
 1

Parallel Algorithm Design

CS595, Fall 2010

 2

Programming Models
 The programming model

o  determines the basic concepts of the parallel
implementation and

o  abstracts from the hardware as well as from the
programming language or API.

 The names used for programming models differ in
the literature.

 3

Programming Models
1. Sequential Model: The sequential program is

automatically parallelized.
o  Advantage: Familiar programming model
o  Disadvantage: Limitations in compiler analysis

2. Message Passing Model: The application consists
of a set of processes with separate address spaces.
The processes exchange messages by explicit send/
receive operations.
o  Advantage: Full control of performance aspects
o  Disadvantage: Complex programming

 4

MP Programming Model

process process

Node A

message

Y Y’

send (Y) receive (Y’)

Node B

Process Memory

MP Programming Model

 locality is fully transparent

 error prone programming.
 difficult to build performance portable programs

 5

 6

3. Shared Memory Programming Model

Thread
(Process)

Thread
(Process)

System

X

read(X) write(X)

Processor Memory

Shared variable

 7

Shared or Distributed Memory?
www.mcs.anl.gov/petsc/petsc-as/documentation/faq.html#computers

What kind of parallel computers or clusters are needed to use
PETSc?

PETSc can be used with any kind of parallel system that supports MPI.
BUT for any decent performance one needs

  a fast, low-latency interconnect; any Ethernet, even 10 gigE simply cannot
provide the needed performance.

  high per-CPU memory performance. Each CPU (core in dual core systems)
needs to have its own memory bandwith of roughly 2 or more gigabytes.
For example, standard dual processor "PC's" will not provide better
performance when the second processor is used, that is, you will not see
speed-up when you using the second processor. This is because the speed
of sparse matrix computations is almost totally determined by the speed of
the memory, not the speed of the CPU.

 8

Concepts of Parallel Programming

 Concepts:
o  Task:

 arbitrary piece of work performed by a single process
o  Thread:

 is an abstract entity as part of a process that performs
tasks. Defines a unit for scheduling.

o  Process:
 is active entity with resources that performs tasks.

o  Processor:
 is a physical resource executing processes

 9

Phases in the Parallelization Process

D
ecom

position

A
ssignm

ent

O
rchestration

M
apping

P0 P1

P2 P3

Partitioning

Sequential
computation

Tasks Processes Parallel
program

Processors

 10

Decomposition

 Dividing computation and data into pieces

 Domain decomposition
o  Divide data into pieces
o  Determine how to associate computations with the data

 Functional decomposition
o  Divide computation into pieces
o  Determine how to associate data with the computations

Example of Decomposition:
 UEDGE: 2D decomposition

 Physical mesh is based on magnetic flux surfaces (here DIII-D)

Recent new capability:
Computing sparse parallel Jacobian using

matrix coloring
Original parallel UEDGE
Jacobian (block Jacobi
only)"

Recent progress: Complete
Jacobian data, enabling
use of many different
preconditioners"

Poloidal distance

102

101

100

Te (eV)

0 2 4 6

0

0.03

-0.03

Poloidal distance (m)

Electron Temperature

1020

1019

ni (m-3)

0

0.03

-0.03

Ion Density

Separatrix

Wall

Core

plate plate

 12

Functional Decomposition

 Breaking the computation into a collection of
tasks
o Tasks may be of variable length
o Tasks require data to be executed
o Tasks may become available dynamically

 13

Data vs. Functional Parallelism

 Data parallelism
o  The same operations are executed in parallel for the

elements of large data structures, e.g. arrays.

o  Tasks are the operations on each individual element or
on subsets of the elements.

o  Whether tasks are of same length or variable length
depends on the application. Many applications have
tasks of same length.

 14

Example: Data Parallelism

for (i=0;i<n;i++)
 a[i]=b[i]+c[i]

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]

= +

Task0
Task1
Task2
Task3
Task4
Task5
Task6

 15

Example: Data Parallelism, Variable Length

for (i=0;i<n;i++)
 for (j=0;j<=i;j++)
 a[i]=a[i]+b[i][j]

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]

+=

Task0
Task1
Task2
Task3
Task4
Task5
Task6

 16

Data vs. Functional Parallelism

 Functional parallelism

o  Entirely different calculations can be performed
concurrently on either the same or different data.

o  The tasks are usually specified via different functions or
different code regions.

o  The degree of available functional parallelism is usually
modest.

o  Tasks are of different length in most cases.

 17

Example: Function Parallelism

 The functions or statements can be executed in
parallel.

 These are different operations
  functional parallelism

f(a);
g(b);

i=i+10;
j=2*k+z**2;

 18

Phases in the Parallelization Process

D
ecom

position

A
ssignm

ent

O
rchestration

M
apping

P0 P1

P2 P3

Partitioning

Sequential
computation

Tasks Processes Parallel
program

Processors

 19

Assignment

 Assignment means specifying the mechanism by
which tasks will be distributed among processes.

 Goals:
o  Balance workload
o  Reduce interprocess communication
o  Reduce assignment overhead

 Assignment time
o  Static: fixed assignment during compilation or program

creation
o  Dynamic: adaptive assignment during execution

 20

Example: Balance Workload

for (i=0;i<n;i++)
 a[i]=b[i]+c[i]

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]

= +

Task0
Task1
Task2
Task3
Task4
Task5
Task6

 21

Example: Balance Workload

 Static Load Balancing
o 2 different assignments

 Dynamic Load Balancing
o postpone assignment until execution time

for (i=0;i<n;i++)
 for (j=0;j<i;j++)
 a[i]=a[i]+b[i][j]

a[0]
a[1]
a[2]
a[3]
a[4]
a[5]
a[6]

+=

Task0
Task1
Task2
Task3
Task4
Task5
Task6

 22

Phases in the Parallelization Process

D
ecom

position

A
ssignm

ent

O
rchestration

M
apping

P0 P1

P2 P3

Partitioning

Sequential
computation

Tasks Processes Parallel
program

Processors

 23

Orchestration
  Implementation in a given programming model

 Means for
o  Naming and accessing data
o  Exchanging data
o  Synchronization

 Questions:
o  How to organize data structures?
o  How to schedule assigned tasks to improve locality?
o  Whether to communicate in large or small messages?

  Performance goal:
o  Reduction of communication and synchronization overhead
o  Load balancing

 Goals can be conflicting
o  reduction of communication vs. load balancing

 24

Phases in the Parallelization Process

D
ecom

position

A
ssignm

ent

M
apping

P0 P1

P2 P3

Partitioning

Sequential
computation

Tasks Processes Parallel
program

Processors

O
rchestration

 25

Mapping

 Mapping processes to processors
 Done by the program and/or operating system

 Shared memory system:
 done by operating system

 Distributed memory system:
 done by user or
 by runtime library such as MPI

 26

Mapping
 Goal

o  If there are more processes than processors:
 put multiple related processes on the same processor

o  This may also be an option for heavily interacting
processes no matter how many processors are available.

o  Exploit locality in network topology.
•  place processes close to needed data

o  Maximize processor utilization
 Minimize interprocessor communication

 27

Optimal Mapping

 Finding optimal mapping is NP-hard

 Must rely on heuristics

 28

Performance Goals
Step Architecture-

Dependent?
Major Performance

Goal
Decomposition Mostly No  Expose enough concurrency but not too much

Assignment Mostly no  Balance workload
 Reduce communication volume

Orchestration Yes  Reduce unnecessary communication via data
locality

 Reduce communication and synchronization
cost as seen by the processor

 Reduce serialization at shared resources
Mapping Yes  Put related processes on the same processor if

necessary
 Exploit locality in network topology

 29

Application Structure

 Frequently used patterns for parallel applications:

o Single Program Multiple Data - SPMD
o Embarrassingly Parallel
o Master / Slave
o Work Pool
o Divide and Conquer
o Pipeline
o Competition

 30

Structure: Single Program Multiple Data
  Single program is executed in a replicated fashion.
  Processes or threads execute same operations on different

data.
  Loosely-synchronous: Sequence of phases of computation

and communication/synchronization.

Synchronization/Communication

Synchronization/Communication

Ti
m

e

 31

Structure: Embarrassingly Parallel
 Multiple processes are spawned at the beginning.
  They execute totally independent of each other.
 Application terminates after all processes terminated.

P0 P1 P2 P3 P4 P5 P6

Ti
m

e

 32

Structure: Master / Slave
 One process executes as a master. It distributes tasks to

the slaves and receives the results from the slaves.
  Slaves execute the assigned tasks usually independent of

the other slaves.
  Frequently used on workstation networks.

Master

Slave Slave Slave Slave

 33

Structure: Work Pool

  Processes fetch tasks from a pool and insert new tasks into
the pool.

  Pool requires synchronization.
  Large parallel machines require a distributed work pool.
  Leads to better load balancing.

Work Pool

P0 P1 P2

 34

Structure: Divide and Conquer
 Recursive partitioning of tasks

and collection of results
  Problems:

o  load balancing
o  least granularity

 Used on systems with
background load

Task

Task

Task

Task

Task

Task Task

Task

Task

Task

 35

Structure: Pipeline
  Examples

o  Different functions are applied to data: functional
decomposition

o  Parallel execution of functions for different data.
o  Signal and image processing
o  Groundwater flow, flow of pollutants, visualization
o  Almost no example of high parallelism

P0 P1 P2

 36

Pipelining: Example
We would like to prepare and mail 1000 envelopes each containing
a document of 4 pages to members of an association.

XEROX
Staple

&
Fold

Insert into
Envelope

Seal
write address

Put stamp

T1=10 sec. T2= 5 sec. T3= 5 sec. T4= 15 sec.

•  At what intervals, do we see a new envelope prepared for mailing?
 Max(T1, T2, …, Tk) = Tmax = 15 sec.

•  What is the total time to get N envelopes prepared?
 Time = Cold_Start_Time + Tmax * (N-1) ≅ N* Tmax

•  What is the total time we would have spent if pipelining is not
used?
 N*Σi Ti

N=1000 mailings

 37

Pipelining: Example (contd.)

How much speedup do we get?
 Speedup = Tseq/Tpipe= [N*Σi Ti]/ N* Tmax= Σi Ti / Tmax

 Speedup = 35/15
If you can not do much about the completion time for one task (i.e. Σi Ti);
what can you do to maximize the speedup?

 (i) Create as many stations (stages) as possible
 and
 (ii) Try to balance the load at each station, i.e. T1 = T2 = …= Tk

XEROX
Staple

&
Fold

Insert into
Envelope

Seal
write address

Put stamp

T1=10 sec. T2= 5 sec. T3= 5 sec. T4= 15 sec.

N=1000 mailings

 38

One possible configuration to maximize speedup:

XEROX-2

Staple
&

Fold

Insert into
Envelope

Seal

T1=5 sec.

T2= 5 sec. T3= 5 sec. T4= 5 sec.

•  At what intervals, do we see a new envelope prepared for mailing?
 Max(T1, T2, …, Tk) = Tmax = 5 sec.

•  What is the speedup now?

 Speedup = 30/5 = 6 = number of stages in the pipeline !

XEROX-1

address

T5= 5 sec.

stamp

T6= 5 sec.

Pipelining: Example (contd.)

 39

Structure: Competition
  Evaluation of multiple solution strategies in parallel.
  It might be unknown which strategy is successful or

which one is the fastest.
 With k processors, k strategies can be tested. If one of the

additional strategies - not tested in the sequential program
- is very fast, the speedup can be more than k (Superlinear
speedup)

 40

Summary Parallel Programming

 Programming models for SM and DM systems
 Sequential, Message Passing, Shared Memory

 Phases in the parallelization process
o  Decomposition, assignment, orchestration, mapping

 41

Phases in the Parallelization Process

D
ecom

position

A
ssignm

ent

O
rchestration

M
apping

P0 P1

P2 P3

Partitioning

Sequential
computation

Tasks Processes Parallel
program

Processors

 42

Performance Goals
Step Architecture-

Dependent?
Major Performance

Goal
Decomposition Mostly No  Expose enough concurrency but not too much

Assignment Mostly no  Balance workload
 Reduce communication volume

Orchestration Yes  Reduce unnecessary communication via data
locality

 Reduce communication and synchronization
cost as seen by the processor

 Reduce serialization at shared resources
Mapping Yes  Put related processes on the same processor if

necessary
 Exploit locality in network topology

 43

Application Structure

 Frequently used patterns for parallel applications:

o Single Program Multiple Data - SPMD
o Embarrassingly Parallel
o Master / Slave
o Work Pool
o Divide and Conquer
o Pipeline
o Competition

