
1

Demystifying Parallel and Distributed Deep Learning: An
In-Depth Concurrency Analysis

TAL BEN-NUN and TORSTEN HOEFLER, ETH Zurich, Switzerland

DeepNeural Networks (DNNs) are becoming an important tool inmodern computing applications. Accelerating
their training is a major challenge and techniques range from distributed algorithms to low-level circuit
design. In this survey, we describe the problem from a theoretical perspective, followed by approaches for
its parallelization. We present trends in DNN architectures and the resulting implications on parallelization
strategies. We then review and model the different types of concurrency in DNNs: from the single operator,
through parallelism in network inference and training, to distributed deep learning. We discuss asynchronous
stochastic optimization, distributed system architectures, communication schemes, and neural architecture
search. Based on those approaches, we extrapolate potential directions for parallelism in deep learning.

CCSConcepts: •General and reference→ Surveys and overviews; •Computingmethodologies→Neural
networks; Parallel computing methodologies; Distributed computing methodologies;

Additional Key Words and Phrases: Deep Learning, Distributed Computing, Parallel Algorithms

ACM Reference Format:
Tal Ben-Nun and Torsten Hoefler. 2018. Demystifying Parallel and Distributed Deep Learning: An In-Depth
Concurrency Analysis. 47 pages.

1 INTRODUCTION
Machine Learning, and in particular Deep Learning [143], is rapidly taking over a variety of aspects in
our daily lives. At the core of deep learning lies the DeepNeural Network (DNN), a construct inspired
by the interconnected nature of the human brain. Trained properly, the expressiveness of DNNs
provides accurate solutions for problems previously thought to be unsolvable, merely by observing
large amounts of data. Deep learning has been successfully implemented for a plethora of fields,
ranging from image classification [108], through speech recognition [6] and medical diagnosis [44], to
autonomous driving [22] and defeating human players in complex games [215].
Since the 1980s, neural networks have attracted the attention of the machine learning commu-

nity [144]. However, DNNs’ rise into prominence was tightly coupled to the available computational
power, which allowed to exploit their inherent parallelism. Consequently, deep learning managed
to outperform all existing approaches in speech recognition [147] and image classification [136], where
the latter (AlexNet) increased the accuracy by a factor of two, sparking interest outside of the
community and even academia.
As datasets increase in size and DNNs in complexity, the computational intensity and memory

demands of deep learning increase proportionally. Training a DNN to competitive accuracy today

Authors’ address: Tal Ben-Nun, talbn@inf.ethz.ch; Torsten Hoefler, htor@inf.ethz.ch, ETH Zurich, Department of Computer
Science, Zürich, 8006, Switzerland.

ar
X

iv
:1

80
2.

09
94

1v
2

 [
cs

.L
G

]
 1

5
Se

p
20

18

1:2 Tal Ben-Nun and Torsten Hoefler

Foundations (§2) Supervised
Learning

Stochastic Gradient
Descent (SGD)

Work and Depth
Model

Message Passing
Interface (MPI)

The Efficiency Tradeoff: Generalization vs. Utilization (§3)

Operators (§4-5)

Concurrency
(§4-7)

Networks (§6) Training (§7)

Agent

AgentAgent

Agent
Param. Server

Fig. 1. Summary of Concurrency in Deep Learning

essentially requires a high-performance computing cluster. To harness such systems, different
aspects of training and inference (evaluation) of DNNs are modified to increase concurrency.
In this survey, we discuss the variety of topics in the context of parallelism and distribution

in deep learning, spanning from vectorization to efficient use of supercomputers. In particular,
we present parallelism strategies for DNN evaluation and implementations thereof, as well as
extensions to training algorithms and systems targeted at supporting distributed environments.
To provide comparative measures on the approaches, we analyze their concurrency and average
parallelism using the Work-Depth model [21].

1.1 Related Surveys
Other surveys in the field focus on applications of deep learning [175], neural networks and their
history [143,154,209,236], scaling up deep learning [17], and hardware architectures for DNNs [113,138,225].
In particular, three surveys [143,209,236] describe DNNs and the origins of deep learning method-

ologies from a historical perspective, as well as discuss the potential capabilities of DNNs w.r.t.
learnable functions and representational power. Two of the three surveys [209,236] also describe
optimization methods and applied regularization techniques in detail.

Bengio [17] discusses scaling deep learning from various perspectives, focusing on models, opti-
mization algorithms, and datasets. The paper also overviews some aspects of distributed computing,
including asynchronous and sparse communication.

Surveys of hardware architectures mostly focus on the computational side of training rather than
the optimization. This includes a recent survey [225] that reviews computation techniques for DNN
operators (layer types) and mapping computations to hardware, exploiting inherent parallelism.
The survey also includes discussion on data representation reduction (e.g., via quantization) to
reduce overall memory bandwidth within the hardware. Other surveys discuss accelerators for
traditional neural networks [113] and the use of FPGAs in deep learning [138].

1.2 Scope
In this paper, we provide a comprehensive review and analysis of parallel and distributed deep
learning, summarized in Fig. 1 and organized as follows:
• Section 2 defines our terminology and algorithms.
• Section 3 discusses the tradeoffs between concurrency and accuracy in deep learning.
• Section 4 describes DNN operators, how they are computed, and Section 5 shows how they
can be modified to expose concurrency.
• Section 6 explores and analyzes the main approaches for parallelism in computations of full
networks for training and inference.
• Section 7 provides an overview of distributed training, describing algorithm modifications,
techniques to reduce communication, and system implementations.
• Section 8 gives concluding remarks and extrapolates potential directions in the field.

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:3

Table 1. Yearly arXiv Papers in Computer Science (AI and Computer Vision)

Year 2012 2013 2014 2015 2016 2017

cs.AI 1,081 1,765 1,022 1,105 1,929 2,790
cs.CV 577 852 1,349 2,261 3,627 5,693

The paper surveys 240 other works, obtained by recursively tracking relevant bibliography from
seminal papers in the field, dating back to the year 1984. We include additional papers resulting
from keyword searches on Google Scholar1 and arXiv2. Due to the quadratic increase in deep
learning papers on the latter source (Table 1), some works may not have been included. The full
list of categorized papers in this survey can be found online3.

2 TERMINOLOGY AND ALGORITHMS
This section establishes theory and naming conventions for the material presented in the survey.
We first discuss the class of supervised learning problems, followed by relevant foundations of
parallel programming.

2.1 Supervised Learning
In machine learning, Supervised Learning [212] is the process of optimizing a function from a set
of labeled samples (dataset) such that, given a sample, the function would return a value that
approximates the label. It is assumed that both the dataset and other, unobserved samples, are
sampled from the same probability distribution.

Throughout the survey, we refer to the operators P and E as the probability and expectation of
random variables; z ∼ D denotes that a random variable z is sampled from a probability distribution
D; and Ez∼D [f (z)] denotes the expected value of f (z) for a random variable z. The notations are
summarized in Table 2.

Formally, given a probability distribution of dataD, random variable z ∼ D, a domainX wherewe
construct samples from, a label domainY , and a hypothesis classH containing functions f : X → Y ,
we wish to minimize the generalization error, defined by the loss function LD(f) ≡ P [f (z) , h(z)],
where h(z) represents the true label of z. In practice, it is common to use a classH of functions
fw that are defined by a vector of parameters w (sometimes denoted as θ), in order to define a
continuous hypothesis space. For example,H may represent an N-dimensional hyperplane that
separates between samples of two classes, wherewi are its coefficients. In deep neural networks,
we definew in multiple layers, namely,wl,i is the parameter at layer l and index i .

We wish to findw∗ that minimizes the above loss function, as follows:
w∗ = arg min

w ∈H
LD (fw) = arg min

w ∈H
E

z∼D
[ℓ (w, z)] , (1)

where ℓ : H × X → R+ is the loss of an individual sample.
In this work, we consider two types of supervised learning problems, from which the sample loss

functions are derived: (multi-class) classification and regression. In the former, the goal is to identify
which class a sample most likely belongs to, e.g., inferring what type of animal appears in an image.
In regression, the goal is to find a relation between the domains X and Y , predicting values in Y for
new samples in X . For instance, such a problem might predict the future temperature of a region,
given past observations.

1https://scholar.google.com/
2https://www.arxiv.org/
3https://spcl.inf.ethz.ch/Research/Parallel_Programming/DistDL/

https://scholar.google.com/
https://www.arxiv.org/
https://spcl.inf.ethz.ch/Research/Parallel_Programming/DistDL/

1:4 Tal Ben-Nun and Torsten Hoefler

Name Definition

D Data probability distribution
S Training dataset

w ∈ H Model parameters. w (t)i denotes parameter i at
SGD iteration t

fw (z) Model function (learned predictor)
h(z) Ground-truth label (in Supervised Learning)
ℓ(w, z) Per-sample loss function
∇ℓ(w, z) Gradient of ℓ
u(д, w, t) Parameter update rule. Function of loss gradient д,

parametersw , and iteration t

Table 2. Summary of Notations

0.54

0.28

0.02

0.07

0.03

0.04

0.02

Predicted Label True Label

Cat

Dog

Airplane

Truck

Strawberry

Horse

Bicycle

1

0

0

0

0

0

0

𝑓𝑓𝑤𝑤(𝑧𝑧) ℎ(𝑧𝑧)
Sample

𝑧𝑧

Cross-Entropy
ℓ(𝑤𝑤, 𝑧𝑧)

Fig. 2. Multi-Class Classification Loss

For minimization purposes, a sample loss function ℓ should be continuous and differentiable.
In regression problems, it is possible to use straightforward loss functions such as the squared
difference ℓ(w, z) = (fw (z) − h(z))2. On the other hand, in classification problems, a simple definition
of loss such as ℓ(w, z) = 0 if fw (z) = h(z) or 1 otherwise (also known as binary or 0–1 loss), does
not match the continuity and differentiability criteria.
To resolve this issue, prominent multi-class classification problems define Y as a probability

distribution of the inferred class types (see Fig. 2), instead of a single label. The model output is
typically normalized to a distribution using the softmax functionσ (z)i = exp(zi)∑

k exp(zk) . The loss function
then computes the difference of the prediction from the true label “distribution”, e.g., using cross-
entropy: ℓ(w, z) = −∑

i h(z)i logσ (fw (z))i . The cross-entropy loss can be seen as a generalization
of logistic regression, inducing a continuous loss function for multi-class classification.

Minimizing the loss function can be performed by using different approaches, such as iterative
methods (e.g., BFGS [181]) or meta-heuristics (e.g., evolutionary algorithms [203]). Optimization in
machine learning is prominently performed via Gradient Descent. Since the full D is, however,
never observed, it is necessary to obtain an unbiased estimator of the gradient. Observe that
∇LD (w) = Ez∼D [∇ℓ (w, z)] (Eq. 1, linearity of the derivative). Thus, in expectation, we can descend
using randomly sampled data in each iteration, applying Stochastic Gradient Descent (SGD) [207].

Algorithm 1 Stochastic Gradient Descent (SGD)
1: for t = 0 to T do ▷ SGD iterations
2: z ← Random element from S ▷ Sample dataset S
3: д← ∇ℓ(w (t), z) ▷ Compute gradient of ℓ
4: w (t+1) ← w (t) + u(д,w (0, ...,t), t) ▷ Update weights with function u
5: end for

SGD (Algorithm 1) iteratively optimizes parameters defined by the sequence {w (t)}Tt=0, using
samples from a dataset S sampled from D with replacement. SGD is proven to converge at a rate
of O(1/

√
T) for convex functions with Lipschitz-continuous and bounded gradient [177].

Prior to running SGD, one must choose an initial estimate for the weights w (0). Due to the
ill-posed nature of some problems, the selection ofw (0) is important and may reflect on the final
quality of the result. The choice of initial weights can originate from random values, informed
decisions (e.g., Xavier initialization [79]), or from pre-trained weights in a methodology called
Transfer Learning [191]. In deep learning, recent works state that the optimization space is riddled
with saddle points [143], and assume that the value ofw (0) does not affect the final loss. In practice,
however, improper initialization may have an adverse effect on generalization as networks become
deeper [92].

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:5

Table 3. Popular Weight Update Rules

Method Formula Definitions

Learning Rate w (t+1) = w (t) − η · ∇w (t) ∇w (t) ≡ ∇ℓ(w (t), z)
Adaptive Learning Rate w (t+1) = w (t) − ηt · ∇w (t)

Momentum [197] w (t+1) = w (t) + µ · (w (t) −w (t−1)) − η · ∇w (t)

Nesterov Momentum [178] w (t+1) = w (t) + vt vt+1 = µ · vt − η · ∇ℓ(w (t) − µ · vt , z)

AdaGrad [68] w (t+1)
i = w (t)i −

η ·∇w (t)i√
Ai,t +ε

Ai,t =
∑t
τ=0

(
∇w (t)i

)2

RMSProp [95] w (t+1)
i = w (t)i −

η ·∇w (t)i√
A′i,t +ε

A′i,t = β · A′t−1 + (1 − β)
(
∇w (t)i

)2

Adam [130] w (t+1)
i = w (t)i −

η ·M (1)i,t√
M (2)i,t +ε

M (m)i,t =
βm ·M (m)i,t−1+(1−βm)

(
∇w (t)i

)m
1−β tm

In line 1, T denotes the number of steps to run SGD for (known as the stopping condition or
computational budget). Typically, real-world instances of SGD run for a constant number of steps,
for a fixed period of time, or until a desired accuracy is achieved. Line 2 then samples random
elements from the dataset, so as to provide the unbiased loss estimator. The gradient of the loss
function with respect to the weightsw (t) is subsequently computed (line 3). In deep neural networks,
the gradient is obtained with respect to each layer (w (t)l) using backpropagation (Section 4.2). This
gradient is then used for updating the weights, using a weight update rule (line 4).

2.1.1 Weight Update Rules. The weight update rule, denoted as u in Algorithm 1, can be defined
as a function of the gradient д, the previous weight valuesw (0), · · · ,w (t), and the current iteration
t . Table 3 summarizes the popular u functions used in training. In the table, the basic SGD update
rule is usдd (д) = −η · д, where η represents the learning rate. η controls how much the gradient
values will overall affect the next estimatew (t+1), and in iterative nonlinear optimization methods
finding the correct η is a considerable part of the computation [181]. In machine learning problems,
it is customary to fix η, or set an iteration-based weight update rule ualr (д, t) = −ηt · д, where ηt
decreases (decays) over time to bound the modification size and avoid local divergence.

Other popular weight update rules includeMomentum, which uses the difference between current
and past weightsw (t)−w (t−1) to avoid local minima and redundant steps with natural motion [178,197].
More recent update rules, such as RMSProp [95] and Adam [130], use the first and second moments of
the gradient in order to adapt the learning rate per-weight, enhancing sparser updates over others.

Factors such as the learning rate and other symbols found in Table 3 are called hyper-parameters,
and are set before the optimization process begins. In the table, µ, β , β1, and β2 represent the
momentum, RMS decay rate, and first and secondmoment decay rate hyper-parameters, respectively.
To obtain the best results, hyper-parameters must be tuned, which can be performed by value
sweeps or by meta-optimization (Section 7.5.2). The multitude of hyper-parameters and the reliance
upon them is considered problematic by a part of the community [199].

2.1.2 Minibatch SGD. When performing SGD, it is common to decrease the number of weight
updates by computing the sample loss in minibatches (Algorithm 2), averaging the gradient with
respect to subsets of the data [141]. Minibatches represent a tradeoff between traditional SGD, which
is proven to converge when drawing one sample at a time, and batch methods [181], which make
use of the entire dataset at each iteration.
In practice, minibatch sampling is implemented by shuffling the dataset S , and processing

that permutation by obtaining contiguous segments of size B from it. An entire pass over the
dataset is called an epoch, and a full training procedure usually consists of tens to hundreds of such

1:6 Tal Ben-Nun and Torsten Hoefler

Algorithm 2Minibatch Stochastic Gradient Descent with Backpropagation

1: for t = 0 to |S |B · epochs do
2: ®z ← Sample B elements from S ▷ Obtain samples from dataset
3: wmb ← w (t) ▷ Load parameters
4: f ← ℓ(wmb , ®z,h(®z)) ▷ Compute forward evaluation
5: дmb ← ∇ℓ(wmb , f) ▷ Compute gradient using backpropagation
6: ∆w ← u(дmb ,w

(0, ...,t), t) ▷Weight update rule
7: w (t+1) ← wmb + ∆w ▷ Store parameters
8: end for

epochs [83,250]. As opposed to the original SGD, shuffle-based processing entails without-replacement
sampling. Nevertheless, minibatch SGD was proven [213] to provide similar convergence guarantees.

2.2 Unsupervised and Reinforcement Learning
Two other classes in machine learning are unsupervised and reinforcement learning. In the former
class, the dataset S is not labeled (i.e., h(z) does not exist) and training typically results in different
objective functions, intended to infer structure from the unlabeled data. The latter class refers to
tasks where an environment is observed at given points in time, and training optimizes an action
policy function to maximize the reward of the observer.
In the context of deep learning, unsupervised learning has two useful implementations: auto-

encoders, and Generative Adversarial Networks (GANs) [81]. Auto-encoders can be constructed
as neural networks that receive a sample x as input, and output a value as close to x as possible.
When training such networks, it is possible to, for instance, feed samples with artificially-added
noise and optimize the network to return the original sample (e.g., using a squared loss function),
in order to learn de-noising filters. Alternatively, similar techniques can be used to learn image
compression [14].
GANs [81] are a recent development in machine learning. They employ deep neural networks

to generate realistic data (typically images) by simultaneously training two networks. The first
(discriminator) network is trained to distinguish “real” dataset samples from “fake” generated
samples, while the second (generator) network is trained to generate samples that are as similar to
the real dataset as possible.
The class of Reinforcement Learning (RL) utilizes DNNs [154] for different purposes, such as

defining policy functions and reward functions. Training algorithms for RL differ from supervised
and unsupervised learning, using methods such as Deep Q Learning [170] and A3C [171]. These
algorithms are out of the scope of this survey, but their parallelization techniques are similar.

2.3 Parallel Computer Architecture
We continue with a brief overview of parallel hardware architectures that are used to execute
learning problems in practice. They can be roughly classified into single-machine (often shared
memory) and multi-machine (often distributed memory) systems.

2.3.1 Single-machine Parallelism. Parallelism is ubiquitous in today’s computer architecture,
internally on the chip in the form of pipelining and out-of-order execution as well as exposed to
the programmer in the form of multi-core or multi-socket systems. Multi-core systems have a
long tradition and can be programmed with either multiple processes (different memory domains),
multiple threads (shared memory domains), or a mix of both. The main difference is that multi-
process parallel programming forces the programmer to consider the distribution of the data as

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:7

 Pre-
2010

2010 2011 2012 2013 2014 2015 2016 2017-
Present

Year

0

20

40

60

80

100

R
ep

or
te

d
Ex

pe
rim

en
ts

 [%
]

CPU GPU FPGA Specialized

(a) Hardware Architectures

 Pre-
2010

2010 2011 2012 2013 2014 2015 2016 2017-
Present

Year

0

20

40

60

80

100

R
ep

or
te

d
Ex

pe
rim

en
ts

 [%
]

Single Node Multiple Nodes

(b) Training with Single vs. Multiple Nodes
Fig. 3. Parallel Architectures in Deep Learning

a first-class concern while multi-threaded programming allows the programmer to only reason
about the parallelism, leaving the data shuffling to the hardware system (often through hardware
cache-coherence protocols).
General-purpose CPUs have been optimized for general workloads ranging from event-driven

desktop applications to datacenter server tasks (e.g., serving web-pages and executing complex
business workflows). Machine learning tasks are often compute intensive, making them similar
to traditional high-performance computing (HPC) applications. Thus, large learning workloads
perform very well on accelerated systems such as general purpose graphics processing units (GPU)
or field-programmable gate arrays (FPGA) that have been used in the HPC field for more than
a decade now. Those devices focus on compute throughput by specializing their architecture to
utilize the high data parallelism in HPC workloads. As we will see later, most learning researchers
utilize accelerators such as GPUs or FPGAs for their computations. We emphasize that the main
technique for acceleration is to exploit the inherent parallelism in learning workloads.
Out of the 240 reviewed papers, 147 papers present empirical results and provide details about

their hardware setup. Fig. 3a shows a summary of the machine architectures used in research papers
over the years. We see a clear trend towards GPUs, which dominate the publications beginning from
2013. However, even accelerated nodes are not sufficient for the large computational workload. Fig.
3b illustrates the quickly growing multi-node parallelism in those works. This shows that, beginning
from 2015, distributed-memory architectures with accelerators such as GPUs have become the
default option for machine learning at all scales today.

2.3.2 Multi-machine Parallelism. Training large-scale models is a very compute-intensive task.
Thus, single machines are often not capable to finish this task in a desired time-frame. To accelerate
the computation further, it can be distributed across multiple machines connected by a network. The
most importantmetrics for the interconnection network (short: interconnect) are latency, bandwidth,
and message-rate. Different network technologies provide different performance. For example, both
modern Ethernet and InfiniBand provide high bandwidth but InfiniBand has significantly lower
latencies and higher message rates. Special-purpose HPC interconnection networks can achieve
higher performance in all three metrics. Yet, network communication remains generally slower
than intra-machine communication.

Fig. 4a shows a breakdown of the number of nodes used in deep learning research over the years.
It started very high with the large-scale DistBelief run, reduced slightly with the introduction of
powerful accelerators and is on a quick rise again since 2015 with the advent of large-scale deep
learning. Out of the 240 reviewed papers, 73 make use of distributed-memory systems and provide
details about their hardware setup. We observe that large-scale setups, similar to HPC machines,
are commonplace and essential in today’s training.

1:8 Tal Ben-Nun and Torsten Hoefler

 Pre-
2013

2013 2014 2015 2016 2017-
Present

Year

1

10

100

1000

10000

N
um

be
r o

f N
od

es

DistBelief
Project Adam

Titan Supercomputer

Median 25th/75th Percentile Min/Max

(a) Node Count

 Pre-
2013

2013 2014 2015 2016 2017-
Present

Year

0

2

4

6

8

10

12

14

16

18

R
ep

or
te

d
Ex

pe
rim

en
ts

MPI
Spark

MapReduce
RPC

Sockets

(b) Communication Layer
Fig. 4. Characteristics of Deep Learning Clusters

2.4 Parallel Programming
Programming techniques to implement parallel learning algorithms on parallel computers depend
on the target architecture. They range from simple threaded implementations to OpenMP on single
machines. Accelerators are usually programmed with special languages such as NVIDIA’s CUDA,
OpenCL, or in the case of FPGAs using hardware design languages. Yet, the details are often hidden
behind library calls (e.g., cuDNN or MKL-DNN) that implement the time-consuming primitives.
On multiple machines with distributed memory, one can either use simple communication

mechanisms such as TCP/IP or Remote Direct Memory Access (RDMA). On distributed memory
machines, one can also use more convenient libraries such as the Message Passing Interface (MPI)
or Apache Spark. MPI is a low level library focused on providing portable performance while Spark
is a higher-level framework that focuses more on programmer productivity.

Fig. 4b shows a breakdown of the different communication mechanisms that were specified in 55
of the 73 papers using multi-node parallelism. It shows how the community quickly recognized that
deep learning has very similar characteristics than large-scale HPC applications. Thus, beginning
from 2016, the established MPI interface became the de-facto portable communication standard in
distributed deep learning.

2.5 Parallel Algorithms
We now briefly discuss some key concepts in parallel computing that are needed to understand
parallel machine learning. Every computation on a computer can be modeled as a directed acyclic
graph (DAG). The vertices of the DAG are the computations and the edges are the data dependencies
(or data flow). The computational parallelism in such a graph can be characterized by two main
parameters: the graph’s workW, which corresponds to the total number of vertices, and the graph’s
depth D, which is the number of vertices on any longest path in the DAG. These two parameters
allow us to characterize the computational complexity on a parallel system. For example, assuming
we can process one operation per time unit, then the time needed to process the graph on a single
processor is T1 =W and the time needed to process the graph on an infinite number of processes
is T∞ = D. The average parallelism in the computation isW/D, which is often a good number of
processes to execute the graph with. Furthermore, we can show that the execution time of such a
DAG on p processors is bounded by: min{W/p,D} ≤ Tp ≤ O(W/p + D) [8,26].

Most of the operations in learning can be modeled as operations on tensors (typically tensors as
a parallel programming model [220]). Such operations are highly data-parallel and only summations
introduce dependencies. Thus, we will focus on parallel reduction operations in the following.
In a reduction, we apply a series of binary operators ⊕ to combine n values into a single value,

e.g., y = x1 ⊕ x2 ⊕ x3 · · · ⊕ xn−1 ⊕ xn . If the operation ⊕ is associative then we can change its
application, which changes the DAG from a linear-depth line-like graph as shown in Fig. 5a to a

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:9

(a) Linear-Depth Reduction

(b) Tree Reduction

x1 x2 x3 x4 x5 x6

y1

max

y2

max

Convolution

Pooling

(c) Convolution Downscaling in DNNs
Fig. 5. Reduction Schemes

logarithmic-depth tree graph as shown in Fig. 5b. It is simple to show that the work and depth for
reducing n numbers is W = n − 1 and D = ⌈log2 n⌉, respectively. In deep learning, one often needs
to reduce (sum) large tables ofm independent parameters and return the result to all processes.
This is called allreduce in the MPI specification [85,167].

Inmulti-machine environments, these tables are distributed across themachineswhich participate
in the overall reduction operation. Due to the relatively low bandwidth between the machines
(compared to local memory bandwidths), this operation is often most critical for distributed learning.
We analyze the algorithms in a simplified LogP model [53], where we ignore injection rate limitations
(o = д = 0), which makes it similar to the simple α-β model: L = α models the point-to-point
latency in the network, G = β models the cost per byte, and P ≤ p is the number of networked
machines. Based on the DAG model from above, it is simple to show a lower bound for the
reduction time Tr ≥ L log2(P) in this simplified model. Furthermore, because each element of the
table has to be sent at least once, the second lower bound is Tr ≥ γmG, where γ represents the
size of a single data value andm is the number of values sent. This bound can be strengthened to
Tr ≥ L log2(P) + 2γmG(P − 1)/P if we disallow redundant computations [29].

Several practical algorithms exist for the parallel allreduce operation in different environments
and the best algorithm depends on the system, the number of processes, and the message size.
We refer to Chan et al. [29] and Hoefler and Moor [101] for surveys of collective algorithms. Here,
we summarize key algorithms that have been rediscovered in the context of parallel learning.
The simplest algorithm is to combine two trees, one for summing the values to one process,
similar to Fig. 5b, and one for broadcasting the values back to all processes; its complexity is
Ttree = 2 log2(P)(L + γmG). Yet, this algorithm is inefficient and can be optimized with a simple
butterfly pattern, reducing the time toTbfly = log2(P)(L +γmG). The butterfly algorithm is efficient
(near-optimal) for small γm. For large γm and small P , a simple linear pipeline that splits the
message into P segments is bandwidth-optimal and performs well in practice, even though it has
a linear component in P : Tpipe = 2(P − 1)(L + γ m

P G). For most ranges of γm and P , one could
use Rabenseifner’s algorithm [198], which combines reduce-scatter with gather, running in time
Trabe = 2L log2(P)+ 2γmG(P − 1)/P . This algorithm achieves the lower bound but may be harder to
implement and tune.

Other communication problems needed for convolutions and pooling, illustrated in Fig. 5c, exhibit
high spatial locality due to strict neighbor interactions. They can be optimized using well-known
HPC techniques for stencil computations such as MPI Neighborhood Collectives [102] (formerly
known as sparse collectives [104]) or optimized Remote Memory Access programming [15]. In general,
exploring different low-level communication, message scheduling, and topology mapping [103]

strategies that are well-known in the HPC field could significantly speed up the communication in
distributed deep learning.

1:10 Tal Ben-Nun and Torsten Hoefler

Minibatch Size

Validation Error

Performance

A B C

(a) Performance and accuracy of minibatch SGD
after a fixed number of epochs (Illustration).

✻� ✶✁✂ ✁✷✻ ✷✶✁ ✶✄ ✁✄ �✄ ✂✄ ✶✻✄ ✸✁✄ ✻�✄

♠☎✆☎✝✞✟✠✡☛ ☞☎✌✍

✁✎

✁✷

✸✎

✸✷

�✎

■✏
✑
✒
✓
✔
✓
✕
✕✖
✗
✘✙
✚
✑
✛✜
✢
✑
✕✜
✖
✣
✓
✤✤
✖
✤

(b) Empirical accuracy (ResNet-50, figure adapted
from [83], lower is better).

Fig. 6. Minibatch Size Effect on Accuracy and Performance

3 THE EFFICIENCY TRADEOFF: GENERALIZATION VS. UTILIZATION
In the previous section, we mentioned that SGD can be executed concurrently through the use of
minibatches. However, setting the minibatch size is a complex optimization space on its own merit,
as it affects both statistical accuracy (generalization) and hardware efficiency (utilization) of the
model. As illustrated in Fig. 6a, minibatches should not be too small (region A), so as to harness
inherent concurrency in evaluation of the loss function; nor should they be too large (region C), as
the quality of the result decays once increased beyond a certain point.

We can show the existence of region C by combining SGD with the descent lemma for a function
f with L-Lipschitz gradient: Ez

[
f (w (t+1))

]
≤ f (w (t)) − ηt

∇f (w (t))

2
+ η2

t
L
2 Ez

[

∇fz (w (t))

2
]
,

where z ∼ D and ∇fz is the stochastic subgradient for z. This indicates that a large minibatch (with
adjusted learning rate) can increase the convergence rate (negative term), but along with it the
gradient variance and learning rate, which causes the last term to hinder convergence.
Indeed, the illustrated behavior is empirically shown for larger minibatch sizes in Fig. 6b, and

typical sizes lie between the orders of 10 and 10,000. Also, large-batch methods only converge
and generalize when: (a) learning rates are adjusted statically [83,135] or adaptively [249]; (b) using a
“warmup” phase [83]; (c) using the batch size to control gradient variance [75]; (d) adaptively increasing
minibatch size during training [218]; or (e) when using specific learning rate schedules [164]. Overall,
such works increase the upper bound on feasible minibatch sizes, but do not remove it.

4 DEEP NEURAL NETWORKS
We now describe the anatomy of a Deep Neural Network (DNN). In Fig. 7, we see a DNN in two
scales: the single operator (Fig. 7a, also ambiguously called layer) and the composition of such
operators in a layered deep network (Fig. 7b). In the rest of this section, we describe popular
operator types and their properties, followed by the computational description of deep networks

𝑤3,2

𝑤1,2

𝑤1,1

𝑥1

𝑥2

𝑥3

𝑤3,1

𝑤2,1

𝑤2,2

𝜎 ∑𝑤𝑖,1𝑥𝑖 + 𝑏1

𝜎 ∑𝑤𝑖,2𝑥𝑖 + 𝑏2

(a) Neural Network Operator

Input Convolution Pooling

max

Fully
Connected

So
ftm

ax

Module

C
on

ca
tConv

Conv

Conv

Pool

(b) Deep Network
Fig. 7. Deep Neural Network Architecture

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:11

Name Description

N Minibatch size
C Number of channels, features, or neurons
H Image Height
W Image Width
Kx Convolution kernel width
Ky Convolution kernel height

(a) Data Dimensions

N

𝐶𝐶𝑖𝑖𝑖𝑖

H

W

𝐶𝐶𝑖𝑖𝑖𝑖

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 ⋅ 𝐶𝐶𝑖𝑖𝑖𝑖

𝐾𝐾𝑦𝑦

𝐾𝐾𝑥𝑥

Convolution KernelsInput

(b) Convolution Dimensions
Fig. 8. Summary of Data Dimensions in Operators

and the backpropagation algorithm. Then, we study several examples of popular neural networks,
highlighting the computational trends driven by their definition.

4.1 Neurons
The basic building block of a deep neural network is the neuron. Modeled after the brain, an artificial
neuron (Fig. 7a) accumulates signals from other neurons connected by synapses. An activation
function (or axon) is applied on the accumulated value, which adds nonlinearity to the network
and determines the signal this neuron “fires” to its neighbors. In feed-forward neural networks,
the neurons are grouped to layers strictly connected to neurons in subsequent layers. In contrast,
recurrent neural networks allow back-connections within the same layer.

4.1.1 Feed-Forward Operators. Neural network operators are implemented as weighted sums,
using the synapses as weights. Activations (denoted σ) can be implemented as different functions,
such as Sigmoid, Softmax, hyperbolic tangents, Rectified Linear Units (ReLU), or variants thereof [92].
When color images are used as input (as is commonly the case in computer vision), they are usually
represented as a 4-dimensional tensor sized N×C×H×W . As shown in Fig. 8, N is number of images
in the minibatch, where each H×W image containsC channels (e.g., image RGB components). If an
operator disregards spatial locality in the image tensor (e.g., a fully connected layer), the dimensions
are flattened to N × (C · H ·W). In typical DNN and CNN constructions, the number of features
(channels in subsequent layers), as well as the width and height of an image, change from layer to
layer using the operators defined below. We denote the input and output features of a layer by Cin
and Cout respectively.

A fully connected layer (Fig. 7a) is defined on a group of neurons x (sized N ×Cin , disregarding
spatial properties) by yi,∗ = σ (wxi,∗ +b), wherew is the weight matrix (sizedCin ×Cout) and b is a
per-layer trainable bias vector (sized Cout). While this inner product is usually implemented with
multiplication and addition, some works use other operators, such as similarity [46].
Not all operators in a neural network are fully connected. Sparsely connecting neurons and

sharing weights is beneficial for reducing the number of parameters; as is the case in the popular
convolutional operator. In a convolutional operator, every 3D tensor x (i.e., a slice of the 4Dminibatch
tensor representing one image) is convolved with Cout kernels of size Cin×Ky×Kx , where the base
formula for a minibatch is given by:

yi, j,k,l =

Cin−1∑
m=0

Ky−1∑
ky=0

Kx−1∑
kx=0

xi,m,k+ky,l+kx ·w j,m,ky,kx , (2)

where y’s dimensions are N ×Cout ×H ′ ×W ′, H ′ = H −Ky + 1, andW ′ =W −Kx + 1, accounting
for the size after the convolution, which does not consider cases where the kernel is out of the
image bounds. Note that the formula omits various extensions of the operator [69], such as variable
stride, padding, and dilation [252], each of which modifies the accessed indices and H ′,W ′. The two
inner loops of Eq. 2 are called the convolution kernel, and the kernel (or filter) size is Kx × Ky .

1:12 Tal Ben-Nun and Torsten Hoefler
La

ye
r

Time
𝑥𝑥𝑡𝑡

ℎ𝑡𝑡

ℎ𝑡𝑡−1
+

ℎ𝑡𝑡
x

x

σ

𝑤𝑤𝑥𝑥

𝑤𝑤ℎ

(a) Recurrent Units

La
ye

r

Time
𝑥𝑥𝑡𝑡

ℎ𝑡𝑡

ℎ𝑡𝑡−1
σ σ σtanh

𝐶𝐶𝑡𝑡−1 𝐶𝐶𝑡𝑡
x

Fo
rg

et

+

x

In
pu

t

�̃�𝐶𝑡𝑡

tanh

x

O
ut

pu
t

ℎ𝑡𝑡
concat

(b) Long Short-Term Memory

La
ye

r

Time
𝑥𝑥𝑡𝑡

ℎ𝑡𝑡ℎ𝑡𝑡−1

σ σ
concat

x +

x 𝑧𝑧𝑡𝑡

tanh

x𝑟𝑟𝑡𝑡

concat

�ℎ𝑡𝑡

1-

(c) Gated Recurrent Unit

Fig. 9. Recurrent Neural Network (RNN) Layers. Sub-figures (b) and (c) adapted from [186].

While convolutional operators are the most computationally demanding in CNNs, other operator
types are prominently used in networks. Two such operators are pooling and batch normalization.
The former reduces an input tensor in the width and height dimensions, performing an operation
on contiguous sub-regions of the reduced dimensions, such as maximum (called max-pooling) or
average, and is given by:

yi, j,k,l = max
kx ∈[0,Kx),ky ∈[0,Ky)

xi, j,k+kx ,l+ky .

The goal of this operator is to reduce the size of a tensor by sub-sampling it while emphasizing
important features. Applying subsequent convolutions of the same kernel size on a sub-sampled
tensor enables learning high-level features that correspond to larger regions in the original data.
Batch Normalization (BN) [117] is an example of an operator that creates inter-dependencies

between samples in the same minibatch. Its role is to center the samples around a zero mean and a
variance of one, which, according to the authors, reduces the internal covariate shift. BN is given
by the following transformation:

yi, j,k,l =
©­­«
xi, j,k,l − E

[
x∗, j,k,l

]√
Var

[
x∗, j,k,l

]
+ ϵ

ª®®¬ · γ + β,
where γ , β are scaling factors, and ϵ is added to the denominator for numerical stability.

4.1.2 Recurrent Operators. Recurrent Neural Networks (RNNs) [70] enable connections from a
layer’s output to its own inputs. These connections create “state” in the neurons, retaining persistent
information in the network and allowing it to process data sequences instead of a single tensor. We
denote the input tensor at time point t as x (t).
The standard Elman RNN layer is defined as y(t) = wy ·

(
wh · ht−1 +wx · x (t)

)
(omitting bias,

illustrated in Fig. 9a), where ht represents the “hidden” data at time-point t and is carried over to the
next time-point. Despite the initial success of these operators, it was found that they tend to “forget”
information quickly (as a function of sequence length) [19]. To address this issue, Long-Short Term
Memory (LSTM) [99] (Fig. 9b) units redesign the structure of the recurrent connection to resemble
memory cells. Several variants of LSTM exist, such as the Gated Recurrent Unit (GRU) [40] (Fig. 9c),
which simplifies the LSTM gates to reduce the number of parameters.

4.2 Deep Networks
According to the definition of a fully connected layer, the expressiveness of a “shallow” neural
network is limited to a separating hyperplane, skewed by the nonlinear activation function. When
composing layers one after another, we create deep networks (as shown in Fig. 7b) that can
approximate arbitrarily complex continuous functions.While the exact class of expressible functions
is currently an open problem, results [47,59] show that neural network depth can reduce breadth
requirements exponentially with each additional layer.

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:13

Table 4. Asymptotic Work-Depth Characteristics of DNN Operators

Operator Type Eval. Work (W) Depth (D)

Activation y O(NCHW) O(1)
∇w O(NCHW) O(1)
∇x O(NCHW) O(1)

Fully Connected y O(Cout ·Cin · N) O(logCin)
∇w O(Cin · N ·Cout) O(logN)
∇x O(Cin ·Cout · N) O(logCout)

Convolution (Direct) y O(N ·Cout ·Cin · H ′ ·W ′ · Kx · Ky) O(logKx + logKy + logCin)
∇w O(N ·Cout ·Cin · H ′ ·W ′ · Kx · Ky) O(logKx + logKy + logCin)
∇x O(N ·Cout ·Cin · H ·W · Kx · Ky) O(logKx + logKy + logCin)

Pooling y O(NCHW) O(logKx + logKy)
∇w — —
∇x O(NCHW) O(1)

Batch Normalization y O(NCHW) O(logN)
∇w O(NCHW) O(logN)
∇x O(NCHW) O(logN)

A Deep Neural Network (DNN) can be represented as a function composition, e.g., ℓ(LM (wM , · · ·
L2(w2,L1(w1,x)))), where each function Li is an operator, and each vectorwi represents operator
i’s weights (parameters). In addition to direct composition, a DNN DAG might reuse the output
values of a layer in multiple subsequent layers, forming shortcut connections [93,108].

Computation of the DNN loss gradient ∇ℓ, which is necessary for SGD, can be performed by
repeatedly applying the chain rule in a process commonly referred to as backpropagation. As
shown in Fig. 10, the process of obtaining ∇ℓ(w,x) is performed in two steps. First, ℓ(w,x) is
computed by forward evaluation (top portion of the figure), computing each layer of operators after
its dependencies in a topological ordering. After computing the loss, information is propagated
backward through the network (bottom portion of the figure), computing two gradients — ∇x
(w.r.t. input data), and ∇wi (w.r.t. layer weights). Note that some operators do not maintain mutable
parameters (e.g., pooling, concatenation), and thus ∇wi is not always computed.

In terms of concurrency, we use theWork-Depth (W-D)model to formulate the costs of computing
the forward evaluation and backpropagation of different layer types. Table 4 shows that the work
(W) performed in each layer asymptotically dominates the maximal operation dependency path
(D), which is at most logarithmic in the parameters. This result reaffirms the state of the practice,
in which parallelism plays a major part in the feasibility of evaluating and training DNNs.

As opposed to feed-forward networks, RNNs contain self-connections and thus cannot be trained
with backpropagation alone. Themost popular way to solve this issue is by applying backpropagation
through time (BPTT) [238], which unrolls the recurrent layer up to a certain amount of sequence
length, using the same weights for each time-point. This creates a larger, feed-forward network
that can be trained with the usual means.

Convolution Pooling

Input Convolution

Convolution Convolution

Concatenation Fully Connected Softmax

∇x ∇x
Input Ø

∇x ∇x
∇x ∇x Softmax

∇w
∇w∇w

∇w

∇w

Fig. 10. The Backpropagation Algorithm

1:14 Tal Ben-Nun and Torsten Hoefler

Table 5. Popular Neural Network Characteristics

Property LeNet [145] AlexNet [136] GoogLeNet [226] ResNet [93] DenseNet [108]

|w | 60K 61M 6.8M 1.7M–60.2M ∼15.3M–30M
Layers (∝ D) 7 13 27 50–152 40–250
Operations (∝W, ImageNet-1k) N/A 725M 1566M ∼1000M–2300M ∼600M–1130M
Top-5 Error (ImageNet-1k) N/A 15.3% 9.15% 5.71% 5.29%
Top-1 Error (CIFAR-10) N/A N/A N/A 6.41% 3.62%

4.3 Trends in DNN Characteristics
To understand how successful neural architectures orchestrate the aforementioned operators, we
discuss five influential convolutional networks and highlight trends in their characteristics over
the past years. Each of the networks, listed in Table 5, has achieved state-of-the-art performance
upon publication. The table summarizes these networks, their concurrency characteristics, and
their achieved test accuracy on the ImageNet [61] (1,000 class challenge) and CIFAR-10 [134] datasets.
More detailed analysis of these networks can be found in Appendix A.
The listed networks, as well as other works [37,45,56,90,111,157,216,269], indicate three periods in the

history of classification neural networks: experimentation (∼1985–2010), growth (2010–2015), and
resource conservation (2015–today).
In the experimentation period, different types of neural network structures (e.g., Deep Belief

Networks [18]) were researched, and the methods to optimize them (e.g., backpropagation) were
developed. Once the neural network community has converged on deep feed-forward networks
(with the success of AlexNet cementing this decision), research during the growth period yielded
networks with larger sizes and more operations, in an attempt to both increase model parallelism
and solve increasingly complex problems. This trend was supported by the advent of GPUs and other
large computational resources (e.g., the Google Brain cluster), increasing the available processing
elements towards the average parallelism (W/D).
However, as over-parameterization leads to overfitting, and since the resulting networks were

too large to fit into consumer devices, efforts to decrease resource usage started around 2015, and
so did the average parallelism (see table). Research has since focused on increasing expressiveness,
mostly by producing deeper networks, while also reducing the number of parameters and oper-
ations required to forward-evaluate the given network. Parallelization efforts have thus shifted
towards concurrency within minibatches (data parallelism, see Section 6). By reducing memory
and increasing energy efficiency, the resource conservation trend aims to move neural processing
to the end user, i.e., to embedded and mobile devices. At the same time, smaller networks are faster
to prototype and require less information to communicate when training on distributed platforms.

5 CONCURRENCY IN OPERATORS
Given that neural network layers operate on 4-dimensional tensors (Fig. 8a) and the high locality
of the operations, there are several opportunities for parallelizing layer execution. In most cases,
computations (e.g., in the case of pooling operators) can be directly parallelized. However, in order
to expose parallelism in other operator types, computations have to be reshaped. Below, we list
efforts to model DNN performance, followed by a concurrency analysis of three popular operators.

5.1 Performance Modeling
Even with work and depth models, it is hard to estimate the runtime of a single DNN operator, let
alone an entire network. Fig. 11 presents measurements of the performance of the highly-tuned
matrix multiplication implementation in the NVIDIA CUBLAS library [184], which is at the core of
nearly all operators. The figure shows that as the dimensions are modified, the performance does not

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:15

Fig. 11. Performance of cublasSgemm on a Tesla K80 GPU for various matrix sizes (adapted from [187]).

change linearly, and that in practice the system internally chooses from one of 15 implementations
for the operation, where the left-hand side of the figure depicts the segmentation.
In spite of the above observation, other works still manage to approximate the runtime of a

given DNN with performance modeling. Using the values in the figure as a lookup table, it was
possible to predict the time to compute and backpropagate through minibatches of various sizes
with ∼5–19% error, even on clusters of GPUs with asynchronous communication [187]. The same was
achieved for CPUs in a distributed environment [247], using a similar approach, and for Intel Xeon Phi
accelerators [235] strictly for training time estimation (i.e., not individual layers or DNN evaluation).
Paleo [196] derives a performance model from operation counts alone (with 10–30% prediction error),
and Pervasive CNNs [221] uses performance modeling to select networks with decreased accuracy
to match real-time requirements from users. To further understand the performance characteristics
of DNNs, Demmel and Dinh [60] provide lower bounds on communication requirements for the
convolution and pooling operators.

5.2 Fully Connected Layers
As described in Section 4.1, a fully connected layer can be expressed and modeled (see Table 4)
as a matrix-matrix multiplication of the weights and the neuron values (column per minibatch
sample). To that end, efficient linear algebra libraries, such as CUBLAS [184] and MKL [115], can be
used. The BLAS [179] GEneral Matrix-Matrix multiplication (GEMM) operator, used for this purpose,
also includes scalar factors that enable matrix scaling and accumulation, which can be used when
batching groups of neurons.

Vanhoucke et al. [230] present a variety of methods to further optimize CPU implementations of
fully connected layers. In particular, the paper shows efficient loop construction, vectorization,
blocking, unrolling, and batching. The paper also demonstrates how weights can be quantized to
use fixed-point math instead of floating point.

5.3 Convolution
Convolutions constitute the majority of computations involved in training and inference of DNNs.
As such, the research community and the industry have invested considerable efforts into optimizing
their computation on all platforms. Fig. 12 depicts the convolution methods detailed below, and
Table 6 summarizes their work and depth characteristics (see Appendix C for detailed analyses).

While a convolution operator (Eq. 2) can be computed directly, it will not fully utilize the resources
of vector processors (e.g., Intel’s AVX registers) and many-core architectures (e.g., GPUs), which
are geared towards many parallel multiplication-accumulation operations. It is possible, however,
to increase the utilization by ordering operations to maximize data reuse [60], introducing data
redundancy, or via basis transformation.

The first algorithmic change proposed for convolutional operators was the use of the well-known
technique to transform a discrete convolution into matrix multiplication, using Toeplitz matrices
(colloquially known as im2col). The first occurrence of unrolling convolutions in CNNs [31] used
both CPUs and GPUs for training (since the work precedes CUDA, it uses Pixel Shaders for GPU

1:16 Tal Ben-Nun and Torsten Hoefler

D0	
 D1	
 D2	

D3	
 D4	
 D5	

D6	
 D7	
 D8	

D0	
 D1	
 D2	

D3	
 D4	
 D5	

D6	
 D7	
 D8	

F0	
 F1	

F2	
 F3	

F0	
 F1	

F2	
 F3	

F0	
 F1	

F2	
 F3	

G0	
 G1	

G2	
 G3	

G0	
 G1	

G2	
 G3	

G0	
 G1	

G2	
 G3	

𝑭[𝟎,:,:,:	
]	

F0	
 F1	
 F2	
 F3	
 F0	
 F1	
 F2	
 F3	
 F0	
 F1	
 F2	
 F3	

G0	
 G1	
 G2	
 G3	
 G0	
 G1	
 G2	
 G3	
 G0	
 G1	
 G2	
 G3	

D4	
 D5	
 D7	
 D8	

D3	
 D4	
 D6	
 D7	

D1	
 D2	
 D4	
 D5	

D0	
 D1	
 D3	
 D4	

D4	
 D5	
 D7	
 D8	

D3	
 D4	
 D6	
 D7	

D1	
 D2	
 D4	
 D5	

D0	
 D1	
 D3	
 D4	

D4	
 D5	
 D7	
 D8	

D3	
 D4	
 D6	
 D7	

D1	
 D2	
 D4	
 D5	

D0	
 D1	
 D3	
 D4	

𝑫[𝟎,𝟎,:,:]	

D0	
 D1	
 D2	

D3	
 D4	
 D5	

D6	
 D7	
 D8	

𝑫[𝟎,𝟏,:,:]	
 𝑫[𝟎,𝟐,:,:]	

𝑭[𝟏,:,:,:]	

Image	
 data	

Filter	
 data	

N	
 =	
 1	

C	
 =	
 3	

H	
 =	
 3	

W	
 =	
 3	

K	
 =	
 2	

R	
 =	
 2	

S	
 =	
 2	

u=v	
 =	
 1	

pad_h	
 =	
 0	

pad_w	
 =	
 0	

Om	
 Fm	

(a) im2col (adapted from [38])

𝑤𝑤 ℱ

ℱ

ℱ−1

=

×
�𝑤𝑤

(b) FFT (c)Winograd (adapted from [162])
Fig. 12. Computation Methods for Convolutional Operators

computations). The method was subsequently popularized by Coates et al. [45], and consists of
reshaping the images in the minibatch from 3D tensors to 2D matrices. Each 1D row in the matrix
contains an unrolled 2D patch that would usually be convolved (possibly with overlap), generating
redundant information (see Fig. 12a). The convolution kernels are then stored as a 2D matrix,
where each column represents an unrolled kernel (one convolution filter). Multiplying those two
matrices results in a matrix that contains the convolved tensor in 2D format, which can be reshaped
to 3D for subsequent operations. Note that this operation can be generalized to 4D tensors (an
entire minibatch), converting it into a single matrix multiplication. Alternatively, the kernels can
be unrolled to rows (kn2row) for the matrix multiplication [233].
While processor-friendly, the GEMM method (as described above) consumes a considerable

amount of memory, and thus was not scalable. Practical implementations of the GEMMmethod, such
as in CUDNN [38], implement “implicit GEMM”, in which the Toeplitz matrix is never materialized.
It was also reported [49] that the Strassen matrix multiplication [223] can be used for the underlying
computation, reducing the number of operations by up to 47%.
A second method to compute convolutions is to make use of the Fourier domain, in which

convolution is defined as an element-wise multiplication [166,232]. In this method, both the data and
the kernels are transformed using FFT, multiplied, and the inverse FFT is applied on the result:

yi, j,∗,∗ = F −1
(Cin∑
m=0
F

(
xi,m,∗,∗

)
◦ F

(
w j,m,∗,∗

))
where F denotes the Fourier Transform and ◦ is element-wise multiplication. Note that for a single
minibatch, it is enough to transformw once and reuse the results.
Experimental results [232] have shown that the larger the convolution kernels are, the more

beneficial FFT becomes, yielding up to 16× performance over the GEMM method, which has to
process patches of proportional size to the kernels. Additional optimizations were made to the
FFT and IFFT operations [232], using DNN-specific knowledge: (a) The process uses decimation-in-
frequency for FFT and decimation-in-time for IFFT in order to mitigate bit-reversal instructions; (b)
multiple FFTs with sizes ≤32 are batched together and performed at the warp-level on the GPU;
and (c) pre-computation of twiddle factors.

Working with DNNs, FFT-based convolution can be optimized further. In ZNNi [267], the authors
observed that due to zero-padding, the convolutional kernels, which are considerably smaller than
the images, mostly consist of zeros. Thus, pruned FFT [222] can be executed for transforming the
kernels, reducing the number of operations by 3×. In turn, the paper reports 5× and 10× speedups
for CPUs and GPUs, respectively.

The prevalent method used today to perform convolutions is Winograd’s algorithm for minimal
filtering [241]. First proposed by Lavin and Gray [140], the method modifies the original algorithm for

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:17

Table 6. Work-Depth Analysis of Convolution Implementations

Method Work (W) Depth (D)

Direct N ·Cout · H ′ ·W ′ ·Cin · Ky · Kx
⌈
log2 Cin

⌉
+

⌈
log2 Ky

⌉
+

⌈
log2 Kx

⌉
im2col N ·Cout · H ′ ·W ′ ·Cin · Ky · Kx

⌈
log2 Cin

⌉
+

⌈
log2 Ky

⌉
+

⌈
log2 Kx

⌉
FFT c · HW log2(HW) · (Cout ·Cin+ 2

⌈
log2 HW

⌉
+

⌈
log2 Cin

⌉
N ·Cin + N ·Cout) + HW N ·Cin ·Cout

Winograd α (r 2 + αr + 2α 2 + αm +m2) +Cout ·Cin · P 2
⌈
log2 r

⌉
+ 4

⌈
log2 α

⌉
+

⌈
log2 Cin

⌉
(m ×m tiles,
r × r kernels) (α ≡m − r + 1, P ≡ N · ⌈H/m ⌉ · ⌈W /m ⌉)

multiple filters (as is the case in convolutions), performing the following computation for one tile:

yi, j,∗,∗ = AT

(Cin∑
m=0

Gw j,m,∗,∗GT ◦ BT xi,m,∗,∗B

)
A,

with the matrices A,G,B constructed as in Winograd’s algorithm (implementation in Appendix C).
Since the number of operations in Winograd convolutions grows quadratically with filter size,

the convolution is decomposed into a sum of tiled, small convolutions, and the method is strictly
used for small kernels (e.g., 3×3). Additionally, because the magnitude of elements in the expression
increases with filter size, the numerical accuracy of Winograd convolution is generally lower than
the other methods, and decreases as larger filters are used.

Table 6 lists the concurrency characteristics of the aforementioned convolution implementations,
using the Work-Depth model. From the table, we can see that each method exhibits different
behavior, where the average parallelism (W/D) can be determined by the kernel size or by image
size (e.g., FFT). This coincides with experimental results [38,140,232], which show that there is no
“one-size-fits-all” convolution method. We can also see that the Work and Depth metrics are not
always sufficient to reason about absolute performance, as the Direct and im2col methods exhibit
the same concurrency characteristics, even though im2col is faster in many cases, due to high
processor utilization and memory reuse (e.g., caching) opportunities.
Data layout also plays a role in convolution performance. Li et al. [149] assert that convolution

and pooling operators can be computed faster by transposing the data from N×C×H×W tensors to
C×H×W×N . The paper reports up to 27.9× performance increase over the state-of-the-art for a
single operator, and 5.6× for a full DNN (AlexNet). The paper reports speedup even in the case of
transposing the data during the computation of the DNN, upon inputting the tensor to the operator.

DNN primitive libraries, such as CUDNN [38] and MKL-DNN [116], provide a variety of convolution
methods and data layouts. In order to assist users in a choice of algorithm, such libraries provide
functions that choose the best-performing algorithm given tensor sizes and memory constraints.
Internally, the libraries may run all methods and pick the fastest one.

5.4 Recurrent Units
The complex gate systems that occur within RNN units (e.g., LSTMs, see Fig. 9b) contain multiple
operations, each of which incurs a small matrix multiplication or an element-wise operation. Due
to this reason, these layers were traditionally implemented as a series of high-level operations, such
as GEMMs. However, further acceleration of such layers is possible. Moreover, since RNN units are
usually chained together (forming consecutive recurrent layers), two types of concurrency can be
considered: within the same layer, and between consecutive layers.
Appleyard et al. [7] describe several optimizations that can be implemented for GPUs. The first

optimization fuses all computations (GEMMs and otherwise) into one function (kernel), saving
intermediate results in scratch-pad memory. This both reduces the kernel scheduling overhead,

1:18 Tal Ben-Nun and Torsten Hoefler

(a) Dynamic Programming BPTT [86] (b) Persistent RNNs [64]

Fig. 13. RNN Optimizations

and conserves round-trips to the global memory, using the multi-level memory hierarchy of the
massively parallel GPU. Other optimizations include pre-transposition of matrices and enabling
concurrent execution of independent recurrent units on different multi-processors on the GPU.
Inter-layer concurrency is achieved through pipeline parallelism, with which Appleyard et

al. implement stacked RNN unit computations, immediately starting to propagate through the
next layer once its data dependencies have been met. Overall, these optimizations result in ∼11×
performance increase over the high-level implementation.

From the memory consumption perspective, dynamic programming was proposed [86] for RNNs
(see Fig. 13a) in order to balance between caching intermediate results and recomputing forward
inference for backpropagation. For long sequences (1000 time-points), the algorithm conserves
95% memory over standard BPTT, while adding ∼33% time per iteration. A similar result has been
achieved when re-computing convolutional operators as well [36], yielding memory costs sublinear
in the number of layers.

Persistent RNNs [64] are an optimization that addresses two limitations of GPU utilization: small
minibatch sizes and long sequences of inputs. By caching the weights of standard RNN units on
the GPU registers, they optimize memory round-trips between timesteps (x (t)) during training
(Fig. 13b). In order for the registers not to be scheduled out, this requires the GPU kernels that
execute the RNN layers to be “persistent”, performing global synchronization on their own and
circumventing the normal GPU programming model. The approach attains up to ∼30× speedup
over previous state-of-the-art for low minibatch sizes, performing on the order of multiple TFLOP/s
per-GPU, even though it does not execute GEMM operations and loads more memory for each
multi-processor. Additionally, the approach reduces the total memory footprint of RNNs, allowing
users to stack more layers using the same resources.

6 CONCURRENCY IN NETWORKS
The high average parallelism (W/D) in neural networks may not only be harnessed to compute
individual operators efficiently, but also to evaluate the whole network concurrently with respect to
different dimensions. Owing to the use of minibatches, the breadth (∝W) of the layers, and the depth
of the DNN (∝ D), it is possible to partition both the forward evaluation and the backpropagation
phases (lines 4–5 in Algorithm 2) among parallel processors. Below, we discuss three prominent
partitioning strategies, illustrated in Fig. 14: partitioning by input samples (data parallelism), by
network structure (model parallelism), and by layer (pipelining).

6.1 Data Parallelism
In minibatch SGD (Section 2.1.2), data is processed in increments of N samples. As most of the
operators are independent with respect to N (Section 4), a straightforward approach for paralleliza-
tion is to partition the work of the minibatch samples among multiple computational resources
(cores or devices). This method (initially named pattern parallelism, as input samples were called
patterns), dates back to the first practical implementations of artificial neural networks [262].

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:19

P1

P2

P3

(a) Data Parallelism

P1
P2
P3

P1
P2
P3

(b) Model Parallelism

P1 P2 P3

(c) Layer Pipelining
Fig. 14. Neural Network Parallelism Schemes

It could be argued that the use of minibatches in SGD for neural networks was initially driven by
data parallelism. Farber and Asanović [73] used multiple vector accelerator microprocessors (Spert-II)
to parallelize error backpropagation for neural network training. To support data parallelism, the
paper presents a version of delayed gradient updates called “bunch mode”, where the gradient is
updated several times prior to updating the weights, essentially equivalent to minibatch SGD.
One of the earliest occurrences of mapping DNN computations to data parallel architectures

(e.g., GPUs) were performed by Raina et al. [200]. The paper focuses on the problem of training Deep
Belief Networks [97], mapping the unsupervised training procedure to GPUs by running minibatch
SGD. The paper shows speedup of up to 72.6× over CPU when training Restricted Boltzmann
Machines. Today, data parallelism is supported by the vast majority of deep learning frameworks,
using a single GPU, multiple GPUs, or a cluster of multi-GPU nodes.
The scaling of data parallelism is naturally defined by the minibatch size (Table 4). Apart from

Batch Normalization (BN) [117], all operators mentioned in Section 4 operate on a single sample at a
time, so forward evaluation and backpropagation are almost completely independent. In the weight
update phase, however, the results of the partitions have to be averaged to obtain the gradient
w.r.t. the whole minibatch, which potentially induces an allreduce operation. Furthermore, in this
partitioning method, all DNN parameters have to be accessible for all participating devices, which
means that they should be replicated.

6.1.1 Neural Architecture Support for Large Minibatches. By applying various modifications
to the training process, recent works have successfully managed to increase minibatch size to
8k samples [83], 32k samples [249], and even 64k [218] without losing considerable accuracy. While
the generalization issue still exists (Section 3), it is not as severe as claimed in prior works [211].
One bottleneck that hinders scaling of data parallelism, however, is the BN operator, which re-
quires a full synchronization point upon invocation. Since BN recurs multiple times in some DNN
architectures [93], this is too costly. Thus, popular implementations of BN follow the approach
driven by large-batch papers [83,105,249], in which small subsets (e.g., 32 samples) of the minibatch
are normalized independently. If at least 32 samples are scheduled to each processor, then this
synchronization point is local, which in turn increases scaling.
Another approach to the BN problem is to define a different operator altogether. Weight Nor-

malization (WN) [208] proposes to separate the parameter (w) norm from its directionality by way
of re-parameterization. In WN, the weights are defined as w =

(
д
∥v ∥

)
· v , where д represents

weight magnitude and v a normalized direction (as changing the magnitude of v will not introduce
changes in ∇ℓ). WN decreases the depth (D) of the operator from O(logN) to O(1), removing
inter-dependencies within the minibatch. According to the authors, WN reduces the need for BN,
achieving comparable accuracy using a simplified version of BN (without variance correction).

6.1.2 Coarse- and Fine-Grained Data Parallelism. Additional approaches for data parallelism
were proposed in literature. In ParallelSGD [266], SGD is run (possibly with minibatches) k times in

1:20 Tal Ben-Nun and Torsten Hoefler

(a) Pipelined Asynchronous Execution [76]

Time

conv1
N = 256

relu1
N = 256

pool1
N = 256

conv2
N = 256

conv1
N = 128

conv1
N = 128

relu1
N = 256

pool1
N = 256

conv2
N = 64

cuDNN

µ-cuDNN

Using GEMM-based convolution

Using FFT-based convolution

1

(b) Convolution Decomposition [188]

Fig. 15. Data Parallelism Schemes

parallel, dividing the dataset among the processors. After the convergence of all SGD instances, the
resulting weights are aggregated and averaged to obtainw , exhibiting coarse-grained parallelism.

ParallelSGD [266], as well as other deep learning implementations [120,141,257], were designed with
the MapReduce [57] programming paradigm. Using MapReduce, it is easy to schedule parallel tasks
onto multiple processors, as well as distributed environments. Prior to these works, the potential
scaling of MapReduce was studied [42] on a variety of machine learning problems, including NNs,
promoting the need to shift from single-processor learning to distributed memory systems.
While the MapReduce model was successful for deep learning at first, its generality hindered

DNN-specific optimizations. Therefore, current implementations make use of high-performance
communication interfaces (e.g., MPI) to implement fine-grained parallelism features, such as reduc-
ing latencies via asynchronous execution and pipelining [76] (Fig. 15a), sparse communication (see
Section 7.3), and exploiting parallelism within a given computational resource [188,267]. In the last
category, minibatches are fragmented into micro-batches (Fig. 15b) that are decomposed [267] or
computed sequentially [188]. This reduces the required memory footprint, thus making it possible to
choose faster methods that require more memory, as well as enabling hybrid CPU-GPU inference.

6.2 Model Parallelism
The second partitioning strategy for DNN training is model parallelism (also known as network
parallelism). This strategy divides the work according to the neurons in each layer, namely the
C , H , orW dimensions in a 4-dimensional tensor. In this case, the sample minibatch is copied
to all processors, and different parts of the DNN are computed on different processors, which
can conserve memory (since the full network is not stored in one place) but incurs additional
communication after every layer.

Since the minibatch size does not change in model parallelism, the utilization vs. generalization
tradeoff (Section 3) does not apply. Nevertheless, the DNN architecture creates layer interdepen-
dencies, which, in turn, generate communication that determines the overall performance. Fully
connected layers, for instance, incur all-to-all communication (as opposed to allreduce in data
parallelism), as neurons connect to all the neurons of the next layer.

To reduce communication costs in fully connected layers, it has been proposed [174] to introduce
redundant computations to neural networks. In particular, the proposed method partitions an NN
such that each processor will be responsible for twice the neurons (with overlap), and thus would
need to compute more but communicate less.
Another method proposed for reducing communication in fully connected layers is to use

Cannon’s matrix multiplication algorithm, modified for DNNs [72]. The paper reports that Cannon’s
algorithm produces better efficiency and speedups over simple partitioning on small-scale multi-
layer fully connected networks.
As for CNNs, using model parallelism for convolutional operators is relatively inefficient. If

samples are partitioned across processors by feature (channel), then each convolution would have
to obtain all results from the other processors to compute its result, as the operation sums over

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:21

(a) Locally Connected Networks [180] (b) TreeNets [148]

Fig. 16. Model Parallelism Schemes

all features. To mitigate this problem, Locally Connected Networks (LCNs) [180] were introduced.
While still performing convolutions, LCNs define multiple local filters for each region (Fig. 16a),
enabling partitioning by the C,H ,W dimensions that does not incur all-to-all communication.

Using LCNs andmodel parallelism, the work presented by Coates et al. [45] managed to outperform
a CNN of the same size running on 5,000 CPU nodes with a 3-node multi-GPU cluster. Due to the
lack of weight sharing (apart from spatial image boundaries), training is not communication-bound,
and scaling can be achieved. Successfully applying the same techniques on CNNs requires fine-
grained control over parallelism, as we shall show in Section 6.4. Unfortunately, weight sharing
is an important part of CNNs, contributing to memory footprint reduction as well as improving
generalization, and thus standard convolutional operators are used more frequently than LCNs.
A second form of model parallelism is the replication of DNN elements. In TreeNets [148], the

authors study ensembles of DNNs (groups of separately trained networkswhose results are averaged,
rather than their parameters), and propose a mid-point between ensembles and training a single
model: a certain layer creates a “junction”, from which multiple copies of the network are trained
(see Fig. 16b). The paper defines ensemble-aware loss functions and backpropagation techniques,
so as to regularize the training process. The training process, in turn, is parallelized across the
network copies, assigning each copy to a different processor. The results presented in the paper for
three datasets indicate that TreeNets essentially train an ensemble of expert DNNs.

6.3 Pipelining
In deep learning, pipelining can either refer to overlapping computations, i.e., between one layer
and the next (as data becomes ready); or to partitioning the DNN according to depth, assigning
layers to specific processors (Fig. 14c). Pipelining can be viewed as a form of data parallelism, since
elements (samples) are processed through the network in parallel, but also as model parallelism,
since the length of the pipeline is determined by the DNN structure.
The first form of pipelining can be used to overlap forward evaluation, backpropagation, and

weight updates. This scheme is widely used in practice [1,48,119], and increases utilization by miti-
gating processor idle time. In a finer granularity, neural network architectures can be designed
around the principle of overlapping layer computations, as is the case with Deep Stacking Networks
(DSN) [62]. In DSNs, each step computes a different fully connected layer of the data. However, the
results of all previous steps are concatenated to the layer inputs (see Fig. 17a). This enables each
layer to be partially computed in parallel, due to the relaxed data dependencies.
As for layer partitioning, there are several advantages for a multi-processor pipeline over both

data and model parallelism: (a) there is no need to store all parameters on all processors during
forward evaluation and backpropagation (as with model parallelism); (b) there is a fixed number of
communication points between processors (at layer boundaries), and the source and destination
processors are always known. Moreover, since the processors always compute the same layers,
the weights can remain cached to decrease memory round-trips. Two disadvantages of pipelining,

1:22 Tal Ben-Nun and Torsten Hoefler

784

3000

78410

3000

10 10 784

3000

(a) Deep Stacking Network [62]

P1

P2

P3

P1
P2

P3

P1
P2

P3

P1
P2

P3

(b) Hybrid Parallelism (c) DistBelief Replica [56]

Fig. 17. Pipelining and Hybrid Parallelism Schemes

however, are that data (samples) have to arrive at a specific rate in order to fully utilize the system,
and that latency proportional to the number of processors is incurred.

In the following section, we discuss two implementations of layer partitioning—DistBelief [56] and
Project Adam [39] — which combine the advantages of pipelining with data and model parallelism.

6.4 Hybrid Parallelism
The combination of multiple parallelism schemes can overcome the drawbacks of each scheme.
Below we overview successful instances of such hybrids.
In AlexNet, most of the computations are performed in the convolutional layers, but most of

the parameters belong to the fully connected layers. When mapping AlexNet to a multi-GPU
node using data or model parallelism separately, the best reported speedup for 4 GPUs over
one is ∼2.2× [246]. One successful example [135] of a hybrid scheme applies data parallelism to the
convolutional layer, and model parallelism to the fully connected part (see Fig. 17b). Using this
hybrid approach, a speedup of up to 6.25× can be achieved for 8 GPUs over one, with less than
1% accuracy loss (due to an increase in minibatch size). These results were also reaffirmed in
other hybrid implementations [16], in which 3.1× speedup was achieved for 4 GPUs using the same
approach, and derived theoretically using communication cost analysis [77], promoting 1.5D matrix
multiplication algorithms for integrated data/model parallelism.
AMPNet [76] is an asynchronous implementation of DNN training on CPUs, which uses an

intermediate representation to implement fine-grained model parallelism. In particular, internal
parallel tasks within and between layers are identified and scheduled asynchronously. Additionally,
asynchronous execution of dynamic control flow enables pipelining the tasks of forward evaluation,
backpropagation, and weight update (Fig. 15a, right). The main advantage of AMPNet is in recurrent,
tree-based, and gated-graph neural networks, all of which exhibit heterogeneous characteristics,
i.e., variable length for each sample and dynamic control flow (as opposed to homogeneous CNNs).
The paper shows speedups of up to 3.94× over the TensorFlow [1] framework.

Lastly, the DistBelief [56] distributed deep learning system combines all three parallelism strategies.
In the implementation, training is performed on multiple model replicas simultaneously, where
each replica is trained on different samples (data parallelism). Within each replica (shown in Fig.
17c), the DNN is distributed both according to neurons in the same layer (model parallelism), and
according to the different layers (pipelining). Project Adam [39] extends upon the ideas of DistBelief
and exhibits the same types of parallelism. However, in Project Adam pipelining is restricted to
different CPU cores on the same node.

7 CONCURRENCY IN TRAINING
So far we have discussed training algorithms where there is only one copy ofw , and its up-to-date
value is directly visible to all processors. In distributed environments, there may be multiple in-
stances of SGD (training agents) running independently, and thus the overall algorithm has to be

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:23

Category Method

Model Consistency
Synchronization Synchronous [45,112,173,210,224,246]

Stale-Synchronous [88,98,120,156,261]

Asynchronous [55,56,127,182,190,205,260]

Nondeterministic Comm. [54,121,201]

Parameter Distribution and Communication
Centralization Parameter Server (PS) [52,112,128,152]

Sharded PS [39,56,120,137,142,244,254,255]

Hierarchical PS [88,107,253]

Decentralized [9,54,121,155]

Compression Quantization [5,35,50,51,55,63,87,90,109,132,151,202,210,237,265]

Sparsification [3,32,67,158,206,214,224]

Other Methods [41,106,111,129,150,243,254]

Training Distribution
Model Consolidation Ensemble Learning [114,148,217]

Knowledge Distillation [10,96]

Model Averaging: Direct [20,33,168,266] ,
Elastic [121,155,248,258] , Natural Gradient [11,195]

Optimization Algorithms First-Order [43,123,126,141,145,163,227]

Second-Order [11,28,56,94,133,165,172]

Evolutionary [169,192,234,242]

Hyper-Parameter Search [13,89,91,118,131,163,169,219,256]

Architecture Search: Reinforcement [12,193,264,268,269] ,
Evolutionary [160,203,204,242,251] ,
SMBO [27,71,159,161,176]

Fig. 18. Overview of Distributed Deep Learning Methods

Centralization (§7.2)

Communication
(§7.1,7.3,7.4)

Training
Agent

Training
Agent

Frequency (§7.1,7.4)

C
om

pr
es

si
on

 (§
7.

3)

SGD SSP EASGD

Quantization

Sparsification

Sufficient Factors

Parameter Server

Training
Agent

Training
Agent

Distributed Optimization
(§7.5)

Batch, 2nd Order, and
Evolutionary Opt. (§7.5.1)

Meta-optimization

Hyper-Parameters (§7.5.2)

Architecture Search (§7.5.3)

Fig. 19. Section Overview

adapted. Distribution schemes for deep learning can be categorized along three axes:model consis-
tency, parameter distribution, and training distribution; where Figures 18 and 19 summarize
the applied techniques and optimizations.

7.1 Model Consistency
We denote training algorithms in which the up-to-date w is observed by everyone as consistent
model methods (See Figures 20a and 20b). Directly dividing the computations among nodes creates a
distributed form of data parallelism (Section 6), where all nodes have to communicate their updates
to the others before fetching a new minibatch. To support distributed, data parallel SGD, we can
modify Algorithm 2 by changing lines 3 and 7 to read (write) weights from (to) a parameter store,
which may be centralized or decentralized (see Section 7.2). This incurs a substantial overhead on
the overall system, which hinders training scaling.

Recent works relax the synchronization restriction, creating an inconsistent model (Fig. 20c). As
a result, a training agent i at time t contains a copy of the weights, denoted as w (τ ,i) for τ ≤ t ,
where t − τ is called the staleness (or lag). A well-known instance of inconsistent SGD is the
HOGWILD shared-memory algorithm [205], which allows training agents to read parameters and
update gradients at will, overwriting existing progress. HOGWILD has been proven to converge
for sparse learning problems [205], where updates only modify small subsets ofw , and generally [55].
Based on foundations of distributed asynchronous SGD [229], the proofs impose that (a) write-
accesses (adding gradients) are always atomic; (b) Lipschitz continuous differentiability and strong
convexity on fw ; and (c) that the staleness, i.e., the maximal number of iterations between reading
w and writing ∇w , is bounded.

1:24 Tal Ben-Nun and Torsten Hoefler

w(1)

w(1)

Time

Parameter Server

Synchronization

w(2)

w(2)

Agent 1

Agent m

. . . w(T)w(0) …

Sync.

∇ww

∇ww

(a) Synchronous, Parameter Server

Time

w(0) All-
Reduce

w(T)Agent 1

Agent m

. . .

…

…

All-
Reduce

w(T)

w(1) w(2)

w(2)w(1)

(b) Synchronous, Decentralized

Time

Parameter Server

Agent 1

Agent m

. . .

w(1,m) w(2,m)

w(2,1)w(1,1) w(3,1)

w(3,m)

w(T)w(0) …
∇ww

w ∇w

(c) Asynchronous, Parameter Server

Time

All-
Reduce

Agent 1

Agent m

. . .
…

…

.

.

. M
er

ge

w(1,1)

w(1,m) w(2,m)

Max. Staleness

w(2,1) w(3,1) w(4,1)

All-
Reducew(0) w(T)

(d) Stale-Synchronous, Decentralized

Fig. 20. Training Distribution in Deep Learning (Model Consistency, Centralization)

The HOGWILD algorithm was originally designed for shared-memory architectures, but has
since been extended [56,182] to distributed-memory systems, in which it still attains convergence
for deep learning problems. To mitigate the interference effect of overwritingw at each step, the
implementation transfers the gradient ∇w instead ofw from the training agents. Asymptotically,
the lack of synchronization in HOGWILD and its gradient-communicating variants admits an
optimal SGD convergence rate of O(1/

√
mT) form participating nodes [2,58,156], as well as linear

scaling, as every agent can train almost independently.
To provide correctness guarantees in spite of asynchrony, Stale-Synchronous Parallelism (SSP) [98]

proposes a compromise between consistent and inconsistent models. In SSP (Fig. 20d), the gradient
staleness is enforced to be bounded by performing a global synchronization step after a maximal
staleness may have been reached by one of the nodes. This approach works especially well in
heterogeneous environments, where lagging agents (stragglers) are kept in check. To that end,
distributed asynchronous processing has the additional advantage of adding and removing nodes
on-the-fly, allowing users to add more resources, introduce node redundancy, and remove straggling
nodes [56,189].

In practical implementations, the prominently-used model consistency approaches are synchro-
nous for up to 32–50 nodes [78,83], where the allreduce operation still scales nearly linearly; and
asynchronous/SSP for larger clusters and heterogeneous environments [107,120,187,261].

7.2 Centralization
The choice between designing a centralized and a decentralized network architecture for DNN
training depends on multiple factors [155], including the network topology, bandwidth, communi-
cation latency, parameter update frequency, and desired fault tolerance. A centralized network
architecture would typically include a parameter server (PS) infrastructure (e.g., Figures 20a, 20c, 21),
which may consist of one or more specialized nodes; whereas a decentralized architecture (Figures
20b, 20d) would rely on allreduce to communicate parameter updates among the nodes. Following
communication, centralized parameter update is performed by the PS, whereas the decentralized
update is computed by each node separately. In the latter case, every node creates its own optimizer.

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:25

(a) DistBelief Sharded PS [56] (b) Rudra Hierarchical PS [88] (c) Project Adam PS [39]

Fig. 21. Parameter Server Infrastructures

The tradeoff between using either distribution scheme can be modeled by the communication
cost per global update. While the allreduce operation can be implemented efficiently for different
message sizes and nodes (Section 2.5), the PS scheme requires each training agent to send and
receive information to/from the PS nodes. Thus, not all network routes are used, and in terms of
communication the operation is equivalent to a reduce-then-broadcast implementation of allreduce,
taking Ttree time. On the other hand, the PS can keep track of a “global view” of training, averaging
the gradients at one location and enabling asynchronous operation of the agents. This, in turn,
allows nodes to communicate less information by performing some of the computations on the
PS [39], as well as increases fault tolerance by dynamic spin-up and removal of nodes during training.

The PS infrastructure is an abstract concept, and is not necessarily represented by one physical
server. Sharded parameter servers [39,56] divide the ownership of w over multiple nodes, each
containing a segment of its elements. In conjunction with model parallelism and layer pipelining
(Sections 6.2 and 6.3), this alleviates some of the congestion at the PS, as shown in Fig. 21a, in which
each portion of a “model replica” (training agent) transmits its gradients and receives its weights
from a different shard. Hierarchical parameter servers [88,253] (Fig. 21b) further alleviate resource
contention by assigning training agents with PS “leaves”, propagating weights and gradients from
specific agent groups up to the global parameter store. Rudra [88] also studies the tradeoff in allowed
staleness, number of agents, and minibatch size, showing that SSP performs better, but requires
adapting the learning rate accordingly.

A PS infrastructure is not only beneficial for performance, but also for fault tolerance. The simplest
form of fault tolerance in machine learning is checkpoint/restart, in which w (t) is periodically
synchronized and persisted to a non-volatile data store (e.g., a hard drive). This is performed locally
in popular deep learning frameworks, and globally in frameworks such as Poseidon [255]. Besides
checkpoints, fault tolerance in distributed deep learning has first been tackled by DistBelief [56,142].
In the system, training resilience is increased by both introducing computational redundancy
in the training agents (using different nodes that handle the same data), as well as replicating
parameter server shards. In the former, an agent, which is constructed from multiple physical nodes
in DistBelief via hybrid parallelism (Section 6.4), is assigned multiple times to separate groups
of nodes. Allocating redundant agents enables handling slow and faulty replicas (“stragglers”)
by cancelling their work upon completion of the faster counterpart. As for the latter resilience
technique, in DistBelief and Project Adam [39], the parameters on the PS are replicated and persisted
on non-volatile memory using a dedicated manager, as can be seen in Fig. 21c. Project Adam further
increases the resilience of distributed training by using separate communication endpoints for
replication and using Paxos consensus between PS nodes.

Applying weight updates in a distributed environment is another issue to be addressed. In Section
2.1, we establish that all popular weight rules are first-order with respect to the required gradients
(Table 3). As such, both centralized and decentralized schemes can perform weight updates by
storing the last gradient and parameter values. Since GPUs are commonly used when training

1:26 Tal Ben-Nun and Torsten Hoefler

DNNs (Fig. 3a), frameworks such as GeePS [52] implement a specialized PS for accelerator-based
training agents. In particular, GeePS incorporates additional components over a general CPU PS,
including CPU-GPU memory management components for weight updates.

In addition to reducing local (e.g., CPU-GPU) memory copies, PS infrastructures enable reducing
the amount of information communicated over the network. Project Adam utilizes the fact that the
PS is a compute-capable node to offload computation in favor of communicating less. In particular,
it implements two different weight update protocols. For convolutional operators, in which the
weights are sparse, gradients are communicated directly. However, in fully connected layers, the
output of the previous layer x ∈ XCin×N and error ∂ℓ

∂y ∈ XCout×N are transmitted instead, and ∇w
is computed on the PS. Therefore, withm nodes communication is modified fromm ·Cout ·Cin to
m · N · (Cout +Cin), which may be significantly smaller, and balances the load between the agents
and the normally under-utilized PS.

Parameter servers also enable handling heterogeneity, both in training agents [120] and in network
settings (e.g., latency) [107]. The former work models distributed SGD over clusters with heteroge-
neous computing resources, and proposes two distributed algorithms based on stale-synchronous
parallelism. Specifically, by decoupling global and local learning rates, unstable convergence caused
by stragglers is mitigated. The latter work [107] acknowledges that training may be geo-distributed,
i.e., originating from different locations, and proposes a hierarchical PS infrastructure that only
synchronizes “significant” (large enough gradient) updates between data centers. To support this,
the Approximate Synchronous Parallel model is defined, proven to retain convergence for SGD,
and empirically shown to converge up to 5.6× faster with GoogLeNet.
In a decentralized setting, load balancing can be achieved using asynchronous training. How-

ever, performing the parameter exchange cannot use the allreduce operation, as it incurs global
synchronization. One approach to inconsistent decentralized parameter update is to use Gossip
Algorithms [24], in which each node communicates with a fixed number of random nodes (typically
in the order of 3). With very high probability [66], after communicating for 1.639 · loд2m time-steps,
wherem is the number of nodes, the data will have been disseminated to the rest of the nodes. As
strong consistency is not required for distributed deep learning, this method has shown marginal
success for SGD [54,121,201], attaining both convergence and faster performance than allreduce SGD
up to 32 nodes. On larger systems, the resulting test accuracy degrades. One approach to improve
this could be to employ deterministic correction protocols [100].

7.3 Parameter and Gradient Compression
The distributed SGD algorithm requires global reduction operations to converge. As discussed
above, reducing the number of messages (via an inconsistent view of w or efficient collective
operations) is possible. Here, we discuss reducing the size of each message.

There are two general ways to conserve communication bandwidth in distributed deep learning:
compressing the parameters with efficient data representations, and avoiding sending unnecessary
information altogether, resulting in communication of sparse data structures. While the methods
in the former category are orthogonal to the network infrastructure, the methods applied in the
latter category differ when implemented using centralized (PS) and decentralized topologies.

7.3.1 Quantization. A prominent data representation for gradient (or parameter) compression
is quantization, i.e., mapping continuous information into buckets that represent sets of values
(usually ranges). It has been shown [132] that the distributions of parameter and gradient values
are narrowly dispersed (Fig. 22a), thus these methods are effective in representing the working
range to reduce the number of bits per parameter. This method has been successfully utilized in

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:27

(a) Parameter and Gradient Value Distribution
(ResNet on CIFAR-10, adapted from [132])

Momentum (on PS)

Original Direction𝑩𝑩

∇w Acc. Gradient

Update Velocity (on PS)

Optimization Direction𝑪𝑪

(b) Local Gradient Accumulation without (Left) and with
(Right) Momentum Correction (adapted from [158])

Fig. 22. Parameter and Gradient Quantization

deep learning, both during training [63,87,109] and for inference, where values are quantized post-
training [202,265]. Some papers go so far as to quantize gradients to binary [51,210] or ternary [151]

values, while still attaining convergence with marginally reduced accuracy.
Quantization is commonly performed by way of reducing floating-point dynamic range [55,63,87].

In particular, such methods represent IEEE 754 32-bit floating-point values with fewer bits. While
already applied to inference hardware [35], the first successful instance of reduced precision for
training [87] was performed with IEEE 754 16-bit float values (“half precision”). As evaluated in the
paper, quantized training does not work “out-of-the-box” for lossy compression such as reduced
precision. Rather, it depends on rounding the parameters in a way that preserves the expected value
(E) of the parameters. To resolve this issue, the paper proposes Stochastic Rounding [87], which
randomly rounds numbers down or up, providing correct values in expectation.
Other forms of quantization extend upon these ideas. QSGD [5] generalizes stochastic round-

ing to stochastic quantization, and proposes multi-level gradient quantization schemes. Deep
Compression [90] also employs the lossless Huffman Coding [110] to further increase storage effi-
ciency without impairing convergence. Binarized Neural Networks (BNNs) [50], Ternary Weight
Networks [151], TernGrad [237], and DoReFa-Net [265] quantize networks to binary parameters, ternary
parameters, ternary gradients, and binary parameters+ternary gradients, respectively. Both BNNs
(in some cases) and TernGrad use stochastic rounding to lower the input representation. Lastly,
FlexPoint [132] implements block floating-point arithmetic [239], which computes the mantissa por-
tion of the floating-point values as fixed-point math, and shares the exponent part among multiple
parameters/gradients. To accommodate changes to the exponents, predictive analysis is used for
estimating subsequent values.
Essential to the convergence of SGD with lossy quantization is local gradient accumulation.

Particularly in distributed environments, where the updates are inconsistent, it is important to carry
the quantization error to the next gradient, accumulating error to avoid drift. The idea originates
from Sigma-Delta Modulation [210], and has proven to be successful in many cases. Deep Gradient
Compression [158] extends this idea by correcting momentum as well (Fig. 22b), further decreasing
the loss in accuracy to become non-negligible, and even resulting in a minor accuracy increase.

7.3.2 Sparsification. DNNs (and CNNs in particular) exhibit sparse gradients during parameter
updates. This is primarily due to the very large number of parameters that do not necessarily
change all at once; and operators such as convolutions, in which the optimization process may
improve the accuracy of certain convolution kernels. Therefore, the full gradient is not necessary
to retain convergence, and various methods that leverage this feature have been proposed.

The first application of gradient sparsification [224] prunes gradient values using a static threshold,
below which an element should not be sent. Results show up to 54× speedup for 80 nodes and even

1:28 Tal Ben-Nun and Torsten Hoefler

an up to 1.8% reduction in error. The authors achieved a compression ratio (which also includes
32-bit fixed point quantization) of 846–2,871× for a non-convolutional DNN. Subsequent works
propose relative (e.g., top 1%) [3,32,214] and adaptive thresholds [67] to transmit only the “important”
gradients, based on their absolute value. To counter the accuracy loss as a result of sparsification,
some works suggest to condition gradient values by changing the DNN architecture, adding various
normalization operators [3]; whereas others [158] propose local gradient clipping (Section 4.2) and
warm-up training.

In a centralized setting (Section 7.2), distributing sparse gradients is straightforward — sparse
messages are sent between the training agents and the PS. However, implementing the necessary
allreduce in a decentralized setting is not as simple because each agent may contribute different
non-zero indices (dimensions) in its gradient. Kylix [263] implements sparse allreduce in two steps,
first exchanging the indices and then the data. While this is desirable for systems where the sparsity
pattern per node does not change, in deep learning the gradient indices differ with each iteration.
SparCML [206] targets the specifics of deep learning explicitly by supporting arbitrarily changing
indices in a framework for sparse allreduce operations. SparCML combines sending only the top-k
most significant indices with quantization and supports sparse vectors of heterogeneous sizes. The
system switches between a sparse and dense representation automatically, informed by a simple
performance model. SparCML achieves a speedup of more than 20× over a well-tuned CNTK
implementation on Ethernet.

7.3.3 Other Techniques. In Section 7.2, we discuss Project Adam sending activations and errors
instead of parameters, decreasing the overall footprint for fully connected layers in favor of
redundant computation on the PS. The Poseidon (formerly Petuum) framework [244,254,255] extends
the idea of transmitting decomposed outer products u · vT ofw , generalizing the concept to other
fields in machine learning as Sufficient Factor Broadcasting (SFB) [243]. With SFB, the activations
are not sent to the PS, but rather broadcast between the training agents for local recomposition.
SFB should work best in centralized topologies, as recomposing the gradients in a decentralized
environment causes each agent to processm − 1 additional outer products with each step, wherem
is the number of agents. However, the authors claim [243] that the cost of recomposition is negligible
compared to communication.
Since the decomposed weights are not additive, as opposed to gradients, SFB incurs all-to-all

communication between training agents. To overcome scalability issues, the paper suggests partial
broadcasting [243], where nodes communicate with a predetermined subset of the other nodes. By
trading off gradient update latency (∝ D) for bandwidth (∝W), the paper shows that convergence
can still be attained, equating the delayed updates with stale gradients (Section 7.1).
A different approach to reduce DNN memory footprints is to design them specifically for that

purpose [41,111,129,150]. Such works make use of memory-efficient operators and techniques, mostly
applied to convolutions, to train networks that fit on devices such as FPGAs and mobile phones.
Applied techniques include layers constructed from a multitude of 1 × 1 convolutions [111], reshap-
ing [150] or applying Tucker Decomposition [129] on convolution tensors, and separable convolutions
(sequential application of reduced-dimension convolutions) [41,106]. The papers show that DNNs can
decrease in size (up to 50×) and evaluation time (6.13×), exhibiting minor reduction in accuracy.

7.4 Model Consolidation
In this section, we discuss the far (inconsistent) end of the parameter consistency spectrum (shown
in Fig. 23) in distributed deep learning. In such cases, parameter updates are highly infrequent (or
nonexistent), and thus precautions must be taken with the received values. In particular, rather
than running data-parallel SGD on multiple nodes, distributed deep learning can be achieved by

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:29

Inconsistent

Ensemble
Learning

Synchronous
SGD

Consistent

Stale-Synchronous
SGD

Model
Averaging

(e.g., elastic)

Asynchronous
SGD (HOGWILD!)

Fig. 23. Parameter Consistency Spectrum

assigning training agents with different copies of w and combining the resulting models, either
post-training or several times during training. While the latter can be seen as a generalization of
an inconsistent view ofw , the former may entirely change the training and inference processes,
depending on the method.

7.4.1 Ensemble Learning and Knowledge Distillation. A widely-used technique for post-training
consolidation is ensemble learning [114,148,217]. With ensembles, multiple instances ofw are trained
separately on the same dataset, and the overall prediction is the average of the predictions of the
ensemble members, i.e., f (x) = 1

m
∑m

i=0 fw (T ,i) (x). Ensemble learning has been used extensively in
machine learning before the deep learning era [65] as a form of boosting, and typically increases
the overall accuracy over a single model. Thus, it is routinely applied in machine learning com-
petitions such as ILSVRC [61] and in industrial applications. Distributed training of ensembles is
a completely parallel process, requiring no communication between the agents. However, works
such as TreeNets [148] (Section 6.2) combine ensemble learning with custom (ensemble-aware) loss
functions to promote diversity between ensemble members.
Given that ensembles consume a factor ofm more memory and compute power, another post-

training model consolidation technique is to reduce the size of a DNN using knowledge distilla-
tion [10,96]. In this scheme, training is performed in two steps: in the first step, a large network or
an ensemble is trained normally; and the second step trains a single neural network to mimic the
output of the large ensemble. Results [96] show that the second network is easier to train on the
ensemble than on a labeled dataset, attaining the same word error rate as an ensemble of 10 DNNs.

7.4.2 Model Averaging. Another technique for consolidatingmodels ismodel averaging [194]. Such
methods may separately runm SGD instances on different machines, aggregating the parameters
only once (post-training) [266] or every few iterations [33,168]. While these methods are proven to
converge, applying stale-synchronous SGD (Section 7.1) leads to higher overall accuracy.

To overcome accuracy degradation as a result of infrequent averaging, more sophisticated con-
solidation methods include Elastic Averaging SGD (EASGD) [258] and Natural Gradient Descent [195].
EASGD is based on a centralized environment (i.e., including a PS), extending direct averaging
by using elastic forces between the training agents’ view ofw (w (t,i)) and the PS’s view (w̄). This
allows the agents to “explore” further by increasing the possible distance of each agent from the
average, and also allows to communicate sparsely with respect to time (iterations). EASGD was re-
ported [258] to outperform the DistBelief [56] SGD method in terms of accuracy, shown to be tolerant
in terms of update delay, and was used successfully in practice for communication reduction by
other works [155,248].
Natural Gradient Descent (NG-SGD) can also be used to deal with diverging parameters in

different agents [195]. NG-SGD modifies SGD to define learning rate matrices, approximating the
inverse Fisher information matrix and thus natural gradients. By averaging agent parameters
only every k samples (typically in the order of hundreds of thousands), the algorithm allows
agents to gradually diverge and synchronize less than traditional SGD. Natural Gradients were also
approximated for distributed deep learning using Kronecker Factorization (K-FAC) [11], where the
work is divided between gradient- and statistics-computing agents (for Fisher matrix blocks).

1:30 Tal Ben-Nun and Torsten Hoefler

In distributed settings, algorithms are also inspected w.r.t. fault tolerance. Krum [20] is a Byzantine
fault-tolerant [139] SGD algorithm, allowing up to f Byzantine training agents. In particular, the
paper shows that any gradient aggregation rule based on linear combination cannot sustain a single
Byzantine agent. By combining specificm − f gradients (that are closest to each other), Krum is
able to overcome adversarial gradient inputs from the network.

7.5 Optimization Algorithms and Architecture Search
As training in deep learning is a nonlinear optimization problem, other algorithms that exhibit
concurrency can be used in SGD’s stead [23]. Furthermore, it is possible to use excess computational
power to perform meta-optimization, searching for better hyper-parameters and DNN architectures.

7.5.1 Parameter Search. Supervised learning can either be viewed as a stochastic optimization
process that uses one or a minibatch of samples at a time, or it can be expressed as a batch
optimization problem, where the entire dataset is necessary to obtain gradients for descent. Batch
optimization has been used for deep learning since the inception of DNNs [145], using first- and
second-order methods [181] such as Levenberg-Marquardt, Conjugate Gradient (CG), and L-BFGS.
Although considerably more computationally expensive than SGD, there are several advantages
to such approaches, including increased concurrency (as data-parallelism increases) and better
theoretical convergence guarantees (e.g., second-order methods converge locally at a quadratic
rate). As mentioned in Sections 3 and 6.1, large-minibatch training represents a middle ground
between SGD and batch methods. Such methods combine the “best of both worlds” — on one hand
they exhibit increased inherent concurrency (as higher-order methods); and on the other hand they
employ stochasticity, which, despite the sublinear rate of convergence, works well in practice.

For distributed deep learning, batch methods [141] (specifically CG and L-BFGS) and Hessian-free
second-order optimization [43,94,165] have initially been favored due to their apparent scalability
compared to traditional SGD (Algorithm 1). However, due to the superior generalization properties of
first-order stochastic optimization, and the successful DistBelief [56] implementation of inconsistent
SGD (called Downpour SGD, based on HOGWILD [205]); it was found that the quadratic increase of
batch methods in memory, communication, and computations due to high dimensionality is not
desirable. To overcome these issues, stochastic variants of L-BFGS have been proposed [28,172] that
estimate the inverse Hessian matrix and proven to converge at a linear rate in strongly-convex,
Lipschitz-continuous settings [172].
Other optimization algorithms applied to deep learning attempt to: (a) reduce the variance of

SGD incurred by random sampling [123], (b) use the Alternating Direction Method of Multipliers
(ADMM) [25] to skip the backpropagation altogether [227], and (c) use the Neumann series expansion
to approximate the Hessian matrix [133], scaling to large minibatch sizes (32k) with no accuracy loss
or substantial computational overhead.
Gradient-free evolutionary algorithms have also been employed for deep learning, where ex-

amples include Genetic Algorithms [192,242], Neuro-Evolution [169,234], and Particle-Swarm Opti-
mization [163]. Apart from recombination/evolution steps, training behavior is similar to ensemble
learning, and thus these algorithms are more amenable to parallelism than traditional gradient
descent. As we show in the rest of this section, the gradient-independent nature of such algorithms
enable their use for meta-optimization of both hyper-parameters and DNN architectures.

7.5.2 Hyper-Parameter Search. The multitude of hyper-parameters in SGD (e.g., learning rate,
momentum, maximal staleness) and their adverse effect on the resulting accuracy hinders research
efforts into new techniques in machine learning. Until recently, the prominent method for hyper-
parameter search was to perform parameter sweeps (i.e., grid search over feasible ranges). Since

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:31

this method increases the overall time exponentially with the number of hyper-parameters, its
effectiveness is limited by the availability of computing power.
Several methods try to expand beyond simple parameter sweeps by making educated guesses

and tuning hyper-parameters during training. In the former class, methods include Bayesian opti-
mization [219], predictive analysis of the learning curves (e.g., training error, validation error) [13,131]
for dropping undesirable configurations, and sampling the hyper-parameter space efficiently using
spectral methods such as Compressed Sensing [91].

As for tuning hyper-parameters during training, Omnivore [89] employs predictive analysis and
grid searches every predetermined number of minutes to modify the momentum and a hyper-
parameter controlling local gradient staleness. The paper shows that in distributed environments,
controlling the synchronous SGD node-group size during training can increase both accuracy and
performance. YellowFin [256] uses the local gradient curvature and variance to tune momentum,
working especially well on LSTM-based models and asynchronous environments, performing up
to 3.28× faster than the Adam optimizer (Table 3).
Metaheuristic optimization algorithms can inherently integrate hyper-parameter tuning with

training, and are thus used for DNNs. Such methods include Particle Swarm Optimization (PSO)
based deep learning [163]; and CoDeepNEAT [169], a modification of the NEAT algorithm that simul-
taneously searches for hyper-parameter and architecture configurations (see below). Such methods
scale almost linearly, due to abundance of independent computations.

Lastly, Population-Based Training [118] (PBT) uses a reinforcement learning approach to “explore”
and “exploit” the hyper-parameter space. In particular, each training agent independently samples
(exploits) information from other agents every few SGD iterations. The information is then used
to select the best configuration (e.g., using a t-test), and hyper-parameters are in turn perturbed
(explored) to continue learning. This creates a decentralized topology where communication is
nondeterministic (i.e., exploitation is performed with a randomly sampled agent), which may scale
better as the number of training agents increases.

7.5.3 Architecture Search. Like feature engineering before the era of deep learning, manually
crafting DNN architectures is naturally limited by human resourcefulness and creativity. This
limitation promoted a recent rise of research into automated neural architecture search. Architecture
search can be categorized into three approaches: Sequential Model-Based Optimization (SMBO),
Reinforcement Learning (RL), and Evolutionary Algorithms (EA).

SMBO-based search methods rely on optimizing an architecture candidate, defining a finite set
of states to explore (e.g., search tree children), and traversing those sets. As a result, concurrency
depends on the number of points in the search space at a given time. Examples of SMBO include
DeepArchitect [176], which proposes a DNN definition language that allows programmers to explic-
itly define the space; PNASNet [159], which searches for networks ordered by increasing complexity
using a search algorithm based on A* (see Fig. 24a), conserving half the evaluated models compared
to an equivalent RL approach [269]; SMASH [27], which assesses optimality (fitness) of candidate
networks using another CNN that maps the given DNN architecture to weights for testing; and
DARTS [161], which formulates architecture search as a bi-level, differentiable optimization problem.
Many recent DNN architectures (Section 4.3) exhibit self-similarity and repeating sub-units

(modules). This observation can be leveraged to dramatically reduce the number of explored
architectures, composing networks hierarchically out of modules and basic blocks (e.g., convolution)
as can be seen in Fig. 24b. This approach has been used successfully in the community, creating
new candidates for both CNN modules [159,160,169,203,264,269] and RNN units [193,268].
RL-based architecture search uses the accuracy of the resulting network as a reward function,

whereas modifications to the DNN or its hyper-parameters are actions. In Neural Architecture

1:32 Tal Ben-Nun and Torsten Hoefler

(a) PNASNet Search-Space
Traversal [159]

(b) Hierarchical Representation [160]

conv layer

conv layer

conv layer

conv layer

conv layer

conv layer

conv layer conv layer

conv layer conv layer

conv layer conv layer

conv layer

conv layer

conv layer

conv layer

conv layer

conv layer

VGGNet ResNet

Code: 1-01-001 Code: 1-01-101

DenseNet

Code: 1-11-111

(c) Genetic Encoding of
DNN Connections [242]

Fig. 24. Methods for Automated Architecture Search

Search (NAS) [268], the parameters of each layer can be modified, but the number of layers is fixed.
A sharded PS-based distributed system, in conjunction with policy gradient optimization [240],
is used for training. Other examples include MetaQNN [12] and BlockQNN [264], which operate
similarly to NAS, but use Q-learning for optimization; and ENAS [193], which significantly reduces
computational time over NAS (by three orders of magnitude) by sharing parameters across children
DNNs (i.e., networks in the immediate search space).
Evolutionary Algorithms (EA) are advantageous for architecture search, as any function (not

necessarily differentiable) can be optimized using these methods. HyperNEAT was the first EA
successfully applied [234] to deep learning, used for training weights and DNN architecture at the
same time; and CoDeepNEAT [169] defines a variant of the NEAT algorithm to optimize hyper-
parameters and architecture, using the self-similarity feature of DNNs by optimizing “blueprints”
that are composed of modules. Genetic CNNs [242] uses Genetic Algorithms (GAs) by encoding
the DNN connections as binary genes (as required in GAs, shown in Fig. 24c), and training the
population of DNNs with every time-step, using the final accuracy as the fitness function. GAs are
highly amenable to parallelism, and have been successfully used for very large-scale training [251],
where 18,000 nodes were used on the Titan supercomputer for 24 hours to obtain state-of-the-art
accuracy for segmentation and reconstruction problems.
Large-Scale Evolution [204] also uses GAs, but defines a set of specific mutations (e.g., insert

convolution, alter stride) that can be applied. Large-Scale Evolution outperforms some existing
RL-based methods in terms of accuracy, as well as in terms of scalability, as GAs can run the entire
population in parallel (where accuracy increases with population size in expectation). However,
in the general case GA requires synchronous reductive communication between time-steps for
selection of the fittest candidates. To overcome this issue, the paper employs tournament selection [80],
which only performs pairwise comparisons between population members.

Additional GA architecture search methods include the use of multi-level hierarchical representa-
tions of DNNs [160] (Fig. 24b), which implement an asynchronous distributed tournament selection
(centralized, queue-based implementation) with specialized mutation. Regularized Evolution (Amoe-
baNets) [203] further extends GA with tournament selection by removing the oldest sample from
the population each iteration (akin to death in nature), thus regularizing the optimization process.
AmoebaNets outperform all existing methods, including manually engineered DNNs and RL-based
searches, with 3.8% error for ImageNet and 2.13% error for CIFAR-10 (compared to 5.29% and 3.62%
on the best instances of DenseNet, see Table 5).

8 CONCLUDING REMARKS
The world of deep learning is brimming with concurrency. Nearly every aspect of training, from the
computation of a convolution to the meta-optimization of DNN architectures, is inherently parallel.
Even if an aspect is sequential, its consistency requirements can be reduced, due to the robustness
of nonlinear optimization, to increase concurrency while still attaining reasonable accuracy, if

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:33

not better. In this paper, we give an overview of many of these aspects, the respective approaches
documented in literature, and provide concurrency analysis using the W-D model when possible.
It is hard to predict what the future holds for this highly active field of research (many have

tried over the years). Below, we highlight potential directions for future research in parallel and
distributed deep learning.
As research progresses, DNN architectures are becoming deeper and more interconnected,

between consecutive and non-consecutive layers (“skip connections”). Apart from accuracy, con-
siderable effort is devoted to reducing the memory footprint and number of operations [106,203], in
order to successfully run inference on mobile devices. This also means that post-training DNN
compression [90] will likely be researched further, and training compressible networks will be
desirable. Since mobile hardware is limited in memory capacity and has to be energy efficient,
specialized DNN computational hardware is frequently proposed [225]. We see this trend with the
NVIDIA Tensor Cores [185], the Tensor Processing Unit [124], other ASICs and FPGAs [35,183], and
even neuromorphic computing [4]. Handling DNN sparsity (e.g., after compression) is a focus for
some ASICs [259], and advances in recurrent networks and attention learning [30,245] indicate that
training and inference hardware would also need to work efficiently with variable-length inputs.

Computing individual operators is highly optimized today (Section 5), and thus current research
is oriented towards inter-layer and whole-DNN optimization. TensorFlow XLA [82], Tensor Com-
prehensions [231], Latte [228] and TVM [34] compile entire neural network graphs at once, performing
a variety of transformations (e.g., fusion) to optimize execution time, achieving 4× speedup over
manually tuned individual operators. We expect research to continue in this direction to the point
where DNN evaluation is close to optimal in terms of operations and shared-memory optimizations.

Techniques applied in distributed deep learning are converging to the point where a standard pro-
gramming interface (or framework) can be designed. In the future, ecosystems such as Ease.ml [153]
may make the definition of a training scheme (e.g., with respect to centralization and gradient
consistency) easier, hiding most of the low-level infrastructure setup. Combining the increasing
support for cloud systems and elastic training [189] (where nodes can be spun up and removed at
will) with the latest developments in evolutionary algorithms (see Section 7.5), we may see adaptive
and financially-viable optimization methods rising to prominence.

Finally, deep learning is being used to solve increasingly complex problems such as routing algo-
rithms [84] and hierarchical task combination [74]. Research towards Artificial General Intelligence is
now focusing on multi-purpose networks [122,125], which creates new, unexplored opportunities for
model parallelism and different training algorithms. Searching for adequate multi-purpose networks
may be beyond the ingenuity of a human team, and as meta-optimization (specifically, architecture
search) and progressive training [126] increase in usability and quality; parameter sweeps and manual
DNN architecture engineering will become obsolete. Supporting this claim is the fact that the
current state-of-the-art CNN in computer vision [203] (CIFAR-10 and ImageNet datasets) is the result
of an automated architecture search. Exploiting parallelism is necessary for such breakthroughs
and others, going hand in hand with the advancement of deep learning as a field.

ACKNOWLEDGMENTS
T.B.N. is supported by the ETH Zurich Postdoctoral Fellowship and Marie Curie Actions for People
COFUND program.

REFERENCES
[1] M. Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. (2015). http://www.tensorflow.org
[2] A. Agarwal and J. C. Duchi. 2011. Distributed Delayed Stochastic Optimization. In Advances in Neural Information Processing Systems 24. 873–881.
[3] A. F. Aji and K. Heafield. 2017. Sparse Communication for Distributed Gradient Descent. (2017). arXiv:1704.05021
[4] F. Akopyan et al. 2015. TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 34, 10 (2015), 1537–1557.

http://www.tensorflow.org
http://arxiv.org/abs/1704.05021

1:34 Tal Ben-Nun and Torsten Hoefler

[5] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. 2017. QSGD: Communication-Efficient SGD via GradientQuantization and Encoding. In Advances
in Neural Information Processing Systems 30. 1709–1720.

[6] D. Amodei et al. 2016. Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin. In Proc. 33rd International Conference on Machine Learning,
Vol. 48. 173–182.

[7] J. Appleyard, T. Kociský, and P. Blunsom. 2016. Optimizing Performance of Recurrent Neural Networks on GPUs. (2016). arXiv:1604.01946
[8] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. 1998. Thread Scheduling for Multiprogrammed Multiprocessors. In Proc. Tenth Annual ACM Symposium on

Parallel Algorithms and Architectures (SPAA ’98). 119–129.
[9] A. A. Awan, K. Hamidouche, J. M. Hashmi, and D. K. Panda. 2017. S-Caffe: Co-designing MPI Runtimes and Caffe for Scalable Deep Learning on Modern

GPU Clusters. In Proc. 22nd ACM SIGPLAN Symp. on PPoPP. 193–205.
[10] J. Ba and R. Caruana. 2014. Do Deep Nets Really Need to be Deep? In Advances in Neural Information Processing Systems 27. 2654–2662.
[11] J. Ba, R. Grosse, and J. Martens. 2017. Distributed Second-Order Optimization using Kronecker-Factored Approximations. In International Conference on

Learning Representations (ICLR).
[12] B. Baker, O. Gupta, N. Naik, and R. Raskar. 2017. Designing Neural Network Architectures using Reinforcement Learning. In International Conference on

Learning Representations (ICLR).
[13] B. Baker, O. Gupta, R. Raskar, and N. Naik. 2017. Practical Neural Network Performance Prediction for Early Stopping. (2017). arXiv:1705.10823
[14] J. Ballé, V. Laparra, and E. P. Simoncelli. 2017. End-to-end optimized image compression. In International Conference on Learning Representations (ICLR).
[15] R. Belli and T. Hoefler. 2015. Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization. In Proc.

29th IEEE Int’l Parallel & Distributed Processing Symposium (IPDPS’15).
[16] T. Ben-Nun, E. Levy, A. Barak, and E. Rubin. 2015. Memory Access Patterns: The Missing Piece of the Multi-GPU Puzzle. In Proc. Int’l Conf. for High

Performance Computing, Networking, Storage and Analysis (SC ’15). 19:1–19:12.
[17] Y. Bengio. 2013. Deep Learning of Representations: Looking Forward. In Statistical Language and Speech Processing, SLSP. Proceedings.
[18] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. 2007. Greedy Layer-Wise Training of Deep Networks. In Advances in Neural Information Processing

Systems 19. 153–160.
[19] Y. Bengio, P. Simard, and P. Frasconi. 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks 5, 2

(1994), 157–166.
[20] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer. 2017. Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent. In Advances in

Neural Information Processing Systems 30. 119–129.
[21] R. D. Blumofe and C. E. Leiserson. 1999. Scheduling Multithreaded Computations by Work Stealing. J. ACM 46, 5 (1999), 720–748.
[22] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. 2016.

End to End Learning for Self-Driving Cars. (2016). arXiv:1604.07316
[23] L. Bottou, F. E. Curtis, and J. Nocedal. 2016. Optimization Methods for Large-Scale Machine Learning. (2016). arXiv:1606.04838
[24] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. 2005. Gossip algorithms: design, analysis and applications. In Proceedings IEEE 24th Annual Joint Conference

of the IEEE Computer and Communications Societies., Vol. 3. 1653–1664.
[25] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Distributed Optimization and Statistical Learning via the Alternating Direction Method of

Multipliers. Found. Trends Mach. Learn. 3, 1 (2011), 1–122.
[26] R. P. Brent. 1974. The Parallel Evaluation of General Arithmetic Expressions. J. ACM 21, 2 (1974), 201–206.
[27] A. Brock, T. Lim, J. M. Ritchie, and N. Weston. 2017. SMASH: One-Shot Model Architecture Search through HyperNetworks. (2017). arXiv:1708.05344
[28] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. 2016. A Stochastic Quasi-Newton Method for Large-Scale Optimization. SIAM Journal on Optimization

26, 2 (2016), 1008–1031.
[29] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn. 2007. Collective Communication: Theory, Practice, and Experience: Research Articles. Concurr.

Comput. : Pract. Exper. 19, 13 (2007), 1749–1783.
[30] W. Chan, N. Jaitly, Q. Le, and O. Vinyals. 2016. Listen, attend and spell: A neural network for large vocabulary conversational speech recognition. In IEEE

Int’l Conf. on Acoustics, Speech and Signal Processing (ICASSP). 4960–4964.
[31] K. Chellapilla, S. Puri, and P. Simard. 2006. High Performance Convolutional Neural Networks for Document Processing. In Tenth International Workshop on

Frontiers in Handwriting Recognition.
[32] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K. Gopalakrishnan. 2017. AdaComp : Adaptive Residual Gradient Compression for Data-Parallel

Distributed Training. (2017). arXiv:1712.02679
[33] K. Chen and Q. Huo. 2016. Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise

model-update filtering. In IEEE ICASSP. 5880–5884.
[34] T. Chen et al. 2018. TVM: End-to-End Optimization Stack for Deep Learning. (2018). arXiv:1802.04799
[35] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. 2014. DianNao: A Small-footprint High-throughput Accelerator for Ubiquitous Machine-

learning. In Proc. 19th Int’l Conf. on ASPLOS. 269–284.
[36] T. Chen, B. Xu, C. Zhang, and C. Guestrin. 2016. Training Deep Nets with Sublinear Memory Cost. (2016). arXiv:1604.06174
[37] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. 2017. Dual Path Networks. In Advances in Neural Information Processing Systems 30. 4470–4478.
[38] S. Chetlur et al. 2014. cuDNN: Efficient Primitives for Deep Learning. (2014). arXiv:1410.0759
[39] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. 2014. Project Adam: Building an Efficient and Scalable Deep Learning Training System. In 11th

USENIX Symposium on Operating Systems Design and Implementation. 571–582.
[40] K. Cho et al. 2014. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proc. Conference on Empirical

Methods in Natural Language Processing (EMNLP). 1724–1734.
[41] F. Chollet. 2016. Xception: Deep Learning with Depthwise Separable Convolutions. (2016). arXiv:1610.02357
[42] C. Chu, S. K. Kim, Y. Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Y. Ng. 2007. Map-Reduce forMachine Learning onMulticore. InAdvances in Neural Information

Processing Systems 19. 281–288.
[43] I. H. Chung et al. 2017. Parallel Deep Neural Network Training for Big Data on Blue Gene/Q. IEEE Transactions on Parallel and Distributed Systems 28, 6

(2017), 1703–1714.
[44] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. 2013. Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks. In

Medical Image Computing and Computer-Assisted Intervention. 411–418.
[45] A. Coates, B. Huval, T. Wang, D. J. Wu, A. Y. Ng, and B. Catanzaro. 2013. Deep Learning with COTS HPC Systems. In Proc. 30th International Conference on

Machine Learning - Volume 28 (ICML’13). III–1337–III–1345.
[46] N. Cohen, O. Sharir, and A. Shashua. 2016. Deep SimNets. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 4782–4791.
[47] N. Cohen, O. Sharir, and A. Shashua. 2016. On the Expressive Power of Deep Learning: A Tensor Analysis. In 29th Annual Conference on Learning Theory,

Vol. 49. 698–728.
[48] R. Collobert, K. Kavukcuoglu, and C. Farabet. 2011. Torch7: A Matlab-like Environment for Machine Learning. In BigLearn, NIPS Workshop.
[49] J. Cong and B. Xiao. 2014. Minimizing Computation in Convolutional Neural Networks. In Int’l Conf. on Artificial Neural Networks (ICANN). 281–290.
[50] M. Courbariaux and Y. Bengio. 2016. BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. (2016).

arXiv:1602.02830
[51] M. Courbariaux, Y. Bengio, and J.-P. David. 2015. BinaryConnect: Training Deep Neural Networks with Binary Weights During Propagations. In Proc. 28th

Int’l Conf. on NIPS - Volume 2. 3123–3131.
[52] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing. 2016. GeePS: Scalable Deep Learning on Distributed GPUs with a GPU-specialized Parameter

Server. In Proc. EuroSys. 4:1–4:16.
[53] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian, and T. von Eicken. 1993. LogP: Towards a Realistic Model of Parallel

Computation. In Proc. Fourth ACM SIGPLAN Symp. on PPoPP. 1–12.

http://arxiv.org/abs/1604.01946
http://arxiv.org/abs/1705.10823
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1606.04838
http://arxiv.org/abs/1708.05344
http://arxiv.org/abs/1712.02679
http://arxiv.org/abs/1802.04799
http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1610.02357
http://arxiv.org/abs/1602.02830

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:35

[54] J. Daily et al. 2018. GossipGraD: Scalable Deep Learning using Gossip Communication based Asynchronous Gradient Descent. (2018). arXiv:1803.05880
[55] C. De Sa, C. Zhang, K. Olukotun, and C. Ré. 2015. Taming the Wild: A Unified Analysis of HOGWILD!-style Algorithms. In Proc. 28th Int’l Conf. on NIPS -

Volume 2. 2674–2682.
[56] J. Dean et al. 2012. Large Scale Distributed Deep Networks. In Proc. 25th International Conference on Neural Information Processing Systems - Volume 1

(NIPS’12). 1223–1231.
[57] J. Dean and S. Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. Commun. ACM 51, 1 (2008), 107–113.
[58] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. 2012. Optimal Distributed Online Prediction Using Mini-batches. JMLR 13, 1 (2012), 165–202.
[59] O. Delalleau and Y. Bengio. 2011. Shallow vs. Deep Sum-Product Networks. In Advances in Neural Information Processing Systems 24. 666–674.
[60] J. Demmel and G. Dinh. 2018. Communication-Optimal Convolutional Neural Nets. (2018). arXiv:1802.06905
[61] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A Large-Scale Hierarchical Image Database. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR).
[62] L. Deng, D. Yu, and J. Platt. 2012. Scalable stacking and learning for building deep architectures. In IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). 2133–2136.
[63] T. Dettmers. 2015. 8-Bit Approximations for Parallelism in Deep Learning. (2015). arXiv:1511.04561
[64] G. Diamos et al. 2016. Persistent RNNs: Stashing Recurrent Weights On-Chip. In Proc. 33rd International Conference on Machine Learning, Vol. 48. 2024–2033.
[65] T. G. Dietterich. 2000. Ensemble Methods in Machine Learning. In Proc. First International Workshop on Multiple Classifier Systems (MCS ’00). 1–15.
[66] Z. Drezner and A. Barak. 1986. An asynchronous algorithm for scattering information between the active nodes of a multicomputer system. J. Parallel and

Distrib. Comput. 3, 3 (1986), 344–351.
[67] N. Dryden, T. Moon, S. A. Jacobs, and B. V. Essen. 2016. CommunicationQuantization for Data-Parallel Training of Deep Neural Networks. In 2nd Workshop

on Machine Learning in HPC Environments (MLHPC). 1–8.
[68] J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. JMLR 12 (2011), 2121–2159.
[69] V. Dumoulin and F. Visin. 2016. A guide to convolution arithmetic for deep learning. (2016). arXiv:1603.07285
[70] J. L. Elman. 1990. Finding Structure in Time. Cognitive Science 14, 2 (1990), 179–211.
[71] T. Elsken, J.-H. Metzen, and F. Hutter. 2017. Simple And Efficient Architecture Search for Convolutional Neural Networks. (2017). arXiv:1711.04528
[72] L. Ericson and R. Mbuvha. 2017. On the Performance of Network Parallel Training in Artificial Neural Networks. (2017). arXiv:1701.05130
[73] P. Farber and K. Asanovic. 1997. Parallel neural network training onMulti-Spert. In Proceedings of 3rd International Conference on Algorithms and Architectures

for Parallel Processing. 659–666.
[74] K. Frans, J. Ho, X. Chen, P. Abbeel, and J. Schulman. 2017. Meta Learning Shared Hierarchies. (2017). arXiv:1710.09767
[75] M. P. Friedlander and M. W. Schmidt. 2011. Hybrid Deterministic-Stochastic Methods for Data Fitting. (2011). arXiv:1104.2373
[76] A. Gaunt, M. Johnson, M. Riechert, D. Tarlow, R. Tomioka, D. Vytiniotis, and S. Webster. 2017. AMPNet: Asynchronous Model-Parallel Training for Dynamic

Neural Networks. (2017). arXiv:1705.09786
[77] A. Gholami, A. Azad, P. H. Jin, K. Keutzer, and A. Buluç. 2018. Integrated Model, Batch, and Domain Parallelism in Training Neural Networks. In Proc. 30th

on Symp. on Parallelism in Algorithms and Architectures, SPAA 2018. 77–86.
[78] A. Gibiansky. 2017. Bringing HPC Techniques to Deep Learning. (2017). http://research.baidu.com/bringing-hpc-techniques-deep-learning/
[79] X. Glorot and Y. Bengio. 2010. Understanding the difficulty of training deep feedforward neural networks. In Proc. Thirteenth International Conference on

Artificial Intelligence and Statistics, Vol. 9. 249–256.
[80] D. E. Goldberg and K. Deb. 1991. A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. Foundations of Genetic Algorithms, Vol. 1.

69–93.
[81] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. 2014. Generative Adversarial Nets. In Advances in

Neural Information Processing Systems 27. 2672–2680.
[82] Google. 2017. TensorFlow XLA Overview. (2017). https://www.tensorflow.org/performance/xla
[83] P. Goyal, P. Dollár, R. B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He. 2017. Accurate, Large Minibatch SGD: Training

ImageNet in 1 Hour. (2017). arXiv:1706.02677
[84] A. Graves et al. 2016. Hybrid computing using a neural network with dynamic external memory. Nature 538, 7626 (2016), 471–476.
[85] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk. 2014. Using Advanced MPI: Modern Features of the Message-Passing Interface. MIT Press.
[86] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves. 2016. Memory-Efficient Backpropagation Through Time. In Advances in Neural Information

Processing Systems 29. 4125–4133.
[87] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. 2015. Deep Learning with Limited Numerical Precision. In Proc. 32nd International Conference

on Machine Learning, Vol. 37. 1737–1746.
[88] S. Gupta, W. Zhang, and F. Wang. 2016. Model Accuracy and Runtime Tradeoff in Distributed Deep Learning: A Systematic Study. In IEEE 16th International

Conference on Data Mining (ICDM). 171–180.
[89] S. Hadjis, C. Zhang, I. Mitliagkas, and C. Ré. 2016. Omnivore: An Optimizer for Multi-device Deep Learning on CPUs and GPUs. (2016). arXiv:1606.04487
[90] S. Han, H. Mao, and W. J. Dally. 2016. Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding.

International Conference on Learning Representations (ICLR) (2016).
[91] E. Hazan, A. Klivans, and Y. Yuan. 2018. Hyperparameter optimization: a spectral approach. In International Conference on Learning Representations (ICLR).
[92] K. He, X. Zhang, S. Ren, and J. Sun. 2015. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In Proc. IEEE

International Conference on Computer Vision (ICCV ’15). 1026–1034.
[93] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep Residual Learning for Image Recognition. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 770–778.
[94] X. He, D. Mudigere, M. Smelyanskiy, and M. Takac. 2017. Distributed Hessian-Free Optimization for Deep Neural Network. In AAAI Workshops.
[95] G. Hinton. 2012. Neural Networks for Machine Learning, Lecture 6a: Overview of Mini-batch Gradient Descent. (2012).
[96] G. Hinton, O. Vinyals, and J. Dean. 2015. Distilling the Knowledge in a Neural Network. In NIPS Deep Learning and Representation Learning Workshop.
[97] G. E. Hinton, S. Osindero, and Y. W. Teh. 2006. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation 18, 7 (2006), 1527–1554.
[98] Q. Ho et al. 2013. More Effective DistributedML via a Stale Synchronous Parallel Parameter Server. In Proc. 26th International Conference on Neural Information

Processing Systems - Volume 1 (NIPS’13). 1223–1231.
[99] S. Hochreiter and J. Schmidhuber. 1997. Long Short-Term Memory. Neural Comput. 9, 8 (1997), 1735–1780.
[100] T. Hoefler, A. Barak, A. Shiloh, and Z. Drezner. 2017. Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems. In Proc. 31st IEEE Int’l

Parallel & Distributed Processing Symposium (IPDPS’17).
[101] T. Hoefler and D. Moor. 2014. Energy, Memory, and Runtime Tradeoffs for Implementing Collective Communication Operations. Journal of Supercomputing

Frontiers and Innovations 1, 2 (2014), 58–75.
[102] T. Hoefler and T. Schneider. 2012. Optimization Principles for Collective Neighborhood Communications. In Proc. International Conference on High Perfor-

mance Computing, Networking, Storage and Analysis. 98:1–98:10.
[103] T. Hoefler and M. Snir. 2011. Generic Topology Mapping Strategies for Large-scale Parallel Architectures. In Proc. 2011 ACM International Conference on

Supercomputing (ICS’11). 75–85.
[104] T. Hoefler and J. L. Traeff. 2009. Sparse Collective Operations for MPI. In Proc. 23rd IEEE Int’l Parallel & Distributed Processing Symposium, HIPS’09Workshop.
[105] E. Hoffer, I. Hubara, and D. Soudry. 2017. Train longer, generalize better: closing the generalization gap in large batch training of neural networks. In

Advances in Neural Information Processing Systems 30. 1729–1739.
[106] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam. 2017. MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications. (2017). arXiv:1704.04861
[107] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B. Gibbons, and O. Mutlu. 2017. Gaia: Geo-distributed Machine Learning Approaching

LAN Speeds. In Proc. 14th USENIX Conf. on NSDI. 629–647.

http://arxiv.org/abs/1803.05880
http://arxiv.org/abs/1802.06905
http://arxiv.org/abs/1511.04561
http://arxiv.org/abs/1603.07285
http://arxiv.org/abs/1711.04528
http://arxiv.org/abs/1701.05130
http://arxiv.org/abs/1710.09767
http://arxiv.org/abs/1104.2373
http://arxiv.org/abs/1705.09786
http://research.baidu.com/bringing-hpc-techniques-deep-learning/
https://www.tensorflow.org/performance/xla
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1606.04487
http://arxiv.org/abs/1704.04861

1:36 Tal Ben-Nun and Torsten Hoefler

[108] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. 2017. Densely connected convolutional networks. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition.

[109] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. 2016. Quantized Neural Networks: Training Neural Networks with Low Precision Weights
and Activations. (2016). arXiv:1609.07061

[110] D. A. Huffman. 1952. A Method for the Construction of Minimum-Redundancy Codes. Proc. IRE 40, 9 (1952), 1098–1101.
[111] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. J. Dally, and K. Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and

<1MB model size. (2016). arXiv:1602.07360
[112] F. N. Iandola, M.W. Moskewicz, K. Ashraf, and K. Keutzer. 2016. FireCaffe: Near-Linear Acceleration of Deep Neural Network Training on Compute Clusters.

In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[113] P. Ienne. 1993. Architectures for Neuro-Computers: Review and Performance Evaluation. Technical Report. EPFL, Lausanne, Switzerland.
[114] D. J. Im, H. Ma, C. D. Kim, and G. W. Taylor. 2016. Generative Adversarial Parallelization. (2016). arXiv:1612.04021
[115] Intel. 2009. Intel Math Kernel Library. Reference Manual. Intel Corporation.
[116] Intel. 2017. MKL-DNN. (2017). https://01.org/mkl-dnn
[117] S. Ioffe and C. Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proc. 32nd International

Conference on Machine Learning (ICML’15). 448–456.
[118] M. Jaderberg et al. 2017. Population Based Training of Neural Networks. (2017). arXiv:1711.09846
[119] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. 2014. Caffe: Convolutional architecture for fast feature

embedding. In Proc. ACM Int’l Conf. on Multimedia. 675–678.
[120] J. Jiang, B. Cui, C. Zhang, and L. Yu. 2017. Heterogeneity-aware Distributed Parameter Servers. In Proc. 2017 ACM International Conference on Management

of Data (SIGMOD ’17). 463–478.
[121] P. H. Jin, Q. Yuan, F. N. Iandola, and K. Keutzer. 2016. How to scale distributed deep learning? ML Systems Workshop at NIPS (2016).
[122] M. Johnson et al. 2016. Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. (2016). arXiv:1611.04558
[123] R. Johnson and T. Zhang. 2013. Accelerating Stochastic Gradient Descent using Predictive Variance Reduction. In Advances in Neural Information Processing

Systems 26. 315–323.
[124] N. P. Jouppi et al. 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proc. 44th Annual International Symposium on Computer

Architecture (ISCA ’17). 1–12.
[125] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones, and J. Uszkoreit. 2017. One Model To Learn Them All. (2017). arXiv:1706.05137
[126] T. Karras, T. Aila, S. Laine, and J. Lehtinen. 2017. Progressive Growing of GANs for ImprovedQuality, Stability, and Variation. (2017). arXiv:1710.10196
[127] J. Keuper and F. Pfreundt. 2015. Asynchronous Parallel Stochastic Gradient Descent: A Numeric Core for Scalable DistributedMachine Learning Algorithms.

In Proc. Workshop on MLHPC. 1:1–1:11.
[128] H. Kim et al. 2016. DeepSpark: Spark-Based Deep Learning Supporting Asynchronous Updates and Caffe Compatibility. (2016). arXiv:1602.08191
[129] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. 2016. Compression of Deep Convolutional Neural Networks for Fast and Low Power Mobile

Applications. In International Conference on Learning Representations (ICLR).
[130] D. P. Kingma and J. Ba. 2015. Adam: A Method for Stochastic Optimization. In Proc. International Conference on Learning Representations (ICLR).
[131] A. Klein, S. Falkner, J. T. Springenberg, and F. Hutter. 2016. Learning curve prediction with Bayesian neural networks. In International Conference on Learning

Representations (ICLR).
[132] U. Köster et al. 2017. Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks. In Advances in Neural Information Processing

Systems 30. 1740–1750.
[133] S. Krishnan, Y. Xiao, and R. A. Saurous. 2018. NeumannOptimizer: A Practical Optimization Algorithm for DeepNeural Networks. In International Conference

on Learning Representations (ICLR).
[134] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Master’s thesis.
[135] A. Krizhevsky. 2014. One weird trick for parallelizing convolutional neural networks. (2014). arXiv:1404.5997
[136] A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information

Processing Systems 25. 1097–1105.
[137] T. Kurth et al. 2017. Deep Learning at 15PF: Supervised and Semi-supervised Classification for Scientific Data. In Proc. Int’l Conf. for High Performance

Computing, Networking, Storage and Analysis (SC ’17). 7:1–7:11.
[138] G. Lacey, G. W. Taylor, and S. Areibi. 2016. Deep Learning on FPGAs: Past, Present, and Future. (2016). arXiv:1602.04283
[139] L. Lamport, R. Shostak, and M. Pease. 1982. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (1982), 382–401.
[140] A. Lavin and S. Gray. 2016. Fast Algorithms for Convolutional Neural Networks. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[141] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng. 2011. On Optimization Methods for Deep Learning. In Proc. 28th International Conference

on Machine Learning (ICML’11). 265–272.
[142] Q. V. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. S. Corrado, J. Dean, and A. Y. Ng. 2012. Building High-level Features Using Large Scale Unsupervised

Learning. In Proc. 29th Int’l Conf. on Machine Learning (ICML’12). 507–514.
[143] Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444.
[144] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. 1989. Backpropagation Applied to Handwritten Zip Code

Recognition. Neural Comput. 1, 4 (1989), 541–551.
[145] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.
[146] Y. LeCun and C. Cortes. 1998. The MNIST database of handwritten digits. (1998). http://yann.lecun.com/exdb/mnist
[147] H. Lee, P. Pham, Y. Largman, and A. Y. Ng. 2009. Unsupervised feature learning for audio classification using convolutional deep belief networks. In Advances

in Neural Information Processing Systems 22. 1096–1104.
[148] S. Lee, S. Purushwalkam, M. Cogswell, D. J. Crandall, and D. Batra. 2015. WhyMHeads are Better than One: Training a Diverse Ensemble of Deep Networks.

(2015). arXiv:1511.06314
[149] C. Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou. 2016. Optimizing Memory Efficiency for Deep Convolutional Neural Networks on GPUs. In Proc. Int’l

Conf. for Supercomputing (SC ’16). 54:1–54:12.
[150] D. Li, X. Wang, and D. Kong. 2017. DeepRebirth: Accelerating Deep Neural Network Execution on Mobile Devices. (2017). arXiv:1708.04728
[151] F. Li and B. Liu. 2016. Ternary Weight Networks. (2016). arXiv:1605.04711
[152] M. Li et al. 2014. Scaling Distributed Machine Learning with the Parameter Server. In Proc. 11th USENIX Conference on Operating Systems Design and

Implementation (OSDI’14). 583–598.
[153] T. Li, J. Zhong, J. Liu,W.Wu, and C. Zhang. 2017. Ease.ml: TowardsMulti-tenant Resource Sharing forMachine LearningWorkloads. (2017). arXiv:1708.07308
[154] Y. Li. 2017. Deep Reinforcement Learning: An Overview. (2017). arXiv:1701.07274
[155] X. Lian et al. 2017. Can Decentralized Algorithms Outperform Centralized Algorithms? A Case Study for Decentralized Parallel Stochastic Gradient Descent.

In Advances in Neural Information Processing Systems 30. 5336–5346.
[156] X. Lian, Y. Huang, Y. Li, and J. Liu. 2015. Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization. In Proc. 28th Int’l Conf. on NIPS - Volume

2. 2737–2745.
[157] M. Lin, Q. Chen, and S. Yan. 2014. Network In Network. In Proc. Int’l Conf. on Learning Representations (ICLR).
[158] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally. 2018. Deep Gradient Compression: Reducing the Communication Bandwidth for Distributed Training. In

Proc. International Conference on Learning Representations (ICLR).
[159] C. Liu, B. Zoph, J. Shlens,W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and K.Murphy. 2017. Progressive Neural Architecture Search. (2017). arXiv:1712.00559
[160] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu. 2018. Hierarchical Representations for Efficient Architecture Search. In International

Conference on Learning Representations (ICLR).
[161] H. Liu, K. Simonyan, and Y. Yang. 2018. DARTS: Differentiable Architecture Search. (2018). arXiv:1806.09055

http://arxiv.org/abs/1609.07061
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1612.04021
https://01.org/mkl-dnn
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1611.04558
http://arxiv.org/abs/1706.05137
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/1602.08191
http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1602.04283
http://yann.lecun.com/exdb/mnist
http://arxiv.org/abs/1511.06314
http://arxiv.org/abs/1708.04728
http://arxiv.org/abs/1605.04711
http://arxiv.org/abs/1708.07308
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1712.00559
http://arxiv.org/abs/1806.09055

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:37

[162] X. Liu, J. Pool, S. Han, andW. J. Dally. 2018. Efficient Sparse-Winograd Convolutional Neural Networks. International Conference on Learning Representations
(ICLR) (2018).

[163] P. R. Lorenzo, J. Nalepa, L. S. Ramos, and J. R. Pastor. 2017. Hyper-parameter Selection in Deep Neural Networks Using Parallel Particle SwarmOptimization.
In Proc. Genetic and Evolutionary Computation Conf. (GECCO ’17). 1864–1871.

[164] I. Loshchilov and F. Hutter. 2017. SGDR: Stochastic Gradient Descent with Warm Restarts. In International Conference on Learning Representations (ICLR).
[165] J. Martens. 2010. Deep Learning via Hessian-free Optimization. In Proc. 27th International Conference on Machine Learning (ICML’10). 735–742.
[166] M. Mathieu, M. Henaff, and Y. LeCun. 2014. Fast Training of Convolutional Networks through FFTs. International Conference on Learning Representations

(ICLR) (2014).
[167] Message Passing Interface Forum. 2015. MPI: A Message-Passing Interface Standard Version 3.1. (2015).
[168] Y. Miao, H. Zhang, and F. Metze. 2014. Distributed learning of multilingual DNN feature extractors using GPUs. In INTERSPEECH, 15th Annual Conference

of the International Speech Communication Association. 830–834.
[169] R. Miikkulainen et al. 2017. Evolving Deep Neural Networks. (2017). arXiv:1703.00548
[170] V. Mnih et al. 2015. Human-level control through deep reinforcement learning. Nature 518, 7540 (2015), 529–533.
[171] V. Mnih et al. 2016. AsynchronousMethods for Deep Reinforcement Learning. In Proc. 33rd International Conference onMachine Learning, Vol. 48. 1928–1937.
[172] P. Moritz, R. Nishihara, and M. Jordan. 2016. A Linearly-Convergent Stochastic L-BFGS Algorithm. In Proc. 19th International Conference on Artificial

Intelligence and Statistics, Vol. 51. 249–258.
[173] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan. 2016. SparkNet: Training Deep Networks in Spark. In Proc. International Conference on Learning Repre-

sentations (ICLR).
[174] U. A. Muller and A. Gunzinger. 1994. Neural net simulation on parallel computers. In Neural Networks, IEEE International Conference on, Vol. 6. 3961–3966.
[175] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald, and E. Muharemagic. 2015. Deep learning applications and challenges in big data

analytics. Journal of Big Data 2, 1 (2015), 1.
[176] R. Negrinho and G. Gordon. 2017. DeepArchitect: Automatically Designing and Training Deep Architectures. (2017). arXiv:1704.08792
[177] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. 2009. Robust Stochastic Approximation Approach to Stochastic Programming. SIAM Journal on Opti-

mization 19, 4 (2009), 1574–1609.
[178] Y. Nesterov. 1983. A method of solving a convex programming problem with convergence rateO (1/k2). Soviet Mathematics Doklady 269 (1983), 543–547.
[179] Netlib. 2017. Basic Linear Algebra Subprograms (BLAS). (2017). http://www.netlib.org/blas
[180] J. Ngiam, Z. Chen, D. Chia, P. W. Koh, Q. V. Le, and A. Y. Ng. 2010. Tiled convolutional neural networks. In Advances in Neural Information Processing Systems

23. 1279–1287.
[181] J. Nocedal and S. Wright. 2006. Numerical Optimization.
[182] C. Noel and S. Osindero. 2014. Dogwild!-Distributed Hogwild for CPU &GPU. In NIPSWorkshop on Distributed Machine Learning and Matrix Computations.
[183] E. Nurvitadhi et al. 2017. Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?. In Proc. ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays (FPGA ’17). 5–14.
[184] NVIDIA. 2017. CUBLAS Library Documentation. (2017). http://docs.nvidia.com/cuda/cublas
[185] NVIDIA. 2017. Programming Tensor Cores in CUDA 9. (2017). https://devblogs.nvidia.com/programming-tensor-cores-cuda-9
[186] C. Olah. 2015. Understanding LSTM Networks. (2015). http://colah.github.io/posts/2015-08-Understanding-LSTMs
[187] Y. Oyama et al. 2016. Predicting statistics of asynchronous SGD parameters for a large-scale distributed deep learning system on GPU supercomputers. In

IEEE International Conference on Big Data (Big Data). 66–75.
[188] Y. Oyama, T. Ben-Nun, T. Hoefler, and S. Matsuoka. 2018. Accelerating Deep Learning Frameworks with Micro-batches. In 2018 IEEE CLUSTER.
[189] PaddlePaddle. 2017. Elastic Deep Learning. (2017). https://github.com/PaddlePaddle/cloud/tree/develop/doc/edl
[190] T. Paine, H. Jin, J. Yang, Z. Lin, and T. S. Huang. 2013. GPU Asynchronous Stochastic Gradient Descent to Speed Up Neural Network Training. (2013).

arXiv:1312.6186
[191] S. J. Pan and Q. Yang. 2010. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 22, 10 (2010), 1345–1359.
[192] F. Petroski Such et al. 2017. Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement

Learning. (2017). arXiv:1712.06567
[193] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean. 2018. Efficient Neural Architecture Search via Parameter Sharing. (2018). arXiv:1802.03268
[194] B. T. Polyak and A. B. Juditsky. 1992. Acceleration of Stochastic Approximation by Averaging. SIAM J. Control Optim. 30, 4 (1992), 838–855.
[195] D. Povey, X. Zhang, and S. Khudanpur. 2014. Parallel training of Deep Neural Networks with Natural Gradient and Parameter Averaging. (2014).

arXiv:1410.7455
[196] H. Qi, E. R. Sparks, and A. Talwalkar. 2017. Paleo: A Performance Model for Deep Neural Networks. In Proc. International Conference on Learning Represen-

tations (ICLR).
[197] N. Qian. 1999. On the momentum term in gradient descent learning algorithms. Neural Networks 12, 1 (1999).
[198] R. Rabenseifner. 2004. Optimization of collective reduction operations. In Int’l Conf. on Computational Science. 1–9.
[199] A. Rahimi and B. Recht. 2017. Reflections on Random Kitchen Sinks. http://www.argmin.net/2017/12/05/kitchen-sinks NIPS Test of Time Award Talk.
[200] R. Raina, A.Madhavan, and A. Y. Ng. 2009. Large-scale Deep Unsupervised Learning Using Graphics Processors. In Proc. 26th Annual International Conference

on Machine Learning (ICML ’09). 873–880.
[201] S. Sundhar Ram, A. Nedic, and V. V. Veeravalli. 2009. Asynchronous gossip algorithms for stochastic optimization. In International Conference on Game

Theory for Networks. 80–81.
[202] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. 2016. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks. (2016).

arXiv:1603.05279
[203] E. Real, A. Aggarwal, Y. Huang, and Q. V Le. 2018. Regularized Evolution for Image Classifier Architecture Search. (2018). arXiv:1802.01548
[204] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le, and A. Kurakin. 2017. Large-Scale Evolution of Image Classifiers. In Proc. 34th

International Conference on Machine Learning. 2902–2911.
[205] B. Recht, C. Re, S. Wright, and F. Niu. 2011. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In Advances in Neural Information

Processing Systems 24. 693–701.
[206] C. Renggli, D. Alistarh, and T. Hoefler. 2018. SparCML: High-Performance Sparse Communication for Machine Learning. (2018). arXiv:1802.08021
[207] Herbert Robbins and Sutton Monro. 1951. A Stochastic Approximation Method. The Annals of Mathematical Statistics 22, 3 (1951), 400–407.
[208] T. Salimans and D. P. Kingma. 2016. Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks. In Advances in

Neural Information Processing Systems 29. 901–909.
[209] J. Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural Networks 61 (2015), 85–117.
[210] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 2014. 1-Bit Stochastic Gradient Descent and Application to Data-Parallel Distributed Training of Speech DNNs.

In Interspeech.
[211] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 2014. On parallelizability of stochastic gradient descent for speech DNNs. In IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP). 235–239.
[212] S. Shalev-Shwartz and S. Ben-David. 2014. Understanding machine learning: From theory to algorithms. Cambridge university press.
[213] O. Shamir. 2016. Without-Replacement Sampling for Stochastic Gradient Methods. In Advances in Neural Information Processing Systems 29. 46–54.
[214] R. Shokri and V. Shmatikov. 2015. Privacy-Preserving Deep Learning. In Proc. 22Nd ACM SIGSAC Conference on Computer and Communications Security

(CCS ’15). 1310–1321.
[215] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al. 2017. Mastering the game of go without

human knowledge. Nature 550, 7676 (2017), 354.
[216] K. Simonyan and A. Zisserman. 2015. Very Deep Convolutional Networks for Large-Scale Image Recognition. Int’l Conf. Learning Representations (ICLR).
[217] A. J. R. Simpson. 2015. Instant Learning: Parallel Deep Neural Networks and Convolutional Bootstrapping. (2015). arXiv:1505.05972

http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1704.08792
http://www.netlib.org/blas
http://docs.nvidia.com/cuda/cublas
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9
http://colah.github.io/posts/2015-08-Understanding-LSTMs
https://github.com/PaddlePaddle/cloud/tree/develop/doc/edl
http://arxiv.org/abs/1312.6186
http://arxiv.org/abs/1712.06567
http://arxiv.org/abs/1802.03268
http://arxiv.org/abs/1410.7455
http://www.argmin.net/2017/12/05/kitchen-sinks
http://arxiv.org/abs/1603.05279
http://arxiv.org/abs/1802.01548
http://arxiv.org/abs/1802.08021
http://arxiv.org/abs/1505.05972

1:38 Tal Ben-Nun and Torsten Hoefler

[218] S. L. Smith, P. Kindermans, and Q. V. Le. 2017. Don’t Decay the Learning Rate, Increase the Batch Size. (2017). arXiv:1711.00489
[219] J. Snoek, H. Larochelle, and R. P Adams. 2012. Practical Bayesian Optimization ofMachine Learning Algorithms. InAdvances in Neural Information Processing

Systems 25. 2951–2959.
[220] E. Solomonik and T. Hoefler. 2015. Sparse Tensor Algebra as a Parallel Programming Model. (2015). arXiv:1512.00066
[221] M. Song, Y. Hu, H. Chen, and T. Li. 2017. Towards Pervasive and User Satisfactory CNN across GPU Microarchitectures. In IEEE International Symposium

on High Performance Computer Architecture (HPCA). 1–12.
[222] H. V. Sorensen and C. S. Burrus. 1993. Efficient computation of the DFT with only a subset of input or output points. IEEE Transactions on Signal Processing

41, 3 (1993), 1184–1200.
[223] V. Strassen. 1969. Gaussian Elimination is Not Optimal. Numer. Math. 13, 4 (1969), 354–356.
[224] N. Strom. 2015. Scalable distributed DNN training using commodity GPU cloud computing. In Sixteenth Annual Conference of the International Speech

Communication Association.
[225] V. Sze, Y. H. Chen, T. J. Yang, and J. S. Emer. 2017. Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proc. IEEE 105, 12 (2017), 2295–2329.
[226] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. 2015. Going Deeper with Convolutions. In Computer

Vision and Pattern Recognition (CVPR).
[227] G. Taylor, R. Burmeister, Z. Xu, B. Singh, A. Patel, and T. Goldstein. 2016. Training Neural NetworksWithout Gradients: A Scalable ADMMApproach. (2016).

arXiv:1605.02026
[228] L. Truong et al. 2016. Latte: A Language, Compiler, and Runtime for Elegant and Efficient Deep Neural Networks. In Proc. 37th ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI ’16). 209–223.
[229] J. Tsitsiklis, D. Bertsekas, and M. Athans. 1986. Distributed asynchronous deterministic and stochastic gradient optimization algorithms. IEEE Trans.

Automat. Control 31, 9 (1986), 803–812.
[230] V. Vanhoucke, A. Senior, and M. Z. Mao. 2011. Improving the speed of neural networks on CPUs. In Deep Learning and Unsupervised Feature Learning

Workshop, NIPS.
[231] N. Vasilache et al. 2018. Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions. (2018). arXiv:1802.04730
[232] N. Vasilache, J. Johnson, M. Mathieu, S. Chintala, S. Piantino, and Y. LeCun. 2015. Fast Convolutional Nets With fbfft: A GPU Performance Evaluation.

International Conference on Learning Representations (ICLR) (2015).
[233] A. Vasudevan, A. Anderson, and D. Gregg. 2017. Parallel Multi Channel Convolution using General Matrix Multiplication. (2017). arXiv:1704.04428
[234] P. Verbancsics and J. Harguess. 2015. Image Classification Using Generative Neuro Evolution for Deep Learning. In IEEE Winter Conference on Applications

of Computer Vision. 488–493.
[235] A. Viebke, S. Memeti, S. Pllana, and A. Abraham. 2017. CHAOS: a parallelization scheme for training convolutional neural networks on Intel Xeon Phi. The

Journal of Supercomputing (2017).
[236] H. Wang, B. Raj, and E. P. Xing. 2017. On the Origin of Deep Learning. (2017). arXiv:1702.07800
[237] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. 2017. TernGrad: Ternary Gradients to Reduce Communication in Distributed Deep Learning. In

Advances in Neural Information Processing Systems 30. 1509–1519.
[238] P. J. Werbos. 1990. Backpropagation through time: what it does and how to do it. Proc. IEEE 78, 10 (1990), 1550–1560.
[239] J. H. Wilkinson. 1994. Rounding Errors in Algebraic Processes. Dover Publications, Inc.
[240] R. J. Williams. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning 8, 3 (1992), 229–256.
[241] S. Winograd. 1980. Arithmetic Complexity of Computations. Society for Industrial and Applied Mathematics.
[242] L. Xie and A. Yuille. 2017. Genetic CNN. In IEEE International Conference on Computer Vision (ICCV). 1388–1397.
[243] P. Xie, J. K. Kim, Y. Zhou, Q. Ho, A. Kumar, Y. Yu, and E. Xing. 2016. Lighter-communication DistributedMachine Learning via Sufficient Factor Broadcasting.

In Proc. 32nd Conf. on Uncertainty in Artificial Intelligence (UAI’16). 795–804.
[244] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu. 2015. Petuum: A New Platform for Distributed Machine Learning

on Big Data. IEEE Transactions on Big Data 1, 2 (2015), 49–67.
[245] K. Xu et al. 2015. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. (2015). arXiv:1502.03044
[246] O. Yadan, K. Adams, Y. Taigman, and M. Ranzato. 2013. Multi-GPU Training of ConvNets. (2013). arXiv:1312.5853
[247] F. Yan, O. Ruwase, Y. He, and T. Chilimbi. 2015. Performance Modeling and Scalability Optimization of Distributed Deep Learning Systems. In Proc. 21st

ACM Int’l Conf. on Knowledge Discovery and Data Mining (KDD ’15). 1355–1364.
[248] Y. You, A. Buluç, and J. Demmel. 2017. Scaling Deep Learning on GPU and Knights Landing Clusters. In Proc. International Conference for High Performance

Computing, Networking, Storage and Analysis (SC ’17). 9:1–9:12.
[249] Y. You, I. Gitman, and B. Ginsburg. 2017. Large Batch Training of Convolutional Networks. (2017). arXiv:1708.03888
[250] Y. You, Z. Zhang, C. Hsieh, and J. Demmel. 2017. 100-epoch ImageNet Training with AlexNet in 24 Minutes. (2017). arXiv:1709.05011
[251] S. R. Young et al. 2017. Evolving Deep Networks Using HPC. In Proc. Workshop on Machine Learning in HPC Environments (MLHPC’17). 7:1–7:7.
[252] F. Yu and V. Koltun. 2016. Multi-Scale Context Aggregation by Dilated Convolutions. In International Conference on Learning Representations (ICLR).
[253] Y. Yu, J. Jiang, and X. Chi. 2016. Using Supercomputer to Speed up Neural Network Training. In IEEE 22nd International Conference on Parallel and Distributed

Systems (ICPADS). 942–947.
[254] H. Zhang, Z. Hu, J. Wei, P. Xie, G. Kim, Q. Ho, and E. P. Xing. 2015. Poseidon: A System Architecture for Efficient GPU-based Deep Learning on Multiple

Machines. (2015). arXiv:1512.06216
[255] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu, J. Wei, P. Xie, and E. P. Xing. 2017. Poseidon: An Efficient Communication Architecture for

Distributed Deep Learning on GPU Clusters. In USENIX ATC. 181–193.
[256] J. Zhang, I. Mitliagkas, and C. Ré. 2017. YellowFin and the Art of Momentum Tuning. (2017). arXiv:1706.03471
[257] K. Zhang and X. W. Chen. 2014. Large-Scale Deep Belief Nets With MapReduce. IEEE Access 2 (2014), 395–403.
[258] S. Zhang, A. Choromanska, and Y. LeCun. 2015. Deep Learning with Elastic Averaging SGD. In Proc. 28th International Conference on Neural Information

Processing Systems - Volume 1 (NIPS’15). 685–693.
[259] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen. 2016. Cambricon-X: An accelerator for sparse neural networks. In 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.
[260] S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu. 2013. Asynchronous stochastic gradient descent for DNN training. In IEEE International Conference on

Acoustics, Speech and Signal Processing. 6660–6663.
[261] W. Zhang, S. Gupta, X. Lian, and J. Liu. 2016. Staleness-aware async-SGD for Distributed Deep Learning. In Proc. Twenty-Fifth International Joint Conference

on Artificial Intelligence (IJCAI’16). 2350–2356.
[262] X. Zhang, M. McKenna, J. P. Mesirov, and D. L. Waltz. 1990. An Efficient Implementation of the Back-propagation Algorithm on the Connection Machine

CM-2. In Advances in Neural Information Processing Systems 2. 801–809.
[263] H. Zhao and J. Canny. 2014. Kylix: A Sparse Allreduce for Commodity Clusters. In 43rd International Conference on Parallel Processing. 273–282.
[264] Z. Zhong, J. Yan, and C.-L. Liu. 2017. Practical Network Blocks Design with Q-Learning. (2017). arXiv:1708.05552
[265] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou. 2016. DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients.

(2016). arXiv:1606.06160
[266] M. A. Zinkevich, M. Weimer, A. Smola, and L. Li. 2010. Parallelized Stochastic Gradient Descent. In Proc. 23rd International Conference on Neural Information

Processing Systems - Volume 2. 2595–2603.
[267] A. Zlateski, K. Lee, and H. S. Seung. 2016. ZNNi: Maximizing the Inference Throughput of 3D Convolutional Networks on CPUs and GPUs. In Int’l Conf.

for High Performance Computing, Networking, Storage and Analysis. 854–865.
[268] B. Zoph and Q. V. Le. 2017. Neural Architecture Search with Reinforcement Learning. In International Conference on Learning Representations (ICLR).
[269] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. 2017. Learning Transferable Architectures for Scalable Image Recognition. (2017). arXiv:1707.07012

http://arxiv.org/abs/1711.00489
http://arxiv.org/abs/1512.00066
http://arxiv.org/abs/1605.02026
http://arxiv.org/abs/1802.04730
http://arxiv.org/abs/1704.04428
http://arxiv.org/abs/1702.07800
http://arxiv.org/abs/1502.03044
http://arxiv.org/abs/1312.5853
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1709.05011
http://arxiv.org/abs/1512.06216
http://arxiv.org/abs/1706.03471
http://arxiv.org/abs/1708.05552
http://arxiv.org/abs/1606.06160
http://arxiv.org/abs/1707.07012

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:39

A ANALYSIS OF INFLUENTIAL CONVOLUTIONAL NEURAL NETWORKS

Fig. 25. The LeNet-5 Convolutional Neural Network (adapted from [145])

A.1 LeNet [145]

The first successful convolutional neural network, which was designed to identify hand-written
digits in the MNIST dataset [144,146]. As shown in Fig. 25, LeNet-5 takes a single-channel 2D input,
performs a series of 6 convolutions, then subsamples the filtered images by max-pooling. This
convolution-pooling layer sequence occurs again, followed by 2 fully connected layers and a final
fully connected softmax layer to produce the results.

For inference (forward evaluation) of an image, analyzing this network with respect to average
parallelism (W/D) yields the following result (see Appendix B for details regarding each layer):

W = Wconv(32,5,1,6) +Wpool (28,2,6) +Wconv(14,5,6,16) +Wpool (10,2,16) +
Wf c(400,120) +Wf c(120,84) +Wf c(84,10)

= 117, 600 + 14, 112 + 470, 400 + 4, 800 + 48, 000 + 10, 080 + 840
= 665, 832

D = 5 + 2 + 9 + 2 + 9 + 7 + 7 = 41
This indicates that even the simplest DNN exhibits high levels of concurrency, linearly increasing
with the minibatch size.

Fig. 26. AlexNet (adapted from [136])

A.2 AlexNet [136]

The AlexNet architecture was the winner of the ImageNet Large-Scale Visual Recognition (ILSVRC)
2012 [61] competition. Yielding nearly a twofold increase in accuracy over the preceding state-of-the-
art (26.2% top-5 error), this network played a major role in the current state of DNN and Machine
Learning.
Similar to LeNet, AlexNet contains a series of convolution-pooling layers followed by fully

connected layers. However, it also uses sequences of convolutions and Local Response Normal-
ization layers. Two major factors in the success of AlexNet are data augmentation and network
regularization (Dropout) during training.

The network was implemented for GPUs (using a specialized cuda-convnet framework), training
on ImageNet with a minibatch size of 128 images at a time.

1:40 Tal Ben-Nun and Torsten Hoefler

Fig. 27. The GoogLeNet (Inception-v1) Neural Architecture (adapted from [226])

A.3 GoogLeNet [226]

As opposed to the large number of parameters in AlexNet, the GoogLeNet architecture em-
ploys smaller series of convolutions organized in repeating modules. Inspired by the Network-in-
Network [157] architecture, these modules invoke 1 × 1 ×Cin convolutions (sometimes referred to
as 1 × 1 convolutions). Such modules increase the expressiveness by increasing the depth of the
DNN, and at the same time act as dimensionality reduction modules, essentially trading breadth
(number of neurons per layer) for depth.

Fig. 28. ResNet (adapted from [93])

A.4 ResNet [93]

The trend of DNNs becoming deeper and narrower continued with successful networks like
VGG [216] (published at the same time as GoogLeNet), comprising up to 30 layers of convolutions.
However, as networks increased in depth, their successful training had become harder.

The authors of ResNet address the depth issue by training a slightly different inter-layer interac-
tion: instead of composing layers as described in Section 4.2, every convolutional module would
add its input to the output (as shown in Fig. 28). Residuals are implemented as “shortcut” identity
connections to the network. The system then trains layers with respect to their residuals instead of
their original values, and, according to the authors, this solves the inherent degradation in accuracy
as networks become deeper.
With ResNet, it became possible to train networks with depths of 50 to 152 layers, further

increasing the quality of the results by allowing higher-level features to be learned.

(a) Dense Block (b) Full Network

Fig. 29. DenseNet (adapted from [108])

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:41

A.5 DenseNet [108]

Following the success of ResNets, DenseNets further increase the number of connections between
layers. As opposed to the module identity shortcut, densely-connected blocks concatenate each
layer’s outputs to the inputs of the next layers, similar to [62]. According to the authors, this type of
connection induces better gradient propagation, as features in subsequent layers are not required to
be strictly high-level. Rather, since each layer also receives the inputs of the previous level, features
can be constructed from both low-level information and the resulting high-level outputs.

The practical result is that with half the parameters and required operations, DenseNets achieve
similar results as ResNets. When their depth is increased to 250 layers, DenseNets reduce the
validation error by a factor of ∼2 in CIFAR-10 compared to ResNets. This comes at the cost of
increasing the number of parameters by almost an order of magnitude. Specifically, ResNets achieve
6.41% error with 1.7M parameters, whereas DenseNets achieve 3.62% error with 15.3M parameters.

A.6 Outlook
In summary, recent DNN architectures for image recognition heavily base on convolutional opera-
tions, are very deep, and become narrower with time. While it is not known which direction the
next breakthrough will take; efforts on DNN compression [90] and more recent architectures [37,203]
seem to focus on decreasing the number of parameters and operations, while maintaining the same
accuracy or increasing it. Nevertheless, it is still necessary to use vast computational resources to
train these networks, let alone find new networks automatically.

B DNN LAYER COMPUTATION FORMULAS
B.1 Preamble
The loss function is ℓ, we are computing the tensor y from the input tensor x , using a layer function
f with parametersw . Overall, the following three functions have to be computed:
(1) Forward evaluation: y ≡ f (w,x)
(2) Gradient w.r.t. parameters: ∇w ≡ ∂ℓ

∂w =
∂ℓ
∂y

∂y
∂w (chain rule).

(3) Gradient backpropagation: ∇x ≡ ∂ℓ
∂x =

∂ℓ
∂y

∂y
∂x .

In the backpropagation algorithm, we use the computed ∇x to compute the gradients of the
preceding layers in the DNN.

B.2 Activation
• x ∈ RW ×H×C×N ; No parameters, thusw is nonexistent;
• f (x) = σ (x);
• ∇xi, j,k,l = ∂ℓ

∂yi, j,k,l
· σ ′(xi, j,k,l).

• Examples of activation functions:

(1) ReLU (x) = max{0,x}; ReLU ′(x) =
{

1 x > 0
0 otherwise

.

(2) Sigmoidal function: σ (x) = 1
1+e−x ;σ ′(x) = σ (x) · (1 − σ (x)).

B.3 Fully Connected Layers
• w ∈ RCout×Cin , x ∈ RCin×N , and ∂ℓ

∂y ∈ RCout×N ;
• f (w,x) = w · x ;
• ∇w = x ·

(
∂ℓ
∂y

)T
;

1:42 Tal Ben-Nun and Torsten Hoefler

• ∇x = wT · ∂ℓ∂y .

B.4 Convolution (Direct)
• w ∈ RCout×Cin×Ky×Kx , x ∈ RW ×H×Cin×N , y ∈ RW ′×H ′×Cout×N , and ∂ℓ

∂y ∈ RW
′×H ′×Cout×N ;

• W ′,H ′ are the output sizes of the convolution, defined asW ′ =
⌊
W −Kx+2Padx

Str idex

⌋
+ 1 and

H ′ =
⌊
H−Ky+2Pady

Str idey

⌋
+ 1.

• Using input feature c and output feature c ′:
(1) yc ′ =

∑Cin
c=0 xc ∗wc ′,c ;

(2) ∂ℓ
∂xc
= ∂ℓ

∂y′c
∗wT

c ′,c ;
(3) ∂ℓ

∂wc′,c
= ∂ℓ

∂y′c
∗ xc .

B.5 Pooling
• No parameters, x ,y, ∂ℓy ∈ RW ×H×C×N ;
• yi, j,k,l = maxkx ∈[−Kx ,Kx],ky ∈[−Ky,Ky] xi+kx , j+ky,k,l ;

• ∇xi, j,k,l =
{

1 yi, j,k,l = xi, j,k,l

0 otherwise
.

B.6 Batch Normalization
• w = {γk , βk }Ck=0 ∈ R

2×C , x ,y ∈ RC×N ;
• Forward evaluation algorithm:
(1) Ek ← 1

N
∑N

i=0 xk,i ;
(2) Vk ← 1

N
∑N

i=0
(
xk,i − Ek

)2;
(3) x̂k,i ←

xk,i−Ek√
Vk+ε

(4) yk,i ← γ · x̂k,i + β
• Gradients:
(1) ∂ℓ

∂γk
=

∑N
i=0

∂ℓ
∂yk,i

x̂k,i

(2) ∂ℓ
∂βk
=

∑N
i=0

∂ℓ
∂yk,i

• Backpropagation (unsimplified):
(1) ∇σk =

∑N
m=0

(
∂ℓ

∂yk,m
γk · (xk,m − Ek) · (Vk + ε)−3/2

)
(2) ∂ℓ

∂xk,i
= ∂ℓ

∂yk,i
· γk√

Vk+ε
− xk,i−Ek

N ∇σk + 1
N

∑N
m=0

(
∂ℓ

∂yk,m
· −γk√

Vk+ε

)
+

∑N
m=0(xk,m−Ek)

N 2 ∇σk

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:43

C CONVOLUTION COMPUTATION ANALYSIS
Assuming convolution of a 4D tensor with a 4D kernel:
• Input tensor (x) shape: N ×Cin × H ×W .
• Kernel tensor (w) shape: Cout ×Cin × Ky × Kx .
• Output tensor (y) shape: N ×Cout × H ′ ×W ′.
• In the general caseW ′ =

⌊
W −Kx+2Px

Sx

⌋
+ 1 and H ′ =

⌊
H−Ky+2Py

Sy

⌋
+ 1 for padding Px , Py and

strides Sx , Sy .
• However, assuming zero padding and a stride of 1 element we obtainW ′ =W − Kx + 1 and
H ′ = H − Ky + 1.

C.1 Direct Convolution
Algorithm:

Algorithm 3 Direct Convolution
1: for i = 0 to N in parallel do
2: for j = 0 to Cout in parallel do
3: for k = 0 to H ′ in parallel do
4: for l = 0 toW ′ in parallel do
5: form = 0 to Cin do ▷ Depth: log2Cin
6: for ky = 0 to Ky do ▷ Depth: log2 Ky
7: for kx = 0 to Kx do ▷ Depth: log2 Kx
8: yi, j,k,l += xi,m,k+ky,l+kx ·w j,m,ky,kx ▷Work: 1
9: end for
10: end for
11: end for
12: end for
13: end for
14: end for
15: end for

Overall cost:
W = N ·Cout · H ′ ·W ′ ·Cin · Ky · Kx

D =
⌈
log2Cin

⌉
+

⌈
log2 Ky

⌉
+

⌈
log2 Kx

⌉

1:44 Tal Ben-Nun and Torsten Hoefler

C.2 im2col
• Input matrixA is a result of a data-layout transformation, sized

(
Cin · Ky · Kx

)
×(N · H ′ ·W ′).

• Kernel matrix F is the reshaped tensorw , with dimensions Cout ×
(
Cin · Ky · Kx

)
.

• Output matrix B has a size of Cout × (N · H ′ ·W ′) and is reshaped to the output.
Algorithm:

Algorithm 4 im2col Convolution
1: for i = 0 to Cin · Ky · Kx in parallel do
2: for j = 0 to N · H ′ ·W ′ in parallel do
3: Ai, j ← x ... ▷ im2col. Work: N/A, Depth: N/A (layout only)
4: end for
5: end for
6: ▷ Matrix Multiplication
7: B ← F · A ▷Work: Cout · (Cin · Ky · Kx) · (N · H ′ ·W ′)
8: ▷ Depth: log2

(
Cin · Ky · Kx

)
9: for i = 0 to N in parallel do
10: for j = 0 to Cout in parallel do
11: for k = 0 to H ′ in parallel do
12: for l = 0 toW ′ in parallel do
13: yi, j,k,l ← B ... ▷ col2im. Work: N/A, Depth: N/A (layout only)
14: end for
15: end for
16: end for
17: end for

Overall cost:
W = N ·Cout · H ′ ·W ′ ·Cin · Ky · Kx

D =
⌈
log2Cin

⌉
+

⌈
log2 Ky

⌉
+

⌈
log2 Kx

⌉

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:45

C.3 FFT
• Formula: yi, j,∗,∗ = F −1

(∑Cin
k=0 F

(
xi,k,∗,∗

)
◦ F

(
w j,k,∗,∗

))
, where ◦ denotes element-wise mul-

tiplication andw is padded to H ·W .
• x̂ , ŵ are the transformed inputs and kernels reshaped as 3D tensors, obtained by batching
2-dimensional FFTs.
• We refer to x̂k (or ŵk) as the kth 2D slice in the tensor.
• In practical implementations, x̂ and ŵ are reshaped toW · H 2D matrices (sized N ×Cin and
Cin ×Cout respectively) to transform the point-wise multiplication and sum from the above
formula to a batched complex matrix-matrix multiplication.

Algorithm:

Algorithm 5 FFT Convolution
1: for i = 0 to Cout in parallel do
2: for j = 0 to Cin in parallel do
3: ŵi, j ← F(wi, j) ▷ 2D FFT. Work: c · HW log2 HW , Depth: log2 HW
4: end for
5: end for
6: for i = 0 to N in parallel do
7: for j = 0 to Cin in parallel do
8: x̂i, j ← F(xi, j) ▷ 2D FFT. Work: c · HW log2 HW , Depth: log2 HW
9: end for
10: end for
11: for i = 0 to N in parallel do
12: for j = 0 to Cout in parallel do
13: for k = 0 to H ′ in parallel do
14: for l = 0 toW ′ in parallel do ▷ Batched MM
15: ŷi, j =

∑Cin
m=0 x̂i,m · ŵ j,m ▷Work: H ·W · N ·Cin ·Cout

16: end for ▷ Depth: log2Cin
17: end for
18: end for
19: end for
20: for i = 0 to N in parallel do
21: for j = 0 to Cout in parallel do
22: yi, j ← F −1(ŷi, j) ▷ 2D IFFT. Work: c · H ′W ′ log2 H

′W ′, Depth: log2 H
′W ′

23: end for
24: end for

Overall cost:
W = c · HW log2(HW) · (Cout ·Cin + N ·Cin + N ·Cout) + H ·W · N ·Cin ·Cout ;

D = 2
⌈
log2 HW

⌉
+

⌈
log2Cin

⌉
;

where c is the hidden constant in 2D FFT.

1:46 Tal Ben-Nun and Torsten Hoefler

C.4 Winograd
• Assuming F (m ×m, r × r) [140], i.e., output tile size ofm ×m and convolution kernel size is
r × r .
• α =m + r − 1 is the input tile size. Neighboring tiles overlap by r − 1.
• Total number of tiles: P = N · ⌈H/m⌉ · ⌈W /m⌉.
• A ∈ Rα×m ,B ∈ Rα×α ,G ∈ Rα×r are Winograd minimal filtering matrices.

Algorithm:

Algorithm 6Winograd Convolution
1: for k = 0 to Cout in parallel do
2: for c = 0 to Cin in parallel do
3: u ← Gwk,c,∗,∗G

T ▷Winograd transform r × r → α × α . Work:WWG , Depth: DWG
4: for s = 0 to α in parallel do
5: for n = 0 to α in parallel do
6: U (s,n)k,c ← us,n ▷ Scatter. Work: N/A, Depth: N/A (layout only)
7: end for
8: end for
9: end for
10: end for
11: for b = 0 to P in parallel do
12: for c = 0 to Cin in parallel do
13: v ← BTxb,c,∗,∗B ▷Winograd transform α × α → α × α . Work: WWD , Depth: DWD
14: for s = 0 to α in parallel do
15: for n = 0 to α in parallel do
16: V (s,n)c,b ← vs,n ▷ Scatter. Work: N/A, Depth: N/A (layout only)
17: end for
18: end for
19: end for
20: end for
21: for s = 0 to α in parallel do
22: for n = 0 to α in parallel do
23: Z (s,n) ← U (s,n) ·V (s,n) ▷ Matrix Multiplication. Work: Cout ·Cin · P , Depth: log2Cin
24: end for
25: end for
26: for k = 0 to Cout in parallel do
27: for b = 0 to P in parallel do
28: for s = 0 to α in parallel do
29: for n = 0 to α in parallel do
30: zs,n ← Z (s,n)k,b ▷ Gather. Work: N/A, Depth: N/A (layout only)
31: end for
32: end for
33: yb,k,∗,∗ ← AT zA ▷Winograd transform α × α →m ×m. Work: WWY , Depth: DWY
34: end for
35: end for

Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis 1:47

A Winograd transform from a × a → b × b consists of two matrix multiplications, thus:
WWT (a,b) = b · a · a + b · a · b = a2b + b2a
DWT (a,b) = 2

⌈
log2 a

⌉
;

and thereforeWWG = r
2α +α2r ,WWD = 2α3,WWY = α2m +m2α , and DWG = 2

⌈
log2 r

⌉
,DWD =

2
⌈
log2 α

⌉
,DWY = 2

⌈
log2 α

⌉
.

Overall cost:
W = WWG +WWD +Cout ·Cin · P +WWY
= α(r 2 + αr + 2α2 + αm +m2) +Cout ·Cin · P

D = 2
⌈
log2 r

⌉
+ 4

⌈
log2 α

⌉
+

⌈
log2Cin

⌉

	Abstract
	1 Introduction
	1.1 Related Surveys
	1.2 Scope

	2 Terminology and Algorithms
	2.1 Supervised Learning
	2.2 Unsupervised and Reinforcement Learning
	2.3 Parallel Computer Architecture
	2.4 Parallel Programming
	2.5 Parallel Algorithms

	3 The Efficiency Tradeoff: Generalization vs. Utilization
	4 Deep Neural Networks
	4.1 Neurons
	4.2 Deep Networks
	4.3 Trends in DNN Characteristics

	5 Concurrency in Operators
	5.1 Performance Modeling
	5.2 Fully Connected Layers
	5.3 Convolution
	5.4 Recurrent Units

	6 Concurrency in Networks
	6.1 Data Parallelism
	6.2 Model Parallelism
	6.3 Pipelining
	6.4 Hybrid Parallelism

	7 Concurrency in Training
	7.1 Model Consistency
	7.2 Centralization
	7.3 Parameter and Gradient Compression
	7.4 Model Consolidation
	7.5 Optimization Algorithms and Architecture Search

	8 Concluding Remarks
	Acknowledgments
	References
	A Analysis of Influential Convolutional Neural Networks
	A.1 LeNet lecun98
	A.2 AlexNet alexnet
	A.3 GoogLeNet inception
	A.4 ResNet resnet
	A.5 DenseNet densenet
	A.6 Outlook

	B DNN Layer Computation Formulas
	B.1 Preamble
	B.2 Activation
	B.3 Fully Connected Layers
	B.4 Convolution (Direct)
	B.5 Pooling
	B.6 Batch Normalization

	C Convolution Computation Analysis
	C.1 Direct Convolution
	C.2 im2col
	C.3 FFT
	C.4 Winograd

