establish a new RAB. Also
handle reverse transition from all the single-RAB UeRc to Idle state as it is always possible to
release the existing RAB and go to Idle state. The main function is listOfTransitions which
handles the basic flow. This flow is quite simple it is only to loop through UeRc list and for each
UeRc which has single-RAB there is a to and from transition to Idle State (UeRc:0). This case is
executed and handles within listOfTransitions method.

7 The SRB part of the UeRc is ignored in this case as it does not really matters for the current scope and is
not really involved in state changing.

34

Continuation to this is handling Establish and Release triggers which also done by using
Algorithm 1. Logic is same as mentioned in the algorithm, loop through all the states and check
the condition of RAB difference equals to one. If this is true it is possible to have RAB
Establishment to go from lower state to higher state and vice versa. States which pass the first
criteria are passed on to the method findPossibleTransitions which filters out if the transition is
possible within the two states. If filter comes with a positive result, the transition is added to the
transition table.

Then comes the Channel Switching part which is handled using Algorithm 2. As defined by the
algorithm, channel switching can only be done if the number of RABs are equal on both states.
Also it only possible for PS RABs. A call to checklfTransitionlsPossible is given in order to identify
the RAB difference criteria fulfills and the transition is logged into the transition table.

The output generated by this script is a text file which contains the source states, target states,

input trigger and the effected RAB, all of these printed separated by semi colon “;”.

TABLE 7-3: OUTPUT FORMAT OF SCRIPT

UeRc:0;UeRc:2;RAB EST;CONV_C¢
UeRc:2;UeRc:0;RAB REL;CONV_CS S CH(12.2/12.2)
UeRc:5;UeRc:06;C S °S INT (64/128)

UeRc:5;UeRc:10;RAB
UeRc:10;UeRc:5;RAB REL;CONV_CS SPEECH (12. 2/12.2)
UeRc:25;UeRc:5;CW_SW;PS INT (64 /64)

35

7.2 AUTOMATED TEST CASE EXECUTOR

The Transition table generator program has performed its part and has generated the transition
table as per requirement. The next step is to use that as input for the testing system. As
mentioned in the problem description in Chapter 6, there already exists a test environment in
SUT but the transitions have to be added manually to the system in order to run the test. Based
on the static state transition input, the test environment is designed in a way to call the specific
sets of functions that will execute the state transition. The test environment is capable of
running the tests if it is told which transition to perform. But it has its limitations as the input is
manual.

The original code source cannot be used in this study as is because of two major reasons.

1. Itis complicated and cannot be executed outside company’s environment.
2. ltis Ericsson proprietary code that can note be published.

To overcome the above obstacles, a state transition simulator has been written in C++ so that
the transition table generated by the Java based script could be tested. This simulator along with
the test executor that reads the transition table and triggers the test cases. In this way the test
cases are automatically executed and verified.

The C++ project RabStateHandler consists of two parts

1. Simulator, which behaves as the Ericsson RAB handler change states based on triggers.
2. Executor, which executes the test cases by parsing the input transition table file and
triggering each state transition in the Simulator.

7.2.1 SIMULATOR

Simulator consists of the classes and functions that allow the program to behave as Ericsson’s
Connection state handling logic which is the SUT. What happens in the actual SUT is the UE is
connected to the system in any state. At this a trigger is generated that requires the change in
current state. The triggers can be generated for following reasons;

1. UE related:
a. Requesting a new service.
b. Terminating an existing service.
2. RNCrelated:
a. Changing the service based on amount of data being transmitted or received.
b. Dropping the service due to inactivity.
3. CNrelated:
a. Incoming service request for a specific UE (receiving an incoming call).
b. Services being terminated from the remote side (call ended from remote side).

All the above generated triggers are handled by RNC’s Connection state handler. Once the
trigger is received, the SUT makes the evaluation or the trigger in correspondence to the type of
UE and its capabilities. It also checks capacity of the current system based on system load and
several other factors. Once all internal checks are passed, a decision is made to process the
trigger and change the state of the connection. The new state must correspond to the UeRc
reference states supported by the system (See Appendix A-2). The important checks on which
this research focuses are;

36

* Generated input trigger (Transition table generator).
* Performing the transition based on trigger (Simulator).
* Validating generated output (Executor).

The purpose of the simulator is to function as the RAB state handler but avoid all the complex
logic involved in the actual system. The actual RAB state handler is very complex and is tightly
coupled with other software components of RNC which makes it almost impossible to isolate
the code for this research. For this reason the simulator is created which just behaves as a stub.
The simulator is controlled by the executor (explained later 7.2.2) which reads the transition
table generated by the Transition table generator (explained earlier 7.1) and feeds it to the
simulator. The simulator contains a UeRcState class which represents the current state of a
connection. On receiving the trigger and RAB parameters from executor, the simulator adds,
removes or changes a RAB and transits to a new state which conforms the UeRc state reference
(Appendix A-2). If the trigger or the RAB parameters are incorrect, simulator will go to an
invalid state. Which will indicate that the requested transition is invalid. The UeRc state
reference file is a part of the simulator and a set of support functions in the common library
ensure that the new state is correct or not. When the simulator is replaced by the actually RAB
state handler, these check are removed from the executor as those are done by the system itself.
If system establishes a wrong state this will indicate a fault in the system and test framework
will catch it.

The simulator section has the following code components: (+ public and - private)
Class Rab: contains the basic properties of a RAB, which includes

* Parameters

o -_typeirabType

o -_ul:ulRate

o -_dl:dlRate
* Functions

o + Rab(intid, string name, rabType type, ulRate ul, dIRate dl)
+ ~Rab()
+ getld():int
+ getName():string
+ getType():rabType
+ getUl():ulRate
+ getDI():dIRate
+ trace()

O 0O O O O O O

Class UeRcState: is a container class for RAB. It has a unique ID which is the UeRc number and
can store up to 4 RABs (1 CS and 3 PS). Implements basic operations like addition or deletion of
RABs and getter/setter operations.

e Parameters

o -_ueRcld:1d
o -_noPsRab:int
o -_noCsRab:int

o -_csRab:*Rab

o - _psRab:*Rab[MAXPSRAB]
* Functions

o + UeRcState()

o +~UeRcState()

37

O O O 0O 0O O O 0O O O O O O O 0 O O

+ getld():1d

+ setld(UeRc::1d)

+ addRab(Rab*)::bool
+ deleteRab(Rab*):bool
+ deleteAllRabs()

+ deletePsRabs()

+ deleteCsRab()

+ getCsRab():Rab*

+ getPsRab(int):Rab*

+ getPsRabs():Rab**

+ getNoOfRabs():int

+ getNoOfPsRabs():int
+ getNoOfCsRabs():int
+ hasCsRab():bool

+ hasCsRab(int id):bool
+ hasPsRab(int id):bool
+ trace()

Constants Library: library defines some system level constant like MAXPSRAB or MAXCSRAB,

Also defines some enumerations that are used by above classes;

Constants

O
O

@)

Class RablInfo: enumeration for RAB types, uplink rates, downlink rates.

O
O
O

Class UeRc: enumeration for UeRc IDs

@)

MAXCSRAB: Max number of CS RABs a state can have.
MAXPSRAB: Max number of PS RABs a state can have.
Class TriggerType: enumeration for trigger types

type
rabType
ulRate
dIRate

Id

38

RabsStateHandler

- currentState:UeRcState
- instance:UeRcHandler

Common Library

+ getUeRcFromString(string ueRcStr):Id
+ getRabRatesFromString(string rab_data,
ulRate &ul_rate, dIRate &dI_rate)
+ getRabTypeFromString(stringrab_data
):rabType
+ getTriggerTypeFromString(string trigger

):type
+ generateRabldFromString(string rabData
nt

- UeRcHandler()

- UeRcHandler(const UeRcHandler&)
- operator=(const
UeRcHandler&):UeRcHandler&

+ ~UeRcHandler()

+ getinstance():UeRcHandler&

+ getUeRcState():UeRcState&

+ doTransition(Trigger &trigger, UeRc::Id
src_id, UeRc::Id dest_id):bool

+ handleRabEst(UeRc::Id src_id,
UeRc::Id dest_id, Rab* rab):ld

+ handleRabRel(UeRc::Id src_id,
UeRc::Id dest_id, Rab* rab):1d

+ handleChSwitch(UeRc::Id src_id,
UeRc::Id dest_id, Rab* rab):ld

+ setState(UeRc::1d uerc):bool

+ checkState():1d

+ execute(string inputFile):bool

+ trace()

Trigger

- _trigger:TriggerType
- _rabType:rabType
ulRate

):il
+ createRabFromString(string rabData):Rab*
+ createUeRcState(ld target_uerc,
UeRcState &state):bool
+ checkUeRcState(UeRcState &state):Id

UeRcState

- _ueRcld:ld

- _noPsRab:int

- _noCsRab:int

- _csRab:*Rab

- _psRab:*Rab[MAXPSRAB]

UeRcState()
~UeRcState()
+getid():Id

+ setld(UeRc::Id)

1..1| + addRab(Rab*)::bool

+ deleteRab(Rab*):bool
+ deleteAllRabs()

+ deletePsRabs()

+ deleteCsRab()

+ getCsRab():Rab*

+ getPsRab(int):Rab*

<<enumeration>>
Id

UERC_0
UERC_1
UERC_2
UERC_3
UERC_4

“ueRcld

<<enumeration>>
TriggerType

_trigoRr| UNKNOWN,
RAB_EST
RAB_REL
CH_SWITCH

_dl:diRate
- _rabName:string

+ Trigger(type trigger, rabType rabType,
ulRate ul, diRate dl, string rabName)

+ ~Trigger()

+ getTriggerType():type

+ getRabType():rabType

+ getUl():ulRate

+ getDI():dIRate

+ getRabName():string

1 _'abTYF_:e CS_CONV
PS_INT

<<enumeration>>

+ getPsRabs():Rab**

+ getNoOfRabs():int

+ getNoOfPsRabs():int
+ getNoOfCsRabs():int
+ hasCsRab():bool

+ hasCsRab(int id):bool
+ hasPsRab(int id):bool
+ trace()

rabType

UNKNOWN_RAB

0.4
Rab
- _type:rabType
- _ululRate
- _di.dIRate

PS_STRM

+ Rab(int id, string name, rabType type,
ulRate ul, diRate dI)

+~Rab()

+ getld():int

+ getName():string

+ getType():rabType

+ getUI():ulRate

+ getDI().dIRate

+ trace()
<<enumeration>>
diRate
DL_UNKNOW = 700
DL_URA =600
DL_FACH = 401
DL_12_4=12
dfpLo=0
DL8=8 ~
DL_16 = 16
DL_64 =64
DL_128 =128
DL_384 = 384 <<enumeration>>
DL_HS =501 ulRate
UL_UNKNOW = 700
UL_URA = 600
UL_RACH =400
UL 12 2=12
lluLo=0
UL 8=8
UL_128 =128
UL_384 =384
UL_EUL =500
FIGURE 7-4: SIMULATOR AND EXECUTOR CLASS DIAGRAM

39

7.2.2 EXECUTOR

Executor is a Class which handles the state transitions by adding, deleting or changing an
existing RAB. The executor code majorly lies in the following components: (+ public and -

private)

Class UeRcHandler: is a class which contains one UeRcState type attribute and few functions
that assist in the handling of the state link doTranstion, handleRabEst, handleChSwitch etc.

e Dataitems

O
O

- currentState:UeRcState
- instance:UeRcHandler

e Member functions

O

O 0 0O O O O O O 0 O O 0 O

- UeRcHandler()

- UeRcHandler(const UeRcHandler&)

- operator=(const UeRcHandler&):UeRcHandler&

+ ~UeRcHandler ()

+ getlnstance():UeRcHandler&

+ getUeRcState():UeRcState&

+ doTransition(Trigger &trigger, UeRc::1d src_id, UeRc::1d dest_id):bool
+ handleRabEst(UeRc::Id src_id, UeRc::Id dest_id, Rab* rab):1d

+ handleRabRel(UeRc::1d src_id, UeRc::1d dest_id, Rab* rab):1d

+ handleChSwitch(UeRc::1d src_id, UeRc::1d dest_id, Rab* rab):1d
+ setState(UeRc::1d uerc):bool

+ checkState():1d

+ execute(string inputFile):bool

+ trace()

Class Trigger: contains trigger type (Establish, Release and Channel Switch), along with the
affected RAB Parameters (Type, Uplink, Downlink).

e Dataitems

O
O
O
O
O

- _trigger:type

- _rabType:rabType
- _ululRate

- _dl:dIRate

- _rabName:string

e Member Functions

@)

O O O O O O O

- Trigger()

+ Trigger(type trigger, rabType rabType, ulRate ul, dIRate d], string rabName)
+ ~Trigger()

+ getTriggerType():type

+ getRabType():rabType

+ getUI():ulRate

+ getDI():dlRate

+ getRabName():string

Common Library: is a library that contains some general functionality which is used commonly
by the executor to manipulate the data extracted from the input UeRc transition table file.

40

* Function List (static/global functions)

o getUeRcFromString(string ueRcStr):1d
getRabRatesFromString(string rab_data, ulRate &ul_rate, dIRate &dl_rate)
getRabTypeFromString(string rab_data):rabType
getTriggerTypeFromString(string trigger):type
generateRabldFromString(string rabData):int
createRabFromString(string rabData):Rab*
createUeRcState(1d target_uerc, UeRcState &state):bool
checkUeRcState(UeRcState &state):1d

O O O O 0 O O

7.2.3 WORKING OF TEST CASE EXECUTOR

Despite the technical complexities of the implementation of the test case executor, the working
of test cases executor is kept simple so running the test suite should not be problematic. The
behavior of executor is to take in the transition table generated by the transition table generator
script as input. Then the transition is parsed line by line. Each line contains the following
information

* Source/Current State
e Target State

e Triggers

* Affected RAB

UeRc:0;UeRc:2;RAB_EST;CONV_CS_SPEECH(12.2/12.2)
The UeRcHandler class reads this input and splits it in to four parameters in the execute method

* Source State = UERCO
e TargetState = UERC2
* TriggerType = RAB_EST

« RAB
o Type = CONV_CS_SPEECH
o Ul=122
o DI=122

Helper functions are used to convert the text in to enums and integer values. Once this is done a
function call is invoked to doTransition method which perform the desired transition by
creating a specific trigger and passing it to the simulator classes. When simulator finishes its
execution, a check is made to verify if the transition was successful or not. This method further
invokes three other possible methods

¢ handleRabEst: to handle the RAB establish cases.
¢ handleRabRel: to handle the RAB release cases.
* handleChSwitch: to handle the Channel switching cases.

All of the above methods invoke different functionalities of the simulator to perform the
transition. The simulator in this term behaves like the actual system and will only do the
transition if possible. Each of the methods returns the resultant UeRc state which is then
compared with the TargetState parameters extracted from the transition table. This validation
is done in doTransition method as mentioned before.

41

Transition

Test Suite
Finished

UeRc State
Hanlder is the
simulator which
can be replaced
with the actual
system

Table Exists

Line Exists <

Transition
Table

External Data file
which holds all the
UeRc States

UeRcState
— Handler
Simulator

Transition
is Valid

FIGURE 7-5: FLOW CHART TEST EXECUTOR

Below is a flow chart that explains on the high level how the test executer and simulator works.

42

8 RESEARCH OUTCOMES AND EVALUATION

This chapter gives some answers to the research question mentioned in 1.4 and gives feedback
on the outcome of this research.

8.1 MAIN OUTCOMES

The purpose of this research was purely to find a solution to the highlighted problem. Based on
the problem description and detailed system analysis, these are the outcomes from this
research.

8.1.1 IN DEPTH STUDY OF THE PROBLEM.

First step was to have a detailed insight of the system under analysis and identify the major
problem. This has been done by reading system documentation and performing detailed code
walkthrough of the system (the test framework currently running). As described in chapter 6,
the problem under study is state explosion in the existing FSM based SUT which makes it very
difficult to perform manual testing of different possible transitions. There is no good way to
avoid this problem as the system logic is designed in this way and this is the expected behavior
from the system. It is the test framework that needs some automation so that it can identify
different possible transitions by itself and try to execute them to make sure that these
transitions work properly.

In section 7 a solution sketch is provided to this problem. The problem has been split in two
parts where the first part takes in all the system states as input. It identifies possible outgoing
transitions from each state and finally stores them in an output file. The second part takes the
output generated by the previous stage as input and performs all those transitions. It behaves
both like a simulator and a test executor, which ensures each transition in the transition table
works.

This is the answer to the very first research question “Is it possible to automate the test suite to
traverse all possible transition?” The provided solution handles the RAB Establish and RAB
Release cases as expected. No matter how many states are added or removed the algorithm
produces correct number of test cases. There is a minor complication in the Channel Switch
cases where it gets complex in handling all possible combinations especially like; switching to
the common channels (RACH/FACH), switching to high speed channels (EUL/HS) or going to
sleep mode (URA/URA) states. However, the solution sketch is still valid; it is only the
implementation of Transition table generator to handle the special cases.

8.1.2 IMPLEMENT THE SKETCHED SOLUTION ON A SMALL SCALE.

Once the solution is sketched and the algorithms are developed while answering the first
question, next phase is to implement the design. Implementation of first part is done in Java (see
7.1.3 for details).

Implementation of second phase, the test cases executor, is done in C++. It contains further two
sections:

* One is the simulator behaving as the actual system (see 7.2.1).
¢ Other is executor which executes all the transition from the transition table generated
by Java code (see 7.2.2).

43

The solution is sketched for the whole problem whereas the implementation is only done for a
smaller sample of data. This is done to reduce the implementation complexity and still check the
effectiveness of the solution (which is explained later) before applying it on a large scale.

The second outcome helps in answering the second research question “Can the automated test
suite adapt to the changes in the system by addition or removal of states?” after implementation
of the solution on a smaller scale sample data. It can be observed that the system is behaving as
it is expected to do.

TABLE 8-1: EXPECTED VS. GENERATED NO.OF TRANSITION TABLE

Input States No.of States No.of expected No.of transition
transitions generated by script
(theoretically)

UeRc:0 2 2 2
UeRc:2

UeRc:0 3 4 4
UeRc:2
UeRc:5

UeRc:0 4 8 8
UeRc:2
UeRc:5
UeRC:10

UeRc:0 5 12 12
UeRc:2
UeRc:4
UeRc:5
UeRc:10

UeRc:0 6 18 18
UeRc:2
UeRc:4
UeRc:5
UeRc:10
UeRc:25

UeRc:0 7 20 20
UeRc:2
UeRc:4
UeRc:5
UeRc:10
UeRc:25
UeRc:26

UeRc:0 8 22 22
UeRc:2
UeRc:4
UeRc:5
UeRc:10
UeRc:25
UeRc:26
UeRc:62

In Table 8-1, based on the input (states and number of states) 3rd column is expected outcome
that has been calculated using theoretical calculation8 which is then compared to the 4th column

8 Expected outputs are the transitions that are calculated based on the system behavior that what is
expect from the system. Some of these are used in the currently implemented manual test framework.

44

that is outcome generated by the implemented solution. Equality in between these two columns
demonstrates that the script is producing the expected output. Some of the outputs are
explained in the next sections. The simulator used in the test executor takes the generated
transition as input and do the transitions as specified by adding, removing or channel switching.
The new achieved state is then matched with the reference UeRc file (same file that is used to
generate the table) to see if the achieved state really exists which verifies the correctness of the
generated transition table. If any of the generated states does not exist in the reference UeRc
file, this will be a bug in the transition table generator script but so far nothing has been
observed with the currently provided input set.

8.1.3 EFFECTIVENESS OF THE PROPOSED SOLUTION.

To verify the effectiveness of the solution, the outputs need to be evaluated. As seen in Table
8-1, test script is already generating desired number of transition based on the input. Looking in
to some of the input vs output comparison below;

TABLE 8-2: 3-STATE BASE TRANSITION TABLE

Input

3-States

UeRc:0 #[Idle]

UeRc:2 #[Conversational CS Speech (12.2/12.2)]
UeRc:5 #[Interactive PS (64/64)]

Output

Source Target Trigger Affected RAB

UeRc:0 UeRc:2 RAB_EST CONV_CS_SPEECH(12.2/12.2)
UeRc:0 UeRc:5 RAB_EST INT_PS(64/64)

UeRc:2 UeRc:0 RAB_REL CONV_CS_SPEECH(12.2/12.2)
UeRc:5 UeRc:0 RAB_REL INT_PS(64/64)

TABLE 8-3: 5-STATE BASE TRANSITION TABLE

Input

5-States

UeRc:0 #[Idle]

UeRc:2 #[Conversational CS Speech (12.2/12.2)]

UeRc:4 #[Interactive PS (RACH/FACH)]

UeRc:5 #[Interactive PS (64/64)]

UeRc:10 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/64)]

Output

Source Target Trigger Affected RAB

UeRc:0 UeRc:2 RAB_EST CONV_CS_SPEECH(12.2/12.2)
UeRc:0 UeRc:4 RAB_EST INT_PS(RACH/FACH)

UeRc:0 UeRc:5 RAB_EST INT_PS(64/64)

UeRc:2 UeRc:0 RAB_REL CONV_CS_SPEECH(12.2/12.2)
UeRc:2 UeRc:10 RAB_EST INT_PS(64/64)

UeRc:4 UeRc:0 RAB_REL INT_PS(RACH/FACH)

UeRc:4 UeRc:5 CH_SW PS_INT (64/64)

UeRc:5 UeRc:0 RAB_REL INT_PS(64/64)

45

UeRc:5 UeRc:4 CH_SW PS_INT (RACH/FACH)

UeRc:5 UeRc:10 RAB_EST CONV_CS_SPEECH(12.2/12.2)
UeRc:10 UeRc:2 RAB_REL INT_PS(64/64)
UeRc:10 UeRc:5 RAB_REL CONV_CS_SPEECH(12.2/12.2)

TABLE 8-4: 8-STATE BASE TRANSITION TABLE

Input

8-States

UeRc:0 #[Idle]

UeRc:2 #[Conversational CS Speech (12.2/12.2)]

UeRc:4 #[Interactive PS (RACH/FACH)]

UeRc:5 #[Interactive PS (64/64)]

UeRc:10 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/64)]
UeRc:25 #[Interactive PS (EUL/HS)]

UeRc:26 #[Interactive PS (64/64) + Interactive PS (64/64)]

UeRc:62 #[Interactive PS (EUL/HS) + Interactive PS (EUL/HS)]

Output
Source Target Trigger Affected RAB
UeRc:0 UeRc:2 RAB_EST CONV_CS_SPEECH(12.2/12.2)
UeRc:0 UeRc:4 RAB_EST INT_PS(RACH/FACH)
UeRc:© UeRc:5 RAB_EST INT_PS(64/64)
UeRc:0 UeRc:25 RAB_EST INT_PS(EUL/HS)
UeRc:2 UeRc:0 RAB_REL CONV_CS_SPEECH(12.2/12.2)
UeRc:2 UeRc:10 RAB_EST INT_PS(64/64)
UeRc:4 UeRc:0 RAB_REL INT_PS(RACH/FACH)
UeRc:4 UeRc:5 CH_SW PS_INT (64/64)
UeRc:4 UeRc:25 CH_SW PS_INT (EUL/HS)
UeRc:5 UeRc:0 RAB_REL INT_PS(64/64)
UeRc:5 UeRc:4 CH_SW PS_INT (RACH/FACH)
UeRc:5 UeRc:10 RAB_EST CONV_CS_SPEECH(12.2/12.2)
UeRc:5 UeRc:25 CH_SW PS_INT (EUL/HS)
UeRc:5 UeRc:26 RAB_EST INT_PS(64/64)
UeRc:10 UeRc:2 RAB_REL INT_PS(64/64)
UeRc:10 UeRc:5 RAB_REL CONV_CS_SPEECH(12.2/12.2)
UeRc:25 UeRc:0 RAB_REL INT_PS(EUL/HS)
UeRc:25 UeRc:4 CH_SW PS_INT (RACH/FACH)
UeRc:25 UeRc:5 CH_SW PS_INT (64/64)
UeRc:25 UeRc:62 RAB_EST INT_PS(EUL/HS)
UeRc:26 UeRc:5 RAB_REL INT_PS(64/64)
UeRc:62 UeRc:25 RAB_REL INT_PS(EUL/HS)

The information in Table 8-2, Table 8-3 and Table 8-4 are the generated transition tables from
the script developed during this research. This is just a small sample of information showing
input vs. output with 3, 5 and 8 states respectively. According to Algorithm 1 and Algorithm 2
defined in 7.1.1 and 7.1.2, the above generated outputs are as expected which shows the

46

accurate behavior of the transition generator script. Table 8-4 contains the transition for
UeRc:25. These can be categorized in two types, incoming transition and outgoing transition.

Incoming Transitions are the one in which UeRc:25 is the target state and are highlighted as
blue in the table.

1. From UeRc:0 it is possible to go to any single state RAB and UeRc:25 fulfills the criteria.

2. UeRc:4 it is possible to go to any state containing only one PS RAB using Channel
Switching and UeRc:25 has it.

3. From any states having only PS RAB can channel switch to UeRc:25, so UeRc:5 to
UeRc:25 is valid transition.

4. Finally UeRc:62 has two PS(EUL/HS) RABs and UeRc:25 has one PS(EUL/HS)RAB so
releasing one RAB at UeRc:62 will make it UeRc:25.

Outgoing transition are the one in which UeRc:25 is the source state and are highlighted as
green in the table. All the reverse transitions are possible.

1. From any single RAB states it is possible to go to Idle (UeRc:0).

2. From UeRc:25 Channel Switching to any states with only one PS RAB is possible so
transition to UeRc:4 and UeRc:5 is valid.

3. UeRc:25 has one PS(EUL/HS) RAB, RAB establish with one more PS(EUL/HS) will result
in UeRc:62.

All the above transitions are valid and have been verified by the system engineers by manually
generating outputs. Only for UeRc:25 the incoming and outgoing transitions have been
explained.

8.2 EVALUATION

Evaluation is the part where it is decide how much of the requirement have been fulfilled.
MOMC based evaluation is performed in this research. Three main evaluation factors are taken
into consideration.

8.2.1 OUTPUT VALIDATION

Here the output generated from the script is compared with the expected outputs. Looking
through the tables Table 8-1, Table 8-2, Table 8-3 and Table 8-4 it can be observed that the
generated output has same number of output transition as theoretically calculated. Secondly the
output is valid because all the generated transitions result in to a valid states that are defined in
the system. The simulator is developed in a way to only perform the transition if it ends up in a
valid state. If any input transition leads to a state that does not exist in the systems valid state
table (the states input file), the simulator will go to an invalid state which will be a failure. So the
simulator itself behaves as the validator of the transition table generated by the script.

8.2.2 IMPLEMENTATION COMPLEXITY

Complexity of the implementation depends on how much coupling is there between the
generated solution and SUT. The advantage with the implementation in this research is that it
provides the code for executor that runs transition tests. It also provides the simulator code
which has some improvements that can be implemented in the test environment to improve its
usability.

47

There are three part of implementation

1. Transition Table Generator (Java)
2. Simulator (C++)
3. Executor (C++)

The transition table generator is independent of any existing implementation of RAB State
Handler used in the current system. It does not use any existing implementation except of the
input UeRc State file. The purpose of this script is to generate the transition table based on the
input file which can be used for any purpose including testing of states transition. This is
completely isolated script so there is no additional implementation cost in this case only the
output generated transition table file is needed for testing. However the transition table
generator script has been implemented on a small set of input values. It needs update to handle
the remaining UeRcs which contains PS Streaming RAB.

Simulator is just the C++ code that is intended to behave as the actual system. During the
implementation of this described solution in the RAB State Handler, the Simulator part shall be
replaced with the official RAB State Handler which will actually execute the production code on
the system and do the state transition which then will be verified by the test system. Simulator
part is coded because the actual RAB State Handler is very complex, contains thousands of lines
of code and it is Ericsson proprietary. But the simulator also behaves as a validator for the
generated transition table as mentioned in 8.2.1.

Executor is the part that needs to be implemented in the RAB States Handler test environment
so that the system will be able to take the transition table as input file, then one by one feed this
to the RAB States handler (instead of Simulator) and verifies the expected outcome.
Implementation should be straight forward and can be done with steps.

1. Copy the code of the Executor (UeRcHandler Class) in the RAB State Handlers test
package.
2. Update the inclusion from simulated classes (UeRc States, RAB) to the actual classes.

8.2.3 MAINTAINABILITY OVERHEAD

Finally comes the maintainability overhead which is the estimate of how much work needs to be
done in order to keep the proposed solution update to date. The only thing that effects the
proposed solution is addition of new state. There can be two reasons for that;

1. New RAB Combination (State) introduced.
2. New RAB introduced which will create new RAB Combinations (States).

Addition or removal of states does not require any maintenance as the script will automatically
handle the new state input file and the transition table will be generated accordingly. On the
other hand for second case when a new RAB is introduced to the system e.g. a new Packet RAB
with higher bit rates, this will require update in the script as the RAB information is stored in
the script itself. The new RAB and associated rules should be added in the script in order to
handle transitions to possible states. These kind of changes come from 3GPP and most likely
these do not happen very often because most standards are already defined. Still there are
possibilities and updates are required accordingly. Figure 8-1 shows the maintenance overview
of the system. On addition of a new RAB in the system, on impact will be on the
TransitionAnalysis class in the Transition Table Generator. Whereas there is no impact on the
executor at all. However as the SUT has been updated there will be minor changes in the RAB

48

class for the simulator. It depends if the simulator would be kept in future as this is just
developed for this study.

States definitiorn

Transition Table

Automatic Test

case Executor

Result Transition To Do

States Definition Maintenance Impacts

Impacted area

FIGURE 8-1: MAINTENENCE OVERVIEW

This study only focus on the maintainability of Transition table generator which is written in
Java. Using the JHawk5 (Demo version Maintainability Index (MI) of the script is calculated. Only
two primary class StateNamesAndRabs and TransitionAnalysis are considered in this case the
Main class is ignore as it only executes the actual logic. Following are the measurements from
the tool;

49

| Help

Hawk 5 - The Java Metric version)

Ipmmlpwmlﬁsdmﬁsl © Reslt5| ™ Euml\nefaml

| ® Dashboard |; T System!| 83 Classes by package | @ Methods by dass | 28 AllMethods In System | @ All lasses in System

Name of system Transition Table Generator

Total number of Packages 1 Total number of Java statements 184

A ge C: ic Ci of the 5.08 Cumulative Halstead bugs 332

Cumulative Halstead effort 446640.29 Maintainability Index 4405

Total Number of Comment Lines in the System 109 Total Lines of Code in the System 214

Total number of Classes 2 Total Number of Comments in the system 14

Cumulative Halstead length 1871 Total number of methods 13

Total Cyclomatic Complexity 66 ility Index (Not i 92.15

Cumulative Halstead volume 9970.35

Packages I
Name ML AVCC No. Classes NOS NLOC CccML HEFF HBUG HLTH HVOL

ericsson. transitions

FIGURE 8-2: MI ON SYSTEM LEVEL

Help

|hmm|pwdmm|ﬁsdectﬁs' ® Rem“5| ™= Emortl\nefeum|

| ® Dashboard | & System | %3 Classes by package | @ Methods by dass | B9 AllMethods In System | @ All Classes in System

All classes in system

N

Name MI No. Methods NLOC ceML Avce [«:] NOS HBUG HEFF uwcs INST PACK RFC LcoM
[TransitionAnalysis | 37.46| 8| 173 67| 7.12| 0| 153 2.95| 434523.20| 8| 0| 2| 8 0.00
StateNamesAndRabs [100.41] 5| 36| 28| 1.80| o 26| 0.34) 11625.57| 7| 2 1] 6 0.12

FIGURE 8-3: MI ON CLASS LEVEL

50

‘-« JHawk 5 - The Java Metric Tool (DEMO version) E¢.

Help
‘ B~ Hawk Demo | B~ Welcome I @Sdectﬁles‘ & Results | Exportl 9, Preferences

1 ‘ & Dashboard I 1= System | iy Classes by package I @ Methods by dass‘ 29 All Methods In System | @ All Classes in System

All Methods In System

Name COMP NLOC NOCL HEFF NOS HLTH HVOC HBUG CREF XMET LMET
checkIfEqual(java.lang.String, java.lang.String, java.lang.String, java.lang.S... 1 3] 8 1292.00 2 34| 16! 0.05! 1 1 0]
checkIfTransitionIsPossible(java.util. ArrayList) (ericsson. transitions. Transition... L 40 2 7 il
collectData(java.util. Scanner) (ericsson. transitions. StateNamesAndRabs) 3 9 6 2263.25 6 55! 29 0.09! 2 4 2]
establish j util. ArrayList, java.util. ArrayList) (ericsson. transition... 2 8| 6 1471.91 5 36 19 0.05/ 2| 1] 0
extractNameC (java.lang.String) (ericsson. dR.... 1] e 6 712.13 3 28 17 0.04 1 3| 0
extractRabRate(java.util. ArrayList) (ericsson. transitions. TransitionAnalysis] 5 17 6 12590.01 17| 122 37| 0.21 2| 5 0
findPossibleRateTransition(java.util. ArrayList, java.util. ArrayList) (ericsson.tr... 2 16! 6| 21407.37| 13 159 31 0.26] bl 6 1]
findPossibleTransitions(java.util. ArrayList, java.util. ArrayList) (ericsson. transi... 6 20 7 27520.65 13 151 30 0.25, 2 6 0
fixOutput(java.lang.String) (ericsson. transitions. TransitionAnalysis) 14 23 6 21792.09 32 207 49 0.39] 2 5 0
at () (ericsson. transiti dRab 1 3] 5 133.19 2 11] 11] 0.01] 1 0 0
getStateRabs() (ericsson. transitions. StateNamesAndRabs) 1 3| 5 211.89 2 14 11] 0.02] 1 0 0]
listOfTransitions util. ArrayList, java.util. ArrayList, java.io.PrintWriter) (e... 9 27, 13| 112608.89; 24| 397 58 0.78] 4 11] 1
splitRabs(java.lang.String) (ericsson. transiti 1dRabs) 3 13 3 6273.53] 10 79 32 0.13] 2 5| 0]

ericsson. transitions. TransitionAnalysis

—_— vl

FIGURE 8-4: COMPLEXITY ON METHOD LEVEL

Figure 8-2, Figure 8-3 and Figure 8-4 shows that the MI is 44.05 which is quite low due to the
reason of high complexity in TransitionAnalysis class. Methods checklfTransitionlsPossible,
listOfTransition and fixOutput are the most complex ones. The method
checklfTransitionlsPossible is the one making most of the decisions and checking if a transition
between two states is valid or not.

Other metric that we considered is the volume that is LOC. From Figure 8-2 we can see there the
total LOC is 214 which is quite small.

KLoc
rank MY Java Cobol PL/SQL
++ 0-—38 0-66 0-131 0-46
+ 8 — 30 66-246 131-491 46-173

0 30 —80 246-665 491-1,310 | 173-461
- 80 — 160 || 655-1.310 | 1.310-2,621 | 461-922
-- > 160 > 1,310 > 2,621 > 922

FIGURE 8-5: RANKING SCHEME VS LOC [26]

In Figure 8-5 KLOC is Kilo Line of code, MY is Man Years, rank is how much code is maintainable
based on LOC. ++ is the best and -- is the worst [26]. As Transition table generator is writing in
Java with only 214 LOC. It lies on the top of the list giving it a ++ which gives a fairly good idea
about maintainability effort.

51

9 DISCUSSION

This chapter will give some idea to future researcher how to continue this research to the next
step and will highlight some limitation.

9.1 REFLECTIONS

Methodology used in this research is a basic divide and concur approach. As this research is not
just a theoretical study of the 3G RNC UeRc State Handler but also implementation is involved
for proposed solution. The information available in the product documentation is highly
coupled with other aspects which are not part of this research. Both documentation and code
review is done in order to understand the system and associated problem. Also a few meetings
were carried out with the area experts including the research supervisor in order to get a clear
picture. The divide and concur approach made it a lot easy in breaking down the problems into
smaller units. So the focus can be set to one issue at a time.

RAB Establish Cases

B ‘ Identifying possible states } RAB Release Cases

Channel Switching Cases

Manual Testing Problem ’

Test Executor

' { Automated Execution of Test ’ ’ F——
Imuliator

FIGURE 9-1: PROBLEM BREAKDOWN

References used in the research are mostly to understand and clarify the theoretical
background. Ericsson internal documents and code that is used to understand the problem are
not mentioned in the references section. These documents were only used to understand the
system and underlying problem which is described in more generic format using state
machines. The references can be categorized in four groups based on the theoretical sections in
which they are used.

State Machines and State Explosion Problem.
Logic and Discrete Mathematics.

Software testing and Test Automation.
WCDMA Networks.

W=

All these references in the reference list are to support reader’s understanding of the theoretical
sections and make the background more clear so the problem description and solution
specification can be easily understood. As this problem is specific to Ericsson’s network, it was
not possible to find some similar research that would exactly fit this case. Few other thesis
reports were read related to automated test cases generation from software documentation but
were not used. This solution is designed from scratch so there are no references for the solution
section.

52

9.2 LIMITATIONS

This study has the following limitations and future improvements.

1. This research is based on a very specific tests system at Ericsson but this solution can
provide good guide lines to similar issues which involves state machines.

2. The solution provided in this research is based on a small sample extracted from the
actual data that is represented in a simulated system but with some extra effort the
solution can scaled to the whole system (See 8.2.2).

3. Most of the information handled in this research is Ericsson Confidential and cannot be
shared publicly that is why some data samples and mostly open standards like 3GPP are
used to represent the problem and its solution.

4. To reduce the complexity and time required for the research Connection Capabilities
handling has been left out of this research with agreement of Ericsson.

5. Transition table generator script helps a lot in generating the transition table which is
very useful for testing but the script needs maintenance and need to be updated if a new
type of RAB is introduced.

6. Maintainability Index has been calculated using the third party tool. Accuracy of that
tool has not been verified.

9.3 FUTURE WORK

For future updates once the proposed solution is completely implemented, the next step would
be to target connection capabilities on each state. Each state with a PS RAB has a possibility to
have several connection capabilities like MIMO (Multiple input multiple output) and a few
others. [t would be a beneficial improvement if the test system can be extended to the next level
handling these connection capabilities.

Transition table generator has high complexity.

9.4 ETHICAL ASPECTS

This research is purely technical and provides solution that can be implemented in the test
framework which already exists. The purpose of this research is to make life easy for developer
not to put too much effort in writing manual test cases instead he/she can put more focus on the
production code that is profitable for the company.

Data used for analysis which is Ericsson proprietary has first been translated according to 3GPP
standards so it can be represented as generic information which is common for all WCDMA and
3G technology. No Ericsson internal or confidential data and documents has been exposed to
external reader but has been referred as 3GPP standards.

9.5 ENVIRONMENTAL ASPECTS

There are no negative environmental aspects as the solution provided by this research will be
implemented as a part of existing system. Theoretically is should decrease the time of
implementing manual test cases by automatically executing expected scenarios which will not
have any impact on the environment.

From safety and security point of view there can be one possible impact that the emergency call
RAB/RAB Combination gets miss handled if the testing is not done properly. So it is

53

recommended that emergency call test cases should be handled with extra care and it would be
better to add few more test cases for this scenario.

54

10 CONCLUSIONS

The research’s main focus was to sketch a solution to the testing of different states in Ericsson’s
RAB state handler. During the research two main components were developed;

1. Transition Table Generator.
2. Automated Executor,

a. Simulator.

b. Executor.

Now let’s have look at the research question that should be answered with the outcomes of this
research

* s it possible to automate the basic test framework to traverse maximum possible
transitions?

In this research a limited number of states and RABs associated with have been taken. The
transition table generator needs to know about the RAB types those are involved in any state in
order to perform the transition. The current implementation covers roughly 70% of the possible
transition. As the PS Streaming RAB has been excluded from this research for simplification,
adding that in the system will make the transition table generator script work for the complete
system. So implementation and evaluation results supports that it is possible to make a script
that can traverse all the states and generate a transition table that can be used for test input.

* (an the automated test framework adapt to the changes in the system, such as addition or
removal of states?

Second question is about adoptability for changes. From the outcomes section 8.1.2 it can
observed that the script is generating right number of output transition and from 8.1.3 it can be
further seen that script is able to adopt automatically as the states are being added to the
system. As far as the new state is added with the RAB types which already exist, script will
handle those automatically. The script only needs to be updated when there is a new RAB type
introduced.

* Will this automation be effective both in terms of time and cost?

Looking through the research outcome it can be observed that this research has fulfilled most of
the requirements,

1. There is a script generation possible transition table.
2. There is an executor part that can work with both the simulator and the actual SUT to
executes the transition and verify them.

But there are a few things that impact the feasibly of implementation and maintainability of the
solution on the actual SUT. Transition table generator need update to handle all possible RAB
type that can add extra work in order to test the complete system. Even though the MI is low
which means high maintenance effort still the LOC is very few which makes it simple to
maintain. Overall the solution is accepted by the development team. It will require at least two
developer a minimal dedicated time of two months in order to complete the left over parts and
make it fully functional for all possible UeRc states. Once the solution is completely
implemented there is a small cost of maintaining the transition table generator only if a new
UeRc state is added with a new type of RAB, with existing type of RABs, the solution will work
without any change.

55

56

11 BIBLIOGRAPHY

[1] Shilei Liu and B. Eng., "Generating Test Cases From Software Documentation,”
Department of Electrical and Computer Engineering, McMaster University, Hamilton,
Ontario, Thesis Report 2001.

[2] Menqi Wu Kanglin Li, Effective Software Test Automation: Developing an Automated
Software Testing Tool. Chicago: Sybex, 2004.

[3] Anand Saswat et al., "An orchestrated survey of methodologies for automated software
test case generation," Journal of Systems and Software, vol. 86, pp. 1978-2001, August
2013.

[4] Jan Tretmans, "Model Based Testing with Labelled Transition Systems," in Formal
Methods and Testing.: Springer Berlin Heidelberg, 2008, vol. 4949, pp. 1-38. [Online].
http://dx.doi.org/10.1007 /978-3-540-78917-8_1

[5] Robert Binder, Testing Object-oriented Software Testing: Models, Patterns, and Tools.:
Addison-Wesley, 1999.

[6] Thomas Koshy, Discrete Mathematics With Applications.: Elsevier Academic Press, 2004.

[7] Patrick R. Schaumont, A Practical Introduction to Hardware/Software Codesign, 2nd ed.
New York: Springer, 2013.

[8] Wagner Ferdinand, Schmuki Ruedi, Wagner Thomas, and Wolstenholme Peter, Modeling
Software with Finite State Machines: A Practical Approach.: CRC Press, 2006, vol. 0.

[9] Lee Copeland, A Practitioner's Guide to Software Test Design. London: Arech House, 2004.

[10] Hong Zhu, Patrick A. V. Hall, and John H. R. May, "Software unit test coverage and
adequacy," ACM Computing Surveys, vol. 29, no. 4, pp. 366-427, December 1997. [Online].
http://doi.acm.org/10.1145/267580.267590

[11] Bertolino and Antonia, "Software Testing Research: Achievements, Challenges, Dreams,"
in Future of Software Engineering, FOSE '07, Minneapolis, 2007, pp. 85 - 103. [Online].
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4221614&isnumber=42216
01

[12] Conformiq. (2013) Why Automate Test Design?. [Online].
http://www.conformiq.com/cqwp-atd.pdf

[13] Elfriede Dustin, Thom Garrett, and Bernie Gauf, Implementing Automated Software
Testing: How To Save Time and Lower Costs While Rasising Quality. Massachusetts:

Pearson Education, 2009.

[14] Carl]. Nagle. (2012, August) Test Automation Frameworks. [Online].
http://safsdev.sourceforge.net/FRAMESDataDrivenTestAutomationFrameworks.htm

[15] King James C., "A new approach to program testing," Proceedings of the international
conference on Reliable software, vol. 10, no. 6, pp. 228-233, June 1975. [Online].

57

http://doi.acm.org/10.1145/800027.808444

[16] S. Khurshid, C. Pasareanu, and W. Visser, "Generalized Symbolic Execution for Model
Checking and Testing," in Tools and Algorithms for the Construction and Analysis of
Systems, Hubert Garavel and John Hatcliff, Eds. Warsaw, Poland: Springer Berlin
Heidelberg, 2003, vol. 2619, pp. 553-568. [Online]. http://dx.doi.org/10.1007 /3-540-
36577-X_40

[17] Castro Miguel, Costa Manuel, and Martin Jean-Philippe, "Better bug reporting with better
privacy," in Architectural support for programming languages and operating systems
(ASPLOS XI1I), New York, 2008, pp. 319-328. [Online].
http://doi.acm.org/10.1145/1346281.1346322

[18] P. Zhang, S. Elbaum, and M.B. Dwyer, "Automatic generation of load tests," in Automated
Software Engineering (ASE), 2011, pp. 43,52. [Online].
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6100093&isnumber=61000
39

[19] Qi Dawei, Roychoudhury Abhik, Liang Zhenkai, and Vaswani Kapil, "Darwin: an approach
for debugging evolving programs,” in The foundations of software engineering (ESEC/FSE
'09), New York, 2009, pp. 33-42. [Online]. http://doi.acm.org/10.1145/1595696.1595704

[20] R. Santelices, P.K. Chittimalli, T. Apiwattanapong, A Orso, and M.]. Harrold, "Test-Suite
Augmentation for Evolving Software," in Automated Software Engineering, 2008. ASE 2008.
23rd IEEE/ACM International Conference, L'Aquila, 2008, pp. 218-227. [Online].
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4639325&isnumber=46392
93

[21] Marie-Claude Gaudel, "Testing can be formal, too," in Theory and Practice of Software
Development. Orsay: Springer Berlin Heidelberg, 1995, vol. 915, pp. 82-96. [Online].
http://dx.doi.org/10.1007 /3-540-59293-8_188

[22] Conformigq. http://www.conformiq.com/. [Online].
http://www.conformiq.com/products/feature-specifications/

[23] Sumit Kasera and Nishit Narang, 3G Mobile Networks. United States of America: McGraw-
Hill, 2005.

[24] 3GPP, "Typical examples of RABs and RBs supported by UTRA," Technical Report 2009.
[Online]. http://www.3gpp.org/DynaReport/25993.htm

[25] D.LK. Sjoberg, B. Anda, and A. Mockus, "Questioning software maintenance metrics: A
comparative case study," in Empirical Software Engineering and Measurement, Lund, 2012

, pp. 107-110.

[26] L. Heitlager, T. Kuipers, and]. Visser, "A Practical Model for Measuring Maintainability," in
Quality of Information and Communications Technology, Lisbon, 2007, pp. 30-39.

58

12 GLOSSARY

Here is the list of abbreviations used in this research;

AN Access Network

CBA Cost Benefit Analysis

CH_SW Channel Switch (Trigger)

CN Core Network

CsS Circuit Switched

EUL Enhanced Uplink

DDT Data-Driven Testing

FSM Finite State Machine

GBR Guaranteed Bit Rate

HS High Speed (Downlink)

LOC Lines of Code

LTS Labelled Transition System

MBR Maximum Bit Rate

MBT Model Based Testing

MI Maintainability Index

MIMO Multiple Input Multiple Output
MOMC Multi Objective Multi Criteria

PS Packet Switch

QoS Quality of Service

RAB Radio Access Bearer

RAB_EST RAB Establish (Trigger)

RAB_REL RAB Release (Trigger)

RDC RAB Difference Criteria

RNC Radio Network Controller

SM Structure Measurements

SUT System Under Test

TDD Test-Driven Development

TDMA Time Division Multiple Access

UE User Equipment

Iub Interface between NodeB and RNC
Iur Interface between RNC and RNC
Iu Interface between RNC and CN
IuPS Interface between RNC and CN with PS service
IuCS Interface between RNC and CN with CS service
UE User Equipment

UeRc User Equipment Radio Connection
UMTS Universal Mobile Telecommunication System

WCDMA Wideband Code Division Multiple Access

13 LIST OF FIGURES

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 6-1:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 8-1:
Figure 8-2:
Figure 8-3:
Figure 8-4:
Figure 8-5:
Figure 9-1:

Simple State MACKINE ..o s 3
3-States State MACKINE ..o s s s s 4
4-5tates StatemMaAChINe ..t 4
State Machine Of TUIMNSEILE ...t st ssass s ssssssssssans 6
T = Y L (PP 7
4-SEALE FSM .ot s s s s R R e 8
B-STALE FSM ..ottt ees s 9
ManUAl TESTING [L12] .. seessess e ssesssessessssssess s sesssesssessssssssssse s s ssssssssseees 12
Symbolic Execution FIOW [3] [16] . sesssessseesssssesssesssssssessssssssssssssssseees 14
Candy Machine LTS [4] .eeerreenemsesssessssssessssssesssssssssssesssesssssssesssssssesssesssssssessssssssssssssseses 16

DDT €XECULION FIOW .ottt ssssssssssssssesssesans 17
UINES OVETVIBW ..oveerctrcereeresesessesee s essessssssssssessessess s sssse s s s s s sensens 18
RAB Types and Radio CONNECTION.uuerererreesremseessessseessessessesseesssessesssesssesssssssesssssssessssssssseees 19
UMTS QOS ArChiteCtUIE [24] ovoeecerreerreerseesrerseessessseessessesssssssesssssesssesssesssssssesssesssssssesssssssssssssssssenes 20

UERC State EXPLOSION covuuieereirceeereer e sssss s s sesssesssesssssssessse s sssssssssesssenes 25
SOIULION BrEAKAOWIL ..t ssessss st sttt sssasssnes 28
Establish and Release State Machine........oeenemeneenesrssee s ssessenes 31
Channel Switcing State MaChine. ... s 33
Simulator and Executor Class DIagrameenereesneeseesneesesssesssessssssesssssssssesssssseees 39
FIOW Chart TSt EXECULOT w.uieeeeretsseesserssssessessssssssesssssssssessssssssssssssssssssssssssssessssssssssssssssssssasssas 42

MaInteNenCe OVEIVIEW .. st s s 49
MI ON SYSEEIM LEVEL..oroeieerecretreerecr e ssssssses s sess s sesss s ssssssssssenes 50
MI 0N ClaSS I@VEL ...ttt s s s s 50
Complexity on Method LeVel....... e sssssssssssssssenes 51
Ranking SCheme VS LOC [26]...orrereernerneesseessemssesssesssssssessssssessessssessesssssssssssssssesssssssesssssssseees 51

Problem BreaRAOWI . cccseeeissessssesesesesesssssesesssssesessssssssssssssssssssssssssssssssesssssssssssasasasaeas 52

60

14 LIST OF TABLES

Table 2-1:
Table 2-2:
Table 2-3:
Table 2-4:
Table 4-1:
Table 4-2:
Table 4-3:
Table 6-1:
Table 7-1:
Table 7-2:
Table 7-3:
Table 8-1:
Table 8-2:
Table 8-3:
Table 8-4:

Trnsition Table of TUIMNSTIE [6] ..o sesssssssesssesssssssessssssesasees 7
Transition Table fOr 3-State FSM ...t sesssssssssessssessssessssessssesssses 8
Transition Table fOr 4-State FSM ... ssssssssessssssssssssssessssessssessssesssses 8
Transition Table fOr 6-State FSM ...t sssssssssssssssssessssssssssssssssssssssseens 10
TTAfIC ClASSES [24] . vvuerereereerrenseesrersseessesse s sees s s sss s s n s sn s 21
INLETACTIVE DITATE [24] ..eeieieerrereeerrseerees s resssses s s s sess s s s sssssesans 21
|21 (o 7 £ PP 22
8-States Based Transition Table...... st ssssssssssnens 26
INItIA] INPUL DALA c.oceeceeeeereee e ss s ns s 29
Actual Input Data (NO SRB) .. ssssesssssssessssessesssssssesasssaes 29
LORUN N (0] 90 - U0) 1) o] PP 35
Expected Vs. Generated No.Of Transition Table........eeeeesees e 44
3-State Base TransSition Table.... s s ssssssssssssssssssssssssssessasesans 45
5-State Base TransSition Table.... s ssssssssssssssssssssssssssssssssssessasessans 45
8-State Base TransSition Table..... e ssessssesssssssssssssssssssssssssssssssssnes 46

61

62

APPENDIX - A

A-1 TOOLS AND LANGUAGES

Tools and languages used to support this research.

* Eclipse

* Notepad++
* Java

e C++

* JHawk5 (Demo Version)

A-2 UERC REFERNCE FILE

Below is the list of UeRcs (RAB Combinations) currently used by the system for which this
research is conducted. This is a unique representation of each RAB Combination as a state for
easy handling.

UeRc:0 #[Idle]

UeRc:1 #[SRB (13.6/13.6)]

UeRc:2 #[Conversational CS Speech (12.2/12.2)]

UeRc:3 #[Conversational CS Unknown (64/64)]

UeRc:4 #[Interactive PS (RACH/FACH)]

UeRc:5 #[Interactive PS (64/64)]

UeRc:6 #[Interactive PS (64/128)]

UeRc:7 #[Interactive PS (64/384)]

UeRc:8 #[Streaming CS Unknown (57.6/57.6)]

UeRc:9 #[Conversational CS Speech (12.2/12.2) + Interactive PS (0/0)]
UeRc:10 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/64)]
UeRc:11 #[SRB (13.6/13.6), Preconfigured]

UeRc:12 #[Conversational CS Speech (12.2/12.2), Preconfigured]
UeRc:13 #[Streaming PS Unknown (16/64) + Interactive PS (8/8)]
UeRc:14 #[Conversational CS Unknown (64/64) + Interactive PS (8/8)]
UeRc:15 #[Interactive PS (64/HS)]

UeRc:16 #[Interactive PS (384/HS)] //Increased due to PS (16/HS)
UeRc:17 #[Streaming PS Unknown (16/128) + Interactive PS (8/8)]
UeRc:18 #[Interactive PS (128/128)]

UeRc:19 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/HS)]

UeRc:20 #[Conversational CS Speech (12.2/12.2) + Interactive PS (384/HS)]
//Increased due to PS (16/HS)

UeRc:21 #[Interactive PS (URA/URA)]
UeRc:22 #[Streaming PS Unknown (128/16) + Interactive PS (8/8)]

UeRc:23 #[Conversational CS Speech (12.2/12.2) + Streaming PS Unknown (128/16) +
Interactive PS (8/8)]

UeRc:24 #[Conversational CS Speech (12.2/12.2) + Streaming PS Unknown (16/128) +
Interactive PS (8/8)]

UeRc:25 #[Interactive PS (EUL/HS)]
UeRc:26 #[Interactive PS (64/64) + Interactive PS (64/64)]

UeRc:27 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/64) +
Interactive PS (64/64)]

UeRc:28 #[Interactive PS (128/64)]

UeRc:29 #[Interactive PS (384/64)]

UeRc:30 #[Interactive PS (384/128)]

UeRc:31 #[Interactive PS (128/384)]

UeRc:32 #[Interactive PS (384/384)]

UeRc:33 #[Conversational CS Speech (7.95/7.95)]

UeRc:34 #[Conversational CS Speech (5.9/5.9)]

UeRc:35 #[Conversational CS Speech (4.75/4.75)]

UeRc:36 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/128)]
UeRc:37 #[Conversational CS Speech (12.2/12.2) + Interactive PS (128/64)]
UeRc:38 #[Conversational CS Speech (12.2/12.2) + Interactive PS (64/384)]
UeRc:39 #[Interactive PS (64/128) + Interactive PS (64/128)]

UeRc:40 #[Conversational CS Speech (12.65/8.85/6.6)]

UeRc:41 #[Conversational CS Speech (12.65/8.85/6.6)]

UeRc:42 #[Conversational CS Speech (12.65/8.85/6.6) + Interactive PS (0/0)]
UeRc:43 #[Conversational CS Speech (12.65/8.85/6.6) + Interactive PS (64/64)]
UeRc:44 #[Conversational CS Speech (12.65/8.85/6.6) + Interactive PS (64/128)]
UeRc:45 #[Conversational CS Speech (12.65/8.85/6.6) + Interactive PS (128/64)]
UeRc:46 #[Streaming PS (128/HS) + Interactive PS (8/HS)]

UeRc:47 #[Conversational CS Speech (12.65/8.85/6.6) + Interactive PS (64/HS)]

UeRc:48 #[Conversational CS Speech (12.65/8.85/6.6) + Interactive PS (384/HS)]

UeRc:49 #[Conversational
Interactive PS (8/HS)]

UeRc:50 #[Conversational
Interactive PS (8/8)]

UeRc:51 #[Conversational
Interactive PS (64/64) +

UeRc:52 #[Interactive PS
UeRc:53 #[Interactive PS
UeRc:54 #[Interactive PS
UeRc:55 #[Interactive PS
UeRc:56 #[Interactive PS

UeRc:57 #[Conversational
Interactive PS (64/HS)]

UeRc:58 #[Conversational
Interactive PS (128/HS)]

UeRc:59 #[Conversational
Interactive PS (384/HS)]

UeRc:60 #[Conversational

UeRc:61 #[Conversational
Interactive PS (64/HS) +

UeRc:62 #[Interactive PS

UeRc:63 #[Streaming PS (16/HS) + Interactive PS (64/HS) + Interactive PS (64/HS)]

UeRc:64 #[Conversational
Interactive PS (64/HS) +

UeRc:65 #[Conversational
Interactive PS (64/HS) +

UeRc:66 #[Interactive PS
(64/Hs)]

UeRc:67 #[Interactive PS
UeRc:68 #[Interactive PS
UeRc:69 #[Interactive PS

UeRc:71 #[Conversational
Interactive PS (64/64) +

CS Speech AMR (12.2/12.2) + Streaming PS (128/HS) +

CS Speech (12.65/8.85/6.6) + Streaming PS (16/128) +

CS Speech (12.65/8.85/6.6) + Streaming PS (16/128) +

Interactive PS (64/64)]

(128/HS)]

(16/HS)]

(64/HS) + Interactive PS (64/HS)]
(128/HS) + Interactive PS (128/HS)]
(384/HS) + Interactive PS (384/HS)]

CS Speech (12.2/12.2) + Interactive

CS Speech (12.2/12.2) + Interactive

CS Speech (12.2/12.2) + Interactive

CS Speech (12.2/12.2) + Interactive

CS Speech (12.2/12.2) + Interactive
Interactive PS (64/HS)]

(EUL/HS) + Interactive PS (EUL/HS)]

PS

PS

PS

PS

PS

(64/HS) +

(128/HS) +

(384/HS) +

(128/HS)]

(64/HS) +

CS Speech (12.2/12.2) + Streaming PS (16/HS) +

Interactive PS (64/HS)]

CS Speech (12.2/12.2) + Streaming PS (128/HS) +

Interactive PS (64/HS)]

(64/HS) + Interactive PS (64/HS) + Interactive PS

(16/16)]
(16/64)]

(64/16)]

CS Speech (12.2/12.2) + Interactive PS (64/64) +

Interactive PS (64/64)]

UeRc:72 #[Streaming PS (16/HS) + Interactive PS (8/HS)]

UeRc:73 #[Streaming PS (32/HS) + Interactive PS (8/HS)]

UeRc:74 #[Interactive PS (64/64) + Interactive PS (64/64) + Interactive PS

(64/64)]

UeRc:75 #[Streaming PS (128/HS) + Interactive PS (64/HS) + Interactive PS (64/HS)]

UeRc:76 #[Conversational CS Speech (12.2/12.2) + Interactive PS (128/128) +
Interactive PS (128/128)]

UeRc:77 #[Conversational CS Speech (12.2/12.2) + Streaming PS (16/HS) +
Interactive PS (8/HS)]

UeRc:78 #[Conversational CS Speech (12.2/12.2) + Streaming PS (32/HS) +
Interactive PS (8/HS)]

UeRc:79 #[Conversational CS Speech (5.9,4.75/5.9,4.75)]

UeRc:80 #[Conversational CS Speech (5.9,4.75/5.9,4.75) + Interactive PS (0/0)]
UeRc:94 #[SRB (3.4/3.4)]

UeRc:95 #[SRB (3.4/3.4), Preconfigured]

UeRc:113 #[AMR NB + (16/HS) + Conversational CS Speech (12.2/12.2) + (16/HS)]
UeRc:123 #[Conversational CS Speech (12.2/12.2) + Interactive PS (EUL/HS)]

UeRc:124 #[Conversational CS Speech (12.2/12.2) + Interactive PS (EUL/HS) +
Interactive PS (EUL/HS)]

UeRc:125 #[Conversational CS Speech (12.2/12.2) + Interactive PS (EUL/HS) +
Interactive PS (EUL/HS) + Interactive PS (EUL/HS)]

UeRc:126 #[Set to Dummy Values Conversational PS Speech/Unknown (EUL/HS) +
Interactive PS (EUL/HS)]

UeRc:127 #[Set to Dummy Values Conversational PS Speech/Unknown (EUL/HS) +
Interactive PS (EUL/HS)]

UeRc:128 #[Interactive PS (EUL/HS) + Interactive PS (EUL/HS) + Interactive PS
(EUL/HS)]

UeRc:176 #[Conversational CS Speech (5.9,4.75/5.9,4.75) + Interactive PS (EUL/HS)]

A-3 JAVA CODE

3-A. STATE AND RABS.JAVA
//
// Name : StateNamesAndRabs. java
// Author : Abdul Qudus, Philip Frick & Johan SjsSberg
// Version : 1.0
// Copyright : Ericsson ///
// Description : State Explosion Problem - Java
//

package ericsson.transitions;
import java.util.*;

public class StateNamesAndRabs {

66

private ArrayList<String> nameOfState = new ArrayList<String>();
private ArrayList<ArrayList<String>> stateRabs = new
ArrayList<ArrayList<String>>();

// Methods used within this class

/**
* This method creates a substring containing the first word of a
line, which in this case is the state name.
* @param singleline
* @return A String

*/
private static String extractNameOfState (String singlelLine) {
String nameOfState = singlelLine.substring(0,
singleLine.indexOf (" "))
return nameOfState;
}
// e
/**

* This method divides a states RAB combination into single RABs.
* @param singleline
* @return An ArraylList containing String elements

*/
private ArrayList<String> splitRabs (String singlelLine) {

String stringOfRabs =
singlelLine.substring(singlelLine.indexOf('[') + 1, singlelLine.indexOf(']"'));
ArrayList<String> arrayOfRabs = new ArrayList<String>();

if (stringOfRabs.contains("+")) {
for (String rab: stringOfRabs.split ("™ \\+ ")) {
arrayOfRabs.add(rab) ;
}
}

else {
arrayOfRabs.add(stringOfRabs) ;

}

return arrayOfRabs;

}

// Methods other classes will call on

/**
* This method collects data from a specified file and stores the
information in variables.
* @param inputFile
* @return void

*/

public void collectData (Scanner inputFile) {

67

while (inputFile.hasNextLine()) {
String line = inputFile.nextLine() ;
nameOfState.add (extractNameOfState(line)) ;
stateRabs.add(splitRabs(line)) ;

}
}
// =
/**
* This method returns the all state names.
* @return An ArrayList containing String elements
*/
public ArrayList<String> getStateNames () {
return nameOfState;
}
// =
/**
* This method returns all the states RAB combinations.
* @return An ArraylList containing ArraylLists with String elements
*/
public ArrayList<ArrayList<String>> getStateRabs() {
return stateRabs;
}
}
3-B. TRANSITION ANALYSIS.JAVA
// =
// Name : TransitionAnalysis.java
// Author : Abdul Qudus, Philip Frick & Johan Sjsberg
// Version : 1.0
// Copyright : Ericsson ///
// Description : State Explosion Problem - Java
// =

package ericsson.transitions;
import java.io.PrintWriter;
import java.util.*;

public class TransitionAnalysis {

// Method to print a trigger in the correct way
//

/**

* This method prints a trigger in a proper way.
* @param rab

* @return A String

*/

public static String fixOutput (String rab) {

68

if (rab.contains ("Idle")) {
return rab;

String text
String rate
rab.indexOf (") ")+1);

rab.substring (0, rab.indexOf (" (")) .toLowerCase()
rab.substring(rab.indexOf (" ("),

int 1 = 0;

if (text.contains("conversational cs speech')) {i
= 1;}

else if (text.contains("conversational cs unknown')) {i
= 27}

else if(text.contains("streaming cs unknown")) {i
= 3}

else if(text.contains("interactive ps")) {i
= 47}

else if(text.contains("streaming ps"))

{1 =25/}

switch (i) {

case 0 : text = rab; break;

case | text = "CONV CS SPEECH" + rate; break;

case 2 text = "CONV CS UNK" + rate; break;

case 3 text = "STR CS UNK" + rate; break;

case / text = "INT PS" + rate; break;

case 5 : text = "STR PS" + rate; break;

default : System.out.println("Somthing wrong with the method
\"fixOutput\""); break;

}

return text;

}

// Release and Establish Methods
//=

/**
This method compares two state and returns the RAB difference.
@param firstState
@param secondState
@return An ArrayList containing String elements
*/
public static ArrayList<String>
findPossibleTransitions (ArrayList<String> firstState, ArraylList<String>
secondState) {
ArrayList<String> transitions = new ArrayList<String>();
if(firstState.size () > secondState.size()) {
transitions.addAll (firstState) ;
for(int i = 0; 1 < secondState.size(); i++) {

if(transitions.indexOf (secondState.get(i)) >= 0) {

transitions.remove (transitions.indexOf (secondState.get(i)))

}

else {

69

transitions.addAll (secondState) ;
for(int i = 0; i < firstState.size(); i++) {
if(transitions.indexOf (firstState.get(i)) >= 0) {

transitions.remove (transitions.indexOf (firstState.get(i)));
}
}
}

return transitions;

}
/**

* This method returns one of the two possible actions, Release or
establish.

* @param firstState

* @param secondState

* @return A String

*/

public static String establishOrRelease (ArrayList<String> firstState,
ArrayList<String> secondState) {

if(firstState.size () > secondState.size()) {
return "RAB REL";
}
else {
return "RAB EST";
}
}

// Channel switching methods
/=

/**

* This method extracts the "Interactive PS" RAB rates.
* @param state

* @return An ArraylList containing String elements

*/

public static ArrayList<String> extractRabRate (ArrayList<String>
state) {

ArrayList<String> rabAndRate = new ArrayList<String>() ;
ArrayList<String> rabRates = new ArrayList<String>() ;

for(int i = 0; 1 < state.size(); i++) {
if(state.get (i) .contains("Interactive PS")) {

for(String rab: state.get (i) .split ("\\([\\)")) {
rabAndRate.add (rab) ;

}

state.remove (i) ;

for(String singleRate:

rabAndRate.get (1) .split ("\\/")) {

rabRates.add(singleRate) ;

}

break;

}

return rabRates;

70

/**

* This method checks if the only difference between two states are
the "Interactive PS" RAB rates.

* @param firstState

* @param secondState

* @return An ArraylList containing ArraylLists with String elements

*/

public static ArrayList<ArrayList<String>>

findPossibleRateTransition (ArrayList<String> firstState, ArraylList<String>
secondState) {

ArraylList<ArrayList<String>> noPossibleTransition = new
ArrayList<ArrayList<String>>() ;

ArrayList<String> firstStateCopy = new ArrayList<String>();
ArraylList<String> secondStateCopy = new ArrayList<String>();
firstStateCopy.addAll (firstState) ;

secondStateCopy.addAll (secondState) ;

ArraylList<ArrayList<String>> rabRates = new
ArrayList<ArrayList<String>>() ;

rabRates.add (extractRabRate (firstStateCopy)) ;

rabRates.add (extractRabRate (secondStateCopy)) ;

if (firstStateCopy.containsAll (secondStateCopy) &&
secondStateCopy.containsAll (firstStateCopy) && (rabRates.get(0).size() > 0O
&& rabRates.get (1) .size() > 0)) {
return rabRates;

}

else {
return noPossibleTransition;

}

*

This method checks if one rate is equal to another.
@param a

@param b

@param c

@param expected

@return A boolean with the value true or false

Xk X kX X X o

~

public static boolean checkIfEqual(String a, String b, String c,
String expected) {

return (a.equals(expected) || b.equals(expected) ||
c.equals (expected)) ;

}
/**

* This method returns the possible rate transition if there is one.
* @param rabRates
* @return A String

*/

public static String checkIfTransitionIsPossible
(ArrayList<ArrayList<String>> rabRates) {

71

String [] upLinkRates =
{"","URA","RACH","0O","8","16","64","128","384" ,"EUL" ,""};

String [] downLinkRates =
{"","URA","FACH","O","8","16","64","128","384" ,"HS",""};

String [] rateTransition = new String [2];

if (rabRates.size() > 1) {
for(int i = 1; i < upLinkRates.length - 1; i++) {

if (upLinkRates[i] .equals (rabRates.get (0).get(0))) {
if (checkIfEqual (upLinkRates[i - 117,
upLinkRates[i], upLinkRates[i + 1], rabRates.get(l).get(0))) {
rateTransition[0] =
rabRates.get (1) .get (0) ;
}
//URA (URA/URA) and RACH (RACH/FACH) can go
to any other states in one transition
if(1 == 1l 1 == 2) {
rateTransition[0] =
rabRates.get (1) .get (0) ;
}
//All states can in turn switch to RACH
(RACH/FACH) in one transition
if (rabRates.get (1) .get(0) == "RACH") {
rateTransition[0] = "RACH";
}
//EUL (EUL/HS) can go to any other states in
one transition
if (upLinkRates[i] == "EUL") {
rateTransition[0] =
rabRates.get (1) .get (0) ;

}

if (downLinkRates[i] .equals (rabRates.get (0).get(1)))
{
if (checkIfEqual (downLinkRates[i - 1],
downLinkRates[i], downLinkRates[i + 1], rabRates.get(l).get(l))) {
rateTransition[l] =
rabRates.get (1) .get (1) ;
}
//URA (URA/URA) and FACH (RACH/FACH) can go
to any other states in one transition
if(i == I i==2){
rateTransition[l] =
rabRates.get (1) .get (1) ;
}
//All states can in turn switch to FACH
(RACH/FACH) in one transition
if (rabRates.get (1) .get(l) == "FACH") {
rateTransition[1] = "FACH";
}
//HS (EUL/HS) can go to any other states in
one transition
if (upLinkRates[i] == "EUL") {
rateTransition[l] =
rabRates.get (1) .get (1) ;

72

//Uplink rate URA can only be combined with downlink rate URA

if((rateTransition[0] == "URA" && rateTransition[1l] !'= "URA")
|1 (rateTransition[l] == "URA" && rateTransition[0] !'= "URA")) {
return "";
}
//Uplink rate EUL can only be combined with downlink rate HS
else if(rateTransition[0] == "EUL" && rateTransition[l1] !'=
"HS™) |
return "";
}
//Uplink rate RACH can only be combined with downlink rate FACH
else if((rateTransition[0] == "RACH" && rateTransition[l] !=
"FACH") || (rateTransition[l] == "FACH" && rateTransition[0] !'= "RACH")) {
return "";
}
else {
return rateTransition[0] + "/" + rateTransition[l];
}
}

// Types the possible transitions
//

/**
* This method compares all the states with each other and prints out
the possible transitions.
* @param nameOfState
* @param rabsOfState
* @param outputfile
* @return void
*/
public static void listOfTransitions (ArrayList<String> nameOfState,

ArraylList<ArrayList<String>> rabsOfState, PrintWriter outputfile) {

String rates = "";

ArrayList<ArrayList<String>> rateTransition = new
ArrayList<ArrayList<String>>() ;

for(int i = 0; i < nameOfState.size(); i++) {

for(int j = 0; j < nameOfState.size(); J++) {

//Checks the possible transitions from idle
if (nameOfState.get (i) .contains("UeRc:0") &&

'nameOfState.get (J) .contains ("UeRc:0") && rabsOfState.get(j).size() == 1) {
outputfile.println(nameOfState.get (i) + ";" +
nameOfState.get(j) + ";RAB EST;" + fixOutput(rabsOfState.get(j).get(0)));
}

//Checks the possible transitions to idle
else if(nameOfState.get(j).contains("UesRc:0") &&

'nameOfState.get (i) .contains ("UeRc:0") && rabsOfState.get(i).size() == 1) {
outputfile.println(nameOfState.get (i) + ";" +
nameOfState.get(j) + ";RAB REL;" + fixOutput(rabsOfState.get(i).get(0)));
}

//Check the possible Release or establish
transitions

73

if (Math.abs(rabsOfState.get (i) .size() -
rabsOfState.get (j) .size()) == 1) {

ArraylList<String> transitions =
TransitionAnalysis.findPossibleTransitions (rabsOfState.get (i),
rabsOfState.get (j))

if(transitions.size() == 1) {

outputfile.println(nameOfState.get (i)
";" 4+ nameOfState.get(j) + ";" +
TransitionAnalysis.establishOrRelease (rabsOfState.get (i),
rabsOfState.get(j)) + ";" + fixOutput(transitions.get(0)));
}
}

//Check the possible channel switch transitions
if (rabsOfState.get (i) .size () ==

rabsOfState.get(j) .size() && i '= j) {
rateTransition =
findPossibleRateTransition(rabsOfState.get (i), rabsOfState.get(j));
rates =

checkIfTransitionIsPossible(rateTransition) ;

if(rates.length() > 0 &&
rates.indexOf ("null"™) < 0) {
outputfile.println(nameOfState.get (i)
";" 4 nameOfState.get(j) + ";CH SW;PS INT " + " (" + rates + ")");

+

//outputfile.println (nameOfState.get (1)

+ ";" + nameOfState.get(j) + ";CH Sw; " +

fixOutput (rabsOfState.get (i) .toString()) + " " +
fixOutput (rabsOfState.get (j) .toString()));
}
}
}
}
}
}

74

P3a svenska

Detta dokument halls tillgdngligt pa Internet - eller dess framtida ersattare — under en langre
tid fran publiceringsdatum under forutsattning att inga extra-ordindra omstandigheter uppstar.

Tillgang till dokumentet innebar tillstdnd for var och en att lisa, ladda ner, skriva ut enstaka
kopior for enskilt bruk och att anvanda det oférandrat for ickekommersiell forskning och for
undervisning. Overféring av upphovsritten vid en senare tidpunkt kan inte upphiva detta
tillstand. All annan anvindning av dokumentet kriaver upphovsmannens medgivande. For att
garantera dktheten, sdkerheten och tillgdngligheten finns det losningar av teknisk och
administrativ art.

Upphovsmannens ideella ratt innefattar ratt att bli nimnd som upphovsman i den omfattning
som god sed kraver vid anvandning av dokumentet pd ovan beskrivna satt samt skydd mot att
dokumentet dndras eller presenteras i sddan form eller i sddant sammanhang som ar krankande
for upphovsmannens litterdra eller konstnarliga anseende eller egenart.

For ytterligare information om Linkoping University Electronic Press se forlagets hemsida
http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible replacement - for
a considerable time from the date of publication barring exceptional circumstances.

The online availability of the document implies a permanent permission for anyone to read, to
download, to print out single copies for your own use and to use it unchanged for any non-
commercial research and educational purpose. Subsequent transfers of copyright cannot revoke
this permission. All other uses of the document are conditional on the consent of the copyright
owner. The publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be mentioned when his/her
work is accessed as described above and to be protected against infringement.

For additional information about the Linképing University Electronic Press and its procedures
for publication and for assurance of document integrity, please refer to its WWW home page:
http://www.ep.liu.se/

