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Abstract

A Markov Decision Process (MDP) is a natural framework for formulating
sequential decision-making problems under uncertainty. In recent years, re-
searchers have greatly advanced algorithms for learning and acting in MDPs.
This article reviews such algorithms, beginning with well-known dynamic
programming methods for solving MDPs such as policy iteration and value
iteration, then describes approximate dynamic programming methods such as
trajectory based value iteration, and finally moves to reinforcement learning
methods such as Q-Learning, SARSA, and least-squares policy iteration. We
describe algorithms in a unified framework, giving pseudocode together with
memory and iteration complexity analysis for each. Empirical evaluations of
these techniques with four representations across four domains, provide in-
sight into how these algorithms perform with various feature sets in terms of
running time and performance.
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1
Introduction

Designing agents to act near-optimally in stochastic sequential domains is
a challenging problem that has been studied in a variety of settings. When
the domain is known, analytical techniques such as dynamic programming
(DP) [Bellman, 1957] are often used to find optimal policies for the agent.
When the domain is initially unknown, reinforcement learning (RL) [Sutton
and Barto, 1998] is a popular technique for training agents to act optimally
based on their experiences in the world. However, in much of the literature
on these topics, small-scale environments were used to verify solutions. For
example the famous taxi problem has only 500 states [Dietterich, 2000]. This
contrasts with recent success stories in domains previously considered unas-
sailable, such as 9×9 Go [Silver et al., 2012], a game with approximately 1038

states. An important factor in creating solutions for such large-scale problems
is the use of linear function approximation [Sutton, 1996, Silver et al., 2012,
Geramifard et al., 2011]. This approximation technique allows the long-term
utility (value) of policies to be represented in a low-dimensional form, dra-
matically decreasing the number of parameters that need to be learned or
stored. This tutorial provides practical guidance for researchers seeking to
extend DP and RL techniques to larger domains through linear value func-
tion approximation. We introduce DP and RL techniques in a unified frame-
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work and conduct experiments in domains with sizes up to ∼ 150 million
state-action pairs.

Sequential decision making problems with full observability of the states
are often cast as Markov Decision Processes (MDPs) [Puterman, 1994]. An
MDP consists of a set of states, set of actions available to an agent, rewards
earned in each state, and a model for transitioning to a new state given the
current state and the action taken by the agent. Ignoring computational limita-
tions, an agent with full knowledge of the MDP can compute an optimal pol-
icy that maximizes some function of its expected cumulative reward (which
is often referred to as the expected return [Sutton and Barto, 1998]). This
process is known as planning. In the case where the MDP is unknown, re-
inforcement learning agents learn to take optimal actions over time merely
based on interacting with the world.

A central component for many algorithms that plan or learn to act in an
MDP is a value function, which captures the long term expected return of a
policy for every possible state. The construction of a value function is one of
the few common components shared by many planners and the many forms of
so-called value-based RL methods1. In the planning context, where the under-
lying MDP is known to the agent, the value of a state can be expressed recur-
sively based on the value of successor states, enabling dynamic programming
algorithms [Bellman, 1957] to iteratively estimate the value function. If the
underlying model is unknown, value-based reinforcement learning methods
estimate the value function based on observed state transitions and rewards.
However, in either case, maintaining and manipulating the value of every state
(i.e., a tabular representation) is not feasible in large or continuous domains.
In order to tackle practical problems with such large state-action spaces, a
value function representation is needed that 1) does not require computation
or memory proportional to the size of the number of states, and 2) general-
izes learned values from data across states (i.e., each new piece of data may
change the value of more than one state).

One approach that satisfies these goals is to use linear function approx-
imation to estimate the value function. Specifically, the full set of states is

1There are other MDP solving techniques not covered here (such as direct policy search)
that do not directly estimate a value function and have been used successfully in many ap-
plications, including robotics [Williams, 1992, Sutton et al., 2000, Peters and Schaal, 2006,
Baxter and Bartlett, 2000].
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projected into a lower dimensional space where the value function is repre-
sented as a linear function. This representational technique has succeeded at
finding good policies for problems with high dimensional state-spaces such
as simulated soccer [Stone et al., 2005b] and Go [Silver et al., 2012]. This
tutorial reviews the use of linear function approximation algorithms for de-
cision making under uncertainty in DP and RL algorithms. We begin with
classical DP methods for exact planning in decision problems, such as policy
iteration and value iteration. Next, we describe approximate dynamic pro-
gramming methods with linear value function approximation and “trajectory
based” evaluations for practical planning in large state spaces. Finally, in the
RL setting, we discuss learning algorithms that can utilize linear function
approximation, namely: SARSA, Q-learning, and Least-Squares policy itera-
tion. Throughout, we highlight the trade-offs between computation, memory
complexity, and accuracy that underlie algorithms in these families.

In Chapter 3, we provide a more concrete overview of practical linear
function approximation from the literature and discuss several methods for
creating linear bases. We then give a thorough empirical comparison of the
various algorithms described in the theoretical section paired with each of
these representations. The algorithms are evaluated in multiple domains, sev-
eral of which have state spaces that render tabular representations intractable.
For instance, one of the domains we examine, Persistent Search and Track
(PST), involves control of multiple unmanned aerial vehicles in a complex
environment. The large number of properties for each robot (fuel level, loca-
tion, etc.) leads to over 150 million state-action pairs. We show that the linear
function approximation techniques described in this tutorial provide tractable
solutions for this otherwise unwieldy domain. For our experiments, we used
the RLPy framework [Geramifard et al., 2013a] which allows the reproduc-
tion of our empirical results.

There are many existing textbooks and reviews of reinforcement learn-
ing [Bertsekas and Tsitsiklis, 1996, Szepesvári, 2010, Buşoniu et al., 2010,
Gosavi, 2009, Kaelbling et al., 1996, Sutton and Barto, 1998]. This tutorial
differentiates itself by providing a narrower focus on the use of linear value
function approximation and introducing many DP and RL techniques in a
unified framework, where each algorithm is derived from the general concept
of policy evaluation/improvement (shown in Figure 2.1). Also, our extensive
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empirical evaluation covers a wider range of domains, representations, and
algorithms than previous studies. The lessons from these experiments pro-
vide a guide to practitioners as they apply DP and RL methods to their own
large-scale (and perhaps hitherto intractable) domains.



2
Dynamic Programming and Reinforcement

Learning

This chapter provides a formal description of decision-making for stochastic
domains, then describes linear value-function approximation algorithms for
solving these decision problems. It begins with dynamic programming ap-
proaches, where the underlying model is known, then moves to reinforcement
learning, where the underlying model is unknown. One of the main goals of
this chapter is to show that approximations and sampling restrictions pro-
vide a path from exact dynamic programming methods towards reinforcement
learning algorithms shown in Figure 2.1 (the terms used in the figure will be
explained throughout this chapter). We give pseudocode together with mem-
ory and computation complexity analysis. The list of discussed algorithms
and their computational complexities are available in Tables 2.2 and 2.3.

2.1 Markov Decision Processes (MDPs)

Following the convention of Sutton and Barto [1998], a Markov Decision
Process (MDP) [Puterman, 1994] is a tuple (S,A,Pas·,Rass′ , γ, S0) where S
is a set of states, A is a set of actions, s, s′ ∈ S, and a ∈ A. Pas· is a prob-
ability distribution over next states if action a is executed at state s. In what
follows, for the sake of simplifying the presentation, we restrict our atten-
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Figure 2.1: The roadmap we use to introduce various DP and RL techniques in a unified
framework.

tion to MDPs with countable state spaces. For such MDPs, we denote the
probability of getting to state s′ by taking action a in state s as Pass′ . Corre-
spondingly, Rass′ is the reward the agent receives when the sequence s, a, s′

occurs. The discount factor, γ ∈ [0, 1), balances current and future rewards.
The distribution over initial states is governed by S0. Together, Pas· and Rass′
constitute the model of an MDP. A trajectory is a sequence (s0, a0, r0, s1, a1,

r1, s2, . . .), where s0 ∼ S0. Each state following the initial state in a trajec-
tory is generated by the domain according to the transition model (i.e., for
t ≥ 1, st+1 ∼ Pat

st·). Similarly, each reward rt = Rat
stst+1 for the selected

action. Each action at ∈ A in the trajectory is chosen according to policy
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π : S → A. The policy maps each state to an action.1 Given a policy π, the
state-action value function, Qπ(s, a) of each state-action pair is the expected
sum of the discounted rewards for an agent starting at state s, taking action a,
and then following policy π thereafter (denoted Eπ) :

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣s0 = s, a0 = a

]
. (2.1)

The discount factor bounds the summation and reduces the desirability of
future rewards.2 Similarly the state value function, (or called simply the value
function), for a given policy π is defined as:

V π(s) , Qπ (s, π(s)) (2.2)

= Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣s0 = s

]
. (2.3)

The goal of solving an MDP is to, given the MDP model, find an optimal
policy, one of which always exists [Puterman, 1994], that maximizes the ex-
pected cumulative discounted rewards in all states:

π∗ = argmax
π

V π(s), ∀s ∈ S. (2.4)

The optimal value function is defined accordingly as:

V ∗(s) , V π∗(s).

Similarly:

Q∗(s, a) , Qπ
∗(s, a).

The optimal value function satisfies the Bellman Equation [Puterman, 1994]:

V ∗(s) = max
a∈A

∑
s′∈S
Pass′

[
Rass′ + γV ∗(s′)

]
s ∈ S. (2.5)

From a practical perspective, calculating the right hand side of the Bellman
Equation for MDPs with infinite state and action spaces is challenging be-
cause 1) a unique value has to be stored for each state and 2) the maximiza-
tion in the Equation 2.5 is over all actions. For the rest of the tutorial, we

1More generally policies can be based on histories of states but in this work we consider
only Markovian policies.

2From an economical prospective, one can think that a dollar today is worth more than a
dollar tomorrow.
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focus our attention on MDPs with finite state and action spaces. However
Chapter 3 introduces approximation techniques that can be used for MDPs
with continuous state spaces.

2.2 MDP Solvers at a Glance

The rest of this chapter provides an overview of some popular algorithms for
solving MDPs. These algorithms are categorized either as planning, where
the MDP model is known, or learning, where the MDP model is not known.3

This tutorial focuses on dynamic programming methods in the planning cat-
egory and value-function based reinforcement learning techniques for the
learning category. Throughout, we show these techniques are actually ex-
tremes on a spectrum: as one decreases the per-iteration complexity of DP
methods and forces them to use samples in place of exact parameters, RL
techniques naturally emerge. Since the common thread for all of these tech-
niques is that they use a value function, we refer to them as value-based
solvers.

As shown in Figure 2.2, value-based solvers tackle an MDP in two
phases: 1) policy evaluation and 2) policy improvement. In the policy eval-
uation phase, the solver calculates the value function for some or all states
given the fixed policy.4 In the policy improvement step, the algorithm im-
proves the previous policy based on values obtained in the policy evaluation
step. The process of iteratively evaluating and improving the policy continues
until either the policy remains unchanged, a time limit has been reached, or
the change to the value function is below a certain threshold. Of course, Fig-
ure 2.2 does not prescribe exactly how these phases are completed or when
an algorithm switches between them. For instance, we will see that some al-
gorithms (like policy iteration) spend significant time in the evaluation phase
while others (like value iteration) oscillate more quickly between the phases.

The chapter proceeds as follows: Section 2.3 explains dynamic program-
ming techniques that have access to the MDP model (i.e.,R and P ). Sections
2.4-2.6 introduce approximate dynamic programming techniques by elimi-

3Mausam and Kolobov [2012] provide a broader overview of MDP solving methods.
4Sometime the policy evaluation step only improves the previous value estimates rather

than calculating the exact values, known as truncated policy evaluation [see Sections 4.4 and
4.6 Sutton and Barto, 1998].
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Policy Evaluation

Policy Improvement

π Qπ or V π

Figure 2.2: Policy evaluation/improvement loop: The convergent policy is guaranteed to be
optimal, if the Q or V value functions are exact.

nating all |S| dependent memory and computation operators of dynamic pro-
gramming techniques. Finally Section 2.7 shows how reinforcement learning
techniques that do not have access to the MDP model can follow naturally
from approximate dynamic programming techniques. These connections and
the broad outline of the algorithm derivations of this tutorial are illustrated in
Figure 2.1.

2.3 Dynamic Programming

Dynamic programming (DP) refers to a class of algorithms that solve com-
plex problems by combining solutions from their subproblems. DP tech-
niques can be used in the planning setting to solve a known MDP by finding
the optimal value function and its corresponding optimal policy [Bellman,
1957, Bertsekas and Tsitsiklis, 1996, Sutton and Barto, 1998]. First, let us
observe that given an MDP, policy evaluation (i.e., finding the value function
under a fixed policy) can be done in closed form. Looking back at the Equa-
tion 2.3, the value function can be derived recursively as explained by Sutton
and Barto [1998]:
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V π(s) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣s0 = s

]

= Eπ

[
r0 +

∞∑
t=1

γtrt

∣∣∣∣s0 = s

]

= Eπ

[
Rπ(s)
ss′ + γ

∞∑
t=1

γt−1rt

∣∣∣∣s0 = s

]
=
∑
s′∈S
Pπ(s)
ss′

[
Rπ(s)
ss′ + γV π(s′)

]
. (2.6)

Notice the difference between Equations 2.5 and 2.6. The former is the Bell-
man optimality equation, which is independent of the policy, while the latter
is the recursive form of the value function given a fixed policy. Since S is
assumed to be finite, the state values can be calculated by solving |S| linear
equations each specified by writing Equation 2.6 for every state of the MDP.
The solution for a finite state MDP with S = {s1, s2, ..., s|S|} for which the
vector V π

|S|×1 represents the value function of the policy π, can be calcu-
lated in closed form (our notation may exclude the π superscript for brevity,
yet the policy dependency is always assumed). To write Equation 2.6 in the
matrix form, let matrix P be defined using P ij = Pπ(si)

sisj , and let vector R
be defined usingRi =

∑
j P

π(si)
sisj R

π(si)
sisj . Then Equation 2.6 takes the form:

V = R+ γPV .

Let us define

T(V ) , R+ γPV , (2.7)

where T is known as the Bellman operator applied to the value function.
The output of T is a vector with the same size as the input vector (i.e., T :
R|S| → R|S|). With the help of operator T, we can write Equation 2.6 as
V = T(V ). Thus, the problem of evaluating policy π translates into finding
the fixed-point of operator T. Solving this equation for V yields:

V = (I − γP )−1R, (2.8)
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where I is the identity matrix. Expanding the right hand side using the Neu-
mann series [see e.g., Barto and Duff, 1994], we obtain:

(I − γP )−1 =
∞∑
k=0

(γP )k.

Note that the series converges, hence the inverse exists, because ‖P ‖∞ ≤ 1,
where ‖P ‖∞ = maxi

∑
j |P ij | is the `∞ operator norm of matrix P .

As for policy improvement, the new policy is updated by selecting the
action that is “greedy” with respect to the calculated values:

π(s) = argmax
a∈A

∑
s′∈S
Pass′

[
Rass′ + γV π(s′)

]
. (2.9)

Notice the V π values on the right hand side are the calculated ones from
the policy evaluation step. Moreover, ties are broken in a systematic fashion,
such as uniform random selection amongst the best available actions. Putting
Equations 2.8 and 2.9 together, we arrive at the policy iteration algorithm (see
Algorithm 1) [Howard, 1960].

While policy iteration is guaranteed to stop in a polynomial number of
iterations in |S|×|A| for a fixed value of gamma [Ye, 2011] and reach the op-
timal solution [Howard, 1960], from a practical standpoint, this algorithm is
not scalable because storing P requires O(|S|2) memory and solving Equa-
tion 2.8 takes O(|S|3) time.5 Hence the exact policy evaluation step is often
done iteratively within a given threshold η, as is done in Algorithm 1 (akin
to Figure 4.3 of Sutton and Barto [1998]). Lines 1-2 initialize the policy and
its corresponding value function. Without any prior domain knowledge, the
policy can be selected to be uniformly random among possible actions, while
state values are set initially to zero. There are other initialization schemes
possible, such as optimistic initialization, where all values are set to (or near)
the maximum value [see e.g., Szita and Szepesvári, 2010]. Lines 6-11 solve
Equation 2.8 approximately with complexityO(N |S|2), whereN is the num-
ber of sweeps through the states (i.e., lines 7-10). Smaller values of η pro-
vide better approximation at the cost of more computation (i.e., larger values
of N ). Note that Algorithm 1 does not store P explicitly to avoid O(|S|2)

5There are advanced techniques for matrix inversion withO(|S|2.373) computational com-
plexity, but most open-source math packages use common methods [e.g., Golub and Loan,
1996] for matrix decomposition, amounting to O(|S|3) complexity.
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Algorithm 1:Policy Iteration Complexity
Input: MDP, η
Output: π

1 π(s)← Initialize arbitrary for s ∈ S
2 V π(s)← Initialize arbitrarily for s ∈ S
3 changed← True
4 while changed do
5 ∆← 0
6 repeat
7 for s ∈ S do
8 v ← V π(s)
9 V π(s)←

∑
s′ Pπ(s)

ss′ (Rπ(s)
ss′ + γV π(s′)) O(|S|)

10 ∆← max(∆, |v − V π(s)|)
11 until ∆ < η
12 for s ∈ S do
13 π+(s)← argmaxa∈A

∑
s′∈S Pass′ [Rass′ + γV π(s′)] O(|A||S|)

14 changed← (π+ 6= π)
15 π ← π+

16 return π

memory requirement. Instead lines 9 and 13 access transition probabilities
on demand and store the value and the policy for each state, incurringO(|S|)
memory. Line 13 can be executed in memory size independent of O(|A|) as
maximization can be done incrementally. The algorithm also shows the com-
putational complexity of selected lines for each iteration on the right side.
Algorithm 1 requires O(|S|) memory6 and O((N + |A|)|S|2) computation
per iteration.

The loop shown in Figure 2.2 still converges to the optimal solution if
policy improvement is executed before accurately evaluating the policy, as
long as the value function gets closer to its optimal value after each policy
evaluation step [Howard, 1960, Sutton and Barto, 1998]. This idea motivates
a process that can potentially save substantial computation while still finding
good policies: update the policy after every single “Bellman backup” (line
9 of Algorithm 1). Thus, the Bellman backup should use the best possible

6It is assumed that the transition probabilities and the rewards are not stored explicitly.
Rather they are stored in a functional form that can be probed for arbitrary inputs.
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Algorithm 2:Value Iteration Complexity
Input: MDP, η
Output: π

1 V (s)← Initialize arbitrarily for s ∈ S
2 repeat
3 for s ∈ S do
4 v ← V (s)
5 V (s)← maxa∈A

∑
s′∈S Pass′ [Rass′ + γV (s′)] O(|A||S|)

6 π(s)← argmaxa∈A
∑
s′∈S Pass′ [Rass′ + γV (s′)] O(|A||S|)

7 ∆← max(∆, |v − V (s)|)
8 until ∆ < η
9 return π

action for backup rather than a fixed policy [Bellman, 1957]:

∀s ∈ S, V (s)← max
a∈A

∑
s′∈S
Pass′

[
Rass′ + γV (s′)

]
. (2.10)

Equation 2.10 implicitly unifies Equations 2.9 and 2.6, giving the value iter-
ation method shown in Algorithm 2 (akin to Figure 4.5 of Sutton and Barto
[1998]). Bertsekas [1976] has shown that if the `∞ difference of the value
function between two successive iterations of value iteration (the Bellman
residual) is less than η, then the `∞ difference between the value functions
of the greedy policy with respect to the current values and the optimal pol-
icy is no more than 2ηγ/(1−γ). Value iteration improves the policy much more
frequently than policy iteration and reduces the main loop complexity from
O((N+ |A|)|S|2) toO(|A||S|2). The memory requirement of value iteration
is the same as policy iteration (i.e., O(|S|)). While in theory value iteration
may require more iterations than policy iteration [Ye, 2011], in practice, value
iteration often requires less total time to find the optimal solution compared
to policy iteration; a finding that will be verified in Section 4.

2.4 Approximate Dynamic Programming

With the aim of scalability, we now describe ways to reduce the memory
and computational complexities of the algorithms above. Attention is focused
on MDPs with large, yet finite, state spaces with a small number of actions
(i.e., |A| � |S|). This assumption is often met in practice. For example in



2.4. Approximate Dynamic Programming 389

9× 9 Go, |S| = 1038 and |A| = 81. Hence the rest of Section 2.4 focuses on
eliminating |S| dependent memory sizes and computations (i.e., scaling ob-
stacles). These changes include moving away from the tabular representation
where a unique value is stored for every state-action pair to a more compact
representation. Looking back at Algorithm 2, there are four scaling problems:

1. π stores an action for each state (line 6).

2. There is a loop over all possible states (line 3).

3. Both the Bellman backup (line 5) and the policy update (line 6) con-
sider all possible next states, which in the worst case can be |S|.

4. V stores a unique parameter for every state of the MDP (line 5).

2.4.1 Solving Problem 1

The first problem can be solved by storing the policy implicitly through the
use of action-value functions. If for each state s, an action-value Q(s, a) is
available for all actions, then the greedy policy can be retrieved simply by:

π(s) = argmax
a∈A

Q(s, a), (2.11)

which is also known as the greedy policy with respect to the action-value
function Q. This change will eliminate the need for storing policies explic-
itly. Note that switching from V to Q increases the memory requirement for
storing the value function by factor of |A|. Yet, as long as the dependence of
the value function on the state space (problem 4) is removed, this increase is
not a major concern because |A| is assumed to be small.

2.4.2 Solving Problem 2

For MDPs with large state spaces, sweeping through all states and perform-
ing Bellman backups on each one is infeasible. Consequently, more advanced
techniques have been proposed to focus Bellman backups in parts of the state-
space that are more promising [Singh, 1992, Moore and Atkeson, 1993, Barto
et al., 1995, Kuvayev and Sutton, 1996]. Currently, the best comprehensive
source for these techniques is by Mausam and Kolobov [2012]. In this paper,
we focus on the work of Barto et al. [1995] in which they proposed sampling
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trajectories 〈s0, a0, r0, s1, a1...〉 based on promising policies while perform-
ing Bellman backups on visited states. The core idea of this trajectory-based
sampling is to execute Bellman backups on states that are visited under good
policies. In practice, a form of exploration is required in producing these tra-
jectories to ensure all states are visited infinitely often in the limit of infi-
nite samples, so that Equation 2.6 holds for all states asymptotically. Here,
we adopt a simple but common approach to generate trajectories named ε-
greedy policy, which selects an action randomly with a small probability ε
every time, and acts greedily with respect to the Q function otherwise [Sutton
and Barto, 1998]:

πε(s) ,
{

argmaxaQπ(s, a), with probability 1− ε;
UniformRandom(A), with probability ε.

(2.12)

2.4.3 Solving Problem 3

In most practical problems, there is a locality property meaning that given
each state-action pair, the number of reachable next states is much smaller
than the total number of states:

|{s′|Pass′ 6= 0}| � |S| s ∈ S, a ∈ A.

This assumption naturally alleviates Problem 3. For problems where this as-
sumption does not hold, L1 samples can be used to approximate the expec-
tations on the next state. For example, line 5 of Algorithm 2 can be changed
to:

V (s)← max
a

1
L1

L1∑
j=1

[
Rass′j + γV (s′j)

]
, s′j ∼ Pπ(s)

s .

Notice that as L1 →∞, the estimate becomes exact with probability one.

2.4.4 Solving Problem 4

Addressing the fourth problem is more challenging than the previous 3 prob-
lems. In general, holding a tabular representation of the value function V (s),
or its state-action version, Q(s, a) (i.e., storing a unique value for each state-
action pair) is impractical for large state spaces. Even domains that are fairly
simple to describe, like a multi-robot control scenario with 30 robots that each
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can either be “busy” or “free” will require 230 state values to be stored. Since
it was shown that the Q function holds sufficient information for deriving a
policy without needing extra O(|S|) storage, what is needed is an approxi-
mate representation of Q(s, a) whose size is not polynomial in |S|. One such
approach that has been successful in a number of RL domains is to approxi-
mate Q(s, a) using a parametric function, where the savings comes from the
fact that the number of parameters to store and update is less than the num-
ber of states [Sutton, 1996, Silver et al., 2012, Geramifard et al., 2011]. For
instance, one could attempt to approximate the value function in the afore-
mentioned multi-robot control domain by using a weighted combination of
the “busy” and “free” state variables of each robot amounting to 30× 2 = 60
parameters (i.e., features). This representation might have lower fidelity to the
true value function in that it may not be able to capture the expected return of
specific combinations of the robot states. Often, the parametric form used is
linear in the parameters:

Qπ(s, a) = φ(s, a)>θ, (2.13)

with vectors φ(s, a) and θ are defined as follows: Each element of the vector
φ(s, a) is called a feature; φi(s, a) denotes the value of feature i for state-
action pair (s, a). The feature function φ : S × A → Rn maps each state-
action pair to a vector of feature values; θ ∈ Rn is the weight vector specify-
ing the contribution of each feature across all state-action pairs. Finding the
right feature function (φ) is an important step, but for the rest of this chap-
ter, it is assumed that φ is given. Various ways to build such functions are
discussed in Chapter 3.

As defined in Equation 2.11, finding the optimal policy requires the cor-
rect ranking of Q values in a given state. Practitioners often avoid approxi-
mating the value of one state-action pair based on the value of other actions
taken in the same state [Sutton, 1996, Lagoudakis and Parr, 2003, Buşoniu
et al., 2010]. In other words, features used to approximate Q(s, a) are differ-
ent from the features used to approximate Q(s, a′), ∀a ∈ A, a′ 6= a. Given
a state-action pair (s, a), this constraint is met by mapping s to a vector of
feature values (φ : S → Rm), and then using this feature vector in the corre-
sponding slot for action a while setting the feature values for the rest of the
actions to zero. While this approach is impractical for domains with a large
number of actions, it works well for domains with small |A|, which are the
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focus of this paper. Furthermore, based on our assumption of |A| � |S|,
m|A| = n is always maintainable in the memory. Notice that θ holds m
separate weights for each action, for a total of m|A| = n values.

The following example shows this mechanism for an MDP with 2 actions
and 3 features per action. Hence 3×2 = 6 features are used for linear function
approximation.

φ(s) =

 φ1(s)
φ2(s)
φ3(s)

⇒ φ(s, a1) =



φ1(s)
φ2(s)
φ3(s)

0
0
0


, φ(s, a2) =



0
0
0

φ1(s)
φ2(s)
φ3(s)


.(2.14)

For our empirical results, φ(s, a) is assumed to be generated from φ(s) fol-
lowing the above process, though a more general form of φ(s, a) could also
be used.

2.5 Trajectory Based Value Iteration

We now have all the building blocks to introduce a scalable DP technique
with memory and iteration computation independent of |S|. However there is
a caveat in putting all these blocks together. Looking back at Equation 2.10,
for every state, the new value is calculated using the Bellman backups and
stored in a separate location. Storing the value cannot be applied directly to
the linear function approximation case because changing the weight corre-
sponding to each feature can potentially change the value of multiple states.7

So the question becomes, given a new target value, Q+(s, a), and our current
approximate, Q(s, a) = φ(s, a)>θ, how can θ change to get Q(s, a) closer
toQ+(s, a)? The answer is to move θ in the opposite direction of the squared
difference between Q(s, a) and Q+(s, a):

C , (Q+(s, a)−Q(s, a))2

= (Q+(s, a)− φ(s, a)>θ)2

∂C

∂θ
= −2φ(s, a)(Q+(s, a)− φ(s, a)>θ).

7In the degenerate case where bases form the tabular representation, values can be stored
directly.
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Hence, the update rule takes the following form:

θ ← θ − β∂C
∂θ

← θ + αφ(s, a)(Q+(s, a)−Q(s, a)),

where β is the step size parameter and α = 2β. Combining the above gra-
dient approach and the solutions to problems 1–4 with value iteration result
in an algorithm we term trajectory based value iteration (TBVI) shown in
Algorithm 3. TBVI can be viewed as an extension of the algorithm men-
tioned in Section 9.6 of Sutton and Barto [1998] and the Real-Time dynamic
programming algorithm [Barto et al., 1995] to the linear function approxima-
tion setting. Problem 1 is addressed in line 3 by calculating the policy using
Equation 2.11. Problem 2 is resolved in line 3 where samples are generated
by following the ε-greedy policy instead of sweeping through the whole state
space. Problem 3 is addressed in lines 4 and 5 by using a sampling tech-
nique to approximate the expectation. Problem 4 is addressed by using linear
function approximation, specifically by calculating Q(·, ·) as φ(·, ·)>θ. An
interesting observation on the TBVI algorithm is that if L1 = 1, then in-
stead of executing line 4, the next state and reward along the trajectory can
be used to calculate the estimation on line 5. This special case is discussed
further in Section 2.7.1. TBVI has an O(n + L1) memory requirement, and
O(nTL1|A|) iteration complexity, where T is the maximum length of a tra-
jectory. One can follow the same steps to create a trajectory based policy
iteration algorithm from Algorithm 1, but finding a reasonable condition to
switch from policy evaluation to policy improvement is challenging because
not all states are visited on each iteration.

Compared to Algorithm 2, the stopping condition (line 2) is defined more
loosely based on a fixed planning time. In practice, more conditions can be
employed to force the algorithm to exit the loop on line 2 earlier than the
allocated planning horizon. For example, if through a certain number of con-
secutive trajectories the maximum δ value is less than a certain threshold, the
algorithm can exit. As for the end result, TBVI can diverge with linear func-
tion approximation for reasons similar to those that cause the divergence of
non-trajectory based dynamic programming methods with function approxi-
mation [see Tsitsiklis and Roy, 1997]. While this divergence was observed in
some of the empirical domains discussed later, the algorithm is successful in
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Algorithm 3:Trajectory Based Value Iteration (TBVI) Complexity
Input: MDP, α,L1
Output: π

1 θ ← Initialize arbitrarily
2 while time left do
3 for 〈s, a〉 in a trajectory following πε do
4 Create L1 samples: s′j ∼ Pas·, j = 1, ..., L1

5 Q+(s, a)← 1
L1

∑L1
j=1Rass′

j
+ γmaxa′ Q(s′j , a′), O(nL1|A|)

6 δ ← Q+(s, a)−Q(s, a)
7 θ ← θ + αδφ(s, a) O(n)

8 return π greedy with respect to Q

others, and is often a much faster alternative to full Value Iteration.

2.6 Approximate Dynamic Programming in Matrix Format

Before moving on, let us review the path we have followed in deriving the
first three algorithms (See Figure 2.1, boxes 1-3). The main idea was to evalu-
ate/improve the policy in a loop (Figure 2.2). We started policy evaluation us-
ing Equation 2.8. Due to the cost of inverting P when P is large, we changed
from the matrix form of policy evaluation to per-state policy evaluation and
introduced both policy iteration and value iteration. Finally by eliminating
all memory and computations with O(|S|) complexity, we introduced TBVI.
In this section, we take a different path (as shown on the right-side path in
Figure 2.1) from the policy evaluation/improvement loop by investigating the
benefits of using linear function approximation for more compact memory
and computation in evaluating the policy (Equation 2.8). First we derive a
policy evaluation technique to estimate V values using linear function ap-
proximation. Then we eliminate allO(|S|) dependent memory and computa-
tional requirements and introduce a new algorithm.

Similar to Equation 2.13,

V (s) = φ(s)>θ.

Note that for ease of readability, θ is used to indicate the weight vector for
both action-value functions and state-value functions. The only difference is
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that the parameter vector, θ, will be of dimension m when approximating
state-value functions, and n when approximating action-value functions. De-
fine Ṽ θ as an approximation of V :

Ṽ θ =


—– φ>(s1) —–
—– φ>(s2) —–

...
—– φ>(s|S|) —–

×

θ1
θ2
...
θm

 , Φ|S|×mθm×1. (2.15)

For brevity, Ṽ will be used instead of Ṽ θ. Often the true value function does
not lie in the space spanned by the basis functions (i.e., column space of Φ).
Hence a metric is required to define the best approximate value function in
the span of Φ. Ideally, the goal would be to find the solution to the following
minimization problem:

min
θ
||V − Ṽ ||2d = min

θ

∑
i∈{1,··· ,|S|}

[
V i − Ṽ i

]2di, (2.16)

where Xi is the ith element of vector X and d is a non-negative weight vector
specifying the importance of each state. Intuitively states that are visited more
often should have higher weights, penalizing the error correspondingly. One
way to capture this intuition is to use the steady state probability distribution
defined for any fixed policy π with transition P under that policy as a vector
d1×|S|, where

dP = d
s.t.

∑
i

di = 1,

∀i ∈ {1, · · · , |S|},di ≥ 0,

where di indicates the probability of being at state i in the limit of following
the fixed policy. Calculating the steady state distribution can be challenging,
hence Section 2.6.3 will use a more practical weighting scheme.

Equation 2.16 defines an unconstrained quadratic optimization problem
that has an analytic solution of the form: :

Ṽ = ΠV
Π = Φ(Φ>DΦ)−1Φ>D, (2.17)
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Φ
Ṽ

Π
Π

ΠT(Ṽ )

T(Ṽ )

T

V

ΠV

Figure 2.3: A geometric interpretation of what Bellman Residual Minimization (solid green)
and Projected Bellman Residual Minimization (dashed blue) minimize [akin to Lagoudakis
and Parr, 2003]. Π is the projection operator based on the steady state distribution d, mapping
every point to its orthogonal projection on the span of Φ shown as a 2D plane. T is the Bellman
operator. The ideal approximation is shown by ΠV , yet it is impractical since V is not known.

whereD|S|×|S| is defined as a matrix, with d on its diagonal (D = diag(d)).
Because V is not known, some other technique is needed to identify the
weights that best approximate the value function of a policy. Recall from
Section 2.3 that one can compute the value function of a policy using dy-
namic programming. So approximate dynamic programming can be used to
compute the weights (and therefore the approximate value function) of the
policy in the same way. However, this raises a question that is best illustrated
geometrically.

Figure 2.3 shows the value function (V ) and its projection into the span
of Φ (shown as the 2D plane), using the orthogonal projection operator,
Π. When performing approximate DP to compute Ṽ , the Bellman opera-
tor (Equation 2.7) is used to improve the approximation, but this operator can
move the approximation out of the span of Φ. Hence the new approxima-
tion has to be projected back to the span of Φ using Π. There are two ma-
jor metrics used in the literature to define the best approximated value func-
tion: 1) the projected Bellman error (blue dashed line in Figure 2.3) [Bradtke
and Barto, 1996, Lagoudakis and Parr, 2003, Farahmand et al., 2008, Sut-
ton et al., 2009, Scherrer, 2010] and 2) the Bellman error (green solid line in
Figure 2.3). Correspondingly, there are two methods for solving for the best
approximation to the true value function, based on each metric: 1) Projected
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Bellman Residual Minimization, also known as the least-squares Temporal
Difference solution (LSTD) [Bradtke and Barto, 1996], and 2) Bellman resid-
ual minimization (BRM) [Schweitzer and Seidman, 1985]. Both methods at-
tempt to converge to a fixed point, with the former performing its operations
directly in the projected linear space. At the fixed point, the projected Bell-
man error (i.e., the length of the blue line in Figure 2.3) will be zero. This
tutorial focuses on the LSTD solution (derived next) as it usually has better
practical results [Scherrer, 2010]. For more information regarding the com-
parison of LSTD and BRM approaches refer to the work of Lagoudakis and
Parr [2003] and Scherrer [2010].

2.6.1 Projected Bellman Residual Minimization

Our goal is to find the approximation that minimizes the norm of the blue
dashed line in Figure 2.3 formulated as:

min
θ
‖ΠT(Ṽ )− Ṽ ‖2.

The minimizer θ can be found by forcing the two points ΠT(Ṽ ) and Ṽ to
be equal:

Ṽ = ΠT(Ṽ )
Φθ = Φ(Φ>DΦ)−1Φ>D(R+ γPΦθ)
θ = (Φ>DΦ)−1Φ>D(R+ γPΦθ)(

Φ>D(Φ− γPΦ)
)
θ = Φ>DR

θ = [Φ>D(Φ− γPΦ)]︸ ︷︷ ︸
A

−1 Φ>DR︸ ︷︷ ︸
b

(2.18)

= A−1b. (2.19)

Notice that A has to be invertible for the solution to exist. The Ṽ calculated
above is known as the LSTD solution and can be far from V . Yet it has
been shown that under certain conditions the approximation error is bounded
[Tsitsiklis and Roy, 1999]:

‖V − Ṽ ‖ ≤ 1√
1− γ2 ‖V −ΠV ‖.
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This bound has been improved by Yu and Bertsekas [2010], but the discussion
of their result is beyond the scope of this tutorial. In practice, whenA is rank
deficient, regularization techniques are used [Kolter and Ng, 2009]. Notice
that in the tabular case where Φ = D = I , that is, features simply indicate
which state the system is in, Equation 2.8 is retrieved:

θ = (I − γP )−1R.

2.6.2 State-Action Value Estimation using LSTD

The goal is to find optimal policies for MDPs. Hence the policy evalua-
tion/improvement loop shown in Figure 2.2 has to be formed. LSTD can be
integrated with Equation 2.9 to form such a loop, but this approach hinders
scalability as π needsO(|S|) memory (Section 2.4). To address this problem,
Lagoudakis and Parr [2003] suggested to approximate action-values instead
of state-values. Hence the LSTD solution is rederived to calculate Q values
instead of V values. Similar to the derivation of Equation 2.6, Qπ can be
written recursively as:

Qπ(s, a) =
∑
s′∈S
Pass′

[
Rass′ + γQπ

(
s′, π(s′)

)]
. (2.20)

The π notation will be dropped for the rest of the derivation, as the policy
is assumed to be fixed. Now write the above equation in a matrix form to
rederive LSTD. Notice that we overload our notation, such that Φ,θ,P ,R,d
hold extra information required to calculate Q rather than V :

Q = R+ γPQ,

where,

Q|S||A|×1 =



Q(s1, a1)
...

Q(s|S|, a1)
...

Q(s|S|, a|A|)


.
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TheQ vector is approximated by Q̃ = Φθ,θ ∈ Rn, with

Φ|S||A|×n =



—– φ(s1, a1)> —–
...

—– φ(s|S|, a1)> —–
...

—– φ(s|S|, a|A|)> —–


,R|S||A|×1 =



Ra1
s1
...
Ra1
s|S|
...

Ra|A|s|S|


,

where φ(s, a) can be built from φ(s) as described in Section 2.4.4. Similarly
the transition matrix and the reward vector are defined:

P |S||A|×|S||A| =
P (s1, a1, s1, a1),P (s1, a1, s2, a1) · · · P (s1, a1, s|S|, a|A|)

...
. . .

...
P (s|S|, a|A|, s1, a1),P (s|S|, a|A|, s2, a1) · · · P (s|S|, a|A|, s|S|, a|A|)



Ras =
∑
s′∈S
Pass′Rass′

P (si, aj , sk, al) =
{
Paj
sisk if al = π(sk);

0, otherwise.

In the tabular case:

Q = (I − γP )−1R.

By overloading the weighting distribution to include state-action pairs instead
of states,D becomes |S||A| × |S||A|, with overloaded d1×|S||A| on its diag-
onal. Note that each element of d highlights the importance of a state-action
pair instead of a state. Consequently all derivations of LSTD (i.e., Equations
2.18 and 2.19) remain intact by calculating Q̃ instead of Ṽ .

2.6.3 Trajectory Based Policy Iteration

The previously derived LSTD solution can be integrated with Equation 2.11
to form a policy iteration technique. Reviewing Equations 2.18 and 2.19 in
the state-action (Q) case, the resulting algorithm will not be practical because
P ,R,D,Φ have |S||A| rows.
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Given the fixed policy π, samples can be gathered by following π, with
each sample coming in the form of 〈si, ai〉, i ∈ {1, · · · , L2}, where s1 is the
initial state, ai = π(si), and si+1 ∼ Pai

si·. Hence,

P̃ΦL2×n =


—– ϕ(s1, a1)> —–
—– ϕ(s2, a2)> —–

...
—– ϕ(sL2 , aL2)> —–

 (2.21)

ϕ(si, ai) =
∑
s′i∈S
Pai

sis′i
φ
(
s′i, π(s′i)

)

≈ 1
L1

L1∑
j=1

φ
(
s′j , π(s′j)

)
, s′j ∼ Pai

si
(2.22)

R̃L2×1 =


ρ(s1, a1)
ρ(s2, a2)

...
ρ(sL2 , aL2)

 (2.23)

ρ(si, ai) =
∑
s′i∈S
Pai

sis′i
Rai

sis′i

≈ 1
L1

L1∑
j=1
Rai

sis′j
, s′j ∼ Pai

si
. (2.24)

Notice ϕ and ρ, are estimates of expected values throughL1 samples identical
to Section 2.4.3. Now, defining the feature matrix

Φ̃L2×n =


—– φ(s1, a1)> —–
—– φ(s2, a2)> —–

...
—– φ(sL2 , aL2)> —–

 , (2.25)

the weight vector can be estimated as follows:

θ ≈ Ã
−1
b̃ (2.26)

Ã = 1
L2

Φ̃>(Φ̃− γP̃Φ) (2.27)

b̃ = 1
L2

Φ̃>R̃. (2.28)
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Table 2.1: Memory and computation complexity involved in calculating Ã

Calculation Computation Complexity Memory Equation

Q(s, a) O(n) O(n) 2.13

π(s) O(n|A|) O(n) 2.11

ϕ (s, π(s)) O(nL1|A|) O(n) 2.22

P̃Φ O(nL1L2|A|) O(nL2) 2.21

Ã O(n2L1 + nL1L2|A|) O(n2 + nL2) 2.27

Algorithm 4:Trajectory Based Policy Iteration (TBPI) Complexity
Input: MDP, ε, L1, L2
Output: π

1 θ ← Initialize arbitrarily
2 while time left do
3 Create L2 samples 〈si, ai〉 following policy πε

4 Calculate Ã and b̃ using Equations 2.27, 2.28 O(n2L2 + nL2L1|A|)
5 θ ← Ã

−1
b̃ (Use regularization if the system is ill-posed) O(n3)

6 return π greedy w.r.t. Q

In MDPs with finite state and action sets, as the number of samples goes
to infinity, the estimated weight vector θ̂ converges to A−1b if samples are
gathered with the same distribution that defines D [see the discussion in
Lagoudakis and Parr, 2003]. Then using the notation above yields:

lim
L1,L2→∞

Ã
−1
b̃ = A−1b.

Furthermore, the 1/L2 term can be dropped from the calculations of Ã and b̃
because (cA)−1 = 1

cA
−1. The next step is to analyze the computation and

memory complexity of policy evaluation using Equation 2.26. The memory
and computational complexity required to calculate Ã is shown in Table 2.1,
in which, from top to bottom, calculating each building block of Ã from
scratch is analyzed. Calculating θ requires inverting the Ã matrix incurring
O(n3) computation. Consequently, performing policy iteration using Equa-
tion 2.26 requiresO(n3 +n2L1 +nL1L2|A|) computation andO(n2 +nL2)
memory, achieving our goal of eliminating all O(|S|) dependencies.
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s1 s3

a1,+1 a1,0

a2,0 a2,+10

s2

Figure 2.4: An MDP highlighting the importance of exploration for policy evaluation. Gray
actions are not chosen by the initial policy. The result of policy evaluation assigns highest
values to Q(s1, a1) and Q(s2, a2). The greedy policy with respect to this value function is
sub-optimal because it ignores the +10 reward.

The combination of this policy evaluation scheme with the Equation 2.12
for policy iteration is shown as the trajectory based policy iteration algorithm
(Algorithm 4). As opposed to Algorithm 1, the stopping condition in TBPI is
based on the planning time because the computation involved in probing the
policy for all states depends on |S|. For regularization (line 5), λI is added
to the matrix Ã before the inversion, where λ > 0 is a small scalar. Note that
value iteration methods can also be used in the matrix format by following
similar steps. One such example is the fitted value iteration algorithm [Boyan
and Moore, 1995], which can diverge when a non-tabular representation is
used [Gordon, 1995]. Unfortunately, a similar problem can cause TBPI to
diverge with a non-tabular representation as well.

2.6.4 The Role of Exploration in TBPI

To collect L2 samples, one can use the exploration strategy described in Sec-
tion 2.4.2. Recall that this strategy collects state-action samples by selecting
a random action on every time step with a small probability ε, and otherwise
acts greedily with respect to theQ function. The value of ε plays a critical role
in the TBPI algorithm for collecting samples. If ε is set to 0, some important
transitions may not be visited regardless of the size of L2. The lack of such
samples can lead to poor policies in later iterations. As an example, Figure
2.4 shows an MDP with 3 states and 2 actions. Assume that π(s1) = a1 and
π(s2) = a2. Rewards are highlighted as scalars on the right side of action la-
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bels located on arrows. Samples gathered using policy π will not go through
any of gray arrows, excluding the +10 reward. Hence using a tabular repre-
sentation (one feature for each state), matrix Φ̃ will have only two distinct
rows8 corresponding to φ(s1, a1)> and φ(s2, a2)>:

Φ̃ =
[

1 0 0 0 0 0
0 0 0 0 1 0

]
, P̃Φ =

[
0 0 0 0 1 0
1 0 0 0 0 0

]
.

Setting γ = 0.9:

Ã =



0.5000 0 0 0 −0.4500 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−0.4500 0 0 0 0.5000 0
0 0 0 0 0 0


, b̃ =



0.5000
0
0
0
0
0


.

Using regularization,

Q̃ =



Q̃(s1, a1)
Q̃(s2, a1)
Q̃(s3, a1)
Q̃(s1, a2)
Q̃(s2, a2)
Q̃(s3, a2)


= θ = Ã

−1
b̃ =



5.2532
0
0
0

4.7269
0


.

While Ã is not full-rank, any non-zero regularization value leads to zero value
estimates for all unseen state-action pairs. Applying policy improvement on
the resulting Q function leads to the same policy π, which is sub-optimal, as
it ignores the +10 reward.

2.6.5 Discussion

Table 2.2 provides an overview of the model-based MDP solvers discussed
in this paper together with their per-iteration computational complexity and
memory requirements. However, the choice of the “best” algorithm depends

8While more samples could be obtained (i.e., L2 > 2), the resulting value function does
not change due to the use of a tabular representation.
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Table 2.2: Model-based MDP solvers and their iteration computational complexity.

Algorithm Iteration Complexity Memory Algorithm

Policy Iteration O((N + |A|)|S|2) O(|S|) 1

Value Iteration O(|A||S|2) O(|S|) 2

TBVI O(nTL1|A|) O(n) 3

TBPI O(n3 + n2L1 + nL1L2|A|) O(n2 + nL2) 4

both on the underlying representation and the domain, as these methods trade
off computational complexity with accuracy and approximate the value func-
tion within the class of functions dictated by the representation9. Often the
size of the state space, |S|, is very large for real-world problems, which elim-
inates methods with computational complexity or memory dependent on |S|.
However, more assumptions about a certain domain can help practitioners
reduce the stated complexities.

While often |A| � |S|, for some domains with a large number or contin-
uous actions, having a dependency on |A| is not sustainable either.10 Hence
further approximation is required to eliminate |A| from the above complex-
ities [see e.g., Antos et al., 2007]. Finally it is critical to note that Table 2.2
merely states the per-iteration complexity of each method, but it does not
say anything about the number of iterations required to obtain a reasonable
policy, nor about their behavior if they diverge. For example, some methods
might require more time to finish one iteration, but they may require fewer
iterations in total to find good policies. Recent methods have combined the
idea of LSTD with kernelized representations to achieve good approxima-
tions of the value function with a small amount of data [Engel et al., 2003,
Farahmand et al., 2008, Bethke and How, 2009, Taylor and Parr, 2009], but
these techniques are outside the scope of this tutorial.

9In addition there is the possibility of divergence due to approximations or incorrect value
functions due to sampling.

10Remember that n = m|A|.
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Figure 2.5: An agent interacting with an environment following policy π. The agent does not
know the underlying reward or transition models of the MDP.

2.7 Reinforcement Learning

In practical domains, the MDP parameters (i.e., P and R) are often not
known, cannot be sampled with random access, or may be too complicated to
be captured analytically. These problems are addressed by the reinforcement
learning (RL) framework shown in Figure 2.5, where an agent (left) interacts
with the environment (right) on each time step, using policy π [Bertsekas and
Tsitsiklis, 1996, Sutton and Barto, 1998, Buşoniu et al., 2010, Szepesvári,
2010]. The goal of RL methods is to achieve high reward, usually by solv-
ing MDPs with unknown models, solely through interaction with the envi-
ronment. At first, the RL framework might look very different from the DP
setting discussed in the previous section. Yet, as will be shown in this section,
many RL techniques can be seen as dynamic programming methods where
samples are obtained through sequential interaction.

RL methods are organized roughly into three categories: 1) model-free
value-based methods [e.g., Watkins and Dayan, 1992, Rummery and Niran-
jan, 1994]; 2) model-based value-based methods [e.g., Brafman and Tennen-
holtz, 2002, Szita and Szepesvári, 2010]; and 3) model-free policy search
techniques [e.g., Williams, 1992, Bhatnagar et al., 2007]. This paper focuses
on the first category because these methods require less computation than the
model-based RL and are more closely connected to DP methods than pol-
icy search. Again, the core idea of value-based techniques is to follow the
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policy evaluation/improvement loop, shown in Figure 2.2. Before continuing
further, let us step back and see what extra restrictions an RL agent has to
overcome compared to planning methods:

• Restriction I: Since sampling from the environment is only available
through interaction, samples are gathered as part of a trajectory. That is,
the agent does not have random access to all states at once. For example
in a navigation task, the agent cannot ask the environment about the
consequence of turning left at arbitrary junctions; it can only obtain
samples in its current location, perhaps later reaching the junction of
interest.

• Restriction II: In the RL setting, one-step look-ahead from the true
model (i.e., Equation 2.9) cannot be directly used for policy improve-
ment since it requires knowledge of both P andR. The agent can build
its own model of the environment, value function, or optimal policy
from experience, but it cannot directly access the model parameters
(i.e. P andR).

• Restriction III: In some settings, the time between interactions is lim-
ited. For example a flying robot can run out of power and crash while
calculating the inverse of a large matrix. Hence the per-time-step com-
plexity (as opposed to offline calculations) of the RL agent plays a
critical role in its applicability to time sensitive domains.

The goal in this section is to introduce algorithms that satisfy Restric-
tions I-III. Restriction I is addressed by learning algorithms that collect data
through sampled trajectories. RL methods hedge against Restriction II the
same way the storage complexity of π was reduced to be independent of |S|
in Section 2.4.1. This is done by estimating Q values instead of V values
and relying on Equation 2.11 or Equation 2.12 to infer the policy. Finally, to
deal with Restriction III, RL methods either provide computationally cheap
learning during interaction with the environment (i.e., online RL) or by car-
rying out learning after obtaining samples from the environment (i.e., batch
learning). The next section describes popular online and batch RL methods
and shows that they can be viewed as approximate dynamic programming
techniques. Specifically, we describe two classical RL methods (Q-Learning
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and SARSA) derived from TBVI and two batch RL algorithms (LSTDQ and
LSPI) derived from TBPI.

Note that due to their reliance on samples, RL methods are particularly
sensitive to their exploration methods, which determine how they seek out
new samples of the environment while still attempting to perform well. This
trade-off between exploration and exploitation has a rich literature beyond
the scope of this tutorial [Strehl et al., 2009, Nouri and Littman, 2009, As-
muth et al., 2009, Jaksch et al., 2010, Li, 2012]. Here, we will use one of the
most basic exploration methods, namely: ε-greedy, the same method used for
collecting samples in the previous sections. However, there are cases where
this basic technique can take exponential time (in the size of the domain)
to adequately explore [Whitehead, 1991] and more complicated exploration
techniques must be used to ensure tractability [Strehl et al., 2009]. In domains
where safety is a concern (i.e., specific actions could damage the agent or hu-
mans), reliance on ε-greedy exploration can also be risky. Recent work has
improved the use of RL techniques for risk sensitive agents by limiting the
amount of exploration they perform [Mihatsch and Neuneier, 2002, Geibel
and Wysotzki, 2005, Geramifard et al., 2012].

2.7.1 Q-Learning

To address Restriction I, trajectory based sampling is used, as described in
Section 2.4.2. Such modifications blurs the line between planning and learn-
ing because, as shown, some planners also use samples for computational
tractability, yet they allow random access to states for sampling. The follow-
ing considers what happens to these algorithms if samples are restricted to be
generated from connected trajectories, as enforced by Restriction I.

Let us focus on Algorithm 3, TBVI. Considering Restriction I, only one
next state can be sampled from each state. Hence L1 must be 1 to allow for
learning from a trajectory. As discussed in Section 2.5 the Q+ is now com-
putable using the next state, s′, and the received reward, r which are sampled
through interaction with the environment (i.e., setting L1 = 1 in line 5 of Al-
gorithm 3). The resulting online algorithm is known as Q-Learning [Watkins,
1989, 1992] and is shown in Algorithm 5. Hence Q-Learning can be seen as
TBVI with L1 = 1.

The complexities of online methods are described in terms of per-time-
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Algorithm 5:Q-Learning Complexity
Input: MDPr{P ,R}, α, ε
Output: π

1 θ ← Initialize arbitrarily
2 〈s, a〉 ← 〈s0, π

ε(s0)〉
3 while time left do
4 Take action a and receive reward r and next state s′

5 Q+(s, a)← r + γmaxa′ Q(s′, a′) O(n|A|)
6 δ ← Q+(s, a)−Q(s, a)
7 θ ← θ + αδφ(s, a) O(n)
8 〈s, a〉 ← 〈s′, πε(s′)〉 O(n|A|)
9 return π greedy w.r.t. Q

step computational complexity. As expected, Q-Learning has the same com-
plexity as Algorithm 3 with L1 = 1 and T = 1, which is O(n|A|). The
memory requirement of Q-Learning is the same: O(n). The δ calculated on
line 6 of Algorithm 5 highlights the difference between the better estimate of
the Q function based on a single interaction, Q+(s, a), and the current esti-
mate, Q(s, a). This quantity is called the temporal difference (TD) error in
the literature [Sutton and Barto, 1998].

Q-Learning is an off-policy algorithm, that is, the policy it uses to generate
the samples (i.e., πε) is not necessarily the same as the policy corresponding
to the current value function computed using the samples (i.e., the policy that
is greedy with respect to the current value function). Q-Learning is guaran-
teed to converge when a finite tabular representation is used, the reward vari-
ance is bounded, the α parameter is decayed at the proper rate, and a discount
factor is used [Jaakkola et al., 1993]. Under certain conditions, Q-Learning
has been shown to converge with function approximation [Melo et al., 2008],
however those conditions may not easily be met in practice, and examples il-
lustrating the potential divergence of Q-Learning are available [Baird, 1995].
Recent methods such as GQ [Maei et al., 2010, Maei and Sutton, 2010] have
addressed the convergence issues of off-policy learning algorithms such as
Q-Learning, but are beyond the scope of this tutorial.
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Algorithm 6:SARSA Complexity
Input: MDPr{P ,R}, α, ε
Output: π

1 θ ← Initialize arbitrarily
2 〈s, a〉 ← 〈s0, π

ε(s0)〉
3 while time left do
4 Take action a and receive reward r and next state s′

5 a′ ← πε(s′) O(n|A|)
6 Q+(s, a)← r + γQ(s′, a′) O(n)
7 δ ← Q+(s, a)−Q(s, a)
8 θ ← θ + αδφ(s, a) O(n)
9 〈s, a〉 ← 〈s′, a′〉

10 return π greedy w.r.t. Q

2.7.2 SARSA

The divergence of Q-Learning when function approximation is used stems
from its off-policy property: the policy that is used to gather samples (in our
case πε) is not the same as the policy used for learning (greedy w.r.t. Q val-
ues) [Sutton and Barto, 1998]. We now consider an online learning method,
SARSA [Rummery and Niranjan, 1994], shown in Algorithm 6 that learns
the value function of the policy it is currently implementing. The acronym
SARSA stands for “state, action, reward, state, action,” which is the subset
of a trajectory used to compute updates. SARSA has convergence guarantees
in the tabular case [Singh et al., 2000] and under milder conditions compared
to Q-Learning when used with linear value function approximation [Melo
et al., 2008]. SARSA has the same per-time-step computational complex-
ity, O(n|A|), and memory requirement, O(n), as Q-Learning. Notice that,
compared to Algorithm 5, Q+(s, a) is now calculated based on Q(s′, πε(s′))
rather than maxa′ Q(s′, a′), making both the sampling and learning policies
identical. This technique is known as on-policy learning, meaning that the
agent learns about the same policy used for generating trajectories.

2.7.3 Least-Squares Techniques

Policy iteration based methods can also be used in the context of RL by ac-
counting for the Restrictions I-III. Let us revisit Algorithm 4. Suppose we
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Algorithm 7: LSTDQ Complexity
Input: MDPr{P ,R}, ε, L2
Output: π

1 θ ← Initialize arbitrarily
2 while time left do
3 Create L2 samples 〈si, ai, ri, s′i, a′i〉 following πε O(nL2|A|)
4 Calculate Ã and b̃ using Equations 2.29, 2.27, and 2.28 O(n2L2)
5 θ ← Ã

−1
b̃ (Use regularization if the system is ill-posed) O(n3)

6 return π greedy w.r.t. Q

set L1 = 1 in Equations 2.22 and 2.24, because samples can be gener-
ated only by following a trajectory. Consequently, samples are gathered as
〈si, ai, ri, s′i, a′i〉, where si+1 = s′i and ai+1 = a′i. Then P̃Φ and R̃ in Equa-
tion 2.27 and Equation 2.28 can be calculated by:

P̃Φ =


—– φ>(s′1, a′1) —–
—– φ>(s′2, a′2) —–

...
—– φ>(s′L2

, a′L2
) —–

 , R̃ =


r1
r2
...
rL2

 . (2.29)

The number of samples collected, L2, controls the accuracy of estimates
for Ã and b̃. Again, in the limit of infinite samples, approximations become
exact provided that the sampling policy visits all state-action pairs infinitely
often asymptotically. More discussions on exploration and data collection for
least-squares techniques can be found in the work of Li et al. [2009a]. Algo-
rithm 4 represents the policy usingQ values, hence addressing Restriction II.
Restriction III, on the other hand, is sidestepped here because of the batch
nature of Algorithm 4, because the learning phase (lines 4-5) happens after
the sample gathering phase (line 3).

The resulting method is known as LSTDQ [Lagoudakis and Parr, 2003]
shown in Algorithm 7.11 The computational complexity of important lines
is also shown. This algorithm has O(n3 + n2L2 + nL2|A|) complexity per
iteration and an O(n2 + nL2) memory requirement. It is easy to verify that

11The original LSTDQ algorithm was introduced to run on a fixed batch of data. Here we
extended the algorithm allowing multiple collection of samples and calculating the weights.
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Algorithm 8:Least-Squares Policy Iteration (LSPI) Complexity
Input: MDPr{P ,R}, ε, L2
Output: π

1 θ ← Initialize arbitrarily
2 Create L2 samples 〈si, ai, ri, s′i, a′i〉 following ε-greedy policy πε

3 while time left do
4 Calculate Ã and b̃ using Equations 2.29, 2.27 and 2.28 O(n2L2)
5 θ ← Ã

−1
b̃ (Use regularization if the system is ill-posed) O(n3)

6 a′i ← argmaxa∈AQ(s′i, a) For all i O(nL2|A|)
7 return π greedy w.r.t. Q

setting L1 = 1 in Table 2.2 for Algorithm 4 yields the same complexity.
An important fact about this method is that samples generated to estimate
Ã and b̃ are discarded after each cycle, making this algorithm inefficient for
domains with an expensive cost of sample acquisition (e.g., flying unmanned
aerial vehicles with a chance of crashing).

Least-squares policy iteration (LSPI) [Lagoudakis and Parr, 2003] miti-
gates the problem of sample cost by optionally reusing the same set of sam-
ples over and over in each iteration. On each iteration, LSPI selects samples
to evaluate the new policy by switching a′i to π(s′i), where π is greedy with
respect to the most recent Q values. The result is shown in Algorithm 8.
While the per-iteration complexity remains unchanged, the same set of data
can be reused through all iterations. Notice that given a fixed set of samples,
LSPI does not necessarily improve the policy between each iteration, hence
it lacks convergence guarantee, but it will not diverge either as in the worst
case it will switch between policies. Antos et al. [2008] discuss the conditions
under which performance bounds can be obtained for LSPI.

LSPI has been shown to work well in practice with sufficient data, but
its strong bias based on the initial set of samples can hinder its performance.
Specifically, if the initial sample distribution is far away from the sample dis-
tribution under good policies and the same samples are reused, then LSPI per-
forms poorly. This drawback is currently handled by manual filtering of sam-
ples gathered by a domain expert [Lagoudakis and Parr, 2003, Petrik et al.,
2010], by approximating a policy-independent model using the gathered sam-
ples [Bowling et al., 2008], or by obtaining new samples corresponding to the
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Table 2.3: RL methods and their per-time-step/iteration computational complexity.

Algorithm Iteration Complexity Memory Algorithm

Q-Learning O(n|A|) O(n) 5

SARSA O(n|A|) O(n) 6

LSTDQ O(n3 + n2L2 + nL2|A|) O(n2 + nL2) 7

LSPI O(n3 + n2L2 + nL2|A|) O(n2 + nL2) 8

new policy [Peters and Schaal, 2008, Li et al., 2009a].

2.7.4 Discussion

Table 2.3 provides an overview of RL methods discussed in this paper to-
gether with their iteration complexities and memory requirements. For the
upper part of the table, iteration complexities correspond to the per-time-step
computation. In general, the first two online methods provide cheap complex-
ity per interaction, which is critical in dealing with domains where Restriction
III allows only a short amount of interaction time. However, for some do-
mains, if these methods are not paired with a powerful exploration strategy,
their sample complexity may still make their total runtime prohibitive.

On the other hand, the last two batch algorithms often require fewer sam-
ples compared to online methods to produce good policies. Hence, if sam-
ple complexity is the only concern, batch methods are often preferred over
online methods. Due to its popularity, LSPI has been extended to various al-
gorithms [e.g., Mahadevan, 2005, Li et al., 2009b, Farahmand et al., 2008].
There are also several other RL algorithms in the literature not discussed here.
Interested readers are referred to the work of Bertsekas and Tsitsiklis [1996],
Sutton and Barto [1998], Buşoniu et al. [2010] and Szepesvári [2010].

2.8 Big Picture

Figure 2.1 shows how all of the discussed dynamic programming and rein-
forcement learning algorithms were derived from the unified idea of policy
evaluation/improvement. Each method is marked with its corresponding algo-
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rithm number. By eliminating the matrix operator in Equation 2.8 for policy
evaluation, and performing policy improvement after each full evaluation, we
first introduced policy iteration. By increasing the frequency of policy im-
provements, we arrived at value iteration. In order to scale DP techniques
to MDPs with large state-spaces, we addressed 4 problems to eliminate all
O(|S|) memory and computational dependencies. The result of these modi-
fications was trajectory based value iteration (TBVI). Using the same tech-
niques, we introduced the trajectory based policy iteration algorithm (TBPI),
an approximate DP technique that uses matrix operations. Then by relaxing
the assumption of having random access to the MDP model (i.e., P and R),
we moved into the reinforcement learning setting. We first showed how the
Q-Learning algorithm can be derived from TBVI by simply using a single
sample collected along trajectories to estimate the Bellman backup (i.e., set-
ting L1 = 1). We then matched the sampling policy with the policy being
evaluated, arriving at the SARSA algorithm. On the right branch of Figure
2.1, we extended the TBPI algorithm and used one sample along the trajec-
tory to estimate ϕ and ρ in Equations 2.22 and 2.24 to obtain the LSTDQ
algorithm. Finally by changing a′ to π(s′), we could reuse collected samples
for policy iteration, arriving at the LSPI technique.



3
Representations

So far, we have described several techniques for planning and learning with
a value function that is approximated based on a weighted combination of
linear features φ : S → Rn. However, we sidestepped a question of crucial
importance: “What are the right features for a given domain to represent the
value function?”. For some problems, domain experts can provide insight on
defining useful features, but in general this is still an open problem within the
planning and learning communities.

Many domains may have a natural set of base features that come directly
from sensor inputs (such as the position and velocity of a vehicle), but these
features may be inadequate to linearly model the value function. For instance,
consider a domain with two Boolean base features x and y and a value func-
tion that was linear with respect to x ⊕ y (where ⊕ is an xor operator). A
linear combination of the base features will lead to poor approximation of
the Q-function, but adding an extra feature z = x ∧ y will increase the ac-
curacy. Choosing such features that will lead to high accuracy in the linear
approximation of Q(s, a) is one of the most important factors for obtaining
good performance. Unfortunately, there is no “one size fits all” answer to this
question. What may be a good representation of one domain may fail terribly
in a similar environment, or may fail in the same environment after seemingly
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minor modifications.
To quantify the benefits of certain representations over others, a natural

measure is coverage, or the portion of the state space for which a feature’s
value is not zero (or in the case of continuous features, non-negligible). Fea-
tures with low coverage provide better accuracy, while features with high
coverage offer better generalization. Accuracy and generalization are both
important, as the former defines the preciseness of the value function, while
the latter affects the planning/learning time to reach good policies. For ex-
ample, a tabular representation provides the most accurate representation for
MDPs with finite state-action sizes, yet offers poor generalization in most
cases.

As an example, consider the classical Inverted Pendulum domain illus-
trated in Figure 4.3. Base features can be formed for this domain by discretiz-
ing θ and θ̇ into a certain number of buckets separately. There are three dis-
crete actions in this domain: 1) apply no force, 2) push the pendulum clock-
wise, and 3) push it counterclockwise. A negative reward is given when the
pendulum hits the horizon and zero reward is given otherwise. Because of
the physics of the domain, the value function in this task cannot be precisely
represented as a linear combination of the base features. Nevertheless, a good
approximation is possible by overlaying a very fine grid across the base fea-
tures and using each grid cell as a feature in the domain, forming a tabular
representation. These fine-grained features have small coverage, leading to an
accurate value function, but potentially with the cost of maintaining a large
representation. Furthermore, seemingly small modifications can make such a
representation far better or worse. For instance, if the grid is too coarse (not
enough cells) the fine-grained value distinctions that occur near the balanc-
ing point could be missed. Increasing the granularity (decreasing the feature
coverage) in that region gives us a better representation with lower error, but
also makes the representation much larger in terms of feature size, leading to
longer computation/learning times and heavier memory requirements.

In addition to the grid-based tabular representation, this chapter intro-
duces three representations that each attempt to balance the need for accu-
racy with the computational requirement of minimal features: 1) Fixed Sparse
Representations, 2) Radial Basis Functions, and 3) Incremental Feature De-
pendency Discovery. The latter is of particular interest as adaptive represen-
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tations tend to free practitioners from the burden of engineering exactly the
“right” features for every domain. This list of possible representations is not
exhaustive and is meant simply as a sample of possible representations and
an introduction to those used in the experiments in the next chapter. Readers
interested in comparisons of other representation methods in reinforcement
learning with linear function approximation are directed to the works of Sut-
ton [1996], Kretchmar and Anderson [1997] and Parr et al. [2008].

3.1 Tabular Representation

The tabular representation maintains a unique weight for each state-action
pair. In discrete domains, this is an exact representation. In continuous do-
mains, like the Inverted Pendulum above, it corresponds to a discretization of
the state space by tiling the state space with uniform grid cells and using each
cell as a feature. Since we would like to represent a linear approximation of
the Q-function, features corresponding to state-action pairs can be built by
first mapping the state to a set of discretized features φ : S → Rn and then
copying the features vector to the corresponding action slot while setting the
rest of the features to zero (see the discussion surrounding equation 2.14 and
Section 3.3. of [Buşoniu et al., 2010]).1

The main benefit of using a tabular representation is that feasible suffi-
cient conditions exist to guarantee the convergence of most DP and RL algo-
rithms to the optimal solution. However, since the size of this representation
is just as large as the state-action space itself, the tabular representation does
not scale well with domain size. Hence this approach can be the most de-
manding model in terms of memory and computational requirements. For
instance, consider the value function in the Inverted Pendulum. A discretiza-
tion of 50× 50 could capture the value function with little error, but amounts
to 2500 × 3 = 7500 features for a basic domain with only two dimensions
and three actions. In general, discretizing each dimension of a d-dimensional
continuous MDP with c cells leads to cd|A| features, which, as we will see in
our experiments, is intractable for high dimensional problems.

The tabular representation can be viewed as a linear function approxima-
1Notice that for continuous action spaces this approach is not feasible as the length of

the feature vector will be infinite, though other methods [e.g., Antos et al., 2007] may be
successful.
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tion with features that take on binary values. In particular, the feature φ(s, a)
takes the value 1 (active) only at the state-action pair s, a and 0 (inactive)
everywhere else. We now consider a different representation that does not
explicitly enumerate the cross product of all the discretized base features,
leading to a smaller set of features and better generalization across dimen-
sions.

3.2 Fixed Sparse Representation

The Fixed Sparse Representation (FSR) is one of the simplest possible en-
codings where (unlike the tabular case) features can be active for multiple
state-action pairs. Here we consider an FSR that represents each state with
a binary encoding of its value in each dimension (a feature for each binary
value of the base features). More formally, let the state s be represented by
a d dimensional vector, where si corresponds to the ith component, hence
s = (s1, s2, · · · , sd). Let ni be the number of distinct values that the dth

dimension of the state space can take.2 Consider the set {v1
i , v

2
i , · · · , v

ni
i },

where vji corresponds to the jth possible value for the ith dimension of the
state space. The FSR features are created as follows:

φ(s) =
[
φ11(s) · · ·φ1n1(s), φ21(s) · · ·φ2n2(s), · · · , φd1(s) · · ·φdnd

(s)
]>
,

φij (s) =
{

1 si = vji
0 otherwise

, i = 1, · · · , d, j = 1, · · · , ni,

amounting to a total of m =
d∑
i=1

ni features per action.

Notice that by allowing one feature from each dimension to contribute to
the same state/action’s value, we have exponentially decreased the size of the
representation from the tabular case. For instance, consider the FSR represen-
tation of the Inverted Pendulum domain, even with a 50×50 discretization as
before. With this FSR, only 100× 3 = 300 weights need to be learned rather
than the 7500 in the tabular case.

However, while FSRs generally try to balance coverage and generaliza-
tion, their reliance on a static set of binary features makes the FSR one of the
most sensitive representations to the choice of features. We will now see how

2Continuous dimensions can be discretized into buckets.
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more complex representations using a distance metric can be built, leading to
non-binary features.

3.3 Radial Basis Functions (RBFs)

Instead of using a binary representation of the discretized base features, as
the previous methods have considered, we now describe a representation
that works directly in the continuous space. Gaussian Radial Basis Functions
(hereafter referred to as RBFs) [see e.g., Moody and Darken, 1989, Haykin,
1994] are Gaussian functions spread across the domain of the Q function.
Unlike binary FSRs, the feature activation of each RBF decays continuously
away from the state-action pair where the RBF center is placed. Therefore, an
RBF feature takes on significant nonzero values across multiple state values,
and hence can be viewed to be active over a wide range of states. The output
of the jth RBF kernel centered around s̄j is,

φj(s) = e
−‖s− s̄j‖

2

2µ2
j ,

where µj is the bandwidth of the RBF that determines the rate of decay of
RBF output when evaluated away from the center sj . A larger bandwidth re-
sults in a flatter RBF. It is also possible to formulate RBFs to select a different
bandwidth for each dimension [see e.g., Buşoniu et al., 2010]. The output of
an RBF is nearly zero when evaluated at a state s that is far from the center
sj . Therefore, the location of RBF centers greatly affects the accuracy and
validity of the resulting representation. Hence, poorly placed RBFs can fail
to capture the value function even in some simple domains. For instance, in
the Inverted Pendulum domain, the centers need to be dense enough near the
balance point to capture the rapidly changing values in that region, but this
could lead to relatively low coverage elsewhere. Hence, there is a conflict-
ing requirement that centers must also be placed sparse enough to adequately
cover the full space. In our experiments, we generated many different possi-
ble RBF centers and bandwidths and found that uniform-random placement3

often led to policies that could not balance the pole for more than a few steps,

3The bandwidth for each dimension was sampled uniformly between the middle and max-
imum dimension value.
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while a hand-tuned basis selection that scatters the RBFs uniformly along the
two dimensions was able to capture the value function sufficiently to balance
the pole for thousands of steps.

The issues with center placement can be alleviated in many ways. Gaus-
sian RBFs are Mercer kernels [see e.g., Schölkopf and Smola, 2002]. Hence,
nonparametric kernel placement techniques that rely on insights from Re-
producing Kernel Hilbert Spaces can be used to place RBF centers on-
line [Schölkopf and Smola, 2002, Rasmussen and Williams, 2006, Liu et al.,
2008]. This approach can enhance the applicability of an RBF representation
by ensuring that centers are placed wherever samples are obtained. There
are other techniques for dynamically placing RBFs too, such as moving the
centers of RBFs using gradient descent techniques [Barreto and Anderson,
2008]. However, we did not pursue these methods in this work. Instead, we
explored an adaptive representation over discrete features, which is described
in the next section.

3.4 Incremental Feature Dependency Discovery (iFDD)
representation

Unlike a static representation, the Incremental Feature Dependency Discov-
ery (iFDD) representation [Geramifard et al., 2011] is dynamic, in the sense
that the set of features is updated online. iFDD is one of many methods that
make these adaptations based on errors in the value function [e.g., Parr et al.,
2007, 2008]. The basic idea in all of these techniques is to analyze the tem-
poral difference errors in the previous time steps (based on the current repre-
sentation) and to create new features that helps mitigate these errors. Unlike
methods that create arbitrary features solely based on the TD-errors, iFDD is
restricted to making new features that are conjunctions of previous features,
starting with an initial set of features (i.e., base features). Thus, iFDD can be
thought of as an incremental search technique through the space of possible
base-feature conjunctions, guided by the TD-error as a heuristic.

Given an initial set of features, iFDD is guaranteed to converge to the
best possible representation achievable with conjunctions of the initial set of
features [Geramifard et al., 2011]. Note that the best representation found
by iFDD does not always include all possible feature conjunctions. Features
whose combination does not improve the value function esttimate are not
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added, avoiding a full expansion to the tabular case. In our experiments, we
used the most recent extension of iFDD in an online setting [Geramifard et al.,
2013b]. In the Inverted Pendulum domain, by discretizing both dimensions
the FSR approach can be used to provide the base features. Then iFDD adds
new features by generating “cells” that combine one feature from each di-
mension (θ and θ̇). So iFDD essentially takes the FSR features (potentially
with too high coverage) and selectively adds features with more accuracy
that help represent the value function better. This keeps the representation
small, but allows it to overcome an imperfect initial selection of features, al-
though iFDD cannot generate entirely new base features (e.g. changing the
discretization scheme).

We have covered a variety of representations and some intuitions about
their use. In Chapter 4, we provide a thorough empirical investigation of these
different representations in four benchmark domains. Finally, we remind the
reader that these representations are only a small sample of the possible lin-
ear function approximators that can be used to estimate the value function.
Summaries and comparisons of these and other representations include those
by Sutton and Barto [1998], Sutton [1996], Kretchmar and Anderson [1997],
and Parr et al. [2008].



4
Empirical Results

This chapter empirically evaluates several algorithms’ performance on four
benchmark domains: 1) Gridworld, 2) Inverted Pendulum [Widrow and
Smith, 1964], 3) BlocksWorld [Winograd, 1971], and 4) Persistent Search
and Track [Geramifard et al., 2011]. We chose a mixture of standard bench-
marks as well as benchmarks for larger problem domains with structured state
spaces, which have more relevance to real-world problems. We first provide
a brief description of each domain, including a formal model as an MDP. Af-
ter describing the parameter settings for the algorithms and representations,
we provide the empirical results of six solvers: three dynamic programming
methods and three reinforcement learning techniques. Recently there has
been extensive interest in evaluation for reinforcement learning [Riedmiller
et al., 2007, Whiteson and Littman, 2011, Sanner, 2011, RLC, 2012, Dutech
et al., 2005]. In contrast to these general RL evaluations, this section focuses
specifically on a family of algorithms related to linear function approxima-
tion and dynamic programming. Moreover, we probe the performance of each
algorithm and each domain across four different representations as opposed
to similar works in the literature focusing on one representation per domain
[e.g., Kalyanakrishnan and Stone, 2011].

421
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Figure 4.1: The size of state-action pairs for all 4 empirical domains in log-scale. The space
size of the inverted pendulum is based on our discretization.

4.1 Algorithms

We evaluated six algorithms discussed in Section 2. From the DP algorithms,
we evaluated policy iteration (Algorithm 1), value iteration (Algorithm 2),
and TBVI (Algorithm 3). In the RL setting, we evaluated Q-Learning (Algo-
rithm 5), SARSA (Algorithm 6), and LSPI (Algorithm 8).

4.2 Domain Descriptions

Four benchmark domains with varying state-action pair sizes are considered.
We chose Gridworld (400 pairs) and Inverted Pendulum (1200 pairs after dis-
cretizing the states) because they are standard benchmark problems. Our ad-
ditional test domains gradually increase the size and complexity of the state-
action space: BlocksWorld (∼ 1.7 × 106 pairs), and Persistent Search and
Track (∼ 150 × 106 pairs). Figure 4.1 depicts all the state/action pair sizes
on a logarithmic scale. Notice that for the Inverted Pendulum domain, the
number is based on the aggregated states generated by our discretization. The
following sections define the MDP formulation of each of the above domains.
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GridWorld Simulations

July 2, 2012

Domain

Figure 1: GridWorld Domain

• 100 cells, 4 actions (up,right,down,left)

• +1.0 for goal, -0.0001 otherwise

• 20% probability of taking random action

1

Figure 4.2: The GridWorld domain: the task is to navigate from the starting point (S) to the
goal point (G). Red cells are blocked. Actions are the four cardinal directions. The movement
is stochastic, with 20% probability of taking a random action.

4.2.1 GridWorld

The GridWorld domain simulates a path-planning problem for a mobile robot
in an environment with obstacles. The small size of the state-space in this do-
main makes it relatively easy to use a tabular representation, thereby allowing
comparison of approximate representations to a full tabular representation.
Figure 4.2 depicts our simple grid world domain. The goal of the agent is to
navigate from the starting point (S) to the goal state (G), using four cardi-
nal directions: {↑, ↓,←,→}. White cells are traversable, while red cells are
blocked. There is a 30% chance that the intended action is replaced with a
random action at each time-step. The agent cannot select actions that move
it to a blocked grid. The reward on each step is −10−3 , except for actions
that bring the agent to the goal with reward of +1. The size of the state-action
space for this domain is 100× 4 = 400.



424 Empirical Results

θ

θ·

τ

Figure 4.3: The Inverted Pendulum domain: The task is to maintain the balance of a pendulum
using torque values applied to the base.

4.2.2 Inverted Pendulum

The inverted pendulum is a popular benchmark problem that is intended to
evaluate the performance of the algorithm in the control of a continuous dy-
namical system [Widrow and Smith, 1964]. The goal is to balance a pendulum
starting from a perturbed upright position up to 3000 steps. The state-space
is a two dimensional continuous space (dimensions are shown in Figure 4.3).
The dynamical model used to simulate state transition for the experiments is
based on the work of Lagoudakis and Parr [2003]. The state of the system
is described by the angular position of the pendulum ∈ [−π

2 ,+
π
2 ] and the

angular rate ∈ [−2, 2]. In order to discretize the continuous state-space, each
dimension is divided to 20 uniform intervals where the center of each cell
represents all states in the cell. Available actions are three torque values of
[−50, 0,+50]. In addition, stochasticity is introduced by adding a uniform
random torque ∈ [−10, 10]. The reward is 0 for the steps where the angle of
the pendulum ∈ [−π

2 ,+
π
2 ] and −1 outside of the interval. The resulting size

of the approximated state-action space is 202×3 = 1200. We note that while
this discretization can potentially introduce partial observability, the fineness
of the partitioning and our later empirical results indicate this resolution is
sufficient to recover a “good enough” policy.

4.2.3 BlocksWorld

The BlocksWorld domain is a classical domain for testing planning methods
in the artificial intelligence community [Winograd, 1971]. Figure 4.4 shows a
state in the BlocksWorld domain that consists of 6 labeled blocks on a table.
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Figure 4.4: The Blocks World domain: the task is to build an ordered stack of blocks. Each
block stacking attempt has an associated reward of−0.001 and a 30% chance of dropping the
block on the table.

The objective is to put blocks on top of each other in a specific order to form
a tower. Initially all blocks are unstacked and are on the table.

We consider a variant of BlocksWorld with 6 blocks. The state of the
MDP is defined by 6 integer values [s1 · · · s6]: si = j indicates that block
i is on top of j (for compactness si = i indicates that the block i is on the
table). At each step, the agent can take a block, and put it on top of another
block or move it to the table, given that blocks do not have any other blocks
on top of them prior to this action. We also added 30% probability of failure
for each move, in which case the agent drops the moving block on the table.
The reward is −10−3 for each step where the tower is not built and +1.0
when the tower is built. An estimate of the number of state-action pairs is
66 × 36 ≈ 1.7× 106.

4.2.4 Persistent Search and Track (PST)

Persistent Search and Track (PST) is a multi-agent Unmanned Aerial Vehicle
(UAV) mission planning problem (shown in Figure 4.5), where 3 UAVs per-
form surveillance on a target, in the presence of communication and health
constraints [Geramifard et al., 2011]. This domain simulates a real-world
planning problem with a relatively large state-action space. Each UAV’s in-
dividual state has four dimensions: location, fuel, actuator status, and sensor
status. The dimensionality of the state vector is therefore 4×3 = 12. The full
state space is the combination of states for all UAVs. There are three avail-
able actions for each UAV: {advance, retreat, loiter}. Hence the size of the
action space is 33 = 27.

The objective of the mission is to fly to the surveillance node and perform
surveillance on a target, while ensuring that a communication link with the
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Refuel CommunicationBase

Advance

Retreat

Loiter

✧

fuel = 10

fuel = 10

fuel = 10

TargetUAVs

Surveillance

Figure 4.5: The Persistent Search and Track domain: the goal is to maintain surveillance on
the target on the right, while facilitating a data link with the base by having a UAV with a
functional actuator loitering in the communication area.

base is maintained by having a UAV with a working actuator loitering on
the communication node. Each UAV starts with 10 units of fuel and burns
one unit for all actions except when loitering in the base or refuel nodes.
Executing “loiter” in the base and refuel nodes fixes all UAV failures and
fully refuels the UAV, respectively. If a UAV runs out of fuel, it is assumed to
crash, terminating the episode. Furthermore the sensor and actuator of each
UAV can fail on each step with a 5% probability. A UAV with a failed sensor
cannot perform surveillance. A UAV with a failed actuator cannot perform
surveillance or communication. It can either retreat or loiter in refuel or base
nodes. The reward function is:

R(s, a) = +20IcommIally − 50Icrash − fb,

where, Icomm is a binary variable set to 1 if there is a UAV in the communi-
cation area with a working actuator and 0 otherwise, Ially is similarly defined
if a UAV with a working sensor is in the surveillance area. fb is the total
fuel burned by all UAVs, and Icrash is a binary variable set to 1 if any UAV
crashes. The size of state-action pairs for this domain is ∼ 150× 106.

4.3 Simulation Framework

This section describes the common setup used for our experiments, includ-
ing the representations, learning and exploration schedules, and various al-
gorithm parameters. All results were generated using the RLPy framework
[Geramifard et al., 2013a] which is available online for download.



4.3. Simulation Framework 427

4.3.1 Representations

The convergence and the quality of the approximate solution obtained when
using DP or RL algorithms depends on the representation used to represent
the state-action value function, as described in Chapter 3. In our experiments,
we used the four representations discussed in detail earlier: a tabular repre-
sentation, the base features in a Fixed Sparse Representation (FSR), Radial
Basis Functions (RBFs) and an adaptive technique, Incremental Feature De-
pendency Discovery (iFDD).

To move these representations into the state/action space, each 〈s, a〉 pair
first had the state mapped to a set of features φ : S → Rn and then the
feature vector was copied to the corresponding action slot while setting the
rest of the features to zero (see the discussion surrounding Equation 2.14
and Example 3.1 of the work of Buşoniu et al. [2010]). The use of tabular
representation for finite state MDPs is straightforward. For the continuous
Inverted Pendulum, each dimension was discretized into 20 buckets, leading
to 400 states corresponding to the centers of the cells. For BlocksWorld and
PST, due to the large number of state-action pairs, the tabular representation
used a caching mechanism in order to create a unique feature for every unique
visited state-action pair.1

For the FSR, all base features were captured using indicator functions
for each dimension independent of the other dimensions. For example, in the
pendulum domain, 20 + 20 = 40 features were used to map each state s to
φ(s).2

As for RBFs, for domains with a small number of dimensions, we dis-
tributed RBFs uniformly over the full state space while adding a constant
feature with value of 1 [e.g., Lagoudakis and Parr, 2003, Josemans, 2009].
For GridWorld, we placed 6 × 6 = 36 RBFs, while for Inverted Pendulum
we placed 3 × 3 = 9 RBFs. For high dimensional problems this approach
is unlikely to work if the number of RBFs is limited, hence we searched for
a good performing set of 500 randomly placed RBFs [Hachiya et al., 2008].

1We did not apply this approach for value iteration and policy iteration methods to keep
them consistent with the literature.

2For binary dimensions, the indicator functions were only used for the active values. For
example, in the PST domain an indicator function realized sensor = True but not sensor =
False.
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The difficulties we faced in finding a good placement of RBFs over larger
domains that do not have a natural distance metric such as Blocksworld and
PST re-emphasize the well-known fact that RBFs are not suited for spaces
without a well defined distance metric. Despite our efforts, we could not find
a set of RBFs with good resulting policies in our large domains (BlocksWorld
and PST).

For iFDD, the best relevance threshold3 was selected out of
{0.02, 0.05, 0.1} for the Gridworld, {0.1, 0.2, 0.5} for Inverted Pendulum,
{0.02, 0.05, 0.1} for the BlocksWorld, and {75, 100, 150} for the PST. For
all techniques except LSPI, iFDD used the estimated Bellman error on each
step for feature expansion (for RL techniques this estimate is based on one
sample, while for DP methods more samples were used). For LSPI, iFDD
expanded the feature with the highest TD-error over all samples and then
reran LSPI. This loop continued until the TD-error for all potential features
dropped below the relevance threshold.

4.3.2 Exploration and Learning Schedules

For RL techniques the learning rate took the following form

αt = α0
kt

N0 + 1
N0 + Episode#1.1 ,

as used in the work of Boyan [1999] and Geramifard et al. [2011] in which
kt is the number of non-zero features at time step t, acting as a normalizer
[Bradtke and Barto, 1996]. The best parameters were empirically found in
the set α0 ∈ {0.1, 1} and N0 ∈ {100, 1000, 106} for each algorithm, do-
main, and representation. For gradient-descent steps of TBVI, α was set to
1 and .1 for tabular and non-tabular representations respectively. Policies for
both DP and RL were generated using an ε-greedy policy with ε = 0.1,
with the exception of the performance run (when the quality of the policy
was probed) where ε was set to 0. We present results for the best parame-
ter settings found in our experiments. Since many parameter settings will be
unstable, this comparison allows us to judge the best performances of each
algorithm and representation, and see their shortcomings even when all other
factors are optimized.

3A constant used to determine if adding a feature would be beneficial for the representation
[see Geramifard et al., 2011].
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4.3.3 Algorithm Parameters

For both DP and RL techniques, θ was initialized with the zero vector. For
policy iteration, π was initialized to uniform randomly sampled actions. For
the DP algorithms, we limit the computation time at 3 hours and set the
convergence threshold η = 10−3, stopping whenever one of these condi-
tions was met.4 For SARSA and Q-Learning, we used 105 samples. For LSPI
the number of samples was capped at 104, where every 103 steps LSPI up-
dated the policy and added 103 samples to the previous samples. We also
ran LSPI in the case where the previous data was forgotten but the results
were inferior. The discount factor was set to γ = {0.9, 0.95, 1, 0.9} for the
GridWorld, Inverted Pendulum, BlocksWorld, and PST domains respectively.
On every run, the total return and the corresponding standard error were
calculated based on 30 evaluations with 30 fixed random seeds across all
combinations of algorithm/domain/representation. Episodes were capped at
1000 for all domains except for Inverted Pendulum, which was capped at
3000. For TBVI, the transition model was approximated with 100 next states
(i.e.,L1 = 100). For Inverted Pendulum, next states were generated by first
sampling 10 states uniform randomly within the cell and then sampling 10
next states from each of those states. All samples were cached and reused for
each DP method. In the GridWorld and BlocksWorld domains, due to small
number of possible next states, the expectation was performed exactly. The
A matrix was regularized by ψ = 10−6. In other words, Aθ = b was solved
as θ = (ATA + ψI)−1ATb. The number of LSPI iterations was capped at
5.

4.4 Simulation Results

Our evaluation presents a comparison between various DP and RL techniques
both in terms of performance and computation time based on 4 domains and
4 representations. All algorithms were evaluated with the representations de-
scribed in Subsection 4.3.1, except for policy iteration and value iteration,
which can only be applied to the tabular representation.

4TBVI assumed convergence if the maximum update for 5 consecutive trajectory was be-
low η.
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To check the performance of each algorithm, a set of states from a distri-
bution can be sampled, and the policy to be evaluated can be run from each
state with the average returns recorded (the Monte Carlo technique [e.g., see
Sutton and Barto, 1998]). The resulting weighted sum is indicative of the per-
formance. However, in the literature, to simplify the simulation process and
provide more intuitive results, the sum of undiscounted rewards for the initial
state or the episode lengths are used as proxies [Sutton, 1996, Lagoudakis and
Parr, 2003, Stone et al., 2005a, Jung and Stone, 2010]. This tutorial follows
the same approach.

For each domain, there are two tables. The first table contains the mean
cumulative reward obtained over 30 evaluation runs with the standard error
highlighting the 95% confidence interval. The second table for each domain
lists the average wall clock time required to reach 95% of the final perfor-
mance reported in the first table for each algorithm. The results were all
recorded under the same condition using a cluster where a single core was
allocated to execute each run. Hence the wall clock time was measuring CPU
time plus a constant shared among all runs. 5 The values in this table charac-
terize the speed of our particular implementation of the algorithm to enlighten
practitioners as to the relative speeds of the different techniques on common
benchmark problems. These timing results can, of course, change with differ-
ent implementations. For a theoretical comparison of the algorithm runtimes,
the complexity results reported earlier are the worst case bounds.

4.4.1 Gridworld

In this domain, all DP and RL algorithms converged to the optimal policy us-
ing a tabular representation (Table 4.1). All algorithms using FSR performed
poorly because it did not have enough representational power to capture the
value function. However, the good performance obtained with iFDD indicates
that iFDD was able to build a useful representation online starting from the
FSR representation. RBF based methods could solve the task as well, yet due
to the representation limitation could not fine tune the policy as well as tabular
and iFDD techniques. In this domain, LSPI with RBFs did not perform well.
We suspect that this is due to accumulated data gathered with various poli-

5We also used the CPU measure for some of the runs and observed the same trend among
the results based on the wall clock time.
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Table 4.1: Final Performance of various DP and RL methods in the GridWorld domain.

Algorithm/Rep. tabular FSR RBFs iFDD
Policy Iteration +0.973± .001 N/A N/A N/A
Value Iteration +0.976± .001 N/A N/A N/A

TBVI +0.973± .001 −0.7± .1 +0.84± .09 +0.975± .001
SARSA +0.971± .001 −1.0± .0 +0.77± .11 +0.973± .001

Q-Learning +0.973± .001 +0.1± .2 +0.91± .07 +0.973± .001
LSPI +0.972± .001 +0.3± .2 −0.42± 0.16 +0.7± .1

Table 4.2: Time (sec) required to reach 95% of final performance for various DP and RL
methods in the GridWorld domain.

Algorithm/Rep. tabular FSR RBFs iFDD
Policy Iteration 5.1± .2 N/A N/A N/A
Value Iteration 2.04± .01 N/A N/A N/A

TBVI 5.2± 0.3 9± 4 39± 6 50± 7
SARSA 10.5± 0.6 9.2± 0.6 88± 11 10± 1

Q-Learning 21± 1 40± 6 62± 9 18.7± 0.9
LSPI 36± 2 25± 3 44± 8 197± 46

cies together with limited representation power of the RBFs. Notice that the
choice of the representation played a major role in the performance compared
to the choice of algorithm. Table 4.2 shows the timing results. Among DP al-
gorithms, value iteration provided the answer in the shortest time. Among RL
techniques, SARSA using tabular and iFDD techniques reached good policies
in the shortest time. For all algorithms the running time of RBFs is greater
than all other representations. We suspect this observation is due to real fea-
ture values of RBFs compared to all others cases where feature values are
binary. Hence calculating φ(s, a)>θ involves multiplication of real numbers
for RBFs as opposed to other representations.

4.4.2 Inverted Pendulum

Table 4.3 reports the number of steps each algorithm/representation could
balance the pendulum. All of the DP techniques using the tabular representa-
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Table 4.3: Final Performance of various DP and RL methods in the Inverted Pendulum do-
main.

Algorithm/Representation tabular FSR RBFs iFDD
Policy Iteration 3000± 0 N/A N/A N/A
Value Iteration 3000± 0 N/A N/A N/A

TBVI 3000± 0 105± 31 1466± 249 2909± 88
SARSA 2892± 85 1585± 223 1755± 247 3000± 0

Q-Learning 3000± 0 1156± 232 1782± 248 3000± 0
LSPI 3000± 0 94± 24 2807± 131 2725± 150

Table 4.4: Time (sec) required to converge to 95% of final performance for various DP and
RL methods in the Inverted Pendulum domain.

Algorithm/Representation tabular FSR RBFs iFDD
Policy Iteration 464± 23 N/A N/A N/A
Value Iteration 176± 2 N/A N/A N/A

TBVI 129± 5 0.5± 0.02 2428± 513 372± 33
SARSA 25± 4 14± 2 42± 6 34± 1

Q-Learning 17.1± 0.8 21± 4 76± 11 16.7± 0.8
LSPI 23± 1 3.5± 0.5 10± 1 487± 38

tion found optimal policies, balancing the pendulum for the entire 3000 steps.
By contrast, TBVI using FSR performed poorly. Using RBFs boosted the re-
sulting performance by 10 fold over FSR because the RBFs yield a richer
representation than FSR. The switch from RBFs to iFDD resulted in over a
100% improvement. Among RL techniques, we can see the same trend akin
to DP techniques. The only exception is LSPI using RBFs and iFDD, where
the difference is not statistically significant.

Table 4.4 shows the time required for all the algorithms to reach 95%
of their final performance. As opposed to the previous domain where the
number of possible next states for every state-action pair was 4, in this do-
main there is an infinite number of possible next states. Hence 100 samples
(which empirically seemed to cover next states appropriately) were used to
estimate the Bellman backup, increasing the computational complexity of all
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Table 4.5: Final Performance of various DP and RL methods in the BlocksWorld domain.

Algorithm/Rep. tabular FSR RBFs iFDD
Policy Iteration −0.87± 0.07 N/A N/A N/A
Value Iteration −0.94± 0.06 N/A N/A N/A

TBVI 0.7± 0.1 −1.00± 0.00 −1.00± 0.00 0.990± 0.001
SARSA 0.7± 0.1 −0.93± 0.07 −1.00± 0.00 0.93± 0.07

Q-Learning 0.93± 0.07 −0.93± 0.07 −1.00± 0.00 0.8 + 0.1
LSPI N/A −1.00± 0.00 N/A N/A

Table 4.6: Time (sec) required to converge to 95% of final performance for various DP and
RL methods in the BlocksWorld domain.

Algorithm/Rep. tabular FSR RBFs iFDD
Policy Iteration 7324± 6 N/A N/A N/A
Value Iteration 7466± 16 N/A N/A N/A

TBVI 3836± 440 9.3± 0.2 41.5± 0.1 676± 101
SARSA 1444± 172 43± 11 254± 0.7 141± 14

Q-Learning 2622± 218 65± 12 665± 12 209± 23
LSPI N/A 203± 6 N/A N/A

the DP techniques.6 Overall TBVI using the tabular representation achieved
the best performance in the shortest time. For RL techniques, LSPI with RBFs
achieved good policies in only 10 seconds. Among RL algorithms with op-
timal policies, Q-Learning with the tabular or iFDD representations was the
fastest.

4.4.3 BlocksWorld

Table 4.5 depicts the final performance of the DP and RL techniques in the
BlocksWorld domain. Notice that as the size of the planning space increased
to over one million state-action pairs, most DP techniques had difficulty find-
ing good policies within 3 hours of computation using a tabular representa-
tion. Among DP techniques using a tabular representation, only TBVI found

6To boost the calculation of Bellman backups, all s′ were cached and reused.
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a good policy. The FSR representation is not suitable for solving this prob-
lem as it ignores critical feature dependencies needed to solve the task of
making a tower with a specific ordering of the blocks. We also noticed that
TBVI diverged using this representation. Among 30 trials of randomly select-
ing 500 RBFs, none yielded good results. This is expected as RBFs are often
used in domains with metric continuous state spaces, which is not the case
in BlocksWorld. Finally iFDD helped TBVI, reaching the best performing
policy.

A similar pattern is visible among the RL techniques. The best perfor-
mances were achieved with Q-Learning using a tabular representation and
SARSA using iFDD. LSPI became intractable when calculating the A ma-
trix using any representation other than the FSR, with which it performed
poorly.

The corresponding timing results to reach within 95% of the final per-
formances are shown in Table 4.6. As expected for TBVI, SARSA and Q-
Learning, using iFDD resulted in at least 5-times speed boost compared to
the tabular representation. This is due to the fact the iFDD gradually expands
the representation, resulting in good generalization, without representing ev-
ery feature combination. Such effects are not as pronounced in the GridWorld
and Inverted Pendulum domains, since the size of the tabular representation
was at most 1200.

4.4.4 Persistent Search and Track

The large size of the PST domain makes it a challenging problem for both DP
and RL methods. Table 4.7 shows the performance of all the algorithms in this
environment. Using the tabular representation both policy iteration and value
iteration reached poor policies resulting in crashing scenarios. TBVI reached
a sub-optimal policy of holding UAVs in the base, achieving 0 return. TBVI
using FSR again diverged, resulting in crashing scenarios. Again our search
for a suitable set of RBFs for TBVI did not lead to any improvement over the
tabular representation. Using iFDD also could not improve the performance
of TBVI compared to using RBFs. We believe that iFDD was not effective
because it only expands features corresponding to the states visited along the
trajectory. Hence if the values of next states sampled to estimate the Bell-
man backup that are not along the trajectory are not accurate, iFDD does not
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Table 4.7: Final Performance of various DP and RL methods in the Persistent Search and
Track domain.

Algorithm/Representation tabular FSR RBFs iFDD
Policy Iteration −66± 5 N/A N/A N/A
Value Iteration −51± 6 N/A N/A N/A

TBVI 0± 0.0 −54± 8 −2± 2 −12± 9
SARSA 0± 0.0 79± 28 −5± 3 328± 77

Q-Learning 0± 0.0 106± 49 −6± 3 639± 218
LSPI N/A −66± 9 N/A N/A

Table 4.8: Time (min) required to converge to 95% of final performance for various DP and
RL methods in the Persistent Search and Track domain.

Algorithm/Representation tabular FSR RBFs iFDD
Policy Iteration 10481± 286 N/A N/A N/A
Value Iteration 8521± 100 N/A N/A N/A

TBVI 24± 1 758± 262 192± 60 1676± 362
SARSA 359± 5 434± 28 1961± 390 625± 32

Q-Learning 425± 9 536± 32 1066± 224 921± 51
LSPI N/A 4203± 316 N/A N/A

expand the representation to reduce those inaccuracies. In other words, ap-
plying iFDD with TBVI in domains with a large branching factor in P (in
this case 43 = 64) can be problematic. This phenomenon was not a seen in
the BlocksWorld, because the branching factor was 2.

For RL techniques, the tabular representation led to the sub-optimal pol-
icy of holding UAVs at the base. FSR led to better policies with positive
returns. We suspect this mismatch compared to DP techniques is due to the
fact that RL techniques used the representation only to evaluate states along
the trajectory not for states that were one step away. Hence they take better
advantage of the limited representational capacity. Similarly, the LSPI algo-
rithm tried to fit the limited representational power of FSR over all samples,
which led to poor policies. The use of RBFs resulted in the policy of holding
UAVs at the base most of the time. Finally, iFDD in this domain found im-
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portant features allowing Q-Learning to find the best policies discovered by
any of the algorithms. SARSA followed Q-Learning, outperforming all other
techniques. Note that for online RL techniques the branching factor did not
hinder the applicability of iFDD because states used to estimate the Bellman
backup were also considered for feature expansion.

Table 4.8 reports the corresponding timing results. Among DP tech-
niques, TBVI using the tabular representation found policies of holding UAVs
in less than 30 seconds. Within RL techniques, both SARSA and Q-Learning
could find good policies using iFDD within ∼ 15 minutes.

4.5 Discussion

The most stark observation from our experiments is that the choice of the
representation can often play a much more significant role in the final per-
formance of the solver than the choice of the algorithm. In particular, the
most accurate representation (i.e., the tabular representation) often led to the
best final performance for smaller domains but in larger domains it became
intractable for both planning and learning.

In the larger domains, linear function approximation demonstrated its
main benefit, making both the DP and RL algorithms tractable and still re-
sulting in good performance, but these results strongly depend on the features
used. In most domains, the simple FSR representation with base features was
not capable of capturing the value function, leading to poor policies. We do
note that there are other popular ways for creating FSRs with more than base
features, such as tile coding, which may yield better performance [Sutton and
Barto, 1998, Sutton, 1996]. Adding conjunctions of base features manually
to a certain depth also led to good results in the game of Go [Silver et al.,
2012].

For RBFs, our experiments illustrated that the performance of DP and
RL algorithms with RBFs are highly sensitive to placement and bandwidth
choices, and do not work well in spaces that do not contain a natural distance
metric such as the BlocksWorld and PST. Our simple method of searching
for well placed centers and well picked bandwidths was not able to ensure as
good performance for RBFs as the adaptive approach (iFDD). We expect that
adaptive RBF placement techniques could help alleviate the issues we faced
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with RBFs.
Our experiments show that adaptive representations, like iFDD, can of-

ten lead to powerful yet sparse representations and very good performance in
large domains like BlocksWorld and PST, where manual feature construction
becomes too laborious. Hence, our empirical results reinforce that the use
of adaptive representations is very important for successful scaling of MDP
solvers to larger domains. Of course, iFDD is just one example of the many
adaptive representations available. For example Ratitch and Precup [2004] in-
troduced sparse distributed memories as a process for adaptively adding and
adjusting RBFs in visited parts of the state space. Furthermore, the literature
on kernel adaptive filtering offers ways of adaptively growing kernel repre-
sentation [see e.g., Schölkopf and Smola, 1998, Liu et al., 2010], which have
been used for solving MDPs [see e.g., Farahmand, 2009].

When the model of the MDP is present, TBVI using iFDD very quickly
generated policies that performed well in domains with small branching fac-
tors. Value iteration and policy iteration were efficient for smaller domains,
but their requirement for considering every possible transition became prob-
lematic in larger domains. By contrast, TBVI took advantage of sampling
techniques that focus the computation on areas of the state space most visited
under the current policy of the agent. Our findings coincide with the results in
the literature verifying the advantage of focused sampling [Sutton and Barto,
1998, Silver et al., 2008, Ure et al., 2012].

In terms of sample complexity for the RL techniques, while batch meth-
ods are traditionally more sample efficient compared to the online techniques,
in our case the complicated relationship between the approximate representa-
tions and exploration meant that choosing a memory management scheme for
LSPI’s data (what samples to keep and which to discard) is non-trivial. Of-
ten this meant that the incremental methods (Q-learning and SARSA) were
able to outperform LSPI. However, Q-learning and SARSA also processed
10 times the number of samples compared to LSPI. Overall, SARSA and Q-
Learning using iFDD were the most efficient among the RL solvers. It is also
worth noting that SARSA and Q-learning were the most robust solvers; con-
verging to a solution in all 4 domains using all 4 representations. In summary,
the experiments lead to the following recommendations for practitioners:

• Spend time crafting the representation as it can often play a larger role
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than algorithm choice for solving MDPs

• Consider adaptive representations for tackling large domains.

• Use algorithms with on-policy sampling for both trajectory-based plan-
ning and faster learning.

• Remember that using linear function approximation instead of tabular
representation can cause the divergence of DP or RL techniques.



5
Summary

This article reviewed techniques for planning and learning in Markov Deci-
sion Processes (MDPs) with linear function approximation of the value func-
tion. Two major paradigms for finding optimal policies were considered: dy-
namic programming (DP) techniques for planning and reinforcement learning
(RL). We also showed the deep connections between both paradigms by dis-
cussing algorithms that performed planning by sampling from a generative
model and form a bridge between techniques from the DP and RL literature
(Figure 2.1). Specifically, we showed how trajectory based DP techniques
such as TBVI and TBPI are derived from value iteration and policy itera-
tion by trading off accuracy with computational speed. We then described
how model-free RL methods like SARSA, Q-Learning, LSTDQ, and LSPI
are essentially approximate DP methods for a setting with the following re-
strictions: I) samples can only be gathered in the form of trajectories, II) one-
step look-ahead of the model parameters (Equation 2.9) cannot be directly
accessed, and III) the time between interactions is limited. Throughout the
DP to RL spectrum, we saw that linear value function approximation allowed
variants of these algorithms to scale to large domains where they would be
ineffective with a tabular representation.

The presented algorithms were validated on four representative do-
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mains with increasing level of complexity: Gridworld, Inverted Pendulum,
Blocksworld, and Persistent Search and Track. For the first two small do-
mains, both RL and DP techniques using a tabular representation achieved
high quality performance. As the problem sizes grew, the use of a tabu-
lar representation became problematic; policy iteration and value iteration
yielded poor policies in the next two large domains as they ran out of plan-
ning time which was capped at 3 hours. TBVI with the tabular representation
could partially address the scalability problem by focusing the updates in
important parts of the state space, reaching sub-optimal policies. The perfor-
mance of SARSA and Q-Learning were similar to TBVI in the tabular setting.
The LSPI implementation faced memory problems due to large sizes of ma-
trixes. The FSR representation offered cheap computation, yet it did not offer
enough representational power. As a result, all methods with FSR demon-
strated fast convergence to noncompetitive policies. The RBF representation
provided more powerful representation for the first two domains, but it did not
work well for large domains with discrete state dimensions. Finally, the iFDD
approach grew the representation as required. It worked well across both RL
and DP methods in the first two small domains and led to high performing
policies for the last two large domains. The main concern in using iFDD with
DP techniques is when the branching factor of the MDP is large (e.g., the PST
domain), because in this case most states used to estimate the Bellman backup
are not considered for feature expansion. LSPI offered good policies in the
first two small domains, using 10 times fewer samples compared to online
RL techniques. For example, LSPI reached very good policies in the Inverted
Pendulum domain in about 10 seconds using RBFs. By contrast, Q-Learning
required 76 seconds to reach a lower tier policy with the same representation.
Using LSPI in the last two problems was challenging for all representations
except FSR due to LSPI’s memory requirement. These results suggest that, in
large domains, one should use learning techniques with incremental updates.

The results also highlighted the pivotal role the choice of representation
plays in ensuring good performance. Generally, our experiments showed that
adaptive representations using iFDD out-performed static representations,
both in terms of the effectiveness of the learned policy and the convergence
time. This can be attributed to the ability of adaptive representations to over-
come incorrect initial feature configurations and find new features that better
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represent the value function. However, it is very important to note that a dif-
ferent choice of sparse features or a different number and location of Gaussian
RBFs could have resulted in better performance. Unfortunately, it is difficult
to choose the right representation a priori. A representation that employs a
large number of basis functions is not desirable, as it can lead to high sample
complexity (regularization can mitigate this effect to some extend [see e.g.,
Farahmand et al., 2008]). On the other hand, an overly small representation
may lead to poor generalization. Adaptive function approximation methods
are being actively researched to address this problem by adjusting the basis
of the representation in response to the data [e.g., Ahmadi et al., 2007, Girgin
and Preux, 2007, Parr et al., 2007, Kolter and Ng, 2009, Geramifard et al.,
2011, Kroemer and Peters, 2011, Geramifard et al., 2013b]. The promise of
these methods was exemplified by the positive results of iFDD.

In conclusion, linear value function approximation is a powerful tool that
allows DP and RL algorithms to be used in domains where enumerating the
full tabular state space might be intractable. However, one always has to con-
sider the potential for divergence with these approximate techniques against
their potential savings. We have shown how DP and RL algorithms trade-off
accuracy for computational tractability when using linear function approxi-
mation, and how sensitive the resulting behaviors are to the chosen represen-
tation. However, the practical algorithms and empirical successes outlined in
this paper form a guide for practitioners trying to weigh computational costs,
accuracy requirements, and representational concerns. Decision making in
large domains will always be challenging, but with the tools presented here
this challenge is not insurmountable.
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