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Outline

Motivation for modeling, challenges

Single layer films

Model description
Lubrication and 2D approximations

(i) Uniform irradiation: Stability analysis
(ii) Computations of the nonlinear dynamics of the film

Bilayer films

(i) Model equations (2D)
(ii) Stability analysis, simulations

Future work

lDewetting ≡ ”uncovering” (exposure) of some areas the substrate
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Experimental setup

Figure courtesy of R. Kalyanaraman, UTK
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Single-layer films, one laser beam: Morphologies in the early stages of dewetting

Irradiation by 10 laser pulses. Ag film thickness from (a) to (f): 2,
4.5, 7.4, 9.5, 11.5, 20 nm. (Figure courtesy of R. Kalyanaraman,
UTK)
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Single-layer films, one laser beam: Progression of dewetting towards formation of

nanoparticles

Top row: 4.5 nm thick Ag film. (a)-(c): 10, 100, 10500 laser
pulses. Bottom row: 11.5 nm thick Ag film. (e)-(g): 10, 100,
10500 laser pulses. (Figure courtesy of R. Kalyanaraman, UTK)
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Single-layer films: Nanoscale arrays

Figure courtesy of R. Kalyanaraman, UTK
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Laser interference irradiation

Figure:
Left: Micrographs of 1D and 2D optical interference gratings created on
a Au film of 18 nm thickness. (a) “two-beam” and (b) “four-beam”
gratings.
Right: AFM image of 8 nm Au film after two-beam interference
irradiation. Note that film material accumulates in cold regions. (From
Y. Kaganovskii et al., JAP 100, 044317, 2006)
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Vision of a multifunctional nanostructured surface platform based on multi-layer

films

Pulsed laser self-organization of multilayer films made from
immiscible materials, like Co and Ag, can be used to synthesize a
matrix of discrete micro-regions with varying nanoscale
morphology, size, shape, and composition. Thus a platform with
unique multifunctional behavior for sensing and detection can be
made. (Figure courtesy of R. Kalyanaraman, UTK)
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Challenges:
Understand film instabilities resulting in nanopatterning

Develop a realistic model of heat transfer within the film

Develop a model of interference control of a pattern formation

For bilayers, develop models that account for interdiffusion
and chemical reactions

Develop efficient computational methods for 3D simulations
(especially for a bilayer system)
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Our interest is to model the complete dewetting cycle - from a
continuous film to a nanoparticles state

Modeling assumption

Film is liquid at all times, and dewetting is modeled as
continuous in time.

In reality, pulse width = 10 ns, pulse frequency = 50 Hz.
Nanometer-scale film is:

Melted “instantaneously” when a pulse hits (energy flux
∼ 1011 J/sm2);

Dewets while the pulse lasts;

Solidifies “instantaneously” after the pulse is gone, freezing
the instantaneous morphology;

Next pulse quenches in the morphology and the cycle repeats.
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Single layer films
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Major physical factors contributing to pattern formation through
film dewetting:

Capillary fluid flow (minimization of the surface area at given
fluid volume by the surface tension)

Unusual, thickness-dependent heat transfer in the film - due to
nonlinear optical absorption of light and nonlinear reflectivity

Thermocapillary (Marangoni) fluid flow arising due to the
surface tension dependence on temperature

Long-range intermolecular (van der Waals) forces between the
substrate and film surface molecules
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Important facts

Molten metal is an incompressible Newtonian liquid.

Surface tension decreases linearly with increasing temperature

σ = σm − γ (T − Tm) , T > Tm, γ > 0

H/L = ε� 1, also Hs ∼ 10÷ 20H → will derive model
equations in the lubrication (longwave) approximation.

Lubrication approximation is, essentially, a procedure of
systematic scalings of governing equations (Navier-Stokes)
and expansion of all fields in powers of small parameter ε.
Lubrication equations are the equations that result in the
leading zeroth-order (ε0) of such expansion (Oron, Davis, and
Bankoff, Reviews of Modern Physics (1997); Craster and
Matar, Reviews of Modern Physics (2009)).
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Lubrication approximation: leading-order expansion in ε (<< 1)

Momentum equation (Stokes) and continuity equation

∇ ·Ω + ρg = 0, ∇ · u = 0 (1)

Energy equation

κ

ρcp
∇2T + Q = 0, (2)

where

Ω = −Pδij + η

(
∂ui

∂xj
+
∂uj

∂xi

)
: stress tensor

Q =
δJ(1− R(h))

2
f (x , y , t) exp (δ(z − h)) (Beer-Lambert law)

(0 ≤ R(h) < 1 : nonlinear reflectivity)

Remark 1: Nonuniformity in the plane of the film enters through

f (x , y , t).
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Boundary conditions (I)

At the free surface:

(i) The normal and shear stress balances;

n ·Ω · n = −σ∇ · n + Π, t ·Ω · n = t · ∇σ

where Π = (A/6π)h−3 is the disjoining pressure due to
long-range intermolecular attraction

(ii) The kinematic condition:
u3 = ht + u1hx + u2hy ← this condition is used to derive
the evolution PDE for h after u1 an u2 have been
averaged in the z-direction

(iii) Newton’s law of cooling:
κTz = −αh (T − Ta)
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Boundary conditions (II)

At the film-substrate interface:

No-slip: u1 = u2 = 0

No-penetration: u3 = 0

Continuity of temperature and thermal flux:

T = θ, κTz = κsθz , (3)

where θ is the temperature field in the substrate, which is
obtained by solving the heat conduction equation

κs

ρscps
∇2θ + Q = 0 (4)

given R(h) = 0 in the optically transparent substrate (such as
SiO2) and the boundary condition z = −Hs : θ = Ts
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Temperature profiles
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Figure: Surface temperature when four-beam interference is active,
modeled by f ≡ f (x , y) = 1 + 0.1 cos(4π(x − 1/2)) cos(4π(y − 1/2))
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Figure: Plot of the maximum film temperature vs. film height. Dot
curve: R(h) = 0; solid curve: R(h) = r0 (1− exp (−ar h)).
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2D evolution equation (dimensionless) for the film height h(x , t)

ht =
∂

∂x

[
−(C/3)h3hxxx + (G/3)h3hx − Ah−1hx

+Mβ(Ta − Ts)h2hx

+
{
−MFh(1− R(h)) + MR ′(h)F −Mβ(h + Ψ)R ′(h)F

+Mβ(1− R(h)) (F + (h + Ψ)Fh)} f (x , y , t)h2hx ]

Lines 3 and 4: unconventional terms that emerge due to
laser heating
C : capillary numer, G : gravity number, β: Biot number, M:
Marangoni number, Ta: ambient temperature, Ts : substrate
temperature, A: Hamaker constant, D = δH: optical thickness,
Ψ = Hs/HΓ, where Γ = κ/κs

R(h) = r0 (1− exp (−ar h)) ,

F (h,D,Ψ) = (−Ψ + exp (−Dh)(Ψ− 1/D)− h + 1/D)/2
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Linear stability analysis (note: irradiation is uniform in space, time) (I)

Take f = 1, h = 1 + ξ(x , t) = 1 + eωt cos kx and linearize in ξ:

ω(k) = −G

3
k2 − ε3

3C
k4 + Ak2 −Mβ(Ta − Ts)k2

+MR ′F (−1 + β(1 + Ψ))k2

+M(1− R) (Fh − β (F + (1 + Ψ)Fh)) k2.

(5)

h = 1 : Dimensionless film height at t = 0
ξ(x , t) : Small perturbation
ω : Growth rate of the perturbation
k : Wavenumber of the perturbation (wavelength = 2π/k)
R,R ′,F ,Fh are evaluated at h = 1
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Linear stability analysis (II)
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Figure: Variation of ω with k : Dash-dot curve: heat source is zero; solid
curve: heat source is non-zero.
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Figure: Variation of ωmax with D. Dot curve: R(h) = 0; solid curve:
R(h) 6= 0.
The uniformly heated film is completely stable against small
perturbations in some interval of the optical thickness parameter
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Computation of a nonlinear evolution of the film (I)

Single laser beam (no interference, i.e. f = 1):
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Figure: Profile of the film height (left), and the evolution of the
minimum point on the film surface (right). Note the formation of a
nanowire array. Spacing equals 2π/kmax ≡ wavelength of the fastest
growing perturbation (ω = ωmax ).

Rupture time Tr ≈ 0.9 ms (depends on the amplitude of the initial
film height).
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Computation of a nonlinear evolution of the film (II)

Two-beam interference: f ≡ f (x) = 1 + 0.99 cos(0.157(x − π
2.2))

Note: 2π/0.157 = 40: the distance between interference
fringes
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Figure: Top row, left: H = 10 nm, 8 wavelengths; Top row, right:
H = 10 nm, 28 wavelengths; Bottom row: H = 15 nm, 28 wavelengths.

The spatial periodicity of nanowires follows the interference
imprint.

Mikhail Khenner Modeling diverse physics of nanoparticle self-assembly ...



Bilayer films
(Interference not included yet; 2D analysis)
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Problem geometry: bilayer + transparent SiO2 substrate + reflective support layer

Mikhail Khenner Modeling diverse physics of nanoparticle self-assembly ...



Reflectivity (shown: AgCo bilayer, model)
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R = R (h1, h2 − h1) is a smooth convex function of its arguments;
model adapted from J.S.C. Prentice, “Coherent, partially coherent
and incoherent light absorption in thin-film multilayer structures,”
J. Phys. D: Appl. Phys. 33, 3139 (2000).
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2D lubrication equations for layers thicknesses (Pototsky et al. (2005))

∂th1 + ∂x [F11∂x P1 + F12∂x P2 + Φ11∂xσ1 + Φ12∂xσ2] = 0,

∂th2 + ∂x [F21∂x P1 + F22∂x P2 + Φ21∂xσ1 + Φ22∂xσ2] = 0,

F`m (h1, h2 − h1) and Φ`m (h1, h2 − h1) are polynomials of a degree at
most three, and σi = σi (Ti (hi (x , t))) (next slide)

Pressures:

P1 = −σ1∂xx h1 − σ2∂xx h2 + Π1 + Π2 + ρ1gh1 + ρ2g (h2 − h1) ,

P2 = −σ2∂xx h2 + Π2 + ρ2gh2,

Disjoining pressures:

Π1 (h1, h2 − h1) =
As2

h3
1

− Ag2

(h2 − h1)3
+

S1 exp
(
− h1

`1

)
l1

−
S2 exp

(
− (h2−h1)

`2

)
l2

,

Π2 (h1, h2 − h1) =
Ag2

(h2 − h1)3
+

Asg

h3
2

+
S2 exp

(
− (h2−h1)

`2

)
l2

.
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Energy equations, reflectivity, surface tension etc.

Energy equations:

κ1,2
ρ1,2Ceff

∂zz T1,2 +
δ2

ρ1,2Ceff
J (1− R) exp (δ1,2 (z − h2)) = 0,

κs

ρsCeff
∂zz Ts = 0.

(Add physical boundary conditions on all three intefaces and solve using
CAS)

Surface tensions decrease linearly with increasing temperature:

σ1 = σ
(m)
1 − γ1

(
T1 (z = h1)− T

(m)
1

)
, γ1 > 0, T1 (z = h1) > T

(m)
1 ,

σ2 = σ
(m)
2 − γ2

(
T2 (z = h2)− T

(m)
2

)
, γ2 > 0, T2 (z = h2) > T

(m)
2 ,
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Interwire spacing λ from the linear stability analysis of Ag/Co bilayer

Co thickness = 5 nm fixed, Ag thickness varies

Solid squares: experimental points; Solid line: nonisothermal
model; dashed line: isothermal model (Ti = const., σi = const.,
thus no thermocapillary (Marangoni) effect)
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Simulation of the full nonlinear PDE system for Ag/Co bilayer

Co thickness = 5 nm fixed, Ag thickness = 5 nm (left), = 11 nm
(right)
Evolves in bending mode

Core-shell wires Embedded wires
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Simulation of the full nonlinear PDE system for Co/Ag bilayer

Outcomes as for AgCo (core-shell, embedded), and also stacked
Evolves in bending mode
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Squeezing mode: wires do not form

Tentatively, only the bending mode of evolution results in
practically useful outcomes, such as core-shell, embedded, or
stacked.
We derived criterium for mode type in the linear regime (small t).
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Future Work

Inclusion of interference (bilayer model)

Inclusion of interdiffusion and chemical reactions (bilayer
model)

Development of the efficient FD code for 3D simulations
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