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ABSTRACT. Westudied ther modynamic quantities of the quantum plasmain strong magneticfield.In
thiscase, thedistribution function becomesanisotropic, dueto strong magneticfield. Fir st, we consider
non-degener ate quantum, L andau and K elly distribution function. It wasfound that adiabatic equation is
similar to the adiabatic equation for Maxwell’s distribution function. Using Kelly’s distribution for
degener ate Fermi gas, par allel and per pendicular componentsof pressurewerederived. It wasfound that
perpendicular component never becomes zero and three-dimensional system always stays three
dimensional. Also, investigation of low-frequency electromagnetic waves in the case of Kelly’s distribution
gave new dispersion relation for waves propagating across the magnetic field which we can call “magnetic
string waves”. © 2017 Bull. Georg. Natl. Acad. Sci.
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Quantum plasmas are subject of increasing interest due to their potential applicationsin modern emerging
technologies, [1] e.g metallic and semiconductor nanostructures which include metallic nano particles, metal
clusters, thin films, spintronics, nanotubes, quantum wells and quantum dots, nanoplasmonic devices, quan-
tum X-ray free electron lasers, etc.

In the case of the degenerate Fermi gas, the shape of Fermi surface provides information about the
physical properties of aplasma. Fermi surfaceis conveniently considered spherical by considering isotropic
momentum distribution attributed to the Fermi gas particles. A lot of literature is available that describes
various aspects of linear and nonlinear propagation characteristics of different electrostatic or electromag-
netic modesin the context of isotropic Fermi surfaces[2]. However, it iswell known that there do exist certain
situations where the concept of spherical symmetry of Fermi surfaceisno morevalid, eveninacollisionless
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regime of a Fermi gas [3]. In the presence of a magnetic field, the momentum in parallel and perpendicular
directions will be different. A precise study in such scenarios demands elongated or even cylindrical Fermi
surfaces[4].

References [5-7] studied a quantum Weibel instabilities, but considered anisotropy for thermal electron
only and proposed the self-generation of a magnetic field due to the Weibel instability.

Tsintsadze and Tsintsadze[8, 9] developed anew type of quantum kinetic equationsfor Fermi particles of
various spices and subsequently obtained a set of hydrodynamic equations describing a quantum plasma.
These dispersion properties of electrostatic oscillations were discussed later. Based on this studies, the
investigation of linear and nonlinear ion acoustic waves in quantum plasmas as well asion acoustic solitary
structures has attracted substantial attention [10-14].

Effects of Landau quantization on the longitudinal electric wave characteristic in a quantum plasma are
considered in Ref. [15]. Novel branches of longitudinal waves are found, which have no analogies without
Landau quantization. Using Ref. [15], an effect of trapping in adegenerate quantum plasmain the presence of
Landau quantization was considered in Ref. [ 16].

Our understanding of the thermodynamics of aFermi quantum plasma, whichisof great interest duetoits
important applicationin astrophysics[17, 18-21] hasrecently undergone some appreciabletheoretical progress.

Theinfluence of strong magnetic field on the thermodynamic properties of amedium isanimportant issue
in supernovae and neutron stars, the convective zone of the sun. The early pre-stellar period of evolution of
the universe. A wide range of new phenomena arises from the magnetic field in the Fermi gas. Such as the
change of shape of the Fermi sphere and thermodynamics (De Haas - Van Alphen [22] and Shubnikov [23]
effects). Quite recently an adiabatic magnetization process was proposed in Ref. [24] for cooling the Fermi
electron gasto ultra-low temperatures.

It should be noted that the diamagnetic effect has a purely quantum nature and in the classical electron

gas, it is absent because in a magnetic field the Lorentz’s force CUxH actson aparticlein the perpendicular
c

directionto avelocity v, so it cannot produce work on the particle. Hence, itsenergy does not depend on the
magnetic field. However, aswas shown by Landau: the situation radically changesin the quantum mechani-
cal theory of magnetism. The point is that under the action of a constant magnetic field the electrons rotate

incircular orbitsin aplane perpendicular tothefield HO (O, 0o,H 0) . Therefore, the motion of the electrons can
beresolved into two parts: one along thefield, in which thelongitudinal component of energy is not quantized,
E = le /2m,, and the second, quantized [25] in a plane perpendicular to HO (the transverse component).

Thus, in the non-relativistic case, the net energy of the electron in a magnetic field without taking into

_ldHo

accountitsspinis E(py.1) = pf / 2m, + horg (1 +1/ 2), wherem, istheelectron rest massandw,, =
m.C

is the cyclotron frequency of the electron.
If aparticle has a spin, the intrinsic magnetic moment of the particle interacts directly with the magnetic

field. The correct expression for the energy is obtained by adding an extraterm ﬁﬂo , corresponding to the

energy of the magnetic moment m, inthefield HO . Hence, the electron energy level se'e'5 aredeterminedin

the non-relativistic limit by the expression:
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2
e"e,5 :%+(2I+1+d)n’bHo, (1)
wherel isthe orbital quantum number (1=0,1,2,3,...),d isthe operator to the z component of which describes

1-
the spin orientation S = Ed (d=#1) andny = is the Bohr magneton.

e
2m.c

From the expression (1) one sees that the energy spectrum of electrons consists of the lowest Landau
level | =0,d =-1 and pairs of degenerate levels with opposite polarization d =1. Thus each value with

| % 0 occurstwice and that with | = 0 once. Therefore, in the non-relativistic limit e can berewritten as:

1 P

€ = ei-z = E + thO' ) @

where % isthe Plank constant divided by 2p.

Thermodynamicsof Landau-K dly Distribution Function

We investigated Thermodynamic quantities of the quantum plasma using the two type distribution function:
one is non-degenerate quantum, Landau and Kelly distribution function and the second one is Kelly’s
distribution function for degenerate Fermi gas.

First, we consider non-degenerate electron gas in the strong magnetic field. Aswas shown by L. Landau
[4] (Page 90) and Don. C. Kelly. [26] that, for particles executing small oscillations about some equilibrium
positions (as we say, to an oscillator ) the distribution function of Landau-Kelly statistics has the form:

2 2
folk =exp| - p" _ pJ_ , (3)
2m.T 2me;
hiwgg AT : : . . . —
where e, = coth? , T isthe temperature in energetic units, H, is an external magnetic field,

coth x isthe hyperbolic cosine function.
We note that in the magnetic field, the condition for absent degeneracyis:
12
€ << Tegeg .

The equilibrium density of electronsis defined as:
2 Ik
ne = —— |dpfy" - @
(2|w)3I

Here the factor 2 is on account of the electron spin, dp =2p p, dp, dp,.

Substituting the Landau-Kelly’s distribution function Eq. (3) into Eq. (4), we obtain such expression for
the density of electrons:

32 1
me} T2e, . 5

=2
* (thz

L et us present the asymptotic expression of Eq. (5) for small x = hzv_\ll_c :
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m V%2
ne:(zphzj T2 =ng ©)

and for large x:

2/3 1
2 > Aiw
n, = Z(thzj T2hWg =Ny Tce >> 1y, ©)

Now wewill estimate the magnetic field at thelow temperatures. 7w, >> 2KT or Hg >> 2*10*T . From

here we can see for the temperature 1-10 degree, H,, > 6*10% -10°G .

The mean kinetic energy for one electron is defined in the form:

2 2
2 T P, pL KeTe
<e>=——| d 2pd —t+—|fy=e, + :
(2ph)3ne-[w WJ.O g IOLpL[Zme oam, | ° Tt 2 ©
Now we define the specific heat for the electron gas, as:
d<e> 1 X
:—:k _t , 9
C\/ oT B[Z S.nhXZJ ()
where sinh x isthe sine hyperbolic function, the expression of which in power series:
i X2k+l
sinhx = —_— 10
£ (2k+1)! (10

h
for XZZIZV_C'(I)'« 1, in the such small magnetic field the specific heat slightly decreasesthan 3/ 2kg , i.e.
B

C, :ng (1—%%). 11)
For the strong magnetic field 7w, > kgT , we obtain the specific heat in aform:
TR
G =ke EJ{kB_TJ ekl | ©@

For the calculation of the entropy per particle by Landau-Kelly’s distribution function, we use well-known

k
expression S= —ijdpf In f which leads to the result:

3/2 +1/2
(mee) T eJ__ (13)

Ne

S=kglIn

Sincefor an adiabatic process dS = 0, from Eq. (13) we obtain the adiabatic equation:

v2
T8 - const. 14
Ne

First, in the case of weak magneticfield, i.e. kgT > Aw, , we have the following adiabatic equation:
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32 2
T—[1+ i(hwcj ] = Const. (15)
Ne 12 kgT

Next, in the case of strong magneticfield, i.e. iw, >> kgT , whichisamoreinteresting case the adiabatic

equation reads:
TV2H

= Const. (16)

We want to emphasize that the same adiabatic equation Eq. (16) wasfound in our publication [24], inthe
same approximation. There we used Maxwell’s distribution function with energy e = le /2m+aw | (where

| isthe orbital quantum number | =0,1,2,3,...).
Thus the Maxwell’s distribution function, which is quite different than Landau-Kelly’s distribution func-
tion, both gives similar expression of the adiabatic equation.

Thermodynamicsof Kelly Distribution Function

Next we consider degenerate Fermi electron gas. To describe the state of Fermi particles Don. C. Kelly has
derived the distribution function [26]

P2+ P?

RZ+P2 (_1)' L2

2 Tmw m, AW

fk = e My Wea
a 3 o 17
1~
(2ph) =0 e T +1
P2 PZ+P;

Where suffix o stands for the particle species, w2 = = Y. L (x) isthe Laguerre polyno-
M AW, My iwg

mial of order | [27], for which such condition exist: 2(-1)' J‘e“”z L (2w?)wdw = 1. The chemical potential m

is defined by the normalization condition:

— e K (7
n, = 2[dpif (.. ). (19

Herethefactor 2 is on account on the particle spin.We note that such distribution function wasindepend-
ently derived by Zilberman [28].

Kelly’s distribution function represents hybrid distribution function. In a plane perpendicular to the
magneticfield H , Kelly’s distribution function is Boltzmann, but along the magnetic field distribution func-
tionisFermion.

To evaluate the density from the expression Eq. (18), we shall consider gas at the temperature limit

|I}‘1wOe - n1 >>T . In this case the Fermi distribution function isin a good approximation described by the

P2
Heaviside step function H (m—eI ) from which follows m=e, = ¢€' :L+Ihwce. This allowsus to

2m,
integrate Eq. (18) by py = +,/2m, (e, —Ihwce)ﬂ2

The last expression reads that the summation along | is limited by the condition eg, > 7w, so that
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e
lnex = ——= . When eg, < iw,, | must be zero.

ce

First, we consider thelowest Landaulevel. | =0,d = -1 (see Eq. (1)). Inthis case the Kelly’s distribution
functionis:

TTI 19
a (P By (2ph)3 le,th -m, )
S

exp a +1

At T =0, the Kelly’s distribution function Eq. (19) reads:

2e_W2a
(2ph)3H(n;-g|2/2md)_ 20)

(P )=

2

Here H(x) istheHeavisidestepfunctionand m = ;—n':a . Substituting distribution function Eqg. (20) into

Eqg. (18) we obtain the expression of density:
- fT’h hwca pF
- D 23
whichistruefor the Lowest Landaulevel (I = 0),i.e. thisexpressionisassociated with the Pauli paramagnet-

, (21)

ism and self-energy of particles. If we suppose that, the density of electronsis constant, then from Eq. (21)
follows an important statement, namely, that the Fermi momentum decreases along with the increase of a
magnetic field. So that a pancake configuration of the Fermi energy thins.

Now we cal cul ate the mean energy of the particles at the lowest Landau level, | =0 by Kelly’s distribu-
tion function Eq. (17).

2 2
- =20 [“op | Dy PL gk
<e>=<e, >+<¢g >_nejdpijoodg'[2m+2m foe . (2
Theresult of calculationis:
2 2
<e>:%+e_': 1+p_ kB_T . (23)
2 3 6\ er
. . . o<e>
We now define the specific heat for the Fermi gaan:[ o j .
\%

We know that in all temperature regions ametal consists of two subsystems: a crystalline Lattice of ions
and afree electron gas. Therefore, the specific heat of metal can be presented as a sum of two items:

G, =G +Cy. (24
where C!? isthe specific heat of the lattice and for:
0o <<T G =3kN, (25
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4 3
go>T C& :ﬂkBN{lJ , (26)
S 4o

where g isthe Debye characteristic temperature, N isthe total number of particles.
CJ isspecific heat for free electron isotropic gas. For T >> T

CS = ZkN @

andfor T << Tg

2
C\?:%KBN[l), (29)

(3p 2 )2’3 n2n2?
2mkg

Comparison between C\',""I and CY show usthat for the temperatures T > 1 degree C\',""I isaways more

where Tp =

than CJ .
Aswas shown by L.N. Tsintsadze [15], strong magnetic field |eads to reduce the Fermi energy:
n 2
e =kgTy =g (_j , @9
H
454 2
where g = p 7 CZ .
2m.e
In our case the specific heat follows from the expression of Eq. (23).
2
e_P kgT
G =75 kN [:) (30)

where e isdefined by Eq. (29).

Therefore, when magnetic field increases, i.e. in this case Fermi energy e decreases, This leads to the
increase of the specific heat.

We obtained the above expressions: Egs. (23) - (30) in the limit 7w, >er = m. Now we suppose that
hw, = e . S0, in this case the orbital quantum number canbeonly | =0,1.

In this limit the Kelly’s distribution function looks as:

L[ 2pt
2 1 MW
o | w2 N &
(@) expiw rrl"_m+1 exp&ﬂ
kT kT

2p? 2p?
where Ll[ P le— P
naw, maw,,
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In such acase from the last term of Eq. (31) followsthat T = 0.
Using the anisotropic distribution function Eq. (31) we obtain the expression of the electron density:

MW, Py “‘BT
n=————1+05 [——
le p2h2 { er J (32

For the mean kinetic energy of per particle

kgT ()

5 1
<e>=<e, >+<g >=—hw, +=hw,
L 1 6 c 3 c
(o

Following the equation (33), for the specific heat we obtain:

o<e>_kg [hw,
( = == . %)
oT 6 \/ KgT &9

To get the expression of the specific heat Eq. (34) we supposed, that 7w, «c ep >> kgT , but the tempera-

2
n
ture here can not be zero. We can rewrite relation as Aiw, «ceg =g [ﬁ) ,a nc10? 1/em’.
Therefore the specific heat Eq. (34) can be called anomal ous.

Parallel and Perpendicular Componentsof Pressure

We now derivethe perpendicular component of the pressure using the Kelly distribution function Eq. (20) for
electronsfor the lowest Landau level (1 =0,d = -1) for thetemperature T = 0.

2 2
_1 q(px+py) K(
Pe —EJ.dDT fe (py Fﬁl)- (3
After smpleintegration of Eqg. (35) weobtain
Ple= %hwcene : (36)

where n, isthe density defined by Eq. (21).

2
PLO :Ethono V = 21 hvv_co_i_i .
3 i 3 8

2 4,42
At the temperatures lower than the degeneracy temperature, T = b (Hlj (where b = p2 he
0

— [15])

from Eq. (18) and Eq. (19) for the density of electronsfollowsthe expression:

2
_mehwoepF p2 T
=—eeelF g F | || 3
Ny p2h3 [ 24(1_':}} (7)

Inthiscase n, in Eq. (36) isgoverned by Eq. (37).
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Itsobviousfrom Eq.(36) thatat | =0, P, isnot zero.

Next, for the parallel component of the pressure, inthe samecase,i.e. | =0 and T =0, we obtain:

_E* —ﬂ k
Re=3 2op L1 ®
Useof EQ.(20) in Eq.(38) yields:
2

— ne w
Rle = (gj Ne., (39)

454 2

where oc= P he .
om.e?

Magnetic String Waves

Now we consider low-frequency electromagnetic waves propagating across constant magnetic field I§0 .We
suppose that B, = B,z and the electric field E = Ey, but we |et the wave vector k = kx . Thus, there are

waves propagating normal to magnetic field BO

Let us set up the equations of magnetohydrodynamics for conditions such that all dissipative processes
may be neglected.

In our case a set of equations are:

2 2 2
u o Lofp HT) #0108 o @
ot OX mn ox 8p 2mym ox v/n ox
@+inu20, (4
ot ox
§+EUH =0, 42
ot ox

where the perpendicular component of preasure is defined by Eqg. (36).
From Egs. (41) and (42) follows the “ Frozen in” condition, which means that the magnetic lines of forces
are “Frozen in” to the conducting fluid and are thereby constrained to move with the fluids.

H_Ho =const. 43
n ny
Using Eq. (43) and substituting B into Eq. (40), we obtain:
2 2 2 2
u ou_ 1oy HE)(nY| A7 01 o o "
ot ox  mox|l 3 8 Jn 2mm ox +/n ox?
After linearization of Egs. (41) and (44) and assuming planewave solution ) wewill get dispersion:
w? = (CSZ[ +V,f)k2 +WS (45)
2 B
where w, = is quantum oscillation frequency, V, =—=———= is the Alfven velocity and
T2 mm Jpmn,
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2 1w,
Cq = Jg?co is string velocity.

Those waves with dispersion relations Eq. (45) are new waves, which we can call magnetic string waves.
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