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“When are we ever going to use this?”

This plaintive question from frustrated mathematics students is heard in schools

around our country as they wrestle with pages of abstract mathematics and learn

algorithms that appear to go nowhere. They study real numbers, but don’t find

any reason to believe that they are real. Thousands of American students still

work from textbooks that limit applications to age problems and mixtures of

nuts. Despite the call from the National Council of Teachers of Mathematics in

the Principles and Standards for School Mathematics (2000) for meaningful

learning through study of realistic applications, many students will find that the

only modernization of content over their grandparents’ math books is that jet

planes have replaced the trains that used to travel at different rates between cities.

The twentieth century saw an explosion of applications of mathematics. It is

now hard to find a field of study that does not use mathematical tools. Biologists

use differential equations. Chemists use solid geometry to describe molecules.

Set designers in theaters use trigonometry to determine the best lighting for a

play. Historians determine authorship of obscure documents through statistical

analysis of words. Governments, international corporations, and individual in-

vestors use mathematical rules to determine production, employment, and prices.

Everybody uses computers. Unfortunately, even good students don’t know how

mathematics affects their lives. Few understand the power of compound interest.

Few realize that the compound interest embedded in credit cards can bring adults

to bankruptcy. Few know the mathematical implications of public policies that

will affect their lives. Even fewer know how to make best decisions based on the

probabilities of risk rather than blind gambles. 

The secondary-school mathematics curriculum is faced with multiple chal-

lenges. What should students know and be able to do? Proficiency in some algo-

rithms is important. Abstraction in mathematics—stripping concepts of all but
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their bare structures—is a feature that makes mathematics a powerful intellectual

tool. But these are not sufficient. Much of the mathematics taught in grades 7 to

12 is there because it is important outside the math classroom. Foundation appli-

cations, like paths of projectiles, should not be stripped away, but rather should

be used to motivate the arithmetic, algebraic, or geometric concepts. Further, stu-

dents should have an opportunity to see a broad expanse of math applications so

they can find links between their interests and aspirations and their mathematics

coursework.

This book is an effort to promote real-world connections as they are applied

in people’s daily lives and careers. It is an account of the mathematical applica-

tions that we have learned and shared with people in our teaching careers. We

hope this reference guide helps you enjoy and appreciate the use and application

of mathematics in our culture and environment. We hope you will find some

answers to the question, “When are we ever going to use this?”

audience

This book is intended to be a reference guide for anyone interested in under-

standing how some high school mathematics concepts are applied in nature and

society. We hope that high school students, teachers, and librarians use these

ideas to enhance their learning, teaching, and appreciation for mathematics. The

mathematics described here cover concepts that are found in courses from pre-

algebra through introductory calculus. Each of the concepts is presented so that

the reader can gain different levels of understanding due to the varying levels of

mathematical complexity. A student or parent referencing the term angle will

learn through descriptive text and diagrams that it is used for a variety of pur-

poses in navigation and road construction. A student who has learned trigonom-

etry may gain a deeper understanding as to how an engineer might use the math-

ematics to make predictions by viewing different formulas and calculations. Our

intent is to make the content readable by all levels and ages of students, thereby

hoping that they will recognize value in the applications of mathematics, regard-

less of their backgrounds. 

purpose

This reference guide is an effort to provide exposure to mathematical appli-

cations, and should not be regarded as a primary tool for learning and instruction.

Since we do not intend to teach mathematical concepts here, there are occasions

in which mathematics is discussed without reference as to how an equation is

formed or how it was solved. Instead, each concept is informally described so

that primary emphasis can be placed on its applications. We do not intend for

teachers to teach mathematics in the way it is presented here. Instead, the text

should be used as a tool to enhance current instructional practices, or to spark

student interest in math, or to create a classroom activity grounded in a particu-

lar application. Therefore, we feel that a more cohesive learning environment
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with these applications requires that the teacher and the learner examine the

mathematical principles behind why and how a concept is applied.

content

The content in this reference guide is based on over forty mathematical con-

cepts that are studied in different levels of high school mathematics. For exam-

ple, linear functions are typically learned in algebra and are continually used

beyond calculus. Each of the concepts is listed alphabetically and can be read

independently. This format has been selected for pragmatic purposes, so that the

applications can be used efficiently. Consequently, we occasionally synthesize

concepts, such as referring to slope and derivative as rates, or cross-reference

topics because some applications are based on related or multiple concepts. 

The ideas presented in this book are not a comprehensive account of high

school mathematics nor do they represent every possible application. We do not

feel that every mathematical principle taught in a high school curriculum has a

realistic application. We do feel there are situations where it is necessary to

explore some mathematics that may not be applied. For example, the study of

angles formed by parallel lines does not have many realistic applications, but the

concepts can be used to introduce similarity, a topic with many useful applica-

tions. In addition, the concepts presented here do not introduce every application

of high school mathematics. Our intent is to promote applications about mathe-

matical concepts that are commonly studied in high school mathematics, even

though there are additional interesting connections to other concepts that may not

have as much emphasis in a school’s curriculum. Furthermore, we simply cannot

be aware of all of the applications that have realistic connections to the concepts

we have listed. If you have any additional ideas, please share them with us by

sending an email to <evanmglazer@yahoo.com>.

The depth of description of an application varies within each concept. Some-

times an application will be described in the form of a story, and other times it

will be described in a few sentences to avoid redundancy with a similar analysis

in another section. Sometimes we will just point in the direction of an important

application. Sometimes we will provide a historical, rather than contemporary,

application to show the genesis of a mathematical concept. The amount of math-

ematics described in each of the sections varies, depending on the context and

complexity of the situation. We would much rather provide a flavor of how

mathematics is used than go into detail for every application. In fact, many appli-

cations discussed in this book are based on simplified conditions, even though

the real world often has unusual limitations, constraints, or peculiarities. For

example, we neglect weather conditions when studying the motion of a baseball.

Furthermore, we approximate the shapes of objects, such as assuming that the

earth is a perfect sphere. Simplified situations are used in this reference guide in

order to provide general principles in a concise manner so that the concepts can

be understood by a high school student. World Wide Web references at the end
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of each section offer opportunities for further exploration of some of these appli-

cations. We offer such a listing here, giving Web references that provide a huge

number of applications.

online sources for further exploration

The Math Forum

<http://www.mathforum.org/library/topics/applied/>

Contextual Teaching and Learning in Mathematics at the University of Georgia

<http://jwilson.coe.uga.edu/CTL/CTL/>

British Columbia Institute of Technology Mathematics Department Applications 

to Technology

<http://www.math.bcit.ca/examples/table.htm>

Micron’s Math in the Workplace 

<http://www.micron.com/content.jsp?path=/Education/Math+in+the+Workplace>

xii INTRODUCTION



ANGLE

Position, direction, precision, and optimization are some reasons why people

use angles in their daily life. Street intersections are made at angles as close as

possible to 90°, if not greater, so that visibility is easier when turning. It is ben-

eficial for city planners to create additional turns so that there are larger turning

angles for safer traffic. For example, if a car has to make a sharp 60° turn onto

traffic, it would probably be more likely to get into an accident because the turn

is difficult. If you find a nonperpendicular four-way intersection with a stoplight,

it is likely to have a “No Turn on Red” sign for those drivers who would be at

an obtuse angle. It would be easier for the driver if the road were constructed so

that an additional intersection is added so the car can turn once at 150° and again

at 90°.

The use of angles in the design of parking spaces affects how many cars can

park in a lot. Most parking arrangements involve spaces that are perpendicular or

slightly angled to the curb. An advantage to using obtuse-angled spaces is that it

is easier to turn a car at an obtuse angle than at a right angle, so there may be less

accidents in a lot with angled spaces. An advantage to using right-angled spaces

is the opportunity to fit more cars in the parking lot. 

Mathematical Concepts
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in an intersection to make

turning a vehicle easier.

initial street design restructured street design



The amount of space, s, saved by using right-angled spaces is s = −l cosα
for each row in the parking lot, where l is the length of the space and α is the

angle of the turn into the space. When the shape of a space is transformed from

a rectangle (right-angled) to a parallelogram (obtuse-angled), the extra horizon-

tal distance needed in a parking-lot row will be the amount of space that the last

car displaced from its previous perpendicular arrangement. In the obtuse-angled

situation, the length of the parking space is the hypotenuse of a right triangle

formed with the curb. The cosine of the angle between the curb and the parking

lines, cos θ, is the ratio of the horizontal curb space, s, to the length of the park-

ing space, l. In an equation, this is written as cos θ = s
l .

Multiplying both sides of the equation by l will change it to s = l cos θ. The

angle against the curb and the car’s turning angle are supplementary, because the

curb and car’s path are parallel. The interior angles on the same side of the trans-

versal (the parking lines) are supplementary, so cos θ = − cosα. Substituting

this result into s = l cos θ generates the equation, s = −l cosα.

If the parking lines were at a 60° angle with the curb, the turning angle would

be 120°. Suppose the dimensions of a parking space are 8 feet by 20 feet. If the

lot is transformed from right-angled spaces to oblique-angled spaces, each row

would lose s = −20 cos 120◦ = 10 feet, which is equivalent to a little more than

one space!

2 ANGLE

Parking-space arrangements in parking lots.

right-angled parking spaces obtuse-angled parking spaces

Variables that affect the extra hori-

zontal space, s, that is needed in a

parking lot with angled spaces.

An overhead view of a car making

an obtuse-angled turn of α degrees

into a parking spot that is angled θ
degrees with the curb.



Airplane pilots, military-orienteering specialists, and ship-navigation crews

are responsible for using angles to move efficiently towards a destination. After

accounting for wind and current speed, navigation teams will determine an angle

to direct their course of movement. For example, suppose a ship is 3 miles from

shore and is docking at a port that is 6 miles away, with minimal current affecting

the path of the boat. The captain will request the boat to be moved 60° West of

North, or 30° North of West. This direction is equivalent to the angle that is

formed between the path of the boat and the northern or westward direction. The

captain can also simply ask to move the boat 60°, because it is assumed that nav-

igation direction is counterclockwise from the North position.

Notice that the distances from the port are represented in a 30°– 60°– 90° tri-

angle, which will not always happen. The angle of navigation, β, that will be East 

or West of North can be determined by finding arccos( s
d ), where s is the distance 

from shore and d is the distance to the final destination. Notice that the naviga-

tion angle will be negative, or East of North, if the destination is situated to the

East of the ship’s location.

Sailboats cannot steer directly into the wind, because they would be pushed

backwards. In order to sail against the wind, sailors need to tilt their boat at an

angle, ideally 45°, so that the wind catches the sail. If the boat pushes off course,

it will need to change direction again so that it moves perpendicular to its path in

the opposite direction. Sailors call this tacking. This action ensures that the boat

continues to maintain a 45° angle with the wind. This zigzag pattern enables the

boat to reach its finishing point while constantly sailing into the wind.

ANGLE 3

30° North of West 60° West of North

Alternate methods of denoting direction when a boat is 3 miles from

shore and 6 miles from its destination.

The navigation angle, β, of a

boat based on its distance from

shore, s, and the distance from its

final destination, d, is equal to

arccos( s
d
).



Angles are useful for reflecting light rays or objects off of flat objects. The

angle by which an object, such as a ball, approaches a wall is equal to the angle

by which the object bounces off the wall. This is true because a ball’s reflection

off a wall will be the same distance away from the wall as if it had gone in a

straight line. In essence, reflections preserve congruence. By the transitive prop-

erty, the angle of the ball coming into the wall will equal the angle of the ball

leaving the wall, as shown below. In billiards or miniature golf, a player can use

this principle when aiming for a hole by simply aiming for the hole’s reflection.

Athletes who try to throw or hit balls certain distances, such as baseballs, bas-

ketballs, footballs, and golf balls, use angles strategically. If they want to hit a

ball short and high, they will use an angle close to 90°. In order to hit a low-fly-

ing line drive, they will use an angle close to 0°. The horizontal distance in

meters, x, of an object can be determined by the product of its initial velocity in

meters per second, v0, the time in seconds, t, that the ball is in the air, and the

cosine of the angle, α, it is released or hit. Since the earth’s gravitational force

pulls a ball towards the surface, the vertical distance in meters, y, also needs to

be considered in order to determine the ideal angle at which to release or hit a

ball. The two equations describing the path of the ball in both directions are rep-

resented as

x = v0t cosα

y = v0t sinα − 4.9t2 .

The ball will be on the ground when y is 0. Solving the second equation for the 

time t that will provide this value gives t = 0 or t = 1
4.9v0 sinα. The latter solu-

tion gives the time the ball will be in the air. Substituting in the equation for x
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The path of a boat from its starting

position, S, to its ending position, E,

when it is sailing against a headwind.

The angle of a ball

approaching a wall will

equal the angle of the

ball leaving the wall,

assuming there is no 

spin on the ball.



yields 1
4.9v2

0 sin a cos a. Using trigonometric identities gives x =
v2
0 sin(2α)

9.8 .

Suppose a golfer hits a tee shot, and that his or her club hits the ball at v0 = 70
meters/second. The graph of horizontal distances x as a function of the angle α
shows that the angle that will give the golfer the best distance is 45° (π/4 radi-

ans). Frogs know this angle: push-off angle for a frog hop has been measured to

be close to 45°.

When a golfer tees off or a football kicker aims for a long field goal, he or

she should strike the ball at a 45° angle in order to obtain maximum distance. A

baseball player, on the other hand, needs to alter this thinking slightly, because

he hits a ball about 1 meter off of the ground. This makes the horizontal-distance

equation more complicated: 

x = v0 cosα
(

v0 sin α
√

v2
0 sin2 α−19.6(y−1)

9.8

)

.

When the ball hits the ground (y = 0), the graph of this function shows that a ball

reaching the bat at 85 miles per hour, or 38 meters per second, will attain a max-

imum horizontal distance when the ball leaves the bat at about a 44.8° angle,

very close to the angle if the ball were hit from the ground.

The refraction of light is dependent on the angle in which light enters the

object and the material it passes through. Snell’s law states that n1 • sinΘ1 =
n2 • sinΘ2, where n is the index of fraction (the ratio of the speed of light in air

to the speed of light in that material) and Θ is the angle of incidence. As light

passes through an object, such as a glass of water, it will bend, giving it a dis-

torted view if you look through the glass. Higher values of n allow the light to

bend more, since Θ2 decreases as n2 increases.

ANGLE 5

Horizontal distance (meters) trav-

eled by a golf ball hit at 70 meters

per second at an angle of α radians.

The angle of light rays will

change after hitting a different

surface, such as water. Snell’s

law can be used to determine

the angle of refraction, or the

angle in which light bends as it

passes through a new surface.



Gems such as diamonds have a high index of refraction, allowing them to

trap light and reflect it internally, which consequently makes them sparkle.

online sources for further exploration

The best angle to view a baseball game:

<http://forum.swarthmore.edu/pow/solutio65.html>

Diamond design:

<http://www.gemology.ru/cut/english/tolkow/_tolk1.htm>

Finding your way with map and compass:

<http://mac.usgs.gov/mac/isb/pubs/factsheets/fs03501.html>

The mathematics of rainbows:

<http://www.geom.umn.edu/education/calc-init/rainbow/>

Navigation problems:

<http://jwilson.coe.uga.edu/emt725/Bearings/Bearings.html>

Photography angles:

<http://www.a1.nl/phomepag/markerink/shifcalc.htm>

<http://www.a1.nl/phomepag/markerink/tiltcalc.htm>

Projectile motion simulations:

<http://library.thinkquest.org/2779/Balloon.html>

<http://www.explorescience.com/activities/Activity_page.cfm?ActivityID=19>

<http://www.phys.virginia.edu/classes/109N/more_stuff/Applets/ProjectileMotion/

jarapplet.html>

River crossing–swimming angles:

<http://www.emsl.pnl.gov:2080/docs/mathexpl/swimwalk.html>

Robot navigation angle:

<http://www.ezcomm.com/~cyliax/Articles/RobNav/robnav.html>

Sailing strategies:

<http://www.orfe.princeton.edu/~rvdb/sail/sail.html>

Snell’s law:

<http://www.physics.nwu.edu/ugrad/vpl/optics/snell.html>

<http://www.yorku.ca/eye/snell.htm>

<http://www.glenbrook.k12.il.us/gbssci/phys/Class/refrn/u14l2a.html>

<http://buphy.bu.edu/py106/notes/Refraction.html>

Throwing a boomerang:

<http://www.concentric.net/~davisks/throwing/>

<http://www.bumerang-sport.de/throwing/throw.htm>

▲
▼

▲

6 ANGLE



ASYMPTOTE

An asymptote is an imaginary line or curve that a function approaches as its

independent variable approaches infinity or an undefined value. A vertical

asymptote of x = c exists on a function f(x) if at a point of discontinuity, x = c,

the limit of f(x) as x approaches c equals positive or negative infinity. A horizon-

tal asymptote of y = k exists on a function f(x) if the limit of f(x) as x approaches

positive or negative infinity equals k. For example, the function f(x) = x−2
x+3 has

a vertical asymptote at x = −3 because lim
x→−3

x−2
x+3 = ±∞ and a horizontal

asymptote at y = 1 because lim
x→±∞

x−2
x+3 = 1.

In the real world, horizontal asymptotes typically represent a leveling-off

effect, such as the radioactive decay of a particle diminishing until it is almost

gone. (See Exponential Decay.) If the dependent variable y is the amount of the

particle, then in this case there would be a horizontal asymptote of y = 0 on the

graph, because the amount of the particle approaches zero. Most substances that

have a decaying effect, such as the amount of power supply in a battery, will have

an asymptote of y = 0 on a graph that describes its amount as a function of time.

The cooling of hot liquids in a mug, such as coffee, illustrates asymptotic

behavior because the liquid gradually approaches room temperature after sitting

awhile in the cup. The warming of liquids, such as ice sitting in a cup, demon-

strates a similar phenomenon, except that the temperature graph rises towards the

ASYMPTOTE 7

Graph of f(x) = x−2
x+3

with asymptotes at x = −3
and y = 1.

A graph of the temperature, 

in degrees Fahrenheit, of coffee 

as a function of the number of

minutes it sits in a closed cup. 

The temperature of the coffee 

levels off near room temperature

after an hour and a half.



asymptote. In both cases, the asymptote would represent the room temperature,

because the liquid either warms or cools to that temperature after it is left out for

awhile.

Scientific barriers based on speed are asymptotic until technological ad-

vances overcome a barrier. For example, airplanes could not pass the sound bar-

rier, called Mach 1, until 1947. (See Ratio.) Before that time, airplanes progres-

sively became faster and faster, approaching the speed of sound but unable to

surpass it, because they were not built to handle the shock waves produced at

such speeds. However, once the barrier was broken, scientists and engineers were

given data that helped them develop airplanes that could maintain their structural

integrity under the stressful conditions associated with travel at those speeds.

Today, particle physicists are challenging the speed of light by accelerating par-

ticles in large circular chambers. As testing and experimentation progresses over

time, the detected speeds of particles have been gradually approaching the bar-

rier of 3 × 108 meters per second. Scientists argue whether it will be possible to

move at speeds faster than light, and if so, what type of consequence will occur.

Many science-fiction stories portray ships disappearing when they travel faster

than the speed of light, because light is not fast enough to show an image of the

ship to an observer.

Terminal velocity is the limiting speed of an object due to wind resistance

when it is in free-fall. For example, a skydiver will jump out of an airplane and

be pulled towards the earth at an acceleration of 9.8 meters per second squared.

This means that the velocity of the person falling will gradually increase until it

reaches terminal velocity. The equation v = 9.8t describes the velocity, v, in

meters per second of a person falling out of the plane after t seconds. After 1 sec-

ond, the skydiver is falling at a rate of 9.8 meters per second, and after 2 seconds,

the person’s velocity has increased to 19.6 meters per second. However, if the

skydiver lies flat during free-fall, the wind resistance will inhibit the falling rate

so that the body does not exceed 50 meters per second. Consequently, y = 50
becomes the horizontal asymptote on the velocity versus time graph. This infor-

mation is helpful for the skydiver to determine how much time can be spent in

the air for skydiving acrobatics and at what point the parachute should be opened

for safe landing.

Vertical asymptotes typically appear in applications that deal with improba-

ble events, costs, or quantities. For example, the cost to extract petroleum from

the Earth is dependent on its depth. Oil that is deeper underground will typically

be more expensive to remove, because it is more difficult to create deeper tun-

8 ASYMPTOTE

A person jumping from an airplane will

reach a terminal velocity at which he can-

not fall any faster due to wind resistance.



nels. In such situations, workers take an increased risk of the tunnel caving in, as

well as having to deal with the added distance covered by equipment to extract

dirt and rocks. This means that tunneling down 11 to 20 feet may be twice as dif-

ficult than tunneling the first 10 feet; and tunneling down 21 to 30 feet may be

three times as difficult than tunneling down 11 to 20 feet, and so on. Con-

sequently, a vertical asymptote will exist near the deepest level on a graph, indi-

cating that it would be nearly impossible to dig at certain depths. Geologists

would find this information useful, thus being able to recommend the appropri-

ate digging depths that would be safe and economically beneficial to the gov-

ernment and local business.

Vertical asymptotes also sometimes symbolize quantities that are nonexist-

ent. For instance, if a preschool wants to build an enclosed playground for its stu-

dents, it would need to build a fence. The builders would consider the best way

to lay out their available fencing so that the students have a large amount of play

space. A function to describe the dimensions of a rectangular play space are

w = 200
l , where w is the unknown width of the field, l is the unknown length of 

the field, and 200 square feet is the desired area of the play space. In this case,

l = 0 is a vertical asymptote, because not only is it impossible to divide by zero,

but it is impossible to have a rectangular play space that does not have any

length!

online sources for additional exploration

The basics of cooling food

<http://www.hi-tm.com/Documents/Basic-cool.html>

Investigate the behavior of northwestern crows

<http://illuminations.nctm.org/imath/912/Whelk/index.html>

Modeling of disease and disease progression

<http://www.phm.auckland.ac.nz/Staff/NHolford/Mss/Disprog/modelling_disease-

progression.htm>

ASYMPTOTE 9

A graph describing the hourly rate 

to drill a hole as a function of its

depth. The drilling cost becomes

insurmountable as the depth

approaches 1,000 feet, because it

is too difficult and dangerous to

dig at that depth.



Scaling the Internet Web servers

<http://www.cisco.com/warp/public/cc/pd/cxsr/400/tech/scale_wp.htm>

The terminal velocity of coffee filters

<http://aci.mta.ca/TheUmbrella/Physics/P3401/Investigations/VterminalDDB.html>

Time travel?

<http://members.aol.com/JLandGDC/numin/1999/oct99.htm>

The twisted pendulum experiment 

<http://www.carolina.com/coachlab/math.asp>

▲
▼

▲

CARTESIAN COORDINATES

Coordinates are useful to determine relative position and distances. For

example, pixels (dots of light) on a computer are identified by their horizontal

and vertical components, where (0,0) is at the corner of the screen. The coordi-

nates of the pixels are useful for animations that require starting and ending

points for each vertex in a diagram. Given this information, the computer will

predict intermittent coordinates of the vertices to help render the animation, with-

out having to input the coordinates for every second on the screen. 

Coordinates are also useful in computer programming to plot points on the

screen or define regions on a blueprint or graphic. For example, an image map is

a graphic that links certain portions of a Web page to different pages on a Web-

site. Image maps are used to enhance the colors on a screen or to provide a larger

region to click a list of items. The image map will probably look like a series of

buttons that are defined by geometric regions, such as rectangles or circles. When

the cursor is moved to a coordinate within a defined region on the image map, it

will move to a new page once the mouse is clicked. Suppose a rectangular region

is defined so that its upper-left coordinate is (12,35) and lower-right coordinate

is (40,70), as shown in the illustration below. This will create a hot spot region
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with dimensions of 28 pixels by 35 pixels that will link to a new page if the cur-

sor is clicked at a location on the image map between 12 and 40 pixels and

between 35 and 70 pixels. If the cursor is not in this region, then it will not link

to that page. Notice that the coordinate system on the image map is defined dif-

ferently from the standard rectangular system. Since only positive values are

used, this coordinate system uses the opposite of the negative y-coordinates that

are represented in the fourth quadrant of a Cartesian coordinate system.

Desirable locations for fire stations are places where trucks would have equal

access to the entire town. Ideally, they should be situated so that the longest drive

to the edge of town is the same in all directions. A coordinate grid could be super-

imposed on a city map, assigning coordinates to each of the intersections. The 

distance formula, d =
√

(x1 − x2)2 + (y1 − y2)2 , could then be used to deter-

mine relative distances, d, of each street based on the coordinates of its end-

points, (x1, y1) and (x2, y2), so that the best possible intersection for the fire sta-

tion could be selected.

On a world map, cities and landmarks are assigned a position according to

how far away they are from the equator (0°latitude) and from the prime merid-

ian in Greenwich, England (0° longitude). For example, Chicago is near 41° N 

87° W, which means that it is 4190 in the northern hemisphere and 87
180 in the west-

ern hemisphere. 

A flight from Chicago to Los Angeles would angle the plane 7° south of west

and expect to travel 31° westward on its journey, because Los Angeles is near the

position 34° N 118° W. The distance d traveled between any two cities on the

globe can be determined by the equation 

d = 3963 arccos[sin(latitude1) sin(latitude2) +

cos(latitude1) cos(latitude2) cos(longitude2 − longitude1)],

where the position in a spherical coordinate system of two cities are (lati-
tude1, longitude1) and (latitude2, longitude2) in radians. There are 2π radi-

ans in 360°, so each coordinate should be multiplied by 2π
360 to convert to radi-

ans. In this case, the Chicago coordinate would convert from (41,87) to approx-

imately (0.7156,1.5184), and the Los Angeles coordinate would convert from
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(34,118) to approximately (0.5934,2.0595). Using this formula, the distance be-

tween Chicago and Los Angeles is 

d = 3963 arccos[sin(0.7156) sin(0.5934)+

cos(0.7156) cos(0.5934) cos(2.0595 − 1.5184)],

which is approximately 1,758 miles.

online sources for further exploration

Celestial coordinates

<http://www.lhs.berkeley.edu/SII/SII-FindPlanets/SII-FindThatComet/coordinates. 

html>

Creating an image map

<http://www.personal.psu.edu/users/k/x/kxs156/tuthow.htm>

<http://www.ils.unc.edu/utils/imagemap-tutorial.html>

Georeferencing and digital images

<http://magic.lib.uconn.edu/help/aerialphotos/GeoreferncingAndDigitalImages.

html>

The satellite times

<http://celestrak.com/columns/v03n02/>

Spherical coordinates and the GPS

<http://www.math.montana.edu/frankw/ccp/cases/Global-Positioning/spherical-

coordinates/learn.htm>

Stereograms

<http://library.thinkquest.org/2647/misc/stertech.htm>

▲
▼

▲

CIRCLES

Circles are used in many real-world applications. All manholes are round so

that their covers never slip through the pipes from the ground to the sewers. Any

way you turn the cover it is impossible to force it through the hole, since the dis-

tance from the center of the circle is always the same. Since polygons do not hold

this property, a circle is very useful for this purpose. 

Circular wheels allow the opportunity for constant and smooth motion when

riding a bicycle or automobile. If the circle had edges or vertices the ride would

become very bumpy, because the distance from the center of the wheel to its

perimeter would no longer be constant. In addition, a car will travel the distance

its wheels rotate, because the friction between the wheel and pavement cause the

car to move. For every revolution the tires make, the car will travel the length of
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the circumference of them. If a wheel has a diameter of 32 inches, then its cir-

cumference, or distance around, is 32π inches ≈ 100.5 inches.

In addition to distance traveled by an automobile, the circumference of cir-

cles is used in several applications. A trundle wheel is a device used to measure

distances that are too long for a tape measure. A marking is placed on the wheel

so that it clicks for one complete revolution. A trundle wheel can be made in any

size, although it is convenient to make one with a diameter of 31.8 cm, because

then its circumference will be 1 meter (circumference is the product of π and the

diameter of the circle). Therefore, as you push the trundle wheel, every click that

is recorded on the odometer means that the wheel has gone around once and you

have traveled 1 meter. 

Another useful application of circumference is to determine the age of cer-

tain trees. The girth, or thickness, of trees increases as they grow older. A fallen

tree often shows a large group of concentric rings, where each ring represents a

year of its life. Since the tree gets thicker during its lifetime, the number of rings

is proportional to its circumference. Therefore, a functional relationship can be

created to estimate the age of a tree based on its circumference. This means that

a measurement of the circumference of a tree can give an indication of its age

without having to chop it down and count its rings.

The area of a circle is useful to determine the price of circular foods that have

the same height. For example, pizzas are often advertised according to their

diameter. A pizza with a diameter of 12 inches might sell for $10, and a pizza
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with a diameter of 16 inches for $16. Is that a reasonable deal? Since the amount

of pizza is related to its area, it would be more beneficial if the consumer were

told the unit cost of the pizza per square inch. Instead, consumers may develop a

misconception and think that the 16-inch pizza should be 16/12, or 4/3, as much

as the 12-inch pizza. 

In the 12-inch pizza, the radius is 6 inches. So the area of the pizza is

π(6)2 ≈ 113.1 square inches. At a sale price of $10, the consumer is paying

about 8.8 cents per square inch of pizza. In the 16-inch pizza, the radius is 8

inches. So the area of the pizza is π(8)2 ≈ 201.1 square inches. At a sale price

of $16, the consumer is paying about 8.0 cents per square inch of pizza. At first

glance, one might think the 12-inch pizza is a better buy, but actually it is the

other way around. Since volume purchases usually have a cheaper unit price,

these prices seem pretty reasonable. Is this true about the prices at your favorite

pizza shop?

The area of a circle is helpful to farmers in determining the amount of space

that a sprinkling system will cover. As a sprinkler rotates, it will spray water in a

circular pattern, or in a sector of a circle if it is restricted in a certain way. The

distance the water reaches, or the radius of the circle, is sufficient information for

the farmer to determine how much space will be covered by the water and how

many sprinklers are needed to water the crops. Crops are often created in rectan-

gular grids to make harvesting easier, but watering in a rectangular pattern is

often less efficient than in a circular pattern. Therefore, the challenge in watering

crops is to determine how many circles can be packed into the rectangle region.

The trick for the farmer is to automate the sprinklers so that they provide just the

right amount of water to the crops to optimize production and minimize expense.

A circle is a figure that has an optimal area based on its perimeter. Based on

a given perimeter, there is not another shape that has an area greater than a cir-

cle. Similarly, based on a given area, there is not another shape that has a smaller

perimeter than a circle. In essence, this information indicates that a great way to

make use of materials and space is to form circles. Think about all the objects

made of raw materials that are shaped into circles, such as plates, cups, pots,

compact discs, and digital video discs. All of these objects are designed to hold

substances or information that take up space in a resourceful way. Parts of circles
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can also be used for aesthetic design purposes, such as the arches seen over some

doorways. Roman engineers mastered the use of the circular arch in buildings,

bridges, and aqueducts. A keystone, the stone placed at the top of the arch, is the

essential component that keeps the structure of the arch together. Without a key-

stone, the arch may crumble if it is not cemented properly.

All materials are not designed to include circles, however, because a circle

does not necessarily serve all functions. For example, a book is shaped like a rec-

tangular prism instead of a cylinder, because it may be easier to store on a shelf

and retrieved easily with its visible binding.

Circular, or angular, motion has several useful applications. It affects the lin-

ear speed and performance of many objects. For example, circular disks spin in

an automobile engine to move its timing belts. The size of the disks can vary,

allowing the engine to distribute its power in different ways. In order to move a

belt, larger wheels do not need to spin as fast as smaller wheels, because they

cover a greater distance in a smaller amount of time. (See Variation.)

Another way to think about the connection between angular and linear speed

is to envision the motion of an ice skater. The spinning rate of the skater will

change with the movement of the radius of his or her arms from the body. To

move faster, the skater will pull his or her arms in towards the body; conversely,

to spin more slowly, the skater will gradually pull his or her arms away from the

body. As an equation, the linear speed, s, is the product of the radius, r, and angu-

lar speed, ω, written as s = rω. Suppose the skater has a constant linear speed of

500 cm/sec. If his or her arm radius is 100 cm, then the skater will be spinning

at a rate of 5 radians/sec, or less than 1 revolution in a second. If he or she pulls

the arms in so that they are 25 cm from the body, then the skater’s angular speed

picks up to 20 radians/sec, about 31/2 revolutions in 1 second. 

If the angular speed is held constant, then an object can have different linear

velocities depending on its position on the circular object. For example, a spin-

ning object on a playground or at an amusement park, such as a merry-go-round,

typically has a constant angular speed. Therefore linear velocity increases as the

radius increases. This means that you would feel like you were moving faster if

you stood further away from the center. If you like rides that make you feel dizzy,

then make sure you stand near the outside of a circular wheel when it is in

motion.
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online sources for further exploration

The arch in architecture

<http://www.ba.brantacan.co.uk/architecture.htm>

Circular motion

<http://www.glenbrook.k12.il.us/gbssci/phys/Class/circles/u6l1e.html>

<http://www.sd83.bc.ca/stu/9906/agal_3b.html>

Make your own trundle wheel

<http://www.geocities.com/thesciencefiles/trundle/wheel.html>

Pizza prices

<http://www.ecst.csuchico.edu/~pizza/pizzaweb.html>

<http://www.mrpizzaman.com/pizza/index.html>

<http://www.panola.com/biz/pizzahut/create.htm>

Tree rings

<http://www.geo.arizona.edu/K-12/regression/>

<http://web.utk.edu/~grissino/>

<http://www.ngdc.noaa.gov/paleo/treering.html>

▲
▼

▲

CIRCUMFERENCE. See CIRCLES

▲
▼

▲

COMPLEX NUMBERS

Complex numbers are numbers expressed in the form a + bi, where a is the

real number component and b is the imaginary number component. The number 

i is the square root of negative 1: i =
√
−1. Numbers in the physical world are 

often represented by their real number component, such as in measurement,

money, and time. For example, a mile is a unit of measurement that is equivalent

to 5,280 feet. As a complex number, this measurement would be 5,280 + 0i feet.

However, the expression in complex form does not produce any additional mean-

ing if the imaginary number component is equal to zero. Therefore, complex

numbers are useful when the imaginary number component is nonzero.

There are several instances in which imaginary numbers are important in the

physical world. For example, some circuits have unexpected changes of voltage
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when introduced to current and resistors that have imaginary number compo-

nents. The amount of voltage in a circuit is determined by the product of its cur-

rent and resistance. Without an imaginary number component in both current and

resistance, the voltage reading will remain unaffected. For example, suppose the

current is reading 3 + 2i amps on a circuit with 20 ohms of resistance. The net

voltage would be (3+2i)(20) = 60 + 40i volts. In this case, the voltmeter would

show a reading of 60 volts, because the 40i volts are imaginary. However, if the

resistance was 20 + 4i ohms, then the net voltage would be (3 + 2i)(20 + 4i) =

60 + 12i + 40i + 8i2. Since i2 = −1, this expression simplifies to 52 + 52i. That

means that the introduction of an imaginary number component in the resistance

of the circuit would result in a voltage drop of 8 volts!

Electromagnetic fields also rely on complex numbers, because there are two

different components in the measurement of their strength, one representing the

intensity of the electric field, and the other the intensity of the magnetic field.

Similar to the electric circuit example, an electromagnetic field can have sudden

variations in its strength if both components contain imaginary components.

Complex numbers also indirectly have applications in business. The profit of

the sales of a product can be modeled by a quadratic function. The company will

start with initial expenses and rely on the sales of their product to transfer out of

debt. Using the quadratic formula, the business can predict the amount of sales

that will be needed to financially break even and ultimately start making a profit.

If complex zeroes arise after applying the formula, then the company will never

break even! On a graph in the real plane, the profit function would represent a

parabola in the fourth quadrant that never touches the horizontal axis that

describes the number of products sold. This means that the business will have to

reevaluate their sales options and generate alternative means for producing a

profit.

To generalize this case, any quadratic model that produces complex solutions

from an equation will likely indicate that something is not possible. For exam-

ple, in the business-sales setting, the company may want to test when the profit

will equal one hundred thousand dollars. When solving the equation, the quad-

ratic equation could ultimately be applied, and the existence of imaginary com-

ponents in the solution would verify that this would not be possible. The same

argument could be applied to determine if the world’s strongest man could throw

a shot put 50 feet in the air. If a person can estimate the throwing height h0 and

the time t the ball is in the air, then the quadratic function h = 0.5gt2 + v0t + h0

can be applied to determine the initial velocity v0 and whether the ball will reach

a height h of 50 feet. (Note that the gravitational constant g on earth is equal to

–9.8 meters per second2, or –32 feet per second2.)

online sources for further exploration

The relevance of imaginary numbers

<http://www.math.toronto.edu/mathnet/answers/relevance.html>

<http://forum.swarthmore.edu/dr.math/problems/zakrzewski10.14.97.html>
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Complex numbers in real life

<http://www.math.toronto.edu/mathnet/questionCorner/complexinlife.html>

Complex impedance in circuits

<http://hyperphysics.phy-astr.gsu.edu/hbase/electric/impcom.html>

Generation of fractals from complex numbers

<http://www.geocities.com/fabioc/>

▲
▼

▲

CONIC SECTIONS

In the third century B.C., the Greek mathematician Appollonius wrote a set of

books dealing with what he called conic sections. He provided a visualization of

ellipses, hyperbolas, and parabolas as intersections of planes with cones. Unlike

ice cream cones, Appollonius’s cone looked like two cones sharing a common

vertex. The picture on the left shows the parabola that is formed by cutting the

cones with a plane parallel to the slant of the cones. It took almost 2,000 years

before applications of conic sections emerged in science and engineering, but

they are now all around us. The middle picture shows a microwave antenna. The

microwaves emerge from the transmitter outside of the reflector at its focus. The

reflector concentrates the wave, as shown in the right-hand picture. Without the

parabolic reflector, the waves would dissipate following the inverse square law.

(See Inverse Square Function for more information.)

The picture on the right shows how the waves from the energy source emerge

from many directions. The energy source is positioned at the focus of the

parabola. Once the rays hit the parabolic reflector, they are transmitted out in par-

allel direction. This concentrates the energy in one direction. For this reason, the
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parabolic shape is ideal for car headlights. It would also be ideal for television

tubes were consumers not so demanding that picture screens be rectangular.

Television tube manufacturers have to do some clever engineering to maximize

the benefits of parabolic reflectors and still provide rectangular screens.

If the arrows are reversed in the right-hand drawing, then the parabolic reflec-

tor accumulates and concentrates energy from outside sources. For example, the

dot for the energy source might represent a pipe containing water. Then the para-

bolic reflector can concentrate the sun’s rays to heat the water as part of a solar

heating system. Pipes in highly polished parabolic troughs can focus enough sun-

light to heat an enclosed fluid as high as 750°F or turn water to steam. Hand-held

parabolic reflectors that were invented for spying are available for sport and hobby

activities such as bird watching. The parabolic reflector picks up weak sounds,

such as distant bird calls, and focuses them on a microphone at the focal point.

Sometimes a diffuse view is important. Since they can provide almost 360°

views, hyperbolic mirrors are used for security surveillance in buildings. The

reflection in hyperbolic mirrors is from the convex side, rather than the concave

side used for parabolic mirrors. This is what makes exterior mirrors on the pas-

senger sides of cars show wider views and justify the warning, “Objects may be

closer than they appear.”

Parabolas appear in science and engineering. A hard-hit baseball flies off the

bat in a parabolic path. The large cables strung between towers of a suspension

bridge, such as the Golden Gate Bridge in San Francisco, form a parabola. Con-

nection to the roadway of the bridge is important in shaping the large cables to

parabolic shape. A telephone wire that curves because of its own weight is not a

parabola, but is a catenary. If a heavy liquid like mercury is placed in a large can,

and the can is spun, the surface of the liquid will form a paraboloid (every verti-

cal cross section through the center of the can is a parabola). Parabolas are used

in design and medical applications to determine smooth curves from three spec-

ified points in a solid or the image of a solid, such as the points provided in a

medical CAT scan.

Ellipses are a oval conic section that look like squashed circles. They have

two foci that act as centers of the ellipse. Hitting a ball from one focus on an

elliptical pool table will result in a carom from the side of the table that sends the

ball to the other focus. Rooms that have elliptical ceilings or shapes will reflect

the sound of a pin dropping at one focal point so that it is audible many yards

away at the other focal point. The Mormon Tabernacle in Salt Lake City and Stat-

uary Hall in the U.S. Capitol in Washington, D.C., are two rooms that have

remarkable acoustics because of their elliptical shapes.

Ellipses are an outcome of some common architectural techniques. The

Romans invented the Groin Vault, the joining of two identical barrel (cylindrical)

vaults over a square plan. The intersection of the vaults form ellipses that go

diagonally to the corners of the square. Although the groin vault is common in

ancient and medieval buildings, it is also found in modern structures such as the

terminal building at the St. Louis Airport.
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Johannes Kepler (1571–1630) revolutionized astronomy when he recognized

that the motion of planets about the sun was elliptical and not circular. Working

with the detailed planetary observations of Tycho Brahe (1546–1601), Kepler

found some very slight errors in Brahe’s figures for the circular orbit of Mars. He

attempted to correct the values, but finally concluded the data was correct and

that the orbit of Mars was elliptical with the sun at one of the focal points of the

orbit. His verification of this for the other known planets of his time is known as

“Kepler’s first law.” (See Variation.)

Some comets, like Halley’s comet, follow an elliptical path around the sun

just like planets. Hence Halley’s comet “returns” to earth’s view on a regular

basis. However, some comets appear to follow parabolic or hyperbolic paths.

Once past the sun, they leave our solar system. These comets may have traced

elliptical orbits at one time, but were thrown off trajectory by a gravitational

encounter with a major planet such as Jupiter. 

Many machines contain elliptical gears. These develop a nonuniform motion

from a uniform power source. The momentary speedup or slowdown they pro-

duce is important in rotary shears, conveyers, motorcycle engines, and packag-

ing machines. 

Statisticians conceptualize plots of many variables on large numbers of sub-

jects as elliptical swarms of points. By finding the axes of such swarms, they syn-

thesize the information from many variables into important structural variables.

online sources for further exploration

Artistic views of conics

<http://www.xahlee.org/SpecialPlaneCurves_dir/ConicSections_dir/conicSections.

html>

Conics in general

<http://www.iln.net/html_p/c/72782/62079/53803/53887.asp>

<http://www.kent.wednet.edu/KSD/KR/MATH/conic_sections2.html>

<http://nths.newtrier.k12.il.us/academics/math/Connections/curves/conics.htm>

<http://chs.osd.wednet.edu/nadelson/chsscimath/Conicsection2001/conic_section_cr

eations.htm>

<http://www.ece.utexas.edu/projects/k12-fall98/14545/Group2/real.html>

Pictures of Appollonius’s analysis

<http://www.sisweb.com/math/algebra/conics.htm>

<http://www.nsm.iup.edu/ma/gsstoudt/conics/conicsmma.html>

Explore conic sections dynamically

<http://www.keypress.com/sketchpad/java_gsp/conics.html>

<http://www.exploremath.com/activities/activity_list.cfm?categoryID=1>

Hyperbolic mirrors

<http://www.neovision.cz/prods/panoramic/h3b.html>

A video view of Statuary Hall in the U.S. Capitol 

<http://www.discovery.com/news/picture/jul99/panoramas/javapano3.html>

Parabolic reflectors and antennas

<http://www2.gvsu.edu/~w8gvu/geo/geo.html>
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How to build a parabolic reflector

<http://nths.newtrier.k12.il.us/academics/math/Connections/reflection/pararefl.htm>

Elliptical orbits

<http://csep10.phys.utk.edu/astr161/lect/history/kepler.html>

<http://www.bridgewater.edu/departments/physics/ISAW/PlanetOrbMain.html>

Elliptical gears

<http://www.cunningham-ind.com/ellipt.htm>

<http://www.hpceurope.com/vgb/archives/Avril00/Elliptiques.html>

▲
▼

▲

COUNTING

Businesses and government agencies often have a need to efficiently count

the number of arrangements or possibilities with various combinations of num-

bers or options. For example, a car dealer may be interested in the number of car

varieties that can be offered in order to persuade customers. If there are 9 differ-

ent models, 6 different colors, and 2 types of interiors, there could be a total of 

9 × 6 × 2, or 108, different cars available. In this dealer’s television advertise-

ment you might hear, “Hurry, this weekend only. Come to our car dealership and

view over 100 different styles of cars for sale. Don’t miss out on this great oppor-

tunity!” The procedure of multiplying the number of possibilities for each option

is called the multiplication counting principle.

State vehicle departments can determine the number of nonvanity license

plates they have available by finding the product of the number of possibilities

for each position on the plate. For example, if a state has three letters followed

by three numbers, then the number of possible plates is 9 × 10 × 10 × 26 × 26

× 26 = 9 × 102 × 263 = 15,818,400. The first position will have 9 possible val-

ues, since it will represent any digit from 1 through 9. The second and third posi-

tions can hold 10 possible digits from 0 to 9. The fourth through sixth positions

have 26 possibilities each, because they can contain any letter in the alphabet. If

for some reason the state runs out of license-plate sequences, they can place

numbers before letters to double the number of possibilities, since the order of

letters and numbers is important on a license plate. Zip codes can be counted in

a similar manner. There are five numbers in a zip code, so there is a total of

10 × 10 × 10 × 10 × 10 = 105 = 100,000 possible zip codes. The United States

Postal Service only uses 95,000 possibilities: 00001 to 95000.

Telephone numbers are counted in a similar way, but have more restrictions

to the values in different positions. The first three digits are the area code. The

area code must start with a digit from 2 to 9, because pressing 0 is a call to the

operator, and pressing 1 is not allowed because it is associated with dialing a

number outside an area code. Also, the area code cannot be 911, since that is an
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emergency number. Therefore there are a total of 8 × 10 × 10 − 1 = 799 possi-

ble area codes. The local phone number has seven digits, with a three-digit pre-

fix and four-digit suffix. In the prefix, the first digit cannot be 0 or 1 for the same

reason mentioned earlier. Also, the prefix cannot use 555, because that is a

dummy set of numbers used in entertainment media, such as movies and songs,

except for the national information number, 555-1212. Therefore the prefix can

have 8 × 10 × 10 − 1 = 799 possible values. The suffix can have any four-digit

number, which means there are 10 × 10 × 10 × 10 = 10,000 possible values.

Therefore, using the multiplication-counting principle, there is a total of 799 ×
799 × 10, 000 = 6,384,010,000 possible telephone numbers. That is an average

of almost 25 numbers per person!

A lock manufacturer can determine the number of possible combinations to

open its locks. If a dial lock has 60 numbers and requires three turns, then a total

of 60 × 60 × 60 = 216,000 locks can be made. However, some lock companies

do not want to have the same number listed twice, because dialing in different

directions might end up being confusing. Therefore it might be more appropriate

to create 60 × 59 × 58 = 205,320 lock combinations. The 59 in the second posi-

tion means that there are 59 possible numbers available, because one number has

been selected in the first position; and the 58 in the third position indicates that

there are 58 possible numbers remaining, because one number has been selected

in the first position and a different number has been selected in the second posi-

tion. The product of three consecutive descending numbers is called a permuta-

tion. In this case, we would say that there are 60 permutations taken 3 at time,

meaning that the counting accounts for the selection of three numbers out of a

group of 60 in which the order of selection is important. Instead of writing the per-

mutation as a product of a series of integers n(n − 1)(n − 2) • . . . • (n − r + 1),

it can be symbolized as nPr, where n is the number of possibilities for the first

selection, and r is the number of selections. 

Some counting principles are based on situations in which the order of selec-

tion is not important, such as in selecting winning lottery balls. If 6 numbers are

selected from a group of 40 numbers, it does not matter which number is pulled

out of the machine first or last. After all the numbers are randomly drawn, the

results are posted in numeric order, which is probably not the same order by

which they were selected. For example, if the numbers are drawn in the order 35–

20–3–36–22–28, and your ticket reads 3–20–22–28–35–36, then you are still the

winner. When order of selection is not important, this type of counting principle

is called a combination and can be symbolized as nCr. The relationship between 

a combination and permutation is determined by the equation nCr = nPr
n! because

there are n! ways to arrange a group of n objects, where n! = n(n − 1)(n − 2)
• . . . • 1. In this case, there are 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720 ways to rear-

range 6 lottery balls with different numbers. Since the order of numbers is not

important when reading the winning lottery number, there are 40C6 possible

numbers, or 40×39×38×37×36×35
6×5×4×3×2×1 = 3, 838, 380 combinations, to select in the lot-

tery. In this type of lottery, the chance of winning would be 1 in 3,838,380.
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online sources for further exploration

Adventure games, permutations, and spreadsheets

<http://archives.math.utk.edu/combinatorics/Combinatorics/AdvGame.html>

Counting techniques 

<http://www.colorado.edu/education/DMP/activities/counting/>

English change-ringing of bells

<http://www.bris.ac.uk/Depts/Union/UBSCR/crinfo.html>

▲
▼

▲

DERIVATIVE. SEE RATES

▲
▼

▲

EQUATIONS

An equation is a relationship that places equal representation to different

quantities, and is symbolized with an equals sign “=.” All proportions are equa-

tions that are based on equal ratios. For example, Kepler’s law states that the

ratio of the cubed planetary distances from the sun is equal to the ratio of their 

squared period of revolutions around the sun, written as 
d3
1

d3
2

=
p2
1

p2
2

. (See Propor-

tions for more information about Kepler’s law on planetary motion.) Functions

can also be written as equations, because they relate two or more variables with

an equals sign. For example, the vertical height, h, of an object is determined by

the quadratic equation h = −0.5gt2 + v0t + h0 , where g is the acceleration due

to earth’s gravity (9.8 m/sec2), v0 is the initial vertical velocity, and h0 is the ini-

tial height of the object (see Quadratic Functions for more information about

the derivation and use of this equation). There are many other types of relation-

ships besides proportions and functions that can be represented in the form of an

equation. Some equations are bizarre and have multiple variables, making them

interesting to study or purposeful to use. Other equations simply do not belong

to a family of functions that is commonly studied in high school mathematics.

In 1622, chemist Robert Boyle showed that the product of the pressure, p,

and volume, v, of the same amount of gas at a fixed temperature was constant.

The equation to represent this relationship is p1v1 = p2v2 , where the subscript

notation represents the gas at different times. This formula indicates that as the
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pressure increases, the volume of the gas will decrease, and vice versa. For

example, when diving under water, the amount of pressure in your ear sockets

will increase, causing the amount of space to decrease until your ears “pop.” The

amount of space in your lungs also decreases when you are underwater, making

it more difficult to breath when scuba diving. One way to visualize this effect is

to bring a closed plastic container of soda onto an airplane, and then notice the

change in its shape during takeoff and descent due to varying pressures in the

earth’s atmosphere at different altitudes. If temperature, t, and quantity of gas in

moles, n, vary, then the equation can be extended to the ideal gas law, which is

pv = nrt, where r is the universal gas constant equal to 0.082 (atm L)/(mol K).

The escape velocity of an object represents the speed at which it must travel

in order to escape the planet’s atmosphere. On earth, it is the speed at which a

rocket or shuttle needs in order to break the gravitational pull of the planet. The

equation that relates the escape velocity, ve, to the mass, M, and radius, R, of a

planet is approximately v2
e = (1.334 × 10−10)(M/R). The equation is based on 

finding the moment when the kinetic energy, 0.5mv2
e , of the rocket exceeds its

potential energy that is influenced by the earth’s gravitational pull, GMm/R,

where G is a gravitational constant, 6.67 × 10−11, and m is the mass of the rocket. 

Setting these two relationships equal to one another, 0.5mv2
e = GMm/R, sets 

up a situation that determines the velocity at which the kinetic and potential

energy of the rocket are the same. An m on both sides of the equation cancels and 

the equation simplifies to v2
e = (1.334 × 10−10)(M/R). The mass of the earth 

is 5.98 ⋆ 1024 kg, and has a radius of 6,378,000 m. This means that a rocket

needs to exceed 11,184 meters per second to fly into space. That is almost 25,000

miles per hour! 

Equations involving the sum of reciprocals exist in several applications. For

instance, the combined time to complete a job with two people, Tc, can be deter-

mined by the equation 1/T1 + 1/T2 = 1/Tc , where T1 and T2 represent the time

it takes two different individuals to complete the job. This equation is based on

the equation P = RT, where P is the worker’s productivity, R is the worker’s rate,

and T is the worker’s time on the job. Since two workers complete the same job,

they will have the same productivity level. This means that the two workers’ pro-

ductivity can be represented by the equations P = R1T1 and P = R2T2. The

productivity for both workers is based on a combined rate and different time, rep-

resented with P = (R1 + R2)Tc . Substituting R1 = P
T1

and R2 = P
T2

makes the 

equation P =
(

P
T1

+ P
T2

)

Tc . Dividing both sides by Tc and canceling the pro-

ductivity variable leaves the end result, 1
T1

+ 1
T2

= 1
Tc

.

Suppose an experienced landscaper can trim bushes at a certain house in 3

hours, and a novice takes 5 hours to complete the same job. Together, they will

take 1 hour, 52 minutes, and 30 seconds to complete the task, assuming that they

are working at the same productivity level (i.e., they are not distracting each

other’s performance by chatting). This result was determined by solving the

equation 1
3 + 1

5 = 1
Tc

. If both sides of the equation are multiplied by the product 
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of the fraction’s denominators, or 15Tc, the equation can be rewritten as 5Tc

+3Tc = 15. After combining like terms and dividing both sides of the equation 

by 8, the solution will be Tc = 15
8 , which translates to 1 hour, 52 minutes, and 30 

seconds. Reciprocal equations exist in other applications as well. The image 

formed by a converging or diverging lens can be located with the equation 1
Di

+
1

Do
= 1

F , where Di is the distance from the lens to the image, Do is the distance 

from the object to the lens, and F is the focal distance of the lens. 

Sports statistics involve unusual equations. The NFL quarterback rating is a

computation that measures the effectiveness of a player based on his number of

touchdowns (t), interceptions (i), attempts (a), completions (c), and passing

yards (p). The equation that determines the quarterback rating, r, is

r = (500c + 25p + 2000t + 12.5a − 2500i)/(6a) .

Notice that interceptions are weighted so that the rating decreases by more than

the value of a touchdown, and that touchdown passes are weighted four times as

much as a completion. This equation is proportioned so that the average quarter-

back will have a rating near 100, according to historical performances in the

league. This equation is based on NFL statistics and needs to be adjusted for

other football leagues, since the fields and rules are slightly different. For exam-

ple, scoring in the Arena Football League occurs more often, since the field is

only 50 yards long, compared to 100 yards in the NFL. 

online sources for further exploration

Arena Football League quarterback rating

<http://www.tampastorm.com/features/QBrate/>

Robert Boyle and his data

<http://dbhs.wvusd.k12.ca.us/GasLaw/Gas-Boyle-Data.html>

Boyle’s Law and absolute zero and Cartesian diver and Model of Lung 

<http://chemlearn.chem.indiana.edu/demos/Boyle.htm>

Burning rate of stars

<http://www.phys.uri.edu/~chuck/ast108/notes/node76.html>

Calculate the escape velocity

<http://www-star.stanford.edu/projects/mod/ad-escvel.html>

Euler’s formula and topology

<http://www.nrich.maths.org/mathsf/journalf/dec00/art1/index.html>

Ideal gases

<http://library.thinkquest.org/3616/chem/gas.htm>

Image forming by a lens

<http://www.lightlink.com/sergey/java/java/clens/index.html>

<http://www.lightlink.com/sergey/java/java/dlens/index.html>

Orbit simulation

<http://observe.ivv.nasa.gov/nasa/education/reference/orbits/orbit3.html>



Quarterback rating system

<http://user.cybrzn.com/~koz/rating.htm>

<http://www.primecomputing.com/javaqbr1.htm>

Seventeen proofs of Euler’s formula

<http://www.ics.uci.edu/~eppstein/junkyard/euler/>

Universal law of gravitation

<http://csep10.phys.utk.edu/astr161/lect/history/newtongrav.html>

▲
▼

▲

EXPECTED VALUE

The expected value of a variable is the long-run average value of the variable.

Expected value can also be viewed as the average value of a statistic over an infi-

nite number of samples from the same population. 

Studies of expected value emerged from problems in gambling. How much

is a lottery ticket worth? Consider a lottery run by a service organization: a thou-

sand tickets are offered at a dollar each; first prize is $500; there are two second

prizes of $100; and the remaining income from ticket sales is designated for char-

ity. There are three probabilities in this problem: The probability of having the

first-prize ticket is 1 out of 1,000, or 0.001; the probability of a second place

ticket is 0.002; and the probability of winning nothing is 0.997. The average of

prizes weighted with corresponding probabilities gives the expected winning for

a ticket: 500 • 0.001 + 100 • 0.002 + 0 • 0.997 = 0.700 . The expected-prize

value for one of these lottery tickets is $0.70. Since the ticket costs a dollar, the

expected loss on a ticket is $0.30. For this model to hold, one must assume that

a ticket would be purchased from many such lotteries. This assumption is met by

state lotteries that sell millions of tickets or Las Vegas slot machines, which are

played millions of times each day. Neither lotteries nor slot machines are fair

games. The expected net winning for each ticket in the lottery or each play of a

slot machine is a negative number. This indicates that these games of chance rep-

resent a long-term loss for the regular gambler.

The concept of weighting costs by probabilities is used in finance, investing,

insurance, industrial decision-making, and law to determine expected values.

Bankers and investors use several indicators based on expected value. One

example is expected return, an expected value on a risky asset based on the prob-

ability distribution of possible rates of return that might include U.S. Treasury

notes, stock-market indices, and a risk premium. Industrial decision-making uses

expected values to compute projected costs of different options. For example, an

oil company may hold property that it may choose for oil drilling, hold for later

drilling, or sell. Each of these options is associated with costs. The company can
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compute probabilities based on past experience for each cost. They then compare

the expected values and choose the option that has the least expected cost. A con-

troversial industrial use of expected value occurred in the 1970s with the design

of the Ford Pinto automobile. It had a gas tank that was likely to explode when

the car suffered a rear-end collision. The Ford Motor Company computed expect-

ed costs of improving the Pinto gas tank versus the expected costs of settling law-

suits resulting from deaths in Pinto explosions. The latter value was the lesser, so

Ford executives chose to omit gas-tank improvements.

Law firms can use expected values to determine whether or not a client

should continue a suit, settle without a trial, or go to trial. Experience with sim-

ilar lawsuits provides the probabilities. The cost of litigation and the potential

awards provide the estimates of net “winnings.” If the expected value of the net

winnings in a trial is negative, the law firm should advise the client to drop the

suit or accept a settlement.

Ecologists have used expected value to estimate water supplies in the Great

Plains based on probability and volume estimates of soil moisture, rain, and con-

sumption by humans, industry, agriculture, and natural vegetation. The military

uses expected values in conducting “war games.” Costs in military operations,

loss of life, and destruction of property are associated with probabilities to com-

pare the expected values of different strategies.

The French mathematician and philosopher Blaise Pascal (1623–1662) pro-

vided one of the earliest and most intriguing uses of expected value. In what is

now called “Pascal’s wager,” he argued that probabilities and payoffs associated

with belief in God versus not believing in God would result in an expected value

that supported belief in God. Almost 400 years later, Pascal’s assumptions and

arguments are still debated by theologians and philosophers.

online sources for further exploration

The cereal box problem

<http://www.mste.uiuc.edu/reese/cereal/intro.html>

Contest odds

<http://silver.sdsmt.edu/~rwjohnso/module7.htm>

Determination of the decision-maker’s utility function

<http://ubmail.ubalt.edu/~harsham/opre640a/partix.htm#rutility>

The “dummies guide” to lottery design

<http://www.parliament.the-stationery-office.co.uk/pa/cm199900/cmselect/cmc-

umeds/958/01111622.htm>

Life-expectancy data

<http://www.iihe.org/information/Databook1996/T49_LifeExpectancyAgeRaceSex.

htm>

▲
▼

▲
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EXPONENTIAL DECAY

Exponential decay can be observed in the depreciation of car values, the half-

life of elements, the decrease of medication in the blood stream, and the cooling

of a hot cup of coffee. The general exponential equations that define exponential

growth, such as the financial model for principal after compound interest is 

applied, A = P (1 + r
n )nt , and the general models for exponential growth such 

as y = abx can be used to describe losses over time for values of b that are

between 0 and 1. The changes that are made to the models may involve chang-

ing the base from a number greater than one (growth) to a number less than one

(decay), or leaving the base alone and allowing the power to be negative. 

The term “decay” comes from the use of exponential functions to describe

the decrease of radioactivity in substances over time. The law of radioactive

decay states that each radioactive nuclear substance has a specific time known as

the half-life, during which radioactive activity diminishes by half. Some radioac-

tive substances have half-lives measured in thousands to billions of years (the

half-life of uranium-238 is 4.5 billion years), and some in fractions of a second

(muons have a half-life of 0.00000152 seconds). The way in which radioactivity

is measured varies from substance to substance. Uranium-238 decays into lead,

so the proportions of lead and uranium-238 in a sample can be used to determine 

the amount of decay over time. The law of decay is stated as AR = Ao(
1
2 )t/h ,

where Ao is the amount of radioactive substance at the start of the timing, h is

the half-life time period, and AR is the amount remaining after t units of time. In

this format, the base of the exponential equation is 12 , clearly a number less than 

one. It can also be stated with a base larger than one if the exponent is negative, 

as in AR = Ao(2)−t/h . The basic shape of the graph of exponential decay is 

shown in the plot below. One hundred grams of substance with half-life of

24,000 years is followed for 100,000 years. At the end of 24,000 years, 50 grams

of the radioactive substance are left in the sample. At the end of 48,000 years, 25

grams are left, and at the end of 72,000 years, 12.5 grams. The formula that de- 

scribes this model is A = 100(1
2 )t/24,000 .
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A graph that describes an exponential decay

of radioactive substance as a function of

time: Quantity remaining of 100 grams of 

a radioactive substance with half-life of

24,000 years.



Exponential decay models are also written using base e. The equation A =

100e−kt, where k = ln2
24,000 is the same equation plotted in the graph.

Radiocarbon dating of animal or plant remains that are thousands of years old

is based on the radioactive isotope carbon-14, which has a half-life of 5,700

years. Carbon-14 is constantly produced in the earth’s atmosphere through the

absorption of radiation from the sun. When living organisms breathe or eat, they

ingest some carbon-14 along with ordinary carbon. After an organism dies, no

more carbon-14 is ingested, so the age of its remains can be calculated by deter-

mining how much carbon-14 is left.

Exponential decay in prices is called depreciation. Some types of deprecia-

tion used in accounting are linear. For example, tax law permits a business to

depreciate 20 percent of the original cost of computer equipment for each of five

years. Market prices, however, do not follow a linear pattern. Automobiles typi-

cally depreciate rapidly during the first year, and then less rapidly during each

subsequent year. The used-car prices for one popular automobile that sold for

$27,000 when new are given by P = 27, 000(0.83)t , where t is the number of

years after purchase. In this case, the automobile lost 17 percent of its value each

year. 

Inflation problems can be viewed as growth problems (increases in prices) or

as drops in the value of currency. For example, the purchasing power of the dol-

lar dropped by 7.2 percent per year during the 1970s. The purchasing power of

$100 is given by P = 100(1 − 0.072)t = 100(0.928)t , where t is the number of

years after 1970.

Concentrations of a medication that are carried in the bloodstream often fol-

low an exponential decay model. Such drugs are said to have half-lives. Each day

you replace about 25 percent of the fluids in your blood. If you are taking a med-

ication that depends on the bloodstream for circulation, then 25 percent of the

dose is lost as you replace fluids. A person who takes one pill containing 20 mg

of medicine will have about 15 mg (75 percent of 20 mg) in his or her body one

day later, and 11.25 mg (75 percent of 15 mg) two days later, and so on. The half-

life for this drug can be found by solving the equation 12 = 0.75t, or t ≈ 2.4 days.

Some drugs do not follow an exponential decay pattern. Because alcohol is

metabolized by humans, the quantity of alcohol in the bloodstream after inges-

tion will show a linear decrease rather than exponential decay.

For the many drugs and steroids that have half-lives, the drop off in drug con-

centration decreases less rapidly over time. Therefore it is possible to measure

the quantity of the drug in the body long after ingestion. This means that users of

illegal or dangerous drugs will have traces of the drugs remaining in their blood-

streams for many days. Sensitive drug tests, such as those used on Olympic ath-

letes, can pick up indications of banned drugs used within two weeks or more of

the testing, depending on the half-life of the substance.

If you pour a cup of hot coffee, the temperature will drop off quickly, then

the coffee will remain lukewarm for a long while. Newton’s law of cooling states

that the rate at which the temperature drops is proportional to the difference
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between the coffee temperature and the room temperature. The formula for the

coffee temperature after t minutes is T = Tr + (To − Tr)e
−kt , where To is the

initial temperature of the coffee, Tr is the room temperature, and k is a constant

depending on the type of cup. Hence cooling is an exponential decay situation.

(See Asymptote.)

Medical examiners use a version of Newton’s law of cooling to determine the

time of death based on the temperature of a corpse and ambient temperature at

the murder scene.

online sources for further exploration

Journal of Online Mathematics and Its Applications

<http://www.joma.org/vol1-2/modules/macmatc5/exponential_decay_module.html>

Carbon dating

<http://www.c14dating.com/>

<http://www.cs.colorado.edu/~lindsay/creation/carbon.html>

Cooling

<http://mvhs1.mbhs.edu/mvhsproj/cooling.html>

<http://members.tripod.com/fix_it_quick/mathisu.html>

<http://www.aw.com/ide/Media/JavaTools/nlhcrate.html>

Nuclear medicine 

<http://www.math.bcit.ca/examples/ary_11_4/ary_11_4.htm>

Radioactive decay

<http://www.joma.org/vol1-2/modules/macmatc5/exponential_decay_module.html>

<http://pass.maths.org.uk/issue14/features/garbett/index.html>

The RC circuit 

<http://www.math.bcit.ca/examples/ary_7_4/ary_7_4.htm>

Used car prices

<http://www.edmunds.com/used/>

<http://www.kbb.com/kb/ki.dll/kw.kc.bz?kbb&&688&zip_ucr;1409&>

▲
▼

▲

EXPONENTIAL GROWTH

Exponential growth situations are based on repeated multiplication. A classic

example was the growth of the rabbit population in Australia. English wild rab-

bits are not native to Australia, but were introduced by Thomas Austin of Win-

chelsea, Victoria, onto his property in 1859. Australia provided an ideal environ-

ment for the rabbits, with plenty of food and no predators, so the population grew

rapidly. By 1910, rabbits had become a plague, driving out many of the native

species across Australia. They destroyed farming areas, caused severe erosion,
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and ruined grazing areas for sheep. During the thirty years after their introduc-

tion, the rabbit population doubled every six months. The table and graph below

show the approximate number of rabbits in Australia for each six-month period

after the introduction of Mr. Austin’s original 24 rabbits.

The equation for the number of rabbits is y = 24 • 2x . Because the inde-

pendent variable x is in an exponent, the equation describing the rabbit popula-

tion growth is called an exponential model. The base 2, which represents dou-

bling, is the growth factor. Growth factors greater than one create curves similar

to the rabbit-population curve. When the growth factor is less than one, the curve

will decrease (see Exponential Decay).

Exponential growth models are used extensively in the world of finance.

Investments of money in a certificate of deposit (CD), for example, require the

customer to invest a certain amount of money (principal) for a specified time.

The bank issuing the CD will specify an annual yield, a yearly interest rate that

will be added to the principal each year. The interest becomes part of the princi-
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The growth of the rabbit population in

Australia from 1859–1864 modeled

by an exponential growth equation.

A graph depicting growth of the

rabbit population in Australia

from 1859–1864.

six-month
year periods (x) rabbit population (y)

1859 0 24

1 24 • 2 = 48

1860 2 24 • 2 • 2 = 96

3 24 • 2 • 2 • 2 = 192

1861 4 24 • 24 = 384

5 24 • 25 = 768

1862 6 24 • 26 = 1,536

7 24 • 27 = 3,072

1863 8 24 • 28 = 6,144

9 24 • 29 = 12,288

1864 10 24 • 210 = 24,576



pal held for the customer. The return addition of interest payments to the princi-

pal so that the interest amount can earn interest in later years is called compound

interest. The growth factor in compound-interest problems is 1 plus the annual

yield. So an investor who buys a $5,000 CD advertised at 6.5 percent annual

yield will receive 5000(1 + .065)x after x years. After three years, this CD

would be valued at 5000(1.065)3 = $6,039.75. Banks may choose to compound

interest more frequently. The banking version of the exponential growth formula

is A = P (1 + r/n)nt , where A is the amount at the end of t years, P is the start-

ing principal, r is the stated interest rate, and n is the number of periods per year

that interest will be compounded. A typical CD will have interest compounded

each quarter. Financial institutions can offer more-frequent compounding, such

as monthly or daily. Some even offer continuous compounding, which has the

formula A = Pert, where A is the value of the investment at time t, P is the ini-

tial principal, r is the interest rate, and e ≈ 2.7183. For a given interest rate, more

frequent compounding yields a higher return, but that return does not increase

dramatically as the compounding period moves from months to days to continu-

ous. Because the number of compounding periods can affect the rate of return on

an investment, federal law requires financial institutions to state the annual yield

as well as an interest rate so that consumers can make easier comparisons among

investment opportunities.

Benjamin Franklin was one of the pioneers in the use of exponential growth

models for money and population. In 1790, Franklin established a trust of

$8,000. He specified that his investment should be compounded annually for 200

years, at which time the funds should be split evenly between the cities of

Philadelphia and Boston, and used for loans to “young apprentices like himself.”

Franklin anticipated that the fund would be worth $20.3 million after 200 years

if the annual yield averaged 4 percent. However, the annual yield averaged about

3.4 percent, so $6.5 million was in the fund when it was dispersed to the two

cities in 1990. 

Franklin established the practice of studying the American population by

using exponential growth. He recognized that the warning of the Englishman

Thomas Malthus (1766–1834) that population under exponential growth would

outstrip food sources might apply to the new country of the United States. Frank-

lin urged that the growth of states and the entire country be tracked each year.

Some historians contend that President Lincoln used exponential growth models

70 years after Franklin’s recommendation. Lincoln used censuses from 1790 to

1860 to predict that the population of the United States would be over 250 mil-

lion in 1930. The population did not reach this figure until 1990. This shows that

exponential functions can describe situations only as long as the growth factor

remains constant. There are many factors such as economics, war, and disease

that can affect the rate of population growth. 

When the Center for Disease Control identifies a new epidemic of flu, expo-

nential growth functions describe the numbers of early cases of infection quite

well. A good definition of epidemic is a situation in which cases of disease in-

crease exponentially. However, as people build up immunization, the disease
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cannot continue exponential growth, and other models become more appropriate.

(See Logistic Functions.)

The federal government keeps close tab on exponential growth situations that

can or may harm the U.S. economy. Inflation is the growth in prices over time.

One measure of inflation is the Consumer Price Index (CPI), which provides

averages of what standard goods and services would cost each year. In the United

States, what cost $100 in 1980 would cost $228.69 in 2000. The value of a dol-

lar was therefore less in 2000 than it was in 1980. This corresponds to a yearly

increase in costs of about 4.2 percent. This can be checked with the exponential

growth calculation 100(1 + 0.042)20 ≈ $227.70. This inflation is not a serious

national problem if wages and salaries increase at the same rate. It becomes a cri-

sis if the costs of goods and services increase at too high a percentage. There was

a time during the last twenty years in which the inflation rate in Brazil reached

80 percent per month! Using the exponential growth equation, that means that

what cost $100 at the start of the year would cost 100(1 + 0.80)12 ≈ $1,157 at

the end of the year. 

Exponential growth is an issue in studies of the environment. From 1950

through 1970, it appeared that world oil production was increasing exponentially

at a rate of 7 percent per year to meet the growing worldwide demand. Could that

continue? Because it is harder to find previously undiscovered oil deposits, oil

production has not increased exponentially since 1970. Some scientists contend

that the carbon dioxide content in the upper atmosphere is increasing exponen-

tially. There are few dangerous effects in the early stages of the growth, but as

the amount of atmospheric CO2 leaps ahead, serious changes such as global

warming will disrupt life on earth.

Exponential growth models are the basis of many scams, such as the chain

letter. A chain letter offers the promise of easy money. One letter might have five

names at the end of it. “Send $10 to the first name on the list. Remove that name

and put your name on the bottom of the list. Send copies of the new letter to five

people.” If you and everyone else does this, the person at the top of the list would

receive $6,250. However, by the time your name came up on top of the list,

1,953,125 people would have had to pass on the chain letter after it had been ini-

tiated. In three more stages, the letter would have to be continued by more peo-

ple than there are in the United States. Because the number of contributors to the

letter must grow exponentially, the only people who benefit from a chain letter

are those who start them. The U.S. Postal Code prohibits chain letters. However,

variants of chain letters that don’t ask for money have been popular via email.

Because these letters ask the recipient to send copies of the letter to all people in

their computer address books, the number of these messages increases very rap-

idly and can clog disk storage and communication links.

There are several other ways in which exponential growth appears in finan-

cial deceits. An entrepreneur will advertise franchises for selling some product.

For payment of a franchise fee, such as $1,000 or $5,000, the franchisee obtains

the rights to sell the product in a certain area. Up to that point, everything is legal.

But some frauds depend on the franchisees selling further franchises, with every-

EXPONENTIAL GROWTH 33



one already in the business sharing some of the franchise fees. In this type of

scheme, millions of dollars can come to the originators, even if none of the prod-

uct is ever sold. The people who pay franchises late in the scheme lose all their

money. When all operations are based on money from new investors rather than

goods or services, the fraud is called a “Ponzi scheme.”

online sources for further exploration

Population changes

<http://www.ea.gov.au/biodiversity/invasive/pests/rabbit.html>

<http://www.learner.org/exhibits/dailymath/population.html>

<http://www.joma.org/vol1-2/modules/macmatc5/exponential_growth_module.

html>

<http://www.math.montana.edu/frankw/ccp/modeling/discrete/snooping/learn.htm>

Savings, credit, and compound interest

<http://www.learner.org/exhibits/dailymath/savings.html>

<http://www.richmond.edu/~ed344/webunits/math/banking3.html>

<http://www.math.toronto.edu/mathnet/questionCorner/mortgage.html>

Inflation rates and calculators

<http://www.westegg.com/inflation/>

<http://woodrow.mpls.frb.fed.us/economy/calc/cpihome.html>

<http://www.hec.ohio-state.edu/cts/osue/cpidist.htm>

Chain letters and scams

<http://hoaxbusters.ciac.org/HBHoaxInfo.html#what>

<http://www.usps.gov/websites/depart/inspect/chainlet.htm>

<http://www.chainletters.org/>

<http://home.nycap.rr.com/useless/ponzi/>

<http://www.bosbbb.org/lit/0052.htm>

Food technology

<http://www.math.bcit.ca/examples/ary_2_4/ary_2_4.htm>

Internet growth data

<http://www.mit.edu/people/mkgray/net/internet-growth-summary.html>

Pricing diamond rings

<http://exploringdata.cqu.edu.au/dia_asn.htm>

The US national debt clock

<http://www.brillig.com/debt_clock/>

▲
▼

▲
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FIBONACCI SEQUENCE

The infinite sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . is called the Fibonacci

sequence after the Italian mathematician Leonardo of Pisa (ca.1175–ca.1240),

who wrote under the name of Fibonacci. The sequence starts with a pair of ones,

then each number is the sum of the two preceding numbers. The formula for the

sequence is best written recursively (first formula below), rather than the explicit

formula on the right.

Fibonacci established a thought experiment about counts of animals over

generations, and can be described in terms of the family line of honey bees. A

male bee develops from an unfertilized egg—hence has only a mother. Female

bees develop from fertilized eggs; therefore female bees have a father and

mother. How many ancestors does a male bee have? The male bee has one

mother. The mother has a mother and a father. So the male bee has one ancestor

at the parent generation. He has two ancestors at the grandparent generation. If

you work out the great-grandparent generation, you will find that there are three

ancestors. A full picture of the family tree for the bee going back to great-great-

great grandparents will show that the generation counts are 1, 2, 3, 5, 8, 13. 

Placing the male bee at the beginning of the sequence (starting generation)

gives 1, 1, 2, 3, 5, 8, and so on. If you repeat the argument with a female bee, you

will also get a Fibonacci sequence starting with 1, 2, 3, 5, 8, . . . . The sequence

has been shown to have remarkable mathematical properties and some surpris-

ing connections to events outside of mathematics. Eight hundred years after

Fibonacci’s publication of the sequence, an organization and journal, the Fibo-

nacci Quarterly, are devoted to exploring new discoveries about the sequence.

The ratios of consecutive terms of the Fibonacci sequence 
(

an

an−1

)

produce a 

sequence 1, 2, 1.5, 1.6̄, 1.6, 1.625, . . . which converges to the golden ratio
1+

√
5

2 ≈ 1.61803. If a sequence of squares is built up from two initial unit
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a2=1

an=an−1+an−2 tn =

(

1+
√

5
2

)2
−
(

1−
√

5
2

)2

√
5

.

recursive explicit

The family tree for a male bee.



squares (left-hand picture below), the vertices provide links for tracing a loga-

rithmic spiral (middle picture). The spiral (which expands one golden ratio dur-

ing each whole turn) appears in the chambered nautilus (right-hand picture).

The Fibonacci numbers appear in the branching of plants, and counts of spi-

rals in sunflower seeds, pine cones, and pineapples. In one particular variety of

sunflower, the florets appear to have two systems of spirals, both beginning at the

center. There are fifty-five spirals in the clockwise direction, and thirty-four in

the counterclockwise one. The same count of florets in a daisy show twenty-one

spirals in one direction and thirty-four in the other. A pine cone has two spirals

of five and eight arms, and a pineapple has spirals of five, eight, and thirteen. The

spiral also appears in animal horns, claws, and teeth.

On many plants, the number of petals on blossoms is a Fibonacci number.

Buttercups and impatiens have five petals, iris have three, corn marigolds have

thirteen, and some asters have twenty-one. Some species have petal counts that

may vary from blossom to blossom, but the average of the petals will be a Fibo-

nacci number. Flowers with other numbers of petals, such as six, can be shown

to have two layers of three petals, so that their counts are simple multiples of a

Fibonacci number. In the last few years, two French mathematicians, Stephane

Douady and Yves Couder, proposed a mathematical explanation for the Fibo-

nacci-patterned spirals in nature. Plants develop seeds, flowers, or branches from

a meristem (a tiny tip of the growing point of plants). Cells are produced at a con-

stant rate of turn of the meristem. As the meristem grows upward, the cells move

outward and increase in size. The most efficient turn to produce seeds, flowers,

or branches will result in a Fibonacci spiral.

In 1948, R. N. Elliott proposed investment strategies based on the Fibonacci

sequence. These remain standard tools for many brokers, but whether they are a

never-fail way of selecting stocks and bonds is open to debate. Some investors

think that when Elliott’s theories work, it is because many investors are using his

rules, so their effects on the stock market shape a Fibonacci pattern. Neverthe-

less, a substantial number of brokers use Elliott’s Fibonacci rules in determining

how to invest.

In computer science, there is a data structure called a “Fibonacci heap” that

is at the heart of many fast algorithms that manipulate graphs. Physicists have
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used Fibonacci sequences to study quantum transport through Fibonacci lattices

and radiation paths through the solar system.

online sources for further exploration

An absolutely huge collection of information about the Fibonnaci sequence

<http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html>

Computer art based on Fibonacci numbers

<http://www.moonstar.com/~nedmay/chromat/fibonaci.htm>

Fibonacci numbers and the golden section

<http://www.ee.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html>

Fibonacci numbers and their application in trend analysis

<http://library.shu.edu/HafnerAW/awh-th-fibonacci-num.htm>

Fibonacci spirals

<http://www.moonstar.com/~nedmay/chromat/fibonaci.htm>

A psychic encounter with Fibonacci numbers

<http://www.telepath.com/novelty/nbart1.html>

Scott’s phi page

<http://www.germantownacademy.org/academics/us/Math/Geometry/stwk98/SCOT-

TRK/Index.htm>

Trader’s corner

<http://www.optioninvestor.com/traderscorner/070501_1.asp>

▲
▼

▲

IMAGINARY NUMBERS. SEE COMPLEX NUMBERS

▲
▼

▲

INTEGRATION

Integration is used to determine a total amount based on a predictable rate

pattern, such as a population based on its growth rate, or to represent an accu-

mulation of something such as volume in a tank. It is usually introduced in cal-

culus, but its use and computation can be performed by many calculators or com-

puter programs without taking calculus. Understanding the utility of an integral

does not require a background in calculus, but instead a conceptual understand-

ing of rates and area.
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Many realistic applications of integration that occur in science, engineering,

business, and industry cannot be expressed with simple linear functions or geo-

metric formulas. Integration is powerful in such circumstances, because there is

not a reliance on constant rates or simple functions to find answers. For exam-

ple, in many algebra courses, students learn that distance = rate × time. This is

true only if the rate of an object always remains the same. In many real-world

instances, the rate of an object changes, such as the velocity of an automobile on

the road. Cars speed up and slow down according to traffic signals, incidents on

the road, and attention to driving. If the velocity of the car can be modeled with

a nonlinear function, then an integral could help you represent the distance as a

function of time, or tell you how far the car has moved from its original position,

even if the rate has changed.

A definite integral of a function f(t) is an integral that finds a value based on

a set of boundaries. A definite integral can help you determine the total produc-

tion of textiles based on a specific period of time during the day. For example,

suppose a clothes manufacturer recognized that its employees were gradually

slowing down as they were sewing clothes, perhaps due to fatigue or boredom.

After collecting data on a group of workers, the manufacturer determined that the

rate of production of blue jeans, f , can be modeled by the function f(t) =
6.37e−0.04t, where t is the number of consecutive hours worked. For the first two

hours of work, an expected production amount can be determined by the definite

integral, written as 
∫ 2

0
6.37e−0.04tdt.

On a graph in which f(t) describes a rate, the definite integral can be deter-

mined by finding the area between f and the t axis.

In the case of producing blue jeans for the first two hours of work, the area

between f(t) = 6.37e−0.04t and the t axis on the interval [0,2] is equal to

approximately 12.24 pairs of jeans. In an eight-hour workday, the last two hours 

of work production from an employee would be represented by 
∫ 8

6
6.37e−0.04tdt,

which equals approximately 9.63 pairs of blue jeans. Notice that the area on the
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The area between the graph 

of f(t) = 6.37e−0.04t

and the t axis determined by
∫ 2

0
6.37e−0.04tdt.



graph is much lower in this interval (the dark solid region), than from 0 to 2 hours

of work (the light shaded region).

This information can help managers determine when employees should take

breaks so that they can optimize their performance, because they would likely

feel more productive when they returned to work.

A definite integral can help heating and cooling companies estimate the

amount of costs needed to send power or gas to each household. On any given

day, the temperature can be modeled with a sinusoidal function, because tem-

perature increases during the day, decreases at night, and then repeats the cycle

throughout the year. For example, suppose the temperature reached a low of 50°

Fahrenheit at 2 AM and a high of 90° at 2 PM. If x represents the number of hours

that have passed during the day, then the temperature in degrees Fahrenheit, T ,

can be represented by the equation T = 20 cos
[

2π(x−14)
24

]

+ 70. Suppose that 

the thermostat in the house is set to 80° so that the air conditioning will turn on

once the temperature is greater than or equal to that setting. The amount of

energy used for the air conditioner is proportional to the temperature outside.

That means that the air conditioner will use more energy to keep the house cool

when it is closer to 90° than when it is near 80°. The price to cool the house

might be five cents per hour for every degree above 80°. If the temperature were

83° for the entire hour, then the cost to run the air conditioner would be fifteen

cents. However, since temperature varies according to a sinusoidal function, the

cost per minute would actually change. Therefore, a definite integral bounded by

the time when the temperature is above 80° will help predict the cooling costs.

The temperature should be 80° at x = 10 (10 AM) and x = 18 (6 PM), so the cool-

ing costs per day for days like this would be approximately $2.62 based on an

evaluation of the expression 

$0.05
∫ 18

10
(20 cos

[

2π(x−14)
24

]

+ 70 − 80)dx = $2.62 .

Notice that the answer is also represented by 0.05 times the area of the curve 

between T = 20 cos
[

2π(x−14)
24

]

+ 70 and T = 80, as shown in the following

diagram.
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A comparison of the areas between

the graph of f(t) = 6.37e−0.04t

and the t axis on the interval from 

t = 0 to 2 hours (the light shaded

region) and from t = 6 to 8 hours

(the dark solid region).



Integration can be used to help solve differential equations in order to for-

mulate new equations that compare two variables. A differential equation is a

relationship that describes a pattern for a rate. For example, the differential equa-

tion describing the rate of the growth of a rabbit population is proportional to the 

amount present and would be represented by the equation dP
dt = kP , where P is

the population, t is the amount of time, and k is a constant of proportionality. If

there were 200 rabbits in the population seven months ago, and 500 rabbits in the

population right now, then an integral will help you find an equation that relates

the population of rabbits to the amount of time that has passed. In this case, solv-

ing the differential equation will result in a general equation of P = 200e0.131t ,

where t is the number of months that have passed since the rabbits were origi-

nally counted. This information can help farmers understand how their crops will

be affected over time and take preventative measures, since they will be able to

predict future rabbit populations, assuming that changes will not result in the

growth rate due to disease or removal.

The equation d = 0.5gt2 + vot + do is commonly used in physics when

studying kinematics to describe the vertical position, d, of an object based on the

time the object has been in motion, t. Values that are commonly substituted into

this equation are g = –9.8 meters per second squared to represent the accelera-

tion due to earth’s gravity, the initial velocity of the object, vo, and the initial ver-

tical position of the object, do. How was this equation determined? Integration

can help explain how this expression is derived.

The acceleration of an object in vertical motion is equal to the constant value,

g, neglecting any air resistance. Acceleration is a rate of velocity, v, so v =
∫

gdt.

The velocity at t = 0 is vo, so this information and the integral determines the 

equation v = gt + vo. Velocity is a rate of position, so d =
∫

(gt + vo)dt. The

vertical position at t = 0 is do, so this information and the integral determine the

equation d = 0.5gt2 + vot + do .

Many volume formulas in geometry can also be proven by integration. In this

case, the integral serves as an accumulator of small pieces of volume until the
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The area between T = 20 cos
[

2π(x−14)
24

]

+ 70

and T = 80, which is the same as 
∫ 18

10
(20 cos

[

2π(x−14)
24

]

+ 70 − 80)dx



entire solid is formed. For example, the volume, r, of a sphere can be represented 

by the equation v = 4
3πr3, where r is the radius of the sphere. This equation can 

be determined by revolving a semicircle, y =
√

r2 − x2 , about the x-axis.

One really thin cross-sectional slice of the sphere can be represented by a

cylinder with radius y and thickness ∆x, as shown in the left-hand diagram

below. The volume of this cylindrical cross section, then, is v = πy2∆x. The

integral will accumulate the volume of all of these cylinders that stack up against

one another from x = –r to x = r.

Therefore the volume of a sphere can be represented by π
∫ r

−r
(
√

r2 − x2)2dx,

which simplifies to v = 4
3πr3. This formula tells manufacturers how much metal 

is needed to create certain ball bearings. The formula is also useful for ice cream

store owners to determine how many cones they can serve with each container

of ice cream, assuming that they can convert cubic centimeter units to gallons.

Orange juice manufacturers can use this relationship to estimate the amount of

orange juice they will receive from a batch of fresh oranges. 

What about predicting the volume needed to juice other fruits that have non-

circular curves, such as lemons, apples, and pears? The process would be simi-

lar to calculating the volume of a sphere, except that an equation would need to

be developed to model the perimeter of the fruit. For example, if the core of a

pear is placed along the x-axis, a pencil can trace its perimeter in the first two

quadrants. A fourth-degree function can model the curvature of a pear, such as

y = –0.016x4 − 0.094x3 − 0.068x2 − 0.242x + 3.132 , and then rotated around
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A sphere with radius, r, is formed

when rotating the semicircle

y =
√

r2 − x2 about the x-axis.

cylindrical slice inscribed in a sphere cylindrical slices stacked to form a sphere

Cylindrical slices with radius y =
√

r2 − x2 and height ∆x are stacked together 

to form the volume of the sphere.



the x-axis to form the solid, as shown below. An integral set up like the volume

of a sphere, and bounded by the x-intercepts of the function, will approximate

the volume of the pear. 

This pear has a volume ≈ 352 milliliters, as a result of evaluating 

π
∫ 2.502

−6.347
(–0.016x4 − 0.094x3 − 0.068x2 − 0.242x + 3.132)2dx .

online sources for further exploration

BHS calculus student projects

<http://www.bhs-ms.org/calculus.htm>

The case of the murky mell

<http://www.math.iupui.edu/writing_in_math/murky_well.html>

CO2 concentrations in a river

<http://www.geom.umn.edu/education/calc-init/integration/>

Flood levels

<http://www.math.bcit.ca/examples/ary_15_6/ary_15_6.htm>

Gavin’s calculus projects

<http://www.math.lsa.umich.edu/~glarose/courseinfo/calc/calcprojects.html>

Heating-degree-days

<http://www.nap.edu/html/hs_math/hd.html>

Internet differential equations activities: Current projects

<http://www.sci.wsu.edu/idea/current.html>

Modeling population growth

<http://www.geom.umn.edu/education/calc-init/population/>

Nuclear medicine

<http://www.math.bcit.ca/examples/ary_11_6/ary_11_6.htm>

Petroleum collection

<http://www.math.bcit.ca/examples/ary_13_6/ary_13_6.htm>

Surveying

<http://www.math.bcit.ca/examples/ary_17_6/ary_17_6.htm>

Tunnel Vision, Inc.

<http://panther.bsc.edu/~bspieler/projects/tunnel.html>

▲
▼

▲
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A pear can be constructed by rotating the

function y = –0.016x4 − 0.094x3 − 0.068x2

−0.242x + 3.132 about the x-axis.
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INVERSE (MULTIPLICATIVE)

A relationship in the form y = k
x , where k is a constant, is called an inverse

function. Sometimes you will see this relationship written as “y is inversely pro-

portional to x.” The graph of this function is a hyperbola, but most real-world

applications with inverse functions relate only to nonnegative values in the

domain.

An inverse proportion indicates that the dependent variable decreases as the

independent variable increases, or vice versa. In other words, as one factor

changes, the other factor will change in the reverse direction. For example, pres-

sure is inversely proportional to the volume of an object. When you dive under-

water, the amount of air space in between your ears begins to decrease, causing

them to pop, because the pressure gradually increases. If your ears do not pop

and release the air inside, then you will feel discomfort or pain, because the pres-

sure becomes too great.

Bottling companies use this same principle in packaging their soft drinks. Air

and carbon dioxide are compressed in a small volume of space when you first

open a container. The built-up pressure inside the small amount of space will

cause the container to fizz or make a sound when it is first opened. After the

gasses in the container have been released and part of the bottle is emptied, the

pressure on the bottle decreases, since the air volume inside has increased. Thus

the bottle does not fizz as much when it is opened later on.

Size is influenced by a combination of surface area and volume. The ratio of

surface area to volume is an inverse relationship, because area units are squared

and volume units are cubed. The ratio of squared units to cubic units is equal to

inverse units. For example, the surface area of a cube with an edge length equal

to 2 cm is 24 cm2 (6 square faces, each with area of 4 cm2). The volume of this 

cube is 8 cm3. The surface-area-to-volume ratio is 3 cm–1 (determined by 24 cm2

8 cm3 ).

Notice that the units are a multiplicative inverse, or reciprocal, of cm. 

Since an organism’s metabolic rate is affected by this ratio, it can be mod-

eled after an inverse proportion. This means that large animals will typically

have slower metabolisms than smaller animals, because the ratio of surface area

to volume will decrease for larger volumes. Conversely, smaller animals will

have higher metabolic rates than larger animals, because this ratio increases for

A graph of the inverse function 

y = 4
x

.



smaller volumes. Therefore rodents and dogs are much more likely to lose heat

from their bodies than bears and elephants, because they have less heat stored

inside. As a result, smaller animals need to be more active to maintain appro-

priate heat levels within their bodies, causing their metabolism to remain at high

levels. Animals and plants have naturally developed parts of their body to help

expand their surface area without adding considerable volume so that they can

increase their metabolic rate. For example, trees develop leaves from branches,

and humans use capillaries to extend their circulatory system. Microvilli, the

lining of the small intestine, is an example of a large surface area in the human

body with little volume, because it stretches to lengths of over seven meters

long!

Fuel consumption as a function of gas mileage is an inverse relationship. As

automobiles increase their fuel efficiency, or the number of miles per gallon they

attain while driving, then the gasoline consumers will purchase less fuel. Smaller

compact cars typically obtain better gas mileage, because there is less mass to

move when compared to less-fuel-efficient cars such as vans, trucks, and sport-

utility vehicles. If Americans drive approximately 1012 miles each year, then the

fuel consumption of the United States each year can be represented by the func-

tion g = 1012

m , where m is the average gas mileage of the cars that year. 

Production rates also form inverse relationships. The time it takes to com-

plete a task is inversely proportional to the rate at which an item is produced or

performed. For example, a grocery store clerk needs to staple price stickers on

5,000 cans. The amount of time needed for the job, t, is dependent on his pro-

ductivity rate, r, according to the function t = 5000
r . If he works at a faster rate, 

then the job will take less time to complete.

Some people claim that “Murphy’s law” can be described as an inversely

proportional relationship. This law maintains that anything can go wrong at the

worst possible moment. For example, when constructing a stage, Murphy’s law

might strike if the most vital tool to complete the job is missing. Another exam-

ple is staying up all night to complete a term paper, only to realize that your disk

has gone bad or your printer is out of ink. If this law were described as an inverse

function, then the availability of an item or luck is inversely proportional to its

importance. Thus as an event or object becomes more important, Murphy’s law

can strike, indicating that it will likely not occur or be available. Conversely, the

object or phenomenon will more likely occur or become available when it is less

needed.

online sources for further exploration

Best practices in network security

<http://www.silcom.com/~aludwig/Physics/Main/Image_analysis.html>

Boyle’s law

<http://library.thinkquest.org/12596/boyles.html>

Ears, altitude and airplane travel

<http://www.entnet.org/altitude.html>
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Gear ratios

<http://www.meceng.uct.ac.za/~mec104w/projects/legogears/legogears.html>

<http://weirdrichard.com/gears.htm>

Investigating direct and inverse variation with the telescope

<http://jwilson.coe.uga.edu/emt669/Student.Folders/Jeon.Kyungsoon/IU/rational2/T

elescope.html>

Murphy’s law

<http://www.peacockfamily.co.nz/murphys.html>

<http://fun.pinknet.cz/wise/m_apl.htm>

Weight and distance on a lever

<http://www.indiana.edu/~atmat/units/ratio/ratio_t7.htm>

<http://collections.ic.gc.ca/science_world/english/exhibits/leverarm/index.html>

<http://www.pbs.org/wgbh/nova/teachersguide/lostempires/lostempires_sp3.html>

▲
▼

▲

INVERSE FUNCTION

An inverse is a process, procedure, or operation that is reversed. For exam-

ple, the inverse of walking up the stairs is walking down the stairs. The inverse

of putting on your socks and then your shoes in the morning is taking them off

at night. When you are given driving directions to a friend’s house, you have to

use the inverse of the original directions to find your way home, because all of

the directions will need to be reversed, where left turns will become right turns,

and vice versa. 

Two functions, f(x) and g(x), are inverses if their composites are equal to the

independent variable. Symbolically, this is written f(g(x)) = x or g(f(x)) = x.

Also, the coordinates on inverse functions are reversed. If f(x) and g(x) are

inverses, and f(x) contains the point (4,7), then g(x) contains the point (7,4). So

one way to model an inverse of a function is to reverse the coordinates. For exam-

ple, the exchange rate when traveling from the United States to Australia might be

represented by the function a = 1.90u, where u is the number of U.S. dollars, and

a is the number of Australian dollars. This means that 1.90 Australian dollars is

equivalent to 1 U.S. dollar. In this equation, the coordinates are represented by the

ordered pair (u, a). The inverse of this relationship would be to describe the

exchange rate when traveling from Australia to the United States. Therefore the

coordinates would be reversed, or (a, u). In order to represent this equation as a

function that indicates the exchange rate, the equation a = 1.90u needs to be

rewritten as a function in terms of a. This can be done by dividing both sides of

the equation by 1.90 to obtain 1a
1.90 = 1.90u

1.90 , which simplifies to approximately

0.53a = u. This means that the exchange rate on the return to the United States is

about $0.53 (U.S.) for every Australian dollar. You can verify that these two func-
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tions are inverses by finding their composite u(a(u)), which equals 0.53(1.90u)
and simplifies to equal u.

Inverses are also used to decode secret messages. If an encrypting pattern is

used to change the letters in a sentence, then a decrypting pattern is needed to

place the letters back in their normal positions. For example, suppose an encryp-

tion function of e(w) = 2w + 3 is applied to each letter in a word, where letters

had corresponding numbers (e.g., a = 1, b = 2, c = 3, . . . z = 26). The word

“math” would first translate to a numerical expression, 13 1 20 8, and then be

transformed using the function e(w) = 2w + 3, where w represents the original

number, and e represents the coded number. So the letter “m,” equivalent to 13,

would transform to e = 2(13) + 3 = 29. After transforming 1, 20, and 8, the

final coded expression would be 29 5 43 19. If you receive the secret transmis-

sion of an encoded expression 29 5 43 19, you will need to decode it using the

inverse function, w(e). One way to find this inverse is to solve for w in the equa-

tion e = 2w + 3 by subtracting 3 from both sides and then dividing by 2. Thus 

w = e−3
2 is the inverse operation that will decode the expression. The first num-

ber, 29, would be converted to w = 29−3
2 = 13, which translates to the letter “m” 

in the alphabet. If you apply the inverse function to the remaining numbers 5 43

19, you will obtain the word “math” again. Encrypted codes that deal with con-

fidential information, such as credit card numbers and highly classified material,

are far more complex than this function. However, the decryption of obscure

codes is often performed by computers that use a program that relies on the

process of an inverse operation! (For a more secure code, see Matrices.)

online sources for further exploration

Cryptology

<http://www.ssh.fi/tech/crypto/intro.cfm>

<http://www.jcoffman.com/Algebra2/ch4_5.htm>

<http://www.sans.org/infosecFAQ/encryption/mathematics.htm>

Inverse problems in the earth sciences

<http://ees-www.lanl.gov/EES5/inverse_prob.html>

Universal currency converter

<http://www.xe.net/ucc/>

<http://www.wildnetafrica.com/currencyframe.html>

▲
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INVERSE SQUARE FUNCTION

The inverse square law explains why sound drops off so quickly as you move

away from a source of noise, why porch lights do a good job of illuminating the

front of a house but not the street in front of the house, and why the forest reverts

to darkness as you move away from a campfire. Light and sound emerging from

single sources can be viewed as increasing spheres whose area increases as the

square of the distance from the source. As a result, the proportion of sound or

light reaching a specific unit of area, such as a square meter, varies inversely as

the square of the distance from the source. The standard equation of an inverse

square function is y = k
x2 , where k is a constant of proportionality.

Light emerges from a source in all directions. The drawing below illustrates

the distribution of light from a 40-watt light bulb. We will use wattage as the

measure of pointance and illuminance to show how the inverse square works.

Imagine a sphere of radius r containing the light bulb. Forty watts fall on the

interior surface of the sphere. The surface area of the sphere is given by SA =
4πr2 square meters. The energy falling on 1 square meter is therefore 40 watts

divided by 4πr2. In the drawing, this energy is called “L.” If you go out twice as

far, the same energy is distributed over 4 square meters. At three times the dis-

tance, the energy is distributed over 9 square meters. 

A standard formula for light intensity is E = I
r2 , where E is called the illu-

minance, and I is called the pointance. Illuminance is measured in a variety of

units such as lux and footcandles. Pointance is a measure of the intensity at the

source of the light. As you can see, this is a direct statement of the inverse square

law.

The inverse square law provides information about the likelihood of other

planets having life forms similar to those on earth. Imagine the light that hits your
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neighborhood at noon on a hot summer day. Call that amount of light L. Mars is

about one-and-a-half times the distance from the sun as the earth, so if your 

neighborhood were on Mars, it would receive L
1.52 or 44 percent of the light it 

receives on earth. That might be enough to sustain life. The planet Neptune is

about thirty times as far from sun as the earth. If your neighborhood were on 

Neptune, it would receive L
302 , or about 0.1 percent of the light it receives on 

earth. This wouldn’t be enough to support life as we know it.

The distribution of sound follows the same rule. Just replace the light bulb in

the first illustration by an actor in an auditorium. In an auditorium, the sound

drop due to the inverse square law is usually unacceptable. It would mean that a

person standing in front of the first row of seats, who might be audible to people

in the tenth row, would be barely audible to people in the twentieth row. The

audibility of the speaker (about 70 decibels) to listeners in the first row would

drop to 50 decibels (a soft sound) ten rows behind. Acoustical engineers design

reverberation into auditoriums to focus the sound and overcome the inverse

square law. They place hard surfaces at the back of the stage and on the ceiling

and walls so that sound that would ordinarily dissipate would bounce back and

add to the intensity of that being heard by the audience. 

Gravity is an example of a force that follows the inverse square law. How

much lighter will a 160-pound astronaut feel if he or she is in a spaceship 12,000

miles above the earth? The radius of the earth is about 4,000 miles, so the astro-

naut is 16,000 miles from the center of the earth, or about four times the distance

of a person measuring weight on the surface of the earth. By the inverse square 

law, the astronaut would feel as though his or her weight were 16042 = 10 pounds,

even though the mass of the astronaut remains unchanged. 

Electric force acting on a point charge, q1, in the presence of another point 

charge, q2, is given by Coulomb’s law, F = kq1q2

r2 = q1q2

4πǫ0r2 , where ǫ0 is the con-

stant for the permittivity of free space. This law is an outcome of the inverse

square law. It is named in honor of the French scientist Charles Coulomb, who

established it in 1777 after studying the forces on magnetized needles. 

The inverse square law means that increasing the distance from a source of

nuclear radiation may be the difference between life and death. Accidental expo-

sure to radiation that produces 600 rems (a measure of radiation impact on living

tissue) is almost certain to cause death within two months. A person who is twice

as far away will absorb 600/4 = 125 rems, an amount that will result in a signifi-

cant, but temporary, reduction in blood platelets and white blood cells. If the radi-

ation distribution followed an inverse law, rather than an inverse square law, then

a person twice as far away as the one receiving the fatal dose would get 600/2 =

300 rems. This dose causes severe blood damage, nausea, hair loss, hemorrhage,

and death in many cases. Because radiation follows the inverse square law, being

twice the distance from a fatal dose may mean illness rather than death.

The inverse square law comes up in court cases. The lawyer faced the med-

ical examiner and asked suddenly, “The body wasn’t found in the bedroom. How

can you say that the fatal shots were made there?” The examiner replied, “Be-
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cause we found blood spatters on the wall in the bedroom. Measuring the num-

ber of splatters in a square meter, we used the inverse square law to determine

that a high-velocity bullet passed through the victim 1.7 meters from that wall.

Analysis of droplet angles confirmed our estimate.”

online sources for further exploration

Summary from the Jet Propulsion Laboratory

<http://www.star.le.ac.uk/edu/solar/edu/invsquar.html>

<http://www.solarviews.com/span/edu/invsquar.htm>

<http://www.jpl.nasa.gov/basics/bsf6-1.html>

Physics examples and lessons

<http://hyperphysics.phy-astr.gsu.edu/hbase/forces/isq.html>

<http://www.physicsclassroom.com/Class/circles/U6L3b.html>

Universal law of gravitation

<http://csep10.phys.utk.edu/astr161/lect/history/newtongrav.html>

Simple experiments 

<http://www.exploratorium.edu/snacks/inverse_square_law.html>

<http://www.public.iastate.edu/~javapgmr/homepage.html>

<http://www.howstuffworks.com/question441.htm>

Astrophysics

<http://jersey.uoregon.edu/vlab/InverseSquare/index.html>

<http://www.solarviews.com/span/edu/invsquar.htm>

<http://www.star.le.ac.uk/edu/solar/edu/invsquar.html>

Basic notions of celestial mechanics

<http://www.rafed.net/arc/arabic/research/mmar/bncm/bncm1.htm>

Darkness outside of a campfire

<http://www.exploratorium.edu/snacks/inverse_square_law.html>

Electromagnetic radiation

<http://www.jpl.nasa.gov/basics/bsf6-1.html>

How light works

<http://www.howstuffworks.com/question441.htm>

Simulated ocean dive

<http://illuminations.nctm.org/imath/912/Light/light2.html>

▲
▼

▲

LINEAR FUNCTIONS

A linear function is a function that has a constant change in the dependent

variable for every change in the independent variable. For example, the value of

the dependent variable y in the linear function y = 5x − 2 will always increase

by five units for every increase in one unit of the independent variable, x. This
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means that the ratio of these changes, called the slope, is also constant. For exam-

ple, the previous comparison is the same as saying that there will be a change of

fifteen units in the dependent variable for every change in three units of the inde-

pendent variable, since this ratio simplifies to 5. Every linear function can be

written in the slope-intercept form, y = mx + b, where m is the slope of the line,

and b is in the y-intercept.

Realistic situations use linear functions to make predictions or draw compar-

isons that involve constant change. For example, the cost of gasoline is linearly

related to the number of gallons purchased. For every one gallon of gas pur-

chased, the price will increase approximately $1.40. The fact that the gas price

per gallon does not change as gas is pumped allows someone to use a linear func-

tion to predict the amount of money needed to fill the tank. In this situation, the

function c = 1.40g would relate the cost in c dollars to g gallons purchased. If an

automobile has a twelve-gallon tank, then the cost to fill the tank would be c =

1.40(12) = $16.80. In addition, the linear equation is useful when the individual

purchasing gasoline would like to know how much gasoline he or she would

obtain with the $10 available in his or her pocket. In this case, 10 would be sub-

stituted for the variable c, and solving the equation would show that approxi-

mately 7.14 gallons could be purchased, slightly more than half a tank in most

cars.

Linear functions are useful in estimating the amount of time it will take to

complete a road trip. Assuming that traffic conditions are good and the driver is

traveling at a constant speed on a highway, the linear equation d = rt (distance

equals rate times time) can be used to predict the total distance traveled or time

needed to complete the trip. For example, suppose that a family is traveling on

vacation by automobile. The family members study a map to determine the dis-

tance between the cities, estimate a highway speed or rate of 65 miles per hour,

and then solve the linear equation d = 65t to estimate the length of their trip. An

awareness of the time needed for the trip would likely help the family plan a time

of departure and times for rest stops.

Banking institutions determine the amount of simple interest accumulated on

an account by using the linear equation I = Prt, where I is the amount of interest,

P is the initial principal, r is the interest rate, and t is the time in years in which

the interest has been accumulating. For example, a $1,000 loan with 8 percent

simple interest uses the function I = 1000(0.08)t, or simplified to I = 80t, to pre-

dict the amount of interest over a specific time period. Once the principal and

interest rates have been determined, the function is linear, since the amount of

interest increases at a constant rate over time. Over five years, there will be I =

80(5) = $400 net payment in interest. 

Circuits rely on linear relationships in order to operate electrical equipment.

The voltage V, current I, and resistance R are related with the equation V = IR. A

power supply has voltage to create a stream of current through electrical wires.

The current in a circuit is typically held constant, such as at 72 Hz, so that there

is a constant stream of electricity. In this case, the linear relationship V = 72R

would help a manufacturer determine the amount of resistance needed in a power
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supply so that an electrical object can operate correctly. Resistors are small

devices that block or slow down the current so that an object does not receive too

much power. For example, if the resistance in a light circuit is too low, then the

bulb would receive an overload of power and be destroyed. If the resistance is

too high, then there will not be enough power reaching the bulb in order for it to

light well. These problems can arise with some appliances when they are moved

to different countries, because the electrical circuits may run with different cur-

rent levels. Consequently, appliances may have different types of resistors so that

they can accommodate to the corresponding current levels in a circuit.

In a business setting, a linear function could be used to relate the total costs

needed to sell a product in terms of the number of products produced. For exam-

ple, suppose a bakery created cookies at a raw material expense of $0.25 per

cookie. Suppose production costs for equipment are an extra $500. In this case,

the linear function t = 0.25c + 500 will represent the total cost, t, needed to pro-

duce c cookies. In general, if a function is modeled by a linear relationship, then

the rate ($0.25 per cookie) will be the slope, and the starting amount ($500 equip-

ment expense) will be the y-intercept of the equation. This information is useful

to the owner, because he or she will be able to predict the average cost of pro-

ducing cookies, start-up expenses included, or the amount of cookies that can be

produced based on a fixed budget. 

Unit conversions are often linearly related. For example, the United States

uses a different temperature scale (Fahrenheit) than most of the rest of the world

(Celsius). If an individual from the United States travels to Spain, then a tem-

perature of 30° Celsius would feel considerably different from a temperature of

30° Fahrenheit. The equation that converts the two variables can be determined

by using the freezing and boiling points of water. Water freezes at 0° Celsius and

32° Fahrenheit; water boils at 100° Celsius and 212° Fahrenheit. These two

pieces of information represent two ordered pairs on a line, (0,32) and (100,212).

Since two points are sufficient information to determine the equation of a 

line, the slope formula and y-intercept will lead to the equation F = 9
5C + 32,

where F is the temperature in Fahrenheit, and C is the temperature in Celsius.

This means that a report of 30° weather in Spain suggests that the day could be

spent at the beach, while in the United States a report of 30° weather means that

you might be having snow! 

Linear functions can be used to form relationships between data that are

found in natural events and places. For example, there is a strong relationship

between the winning time of the men’s Olympic 100-meter dash and the year in

which it occurs. The graph that follows shows that a line can be drawn to approx-

imate the relationship between these two variables. Notice that all of the data val-

ues do not fall on the line, but instead cluster around it. It is possible for points

to be away from the line, especially during years of unusually exceptional per-

formance. The correlation coefficient, r, is a measure of the strength of the lin-

ear relationship. The relationship is stronger as the absolute value of the correla-

tion coefficient approaches the value of 1. If the correlation coefficient is closer

to 0, then a linear relationship does not likely exist. In the 100-meter dash situa-
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tion, the absolute value of r is equal to 0.88, indicating that the line is a pretty

good model for the data.

The linear equation acts as an approximate prediction of the relationship

between time and year. This predicted pattern is much more reliable within the

range of data, so the variables may not have the same relationship for future

Olympics. After all, the line should eventually level off, because the runners will

never be able to run a time equal to zero! Therefore, this line is most useful to

make predictions between 1900 and 2000, such as estimating the winning times

when the Olympics did not occur or when participation was reduced (often due

to world conflicts). For example, there is no time for 1944 because the Olympics

were suspended during World War II. The time that might have been achieved in

the 1944 Olympics could be estimated using the linear model Predicted Time =

–0.01119Year + 32.185 by substituting 1944 for Year. That gives a predicted win-

ning time of 10.43 seconds. Linear relationships are also common with winning

times and championship performances in many other Olympic events.

Forensic scientists use linear functions to predict the height of a person based

on the length of his arm or leg bones. This information can be useful in identify-

ing missing people and tracing evolutionary patterns in human growth over time.

When a complete skeleton cannot be found, then the height of the deceased per-

son can be predicted by identifying the person’s sex and finding the length of his

or her femur, tibia, humerus, or radius. For example, the height h in centimeters

of a male can be estimated by the linear equation h = 69.089 + 2.238f , where

f is the length of the femur bone in centimeters. In addition, the linear equation

s = –0.06(a − 30) or s = –0.06a + 1.80 is the amount of shrinkage s for indi-

viduals of age a greater than 30 that needs to be accounted for in the height of a

deceased person. For example, if the person had an estimated age of 60 at death,

then –0.06(60) + 1.80 = –1.80 cm would be included in the height prediction.

Ever feel cold in an airplane? The outside temperature decreases linearly with

an increase in altitude. The equation t = –0.0066a + 15 has been described as a

linear model that compares the temperature t (°C) with the altitude a (meters)

when the ground temperature is 15°. Recognizing this relationship helps engi-

neers design heating and cooling systems on the airplanes so that metal alloys

can adapt to the changes in temperature and passengers obtain reasonable air
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temperatures inside the plane. The linear equation also helps pilots understand

the limitations as to how high they can fly, because not only are there changes in

air pressure, but the temperature decreases by 66° for every 10,000 meters of alti-

tude. You would not want the wind blowing in your face at high altitudes!

The apparel industry uses linear functions when manufacturing dresses.

Dress sizes often reflect a general relationship among a woman’s bust, waist, and

hips. The table below shows the relationship among these measurements.

size s 6 8 10 12 14 16 18 20

bust b 30.5 31.5 32.5 34 36 38 40 42

waist w 23 24 25 25.5 28 30 32 34

hips h 32.5 33.5 34.5 36 38 40 42 44

A comparison of women’s dress sizes according to bust, waist, and hips 

(dimensions in inches).

The data can be generalized into a few linear relationships. The designer esti-

mates that a woman’s dress size is s ≈ 1.2w − 20. Furthermore, the other meas-

urements can be approximated with the linear relationships, b ≈ 1.1w + 5 and

h = b + 2, making the equations a reasonable predictor of all measurements and

sizes, including those that are not listed. These relationships allow manufactur-

ers to mass produce dresses and provide women with a general reference point

for clothing sizes. However, since women have different body types, dresses are

sometimes altered or designed in different ways to accommodate the needs of a

variety of consumers.

Linear models have also been used within political arenas to argue for legis-

lation. For example, the state of Florida had been confronted with the problem of

powerboat speeds along its waterways that affect the survival of the manatees,

which are very large but docile creatures that live in shallow water. Because they

swim on the surface and near shore, many manatees have been killed or injured

by blades of powerboats. Lobbyists concerned about the death of the manatees

were able to show a strong linear relationship between the number of their deaths

and the number of powerboat registrations for the years 1977 to 1990. The equa-

tion is Killed = 0.125 Powerboats − 41.430, where Powerboats is the number of
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thousands of powerboats registered in Florida. The slope indicates that for every

thousand more powerboats registered, 0.125 more manatees are killed. In other

words, for every 10,000 more powerboats, the slope predicts 1.25 more manatees

are killed.

The data and linear function created a compelling argument that the mana-

tees were at risk of being endangered in a short period of time, unless action was

taken to reduce the number of powerboats and to slow down their speed in shal-

low waters. As a result, the Florida legislature has made it more difficult and ex-

pensive to acquire a powerboat license. It increased the number of game and fish

officers in manatee areas so that “no wake” rules would be strictly enforced. 

online sources for further exploration

Battery depletion and piecewise linear graphing

<http://daniel.calpoly.edu/~dfrc/Robin/Pathfinder/Battery/batt.html>

Cassette tape project

<http://ericir.syr.edu/Virtual/Lessons/Mathematics/Functions/FUN0001.html>

The diet problem

<http://www-fp.mcs.anl.gov/otc/Guide/CaseStudies/diet/>

Discovering the linear relationship between Celsius and Fahrenheit

<http://daniel.calpoly.edu/~dfrc/Robin/Celsius/celsius.html>

Environmental health

<http://www.math.bcit.ca/examples/ary_8_2/ary_8_2.htm>

Linear regression with human movements

<http://exploringdata.cqu.edu.au/lin_reg.htm>

Nuclear medicine

<http://www.math.bcit.ca/examples/ary_11_2/ary_11_2.htm>

Olympic statistics 

<http://www.swishweb.com/Sports_and_Games/Olympics/>

Plotting temperature and altitude

<http://daniel.calpoly.edu/~dfrc/Robin/Pathfinder/Temp/temp.html>

Property lines

<http://www.math.bcit.ca/examples/ary_17_8/ary_17_8.htm>

Size effects on airplane lift

<http://www.grc.nasa.gov/WWW/K-12/airplane/size.html>

Timing traffic lights

<http://www.nap.edu/html/hs_math/tl.html>

Voltage circuit simulator

<http://jersey.uoregon.edu/vlab/Voltage/index.html>

<http://java.sun.com/applets/archive/beta/Voltage/index.html>

Your weight on other worlds

<http://www.exploratorium.edu/ronh/weight/index.html>

▲
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LOGARITHMS

Logarithms are exponents, so they are used to reduce very large values into

smaller, more manageable numbers. It is easier to refer to the number 13.4 than

the number 25,118,900,000,000, which is approximately equal to 1013.4. A num-

ber x is said to be the base b logarithm of a number y, if y = bx. The correspon-

ding logarithmic equation is x = logby. Base-10 logarithms are used to change

numbers to powers of 10. For example, 500 ≈ 102.69897, so 2.69897 is said to be

the base-10 logarithm of 500. This is commonly written as log 500 ≈ 2.69897.

The decimal part “.69897” is called the mantissa, and the integer part “2” is

called the characteristic. Until inexpensive calculators made it easy to do multi-

plication, division, and roots, scientists and engineers used base-10 logarithms to

simplify computations by changing multiplication of numbers into addition of

exponents, and division of numbers into subtraction of exponents. Up until

twenty years ago, the main computational device for high school students in

advanced math and sciences was based on logarithmic scales—the slide rule.

Other common bases for logarithms are the numbers e and 2. The number e ≈
2.718281828459. It can be developed from the compound-interest formula as the

limit of (1 + 1/n)n as n increases without bound. The base e is used in exponential

expressions that evaluate continuously compounded interest. Logarithms to the

base e are typically written with the abbreviation ln, called a natural logarithm.

ln(500) ≈ 6.21461, because 500 ≈ e6.21461. Mathematical functions using e and ln

simplify computations with rates and areas that result from situations in physics,

biology, medicine, and finance. Hence e and natural logarithms are often used in

the statement of rules and properties in these fields. Base-2 logarithms emerge

from the study of computer algorithms. Computers are based on on-off switches,

so using base-2 logarithms provides a natural connection with machine operations.

Logarithmic scales are used in newspapers, households, and automobiles as

well as in scientific research. How loud is a rock concert? Noise is measured in

decibels, a logarithmic scale that is easier to use than the sound-energy measure-

ment of watts per square meter. A decibel is one-tenth of a bel, a unit named after

Alexander Graham Bell (1847–1922), inventor of the telephone. A soft whisper

is 30 decibels. Normal conversation is at 60 decibels. If you are close to the stage

at a rock concert, you hear music at 120 decibels. If you are so close that the

music hurts your ears, the amplifiers are at 130 decibels. Because the decibel

scale is logarithmic, changes along the scale are not linear. When the rock music

moves from very loud (120 decibels) to painful (130 decibels), your ears are

receiving 10 times as much sound energy. The difference of 70 decibels between

normal conversation (60 decibels) and pain (130 decibels) represents 107 more

watts per square meter of sound energy.

People’s perceptions of changes in sound intensity are more aligned to the

decibel scale rather than the actual changes in energy level. The same goes for

the perception of light. The brightness of stars was first put on a quantitative

scale by the Greek astronomer Hipparchus at around 130 BC. He arranged the vis-

ible stars in order of apparent brightness on a scale that ran from 1 to 6 magni-
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tudes, with stars ranked “1” as the brightest. Astronomers using powerful tele-

scopes have increased this star-magnitude scale to 29. Analysis of the quantity of

light that reaches the viewer indicates that the star-magnitude scale is logarith-

mic. In the nineteenth century, the scale was standardized so that a difference of

5 magnitudes corresponds to 100 times greater light intensity.

Acidity or alkalinity of a substance is measured on the logarithmic scale pH =

–log(H+), where H+ is the concentration of hydrogen ions in moles per liter of the

substance. These pH units provide a more compact scale than moles per liter. The

scale ranges from 0 to 14, with 7 representing a neutral substance (water). Higher

pHs indicate alkalinity, and lower indicate acidic substances. Few plants will sur-

vive in soils more acidic than pH = 4 (the acidity of lemon juice) or more alkaline

than pH = 8 (baking soda). Battery acid (pH 1) and lye (pH 13) will burn your

skin. Litmus papers turn different colors depending on the pH of the substance. A

change in color that represents 2 levels of pH will represent a difference of 100

times the concentration of H+ ions.

The Richter scale is a measure of the strength of earthquakes. An earthquake

with a Richter scale value of 4 feels like vibration from a passing train. A scale

value of 7 indicates an earthquake that produces ground cracks and causes

houses to collapse. Because the scale is logarithmic, the difference in energy

from the earthquake waves is 107−4 = 1,000. An earthquake measured as a 7 on

the Richter scale is 1000 times more powerful than an earthquake measured at 4.
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sound intensity relative intensity
(watts per square meter) (decibels)

103 Military rifle 150

102 Jet plane (30 meters away) 140

101 Pain level 130

100 Amplified rock music 120

10-1 Power tools 110

10-2 Noisy kitchen 100

10-3 Heavy traffic 90

10-4 Traffic noise in a small car 80

10-5 Vacuum cleaner 70

10-6 Normal conversation 60

10-7 Average home 50

10-8 Quiet conversation 40

10-9 Soft whisper 30

10-10 Quiet living room 20

10-11 Quiet recording studio 10

10-12 Barely audible 0

Decibel levels of common noises.



Logarithms can provide an expression of relations that are inverses of expo-

nential situations. A battery charges at a rate that depends on how close it is to

being fully charged. It charges fastest when it is most discharged. The charge C

at any instant t is modeled by the formula C = M(1 − e−kt), where M is the

maximum charge that the battery can hold, and k is a constant that depends on

the battery and charger. The formula that gives the time required to charge a bat-

tery uses the natural logarithm function ln: t = − 1
k ln(1 − C

M ).

Logarithms appear in a wide range of industrial and technological applica-

tions. The Haugh unit is a measure of egg quality that uses base-10 logarithms.

The logarithms of the sizes of two organs of an animal are related in an allomet-

ric equation. Economists use logarithmic derivatives to compare price changes 

of different items. The effective steam pressure in a cylinder is p = P (1+ln(R))
R ,

where P is the initial absolute pressure, and R is the ratio of expansion. The num-

ber of turns of a rope or pulley about a large cylinder that would be needed to

keep the rope from slipping is found with a formula that uses logarithms of ten-

sion ratios. Electrical engineers use Bode plots, a form of logarithmic graphing,

to determine voltage gains for active or passive filters. Statisticians use loga-

rithms to linearize data that appear to lie in certain curvilinear patterns.

online sources for further exploration

Investigate pH 

<http://www.miamisci.org/ph/>

<http://ga.water.usgs.gov/edu/phdiagram.html>

<http://www.chem.tamu.edu/class/fyp/mathrev/mr-log.html>

e as the base of natural logarithms at the MathSoft site

<http://www.mathsoft.com:80/asolve/constant/e/e.html>

CoolMath’s table of decibel levels at 

<http://www.coolmath.com/decibels1.htm>

National earthquake information center

<http://wwwneic.cr.usgs.gov/neis/eqlists/eqstats.html>

An excellent list of applications in technical areas is at British Columbia Institute 

of Technology

<http://www.math.bcit.ca/examples/table.htm>

Sonic booms and logarithms

<http://daniel.calpoly.edu/~dfrc/Robin/Sonic/sonic.html>

Sound pressure levels and intensity

<http://www.coolmath.com/decibels1.htm>

<http://www.math.bcit.ca/examples/ary_12_4/ary_12_4.htm>

Belt friction

<http://www.math.bcit.ca/examples/ary_9_4/ary_9_4.htm>

Bode plots

<http://www.math.bcit.ca/examples/ary_1_4/ary_1_4.htm>
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Modeling exponential decay using logarithms (finding half-life)

<http://math.usask.ca/readin/examples/expdeceg.html>

Further examples on logarithms

<http://www.math.bcit.ca/examples/table.htm>

▲
▼

▲

LOGISTIC FUNCTIONS

Logistic functions predict proportions or probabilities. They are used to deter-

mine proportions of successes in “yes–no” situations from underlying factors.

They can be used to predict the proportions of students admitted to a university

from different SAT-score intervals; the probability of getting an item right on a

test depending on underlying knowledge; the probability that a patient with cer-

tain symptoms will die or live; the proportions of nerves in the brain that will fire

in the presence of different concentrations of stimulating chemicals; the spread

of rumors; and the proportion of consumers that will switch brands or stay with

their current one when presented with different saturations of advertising.

A logistic function takes the form y = 1
1
m

+b0bx
1

, where m is the maximum 

value of the dependent variable (in most cases, this will be 1.00). The values b0

and b1 are very similar to the numbers used in exponential growth models. The

illustration below shows the shape of a logistic function. The scatterplot in it

shows the percent of applications for admission to a large state university that

resulted in acceptances of the candidates. The groupings of students on the x-axis

are by SAT verbal score. The dot at 700 indicates that 95 percent of the appli-

cants who had SAT verbal scores at 700 (that is, in the range of 680–720) were

accepted. However, only 9 percent of the students at 400 (in the range of 380–

420) were accepted. The equation for the logistic curve that models the data is

A = 1
1+9128(0.983)SAT , where A is the proportion accepted at an SAT score level. 
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University admission rates for students

with different SAT verbal scores. The

acceptance rate of high school students

into a certain college based on their

SAT verbal score.



If you cover up the right side of the curve (SAT verbal scores greater than 550),

the remaining curve looks like an exponential curve. 

Consider the spread of rumors. Suppose that every hour a person who hears

a rumor passes it on to four other people. During the early life of the rumor the

equation that represents the spread of the rumor at each hour would be N = 4t,

where N is the number of people hearing the rumor at t hours. The exponential

growth equation would require 65,536 new listeners at the eighth hour. But what

if the rumor starts with a student in a 1,000-student high school overhearing the

principal saying, “We are going to dismiss school early today”? If every student

passing on the rumor could find someone who had not heard it, then the rumor

would pass through the entire student body before five hours were up. However,

after four hours, people spreading the rumor will be telling it to students who

already know. This means that the rate at which new listeners receive the rumor

has to decrease as the day goes on. People who learn about the rumor later in the

day are not likely to find anybody who hasn’t heard it. A logistic equation that 

models the spread of this rumor is N = 1
1

1000+0.25t , where N is the number of 

students in the high school who have heard the rumor, and t is the number of

hours since the rumor started. This model would predict that half the student

body would have heard the rumor by the fifth hour.

Studies of diseases indicate that the early stages of an epidemic appear to

show an exponential growth in infected cases, but after a while the number of

people infected by the disease does not increase very rapidly. Like the spread of

rumors, diseases cannot be easily spread to new victims after much of the popu-

lation has encountered it. Logistic models describe the number of people infected

by a new disease if the entire population is susceptible to it, if the duration of the

disease is long so that no cures occur during the time period under study, if all

infected individuals are contagious and circulate freely among the population,

and if each contact with an uninfected person results in transmission of the dis-

ease. These seem like restrictions that would make it unlikely that logistic mod-

els would be good for studying epidemics, but the federal government’s Centers

for Disease Control and Prevention (CDC) make effective use of logistic models

for projections of the yearly spread of influenza through urban populations. CDC

statisticians adapt the model in a variety of ways for other types of diseases.

Logistic models are useful for tracking the spread of new technologies

throughout the country. The proportion of schools in the United States that have

Internet connections increased exponentially during the first half of the decade

(1991–2000), then leveled off at the end, with 95 percent of the schools having

Internet connections in 1999. A logistic function describes this pattern quite well.

Logistic curves describe the spread of other technologies such as the proportion

of families owning cell phones, the proportion of homes with computers, and the

number of miles of railroad track in the country from 1850 through 1950. The

logistic growth function carries a warning for companies that introduce new tech-

nologies: enjoy exponential growth in early sales, because it cannot last. When the

market is saturated with the technology, new sales are very difficult to make.
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Logistic models can be used to make population forecasts for anything rang-

ing from humans to ant colonies to bacteria to fermentation levels in beer. Phys-

icists use logistic models to study numbers of excited atoms in lasers. Agri-

cultural chemists use logistic models to quantify the concentration of salt in soil.

Bankers use the models to predict whether a person will default on a loan or

credit card.

online sources for further exploration

Logistic simulations/fractals

<http://www.lboro.ac.uk/departments/ma/gallery/doubling/>

<http://mcasco.com/explorin.html>

U.S. Department of Education (National Center for Education Statistics, 

the Digest of Education Statistics 2000)

<http://nces.ed.gov/pubs2000/Digest99/chapter7.html>

Human population dynamics

<http://phe.rockefeller.edu/poppies/>

Logistic model of USA population

<http://www.dartmouth.edu/~math3f98/csc98/chap5/CSC.USAPop5.html>

Population

<http://www1.tpgi.com.au/users/kpduffy/logistic_t.htm>

Airport growth

<http://www1.tpgi.com.au/users/kpduffy/logistic_t.htm>

Biological growth

<http://phe.rockefeller.edu/Bi-Logistic/>

Blood pressure

<http://www.shodor.org/master/biomed/physio/cardioweb/application.html>

Electrical systems

<http://phe.rockefeller.edu/Daedalus/Elektron/>

Loglet lab

<http://phe.rockefeller.edu/LogletLab/>

National Center for Education Statistics, the Digest of Education Statistics 2000 

<http://nces.ed.gov/pubs2000/Digest99/chapter7.html>

Semiconductor use

<http://phe.rockefeller.edu/LogletLab/DRAM/>

Working less and living longer

<http://phe.rockefeller.edu/work_less/index.html>

▲
▼

▲
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MATRICES

A matrix is a rectangular array of numbers. Operations that correspond to

addition, multiplication, and powering of real numbers provide rules for com-

bining matrices. Inverses of matrices correspond to reciprocals of real numbers.

In addition, there are specific operations on some matrices, such as those used in

game theory and graph theory that transform elements of the matrix to point the

way to best decisions.

Matrices are used to solve large systems of simultaneous equations. High

school students usually see matrices as a way to rewrite systems of equations. 

For example, 
{

5x+3y=7
2x−y=5 can be replaced by 

[

5 3
2 −1

][

x
y

]

=
[

7
5

]

. This 

change seems very simple, but it generalizes the system to a matrix system Ax =

b, which has a solution (if it exists) of x = A–1b. The problem of accurately com-

puting the inverse A-1 for large matrices is difficult, even with high-speed com-

puter processors. This remains a critical issue for mathematicians and computer

analysts, because scientists in fields as widely diverse as astronomy, weather

forecasting, statistics, economics, archeology, water management, weapons races

between countries, chicken production, airline travel routes, investment banking,

marketing studies, and medical research rely on the efficient reduction of large

matrices of information.

Matrix multiplication can provide a more secure secret code than simple

replacement ciphers. Replacement ciphers (sometimes called Caesar ciphers in

honor of the Roman emperor Julius Caesar, who used them in his military cam-

paigns) encode a message by replacing each letter with another. The problem

with these ciphers is that certain letters occur more frequently in languages than

do others. If “z” and “m” occur most frequently in an English-language coded

document, it is likely that the most frequent letter is hiding “e” and the next, “t.”

This one-to-one correspondence makes it easy to decode secret messages written

in replacement ciphers. If the code is written with numbers that are encoded with

multiplication by a matrix, the same letter encodes to different letters, depending

on its position in the message. The English-language frequency distribution is

then destroyed, so it is far more difficult for code breakers to decipher the mes-

sage. Recipients who have the encoding matrix, however, can quickly decode the

message by multiplication with the inverse of the matrix.

Some matrices describe transformations of the plane. Common geometric

movements of figures, such as reflections and rotations can be written as 2 × 2

matrices. The table below shows some common transformation matrices.

Reflection in Rotation of 90° Reflection in Rotation of 

the y-axis counterclockwise the line y = x 30° counterclockwise
[

−1 0
0 1

] [

0 −1
1 0

] [

0 1
1 0

] [

cos 30 − sin 30
sin 30 cos 30

]

Common transformations of the coordinate plane.



Computer graphics use products of 4 × 4 geometric matrices to model the

changes of position of moving objects in space (such as the space shuttle), trans-

form them to eye coordinates, select the area of vision that would fit on the com-

puter screen, and project the three-dimensional image onto the two dimensions

of the video screen. The matrix products must be computed very rapidly to give

the images realistic motion, so processors in high-end graphic computers embed

the matrix operations in their circuits. Additional matrices compute light-and-

shadow patterns that make the image look realistic. The same matrix operations

used to provide entertaining graphics are built into medical instruments such as

MRI machines and digital X-ray machines. Matrices such as incidence matrices

and path matrices organize connections and distances between points. Airlines

use these matrices on a daily basis to determine the most profitable way to assign

planes to flights between different cities.

The complexity of handling the different forms of rotation that are encoun-

tered in movement requires computers that can process matrix computations very

rapidly. The space shuttle, for example, is constantly being monitored by matrices

that represent rotations in three-space. These matrix products control pitch, the

rotation that causes the nose to go up or down, yaw, the rotation that causes the

nose to rotate left or right, and roll, the rotation that causes the shuttle to roll over.

Stochastic matrices are formed from probabilities. They can represent com-

plex situations such as the probabilities of changes in weather, the probabilities

of rental-car movements among cities, or more simple situations, such as the

probabilities of color shifts in generations of roses. When the probabilities are

dependent only on the prior state, the matrix represents a Markov chain. High

powers of the matrix will converge on a set of probabilities that define a final,

steady state for the situation. In population biology, for example, Markov chains

show how arbitrary proportions of genes in one generation can produce variation

in the immediately following generation, but that over the long term converge to

a specific and stable distribution. Biologists have used Markov chains to describe

population growth, molecular genetics, pharmacology, tumor growth, and epi-

demics. Social scientists have used them to explain voting behavior, mobility and

population of towns, changes in attitudes, deliberations of trial juries, and con-

sumer choices. Albert Einstein used Markov theory to study the Brownian

motion of molecules. Physicists have employed them in the theory of radioactive

transformations. Astronomers have used Markov chains to analyze the fluctua-

tions in the brightness of galaxies. 

Ratings of football teams can be done solely on the basis of the team’s sta-

tistics. But more effective and comprehensive ratings of the teams use the statis-

tics of opponents as well. Matrices provide a way of organizing corresponding

information on the team and those it has played. Solving the matrix systems that

result provides a power rating that integrates information on the strength of the

opponents with the information on the team. Sport statisticians contend that the

use of the data make their national ratings more reliable than those that use

human judgment.
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Linear programming uses algorithms such as the simplex method to compute

the most profitable solution from matrices of production. Matrices also structure

inquiry into situations that have competing players with multiple choices of

action. The outcomes can be organized into matrices that use players for rows

and options for columns. Game theorists have developed mathematical strategies

for transforming the matrices in a way that gives each player the best outcome,

or in a way that avoids worst outcomes. Game strategies have been used to ana-

lyze competition for food, to determine which students get the last seats in col-

lege courses, to resolve conflicts in classrooms, and to select the best choices for

potentially warring nations. The importance of game theory for the study of eco-

nomic behavior is recognized by the awarding of the Nobel prize. The 1994

award in economics went to John Nash, John C. Harsanyi, and Reihard Selten for

their contributions to game theory. Other Nobel awards related to game theory

have been those in 1996 to William Vickrey and James Mirrlees, and to Herbert

Simon in 1979. However, these were not the first Nobel prizes to recognize work

with matrices. In 1973, Wassily Leontief won the prize for his prediction of best

economic strategies from large input–output matrices. Leontief’s theories were

the basis for U.S. government policies that resulted in effective industrial pro-

duction during World War II.

online sources for further exploration

Ratings of college football teams

<http://www.cae.wisc.edu/~dwilson/rsfc/rate/zenor.html>

<http://www.colleyrankings.com/#method>

David Levine’s Zero Sum Game Solver

<http://levine.sscnet.ucla.edu/Games/zerosum.htm>

Cryptology and coding

<http://www.jcoffman.com/Algebra2/ch4_5.htm>

<http://www.sosmath.com/matrix/coding/coding.html>

Electronics

<http://www.math.bcit.ca/examples/ary_7_2/ary_7_2.htm>

Image rotation

<http://www.ece.gatech.edu/research/pica/simpil/applications/rotation.html>

Logging

<http://www.math.bcit.ca/examples/ary_15_2/ary_15_2.htm>

Markov chains

<http://www.sosmath.com/matrix/markov/markov.html>

Matrices in chemistry

<http://www.shodor.org/UNChem/math/matrix/>

Matrix model activities

<http://www.colorado.edu/education/DMP/activities/matrices/>

Stability of structures

<http://www.math.bcit.ca/examples/ary_5_2/ary_5_2.htm>
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Transformation matrices and robotics

<http://www.math.bcit.ca/examples/ary_16_2/ary_16_2.htm>

Viewing objects in computer graphics

<http://www.math.bcit.ca/examples/ary_6_2/ary_6_2.htm>

▲
▼

▲

PERIMETER

The distance around an object, or perimeter, is used for many purposes. The

concept is used by construction workers to determine the amount of trim needed

to seal the intersection between the drywall and ground, and drywall and ceiling

in each room when building a house. Artists use perimeter to determine the

amount of material they will need to put a frame around their pictures.

Homeowners use perimeter to determine the amount of fencing they would

need for their back yard, or railroad ties to surround an outdoor patio. In an open

field, a farmer can determine that the most ideal arrangement for building a rec-

tangular pen for animals is to place his fencing in the form of a square. Suppose

the farmer has 80 meters of fencing. In a rectangular pen, the unknown dimen-

sions of the length and width can be represented by variables, l and w, respec-

tively. The perimeter of the rectangular pen can be written as 80 = 2l + 2w.

The equation can be reduced to l + w = 40 by dividing both sides of the equa-

tion by 2. Ideally, the farmer would like to build the largest pen so that his animals

have the greatest amount of space to move around in. Thus the farmer needs to

determine the dimensions that would produce a maximum area. The area, a, can be

represented by the equation a = lw. Substituting the perimeter relationship

l = 40 − w, the area equation can be rewritten as a = (40 − w)w = 40w − w2 .

A graph of this function shows that the area attains a maximum value when the
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A carpenter or artist uses the concept of perimeter

to build frames for pictures and paintings.

Rectangular pen with length l and width w.



width is 20 meters. If the width is 20 meters, and l = 40 − w, then the length is

also 20 meters when the area of the rectangle is a maximum value. Therefore the

ideal rectangular pen based on an existing amount of fencing is a square.

However, if the farmer wants to build a pen that divides different animals,

then the dimensions will have to be reconsidered. For example, suppose there are

chickens and pigs in a pen that is evenly divided by a fence line. In this case, the

dimensions of the most ideal pen would be determined by the equation 3w
+2l = 80 to account for the added divider. The area of this pen is a =
(40 − 1.5w)w = 40w − 1.5w2 . A graph of this function shows that the area

attains a maximum value when the width is 40/3 meters. If the width is 40/3
meters, and l = 40 − 1.5w, then the length of the fence should be 20 meters

(40 − 1.5 • 40
3 ) when the area of the rectangle is a maximum value. 

In addition to building fences, the concept of perimeter is used in building

race tracks. For example, in track and field, a 400-meter track represents the

perimeter around two congruent semicircles, where the turns and straightaways

are each one hundred meters. Building a track with these dimensions requires

designers and engineers to determine the distance across the track between

straightaways, which represents the diameter of the semicircles. Since the cir-

cumference of a circle is π times its diameter, the circumference of a semicircle 

is one-half π times its diameter (c = 1
2πd). Rearranging the variables in the 

equation can show that the diameter, d, of a semicircle is d = 2c
π , where c is the 

circumference of the semicircle, which is the 100-meter turn of the track. The 

distance across the infield of a track is d = 2•100
π , which is approximately 63.662 

meters.
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The area of a square pen with a perimeter

of 40 meters as a function of its width.

Equally divided rectangular pen

with length l and width w to

hold two different animals.



Marking the starting positions in different lanes uses principles of perimeter.

For example, suppose the width of each lane is 1.067 meters, and the inner radius

of the turn is 63.662 meters. In one lap around the track, the runner in lane 1

would run 400 meters, but the runners in the other lanes would run farther if they

all started in the same position and had to stay in their lanes. The runner in lane

2 would be running around a turn with a radius of 64.729 meters, which would 

make each turn 64.729π
2 ≈ 101.676 meters. Therefore the runner in lane 2 should 

start a 400-meter race ahead of the runner in lane 1 by 1.676 meters around the

first turn. Since the lanes are of equal width, each runner in sequential lanes

should start 1.676 meters around the first turn ahead of the previous runner. In a

4 × 400 meter relay, the second runner can move into the first lane after his or

her first turn, which is the fifth turn overall. When staggering this relay, the run-

ner in lane 2 should be moved 50 percent ahead of the other arrangement, since

three of the turns will be run in the same lane instead of two. This means that

each lane should be staggered by (1.50)(1.676) = 2.514 meters apart in this race.

online sources for further exploration

Designing a track

<http://www.crpc.rice.edu/CRPC/GT/sboone/Lessons/Titles/track.html>

Floor plans

<http://www.homebuyerpubs.com/foorplans/floorplans.htm>

<http://www.dldesigngroup.com/plans.html>

<http://ecep.louisiana.edu/ecep/math/n/n.htm>

<http://www.tnloghomes.com/homeplans/index.shtml>

Maximize the area of a rectangular field with fixed perimeter

<http://home.netvigator.com/~wingkei9/javagsp/maxarea.html>

Starting a new game farm

<http://www.agric.gov.ab.ca/livestock/elk/gamefarmapp.html>

▲
▼

▲
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The outdoor running track at the Rock

Norman Complex, Clemson University,

contains two semicircles and two sides

that are each 100 meters in length. The

turns require precision marking to

ensure that all athletes run the same

distance in a race.



PERIODIC FUNCTIONS

Graphs of functions that repeat shapes are called periodic. The horizontal

length of each repetition is called the period. Phenomena that are based on cir-

cular motion, such as the rotation of the earth around the sun, will often result in

a periodic graph. The graph below shows the hours of daylight on the fifteenth

of each month for Minneapolis. The data points start with January 15th and are

plotted for two years. The period for this graph is 1 year, or 12 months. The curve

that has been used to approximate the data points is a sine curve, where x is the 

month number: Hours = 12.2 + 2.9 sin((x − 2.3) • 2π
12 ).

The tilt of the earth and its rotation about the sun cause the sinusoidal pattern

in hours of daylight. Because temperature in a city is dependent on hours of sun-

shine, plots of the average monthly temperature of American cities will be in the

form of a sine curve.

Circular motion can arise from a variety of sources. The distance above

ground of a passenger in a Ferris wheel produces a sine curve as the wheel

rotates. Measures on a pendulum will produce periodic functions. Gravitational

attraction to the moon causes tides. As the moon rotates about the earth, the

heights of tides will produce a periodic function.

Sound, radar, light, radio, and ocean waves are periodic. When you press

middle A on a piano, the piano strings vibrate, producing sound waves that have

a period of 1/440 second. An oscilloscope provides a video screen for viewing

different electrical patterns. An EKG machine in a hospital is an oscilloscope for

viewing the periodic electrical patterns from a patient’s heart. 
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Hours of daylight for Minneapolis over a period of two years. Daylight patterns 

throughout a year are predictable in most cities through sinusoidal modeling.

Heart-rate monitors detect electrical

pulses in an EKG to check if the

heart is beating regularly.



New periodic functions can be created by adding or multiplying two or more

of them. You can see this when you toss two pebbles into a pond. The overlap of

the waves will be a new wave. When audio speakers are arranged in an audito-

rium, they have to be positioned carefully so that the sound waves emerging from

them do not cancel one another out or create a beat that competes with the music.

Fluorescent light bulbs produce a pulsing light that sometimes adds to the cycli-

cal refresh rate on computer screens to produce rapid light bursts that can make

it hard for some people to read the computer display.

Commodity prices often follow a cyclical pattern. Hire rates for temporary-

employment firms appear to form a sine curve. In biology, populations of some

species of animals such as rabbits in a forest will vary over time in a cyclic pat-

tern. When this happens, it is likely that a predator species such as a fox also has

a periodic population pattern that mirrors the rabbit pattern. If there are more

foxes, then there are fewer rabbits; if there are fewer foxes, then there are more

rabbits. In many environments, these periodic relationships continue over time.

The populations of the predator and prey do not level off.

A thermostat is an instrument used to regulate heating and cooling systems,

such as an air conditioner or oven. Once a person sets the thermostat on an oven

for a certain temperature, it will heat up until reaching that temperature, and then

stay close to that temperature until the thermostat is changed. For example, if the

oven is set to 400° Fahrenheit, it will gradually rise to that level for the first

twenty minutes, and then stay at 400° until the temperature is changed or the

oven is turned off. Since temperature naturally slightly varies in the air, it would

also slightly change in the oven, but still oscillate near 400°. This eventual peri-

odic function is shown in below.

The cruise control in an automobile is another device that utilizes periodic

behavior for a function that describes the velocity of an automobile on a highway

as a function of time. As the car accelerates onto the highway, its velocity will

increase and then level off near the speed that is set for the cruise control, usu-

ally the highway’s speed limit. If the road has elevation changes, then the speed

of the automobile in cruise control will vary slightly, since movement on hills

requires different amounts of power on the automobile’s engine. However, sim-

ilar to a thermostat, the slight variability in speed will not affect the long-term

periodic behavior of the graph describing the automobile’s velocity until the

brakes are touched.
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A graph of the temperature of an

oven in degrees Fahrenheit as a

function of time in minutes when

its thermostat is set to 400°.



The example of the electrical pulse emitted from your heart displayed on an

EKG as shown in the second figure demonstrates that periodic functions do not

have to be trigonometric. However, the mathematical field of Fourier transfor-

mations uses sums of trigonometric functions to approximate periodic functions

of any shape. 

online sources for further exploration

Art based on periodic functions

<http://www.sineart.com/>

CoolMath’s links to many sites that show periodic functions

<http://www.coolmath.com/links_trig1.htm>

Alternating current

<http://www.math.bcit.ca/examples/ary_7_3/ary_7_3.htm>

Biorythms

<http://www.netcomuk.co.uk/~d_swift/biowhat.html>

Damping functions in music

<http://www.coolmath.com/dampfunction1.htm>

EKG world encyclopedia

<http://www.mmip.mcgill.ca/heart/egcyhome.html>

Heat flow

<http://www.math.montana.edu/frankw/ccp/modeling/continuous/heatflow/

learn.htm>

High and low tides

<http://www.crpc.rice.edu/CRPC/GT/mwies/Lessons/lesson2.html>

Modeling with a sine function

<http://147.4.150.5/~matscw/trig/trig1.html>

Play a piano

<http://www.nws.mbay.net/maxtemp.html>

Sun or moon rise/set table for one year

<http://aa.usno.navy.mil/data/docs/RS_OneYear.html>

Temperature data

<http://www.cru.uea.ac.uk/ftpdata/tavegl.dat>

<http://www.nws.mbay.net/maxtemp.html>

<http://www.met.utah.edu/jhorel/html/wx/climate/maxtemp.html>

▲
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PLANE

A plane represents any flat two-dimensional surface that has infinite length

and width. In everyday life, we use only finite versions of planes due to limited

space and material. Walls, desktops, book covers, and floors are examples of

planes. These items are made flat, because they are easier to produce and con-

venient to write on or cover. For example, a curved wall may be interesting to

look at, but expensive to create. A flat wall, on the other hand, is much easier to

wallpaper or to fix when it is damaged. 

Planes have some useful properties that give people ideas about design and

construction. For example, the intersection of two nonidentical planes, such as

the wall and ceiling, forms a line. This idea guarantees that walls and containers

made from flat surfaces can be sealed, assuming that there are no holes in them.

A saw blade cuts in a straight line, because it represents two intersecting

planes—the saw and the piece of wood.

Another property of planes is that three noncollinear points lie in the same

plane. For example, a triangle has three vertices, so it will lie on a flat surface.

Three-legged stools will never wobble, because the three ends of the legs lie on

the same plane—the floor—regardless of their length. Ideally though, the leg

lengths should be close to being the same to help support someone’s mass near

the center of the chair. Four-legged stools will sometimes wobble if one leg is

longer or shorter than the other legs, because the end of one of the legs is on a

different plane.

If a line or segment is perpendicular to a plane, then any congruent segments

with an endpoint on that plane and another endpoint at a common point on the

line or segment will be equidistant from the foot of the plane. Metal beams are

placed on a radio satellite to support its receiver as waves are reflected off the

dish. If they are created at the same length and intersect the receiver at the same

point, then they will land on the dish at the same distance from the center. This

method ensures that the beams land on the perimeter of the circle, since all points

on the circle are equidistant from its center, which is directly below the location

of the receiver. 

Inclined planes—planes that are raised at an angle—are used for a variety of

purposes. They are created for handicapped people in wheelchairs as an alterna-
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A radio antenna uses metal beams

of equal length to support the

receiver at its focal point.



tive to stairs. They are used to exit highways so that cars can gradually change

elevation. They are also used in a variety of tools. Screws have an inclined plane

that bends around its center so that they can create an angled entry when break-

ing a wall’s surface. Screwdrivers have an inclined plane at their tip so that they

can firmly fit into the top of a screw.

A Mercator projection is a method used to transform spherical coordinates

into a plane. This transformation gives cartographers the opportunity to produce

maps on flat surfaces, even though the earth is spherical. An advantage to this

technique is that images of maps can be placed into books and read more easily.

However, a disadvantage is that the regions near the poles illustrate inaccurate

areas of the landmasses. For example, on a Mercator projection map, a country

near the North Pole such as Greenland appears almost fifteen times its actual

size. Another way to make a plane representation of the earth is to cut along the

longitudinal lines and create gores. However, when the gores unfold, the map

will have empty spaces, leaving a distortion between distances near the pole.

online sources for further exploration

Mercator projection

<http://www.ualberta.ca/~norris/navigation/Mercator.html>

<http://www.usgs.gov/education/learnweb/MpLesson2Act1.html>

<http://liftoff.msfc.nasa.gov/academy/rocket_sci/orbmech/mercator.html>

The three-point problem from geology

<http://jwilson.coe.uga.edu/emt725/Envir/Three.Point.html>

The wedge

<http://www.tpub.com/machines/4a.htm>

<http://www.advancement.cnet.navy.mil/products/web-pdf/tramans/bookchunks/ 

14037_ch4.pdf>

▲
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A screw uses a rotating inclined

plane to drill into flat surfaces.



POLAR COORDINATES

Polar coordinates locate a point by indicating a direction and a distance from

a central point (the pole). In the point P = [r, θ], the distance r is given first, fol-

lowed by the direction θ expressed as an angle of rotation from a fixed line

through the pole called the polar axis. This is different from Cartesian or rectan-

gular coordinates in which points are located by distances from two perpendicu-

lar axes. When the polar axis corresponds to the positive x-axis in a Cartesian

plane, the Cartesian coordinates (x, y) for P can be computed as x = r cos θ and

y = r sin θ. While Cartesian graphs are rectangular, polar graphs are circular.

Notice that

x2 + y2 = (r cos θ)2 + (r sin θ)2 = r2(cos θ)2 + r2(sin θ)2 =

r2(cos2 θ + sin2 θ) = r2(1) = r2 ,

which is the same as the standard equation of a circle with the center at the ori-

gin and radius r.

Polar coordinates can be used to map the earth. The figure below is a CIA

(Central Intelligence Agency) map showing the northern hemisphere. The North

Pole is in the center of the concentric circles of latitude. The polar axis is on the

great circle of longitude that goes through Greenwich, England. On polar graph

paper, this axis would be placed in the same position as the positive ray of the x-

axis in Cartesian coordinates.

Navigators on ships and airplanes use the language of polar coordinates to

specify the direction and speed of travel. Astronomers use polar coordinates to

plot paths of planets and the sun with respect to a viewing position on the earth.

Polar coordinates are useful in mathematics for writing curves that cannot be

written as functions or simple relations in x- and y-coordinates. The following

graph of a five-leaf rose would be difficult to express in an equation using only

x–y coordinates.
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The positions and distances on the globe are represented as a polar coordinate system. 



Some spirals that can be graphed with polar coordinates model shapes in

nature. Note in the figure below how the shape of the spiral of the form r = abθ

mimics the shape of the shell of the chambered nautilus. As the creature grows,

the shell compartment expands in a way that allows the nautilus to retain its

shape.

Although polar coordinates simplify equations for some beautiful curves, they

also make some equations more complicated. For example, the polar equation for 

the line y = mx + b is r = b
sin θ−m cos θ .

Polar coordinates have surprising uses in computer graphics. The polar coor-

dinates distortion filter available for Adobe Photoshop remaps every pixel’s rec-

tangular (Cartesian) coordinates to polar coordinates, or vice versa. This makes

it easy to make objects circular as well as producing fountain-like effects associ-

ated with turning polar coordinates into Cartesian ones.
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Graph of r = 4 cos 5θ for θ = 0 to 2π.

Some graphs are easier to represent in 

polar rather than rectangular form, 

especially if they have rotational symmetry.

logarithmic spiral r = 5(1.3)θ shell of a chambered nautilus

A nautilus resembles the polar graph r = abθ .

The chambered nautilus picture from the

previous figure after being distorted with the

polar coordinate filter in Adobe Photoshop.



Log-polar transformations have been developed to embed copyright infor-

mation in computer-graphic files to preserve the copyright notice from deletion. 

Spherical polar coordinates are useful in simplifying physics equations such

as Schrodinger’s equation and the Maxwell speed equation. In many cases, writ-

ing expressions in polar form simplifies the application of calculus and differen-

tial equation techniques.

Polar coordinates have another important application in mathematics: They

simplify some operations with complex numbers. Multiplication of the complex

numbers z = a + bi and w = c + di gives (ac − bd) + (ad + bc)i. The corre-

sponding multiplication in polar form would be of the numbers z = [r, θ] and

w = [s, φ]. Then zw = [rs, θ + φ]. The polar form simplifies the powers and

roots of complex numbers. In polar form, zn = [rn, nθ], which is known as De-

Moivre’s theorem. (See Complex Numbers and Vectors.)

online sources for further exploration

Polar plotting and graphing

<http://mss.math.vanderbilt.edu/~pscrooke/MSS/plotpolar.html>

<http://www.world-of-newave.com/fxwavex/help/en/plug-ins/nwfxpic/polar.htm>

<http://john.redmood.com/polar.html>

<http://www.univie.ac.at/future.media/moe/galerie/zeich/zeich.html>

Spherical and cylindrical coordinates

<http://hyperphysics.phy-astr.gsu.edu/hbase/sphc.html>

<http://www.iac.tut.fi/~sahrakor/research/teksti/node8.html>

<http://www-istp.gsfc.nasa.gov/stargaze/Scelcoor.htm>

Logarithmic spirals

<http://brand.www.media.mit.edu/people/brand/logspiral.html>

<http://www.notam.uio.no/~oyvindha/loga.html>

<http://www.meru.org/goldmean.html>

<http://xahlee.org/SpecialPlaneCurves_dir/EquiangularSpiral_dir/equiangular

Spiral.html>

Sun position in polar coordinates

<http://www.jgiesen.de/sunpol/index.html>

Azimuth and elevation

<http://www-istp.gsfc.nasa.gov/stargaze/Scelcoor.htm>

Computer graphics

<http://www.adscape.com/eyedesign/photoshop/four/filters/polarcoordinates.html>

<http://www.asahi-net.or.jp/~nj2t-hg/ilpov21e.htm>

<http://www.blueberry-brain.org/syndyn/spirals/figsfrac.htm>

Polar coordinates in robotics

<http://www.math.bcit.ca/examples/ary_16_1/ary_16_1.htm>

Polar distortion filter

<http://www.adscape.com/eyedesign/photoshop/four/filters/polarcoordinates.html>

▲
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POLYNOMIAL FUNCTIONS

A polynomial function f(x) has a general equation f(x) = a1x
n + a2x

n−1

+a3x
n−2 + . . . + az , where coefficients and constants are associated with a and

exponents associated with n are positive integers. Linear functions, such as

y = 3x − 5, and quadratic functions, such as r = 3w2 − 5w + 7, are polynomial

functions that have numerous applications discussed elsewhere in this book (see

Linear Functions and Quadratic Functions). Polynomial functions with degree

three or greater are found in applications associated with volume and financial

planning.

Empty open-faced containers such as crates are put together by attaching a

net of five rectangles. A rectangular piece of plastic can be cut so that it can turn

into an open-faced rectangular prism when folded at its seams. If a square piece

is cut out of each corner of a rectangle, then four folds will form a net with five

rectangles that can be formed to develop the prism, as shown below.

A manufacturer is probably interested in finding the location to cut the square

from the corners so that the consumers will be able to fill the crate with the most

amount of material. In essence, the goal is to maximize the volume based on a

fixed amount of material. Suppose that square corners are removed from a rec-

tangular sheet of plastic with dimensions of 6 feet by 4 feet. Each side of the

prism can be represented in terms of the edge length, x, of the square that was

removed from the corners, as shown below. 

The volume of the crate, v, is the product of its dimensions, so it can be rep-

resented by the equation v = x(6 − 2x)(4 − 2x). This equation is a polynomial

function, because it is the factored form of v = 4x3 − 20x2 + 24x. A relative

maximum of this function on a graph, as shown on the following page, within a

domain between 0 and 2 feet occurs when x ≈ 0.78 feet, or about 9.4 inches.

This means that the crate with the largest possible volume will occur when

squares with an edge length of 9.4 inches are cut from the corners. 

Open-faced prism with dimensions x by l − 2x by w − 2x formed by cutting squares 

with side length x out of the corners of rectangular sheet with dimensions l by w.

Open-faced prism formed by cutting

squares with edge length, x, out of the

corners of a rectangular sheet with

dimensions of 6 feet by 4 feet.



Long-term investing uses a polynomial function to account for money that is

invested each year. Suppose an account was set up so that you contributed money

each year towards your retirement based on a fixed percentage of interest, assum-

ing that you continued to add a minimum amount of money to the account each

year and did not withdraw money at any time. The total amount of money, m, in

the bank after n years based on an annual interest rate of r percent can be repre-

sented by the function 

m = a1(1 + r
100)n+a2(1 + r

100)n−1

+a3(1 + r
100)n−2 + . . . + az ,

where the coefficients, a, are the individual amounts of money deposited into the

account after each year. For example, if $500 is deposited at the end of the first

year, $700 at the end of the second year, $800 at the end of the third year, and

$400 at the end of the fourth year, then the total amount of money in the account

at the end of the fourth year is determined by the equation 

m = 500(1 + r
100)3 + 700(1 + r

100)2 + 800(1 + r
100) + 400 .

This means that the initial deposit of $500 will compound three times, the second

deposit of $700 will compound two times, and so on. If an employee uses this

retirement plan for only four years and wants to know the value of the account

21 years after the first investment, then the equation would be rewritten to 

m = 500(1 + r
100)20 + 700(1 + r

100)19 + 800(1 + r
100)19 + 400(1 + r

100)18 .

This information is useful for people in their financial planning so that they can

learn how to save money for their children’s education and their own retirement.

online sources for further exploration

Antenna pattern correction

<http://earth.esa.int/0xc1cce41c_0x00005bfe>

Application of polynomial functions

<ftp://cq-pan.cqu.edu.au/pub/smad/senior/mathsb/mb_if005.doc>
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Graph of the volume of a prism formed by folding

a sheet of paper with squares of edge length, x,

removed from each of the corners.



Building boxes

<http://www.pbs.org/teachersource/mathline/lessonplans/hsmp/buildingboxes/

buildingboxes_procedure.shtm>

Drag racing

<http://ceee.rice.edu/Books/CS/chapter3/data1.html>

Shrimp

<http://144.35.21.240/mathdept/labs/shrimp.htm>

Toxic waste

<http://www.eddept.wa.edu.au/centoff/graphcalc/tasks/ic6pc.pdf>

▲
▼

▲

PROBABILITY

A probability is a number between 0 and 1 that tells us how likely an event

is to happen. Probabilities are expressed as ratios or percents. When probabilities

are computed from an analysis of possible outcomes, such as the probability that

a sum of 7 will show on the toss of a pair of dice, the probability is sometimes

called a theoretical probability. When the probability is computed on the basis of

experience or surveys, such as the probability of a randomly selected adult being

a smoker, it is called a relative frequency or experimental probability. Gambling

probabilities are sometimes expressed as odds. Odds express the ratio of suc-

cesses to failures, or vice versa. If you hear a bettor on a horse race say, “The

odds against Fleetfoot winning are five to two,” that means for every five times

Fleetfoot loses, he will win twice. The probability of losing is five out of seven,

and the probability of winning is two out of seven.

Games that have equal probabilities for all participants are called fair. Most

people think that tossing a coin to determine who kicks off a football game is fair,

because their life experience with coins indicates that the probability of a head is

equal to a probability of a tail. Determining the winning state-lottery ticket by

pulling winning ping-pong balls from agitated buckets is felt to be fair, because

every number has an equal chance of being selected. This perception has been

written into the election laws of many states. Illinois determines the seventh

member of its redistricting committee (otherwise evenly divided between Demo-

crats and Republicans) by pulling a name out of a hat. In 1998, the tie in ballots

for mayor of Duluth, Minnesota, was broken by the toss of a coin. Kansas once

settled a tie for state representative by having the two candidates pull chips from

a bag that contained six black and six white backgammon chips. The winner was

the first to draw a white chip. New Mexico allows tied candidates to play any

game of chance to break a tie. Coin tossing remains the favorite way of breaking
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ties in the state, but as recently as 1998, two candidates who were tied in the elec-

tion for mayor of Estancia, New Mexico, opted to play five-card stud for the job. 

Statisticians use probabilities and relative frequencies in determining relation-

ships. A key concept from probability is the idea of independence. The formal

mathematical definition of independence is given in the equation P (A + B) =
P (A) • P (B). If two events, A and B, are independent, then the probability of

them both happening is the product of the separate probabilities. The concept of

independence is behind investigations such as the Physicians’ Health Study,

which tested the effects of aspirin on over 22,000 doctors. Half the doctors were

given a daily dose of aspirin, and half were given a neutral pill (placebo). Doctors

didn’t know what kind of pill they received. The researchers periodically con-

tacted the participants to find out if the physician had suffered a heart attack. The

results showed that 0.9 percent of the participants who received aspirin had heart

attacks, and 1.7 percent of those with the placebo had heart attacks. Although it

looks like the percents favor aspirin, the percents are so small that it is possible

they were due to chance. The study data is shown on the following table. This is

called a contingency table.

heart attack no heart attack TOTAL

aspirin 104 10,933 11,037

placebo 189 10,845 11,034

TOTAL 293 21,778 22,071

The results from the aspirin–physician heart study.

Statisticians assume that the medication and heart attacks are independent. If

so, then P (aspirin and heart attack) = P (aspirin) • P (heart attack). Using the rel-

ative frequencies from the total row and total column gives the following prod-

uct: 11037
22071 • 293

22071 . That probability times the number of participants tells how 

many doctors receiving aspirin would have had heart attacks if heart condition

were independent of medication. That frequency is 147. As you can see from the

table below, the almost equal separation of physicians into aspirin and placebo

treatments indicates that the expected values for heart attacks should have been

separated into almost equal proportions. 

heart attack no heart attack TOTAL

aspirin 147 10,890 11,037

placebo 146 10,888 11,034

TOTAL 293 21,778 22,071

Expected frequencies for the aspirin–physician heart study The computations

assume that the totals represent the population, and that heart condition is inde-

pendent of medication.

The statistician conducts a chi-square test to compare the actual frequencies

to the expected frequencies. In this case, the chi-square indicated that the ob-
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served frequencies were not close to the expected values, so aspirin reduced heart

attacks.

Making careful lists and working from simple examples can determine many

probability problems. How many families with three children have exactly two

boys? If boys and girls are equally likely, you can list eight possibilities: BBB,

BBG, BGB, BGG, GBB, GBG, GGB, and GGG. The list is called the sample

space, because each family is equally likely. Three of these, BBG, BGB, and

GBB, represent two boys and one girl. So the probability of a family of three chil-

dren having exactly two boys is three-eights, or 37.5 percent. 

The problem of finding how many families would have two boys in three

children can be approached through a simulation. A simulation replaces the ele-

ments of this problem with repeated trials of an experiment using objects that

behave like the birth of children. Tossing a coin could represent the birth of a

child. If you were to determine boys by the head of the coin showing, you could

simulate a family of three children by tossing three coins, say a penny for the first

child, a dime for the second child, and a quarter for the third. This experiment

can be carried 500 or more times very quickly. The probability of two boys

would be estimated by the proportion of times the three coins showed exactly

two heads. In one experiment, this proportion turned out to be 35.8 percent,

which is a little less than the value computed from the sample space. It is now

common to use computers to model complex relationships with simulations.

Computers can generate random numbers (or numbers that act randomly) and

perform rapid computation of probabilities. The Defense Department uses simu-

lations to evaluate outcomes of military actions. Aircraft designers use computer

simulations of air molecules hitting the surface of an airplane to determine its

most efficient shape. The Centers for Disease Control uses simulations to predict

the paths of epidemics. It makes recommendations for vaccinations and preven-

tion procedures based on the outcomes of its simulations. 

Coins and children present examples of binomial probability situations.

When there are two outcomes of a single trial (heads or tails on one coin, boy or

girl for one birth), and a fixed number of independent trials, the computation of

outcome probabilities can be generated by terms in the expansion of the binomial

(p + q)n, where n is the number of trials, p is the probability of one outcome

(called the success), and q = 1 − p is the probability of failure. Families of three

children would be modeled by 

(p + q)3 = p3 + 3p2q + 3pq2 + q3 .

The term 3p2q would represent the probability of two boys and one girl. Since 

p = q = 1
2 , the value 3p2q = 3

8 agrees with our previous computation.

The binomial probability theorem provides direct solutions for problems that

don’t have equal probabilities such as the proportion of recessive genes in a pop-

ulation or how many people should be booked for flights so that there are no

empty seats. In a situation in which there are different percentages of a dominant

gene A and a recessive gene a, shouldn’t the dominant gene eventually “win out”
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in the population? For example, 1 out of 1,700 Caucasian children is born with

cystic fibrosis, which is caused by a recessive gene. Unfortunately, that propor-

tion remains the same from generation to generation. In 1908, a British mathe-

matician and a biologist used binomial probabilities to explain genetic stability.

The Hardy-Weinberg equation models the genetic distribution with the perfect

square binomial (p + q)2 = p2 + 2pq + q2 , where p is the proportion of the

dominant gene A, and q is the proportion of the recessive gene a. In the situation

of cystic fibrosis, p2 is the proportion of people who are pure dominant, 2pq is

the proportion of people who do not have cystic fibrosis but are carriers, and q2

is the proportion of people who have cystic fibrosis. In Caucasian children, q2 is

the incidence rate of 1/1700 or 0.00059. Taking the square root gives q = 0.024.

The recessive gene a for cystic fibrosis accounts for q = 2.4 percent of the genes,

and the dominant gene A accounts for p = 97.6 percent. Computing the propor-

tion of people free from the cystic fibrosis gene gives p2 ≈ 0.9253, and the pro-

portion of people who are carriers of the recessive gene is 2pq ≈ 0.0468. About

92.5 percent of the population is free of the cystic fibrosis recessive gene, but 4.7

percent are carriers. In the absence of mutations and migration, these proportions

will remain constant from generation to generation. Markov chains can be used

to handle the relative frequencies of many species in populations as well as gene

pairs. (See Matrices.)

Airline scheduling can be considered a binomial probability problem.

Assume that 90 percent of the people who buy tickets actually show up at the air-

port to board the plane. If the plane seats 50, then on average, 90 percent of 50

seats = 45 would be filled. Airlines run on small profit margins, so those five

empty seats could make the flight a money loser. Airlines attempt to solve this

problem by selling more than 50 tickets for the flight. If they sold 52 seats, for

example, on average, 47 people would actually show up for the flight. But there

would be times when 51 or 52 people showed up. Some people would not get on

the flight, so the airline would have to pay a penalty and incur the wrath of the

passengers who had a ticket but did not get a seat. The airlines want to oversell

just enough to regularly fill all seats, but not to overbook so much that the penal-

ties outweigh the additional ticket income. The binomial expansion (p + q)52

will give the chances that one or more ticketed customers will lack a seat. The

expansion of (p + q)52 starts out as p52 + 52p51q + 1326p50q2+. . . . The first

term gives the probability that all 52 ticketed passengers will show up, (0.9)52 ≈
0.00417. The second term gives the probability that 51 ticketed passengers will

show up, 52(0.9)51(0.1) ≈ 0.000463. Adding these probabilities gives 0.0046.

About five flights in every thousand will have customers who would not get

seats. This isn’t a big probability, so the airline would be safe in selling 52 seats

for flights on this size plane. With these probabilities, the airline could compute

the expected profits on its flights, accounting for the penalties paid to the

unserved passengers. (See Expected Value.) They would have to repeat the com-

putation for 53 tickets sold, 54 tickets, and so on. At 55 tickets sold, for exam-

ple, the binomial expansion indicates that about one-third of the flights would

have to turn away ticketed passengers. That is probably too often. Larger powers
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of binomial situations can be estimated with normal distributions. (See Standard

Deviation.)

Probability arguments are common in court cases. DNA (deoxyribonucleic

acid) matching gives a probability that blood, semen, or hair found at a crime

scene matches the accused. The early cases of prosecution based on DNA match-

ing produced lengthy arguments about the accuracy of the techniques and the

computation of the probabilities. For example, some of the genetic markers that

are used in establishing probabilities occur in different proportions in different

racial groups. By 1996, recommendations from the National Research Council,

the National Institute of Justice, and other government and legal organizations

resulted in standardized laboratory techniques and computations of probabilities,

so DNA evidence is as well accepted as fingerprint matches. 

Probabilities have been used to determine whether juries were representative

in gender and racial composition to the communities they served. Lawyers for Al

Gore and George W. Bush used probability arguments before Florida courts to

persuade judges that their respective parties should prevail in the contested pres-

idential election of 2000. In the Microsoft antitrust case, the Department of

Justice presented probabilities that the Microsoft Corporation would force other

companies out of business. Courts have based financial awards to patients whose

cancer was misdiagnosed by doctors on computations of the patients’ reduced

probability of survival.

Probabilities can be computed from geometry formulas. Consider balls falling

uniformly on a square piece of cardboard 20 inches on a side that has a circular

hole 5 inches in diameter. The proportion of balls that fall through the hole is pro-

portional to the ratio of area of hole to area of the cardboard. This would be com-

puted using the formulas for area of circle and square: 
π(2.5)2

202 ≈ 0.049. A ball has 

about a 5 percent chance of falling through the hole rather than bouncing off the

cardboard. Winning carnival games is much more difficult than it appears!

online sources for further exploration

The geometry junkyard shows geometric probability problems

<http://www.ics.uci.edu/~eppstein/junkyard/random.html>

The birthday problem

<http://www.mste.uiuc.edu/reese/birthday/>

Discrete probability

<http://www.colorado.edu/education/DMP/activities/discrete_prob/>

Diffusion

<http://www.math.montana.edu/frankw/ccp/modeling/probability/diffusion/

learn.htm>

Lottery odds calculations

<http://www.lottery.state.mn.us/odds.html>

<http://www.howstuffworks.com/lottery1.htm>

<http://www.alllotto.com/oddscalc.asp>

<http://indigo.ie/~gerryq/Lotodds/lotodds.htm>
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Nuclear medicine

<http://www.math.bcit.ca/examples/ary_11_8/ary_11_8.htm>

Poker probabilities

<http://www.pvv.ntnu.no/~nsaa/poker.html>

Probability and utility of the real world

<http://research.microsoft.com/~horvitz/real.htm>

Probability in the real world

<http://forum.swarthmore.edu/dr.math/faq/faq.prob.world.html>

▲
▼

▲

PROPORTIONS

Proportions are equations that compare ratios or scaled quantities. Cartog-

raphers use proportions to make maps, because they need to scaledown distances

so that large pieces of land can be viewed on a sheet of paper. For example, the

state of Illinois is approximately 370 miles long. If the map maker wants to place

Illinois on a sheet of paper that is 25 cm long, a proportion that can be used to

determine a scale in this situation is s miles on map
370 miles = 1 cm on map

25 centimeters . Cross multi-

plying these quantities helps solve the equation, s = 370/25 = 14.8. The legend

on the map might indicate that 1 cm represents 15 miles. 

Eratosthenes used a proportion to determine the radius of the earth in around

230 BC. He had traveled between the cities of Alexandria and Cyrene and deter-

mined that its distance was around 5,000 stades, where each stade is about 559

feet. At noon, he had measured the angles of shadows formed by sticks in the

ground and determined that there was not any shadow at Cyrene, and an angle of

elevation of α = 82.8 degrees at Alexandria, as shown below. 

Eratosthenes argued that the angle formed near the top of the stick, 7.2 degrees,

is the same as the central angle in the earth that determines the sector between

the two cities, since light rays travel parallel to the earth, as shown as follows.
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The shadow produced on the ground at

noon at Alexandria based on an angle

of elevation of α degrees.



Therefore the distance from Cyrene to Alexandria represented 7.2/360 of the

earth’s circumference, since there are 360 degrees in a circle. Using the proportion,

7.2 degrees between cities
360 degrees in circle = 5000 stades between cities

number of stades around earth ,

Eratosthenes determined that the distance around the earth is about 250,000

stades, or 139,750,000 feet. Since the cross section of the earth is approximately

a circle, the radius can be determined by using the equation c = 2πr, comparing

the circumference, c, to its radius, r. Substituting the value c = 139,750,000 feet

and solving the equation will show that the radius of the earth is about 22,241,900

feet, or 4,214 miles. That’s only 6 percent off the actual distance of 3,963 miles!

Movie screens are created to handle film with specific dimensions. Suppose

the width of each film cell is 5.48 cm and the height is 2.30 cm. An ideal movie

screen would show the entire picture without cropping out any of the sides. A

small movie theater may leave a horizontal length of 7 meters, about 23 feet, to

place its screen. In order to project the film perfectly on the screen, a proportion

comparing the height and width needs to be used so that the correct height of the

screen can be accurately determined. The height of the screen, h, is equal to ap-

proximately 2.94 meters, or 9.66 feet, by solving the equation determined by the

proportion

h vertical meters on screen
2.30 vertical cm on film = 7 horizontal meters on screen

5.48 vertical cm on film .

Proportions are used to predict the mass of a dinosaur with scaled models.

Since a model is a miniature version of the actual dinosaur, paleontologists use

the ratio

length of actual dinosaur3

length of model3
= volume of actual dinosaur

volume of model .

This ratio is cubed, because volume is a three-dimensional concept, compared to

a one-dimensional concept of length. For example, the volume of a cube is the
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sun’s rays at Cyrene and at the

center of earth. Note that figure is

not drawn to scale.

Movie screens are designed to be

in a similar proportion as the

dimensions of film cells.



length of one of its edges raised to the third power. The ratio is used to find the

volume of the actual dinosaur, since the other measurements can be taken from

a model and a fossil of the skeleton. (See Similarity for an example.) The den-

sity of an object is the ratio of its mass to volume, so the mass of the dinosaur

can be predicted by estimating the density of a dinosaur as that of a modern-day

reptile or mammal.

The population of wildlife animals is determined by tagging animals and using

proportions. It is important to know these populations in order to understand if a

species is at risk of endangerment, or if there is an overpopulation that is affecting

an ecosystem. Every animal in a region cannot be counted, because it would be too

difficult to find all of them, not to mention that it would be distracting and poten-

tially disturbing to the ecosystem if ecologists were constantly roaming around.

Consequently, a scientist will go to an area such as a forest and temporarily cap-

ture animals to tag them. In addition to placing tags on them, the scientist will

likely examine their health to understand their potential to reproduce or spread dis-

ease. A few weeks later, after the animals have had a chance to roam around the

forest, the scientists will recapture a group of animals again to check their health

and keep track of the proportion of animals that are tagged. This information will

help the scientists determine how many animals are in that region of the forest,

assuming that the birthrate and death rate are fairly similar during that time period.

This method of estimating animal populations is called capture–recapture.

For example, suppose 50 deer are captured and tagged in a forest. Two weeks

later, 100 deer are captured, and 18 of them have tags. The proportion 

number of tags in population
number of tags in second sample = number of deer in population

number of deer in second sample

can be used to predict the total number of deer in that region of the forest. In this

case, the number of deer in the population, p, is approximately 277 based on a 

solution to the equation 5018 = p
100 .
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It is difficult to track animals due to

their mobility and ability to hide well. A

capture–recapture method can be used

to tag and predict their population

without having to count them all.

A scaled model of a tyrannosaurus can

be used to predict its actual mass with

information about its actual length.



In baseball, an earned run average (ERA) is a statistic that describes how

many runs a pitcher would be expected to give up in a nine-inning game. How-

ever, a pitcher hardly lasts that long during a single game. On a good day, a major

league pitcher will play for about six to nine innings. However, if the pitcher is

giving up a lot of runs he will play considerably less, perhaps from one to five

innings. Regardless of the length of the pitching performance, an ERA is used to

compare the different pitchers. Typically, better pitchers have lower ERAs. For

example, a pitcher that gives up two runs in seven-and-a-third innings has an

ERA of 2.45, because the ERA is determined by the proportion 

number or runs allowed
number of innings pitched = number of runs in an entire game (or ERA)

number of innings in a nonextended game .

Substituting the numbers, the proportion is 2
7 1

3

= ERA
9 . A bad pitcher may give

up five runs after two-and-two-thirds innings and have an ERA of 16.88. Usually,

the ERA is a statistic that represents a player’s performance over an entire sea-

son, and is updated after each pitching performance.

In 1619, Johannes Kepler determined a proportion relating the mean dis-

tances, d, that planets were from the sun and the period of their revolution, p.

This proportion, 
d3
1

d3
2

=
p2
1

p2
2

, was determined through data collection, and can be 

proven using Newton’s theory of gravitation. At the time, this information was

helpful to astronomers to predict the approximate distance that another planet is

from the sun. For example, Mars is observed in the night sky to have a period of

687 days revolving around the sun. There are 365 days in an earth year, so the

ratio of periods of these orbits is 1.882. Kepler’s proportional formula can be re-

written as 
(

d1

d2

)3

=
(

p1

p2

)2

because exponents distribute in any expression in-

volving a quotient of two numbers. When the Mars-to-earth ratio is substituted

into the equation, the ratio of the distances will be approximately 1.524, as a 

result of the solution to the equation 
(

d1

d2

)3

= (1.882)2 . This means that Mars is 

about 50 percent further from the sun than the earth, perhaps one reason in

understanding why most of Mars regularly maintains temperatures below 0°

Fahrenheit. (See Inverse Square Function for another explanation.) This infor-

mation is also helpful for astronomers to predict when a spacecraft can be

launched from earth so that its trajectory would come in close contact with a

planet. For example, the Voyager ships launched in 1977 had trajectories that

placed them near Jupiter, Saturn, Uranus, and Neptune in order to take photos

that could be sent back to earth for further study. 

The strength of an animal or object is proportional to its surface–area-to-

weight ratio. Small insects can carry objects much greater than their mass, while

humans can only carry small percentages of their mass. If an ant were to grow in

size, it could not maintain its surface area-to-weight ratio. Suppose a giant ant

were twenty times longer than a tiny ant. Since area is related to the square of

length in an object, the ant’s surface area would increase by a factor of 202, or

400. The volume of the ant, which is proportional to its mass, would increase by

a factor of 203, or 8,000, because volume is related to the cube of an object’s
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length. If the original ratio surface area
volume = s

v for the ant, the giant version 20 times 

bigger in each dimension would have surface area
volume = 400 s

8000 v . Hence the relative 

strength of a giant ant would be only 400
8000 or 5 percent as much as a tiny ant. For

example, if a regular ant can carry ten times its body weight, then a giant ant

could only carry one-half its body weight. If such a giant ant existed, it would

probably have slightly different proportions than the smaller ant, since the cross-

sectional area of its legs would probably need to be proportionally larger in order

to maintain a dramatic increase in mass. Otherwise, there would be close to 90

times (203/2) as much pressure on its legs than before, which would probably

cause the legs to snap. Ouch! That is why elephants need tree-trunk-style legs in

order to support their own weight. This proportional understanding of strength

helps designers build stronger paper towels, bags, and boxes, and helps engineers

build stronger and more durable machines that can withstand pressure such as

airplanes and bridges.

online references for further exploration

Eratosthenes of Cyrene

<http://share2.esd105.wednet.edu/jmcald/Aristarchus/eratosthenes.html>

Build a solar system

<http://www.exploratorium.edu/ronh/solar_system/>

Circumference of earth using techniques by Eratosthenes

<http://share2.esd105.wednet.edu/jmcald/Aristarchus/eratosthenes.html>

<http://w3.ed.uiuc.edu/noon-project/>

Earned Run Average all-time leaders

<http://www.baseball-almanac.com/piera1.shtml>

<http://www.baseball-almanac.com/piera4.shtml>

Nuclear medicine

<http://www.math.bcit.ca/examples/ary_11_1/ary_11_1.htm>

Orbit simulation

<http://observe.ivv.nasa.gov/nasa/education/reference/orbits/orbit3.html>

Map making

<http://www.sonoma.edu/GIC/Geographica/MapInterp/Scale.html>

<http://www.epa.gov/ceisweb1/ceishome/atlas/learngeog/mapping.htm>

Proportional representation in voting

<http://www.ci.cambridge.ma.us/~Election/pr-quota.html>

<http://www.ci.cambridge.ma.us/~Election/ballots.html>

Scale models

<http://www.faa.gov/education/resource/f16draw.htm> 

<http://www.pbs.org/wgbh/nova/pyramid/geometry/model.html>

<http://www.americanmodels.com/sscale.html>

Understanding scale speed in model airplanes

<http://www.astroflight.com/scalespeed.html>

▲
▼

▲
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PYTHAGOREAN THEOREM

The Pythagorean theorem states that the sum of the squares of the legs of a

right triangle, a2 + b2, is the same as the square of its hypotenuse, c2. There are

over 100 proofs of the Pythagorean theorem, many of which show that the sum

of the areas of squares on the legs is equal to the area of the square on the hypot-

enuse, as shown in the figure below. Conversely, any triangle that has sides that

are related by the equation a2 + b2 = c2 must have a right angle opposite the

longest side.

The Pythagorean theorem is useful on a baseball diamond for several rea-

sons. Since the bases are each 90 feet apart in the form of a square, the theorem

helps us find the distance the catcher has to throw the ball to second base when

a runner is trying to steal. The right triangle formed would be with half of the

infield, where the legs of the triangle are the base paths of 90 feet each, and the

hypotenuse is from home plate to second base. The hypotenuse can be found by

solving the equation 902 + 902 = c2 . Solving for c will show that the throw is

about 127.3 feet. This information is useful, because it will give coaches an idea

about how hard the catcher needs to be able to throw a ball accurately in order to

throw a runner out. If the catcher throws a ball at about 70 miles per hour, then

it will only take about one-and-a-quarter seconds for the ball to reach the base. 

The geometry of rhombuses and the Pythagorean theorem can be used to

show that the center of the pitcher’s mound is not in the pathway of the ball when

it is thrown from third to first base. The diagonals of the square running-path

between the bases are perpendicular bisectors of each other, forming congruent

right triangles in the center. If the pitcher was placed at the intersection of the

diagonals, he might get hit by a throw from the third baseman. To avoid contact,

the pitcher needs to be placed closer to home plate than this intersection. The

Pythagorean theorem gave the distance between home and second base to be

127.3 feet. The pitcher must be closer to home plate than 63.6 feet. The actual

placement of the center of the pitching mound is 60.5 feet from home plate.

The Pythagorean theorem is used to approximate the distance of two nearby

towns on a map. Changes in the earth’s curvature are minimal within short

ranges, so the latitude and longitude positions can serve as points on a coordinate

plane. For example, suppose that Smithsville is five miles north and two miles

east of Laxtown. The two cities would be 5.39 miles away on a map, represent-

ing the distance that the “crow flies.” This distance can be determined by solv-

ing the equation 52 + 22 = d2 that is determined with the Pythagorean theorem.

The Pythagorean theorem illustrates

that the sum of the areas of the

squares connected to the legs of a

right triangle is equal to the area of

the square connected to the

hypotenuse of a right triangle.



Carpenters use Pythagorean triples to verify that they have right angles in

their work. For example, a carpenter making a cabinet can perfectly align pieces

of wood in a right angle with the use of only a tape measure. Using the Pytha-

gorean triple {3,4,5}, or any multiple such as {12,16,20}, the carpenter can place

a mark on the bottom after 12 inches, a mark on the side after 16 inches, and

rotate the intersecting boards at its hinge until the distance between the markings

is 20 inches. A triangle with sides of 12, 16, and 20 inches is a right triangle,

since 122 + 162 = 202 .

Construction workers building along the sides of mountains use the Pythagor-

ean theorem to determine the amount of supplies needed to create a railroad track

for a funicular or a cable line for a gondola. The horizontal and vertical distances

from the foot of the mountain to its top can be determined on a map, forming the

legs of a right triangle that can be drawn in the mountain’s center. The third side of

the triangle, the hypotenuse, represents the walk up the mountain, which never has

to be physically measured, since it can be found using the Pythagorean theorem.

The visible distance to a horizon can be found with the Pythagorean theorem,

given that the radius of the earth is 6,380 km. Inside a 100-meter-tall lighthouse,

a night watchman or the coast guard may be interested in the distance a ship is

from shore when seen at the horizon. This information can be readily found, since

the horizon distance is perpendicular to the radius of the earth, forming a right tri-

angle into the center of it, as shown below. The viewing distance inside the top of

the lighthouse is then the solution to the equation 63800002 + b2 = 63801002 , a

value of over 35 km!

Extensions of the Pythagorean theorem provide distances in three or more

dimensions. If a rectangular box has dimensions of length L, width W , and

height H , the main diagonal has a length given by d2 = L2 + W 2 + H2 . Can a

42-inch-long umbrella be packed into a carton that is 40 inches long, 10 inches

wide, and 10 inches high? According to the three-dimensional Pythagorean the-

orem, the diagonal is about 42.43 inches long. Yes, it should just barely fit. (See

Vectors for applications in many dimensions.)

online sources for further exploration

Astronomy connections

<http://www.kyes-world.com/pythagor.htm>
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A cross-sectional view of earth that

illustrates the viewing distance from

a lighthouse to the horizon. Note that

the diagram is not drawn to scale.



Baseball and the Pythagorean Theorem

<http://www.geom.umn.edu/~demo5337/Group3/bball.html>

<http://www.pbs.org/wgbh/nova/proof/puzzle/baseball.html>

Construction

<http://www.geom.umn.edu/~hipp/app2.html>

Latitude and longitude

<http://daniel.calpoly.edu/~dfrc/Robin/Latitude/pythag.html>

Real-world applications

<http://www.geom.umn.edu/~hipp/rwapps.html>

When would I use the Pythagorean Theorem?

<http://forum.swarthmore.edu/dr.math/faq/faq.pythagorean.html>

▲
▼

▲

QUADRATIC FUNCTIONS

Quadratic functions take on the standard form f(x) = ax2 + bx + c, and

have graphs that are parabolas. Applications of quadratic functions commonly

refer to maximizing or minimizing a quantity, because they will have a highest or

lowest point at their vertex. For example, a business owner would be interested in

the greatest profit his or her company can attain based on the sales of its products.

This maximum or minimum point can be found by rewriting the expression

into vertex form through a process called completing the square. The vertex form

of a quadratic function is f(x) = a(x − h)2 + k, where (h, k) is the vertex. The

following symbolic manipulation illustrates how the standard form f(x) =
ax2 + bx + c can be manipulated into vertex form. Factor the leading coeffi-

cient, a, from the first two terms: f(x) = a(x2 + b
ax) + c. Complete the square 

of the factored component, and then subtract that value so that nothing is added

to the expression:

f(x) = a(x2 + b
ax + b2

4a2 ) − ab2

4a2 + c.
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Graph of the quadratic function
f(x) = −3x2 + 2x + 5.



Rewrite the expanded trinomial as a perfect square and simplify:

f(x) = a(x + b
2a )2 − b2

4a + c.

Compare this expression to the vertex form of a quadratic function and notice 

that the vertex can be represented as (− b
2a ,− b2

4a + c). This coordinate will serve 

as a shortcut to find the highest point when a < 0, and lowest point when a > 0,

in an application that uses quadratic functions.

Take, for instance, a business setting that sells sport memorabilia. The

demand, and hence the price, for a baseball player’s autographed ball may

decline as more of them become available. Suppose that the price of an auto-

graphed ball, a, from a new hall-of-famer begins at $200 and declines by five

cents, or $0.05, for every ball, x, sold. This relationship would be represented by

the equation a = 200 − 0.05x. The revenue, r, obtained from selling the balls

would be the product of the number of balls sold and the price for each ball, or

r = x(200 − 0.05x) = 200x − 0.05x2 . The business owner will have to pay for

general start-up costs such as hiring the baseball player to sign autographs and

renting a place to sell the merchandise, as well as paying for the materials, such

as the cost of each ball. Suppose the start-up costs are $1,300 and the business

owner pays $1.25 for each new ball. Then the cost, c, that the business assumes

in terms of the number of balls sold will be c = 1.25b + 1300.

The profit, p, is the difference between the revenue and cost, or r − c, which

equals (200x − 0.05x2) − (1.25x + 1300) , and simplifies to p = -0.05x2+
199.75x − 1300. In a quadratic function in the form of f(x) = ax2 + bx + c, a

maximum value will occur when x = – b
2a , since a < 0. In this case, a maximum 

profit will occur when approximately 1,997 balls are sold (x = − 199.75
2(−0.05) =

1997.5). In that case, a reasonable sale price of the “limited edition” ball should

be around 200 − 0.05(1997) = $100.15. Although, to appease the human psy-

che, a more reasonable price might be twenty cents cheaper at $99.95 so that con-

sumers feel like they are getting a deal by paying less than $100. A graph and

table of values can also support this sale price as a means of producing almost a

maximum possible profit.

The vertical height, h, of an object is determined by the quadratic equation

h = –0.5gt2 + vot + ho , where g is the acceleration due to earth’s gravity (9.8

m/sec2), vo is the initial vertical velocity, and ho is the initial height of the object.

Therefore an object with an initial vertical velocity of 45 meters per second,

thrown at a height of 0.4 meters, can be modeled with the equation h = –4.9t2+
45t + 0.4. Engineers of fireworks can use this type of function so that the rockets

explode at a time where optimal height offers safety as well as viewing pleasure. 

This quadratic equation can also be used to measure the initial vertical veloc-

ity of an object thrown in the air, such as a ball, assuming that it reaches the

ground with minimal air resistance. For example, if a ball thrown at a height of

1.45 meters is airborne for 3.84 seconds, then the values can be substituted into

the equation h = –0.5gt2 + vot + ho to solve for vo. In this case, the height after

3.84 seconds is equal to 0 meters, because that is the amount of time it takes for
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the ball to reach the ground. The equation then becomes 0 = –0.5(9.8)(3.84)2+
vo(3.84) + 1.45, which has a solution of vo approximately equaling 18.4 meters

per second. Substituting this value into the general function will also provide

enough information to help you find the maximum height of your throw. 

The equation h = –0.5gt2 + vot + ho can be simplified to h = –0.5gt2 + ho

for objects in freefall because vo = 0 when an object is dropped. Therefore if you

plan to bungee-jump 200 meters off of a 250-meter-high bridge, then you should

expect to be dropping for about 6.4 seconds. This value comes from substituting

for the variables and solving the equation 50 = –0.5(9.8)t2 + 250. (Note that the

ending position will be 50 meters above the ground, since the rope is only

extending 200 meters.) This general equation could also be used to estimate

heights and times for other objects that are released at high heights, such as the

steep drops on some amusement park rides.

Horizontal distance, such as the distance traveled after slamming on the brakes

in a car, can also be modeled with a quadratic function. In an effort to reconstruct

a traffic accident, a law office could use the function d = 0.02171v2+0.03576v
−0.24529 to determine how far a car could travel in feet, d, when breaking, or

how fast it was moving in feet per second, v, before it started braking. The law

office might also consider the average reaction time of 1.5 seconds upon seeing a

hazardous condition. So the total stopping distance, t, can be modeled with the

equation t = 0.02171v2 + 0.03576v − 0.24529 + 1.5v , which simplifies to t =
0.02171v2 + 1.53576v − 0.24529.

Area applications can also be modeled by quadratic functions, because area

is represented in square units. For example, pizza prices depend on the amount

of pizza received, which is examining its area. However, on a pizza menu, the

sizes are revealed according to each pizza’s diameter. If a 12-inch pie costs $12,

a misconception would be to think that the 16-inch one should cost $16. A func-

tion to represent the price, p, of this type of pizza in terms of its diameter, d, is 

p = 0.106π(d
2 )2 , because it is a unit cost times the pizza’s area. The value 0.106 

is the price per square inch of pizza in dollars, assuming that the 12-inch pie for

$12 will have the same unit-cost value as any other size pizza. Therefore a 16- 

inch pizza should cost p = 0.106π(16
2 )2 ≈ $21.31. The restaurant, however, may 

decide to give a financial incentive for customers to purchase larger pies and

reduce this price to somewhere near $20.

Devising and purchasing tin cans for food are applications of surface area

that can be represented by a quadratic function. Since most tin cans are cylindri-

cal, the surface area can be determined by finding the area of the rectangular lat-

eral area and the sum of the two bases, as shown in the following figure. If the

manufacturer determines the height of its cans to be 4 inches tall with a variable

radius, then the amount of sheet metal in square inches, a, needed for each can

would be a = 8πr + 2πr2 , where r is the radius of the can in inches.

If tin costs the manufacturer $0.003 per square inch, then the materials cost,

c, to produce each case of twenty-four cans can be represented by the function

c = (24)(0.003)a = (24)(0.003)(8πr + 2πr2) , which simplifies to c ≈ 1.81r+
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0.45r2. Therefore a case of cans with a radius equal to 1 inch would cost about

$2.26 to produce, and a case of cans with a radius equal to 2 inches would cost

about $5.42. (See Surface Area.)

Temperature usually changes according to changes in elevation. In fact, the

boiling point of water in degrees Celsius, b, can approximate the elevation above

sea level in meters, e, according to the equation e = 1000(100− b)2+
580(100− b). This means that water will boil at 100° Celsius near sea level, and

closer to 99° Celsius at about one mile in altitude, such as near Denver,

Colorado.

online sources for further exploration

Braking and stopping distances compared with speed

<http://www.exploratorium.edu/cycling/brakes2.html>

<http://www.scottsdalelaw.com/shepston/braking.html>

The ejection seat and parabolic paths

<http://daniel.calpoly.edu/~dfrc/Robin/Eject/eject.html>

Fluid flow

<http://www.imacc.org/standards/ex15.html>

Minimum surface area of a can

<http://jwilson.coe.uga.edu/emt725/MinSurf/Minimum.Surface.Area.html>

Optimization and analysis using quadratic functions

<http://www.wake.tec.nc.us/math/Chimp/Unit3/QUADRT_S.html>

Profit

<http://users.aber.ac.uk/matacc2/ma12610/mich00b/node3.html>

Projectile motion simulations

<http://library.thinkquest.org/2779/Balloon.html>

<http://www.explorescience.com/activities/Activity_page.cfm?ActivityID=19>

<http://www.phys.virginia.edu/classes/109N/more_stuff/Applets/ProjectileMotion/

jarapplet.html>

The way things fall

<http://www-spof.gsfc.nasa.gov/stargaze/Sfall.htm>

▲
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Net of a tin can that is used to deter-

mine the amount of material needed

in manufacturing production.



QUADRILATERALS

Four-sided plane figures are called quadrilaterals. Quadrilaterals can be con-

vex or concave. The wing structure of the B-117A bomber is in the shape of a

convex quadrilateral (white outline on the illustration below). Special types of

quadrilaterals such as rectangles and squares are used for warning signs and

flags. The illustration shows these common kinds of quadrilaterals: 

• a convex quadrilateral superimposed on the wing structure of a F-117A

Nighthawk;

• a square traffic sign;

• a rectangular flag;

• an isosceles trapezoid superimposed on the bottom section of the John

Hancock Building in Chicago;

• a kite;

• parallelogram faces of a Moissanite-9R CSi crystal structure;

• diamonds (rhombi) on a playing card;

• a city lot in the shape of a trapezoid.

The types of quadrilaterals differ in the number of pairs of parallel sides, size

of angles, and length and direction of diagonals. The parallelogram has parallel

opposite sides. As a result, opposite angles are congruent, and opposite sides are

congruent. If a parallelogram has all four sides of the same length, then it is a

rhombus. This results in the diagonals of a rhombus being perpendicular. A par-

allelogram that has at least one right angle is a rectangle. It must have all right

angles and diagonals that are the same length. A square is simultaneously a rec-
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tangle and a rhombus. Hence it has only right angles, its diagonals are congruent

and perpendicular, and all four sides are of equal length.

There are many uses of parallelograms in carpentry. A four foot by six foot

window frame is made by connecting four-foot pieces to the six-foot pieces so

that opposite sides of the frame are equal in length. The resulting figure is a par-

allelogram. Even though the corners are securely connected, it is likely to shear

so that the angles are not 90 degrees. Even a slight deviation may mean that a

rectangular window will not fit into the frame. To square the frame, the carpen-

ter measures the diagonals. The parallelogram frame will be rectangular only

when the diagonals have the same length. When the frame is in the wall opening,

the carpenter will use shims, small pieces of wood, to adjust the fit of the frame

until the diagonals are the same length. Then the carpenter can be sure that the

rectangular window will fit into the frame. 

Doors are usually shaped like rectangles so that they can seal better at their

hinge, or at their edges. An entire side of a door can be well connected to a set of

hinges, as well as allow a person to easily walk through. If the door were shaped

as an oval it would be primarily for design purposes, since the door would likely

be less durable and more expensive. Only a small section could be attached to

maybe one hinge, affecting its ability to stay well connected to the house. In

addition, walking through the doorway would be more challenging, because less

floor space would be available as compared to the flat edge of a rectangle. Some-

times doorways are rectangular and have an arch at the top, which is an archi-

tectural style seen in many cultures. It is built principally for design or historical

significance and is usually more difficult and expensive to construct.

Floor tiles in the shape of the same quadrilateral will always fit perfectly,

because the sum of any quadrilateral’s angles is 360 degrees, the same measure

of degrees in a circle. In order to tessellate a plane, all of the objects must con-

nect perfectly without any gaps or overlaps—what you would expect of tiles in

a bathroom or kitchen. At the point where multiple tiles intersect, their interior

angles must equal 360 degrees so that they fit neatly around a common center

point. If the different angles of a quadrilateral are used around an intersection of

four quadrilaterals, they will always tessellate perfectly.

Trisection of a long piece of lumber into thinner strips requires that guide

lines be set up for the ripsaw. A carpenter can take a 12-inch ruler and rotate it so

that its opposite ends are at the edges of the lumber. After marking the board at

the 4 and 8 inch positions at one end, the carpenter slides the ruler down the

board and marks the 4 and 8 inch positions at the other. Corresponding marks are

used to draw long lines down the board as guides for the saw. This works,

because the marks at 4 and 8 inches provide vertices of a parallelogram. 
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A pantograph is used to produce a scale drawing. The picture below of a pan-

tograph shows that the four pivot points that connect the pieces of wood form a

parallelogram. The ratio of lengths of sides controls the scale of magnification.

Pantographs that handle three dimensions are used to trace solid models of bolts,

car fenders, or teeth. The pantograph records the three-dimensional coordinates

for the surface of the object. Milling machines use the database of coordinates to

shape a block of metal, plastic, or carbon composite into a high-precision copy

of the original object. 

The parallelogram law is used in physics to determine the net result of two

forces. The vectors 	a = (3, 3) and 	b = (7,–1) are shown on the figure below as

arrows starting at the origin and ending at the respective coordinates. The paral-

lelogram law indicates that the resultant vector is found by completing the par-

allelogram defined by the vectors. The diagonal from the origin is the desired

vector. This corresponds to the point that would be found by the addition of coor-

dinates: (3, 3) + (7,–1) = (10, 2). (See Vectors.)

Because of the many uses of quadrilaterals, students around the world are

expected to know formulas for the area and perimeter of most common quadri-

laterals. In addition, they must also know the volume formulas for the three-

dimensional analogs of some quadrilaterals such as the cube and rectangular

solid. Formulas for the multidimensional parallelepipeds are expressed as deter-

minants of matrices formed from the vectors. For example, the area of the paral-

lelogram illustrated above can be computed from the determinant of 
[

3 7
3 −1

]

= 3(−1) − 7(3) = −24. The area is 24. (See Matrices.) Extensions to more

dimensions provide measures of strength of association of variables in multi-

variate statistics.
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online sources for future exploration

Demonstration of a pantograph

<http://www.ies.co.jp/math/java/geo/panta/panta.html>

Floor plans

<http://www.homebuyerpubs.com/foorplans/floorplans.htm>

<http://www.dldesigngroup.com/plans.html>

<http://ecep.louisiana.edu/ecep/math/n/n.htm>

<http://www.tnloghomes.com/homeplans/index.shtml>

Home decorating

<http://www.learner.org/exhibits/dailymath/decorating.html>

Maximize the area of a rectangular field with fixed perimeter

<http://home.netvigator.com/~wingkei9/javagsp/maxarea.html>

Surveying

<http://www.math.bcit.ca/examples/ary_17_2/ary_17_2.htm>

Tessellation of quadrilaterals

<http://library.thinkquest.org/16661/simple.of.non-regular.polygons/quadrilaterals.

html>

▲
▼

▲

RATES

A rate describes change that is dependent on a variable, such as the change

of temperature in a month or the change in price of an item based on the quan-

tity sold. The concept of rate is studied throughout mathematics in different

forms. It can usually be identified in an expression by the word “per,” such as in

“two dollars per gallon”; or “for each,” as “one-half unit of credit earned towards

graduation for each required course completed”; or “for every,” as in “six points

for every touchdown scored.”

Rates are commonly associated with the amount of distance traveled, d, in

the equation d = rt, where r is the rate of an object and t is the amount of time

traveled. In this case, the rate would be expressed in units related to speed, such

as meters per second or miles per hour. Rate can also be used in contexts of pro-

duction levels for a given time period. For example, two hundred bushels of corn

are processed by the manufacturing plant each day, or twenty copies of the news-

paper are sold each hour at the newsstand. Rate is also associated with accumu-

lating or acquiring something, such as rainfall or a salary. For instance, the thun-

derstorm is producing rain at a rate of one inch per hour. At work, an employee

would use a rate to describe his hourly wage by saying that he earns $8 per hour

for delivering pizzas. 
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The examples described thus far represent rates as values associated with

time. Rates can also be stated in terms of quantities produced or achieved. For

example, the delivery boy receives five cents for each newspaper he drops off

each morning. In addition, Mrs. Newsome’s first-grade class receives twenty

minutes of extra playtime for every one hundred behavior points earned. In a

securities exchange, a rate can be used to illustrate a fair trade, such as in stock

or currency values. For instance, the exchange price of Big Hit Co. today ended

at $48.5 per share. When traveling to Mexico, you would expect to receive an ex-

change rate of about 9.3 pesos for every U.S. dollar.

Rates can also be used to describe changes in an environment or physical set-

ting. For example, two hundred additional employees are needed for every 8 per-

cent increase in demand for the company’s products. In terms of temperature

conversion, there is a change of 1.8° Fahrenheit for every degree Celsius. When

driving along a mountain terrain, a road sign that mentions a 5 percent grade

means that there is a change in elevation of five vertical feet for every one hun-

dred horizontal feet.

Many scientific, engineering, and human measures are rates. Density is a

weight-per-volume measure such as pounds per cubic foot or grams per cubic

centimeter. Sound frequencies, such as those associated with musical notes, are

expressed as rates in cycles per second. Air pressure, such as tire pressure, is

expressed as pounds per square inch. The wealth of countries is compared as the

rate of Gross National Product (GNP) per capita. In 1997, Mexico had GNP per

capita of $8,110; Canada had a GNP per capita of $21,750. States can be com-

pared by population density: the number of people per square mile. Comparisons

may be dramatic. For example, New Jersey has 1,100 people per square mile,

while Wyoming has 4.7.

Comparison shopping requires rates. If an eight-ounce can of corn sells for

98 cents, the unit cost is 98/8 = 12.25 cents per ounce. A ten-ounce can that sells

for $1.02 would have a unit cost of 102/10 = 10.20 cents per ounce. The larger

can is the better deal, because it provides the lower unit cost.

Rate, in mathematics courses through algebra, is often presented as having a

constant value. When you read about the speed of an object or a person’s work

wages, it is assumed that there will not be any change in these values. In such

cases, the rate can be represented as the slope of a linear function that describes

a total amount. For example, if you are earning $8 per hour for delivering pizzas,

and always earn wages at that rate, then your total earnings, e, in terms of the

number of hours you have worked, h, can be represented by the equation e = 8h.

Notice that the hourly rate is the same as the slope of the linear function. 

Suppose you wanted to make copies for a class presentation at the local copy

shop. If the machine charges 10 cents per copy, then the total amount of money,

m, that you would need would depend on the number of copies, c, you make.

Since 0.10 is the rate in dollars, the equation m = 0.10c would help you deter-

mine the amount of money you would need, or the number of copies you could

make with a certain amount of money. For example, if you had $4.30 in your
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pocket you could make forty-three copies, since the solution to 4.30 = 0.10c is

c = 43.

Realistically, rates are often variable, meaning that they change. A car on the

highway will not always travel 55 miles per hour because of varying road con-

ditions. If traffic is heavy due to rush hour or an accident, the car will likely slow

down at times. Therefore the average rate is sometimes stated in reports. The

average (mean) rate can be calculated by finding the slope between beginning

and ending points on the graph that represents a total amount. For example, if a

car is traveling at a constant speed of 55 miles per hour, then the total distance

traveled as a function of time would be a linear function with a slope of 55, as

shown below.

However, if the car varies its speed, the total distance function will now look

like a curve that does not have a constant slope. If a car travels for three hours on

the highway, the average speed can be determined by finding the slope of the line

that time equals 0 and 3 hours. According to the slope between the endpoints in

the graph in the figure below, the average speed during the three hours is 49 miles

per hour, since the change in distance was 147 miles over three hours.

Some highway systems in the United States give a timed ticket for automobiles

once they enter on the toll road so that they can pay the fee at the end of their route

instead of having to pay along the way. Upon exiting the highway and paying the

toll, the highway patrol system can determine the average speed of the vehicles

during their travel by dividing the change in distance between the tollbooths and

the change in time from the initial starting point to the ending point. For example,

suppose you enter tollbooth 3 at mile-marker 27 at 12:34 PM. If you leave the high-

way at tollbooth 17 at mile-marker 136 at 1:57 PM, you could actually receive a
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speeding ticket without having been tracked by a radar speed-detection device! In

this case, the change in distance between tollbooths 3 and 17 is 109 miles, and the

change in time between 12:34 PM and 1:57 PM is 1 hour and 23 minutes, or approx-

imately 1.38 hours. Therefore the average speed of the car is about 79 miles per

hour, much faster than the speed limit! The mean-value theorem in calculus

implies that a car constantly in motion with this average speed will have traveled

at that rate at least one time during the journey, even if undetected by radar. The

graph below describes the position of the car for its time on the highway. The dot-

ted line represents the average rate of 79 miles per hour. The three times that the

car was traveling at 79 miles per hour are indicated with the word “speeding.”

Note that there are many other times that the car was speeding more than 79 miles

per hour. The mean value theorem from calculus only tells that there is at least one

time that the car had to be going the average rate of 79 miles per hour.

In addition to tracking speeding drivers, the time-stamping method is also help-

ful in determining the average speed of truck drivers, who need to take breaks from

the road so as not to fall asleep behind the wheel. Consequently, the average speed

of semi-trucks should be lower than other automobiles to account for the rest time.

The average rate associated with the slope on an interval is also an arithmetic

mean. Sometimes average speed can use other forms of the word average. On a

racetrack, car speeds are determined by finding the average of the lap rates. This

value is different from the average speed determined by the slope of a position

function, which is the same as the total distance divided by the total time trav-

eled. For example, suppose a race car circles a two-mile lap five times, with lap

times of 46, 48, 47, 45, and 49 seconds. In this case, the lap speeds would be

2/46, 2/48, 2/47, 2/45, and 2/49 miles per second. The recorded average speed

would be the average of these rates, 

2/46+2/48+2/47+2/45+2/49
5 = 4060879/95344200 miles per second ,

which is approximately 153.33 miles per hour. If an arithmetic mean were used

to determine this rate, then the total distance traveled, ten miles, would be

divided by the total time taken for five laps, 235 seconds. This value of 10/235

miles per second, or approximately 153.19 miles per hour, may be a more accu-

rate representation of the average speed of the car. Since lap time is more easily

and commonly tracked continuously throughout the race, the average lap speed

is used instead of the average rate.
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Besides finding the average rate as a means to describe varying speeds, it is

possible to determine the instantaneous rate of an object using differential calcu-

lus. If a total amount, such as distance or production levels, can be described as

a function, then the rate at any moment can be determined by finding the deriv-

ative of that function. Instead of finding the slope at the endpoints of an interval,

a derivative is the slope of a line tangent to a curve at a particular point.

The slope of the tangent line will describe the speed of the car at a specific

moment in time. For example, in the above figure, a tangent line with a slope of

70 miles per hour is drawn on the curve at 1:34 PM, illustrating the speed of the

car at that moment. 

In addition to automobile travel, the motion of falling objects shows variable

rates. Since the earth pulls objects at a rate of 9.8 meters per second squared,

falling objects are constantly accelerating. The position of a penny dropped off of

a 400-meter-tall skyscraper can be represented by the function h = –4.9t2 + 400,

where h is the height of the penny above the ground in meters, and t is the time

in seconds the penny is airborne. This function is a parabola. It will not have a

constant slope, which means that the penny will not fall at the same rate towards

the ground. However, the slope of the line tangent to the curve at any time, or the

instantaneous rate, can be predicted by the derivative of this function, which is

h′ = –9.8t. This means that the penny will be falling at a rate of 9.8 meters per

second after one second, 19.6 meters per second after two seconds, and so on.

According to the position function, h = –4.9t2 + 400, the penny will reach the

ground at approximately t = 9 seconds, where h is equal to 0. According to the

derivative of the position function, the velocity of the penny by the time it hit the

ground would be h′ = –9.8(9) = –88.2 meters per second, fast enough to fall

straight through a person’s body. Hence, you are not likely to be permitted to drop

objects from tall buildings!

Human workforce productivity can have varying rates. In a factory, the work-

ers may be less productive in the early morning because they are tired, and then

reach an optimal work rate later in the morning when they are more awake. Later

in the afternoon, they may become less productive again due to fatigue or bore-

dom. Understanding the varying working rates of employees may help manage-

ment determine an optimal time to take a break or to change work shifts. Know-

ing the change in work rates would provide information to make smart decisions
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on behalf of the safety of the employees, as well as to support the economic ben-

efits of the company.

In consumer sales, the profit from a business is often dependent on the num-

ber of products sold. An ideal production level would be to determine the

moment when the change of profit, or the rate at which profit is changed, begins

to level off to zero. According to supply-and-demand principles, the company

would like to produce the appropriate amount of products in order to meet con-

sumer demand, but not end up with a surplus in inventory. If too many goods are

produced the rate of profit declines, because the company would lose money on

excess inventory. For example, suppose the price per cup of lemonade, l, de-

pended on the number of cups, n, purchased according to the equation

l = 2.00 − 0.01n. This equation suggests that the price of a cup of lemonade

would be $2.00 if none were sold, but the price will decline by one penny for

every cup sold. The revenue, r, obtained for selling lemonade would be the prod-

uct of the price per cup and the number of cups purchased. Therefore the total

revenue would be equivalent to r = lc = (2.00 − 0.01n)n = 2.00n − 0.01n2 .

The cost to make the lemonade depends on start-up expenses and the quantity of

lemonade sold. If the lemonade stand costs $12.00 to set up and each cup costs

$0.14 to produce, then the cost, c, for the company to make lemonade can be rep-

resented by the equation c = 0.14n + 12.00. The profit, p, obtained by selling

lemonade is the difference between the revenue and costs, which is p =
r − c = (2.00n − 0.01n2) − (0.14n + 12.00) = –0.01n2 + 1.86n − 12.00. The

graph of the profit function is a parabola, illustrating that the rate of profit

changes, because the graph is nonlinear. Notice that the maximum profit of the

function occurs when ninety-three cups are sold—the moment when the rate of

profit is equal to zero or where the slope of tangent line equals zero, as shown in

the figure below.

online sources for further exploration

Designing a speedometer

<http://barzilai.org/archive/lc/speedometer.html>

Distance between two ships

<http://www.nadn.navy.mil/MathDept/cdp/relatedrates/rates.html>

Fair division activities

<http://www.colorado.edu/education/DMP/activities/fair_division/>
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Gross national product data

<http://www.economagic.com/em-cgi/data.exe/fedstl/gnp+1>

Motion

<http://www.mste.uiuc.edu/murphy/MovingMan/MovingMan.html>

<http://webphysics.ph.msstate.edu/jc/library/2-6/index.html>

Motion of a piston

<http://www.math.bcit.ca/examples/ary_16_5/ary_16_5.htm>

Occupational health and safety

<http://www.math.bcit.ca/examples/ary_12_1/ary_12_1.htm>

Pipe flow

<http://www.math.bcit.ca/examples/ary_8_3/ary_8_3.htm>

Roofing

<http://www.professionalroofing.net/past/march00/qa.asp>

Slope use permit

<http://www.ci.larkspur.ca.us/3025.html>

Stressed out: slope as a rate of change

<http://math.rice.edu/~lanius/Algebra/stress.html>

Universal currency converter

<http://www.xe.net/ucc/>

<http://www.wildnetafrica.com/currencyframe.html>

Exchange rates for world currencies

<http://www.x-rates.com/>

▲
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RATIO

A ratio is a quotient of two numbers. One of the most famous ratios in math-

ematics is π ≈ 3.14159, the ratio of circumference of a circle to the diameter. A

ratio is different from a rate, in that the units for the numerator and denominator

in a ratio are the same. A ratio does not have any units of measurement, unlike

rates that have units such as miles per hour or dollars per pound. Some examples

of ratios that are given here are really rates, but it is common practice in partic-

ular occupations and sciences to call them ratios.

There are many statistics dealing with money that are ratios. The federal gov-

ernment maintains the Consumer Price Index (CPI) and Cost of Living Index

(COL). The CPI is the ratio of costs of common items in the current year to the

costs of the same items during 1982–1984. The costs are usually expressed as a

multiple of 100, so that the number represents the current cost of purchasing

goods and services that would have cost $100 during 1982–1984. In 2001, the
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CPI was 177. This means that the ratio of costs for goods and services in 2000

was 1.77 times as high as the costs for the same items during 1982–1984. The

COL is computed for almost two hundred metropolitan areas. It reflects the ratio

of costs of goods and services in a specific area to the average for the country as

a whole. The COL is expressed as a percent. At the beginning of 2001, the COL

for San Francisco was 179.8, and for Houston, 95.8. Those ratios mean that it

costs 1.798 times the U.S. average to live in San Francisco, but 95.8 percent of

the national average to live in Houston. Stockbrokers use the price-earnings ratio

(P/E) as a way of evaluating stocks. This ratio is defined as the market value per

share divided by the earnings per share. If a company has stock valued at $40 per

share, and has earned a net of $2 per share over the last year, the P/E ratio for the

company would be $40/$2 = 20. Most stocks traded on the major exchanges have

P/E ratios between 15 and 25. Riskier stocks that have potential for rapid growth

are likely to have P/E ratios above 25, if any at all. (If a company has not pro-

duced any earnings, then its P/E ratio is reported as 0.) In these circumstances,

people invest their money in companies that they think will have low P/E ratios

or a high demand in the future. The P/E ratio is only one of many ratios routinely

reported for stocks.

Percents are based on ratios. If a taxpayer pays $3,000 on an income of

$20,000, then the tax ratio is 3000/20000 = 15 percent. The federal government

refers to this as a tax rate. If an investment of $500 is now worth $550, the per-

cent increase is the ratio of absolute change to starting value, or 50/500 = 10 per-

cent. When you specify how long it took for this increase, you express the change

as a percent per year, or interest rate. 

Test scores are often reported as percentile ranks. A student with a percentile

rank of 60 on a college placement test achieved a score that was equal to or

higher than the scores of 60 percent of the students taking the test. Therefore the

percentile rank is a ratio of counts of students.

Body mass index (BMI) is the quotient of your weight in kilograms divided

by your squared height, where height is measured in meters. Although this meas-

ure is a rate (kilograms/m2), the units are not reported and are not used in com-

putations of other health measures. BMI values from 20 to 25 are associated with

the lowest health risks; values above 30 are associated with the highest. Weight-

to-hip ratio (WHR) is a true ratio that indicates whether an adult carries weight

around the waist or hips. Weight carried around the middle (higher ratio) is asso-

ciated with more health problems. Many ratios developed for human physiology

are applied to other animals. The ratio of an animal’s surface area to its volume

measures how much energy the animal has to produce to counter the heat lost

through the skin. (See Inverse (Multiplicative) for an additional explanation.) A

mouse has a surface-area-to-body ratio that is about ten times that of a human,

so the mouse has to eat almost all day long to maintain its body heat, while a

human does quite well with three meals per day. 

The modern musical scale is based on a consistent ratio of frequencies from

note to next note for the twelve notes of an octave. Middle C-sharp (275 cycles



per second [cps]) is about 1.059 times middle C (260 cps); D (292 cps) is about

1.059 times C-sharp. This sequence continues to high C (520 cps), which is twice

the frequency of middle C. Pythagoras (as later corrected by Galileo) tried to

identify simple integer ratios for what would correspond to the white keys of a

piano. The Pythagorean scale uses 9/8 for the ratio that would compute D from

middle C (9/8 of 260 = 292.5). 

Time signatures found at the beginning of a piece of music look like fractions

without the fraction bar. They represent beat patterns for the measure. The nota-

tion 3
4 means that there are three beats per measure, and a quarter note (1/4)

receives one beat. This sets the ratio of note values to measures for the piece of

music.

Almost all mechanical objects in your house use gears. A videotape machine

uses gears to control tape motion. Windup and pendulum clocks use gears. Bi-

cycles use gears. Gear ratios tell how rotational motion changes when you con-

nect gears with different numbers of teeth. When a small gear with forty-seven

teeth connects with a larger gear with seventy teeth, the gear ratio is 4760 . The gear

ratio can be used to compute how many times the larger gear will rotate com-

pared to the smaller gear. (See Rotations for additional information about gears.)

Ratios that express mixtures are often written with a colon. When a garden-

ing expert recommends two parts of sand, five parts of potting soil, and one part

perlite for the soil mixture in a window box, the ratios can be written in one

expression as 2:5:1. A fertilizer that is labeled as 25-5-5 represents the percents

of nitrogen, phosphate, and potassium. The high ratio of nitrogen to the other

substances means that this fertilizer is probably for the quick development of

lawns, which need nitrogen. A fertilizer with a lower ratio of nitrogen like 10-20-

20 would be good for a garden. Directions for recipes and household products

are often given in ratios of parts. A wedding punch is two parts orange juice, two

parts lemonade, one part pineapple juice, and one part grapefruit juice. The juices

are in ratio of 2:2:1:1. (See Proportions and Similarity for additional applica-

tions of ratios in this form.)

The golden ratio or golden section is based on a rectangle that can be split

into a square and a smaller rectangle that is similar to the original rectangle. The 

ratio of length to width of the original rectangle is 1+
√

5
2 ≈ 1.61803. The ancient 

Greeks believed that this rectangle embodied the most satisfying proportions.

The Parthenon in Athens fits the golden ratio. Some sociologists have argued that

people who have certain facial features close to the golden ratio are judged by

others as being more beautiful or handsome. The golden ratio expresses many

patterns in plant and animal structures. (See Fibonacci Sequence for more infor-

mation about applications of the golden ratio.)

Measures in science and engineering that produce extremely large numbers

are simplified by ratio measures. In aviation, the Mach number indicates the ratio

of the plane’s speed to the speed of sound. Mach 1 is a critical value for airplanes.

Below the speed of sound, a plane pushes air aside like a boat traveling through
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water. But when the plane hits the speed of sound, the airwaves can’t move out

of the way of the plane. The build up at the front of the plane causes a shock

wave that creates stress on the plane and is often audible to people on the ground

as a “sonic boom.” The speed of sound varies according to temperature and other

factors. It is about 762 miles per hour at sea level, and about 664 miles per hour

at 35,000 feet. A jet traveling at 1,400 miles per hour 35,000 feet above sea level

would be traveling at 1400/664 ≈ Mach 2.1. A jet-propelled wheeled vehicle

achieved Mach 1.02 on the Bonneville Salt Flats on a day when the speed of

sound was 748 mph. Its speed was 763 miles per hour. 

Astronomers measure solar-system distances with a ratio measure called an

astronomical unit (AU). An AU of 1 represents the average distance of the earth

to the sun, about 14,960,000,000 kilometers. For even larger distances than the

solar system (which is about 80 AU in diameter), astronomers use ratio measures

based on light years. One light year is the distance traveled by light in one year

(about 9.46 × 1017 cm). Our galaxy is about 100,000 light years in diameter. Par-

secs (3.26 light years), kiloparsecs (1,000 parsecs), and megaparsecs (1 million

parsec) are used to measure distances across many galaxies.

Trigonometric ratios are used to find unusual or inaccessible heights and

lengths. By measuring angles and shorter distances, an engineer can calculate the

height of skyscrapers by creating diagrams with right triangles and using these

ratios. (See Triangle Trigonometry for an explanation.)

Scale models use ratios to indicate how the lengths of an object compare to

corresponding measures in the model. A 1:29 scale-model train would be large

enough for children to ride outdoors on top of the cars. It would be 1/29th of the

size of a real train. An HO-gauge tabletop train is at a scale of about 1:87. An

8.64-inch model of an 18-foot-long automobile (216 inches) would be at the

scale of 1:25. Scale models can also help provide information to calculate

unknown information, such as the mass of a dinosaur. (See Similarity.) Although

the design of buildings, cars, toasters, and furniture may involve drawings and

models that are smaller than the final version, scale models that are larger than

real life are important in many fields. Manufacturers of computer chips make

scale drawings much larger than the actual chip to show the packed circuitry.

Medical researchers make large-scale models of viruses and cell structures to

determine how shapes affect resistance to disease. 

The fundamental law of similarity uses scaling to indicate how surface area

and volume of the model relate to the actual object. If k is the ratio of a length in

the object to the corresponding length in the model, k2 is the ratio of surface

areas, and k3 is the ratio of volumes. This law explains the limits on human and

animal growth. If a six-foot-tall, 180-pound human were to double in size so that

his relative proportions were maintained, he would be twelve feet tall, but his

volume, and hence his weight, would be eight times as much. The giant’s weight

would be 1,440 pounds—which couldn’t be supported by human bone structures.

(See Proportions for an alternate explanation.)
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online sources for further exploration

Consumer price index (CPI) 

<http://stats.bls.gov/cpihome.htm>

The P/E ratio and other stock ratios are discussed at the Motley Fool page

<http://www.fool.com/School/EarningsBasedValuations.htm>

Musical scales

<http://hyperphysics.phy-astr.gsu.edu/hbase/music/pythag.html>

FAA instructions on making a scale drawing of an F-16 

<http://www.faa.gov/education/resource/f16draw.htm>

Compute gear ratios for a bicycle

<http://home.i1.net/~dwolfe/gerz/howto1.html>

<http://www.panix.com/~jbarrm/cycal/cycal.30f.html>

U. S. Census Bureau QuickFacts on States (Rates and Ratios)

<http://quickfacts.census.gov/qfd/>

Body-mass calculator

<http://cc.ysu.edu/~doug/hwp.cgi>

<http://www.jsc.nasa.gov/bu2/inflateCPI.html>

Cooking by numbers

<http://www.learner.org/exhibits/dailymath/cooking.html>

Density lab

<http://www.explorescience.com/activities/activity_page.cfm?activityID=29>

<http://www.panix.com/~jbarrm/cycal/cycal.30f.html>

How to compute baseball standings

<http://www.math.toronto.edu/mathnet/questionCorner/baseball.html>

Scale models

<http://www.faa.gov/education/resource/f16draw.htm>

<http://www.pbs.org/wgbh/nova/pyramid/geometry/model.html>

<http://www.americanmodels.com/sscale.html>

Screen ratios

<http://www.premierstudios.com/ratio.html>

Tuning in

<http://www.bced.gov.bc.ca/careers/aa/lessons/aom15.htm>

▲
▼

▲
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REFLECTIONS

A reflection is a transformation that produces an image of equal size by flip-

ping an object over a line. For example, you will see a reflection of yourself

when you look in the mirror. Your size in the mirror will be the same as your

actual size, but all of your features will be reversed. So if your hair is parted to

the left, it will appear to be parted to the right in a reflection. Using two mirrors

can create double reflections, allowing someone such as a hair stylist to show

you the back of your head after a haircut while you look straight ahead.

Reflections of objects are naturally visible in water. If you walk up to a pond

on a still, sunny day, you will see an image of yourself on the surface of the

water. In the picture below, buildings and boats on a Holland canal are reflected

in the surface of the canal. The reflection is so good that when you turn the pic-

ture upside down, it looks almost the same.

Reflections are sometimes used to create illusions or expand the size of an

object. Many restaurants have large mirrors on one wall so that the room will

appear twice as large. In an amusement park, a house of mirrors creates multiple

images of anyone walking through, making it difficult to determine the correct

pathway to the exit. Another example of using reflections to replicate an object is

to create designs with a kaleidoscope. A kaleidoscope is a cylindrical toy that cre-

ates colorful patterns by using tiny objects situated at its base and in between two

intersecting mirrors. The reflections at the base repeat themselves as a function of

the angle n between the mirrors. Since there are 360 degrees in a circle, then 

there will be 360
n repetitions of the object caused by reflections. Each time the 

kaleidoscope rotates, the tiny objects inside it move around and consequently

change the symmetrical pattern one sees when looking through the cylinder.
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Boats and buildings reflected

in a canal in Holland.

Source: Adobe Stock Photos.

A kaleidoscope uses mirrors to produce mul-

tiple reflections and create colorful patterns.

Photo by Dror Bar-Natan, online at <http://

www.ma.huji.ac.il/~drorbn/Gallery/Symmetry

/Tilings/S333/Kaleidoscope.html>.



Reflections can be used to trap light in an object. When a gem such as a dia-

mond is cut into the shape of a polyhedron, it gives light an opportunity to reflect

many times once it is captured inside. One of the reasons that a diamond is pre-

cious is its ability to bend light so that it stays inside the gem longer, thus mak-

ing it sparkle. 

Sound waves reflect in a theater to amplify music. Prior to electronic ampli-

fiers, which increase the volume of microphones and electric guitars at rock con-

certs, special attention was paid to acoustical architecture in concert halls. Next

time you watch a performance or a symphony in an indoor theater, notice the spe-

cial plates built in or attached to the ceiling. They are angled and curved in order

to reflect sound waves so that everyone in the theater can hear the performance.

Without this special attention to reflecting sound waves, certain sections of the

concert hall would not receive adequate sound, because the sound would either

be absorbed by a surface, dissipate, or create destructive interference patterns.

(See Inverse Square Function.)

Reflections are also used in remote sensors to detect a signal. For example,

there are several ways that you can change your television station using a remote

control. One way is to aim the remote so that its ray will land directly on the sen-

sor on the television set. Another way, however, is to aim the remote at a reflec-

tion of the sensor. Imagine that one of the walls in your home was a reflecting

mirror, and determine the location of the television sensor behind the wall. If you

aim the remote at the reflection of the sensor, the light beam will bounce off of

the wall and land directly on the sensor. Many motion-based security systems

operate in a similar fashion. An invisible beam reflects off of all walls in a room,

creating multiple beams throughout that room. The alarm system is signaled if

the beam at any point in the room is disturbed.

The angle of incidence, α, is the angle at which a beam of light touches a wall,

and the angle of reflection, β, is the angle at which the beam leaves the wall. If

the beam of light does not pass through the material, then the angle of incidence

is equal to the angle of reflection. (See Angle for more explanation.) Knowing this

theorem can help you become skilled at various games that use reflections, such

as billiards and miniature golf. In both of these activities, the player is usually at

an advantage if he or she can find ways to maneuver the ball by bouncing it off of

a wall. In order to accurately place a ball on a target or in a hole, the player needs

to aim the ball towards the reflection of the hole, similar to directing a remote con-

trol. Therefore an easier way to utilize the reflection is to predict the location on

the wall where the angle of incidence will equal the angle of reflection.
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Light rays reflect from walls at congruent angles. The angle of incidence, α,

has the same measure as the angle of reflection, β.



Using reflections in games becomes more complicated, however, in situa-

tions where a ball needs to bounce off two walls. The same relationships regard-

ing reflections exist in these circumstances, but the player will need to focus on

reflections of reflections in order to utilize multiple walls in the attempt. 

For example, suppose the player realizes that he or she cannot get a hole-in-

one by hitting just one wall, as indicated in the above figure. Instead, the player

imagines hitting two walls, the side wall first and then the back wall. In order to

sink the shot, he or she will need to locate the reflection of the hole on the back

wall, H ′, and then the location of the reflection of the reflection, H ′′. The player

then aims towards the side wall at the double reflection of the hole, H ′′, and the

ball should follow a path towards the first reflection by hitting the back wall, and

then land in the hole, as shown below. 

The process can get even more complicated with more reflections, such as

what takes place in games like racketball. In such a fast game, it may be difficult

to predict where the ball will eventually land after it has been struck. However,

a general knowledge of reflections can give a player a sense of what direction the

ball will head once it hits the first wall.

The relationship between the angle of incidence and angle of reflection also

informs product designers that full-length mirrors should only be one-half a per-

son’s height. In this type of mirror, the reflection of light from your eye level to

your waistline will angle down towards your toes (see the following figure). This

relationship is true, because the point of contact with your line of sight and the

mirror is at the midpoint of your body, where the angle of incidence is congruent
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A failed attempt to obtain a hole-in-

one on a miniature golf course using

reflections, because the ball will be

blocked by the left wall.

A strategy to obtain a hole-in-one on

a miniature golf course that uses

reflections for a ball to hit two walls. 



to the angle of reflection. That way, looking at the bottom of a mirror that is half

your size will allow you to look directly at your feet.

The concepts behind reflections can also be used to optimize fuel consump-

tion in water travel. Suppose a cruise liner was departing a port and headed

towards a series of remote islands. Along the way, it may need to refuel near a

mainland to ensure that it can travel the entire distance. The ship will be most

fuel efficient if it angles its navigation towards the shore to refuel, so that its

angle of incidence is equal to its angle of reflection. Even though the ship will

not use a reflection, moving along this path allows it to travel the smallest dis-

tance, as shown in the figure below. This path will be equivalent in distance to a

direct route between the starting point and destination, because the ship will be

directed towards the reflection of the destination. Since reflections preserve con-

gruence, the ship will still be traveling along a line, which is the shortest path

between two points.

Most molecules come in two forms, mirror images of each other. This would

be merely a chemical curiosity were it not that the reflection images of molecules

in medications can produce catastrophically different results. During the 1960s,

the drug thalidomide was given to pregnant women to reduce nausea. One of the

forms of the thalidomide molecule worked well for that task. Unfortunately, the

other form of thalidomide, the mirror image of the good molecule, caused limb

deformities in thousands of infants before its effects were recognized. The drug

L-dopa counteracts symptoms of Parkinson’s disease such as tremors and mus-

cle rigidity. The mirror image of the L-dopa molecule, D-dopa, is toxic. The pro-

duction of thalidomide and L-dopa produces both forms in equal amounts. A sig-

nificant task for scientists was to determine how to remove the toxic form of the

molecules from medications, leaving only the beneficial mirror images. The
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A mirror needs to be only one-half your

height in order to see your entire body.

A reflection of the final destination

is used to determine the shortest

path for a ship when a fuel stop is

needed on a journey.



2001 Nobel prize in chemistry was awarded to scientists who developed catalysts

that would determine the twists in the molecules and either remove the malignant

forms or change their orientation to the beneficial version.

online sources for further exploration

The billiards simulation

<http://serendip.brynmawr.edu/chaos/home.html>

Diamond design

<http://www.gemology.ru/cut/english/tolkow/_tolk1.htm>

Frieze patterns

<http://www.ucs.mun.ca/~mathed/Geometry/Transformations/frieze.html>

Mathematical art of M. C. Escher

<http://www.mathacademy.com/pr/minitext/escher/>

Measurement microphones

<http://www.josephson.com/tn6.txt>

Reflection of light

<http://micro.magnet.fsu.edu/primer/lightandcolor/reflection.html>

Reflectors

<http://nths.newtrier.k12.il.us/academics/math/Connections/reflection/REFLECT.

htm>

Road coatings

<http://www.montefiore.ulg.ac.be/services/acous/eclair/reflecten.html>

Seismic reflection

<http://www.enviroscan.com/techapps/22.html>

Total internal reflection

<http://www.sciencejoywagon.com/physicszone/lesson/09waves/totint/>

<http://www.glenbrook.k12.il.us/gbssci/phys/Class/refrn/u14l3c.html>

<http://www.sciencejoywagon.com/physicszone/lesson/09waves/totint/internal.

htm>

▲
▼

▲

ROTATIONS

Rotations allow the same object to reappear along a circular path. For exam-

ple, in a tiling pattern, lizards can be rotated so that they tessellate, or fit neatly

into each others’ grooves, as shown in the following figure. Since there are three

congruent lizards in a circle centered around the intersection of the lizard’s

knees, the angle of rotation must be one-third of the degree measure of a circle,

which is 120 degrees.

Rotations are used in circular motion, such as the rotation of a wheel caused
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by movement in the axle of a car. The rotation of the wheels and the friction

between the wheels and the road enable a car to move forward. 

Circular gears with wedges help support rotation in engines and machines.

For example, a bicycle uses gears to change the amount of force needed to move

the pedals. As the gear rotates, its teeth grab onto the chain and move it forward

in order to spin the wheels on the bicycle. Gears with a smaller radius require less

force, since the chains move a smaller distance. As the bicycle builds speed, the

gears rotate more quickly, making it more difficult to pedal in lower gears. By

shifting the chain to a higher gear with a greater radius when the bicycle

increases speed, the pedals will slow down, since the chain has a greater distance

to move, making it easier to maintain a higher speed. When the person on the

bicycle slows down, the gears should be shifted down to a smaller radius so that

pedaling becomes easier. 

Several amusement-park rides rotate to create a spinning effect. An object

will feel like it is moving more quickly around a circle if it sits further away from

its center of rotation. In this situation, the object has to travel a further distance

around a circle than an object closer to the center, but also during the same time

period. Rotational motion with ice skaters changes, because angular momentum

is conserved. Angular momentum is determined by the product of the radius of

the arm length and the skater’s angular velocity. If his or her arm radius decreases

so that the arms are closer to the body, his or her angular velocity will increase.

As a result, skaters will spin faster when they move their arms closer to their bod-

ies. Conversely, skaters can slow down their spinning motion by spreading their

arms out from their bodies.

The earth rotates around an axis that passes through the two poles. The radius

of the earth is 3,963 miles. Therefore every object at the equator is moving at a
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Tessellation of lizard tiles based on

rotations for an outdoor patio.

The gears of a bicycle rotate and

latch onto the chain to help propel

the bicycle forward when force is

applied to the pedals.



rate of approximately 1,037 miles per hour, because these objects travel 22π(3,963)

miles in twenty-four hours. The angular rate of objects in circular motion is the

circular distance divided by the time to travel that distance. If a person is stand-

ing away from the equator, then his or her angular rate is 2π•3963•cos θ
24 , where θ

is the latitudinal angle of the city. For example, if a person is standing at 60°N

latitude, then he or she will only be half as far from the earth’s axis of rotation,

because cos 60° is one-half. Then this person will only be moving half as fast

around the earth. People actually do not feel like they are moving faster at dif-

ferent parts of the world because everything else is moving at the same rate. You

feel differences in motion when something else is moving faster or slower than

your motion.

Rocket launches take advantage of the earth’s rotational velocity. The launch-

ed aircraft takes off towards the east—the same direction as the rotation of the

earth—giving it an extra boost once it is airborne. Also, launches in the United

States are at Cape Canaveral, Florida, which is closer to the equator than most

other cities in the country. Since it is farther from the earth’s axis of rotation than

many other U.S. cities, the earth’s rotation will be more supportive at that loca-

tion by giving it almost the best possible additional speed as it leaves the earth’s

atmosphere.

online sources for further exploration

Applications of rotations

<http://www.spacesciencegroup.nsula.edu/sotw/newlessons/application.asp?Theme=

astronomy&PageName=rotation>

Bicycle gears

<http://www.exploratorium.edu/cycling/gears1.html>

<http://www.exploratorium.edu/cycling/gears3.html>

Image rotation

<http://www.ece.gatech.edu/research/pica/simpil/applications/rotation.html>

Mathematical art of M. C. Escher

<http://www.mathacademy.com/pr/minitext/escher/>

Relative motion—rotation and the motion of the moon

<http://www.joma.org/vol1-2/modules/macmatc4/moon.html>

Rotations on a sphere

<http://www.uwgb.edu/dutchs/mathalgo/sphere0.htm>
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Relative distance away from the

earth’s axis of rotation based on lati-

tudinal position. A person is half as

far from the earth’s axis of rotation

when he or she is standing at 60°

latitude because cos 60° = 1/2.



Satellite reception

<http://repairfaq.cis.upenn.edu/sam/icets/satellte.htm>

X-ray diffractometry

<http://www.optra.com/XRAYwebsite.htm>

▲
▼

▲

SEQUENCES

Sequences are sets of numbers that often share a recursive or explicit rela-

tionship. For example, the Fibonacci sequence in the form 1, 1, 2, 3, 5, 8, 13, 21,

. . . is determined by the sum of every two previous consecutive integers in its

sequence and has many real-world applications. (See Fibonacci Sequence for

several examples.) A different pattern occurs in the terms in a geometric

sequence, where consecutive terms have a constant ratio. A geometric sequence

with an initial value equal to 4 and constant ratio of –0.5 would be 4, –2, 1, –0.5,

0.25, . . . Another type of sequence based on a constant difference between terms

is called an arithmetic sequence. An arithmetic sequence with an initial value

equal to 4 and a constant difference of –0.5 would be 4, 3.5, 3, 2.5, 2, . . .

Sequences exist in applications that have discrete and predictable patterns, such

as the value of an automobile, camera aperture, music notes, or predicting the

timing of an eruption.

Automobile value is based on its original price, depreciation rate, and age.

Since the depreciation is fairly constant for a particular model, a car’s yearly prices

can be determined using a geometric sequence. The constant ratio in this case is

0.80, since the car maintains 80 percent of its value after each year. A car selling

for $20,000 new that depreciates 20 percent each year will be worth $16,000 the

next year, and $12,800 the year after that. These values can be determined by mul-

tiplying each successive term by 0.80, or using the explicit formula for a geomet-

ric sequence, gn = g1r
n−1, where gn is the value of the car after the nth year, g1

is the initial value of the car during the first year, and r is the constant ratio. In this

case, the explicit equation for the sequence is gn = 20, 000(0.80)n−1 . The table

on the next page represents a sample blue-book listing of the value of a vehicle for

different years based on this equation. Notice that the car loses its greatest amount

of value during the first year, since a percentage of the total value is reduced from

the original price.

Standard f-stops on cameras permit the photographer to select how much

light passes through the lens. The sequence is 1, 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 22,

32. Each of the f-stop numbers on a standard lens represents half the light of the

number before it. The consecutive f-stops are in geometric sequence with the 

common ratio 
√

2.
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nth year value ($)

1 20,000.00

2 16,000.00

3 12,800.00

4 10,240.00

5 8192.00

6 6553.60

7 5242.88

8 4194.30

9 3355.44

10 2684.35

The estimated values of an automobile with a new price of $20,000 

and depreciating 20 percent each year.

The twelve tones in an octave form a geometric sequence so that the end of

an octave has a frequency twice that of its low tone. High C (512 cps) is twice

middle C (256 cps). The multiplication of frequencies is a constant ratio across

the octave, so each multiplication must be the twelfth root of 2, or about 1.059.

So if A is 440 cps, the next key, B-flat, will be 440•1.059 ≈ 466 cps. (See Ratio.)

Old Faithful is a popular attraction at Yellowstone National Park, because the

geyser produces long eruptions that are fairly predictable. When tourists visit Old

Faithful, they will see a sign that indicates an estimated time that the geyser will

next erupt. No one controls the geyser like an amusement park ride. Instead, its

patterns over time have caused park rangers to develop predictable eruption times

using an arithmetic sequence. The time between eruptions is based on the length

of the previous eruption. If an eruption lasts one minute, then the next eruption

will occur in approximately forty-six minutes (plus or minus ten minutes). If an

eruption lasts two minutes, then the next eruption will occur in approximately

fifty-eight minutes. This pattern continues based on a constant difference of
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Old Faithful is a popular attrac-

tion at Yellowstone National Park,

because it is a very large geyser

and quite predictable. Source:

National Park Service photograph.



twelve minutes, forming an arithmetic sequence of 46, 58, 70, 82, 94, . . . An erup-

tion of n minutes will indicate that the next eruption, an , will occur in

an = a1 + (n − 1)d minutes, where a1 is the length after a one-minute eruption,

and d is the constant difference of waiting time among eruptions that are a one-

minute difference in time. In this particular situation, the next eruption will occur

in an = 46 + (n − 1)12 minutes, if the previous eruption was n minutes long.

Harmonious chords produce another type of sequence. If you depress piano

keys for middle C, middle G, high C, and high E, then play low C, you will hear

the four other tones. If the string for low C is one meter long, then a string a half

meter long will sound a middle C, a one-third meter string would give middle G,

high C would be one-fourth meter, and high E would be one-fifth meter. The 

list of overtones is the sequence 1, 1
2 , 1

3 , 1
4 , 1

5 , . . . which is called a harmonic

sequence. Any sequence that is formed from reciprocals of terms of an arithmetic

sequence is called harmonic. Harmonic sequences are important in the study of

magnetism, electricity, and the design of electric motors. Cosmologists studying

the origins of the universe look for harmonic patterns in microwave traces

received from space. 

online sources for further exploration

A demonstration that the harmonic series doesn’t converge

<http://www.mathematik.com/Harmonic/>

Artificial intelligence

<http://www.cs.wustl.edu/area-ai.html>

Biological sequence alignment

<http://www.ics.uci.edu/~eppstein/gina/align.html>

DNA sequence database

<http://www.ncbi.nlm.nih.gov/collab/>

Intensity, exposure, and time in photography

<http://www.arch.virginia.edu/arch569/content/lectures/lec-03/>

Iteration and recursion activities

<http://www.colorado.edu/education/DMP/activities/iteration_recursion/>

Linear models

<http://www.math.montana.edu/frankw/ccp/modeling/discrete/linear/learn.htm>

Musical scales

<http://www.tromba.demon.co.uk/scales.html>

<http://www.midicode.com/tunings/greek.shtml>

Predicting Old Faithful

<http://www.jason.org/expeditions/jason8/yellowstone/oldfait1.html>

Used car prices

<http://www.edmunds.com/used/>

<http://www.kbb.com/kb/ki.dll/kw.kc.bz?kbb&&688&zip_ucr;1409&>

▲
▼

▲
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SERIES

Many applications that are based on the sum of predictable discrete patterns

can be examined with series. For example, a doctor may prescribe an amount of

medication to take each day, because he or she knows that the patient’s blood-

stream will be able to maintain a certain level of the medication over time.

Prescriptions are based on a mathematical series, because the total amount of

drug accumulates in the bloodstream each day. In other words, the sum of the

remaining amounts of the drug in the bloodstream is added to a new amount

everyday. One way to determine the total amount of a drug that will eventually

end up in the bloodstream is to take the initial amount and add the amount that

remains from yesterday, from two days ago, three days ago, and so on. If the

amount of drug that remains in the bloodstream is a predictable pattern each day,

then an equation can be used to compare dosages and accumulating amounts in

the bloodstream.

Some illnesses, such as high blood pressure or thyroid deficiency, can be

treated with regular medication. Suppose a doctor knows that 200 mg of a drug

is the amount of medication needed to maintain the patient’s health. Because

most drugs circulate in the bloodstream, amounts of the drug are removed as the

blood is cleaned by the kidneys. Suppose that the kidneys remove 40 percent of

the drug each day. That leaves the drug effectiveness at 60 percent of what it was

twenty-four hours earlier. Therefore the doctor has the patient take a pill each

day. Surprisingly, a 200 mg pill each day is far too large a dose to maintain a 200

mg level in the bloodstream. If the doctor prescribes 200 mg each day, the patient

will have 200 mg in the bloodstream on the first day. At the end of one day, only

120 mg will remain, but another 200 mg will be added, making the total amount

320 mg. This overdose can potentially be very harmful for the patient, so the doc-

tor needs to determine an ideal dosage that will allow only 200 mg to remain in

the bloodstream at any given time. 

A pharmacist can model this situation by using a spreadsheet or table of val-

ues, making sure that the amount in the bloodstream at the end of the day is 60

percent the amount at the beginning of the day, and then adding that value to the

amount at the beginning of the next day. The following table illustrates how

much of the drug would remain in the bloodstream during the first twenty days

if 200 mg were taken each day. Notice that eventually the amount of drug in the

bloodstream will level off near 500 mg after about ten days.

days start of day end of day

1 200.000 120.000

2 320.000 192.000

3 392.000 235.200

4 435.200 261.120

5 461.120 276.672

6 476.672 286.003



days start of day end of day

7 486.003 291.602

8 491.602 294.961

9 494.961 296.977

10 496.977 298.186

11 498.186 298.912

12 498.912 299.347

13 499.347 299.608

14 499.608 299.765

15 499.765 299.859

16 499.859 299.915

17 499.915 299.949

18 499.949 299.970

19 499.970 299.982

20 499.982 299.989

The amount of drug (in milligrams) in a person’s bloodstream when 60 percent 

remains from the previous day and an additional 200 mg are added each day.

A pharmacist can modify this initial amount on the first day and observe

changes in the limit of this sum to determine that 80 mg is an appropriate daily

dosage to maintain 200 mg in the bloodstream over time, as shown below. 

days start of day end of day

1 80.000 48.000

2 128.000 76.800

3 156.800 94.080

4 174.080 104.448

5 184.448 110.669

6 190.669 114.402

7 194.401 116.641

8 196.641 117.984

9 197.984 118.791

10 198.791 119.274

11 199.274 119.565

12 199.565 119.739

13 199.739 119.843
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days start of day end of day

14 199.843 119.906

15 199.906 119.944

16 199.944 119.966

17 199.966 119.980

18 199.980 119.988

19 199.988 119.993

20 199.993 119.996

The amount of drug (in milligrams) in a person’s bloodstream when 60 percent 

remains from the previous day and an additional 80 mg are added each day.

This situation is an example of a geometric series, since the amount remaining in

the bloodstream is affected by a constant ratio of 60 percent. The sum can be re-

written as

days since last dosage

1 2 3 4

80 + 80(0.60)1 + 80(0.60)2 + 80(0.60)3 + 80(0.60)4 + . . .

The sum, s, can be determined by the equation s = g1(1−rn)
1−r , where g1 is the 

initial dosage, r is the constant ratio, and n is the number of days the dosage is

taken. Since the number of days that the drug is taken is unknown, pharmacists

need to examine situations in which the drug is taken indefinitely. Therefore the 

sum of an infinite geometric series is s = g1

1−r because lim
n→∞

g1(1−rn)
1−r = g1

1−r

when |r| < 1. In this case, the desired sum, s, is 200 mg, r is 60 percent or 0.60,

and g1 is unknown. Substituting the values into the equation, you will get 

200 = g1

1−0.60 , and a solution of g1 = 80 mg. Thus the doctor needs to make pre-

scriptions of 80 mg each day in order to maintain the desired dosage of 200 mg.

Geometric series are also used to predict the amount of lumber that can be

cut down each year in a forest to ensure that the number of trees remain at a sta-

ble level. Each year, forest rangers plant seeds for new trees to account for those

chopped down and lost to forest fires. Suppose the ranger wants to know what

proportion of trees they can afford to lose or remove each year if they plant 500

new trees and want to consistently maintain 80,000 trees in the forest. After sub-

stituting s and g1 in the formula s = g1

1−r , the unknown value for r is 0.00625. 

This means that the forest ranger wants to maintain 99.375 percent of the trees

each year. However, an interesting phenomenon is to notice that the forest can

recover from a disaster such as a fire in a reasonably short period of time.

Suppose a fire destroys 35 percent of the trees in the forest, leaving 52,000 trees.

If 500 new trees are planted each year, and 0.625 percent of the total number of
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trees is used for wood each year, then the forest will reach its ideal level of 

80,000 trees in about seven years, since 
500(1−0.93757)

1−0.9375 > 28, 000, the number of

trees lost in the fire.

Arithmetic series are used when consecutive values have a constant differ-

ence. The sum of the first n terms of the series, sn, is determined by the equa-

tion sn = (a1 + an)
(

n
2

)

or sn = (2a1 + (n − 1)d)
(

n
2

)

. For example, the sum 

of the first one hundred positive integers is generated by the series 1 + 2 + 3 +
. . . + 100. This is an arithmetic series with n = 100 terms, a1 = 1, and a100 =

100. Therefore the sum of this series, s100 = (1 + 100)
(

100
2

)

= 5, 050. Drilling

and mining operations use arithmetic series to determine the total distance their

machines will need to drill when excavating rock from the earth. Suppose a con-

struction team is hired to dig a hole that has a cross-sectional area of 10 square

meters and will be 50 meters deep. Suppose that the drilling machine moves 2

feet downward when digging in the earth’s surface, and then stops to allow

workers to remove the 20 cubic meters of loose dirt. Therefore the first drilling

attempt will be 2 meters deep, the second drilling attempt will be 4 meters deep,

the third drilling attempt will be 6 meters deep, and so on for a total of 25 trips.

In this situation, the drilling machine and the dirt from the ground will need to

be moved a total of 650 meters in order to dig a 50 meter hole, since (2 • 2 +

(25 − 1)2)
(

25
2

)

= 650. The mining or construction company can then use this

information to determine its fees based on the total distance it will need to move

dirt out of the hole.

online sources for further exploration

Buying on credit

<http://www.nap.edu/html/hs_math/bc.html>

Drug dosage

<http://www.nap.edu/html/hs_math/drd.html>

<http://www.chch.school.nz/cma/IdeasTeach/hypnotic.htm>

<http://barzilai.org/cr/med-dosage.html>

Geometric series applications

<http://www.math.montana.edu/frankw/ccp/calculus/series/geometric/learn.htm>

Loan or investment formulas

<http://oakroadsystems.com/math/loan.htm>
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SIMILARITY

Two figures are similar if they have the same shape, but not necessarily the

same size. More specifically, all of the corresponding sides between two similar

shapes are proportional and all of the corresponding angles are congruent. For

example, most rectangular television screens are similar, since they have a 4-to-3

aspect ratio. That means that conventional television screens are produced so that

the length is 4/3 times the width. The diagonal length of the television screen is

often the reported number in advertisements. Using the 4-to-3 aspect ratio, a tel-

evision screen that has a 25 inch diagonal will have dimensions of 16 inches by 9

inches, and a television screen with a 40 inch diagonal will have dimensions of 32

inches by 24 inches. Notice that the diagonal-to-length ratio is 5 to 4, and the diag-

onal to width ratio is 5 to 3, causing the width, length, and diagonals of every stan-

dard television set to be a multiple of the {3,4,5} Pythagorean triple. 

In 1889, engineers in Thomas Edison’s laboratory established that the 4:3

ratio was the best one for movie screens. It is now being challenged by the 16:9

ratio for high-definition TV sets (HDTV) that use a wider screen than the tradi-

tional one to mimic the wide screens in theaters.

Book covers are examples of two objects that are often not similar. Even

though two books may have rectangular covers with congruent angles, they are

only similar if their side lengths are proportional. For example, a book cover with

dimensions of 6 inches by 3.5 inches is not similar to a book cover with dimen-

sions of 7 inches by 4.5 inches. The corresponding ratios of 7/6 and 4.5/3.5, or

9/7, are not equal.

Similarity is used for many real-world purposes. The film on a movie reel is

projected onto a big screen so that the images appear larger, but in the same pro-

portion. If the screen images were not similar to the slides on the reel, the images

would appear distorted, being either too fat or too long (see Proportions for a

more detailed explanation). An overhead projector serves the same purpose,

allowing images such as a teacher’s handwriting to appear larger on a screen so

that it is easier to read. A telescope and microscope also change the size of

images, making them easier to see while preserving the shape of the original

object. The development of pictures from a camera also uses similarity princi-

ples. As negatives are processed onto photo paper, they expand uniformly in size.

If a picture needs to be enlarged into a poster, then the ratio of the corresponding

sides between the negative and the poster need to be identical. This means that if

the different sizes of photo paper are not similar, then some cropping will occur. 
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Similarity can be used to approximate lengths and distances. For example, on

a sunny day you can use similarity to determine the height of a tall object such

as a flagpole by using just a tape measure. If you measure your height, your dis-

tance from the flagpole, and the length of your shadow, then you will be able to

set up a proportion to find the height of the flagpole. For instance, suppose you

are standing 5 meters away from the flagpole, you are 1.65 meters tall, and you

measure your shadow to be 1.38 meters long (see the figure below). Similar tri-

angles can be used to show that your height corresponds to the flagpole height,

and your shadow length corresponds to the flagpole’s shadow length.

In this case, the proportion f
5+1.38 = 1.64

1.38 can be used to find the height of the

flagpole, f , which equals approximately 7.63 meters (close to 25 feet).

Architects and designers use similarity to create and visualize new buildings.

A miniature two- or three-dimensional model that is a replica of a future building

is often put together during a design phase. It is easier and less expensive to make

changes to a miniature replica of an object than to the object itself, so careful

attention to size and detail is important in model-making. Once the ideas behind

the design of the house are negotiated, the floor plans are passed on to the builders

to replicate the model on a larger scale. Since the actual floor space of the house

is similar to the paper mock-up of the floor plan, the corresponding dimensions

between the real structure and the model are proportional. However, the area com-

paring the house’s floor space to the floor-plan area is proportional to the square

of the ratio of the dimensions. For example, if the house is 50 times larger than

the floor plan, then the area of the house is 2,500 (which is 502) larger than the

floor plan. This area proportion of similar figures is squared, because area is a

measurement of two dimensions. For example, suppose two similar squares have

respective lengths of 2 and 100 cm. The area of the squares would be 4 cm2 and

10,000 cm2, respectively. Even though the ratio of their lengths is 100/2 or 50, the

ratio of their areas is 10,000/4 or 2,500, which is the same as 502. Carpenters can

use this information to determine the amount of wood and carpeting needed for

the floors if they are not given the actual dimensions of the house.

Similarity can also be used to predict the mass of unusually large or even

extinct animals, such as dinosaurs. A scale model of a dinosaur can be used to

predict the actual volume of it, assuming that the ratio comparing the actual

length to the model length is available. Suppose that an accurately scaled model

of a tyrannosaurus with a length of 0.3 meters is used to determine its mass.
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Since an actual tyrannosaurus was about 15 meters long, the ratio of the actual

dinosaur to the model is 50 to 1, because 15/0.3 = 50. Use the density ratio of 
mass

volume to determine the mass of the tyrannosaurus. Most animals and reptiles 

have a density near 0.95 = m
v , so the mass of the tyrannosaurus can be calculated 

once the volume is found. The volume of the actual tyrannosaurus can be calcu-

lated by using the cube of the ratio of the lengths of the actual dinosaur to the

model. The cube of the ratio is used, because volume is a measure of three

dimensions. Therefore the volume of the actual Tyrannosaurus will be 503, or

125,000 times the volume of the dinosaur model. 

You can measure the volume of an irregular object, such as a dinosaur model,

by submersing it in a bucket of water. Place a bucket of water filled to the brim

(and larger than the dinosaur model) inside a larger empty bucket. Drop the

dinosaur model into the bucket of water, and the excess water will spill over the

sides into the empty bucket. Pour the excess water into a graduated cylinder,

which is a tool to measure the volume of water. This volume should be the same

as the volume of the dinosaur model, because the model replaced the same

amount of space in the bucket as the excess water. Suppose that the volume of

the model is 61 milliliters. This means that the volume of the actual tyranno-

saurus was about 125,000 times 61, or 7,625,000 milliliters, or 7,625 liters. Since

density equals mass divided by volume, the equation 0.95 = m
7,625 can be used

to predict the mass, m, of the tyrannosaurus. Note that the units of density are

kilograms per liter, so volume units are in liters and calculated mass units are in

kilograms. The solution to the equation predicts the tyrannosaurus’s mass to

equal approximately 7,243 kilograms, which is about 16,000 pounds. That is the

same as 100 people that have an average mass of 160 pounds. Most football

coaches would like to recruit a tyrannosaurus for their teams!

Similarity is sometimes not used in models, which as a result can cause mis-

conceptions about length and size. Most models of the solar system are inaccu-

rately proportioned so that they can be easily stored, carried, and viewed within

a reasonable amount of space. If a teacher wants to illustrate planetary motion

on a solar-system model, he or she needs to be able to move the planets around

fairly easily, and students need to see all of them. Realistically, however, this

type of model is inaccurate, because the planet sizes vary tremendously and are

spread apart by vastly different distances. For example, if an accurate scale

model of the planets in the solar system were used in a classroom with the sun

at the center of  the room, then the first four planets would be within 227 cm of

the center, and the remaining planets would be stretched out to almost 6 meters

away! The large variability in distances among the planets would make it diffi-

cult to build a movable model that illustrates rotation around the sun. Further-

more, the volumes of the planets vary considerably. Large planets, like Jupiter

and Saturn, have diameters that are about ten times larger than the earth. If the

planets were built to scale, these giant planets would have to be a thousand times

larger than the earth, because the ratio of volumes between similar figures is
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equal to the ratio of the cubes of their lengths. For visualization and instructional

purposes, this would be difficult to create in a hand-held model. It unfortunately

provides misconceptions about the relative sizes and distances among planets in

our solar system.

online sources for further exploration

Map making

<http://www.sonoma.edu/GIC/Geographica/MapInterp/Scale.html>

<http://www.epa.gov/ceisweb1/ceishome/atlas/learngeog/mapping.htm>

Nuclear medicine

<http://www.math.bcit.ca/examples/ary_11_1/ary_11_1.htm>

Scale model of a pyramid

<http://www.pbs.org/wgbh/nova/pyramid/geometry/model.html>

Scale models

<http://www.faa.gov/education/resource/f16draw.htm>

<http://www.pbs.org/wgbh/nova/pyramid/geometry/model.html>

<http://www.americanmodels.com/sscale.html>

Screen ratios

<http://www.premierstudios.com/ratio.html>

<http://www.pbs.org/opb/crashcourse/aspect_ratio/>

Understanding scale speed in model airplanes

<http://www.astroflight.com/scalespeed.html>

▲
▼

▲

SLOPE. SEE LINEAR FUNCTIONS; RATES

▲
▼

▲

SQUARE ROOTS

A square root is the inverse of a squared number. The square root of 49, writ-

ten as 
√

49 or 491/2, is equal to 7, because 72 equals 49. Many real-world rela-

tionships involve square roots. For example, the height of liquid wax in a candle

is directly proportional to the square root of the amount of time a candle has been

burning. This information is useful in the design of candles, because the presence
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of liquid will slow down the burning of the wick. Hence, fatter candles do not

need very long wicks, because they will likely form a pool of liquid as they burn.

Pilots of airplanes and hot-air balloons use square roots to estimate viewing

distances. The viewing distance in kilometers, d, from an airplane on a clear

day, depending on its altitude in meters, a, can be estimated by the equation v =
3.56

√
a. The viewing distance from an airplane to the horizon is perpendicular

to the radius of the earth, forming a right triangle between the airplane, horizon,

and center of the earth (see the figure below). The Pythagorean theorem can be 

used to compare the distances, v2 + 63802 = (6380 + a
1000)2 , using the fact 

that the radius of the earth is 6,380 km. The square-root version of the equation

is approximately equal to this format, since commercial airplanes do not fly

much higher than 10,000 meters. 

Police investigators use square roots at the scenes of auto accidents. They can

estimate the speed of a car by the length of the tire skids and the conditions of the

road. The speed of a car in miles per hour, s, that skidded d feet is s =
√

30fd.

The variable f describes the coefficient of friction of the road. On dry concrete,

this value is about 0.8, and in wet conditions, f is about 0.4. Measuring the length

of the skids will help determine if the offender’s speed was a factor that con-

tributed to the accident.

The period of a pendulum, or the time it takes to move back and forth, can 

be determined by the equation t = 2π
√

l
g , where t is the time in seconds, l is its 

length in meters, and g is the acceleration due to gravity (9.8 meters/second2).

This equation is actually a combination of a couple of equations, g = lw2 and

w = 2π
t , that relate to circular motion and the pendulum’s length, period, and an-

gular velocity w. Notice that the mass of the object at the end of pendulum is not

included in the equation, because all objects will fall at the same rate, regardless

of their mass. The pendulum equation is useful for clockmakers, because a

grandfather clock is designed so that its pendulum arm takes one second to swing

in one direction, or two seconds to swing back and forth. If t = 2 is substituted

into the equation, then the pendulum arm length l will be approximately 1 meter

long.

Using square roots can help a person become a better consumer of art. The

best view of a picture is when the angle, α, from the bottom of the picture to the

top is greatest, as shown in the following figure. An ideal distance, d, to stand
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The Pythagorean theorem can be used

to determine the maximum viewing

distance, v, a pilot has in an airplane

compared with its altitude, a.

Note: this drawing is not to scale.



from a painting is based on how much higher the bottom of the painting is from

a person’s eye level, b, and how much higher the top of the painting is from a per-

son’s eye level, t, according to the equation d =
√

bt.

If the average human is about 67 inches tall, and a large painting is 60 inches

tall, and the bottom is placed about 70 inches from the ground, then b =
70 − 67 = 3, and t = 3 + 60 = 63. Therefore a reasonable place to draw a view-

ing line would be about 14 inches away from the wall based on evaluating

d =
√

3 · 63 ≈ 13.7 inches. This formula can be applied to similar venues, such

as helping you find the best seat in a movie theater.

online sources for further exploration

Best angle of view

<http://jwilson.coe.uga.edu/emt725/Angle.View/Angle.view.html>

Bouncing ball

<http://www.sosmath.com/calculus/geoser/bounce/bounce.html>

Calculating angles in a pyramid

<http://www.math.toronto.edu/mathnet/questionCorner/miter.html>

Distance between two ships

<http://www.nadn.navy.mil/MathDept/cdp/relatedrates/rates.html>

How to compute baseball standings

<http://www.math.toronto.edu/mathnet/questionCorner/baseball.html>

Latitude and longitude

<http://daniel.calpoly.edu/~dfrc/Robin/Latitude/distance.html>

The square root law of inventory

<http://logistics.about.com/industry/logistics/library/blsqrootlaw.htm>

▲
▼

▲
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The optimum viewing angle of a painting,
α, is greatest when the distance a person

stands from the painting, d, is equal to the

square root of the product of the distances

from the edges of the painting to the eye-

level height (d =
√

bt).



STANDARD DEVIATION

The standard deviation is a number that indicates the variability in a set of

data. It is a measure of the dispersion of data in a sample or population. Standard

deviations are used in quality control in business and industry and in the compu-

tation of standard test scores (such as the SAT and ACT). The concept of stan-

dard deviation provides the basis for widely used statistical techniques.

The start of the computation of standard deviation is the deviation about the

mean, the difference of the actual score and mean score. If a college-placement

test has a national mean of 512, and a student has a score of 650, the deviation is

138. Deviations are negative when the score is below the mean.

Even though each deviation tells something about the spread of data, the sum

of deviations is always zero, which gives no overall information about the spread

of the data. To make sure negative deviations do not cancel with positive, statisti-

cians choose to square each deviation. Then they average the squared deviations to

produce a number that indicates how the data is spread out around the mean. The

average squared deviation is called the variance. The square root of the variance is

the standard deviation. There are two formulas for standard deviation. One form  

assumes that the data set is the entire population of cases: σ =
√

Σ(X−µ)2

N , where 

µ is the mean of the data, and N is the number of pieces of data. If the numbers

could be considered a sample from the population, then the mean and standard

deviations would represent estimates of the entire season’s scores. The standard

deviation has a different symbol in this case, and a slightly different formula:

s =

√

Σ(X−X)2

n−1 , where X is the mean of the sample, and n is the sample size.

The standard deviation is used to compute standardized scores for the com-

parison of data from different sets and measures. A standardized score is computed 

as z = X−µ
σ , or the deviation divided by the standard deviation. As a ratio, it has

no units. The standardized score can compare different measures of the same per-

son. Suppose a student had a score of 540 on the SAT-Math and 24 on the ACT

Mathematics. On which did he or she do better? The national mean for SAT-Math 

is 514, with a standard deviation of 113. So zSATM = 540−514
113 ≈ 0.23. The 

national mean for ACT Mathematics is 20.7, with a standard deviation of 5.0. So 

zACTM = 24−20.7
5.0 ≈ 0.66. Therefore she did relatively better on the ACT Mathe-

matics, because she had a greater standardized z score.

Z scores have been used to compare baseball players from different eras.

Does Ty Cobb’s batting average of .420 in 1922 represent better batting than

George Brett’s .390 in 1980? It has been argued that it is difficult for a player

today to hit over .400, because the general quality of players is much higher than

it was in the early days of professional baseball. If you use the standard scores

based on means and standard deviations of baseball players in their respective

eras, Cobb has a z score of about 4.15 and Brett, 4.07. The two stars were equally

outstanding in performance during their respective eras.

SAT and ACT scores are normally distributed, which means that a frequency
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chart or histogram will appear to be bell-shaped. In this type of distribution, there

are some handy “rules of thumb” that use standard deviation to describe the

spread of data. In a normally distributed set of data, about 68 percent of it is con-

tained within one standard deviation of the mean (as shown in the figure below),

95 percent within two standard deviations, and 99.7 percent within three standard

deviations.

The normal curve has two points of inflection where the curve changes from con-

cave-downward, to concave-upward. These are located at ±1 standard deviation

units. The point of inflection at +1 standard deviation is shown in the figure.

The rules of thumb for a normal distribution stop at ±3 standard deviations

from the mean, because almost all of the data is trapped by those limits. That is

not enough for the management goal of “six sigma” quality adopted by many

American businesses. In such cases, the goal is to have fewer than 3.4 defects per

million products. The six sigma, or 6σ, is chosen because 99.99966 percent of

the cases in a normal distribution fall within six standard deviations of the mean.

If that proportion represents defect-free products, then the remainder, 0.00034

percent, represent defects. Such high-quality control standards at six sigma will

likely reduce the number of defects in a product, but at a high cost when an in-

spection fails. Reducing the standards to 99.7 percent defect-free products will

likely save the company money in the long run, unless the company is dealing

with personal health and safety issues. Physicists use a five-sigma criterion in

determining whether a subatomic particle has been revealed. They think that only

a five-sigma result, indicating a 99.99995 percent chance that the result can be

reproduced, is trustworthy and can survive the test of time.

The rules of thumb are often used by manufacturers to design clothing and

furniture that will sell to the broadest audience. For example, an automobile

manufacturer developing an automobile for potential female customers might

design the driver’s seat to fit the heights of most women. To make the greatest

profit, the seat must be as standard as possible. The heights of American women

are normally distributed with a mean of 64 inches, with a standard deviation of

2.5 inches. If the manufacturer has its designers work on a seat that will be com-

fortable for women from 59 to 69 inches tall (two standard deviations above and

below the mean), then the rule of thumb says that the seat would be appropriate

for 95 percent of the women. 

In medical quality-control testing it is difficult to evaluate the effectiveness

of a medical instrument, because many medical measurements such as blood
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About 68 percent of the area under a normal distribution curve is between 

-1 and 1 standard deviations (z scores). 



pressure, glucose content in urine, and cholesterol in blood can have different

distributions based on sex or age. Some electronic sensors have the statistics for

different population groups in memory. When a reading for a particular type of

patient is more than two standard deviations from the mean for his or her group,

the instrument will sound a tone, alerting nurse or doctor to the critical value. A

dynamic instrument that accounts for patient’s variables establishes a more pre-

cise diagnosis of medical problems.

When the standard deviation is computed from statistics on many samples,

such as a standard deviation of ACT composite school averages for many

schools, the standard deviation is called a standard error. Survey statistics in

newspapers are often reported as a range of values, such as in “our survey of 250

randomly selected adults showed that 62 percent of the residents oppose the new

highway. The margin of error was 6 percent.” In most cases, the margin of error

for a reported statistic is two standard errors. The report of the survey results

would be “62% ± 2•Standard Error.” This gives a range of values that is likely

(95 percent certain) to trap the percentage that would have been obtained had the

entire population been surveyed. So the newspaper would be saying, “If the

entire population of residents had been surveyed, there is a 95 percent chance

that the true proportion is between 56 percent and 68 percent.” In the weeks prior

to national and state elections, you will read about polls that indicate which can-

didate is ahead in the race, and whether the candidate has a clear lead. If candi-

dates are separated by two standard errors, the newspaper would project a win-

ner. The sampling of voters as they leave polling booths is a method that

television networks have used to make predictions of winners on their news pro-

gramming shortly after the polls close. However, as the networks found out in the

November 2000 presidential election, it is necessary that samples be carefully

designed to be representative of the population. Had the networks followed the

cautious recommendations of statisticians, they would not have had to make their

embarrassing switches of victory reports from George Bush to Al Gore based on

the controversial voting reports from the state of Florida. 

Statistics computed on samples establish the close connection between stan-

dard deviation and the normal curve. Although the numbers in an entire popula-

tion might not follow a normal distribution, the central limit theorem states that

means of samples from the population will be normally distributed. Further, the

standard deviation of the sample means (standard error of the mean) is the stan-

dard deviation of the population divided by the square root of the sample size.

The central limit theorem is the foundation for inferential statistics, the branch of

statistics that is used to determine whether a new drug is better than older treat-

ments, whether consumers really like the flavor of a new, improved toothpaste,

when an assembly line is producing too many defects, whether students in a

school are not doing well on a state test, and when a stock price is stabilizing.

Pollsters use the central limit theorem to determine how large their samples must

be to reach a desired level of accuracy.
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online sources for further exploration

Baseball

<http://www.stat.ncsu.edu/~st350_info/reiland/350hw3.htm>

Biomedical electronics

<http://www.math.bcit.ca/examples/ary_1_8/ary_1_8.htm>

Bioretention applications

<http://www.epa.gov/nps/bioretention.pdf>

Election polls

<http://www.pollingreport.com/election.htm>

Estimating trees

<http://www.math.bcit.ca/examples/ary_15_8/ary_15_8.htm>

Food technology

<http://www.math.bcit.ca/examples/ary_2_8/ary_2_8.htm>

Gallup polls

<http://www.gallup.com/>

Indiana custom rates

<http://www.agecon.purdue.edu/extensio/pubs/custom_rates.htm>

Mining

<http://www.math.bcit.ca/examples/ary_10_8/ary_10_8.htm>

Petroleum technology

<http://www.math.bcit.ca/examples/ary_13_8/ary_13_8.htm>

Six sigma 

<http://www.isixsigma.com/>

<http://www.fnal.gov/pub/ferminews/ferminews01-03-16/p1.html>

Standard deviation in spreadsheets

<http://www.beyondtechnology.com/tips016.shtml>

▲
▼

▲

STEP FUNCTIONS

A step function is a mathematical relationship that has a graph that looks like

steps. As a result, the function has the same output for multiple input values. For

example, a telephone company may charge you 12 cents a minute for a long-dis-

tance call. A 3.3 minute, 3.7 minute, or 4.0 minute call will be charged 48 cents,

or the price of a four-minute phone call, because the phone rate rounds up for

every fraction of a minute beyond a whole value. In this case, the price of the

phone call in dollars, p, can be determined by the function p = 0.12⌈t⌉, where t
is the length of the phone call in minutes. The ⌈t⌉ indicates that the value for t
should be rounded up to the nearest integer. This type of step function is called a

ceiling function and is sometimes represented by the expression ceil(t). There-
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fore the phone-call function can also be written as p = 0.12ceil(t). Any phone

call between 3.01 and 4.00 minutes will result in the same charge, or any phone

call between 4.01 and 5.00 minutes will result in the same charge, and so on. The

figure below illustrates the price of a phone call as a function of its time.

Other rates that use discrete values for pricing can often be modeled with step

functions. The price to mail a package is dependent on its mass according to a step

function. If the cost to deliver a letter is 34 cents for the first ounce and 23 cents

for each additional ounce, then the function p = 0.23⌈m − 1⌉ + 0.34 describes

the total price in dollars, p, as a function of the mass in ounces, m. This equation

is slightly different than the one for the price of a phone call, because there is a

different rate for the first ounce. The ⌈m − 1⌉ portion of the equation accounts for

the additional price of any mass above one ounce. You can determine this rela-

tionship in the equation because any value of m between 0 and 1 will cause the

quantity ⌈m − 1⌉ to equal 0, meaning that nothing additional to 34 cents will be

added to the cost of postage for mail that is between 0 and 1 ounces.

Consulting and repair rates are often represented by step functions. A visit to

an attorney’s office might be $100 for making an appointment, and then an addi-

tional $150 per hour, or fraction thereof. That means that an hour-and-a-half

appointment would be equivalent to a $400 fee—$100 for showing up and $300

for two hours of work. Sometimes rates are divided into smaller increments of

time, such as with automobile repair. Some auto shops may charge $80 per hour,

and make charges to the next one-half hour. That means that a car that has been

repaired for an hour and 13 minutes will be charged for 1.5 hours of labor, or

$120. As a step function, the repair cost in dollars, r, in terms of the number of

hours of labor, h, is represented by the equation r = 40⌈2h⌉. This equation needs

to consider the number of half-hour intervals, since the overall charge is rounded

to the nearest half-hour. The 2h in the equation describes the number of half-

hours of labor, and the 40 represents the half-hour rate of $40.

The cost of a taxicab ride also relates to a step function in terms of the dis-

tance traveled. Often there is an initial amount charged for getting in the cab, like

$2.70, and then an additional fee, like $0.30, for every block or fraction of a

block traveled. In this case, a 9.3-block cab ride would cost 2.70 + 0.30⌈9.3⌉, or

$5.70. Notice that the distance traveled would be equivalent to 10 blocks, since

there is not a specific fee for 0.3 blocks. In fact, in most cases involving fees or

costs paid by the consumer, rates are usually rounded up with a ceiling function.
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when the fee is 12 cents per minute or any fraction thereof.



It is easier to charge someone for partial time or expense than to give that person

an added bonus.

A case in which expense is rounded down is in the payment of hourly wages.

If an employee works 40.7 hours in a week, then he or she might only get paid

for 40 hours time, since she did not put in a full 41 hours. A step function is used,

because it is easier to pay employees at an hourly rate than a minute rate, as well

as to encourage employees to follow a tight schedule. In this situation, the step

function that rounds down is called a floor function, or the greatest integer func-

tion. If the employee earns $12 per hour, then his or her weekly salary payment

in dollars, s, as a function of the number of hours worked, h, is s = 12[h]. The

[h] is the symbol to represent the greatest integer value of h, which in essence

rounds the value down to the nearest integer. This equation can equivalently be

written as s = 12⌊h⌋ or s = 12 floor (h) so that they include symbols describ-

ing the floor function.

A floor function has also been used to identify the day of the week for any

date on the calendar since 1582. The remainder of the division in the equation 

w =
d+2m+

[

3(m+1)
5

]

+y+
[

y

4

]

−
[

y

100

]

+
[

y

400

]

+2

7

is used to predict the day of the week, w, where Sunday is the first day of the week

and Saturday is the seventh or zero day. The variable d represents the day of the

month, m represents the number of the month, and y represents the year. An

exception to the value of m is in January and February, which are the month num-

bers according to the previous year. That means that January is represented by 13,

February by 14, March by 3, April by 4, and so on. For example, February 16,

1918 occurred on a Tuesday, because the remainder is equal to 3 when d = 14,

m = 16, and y = 1918 are substituted into the equation.

online sources for further exploration

Calendars

<http://astro.nmsu.edu/~lhuber/leaphist.html>

<http://www.smart.net/~mmontes/ushols.html>

Find hourly rates

<http://www.allfreelance.com/>

Houston Lighting and Power calculator 

<http://www.energydotsys.com/lgscalc.htm>

Postage rate calculators

<http://postcalc.usps.gov/>

<http://wwwapps.ups.com/servlet/QCCServlet [updated 4/26/01]>

<http://www.federalexpress.com/us/rates/>

Telephone rate calculator 

<http://www.geocities.com/WallStreet/5395/ratecalc.html>

▲
▼

▲
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SURFACE AREA

There are more uses of surface area than determining how much paint to buy

to paint a house. The mathematics of surface area determines how objects retain

heat, how cans are cut from sheets of metal, how cells exchange fluids, and how

animal metabolism relates to size. Two important mathematics questions about

surface area are: “What shapes make surface area a minimum for a specific vol-

ume?” and “For the same shape, how do volume and surface area change as the

figure is scaled up or down?”

The first question has some simple results for common figures. The cube is

the solid that minimizes surface area for a specific volume in a prism. The sphere

is the solid that minimizes surface area for any volume. This last result shows up

in soap bubbles or oil drops. In the absence of other forces, these will be spheres.

Packaging companies have additional minimization issues to handle when

they determine how a package such as a cereal box or a soda can should be con-

structed from raw materials. The desired volume is not the only issue they must

consider. If the product is going to grocery stores, then it has to have standard

dimensions. The shape of the product may determine or restrict the dimensions

of the package. If the carton is glued together, then additional surface is needed

for the glued regions. Finally, most packaging is cut from one piece of flat mate-

rial, so the engineer has to decide how the cuts will be made to minimize waste.

Some of the issues have natural solutions. For example, the first illustration in

the figure below shows a wasteful method of cutting circular-can lids from sheets

of aluminum. The middle diagram shows that stacking the circles like the cells

in a beehive would produce four more lids from the same sheet of material. The

complexity of cutting single cartons is shown by a flattened box of bandages in

the last illustration. Many of these cartons must be cut from large pieces of

glazed cardboard.

Nature has solved the minimization issue in remarkable ways. In a beehive,

each cell is a regular hexagonal prism, open on one end and with a trihedral angle

at the other. The trihedral angle must have a consistent geometry, because the

bees build identical cells on the other side of one wall of cells. It is believed that

this shape developed because it is strong and because it uses the least amount of

inefficient way of cutting cutting circles with less pattern for cutting a bandage
circles (18 circles) waste (22 circles) box

Cutting shapes from sheets of material that will be used in packaging.



wax (surface area) for the necessary storage area (volume of the cell). The sur-

face area of the cell is given by S = 6sh − 3
2s2 cot(θ) +

(

3s2
√

3
2

)

csc(θ), where

S is the surface area, s is the length of the sides of the hexagon, and h is the

height. The values of s and h are constant for specific species of bees. Using cal-

culus, the angle that requires the least volume of wax for cells has a size of 55°

regardless of s and h. Measurements of the actual angles in hives rarely differ

from this value by more than 2°.

Nature sometimes needs to maximize surface area. The interiors of your

lungs are networked with air sacs (alveoli). The sacs are formed from very thin

membranes that allow oxygen to pass from the air in the lungs to your blood, and

carbon dioxide to move from your blood to the air that will be exhaled. The sur-

face area covered by a human’s skin is about 2 square meters, but the total sur-

face area of the alveoli is about 100 square meters! The massive surface area is

needed to provide sufficient exchange of the two gasses within the time of one

breath. Similarly, fish have gills that offer substantial surface membranes

between the water and the bloodstream so that they can quickly exchange the car-

bon dioxide in blood for oxygen from the water. 

Some common household tasks favor larger areas. If you want to dry wet

clothes, you should spread them out rather than rolling them into a ball. If you

want to cool a drink fast, crush an ice cube into the beverage rather than drop-

ping a solid cube into it.

The fundamental law of similarity asserts that when you scale up (or down)

a solid figure by a scale factor k, you scale up the surface area by k2 and the vol-

ume by k3. If you build a car model that is a 1:24 scale model of a real car, that

means you are multiplying each dimension of the car by 1/24. The surface area

would be changed by a factor of (1/24)2, and the volume by (1/24)3. If the model

and the real car were made from the same materials, then the weight scale would

match volume. Weight would be scaled down by (1/24)3. (See Ratio.) Because

scaling has such a dramatic influence on surface area and volume, larger animals

have an easier time maintaining their metabolism levels than do smaller ones.

This can be shown by examining the ratio of volume to surface area for a series

of cubes, starting with 1 cm on a side through 1 meter on a side.

side (cm) area (cm2) volume (cm3) ratio of volume to area

1 6 1 1/6 ≈ 0.17

3 54 27 27/54 ≈ 0.5

10 600 1,000 1,000/600 ≈ 1.67

50 15,000 125,000 125,000/15,000 ≈ 8.33

80 38,400 512,000 512,000/38,400 ≈ 13.33

100 60,000 1,000,000 1,000,000/60,000 ≈ 16.67

Ratio of volume to area for different cubes.

134 SURFACE AREA



An animal loses heat through external surface area. The energy needed for

basic metabolism is roughly proportional to the volume of the animal. An animal

that has a large volume with respect to its surface area will have an easier time

maintaining its metabolism. A large animal will have a lower heart rate and food

requirements that are a fraction of its weight. An animal that has a small volume

compared with surface area will have to work hard to replace the heat lost. We

can expect small animals to have rapid heartbeats and daily food requirements

that may be multiples of the animals’ weight. A polar bear is compact: Its large

bulk means that it will have a large volume-to-area ratio. A hummingbird has a

volume-to-surface-area ratio close to 0.5. It loses heat rapidly and hence must

have a rapid heartbeat and relatively large food intake to maintain its metabolism.

Perhaps that is one of the reasons that there are no hummingbirds in the Arctic. 

Of course, animals aren’t cubes. A human being is not packaged like a polar

bear. We have hands that are very useful, but in winter they provide more surface

area proportional to the volume they contain, so the wise person will wear mit-

tens instead of gloves to reduce the heat loss. 

The volume-to-surface-area ratio is a factor at the microscopic level. Cells

cannot benefit from larger volume-to-surface-area ratios. Since energy must come

through the cell membrane, small ratios are an advantage. The compensation

made by plant cells is that larger plant cells maintain less of a spherical shape

(more cylindrical), while small plant cells are close to spherical. With a less spher-

ical shape, the larger cells maintain an advantageous volume-to-surface-area ratio.

online sources for further exploration

Camping (wearing gloves)

<http://www.princeton.edu/~oa/winter/wintcamp.shtml>

Figuring out how many rolls of wall covering you need

<http://www.homerepairworkshop.com/scripts/hrw.mv?ACTN=DSPLY&ART=146>

Lead paint concentrations

<http://www.cpsc.gov/cpscpub/pubs/lead/leadapp2.html>

Medicinal tablet surface area

<http://www.micromeritics.com/sa_gem_a91.html>

Minimum surface area of a can

<http://jwilson.coe.uga.edu/emt725/MinSurf/Minimum.Surface.Area.html>

Painting

<http://www.resene.co.nz/archspec/datashts/olsurf.htm>

Soap bubbles

<http://www.exploratorium.edu/ronh/bubbles/bubbles.html>

<http://micro.magnet.fsu.edu/featuredmicroscopist/deckart/index.html>

Size effects on airplane lift

<http://www.grc.nasa.gov/WWW/K-12/airplane/size.html>

Theory of flight

<http://web.mit.edu/16.00/www/aec/flight.html>
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Ultracapacitors

<http://www.powercache.com/products/technical.html>

Unfolding the human brain

<http://scientium.com/drmatrix/sciences/math.htm>

▲
▼

▲

SYMBOLIC LOGIC

The nineteenth-century mathematician George Boole is the acknowledged

founder of modern symbolic logic. He recognized that an algebra of logic could

be developed following the model of the algebra of real numbers. The variables

of the algebra are statements that have one of two values: TRUE (1) or FALSE

(0). The fundamental operations are NOT, AND, and OR, as opposed to the num-

ber operations of opposite, multiplication, and addition. The algebra of logic

underlies decision-making, modern electronics, library searches, and branching

in computer programs.

Computer software is built on logical structures. If a market analyst had to

select all of the California residents who were female from a computer database

of customers in the United States, the status of each person in the database would

be evaluated with an expression such as “this person is from California and this

person is a women.” Sarah Jones (female) from San Francisco would evaluate as

TRUE for both parts. Amy Redfox (female) from Arizona would be evaluated as

FALSE AND TRUE. Since Amy misses one criterion, she should be excluded

from the final set. Hence the value for Amy should be FALSE AND TRUE =

FALSE. Although there may be millions of people in the database, each one falls

into only one of four categories of logic. If you use a spreadsheet program, you

can build truth tables that show the relationships among NOT, AND, and OR for

these four cases. In the table below, all possible cases of statements p and q are

listed using the words TRUE and FALSE. Each case has been evaluated with the

spreadsheet’s functions for logic. For example, the spreadsheet formula in cell

D2 is = AND(A2,B2). The formula in cell E4 is = OR(A4,B4). The last column

gives truth values of an expression that uses of all of the Boolean operations.
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(p AND q)

p q NOT p p AND q p OR q OR (NOT q)

True True False True True True

True False False False True True

False True True False True False

False False True False False True

Truth tables from Microsoft Excel. 



Each of these has a representation in an electrical circuit. The diagram below

is a circuit showing two ON–OFF switches p and q. The circuits pass through

AND, OR, and NOT connectors that act on the current as though it were a logic

statement, with ON represented by TRUE, and OFF by FALSE. When will the

light bulb be on? The logical expression corresponding to the circuit is in the last

column of the spreadsheet in the previous table. The light is off when p is FALSE

(OFF) and q is TRUE (ON). All other situations result in the light being ON.

Two Boolean expressions that yield the same truth tables are equivalent.

When complex circuits are expressed as Boolean algebra statements, the rules of

logic can be used to simplify the circuit to one that is logically equivalent. The

result is lower cost. Some circuits are used so frequently that they are designed

as “new” Boolean operations. One of DeMorgan’s laws is that (NOT p) OR

(NOT q) is equivalent to NOT(p AND q). The first form would require a circuit

with three logic switches. The second requires only two. The result is usually

combined in a switch called a NAND switch. There is also a NOR switch that

computes NOT(p OR q).

Computers represent numbers in binary form, whereby the numbers 0, 1, 2, 3,

4, 5, 6 look like 0, 1, 10, 11, 100, 101. The digits in a base 2 number can be stored

as a sequence of memory positions (bits) that are on (1) or off (0). Addition rules

for three cases of digit pairs are easy: 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1. The third

case requires a “carry”: 1 + 1 = 10. Circuits called “half-adders” perform the addi-

tion of two bits to produce a sum bit and a carry bit. The addition of multidigit

numbers requires many half-adders.

Boolean operators are the fundamental connectors in written commands that

perform searches on the Internet or in computer-based library card-catalogs.

Inquiries on such databases are called “Boolean searches.” The set operations

of union and intersection are used in place of OR and AND, respectively, in set

theory.

The example of the light circuit assumes that electricity flows through a cir-

cuit instantaneously. Circuits that represent sequential firing of switches require

that the algebra include a parameter for time. Although this complicates the oper-

ations, a time parameter makes the Boolean operators effective for describing

neural nets in the brain and spinal cord, as well as simplifying computer circuits

that require timed pulses of electricity.

Boole suggested that the truth values of 1 and 0 could be extended to proba-

bilities of a statement being correct. In the late 1960s his idea was formalized in

the field called fuzzy logic. The algorithms for fuzzy logic related to the binary

logic shown here, but have been more successful in providing answers to prob-

lems that start with vague or contradictory information. Applications have in-
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cluded the computer recognition of handwritten Japanese Kanji characters,

home-use blood-pressure indicators, and recognition of trends in masses of infor-

mation on stock prices. Fuzzy logic procedures appear in such diverse applica-

tions as determining the length of hospital stays, detecting insurance fraud,

deciding where to drill for oil, and selecting the television slot time that would

be the best for an advertiser.

online sources for further exploration

The DOIT Information Science online course (select “hardware”)

<http://doit.ort.org/course/intro.htm>

Boolean search vocabulary

<http://www.netstrider.com/search/logic.html>

<http://www.health.library.mcgill.ca/eguides/boolean.htm>

Logic in the computer language C

<http://www.learn-c.com/boolean.htm>

Logic in humor: Monty Python’s argument clinic

<http://www.infidels.org/news/atheism/sn-python.html>

Logic in rhetoric

<http://www.sjsu.edu/depts/itl/graphics/main.html>

Fuzzy logic

<http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/sbaa/article1.html>

▲
▼

▲

SYMMETRY

Many everyday objects are symmetrical. Something is reflection-symmetric

if it is divided into two equal pieces so that one piece can fold directly over the

other piece. The folding line is called the line of symmetry, and is also a reflect-

ing line. Numerous types of insects are reflection-symmetric, such as butterflies

and ants. 

Human faces are nearly reflection-symmetric, but no one is perfect! Seldom

are human feet perfectly symmetrical, since one foot is typically slightly larger
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The wings of butterflies are reflection-

symmetric with their bodies.



than the other. However, shoes are manufactured to be symmetrical because the

same foot is not larger on every person nor is the larger foot uniformly larger

among people. Hence, one foot may have a tighter fit in one of the shoes.

Some objects are designed to be reflection-symmetric so that they can bal-

ance and have more support. For example, airplane engines and wheels are

placed equidistant from the fuselage to divide equally their mass and power. Cer-

tain merchandise might be intentionally built not to be reflection-symmetric if it

is customized to meet a person’s needs. For instance, scissors are made especial-

ly for right-handed or left-handed people. A left-handed person will find it more

difficult cutting with a right-handed pair of scissors.

Many kites are reflection-symmetric, because they have a cross beam that is

a perpendicular bisector of the other cross beam, as shown in the following fig-

ure. The perpendicular bisector then becomes a line of symmetry that divides the

kite into two equal pieces.

An object is rotation-symmetric if one of its pieces can be rotated around a

point so that it is congruent with its other piece(s). For example, some flowers

are rotation-symmetric, because their pedals are uniformly distributed, as shown

below. 
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Shoes are reflection-symmetric. The size

and shape of the soles of each shoe match

when they are placed on top of each other.

The cross beams in a kite divide it in

equal pieces and provide support when

the kite is in the air.

The pedals of a flower are rotated around

its center and are evenly spaced apart.



Some items are constructed to be rotation-symmetric so that they can be use-

ful at multiple angles, or provide an equal distribution. For example, wrenches can

turn bolts at many different positions, and screwdrivers can twist screws continu-

ously. An eggbeater is equally productive at all of its angles when mixing cookie

batter. The blade at the bottom of the lawn mower cuts the grass evenly. A fan

helps circulate air continuously and equally. Playing cards can be held either right-

side up or upside down. A quarterback can throw a smooth spiral to optimize the

distance of a throw because a football is shaped symmetrically. 

An object that is intentionally produced so that it is not rotation-symmetric

sometimes serves a unique purpose, such as that it can only be used in one posi-

tion or does not want its mass distributed equally. For example, a knife is intended

to be held by its handle; a gun can only be fired in one direction; and a pitcher of

water has a handle and lip to provide more support and smoother pouring. 

online sources for further exploration

Frieze patterns

<http://www.ucs.mun.ca/~mathed/Geometry/Transformations/frieze.html>

Occupations

<http://www.kitezh.com/symmetry/>

Oriental carpets

<http://mathforum.org/geometry/rugs/>

Symmetry activities

<http://www.camosun.bc.ca/~jbritton/jbsymteslk.htm>

Symmetry and the shape of space

<http://comp.uark.edu/~cgstraus/symmetry.unit/>

Symmetry around the world project

<http://www.schools.ash.org.au/stkierans-manly/Classes/Yr6/6B/Symmetry/>

Symmetry, crystals, and polyhedra

<http://www.uwgb.edu/dutchs/symmetry/symmetry.htm>

Symmetry in physics

<http://www.emmynoether.com/>

Symmetry point groups

<http://newton.ex.ac.uk/people/goss/symmetry/>

Symmetry project

<http://www.stleos.pvt.k12.ca.us/StLeosSite/classes/Seventh/realworldgeometry/

SYMMETRY/symindex.html>

Types of trusses

<http://www.trussnet.com/Resources/Basics/types.cfm>

Wallpaper groups

<http://www.clarku.edu/~djoyce/wallpaper/>

▲
▼

▲
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TANGENT

The term tangent can be used to describe a function (see Periodic Functions)

or a ratio in trigonometry applications (see Triangle Trigonometry). A geomet-

ric tangent is a segment or line that locally touches a curve or figure at one point,

but does not pass through the curve at that location. For example, y = x3 − 3x2

+ 2x − 7 has a tangent of y = 2x − 11 at the point (2,–7), as shown below. 

The slope of a tangent line represents the derivative of a function at a point.

This value is the same as the instantaneous rate of change of an object with vary-

ing rate. For example, the number of bushels, b, of corn removed in a field can be

modeled with the function b = 50 − 50e−0.08h , where h is the number of hours

past 8:00 AM. The rate of productivity during any hour of the day can be deter-

mined by evaluating the derivative with a specific value of h, which is the same

as the slope of the line tangent to the curve at that point, as shown in the figure

below. Without the derivative, the slope of the tangent line can be approximated

by finding the slope of a secant line that contains two points that are extremely

close to the point of tangency. For example, h = 4 at 12:00 PM. The production

rate at noon can be approximated by the slope of the line between 11:59:59 and

12:00:01. These times should be converted into decimals so that they can be sub-

stituted into the equation. Since there are 3,600 seconds in an hour, the difference

of 1 second from 12:00 PM will be measured as 1/3600, or approximately 

0.000278 hours, from h = 4. Using the slope formula, m = y2−y1

x2−x1
, the slope of

the tangent is 

m ≈ b(4.000278)−b(3.999722)
4.000278−3.999722 ≈ .001615

.000556 ≈ 2.9 bushels per hour .
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A line can be tangent to many types of curves, including geometric shapes and functions.

A line tangent to a
circle at point C.

A line tangent to the function
y = x3 – 3x2 + 2x – 7 at (2,–7)

The slope of the tangent line can predict the

productivity rate at a particular moment in time.



At this rate, it would seem appropriate to take a break so that workers can rejuve-

nate for the afternoon.

Besides worker productivity, the slope of a tangent line can help determine

the speed of an object, the location where business profits are at a maximum, the

hourly rate for business consulting, the moment when ticket sales for a particu-

lar movie have declined rapidly, and many other applications about rates that can

be modeled with functions (see Rates).

Tangents are also used in applications related to circles. For example, radio

signals will reach a distance from the antenna on the tower to the horizon. The

visible sight to the horizon represents the point of tangency, where no other parts

of the earth can be seen. Since a line tangent to a circle is perpendicular to its

radius, this distance can be determined using the Pythagorean theorem. A radio

antenna that is 200 meters tall can have a signal that reaches a distance of approx-

imately 50 km. Since the radius of the earth is approximately 6,380 km, the equa-

tion s2 + 6, 3802 = 6, 380.22 is used to find the signal radius, s, based on the

geometric representation depicted below.

An object released from a circular-motion path will leave in a straight-line

tangent to the circle at the point of release. For example, a discus thrower spin-

ning in a circle will throw the disc out towards the open field in a straight path

after she releases the weight from her hand, as shown below. When a cowboy

spins a lasso in a circular path, and then releases his grip, the rope will travel in

a straight path towards the calf that he is trying to capture.
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A cross-sectional view of the earth that

illustrates the broadcasting distance of

a radio antenna—the distance from the

top of the tower to the horizon. Note

that the diagram is not drawn to scale.

A discus thrower rotates rapidly to

add momentum to a throw. Even

though the thrower is rotating as she

releases the discus, the projectile will

be along a straight path.



The smoothness in sidewalk curves is designed using common tangents from

arcs on different circles. Without the use of tangents, curved sidewalk paths

would have jagged corners, as depicted as follows.

Belts that operate machinery, as shown in the figure below, are wrapped

around circular wheels that keep the belts in motion as they rotate. Since the belts

are tangent to both circles, they can smoothly cycle around the wheels without

jumping or falling off.

online sources for further exploration

Centripetal force

<http://www.glenbrook.k12.il.us/gbssci/phys/Class/circles/u6l1c.html>

<http://regentsprep.org/Regents/physics/phys06/bcentrif/default.htm>

Curved mirrors

<http://www.math.montana.edu/frankw/ccp/calculus/deriv/mirror/learn.htm>

Eliminating the discharge snub pulley

<http://www.mineconveyor.com/snubhead.htm>

Ferroelectric complex oxides

<http://www.sas.upenn.edu/chem/gallery/phys/rappe.html>

Introducing the ellipse (flashlight)

<http://www.geocities.com/CapeCanaveral/Lab/3550/ellipse.htm>

Selection and installation of conveyer belt scales

<http://www.rocktoroad.com/selection.html>

Surfing

<http://www.ies.co.jp/math/java/calc/doukan/doukan.html>

▲
▼

▲
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sidewalk curves with nontangent arcs of circles sidewalk curves with tangent arcs of circles

Smooth curves in sidewalks are created with tangent arcs of circles.

Moving belts remain tightly on spin-

ning wheels, because they are tangent

to both circles at both locations.



TRANSLATIONS

A translation is a shift of points over the same distance and in the same direc-

tion. When you slide a checker piece across a game board from one square to

another, you are performing a translation. A home run in baseball represents the

hitter’s four translations: home plate to first base, first to second, second to third,

and third to home. The carpet design that is produced in hundreds of yards of a

carpet roll represents many translations of a single design. Musicians who trans-

pose a piece of music down to the range of a singer are performing a translation.

Translations in the coordinate plane can be expressed by the addition of coor-

dinates. The following figure shows the translation of the plane by the translation

6 right and 2 down. The translation can be expressed as an ordered pair (6,–2),

and the transformation by addition of ordered pairs. This is shown on the draw-

ing as the movement of a triangle. Every point (x, y) in the preimage of the tri-

angle will be translated 6 right and 2 down to a corresponding point (x′, y′) in

the image triangle. This gives the equation (x, y) + (6,-2) = (x′, y′). Applying

this to the vertex (-3, 4) gives (-3, 4) + (6,-2) = (3, 2) as shown. Applied to the

vertex (-5, 1) gives (-5, 1) + (6,-2) = (1,-1). The picture shows that the corre-

sponding vertex in the image triangle is (-1, 1).

Translations change equations of functions in a systematic fashion. If a graph

of a function y = f(x) is translated by (h, k), the resulting graph will be the

function y − k = f(x − h). If you translate a parabola y = x2 by (3,-2), the

resulting graph has the equation y − (-2) = (x − 3)2, or y = x2 − 6x + 7.

Translations apply to three-dimensional figures and functions in the same way as

they do in two dimensions.

The language of translations depends on the application. Translations that

represent moves of chess pieces can be indicated by the column or rank (labeled

with letters in the picture below) and rows or files (labeled with numbers).
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The translation (slide) of a triangle by 6 right

and 2 down, (x, y) + (6,-2) = (x′, y′).

Coordinate system in chess.



Coordinate notation indicates the starting square for the piece and the ending

square. The white knight can move B1-C3. This represents the translation, or

move, of the knight. Chess players keep track of games and communicate with

distant players using this coordinate system or the similar algebraic system.

When you sing “Frere Jacques” or “Row, Row, Row My Boat” with other

people, it is likely that you separate into groups. When the first group finishes the

line “Row, row, row my boat, gently down the stream,” the second group will

start singing. When it finishes the first line, the third group will start. Meanwhile,

the first two groups continue singing. Songs that are melodious when the start is

shifted by line are called rounds. The shift is a translation in time.

Shifts in musical keys are called transpositions. Shown below is a four-note

theme from a Mozart symphony in C major transposed down to G major. Each

note has been shifted six piano notes down.

Translations have been used to build patterns in painting, architecture, weav-

ing, and ceramics from ancient Greeks to medieval Celts to contemporary Acoma

Pueblo potters in New Mexico. The basic ribbon pattern is based on repeated

translations of a simple design (see the left figure below). Another design is

based on translating the basic figure, then reflecting it. This is called a glide

reflection (right figure, below). Translations, rotations, and reflections of “seed”

patterns are fundamental in designing quilt patterns.

The simple translation of a simple seed figure, as in the left illustration, is the

basis of periodic functions. A seed, such as the two nodes of the sine function

from 0° to 360° can be translated in 360° moves to create the full periodic func-

tion of the sine. (See Periodic Functions.)

online sources for further exploration

Art

<http://hometown.aol.com/Cyrion7/celtic/index.htm>

Music

<http://www.musictheory.halifax.ns.ca/20key_trans.html>

▲
▼

▲
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Transposition from C major to G major.

Left: A translation pattern from Pueblo pottery. Right: A glide reflection—

a translation alternated with a reflection.



TRIANGLE TRIGONOMETRY

Trigonometry can be used to find unknown lengths or angle measurements.

In a situation involving right triangles, only a side length and an angle measure-

ment are needed to determine the length of an object. This information is useful

to engineers, because they can find large or hard-to-measure distances without

having to measure them. For example, the height of a flagpole or a tall building

can be determined using a measured distance from the pole and an angle of ele-

vation from the ground (see below).

Suppose you measure a distance 10 meters away from a flagpole along the

ground. You record an angle of elevation at that point equal to 40°, as depicted.

In right-triangle trigonometry, one of the following three ratios can be used to

find the flag height of the poll:

sin θ = opposite
hypotenuse cos θ = adjacent

hypotenuse tan θ = opposite
adjacent .

In this case, tan θ (pronounced tangent) should be used, because the opposite

side from the angle of elevation θ is unknown (the height of the flagpole), and

the adjacent side is the distance along the ground of 10 meters. Therefore the

height of the flagpole, approximately 8.4 meters, can be found by solving the

equation tan 40◦ = flagpole
10 .

Sometimes the angle of elevation is recorded from an object above the ground,

such as a transit sitting on a tripod, as illustrated. If the angle measurement is not

taken from the ground, then the height of the tripod will need to be included in the

final calculation. In this case, if the transit is 1.5 meters off of the ground, then the

angle of elevation would be approximately 35° (see the following figure). 

The missing length will be approximately 6.9 meters, after setting up an

equation using the tangent function, tan 35◦ = length above transit
10 . To find the 

complete flagpole length, the height of the transit will need to be added to this

calculation in order to obtain the same answer calculated earlier.
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The height of a tall object, such as a flagpole,

can be determined with trigonometry by

measuring a distance along the ground and

an angle of elevation.

Engineers use transits to measure

angles of tall or hard-to-reach objects.



Right-triangle trigonometry can be used to determine an unknown angle

based on two lengths. For example, the navigator of a ship will try to minimize

the traveling distance by adjusting the direction of the boat to account for the

water’s current. If the current is moving parallel to the waterfront, then the speed

of the boat observed from land will be greater due to the push from the current.

Suppose that the ship is moving perpendicular to the shore at 40 feet per second

and is recording a land speed of 42 feet per second. 

The current will push the boat off course if it is trying to reach a destination

directly across the river. Using the cosine of the angle cos θ, the ship’s navigator

can determine the angle in which to rotate the boat so that it does not move off

course. The cosine function is used in this case, because the two measurements

known are the adjacent (the boat speed) and hypotenuse (the land speed) sides of

the right triangle. Substituting the given values in this relationship, the unknown 

angle of 17.8° can be found by solving the equation cos θ = 40
42 . To find an angle 

measurement, the inverse cosine of the ratio, or cos−1(40/42), needs to be

entered on the calculator. This means that if the boat moves straight towards its

journey, it will actually veer off course by 17.8°. If the boat is still headed straight

without accounting for the current, it will veer almost one-third of a mile off

course for every mile traveled. To avoid this problem, the ship’s navigator will

have to turn the boat 17.8° away from the perpendicular path and against the cur-

rent in order to travel directly across the river.

Applications of right-triangle trigonometry also exist in areas outside of sur-

veying and navigation. Air-traffic control at small airports must establish the

cloud height in the evening to determine if there is enough visibility for pilots to

safely land their planes. A light source directed at a constant angle of 70° towards

the clouds situated 1,000 feet from an observer, and the observer’s angle of ele-
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Boats need to turn an angle by θ against the current

in order to account for the force of it so that they can

head in the most direct path towards the shore.

A transit can be used to measure the angle of elevation to help

determine the height of a tall object, such as a flagpole. The

sum of the height of the transit and the leg of the right triangle

along the flagpole represents the total height of the flagpole.



vation θ to the spotlight in the clouds, are sufficient information to determine the

cloud height (see below). 

In this situation, the equations tan θ = h
y , tan 70° = h

x , and x + y = 1, 000

can be used to find the cloud height, h. Planes can safely land if the cloud height

is above 1,000 feet, with horizontal ground visibility of at least three miles.

The pilot can also use right-triangle trigonometry to determine the moment

when a plane needs to descend towards the airport. If the plane descends at a large

angle, the passengers may feel uneasy due to a quick drop in altitude and also

may not adjust well to changes in pressure. Consequently, the pilot tries to antic-

ipate the opportunity to descend towards the airport at a small angle, probably

less than 5°. Based on the plane’s altitude, air-traffic control at the airport can

determine the point at which the plane should begin to descend. With a descent

angle of 3° and altitude a, the plane should start its approach at a distance of
tan 3◦

a feet away from the airport, assuming that the plane descends at the same 

angle until it reaches the ground.

Construction workers can determine the length of a wheelchair ramp based

on restrictions for its angle of elevation. For example, suppose an office needs to

install a ramp that is inclined at most 5° from the ground. If the incline is too

great, it would be difficult for handicapped people to move up the ramp on their

own. Based on this information, the architect and construction workers can deter-

mine the number of turns needed in the ramp so that it will fit on the property

and stay within the angle-of-elevation regulations. In addition to wheelchair

ramps, a similar equation can be set up to determine the angle by which to pave

a driveway so that an automobile does not scrape its bumper on the curb upon

entering and leaving.

All triangle applications finding unknown sides or angles, however, are not

always situated in settings where a right triangle is used. In these cases, either the

law of sines or law of cosines can be applied. One example of applying the law

of sines is to find the height of a hill or a mountain, since it is unlikely that one

will be able to find the distance from the base of a hill or mountain to its center,

as shown in the following figure.

The law of sines states that the ratio of the sine of an angle to the side length

of its opposite side is proportional for all opposite angle and side pairs. That is,

in triangle ABC, sin A
a = sin B

b = sin C
c . If a person measures an angle of eleva-

148 TRIANGLE TRIGONOMETRY

Determining the cloud height.



tion from the base of the hill to its peak, and then repeats the measurement at a

given distance away, the law of sines can be used to find the height of the hill.

Actually, it can first be used to find the length along the side of the hill, and then

right-triangle trigonometry can be used to find the hill’s height. In this case, a

surveyor takes measurements c = 1, 000 feet apart and measures angles of ele-

vation to the tip of the hill equal to m < B = 75° and m < A = 43°. The fol-

lowing equation to find the length alongside the hill, a, can be set up using the 

law of sines: sin 32◦

1,000 = sin 43◦

a .

The 32° angle opposite the 1,000 foot distance can be found by using the fact

that the sum of the angles in a triangle is equal to 180°. This length of a, approx-

imately 1,287 feet, can help engineers determine the amount of railway needed

to build a funicular to transport materials, or the amount of cable needed to build

a gondola line for skiing. Since a right triangle is in the diagram, right-triangle

trigonometry can be used to find the hill’s height. Solve the equation sin 75° =
h

1,287 to determine the height of the hill, h, which is approximately 1,243 feet.

That is a length equal to about four football fields, but straight up in the air!

The law of cosines is a theorem used in triangle trigonometry to find the

measurement of a side when two sides and an included angle are given, or to find

the measurement of an angle when three sides are given. For example, a public-

works contractor can determine the amount of cement needed to pave a new road

that intersects two other intersecting roads in town (to form a triangle), as shown

below. 

In this case, the contractor needs to determine the angle formed between the

existing roads, m� C , and the location of the intersection of the other two roads

in order to predict the distance of the new road. Since the distance traveled is pro-

portional to the amount of cement used, the formula c2 = a2 + b2 − 2ab cosC
will help determine the amount of cement needed to connect the roads, where a,

b, and c are sides of the triangle (the length of the roads), and C is the angle in-

cluded between the existing roads a and b. A similar type of investigation would

also be needed for bridge designers or tunnel developers.
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The height of a hill can be determined

using the law of sines and right-triangle

trigonometry by measuring the angles of

elevation at points A and B, and the dis-

tance between points A and B.

The length of a newly paved road can be

determined using the law of cosines, given

the length of two adjacent roads and angle

C—the angle between the existing road.



Triangle trigonometry has many other applications that help find unknown

lengths or angle measurements. For instance, paintings, motion pictures, and

televisions have ideal viewing distances in order to create the greatest possible

image from the eye. The triangle is formed between the view and the top and bot-

tom (or the sides) of the viewing object.

Astronomers use triangle trigonometry to determine distances and sizes of

objects. For example, the distance from the earth to the moon, and earth to the sun,

can be found by identifying their angles from the horizon during an eclipse. The

height of a solar flare can also be determined by measuring the angle from the sun

to the tip of the flare, and using distance information about the earth and sun.

online sources for further exploration

Astronomy and geography

<http://www.geocities.com/Hollywood/Academy/8245/trigonometry.html>

Cable television

<http://www.wake.tec.nc.us/math/Projects/Raychem/deb-raychem_trig.htm>

Civil engineering and navigation

<http://www.ece.utexas.edu/projects/k12-fall98/14545/Group1/app.html>

Height of a tree

<http://jwilson.coe.uga.edu/emt725/Kite/kite.html>

<http://www.math.bcit.ca/examples/ary_15_3/ary_15_3.htm>

Inclined ramp

<http://www.math.bcit.ca/examples/ary_12_3/ary_12_3.htm>

Pipe flow

<http://www.math.bcit.ca/examples/ary_8_3/ary_8_3.htm>

Saturn’s mass and distance from earth

<http://www.amtsgym-sdbg.dk/as/AOL-SAT/SATURN.HTM>

Surveying

<http://www.math.bcit.ca/examples/ary_17_3/ary_17_3.htm>

<http://catcode.com/trig/trig13.html>

▲
▼

▲

VARIATION

When two quantities increase proportionally, we say they are directly related.

Mathematically, the two quantities x and y must be related as y = kx, where k is

a nonzero constant called the constant of variation. The formula for circumfer-

ence c of a circle in terms of radius r is c = 2πr. The constant of variation is 2π.

The independent variable can be a power. The area of a circle is directly related

to the square of the radius, A = πr2. The constant of variation is π. Kepler’s
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third law of planetary motion uses a fractional power. The period T of a planet’s

orbit around the sun is proportional to the 3/2 power of its distance R from the

sun, T = kR3/2. Because Kepler’s first law stated that planets circle the sun in

elliptical paths, the semimajor axis provides the measure of distance. 

Many geometry formulas can be expressed as direct variation. Since the area

of a cube is A = 6s2, where A is the surface area and s is the length of an edge, 

it follows that s =
√

A
6 . The length of an edge varies directly as the square root 

of surface area of the cube. The length of the edge varies directly as the cube root

of the volume V , s =
√

V 3.

Joint variation occurs when the dependent variable varies directly as the

product of two or more independent variables. Many geometry formulas are in 

joint variation. The volume of a cylinder is V = 1
3πr2h. The volume V varies

jointly as the radius r squared and the height h. The constant of variation is 13π.

The volume of a rectangular solid having length L, width W , and height H is

expressed in the formula, V = LWH . The volume varies jointly as length,

width, and height. The constant of variation is 1.

Biologists and medical scientists have provided formulas for the surface area

of a human-being’s skin. The DuBois formula relates area in square centimeters

jointly to the 0.425 power of weight in kilograms and the 0.725 power of height

in centimeters, A = 71.84W 0.425H0.725 . The formula estimates the surface area

for the average adult male to be about 1.8 square meters, and for the average

adult female, about 1.6 square meters. 

Population biologists use different kinds of variation to express rates of

change. The change in a population undergoing rapid growth (see Exponential

Growth ) is c = rP , where c is the change in the number of organisms, P is the

population count before change, and r is the rate of change. In 1995, Mexico’s

population was 91.1 million people. It was increasing at a rate of 2.0 percent per

year. The change formula for Mexico would be the direct variation formula, c =
0.02P . Using the formula to predict the change in population for 1995 to 1996

gives, c = 1.822 million people. The change for the following year would be

based on 92.2 people. If there is a limit to the population of a country, say M
people, then the change formula would be c = kP (M − P ). Change in a popu-

lation varies jointly as the current population and the available capacity for peo-

ple. This leads to a more complex pattern of growth. (See Logistic Functions.)

Inverse variation occurs when the variables are related through a reciprocal.

If you must travel 200 miles at a constant rate, the distance-rate-time formula 

says that 200 = rt. Solving for t gives the equation t = 200
r . In this equation, t

varies inversely as r. The constant of variation is 200. The independent variable

can be a power. For example, the intensity I of light falling on an object varies 

inversely as the square of the distance d from the light. The formula is I = k
d2 .

(See Inverse Square Function.)

The law of the lever is an inverse variation. The distance d from the fulcrum

in feet needed to stabilize the seesaw with a person who weights w pounds is



d = k
w . If Jane weighs 100 pounds and sits 5 feet from the fulcrum, how far away

will Juan, who weighs 150 pounds, have to sit in order to balance Jane? Use

Jane’s data to find the constant of variation k: 5 = k/100, so k = 500. Now

solve for Juan’s distance: d = 500/150 = 3.33. Juan would have to sit 3 feet 4

inches from the fulcrum in order to balance Jane. Note that the constant k was

computed from Jane’s statistics. If she were to change position or be replaced by

someone else, the value of k would change.

Pulley systems are a series of ropes and wheels that help lift and support

heavy objects by distributing weight in multiple locations. Elevator shafts rely on

pulleys to move the cabin, and movers use pulleys to transport cumbersome or

heavy objects such as pianos into tall buildings. A 100 pound weight can feel like

a 50 pound weight when it is moved by a two-pulley system, because half the

weight is distributed at the other pulleys. As the number of pulleys in the system

increases, the amount of force needed to move the object decreases proportion-

ally. Therefore a three-pulley system needs a 33.33-pound force to move the 100

pound weight, a four-pulley system needs a 25 pound force to move the 100

pound weight, and so on. The force, f , needed to move an object, the weight of

the object, w, the number of pulleys needed in a system, p, are related with the

equation, f = w/p. If the weight is constant, then the force applied varies in-

versely with the number of pulleys used.

Compound variation combines direct and indirect variation with two or more

independent variables. The gravitational force between two planets varies

directly as the product of the masses of the planets, and inversely as the square

of the distance between them: F = Gm1m2

d2 , where F is the force in newtons, G

is a gravitational constant (6.67 × 10−11 newton-meters per square kilogram), r
is the distance in meters between the centers of two planets, and m1 and m2 are

the mass of each planet in kilograms. The constant of variation would be differ-

ent if measurements are made in different units, such as in feet rather than meters

and pounds rather than kilograms. The formula works if one of the planets is the

earth and the other “planet” is a person high above the earth’s surface. It simpli-

fies to an inverse-variation formula for the weight of a body above the

earth: W = k
d2 , where W is the weight above the planet, d is the distance be-

tween the person and the center of the earth, and k is a constant. It may seem

strange that both masses have disappeared, but they are handled by the constant.

Consider a 170 pound astronaut who is 9,000 miles above the surface of the

earth. How much does he weigh at that altitude? First write the equation for his

weight at the surface of the earth. Since the radius of the earth is about 4,000 

miles, 170 = k
4,0002 . Solving for k yields, k = 2.72 × 109 . The inverse-square

formula is therefore W = 2,720,000,000
d2 . Using this formula with the distance d =

13,000 miles from the center of the earth gives, W ≈ 16.09. The astronaut would

weigh about 16 pounds.

The deflection D of a diving board is a function of the weight W of the diver,

the length of the board L, the elasticity E of the material making up the board,
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and the moment of inertia I of the cross section of the board. The variation for-

mula is D = k WL3

3EI .

Ohm’s law is a direct variation statement V = IR, where V is voltage, I is

current, and R is the resistance in a particular conductor. R, which is measured

in ohms, is constant of variation for the particular conductor. Resistance is meas-

ured in ohms and will vary across different wires. For example, electrical resist-

ance R in a wire varies directly as its length L, and inversely as its cross-sec-

tional area A: R = ρL
A , where ρ is the constant of variation. The constant of vari-

ation is called resistivity and has been computed for many materials: gold has a

resistivity of 2.35 × 10−8; carbon, 3.50 × 10−5; and wood, 108. If one assumes 

that the wire is round, then the variation is R = kL
r2 . The coefficient of variation, 

k, would be the resistivity divided by π. If resistance in a wire must be reduced,

there are two routes: you could shorten the wire, or you could use a wire with a

larger radius. The latter might have the most payoff, because the radius is squared

in the formula. The three-dimensional graph below shows the resistance (verti-

cal axis) of copper wire wrapped into a coil. The lower-left axis shows the radius

in meters of wire running from 2 mm up to 1 cm (0.01 meter). The axis on the

right shows how long the wire would be if it were unwrapped. The axis runs,

right to left, from 0 to 1,200 meters. The length does not appear to affect results.

However, radii under 5 mm send the resistance soaring.

Some laws appear in different forms of variation depending on the situation.

The simple form of Poiseuille’s law states that the speed S at which blood moves

through arteries and veins varies directly with the blood pressure P and the

fourth power of the radius r of the blood vessel: S = kPr4. This is derived from

Poiseuille’s law for the flow of fluids, which relates to flow F rather than speed 

(flow is speed times cross-section area of the tube): F = k∆Pr4

nL , where ∆P is

the change in pressure from the beginning of a tube to the end, r is the radius of

the tube, n is a measure of viscosity of the fluid, L is the length of the tube, and

k is a constant of variation. In this version, which is used to determine the flow

of oil through pipes and also fluids through tubes in an automobile, flow is

directly related to the change in pressure and fourth power of tube radius, and is

inversely related to viscosity and the length of tube.

In general, solving variation problems involves two steps: first, solve for the

constant of variation in a known situation; and second, use that constant to
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rewrite the formula and evaluate the dependent value for the unknown situation.

Variation problems can also be solved with proportions. (See Proportions.)

online sources for further exploration

Applications of variation

<http://www.iln.net/html_p/c/72782/62079/53795/53836/58708_58712.asp>

<http://www.jcoffman.com/Algebra2/ch9_2.htm>

Diving

<http://library.thinkquest.org/28170/34.html>

Fan laws

<http://www.apco1650.demon.co.uk/fdr.htm>

Financial hedging

<http://www.cs.trinity.edu/~rjensen/000overview/mp3/138intro.htm>

Galilieo’s pendulum experiments

<http://es.rice.edu/ES/humsoc/Galileo/Student_Work/Experiment95/galileo_pendu-

lum.html>

Kepler’s laws

<http://www.cvc.org/science/kepler.htm>

<http://observe.ivv.nasa.gov/nasa/education/reference/orbits/orbit3.html>

Harmonics, resonance, and interference

<http://www.sasked.gov.sk.ca/docs/physics/u5c42phy.html>

Murphy’s law of locksmithing

<http://www.google.com/url?sa=U&start=7&q=http://www.jfbdtp.com/Murphy.html

&e=747>

Population growth described in Annenberg Math in Everyday Life

<http://www.learner.org/exhibits/dailymath/population.html>

Ventilation

<http://human.physiol.arizona.edu/SCHED/Respiration/Morgan31/Morgan.L31.

html>

Formulas that show different variation can be found in XREF

<http://www.xrefer.com/>

▲
▼

▲

VECTORS

Vectors emerged from the study of physical situations in which two or more

forces were applied to an object. A vector is a directed line segment whose length

is proportional to the time, distance, or force being measured. Many people use

vectors to give directions. “Go down this street six blocks. Turn left at the stop

sign. Go another two blocks to the stoplight. Turn left at the stoplight at Maple
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Street. Go southwest eight blocks on Maple.” Applications of vectors appear in

physics, navigation, computer graphics, airplane design, and statistics.

In the illustration below, Sarah and James are pulling a wagon. Sarah pulls

with 25 pounds of force, and James with 15 pounds. They are pulling at an angle

of 20°. What is the net direction and force on the wagon? The James vector 	j is

drawn along the x-axis of the grid. The three units represent 15 pounds of force.

The vector for Sarah, 	s, is 5 units long, representing 25 pounds of force. It is

drawn 20° from 	j. The parallelogram law in physics states that the resultant vec-

tor 	r is the diagonal of the parallelogram that is formed with sides parallel to the

vectors. (See Quadrilaterals.) The obtuse angle in the triangle is formed by two

sides and the diagonal is 160°. By the law of cosines (see Triangle Trigonometry),

r2 = s2 + j2 − 2sj cos θ

r2 = 252 + 152 − 2(25)(15) cos 160°.

Solving for r yields a force of 39.43 pounds. Using the law of sines computes the

angle between 	r and 	j to be about 12.5°. Because they are pulling at an angle,

the forces don’t add to the total possible for Sarah and James (40 pounds of

force), but they come close. 

The same kind of analysis applies to paths of airplanes. The next figure

shows an airplane pointed due northeast at 400 miles per hour. Its vector 	a is

drawn 45° clockwise from north. A 90-mile-per-hour wind is blowing 10° south

of east. The wind vector 	w is shown at 10° clockwise from east. The angle

between the plane vector and the wind vector is 55°. The plane will be blown

somewhat off course. What is its direction and ground speed? The situation

depicted indicates directions in degrees according to navigation conventions.

Complete the resultant vector 	r and compute its length and direction. From the
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law of cosines r2 = 4002 + 902 − 2(400)(90) cos 125◦ . The length of 	r is about

458 miles per hour. The angle between 	a and 	r is about 9.3°. So the direction

would be about 45◦ − 9.3◦ = 35.3◦ north of east. Even though the airplane

would be pointed northeast, from the ground it would appear to be traveling only

35.3° north of east. (See Triangle Trigonometry.)

When vectors are written as an ordered pair, the length is written first, and

the angle second. (See Polar Coordinates.) Sarah’s vector would be written as

	s = [25, 20◦]; James’ vector would be 	j = [15, 0◦]. The brackets indicate that the

vector is written in polar-coordinate form. The lengths of the vectors are written

with the absolute value sign. The length of Sarah’s vector would be |	s | = 25.

Polar form is a natural way of presenting force vectors, but the algebra of vec-

tors is easier to work with in Cartesian-coordinate form (x,y). This is called the

component form. To convert a vector in polar form 	v = [d, θ] to component form,

use the formulas x = d cos θ and y = d sin θ. Sarah’s polar vector would be

	s = (25 cos 20◦, 25 sin 20◦) ≈ (23.50, 8.55).To reconstruct the length of Sarah’s

vector from component form, use the Pythagorean theorem: 

|	s | =
√

(25 cos 20◦)2 + (25 sin 20◦)2 = 25.

The addition of vectors in component form is done by the addition of coor-

dinates. If 	v = (a, b) and 	w = (c, d), the parallelogram law requires that the vec-

tor sum be 	v + 	w = (a + c, b + d). Component form makes it easier to handle

problems involving gravity. If a golf ball is hit with an impact of 70 meters/sec-

ond at a 30° angle, the distance of the ball (ignoring wind resistance and gravity)

is given by the vector 	b = [70t, 30◦], where time t is given in seconds. The com-

ponent form is 	b = (70t cos 30◦, 70t sin 30◦). A graph would show the golf ball

traveling upwards into space at an angle of 30° from the ground. However, grav-

ity provides a force vector that reduces vertical distance as g = (0,–4.9t2). The

vector addition of the ball and gravity gives a parabolic path produced by
	b + 	g = (70t cos 30◦, 70t sin 30◦ − 4.9t2) . Algebra can be used to determine

how far the ball has traveled horizontally when it hits the ground. (See Angle for

computations of the path of a projectile.) Vector descriptions of motions and

forces are used to describe the collisions of atomic particles, the interaction of

chemical substances, and the movements of stars and galaxies.

Component form has operations that are somewhat like multiplication, but

yet different. The dot product of two vectors is given by 	v • 	w = (ac, bd), where

	v = (a, b) and 	w = (c, d). Lengthening a vector by a scale factor k is given by

k	v = (ka, kb). The dot product is used in the formula for the cosine of an angle 

between two vectors: cos θ = �v•�w
|�v||�w| . The effectiveness of component-form vec-

tors comes when vectors operate in more dimensions. For three-dimensional

space, the dot product of 	v = (v1, v2, v3) and 	w = (w1, w2, w3) is 	v • 	w =
(v1w1, v2w2, v3w3), an easy-to-remember extension of the two-component

model. Further, the equation for the cosine of the angle between two vectors

looks exactly the same, even though there is an additional dimension. 
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Since the concepts of addition, dot product, and angle between vectors scale

up to many dimensions, vector mathematics adapts well to statistical computa-

tions. Consider the test-score data on five students shown in the table below. The

deviation scores form vectors with five components. The science vector is 	s =
(5, 0, 1,-1, -5). The math vector is 	m = (5,-3, 3,-2,-3).

science math science math
raw score raw score deviation score deviation score

student X Y x y

Albert 85 25 5 5

Manuel 80 17 0 -3

Bonnie 81 23 1 3

Sharon 79 18 -1 -2

Elena 75 17 -5 -3

average (mean) 80 20

Test data on five students. Deviation scores are computed by taking the test score 

minus the mean (e.g., xBonnie = 81 − 80 = 1;. yElena = 17 − 20 = -3).

Computations with the vectors give the lengths to be

|	s | =
√

52 + 02 + 12 + (−1)2 + (−5)2 =
√

52 and |	m| =
√

56.

When each of these lengths is scaled by the reciprocal of the square root of

dimensions, 1√
5

, the computation produces the standard deviation for each vec-

tor. These are about 3.22 for 	s and 3.34 for 	m. (See Standard Deviation for uses

and formulas.) The cosine of the angle between the two vectors is 

cos θ = �s•�m
|�s ||�m| = 5(5)+0(−3)+1(3)+(−1)(−2)+(−5)(−3)√

52
√

56
≈ 0.83 .

This is called the correlation coefficient for the two vectors and is commonly

designated with the letter r. We say that for this group of students, science scores

correlate 0.83 with math scores. Because it is a cosine, the correlation coefficient

r ranges from -1 to +1. Correlations at +1 (angle θ = 0◦) and -1 (angle θ = 180◦)

indicate that the vectors are collinear. Correlations close to 0 (angle θ = 90◦)

indicate that the vectors are going in different directions. In the first case (r = 1),

the vectors are pulling in the same direction. In the second case (r = -1), they are

opposites. Our correlation coefficient for science and math tests (r = 0.83) cor-

responds to an angle between the vectors of about 33.5°. In a space of five

dimensions, these vectors are separate enough that each one is measuring some

underlying skills that are different for different students, but they are also meas-

uring something that is the same for all students. Generally, students who scored

high on science also scored high on math. The square of the cosine provides a

measure of overlap. This coefficient of determination is r2 = 0.832 ≈ 0.70. It
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indicates that 70 percent of the variability in math scores is accounted for by the

variability in science scores. When statisticians work with many scores, they

examine the correlations among all the variables to determine how the number

of dimensions of the original space can be reduced to fewer, stronger, and more

interpretable dimensions.

In the case of three dimensions, the operation of cross product provides a

way to compute perpendiculars to planes. The cross product of 	v = (v1, v2, v3)
and 	w = (w1, w2, w3) is defined as 	v × 	w = (v2w3 − v3w2, v3w1 − v1w3,
v1w2 − v2w1). The cross product is a vector. Its relationship to the plane formed

by 	v and 	w is shown in the figure. The cross product is said to be orthogonal to

the plane.

The cross product is computed for surfaces of airplanes or boat hulls. The

direction of air or water currents across the surfaces is modeled by the angles that

the currents make with vectors that are orthogonal to the surface. This is not a

recent concept. Sketches in the notebooks of the Wright brothers one hundred

years ago show computation of vector forces on the different wings they tried

before achieving the first airplane flight. A spinning wheel, like the disk in a

gyroscope, produces a force called torque. This is a force that is perpendicular to

the plane of rotation. If you ride a bike very fast, you will feel resistance as you

try to tilt the bicycle to the left or right. The torque produced by the spinning

wheels will try to maintain its direction, so you must use some pressure to pro-

duce a tilt. If you are traveling slowly, the torque isn’t very strong, so it is easy

to tilt the bike and fall. Large cruise ships have gyroscopes with heavy wheels

that spin rapidly. The torque produces a force that counters the movement from

waves, making for a smoother ride for passengers.

Computer-graphic programmers use orthogonal vectors to determine how

light sources would hit surfaces visible in a computer game or architectural image.

The angles between the light rays from an external source to orthogonal vectors

on the surface are computed. If the angles are close to 0°, then the light will be

shown at full intensity. If close to 90°, then the light is reaching the surface with

minimal intensity. The vector computations (the vector-graphic phase) are then

transferred into the display device as light intensity and color for the different

points (pixels) that would be visible. This is the raster graphic phase. By control-

ling the brilliance of pixels on the screen according to vector computations, com-

puter-graphic designers present realistic scenes to the viewer. Some computer

files store images as vectors (the rules that create the image), and some files keep

the bitmap of the image (a snapshot of the pixel intensity). Postscript files contain
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rules for generating graphics on printers and computer screens, and use vector

concepts in drawing letters as well as pictures. Graphics files on your computer

that end in .GIF or .JPG are raster files. Vector files (geometric files) are easier to

modify than raster files. Raster files display faster than vector files, although the

high speed of modern processors makes this a negligible difference to the ordi-

nary computer user. Vector descriptions of images are used for computer identifi-

cation of faces, for translating handwriting into computer text, for descriptions of

protein structures, and for the location of tumors in medical CAT scans. 

online sources for further exploration

Animations of vector operations 

<http://www.reed.edu/~obonfim/Phys100.html>

<http://id.mind.net/~zona/mstm/physics/mechanics/vectors/components/vector

Components.html>

<http://www.frontiernet.net/~imaging/vector_calculator.html>

Computer graphics

<http://www.enginemonitoring.org/illum/illum.html>

<http://www.sli.unimelb.edu.au/envis/hidden.html>

<http://www.ati.com/na/pages/resource_centre/dev_rel/sdk/RadeonSDK/Html/

Tutorials/RadeonBumpMap.html>

<http://www.greuer.de/ecalc3d.html>

Magnetic Resonance Imaging (medical visualization)

<http://www.cis.rit.edu/htbooks/mri/>

Parachute vectors

<http://www.explorescience.com/>

Vector properties 

<http://www.netcomuk.co.uk/~jenolive/homevec.html>

<http://forum.swarthmore.edu/~klotz/Vectors/vectors.html>

<http://www.glenbrook.k12.il.us/gbssci/phys/Class/vectors/u3l1a.html>

Vectors in text

<http://www.wdvl.com/Authoring/Graphics/Tools/PSP7/Text_Path/>

▲
▼

▲

VOLUME

Volume describes the amount of space contained in a three-dimensional

object. Almost every object we use has volume, due to having depth. Even a

sheet of paper has volume, because it has thickness, although a very thin one. If

an object, such as paper, does not have volume, then it could be stacked indefi-

nitely without having any height. You can estimate the thickness of a sheet of
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paper by measuring the height of a ream of paper and then dividing by 500

sheets. Hence, to find the volume of the sheet of paper, or the amount of wood

needed to make the paper, you would divide the volume of the prism formed by

the ream by the number of sheets of paper in the ream.

Manufactures think about volume as they build containers for their products.

Canned and boxed foods are often sold by their mass. Knowing the density of the

substance can help determine the amount of volume it will use in a container,

since density, d, is the ratio of mass, m, and volume, v. In terms of an equation, 

d = m
v . Nonuniform products that contain air pockets such as potato chips and 

cereal will often have additional empty volume when a package is opened,

because the contents will have settled and filled air pockets.

In addition to packaging food, companies that produce fragile items need to

consider the volume of additional materials that are needed, such as Styrofoam,

shredded paper, or packing bubbles. The amount of insulated packaging needed

would be equal to the difference between the volume of the box and the volume

of the item. If the item being shipped is in the form of a geometric solid, such as

a prism, pyramid, sphere, or cylinder, then the volume can be predicted with an

equation. For example, suppose a crystal ball with a radius of 2 inches is shipped

in a cubical container with an edge length of 6 inches. The volume of packaging

material needed to surround the crystal ball would be: the volume of the cube

minus the volume of the sphere = 63 − 4
3π • 23 ≈ 182 cubic inches. That is al-

most 85 percent of the space in the box!

Beverage production and distillation centers use the concept of volume to

determine how many containers can be filled based on their available raw mate-

rials. Cola companies need large tanks, usually cylindrical, to mix the raw ingre-

dients needed to create soft drinks. Once created, the cola will need to be emp-

tied into cans for distribution. Suppose a 5,000 gallon tank of cola is ready to be

dispersed into 12 ounce cans. If each gallon is equivalent to 128 fluid ounces,

then 5,000 × 128 = 128,000 ounces of cola are available to produce a little more

than 53,000 soft drinks (128,000/12 ≈ 53,333), and over 2,200 (53,333/24 ≈
2,222) cases for distribution.

Ice cream cones are constructed so that the ice cream drips inside of the cone

as it melts. When ice cream is served, the spherical scoops lie on top of a cone

that is empty inside. The volume of ice cream inside the cone will gradually

increase as the temperature of the ice cream rises and pressure is applied at the

top of the cone. The cone keeps the ice cream inside it from melting more

quickly, since it is not exposed to the outside air temperature. An ice cream cone

with a height of 8 cm and base radius of 2 cm can hold close to half of a scoop

of ice cream with radius 2.5 cm. This is determined by dividing the volume of 

the cone 13π • 22 • 8 by the volume of the spherical scoop 43π • 2.53, whose ratio

is approximately 0.512.

Construction workers who use concrete consider the amount of cement

needed to complete a job. When a driveway for a new house is planned, its
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dimensions need to be measured so that an appropriate amount of cement is

brought to the site. Suppose a driveway 12 feet wide and 30 feet long is needed

for a new home, and the cement poured needs to be 1.25 feet deep so that it will

not break apart under pressure from automobiles or extreme temperatures. The

volume of cement needed to complete this job can be determined by the product

of its dimensions, since the cement will fill into a rectangular prism. Therefore

the amount of cement needed is (12)(30)(1.25) = 450 cubic feet. If a bag of

cement mixture prepares 0.75 cubic feet of concrete, then the cement truck will

need to contain 600 bags of mixture in order to create the driveway. Since each

bag is about a hundred pounds, multiple trucks will be needed to carry the 60,000

pound load.

The dispersion of an oil spill can be predicted based on the amount of oil that

is lost. On March 24, 1989, the oil tanker Exxon Valdez struck Bligh Reef in

Prince William Sound, Alaska, spilling more than 11 million gallons of oil. There

are 231 cubic inches in a gallon, so the spill had an approximate volume of 254

billion (231 × 11,000,000 = 254,100,000,000) cubic inches of oil. Thousands of

marine animals and fish were killed by the oil that contaminated the water. As oil

spreads, it typically leaves a layer that is 1/100 inch thick on the surface of the

water. The direction of the spill is influenced by the placement of the spill and

the direction of the ocean’s current. In this circumstance, much of the oil had

brushed on shore, at the beaches. What if the spill had happened in the middle of

the ocean? Imagine the effect of spilling water in an open space on the floor.

Assuming that the floor is flat, the spill will disperse in nearly a circular region.

If the oil had spilled in the middle of the ocean without land interference, the spill

could have covered nearly 2.5 billion (254,100,000,000 ⋆ 1/100) square inches

of the surface of the water. If the path of the oil dispersed in the shape of a cir-

cle, then it could have spread in a radius of close to half a mile. This information

can be determined by solving for r in the equation πr2 = 2,541,000,000, and then

converting the inch units to miles. There are 5,280 feet in one mile, and 12 inches

in a foot. Therefore the conversion is 5,280 × 12 = 63,360 inches for every mile.

Benjamin Franklin was one of the first to determine that very little oil will spread

out over a huge area of water. His work actually gave one of the first estimates

of the thickness of a molecule of oil, even though no one in Franklin’s time knew

about molecules.

online sources for further exploration

Aluminum tanks

<http://www.fifthd.com/gear/tankspecs.html>

Application to environmental health

<http://www.math.bcit.ca/examples/ary_8_1/ary_8_1.htm>

Balloon volumes

<http://www.overflite.com/volume.html>
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Blood pressure

<http://www.shodor.org/master/biomed/physio/cardioweb/application.html>

Cost for landscaping

<http://gardening.sierrahome.com/tools/landscaping/volumeandcost_calc.jsp>

Density of water, ice, and snow

<http://astro.uchicago.edu/cara/southpole.edu/flaky.html>

How big are your lungs?

<http://www.troy.k12.ny.us/schools/ths/ths_biology/labs_online/school_labs/print_

versions/lung_lab_school_print.html>

Measurement microphones

<http://www.josephson.com/tn6.txt>

Spherical polytropes

<http://www.phys.lsu.edu/students/valencic/approject1.html>

Tank volume

<http://www.grapl.com/vmlnotes/examples/tank_volume.htm>

Unit converter

<http://www.webcom.com/legacysy/convert2/volume.html>

<http://www.ex.ac.uk/cimt/dictunit/ccvol.htm>

Volume of an irregular solid

<http://jwilson.coe.uga.edu/emt725/Envir/Volume.html>

▲
▼

▲
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