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It’s not always entirely clear when a mathematical object is a number. Nat-
ural, rationals, reals and complexes are numbers. Are p-adics numbers? They
form a field. . . but then rational functions form a field and they’re definitely not
numbers. Integers mod p? Quaternions? Octonions . . . ?? Conway numbers
are numbers (even tho’ Conway games are not). My take on this is that ordi-
nals are definitely numbers. This is partly because most flavours of numbers
measure things that are out there in the real world, in the sense of not being
mathematical objects. Naturals count the number of coins in my pocket, inte-
gers count my bank balance, rationals the efficacity with which blood dilutes
my alcohol stream. We think of ordinals as numbers becuase —as we are about
to see—they have something to do with length of processes.

1 Cantor’s Discovery of ordinals

For reasons which need not detain us here1 Cantor was interested in the oper-
ation of derivative on closed sets of reals. The derivative X ′ of X is X shorn of
its isolated points.

If the output is the same type as the input we can iterate, and Cantor was
led to consider the result of applying the derivative operation over and over
again. Now the derivative is an operation that is monotone on the poset of
sets-of-reals-with-⊆, (that is to say, X ⊆ Y → X ′ ⊆ Y ′) and the effect of this
is that for any closed X ⊆ IR there is a well-defined set which is the result of
taking the derivative n times for all n ∈ IN.

This monotonicity is important. There is the story in the Philosophical
literature of Thompson’s Lamp (see [7]). It is off at time t = 0, it is switched on
at time t = 1/2, off again at time t = 3/4, on again at time t = 7/8 and so on. Is
it on at time t = 1? Or off? In the philosophical literature the problem is taken
to be that its state at time t = 1 is overdetermined by the events at time t < 1
whereas of course the truth of the matter is that its state is underdetermined.
And underdetermined because the Thompson’s lamp process is not in any useful
sense monotone.

It is this fact—that monotone operations can be iterated infinitely often—
that opens up to us the new world of transfinite ordinals.

1.1 Ordinals as rank functions for parallel computations

[Draw four trees: two wellfounded, one loop and one ω∗-chain not wellfounded.
Lisa].

Distinguish processes that cannot be finished in finite time from processes
that cannot even be started.

every compound process whose assembly instructions are nice in the sense
that this one is nice and these aren’t has an ordinal rank.

1Tho’ the reader should certainly make sure at some other time that they find the leisure
to be detained by them. See e.g. Dauben, [2], Kanamori, [5].
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If you are worried about time consumption bear in mind that you can use
the same trick as with Thompson’s lamp. Every edge can be decorated with
a rational number in such a way that the sum of the decorations along any
ascending path is finite.

We will later make precise what this sense of niceness is, and also why there
are enough ordinals.

1.2 (Infinite!) ordinals for finite hierarchies of access

Consider a computer system for storing sensitive information like people’s credit
information, or criminal records, and suchlike. It is clearly of interest to the
subjects of these files to know who is retrieving this information (and when
and why), and there do exist systems in which each file on an individual has a
pointer to another file which contains a list of the the userids of people accessing
the head file, and dates of those accesses. Is there a spike of reads of this file
whenever agent X is in the office. . . ? One can even imagine people wishing to
know who has accessed this information, and maybe even a few steps further. A
well-designed system would be able to allocate space for new and later members
of this sequence of files as new reads by users made this necessary. These files
naturally invite numerical subscripts. The system controllers might wish to
know how many files had been generated by these reads, and know how rapidly
new files were being generated, or what statistical relations existed between
the number of reads at each level, and suchlike. This information would have
to be stored in a file too, and the obvious subscript to give this file is ω. (It
wouldn’t be sensible to label it ‘n’, for n finite (even if large) because there is
always in principle the possibility that we might generate n levels of data files.)
Then we start all over again, with a file of userids and dates of people who have
accessed the ωth file. Thus we can imagine a system where even though there
are only finitely many files some of those files naturally have transfinite ordinals
as subscripts.

2 Ordinals as a Recursive Datatype

We add to the constructors for IN (which are of course 0 and suc, the successor
function) the extra constructor sup which creates an ordinal from a set of or-
dinals. Annoyingly the datatype we obtain is not free in the way IN is. Altho’
each natural number can be constructed in only one way. In contrast ω can be
constructed by sup in uncountably many ways. There are 2ℵ0 unbounded sets
of finite ordinals and every one yields us ω when we whack it with sup.

This obstructs the proof that <On, the engendering relation on On, is a
total order. (It’s easy to show that it’s wellfounded—engendering relations on
recursive datatypes always are). However, it can be shown that it is a total (and
therefore a well-) order nevertheless. In fact the usual proof of the Bourbaki-
Witt theorem2 is actually a proof that <On is a total order.

2which I learnt from PTJ, can be found in [3] p.54. I can’t find it in [4] tho’ it is certainly
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If we have a set X where everything depends on something else in X then
nothing in X can get constructed. You can never break into X. A rectype
can have no subsets like this. We say of a relation whose domain has no bad
subsets that it is wellfounded. Engendering relations of rectypes are always
wellfounded. Indeed wellfoundedness is the characteristic property of engender-
ing relations; all natural examples of wellfounded relations are either literally
engendering relations or simple-minded modifications of them.

So we have a principle of induction, and definition by recursion. For details,
see ch 2 of [3].

Now that we have the concept of wellfoundedness we can define a wellorder-
ing as a wellfounded total order. <IN but not <IR. The class of wellorderings
has the very nice feature that for any two of its members there is an canonical
(indeed unique) bijection between one and an initial segment of the other. For
the moment the proof of this fact is left to the reader.

A lexicographic product of two wellorderings is a wellordering.

3 Ordinals as isomorphism classes of wellorder-
ings

(or perhaps virtual objects arising from is’m classes)

Ordinals wellordered by the obvious order relation.
Draw the picture

3.1 Sylver coinage shows how infinite ordinals can be use-
ful in finite maths

We are now in a position to appreciate the next illustration of how infinite
ordinals can crop up in the description of purely finite problems.

The game of Sylver Coinage was invented by Conway (see [?] p ??) and
gives rise to a perfect exercise that introduces ideas from the second half of the
course by clothing them in ideas from the first.

It is played by two players, I and II, who move alternately, with I starting.
They choose natural numbers greater than 1 and at each stage the player whose
turn it is to play must play a number that is not a sum of multiples of any of
the numbers chosen so far. The last player loses.

Notice that by ‘sum of multiples’ we mean ‘sum of positive multiples’: this
is really a game about the invention of new denominations of coins, and nobody
gives change. What the players are doing is trying at each stage to invent a
new denomination of coin, one that is of a value that cannot be duplicated by
handfuls of coins already in circulation. (Conway calls the game ‘Sylver Coinage’
with a ‘y’ because of a theorem of Sylvester that says that every sufficiently large

in the lectures on which that book is based.
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multiple of (m1,m2) can be expressed as am1 + bm2 with a and b both natural
numbers. In fact the same goes for sufficiently large multiples of the highest
common factor of m1, m2, m3, . . . .)

The aim is to show that every play of this game is finite. How do we do
that?

Observe that—because of the theorem of Sylvester—at every stage there are
only finitely many multiples of H (H is the HCF of all the numbers played so
far) which are available to the player whose turn it is. There may be infinitely
many other numbers available to that player of course, but if (s)he plays any of
them then the quantity H decreases. The quantity to keep your eye on is the
ordered pair 〈H,N〉 where N is the number of multiples of H that are available
(i.e., are below Sylvester’s bound). Every move by either player decrements the
value of this quantity—in the sense of the lexicographic order on IN × IN, and
the ordinal of this wellordering is ω2.

4 Rosser’s Counting Principle

The fact that 〈X, <On〉 is a wellordering (proved above p 4) means that every
set of ordinals is naturally wellordered and has a length, which is of course an
ordinal. In particular every initial segment of the ordinals has a length which is
another ordinal. Which ordinal? Rosser’s axiom of counting from [6] says that
the length of any initial segment X of IN is the least number not in X.

Lists are polymorphic: if wombat and dingbat are different types then
wombat-list and dingbat-list are different types. However the naturals that
count the lengths of wombat-lists and the naturals that count the lengths of
dingbat-list are all of the one single type: natural numbers are monomorphic.
This is clearly sensible: there are no obvious benefits to be derived from dis-
tinguishing these two kinds of naturals from each other. It is only beco’s we
take finite ordinals to be monomorphic that we are even able to state Rosser’s
counting principle, but once we do take them to be monomorphic then Rosser’s
counting principle is completely uncontroversial. (Prove it by induction if you
have any doubts).

One thing I have never been able to ascertain is whether or not there is
anywhere on this planet a human culture that doesn’t have monomorphic
natural numbers, that is to say a culture that counts various things, but
doesn’t identify the numbers it uses for counting (say) humans with the
number it uses for counting (say) cattle. It is true that—to this day—
farmers in some parts of the Pennines use p-celtic number words (basically
Welsh) for counting sheep, even tho’ for everything else they use english
number words. . . but that isn’t quite what I wanted.

Usual mathematical practice goes beyond Rosser’s axiom of counting when
ordinals (which as we have seen, are a kind of transfinite generalisation of IN)
are concerned. The Extended Counting Principle states that every ordinal is the
order type of the set of its predecessors in their natural order (and this order,
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let us not forget, is a wellorder and therefore has an ordinal). In other words,
the length of any initial segment 〈X, <On〉 of the ordinals is the least ordinal
not in X.

Sensible tho’ it sounds, the extended counting principle has the potential
to cause trouble if we make certain additional assumptions. What about the
ordinal that is the length of the (improper) initial segment that is 〈X, <On〉
itself? It must be the first ordinal not in On, which is absurd. This absurdity is
the Burali-Forti paradox. The usual response is to say that this is a proof that
On is not a set.

H I A T U S
Once one realises that polymorphism is an option (made available to us for

Health and Safety reasons) and that perhaps ordinals might be prima facie as
naturally polymorphic as are the lists that it is their purpose to count, one starts
to wonder if polymorphism might not be a way of dealing with Burali-Forti, a
better way (perhaps) than stressing about whether or not the collection of ordi-
nals is a set. Seeing every mathematical (or at least every logical) foundational
problem in terms of whether or not something in the picture is a set is sooo
last-century and so steeped in the error of set-theoretic foundationalism. The
monomorphism/polymorphism distinction is a new idea from CS and it might
be helpful.

So we might try for size the idea that, altho’ small ordinals are uncontro-
versially monomorphic, there might come a point at which the ordinals start to
fray, and the decision to think of them as monomorphic is no longer safe. The
interesting question then comes: when do we reach this point?

Uncountable Ordinals and Hartogs’ theorem

Hartog’s thm says that for every set x there is a set y with a wellordering such
that |y| 6≤ |x|. Its real meaning is that if a definition by transfinite recursion
fails then it’s not beco’s we have run out of ordinals. This is beco’s the ordinals
are a terminal object in the category of rectypes of infinite character.3

Where do we fit in: wellfoundedness guarantees termination and every well-
founded relation has a rank?

Where do we fit in the canonical bijection between wellorders?
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