Missile Guidance and Pursuit:
Kinematics, Dynamics and Control

There are three things which are too wonderful for me,
The way of an eagle in the air,
The way of a serpent on a rock,
The way of a ship in the midst of the sea.
Book o Proverbs

Armed with bows, using both the right hand and the left in hurling stones
and shooting arrows with the bow.

Book o Chronicles
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Preface

Navigation has been with the human race from time immemorial. It is not sur-
prising, therefore, that a very great number of books have been published on this
ancient art. Guidance, on the other hand, has been first implemented, by building
a remotely-guided unmanned boat for military purposes, in the beginning of this
century. The technical literature on it is immense - articles, conference papers,
reviews, bibliographies. However, surprisingly few books have been published that
deal with guidance. If we do not count texts that are mainly descriptive, most
of which appeared in the first decennary after World War II, we have less than
half a dozen books in English. During my professional career as a research-and-
development (R&D) engineer 1 also taught at a technical university and lectured
for various industry and military audiences. I naturally used the existing texts,
but gradually developed an approach which is different from theirs. Encouraged by
colleagues and students, I eventually turned my lecture notes and transparencies
into this book.

I believe this text differs from other ones in the field in several respects. Here
are some of its key features.

% Although it necessarilly emphasizes military applications of guidance, i.e.,
guided weapons, it also pays attention to guidance in nature: some real, some anec-
dotic, some invented by recreational mathematicians.

* This book does not purport to be a history. However, it does try to give credit
to pioneering scientists and to early developments and inventions.

* In the theory of guidance one often has to solve differential and other equations.
Wherever practical | present an analytic solution rather than resort to numerical
ones: very often, the analytic solution enables one to discover interesting properties
which would otherwise be obscured by lines of code and numerical data. Further-
more, most of the engineers and scientists among the readers, especially the younger
ones, could easily make their own computer code wherever they wish to deepen their
quantitative understanding of a problem studied.

* Geometrical rules and guidance laws are stated in three-dimensional vector
terms as well as the usual planar ones, and several examples have to do with three-
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vi PREFACE

dimensional guidance situations.

* Many graphical illustrations are given of trajectories, launch zones and inter-
cept zones, as well as of time histories of maneuver acceleration and other important
variables. This should be of practical value for many readers,

This text is miended for people — students, engineers, analysts, physicists, pro-
grammers — involved or interested in any of the various aspects of guidance systems:
use, development, design, manufacture, marketing, analysis, operational research.
Mathematics at a first~-year university level is the only prerequisite. However, for
comprehending some portions of the text, acquaintance with feedback control theory
would be helpful.
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Introduction

According to the dictionary, ‘guidance’ is “the process for guiding the path of an
object towards a given point, which in general may be moving.” If the given point,
which we will call the target, is fixed, e.g., a sea port, or its path in the future is
known with sufficient accuracy, e.g., planet Mars, then the process is usually called
navigation. If the target moves in a way that is not quite predictable — for example,
a prey escaping its predator, an aircraft evading ground-to-air missiles — then the
process is guidance in its narrower sense, which is the sense we will give it in this
text.

The guided object may be a vehicle (a car, a boat, a missile, a spacecraft}, a
robot or, in fact, a living being. The process of guidance is based on the position
and the velocity of the target relative to the guided object. The participants in
the guidance process are also referred to in the literature as the evader and the
pursuer, respectively. In nature, the ways predators catch their prey and some
insects rendezvous their mates are certainly guidance processes. In human history,
it is said that seamen, especially those who excercised the ignoble art of sea piracy,
practised the rule we now call ‘parallel navigation’ (the ‘navigation’ part of the term
being of course a misnomer) or ‘collision course’. Mariners in general have known
the inverse rule, which they apply in order to avoid collision at sea.

Modern, i.e., analytic, approach to guidance problems dates from the eighteenth
century, when several mathematicians studied what we now call ‘pure pursuit’ or
‘hound and hare pursuit’. This pursuit follows a very straightforward geometrical
rule: run (or fly, or sail, as the case may be) where you see your target. Both this
simple rule and the aforementioned parallel-navigation are two-point guidance rules,
called so because only the pursuer and the target are involved in their respective
definitions.

A family of geometrical rules for three-point guidance exists as well; the name
derives from the fact that a third, reference point is required for the statement of
the rule. In the most basic three-point geometrical rule, the pursuer is required to
be on the line between the reference point and the target. For obvious reasons, this
type of guidance is called ‘line-of-sight guidance’.

xiii



xiv INTRODUCTION

Most of the applications for the theory of guidance are in weaponry. History
for this kind of application begins in 1870, when Werner von Siemens submitted a
proposal for “the destruction of enemy vessels by guided torpedos” to the Prussian
ministry of war. Although not specifically said so by Siemens, the guidance of his
proposed torpedo would have been of the line-of-sight type. We shall describe this
proposal briefly later on; suffice it to mention now that by 1916 it had materialized
into the first operational guided-weapon system in history.

The pure-pursuit rule was first applied to weapon systems in the early 1940’s,
during the second world war, when most of the basic relevant theory had in fact
been known for two centuries and technical means for detecting targets and for
conrolling guided vehicles had been developed. Towards the end of the war, a more
sophisticated type of two-point guidance, called ‘proportional navigation’ for his-
torical reasons, was studied. The basic theory of proportional navigation (PN) was
first formulated in the United States in 1943. Some steps towards implementing
a variant of PN in missile systems were taken in 1944 or 1945 by German scien-
tists, who presumably did not know that the theory had already been developed
elsewhere. The vast majority of two-point guided weapon systems existing today
utilize PN in one of its numerous variants. There are nonmilitary applications of
PN, too; for example, in space travel, extraterrestrial landing, and robotics.

PN has its limitations, though. In particular one should mention sensitivity to
noise and to maneuvers carried out by the evader when the pursuer is approaching
it. {To ‘maneuver’ means here to make abrupt changes in the direction of motion,
i.e., execute high-acceleration turns; in pilots’ parlance, to ‘jink’, and in mariners’
one, to ‘zigzag’.) A family of so-called ‘modern guidance laws’ has been developing
since the early 1960°s that do not suffer from these limitations or suffer much less.
These laws are based on several recently developed techniques, in particular optimal-
control theory and optimal-estimation theory, hence the often used terms ‘optimal-
control guidance’ or just ‘optimal guidance’.

This family of laws can be regarded as the most recent stage of the evolution
process that started with Siemens’s proposal. It seems that in spite of the maturity
of the theory and the availability of the necessary technology, mostly microelec-
tronics and computer science, practical application is still somewhat rare, probably
due to economical reasons. Needless to say, however, the secrecy that prevails over
armament development issues makes up-to-date, reliable information inacessible,
and therefore statements on recent developments are uncertain.

This is about as far as we go in this book. The next evolutionary stage would
probably consist of laws based on differential-game theory. Although papers regard-
ing this approach to guidance have been appearing since the 1970’s, it seems that
it is not ripe enough for inclusion in an introductory text like the present one.

The very fast progress of guided weaponry in the past fifty years would not
be possible without advances in many technologies. One should mention internal-
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combustion engines, rocket motors, inertial instrumentation (especially gyroscopes),
aeronautics, electronics (especially microelectronics and radar), electro-optics, and
computer engineering. These and some other technological disciplines relevant to
guidance are beyond the scope of this text, except where they have direct implica-
tions regarding its main topics. There are two reasons for this exclusuion. Firstly,
including even some of the relevant disciplines would have made the book much
weightier than what the author had in mind; secondly, an abundant literature is
available that deals with most of the said technologies.

This book regards guidance from the point of view of the pursuer, i.e., how to
arrive at the target, or intercept it. The inverse problem, that of avoidance, is not
dealt with. Guidance is treated from the viewpoints of kinematics, dynamics, and
control. In other words, we study trajectories, zones of interception, required ma-
neuver effort, launch envelopes, stability of the guidance process, and related topics.
Furthermore, technical problems involved with implementation and mechanization
are discussed when they may affect accuracy, energy expenditure, and structural
limits, hence, finally, costs.

The book is organized as follows. Following Chapter 1, which presents basic
definitions and terminology, Chapters 2-7 deal with what have come to be called
the classical guidance laws, namely
* Line-of-sight guidance (Chapter 2),

x Pure pursuit (Chapter 3),

» Parallel navigation {Chapter 4),

* Proportional navigation (Chapters 5 and 6),

* Several guidance laws related to proportional navigation (Chapter 7).
Chapter 8 is dedicated to optimal-control guidance.

REFERENCES
Ross Jr., Frank, Guided Missiles: Rockets and Torpedos, New York, Lathrop, Lee
& Shepard, 1951.

Weyl, A. R., Engins téléguidés, Paris, Dunod, 1952; a translation of Guided Mis-
siles, London, Temple Press, 1949.

Gatland, Kenneth W., Development of the guided missile, 2nd ed., London, liffe,
1954.

Benecke, Th. and A. W. Quick (eds.), History of German Guided Missile Develop-
ment, AGARD First Guided Missile Seminar, Munich, April 1956.



xvi INTRODUCTION

Ordway, Frederick and Ronald C. Wakeford, International Missile and Spacecraft
Guide, McGraw-Hill, 1960.

Clemow, J., Missile Guidance, London, Temple Press, 1962.

Smith, J. R. and A. L. Kay, German Aircraft of the Second World War, Putnam,
1972, pp. 645-712.

Spearman, M. Leroy, Historical Development of Worldwide Guided Missiles, NASA
Technical Memorandum 85658, June 1983.

Benecke, Theodor et al., Die Deutsche Luftfahrt—Flugkérper und Lenkraketen,
Koblenz, Bernard und Graefe, 1987.

Trenkle, Fritz, Die Deutschen Funklenkverfahren bis 1945, Heidelberg, Alfred Hiithig,
1987.



