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Abstract

A sensor network is a multi-hop wireless network of sensor nodes cooperatively solving a sensing task. Each sensor
node generates data items that are readings obtained from one or more sensors on the node. This makes a sensor network
similar to a distributed database system. While this view is somewhat traditional, e�cient execution of database (SQL)
queries in sensor network remains a challenge, due to the unique characteristics of such networks such as limited memory
and battery energy on individual nodes, multi-hop communication, unreliable infrastructure, and dynamic topology. Since
the nodes are battery powered, the sensor network relies on energy-e�ciency (and hence, communication e�ciency) for a
longer lifetime of the network.

In this article, we have addressed the problem of communication-e�cient implementation of the SQL ••join•• operator in
sensor networks. In particular, we design an optimal algorithm for implementation of a join operation in dense sensor net-
works that provably incurs minimum communication cost under some reasonable assumptions. Based on the optimal algo-
rithm, we design a suboptimal heuristic that empirically delivers a near-optimal join implementation strategy and runs
much faster than the optimal algorithm. Through extensive simulations on randomly generated sensor networks, we show
that our techniques achieve signi“cant energy savings compared to other simple approaches.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

A sensor network consists of sensor nodes with a
short-range radio and on-board processing capabil-
ity forming a multi-hop network of an irregular
topology. Each sensor node can sense certain phys-

ical phenomena like light, temperature, or vibration.
There are many exciting applications of such sensor
networks, including monitoring and surveillance
systems in both military and civilian contexts, build-
ing smart environments and infrastructures such as
intelligent transportation systems and smart homes.

Each sensor node typically generates a stream of
data items that are readings obtained from one or
more sensing devices on the node. This motivates
visualizing sensor networks as distributed database
systems[8,15,18]and the data present in a sensor
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network as relational data streams. Like a database,
the sensor network is queried to gather the sensed
data tuples. Database queries in SQL are a very
general representation of queries over data, and
because of the enormous amount of data present
in a typical sensor network, e�cient implementation
of database queries is of great signi“cance.

The main performance criterion for distributed
implementations of queries in sensor network is
the total communication cost incurred, since each
sensor node has limited battery power and message
communication nodes is the main consumer of
battery energy. Thus, distributed implementation
of queries must minimize the communication cost
incurred. In particular, we are interested in in-net-
work implementation strategies since a centralized
strategy of transmitting all sensor data to a central
server for further computation would incur prohib-
itive communication costs.

In this article, we focus on designing e�cient dis-
tributed implementations for the join operation in
sensor networks. The join operator is essentially a
cartesian product of the operand tables followed
by a predicate selection. The motivation for the join
operation in sensor networks comes from one of the
most prominent sensor network applications viz.,
event detection, wherein complex events can be
de“ned as joins over data streams[2,11]. We pro-
pose a novel path-join algorithm, which computes
the join result by “rst distributing one of the oper-
and tables along a predetermined path of sensors.
Using path-join algorithm as the basic step, we
design an optimal algorithm for a join operation
that provably incurs minimum communication cost
in dense sensor networks under some reasonable
assumptions of communication cost and computa-
tion model. We also design a much faster subopti-
mal heuristic that empirically performs very close
to the optimal algorithm, and results in signi“cant
savings over the naive approaches.

1.1. Paper organization

The rest of the paper is organized as follows. We
start with modeling the sensor network as a data-
base and motivating implementation of the join
operation in the sensor network. In Section3, we
present various algorithms for in-network imple-
mentation of the join operator for static (non-
streaming tables). In Section4, we generalize our
techniques to handle streaming tables and discuss
relaxation of other assumptions. We present our

experiment results in Section5. Related work is dis-
cussed in Section6, and concluding remarks pre-
sented in Section7.

2. Sensor network databases

A sensor network consists of a large number of
sensors distributed randomly in a geographical
region. Each sensor has limited on-board process-
ing capability and is equipped with sensing devices.
We assume that each sensor node is aware of its
geographic location (obtained using GPS or other
localization techniques [5]). A sensor node also
has a radio which is used to communicate directly
with some of the sensors around it. Two sensor
nodes can communicate with each other if and only
if the distance between them is less than thetrans-
mission radius. We assume that each sensor node in
the sensor network has a limited storage capacity
of m units. As mentioned above, each sensor node
has limited battery energy, which must be con-
served for prolonged unattended operation. Thus,
we have focused on minimization of communica-
tion cost (hence, energy cost) as the key perfor-
mance criteria of the join implementation
strategies.

2.1. Modeling the sensor network as a database

In a sensor network, the data generated by the
sensor nodes is simply the readings obtained from
the sensing devices on the node. The data records
produced by a group of sensor nodes with similar
capabilities and responsibility will have similar for-
mat and semantics, and thus, can be modeled as
rows of the same relational table. More speci“cally,
due to the continuous generation of data tuples in
the sensor network, the sensor network data is best
modeled asdata streams[3]. The above motivates
visualizing sensor networks as distributed database
systems[8,15,18] of streaming tables. In a sensor
network, a data stream may be partitioned hori-
zontally across (or generated by) a set of sensors
in the network. Each data stream has a correspond-
ing generating region which could very well be the
entire network region. Due to the spatial and real-
time nature of the data generated, a tuple usually
has timeStamp and nodeLocation as attri-
butes, and the sensor node that generates a partic-
ular tuple is referred as its source node. Like
traditional database systems, the sensor network
database can also be queried to access and manip-

930 H. Gupta, V. Chowdhary / Ad Hoc Networks 5 (2007) 929…942



ulate the data tables, and SQL with some exten-
sions can be used as a query language for sensor
networks.

2.1.1. Database queries
A database query is composed of one or more

database operators. The core database operators
are viz. selection (selecting tuples based on a pred-
icate), projection (selecting given attributes of a
table), join (cartesian product followed by selec-
tion), grouping (partitioning a table based on a
set of attribute values), aggregation (aggregating
attributes for each group), outerjoins (join plus
the unmatched tuples padded with NULLs),
duplicate elimination, union, di�erence, and
intersection. Union, di�erence, and intersection
have same semantics as the corresponding set
operators.

The focus of this article is communication-e�-
cient in-network implementation of the join opera-
tor. The join operator is used to correlate data
from multiple tables and is essentially a cartesian
product of the operand tables followed by a selec-
tion. As selection and projection are unary opera-
tors and operate on each tuple independently, they
could be implemented by computing the operation
locally followed by e�ciently routing to the query
source. Union operation can be reduced to dupli-
cate elimination, and the di�erence and intersection
operations can be reduced to the join operation.
Implementation of other database operators (aggre-
gation, duplicate elimination, and outerjoins) is
challenging and is part of our future work.

2.1.2. In-network implementation of SQL queries
A plausible implementation of a sensor network

database query engine could be to have an external
database system handle all the queries over the net-
work. In such a realization, all the data from each
sensor node in the network is sent to the external
system that handles the execution of queries com-
pletely. Such an implementation would incur very
high communication costs and congestion-related
bottlenecks. Thus, prior research has proposed
query engines that would execute the queries within
the network with little external help. In particular,
[9] shows that in-network implementation of data-
base queries is fundamental to achieving energy-e�-
cient communication in sensor networks. Moreover,
due to the very limited processing memory available
on a sensor nodes, it will be impossible to compute

the join locally on any particular node, especially
for large tables.

2.1.3. Querying and cost model in sensor networks
A query in a sensor network is initiated at a node

called query sourceand the result of the query is
required to be routed back to the query source for
storage and/or consumption. A stream database
table may be generated by a set of sensor nodes in
a closed geographical region. The optimization
algorithms, proposed in this article, to determine
how to implement the join operation e�ciently,
are run at the query source. As typical sensor net-
work queries are long running, the query source
can gather all the catalogue information needed
(estimated sizes and locations of the operand rela-
tions, join selectivity factor to estimate the size of
the join result, density of the network) by initially
sampling the operand tables. As mentioned before,
we concentrate on implementations that minimize
communication cost. We de“ne the total communi-
cation cost incurred as the total data transfer
between neighboring sensor nodes.

Our algorithms target the general long-running
queries in the sensor network. Given a query source
Q and regionsR and S where a join has to be taken.
Initially all the tuples of the participating tables are
routed to the query sourceQ, which collects catalog
information and estimates parameters such as loca-
tions of the regionR and S, sizes ofR, S and R � S,
and join selectivity factor f. Using the optimal algo-
rithm, the query source Q calculates the optimal
region P where the join should be executed in the
sensor network.

2.1.4. Join in sensor networks
The SQL join operator is used to correlate data

from multiple tables, and can be de“ned as a selec-
tion (join) predicate over the cross-product of a pair
of tables; a join of R and S tables is denoted as
R � S. One of the most popular applications of sen-
sor networks isevent detection, which motivates the
body of our work. An eventindicates a point in time
of interest based on certain conditions over the gen-
erated sensor data. For certain applications, events
may simply depend on the local value of a particular
sensor reading. Higher-level events or complex
events may be speci“ed using composition operators
over the primitive events. In particular, the complex
events may be represented as a join of multiple data
streams, involving spatial and temporal constraints
and correlations.
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3. In-network implementation of join

In this section, we “rst develop communication-
e�cient algorithms for implementation of a join
operation over static (non-streaming) database
tables stored in some sensor network region. As
data in sensor network is better represented as data
stream tables, we will generalize our techniques for
stream database tables in the next section.

Consider a join operation, initiated by a query
source nodeQ, involving two static (non-streaming)
tablesR and S distributed horizontally across some
geographical regionsR and S in the network. We
assume that the geographic regions are disjoint
and small relative to the distances between the query
source and the operand table regions. We later dis-
cuss generalizing our algorithms for general query
source locations and operand regions. If we do
not make any assumptions about the join predicates
involved, each data tuple of table R should be
paired with every tuple ofS and checked for the join
condition. The joined tuple is then routed (if it
passes the join selection condition) to the query
source Q where all the tuples are accumulated or
consumed. Given that each sensor node has limited
memory resources, we need to “nd out appropriate
regions in the network that would take the respon-
sibility of computing the join. In particular, we
may need to store and process the relations at some
intermediate location before routing the result to
the query source.

A simple nested-loop implementation of a join
used in traditional databases is to generate the
cross-product (all pairs of tuples), and then extract
those pairs that satisfy the selection predicate of
the join. More involved implementations of a join
operator widely used in database systems are
merge-sort and hash-join. These classical methods
are unsuitable for direct implementation in sensor
networks due to the limited memory resources at
each node in the network. Moreover, the tradi-
tional join algorithms focus on minimizing compu-
tation cost, while in sensor networks the primary
performance criteria is communication cost.
Below, we discuss various techniques for e�cient
implementation of the join operation in sensor
networks.

Naive approach.A simple way to computeR � S
could be to route the tuples ofS from their original
location S to the region R, broadcast theS-tuples in
the region R, compute the join within the region R,
and then route the joined tuples to the query source

Q. The breakup of the total communication cost
incurred is as follows:

(1) Cost incurred in routing the table S to the
region R.

(2) Cost incurred in broadcasting the table S
throughout R.

(3) Cost incurred in routing the result (from R) to
the query sourceQ.

Note that in the above approach the roles of the
tables R and S can be interchanged.1

Centroid approach.Now, we consider another
approach where the region responsible for comput-
ing the join operation is a circular region around
some point C in the sensor network. LetjRj denote
the size of the tableR, m denote the memory of each
sensor node, and letPc be the smallest circular
region around C such that the regionPc has more
than jRj/m sensor nodes to store the tableR. First
we route and distribute the tuples of tableR in the
region Pc, and then route and broadcast the tuples
of table S in the region Pc. After computing the join
operation in the region Pc, we route the resulting
tuples of ðR � SÞto the query sourceQ. The com-
munication cost incurred consists of the following
components. (i) Cost incurred in routing the tables
to C. (ii) Cost incurred in distributing R and broad-
casting S in the region Pc around C. (iii) Cost
incurred in routing the result ðR � SÞto the query
source Q. Since the second component of the cost
is independent of the choice ofC, it is easy to see
that the communication cost incurred in the above
approach is minimized when the point C is the
weighted centroid of the triangle formed byR, S,
and Q (i.e., the point that minimizes the sum of
the weighted distances from the three points). Here,
the choice of the centroid pointC is weighted by the
sizes ofR, S, and ðR � SÞ.

3.1. Path-join algorithm

In the above two paragraphs, we described a
couple of simple approaches to compute the join
operation in a sensor network. However, in order
to minimize communication cost, we may need to
perform the join operation in a region having a
non-trivial shape. In this subsection, we present a

1 The other simple approach of computing the join at a region
around Q is subsumed by the Centroid Approach discussed next.
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novel path-join approach of performing a join oper-
ation. In the next subsection, we will extend the
path-join approach to devise an optimal join algo-
rithm that incurs minimum communication cost in
dense sensor networks.

The path-join implementation of the join opera-
tion works as follows. First, all the tuples of R are
distributed uniformly along an appropriately cho-
sen path P containing jRj/m sensor nodes, where
jRj is the size of tableR and m is the memory size
of each sensor node. Then, every tuple ofS is routed
to the path P and passed through all the sensors
along P to perform the join. The resulting joined
tuples computed at each sensor along the pathP
are then routed to the query sourceQ. SeeFig. 1.
The location of the path P is chosen to minimize
the total communication cost incurred. We estimate
the total communication incurred in terms of a
notion of sensor length, de“ned below.

De“nition 1 (Sensor lengthdðX ; yÞ, and notation
jX j). The sensor length between a regionX and a
point y in a sensor network plane is denoted as
dðX ; yÞ and is de“ned as the average weighted
distance, in terms of number of hops (i.e., interme-
diate nodes), between the regionX and the point y.
Here, the distance between a pointx 2 X and y is
weighted by the amount of data residing atx.

For a region X in the sensor networks, the nota-
tion jX j denotes the number of sensors in the region
jX j. Note that for a relational table R, we usejRj to
denote the size of the tableR.

Let jRj; jSj, and jR � Sj be the respective sizes of
the tablesR, S, and the joined resultR � S. Let Q
be the query source,C0 be an end of the pathP that
is closer to R and/or S, and jPj be the number of
sensors on the pathP. Note that by choice of P,
jPj ¼ jRj=m. Let us assume that bothR and S start
their broadcast and distribution phases from the
same point C0. The total communication cost
incurred in the path-join algorithm consists of: cost

of routing R to C0, cost of routing S to C0, cost of
distributing the table R along the path P, cost of
broadcasting the table S along the path P, and
“nally, the cost of routing the joined tuples from
P to Q. If we assume that the resulting joined tuples
are uniformly distributed along the path P, then the
total communication cost incurred is

jRjdðR; C0Þ þ jSjdðS; C0Þ þ jPjjRj=2 þ j PjjSj

þ j R � SjdðP; QÞ:

Note that the distribution and broadcast cost of R
and S respectively is independent of the location
of P. In some cases, the path-join algorithm may
not be optimal, i.e., may incur more than the mini-
mum communication cost possible.

3.2. Optimal join algorithm

In this section, we present an algorithm that uses
path-join as a basic component, and constructs a
region for computing the join operation using opti-
mal communication cost. We assume that the sensor
network is su�ciently dense that we can “nd a sen-
sor node at any point in the region. To formally
prove the claim of optimality, we need to restrict
ourselves to a class of join algorithms calledDistrib-
ute-Broadcast Join Algorithms(de“ned below). In
e�ect, our claim of optimality states that the pro-
posed join algorithm incurs less communication cost
than any distribute-broadcast join algorithm.

De“nition 2 (Distribute-broadcast join algo-
rithms). A join algorithm to compute R � S in a
sensor network is a distribute-broadcast join algo-
rithm if the join is processed by “rst uniformly
distributing the table R in some regionP (other than
the region R storing R)2 of the sensor network
followed by broadcasting the relation S within the
region P to compute the join. The joined tuples are
then routed from each sensor in the regionP to the
query source.

As before, consider a query sourceQ, and
regionsR and S that store the static operand tables
R and S in a sensor network. The key challenge in
designing an optimal algorithm for implementation
of a join operation is to select a regionP for pro-
cessing the join in such a way that the total commu-
nication cost is minimized. Note that in general,P

P
R table
distributedalong
the path P

Each tuple of S
broadcastover P

Table R Table S

Q

C0

Result
tuples
routed to Q

l

Fig. 1. Path-join implementation. Here, l ¼ jRj=m.

2 Else, the algorithm will be identical to one of the naive
approaches.
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may be an arbitrary regionas opposed to just a path
as in the path-join algorithm. We use the termjoin-
regionto refer to a region in the sensor network that
is responsible for computing the join.

3.2.1. Shape of an optimal join-region
We show in Theorem 1 that the join-region P

that incurs minimum communication cost has a
shape as shown inFig. 2a or b. In particular, the
optimal join-region P is formed using three points
Cr; Cs, and Cq in the sensor network (typically these
points will lie within the MRSQ). More precisely,
given three pointsCr; Cs, and Cq in the sensor net-
work, the region P takes one of the following forms:

(1) Region P is formed of the pathsPr ¼ ðCr; CqÞ
and Ps ¼ ðCs; CqÞ, the line segmentCqQ, and a
circular region PO of appropriate radius
around Q. SeeFig. 2a.

(2) Region P is formed of the pathsPr ¼ ðCr; CqÞ
and Ps ¼ ðCs; CqÞ, and a part of the line seg-
ment CqQ. SeeFig. 2b.

Theorem 1. In dense sensor networks, the shape of
the join-region P used by a distribute-broadcast join
algorithm that incurs optimal communication cost is
as described above or as depicted inFig. 2a or b.

Proof. Let us consider an optimal distribute-broad-
cast implementation of join using a connected3 join-
region P. By de“nition of distribute-broadcast algo-
rithms, the region P is different than R.

Cost of distribution and broadcast.We assume
that due to lack of global knowledge about the

other sensors• locations and available memory
capacities, the best way to distributeR in the region
P is to route the tuples ofR to a some pointCr in P
and then, traverse the regionP in a linear manner
(as in the case whenP is a path) to distributed the
tuples evenly inP. The total cost of distributing of R
in the region P using the above approach is

jRjdðR; CrÞ þ jRjjPj=2;

whereCr is the point in P where the tuples ofR are
“rst routed to and jPj denotes the total number of
sensors in the regionP. Based on the same assump-
tion and a similar argument, the total cost ofbroad-
casting Sin the region P is

jSjdðS; CsÞ þ jSjjPj;

whereCs is some point inP where the tuples ofS are
“rst routed to. Note that the above formulated cost
of distribution of R and broadcast ofS in the region
P is independent of the shape and location ofP.

Total communication cost.Given the join-region
P and the points Cr; Cs 2 P, where R and S are
routed for distribution and broadcast respectively in
the region P, the total communication cost
TðCr; Cs; PÞincurred in computing the join can be
formulated as below.

TðCr; Cs; PÞ ¼ jRjdðR; CrÞ þ jSjdðS; CsÞ þ jRjjPj=2

þ j SjjPj þ j R � SjdðP; QÞ ð1Þ

The term jR � SjdðP; QÞis the communication cost
incurred in routing the result tuples from P to the
query sourceQ. Note that for a “xed pair of points
Cr and Cs, the only component of TðCr; Cs; PÞthat
depends on the shape ofP is dðP; QÞ.

Proof plan. We prove the theorem by contradic-
tion. In particular, we show that if P is not of a
shape depicted inFig. 2a or b, then we can alter the
shape of regionP without changing jPj, Cr, or Cs,
such that the cost componentdðP; QÞ is further
reduced. The above change will result in a reduction

Q

Table R Table S

Cq

PCr
Cs

Pr
Ps

Po
Q

Table R Table S

PCr

Cs

Cq

Cq2

Pr

Ps

a b

Fig. 2. Shape of an optimal join-region. (a) Shape of an optimal regionP, when Q 2 P. (b) Shape of an optimal regionP, when Q 62 P.

3 The generalization to disconnected join-regions can be easily
made by applying the proof to each connected subregion
independently.
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of the total cost TðCr; Cs; PÞ, since we keepjPj, Cr,
and Cs “xed.

ReducingdðP; QÞ, when Q 2 P. Let us consider
the case whenQ is in P, but the region P is not of
the form Fig. 2a. Let Cr and Cs be the points inP to
where R and S are routed for distribution and
broadcast respectively in the regionP. SeeFig. 3.
Consider paths (not necessarily disjoint)ðCr; QÞand
ðCs; QÞ contained in P that connect Cr and Cs

respectively toQ using minimum number of sensor
nodes. Since P is connected, such paths exist.
Consider a point s in P such that s is neither on
path ðCr; QÞ nor on path ðCs; QÞ, and is farthest
away from Q. Such a point s much exist, elseP
would be comprised entirely of pathsðCr; QÞ and
ðCs; QÞand hence, of the formFig. 2a.4

Now, consider a point s0 62 P that is closest toQ.
See Fig. 3. If Q is closer to s than s0, i.e., if
dðs; QÞ6 dðs0; QÞ, then P is just comprised of the
paths ðCr; QÞ, ðCs; QÞ, and a fully packed circular
region around Q, and thus, of the form Fig. 2a.
Since we assumed to the contrary,Q must be closer
to s0 than s, i.e., dðs0; QÞ< dðs; QÞ. Now, in such a
case, dðP; QÞ can be reduced as follows. Since
dðP; QÞ ¼1=jPj

P
p2Pdðp; QÞ (since R is uniformly

distributed in P), the value dðP; QÞcan be reduced
by changingP to P � f sg [ f s0g, i.e., replacings by
s0. Note that such a point s0 will be directly
connected toP, and hence, addition ofs0 maintains
the connectivity of P. Moreover, sinces is neither in

ðCr; QÞ nor in ðCs; QÞ, and is farthest such point
from Q, removal of s from P maintains the
connectivity of P. Finally, the above replacement
keepsCr, Cs, and jPj “xed.

Final arguments.Thus, we can reducedðP; QÞ,
while keepingCr, Cs, and jPj “xed, and thus, reduce
the total cost TðCr; Cs; PÞ, when Q 2 P and P is not
of the form Fig. 2a. Thus, by contradiction, the
optimal join-region P must be of the form depicted
in Fig. 2a if Q 2 P. Using similar arguments, we can
show that if Q 62 P, the optimal join-region must be
of the shape depicted inFig. 2b. h

Note that the assumptions made (viz. restricted
class of algorithms, distributing and broadcasting
in a linear fashion) in proving the above theorem
do not restrict the applicability of our developed
techniques. The assumptions were made solely to
prove optimality, and more importantly, to develop
an algorithm that could form the basisof a commu-
nication-e�cient implementation of the join opera-
tion in general sensor networks without any
restrictions on the communication/computation
model.

Note that the above theorem only restricts the
shape of an optimal join-region; there are still an
in“nite number of possible join-regions of shapes
depicted in Fig. 2. Thus, we now further restrict
the shape of an optimal join-region. by characteriz-
ing the equations of the pathsPr and Ps that con-
nect Cr and Cs respectively toCq.

3.2.2. Optimizing paths Pr and Ps in the join-region
Consider an optimal join-region P that imple-

ments a join operation using minimum communica-
tion cost. By Theorem 1, we know that the regionP
is of the shape depicted inFig. 2a or b. As derived in
Eq. (1), the total communication cost TðCr; Cs; PÞ
incurred in processing of a join using the regionP
is jRjdðR; CrÞ þ jSjdðS; CsÞ þ jRjjPj=2 þ j SjjPjþ
jR � SjdðP; QÞ: Let P0 ¼ P � Pr � Ps, i.e., the region
P without the paths Pr and Ps. Since the result
jR � Sj is uniformly spread along the entire region
P, we have

dðP;QÞ ¼
1

jPj
jP0jdðP0;QÞ þ jPr jdðPr;QÞ þ jPsjdðPs;QÞ:

For a givenjPj and a given set of pointsCr, Cs, and
Cq, the total communication cost T is minimized
when the path Pr is constructed such that
jPr jdðPr; QÞ is minimized. Otherwise, we could
reconstruct Pr with a smaller jPr jdðPr; QÞ, and

Q

Table R Table S

Cr
Cs

s

s’

Cq

P

Fig. 3. An arbitrary join-region P containing Q, and the shortest
paths ðCr ; QÞ and ðCs; QÞ in P. Here, s is the point in
P � ð Cr ; QÞ � ðCs; QÞthat is farthest from Q, and s0 is the point
not in P that is closest toQ. If P is not of the form Fig. 2a, then
dðP; QÞ can be reduced (without changingCr ; Cs; or jPj) by
replacing s by s0, and thus, reducing the total costTðCr ; Cs; PÞ.

4 Note that since pathsðCr ; QÞand ðCs; QÞare shortest inP,
they intersect at only one pointCq and have the same subpaths
ðCq; QÞ.
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remove/add sensors nodes from the end5 of the re-
gion P0 to maintain jPj. Removal of sensor nodes
from P0 will always reduceT, and it can be shown
that addition of sensor nodes to the end of the re-
gion P0 will not increase the cost more than the
reduction achieved by optimizingPr. Similarly, the
path Ps could be optimized independently.

We now derive the equation of the pathPr that
minimizes jPr jdðPr; QÞfor a given Cr and Cq. Con-
sider an arbitrary point Rðx; yÞ along the optimal
path Pr. The length of an in“nitesimally small seg-
ment of the path Pr beginning at Rðx; yÞ is���������������������������

ðdxÞ2 þ ðdyÞ2
q

, and the average distance of this
segment fromQ is

��������������
x2 þ y2

p
, if the coordinates of

Q are ð0; 0Þ. Sum of all these distances over the

path Pr is: F ¼
RCq

Cr

��������������
x2 þ y2

p ���������������������������
ðdxÞ2 þ ðdyÞ2

q
¼¼

RCq

Cr

��������������
x2 þ y2

p ������������������
1 þ ðy0Þ2

q
dx. To get the equation for

the path Pr, we would need to determine the extre-
mals of the above functionF. Using the technique
of calculus of variations [7], we can show that the
extremal values ofF satisfy the Euler…Lagrange dif-
ferential equation. The equation of the pathPr can
thus be computed as (we omit the details):
b ¼ x2 cosa þ 2xysina � y2 cosa where the con-
stants a and b are evaluated by substituting for
coordinates of Cr and Cq in the equation.

3.2.3. Computing communication cost
Given jPj and the three pointsCr, Cs, and Cq, we

now derive the total communication cost
ToptðCr ; Cs; Cq; jPjÞ incurred by using the optimal
join-region of size jPj constructed overCr, Cs and
Cq. We will use the formulation of
ToptðCr ; Cs; Cq; jPjÞ to design an optimal algorithm
by consider all possible combinations of values of
jPj, Cr, Cs and Cq and picking the quartet that
results in minimum ToptðCr; Cs; Cq; jPjÞ.

Given jPj and points Cr; Cs; Cq, let Pr and Ps be
the paths as obtained in the previous paragraph. Let

l Y ¼ jPr j þ j Psj þ j CqQj:

If l Y > jPj, then the optimal join-region P cannot
contain the point Q, and hence, byTheorem 1, the
region P is comprised of the optimized pathsPr,
Ps, and the line segmentCqCq2, where Cq2 2 CqQ
is such that jCqCq2j ¼ jPj � ðj Pr j þ j PsjÞ. See
Fig. 2b. For the case whenl Y 6 jPj, the l Y=jPj frac-

tion of the join is processed on the curvesPr ; Ps, and
the line segmentCqQ, while the remaining fraction
of the join is processed on a circular regionPO of
appropriate radius around Q. See Fig. 2a. From
Theorem 1, the above choice ofP minimizes the
value dðP; QÞ for a given combination of
Cr; Cs; Cq; and jPj. Thus, we have

P ¼ Pr [ Ps [ CqCq2 if l Y > jPj; ð2Þ

P ¼ Pr [ Ps [ CqQ [ PO if l Y 6 jPj: ð3Þ

As mentioned before, the point Cq2 is such that
CqCq2 ¼ jPj � ðj Pr j þ j PsjÞ, and PO is a circular
region of su�cient radius around Q such that
jPOj ¼ jPj � ðj Cq; Qj þ j Pr j þ j PsjÞ. For a given
quartet of values ðCr; Cs; Cq; jPjÞ, let ToptðCr ; Cs;
Cq; jPjÞ denote the total communication cost in-
curred when the join-region P is optimally con-
structed as suggested by Eqs.(2) and (3). In other
words, ToptðCr; Cs; Cq; jPjÞ is equal to jRjdðR;CrÞþ
jSjdðS;CsÞþjR� SjdðP;QÞþjRjjPj=2þ j SjjPj, where
P is the optimally constructed join-region as sug-
gested by Eqs.(2) and (3).

3.2.4. Optimal join algorithm
Based on the above discussion, we construct an

optimal join-region to compute a join operation
for tables R and S and the query sourceQ, by con-
sidering all possible triples of pointsCr, Cs, and Cq

in the sensor network and values ofjPj, and pick the
quartet ðCr; Cs; Cq; jPjÞ that minimizes the value
ToptðCr ; Cs; Cq; jPjÞ. For such an optimal quartet
ðCr; Cs; Cq; jPjÞ, we construct the optimal join-
region P as suggested by Eqs.(2) and (3) in the pre-
vious paragraph. If n is the total number of network
nodes, then there are at mostn4 combinations of
ðCr; Cs; Cq; jPjÞ. Thus, the time complexity of the
above algorithm which constructs an optimal join-
region is Oðn4Þ.

3.2.5. Suboptimal heuristic
The high time complexity of the optimal algo-

rithm described above makes it impractical for large
sensor networks. Here, we design a suboptimal heu-
ristic that has a much lower time complexity and
performs very well in practice (seeFig. 4). In partic-
ular, we reduce the complexity of our designed algo-
rithm from O ðn4Þto Oðn3=2Þusing the following “ve
steps. (i) We choose the minimum value ofjPj, i.e.,
jPj ¼ jRj=m, wherejRj is the size of the tableR to be
distributed and m is the memory at each sensor
node. (ii) We look at all possible values forCr in

5 Here, by the end of the regionP0, we mean either the circular
part PO or the line segmentCqCq2 depending on the shape.
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the region. (iii) For each Cr, we stipulate that Cs

should be ••symmetrically•• located (jRjdðR; CrÞ ¼
jSjdðS; CsÞ) in the MRQS. Thus, the location of Cs

is “xed for a given Cr. (iv) We approximate paths
Pr and Ps to be straight line segmentsCrCq and
CsCq respectively. (v) We further stipulate that the
point Cq should lie on the median of theMCrCsQ.
Thus, for each point asCr in the sensor network,
we determineCs and search for the bestCq on the
median of MCrCsQ. The above reduces the time
complexity to construct a join-region to Oðn3=2Þ,
wheren is the network size.

4. Generalizations to stream tables and general
sensor networks

In this section, we extend the our proposed algo-
rithms to real sensor networks and relax the
assumptions made in the previous section. We start
with generalizing our technique for stream database
tables. Then, we present the overall working of our
approach in general sensor networks. Finally, we
discuss a few other generalizations.

4.1. Implementation for stream database tables

In the previous section, we discussed implemen-
tation of the join operation in a sensor network
for static database tables. Since, sensor network
data is better represented as stream database tables,
we now generalize the algorithms to handle stream
database tables. First, we start with presenting our
model of stream database tables in sensor networks.

4.1.1. Data streams in sensor networks
As for the case of static tables, a stream database

table R corresponding to a data stream in a sensor
network is associated with a regionR, where each
node in R is continually generating tuples for the
table R. To deal with the unbounded size of stream

database tables, the tables are usually restricted to a
“nite set of tuples called thesliding window[1,6,16].
In e�ect, we expire or archive tuples from the data
stream based on some criteria so that the total num-
ber of stored tuples does not exceed the bounded
window size. We useWR to denote the sliding win-
dow for a stream database tableR.

4.1.2. Naive approach for stream tables
In the naive approach, we use the regionR (or S)

to store the windows WR and WS of the stream
tables R and S.6 Each sensor node in the regionR
usesWR=ðjWRj þ j WSjÞfraction of its local memory
to store tuples ofWR, and the remaining fraction of
the memory to store tuples ofWS.7 We need to store
WS also in the regionR to “nd matches for a newly
generated tuple ofR. To perform the join operation,
each newly generated tuple (ofR or S) is broadcast
to all the nodes in the regionR, and is also stored in
some node ofR with available memory. Note that
the generated data tuples ofS need to be “rst routed
from the region S to the region R. The result-
ing joined tuples are routed from R to the query
sourceQ.

4.1.3. Generalizing other approaches
The other approaches viz. centroid approach,

optimal algorithm, and suboptimal heuristic, use a
join-region that is separate from the regionsR
and S. These algorithms are generalized to handle
stream database tables as follows. First, the strategy
to choose the join-region P remains the same as
before for static tables, except for the size of the
join-region. For stream database tables, the chosen
join-region is used to storeWR as well asWS, with
each sensor node in the join-region using
WR=jWRj þ j WSj fraction of its memory to store
tuples of WR, and the rest to store tuples ofWS.
We need to storeWS as well in the join-region in
order to “nd matches for the newly generated tuples
of R. Now, each newly generated tuple (ofR or S) is
routed from its source node inR or S to the join-
region P, and broadcast to all the nodes inP. The
resulting joined tuples are then routed toQ. As part

Q

Table R Table S

Cr

Cs

Cq

M

|R|d(R, Cr ) = |S|d(S, Cs )

Fig. 4. Suboptimal heuristic for join implementation.

6 If the total memory of the nodes in R is not su�cient to store
WR and WS, then the region R is expanded to include more
sensor nodes.

7 An alternate naive strategy could be to storeWR and WS in R
and S respectively, but route each new tuple ofR to S and each
new tuple of S to R. Such a strategy uses more number of nodes
for storages, but incurs more routing communication cost.
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of the broadcast process (without incurring any
additional communication cost), each generated
tuple of R (or S) is also stored at some node inP
with available memory.

4.2. Overall implementation in real sensor networks

In this subsection, we consider overall working of
our approaches in general sensor networks. We start
with discussing the construction of join-region and
details of the underlying routing protocols appro-
priate for our developed techniques.

4.2.1. Join-regions and routing protocols in general
networks

Till now, we have assumed ••geometric•• sensor
networks, and looked at the problem of “nding an
optimal join-region in a geometric sense. In other
words, we assumed that the sensor network is very
dense so that we can “nd a sensor node at any desir-
able point in the region. In case of non-geometric
(i.e., not su�ciently dense) networks, we de“ne the
join-region based on the paths traversed by appro-
priate routing protocols. In particular, we use
GPSR [10] and TBF (trajectory based forwarding
[17]) routing protocols to traverse appropriate parts
of the intended join-region. More speci“cally, we
use the paths traversed by GPSR protocol as the
paths for the line-segment parts of the join-region,
i.e., CqQ (or CqCq2), and the paths Pr and Ps in
the suboptimal heuristic. However, for the curved
(non-straight) parts of the join-region (i.e., the paths
Pr and Ps in the optimal algorithm), we need to use
the TBF technique, which works by forwarding
packets to nodes closest to the intended path/trajec-
tory. For reasonably dense sensor networks, the
above approach yields a join-region that is very
close to the originally intended optimal geometric
join-region.

4.2.2. Overall working of our approaches
Recall that the algorithms to construct the join-

regions are run at the query source. As typical sen-
sor network queries are long running, the query
source can gather all the catalogue information
needed (estimated sizes and locations of the operand
relations, join selectivity factor, network density) by
initially sampling the operand tables. When the
query sourceQ needs to issue a join query, it deter-
mines the join-region based on the catalogue infor-
mation, and passes the constructed join-region
(represented by the pathsPr, Ps, and CqCq2 (or

CqQ and radius around Q)) to all the nodes in the
regions R and S. Each generated tupler of stream
R is routed from its source node (in regionR) to
the node nearest toCr using GPSR protocol. On
reaching Cr, we use GPSR/TBF protocol to route
the tuple r through the path Pr to reach the node
nearest to Cq, and then use GPSR to router to
the node nearest toCq2 or Q depending on the
join-region. Finally, if needed, the tuple is broadcast
in a region around Q of appropriate radius. In addi-
tion, during the above traversal, the tuple is joined
with tuples of Ws (the sliding window of S) stored
locally at each node of the join-region. Also, the
tuple r is stored at the “rst encountered node with
available memory in the join-region.

4.2.2.1. E�ect of node failures.As described above,
our proposed implementations do not use any spe-
ci“c destination nodes for traversing the constructed
join-region. That is, even though the join-region is
originally represented by certain geographic loca-
tions and paths, the actual join-region traversed is
based on the paths traversed by GPSR/TBF
protocols to nodes nearest to geometric locations.
Thus, our overall techniques automatically adapt
to node failures just as the underlying routing
protocols.

5. Performance evaluation

In this section, we present our simulation results
comparing performance of various algorithms
designed in this article. In particular, we compare
the performance of Naive Approach, Centroid
Algorithm, Optimal Algorithm, and Suboptimal
Heuristic. Each algorithm is generalized for stream
database tables and non-geometric general sensor
network. We refer to the generalized algorithms as
Naive, Centroid, OptBased, and Suboptimal Heuris-
tic respectively. Our simulations demonstrate the
e�ectiveness of our developed techniques. We start
with de“ning join-selectivity factor which is used
to characterize the size of the join result.

De“nition 3 (Join-selectivity factor). Given instances
of relations R and S and a join predicate, the join-
selectivity factor is the probability that a random
pair of tuples from R and S will satisfy the given join
predicate. In other words, the join selectivity factor
is the ratio of the size of R � S to the size of the
cartesian product, i.e.,jR � Sj=ðjRjjSjÞ.
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5.1. Parameter values and experiments

We generated random sensor networks by ran-
domly placing 10,000 sensors in an area of 10· 10
units. Each sensor has a uniform transmission
radius, and two sensors can communicate with each
other if they are located within each other•s trans-
mission radius. For the purposes of comparing the
performance of our algorithms, varying the number
of sensors is tantamount to varying the transmission
radius. Thus, we “x the number of sensors to be
10,000 and measure performance for di�erent trans-
mission radii. Memory size of a sensor node is 300
tuples, and the size of each of the sliding windows
WR and WS of stream tablesR and S is 8000 tuples.
For simplicity, we chose uniform data generation
rates for R and S streams. In each of the experi-
ments, we measure communication cost incurred
in processing 8000 newly generated tuples ofR
and S each, after the join-region is already “lled
with previously generated tuples. We use the GPSR
[10] algorithm to route tuples. Catalogue informa-
tion is gathered for non-Naive approaches by col-
lecting a small sample of data streams at the query
source.

We ran three sets of experiments on randomly
generated sensor networks. In the “rst set of exper-
iments, we consider a “xedMRSQ and calculate the
total communication cost for various transmission
radii and join-selectivity factors. Next, we “x the
transmission radius and calculate the total commu-
nication cost for various join-selectivity factors and
various shapes/sizes of theMRSQ. Finally, we plot
of performance of various algorithms in terms of
the network lifetime. Below, we discuss our simula-
tion results in detail.

5.2. Fixed triangleRSQ

In this set of experiments, we “x the locations of
regions R, S, and query sourceQ and measure the
performance of our algorithms for various values
of transmission radii and join-selectivity factors. In
particular, we choose coordinates (0, 0), (5, 9.5),
and (9.5, 0) for R; Q, and S respectively. The total
communication cost incurred by various algorithms
for 8000 newly generated tuples ofR and S is shown
in Fig. 5a…c. We have looked at three transmission
radii viz. 0.13, 0.15, and 0.18 units. Lower transmis-
sion radii left the sensor network disconnected, and
the trend observed for these three transmission radii
values was su�cient to infer behavior for larger
transmission radii. From Fig. 5a…c, we can see that
the Suboptimal Heuristic performs very close to the
OptBased Algorithm, and signi“cantly outperforms
(upto 100%) the Naive and Centroid Approaches
for most parameter values. Sometimes the Subopti-
mal Heuristic even outperforms the OptBased
Algorithm by a small margin.8 The performance
of the Naive approach worsens drastically with the
increase in the join-selectivity factor, since the rout-
ing cost of the joined tuples from the join region (R
or S) to the query sourceQ becomes more domi-
nant. For sake of clarity, we have not shown the
Naive Approach data points for high join-selectivity
factors. Also, note that with the increase in trans-
mission radius and/or selectivity factor, the relative
bene“t of Suboptimal Heuristic over the Centroid
Approach reduces. In particular, for extremely large
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Fig. 5. Performance for a “xed MRSQ with varying join-selectivity factor for three di�erent transmission radii: (a) 0.13 units, (b) 0.15
units, (c) 0.18 units.

8 Note that this does not contradict the optimality of the
Optimal Algorithm, since the OptBased is only basedon the
Optimal Algorithm for real sensor networks.
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