
Red Hat Enterprise Linux 7

SELinux User's and Administrator's Guide

Basic and advanced configuration of Security-Enhanced Linux (SELinux)

Last Updated: 2019-08-09

Red Hat Enterprise Linux 7 SELinux User's and Administrator's Guide

Basic and advanced configuration of Security-Enhanced Linux (SELinux)

Mirek Jahoda
Red Hat Customer Content Services
mjahoda@redhat.com

Barbora Ančincová
Red Hat Customer Content Services

Ioanna Gkioka
Red Hat Customer Content Services

Tomáš Čapek
Red Hat Customer Content Services

Legal Notice

Copyright © 2019 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book consists of two parts: SELinux and Managing Confined Services. The former describes
the basics and principles upon which SELinux functions, the latter is more focused on practical
tasks to set up and configure various services.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. SELINUX

CHAPTER 1. INTRODUCTION
ADDITIONAL RESOURCES
1.1. BENEFITS OF RUNNING SELINUX
1.2. EXAMPLES
1.3. SELINUX ARCHITECTURE
1.4. SELINUX STATES AND MODES
1.5. ADDITIONAL RESOURCES

CHAPTER 2. SELINUX CONTEXTS
2.1. DOMAIN TRANSITIONS
2.2. SELINUX CONTEXTS FOR PROCESSES
2.3. SELINUX CONTEXTS FOR USERS

CHAPTER 3. TARGETED POLICY
3.1. CONFINED PROCESSES
3.2. UNCONFINED PROCESSES
3.3. CONFINED AND UNCONFINED USERS

CHAPTER 4. WORKING WITH SELINUX
4.1. SELINUX PACKAGES
4.2. WHICH LOG FILE IS USED
4.3. MAIN CONFIGURATION FILE
4.4. PERMANENT CHANGES IN SELINUX STATES AND MODES
4.5. CHANGING SELINUX MODES AT BOOT TIME
4.6. BOOLEANS
4.7. SELINUX CONTEXTS – LABELING FILES
4.8. THE FILE_T AND DEFAULT_T TYPES
4.9. MOUNTING FILE SYSTEMS
4.10. MAINTAINING SELINUX LABELS
4.11. INFORMATION GATHERING TOOLS
4.12. PRIORITIZING AND DISABLING SELINUX POLICY MODULES
4.13. MULTI-LEVEL SECURITY (MLS)
4.14. FILE NAME TRANSITION
4.15. DISABLING PTRACE()
4.16. THUMBNAIL PROTECTION

CHAPTER 5. THE SEPOLICY SUITE
5.1. THE SEPOLICY PYTHON BINDINGS
5.2. GENERATING SELINUX POLICY MODULES: SEPOLICY GENERATE
5.3. UNDERSTANDING DOMAIN TRANSITIONS: SEPOLICY TRANSITION
5.4. GENERATING MANUAL PAGES: SEPOLICY MANPAGE

CHAPTER 6. CONFINING USERS
6.1. LINUX AND SELINUX USER MAPPINGS
6.2. CONFINING NEW LINUX USERS: USERADD
6.3. CONFINING EXISTING LINUX USERS: SEMANAGE LOGIN
6.4. CHANGING THE DEFAULT MAPPING
6.5. XGUEST: KIOSK MODE
6.6. BOOLEANS FOR USERS EXECUTING APPLICATIONS

CHAPTER 7. SECURING PROGRAMS USING SANDBOX

6

7
8
8
9
9

10
10

12
13
14
15

16
16
18
21

26
26
27
28
28
32
32
35
41
41

44
51

53
54
59
60
61

63
63
64
64
65

67
67
67
69
70
71
71

73

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

7.1. RUNNING AN APPLICATION USING SANDBOX

CHAPTER 8. SVIRT
Non-Virtualized Environment
Virtualized Environment
8.1. SECURITY AND VIRTUALIZATION
8.2. SVIRT LABELING

CHAPTER 9. SECURE LINUX CONTAINERS

CHAPTER 10. SELINUX SYSTEMD ACCESS CONTROL
10.1. SELINUX ACCESS PERMISSIONS FOR SERVICES
10.2. SELINUX AND JOURNALD

CHAPTER 11. TROUBLESHOOTING
11.1. WHAT HAPPENS WHEN ACCESS IS DENIED
11.2. TOP THREE CAUSES OF PROBLEMS
11.3. FIXING PROBLEMS

CHAPTER 12. FURTHER INFORMATION
12.1. CONTRIBUTORS
12.2. OTHER RESOURCES

PART II. MANAGING CONFINED SERVICES

CHAPTER 13. INTRODUCTION

CHAPTER 14. THE APACHE HTTP SERVER
14.1. THE APACHE HTTP SERVER AND SELINUX
14.2. TYPES
14.3. BOOLEANS
14.4. CONFIGURATION EXAMPLES

CHAPTER 15. SAMBA
15.1. SAMBA AND SELINUX
15.2. TYPES
15.3. BOOLEANS
15.4. CONFIGURATION EXAMPLES

CHAPTER 16. FILE TRANSFER PROTOCOL
16.1. TYPES
16.2. BOOLEANS

CHAPTER 17. NETWORK FILE SYSTEM
17.1. NFS AND SELINUX
17.2. TYPES
17.3. BOOLEANS
17.4. CONFIGURATION EXAMPLES

CHAPTER 18. BERKELEY INTERNET NAME DOMAIN
18.1. BIND AND SELINUX
18.2. TYPES
18.3. BOOLEANS
18.4. CONFIGURATION EXAMPLES

CHAPTER 19. CONCURRENT VERSIONING SYSTEM
19.1. CVS AND SELINUX

73

74
74
74
74
75

77

78
78
82

84
84
85
87

99
99
99

101

102

103
103
105
108
110

118
118
119
119

120

125
125
125

128
128
128
129
130

132
132
132
133
134

135
135

SELinux User's and Administrator's Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

19.2. TYPES
19.3. BOOLEANS
19.4. CONFIGURATION EXAMPLES

CHAPTER 20. SQUID CACHING PROXY
20.1. SQUID CACHING PROXY AND SELINUX
20.2. TYPES
20.3. BOOLEANS
20.4. CONFIGURATION EXAMPLES

CHAPTER 21. MARIADB (A REPLACEMENT FOR MYSQL)
21.1. MARIADB AND SELINUX
21.2. TYPES
21.3. BOOLEANS
21.4. CONFIGURATION EXAMPLES

CHAPTER 22. POSTGRESQL
22.1. POSTGRESQL AND SELINUX
22.2. TYPES
22.3. BOOLEANS
22.4. CONFIGURATION EXAMPLES

CHAPTER 23. RSYNC
23.1. RSYNC AND SELINUX
23.2. TYPES
23.3. BOOLEANS
23.4. CONFIGURATION EXAMPLES

CHAPTER 24. POSTFIX
24.1. POSTFIX AND SELINUX
24.2. TYPES
24.3. BOOLEANS
24.4. CONFIGURATION EXAMPLES

CHAPTER 25. DHCP
25.1. DHCP AND SELINUX
25.2. TYPES

CHAPTER 26. OPENSHIFT BY RED HAT
26.1. OPENSHIFT AND SELINUX
26.2. TYPES
26.3. BOOLEANS
26.4. CONFIGURATION EXAMPLES

CHAPTER 27. IDENTITY MANAGEMENT
27.1. IDENTITY MANAGEMENT AND SELINUX
27.2. CONFIGURATION EXAMPLES

CHAPTER 28. RED HAT GLUSTER STORAGE
28.1. RED HAT GLUSTER STORAGE AND SELINUX
28.2. TYPES
28.3. BOOLEANS
28.4. CONFIGURATION EXAMPLES

CHAPTER 29. REFERENCES

135
135
136

139
139
141

142
142

145
145
146
146
147

150
150
151
152
152

155
155
155
156
156

160
160
161
161

162

164
164
164

166
166
166
167
168

170
170
170

172
172
172
173
174

176

Table of Contents

3

. .APPENDIX A. REVISION HISTORY 178

SELinux User's and Administrator's Guide

4

Table of Contents

5

PART I. SELINUX

SELinux User's and Administrator's Guide

6

CHAPTER 1. INTRODUCTION
Security Enhanced Linux (SELinux) provides an additional layer of system security. SELinux
fundamentally answers the question: "May <subject> do <action> to <object>", for example: "May a web
server access files in users' home directories?".

The standard access policy based on the user, group, and other permissions, known as Discretionary
Access Control (DAC), does not enable system administrators to create comprehensive and fine-
grained security policies, such as restricting specific applications to only viewing log files, while allowing
other applications to append new data to the log files

SELinux implements Mandatory Access Control (MAC). Every process and system resource has a
special security label called a SELinux context. A SELinux context, sometimes referred to as a SELinux
label, is an identifier which abstracts away the system-level details and focuses on the security
properties of the entity. Not only does this provide a consistent way of referencing objects in the
SELinux policy, but it also removes any ambiguity that can be found in other identification methods; for
example, a file can have multiple valid path names on a system that makes use of bind mounts.

The SELinux policy uses these contexts in a series of rules which define how processes can interact with
each other and the various system resources. By default, the policy does not allow any interaction unless
a rule explicitly grants access.

NOTE

It is important to remember that SELinux policy rules are checked after DAC rules.
SELinux policy rules are not used if DAC rules deny access first, which means that no
SELinux denial is logged if the traditional DAC rules prevent the access.

SELinux contexts have several fields: user, role, type, and security level. The SELinux type information is
perhaps the most important when it comes to the SELinux policy, as the most common policy rule which
defines the allowed interactions between processes and system resources uses SELinux types and not
the full SELinux context. SELinux types usually end with _t. For example, the type name for the web
server is httpd_t. The type context for files and directories normally found in /var/www/html/ is
httpd_sys_content_t. The type contexts for files and directories normally found in /tmp and /var/tmp/
is tmp_t. The type context for web server ports is http_port_t.

For example, there is a policy rule that permits Apache (the web server process running as httpd_t) to
access files and directories with a context normally found in /var/www/html/ and other web server
directories (httpd_sys_content_t). There is no allow rule in the policy for files normally found in /tmp
and /var/tmp/, so access is not permitted. With SELinux, even if Apache is compromised, and a malicious
script gains access, it is still not able to access the /tmp directory.

CHAPTER 1. INTRODUCTION

7

Figure 1.1. SELinux allows the Apache process running as httpd_t to access the /var/www/html/
directory and it denies the same process to access the /data/mysql/ directory because there is no
allow rule for the httpd_t and mysqld_db_t type contexts). On the other hand, the MariaDB process
running as mysqld_t is able to access the /data/mysql/ directory and SELinux also correctly denies
the process with the mysqld_t type to access the /var/www/html/ directory labeled as
httpd_sys_content_t.

ADDITIONAL RESOURCES
To better understand SELinux basic concepts, see the following documentation:

The SELinux Coloring Book

SELinux Wiki FAQ

The SELinux Notebook

1.1. BENEFITS OF RUNNING SELINUX

SELinux provides the following benefits:

All processes and files are labeled. SELinux policy rules define how processes interact with files,
as well as how processes interact with each other. Access is only allowed if an SELinux policy
rule exists that specifically allows it.

Fine-grained access control. Stepping beyond traditional UNIX permissions that are controlled
at user discretion and based on Linux user and group IDs, SELinux access decisions are based
on all available information, such as an SELinux user, role, type, and, optionally, a security level.

SELinux policy is administratively-defined and enforced system-wide.

Improved mitigation for privilege escalation attacks. Processes run in domains, and are
therefore separated from each other. SELinux policy rules define how processes access files
and other processes. If a process is compromised, the attacker only has access to the normal
functions of that process, and to files the process has been configured to have access to. For
example, if the Apache HTTP Server is compromised, an attacker cannot use that process to
read files in user home directories, unless a specific SELinux policy rule was added or configured
to allow such access.

SELinux can be used to enforce data confidentiality and integrity, as well as protecting
processes from untrusted inputs.

SELinux User's and Administrator's Guide

8

https://people.redhat.com/duffy/selinux/selinux-coloring-book_A4-Stapled.pdf
http://selinuxproject.org/page/FAQ
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf

However, SELinux is not:

antivirus software,

replacement for passwords, firewalls, and other security systems,

all-in-one security solution.

SELinux is designed to enhance existing security solutions, not replace them. Even when running
SELinux, it is important to continue to follow good security practices, such as keeping software up-to-
date, using hard-to-guess passwords, or firewalls.

1.2. EXAMPLES

The following examples demonstrate how SELinux increases security:

The default action is deny. If an SELinux policy rule does not exist to allow access, such as for a
process opening a file, access is denied.

SELinux can confine Linux users. A number of confined SELinux users exist in the SELinux
policy. Linux users can be mapped to confined SELinux users to take advantage of the security
rules and mechanisms applied to them. For example, mapping a Linux user to the SELinux
user_u user, results in a Linux user that is not able to run (unless configured otherwise) set user
ID (setuid) applications, such as sudo and su, as well as preventing them from executing files
and applications in their home directory. If configured, this prevents users from executing
malicious files from their home directories. See Section 3.3, “Confined and Unconfined Users”
for more information.

Increased process and data separation. Processes run in their own domains, preventing
processes from accessing files used by other processes, as well as preventing processes from
accessing other processes. For example, when running SELinux, unless otherwise configured, an
attacker cannot compromise a Samba server, and then use that Samba server as an attack
vector to read and write to files used by other processes, such as MariaDB databases.

SELinux helps mitigate the damage made by configuration mistakes. Domain Name System
(DNS) servers often replicate information between each other in what is known as a zone
transfer. Attackers can use zone transfers to update DNS servers with false information. When
running the Berkeley Internet Name Domain (BIND) as a DNS server in
Red Hat Enterprise Linux, even if an administrator forgets to limit which servers can perform a
zone transfer, the default SELinux policy prevents zone files [1] from being updated using zone
transfers, by the BIND named daemon itself, and by other processes.

See the NetworkWorld.com article, A seatbelt for server software: SELinux blocks real-world
exploits[2], for background information about SELinux, and information about various exploits
that SELinux has prevented.

1.3. SELINUX ARCHITECTURE

SELinux is a Linux Security Module (LSM) that is built into the Linux kernel. The SELinux subsystem in
the kernel is driven by a security policy which is controlled by the administrator and loaded at boot. All
security-relevant, kernel-level access operations on the system are intercepted by SELinux and
examined in the context of the loaded security policy. If the loaded policy allows the operation, it
continues. Otherwise, the operation is blocked and the process receives an error.

SELinux decisions, such as allowing or disallowing access, are cached. This cache is known as the Access

CHAPTER 1. INTRODUCTION

9

http://www.networkworld.com
http://www.networkworld.com/article/2283723/lan-wan/a-seatbelt-for-server-software--selinux-blocks-real-world-exploits.html

Vector Cache (AVC). When using these cached decisions, SELinux policy rules need to be checked less,
which increases performance. Remember that SELinux policy rules have no effect if DAC rules deny
access first.

1.4. SELINUX STATES AND MODES

SELinux can run in one of three modes: disabled, permissive, or enforcing.

Disabled mode is strongly discouraged; not only does the system avoid enforcing the SELinux policy, it
also avoids labeling any persistent objects such as files, making it difficult to enable SELinux in the
future.

In permissive mode, the system acts as if SELinux is enforcing the loaded security policy, including
labeling objects and emitting access denial entries in the logs, but it does not actually deny any
operations. While not recommended for production systems, permissive mode can be helpful for
SELinux policy development.

Enforcing mode is the default, and recommended, mode of operation; in enforcing mode SELinux
operates normally, enforcing the loaded security policy on the entire system.

Use the setenforce utility to change between enforcing and permissive mode. Changes made with
setenforce do not persist across reboots. To change to enforcing mode, enter the setenforce 1
command as the Linux root user. To change to permissive mode, enter the setenforce 0 command. Use
the getenforce utility to view the current SELinux mode:

~]# getenforce
Enforcing

~]# setenforce 0
~]# getenforce
Permissive

~]# setenforce 1
~]# getenforce
Enforcing

In Red Hat Enterprise Linux, you can set individual domains to permissive mode while the system runs in
enforcing mode. For example, to make the httpd_t domain permissive:

~]# semanage permissive -a httpd_t

See Section 11.3.4, “Permissive Domains” for more information.

NOTE

Persistent states and modes changes are covered in Section 4.4, “Permanent Changes in
SELinux States and Modes”.

1.5. ADDITIONAL RESOURCES

Red Hat Identity Management (IdM) provides a centralized solution to define SELinux user maps. For
details, see Defining SELinux User Maps in the Linux Domain Identity, Authentication, and Policy Guide .

SELinux User's and Administrator's Guide

10

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/selinux-mapping.html

[1] Text files that include information, such as host name to IP address mappings, that are used by DNS servers.

[2] Marti, Don. "A seatbelt for server software: SELinux blocks real-world exploits". Published 24 February 2008.
Accessed 27 August 2009: http://www.networkworld.com/article/2283723/lan-wan/a-seatbelt-for-server-
software--selinux-blocks-real-world-exploits.html.

CHAPTER 1. INTRODUCTION

11

http://www.networkworld.com/article/2283723/lan-wan/a-seatbelt-for-server-software--selinux-blocks-real-world-exploits.html

CHAPTER 2. SELINUX CONTEXTS
Processes and files are labeled with an SELinux context that contains additional information, such as an
SELinux user, role, type, and, optionally, a level. When running SELinux, all of this information is used to
make access control decisions. In Red Hat Enterprise Linux, SELinux provides a combination of Role-
Based Access Control (RBAC), Type Enforcement (TE), and, optionally, Multi-Level Security (MLS).

The following is an example showing SELinux context. SELinux contexts are used on processes, Linux
users, and files, on Linux operating systems that run SELinux. Use the following command to view the
SELinux context of files and directories:

~]$ ls -Z file1
-rwxrw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

SELinux contexts follow the SELinux user:role:type:level syntax. The fields are as follows:

SELinux user

The SELinux user identity is an identity known to the policy that is authorized for a specific set of
roles, and for a specific MLS/MCS range. Each Linux user is mapped to an SELinux user using
SELinux policy. This allows Linux users to inherit the restrictions placed on SELinux users. The
mapped SELinux user identity is used in the SELinux context for processes in that session, in order to
define what roles and levels they can enter. Enter the following command as root to view a list of
mappings between SELinux and Linux user accounts (you need to have the policycoreutils-python
package installed):

~]# semanage login -l
Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

Output may differ slightly from system to system:

The Login Name column lists Linux users.

The SELinux User column lists which SELinux user the Linux user is mapped to. For
processes, the SELinux user limits which roles and levels are accessible.

The MLS/MCS Range column, is the level used by Multi-Level Security (MLS) and Multi-
Category Security (MCS).

The Service column determines the correct SELinux context, in which the Linux user is
supposed to be logged in to the system. By default, the asterisk (*) character is used, which
stands for any service.

role

Part of SELinux is the Role-Based Access Control (RBAC) security model. The role is an attribute of
RBAC. SELinux users are authorized for roles, and roles are authorized for domains. The role serves
as an intermediary between domains and SELinux users. The roles that can be entered determine
which domains can be entered; ultimately, this controls which object types can be accessed. This
helps reduce vulnerability to privilege escalation attacks.

type

SELinux User's and Administrator's Guide

12

The type is an attribute of Type Enforcement. The type defines a domain for processes, and a type
for files. SELinux policy rules define how types can access each other, whether it be a domain
accessing a type, or a domain accessing another domain. Access is only allowed if a specific SELinux
policy rule exists that allows it.

level

The level is an attribute of MLS and MCS. An MLS range is a pair of levels, written as lowlevel-
highlevel if the levels differ, or lowlevel if the levels are identical (s0-s0 is the same as s0). Each level
is a sensitivity-category pair, with categories being optional. If there are categories, the level is
written as sensitivity:category-set. If there are no categories, it is written as sensitivity.

If the category set is a contiguous series, it can be abbreviated. For example, c0.c3 is the same as
c0,c1,c2,c3. The /etc/selinux/targeted/setrans.conf file maps levels (s0:c0) to human-readable
form (that is CompanyConfidential). In Red Hat Enterprise Linux, targeted policy enforces MCS,
and in MCS, there is just one sensitivity, s0. MCS in Red Hat Enterprise Linux supports 1024 different
categories: c0 through to c1023. s0-s0:c0.c1023 is sensitivity s0 and authorized for all categories.

MLS enforces the Bell-La Padula Mandatory Access Model, and is used in Labeled Security
Protection Profile (LSPP) environments. To use MLS restrictions, install the selinux-policy-mls
package, and configure MLS to be the default SELinux policy. The MLS policy shipped with
Red Hat Enterprise Linux omits many program domains that were not part of the evaluated
configuration, and therefore, MLS on a desktop workstation is unusable (no support for the X
Window System); however, an MLS policy from the upstream SELinux Reference Policy can be built
that includes all program domains. For more information on MLS configuration, see Section 4.13,
“Multi-Level Security (MLS)”.

2.1. DOMAIN TRANSITIONS

A process in one domain transitions to another domain by executing an application that has the
entrypoint type for the new domain. The entrypoint permission is used in SELinux policy and controls
which applications can be used to enter a domain. The following example demonstrates a domain
transition:

Procedure 2.1. An Example of a Domain Transition

1. A user wants to change their password. To do this, they run the passwd utility. The
/usr/bin/passwd executable is labeled with the passwd_exec_t type:

~]$ ls -Z /usr/bin/passwd
-rwsr-xr-x root root system_u:object_r:passwd_exec_t:s0 /usr/bin/passwd

The passwd utility accesses /etc/shadow, which is labeled with the shadow_t type:

~]$ ls -Z /etc/shadow
-r--------. root root system_u:object_r:shadow_t:s0 /etc/shadow

2. An SELinux policy rule states that processes running in the passwd_t domain are allowed to
read and write to files labeled with the shadow_t type. The shadow_t type is only applied to
files that are required for a password change. This includes /etc/gshadow, /etc/shadow, and
their backup files.

3. An SELinux policy rule states that the passwd_t domain has its entrypoint permission set to
the passwd_exec_t type.

CHAPTER 2. SELINUX CONTEXTS

13

http://oss.tresys.com/projects/refpolicy

4. When a user runs the passwd utility, the user's shell process transitions to the passwd_t
domain. With SELinux, since the default action is to deny, and a rule exists that allows (among
other things) applications running in the passwd_t domain to access files labeled with the
shadow_t type, the passwd application is allowed to access /etc/shadow, and update the
user's password.

This example is not exhaustive, and is used as a basic example to explain domain transition. Although
there is an actual rule that allows subjects running in the passwd_t domain to access objects labeled
with the shadow_t file type, other SELinux policy rules must be met before the subject can transition to
a new domain. In this example, Type Enforcement ensures:

The passwd_t domain can only be entered by executing an application labeled with the
passwd_exec_t type; can only execute from authorized shared libraries, such as the lib_t type;
and cannot execute any other applications.

Only authorized domains, such as passwd_t, can write to files labeled with the shadow_t type.
Even if other processes are running with superuser privileges, those processes cannot write to
files labeled with the shadow_t type, as they are not running in the passwd_t domain.

Only authorized domains can transition to the passwd_t domain. For example, the sendmail
process running in the sendmail_t domain does not have a legitimate reason to execute
passwd; therefore, it can never transition to the passwd_t domain.

Processes running in the passwd_t domain can only read and write to authorized types, such as
files labeled with the etc_t or shadow_t types. This prevents the passwd application from
being tricked into reading or writing arbitrary files.

2.2. SELINUX CONTEXTS FOR PROCESSES

Use the ps -eZ command to view the SELinux context for processes. For example:

Procedure 2.2. View the SELinux Context for the passwd Utility

1. Open a terminal, such as Applications → System Tools → Terminal.

2. Run the passwd utility. Do not enter a new password:

~]$ passwd
Changing password for user user_name.
Changing password for user_name.
(current) UNIX password:

3. Open a new tab, or another terminal, and enter the following command. The output is similar to
the following:

~]$ ps -eZ | grep passwd
unconfined_u:unconfined_r:passwd_t:s0-s0:c0.c1023 13212 pts/1 00:00:00 passwd

4. In the first tab/terminal, press Ctrl+C to cancel the passwd utility.

In this example, when the passwd utility (labeled with the passwd_exec_t type) is executed, the user's
shell process transitions to the passwd_t domain. Remember that the type defines a domain for
processes, and a type for files.

To view the SELinux contexts for all running processes, run the ps utility again. Note that below is a

SELinux User's and Administrator's Guide

14

To view the SELinux contexts for all running processes, run the ps utility again. Note that below is a
truncated example of the output, and may differ on your system:

]$ ps -eZ
system_u:system_r:dhcpc_t:s0 1869 ? 00:00:00 dhclient
system_u:system_r:sshd_t:s0-s0:c0.c1023 1882 ? 00:00:00 sshd
system_u:system_r:gpm_t:s0 1964 ? 00:00:00 gpm
system_u:system_r:crond_t:s0-s0:c0.c1023 1973 ? 00:00:00 crond
system_u:system_r:kerneloops_t:s0 1983 ? 00:00:05 kerneloops
system_u:system_r:crond_t:s0-s0:c0.c1023 1991 ? 00:00:00 atd

The system_r role is used for system processes, such as daemons. Type Enforcement then separates
each domain.

2.3. SELINUX CONTEXTS FOR USERS

Use the following command to view the SELinux context associated with your Linux user:

~]$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

In Red Hat Enterprise Linux, Linux users run unconfined by default. This SELinux context shows that the
Linux user is mapped to the SELinux unconfined_u user, running as the unconfined_r role, and is
running in the unconfined_t domain. s0-s0 is an MLS range, which in this case, is the same as just s0.
The categories the user has access to is defined by c0.c1023, which is all categories (c0 through to
c1023).

CHAPTER 2. SELINUX CONTEXTS

15

CHAPTER 3. TARGETED POLICY
Targeted policy is the default SELinux policy used in Red Hat Enterprise Linux. When using targeted
policy, processes that are targeted run in a confined domain, and processes that are not targeted run in
an unconfined domain. For example, by default, logged-in users run in the unconfined_t domain, and
system processes started by init run in the unconfined_service_t domain; both of these domains are
unconfined.

Executable and writable memory checks may apply to both confined and unconfined domains. However,
by default, subjects running in an unconfined domain can allocate writable memory and execute it.
These memory checks can be enabled by setting Booleans, which allow the SELinux policy to be
modified at runtime. Boolean configuration is discussed later.

3.1. CONFINED PROCESSES

Almost every service that listens on a network, such as sshd or httpd, is confined in
Red Hat Enterprise Linux. Also, most processes that run as the root user and perform tasks for users,
such as the passwd utility, are confined. When a process is confined, it runs in its own domain, such as
the httpd process running in the httpd_t domain. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited.

Complete this procedure to ensure that SELinux is enabled and the system is prepared to perform the
following example:

Procedure 3.1. How to Verify SELinux Status

1. Confirm that SELinux is enabled, is running in enforcing mode, and that targeted policy is being
used. The correct output should look similar to the output below:

~]$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 30

See Section 4.4, “Permanent Changes in SELinux States and Modes” for detailed information
about changing SELinux modes.

2. As root, create a file in the /var/www/html/ directory:

~]# touch /var/www/html/testfile

3. Enter the following command to view the SELinux context of the newly created file:

~]$ ls -Z /var/www/html/testfile
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 /var/www/html/testfile

By default, Linux users run unconfined in Red Hat Enterprise Linux, which is why the testfile file

SELinux User's and Administrator's Guide

16

is labeled with the SELinux unconfined_u user. RBAC is used for processes, not files. Roles do
not have a meaning for files; the object_r role is a generic role used for files (on persistent
storage and network file systems). Under the /proc directory, files related to processes may use
the system_r role. The httpd_sys_content_t type allows the httpd process to access this file.

The following example demonstrates how SELinux prevents the Apache HTTP Server (httpd) from
reading files that are not correctly labeled, such as files intended for use by Samba. This is an example,
and should not be used in production. It assumes that the httpd and wget packages are installed, the
SELinux targeted policy is used, and that SELinux is running in enforcing mode.

Procedure 3.2. An Example of Confined Process

1. As root, start the httpd daemon:

~]# systemctl start httpd.service

Confirm that the service is running. The output should include the information below (only the
time stamp will differ):

~]$ systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: active (running) since Mon 2013-08-05 14:00:55 CEST; 8s ago

2. Change into a directory where your Linux user has write access to, and enter the following
command. Unless there are changes to the default configuration, this command succeeds:

~]$ wget http://localhost/testfile
--2009-11-06 17:43:01-- http://localhost/testfile
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 0 [text/plain]
Saving to: `testfile'

[<=>] 0 --.-K/s in 0s

2009-11-06 17:43:01 (0.00 B/s) - `testfile' saved [0/0]

3. The chcon command relabels files; however, such label changes do not survive when the file
system is relabeled. For permanent changes that survive a file system relabel, use the
semanage utility, which is discussed later. As root, enter the following command to change the
type to a type used by Samba:

~]# chcon -t samba_share_t /var/www/html/testfile

Enter the following command to view the changes:

~]$ ls -Z /var/www/html/testfile
-rw-r--r-- root root unconfined_u:object_r:samba_share_t:s0 /var/www/html/testfile

4. Note that the current DAC permissions allow the httpd process access to testfile. Change into a

CHAPTER 3. TARGETED POLICY

17

4. Note that the current DAC permissions allow the httpd process access to testfile. Change into a
directory where your user has write access to, and enter the following command. Unless there
are changes to the default configuration, this command fails:

~]$ wget http://localhost/testfile
--2009-11-06 14:11:23-- http://localhost/testfile
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 403 Forbidden
2009-11-06 14:11:23 ERROR 403: Forbidden.

5. As root, remove testfile:

~]# rm -i /var/www/html/testfile

6. If you do not require httpd to be running, as root, enter the following command to stop it:

~]# systemctl stop httpd.service

This example demonstrates the additional security added by SELinux. Although DAC rules allowed the
httpd process access to testfile in step 2, because the file was labeled with a type that the httpd
process does not have access to, SELinux denied access.

If the auditd daemon is running, an error similar to the following is logged to /var/log/audit/audit.log:

type=AVC msg=audit(1220706212.937:70): avc: denied { getattr } for pid=1904 comm="httpd"
path="/var/www/html/testfile" dev=sda5 ino=247576 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1220706212.937:70): arch=40000003 syscall=196 success=no exit=-13
a0=b9e21da0 a1=bf9581dc a2=555ff4 a3=2008171 items=0 ppid=1902 pid=1904 auid=500 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=1 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)

Also, an error similar to the following is logged to /var/log/httpd/error_log:

[Wed May 06 23:00:54 2009] [error] [client 127.0.0.1] (13)Permission denied: access to /testfile
denied

3.2. UNCONFINED PROCESSES

Unconfined processes run in unconfined domains, for example, unconfined services executed by init end
up running in the unconfined_service_t domain, unconfined services executed by kernel end up
running in the kernel_t domain, and unconfined services executed by unconfined Linux users end up
running in the unconfined_t domain. For unconfined processes, SELinux policy rules are applied, but
policy rules exist that allow processes running in unconfined domains almost all access. Processes
running in unconfined domains fall back to using DAC rules exclusively. If an unconfined process is
compromised, SELinux does not prevent an attacker from gaining access to system resources and data,
but of course, DAC rules are still used. SELinux is a security enhancement on top of DAC rules – it does
not replace them.

To ensure that SELinux is enabled and the system is prepared to perform the following example,

SELinux User's and Administrator's Guide

18

To ensure that SELinux is enabled and the system is prepared to perform the following example,
complete the Procedure 3.1, “How to Verify SELinux Status” described in Section 3.1, “Confined
Processes”.

The following example demonstrates how the Apache HTTP Server (httpd) can access data intended
for use by Samba, when running unconfined. Note that in Red Hat Enterprise Linux, the httpd process
runs in the confined httpd_t domain by default. This is an example, and should not be used in production.
It assumes that the httpd, wget, dbus and audit packages are installed, that the SELinux targeted policy
is used, and that SELinux is running in enforcing mode.

Procedure 3.3. An Example of Unconfined Process

1. The chcon command relabels files; however, such label changes do not survive when the file
system is relabeled. For permanent changes that survive a file system relabel, use the
semanage utility, which is discussed later. As the root user, enter the following command to
change the type to a type used by Samba:

~]# chcon -t samba_share_t /var/www/html/testfile

View the changes:

~]$ ls -Z /var/www/html/testfile
-rw-r--r-- root root unconfined_u:object_r:samba_share_t:s0 /var/www/html/testfile

2. Enter the following command to confirm that the httpd process is not running:

~]$ systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: inactive (dead)

If the output differs, enter the following command as root to stop the httpd process:

~]# systemctl stop httpd.service

3. To make the httpd process run unconfined, enter the following command as root to change the
type of the /usr/sbin/httpd file, to a type that does not transition to a confined domain:

~]# chcon -t bin_t /usr/sbin/httpd

4. Confirm that /usr/sbin/httpd is labeled with the bin_t type:

~]$ ls -Z /usr/sbin/httpd
-rwxr-xr-x. root root system_u:object_r:bin_t:s0 /usr/sbin/httpd

5. As root, start the httpd process and confirm, that it started successfully:

~]# systemctl start httpd.service

~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)

CHAPTER 3. TARGETED POLICY

19

 Active: active (running) since Thu 2013-08-15 11:17:01 CEST; 5s ago

6. Enter the following command to view httpd running in the unconfined_service_t domain:

~]$ ps -eZ | grep httpd
system_u:system_r:unconfined_service_t:s0 11884 ? 00:00:00 httpd
system_u:system_r:unconfined_service_t:s0 11885 ? 00:00:00 httpd
system_u:system_r:unconfined_service_t:s0 11886 ? 00:00:00 httpd
system_u:system_r:unconfined_service_t:s0 11887 ? 00:00:00 httpd
system_u:system_r:unconfined_service_t:s0 11888 ? 00:00:00 httpd
system_u:system_r:unconfined_service_t:s0 11889 ? 00:00:00 httpd

7. Change into a directory where your Linux user has write access to, and enter the following
command. Unless there are changes to the default configuration, this command succeeds:

~]$ wget http://localhost/testfile
--2009-05-07 01:41:10-- http://localhost/testfile
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 0 [text/plain]
Saving to: `testfile'

[<=>]--.-K/s in 0s

2009-05-07 01:41:10 (0.00 B/s) - `testfile' saved [0/0]

Although the httpd process does not have access to files labeled with the samba_share_t type,
httpd is running in the unconfined unconfined_service_t domain, and falls back to using DAC
rules, and as such, the wget command succeeds. Had httpd been running in the confined
httpd_t domain, the wget command would have failed.

8. The restorecon utility restores the default SELinux context for files. As root, enter the
following command to restore the default SELinux context for /usr/sbin/httpd:

~]# restorecon -v /usr/sbin/httpd
restorecon reset /usr/sbin/httpd context system_u:object_r:unconfined_exec_t:s0-
>system_u:object_r:httpd_exec_t:s0

Confirm that /usr/sbin/httpd is labeled with the httpd_exec_t type:

~]$ ls -Z /usr/sbin/httpd
-rwxr-xr-x root root system_u:object_r:httpd_exec_t:s0 /usr/sbin/httpd

9. As root, enter the following command to restart httpd. After restarting, confirm that httpd is
running in the confined httpd_t domain:

~]# systemctl restart httpd.service

~]$ ps -eZ | grep httpd
system_u:system_r:httpd_t:s0 8883 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 8884 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 8885 ? 00:00:00 httpd

SELinux User's and Administrator's Guide

20

system_u:system_r:httpd_t:s0 8886 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 8887 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 8888 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 8889 ? 00:00:00 httpd

10. As root, remove testfile:

~]# rm -i /var/www/html/testfile
rm: remove regular empty file `/var/www/html/testfile'? y

11. If you do not require httpd to be running, as root, enter the following command to stop httpd:

~]# systemctl stop httpd.service

The examples in these sections demonstrate how data can be protected from a compromised confined-
process (protected by SELinux), as well as how data is more accessible to an attacker from a
compromised unconfined-process (not protected by SELinux).

3.3. CONFINED AND UNCONFINED USERS

Each Linux user is mapped to an SELinux user using SELinux policy. This allows Linux users to inherit the
restrictions on SELinux users. This Linux user mapping is seen by running the semanage login -l
command as root:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

In Red Hat Enterprise Linux, Linux users are mapped to the SELinux __default__ login by default, which
is mapped to the SELinux unconfined_u user. The following line defines the default mapping:

__default__ unconfined_u s0-s0:c0.c1023

The following procedure demonstrates how to add a new Linux user to the system and how to map that
user to the SELinux unconfined_u user. It assumes that the root user is running unconfined, as it does
by default in Red Hat Enterprise Linux:

Procedure 3.4. Mapping a New Linux User to the SELinux unconfined_u User

1. As root, enter the following command to create a new Linux user named newuser:

~]# useradd newuser

2. To assign a password to the Linux newuser user. Enter the following command as root:

~]# passwd newuser
Changing password for user newuser.
New UNIX password: Enter a password

CHAPTER 3. TARGETED POLICY

21

Retype new UNIX password: Enter the same password again
passwd: all authentication tokens updated successfully.

3. Log out of your current session, and log in as the Linux newuser user. When you log in, the
pam_selinux PAM module automatically maps the Linux user to an SELinux user (in this case,
unconfined_u), and sets up the resulting SELinux context. The Linux user's shell is then
launched with this context. Enter the following command to view the context of a Linux user:

[newuser@localhost ~]$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

NOTE

If you no longer need the newuser user on your system, log out of the Linux
newuser's session, log in with your account, and run the userdel -r newuser
command as root. It will remove newuser along with their home directory.

Confined and unconfined Linux users are subject to executable and writable memory checks, and are
also restricted by MCS or MLS.

To list the available SELinux users, enter the following command:

~]$seinfo -u
Users: 8
 sysadm_u
 system_u
 xguest_u
 root
 guest_u
 staff_u
 user_u
 unconfined_u

Note that the seinfo command is provided by the setools-console package, which is not installed by
default.

If an unconfined Linux user executes an application that SELinux policy defines as one that can
transition from the unconfined_t domain to its own confined domain, the unconfined Linux user is still
subject to the restrictions of that confined domain. The security benefit of this is that, even though a
Linux user is running unconfined, the application remains confined. Therefore, the exploitation of a flaw
in the application can be limited by the policy.

Similarly, we can apply these checks to confined users. Each confined Linux user is restricted by a
confined user domain. The SELinux policy can also define a transition from a confined user domain to its
own target confined domain. In such a case, confined Linux users are subject to the restrictions of that
target confined domain. The main point is that special privileges are associated with the confined users
according to their role. In the table below, you can see examples of basic confined domains for Linux
users in Red Hat Enterprise Linux:

Table 3.1. SELinux User Capabilities

SELinux User's and Administrator's Guide

22

User Role Domain X Window
System

su or sudo Execute in
home
directory
and /tmp
(default)

Networking

sysadm_u sysadm_r sysadm_t yes su and sudo yes yes

staff_u staff_r staff_t yes only sudo yes yes

user_u user_r user_t yes no yes yes

guest_u guest_r guest_t no no no no

xguest_u xguest_r xguest_t yes no no Firefox only

Linux users in the user_t, guest_t, and xguest_t domains can only run set user ID (setuid)
applications if SELinux policy permits it (for example, passwd). These users cannot run the su
and sudo setuid applications, and therefore cannot use these applications to become root.

Linux users in the sysadm_t, staff_t, user_t, and xguest_t domains can log in using the X
Window System and a terminal.

By default, Linux users in the guest_t and xguest_t domains cannot execute applications in
their home directories or the /tmp directory, preventing them from executing applications,
which inherit users' permissions, in directories they have write access to. This helps prevent
flawed or malicious applications from modifying users' files.

By default, Linux users in the staff_t and user_t domains can execute applications in their home
directories and /tmp. See Section 6.6, “Booleans for Users Executing Applications” for
information about allowing and preventing users from executing applications in their home
directories and /tmp.

The only network access Linux users in the xguest_t domain have is Firefox connecting to web
pages.

Note that system_u is a special user identity for system processes and objects. It must never be
associated to a Linux user. Also, unconfined_u and root are unconfined users. For these reasons, they
are not included in the aforementioned table of SELinux user capabilities.

Alongside with the already mentioned SELinux users, there are special roles, that can be mapped to
those users. These roles determine what SELinux allows the user to do:

webadm_r can only administrate SELinux types related to the Apache HTTP Server. See
Section 14.2, “Types” for further information.

dbadm_r can only administrate SELinux types related to the MariaDB database and the
PostgreSQL database management system. See Section 21.2, “Types” and Section 22.2,
“Types” for further information.

logadm_r can only administrate SELinux types related to the syslog and auditlog processes.

secadm_r can only administrate SELinux.

CHAPTER 3. TARGETED POLICY

23

auditadm_r can only administrate processes related to the audit subsystem.

To list all available roles, enter the following command:

~]$ seinfo -r

As mentioned before, the seinfo command is provided by the setools-console package, which is not
installed by default.

3.3.1. The sudo Transition and SELinux Roles

In certain cases, confined users need to perform an administrative task that require root privileges. To
do so, such a confined user has to gain a confined administrator SELinux role using the sudo command.
The sudo command is used to give trusted users administrative access. When users precede an
administrative command with sudo, they are prompted for their own password. Then, when they have
been authenticated and assuming that the command is permitted, the administrative command is
executed as if they were the root user.

As shown in Table 3.1, “SELinux User Capabilities” , only the staff_u and sysadm_u SELinux confined
users are permitted to use sudo by default. When such users execute a command with sudo, their role
can be changed based on the rules specified in the /etc/sudoers configuration file or in a respective file
in the /etc/sudoers.d/ directory if such a file exists.

For more information about sudo, see the Gaining Privileges section in the Red Hat Enterprise Linux 7
System Administrator's Guide.

Procedure 3.5. Configuring the sudo Transition

This procedure shows how to set up sudo to transition a newly-created SELinux_user_u confined user
from a default_role_t to a administrator_r administrator role. To configure a confined administrator role
for an already existing SELinux user, skip the first two steps. Also, note that the following commands
must be run as the root user. To better understand the placeholders in the following procedure, such as
default_role_t or administrator_r, see the example in step 6.

1. Create a new SELinux user and specify the default SELinux role and a supplementary confined
administrator role for this user:

~]# semanage user -a -r s0-s0:c0.c1023 -R "default_role_r administrator_r" SELinux_user_u

2. Set up the default SElinux policy context file. For example, to have the same SELinux rules as
the staff_u SELinux user, copy the staff_u context file:

~]# cp /etc/selinux/targeted/contexts/users/staff_u
/etc/selinux/targeted/contexts/users/SELinux_user_u

3. Map the newly-created SELinux user to an existing Linux user:

semanage login -a -s SELinux_user_u -rs0:c0.c1023 linux_user

4. Create a new configuration file with the same name as your Linux user in the /etc/sudoers.d/
directory and add the following string to it:

SELinux User's and Administrator's Guide

24

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/chap-Gaining_Privileges.html

~]# echo "linux_user ALL=(ALL) TYPE=administrator_t ROLE=administrator_r /bin/sh " >
/etc/sudoers.d/linux_user

5. Use the restorecon utility to relabel the linux_user home directory:

~]# restorecon -FR -v /home/linux_user

6. When you log in to the system as the newly-created Linux user, the user is labeled with the
default SELinux role:

~]$ id -Z
SELinux_user_u:default_role_r:SELinux_user_t:s0:c0.c1023

After running sudo, the user's SELinux context changes to the supplementary SELinux role as
specified in /etc/sudoers.d/linux_user. The -i option used with sudo caused that an interactive
shell is executed:

~]$ sudo -i
~]# id -Z
SELinux_user_u:administrator_r:administrator_t:s0-s0:c0.c1023

For the SELinux_user_u user from the example specified in the first step the output looks like
below:

~]$ id -Z
confined_u:staff_r:staff_t:s0:c0.c1023
~]$ sudo -i
~]# id -Z
confined_u:webadm_r:webadm_t:s0:c0.c1023

In the example bellow, we will create a new SELinux user confined_u with default assigned role
staff_r and with sudo configured to change the role of confined_u from staff_r to webadm_r.

~]# semanage user -a -r s0-s0:c0.c1023 -R "staff_r webadm_r" confined_u
~]# cp /etc/selinux/targeted/contexts/users/staff_u
/etc/selinux/targeted/contexts/users/confined_u
~]# semanage login -a -s confined_u -rs0:c0.c1023 linux_user
~]# restorecon -FR -v /home/linux_user
~]# echo "linux_user ALL=(ALL) TYPE=webadm_t ROLE=webadm_r /bin/sh " >
/etc/sudoers.d/linux_user

When you log in to the system as the newly-created Linux user, the user is labeled with the
default SELinux role:

~]$ id -Z
confined_u:staff_r:staff_t:s0:c0.c1023
~]$ sudo -i
~]# id -Z
confined_u:webadm_r:webadm_t:s0:c0.c1023

CHAPTER 3. TARGETED POLICY

25

CHAPTER 4. WORKING WITH SELINUX
The following sections give a brief overview of the main SELinux packages in Red Hat Enterprise Linux;
installing and updating packages; which log files are used; the main SELinux configuration file; enabling
and disabling SELinux; SELinux modes; configuring Booleans; temporarily and persistently changing file
and directory labels; overriding file system labels with the mount command; mounting NFS volumes;
and how to preserve SELinux contexts when copying and archiving files and directories.

4.1. SELINUX PACKAGES

In Red Hat Enterprise Linux full installation, the SELinux packages are installed by default unless they are
manually excluded during installation. If performing a minimal installation in text mode, the
policycoreutils-python and the policycoreutils-gui package are not installed by default. Also, by default,
SELinux runs in enforcing mode and the SELinux targeted policy is used. The following SELinux
packages are installed on your system by default:

policycoreutils provides utilities such as restorecon, secon, setfiles, semodule, load_policy,
and setsebool, for operating and managing SELinux.

selinux-policy provides a basic directory structure, the selinux-policy.conf file, and RPM
macros.

selinux-policy-targeted provides the SELinux targeted policy.

libselinux – provides an API for SELinux applications.

libselinux-utils provides the avcstat, getenforce, getsebool, matchpathcon, selinuxconlist,
selinuxdefcon, selinuxenabled, and setenforce utilities.

libselinux-python provides Python bindings for developing SELinux applications.

The following packages are not installed by default but can be optionally installed by running the
yum install <package-name> command:

selinux-policy-devel provides utilities for creating a custom SELinux policy and policy modules.

selinux-policy-doc provides manual pages that describe how to configure SELinux altogether
with various services.

selinux-policy-mls provides the MLS (Multi-Level Security) SELinux policy.

setroubleshoot-server translates denial messages, produced when access is denied by SELinux,
into detailed descriptions that can be viewed with the sealert utility, also provided in this
package.

setools-console provides the Tresys Technology SETools distribution , a number of utilities and
libraries for analyzing and querying policy, audit log monitoring and reporting, and file context
management. The setools package is a meta-package for SETools. The setools-gui package
provides the apol and seaudit utilities. The setools-console package provides the sechecker,
sediff, seinfo, sesearch, and findcon command-line utilities. See the Tresys Technology
SETools page for information about these utilities. Note that setools and setools-gui packages
are available only when the Red Hat Network Optional channel is enabled. For further
information, see Scope of Coverage Details.

mcstrans translates levels, such as s0-s0:c0.c1023, to a form that is easier to read, such as
SystemLow-SystemHigh.

SELinux User's and Administrator's Guide

26

http://oss.tresys.com/projects/setools
http://oss.tresys.com/projects/setools
https://access.redhat.com/site/support/offerings/production/scope_moredetail

policycoreutils-python provides utilities such as semanage, audit2allow, audit2why, and
chcat, for operating and managing SELinux.

policycoreutils-gui provides system-config-selinux, a graphical utility for managing SELinux.

4.2. WHICH LOG FILE IS USED

In Red Hat Enterprise Linux, the dbus and audit packages are installed by default, unless they are
removed from the default package selection. The setroubleshoot-server must be installed using Yum
(use the yum install setroubleshoot-server command).

If the auditd daemon is running, an SELinux denial message, such as the following, is written to
/var/log/audit/audit.log by default:

type=AVC msg=audit(1223024155.684:49): avc: denied { getattr } for pid=2000 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=399185 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=system_u:object_r:samba_share_t:s0 tclass=file

In addition, a message similar to the one below is written to the /var/log/message file:

May 7 18:55:56 localhost setroubleshoot: SELinux is preventing httpd (httpd_t) "getattr" to
/var/www/html/file1 (samba_share_t). For complete SELinux messages. run sealert -l de7e30d6-
5488-466d-a606-92c9f40d316d

In Red Hat Enterprise Linux 7, setroubleshootd no longer constantly runs as a service. However, it is still
used to analyze the AVC messages. Two new programs act as a method to start setroubleshoot when
needed:

The sedispatch utility runs as a part of the audit subsystem. When an AVC denial message is
returned, sedispatch sends a message using dbus. These messages go straight to
setroubleshootd if it is already running. If it is not running, sedispatch starts it automatically.

The seapplet utility runs in the system toolbar, waiting for dbus messages in setroubleshootd.
It launches the notification bubble, allowing the user to review AVC messages.

Procedure 4.1. Starting Daemons Automatically

1. To configure the auditd and rsyslog daemons to automatically start at boot, enter the
following commands as the root user:

~]# systemctl enable auditd.service

~]# systemctl enable rsyslog.service

2. To ensure that the daemons are enabled, type the following commands at the shell prompt:

~]$ systemctl is-enabled auditd
enabled

~]$ systemctl is-enabled rsyslog
enabled

Alternatively, use the systemctl status service-name.service command and search for the

CHAPTER 4. WORKING WITH SELINUX

27

Alternatively, use the systemctl status service-name.service command and search for the
keyword enabled in the command output, for example:

~]$ systemctl status auditd.service | grep enabled
auditd.service - Security Auditing Service
 Loaded: loaded (/usr/lib/systemd/system/auditd.service; enabled)

To learn more on how the systemd daemon manages system services, see the Managing System
Services chapter in the System Administrator's Guide.

4.3. MAIN CONFIGURATION FILE

The /etc/selinux/config file is the main SELinux configuration file. It controls whether SELinux is
enabled or disabled and which SELinux mode and SELinux policy is used:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

SELINUX=

The SELINUX option sets whether SELinux is disabled or enabled and in which mode - enforcing or
permissive - it is running:

When using SELINUX=enforcing, SELinux policy is enforced, and SELinux denies access
based on SELinux policy rules. Denial messages are logged.

When using SELINUX=permissive, SELinux policy is not enforced. SELinux does not deny
access, but denials are logged for actions that would have been denied if running SELinux in
enforcing mode.

When using SELINUX=disabled, SELinux is disabled, the SELinux module is not registered
with the Linux kernel, and only DAC rules are used.

SELINUXTYPE=

The SELINUXTYPE option sets the SELinux policy to use. Targeted policy is the default policy. Only
change this option if you want to use the MLS policy. For information on how to enable the MLS
policy, see Section 4.13.2, “Enabling MLS in SELinux” .

4.4. PERMANENT CHANGES IN SELINUX STATES AND MODES

As discussed in Section 1.4, “SELinux States and Modes” , SELinux can be enabled or disabled. When
enabled, SELinux has two modes: enforcing and permissive.

Use the getenforce or sestatus commands to check in which mode SELinux is running. The getenforce
command returns Enforcing, Permissive, or Disabled.

SELinux User's and Administrator's Guide

28

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/sect-Managing_Services_with_systemd-Services.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/index.html

The sestatus command returns the SELinux status and the SELinux policy being used:

~]$ sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 30

NOTE

When systems run SELinux in permissive mode, users are able to label files incorrectly.
Files created while SELinux is disabled are not labeled at all. This behavior causes
problems when changing to enforcing mode because files are labeled incorrectly or are
not labeled at all. To prevent incorrectly labeled and unlabeled files from causing
problems, file systems are automatically relabeled when changing from the disabled state
to permissive or enforcing mode.

4.4.1. Enabling SELinux

When enabled, SELinux can run in one of two modes: enforcing or permissive. The following sections
show how to permanently change into these modes.

While enabling SELinux on systems that previously had it disabled, to avoid problems, such as systems
unable to boot or process failures, Red Hat recommends to follow this procedure:

1. Enable SELinux in permissive mode. For more information, see Section 4.4.1.1, “Permissive
Mode”.

2. Reboot your system.

3. Check for SELinux denial messages. For more information, see Section 11.3.5, “Searching For
and Viewing Denials”.

4. If there are no denials, switch to enforcing mode. For more information, see Section 4.4.1.2,
“Enforcing Mode”.

To run custom applications with SELinux in enforcing mode, choose one of the following scenarios:

Run your application in the unconfined_service_t domain. See Section 3.2, “Unconfined
Processes” for more information.

Write a new policy for your application. See the Writing Custom SELinux Policy Knowledgebase
article for more information.

4.4.1.1. Permissive Mode

When SELinux is running in permissive mode, SELinux policy is not enforced. The system remains
operational and SELinux does not deny any operations but only logs AVC messages, which can be then
used for troubleshooting, debugging, and SELinux policy improvements. Each AVC is logged only once
in this case.

CHAPTER 4. WORKING WITH SELINUX

29

https://access.redhat.com/solutions/117583

To permanently change mode to permissive, follow the procedure below:

Procedure 4.2. Changing to Permissive Mode

1. Edit the /etc/selinux/config file as follows:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

2. Reboot the system:

~]# reboot

4.4.1.2. Enforcing Mode

When SELinux is running in enforcing mode, it enforces the SELinux policy and denies access based on
SELinux policy rules. In Red Hat Enterprise Linux, enforcing mode is enabled by default when the system
was initially installed with SELinux.

If SELinux was disabled, follow the procedure below to change mode to enforcing again:

Procedure 4.3. Changing to Enforcing Mode

This procedure assumes that the selinux-policy-targeted, selinux-policy, libselinux, libselinux-python,
libselinux-utils, policycoreutils, and policycoreutils-python packages are installed. To verify that the
packages are installed, use the following command:

rpm -q package_name

1. Edit the /etc/selinux/config file as follows:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

2. Reboot the system:

~]# reboot

SELinux User's and Administrator's Guide

30

On the next boot, SELinux relabels all the files and directories within the system and adds
SELinux context for files and directories that were created when SELinux was disabled.

NOTE

After changing to enforcing mode, SELinux may deny some actions because of incorrect
or missing SELinux policy rules. To view what actions SELinux denies, enter the following
command as root:

~]# ausearch -m AVC,USER_AVC,SELINUX_ERR -ts today

Alternatively, with the setroubleshoot-server package installed, enter the following
command as root:

~]# grep "SELinux is preventing" /var/log/messages

If SELinux denies some actions, see Chapter 11, Troubleshooting for information about
troubleshooting.

Temporary changes in modes are covered in Section 1.4, “SELinux States and Modes” .

4.4.2. Disabling SELinux

When SELinux is disabled, SELinux policy is not loaded at all; it is not enforced and AVC messages are
not logged. Therefore, all benefits of running SELinux listed in Section 1.1, “Benefits of running SELinux”
are lost.

IMPORTANT

Red Hat strongly recommends to use permissive mode instead of permanently disabling
SELinux. See Section 4.4.1.1, “Permissive Mode” for more information about permissive
mode.

To permanently disable SELinux, follow the procedure below:

Procedure 4.4. Disabling SELinux

1. Configure SELINUX=disabled in the /etc/selinux/config file:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=disabled
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=targeted

2. Reboot your system. After reboot, confirm that the getenforce command returns Disabled:

CHAPTER 4. WORKING WITH SELINUX

31

~]$ getenforce
Disabled

4.5. CHANGING SELINUX MODES AT BOOT TIME

On boot, you can set several kernel parameters to change the way SELinux runs:

enforcing=0

Setting this parameter causes the machine to boot in permissive mode, which is useful when
troubleshooting issues. Using permissive mode might be the only option to detect a problem if your
file system is too corrupted. Moreover, in permissive mode the system continues to create the labels
correctly. The AVC messages that are created in this mode can be different than in enforcing mode.
In permissive mode, only the first denial is reported. However, in enforcing mode you might get a
denial on reading a directory and an application stops. In permissive mode, you get the same AVC
message, but the application continues reading files in the directory and you get an AVC for each
denial in addition.

selinux=0

This parameter causes the kernel to not load any part of the SELinux infrastructure. The init scripts
notice that the system booted with the selinux=0 parameter and touch the /.autorelabel file. This
causes the system to automatically relabel the next time you boot with SELinux enabled.

IMPORTANT

Red Hat does not recommend using the selinux=0 parameter. To debug your system,
prefer using permissive mode.

autorelabel=1

This parameter forces the system to relabel similarly to the following commands:

~]# touch /.autorelabel
~]# reboot

If the system labeling contains a large amount of errors, you might need to boot in permissive mode
in order that the autorelabel succeeds.

For additional SELinux-related kernel boot parameters, such as checkreqprot, see the
/usr/share/doc/kernel-doc-<KERNEL_VER>/Documentation/kernel-parameters.txt file. This
documentation is installed with the kernel-doc package. Replace the <KERNEL_VER> string with the
version number of the installed kernel, for example:

~]# yum install kernel-doc
~]$ less /usr/share/doc/kernel-doc-3.10.0/Documentation/kernel-parameters.txt

4.6. BOOLEANS

Booleans allow parts of SELinux policy to be changed at runtime, without any knowledge of SELinux
policy writing. This allows changes, such as allowing services access to NFS volumes, without reloading
or recompiling SELinux policy.

SELinux User's and Administrator's Guide

32

4.6.1. Listing Booleans

For a list of Booleans, an explanation of what each one is, and whether they are on or off, run the
semanage boolean -l command as the Linux root user. The following example does not list all Booleans
and the output is shortened for brevity:

~]# semanage boolean -l
SELinux boolean State Default Description

smartmon_3ware (off , off) Determine whether smartmon can...
mpd_enable_homedirs (off , off) Determine whether mpd can traverse...

NOTE

To have more detailed descriptions, install the selinux-policy-devel package.

The SELinux boolean column lists Boolean names. The Description column lists whether the Booleans
are on or off, and what they do.

The getsebool -a command lists Booleans, whether they are on or off, but does not give a description of
each one. The following example does not list all Booleans:

~]$ getsebool -a
cvs_read_shadow --> off
daemons_dump_core --> on

Run the getsebool boolean-name command to only list the status of the boolean-name Boolean:

~]$ getsebool cvs_read_shadow
cvs_read_shadow --> off

Use a space-separated list to list multiple Booleans:

~]$ getsebool cvs_read_shadow daemons_dump_core
cvs_read_shadow --> off
daemons_dump_core --> on

4.6.2. Configuring Booleans

Run the setsebool utility in the setsebool boolean_name on/off form to enable or disable Booleans.

The following example demonstrates configuring the httpd_can_network_connect_db Boolean:

Procedure 4.5. Configuring Booleans

1. By default, the httpd_can_network_connect_db Boolean is off, preventing Apache HTTP
Server scripts and modules from connecting to database servers:

~]$ getsebool httpd_can_network_connect_db
httpd_can_network_connect_db --> off

2. To temporarily enable Apache HTTP Server scripts and modules to connect to database

CHAPTER 4. WORKING WITH SELINUX

33

2. To temporarily enable Apache HTTP Server scripts and modules to connect to database
servers, enter the following command as root:

~]# setsebool httpd_can_network_connect_db on

3. Use the getsebool utility to verify the Boolean has been enabled:

~]$ getsebool httpd_can_network_connect_db
httpd_can_network_connect_db --> on

This allows Apache HTTP Server scripts and modules to connect to database servers.

4. This change is not persistent across reboots. To make changes persistent across reboots, run
the setsebool -P boolean-name on command as root: [3]

~]# setsebool -P httpd_can_network_connect_db on

4.6.3. Shell Auto-Completion

It is possible to use shell auto-completion with the getsebool, setsebool, and semanage utilities. Use
the auto-completion with getsebool and setsebool to complete both command-line parameters and
Booleans. To list only the command-line parameters, add the hyphen character ("-") after the command
name and hit the Tab key:

~]# setsebool -[Tab]
-P

To complete a Boolean, start writing the Boolean name and then hit Tab:

~]$ getsebool samba_[Tab]
samba_create_home_dirs samba_export_all_ro samba_run_unconfined
samba_domain_controller samba_export_all_rw samba_share_fusefs
samba_enable_home_dirs samba_portmapper samba_share_nfs

~]# setsebool -P virt_use_[Tab]
virt_use_comm virt_use_nfs virt_use_sanlock
virt_use_execmem virt_use_rawip virt_use_usb
virt_use_fusefs virt_use_samba virt_use_xserver

The semanage utility is used with several command-line arguments that are completed one by one. The
first argument of a semanage command is an option, which specifies what part of SELinux policy is
managed:

~]# semanage [Tab]
boolean export import login node port
dontaudit fcontext interface module permissive user

Then, one or more command-line parameters follow:

~]# semanage fcontext -[Tab]
-a -D --equal --help -m -o
--add --delete -f -l --modify -S

SELinux User's and Administrator's Guide

34

-C --deleteall --ftype --list -n -t
-d -e -h --locallist --noheading --type

Finally, complete the name of a particular SELinux entry, such as a Boolean, SELinux user, domain, or
another. Start typing the entry and hit Tab:

~]# semanage fcontext -a -t samba<tab>
samba_etc_t samba_secrets_t
sambagui_exec_t samba_share_t
samba_initrc_exec_t samba_unconfined_script_exec_t
samba_log_t samba_unit_file_t
samba_net_exec_t

Command-line parameters can be chained in a command:

~]# semanage port -a -t http_port_t -p tcp 81

4.7. SELINUX CONTEXTS – LABELING FILES

On systems running SELinux, all processes and files are labeled in a way that represents security-
relevant information. This information is called the SELinux context. For files, this is viewed using the ls -
Z command:

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

In this example, SELinux provides a user (unconfined_u), a role (object_r), a type (user_home_t), and
a level (s0). This information is used to make access control decisions. On DAC systems, access is
controlled based on Linux user and group IDs. SELinux policy rules are checked after DAC rules.
SELinux policy rules are not used if DAC rules deny access first.

NOTE

By default, newly-created files and directories inherit the SELinux type of their parent
directories. For example, when creating a new file in the /etc directory that is labeled with
the etc_t type, the new file inherits the same type:

~]$ ls -dZ - /etc
drwxr-xr-x. root root system_u:object_r:etc_t:s0 /etc

~]# touch /etc/file1

~]# ls -lZ /etc/file1
-rw-r--r--. root root unconfined_u:object_r:etc_t:s0 /etc/file1

There are multiple commands for managing the SELinux context for files, such as chcon, semanage
fcontext, and restorecon.

4.7.1. Temporary Changes: chcon

The chcon command changes the SELinux context for files. However, changes made with the chcon

CHAPTER 4. WORKING WITH SELINUX

35

command do not survive a file system relabel, or the execution of the restorecon command. SELinux
policy controls whether users are able to modify the SELinux context for any given file. When using
chcon, users provide all or part of the SELinux context to change. An incorrect file type is a common
cause of SELinux denying access.

Quick Reference

Run the chcon -t type file-name command to change the file type, where type is an SELinux
type, such as httpd_sys_content_t, and file-name is a file or directory name:

~]$ chcon -t httpd_sys_content_t file-name

Run the chcon -R -t type directory-name command to change the type of the directory and its
contents, where type is an SELinux type, such as httpd_sys_content_t, and directory-name is a
directory name:

~]$ chcon -R -t httpd_sys_content_t directory-name

Procedure 4.6. Changing a File's or Directory's Type

The following procedure demonstrates changing the type, and no other attributes of the SELinux
context. The example in this section works the same for directories, for example, if file1 was a directory.

1. Change into your home directory.

2. Create a new file and view its SELinux context:

~]$ touch file1

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

In this example, the SELinux context for file1 includes the SELinux unconfined_u user,
object_r role, user_home_t type, and the s0 level. For a description of each part of the
SELinux context, see Chapter 2, SELinux Contexts.

3. Enter the following command to change the type to samba_share_t. The -t option only
changes the type. Then view the change:

~]$ chcon -t samba_share_t file1

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:samba_share_t:s0 file1

4. Use the following command to restore the SELinux context for the file1 file. Use the -v option
to view what changes:

~]$ restorecon -v file1
restorecon reset file1 context unconfined_u:object_r:samba_share_t:s0-
>system_u:object_r:user_home_t:s0

In this example, the previous type, samba_share_t, is restored to the correct, user_home_t
type. When using targeted policy (the default SELinux policy in Red Hat Enterprise Linux), the

SELinux User's and Administrator's Guide

36

restorecon command reads the files in the /etc/selinux/targeted/contexts/files/ directory, to
see which SELinux context files should have.

Procedure 4.7. Changing a Directory and its Contents Types

The following example demonstrates creating a new directory, and changing the directory's file type
along with its contents to a type used by the Apache HTTP Server. The configuration in this example is
used if you want Apache HTTP Server to use a different document root (instead of /var/www/html/):

1. As the root user, create a new web/ directory and then 3 empty files (file1, file2, and file3) within
this directory. The web/ directory and files in it are labeled with the default_t type:

~]# mkdir /web

~]# touch /web/file{1,2,3}

~]# ls -dZ /web
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /web

~]# ls -lZ /web
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file3

2. As root, enter the following command to change the type of the web/ directory (and its
contents) to httpd_sys_content_t:

~]# chcon -R -t httpd_sys_content_t /web/

~]# ls -dZ /web/
drwxr-xr-x root root unconfined_u:object_r:httpd_sys_content_t:s0 /web/

~]# ls -lZ /web/
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file3

3. To restore the default SELinux contexts, use the restorecon utility as root:

~]# restorecon -R -v /web/
restorecon reset /web context unconfined_u:object_r:httpd_sys_content_t:s0-
>system_u:object_r:default_t:s0
restorecon reset /web/file2 context unconfined_u:object_r:httpd_sys_content_t:s0-
>system_u:object_r:default_t:s0
restorecon reset /web/file3 context unconfined_u:object_r:httpd_sys_content_t:s0-
>system_u:object_r:default_t:s0
restorecon reset /web/file1 context unconfined_u:object_r:httpd_sys_content_t:s0-
>system_u:object_r:default_t:s0

See the chcon(1) manual page for further information about chcon.

NOTE

CHAPTER 4. WORKING WITH SELINUX

37

NOTE

Type Enforcement is the main permission control used in SELinux targeted policy. For
the most part, SELinux users and roles can be ignored.

4.7.2. Persistent Changes: semanage fcontext

The semanage fcontext command is used to change the SELinux context of files. To show contexts to
newly created files and directories, enter the following command as root:

~]# semanage fcontext -C -l

Changes made by semanage fcontext are used by the following utilities. The setfiles utility is used
when a file system is relabeled and the restorecon utility restores the default SELinux contexts. This
means that changes made by semanage fcontext are persistent, even if the file system is relabeled.
SELinux policy controls whether users are able to modify the SELinux context for any given file.

Quick Reference
To make SELinux context changes that survive a file system relabel:

1. Enter the following command, remembering to use the full path to the file or directory:

~]# semanage fcontext -a options file-name|directory-name

2. Use the restorecon utility to apply the context changes:

~]# restorecon -v file-name|directory-name

Procedure 4.8. Changing a File's or Directory 's Type

The following example demonstrates changing a file's type, and no other attributes of the SELinux
context. This example works the same for directories, for instance if file1 was a directory.

1. As the root user, create a new file in the /etc directory. By default, newly-created files in /etc are
labeled with the etc_t type:

~]# touch /etc/file1

~]$ ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1

To list information about a directory, use the following command:

~]$ ls -dZ directory_name

2. As root, enter the following command to change the file1 type to samba_share_t. The -a
option adds a new record, and the -t option defines a type (samba_share_t). Note that running
this command does not directly change the type; file1 is still labeled with the etc_t type:

~]# semanage fcontext -a -t samba_share_t /etc/file1

SELinux User's and Administrator's Guide

38

~]# ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1

~]$ semanage fcontext -C -l
/etc/file1 unconfined_u:object_r:samba_share_t:s0

3. As root, use the restorecon utility to change the type. Because semanage added an entry to
file_contexts.local for /etc/file1, restorecon changes the type to samba_share_t:

~]# restorecon -v /etc/file1
restorecon reset /etc/file1 context unconfined_u:object_r:etc_t:s0-
>system_u:object_r:samba_share_t:s0

Procedure 4.9. Changing a Directory and its Contents Types

The following example demonstrates creating a new directory, and changing the directory's file type
along with its contents to a type used by Apache HTTP Server. The configuration in this example is used
if you want Apache HTTP Server to use a different document root instead of /var/www/html/:

1. As the root user, create a new web/ directory and then 3 empty files (file1, file2, and file3) within
this directory. The web/ directory and files in it are labeled with the default_t type:

~]# mkdir /web

~]# touch /web/file{1,2,3}

~]# ls -dZ /web
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /web

~]# ls -lZ /web
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file3

2. As root, enter the following command to change the type of the web/ directory and the files in
it, to httpd_sys_content_t. The -a option adds a new record, and the -t option defines a type
(httpd_sys_content_t). The "/web(/.*)?" regular expression causes semanage to apply
changes to web/, as well as the files in it. Note that running this command does not directly
change the type; web/ and files in it are still labeled with the default_t type:

~]# semanage fcontext -a -t httpd_sys_content_t "/web(/.*)?"

~]$ ls -dZ /web
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /web

~]$ ls -lZ /web
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:default_t:s0 file3

The semanage fcontext -a -t httpd_sys_content_t "/web(/.*)?" command adds the following

CHAPTER 4. WORKING WITH SELINUX

39

The semanage fcontext -a -t httpd_sys_content_t "/web(/.*)?" command adds the following
entry to /etc/selinux/targeted/contexts/files/file_contexts.local:

/web(/.*)? system_u:object_r:httpd_sys_content_t:s0

3. As root, use the restorecon utility to change the type of web/, as well as all files in it. The -R is
for recursive, which means all files and directories under web/ are labeled with the
httpd_sys_content_t type. Since semanage added an entry to file.contexts.local for
/web(/.*)?, restorecon changes the types to httpd_sys_content_t:

~]# restorecon -R -v /web
restorecon reset /web context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /web/file2 context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /web/file3 context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /web/file1 context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

Note that by default, newly-created files and directories inherit the SELinux type of their parent
directories.

Procedure 4.10. Deleting an added Context

The following example demonstrates adding and removing an SELinux context. If the context is part of a
regular expression, for example, /web(/.*)?, use quotation marks around the regular expression:

~]# semanage fcontext -d "/web(/.*)?"

1. To remove the context, as root, enter the following command, where file-name|directory-name
is the first part in file_contexts.local:

~]# semanage fcontext -d file-name|directory-name

The following is an example of a context in file_contexts.local:

/test system_u:object_r:httpd_sys_content_t:s0

With the first part being test. To prevent the test/ directory from being labeled with the
httpd_sys_content_t after running restorecon, or after a file system relabel, enter the
following command as root to delete the context from file_contexts.local:

~]# semanage fcontext -d /test

2. As root, use the restorecon utility to restore the default SELinux context.

See the semanage(8) manual page for further information about semanage.

IMPORTANT

SELinux User's and Administrator's Guide

40

IMPORTANT

When changing the SELinux context with semanage fcontext -a, use the full path to the
file or directory to avoid files being mislabeled after a file system relabel, or after the
restorecon command is run.

4.8. THE FILE_T AND DEFAULT_T TYPES

When using a file system that supports extended attributes (EA), the file_t type is the default type of a
file that has not yet been assigned EA value. This type is only used for this purpose and does not exist on
correctly-labeled file systems, because all files on a system running SELinux should have a proper
SELinux context, and the file_t type is never used in file-context configuration [4].

The default_t type is used on files that do not match any pattern in file-context configuration, so that
such files can be distinguished from files that do not have a context on disk, and generally are kept
inaccessible to confined domains. For example, if you create a new top-level directory, such as
mydirectory/, this directory may be labeled with the default_t type. If services need access to this
directory, you need to update the file-contexts configuration for this location. See Section 4.7.2,
“Persistent Changes: semanage fcontext” for details on adding a context to the file-context
configuration.

4.9. MOUNTING FILE SYSTEMS

By default, when a file system that supports extended attributes is mounted, the security context for
each file is obtained from the security.selinux extended attribute of the file. Files in file systems that do
not support extended attributes are assigned a single, default security context from the policy
configuration, based on file system type.

Use the mount -o context command to override existing extended attributes, or to specify a different,
default context for file systems that do not support extended attributes. This is useful if you do not trust
a file system to supply the correct attributes, for example, removable media used in multiple systems.
The mount -o context command can also be used to support labeling for file systems that do not
support extended attributes, such as File Allocation Table (FAT) or NFS volumes. The context specified
with the context option is not written to disk: the original contexts are preserved, and are seen when
mounting without context if the file system had extended attributes in the first place.

For further information about file system labeling, see James Morris's "Filesystem Labeling in SELinux"
article: http://www.linuxjournal.com/article/7426.

4.9.1. Context Mounts

To mount a file system with the specified context, overriding existing contexts if they exist, or to specify
a different, default context for a file system that does not support extended attributes, as the root user,
use the mount -o context=SELinux_user:role:type:level command when mounting the required file
system. Context changes are not written to disk. By default, NFS mounts on the client side are labeled
with a default context defined by policy for NFS volumes. In common policies, this default context uses
the nfs_t type. Without additional mount options, this may prevent sharing NFS volumes using other
services, such as the Apache HTTP Server. The following example mounts an NFS volume so that it can
be shared using the Apache HTTP Server:

~]# mount server:/export /local/mount/point -o \ context="system_u:object_r:httpd_sys_content_t:s0"

Newly-created files and directories on this file system appear to have the SELinux context specified
with -o context. However, since these changes are not written to disk, the context specified with this

CHAPTER 4. WORKING WITH SELINUX

41

http://www.linuxjournal.com/article/7426

option does not persist between mounts. Therefore, this option must be used with the same context
specified during every mount to retain the required context. For information about making context
mount persistent, see Section 4.9.5, “Making Context Mounts Persistent” .

Type Enforcement is the main permission control used in SELinux targeted policy. For the most part,
SELinux users and roles can be ignored, so, when overriding the SELinux context with -o context, use
the SELinux system_u user and object_r role, and concentrate on the type. If you are not using the
MLS policy or multi-category security, use the s0 level.

NOTE

When a file system is mounted with a context option, context changes by users and
processes are prohibited. For example, running the chcon command on a file system
mounted with a context option results in a Operation not supported error.

4.9.2. Changing the Default Context

As mentioned in Section 4.8, “The file_t and default_t Types” , on file systems that support extended
attributes, when a file that lacks an SELinux context on disk is accessed, it is treated as if it had a default
context as defined by SELinux policy. In common policies, this default context uses the file_t type. If it is
desirable to use a different default context, mount the file system with the defcontext option.

The following example mounts a newly-created file system on /dev/sda2 to the newly-created test/
directory. It assumes that there are no rules in /etc/selinux/targeted/contexts/files/ that define a
context for the test/ directory:

~]# mount /dev/sda2 /test/ -o defcontext="system_u:object_r:samba_share_t:s0"

In this example:

the defcontext option defines that system_u:object_r:samba_share_t:s0 is "the default
security context for unlabeled files"[5].

when mounted, the root directory (test/) of the file system is treated as if it is labeled with the
context specified by defcontext (this label is not stored on disk). This affects the labeling for
files created under test/: new files inherit the samba_share_t type, and these labels are stored
on disk.

files created under test/ while the file system was mounted with a defcontext option retain their
labels.

4.9.3. Mounting an NFS Volume

By default, NFS mounts on the client side are labeled with a default context defined by policy for NFS
volumes. In common policies, this default context uses the nfs_t type. Depending on policy
configuration, services, such as Apache HTTP Server and MariaDB, may not be able to read files labeled
with the nfs_t type. This may prevent file systems labeled with this type from being mounted and then
read or exported by other services.

If you would like to mount an NFS volume and read or export that file system with another service, use
the context option when mounting to override the nfs_t type. Use the following context option to mount
NFS volumes so that they can be shared using the Apache HTTP Server:

~]# mount server:/export /local/mount/point -o context="system_u:object_r:httpd_sys_content_t:s0"

Since these changes are not written to disk, the context specified with this option does not persist

SELinux User's and Administrator's Guide

42

Since these changes are not written to disk, the context specified with this option does not persist
between mounts. Therefore, this option must be used with the same context specified during every
mount to retain the required context. For information about making context mount persistent, see
Section 4.9.5, “Making Context Mounts Persistent” .

As an alternative to mounting file systems with context options, Booleans can be enabled to allow
services access to file systems labeled with the nfs_t type. See Part II, “Managing Confined Services”
for instructions on configuring Booleans to allow services access to the nfs_t type.

4.9.4. Multiple NFS Mounts

When mounting multiple mounts from the same NFS export, attempting to override the SELinux context
of each mount with a different context, results in subsequent mount commands failing. In the following
example, the NFS server has a single export, export/, which has two subdirectories, web/ and database/.
The following commands attempt two mounts from a single NFS export, and try to override the context
for each one:

~]# mount server:/export/web /local/web -o context="system_u:object_r:httpd_sys_content_t:s0"

~]# mount server:/export/database /local/database -o context="system_u:object_r:mysqld_db_t:s0"

The second mount command fails, and the following is logged to /var/log/messages:

kernel: SELinux: mount invalid. Same superblock, different security settings for (dev 0:15, type nfs)

To mount multiple mounts from a single NFS export, with each mount having a different context, use
the -o nosharecache,context options. The following example mounts multiple mounts from a single
NFS export, with a different context for each mount (allowing a single service access to each one):

~]# mount server:/export/web /local/web -o
nosharecache,context="system_u:object_r:httpd_sys_content_t:s0"

~]# mount server:/export/database /local/database -o \
nosharecache,context="system_u:object_r:mysqld_db_t:s0"

In this example, server:/export/web is mounted locally to the /local/web/ directory, with all files being
labeled with the httpd_sys_content_t type, allowing Apache HTTP Server access.
server:/export/database is mounted locally to /local/database/, with all files being labeled with the
mysqld_db_t type, allowing MariaDB access. These type changes are not written to disk.

IMPORTANT

The nosharecache options allows you to mount the same subdirectory of an export
multiple times with different contexts, for example, mounting /export/web/ multiple
times. Do not mount the same subdirectory from an export multiple times with different
contexts, as this creates an overlapping mount, where files are accessible under two
different contexts.

4.9.5. Making Context Mounts Persistent

To make context mounts persistent across remounting and reboots, add entries for the file systems in
the /etc/fstab file or an automounter map, and use the required context as a mount option. The
following example adds an entry to /etc/fstab for an NFS context mount:

CHAPTER 4. WORKING WITH SELINUX

43

server:/export /local/mount/ nfs context="system_u:object_r:httpd_sys_content_t:s0" 0 0

4.10. MAINTAINING SELINUX LABELS

These sections describe what happens to SELinux contexts when copying, moving, and archiving files
and directories. Also, it explains how to preserve contexts when copying and archiving.

4.10.1. Copying Files and Directories

When a file or directory is copied, a new file or directory is created if it does not exist. That new file or
directory's context is based on default-labeling rules, not the original file or directory's context unless
options were used to preserve the original context. For example, files created in user home directories
are labeled with the user_home_t type:

~]$ touch file1

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

If such a file is copied to another directory, such as /etc, the new file is created in accordance to default-
labeling rules for /etc. Copying a file without additional options may not preserve the original context:

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

~]# cp file1 /etc/

~]$ ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1

When file1 is copied to /etc, if /etc/file1 does not exist, /etc/file1 is created as a new file. As shown in the
example above, /etc/file1 is labeled with the etc_t type, in accordance to default-labeling rules.

When a file is copied over an existing file, the existing file's context is preserved, unless the user specified
cp options to preserve the context of the original file, such as --preserve=context. SELinux policy may
prevent contexts from being preserved during copies.

Procedure 4.11. Copying Without Preserving SELinux Contexts

This procedure shows that when copying a file with the cp command, if no options are given, the type is
inherited from the targeted, parent directory.

1. Create a file in a user's home directory. The file is labeled with the user_home_t type:

~]$ touch file1

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

2. The /var/www/html/ directory is labeled with the httpd_sys_content_t type, as shown with the
following command:

SELinux User's and Administrator's Guide

44

~]$ ls -dZ /var/www/html/
drwxr-xr-x root root system_u:object_r:httpd_sys_content_t:s0 /var/www/html/

3. When file1 is copied to /var/www/html/, it inherits the httpd_sys_content_t type:

~]# cp file1 /var/www/html/

~]$ ls -Z /var/www/html/file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 /var/www/html/file1

Procedure 4.12. Preserving SELinux Contexts When Copying

This procedure shows how to use the --preserve=context option to preserve contexts when copying.

1. Create a file in a user's home directory. The file is labeled with the user_home_t type:

~]$ touch file1

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

2. The /var/www/html/ directory is labeled with the httpd_sys_content_t type, as shown with the
following command:

~]$ ls -dZ /var/www/html/
drwxr-xr-x root root system_u:object_r:httpd_sys_content_t:s0 /var/www/html/

3. Using the --preserve=context option preserves SELinux contexts during copy operations. As
shown below, the user_home_t type of file1 was preserved when the file was copied to
/var/www/html/:

~]# cp --preserve=context file1 /var/www/html/

~]$ ls -Z /var/www/html/file1
-rw-r--r-- root root unconfined_u:object_r:user_home_t:s0 /var/www/html/file1

Procedure 4.13. Copying and Changing the Context

This procedure show how to use the --context option to change the destination copy's context. The
following example is performed in the user's home directory:

1. Create a file in a user's home directory. The file is labeled with the user_home_t type:

~]$ touch file1

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

2. Use the --context option to define the SELinux context:

CHAPTER 4. WORKING WITH SELINUX

45

~]$ cp --context=system_u:object_r:samba_share_t:s0 file1 file2

3. Without --context, file2 would be labeled with the unconfined_u:object_r:user_home_t
context:

~]$ ls -Z file1 file2
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1
-rw-rw-r-- user1 group1 system_u:object_r:samba_share_t:s0 file2

Procedure 4.14. Copying a File Over an Existing File

This procedure shows that when a file is copied over an existing file, the existing file's context is
preserved unless an option is used to preserve contexts.

1. As root, create a new file, file1 in the /etc directory. As shown below, the file is labeled with the
etc_t type:

~]# touch /etc/file1

~]$ ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1

2. Create another file, file2, in the /tmp directory. As shown below, the file is labeled with the
user_tmp_t type:

~]$ touch /tmp/file2

~$ ls -Z /tmp/file2
-rw-r--r-- root root unconfined_u:object_r:user_tmp_t:s0 /tmp/file2

3. Overwrite file1 with file2:

~]# cp /tmp/file2 /etc/file1

4. After copying, the following command shows file1 labeled with the etc_t type, not the
user_tmp_t type from /tmp/file2 that replaced /etc/file1:

~]$ ls -Z /etc/file1
-rw-r--r-- root root unconfined_u:object_r:etc_t:s0 /etc/file1

IMPORTANT

Copy files and directories, rather than moving them. This helps ensure they are labeled
with the correct SELinux contexts. Incorrect SELinux contexts can prevent processes
from accessing such files and directories.

4.10.2. Moving Files and Directories

Files and directories keep their current SELinux context when they are moved. In many cases, this is
incorrect for the location they are being moved to. The following example demonstrates moving a file

SELinux User's and Administrator's Guide

46

from a user's home directory to the /var/www/html/ directory, which is used by the Apache HTTP Server.
Since the file is moved, it does not inherit the correct SELinux context:

Procedure 4.15. Moving Files and Directories

1. Change into your home directory and create file in it. The file is labeled with the user_home_t
type:

~]$ touch file1

~]$ ls -Z file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 file1

2. Enter the following command to view the SELinux context of the /var/www/html/ directory:

~]$ ls -dZ /var/www/html/
drwxr-xr-x root root system_u:object_r:httpd_sys_content_t:s0 /var/www/html/

By default, /var/www/html/ is labeled with the httpd_sys_content_t type. Files and directories
created under /var/www/html/ inherit this type, and as such, they are labeled with this type.

3. As root, move file1 to /var/www/html/. Since this file is moved, it keeps its current
user_home_t type:

~]# mv file1 /var/www/html/

~]# ls -Z /var/www/html/file1
-rw-rw-r-- user1 group1 unconfined_u:object_r:user_home_t:s0 /var/www/html/file1

By default, the Apache HTTP Server cannot read files that are labeled with the user_home_t type. If all
files comprising a web page are labeled with the user_home_t type, or another type that the Apache
HTTP Server cannot read, permission is denied when attempting to access them using web browsers,
such as Mozilla Firefox.

IMPORTANT

Moving files and directories with the mv command may result in the incorrect SELinux
context, preventing processes, such as the Apache HTTP Server and Samba, from
accessing such files and directories.

4.10.3. Checking the Default SELinux Context

Use the matchpathcon utility to check if files and directories have the correct SELinux context. This
utility queries the system policy and then provides the default security context associated with the file
path.[6] The following example demonstrates using matchpathcon to verify that files in /var/www/html/
directory are labeled correctly:

Procedure 4.16. Checking the Default SELinux Conxtext with matchpathcon

1. As the root user, create three files (file1, file2, and file3) in the /var/www/html/ directory. These
files inherit the httpd_sys_content_t type from /var/www/html/:

CHAPTER 4. WORKING WITH SELINUX

47

~]# touch /var/www/html/file{1,2,3}

~]# ls -Z /var/www/html/
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file3

2. As root, change the file1 type to samba_share_t. Note that the Apache HTTP Server cannot
read files or directories labeled with the samba_share_t type.

~]# chcon -t samba_share_t /var/www/html/file1

3. The matchpathcon -V option compares the current SELinux context to the correct, default
context in SELinux policy. Enter the following command to check all files in the /var/www/html/
directory:

~]$ matchpathcon -V /var/www/html/*
/var/www/html/file1 has context unconfined_u:object_r:samba_share_t:s0, should be
system_u:object_r:httpd_sys_content_t:s0
/var/www/html/file2 verified.
/var/www/html/file3 verified.

The following output from the matchpathcon command explains that file1 is labeled with the
samba_share_t type, but should be labeled with the httpd_sys_content_t type:

/var/www/html/file1 has context unconfined_u:object_r:samba_share_t:s0, should be
system_u:object_r:httpd_sys_content_t:s0

To resolve the label problem and allow the Apache HTTP Server access to file1, as root, use the
restorecon utility:

~]# restorecon -v /var/www/html/file1
restorecon reset /var/www/html/file1 context unconfined_u:object_r:samba_share_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

4.10.4. Archiving Files with tar

The tar utility does not retain extended attributes by default. Since SELinux contexts are stored in
extended attributes, contexts can be lost when archiving files. Use the tar --selinux command to create
archives that retain contexts and to restore files from the archives. If a tar archive contains files without
extended attributes, or if you want the extended attributes to match the system defaults, use the
restorecon utility:

~]$ tar -xvf archive.tar | restorecon -f -

Note that depending on the directory, you may need to be the root user to run the restorecon.

The following example demonstrates creating a tar archive that retains SELinux contexts:

Procedure 4.17. Creating a tar Archive

1. Change to the /var/www/html/ directory and view its SELinux context:

SELinux User's and Administrator's Guide

48

~]$ cd /var/www/html/

html]$ ls -dZ /var/www/html/
drwxr-xr-x. root root system_u:object_r:httpd_sys_content_t:s0 .

2. As root, create three files (file1, file2, and file3) in /var/www/html/. These files inherit the
httpd_sys_content_t type from /var/www/html/:

html]# touch file{1,2,3}

html]$ ls -Z /var/www/html/
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file3

3. As root, enter the following command to create a tar archive named test.tar. Use the --selinux
to retain the SELinux context:

html]# tar --selinux -cf test.tar file{1,2,3}

4. As root, create a new directory named test/, and then allow all users full access to it:

~]# mkdir /test

~]# chmod 777 /test/

5. Copy the test.tar file into test/:

~]$ cp /var/www/html/test.tar /test/

6. Change into test/ directory. Once in this directory, enter the following command to extract the
tar archive. Specify the --selinux option again otherwise the SELinux context will be changed to
default_t:

~]$ cd /test/

test]$ tar --selinux -xvf test.tar

7. View the SELinux contexts. The httpd_sys_content_t type has been retained, rather than being
changed to default_t, which would have happened had the --selinux not been used:

test]$ ls -lZ /test/
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file3
-rw-r--r-- user1 group1 unconfined_u:object_r:default_t:s0 test.tar

8. If the test/ directory is no longer required, as root, enter the following command to remove it, as
well as all files in it:

CHAPTER 4. WORKING WITH SELINUX

49

~]# rm -ri /test/

See the tar(1) manual page for further information about tar, such as the --xattrs option that retains all
extended attributes.

4.10.5. Archiving Files with star

The star utility does not retain extended attributes by default. Since SELinux contexts are stored in
extended attributes, contexts can be lost when archiving files. Use the star -xattr -H=exustar command
to create archives that retain contexts. The star package is not installed by default. To install star, run
the yum install star command as the root user.

The following example demonstrates creating a star archive that retains SELinux contexts:

Procedure 4.18. Creating a star Archive

1. As root, create three files (file1, file2, and file3) in the /var/www/html/. These files inherit the
httpd_sys_content_t type from /var/www/html/:

~]# touch /var/www/html/file{1,2,3}

~]# ls -Z /var/www/html/
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 file3

2. Change into /var/www/html/ directory. Once in this directory, as root, enter the following
command to create a star archive named test.star:

~]$ cd /var/www/html

html]# star -xattr -H=exustar -c -f=test.star file{1,2,3}
star: 1 blocks + 0 bytes (total of 10240 bytes = 10.00k).

3. As root, create a new directory named test/, and then allow all users full access to it:

~]# mkdir /test

~]# chmod 777 /test/

4. Enter the following command to copy the test.star file into test/:

~]$ cp /var/www/html/test.star /test/

5. Change into test/. Once in this directory, enter the following command to extract the star
archive:

~]$ cd /test/

SELinux User's and Administrator's Guide

50

test]$ star -x -f=test.star
star: 1 blocks + 0 bytes (total of 10240 bytes = 10.00k).

6. View the SELinux contexts. The httpd_sys_content_t type has been retained, rather than being
changed to default_t, which would have happened had the -xattr -H=exustar option not been
used:

~]$ ls -lZ /test/
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file1
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file2
-rw-r--r-- user1 group1 unconfined_u:object_r:httpd_sys_content_t:s0 file3
-rw-r--r-- user1 group1 unconfined_u:object_r:default_t:s0 test.star

7. If the test/ directory is no longer required, as root, enter the following command to remove it, as
well as all files in it:

~]# rm -ri /test/

8. If star is no longer required, as root, remove the package:

~]# yum remove star

See the star(1) manual page for further information about star.

4.11. INFORMATION GATHERING TOOLS

The utilities listed below are command-line tools that provide well-formatted information, such as
access vector cache statistics or the number of classes, types, or Booleans.

avcstat
This command provides a short output of the access vector cache statistics since boot. You can watch
the statistics in real time by specifying a time interval in seconds. This provides updated statistics since
the initial output. The statistics file used is /sys/fs/selinux/avc/cache_stats, and you can specify a
different cache file with the -f /path/to/file option.

~]# avcstat
 lookups hits misses allocs reclaims frees
 47517410 47504630 12780 12780 12176 12275

seinfo
This utility is useful in describing the break-down of a policy, such as the number of classes, types,
Booleans, allow rules, and others. seinfo is a command-line utility that uses a policy.conf file, a binary
policy file, a modular list of policy packages, or a policy list file as input. You must have the setools-
console package installed to use the seinfo utility.

The output of seinfo will vary between binary and source files. For example, the policy source file uses
the { } brackets to group multiple rule elements onto a single line. A similar effect happens with
attributes, where a single attribute expands into one or many types. Because these are expanded and no
longer relevant in the binary policy file, they have a return value of zero in the search results. However,
the number of rules greatly increases as each formerly one line rule using brackets is now a number of
individual lines.

Some items are not present in the binary policy. For example, neverallow rules are only checked during

CHAPTER 4. WORKING WITH SELINUX

51

Some items are not present in the binary policy. For example, neverallow rules are only checked during
policy compile, not during runtime, and initial Security Identifiers (SIDs) are not part of the binary policy
since they are required prior to the policy being loaded by the kernel during boot.

~]# seinfo

Statistics for policy file: /sys/fs/selinux/policy
Policy Version & Type: v.28 (binary, mls)

 Classes: 77 Permissions: 229
 Sensitivities: 1 Categories: 1024
 Types: 3001 Attributes: 244
 Users: 9 Roles: 13
 Booleans: 158 Cond. Expr.: 193
 Allow: 262796 Neverallow: 0
 Auditallow: 44 Dontaudit: 156710
 Type_trans: 10760 Type_change: 38
 Type_member: 44 Role allow: 20
 Role_trans: 237 Range_trans: 2546
 Constraints: 62 Validatetrans: 0
 Initial SIDs: 27 Fs_use: 22
 Genfscon: 82 Portcon: 373
 Netifcon: 0 Nodecon: 0
 Permissives: 22 Polcap: 2

The seinfo utility can also list the number of types with the domain attribute, giving an estimate of the
number of different confined processes:

~]# seinfo -adomain -x | wc -l
550

Not all domain types are confined. To look at the number of unconfined domains, use the
unconfined_domain attribute:

~]# seinfo -aunconfined_domain_type -x | wc -l
52

Permissive domains can be counted with the --permissive option:

~]# seinfo --permissive -x | wc -l
31

Remove the additional | wc -l command in the above commands to see the full lists.

sesearch
You can use the sesearch utility to search for a particular rule in the policy. It is possible to search either
policy source files or the binary file. For example:

~]$ sesearch --role_allow -t httpd_sys_content_t
Found 20 role allow rules:
 allow system_r sysadm_r;
 allow sysadm_r system_r;
 allow sysadm_r staff_r;
 allow sysadm_r user_r;

SELinux User's and Administrator's Guide

52

 allow system_r git_shell_r;
 allow system_r guest_r;
 allow logadm_r system_r;
 allow system_r logadm_r;
 allow system_r nx_server_r;
 allow system_r staff_r;
 allow staff_r logadm_r;
 allow staff_r sysadm_r;
 allow staff_r unconfined_r;
 allow staff_r webadm_r;
 allow unconfined_r system_r;
 allow system_r unconfined_r;
 allow system_r user_r;
 allow webadm_r system_r;
 allow system_r webadm_r;
 allow system_r xguest_r;

The sesearch utility can provide the number of allow rules:

~]# sesearch --allow | wc -l
262798

And the number of dontaudit rules:

~]# sesearch --dontaudit | wc -l
156712

4.12. PRIORITIZING AND DISABLING SELINUX POLICY MODULES

The SELinux module storage in /etc/selinux/ allows using a priority on SELinux modules. Enter the
following command as root to show two module directories with a different priority:

~]# ls /etc/selinux/targeted/active/modules
100 400 disabled

While the default priority used by semodule utility is 400, the priority used in selinux-policy packages is
100, so you can find most of the SELinux modules installed with the priority 100.

You can override an existing module with a modified module with the same name using a higher priority.
When there are more modules with the same name and different priorities, only a module with the
highest priority is used when the policy is built.

Example 4.1. Using SELinux Policy Modules Priority

Prepare a new module with modified file context. Install the module with the semodule -i command
and set the priority of the module to 400. We use sandbox.pp in the following example.

~]# semodule -X 400 -i sandbox.pp
~]# semodule --list-modules=full | grep sandbox
400 sandbox pp
100 sandbox pp

To return back to the default module, enter the semodule -r command as root:

CHAPTER 4. WORKING WITH SELINUX

53

~]# semodule -X 400 -r sandbox
libsemanage.semanage_direct_remove_key: sandbox module at priority 100 is now active.

Disabling a System Policy Module
To disable a system policy module, enter the following command as root:

semodule -d MODULE_NAME

WARNING

If you remove a system policy module using the semodule -r command, it is deleted
on your system's storage and you cannot load it again. To avoid unnecessary
reinstallations of the selinux-policy-targeted package for restoring all system policy
modules, use the semodule -d command instead.

4.13. MULTI-LEVEL SECURITY (MLS)

The Multi-Level Security technology refers to a security scheme that enforces the Bell-La Padula
Mandatory Access Model. Under MLS, users and processes are called subjects, and files, devices, and
other passive components of the system are called objects. Both subjects and objects are labeled with a
security level, which entails a subject's clearance or an object's classification. Each security level is
composed of a sensitivity and a category, for example, an internal release schedule is filed under the
internal documents category with a confidential sensitivity.

Figure 4.1, “Levels of clearance” shows levels of clearance as originally designed by the US defense
community. Relating to our internal schedule example above, only users that have gained the
confidential clearance are allowed to view documents in the confidential category. However, users who
only have the confidential clearance are not allowed to view documents that require higher levels or
clearance; they are allowed read access only to documents with lower levels of clearance, and write
access to documents with higher levels of clearance.



SELinux User's and Administrator's Guide

54

Figure 4.1. Levels of clearance

Figure 4.2, “Allowed data flows using MLS” shows all allowed data flows between a subject running under
the "Secret" security level and various objects with different security levels. In simple terms, the Bell-
LaPadula model enforces two properties: no read up and no write down .

Figure 4.2. Allowed data flows using MLS

CHAPTER 4. WORKING WITH SELINUX

55

4.13.1. MLS and System Privileges

MLS access rules are always combined with conventional access permissions (file permissions). For
example, if a user with a security level of "Secret" uses Discretionary Access Control (DAC) to block
access to a file by other users, this also blocks access by users with a security level of "Top Secret". It is
important to remember that SELinux MLS policy rules are checked after DAC rules. A higher security
clearance does not automatically give permission to arbitrarily browse a file system.

Users with top-level clearances do not automatically acquire administrative rights on multi-level
systems. While they may have access to all information on the computer, this is different from having
administrative rights.

4.13.2. Enabling MLS in SELinux

NOTE

It is not recommended to use the MLS policy on a system that is running the X Window
System.

Follow these steps to enable the SELinux MLS policy on your system.

Procedure 4.19. Enabling SELinux MLS Policy

1. Install the selinux-policy-mls package:

~]# yum install selinux-policy-mls

2. Before the MLS policy is enabled, each file on the file system must be relabeled with an MLS
label. When the file system is relabeled, confined domains may be denied access, which may
prevent your system from booting correctly. To prevent this from happening, configure
SELINUX=permissive in the /etc/selinux/config file. Also, enable the MLS policy by
configuring SELINUXTYPE=mls. Your configuration file should look like this:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=mls

3. Make sure SELinux is running in permissive mode:

~]# setenforce 0

~]$ getenforce
Permissive

4. Use the fixfiles script to create the /.autorelabel file containing the -F option to ensure that

SELinux User's and Administrator's Guide

56

4. Use the fixfiles script to create the /.autorelabel file containing the -F option to ensure that
files are relabeled upon next reboot:

~]# fixfiles -F onboot

5. Reboot your system. During the next boot, all file systems will be relabeled according to the
MLS policy. The label process labels all files with an appropriate SELinux context:

*** Warning -- SELinux mls policy relabel is required.
*** Relabeling could take a very long time, depending on file
*** system size and speed of hard drives.

Each * (asterisk) character on the bottom line represents 1000 files that have been labeled. In
the above example, eleven * characters represent 11000 files which have been labeled. The time
it takes to label all files depends upon the number of files on the system, and the speed of the
hard disk drives. On modern systems, this process can take as little as 10 minutes. Once the
labeling process finishes, the system will automatically reboot.

6. In permissive mode, SELinux policy is not enforced, but denials are still logged for actions that
would have been denied if running in enforcing mode. Before changing to enforcing mode, as
root, enter the following command to confirm that SELinux did not deny actions during the last
boot. If SELinux did not deny actions during the last boot, this command does not return any
output. See Chapter 11, Troubleshooting for troubleshooting information if SELinux denied
access during boot.

~]# grep "SELinux is preventing" /var/log/messages

7. If there were no denial messages in the /var/log/messages file, or you have resolved all existing
denials, configure SELINUX=enforcing in the /etc/selinux/config file:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=enforcing
SELINUXTYPE= can take one of these two values:
targeted - Targeted processes are protected,
mls - Multi Level Security protection.
SELINUXTYPE=mls

8. Reboot your system and make sure SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

and the MLS policy is enabled:

~]# sestatus |grep mls
Policy from config file: mls

4.13.3. Creating a User With a Specific MLS Range

CHAPTER 4. WORKING WITH SELINUX

57

Follow these steps to create a new Linux user with a specific MLS range:

Procedure 4.20. Creating a User With a Specific MLS Range

1. Add a new Linux user using the useradd command and map the new Linux user to an existing
SELinux user (in this case, staff_u):

~]# useradd -Z staff_u john

2. Assign the newly-created Linux user a password:

prompt~]# passwd john

3. Enter the following command as root to view the mapping between SELinux and Linux users.
The output should be as follows:

~]# semanage login -l
Login Name SELinux User MLS/MCS Range Service

__default__ user_u s0-s0 *
john staff_u s0-s15:c0.c1023 *
root root s0-s15:c0.c1023 *
staff staff_u s0-s15:c0.c1023 *
sysadm staff_u s0-s15:c0.c1023 *
system_u system_u s0-s15:c0.c1023 *

4. Define a specific range for user john:

~]# semanage login --modify --range s2:c100 john

5. View the mapping between SELinux and Linux users again. Note that the user john now has a
specific MLS range defined:

~]# semanage login -l
Login Name SELinux User MLS/MCS Range Service

__default__ user_u s0-s0 *
john staff_u s2:c100 *
root root s0-s15:c0.c1023 *
staff staff_u s0-s15:c0.c1023 *
sysadm staff_u s0-s15:c0.c1023 *
system_u system_u s0-s15:c0.c1023 *

6. To correct the label on john's home directory if needed, enter the following command:

~]# chcon -R -l s2:c100 /home/john

4.13.4. Setting Up Polyinstantiated Directories

The /tmp and /var/tmp/ directories are normally used for temporary storage by all programs, services,
and users. Such setup, however, makes these directories vulnerable to race condition attacks, or an
information leak based on file names. SELinux offers a solution in the form of polyinstantiated

SELinux User's and Administrator's Guide

58

directories. This effectively means that both /tmp and /var/tmp/ are instantiated, making them appear
private for each user. When instantiation of directories is enabled, each user's /tmp and /var/tmp/
directory is automatically mounted under /tmp-inst and /var/tmp/tmp-inst.

Follow these steps to enable polyinstantiation of directories:

Procedure 4.21. Enabling Polyinstantiation Directories

1. Uncomment the last three lines in the /etc/security/namespace.conf file to enable
instantiation of the /tmp, /var/tmp/, and users' home directories:

~]$ tail -n 3 /etc/security/namespace.conf
/tmp /tmp-inst/ level root,adm
/var/tmp /var/tmp/tmp-inst/ level root,adm
$HOME $HOME/$USER.inst/ level

2. Ensure that in the /etc/pam.d/login file, the pam_namespace.so module is configured for
session:

~]$ grep namespace /etc/pam.d/login
session required pam_namespace.so

3. Reboot your system.

4.14. FILE NAME TRANSITION

The file name transition feature allows policy writers to specify the file name when writing policy
transition rules. It is possible to write a rule that states: If a process labeled A_t creates a specified object
class in a directory labeled B_t and the specified object class is named objectname, it gets the label C_t.
This mechanism provides more fine-grained control over processes on the system.

Without file name transition, there are three possible ways how to label an object:

By default, objects inherit labels from parent directories. For example, if the user creates a file in
a directory labeled etc_t, then the file is labeled also etc_t. However, this method is useless
when it is desirable to have multiple files within a directory with different labels.

Policy writers can write a rule in policy that states: If a process with type A_t creates a specified
object class in a directory labeled B_t, the object gets the new C_t label. This practice is
problematic if a single program creates multiple objects in the same directory where each
object requires a separate label. Moreover, these rules provide only partial control, because
names of the created objects are not specified.

Certain applications have SELinux awareness that allow such an application to ask the system
what the label of a certain path should be. These applications then request the kernel to create
the object with the required label. Examples of applications with SELinux awareness are the rpm
package manager, the restorecon utility, or the udev device manager. However, it is not
possible to instruct every application that creates files or directories with SELinux awareness. It
is often necessary to relabel objects with the correct label after creating. Otherwise, when a
confined domain attempts to use the object, AVC messages are returned.

The file name transition feature decreases problems related to incorrect labeling and improves the
system to be more secure. Policy writers are able to state properly that a certain application can only
create a file with a specified name in a specified directory. The rules take into account the file name, not

CHAPTER 4. WORKING WITH SELINUX

59

the file path. This is the basename of the file path. Note that file name transition uses an exact match
done by the strcmp() function. Use of regular expressions or wildcard characters is not considered.

NOTE

File paths can vary in the kernel and file name transition does not use the paths to
determine labels. Consequently, this feature only affects initial file creation and does not
fix incorrect labels of already created objects.

Example 4.2. Examples of Policy Rules Written with File Name Transition

The example below shows a policy rule with file name transition:

filetrans_pattern(unconfined_t, admin_home_t, ssh_home_t, dir, ".ssh")

This rule states that if a process with the unconfined_t type creates the ~/.ssh/ directory in a
directory labeled admin_home_t, the ~/.ssh/ directory gets the label ssh_home_t.

Similar examples of policy rules written with file name transition are presented below:

filetrans_pattern(staff_t, user_home_dir_t, httpd_user_content_t, dir, "public_html")
filetrans_pattern(thumb_t, user_home_dir_t, thumb_home_t, file, "missfont.log")
filetrans_pattern(kernel_t, device_t, xserver_misc_device_t, chr_file, "nvidia0")
filetrans_pattern(puppet_t, etc_t, krb5_conf_t, file, "krb5.conf")

NOTE

The file name transition feature affects mainly policy writers, but users can notice that
instead of file objects almost always created with the default label of the containing
directory, some file objects have a different label as specified in policy.

4.15. DISABLING PTRACE()

The ptrace() system call allows one process to observe and control the execution of another process
and change its memory and registers. This call is used primarily by developers during debugging, for
example when using the strace utility. When ptrace() is not needed, it can be disabled to improve
system security. This can be done by enabling the deny_ptrace Boolean, which denies all processes,
even those that are running in unconfined_t domains, from being able to use ptrace() on other
processes.

The deny_ptrace Boolean is disabled by default. To enable it, run the setsebool -P deny_ptrace on
command as the root user:

~]# setsebool -P deny_ptrace on

To verify if this Boolean is enabled, use the following command:

~]$ getsebool deny_ptrace
deny_ptrace --> on

To disable this Boolean, run the setsebool -P deny_ptrace off command as root:

SELinux User's and Administrator's Guide

60

~]# setsebool -P deny_ptrace off

NOTE

The setsebool -P command makes persistent changes. Do not use the -P option if you do
not want changes to persist across reboots.

This Boolean influences only packages that are part of Red Hat Enterprise Linux. Consequently, third-
party packages could still use the ptrace() system call. To list all domains that are allowed to use
ptrace(), enter the following command. Note that the setools-console package provides the sesearch
utility and that the package is not installed by default.

~]# sesearch -A -p ptrace,sys_ptrace -C | grep -v deny_ptrace | cut -d ' ' -f 5

4.16. THUMBNAIL PROTECTION

The thumbnail icons can potentially allow an attacker to break into a locked machine using removable
media, such as USB devices or CDs. When the system detects a removable media, the Nautilus file
manager executes the thumbnail driver code to display thumbnail icons in an appropriate file browser
even if the machine is locked. This behavior is unsafe because if the thumbnail executables were
vulnerable, the attacker could use the thumbnail driver code to bypass the lock screen without entering
the password.

Therefore, a new SELinux policy is used to prevent such attacks. This policy ensures that all thumbnail
drivers are locked when the screen is locked. The thumbnail protection is enabled for both confined
users and unconfined users. This policy affects the following applications:

/usr/bin/evince-thumbnailer

/usr/bin/ffmpegthumbnailer

/usr/bin/gnome-exe-thumbnailer.sh

/usr/bin/gnome-nds-thumbnailer

/usr/bin/gnome-xcf-thumbnailer

/usr/bin/gsf-office-thumbnailer

/usr/bin/raw-thumbnailer

/usr/bin/shotwell-video-thumbnailer

/usr/bin/totem-video-thumbnailer

/usr/bin/whaaw-thumbnailer

/usr/lib/tumbler-1/tumblerd

/usr/lib64/tumbler-1/tumblerd

[3] To temporarily revert to the default behavior, as the Linux root user, run the setsebool

CHAPTER 4. WORKING WITH SELINUX

61

[3] To temporarily revert to the default behavior, as the Linux root user, run the setsebool
httpd_can_network_connect_db off command. For changes that persist across reboots, run the setsebool
-P httpd_can_network_connect_db off command.

[4] Files in the /etc/selinux/targeted/contexts/files/ directory define contexts for files and directories. Files in
this directory are read by the restorecon and setfiles utilities to restore files and directories to their default
contexts.

[5] Morris, James. "Filesystem Labeling in SELinux". Published 1 October 2004. Accessed 14 October 2008:
http://www.linuxjournal.com/article/7426.

[6] See the matchpathcon(8) manual page for further information about matchpathcon.

SELinux User's and Administrator's Guide

62

http://www.linuxjournal.com/article/7426

CHAPTER 5. THE SEPOLICY SUITE

The sepolicy utility provides a suite of features to query the installed SELinux policy. These features are
either new or were previously provided by separate utilities, such as sepolgen or setrans. The suite
allows you to generate transition reports, man pages, or even new policy modules, thus giving users
easier access and better understanding of the SELinux policy.

The policycoreutils-devel package provides sepolicy. Enter the following command as the root user to
install sepolicy:

~]# yum install policycoreutils-devel

The sepolicy suite provides the following features that are invoked as command-line parameters:

Table 5.1. The sepolicy Features

Feature Description

booleans Query the SELinux Policy to see description of Booleans

communicate Query the SELinux policy to see if domains can communicate with each other

generate Generate an SELinux policy module template

gui Graphical User Interface for SELinux Policy

interface List SELinux Policy interfaces

manpage Generate SELinux man pages

network Query SELinux policy network information

transition Query SELinux policy and generate a process transition report

5.1. THE SEPOLICY PYTHON BINDINGS

In previous versions of Red Hat Enterprise Linux, the setools package included the sesearch and seinfo
utilities. The sesearch utility is used for searching rules in a SELinux policy while the seinfo utility allows
you to query various other components in the policy.

In Red Hat Enterprise Linux 7, Python bindings for sesearch and seinfo have been added so that you
can use the functionality of these utilities through the sepolicy suite. See the example below:

> python
>>> import sepolicy
>>> sepolicy.info(sepolicy.ATTRIBUTE)
Returns a dictionary of all information about SELinux Attributes
>>>sepolicy.search([sepolicy.ALLOW])
Returns a dictionary of all allow rules in the policy.

CHAPTER 5. THE SEPOLICY SUITE

63

5.2. GENERATING SELINUX POLICY MODULES: SEPOLICY GENERATE

In previous versions of Red Hat Enterprise Linux, the sepolgen or selinux-polgengui utilities were used
for generating a SELinux policy. These tools have been merged to the sepolicy suite. In
Red Hat Enterprise Linux 7, the sepolicy generate command is used to generate an initial SELinux
policy module template.

Unlike sepolgen, it is not necessary to run sepolicy generate as the root user. This utility also creates
an RPM spec file, which can be used to build an RPM package that installs the policy package file
(NAME.pp) and the interface file (NAME.if) to the correct location, provides installation of the SELinux
policy into the kernel, and fixes the labeling. The setup script continues to install SELinux policy and sets
up the labeling. In addition, a manual page based on the installed policy is generated using the sepolicy
manpage command. [7] Finally, sepolicy generate builds and compiles the SELinux policy and the
manual page into an RPM package, ready to be installed on other systems.

When sepolicy generate is executed, the following files are produced:

NAME.te – type enforcing file

This file defines all the types and rules for a particular domain.

NAME.if – interface file

This file defines the default file context for the system. It takes the file types created in the NAME.te
file and associates file paths to the types. Utilities, such as restorecon and rpm, use these paths to
write labels.

NAME_selinux.spec – RPM spec file

This file is an RPM spec file that installs SELinux policy and sets up the labeling. This file also installs
the interface file and a man page describing the policy. You can use the sepolicy manpage -d
NAME command to generate the man page.

NAME.sh – helper shell script

This script helps to compile, install, and fix the labeling on the system. It also generates a man page
based on the installed policy, compiles, and builds an RPM package suitable to be installed on other
systems.

If it is possible to generate an SELinux policy module, sepolicy generate prints out all generated paths
from the source domain to the target domain. See the sepolicy-generate(8) manual page for further
information about sepolicy generate.

5.3. UNDERSTANDING DOMAIN TRANSITIONS: SEPOLICY TRANSITION

Previously, the setrans utility was used to examine if transition between two domain or process types is
possible and printed out all intermediary types that are used to transition between these domains or
processes. In Red Hat Enterprise Linux 7, setrans is provided as part of the sepolicy suite and the
sepolicy transition command is now used instead.

The sepolicy transition command queries a SELinux policy and creates a process transition report. The
sepolicy transition command requires two command-line arguments – a source domain (specified by
the -s option) and a target domain (specified by the -t option). If only the source domain is entered,
sepolicy transition lists all possible domains that the source domain can transition to. The following
output does not contain all entries. The “@” character means “execute”:

SELinux User's and Administrator's Guide

64

~]$ sepolicy transition -s httpd_t
httpd_t @ httpd_suexec_exec_t --> httpd_suexec_t
httpd_t @ mailman_cgi_exec_t --> mailman_cgi_t
httpd_t @ abrt_retrace_worker_exec_t --> abrt_retrace_worker_t
httpd_t @ dirsrvadmin_unconfined_script_exec_t --> dirsrvadmin_unconfined_script_t
httpd_t @ httpd_unconfined_script_exec_t --> httpd_unconfined_script_t

If the target domain is specified, sepolicy transition examines SELinux policy for all transition paths
from the source domain to the target domain and lists these paths. The output below is not complete:

~]$ sepolicy transition -s httpd_t -t system_mail_t
httpd_t @ exim_exec_t --> system_mail_t
httpd_t @ courier_exec_t --> system_mail_t
httpd_t @ sendmail_exec_t --> system_mail_t
httpd_t ... httpd_suexec_t @ sendmail_exec_t --> system_mail_t
httpd_t ... httpd_suexec_t @ exim_exec_t --> system_mail_t
httpd_t ... httpd_suexec_t @ courier_exec_t --> system_mail_t
httpd_t ... httpd_suexec_t ... httpd_mojomojo_script_t @ sendmail_exec_t --> system_mail_t

See the sepolicy-transition(8) manual page for further information about sepolicy transition.

5.4. GENERATING MANUAL PAGES: SEPOLICY MANPAGE

The sepolicy manpage command generates manual pages based on the SELinux policy that document
process domains. As a result, such documentation is always up-to-date. Each name of automatically
generated manual pages consists of the process domain name and the _selinux suffix, for example
httpd_selinux.

The manual pages include several sections that provide information about various parts of the SELinux
policy for confined domains:

The Entrypoints section contains all executable files that need to be executed during a domain
transition.

The Process Types section lists all process types that begin with the same prefix as the target
domain.

The Booleans section lists Booleans associated with the domain.

The Port Types section contains the port types matching the same prefix as the domain and
describes the default port numbers assigned to these port types.

The Managed Files section describes the types that the domain is allowed to write to and the
default paths associated with these types.

The File Contexts section contains all file types associated with the domain and describes how
to use these file types along with the default path labeling on a system.

The Sharing Files section explains how to use the domain sharing types, such as
public_content_t.

See the sepolicy-manpage(8) manual page for further information about sepolicy manpage.

CHAPTER 5. THE SEPOLICY SUITE

65

[7] See Section 5.4, “Generating Manual Pages: sepolicy manpage” for more information about sepolicy
manpage.

SELinux User's and Administrator's Guide

66

CHAPTER 6. CONFINING USERS
In Red Hat Enterprise Linux, users are mapped to the SELinux unconfined_u user by default. All
processes run by unconfined_u are in the unconfined_t domain. This means that users can access
across the system within the limits of the standard Linux DAC policy. However, a number of confined
SELinux users are available in Red Hat Enterprise Linux. This means that users can be restricted to
limited set of capabilities. Each Linux user is mapped to an SELinux user using SELinux policy, allowing
Linux users to inherit the restrictions placed on SELinux users, for example (depending on the user), not
being able to:

run the X Window System

use networking

run setuid applications (unless SELinux policy permits it)

or run the su and sudo commands.

For example, processes run by the SELinux user_u user are in the user_t domain. Such processes can
connect to network, but cannot run the su or sudo commands. This helps protect the system from the
user. See Section 3.3, “Confined and Unconfined Users” , Table 3.1, “SELinux User Capabilities” for
further information about confined users and their capabilities.

6.1. LINUX AND SELINUX USER MAPPINGS

As root, enter the following command to view the mapping between Linux users and SELinux users:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

In Red Hat Enterprise Linux, Linux users are mapped to the SELinux __default__ login by default (which
is in turn mapped to the SELinux unconfined_u user). When a Linux user is created with the useradd
command, if no options are specified, they are mapped to the SELinux unconfined_u user. The
following defines the default-mapping:

__default__ unconfined_u s0-s0:c0.c1023 *

6.2. CONFINING NEW LINUX USERS: USERADD

Linux users mapped to the SELinux unconfined_u user run in the unconfined_t domain. This is seen by
running the id -Z command while logged-in as a Linux user mapped to unconfined_u:

~]$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

When Linux users run in the unconfined_t domain, SELinux policy rules are applied, but policy rules exist
that allow Linux users running in the unconfined_t domain almost all access. If unconfined Linux users
execute an application that SELinux policy defines can transition from the unconfined_t domain to its
own confined domain, unconfined Linux users are still subject to the restrictions of that confined

CHAPTER 6. CONFINING USERS

67

domain. The security benefit of this is that, even though a Linux user is running unconfined, the
application remains confined, and therefore, the exploitation of a flaw in the application can be limited
by policy.

NOTE

This does not protect the system from the user. Instead, the user and the system are
being protected from possible damage caused by a flaw in the application.

When creating Linux users with the useradd command, use the -Z option to specify which SELinux user
they are mapped to. The following example creates a new Linux user, useruuser, and maps that user to
the SELinux user_u user. Linux users mapped to the SELinux user_u user run in the user_t domain. In
this domain, Linux users are unable to run setuid applications unless SELinux policy permits it (such as
passwd), and cannot run the su or sudo command, preventing them from becoming the root user with
these commands.

Procedure 6.1. Confining a New Linux User to user_u SELinux User

1. As root, create a new Linux user (useruuser) that is mapped to the SELinux user_u user.

~]# useradd -Z user_u useruuser

2. To view the mapping between useruuser and user_u, enter the following command as root:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *
useruuser user_u s0 *

3. As root, assign a password to the Linux useruuser user:

~]# passwd useruuser
Changing password for user useruuser.
New password: Enter a password
Retype new password: Enter the same password again
passwd: all authentication tokens updated successfully.

4. Log out of your current session, and log in as the Linux useruuser user. When you log in, the
pam_selinux module maps the Linux user to an SELinux user (in this case, user_u), and sets up
the resulting SELinux context. The Linux user's shell is then launched with this context. Enter
the following command to view the context of a Linux user:

~]$ id -Z
user_u:user_r:user_t:s0

5. Log out of the Linux useruuser's session, and log back in with your account. If you do not want
the Linux useruuser user, enter the following command as root to remove it, along with its
home directory:

SELinux User's and Administrator's Guide

68

~]# userdel -Z -r useruuser

6.3. CONFINING EXISTING LINUX USERS: SEMANAGE LOGIN

If a Linux user is mapped to the SELinux unconfined_u user (the default behavior), and you would like
to change which SELinux user they are mapped to, use the semanage login command. The following
example creates a new Linux user named newuser, then maps that Linux user to the SELinux user_u
user:

Procedure 6.2. Mapping Linux Users to the SELinux Users

1. As root, create a new Linux user (newuser). Since this user uses the default mapping, it does
not appear in the semanage login -l output:

~]# useradd newuser

~]# semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

2. To map the Linux newuser user to the SELinux user_u user, enter the following command as
root:

~]# semanage login -a -s user_u newuser

The -a option adds a new record, and the -s option specifies the SELinux user to map a Linux
user to. The last argument, newuser, is the Linux user you want mapped to the specified
SELinux user.

3. To view the mapping between the Linux newuser user and user_u, use the semanage utility
again:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
newuser user_u s0 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

4. As root, assign a password to the Linux newuser user:

~]# passwd newuser
Changing password for user newuser.
New password: Enter a password
Retype new password: Enter the same password again
passwd: all authentication tokens updated successfully.

CHAPTER 6. CONFINING USERS

69

5. Log out of your current session, and log in as the Linux newuser user. Enter the following
command to view the newuser's SELinux context:

~]$ id -Z
user_u:user_r:user_t:s0

6. Log out of the Linux newuser's session, and log back in with your account. If you do not want
the Linux newuser user, enter the following command as root to remove it, along with its home
directory:

~]# userdel -r newuser

As root, remove the mapping between the Linux newuser user and user_u:

~]# semanage login -d newuser

~]# semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ unconfined_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

6.4. CHANGING THE DEFAULT MAPPING

In Red Hat Enterprise Linux, Linux users are mapped to the SELinux __default__ login by default (which
is in turn mapped to the SELinux unconfined_u user). If you would like new Linux users, and Linux users
not specifically mapped to an SELinux user to be confined by default, change the default mapping with
the semanage login command.

For example, enter the following command as root to change the default mapping from unconfined_u
to user_u:

~]# semanage login -m -S targeted -s "user_u" -r s0 __default__

Verify the __default__ login is mapped to user_u:

~]# semanage login -l

Login Name SELinux User MLS/MCS Range Service

__default__ user_u s0-s0:c0.c1023 *
root unconfined_u s0-s0:c0.c1023 *
system_u system_u s0-s0:c0.c1023 *

If a new Linux user is created and an SELinux user is not specified, or if an existing Linux user logs in and
does not match a specific entry from the semanage login -l output, they are mapped to user_u, as per
the __default__ login.

To change back to the default behavior, enter the following command as root to map the __default__
login to the SELinux unconfined_u user:

SELinux User's and Administrator's Guide

70

~]# semanage login -m -S targeted -s "unconfined_u" -r s0-s0:c0.c1023 __default__

6.5. XGUEST: KIOSK MODE

The xguest package provides a kiosk user account. This account is used to secure machines that people
walk up to and use, such as those at libraries, banks, airports, information kiosks, and coffee shops. The
kiosk user account is very limited: essentially, it only allows a user to log in and use Firefox to browse
Internet websites. Guest user is assigned to xguest_u, see Table 3.1, “SELinux User Capabilities” . Any
changes made while logged in with this account, such as creating files or changing settings, are lost when
you log out.

To set up the kiosk account:

1. As root, install the xguest package. Install dependencies as required:

~]# yum install xguest

2. In order to allow the kiosk account to be used by a variety of people, the account is not
password-protected, and as such, the account can only be protected if SELinux is running in
enforcing mode. Before logging in with this account, use the getenforce utility to confirm that
SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

If this is not the case, see Section 4.4, “Permanent Changes in SELinux States and Modes” for
information about changing to enforcing mode. It is not possible to log in with this account if
SELinux is in permissive mode or disabled.

3. You can only log in to this account using the GNOME Display Manager (GDM). Once the xguest
package is installed, a Guest account is added to the GDM login screen.

6.6. BOOLEANS FOR USERS EXECUTING APPLICATIONS

Not allowing Linux users to execute applications (which inherit users' permissions) in their home
directories and the /tmp directory, which they have write access to, helps prevent flawed or malicious
applications from modifying files that users own.

Booleans are available to change this behavior, and are configured with the setsebool utility, which must
be run as root. The setsebool -P command makes persistent changes. Do not use the -P option if you
do not want changes to persist across reboots:

guest_t
To prevent Linux users in the guest_t domain from executing applications in their home directories and
/tmp:

~]# setsebool -P guest_exec_content off

xguest_t
To prevent Linux users in the xguest_t domain from executing applications in their home directories and
/tmp:

~]# setsebool -P xguest_exec_content off

CHAPTER 6. CONFINING USERS

71

user_t
To prevent Linux users in the user_t domain from executing applications in their home directories and
/tmp:

~]# setsebool -P user_exec_content off

staff_t
To prevent Linux users in the staff_t domain from executing applications in their home directories and
/tmp:

~]# setsebool -P staff_exec_content off

To turn the staff_exec_content boolean on and to allow Linux users in the staff_t domain to execute
applications in their home directories and /tmp:

~]# setsebool -P staff_exec_content on

SELinux User's and Administrator's Guide

72

CHAPTER 7. SECURING PROGRAMS USING SANDBOX
The sandbox security utility adds a set of SELinux policies that allow a system administrator to run an
application within a tightly confined SELinux domain. Restrictions on permission to open new files or
access to the network can be defined. This enables testing the processing characteristics of untrusted
software securely, without risking damage to the system.

7.1. RUNNING AN APPLICATION USING SANDBOX

Before using the sandbox utility, the policycoreutils-sandbox package must be installed:

~]# yum install policycoreutils-sandbox

The basic syntax to confine an application is:

~]$ sandbox [options] application_under_test

To run a graphical application in a sandbox, use the -X option. For example:

~]$ sandbox -X evince

The -X tells sandbox to set up a confined secondary X Server for the application (in this case, evince),
before copying the needed resources and creating a closed virtual environment in the user’s home
directory or in the /tmp directory.

To preserve data from one session to the next:

~]$ sandbox -H sandbox/home -T sandbox/tmp -X firefox

Note that sandbox/home is used for /home and sandbox/tmp is used for /tmp. Different applications
are placed in different restricted environments. The application runs in full-screen mode and this
prevents access to other functions. As mentioned before, you cannot open or create files except those
which are labeled as sandbox_x_file_t.

Access to the network is also initially impossible inside the sandbox. To allow access, use the
sandbox_web_t label. For example, to launch Firefox:

~]$ sandbox ‑X ‑t sandbox_web_t firefox

WARNING

The sandbox_net_t label allows unrestricted, bi-directional network access to all
network ports. The sandbox_web_t allows connections to ports required for web
browsing only.

Use of sandbox_net_t should made with caution and only when required.

See the sandbox (8) manual page for information, and a full list of available options.



CHAPTER 7. SECURING PROGRAMS USING SANDBOX

73

CHAPTER 8. SVIRT
sVirt is a technology included in Red Hat Enterprise Linux that integrates SELinux and virtualization.
sVirt applies Mandatory Access Control (MAC) to improve security when using virtual machines. The
main reasons for integrating these technologies are to improve security and harden the system against
bugs in the hypervisor that might be used as an attack vector aimed toward the host or to another
virtual machine.

This chapter describes how sVirt integrates with virtualization technologies in Red Hat Enterprise Linux.

Non-Virtualized Environment
In a non-virtualized environment, hosts are separated from each other physically and each host has a
self-contained environment, consisting of services such as a Web server, or a DNS server. These services
communicate directly to their own user space, host kernel and physical host, offering their services
directly to the network. The following image represents a non-virtualized environment:

Virtualized Environment
In a virtualized environment, several operating systems can be housed (as "guests") within a single host
kernel and physical host. The following image represents a virtualized environment:

8.1. SECURITY AND VIRTUALIZATION

SELinux User's and Administrator's Guide

74

When services are not virtualized, machines are physically separated. Any exploit is usually contained to
the affected machine, with the obvious exception of network attacks. When services are grouped
together in a virtualized environment, extra vulnerabilities emerge in the system. If there is a security
flaw in the hypervisor that can be exploited by a guest instance, this guest may be able to not only attack
the host, but also other guests running on that host. This is not theoretical; attacks already exist on
hypervisors. These attacks can extend beyond the guest instance and could expose other guests to
attack.

sVirt is an effort to isolate guests and limit their ability to launch further attacks if exploited. This is
demonstrated in the following image, where an attack cannot break out of the virtual machine and
extend to another host instance:

SELinux introduces a pluggable security framework for virtualized instances in its implementation of
Mandatory Access Control (MAC). The sVirt framework allows guests and their resources to be uniquely
labeled. Once labeled, rules can be applied which can reject access between different guests.

8.2. SVIRT LABELING

Like other services under the protection of SELinux, sVirt uses process-based mechanisms and
restrictions to provide an extra layer of security over guest instances. Under typical use, you should not
even notice that sVirt is working in the background. This section describes the labeling features of sVirt.

As shown in the following output, when using sVirt, each Virtual Machine (VM) process is labeled and
runs with a dynamically generated level. Each process is isolated from other VMs with different levels:

~]# ps -eZ | grep qemu

system_u:system_r:svirt_t:s0:c87,c520 27950 ? 00:00:17 qemu-kvm
system_u:system_r:svirt_t:s0:c639,c757 27989 ? 00:00:06 qemu-system-x86

The actual disk images are automatically labeled to match the processes, as shown in the following
output:

~]# ls -lZ /var/lib/libvirt/images/*

system_u:object_r:svirt_image_t:s0:c87,c520 image1

CHAPTER 8. SVIRT

75

The following table outlines the different labels that can be assigned when using sVirt:

Table 8.1. sVirt Labels

Type SELinux Context Description

Virtual Machine Processes system_u:system_r:svirt_t:MCS1 MCS1 is a randomly selected MCS
field. Currently approximately
500,000 labels are supported.

Virtual Machine Image system_u:object_r:svirt_image_t:
MCS1

Only processes labeled svirt_t with
the same MCS fields are able to
read/write these image files and
devices.

Virtual Machine Shared
Read/Write Content

system_u:object_r:svirt_image_t:s
0

All processes labeled svirt_t are
allowed to write to the
svirt_image_t:s0 files and devices.

Virtual Machine Image system_u:object_r:virt_content_t:s
0

System default label used when an
image exits. No svirt_t virtual
processes are allowed to read
files/devices with this label.

It is also possible to perform static labeling when using sVirt. Static labels allow the administrator to
select a specific label, including the MCS/MLS field, for a virtual machine. Administrators who run
statically-labeled virtual machines are responsible for setting the correct label on the image files. The
virtual machine will always be started with that label, and the sVirt system will never modify the label of a
statically-labeled virtual machine's content. This allows the sVirt component to run in an MLS
environment. You can also run multiple virtual machines with different sensitivity levels on a system,
depending on your requirements.

SELinux User's and Administrator's Guide

76

CHAPTER 9. SECURE LINUX CONTAINERS
Linux Containers (LXC) is a low-level virtualization feature that allows you to run multiple copies of the
same service at the same time on a system. Compared to full virtualization, containers do not require an
entire new system to boot, can use less memory, and can use the base operating system in a read-only
manner. For example, LXC allow you to run multiple web servers simultaneously, each with their own
data while sharing the system data, and even running as the root user. However, running a privileged
process within a container could affect other processes running outside of the container or processes
running in other containers. Secure Linux containers use the SELinux context, therefore preventing the
processes running within them from interacting with each other or with the host.

The Docker application is the main utility for managing Linux Containers in Red Hat Enterprise Linux. As
an alternative, you can also use the virsh command-line utility provided by the libvirt package.

For further details about Linux Containers, see Getting Started with Containers.

CHAPTER 9. SECURE LINUX CONTAINERS

77

https://access.redhat.com/documentation/en/red-hat-enterprise-linux-atomic-host/version-7/getting-started-with-containers/#introduction_to_linux_containers

CHAPTER 10. SELINUX SYSTEMD ACCESS CONTROL

In Red Hat Enterprise Linux 7, system services are controlled by the systemd daemon. In previous
releases of Red Hat Enterprise Linux, daemons could be started in two ways:

At boot time, the System V init daemon launched an init.rc script and then this script launched
the required daemon. For example, the Apache server, which was started at boot, got the
following SELinux label:

system_u:system_r:httpd_t:s0

An administrator launched the init.rc script manually, causing the daemon to run. For example,
when the service httpd restart command was invoked on the Apache server, the resulting
SELinux label looked as follows:

unconfined_u:system_r:httpd_t:s0

When launched manually, the process adopted the user portion of the SELinux label that started it,
making the labeling in the two scenarios above inconsistent. With the systemd daemon, the transitions
are very different. As systemd handles all the calls to start and stop daemons on the system, using the
init_t type, it can override the user part of the label when a daemon is restarted manually. As a result, the
labels in both scenarios above are system_u:system_r:httpd_t:s0 as expected and the SELinux policy
could be improved to govern which domains are able to control which units.

10.1. SELINUX ACCESS PERMISSIONS FOR SERVICES

In previous versions of Red Hat Enterprise Linux, an administrator was able to control, which users or
applications were able to start or stop services based on the label of the System V Init script. Now,
systemd starts and stops all services, and users and processes communicate with systemd using the
systemctl utility. The systemd daemon has the ability to consult the SELinux policy and check the label
of the calling process and the label of the unit file that the caller tries to manage, and then ask SELinux
whether or not the caller is allowed the access. This approach strengthens access control to critical
system capabilities, which include starting and stopping system services.

For example, previously, administrators had to allow NetworkManager to execute systemctl to send a
D-Bus message to systemd, which would in turn start or stop whatever service NetworkManager
requested. In fact, NetworkManager was allowed to do everything systemctl could do. It was also
impossible to setup confined administrators so that they could start or stop just particular services.

To fix these issues, systemd also works as an SELinux Access Manager. It can retrieve the label of the
process running systemctl or the process that sent a D-Bus message to systemd. The daemon then
looks up the label of the unit file that the process wanted to configure. Finally, systemd can retrieve
information from the kernel if the SELinux policy allows the specific access between the process label
and the unit file label. This means a compromised application that needs to interact with systemd for a
specific service can now be confined by SELinux. Policy writers can also use these fine-grained controls
to confine administrators. Policy changes involve a new class called service, with the following
permissions:

class service
{
 start
 stop
 status
 reload

SELinux User's and Administrator's Guide

78

 kill
 load
 enable
 disable
}

For example, a policy writer can now allow a domain to get the status of a service or start and stop a
service, but not enable or disable a service. Access control operations in SELinux and systemd do not
match in all cases. A mapping was defined to line up systemd method calls with SELinux access checks.
Table 10.1, “Mapping of systemd unit file method calls on SELinux access checks” maps access checks
on unit files while Table 10.2, “Mapping of systemd general system calls on SELinux access checks”
covers access checks for the system in general. If no match is found in either table, then the undefined
system check is called.

Table 10.1. Mapping of systemd unit file method calls on SELinux access checks

systemd unit file method SELinux access check

DisableUnitFiles disable

EnableUnitFiles enable

GetUnit status

GetUnitByPID status

GetUnitFileState status

Kill stop

KillUnit stop

LinkUnitFiles enable

ListUnits status

LoadUnit status

MaskUnitFiles disable

PresetUnitFiles enable

ReenableUnitFiles enable

Reexecute start

Reload reload

ReloadOrRestart start

CHAPTER 10. SELINUX SYSTEMD ACCESS CONTROL

79

ReloadOrRestartUnit start

ReloadOrTryRestart start

ReloadOrTryRestartUnit start

ReloadUnit reload

ResetFailed stop

ResetFailedUnit stop

Restart start

RestartUnit start

Start start

StartUnit start

StartUnitReplace start

Stop stop

StopUnit stop

TryRestart start

TryRestartUnit start

UnmaskUnitFiles enable

systemd unit file method SELinux access check

Table 10.2. Mapping of systemd general system calls on SELinux access checks

systemd general system call SELinux access check

ClearJobs reboot

FlushDevices halt

Get status

GetAll status

SELinux User's and Administrator's Guide

80

GetJob status

GetSeat status

GetSession status

GetSessionByPID status

GetUser status

Halt halt

Introspect status

KExec reboot

KillSession halt

KillUser halt

ListJobs status

ListSeats status

ListSessions status

ListUsers status

LockSession halt

PowerOff halt

Reboot reboot

SetUserLinger halt

TerminateSeat halt

TerminateSession halt

TerminateUser halt

systemd general system call SELinux access check

Example 10.1. SELinux Policy for a System Service

By using the sesearch utility, you can list policy rules for a system service. For example, calling the

CHAPTER 10. SELINUX SYSTEMD ACCESS CONTROL

81

By using the sesearch utility, you can list policy rules for a system service. For example, calling the
sesearch -A -s NetworkManager_t -c service command returns:

allow NetworkManager_t dnsmasq_unit_file_t : service { start stop status reload kill load } ;
allow NetworkManager_t nscd_unit_file_t : service { start stop status reload kill load } ;
allow NetworkManager_t ntpd_unit_file_t : service { start stop status reload kill load } ;
allow NetworkManager_t pppd_unit_file_t : service { start stop status reload kill load } ;
allow NetworkManager_t polipo_unit_file_t : service { start stop status reload kill load } ;

10.2. SELINUX AND JOURNALD

In systemd, the journald daemon (also known as systemd-journal) is the alternative for the syslog
utility, which is a system service that collects and stores logging data. It creates and maintains structured
and indexed journals based on logging information that is received from the kernel, from user processes
using the libc syslog() function, from standard and error output of system services, or using its native
API. It implicitly collects numerous metadata fields for each log message in a secure way.

The systemd-journal service can be used with SELinux to increase security. SELinux controls processes
by only allowing them to do what they were designed to do; sometimes even less, depending on the
security goals of the policy writer. For example, SELinux prevents a compromised ntpd process from
doing anything other than handle Network Time. However, the ntpd process sends syslog messages, so
that SELinux would allow the compromised process to continue to send those messages. The
compromised ntpd could format syslog messages to match other daemons and potentially mislead an
administrator, or even worse, a utility that reads the syslog file into compromising the whole system.

The systemd-journal daemon verifies all log messages and, among other things, adds SELinux labels to
them. It is then easy to detect inconsistencies in log messages and prevent an attack of this type before
it occurs. You can use the journalctl utility to query logs of systemd journals. If no command-line
arguments are specified, running this utility lists the full content of the journal, starting from the oldest
entries. To see all logs generated on the system, including logs for system components, execute
journalctl as root. If you execute it as a non-root user, the output will be limited only to logs related to
the currently logged-in user.

Example 10.2. Listing Logs with journalctl

It is possible to use journalctl for listing all logs related to a particular SELinux label. For example, the
following command lists all logs logged under the system_u:system_r:policykit_t:s0 label:

~]# journalctl _SELINUX_CONTEXT=system_u:system_r:policykit_t:s0
Oct 21 10:22:42 localhost.localdomain polkitd[647]: Started polkitd version 0.112
Oct 21 10:22:44 localhost.localdomain polkitd[647]: Loading rules from directory /etc/polkit-
1/rules.d
Oct 21 10:22:44 localhost.localdomain polkitd[647]: Loading rules from directory /usr/share/polkit-
1/rules.d
Oct 21 10:22:44 localhost.localdomain polkitd[647]: Finished loading, compiling and executing 5
rules
Oct 21 10:22:44 localhost.localdomain polkitd[647]: Acquired the name org.freedesktop.PolicyKit1
on the system bus Oct 21 10:23:10 localhost polkitd[647]: Registered Authentication Agent for
unix-session:c1 (system bus name :1.49, object path
/org/freedesktop/PolicyKit1/AuthenticationAgent, locale en_US.UTF-8) (disconnected from bus)
Oct 21 10:23:35 localhost polkitd[647]: Unregistered Authentication Agent for unix-session:c1
(system bus name :1.80 [/usr/bin/gnome-shell --mode=classic], object path
/org/freedesktop/PolicyKit1/AuthenticationAgent, locale en_US.utf8)

SELinux User's and Administrator's Guide

82

For more information about journalctl, see the journalctl(1) manual page.

CHAPTER 10. SELINUX SYSTEMD ACCESS CONTROL

83

CHAPTER 11. TROUBLESHOOTING
The following chapter describes what happens when SELinux denies access; the top three causes of
problems; where to find information about correct labeling; analyzing SELinux denials; and creating
custom policy modules with audit2allow.

11.1. WHAT HAPPENS WHEN ACCESS IS DENIED

SELinux decisions, such as allowing or disallowing access, are cached. This cache is known as the Access
Vector Cache (AVC). Denial messages are logged when SELinux denies access. These denials are also
known as "AVC denials", and are logged to a different location, depending on which daemons are
running:

Daemon Log Location

auditd on /var/log/audit/audit.log

auditd off; rsyslogd on /var/log/messages

setroubleshootd, rsyslogd, and auditd on /var/log/audit/audit.log. Easier-to-read denial
messages also sent to /var/log/messages

If you are running the X Window System, have the setroubleshoot and setroubleshoot-server packages
installed, and the setroubleshootd and auditd daemons are running, a warning is displayed when access
is denied by SELinux:

Clicking on Show presents a detailed analysis of why SELinux denied access, and a possible solution for
allowing access. If you are not running the X Window System, it is less obvious when access is denied by
SELinux. For example, users browsing your website may receive an error similar to the following:

Forbidden

You don't have permission to access file name on this server

For these situations, if DAC rules (standard Linux permissions) allow access, check /var/log/messages

SELinux User's and Administrator's Guide

84

For these situations, if DAC rules (standard Linux permissions) allow access, check /var/log/messages
and /var/log/audit/audit.log for "SELinux is preventing" and "denied" errors respectively. This can be
done by running the following commands as the root user:

~]# grep "SELinux is preventing" /var/log/messages

~]# grep "denied" /var/log/audit/audit.log

11.2. TOP THREE CAUSES OF PROBLEMS

The following sections describe the top three causes of problems: labeling problems, configuring
Booleans and ports for services, and evolving SELinux rules.

11.2.1. Labeling Problems

On systems running SELinux, all processes and files are labeled with a label that contains security-
relevant information. This information is called the SELinux context. If these labels are wrong, access
may be denied. An incorrectly labeled application may cause an incorrect label to be assigned to its
process. This may cause SELinux to deny access, and the process may create mislabeled files.

A common cause of labeling problems is when a non-standard directory is used for a service. For
example, instead of using /var/www/html/ for a website, an administrator wants to use /srv/myweb/. On
Red Hat Enterprise Linux, the /srv directory is labeled with the var_t type. Files and directories created
in /srv inherit this type. Also, newly-created objects in top-level directories (such as /myserver) may be
labeled with the default_t type. SELinux prevents the Apache HTTP Server (httpd) from accessing both
of these types. To allow access, SELinux must know that the files in /srv/myweb/ are to be accessible to
httpd:

~]# semanage fcontext -a -t httpd_sys_content_t "/srv/myweb(/.*)?"

This semanage command adds the context for the /srv/myweb/ directory (and all files and directories
under it) to the SELinux file-context configuration[8]. The semanage utility does not change the
context. As root, run the restorecon utility to apply the changes:

~]# restorecon -R -v /srv/myweb

See Section 4.7.2, “Persistent Changes: semanage fcontext” for further information about adding
contexts to the file-context configuration.

11.2.1.1. What is the Correct Context?

The matchpathcon utility checks the context of a file path and compares it to the default label for that
path. The following example demonstrates using matchpathcon on a directory that contains incorrectly
labeled files:

~]$ matchpathcon -V /var/www/html/*
/var/www/html/index.html has context unconfined_u:object_r:user_home_t:s0, should be
system_u:object_r:httpd_sys_content_t:s0
/var/www/html/page1.html has context unconfined_u:object_r:user_home_t:s0, should be
system_u:object_r:httpd_sys_content_t:s0

In this example, the index.html and page1.html files are labeled with the user_home_t type. This type
is used for files in user home directories. Using the mv command to move files from your home directory

CHAPTER 11. TROUBLESHOOTING

85

may result in files being labeled with the user_home_t type. This type should not exist outside of home
directories. Use the restorecon utility to restore such files to their correct type:

~]# restorecon -v /var/www/html/index.html
restorecon reset /var/www/html/index.html context unconfined_u:object_r:user_home_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

To restore the context for all files under a directory, use the -R option:

~]# restorecon -R -v /var/www/html/
restorecon reset /var/www/html/page1.html context unconfined_u:object_r:samba_share_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /var/www/html/index.html context unconfined_u:object_r:samba_share_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

See Section 4.10.3, “Checking the Default SELinux Context” for a more detailed example of
matchpathcon.

11.2.2. How are Confined Services Running?

Services can be run in a variety of ways. To cater for this, you need to specify how you run your services.
This can be achieved through Booleans that allow parts of SELinux policy to be changed at runtime,
without any knowledge of SELinux policy writing. This allows changes, such as allowing services access
to NFS volumes, without reloading or recompiling SELinux policy. Also, running services on non-default
port numbers requires policy configuration to be updated using the semanage command.

For example, to allow the Apache HTTP Server to communicate with MariaDB, enable the
httpd_can_network_connect_db Boolean:

~]# setsebool -P httpd_can_network_connect_db on

If access is denied for a particular service, use the getsebool and grep utilities to see if any Booleans
are available to allow access. For example, use the getsebool -a | grep ftp command to search for FTP
related Booleans:

~]$ getsebool -a | grep ftp
ftpd_anon_write --> off
ftpd_full_access --> off
ftpd_use_cifs --> off
ftpd_use_nfs --> off

ftpd_connect_db --> off
httpd_enable_ftp_server --> off
tftp_anon_write --> off

For a list of Booleans and whether they are on or off, run the getsebool -a command. For a list of
Booleans, an explanation of what each one is, and whether they are on or off, run the semanage
boolean -l command as root. See Section 4.6, “Booleans” for information about listing and configuring
Booleans.

Port Numbers
Depending on policy configuration, services may only be allowed to run on certain port numbers.
Attempting to change the port a service runs on without changing policy may result in the service failing
to start. For example, run the semanage port -l | grep http command as root to list http related ports:

SELinux User's and Administrator's Guide

86

~]# semanage port -l | grep http
http_cache_port_t tcp 3128, 8080, 8118
http_cache_port_t udp 3130
http_port_t tcp 80, 443, 488, 8008, 8009, 8443
pegasus_http_port_t tcp 5988
pegasus_https_port_t tcp 5989

The http_port_t port type defines the ports Apache HTTP Server can listen on, which in this case, are
TCP ports 80, 443, 488, 8008, 8009, and 8443. If an administrator configures httpd.conf so that httpd
listens on port 9876 (Listen 9876), but policy is not updated to reflect this, the following command fails:

~]# systemctl start httpd.service
Job for httpd.service failed. See 'systemctl status httpd.service' and 'journalctl -xn' for details.

~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: failed (Result: exit-code) since Thu 2013-08-15 09:57:05 CEST; 59s ago
 Process: 16874 ExecStop=/usr/sbin/httpd $OPTIONS -k graceful-stop (code=exited,
status=0/SUCCESS)
 Process: 16870 ExecStart=/usr/sbin/httpd $OPTIONS -DFOREGROUND (code=exited,
status=1/FAILURE)

An SELinux denial message similar to the following is logged to /var/log/audit/audit.log:

type=AVC msg=audit(1225948455.061:294): avc: denied { name_bind } for pid=4997
comm="httpd" src=9876 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=system_u:object_r:port_t:s0 tclass=tcp_socket

To allow httpd to listen on a port that is not listed for the http_port_t port type, enter the semanage
port command to add a port to policy configuration [9]:

~]# semanage port -a -t http_port_t -p tcp 9876

The -a option adds a new record; the -t option defines a type; and the -p option defines a protocol. The
last argument is the port number to add.

11.2.3. Evolving Rules and Broken Applications

Applications may be broken, causing SELinux to deny access. Also, SELinux rules are evolving – SELinux
may not have seen an application running in a certain way, possibly causing it to deny access, even
though the application is working as expected. For example, if a new version of PostgreSQL is released,
it may perform actions the current policy has not seen before, causing access to be denied, even though
access should be allowed.

For these situations, after access is denied, use the audit2allow utility to create a custom policy module
to allow access. See Section 11.3.8, “Allowing Access: audit2allow” for information about using
audit2allow.

11.3. FIXING PROBLEMS

The following sections help troubleshoot issues. They go over: checking Linux permissions, which are
checked before SELinux rules; possible causes of SELinux denying access, but no denials being logged;

CHAPTER 11. TROUBLESHOOTING

87

manual pages for services, which contain information about labeling and Booleans; permissive domains,
for allowing one process to run permissive, rather than the whole system; how to search for and view
denial messages; analyzing denials; and creating custom policy modules with audit2allow.

11.3.1. Linux Permissions

When access is denied, check standard Linux permissions. As mentioned in Chapter 1, Introduction, most
operating systems use a Discretionary Access Control (DAC) system to control access, allowing users to
control the permissions of files that they own. SELinux policy rules are checked after DAC rules. SELinux
policy rules are not used if DAC rules deny access first.

If access is denied and no SELinux denials are logged, use the following command to view the standard
Linux permissions:

~]$ ls -l /var/www/html/index.html
-rw-r----- 1 root root 0 2009-05-07 11:06 index.html

In this example, index.html is owned by the root user and group. The root user has read and write
permissions (-rw), and members of the root group have read permissions (-r-). Everyone else has no
access (---). By default, such permissions do not allow httpd to read this file. To resolve this issue, use
the chown command to change the owner and group. This command must be run as root:

~]# chown apache:apache /var/www/html/index.html

This assumes the default configuration, in which httpd runs as the Linux Apache user. If you run httpd
with a different user, replace apache:apache with that user.

See the Fedora Documentation Project "Permissions" draft for information about managing Linux
permissions.

11.3.2. Possible Causes of Silent Denials

In certain situations, AVC denial messages may not be logged when SELinux denies access. Applications
and system library functions often probe for more access than required to perform their tasks. To
maintain the least privilege without filling audit logs with AVC denials for harmless application probing,
the policy can silence AVC denials without allowing permission by using dontaudit rules. These rules are
common in standard policy. The downside of dontaudit is that, although SELinux denies access, denial
messages are not logged, making troubleshooting more difficult.

To temporarily disable dontaudit rules, allowing all denials to be logged, enter the following command as
root:

~]# semodule -DB

The -D option disables dontaudit rules; the -B option rebuilds policy. After running semodule -DB, try
exercising the application that was encountering permission problems, and see if SELinux denials —
relevant to the application — are now being logged. Take care in deciding which denials should be
allowed, as some should be ignored and handled by dontaudit rules. If in doubt, or in search of guidance,
contact other SELinux users and developers on an SELinux list, such as fedora-selinux-list.

To rebuild policy and enable dontaudit rules, enter the following command as root:

~]# semodule -B

SELinux User's and Administrator's Guide

88

http://fedoraproject.org/wiki/Docs/Drafts/AdministrationGuide/Permissions
http://www.redhat.com/mailman/listinfo/fedora-selinux-list

This restores the policy to its original state. For a full list of dontaudit rules, run the sesearch --
dontaudit command. Narrow down searches using the -s domain option and the grep command. For
example:

~]$ sesearch --dontaudit -s smbd_t | grep squid
dontaudit smbd_t squid_port_t : tcp_socket name_bind ;
dontaudit smbd_t squid_port_t : udp_socket name_bind ;

See Section 11.3.6, “Raw Audit Messages” and Section 11.3.7, “sealert Messages” for information about
analyzing denials.

11.3.3. Manual Pages for Services

Manual pages for services contain valuable information, such as what file type to use for a given
situation, and Booleans to change the access a service has (such as httpd accessing NFS volumes). This
information may be in the standard manual page or in the manual page that can be automatically
generated from the SELinux policy for every service domain using the sepolicy manpage utility. Such
manual pages are named in the service-name_selinux format. Such manual pages are also shipped with
the selinux-policy-doc package.

For example, the httpd_selinux(8) manual page has information about what file type to use for a given
situation, as well as Booleans to allow scripts, sharing files, accessing directories inside user home
directories, and so on. Other manual pages with SELinux information for services include:

Samba: the samba_selinux(8) manual page for example describes that enabling the
samba_enable_home_dirs Boolean allows Samba to share users home directories.

NFS: the nfsd_selinux(8) manual page describes SELinux nfsd policy that allows users to setup
their nfsd processes in as secure a method as possible.

The information in manual pages helps you configure the correct file types and Booleans, helping to
prevent SELinux from denying access.

See Section 5.4, “Generating Manual Pages: sepolicy manpage” for further information about sepolicy
manpage.

11.3.4. Permissive Domains

When SELinux is running in permissive mode, SELinux does not deny access, but denials are logged for
actions that would have been denied if running in enforcing mode. Previously, it was not possible to
make a single domain permissive (remember: processes run in domains). In certain situations, this led to
making the whole system permissive to troubleshoot issues.

Permissive domains allow an administrator to configure a single process (domain) to run permissive,
rather than making the whole system permissive. SELinux checks are still performed for permissive
domains; however, the kernel allows access and reports an AVC denial for situations where SELinux
would have denied access.

Permissive domains have the following uses:

They can be used for making a single process (domain) run permissive to troubleshoot an issue
without putting the entire system at risk by making it permissive.

They allow an administrator to create policies for new applications. Previously, it was
recommended that a minimal policy be created, and then the entire machine put into permissive
mode, so that the application could run, but SELinux denials still logged. The audit2allow could

CHAPTER 11. TROUBLESHOOTING

89

then be used to help write the policy. This put the whole system at risk. With permissive
domains, only the domain in the new policy can be marked permissive, without putting the whole
system at risk.

11.3.4.1. Making a Domain Permissive

To make a domain permissive, run the semanage permissive -a domain command, where domain is
the domain you want to make permissive. For example, enter the following command as root to make the
httpd_t domain (the domain the Apache HTTP Server runs in) permissive:

~]# semanage permissive -a httpd_t

To view a list of domains you have made permissive, run the semodule -l | grep permissive command
as root. For example:

~]# semodule -l | grep permissive
permissive_httpd_t (null)
permissivedomains (null)

If you no longer want a domain to be permissive, run the semanage permissive -d domain command as
root. For example:

~]# semanage permissive -d httpd_t

11.3.4.2. Disabling Permissive Domains

The permissivedomains.pp module contains all of the permissive domain declarations that are
presented on the system. To disable all permissive domains, enter the following command as root:

~]# semodule -d permissivedomains

NOTE

Once a policy module is disabled through the semodule -d command, it is no longer
showed in the output of the semodule -l command. To see all policy modules including
disabled, enter the following command as root:

~]# semodule --list-modules=full

11.3.4.3. Denials for Permissive Domains

The SYSCALL message is different for permissive domains. The following is an example AVC denial
(and the associated system call) from the Apache HTTP Server:

type=AVC msg=audit(1226882736.442:86): avc: denied { getattr } for pid=2427 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226882736.442:86): arch=40000003 syscall=196 success=no exit=-13
a0=b9a1e198 a1=bfc2921c a2=54dff4 a3=2008171 items=0 ppid=2425 pid=2427 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=4 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)

SELinux User's and Administrator's Guide

90

By default, the httpd_t domain is not permissive, and as such, the action is denied, and the SYSCALL
message contains success=no. The following is an example AVC denial for the same situation, except
the semanage permissive -a httpd_t command has been run to make the httpd_t domain permissive:

type=AVC msg=audit(1226882925.714:136): avc: denied { read } for pid=2512 comm="httpd"
name="file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226882925.714:136): arch=40000003 syscall=5 success=yes exit=11
a0=b962a1e8 a1=8000 a2=0 a3=8000 items=0 ppid=2511 pid=2512 auid=502 uid=48 gid=48
euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=4 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)

In this case, although an AVC denial was logged, access was not denied, as shown by success=yes in
the SYSCALL message.

See Dan Walsh's "Permissive Domains" blog entry for further information about permissive domains.

11.3.5. Searching For and Viewing Denials

This section assumes the setroubleshoot, setroubleshoot-server, dbus and audit packages are installed,
and that the auditd, rsyslogd, and setroubleshootd daemons are running. See Section 4.2, “Which Log
File is Used” for information about starting these daemons. A number of utilites are available for
searching for and viewing SELinux AVC messages, such as ausearch, aureport, and sealert.

ausearch
The audit package provides the ausearch utility that can query the audit daemon logs for events based
on different search criteria.[10] The ausearch utility accesses /var/log/audit/audit.log, and as such,
must be run as the root user:

Searching For Command

all denials ausearch -m
avc,user_avc,selinux_err,user_selinux_err

denials for that today ausearch -m avc -ts today

denials from the last 10 minutes ausearch -m avc -ts recent

To search for SELinux AVC messages for a particular service, use the -c comm-name option, where
comm-name is the executable’s name, for example, httpd for the Apache HTTP Server, and smbd for
Samba:

~]# ausearch -m avc -c httpd

~]# ausearch -m avc -c smbd

With each ausearch command, it is advised to use either the --interpret (-i) option for easier readability,
or the --raw (-r) option for script processing. See the ausearch(8) manual page for further ausearch
options.

CHAPTER 11. TROUBLESHOOTING

91

http://danwalsh.livejournal.com/24537.html

aureport
The audit package provides the aureport utility, which produces summary reports of the audit system
logs. [11] The aureport utility accesses /var/log/audit/audit.log, and as such, must be run as the root
user. To view a list of SELinux denial messages and how often each one occurred, run the aureport -a
command. The following is example output that includes two denials:

~]# aureport -a

AVC Report
==
date time comm subj syscall class permission obj event
==
1. 05/01/2009 21:41:39 httpd unconfined_u:system_r:httpd_t:s0 195 file getattr
system_u:object_r:samba_share_t:s0 denied 2
2. 05/03/2009 22:00:25 vsftpd unconfined_u:system_r:ftpd_t:s0 5 file read
unconfined_u:object_r:cifs_t:s0 denied 4

sealert
The setroubleshoot-server package provides the sealert utility, which reads denial messages translated
by setroubleshoot-server.[12] Denials are assigned IDs, as seen in /var/log/messages. The following is an
example denial from messages:

setroubleshoot: SELinux is preventing /usr/sbin/httpd from name_bind access on the tcp_socket. For
complete SELinux messages. run sealert -l 8c123656-5dda-4e5d-8791-9e3bd03786b7

In this example, the denial ID is 8c123656-5dda-4e5d-8791-9e3bd03786b7. The -l option takes an ID as
an argument. Running the sealert -l 8c123656-5dda-4e5d-8791-9e3bd03786b7 command presents a
detailed analysis of why SELinux denied access, and a possible solution for allowing access.

If you are running the X Window System, have the setroubleshoot and setroubleshoot-server packages
installed, and the setroubleshootd, dbus and auditd daemons are running, a warning is displayed when
access is denied by SELinux:

Clicking on Show launches the sealert GUI, which allows you to troubleshoot the problem:

SELinux User's and Administrator's Guide

92

Alternatively, run the sealert -b command to launch the sealert GUI. To view a detailed analysis of all
denial messages, run the sealert -l * command.

11.3.6. Raw Audit Messages

Raw audit messages are logged to /var/log/audit/audit.log. The following is an example AVC denial
message (and the associated system call) that occurred when the Apache HTTP Server (running in the
httpd_t domain) attempted to access the /var/www/html/file1 file (labeled with the samba_share_t
type):

type=AVC msg=audit(1226874073.147:96): avc: denied { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)

{ getattr }

The item in the curly brackets indicates the permission that was denied. The getattr entry indicates
the source process was trying to read the target file's status information. This occurs before reading
files. This action is denied due to the file being accessed having a wrong label. Commonly seen
permissions include getattr, read, and write.

comm="httpd"

The executable that launched the process. The full path of the executable is found in the exe=
section of the system call (SYSCALL) message, which in this case, is exe="/usr/sbin/httpd".

path="/var/www/html/file1"

The path to the object (target) the process attempted to access.

scontext="unconfined_u:system_r:httpd_t:s0"

The SELinux context of the process that attempted the denied action. In this case, it is the SELinux
context of the Apache HTTP Server, which is running in the httpd_t domain.

tcontext="unconfined_u:object_r:samba_share_t:s0"

The SELinux context of the object (target) the process attempted to access. In this case, it is the

CHAPTER 11. TROUBLESHOOTING

93

The SELinux context of the object (target) the process attempted to access. In this case, it is the
SELinux context of file1. Note that the samba_share_t type is not accessible to processes running
in the httpd_t domain.

In certain situations, the tcontext may match the scontext, for example, when a process attempts to
execute a system service that will change characteristics of that running process, such as the user ID.
Also, the tcontext may match the scontext when a process tries to use more resources (such as
memory) than normal limits allow, resulting in a security check to see if that process is allowed to
break those limits.

From the system call (SYSCALL) message, two items are of interest:

success=no: indicates whether the denial (AVC) was enforced or not. success=no indicates
the system call was not successful (SELinux denied access). success=yes indicates the system
call was successful. This can be seen for permissive domains or unconfined domains, such as
unconfined_service_t and kernel_t.

exe="/usr/sbin/httpd": the full path to the executable that launched the process, which in this
case, is exe="/usr/sbin/httpd".

An incorrect file type is a common cause for SELinux denying access. To start troubleshooting, compare
the source context (scontext) with the target context (tcontext). Should the process (scontext) be
accessing such an object (tcontext)? For example, the Apache HTTP Server (httpd_t) should only be
accessing types specified in the httpd_selinux(8) manual page, such as httpd_sys_content_t,
public_content_t, and so on, unless configured otherwise.

11.3.7. sealert Messages

Denials are assigned IDs, as seen in /var/log/messages. The following is an example AVC denial (logged
to messages) that occurred when the Apache HTTP Server (running in the httpd_t domain) attempted
to access the /var/www/html/file1 file (labeled with the samba_share_t type):

hostname setroubleshoot: SELinux is preventing httpd (httpd_t) "getattr" to /var/www/html/file1
(samba_share_t). For complete SELinux messages. run sealert -l 32eee32b-21ca-4846-a22f-
0ba050206786

As suggested, run the sealert -l 32eee32b-21ca-4846-a22f-0ba050206786 command to view the
complete message. This command only works on the local machine, and presents the same information
as the sealert GUI:

~]$ sealert -l 32eee32b-21ca-4846-a22f-0ba050206786
SELinux is preventing httpd from getattr access on the file /var/www/html/file1.

***** Plugin restorecon (92.2 confidence) suggests ************************

If you want to fix the label.
/var/www/html/file1 default label should be httpd_sys_content_t.
Then you can run restorecon.
Do
/sbin/restorecon -v /var/www/html/file1

***** Plugin public_content (7.83 confidence) suggests ********************

If you want to treat file1 as public content
Then you need to change the label on file1 to public_content_t or public_content_rw_t.

SELinux User's and Administrator's Guide

94

Do
semanage fcontext -a -t public_content_t '/var/www/html/file1'
restorecon -v '/var/www/html/file1'

***** Plugin catchall (1.41 confidence) suggests **************************

If you believe that httpd should be allowed getattr access on the file1 file by default.
Then you should report this as a bug.
You can generate a local policy module to allow this access.
Do
allow this access for now by executing:
ausearch -c 'httpd' --raw | audit2allow -M my-httpd
semodule -i my-httpd.pp

Additional Information:
Source Context system_u:system_r:httpd_t:s0
Target Context unconfined_u:object_r:samba_share_t:s0
Target Objects /var/www/html/file1 [file]
Source httpd
Source Path httpd
Port <Unknown>
Host hostname.redhat.com
Source RPM Packages
Target RPM Packages
Policy RPM selinux-policy-3.13.1-166.el7.noarch
Selinux Enabled True
Policy Type targeted
Enforcing Mode Enforcing
Host Name hostname.redhat.com
Platform Linux hostname.redhat.com
 3.10.0-693.el7.x86_64 #1 SMP Thu Jul 6 19:56:57
 EDT 2017 x86_64 x86_64
Alert Count 2
First Seen 2017-07-20 02:52:11 EDT
Last Seen 2017-07-20 02:52:11 EDT
Local ID 32eee32b-21ca-4846-a22f-0ba050206786

Raw Audit Messages
type=AVC msg=audit(1500533531.140:295): avc: denied { getattr } for pid=24934 comm="httpd"
path="/var/www/html/file1" dev="vda1" ino=31457414 scontext=system_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

Hash: httpd,httpd_t,samba_share_t,file,getattr

Summary

A brief summary of the denied action. This is the same as the denial in /var/log/messages. In this
example, the httpd process was denied access to a file (file1), which is labeled with the
samba_share_t type.

Detailed Description

A more verbose description. In this example, file1 is labeled with the samba_share_t type. This type
is used for files and directories that you want to export using Samba. The description suggests
changing the type to a type that can be accessed by the Apache HTTP Server and Samba, if such

CHAPTER 11. TROUBLESHOOTING

95

access is required.

Allowing Access

A suggestion for how to allow access. This may be relabeling files, enabling a Boolean, or making a
local policy module. In this case, the suggestion is to label the file with a type accessible to both the
Apache HTTP Server and Samba.

Fix Command

A suggested command to allow access and resolve the denial. In this example, it gives the command
to change the file1 type to public_content_t, which is accessible to the Apache HTTP Server and
Samba.

Additional Information

Information that is useful in bug reports, such as the policy package name and version (selinux-
policy-3.13.1-166.el7.noarch), but may not help towards solving why the denial occurred.

Raw Audit Messages

The raw audit messages from /var/log/audit/audit.log that are associated with the denial. See
Section 11.3.6, “Raw Audit Messages” for information about each item in the AVC denial.

11.3.8. Allowing Access: audit2allow

WARNING

Do not use the example in this section in production. It is used only to demonstrate
the use of the audit2allow utility.

The audit2allow utility gathers information from logs of denied operations and then generates SELinux
policy allow rules.[13] After analyzing denial messages as per Section 11.3.7, “sealert Messages” , and if no
label changes or Booleans allowed access, use audit2allow to create a local policy module. When access
is denied by SELinux, running audit2allow generates Type Enforcement rules that allow the previously
denied access.

You should not use audit2allow to generate a local policy module as your first option when you see an
SELinux denial. Troubleshooting should start with a check if there is a labeling problem. The second most
often case is that you have changed a process configuration, and you forgot to tell SELinux about it. For
more information, see the Four Key Causes of SELinux Errors white paper.

The following example demonstrates using audit2allow to create a policy module:

1. A denial message and the associated system call are logged to the /var/log/audit/audit.log file:

type=AVC msg=audit(1226270358.848:238): avc: denied { write } for pid=13349
comm="certwatch" name="cache" dev=dm-0 ino=218171
scontext=system_u:system_r:certwatch_t:s0 tcontext=system_u:object_r:var_t:s0 tclass=dir



SELinux User's and Administrator's Guide

96

https://fedorapeople.org/~dwalsh/SELinux/Presentations/selinux_four_things.pdf

type=SYSCALL msg=audit(1226270358.848:238): arch=40000003 syscall=39 success=no
exit=-13 a0=39a2bf a1=3ff a2=3a0354 a3=94703c8 items=0 ppid=13344 pid=13349
auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none)
ses=4294967295 comm="certwatch" exe="/usr/bin/certwatch"
subj=system_u:system_r:certwatch_t:s0 key=(null)

In this example, certwatch was denied the write access to a directory labeled with the var_t
type. Analyze the denial message as per Section 11.3.7, “sealert Messages” . If no label changes
or Booleans allowed access, use audit2allow to create a local policy module.

2. Enter the following command to produce a human-readable description of why the access was
denied. The audit2allow utility reads /var/log/audit/audit.log, and as such, must be run as the
root user:

~]# audit2allow -w -a
type=AVC msg=audit(1226270358.848:238): avc: denied { write } for pid=13349
comm="certwatch" name="cache" dev=dm-0 ino=218171
scontext=system_u:system_r:certwatch_t:s0 tcontext=system_u:object_r:var_t:s0 tclass=dir
 Was caused by:
 Missing type enforcement (TE) allow rule.

 You can use audit2allow to generate a loadable module to allow this access.

The -a command-line option causes all audit logs to be read. The -w option produces the
human-readable description. As shown, access was denied due to a missing Type Enforcement
rule.

3. Enter the following command to view the Type Enforcement rule that allows the denied access:

~]# audit2allow -a

#============= certwatch_t ==============
allow certwatch_t var_t:dir write;

IMPORTANT

Missing Type Enforcement rules are usually caused by bugs in the SELinux policy,
and should be reported in Red Hat Bugzilla . For Red Hat Enterprise Linux, create
bugs against the Red Hat Enterprise Linux product, and select the selinux-
policy component. Include the output of the audit2allow -w -a and audit2allow
-a commands in such bug reports.

4. To use the rule displayed by audit2allow -a, enter the following command as root to create a
custom module. The -M option creates a Type Enforcement file (.te) with the name specified
with -M, in your current working directory:

~]# audit2allow -a -M mycertwatch
******************** IMPORTANT ***********************
To make this policy package active, execute:

semodule -i mycertwatch.pp

5. Also, audit2allow compiles the Type Enforcement rule into a policy package (.pp):

CHAPTER 11. TROUBLESHOOTING

97

https://bugzilla.redhat.com/

~]# ls
mycertwatch.pp mycertwatch.te

To install the module, enter the following command as the root:

~]# semodule -i mycertwatch.pp

IMPORTANT

Modules created with audit2allow may allow more access than required. It is
recommended that policy created with audit2allow be posted to the upstream
SELinux list for review. If you believe there is a bug in the policy, create a bug in
Red Hat Bugzilla .

If you have multiple denial messages from multiple processes, but only want to create a custom policy
for a single process, use the grep utility to narrow down the input for audit2allow. The following
example demonstrates using grep to only send denial messages related to certwatch through
audit2allow:

~]# grep certwatch /var/log/audit/audit.log | audit2allow -R -M mycertwatch2
******************** IMPORTANT ***********************
To make this policy package active, execute:

semodule -i mycertwatch2.pp

[8] Files in /etc/selinux/targeted/contexts/files/ define contexts for files and directories. Files in this directory
are read by the restorecon and setfiles utilities to restore files and directories to their default contexts.

[9] The semanage port -a command adds an entry to the
/etc/selinux/targeted/modules/active/ports.local file. Note that by default, this file can only be viewed by
root.

[10] See the ausearch(8) manual page for further information about ausearch.

[11] See the aureport(8) manual page for further information about aureport.

[12] See the sealert(8) manual page for further information about sealert.

[13] See the audit2allow(1) manual page for more information about audit2allow.

SELinux User's and Administrator's Guide

98

https://bugzilla.redhat.com/

CHAPTER 12. FURTHER INFORMATION

12.1. CONTRIBUTORS

Dominick Grift – Technical Editor

Murray McAllister – Red Hat Product Security

James Morris – Technical Editor

Eric Paris – Technical Editor

Scott Radvan – Red Hat Customer Content Services

Daniel Walsh – Red Hat Security Engineering

12.2. OTHER RESOURCES

Fedora

Main page: http://fedoraproject.org/wiki/SELinux.

Troubleshooting: http://fedoraproject.org/wiki/SELinux/Troubleshooting.

Fedora SELinux FAQ: https://fedoraproject.org/wiki/SELinux_FAQ.

The National Security Agency (NSA)
NSA was the original developer of SELinux. Researchers in NSA's National Information Assurance
Research Laboratory (NIARL) designed and implemented flexible mandatory access controls in the
major subsystems of the Linux kernel and implemented the new operating system components provided
by the Flask architecture, namely the security server and the access vector cache.

Main SELinux website: https://www.nsa.gov/what-we-do/research/selinux/.

SELinux Mailing List: https://www.nsa.gov/what-we-do/research/selinux/mailing-list.shtml.

SELinux documentation: https://www.nsa.gov/what-we-
do/research/selinux/documentation/index.shtml.

SELinux background: https://www.nsa.gov/what-we-do/research/selinux/related-work/.

Tresys Technology
Tresys Technology are the upstream for:

SELinux User Space Libraries and Tools .

SELinux Reference Policy.

The SELinux GitHub repositories

SELinux Project: https://github.com/SELinuxProject

Tresys Technology: https://github.com/TresysTechnology/

SELinux Project Wiki

Main page: http://selinuxproject.org/page/Main_Page.

CHAPTER 12. FURTHER INFORMATION

99

mailto:domg472@gmail.com
mailto:mmcallis@redhat.com
mailto:jmorris@redhat.com
mailto:eparis@redhat.com
mailto:sradvan@redhat.com
mailto:dwalsh@redhat.com
http://fedoraproject.org/wiki/SELinux
http://fedoraproject.org/wiki/SELinux/Troubleshooting
https://fedoraproject.org/wiki/SELinux_FAQ
https://www.nsa.gov/what-we-do/research/selinux/
https://www.nsa.gov/what-we-do/research/selinux/mailing-list.shtml
https://www.nsa.gov/what-we-do/research/selinux/documentation/index.shtml
https://www.nsa.gov/what-we-do/research/selinux/related-work/
http://www.tresys.com/
http://userspace.selinuxproject.org/
https://github.com/TresysTechnology/refpolicy/wiki
https://github.com/SELinuxProject
https://github.com/TresysTechnology/

Main page: http://selinuxproject.org/page/Main_Page.

User resources, including links to documentation, mailing lists, websites, and tools:
http://selinuxproject.org/page/User_Resources.

The SELinux Notebook - The Foundations - 4th Edition
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf

DigitalOcean: An Introduction to SELinux on CentOS 7
https://www.digitalocean.com/community/tutorial_series/an-introduction-to-selinux-on-centos-7

IRC
On Freenode:

#selinux

#fedora-selinux

SELinux User's and Administrator's Guide

100

http://selinuxproject.org/page/Main_Page
http://selinuxproject.org/page/User_Resources
http://freecomputerbooks.com/books/The_SELinux_Notebook-4th_Edition.pdf
https://www.digitalocean.com/community/tutorial_series/an-introduction-to-selinux-on-centos-7
http://freenode.net/

PART II. MANAGING CONFINED SERVICES

PART II. MANAGING CONFINED SERVICES

101

CHAPTER 13. INTRODUCTION
This part of the book focuses more on practical tasks and provides information how to set up and
configure various services. For each service, there are listed the most common types and Booleans with
the specifications. Also included are real-world examples of configuring those services and
demonstrations of how SELinux complements their operation.

When SELinux is in enforcing mode, the default policy used in Red Hat Enterprise Linux, is the targeted
policy. Processes that are targeted run in a confined domain, and processes that are not targeted run in
an unconfined domain. See Chapter 3, Targeted Policy for more information about targeted policy and
confined and unconfined processes.

SELinux User's and Administrator's Guide

102

CHAPTER 14. THE APACHE HTTP SERVER

The Apache HTTP Server provides an open-source HTTP server with the current HTTP standards.[14]

In Red Hat Enterprise Linux, the httpd package provides the Apache HTTP Server. Enter the following
command to see if the httpd package is installed:

~]$ rpm -q httpd
package httpd is not installed

If it is not installed and you want to use the Apache HTTP Server, use the yum utility as the root user to
install it:

~]# yum install httpd

14.1. THE APACHE HTTP SERVER AND SELINUX

When SELinux is enabled, the Apache HTTP Server (httpd) runs confined by default. Confined
processes run in their own domains, and are separated from other confined processes. If a confined
process is compromised by an attacker, depending on SELinux policy configuration, an attacker's access
to resources and the possible damage they can do is limited. The following example demonstrates the
httpd processes running in their own domain. This example assumes the httpd, setroubleshoot,
setroubleshoot-server and policycoreutils-python packages are installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The command returns Enforcing when SELinux is running in enforcing mode.

2. Enter the following command as root to start httpd:

~]# systemctl start httpd.service

Confirm that the service is running. The output should include the information below (only the
time stamp will differ):

~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: active (running) since Mon 2013-08-05 14:00:55 CEST; 8s ago

3. To view the httpd processes, execute the following command:

~]$ ps -eZ | grep httpd
system_u:system_r:httpd_t:s0 19780 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 19781 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 19782 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 19783 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 19784 ? 00:00:00 httpd
system_u:system_r:httpd_t:s0 19785 ? 00:00:00 httpd

CHAPTER 14. THE APACHE HTTP SERVER

103

The SELinux context associated with the httpd processes is system_u:system_r:httpd_t:s0.
The second last part of the context, httpd_t, is the type. A type defines a domain for processes
and a type for files. In this case, the httpd processes are running in the httpd_t domain.

SELinux policy defines how processes running in confined domains (such as httpd_t) interact with files,
other processes, and the system in general. Files must be labeled correctly to allow httpd access to
them. For example, httpd can read files labeled with the httpd_sys_content_t type, but cannot write to
them, even if Linux (DAC) permissions allow write access. Booleans must be enabled to allow certain
behavior, such as allowing scripts network access, allowing httpd access to NFS and CIFS volumes, and
httpd being allowed to execute Common Gateway Interface (CGI) scripts.

When the /etc/httpd/conf/httpd.conf file is configured so httpd listens on a port other than TCP ports
80, 443, 488, 8008, 8009, or 8443, the semanage port command must be used to add the new port
number to SELinux policy configuration. The following example demonstrates configuring httpd to
listen on a port that is not already defined in SELinux policy configuration for httpd, and, as a
consequence, httpd failing to start. This example also demonstrates how to then configure the SELinux
system to allow httpd to successfully listen on a non-standard port that is not already defined in the
policy. This example assumes the httpd package is installed. Run each command in the example as the
root user:

1. Enter the following command to confirm httpd is not running:

~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: inactive (dead)

If the output differs, stop the process:

~]# systemctl stop httpd.service

2. Use the semanage utility to view the ports SELinux allows httpd to listen on:

~]# semanage port -l | grep -w http_port_t
http_port_t tcp 80, 443, 488, 8008, 8009, 8443

3. Edit the /etc/httpd/conf/httpd.conf file as root. Configure the Listen option so it lists a port
that is not configured in SELinux policy configuration for httpd. In this example, httpd is
configured to listen on port 12345:

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses (0.0.0.0)
#
#Listen 12.34.56.78:80
Listen 127.0.0.1:12345

4. Enter the following command to start httpd:

~]# systemctl start httpd.service
Job for httpd.service failed. See 'systemctl status httpd.service' and 'journalctl -xn' for details.

An SELinux denial message similar to the following is logged:

SELinux User's and Administrator's Guide

104

setroubleshoot: SELinux is preventing the httpd (httpd_t) from binding to port 12345. For
complete SELinux messages. run sealert -l f18bca99-db64-4c16-9719-1db89f0d8c77

5. For SELinux to allow httpd to listen on port 12345, as used in this example, the following
command is required:

~]# semanage port -a -t http_port_t -p tcp 12345

6. Start httpd again and have it listen on the new port:

~]# systemctl start httpd.service

7. Now that SELinux has been configured to allow httpd to listen on a non-standard port (TCP
12345 in this example), httpd starts successfully on this port.

8. To prove that httpd is listening and communicating on TCP port 12345, open a telnet
connection to the specified port and issue a HTTP GET command, as follows:

~]# telnet localhost 12345
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
GET / HTTP/1.0

HTTP/1.1 200 OK
Date: Wed, 02 Dec 2009 14:36:34 GMT
Server: Apache/2.2.13 (Red Hat)
Accept-Ranges: bytes
Content-Length: 3985
Content-Type: text/html; charset=UTF-8
[...continues...]

14.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following example creates a new file in the /var/www/html/ directory, and shows the file inheriting
the httpd_sys_content_t type from its parent directory (/var/www/html/):

1. Enter the following command to view the SELinux context of /var/www/html/:

~]$ ls -dZ /var/www/html
drwxr-xr-x root root system_u:object_r:httpd_sys_content_t:s0 /var/www/html

This shows /var/www/html/ is labeled with the httpd_sys_content_t type.

2. Create a new file by using the touch utility as root:

~]# touch /var/www/html/file1

CHAPTER 14. THE APACHE HTTP SERVER

105

3. Enter the following command to view the SELinux context:

~]$ ls -Z /var/www/html/file1
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 /var/www/html/file1

The ls -Z command shows file1 labeled with the httpd_sys_content_t type. SELinux allows httpd to
read files labeled with this type, but not write to them, even if Linux permissions allow write access.
SELinux policy defines what types a process running in the httpd_t domain (where httpd runs) can read
and write to. This helps prevent processes from accessing files intended for use by another process.

For example, httpd can access files labeled with the httpd_sys_content_t type (intended for the
Apache HTTP Server), but by default, cannot access files labeled with the samba_share_t type
(intended for Samba). Also, files in user home directories are labeled with the user_home_t type: by
default, this prevents httpd from reading or writing to files in user home directories.

The following lists some of the types used with httpd. Different types allow you to configure flexible
access:

httpd_sys_content_t

Use this type for static web content, such as .html files used by a static website. Files labeled with
this type are accessible (read only) to httpd and scripts executed by httpd. By default, files and
directories labeled with this type cannot be written to or modified by httpd or other processes. Note
that by default, files created in or copied into the /var/www/html/ directory are labeled with the
httpd_sys_content_t type.

httpd_sys_script_exec_t

Use this type for scripts you want httpd to execute. This type is commonly used for Common
Gateway Interface (CGI) scripts in the /var/www/cgi-bin/ directory. By default, SELinux policy
prevents httpd from executing CGI scripts. To allow this, label the scripts with the
httpd_sys_script_exec_t type and enable the httpd_enable_cgi Boolean. Scripts labeled with
httpd_sys_script_exec_t run in the httpd_sys_script_t domain when executed by httpd. The
httpd_sys_script_t domain has access to other system domains, such as postgresql_t and
mysqld_t.

httpd_sys_rw_content_t

Files labeled with this type can be written to by scripts labeled with the httpd_sys_script_exec_t
type, but cannot be modified by scripts labeled with any other type. You must use the
httpd_sys_rw_content_t type to label files that will be read from and written to by scripts labeled
with the httpd_sys_script_exec_t type.

httpd_sys_ra_content_t

Files labeled with this type can be appended to by scripts labeled with the httpd_sys_script_exec_t
type, but cannot be modified by scripts labeled with any other type. You must use the
httpd_sys_ra_content_t type to label files that will be read from and appended to by scripts labeled
with the httpd_sys_script_exec_t type.

httpd_unconfined_script_exec_t

Scripts labeled with this type run without SELinux protection. Only use this type for complex scripts,
after exhausting all other options. It is better to use this type instead of disabling SELinux protection
for httpd, or for the entire system.

NOTE

SELinux User's and Administrator's Guide

106

NOTE

To see more of the available types for httpd, enter the following command:

~]$ grep httpd /etc/selinux/targeted/contexts/files/file_contexts

Procedure 14.1. Changing the SELinux Context

The type for files and directories can be changed with the chcon command. Changes made with chcon
do not survive a file system relabel or the restorecon command. SELinux policy controls whether users
are able to modify the SELinux context for any given file. The following example demonstrates creating
a new directory and an index.html file for use by httpd, and labeling that file and directory to allow
httpd access to them:

1. Use the mkdir utility as root to create a top-level directory structure to store files to be used by
httpd:

~]# mkdir -p /my/website

2. Files and directories that do not match a pattern in file-context configuration may be labeled
with the default_t type. This type is inaccessible to confined services:

~]$ ls -dZ /my
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /my

3. Enter the following command as root to change the type of the my/ directory and
subdirectories, to a type accessible to httpd. Now, files created under /my/website/ inherit the
httpd_sys_content_t type, rather than the default_t type, and are therefore accessible to
httpd:

~]# chcon -R -t httpd_sys_content_t /my/
~]# touch /my/website/index.html
~]# ls -Z /my/website/index.html
-rw-r--r-- root root unconfined_u:object_r:httpd_sys_content_t:s0 /my/website/index.html

See Section 4.7.1, “Temporary Changes: chcon” for further information about chcon.

Use the semanage fcontext command (semanage is provided by the policycoreutils-python package)
to make label changes that survive a relabel and the restorecon command. This command adds
changes to file-context configuration. Then, run restorecon, which reads file-context configuration, to
apply the label change. The following example demonstrates creating a new directory and an
index.html file for use by httpd, and persistently changing the label of that directory and file to allow
httpd access to them:

1. Use the mkdir utility as root to create a top-level directory structure to store files to be used by
httpd:

~]# mkdir -p /my/website

2. Enter the following command as root to add the label change to file-context configuration:

~]# semanage fcontext -a -t httpd_sys_content_t "/my(/.*)?"

CHAPTER 14. THE APACHE HTTP SERVER

107

The "/my(/.*)?" expression means the label change applies to the my/ directory and all files and
directories under it.

3. Use the touch utility as root to create a new file:

~]# touch /my/website/index.html

4. Enter the following command as root to apply the label changes (restorecon reads file-context
configuration, which was modified by the semanage command in step 2):

~]# restorecon -R -v /my/
restorecon reset /my context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /my/website context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /my/website/index.html context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

See Section 4.7.2, “Persistent Changes: semanage fcontext” for further information on semanage.

14.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. This can be achieved using Booleans
that allow parts of SELinux policy to be changed at runtime, without any knowledge of SELinux policy
writing. This allows changes, such as allowing services access to NFS volumes, without reloading or
recompiling SELinux policy.

To modify the state of a Boolean, use the setsebool command. For example, to enable the
httpd_anon_write Boolean, enter the following command as the root user:

~]# setsebool -P httpd_anon_write on

To disable a Boolean, using the same example, simply change on to off in the command, as shown
below:

~]# setsebool -P httpd_anon_write off

NOTE

Do not use the -P option if you do not want setsebool changes to persist across reboots.

Below is a description of common Booleans available that cater for the way httpd is running:

httpd_anon_write

When disabled, this Boolean allows httpd to only have read access to files labeled with the
public_content_rw_t type. Enabling this Boolean allows httpd to write to files labeled with the
public_content_rw_t type, such as a public directory containing files for a public file transfer service.

httpd_mod_auth_ntlm_winbind

Enabling this Boolean allows access to NTLM and Winbind authentication mechanisms using the
mod_auth_ntlm_winbind module in httpd.

SELinux User's and Administrator's Guide

108

httpd_mod_auth_pam

Enabling this Boolean allows access to PAM authentication mechanisms using the mod_auth_pam
module in httpd.

httpd_sys_script_anon_write

This Boolean defines whether or not HTTP scripts are allowed write access to files labeled with the
public_content_rw_t type, as used in a public file transfer service.

httpd_builtin_scripting

This Boolean defines access to httpd scripting. Having this Boolean enabled is often required for
PHP content.

httpd_can_network_connect

When disabled, this Boolean prevents HTTP scripts and modules from initiating a connection to a
network or remote port. Enable this Boolean to allow this access.

httpd_can_network_connect_db

When disabled, this Boolean prevents HTTP scripts and modules from initiating a connection to
database servers. Enable this Boolean to allow this access.

httpd_can_network_relay

Enable this Boolean when httpd is being used as a forward or reverse proxy.

httpd_can_sendmail

When disabled, this Boolean prevents HTTP modules from sending mail. This can prevent spam
attacks should a vulnerability be found in httpd. Enable this Boolean to allow HTTP modules to send
mail.

httpd_dbus_avahi

When disabled, this Boolean denies httpd access to the avahi service throughD-Bus. Enable this
Boolean to allow this access.

httpd_enable_cgi

When disabled, this Boolean prevents httpd from executing CGI scripts. Enable this Boolean to allow
httpd to execute CGI scripts (CGI scripts must be labeled with the httpd_sys_script_exec_t type).

httpd_enable_ftp_server

Enabling this Boolean allows httpd to listen on the FTP port and act as an FTP server.

httpd_enable_homedirs

When disabled, this Boolean prevents httpd from accessing user home directories. Enable this
Boolean to allow httpd access to user home directories; for example, content in /home/*/.

httpd_execmem

When enabled, this Boolean allows httpd to execute programs that require memory addresses that
are both executable and writable. Enabling this Boolean is not recommended from a security
standpoint as it reduces protection against buffer overflows, however certain modules and
applications (such as Java and Mono applications) require this privilege.

CHAPTER 14. THE APACHE HTTP SERVER

109

httpd_ssi_exec

This Boolean defines whether or not server side include (SSI) elements in a web page can be
executed.

httpd_tty_comm

This Boolean defines whether or not httpd is allowed access to the controlling terminal. Usually this
access is not required, however in cases such as configuring an SSL certificate file, terminal access is
required to display and process a password prompt.

httpd_unified

When enabled, this Boolean allows httpd_t complete access to all of the httpd types (that is to
execute, read, or write sys_content_t). When disabled, there is separation in place between web
content that is read-only, writable, or executable. Disabling this Boolean ensures an extra level of
security but adds the administrative overhead of having to individually label scripts and other web
content based on the file access that each should have.

httpd_use_cifs

Enable this Boolean to allow httpd access to files on CIFS volumes that are labeled with the cifs_t
type, such as file systems mounted using Samba.

httpd_use_nfs

Enable this Boolean to allow httpd access to files on NFS volumes that are labeled with the nfs_t
type, such as file systems mounted using NFS.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

14.4. CONFIGURATION EXAMPLES

The following examples provide real-world demonstrations of how SELinux complements the Apache
HTTP Server and how full function of the Apache HTTP Server can be maintained.

14.4.1. Running a static site

To create a static website, label the .html files for that website with the httpd_sys_content_t type. By
default, the Apache HTTP Server cannot write to files that are labeled with the httpd_sys_content_t
type. The following example creates a new directory to store files for a read-only website:

SELinux User's and Administrator's Guide

110

1. Use the mkdir utility as root to create a top-level directory:

~]# mkdir /mywebsite

2. As root, create a /mywebsite/index.html file. Copy and paste the following content into
/mywebsite/index.html:

<html>
<h2>index.html from /mywebsite/</h2>
</html>

3. To allow the Apache HTTP Server read only access to /mywebsite/, as well as files and
subdirectories under it, label the directory with the httpd_sys_content_t type. Enter the
following command as root to add the label change to file-context configuration:

~]# semanage fcontext -a -t httpd_sys_content_t "/mywebsite(/.*)?"

4. Use the restorecon utility as root to make the label changes:

~]# restorecon -R -v /mywebsite
restorecon reset /mywebsite context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0
restorecon reset /mywebsite/index.html context unconfined_u:object_r:default_t:s0-
>system_u:object_r:httpd_sys_content_t:s0

5. For this example, edit the /etc/httpd/conf/httpd.conf file as root. Comment out the existing
DocumentRoot option. Add a DocumentRoot "/mywebsite" option. After editing, these
options should look as follows:

#DocumentRoot "/var/www/html"
DocumentRoot "/mywebsite"

6. Enter the following command as root to see the status of the Apache HTTP Server. If the server
is stopped, start it:

~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: inactive (dead)

~]# systemctl start httpd.service

If the server is running, restart the service by executing the following command as root (this also
applies any changes made to httpd.conf):

~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: active (running) since Wed 2014-02-05 13:16:46 CET; 2s ago

~]# systemctl restart httpd.service

CHAPTER 14. THE APACHE HTTP SERVER

111

7. Use a web browser to navigate to http://localhost/index.html. The following is displayed:

index.html from /mywebsite/

14.4.2. Sharing NFS and CIFS volumes

By default, NFS mounts on the client side are labeled with a default context defined by policy for NFS
volumes. In common policies, this default context uses the nfs_t type. Also, by default, Samba shares
mounted on the client side are labeled with a default context defined by policy. In common policies, this
default context uses the cifs_t type.

Depending on policy configuration, services may not be able to read files labeled with the nfs_t or cifs_t
types. This may prevent file systems labeled with these types from being mounted and then read or
exported by other services. Booleans can be enabled or disabled to control which services are allowed to
access the nfs_t and cifs_t types.

Enable the httpd_use_nfs Boolean to allow httpd to access and share NFS volumes (labeled with the
nfs_t type):

~]# setsebool -P httpd_use_nfs on

Enable the httpd_use_cifs Boolean to allow httpd to access and share CIFS volumes (labeled with the
cifs_t type):

~]# setsebool -P httpd_use_cifs on

NOTE

Do not use the -P option if you do not want setsebool changes to persist across reboots.

14.4.3. Sharing files between services

Type Enforcement helps prevent processes from accessing files intended for use by another process.
For example, by default, Samba cannot read files labeled with the httpd_sys_content_t type, which are
intended for use by the Apache HTTP Server. Files can be shared between the Apache HTTP Server,
FTP, rsync, and Samba, if the required files are labeled with the public_content_t or
public_content_rw_t type.

The following example creates a directory and files, and allows that directory and files to be shared
(read only) through the Apache HTTP Server, FTP, rsync, and Samba:

1. Use the mkdir utility as root to create a new top-level directory to share files between multiple
services:

~]# mkdir /shares

2. Files and directories that do not match a pattern in file-context configuration may be labeled
with the default_t type. This type is inaccessible to confined services:

~]$ ls -dZ /shares
drwxr-xr-x root root unconfined_u:object_r:default_t:s0 /shares

SELinux User's and Administrator's Guide

112

3. As root, create a /shares/index.html file. Copy and paste the following content into
/shares/index.html:

<html>
<body>
<p>Hello</p>
</body>
</html>

4. Labeling /shares/ with the public_content_t type allows read-only access by the Apache HTTP
Server, FTP, rsync, and Samba. Enter the following command as root to add the label change to
file-context configuration:

~]# semanage fcontext -a -t public_content_t "/shares(/.*)?"

5. Use the restorecon utility as root to apply the label changes:

~]# restorecon -R -v /shares/
restorecon reset /shares context unconfined_u:object_r:default_t:s0-
>system_u:object_r:public_content_t:s0
restorecon reset /shares/index.html context unconfined_u:object_r:default_t:s0-
>system_u:object_r:public_content_t:s0

To share /shares/ through Samba:

1. Confirm the samba, samba-common, and samba-client packages are installed (version numbers
may differ):

~]$ rpm -q samba samba-common samba-client
samba-3.4.0-0.41.el6.3.i686
samba-common-3.4.0-0.41.el6.3.i686
samba-client-3.4.0-0.41.el6.3.i686

If any of these packages are not installed, install them by running the following command as
root:

~]# yum install package-name

2. Edit the /etc/samba/smb.conf file as root. Add the following entry to the bottom of this file to
share the /shares/ directory through Samba:

[shares]
comment = Documents for Apache HTTP Server, FTP, rsync, and Samba
path = /shares
public = yes
writable = no

3. A Samba account is required to mount a Samba file system. Enter the following command as
root to create a Samba account, where username is an existing Linux user. For example,
smbpasswd -a testuser creates a Samba account for the Linux testuser user:

~]# smbpasswd -a testuser
New SMB password: Enter a password

CHAPTER 14. THE APACHE HTTP SERVER

113

Retype new SMB password: Enter the same password again
Added user testuser.

If you run the above command, specifying a user name of an account that does not exist on the
system, it causes a Cannot locate Unix account for 'username'! error.

4. Start the Samba service:

~]# systemctl start smb.service

5. Enter the following command to list the available shares, where username is the Samba account
added in step 3. When prompted for a password, enter the password assigned to the Samba
account in step 3 (version numbers may differ):

~]$ smbclient -U username -L localhost
Enter username's password:
Domain=[HOSTNAME] OS=[Unix] Server=[Samba 3.4.0-0.41.el6]

Sharename Type Comment
--------- ---- -------
shares Disk Documents for Apache HTTP Server, FTP, rsync, and Samba
IPC$ IPC IPC Service (Samba Server Version 3.4.0-0.41.el6)
username Disk Home Directories
Domain=[HOSTNAME] OS=[Unix] Server=[Samba 3.4.0-0.41.el6]

Server Comment
--------- -------

Workgroup Master
--------- -------

6. User the mkdir utility to create a new directory. This directory will be used to mount the shares
Samba share:

~]# mkdir /test/

7. Enter the following command as root to mount the shares Samba share to /test/, replacing
username with the user name from step 3:

~]# mount //localhost/shares /test/ -o user=username

Enter the password for username, which was configured in step 3.

8. View the content of the file, which is being shared through Samba:

~]$ cat /test/index.html
<html>
<body>
<p>Hello</p>
</body>
</html>

To share /shares/ through the Apache HTTP Server:

SELinux User's and Administrator's Guide

114

1. Confirm the httpd package is installed (version number may differ):

~]$ rpm -q httpd
httpd-2.2.11-6.i386

If this package is not installed, use the yum utility as root to install it:

~]# yum install httpd

2. Change into the /var/www/html/ directory. Enter the following command as root to create a link
(named shares) to the /shares/ directory:

html]# ln -s /shares/ shares

3. Start the Apache HTTP Server:

~]# systemctl start httpd.service

4. Use a web browser to navigate to http://localhost/shares. The /shares/index.html file is
displayed.

By default, the Apache HTTP Server reads an index.html file if it exists. If /shares/ did not have
index.html, and instead had file1, file2, and file3, a directory listing would occur when accessing
http://localhost/shares:

1. Remove the index.html file:

~]# rm -i /shares/index.html

2. Use the touch utility as root to create three files in /shares/:

~]# touch /shares/file{1,2,3}
~]# ls -Z /shares/
-rw-r--r-- root root system_u:object_r:public_content_t:s0 file1
-rw-r--r-- root root unconfined_u:object_r:public_content_t:s0 file2
-rw-r--r-- root root unconfined_u:object_r:public_content_t:s0 file3

3. Enter the following command as root to see the status of the Apache HTTP Server:

~]# systemctl status httpd.service
httpd.service - The Apache HTTP Server
 Loaded: loaded (/usr/lib/systemd/system/httpd.service; disabled)
 Active: inactive (dead)

If the server is stopped, start it:

~]# systemctl start httpd.service

4. Use a web browser to navigate to http://localhost/shares. A directory listing is displayed:

CHAPTER 14. THE APACHE HTTP SERVER

115

14.4.4. Changing port numbers

Depending on policy configuration, services may only be allowed to run on certain port numbers.
Attempting to change the port a service runs on without changing policy may result in the service failing
to start. Use the semanage utility as the root user to list the ports SELinux allows httpd to listen on:

~]# semanage port -l | grep -w http_port_t
http_port_t tcp 80, 443, 488, 8008, 8009, 8443

By default, SELinux allows httpd to listen on TCP ports 80, 443, 488, 8008, 8009, or 8443. If
/etc/httpd/conf/httpd.conf is configured so that httpd listens on any port not listed for http_port_t,
httpd fails to start.

To configure httpd to run on a port other than TCP ports 80, 443, 488, 8008, 8009, or 8443:

1. Edit the /etc/httpd/conf/httpd.conf file as root so the Listen option lists a port that is not
configured in SELinux policy for httpd. The following example configures httpd to listen on the
10.0.0.1 IP address, and on TCP port 12345:

Change this to Listen on specific IP addresses as shown below to
prevent Apache from glomming onto all bound IP addresses (0.0.0.0)
#
#Listen 12.34.56.78:80
Listen 10.0.0.1:12345

2. Enter the following command as the root user to add the port to SELinux policy configuration:

~]# semanage port -a -t http_port_t -p tcp 12345

3. Confirm that the port is added:

~]# semanage port -l | grep -w http_port_t
http_port_t tcp 12345, 80, 443, 488, 8008, 8009, 8443

If you no longer run httpd on port 12345, use the semanage utility as root to remove the port from
policy configuration:

~]# semanage port -d -t http_port_t -p tcp 12345

SELinux User's and Administrator's Guide

116

[14] For more information, see the section named The Apache HTTP Sever in the System Administrator's Guide.

CHAPTER 14. THE APACHE HTTP SERVER

117

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Web_Servers.html#s1-The_Apache_HTTP_Server/

CHAPTER 15. SAMBA
Samba is an open-source implementation of the Server Message Block (SMB) and Common Internet
File System (CIFS) protocols that provides file and print services between clients across various
operating systems.[15]

In Red Hat Enterprise Linux, the samba package provides the Samba server. Enter the following
command to see if the samba package is installed:

~]$ rpm -q samba
package samba is not installed

If it is not installed and you want to use Samba, use the yum utility as the root user to install it:

~]# yum install samba

15.1. SAMBA AND SELINUX

When SELinux is enabled, the Samba server (smbd) runs confined by default. Confined services run in
their own domains, and are separated from other confined services. The following example
demonstrates the smbd process running in its own domain. This example assumes the samba package is
installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The command returns Enforcing when SELinux is running in enforcing mode.

2. Enter the following command as root to start smbd:

~]# systemctl start smb.service

Confirm that the service is running. The output should include the information below (only the
time stamp will differ):

~]# systemctl status smb.service
smb.service - Samba SMB Daemon
 Loaded: loaded (/usr/lib/systemd/system/smb.service; disabled)
 Active: active (running) since Mon 2013-08-05 12:17:26 CEST; 2h 22min ago

3. To view the smbd processes, execute the following command:

~]$ ps -eZ | grep smb
system_u:system_r:smbd_t:s0 9653 ? 00:00:00 smbd
system_u:system_r:smbd_t:s0 9654? 00:00:00 smbd

The SELinux context associated with the smbd processes is system_u:system_r:smbd_t:s0.
The second last part of the context, smbd_t, is the type. A type defines a domain for processes
and a type for files. In this case, the smbd processes are running in the smbd_t domain.

Files must be labeled correctly to allow smbd to access and share them. For example, smbd can read

SELinux User's and Administrator's Guide

118

Files must be labeled correctly to allow smbd to access and share them. For example, smbd can read
and write to files labeled with the samba_share_t type, but by default, cannot access files labeled with
the httpd_sys_content_t type, which is intended for use by the Apache HTTP Server. Booleans must be
enabled to allow certain behavior, such as allowing home directories and NFS volumes to be exported
through Samba, as well as to allow Samba to act as a domain controller.

15.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

Label files with the samba_share_t type to allow Samba to share them. Only label files you have
created, and do not relabel system files with the samba_share_t type: Booleans can be enabled to
share such files and directories. SELinux allows Samba to write to files labeled with the samba_share_t
type, as long as the /etc/samba/smb.conf file and Linux permissions are set accordingly.

The samba_etc_t type is used on certain files in the /etc/samba/ directory, such as smb.conf. Do not
manually label files with the samba_etc_t type. If files in this directory are not labeled correctly, enter
the restorecon -R -v /etc/samba command as the root user to restore such files to their default
contexts. If /etc/samba/smb.conf is not labeled with the samba_etc_t type, starting the Samba service
may fail and an SELinux denial message may be logged. The following is an example denial message
when /etc/samba/smb.conf was labeled with the httpd_sys_content_t type:

setroubleshoot: SELinux is preventing smbd (smbd_t) "read" to ./smb.conf (httpd_sys_content_t). For
complete SELinux messages. run sealert -l deb33473-1069-482b-bb50-e4cd05ab18af

15.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

smbd_anon_write

Having this Boolean enabled allows smbd to write to a public directory, such as an area reserved for
common files that otherwise has no special access restrictions.

samba_create_home_dirs

Having this Boolean enabled allows Samba to create new home directories independently. This is
often done by mechanisms such as PAM.

samba_domain_controller

When enabled, this Boolean allows Samba to act as a domain controller, as well as giving it permission
to execute related commands such as useradd, groupadd, and passwd.

samba_enable_home_dirs

Enabling this Boolean allows Samba to share users' home directories.

samba_export_all_ro

Export any file or directory, allowing read-only permissions. This allows files and directories that are

CHAPTER 15. SAMBA

119

not labeled with the samba_share_t type to be shared through Samba. When the
samba_export_all_ro Boolean is enabled, but the samba_export_all_rw Boolean is disabled, write
access to Samba shares is denied, even if write access is configured in /etc/samba/smb.conf, as well
as Linux permissions allowing write access.

samba_export_all_rw

Export any file or directory, allowing read and write permissions. This allows files and directories that
are not labeled with the samba_share_t type to be exported through Samba. Permissions in
/etc/samba/smb.conf and Linux permissions must be configured to allow write access.

samba_run_unconfined

Having this Boolean enabled allows Samba to run unconfined scripts in the /var/lib/samba/scripts/
directory.

samba_share_fusefs

This Boolean must be enabled for Samba to share fusefs file systems.

samba_share_nfs

Disabling this Boolean prevents smbd from having full access to NFS shares through Samba.
Enabling this Boolean will allow Samba to share NFS volumes.

use_samba_home_dirs

Enable this Boolean to use a remote server for Samba home directories.

virt_use_samba

Allow virtual machine access to CIFS files.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

15.4. CONFIGURATION EXAMPLES

The following examples provide real-world demonstrations of how SELinux complements the Samba
server and how full function of the Samba server can be maintained.

15.4.1. Sharing directories you create

SELinux User's and Administrator's Guide

120

The following example creates a new directory, and shares that directory through Samba:

1. Confirm that the samba, samba-common, and samba-client packages are installed:

~]$ rpm -q samba samba-common samba-client
package samba is not installed
package samba-common is not installed
package samba-client is not installed

If any of these packages are not installed, install them by using the yum utility as root:

~]# yum install package-name

2. Use the mkdir utility as root to create a new top-level directory to share files through Samba:

~]# mkdir /myshare

3. Use the touch utility root to create an empty file. This file is used later to verify the Samba share
mounted correctly:

~]# touch /myshare/file1

4. SELinux allows Samba to read and write to files labeled with the samba_share_t type, as long
as the /etc/samba/smb.conf file and Linux permissions are set accordingly. Enter the following
command as root to add the label change to file-context configuration:

~]# semanage fcontext -a -t samba_share_t "/myshare(/.*)?"

5. Use the restorecon utility as root to apply the label changes:

~]# restorecon -R -v /myshare
restorecon reset /myshare context unconfined_u:object_r:default_t:s0-
>system_u:object_r:samba_share_t:s0
restorecon reset /myshare/file1 context unconfined_u:object_r:default_t:s0-
>system_u:object_r:samba_share_t:s0

6. Edit /etc/samba/smb.conf as root. Add the following to the bottom of this file to share the
/myshare/ directory through Samba:

[myshare]
comment = My share
path = /myshare
public = yes
writable = no

7. A Samba account is required to mount a Samba file system. Enter the following command as
root to create a Samba account, where username is an existing Linux user. For example,
smbpasswd -a testuser creates a Samba account for the Linux testuser user:

~]# smbpasswd -a testuser
New SMB password: Enter a password
Retype new SMB password: Enter the same password again

CHAPTER 15. SAMBA

121

Added user testuser.

If you enter the above command, specifying a user name of an account that does not exist on
the system, it causes a Cannot locate Unix account for 'username'! error.

8. Start the Samba service:

~]# systemctl start smb.service

9. Enter the following command to list the available shares, where username is the Samba account
added in step 7. When prompted for a password, enter the password assigned to the Samba
account in step 7 (version numbers may differ):

~]$ smbclient -U username -L localhost
Enter username's password:
Domain=[HOSTNAME] OS=[Unix] Server=[Samba 3.4.0-0.41.el6]

Sharename Type Comment
--------- ---- -------
myshare Disk My share
IPC$ IPC IPC Service (Samba Server Version 3.4.0-0.41.el6)
username Disk Home Directories
Domain=[HOSTNAME] OS=[Unix] Server=[Samba 3.4.0-0.41.el6]

Server Comment
--------- -------

Workgroup Master
--------- -------

10. Use the mkdir utility as root to create a new directory. This directory will be used to mount the
myshare Samba share:

~]# mkdir /test/

11. Enter the following command as root to mount the myshare Samba share to /test/, replacing
username with the user name from step 7:

~]# mount //localhost/myshare /test/ -o user=username

Enter the password for username, which was configured in step 7.

12. Enter the following command to view the file1 file created in step 3:

~]$ ls /test/
file1

15.4.2. Sharing a website

It may not be possible to label files with the samba_share_t type, for example, when wanting to share a
website in the /var/www/html/ directory. For these cases, use the samba_export_all_ro Boolean to
share any file or directory (regardless of the current label), allowing read only permissions, or the

SELinux User's and Administrator's Guide

122

samba_export_all_rw Boolean to share any file or directory (regardless of the current label), allowing
read and write permissions.

The following example creates a file for a website in /var/www/html/, and then shares that file through
Samba, allowing read and write permissions. This example assumes the httpd, samba, samba-common,
samba-client, and wget packages are installed:

1. As the root user, create a /var/www/html/file1.html file. Copy and paste the following content
into this file:

<html>
<h2>File being shared through the Apache HTTP Server and Samba.</h2>
</html>

2. Enter the following command to view the SELinux context of file1.html:

~]$ ls -Z /var/www/html/file1.html
-rw-r--r--. root root unconfined_u:object_r:httpd_sys_content_t:s0 /var/www/html/file1.html

The file is labeled with the httpd_sys_content_t. By default, the Apache HTTP Server can
access this type, but Samba cannot.

3. Start the Apache HTTP Server:

~]# systemctl start httpd.service

4. Change into a directory your user has write access to, and enter the following command. Unless
there are changes to the default configuration, this command succeeds:

~]$ wget http://localhost/file1.html
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 84 [text/html]
Saving to: `file1.html.1'

100%[=======================>] 84 --.-K/s in 0s

`file1.html.1' saved [84/84]

5. Edit /etc/samba/smb.conf as root. Add the following to the bottom of this file to share the
/var/www/html/ directory through Samba:

[website]
comment = Sharing a website
path = /var/www/html/
public = no
writable = no

6. The /var/www/html/ directory is labeled with the httpd_sys_content_t type. By default, Samba
cannot access files and directories labeled with the this type, even if Linux permissions allow it.
To allow Samba access, enable the samba_export_all_ro Boolean:

CHAPTER 15. SAMBA

123

~]# setsebool -P samba_export_all_ro on

Do not use the -P option if you do not want the change to persist across reboots. Note that
enabling the samba_export_all_ro Boolean allows Samba to access any type.

7. Start the Samba service:

~]# systemctl start smb.service

[15] For more information, see the Samba section in the System Administrator's Guide.

SELinux User's and Administrator's Guide

124

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-File_and_Print_Servers.html#s1-Samba

CHAPTER 16. FILE TRANSFER PROTOCOL
File Transfer Protocol (FTP) is one of the oldest and most commonly used protocols found on the
Internet today. Its purpose is to reliably transfer files between computer hosts on a network without
requiring the user to log directly into the remote host or have knowledge of how to use the remote
system. It allows users to access files on remote systems using a standard set of simple commands.

The Very Secure FTP Daemon (vsftpd) is designed from the ground up to be fast, stable, and, most
importantly, secure. Its ability to handle large numbers of connections efficiently and securely is why
vsftpd is the only stand-alone FTP distributed with Red Hat Enterprise Linux.

In Red Hat Enterprise Linux, the vsftpd package provides the Very Secure FTP daemon. Enter the
following command to see if vsftpd is installed:

~]$ rpm -q vsftpd
package vsftpd is not installed

If you want an FTP server and the vsftpd package is not installed, use the yum utility as the root user to
install it:

~]# yum install vsftpd

16.1. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

By default, anonymous users have read access to files in the /var/ftp/ directory when they log in using
FTP. This directory is labeled with the public_content_t type, allowing only read access, even if write
access is configured in /etc/vsftpd/vsftpd.conf. The public_content_t type is accessible to other
services, such as Apache HTTP Server, Samba, and NFS.

Use one of the following types to share files through FTP:

public_content_t

Label files and directories you have created with the public_content_t type to share them read-only
through vsftpd. Other services, such as Apache HTTP Server, Samba, and NFS, also have access to
files labeled with this type. Files labeled with the public_content_t type cannot be written to, even if
Linux permissions allow write access. If you require write access, use the public_content_rw_t type.

public_content_rw_t

Label files and directories you have created with the public_content_rw_t type to share them with
read and write permissions through vsftpd. Other services, such as Apache HTTP Server, Samba, and
NFS, also have access to files labeled with this type. Remember that Booleans for each service must
be enabled before they can write to files labeled with this type.

16.2. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety

CHAPTER 16. FILE TRANSFER PROTOCOL

125

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

ftpd_anon_write

When disabled, this Boolean prevents vsftpd from writing to files and directories labeled with the
public_content_rw_t type. Enable this Boolean to allow users to upload files using FTP. The
directory where files are uploaded to must be labeled with the public_content_rw_t type and Linux
permissions must be set accordingly.

ftpd_full_access

When this Boolean is enabled, only Linux (DAC) permissions are used to control access, and
authenticated users can read and write to files that are not labeled with the public_content_t or
public_content_rw_t types.

ftpd_use_cifs

Having this Boolean enabled allows vsftpd to access files and directories labeled with the cifs_t
type; therefore, having this Boolean enabled allows you to share file systems mounted using Samba
through vsftpd.

ftpd_use_nfs

Having this Boolean enabled allows vsftpd to access files and directories labeled with the nfs_t type;
therefore, this Boolean allows you to share file systems mounted using NFS through vsftpd.

ftpd_connect_db

Allow FTP daemons to initiate a connection to a database.

httpd_enable_ftp_server

Allow the httpd daemon to listen on the FTP port and act as a FTP server.

tftp_anon_write

Having this Boolean enabled allows TFTP access to a public directory, such as an area reserved for
common files that otherwise has no special access restrictions.

IMPORTANT

Red Hat Enterprise Linux 7.7 does not provide the ftp_home_dir Boolean. See the Red
Hat Enterprise Linux 7.3 Release Notes document for more information.

NOTE

SELinux User's and Administrator's Guide

126

 https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.3_Release_Notes/bug_fixes_security.html

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

CHAPTER 16. FILE TRANSFER PROTOCOL

127

CHAPTER 17. NETWORK FILE SYSTEM
A Network File System (NFS) allows remote hosts to mount file systems over a network and interact
with those file systems as though they are mounted locally. This enables system administrators to
consolidate resources onto centralized servers on the network.[16]

In Red Hat Enterprise Linux, the nfs-utils package is required for full NFS support. Enter the following
command to see if the nfs-utils is installed:

~]$ rpm -q nfs-utils
package nfs-utils is not installed

If it is not installed and you want to use NFS, use the yum utility as root to install it:

~]# yum install nfs-utils

17.1. NFS AND SELINUX

When running SELinux, the NFS daemons are confined by default except the nfsd process, which is
labeled with the unconfined kernel_t domain type. The SELinux policy allows NFS to share files by
default. Also, passing SELinux labels between a client and the server is supported, which provides better
security control of confined domains accessing NFS volumes. For example, when a home directory is set
up on an NFS volume, it is possible to specify confined domains that are able to access only the home
directory and not other directories on the volume. Similarly, applications, such as Secure Virtualization,
can set the label of an image file on an NFS volume, thus increasing the level of separation of virtual
machines.

The support for labeled NFS is disabled by default. To enable it, see Section 17.4.1, “Enabling SELinux
Labeled NFS Support”.

17.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

By default, mounted NFS volumes on the client side are labeled with a default context defined by policy
for NFS. In common policies, this default context uses the nfs_t type. The root user is able to override
the default type using the mount -context option. The following types are used with NFS. Different
types allow you to configure flexible access:

var_lib_nfs_t

This type is used for existing and new files copied to or created in the /var/lib/nfs/ directory. This
type should not need to be changed in normal operation. To restore changes to the default settings,
run the restorecon -R -v /var/lib/nfs command as the root user.

nfsd_exec_t

The /usr/sbin/rpc.nfsd file is labeled with the nfsd_exec_t, as are other system executables and
libraries related to NFS. Users should not label any files with this type. nfsd_exec_t will transition to
nfsd_t.

SELinux User's and Administrator's Guide

128

17.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

ftpd_use_nfs

When enabled, this Boolean allows the ftpd daemon to access NFS volumes.

cobbler_use_nfs

When enabled, this Boolean allows the cobblerd daemon to access NFS volumes.

git_system_use_nfs

When enabled, this Boolean allows the Git system daemon to read system shared repositories on
NFS volumes.

httpd_use_nfs

When enabled, this Boolean allows the httpd daemon to access files stored on NFS volumes.

samba_share_nfs

When enabled, this Boolean allows the smbd daemon to share NFS volumes. When disabled, this
Boolean prevents smbd from having full access to NFS shares using Samba.

sanlock_use_nfs

When enabled, this Boolean allows the sanlock daemon to manage NFS volumes.

sge_use_nfs

When enabled, this Boolean allows the sge scheduler to access NFS volumes.

use_nfs_home_dirs

When enabled, this Boolean adds support for NFS home directories.

virt_use_nfs

When enabled, this Boolean allows confident virtual guests to manage files on NFS volumes.

xen_use_nfs

When enabled, this Boolean allows Xen to manage files on NFS volumes.

git_cgi_use_nfs

When enabled, this Boolean allows the Git Common Gateway Interface (CGI) to access NFS
volumes.

NOTE

CHAPTER 17. NETWORK FILE SYSTEM

129

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

17.4. CONFIGURATION EXAMPLES

17.4.1. Enabling SELinux Labeled NFS Support

The following example demonstrates how to enable SELinux labeled NFS support. This example
assumes that the nfs-utils package is installed, that the SELinux targeted policy is used, and that
SELinux is running in enforcing mode.

NOTE

Steps 1-3 are supposed to be performed on the NFS server, nfs-srv.

1. If the NFS server is running, stop it:

[nfs-srv]# systemctl stop nfs

Confirm that the server is stopped:

[nfs-srv]# systemctl status nfs
nfs-server.service - NFS Server
 Loaded: loaded (/usr/lib/systemd/system/nfs-server.service; disabled)
 Active: inactive (dead)

2. Edit the /etc/sysconfig/nfs file to set the RPCNFSDARGS flag to "-V 4.2":

Optional arguments passed to rpc.nfsd. See rpc.nfsd(8)
RPCNFSDARGS="-V 4.2"

3. Start the server again and confirm that it is running. The output will contain information below,
only the time stamp will differ:

[nfs-srv]# systemctl start nfs

[nfs-srv]# systemctl status nfs
nfs-server.service - NFS Server
 Loaded: loaded (/usr/lib/systemd/system/nfs-server.service; disabled)

SELinux User's and Administrator's Guide

130

 Active: active (exited) since Wed 2013-08-28 14:07:11 CEST; 4s ago

4. On the client side, mount the NFS server:

[nfs-client]# mount -o v4.2 server:mntpoint localmountpoint

5. All SELinux labels are now successfully passed from the server to the client:

[nfs-srv]$ ls -Z file
-rw-rw-r--. user user unconfined_u:object_r:svirt_image_t:s0 file
[nfs-client]$ ls -Z file
-rw-rw-r--. user user unconfined_u:object_r:svirt_image_t:s0 file

NOTE

If you enable labeled NFS support for home directories or other content, the content will
be labeled the same as it was on an EXT file system. Also note that mounting systems
with different versions of NFS or an attempt to mount a server that does not support
labeled NFS could cause errors to be returned.

[16] See the Network File System (NFS) chapter in the Storage Administration Guide for more information.

CHAPTER 17. NETWORK FILE SYSTEM

131

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/ch-nfs.html

CHAPTER 18. BERKELEY INTERNET NAME DOMAIN
BIND performs name resolution services using the named daemon. BIND lets users locate computer
resources and services by name instead of numerical addresses.

In Red Hat Enterprise Linux, the bind package provides a DNS server. Enter the following command to
see if the bind package is installed:

~]$ rpm -q bind
package bind is not installed

If it is not installed, use the yum utility as the root user to install it:

~]# yum install bind

18.1. BIND AND SELINUX

The default permissions on the /var/named/slaves/, /var/named/dynamic/ and /var/named/data/
directories allow zone files to be updated using zone transfers and dynamic DNS updates. Files in
/var/named/ are labeled with the named_zone_t type, which is used for master zone files.

For a slave server, configure the /etc/named.conf file to place slave zones in /var/named/slaves/. The
following is an example of a domain entry in /etc/named.conf for a slave DNS server that stores the
zone file for testdomain.com in /var/named/slaves/:

zone "testdomain.com" {
 type slave;
 masters { IP-address; };
 file "/var/named/slaves/db.testdomain.com";
 };

If a zone file is labeled named_zone_t, the named_write_master_zones Boolean must be enabled to
allow zone transfers and dynamic DNS to update the zone file. Also, the mode of the parent directory
has to be changed to allow the named user or group read, write and execute access.

If zone files in /var/named/ are labeled with the named_cache_t type, a file system relabel or running
restorecon -R /var/ will change their type to named_zone_t.

18.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with BIND. Different types allow you to configure flexible access:

named_zone_t

Used for master zone files. Other services cannot modify files of this type. The named daemon can
only modify files of this type if the named_write_master_zones Boolean is enabled.

named_cache_t

SELinux User's and Administrator's Guide

132

By default, named can write to files labeled with this type, without additional Booleans being set.
Files copied or created in the /var/named/slaves/,/var/named/dynamic/ and /var/named/data/
directories are automatically labeled with the named_cache_t type.

named_var_run_t

Files copied or created in the /var/run/bind/, /var/run/named/, and /var/run/unbound/ directories
are automatically labeled with the named_var_run_t type.

named_conf_t

BIND-related configuration files, usually stored in the /etc directory, are automatically labeled with
the named_conf_t type.

named_exec_t

BIND-related executable files, usually stored in the /usr/sbin/ directory, are automatically labeled
with the named_exec_t type.

named_log_t

BIND-related log files, usually stored in the /var/log/ directory, are automatically labeled with the
named_log_t type.

named_unit_file_t

Executable BIND-related files in the /usr/lib/systemd/system/ directory are automatically labeled
with the named_unit_file_t type.

18.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

named_write_master_zones

When disabled, this Boolean prevents named from writing to zone files or directories labeled with the
named_zone_t type. The daemon does not usually need to write to zone files; but in the case that it
needs to, or if a secondary server needs to write to zone files, enable this Boolean to allow this action.

named_tcp_bind_http_port

When enabled, this Boolean allows BIND to bind an Apache port.

NOTE

CHAPTER 18. BERKELEY INTERNET NAME DOMAIN

133

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

18.4. CONFIGURATION EXAMPLES

18.4.1. Dynamic DNS

BIND allows hosts to update their records in DNS and zone files dynamically. This is used when a host
computer's IP address changes frequently and the DNS record requires real-time modification.

Use the /var/named/dynamic/ directory for zone files you want updated by dynamic DNS. Files created
in or copied into this directory inherit Linux permissions that allow named to write to them. As such files
are labeled with the named_cache_t type, SELinux allows named to write to them.

If a zone file in /var/named/dynamic/ is labeled with the named_zone_t type, dynamic DNS updates
may not be successful for a certain period of time as the update needs to be written to a journal first
before being merged. If the zone file is labeled with the named_zone_t type when the journal attempts
to be merged, an error such as the following is logged:

named[PID]: dumping master file: rename: /var/named/dynamic/zone-name: permission denied

Also, the following SELinux denial message is logged:

setroubleshoot: SELinux is preventing named (named_t) "unlink" to zone-name (named_zone_t)

To resolve this labeling issue, use the restorecon utility as root:

~]# restorecon -R -v /var/named/dynamic

SELinux User's and Administrator's Guide

134

CHAPTER 19. CONCURRENT VERSIONING SYSTEM
The Concurrent Versioning System (CVS) is a free revision-control system. It is used to monitor and
keep track of modifications to a central set of files which are usually accessed by several different users.
It is commonly used by programmers to manage a source code repository and is widely used by open
source developers.

In Red Hat Enterprise Linux, the cvs package provides CVS. Enter the following command to see if the
cvs package is installed:

~]$ rpm -q cvs
package cvs is not installed

If it is not installed and you want to use CVS, use the yum utility as root to install it:

~]# yum install cvs

19.1. CVS AND SELINUX

The cvs daemon runs labeled with the cvs_t type. By default in Red Hat Enterprise Linux, CVS is only
allowed to read and write certain directories. The label cvs_data_t defines which areas cvs has read and
write access to. When using CVS with SELinux, assigning the correct label is essential for clients to have
full access to the area reserved for CVS data.

19.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with CVS. Different types allow you to configure flexible access:

cvs_data_t

This type is used for data in a CVS repository. CVS can only gain full access to data if it has this type.

cvs_exec_t

This type is used for the /usr/bin/cvs binary.

19.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

cvs_read_shadow

This Boolean allows the cvs daemon to access the /etc/shadow file for user authentication.

NOTE

CHAPTER 19. CONCURRENT VERSIONING SYSTEM

135

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

19.4. CONFIGURATION EXAMPLES

19.4.1. Setting up CVS

This example describes a simple CVS setup and an SELinux configuration which allows remote access.
Two hosts are used in this example; a CVS server with a host name of cvs-srv with an IP address of
192.168.1.1 and a client with a host name of cvs-client and an IP address of 192.168.1.100. Both hosts
are on the same subnet (192.168.1.0/24). This is an example only and assumes that the cvs and xinetd
packages are installed, that the SELinux targeted policy is used, and that SELinux is running in enforced
mode.

This example will show that even with full DAC permissions, SELinux can still enforce policy rules based
on file labels and only allow access to certain areas that have been specifically labeled for access by
CVS.

NOTE

Steps 1-9 are supposed be performed on the CVS server, cvs-srv.

1. This example requires the cvs and xinetd packages. Confirm that the packages are installed:

[cvs-srv]$ rpm -q cvs xinetd
package cvs is not installed
package xinetd is not installed

If they are not installed, use the yum utility as root to install it:

[cvs-srv]# yum install cvs xinetd

2. Enter the following command as root to create a group named CVS:

[cvs-srv]# groupadd CVS

This can by also done by using the system-config-users utility.

3. Create a user with a user name of cvsuser and make this user a member of the CVS group. This
can be done using system-config-users.

SELinux User's and Administrator's Guide

136

4. Edit the /etc/services file and make sure that the CVS server has uncommented entries looking
similar to the following:

cvspserver 2401/tcp # CVS client/server operations
cvspserver 2401/udp # CVS client/server operations

5. Create the CVS repository in the root area of the file system. When using SELinux, it is best to
have the repository in the root file system so that recursive labels can be given to it without
affecting any other subdirectories. For example, as root, create a /cvs/ directory to house the
repository:

[root@cvs-srv]# mkdir /cvs

6. Give full permissions to the /cvs/ directory to all users:

[root@cvs-srv]# chmod -R 777 /cvs

WARNING

This is an example only and these permissions should not be used in a
production system.

7. Edit the /etc/xinetd.d/cvs file and make sure that the CVS section is uncommented and
configured to use the /cvs/ directory. The file should look similar to:

service cvspserver
{
 disable = no
 port = 2401
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 passenv = PATH
 server = /usr/bin/cvs
 env = HOME=/cvs
 server_args = -f --allow-root=/cvs pserver
bind = 127.0.0.1

8. Start the xinetd daemon:

[cvs-srv]# systemctl start xinetd.service

9. Add a rule which allows inbound connections through TCP on port 2401 by using the system-
config-firewall utility.

10. On the client side, enter the following command as the cvsuser user:



CHAPTER 19. CONCURRENT VERSIONING SYSTEM

137

[cvsuser@cvs-client]$ cvs -d /cvs init

11. At this point, CVS has been configured but SELinux will still deny logins and file access. To
demonstrate this, set the $CVSROOT variable on cvs-client and try to log in remotely. The
following step is supposed to be performed on cvs-client:

[cvsuser@cvs-client]$ export CVSROOT=:pserver:cvsuser@192.168.1.1:/cvs
[cvsuser@cvs-client]$
[cvsuser@cvs-client]$ cvs login
Logging in to :pserver:cvsuser@192.168.1.1:2401/cvs
CVS password: ********
cvs [login aborted]: unrecognized auth response from 192.168.100.1: cvs pserver: cannot
open /cvs/CVSROOT/config: Permission denied

SELinux has blocked access. In order to get SELinux to allow this access, the following step is
supposed to be performed on cvs-srv:

12. Change the context of the /cvs/ directory as root in order to recursively label any existing and
new data in the /cvs/ directory, giving it the cvs_data_t type:

[root@cvs-srv]# semanage fcontext -a -t cvs_data_t '/cvs(/.*)?'
[root@cvs-srv]# restorecon -R -v /cvs

13. The client, cvs-client should now be able to log in and access all CVS resources in this
repository:

[cvsuser@cvs-client]$ export CVSROOT=:pserver:cvsuser@192.168.1.1:/cvs
[cvsuser@cvs-client]$
[cvsuser@cvs-client]$ cvs login
Logging in to :pserver:cvsuser@192.168.1.1:2401/cvs
CVS password: ********
[cvsuser@cvs-client]$

SELinux User's and Administrator's Guide

138

CHAPTER 20. SQUID CACHING PROXY
Squid is a high-performance proxy caching server for web clients, supporting FTP, Gopher, and HTTP
data objects. It reduces bandwidth and improves response times by caching and reusing frequently-
requested web pages.[17]

In Red Hat Enterprise Linux, the squid package provides the Squid Caching Proxy. Enter the following
command to see if the squid package is installed:

~]$ rpm -q squid
package squid is not installed

If it is not installed and you want to use squid, use the yum utility as root to install it:

~]# yum install squid

20.1. SQUID CACHING PROXY AND SELINUX

When SELinux is enabled, Squid runs confined by default. Confined processes run in their own domains,
and are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates the Squid processes running in their own
domain. This example assumes the squid package is installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The command returns Enforcing when SELinux is running in enforcing mode.

2. Enter the following command as the root user to start the squid daemon:

~]# systemctl start squid.service

Confirm that the service is running. The output should include the information below (only the
time stamp will differ):

~]# systemctl status squid.service
squid.service - Squid caching proxy
 Loaded: loaded (/usr/lib/systemd/system/squid.service; disabled)
 Active: active (running) since Mon 2013-08-05 14:45:53 CEST; 2s ago

3. Enter the following command to view the squid processes:

~]$ ps -eZ | grep squid
system_u:system_r:squid_t:s0 27018 ? 00:00:00 squid
system_u:system_r:squid_t:s0 27020 ? 00:00:00 log_file_daemon

The SELinux context associated with the squid processes is system_u:system_r:squid_t:s0.
The second last part of the context, squid_t, is the type. A type defines a domain for processes
and a type for files. In this case, the Squid processes are running in the squid_t domain.

CHAPTER 20. SQUID CACHING PROXY

139

SELinux policy defines how processes running in confined domains, such as squid_t, interact with files,
other processes, and the system in general. Files must be labeled correctly to allow squid access to
them.

When the /etc/squid/squid.conf file is configured so squid listens on a port other than the default TCP
ports 3128, 3401 or 4827, the semanage port command must be used to add the required port number
to the SELinux policy configuration. The following example demonstrates configuring squid to listen on
a port that is not initially defined in SELinux policy configuration for it, and, as a consequence, the server
failing to start. This example also demonstrates how to then configure the SELinux system to allow the
daemon to successfully listen on a non-standard port that is not already defined in the policy. This
example assumes the squid package is installed. Run each command in the example as the root user:

1. Confirm the squid daemon is not running:

~]# systemctl status squid.service
squid.service - Squid caching proxy
 Loaded: loaded (/usr/lib/systemd/system/squid.service; disabled)
 Active: inactive (dead)

If the output differs, stop the process:

~]# systemctl stop squid.service

2. Enter the following command to view the ports SELinux allows squid to listen on:

~]# semanage port -l | grep -w -i squid_port_t
squid_port_t tcp 3401, 4827
squid_port_t udp 3401, 4827

3. Edit /etc/squid/squid.conf as root. Configure the http_port option so it lists a port that is not
configured in SELinux policy configuration for squid. In this example, the daemon is configured
to listen on port 10000:

Squid normally listens to port 3128
http_port 10000

4. Run the setsebool command to make sure the squid_connect_any Boolean is set to off. This
ensures squid is only permitted to operate on specific ports:

~]# setsebool -P squid_connect_any 0

5. Start the squid daemon:

~]# systemctl start squid.service
Job for squid.service failed. See 'systemctl status squid.service' and 'journalctl -xn' for details.

An SELinux denial message similar to the following is logged:

localhost setroubleshoot: SELinux is preventing the squid (squid_t) from binding to port
10000. For complete SELinux messages. run sealert -l 97136444-4497-4fff-a7a7-
c4d8442db982

SELinux User's and Administrator's Guide

140

6. For SELinux to allow squid to listen on port 10000, as used in this example, the following
command is required:

~]# semanage port -a -t squid_port_t -p tcp 10000

7. Start squid again and have it listen on the new port:

~]# systemctl start squid.service

8. Now that SELinux has been configured to allow Squid to listen on a non-standard port (TCP
10000 in this example), it starts successfully on this port.

20.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with Squid. Different types allow you to configure flexible access:

httpd_squid_script_exec_t

This type is used for utilities such as cachemgr.cgi, which provides a variety of statistics about Squid
and its configuration.

squid_cache_t

Use this type for data that is cached by Squid, as defined by the cache_dir directive in
/etc/squid/squid.conf. By default, files created in or copied into the /var/cache/squid/ and
/var/spool/squid/ directories are labeled with the squid_cache_t type. Files for the squidGuard URL
redirector plug-in for squid created in or copied to the /var/squidGuard/ directory are also labeled
with the squid_cache_t type. Squid is only able to use files and directories that are labeled with this
type for its cached data.

squid_conf_t

This type is used for the directories and files that Squid uses for its configuration. Existing files, or
those created in or copied to the /etc/squid/ and /usr/share/squid/ directories are labeled with this
type, including error messages and icons.

squid_exec_t

This type is used for the squid binary, /usr/sbin/squid.

squid_log_t

This type is used for logs. Existing files, or those created in or copied to /var/log/squid/ or
/var/log/squidGuard/ must be labeled with this type.

squid_initrc_exec_t

This type is used for the initialization file required to start squid which is located at
/etc/rc.d/init.d/squid.

squid_var_run_t

CHAPTER 20. SQUID CACHING PROXY

141

http://www.squidguard.org/

This type is used by files in the /var/run/ directory, especially the process id (PID) named
/var/run/squid.pid which is created by Squid when it runs.

20.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

squid_connect_any

When enabled, this Boolean permits Squid to initiate a connection to a remote host on any port.

squid_use_tproxy

When enabled, this Boolean allows Squid to run as a transparent proxy.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

20.4. CONFIGURATION EXAMPLES

20.4.1. Squid Connecting to Non-Standard Ports

The following example provides a real-world demonstration of how SELinux complements Squid by
enforcing the above Boolean and by default only allowing access to certain ports. This example will then
demonstrate how to change the Boolean and show that access is then allowed.

Note that this is an example only and demonstrates how SELinux can affect a simple configuration of
Squid. Comprehensive documentation of Squid is beyond the scope of this document. See the official
Squid documentation for further details. This example assumes that the Squid host has two network
interfaces, Internet access, and that any firewall has been configured to allow access on the internal
interface using the default TCP port on which Squid listens (TCP 3128).

1. Confirm that the squid is installed:

~]$ rpm -q squid
package squid is not installed

If the package is not installed, use the yum utility as root to install it:

SELinux User's and Administrator's Guide

142

http://www.squid-cache.org/Doc/

~]# yum install squid

2. Edit the main configuration file, /etc/squid/squid.conf, and confirm that the cache_dir
directive is uncommented and looks similar to the following:

cache_dir ufs /var/spool/squid 100 16 256

This line specifies the default settings for the cache_dir directive to be used in this example; it
consists of the Squid storage format (ufs), the directory on the system where the cache resides
(/var/spool/squid), the amount of disk space in megabytes to be used for the cache (100), and
finally the number of first-level and second-level cache directories to be created (16 and 256
respectively).

3. In the same configuration file, make sure the http_access allow localnet directive is
uncommented. This allows traffic from the localnet ACL which is automatically configured in a
default installation of Squid on Red Hat Enterprise Linux. It will allow client machines on any
existing RFC1918 network to have access through the proxy, which is sufficient for this simple
example.

4. In the same configuration file, make sure the visible_hostname directive is uncommented and
is configured to the host name of the machine. The value should be the fully qualified domain
name (FQDN) of the host:

visible_hostname squid.example.com

5. As root, enter the following command to start the squid daemon. As this is the first time squid
has started, this command will initialise the cache directories as specified above in the
cache_dir directive and will then start the daemon:

~]# systemctl start squid.service

Ensure that squid starts successfully. The output will include the information below, only the
time stamp will differ:

~]# systemctl status squid.service
squid.service - Squid caching proxy
 Loaded: loaded (/usr/lib/systemd/system/squid.service; disabled)
 Active: active (running) since Thu 2014-02-06 15:00:24 CET; 6s ago

6. Confirm that the squid process ID (PID) has started as a confined service, as seen here by the
squid_var_run_t value:

~]# ls -lZ /var/run/squid.pid
-rw-r--r--. root squid unconfined_u:object_r:squid_var_run_t:s0 /var/run/squid.pid

7. At this point, a client machine connected to the localnet ACL configured earlier is successfully
able to use the internal interface of this host as its proxy. This can be configured in the settings
for all common web browsers, or system-wide. Squid is now listening on the default port of the
target machine (TCP 3128), but the target machine will only allow outgoing connections to other
services on the Internet through common ports. This is a policy defined by SELinux itself.
SELinux will deny access to non-standard ports, as shown in the next step:

8. When a client makes a request using a non-standard port through the Squid proxy such as a

CHAPTER 20. SQUID CACHING PROXY

143

8. When a client makes a request using a non-standard port through the Squid proxy such as a
website listening on TCP port 10000, a denial similar to the following is logged:

SELinux is preventing the squid daemon from connecting to network port 10000

9. To allow this access, the squid_connect_any Boolean must be modified, as it is disabled by
default:

~]# setsebool -P squid_connect_any on

NOTE

Do not use the -P option if you do not want setsebool changes to persist across
reboots.

10. The client will now be able to access non-standard ports on the Internet as Squid is now
permitted to initiate connections to any port, on behalf of its clients.

[17] See the Squid Caching Proxy project page for more information.

SELinux User's and Administrator's Guide

144

http://www.squid-cache.org/

CHAPTER 21. MARIADB (A REPLACEMENT FOR MYSQL)
The MariaDB database is a multi-user, multi-threaded SQL database server that consists of the
MariaDB server daemon (mysqld) and many client programs and libraries. [18]

In Red Hat Enterprise Linux, the mariadb-server package provides MariaDB. Enter the following
command to see if the mariadb-server package is installed:

~]$ rpm -q mariadb-server
package mariadb-server is not installed

If it is not installed, use the yum utility as root to install it:

~]# yum install mariadb-server

21.1. MARIADB AND SELINUX

When MariaDB is enabled, it runs confined by default. Confined processes run in their own domains, and
are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates the MariaDB processes running in their own
domain. This example assumes the mariadb-server package is installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The command returns Enforcing when SELinux is running in enforcing mode.

2. Enter the following command as the root user to start mariadb:

~]# systemctl start mariadb.service

Confirm that the service is running. The output should include the information below (only the
time stamp will differ):

~]# systemctl status mariadb.service
mariadb.service - MariaDB database server
 Loaded: loaded (/usr/lib/systemd/system/mariadb.service; disabled)
 Active: active (running) since Mon 2013-08-05 11:20:11 CEST; 3h 28min ago

3. Enter the following command to view the mysqld processes:

~]$ ps -eZ | grep mysqld
system_u:system_r:mysqld_safe_t:s0 12831 ? 00:00:00 mysqld_safe
system_u:system_r:mysqld_t:s0 13014 ? 00:00:00 mysqld

The SELinux context associated with the mysqld processes is
system_u:system_r:mysqld_t:s0. The second last part of the context, mysqld_t, is the type. A
type defines a domain for processes and a type for files. In this case, the mysqld processes are
running in the mysqld_t domain.

CHAPTER 21. MARIADB (A REPLACEMENT FOR MYSQL)

145

21.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with mysqld. Different types allow you to configure flexible access:

mysqld_db_t

This type is used for the location of the MariaDB database. In Red Hat Enterprise Linux, the default
location for the database is the /var/lib/mysql/ directory, however this can be changed. If the location
for the MariaDB database is changed, the new location must be labeled with this type. See the
example in Section 21.4.1, “MariaDB Changing Database Location” for instructions on how to change
the default database location and how to label the new section appropriately.

mysqld_etc_t

This type is used for the MariaDB main configuration file /etc/my.cnf and any other configuration
files in the /etc/mysql/ directory.

mysqld_exec_t

This type is used for the mysqld binary located at /usr/libexec/mysqld, which is the default location
for the MariaDB binary on Red Hat Enterprise Linux. Other systems may locate this binary at
/usr/sbin/mysqld which should also be labeled with this type.

mysqld_unit_file_t

This type is used for executable MariaDB-related files located in the /usr/lib/systemd/system/
directory by default in Red Hat Enterprise Linux.

mysqld_log_t

Logs for MariaDB need to be labeled with this type for proper operation. All log files in the /var/log/
directory matching the mysql.* wildcard must be labeled with this type.

mysqld_var_run_t

This type is used by files in the /var/run/mariadb/ directory, specifically the process id (PID) named
/var/run/mariadb/mariadb.pid which is created by the mysqld daemon when it runs. This type is also
used for related socket files such as /var/lib/mysql/mysql.sock. Files such as these must be labeled
correctly for proper operation as a confined service.

21.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

selinuxuser_mysql_connect_enabled

When enabled, this Boolean allows users to connect to the local MariaDB server.

exim_can_connect_db

SELinux User's and Administrator's Guide

146

When enabled, this Boolean allows the exim mailer to initiate connections to a database server.

ftpd_connect_db

When enabled, this Boolean allows ftp daemons to initiate connections to a database server.

httpd_can_network_connect_db

Enabling this Boolean is required for a web server to communicate with a database server.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

21.4. CONFIGURATION EXAMPLES

21.4.1. MariaDB Changing Database Location

When using Red Hat Enterprise Linux, the default location for MariaDB to store its database is
/var/lib/mysql/. This is where SELinux expects it to be by default, and hence this area is already labeled
appropriately for you, using the mysqld_db_t type.

The location where the database is stored can be changed depending on individual environment
requirements or preferences, however it is important that SELinux is aware of this new location; that it is
labeled accordingly. This example explains how to change the location of a MariaDB database and then
how to label the new location so that SELinux can still provide its protection mechanisms to the new
area based on its contents.

Note that this is an example only and demonstrates how SELinux can affect MariaDB. Comprehensive
documentation of MariaDB is beyond the scope of this document. See the official MariaDB
documentation for further details. This example assumes that the mariadb-server and setroubleshoot-
server packages are installed, that the auditd service is running, and that there is a valid database in the
default location of /var/lib/mysql/.

1. View the SELinux context of the default database location for mysql:

~]# ls -lZ /var/lib/mysql
drwx------. mysql mysql system_u:object_r:mysqld_db_t:s0 mysql

This shows mysqld_db_t which is the default context element for the location of database files.
This context will have to be manually applied to the new database location that will be used in
this example in order for it to function properly.

CHAPTER 21. MARIADB (A REPLACEMENT FOR MYSQL)

147

https://mariadb.com/kb/en/mariadb-documentation/

2. Enter the following command and enter the mysqld root password to show the available
databases:

~]# mysqlshow -u root -p
Enter password: *******
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
| wikidb |
+--------------------+

3. Stop the mysqld daemon:

~]# systemctl stop mariadb.service

4. Create a new directory for the new location of the database(s). In this example, /mysql/ is used:

~]# mkdir -p /mysql

5. Copy the database files from the old location to the new location:

~]# cp -R /var/lib/mysql/* /mysql/

6. Change the ownership of this location to allow access by the mysql user and group. This sets the
traditional Unix permissions which SELinux will still observe:

~]# chown -R mysql:mysql /mysql

7. Enter the following command to see the initial context of the new directory:

~]# ls -lZ /mysql
drwxr-xr-x. mysql mysql unconfined_u:object_r:usr_t:s0 mysql

The context usr_t of this newly created directory is not currently suitable to SELinux as a
location for MariaDB database files. Once the context has been changed, MariaDB will be able to
function properly in this area.

8. Open the main MariaDB configuration file /etc/my.cnf with a text editor and modify the datadir
option so that it refers to the new location. In this example the value that should be entered is
/mysql:

[mysqld]
datadir=/mysql

Save this file and exit.

9. Start mysqld. The service should fail to start, and a denial message will be logged to the
/var/log/messages file:

SELinux User's and Administrator's Guide

148

~]# systemctl start mariadb.service
Job for mariadb.service failed. See 'systemctl status postgresql.service' and 'journalctl -xn'
for details.

However, if the audit daemon is running alongside the setroubleshoot service, the denial will
be logged to the /var/log/audit/audit.log file instead:

SELinux is preventing /usr/libexec/mysqld "write" access on /mysql. For complete SELinux
messages. run sealert -l b3f01aff-7fa6-4ebe-ad46-abaef6f8ad71

The reason for this denial is that /mysql/ is not labeled correctly for MariaDB data files. SELinux
is stopping MariaDB from having access to the content labeled as usr_t. Perform the following
steps to resolve this problem:

10. Enter the following command to add a context mapping for /mysql/. Note that the semanage
utility is not installed by default. If it is missing on your system, install the policycoreutils-python
package.

~]# semanage fcontext -a -t mysqld_db_t "/mysql(/.*)?"

11. This mapping is written to the /etc/selinux/targeted/contexts/files/file_contexts.local file:

~]# grep -i mysql /etc/selinux/targeted/contexts/files/file_contexts.local

/mysql(/.*)? system_u:object_r:mysqld_db_t:s0

12. Now use the restorecon utility to apply this context mapping to the running system:

~]# restorecon -R -v /mysql

13. Now that the /mysql/ location has been labeled with the correct context for MariaDB, mysqld
starts:

~]# systemctl start mariadb.service

14. Confirm the context has changed for /mysql/:

~]$ ls -lZ /mysql
drwxr-xr-x. mysql mysql system_u:object_r:mysqld_db_t:s0 mysql

15. The location has been changed and labeled, and mysqld has started successfully. At this point
all running services should be tested to confirm normal operation.

[18] See the MariaDB project page for more information.

CHAPTER 21. MARIADB (A REPLACEMENT FOR MYSQL)

149

https://mariadb.org/

CHAPTER 22. POSTGRESQL

PostgreSQL is an Object-Relational database management system (DBMS).[19]

In Red Hat Enterprise Linux, the postgresql-server package provides PostgreSQL. Enter the following
command to see if the postgresql-server package is installed:

~]# rpm -q postgresql-server

If it is not installed, use the yum utility as root to install it:

~]# yum install postgresql-server

22.1. POSTGRESQL AND SELINUX

When PostgreSQL is enabled, it runs confined by default. Confined processes run in their own domains,
and are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates the PostgreSQL processes running in their
own domain. This example assumes the postgresql-server package is installed:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The command returns Enforcing when SELinux is running in enforcing mode.

2. Enter the following command as the root user to start postgresql:

~]# systemctl start postgresql.service

Confirm that the service is running. The output should include the information below (only the
time stamp will differ):

~]# systemctl start postgresql.service
postgresql.service - PostgreSQL database server
 Loaded: loaded (/usr/lib/systemd/system/postgresql.service; disabled)
 Active: active (running) since Mon 2013-08-05 14:57:49 CEST; 12s

3. Enter the following command to view the postgresql processes:

~]$ ps -eZ | grep postgres
system_u:system_r:postgresql_t:s0 395 ? 00:00:00 postmaster
system_u:system_r:postgresql_t:s0 397 ? 00:00:00 postmaster
system_u:system_r:postgresql_t:s0 399 ? 00:00:00 postmaster
system_u:system_r:postgresql_t:s0 400 ? 00:00:00 postmaster
system_u:system_r:postgresql_t:s0 401 ? 00:00:00 postmaster
system_u:system_r:postgresql_t:s0 402 ? 00:00:00 postmaster

The SELinux context associated with the postgresql processes is
system_u:system_r:postgresql_t:s0. The second last part of the context, postgresql_t, is the

SELinux User's and Administrator's Guide

150

type. A type defines a domain for processes and a type for files. In this case, the postgresql
processes are running in the postgresql_t domain.

22.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with postgresql. Different types allow you to configure flexible access.
Note that in the list below are used several regular expression to match the whole possible locations:

postgresql_db_t

This type is used for several locations. The locations labeled with this type are used for data files for
PostgreSQL:

/usr/lib/pgsql/test/regres

/usr/share/jonas/pgsql

/var/lib/pgsql/data

/var/lib/postgres(ql)?

postgresql_etc_t

This type is used for configuration files in the /etc/postgresql/ directory.

postgresql_exec_t

This type is used for several locations. The locations labeled with this type are used for binaries for
PostgreSQL:

/usr/bin/initdb(.sepgsql)?

/usr/bin/(se)?postgres

/usr/lib(64)?/postgresql/bin/.*

/usr/lib(64)?/pgsql/test/regress/pg_regress

systemd_unit_file_t

This type is used for the executable PostgreSQL-related files located in the
/usr/lib/systemd/system/ directory.

postgresql_log_t

This type is used for several locations. The locations labeled with this type are used for log files:

/var/lib/pgsql/logfile

/var/lib/pgsql/pgstartup.log

/var/lib/sepgsql/pgstartup.log

CHAPTER 22. POSTGRESQL

151

/var/log/postgresql

/var/log/postgres.log.*

/var/log/rhdb/rhdb

/var/log/sepostgresql.log.*

postgresql_var_run_t

This type is used for run-time files for PostgreSQL, such as the process id (PID) in the
/var/run/postgresql/ directory.

22.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

selinuxuser_postgresql_connect_enabled

Having this Boolean enabled allows any user domain (as defined by PostgreSQL) to make
connections to the database server.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

22.4. CONFIGURATION EXAMPLES

22.4.1. PostgreSQL Changing Database Location

When using Red Hat Enterprise Linux, the default location for PostgreSQL to store its database is
/var/lib/pgsql/data/. This is where SELinux expects it to be by default, and hence this area is already
labeled appropriately for you, using the postgresql_db_t type.

The area where the database is located can be changed depending on individual environment
requirements or preferences, however it is important that SELinux is aware of this new location; that it is
labeled accordingly. This example explains how to change the location of a PostgreSQL database and
then how to label the new location so that SELinux can still provide its protection mechanisms to the
new area based on its contents.

Note that this is an example only and demonstrates how SELinux can affect PostgreSQL.

SELinux User's and Administrator's Guide

152

Note that this is an example only and demonstrates how SELinux can affect PostgreSQL.
Comprehensive documentation of PostgreSQL is beyond the scope of this document. See the official
PostgreSQL documentation for further details. This example assumes that the postgresql-server
package is installed.

1. View the SELinux context of the default database location for postgresql:

~]# ls -lZ /var/lib/pgsql
drwx------. postgres postgres system_u:object_r:postgresql_db_t:s0 data

This shows postgresql_db_t which is the default context element for the location of database
files. This context will have to be manually applied to the new database location that will be used
in this example in order for it to function properly.

2. Create a new directory for the new location of the database(s). In this example,
/opt/postgresql/data/ is used. If you use a different location, replace the text in the following
steps with your location:

~]# mkdir -p /opt/postgresql/data

3. Perform a directory listing of the new location. Note that the initial context of the new directory
is usr_t. This context is not sufficient for SELinux to offer its protection mechanisms to
PostgreSQL. Once the context has been changed, it will be able to function properly in the new
area.

~]# ls -lZ /opt/postgresql/
drwxr-xr-x. root root unconfined_u:object_r:usr_t:s0 data

4. Change the ownership of the new location to allow access by the postgres user and group. This
sets the traditional Unix permissions which SELinux will still observe.

~]# chown -R postgres:postgres /opt/postgresql

5. Open the /etc/systemd/system/postgresql.service file with a text editor and modify the
PGDATA and PGLOG variables to point to the new location:

~]# vi /etc/systemd/system/postgresql.service
PGDATA=/opt/postgresql/data
PGLOG=/opt/postgresql/data/pgstartup.log

Save this file and exit the text editor.

If the /etc/systemd/system/postgresql.service file does not exist, create it and insert the
following content:

.include /lib/systemd/system/postgresql.service
[Service]

Location of database directory
Environment=PGDATA=/opt/postgresql/data
Environment=PGLOG=/opt/postgresql/data/pgstartup.log

6. Initialize the database in the new location:

CHAPTER 22. POSTGRESQL

153

http://www.postgresql.org/docs/

~]$ su - postgres -c "initdb -D /opt/postgresql/data"

7. Having changed the database location, starting the service will fail at this point:

~]# systemctl start postgresql.service
Job for postgresql.service failed. See 'systemctl status postgresql.service' and 'journalctl -xn'
for details.

SELinux has caused the service to not start. This is because the new location is not properly
labeled. The following steps explain how to label the new location (/opt/postgresql/) and start
the postgresql service properly:

8. Use the semanage utility to add a context mapping for /opt/postgresql/ and any other
directories/files within it:

~]# semanage fcontext -a -t postgresql_db_t "/opt/postgresql(/.*)?"

9. This mapping is written to the /etc/selinux/targeted/contexts/files/file_contexts.local file:

~]# grep -i postgresql /etc/selinux/targeted/contexts/files/file_contexts.local

/opt/postgresql(/.*)? system_u:object_r:postgresql_db_t:s0

10. Now use the restorecon utility to apply this context mapping to the running system:

~]# restorecon -R -v /opt/postgresql

11. Now that the /opt/postgresql/ location has been labeled with the correct context for
PostgreSQL, the postgresql service will start successfully:

~]# systemctl start postgresql.service

12. Confirm the context is correct for /opt/postgresql/:

~]$ ls -lZ /opt
drwxr-xr-x. root root system_u:object_r:postgresql_db_t:s0 postgresql

13. Check with the ps command that the postgresql process displays the new location:

~]# ps aux | grep -i postmaster

postgres 21564 0.3 0.3 42308 4032 ? S 10:13 0:00 /usr/bin/postmaster -p 5432 -D
/opt/postgresql/data/

14. The location has been changed and labeled, and postgresql has started successfully. At this
point all running services should be tested to confirm normal operation.

[19] See the PostgreSQL project page for more information.

SELinux User's and Administrator's Guide

154

http://www.postgresql.org/about/

CHAPTER 23. RSYNC

The rsync utility performs fast file transfer and it is used for synchronizing data between systems. [20]

When using Red Hat Enterprise Linux, the rsync package provides rsync. Enter the following command
to see if the rsync package is installed:

~]$ rpm -q rsync
package rsync is not installed

If it is not installed, use the yum utility as root to install it:

~]# yum install rsync

23.1. RSYNC AND SELINUX

SELinux requires files to have an extended attribute to define the file type. Policy governs the access
daemons have to these files. If you want to share files using the rsync daemon, you must label the files
and directories with the public_content_t type. Like most services, correct labeling is required for
SELinux to perform its protection mechanisms over rsync.[21]

23.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with rsync. Different types all you to configure flexible access:

public_content_t

This is a generic type used for the location of files (and the actual files) to be shared using rsync. If a
special directory is created to house files to be shared with rsync, the directory and its contents
need to have this label applied to them.

rsync_exec_t

This type is used for the /usr/bin/rsync system binary.

rsync_log_t

This type is used for the rsync log file, located at /var/log/rsync.log by default. To change the
location of the file rsync logs to, use the --log-file=FILE option to the rsync command at run-time.

rsync_var_run_t

This type is used for the rsyncd lock file, located at /var/run/rsyncd.lock. This lock file is used by the
rsync server to manage connection limits.

rsync_data_t

This type is used for files and directories which you want to use as rsync domains and isolate them
from the access scope of other services. Also, the public_content_t is a general SELinux context

CHAPTER 23. RSYNC

155

type, which can be used when a file or a directory interacts with multiple services (for example, FTP
and NFS directory as an rsync domain).

rsync_etc_t

This type is used for rsync-related files in the /etc directory.

23.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

rsync_anon_write

Having this Boolean enabled allows rsync in the rsync_t domain to manage files, links and
directories that have a type of public_content_rw_t. Often these are public files used for public file
transfer services. Files and directories must be labeled this type.

rsync_client

Having this Boolean enabled allows rsync to initiate connections to ports defined as rsync_port_t, as
well as allowing the daemon to manage files, links, and directories that have a type of rsync_data_t.
Note that rsync must be in the rsync_t domain in order for SELinux to enact its control over it. The
configuration example in this chapter demonstrates rsync running in the rsync_t domain.

rsync_export_all_ro

Having this Boolean enabled allows rsync in the rsync_t domain to export NFS and CIFS volumes
with read-only access to clients.

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

23.4. CONFIGURATION EXAMPLES

23.4.1. Rsync as a daemon

When using Red Hat Enterprise Linux, rsync can be used as a daemon so that multiple clients can
directly communicate with it as a central server, in order to house centralized files and keep them
synchronized. The following example will demonstrate running rsync as a daemon over a network socket

SELinux User's and Administrator's Guide

156

in the correct domain, and how SELinux expects this daemon to be running on a pre-defined (in SELinux
policy) TCP port. This example will then show how to modify SELinux policy to allow the rsync daemon
to run normally on a non-standard port.

This example will be performed on a single system to demonstrate SELinux policy and its control over
local daemons and processes. Note that this is an example only and demonstrates how SELinux can
affect rsync. Comprehensive documentation of rsync is beyond the scope of this document. See the
official rsync documentation for further details. This example assumes that the rsync, setroubleshoot-
server and audit packages are installed, that the SELinux targeted policy is used and that SELinux is
running in enforcing mode.

Procedure 23.1. Getting rsync to launch as rsync_t

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The command returns Enforcing when SELinux is running in enforcing mode.

2. Run the which command to confirm that the rsync binary is in the system path:

~]$ which rsync
/usr/bin/rsync

3. When running rsync as a daemon, a configuration file should be used and saved as
/etc/rsyncd.conf. Note that the following configuration file used in this example is very simple
and is not indicative of all the possible options that are available, rather it is just enough to
demonstrate the rsync daemon:

log file = /var/log/rsync.log
pid file = /var/run/rsyncd.pid
lock file = /var/run/rsync.lock
[files]
 path = /srv/rsync
 comment = file area
 read only = false
 timeout = 300

4. Now that a simple configuration file exists for rsync to operate in daemon mode, you can start it
by running the following command:

~]# systemctl start rsyncd.service

Ensure that rsyncd was successfully started (the output is supposed to look similar to the one
below, only the time stamp will differ):

~]# systemctl status rsyncd.service
rsyncd.service - fast remote file copy program daemon
 Loaded: loaded (/usr/lib/systemd/system/rsyncd.service; disabled)
 Active: active (running) since Thu 2014-02-27 09:46:24 CET; 2s ago
 Main PID: 3220 (rsync)
 CGroup: /system.slice/rsyncd.service
 └─3220 /usr/bin/rsync --daemon --no-detach

CHAPTER 23. RSYNC

157

https://rsync.samba.org/documentation.html

SELinux can now enforce its protection mechanisms over the rsync daemon as it is now running
in the rsync_t domain:

~]$ ps -eZ | grep rsync
system_u:system_r:rsync_t:s0 3220 ? 00:00:00 rsync

This example demonstrated how to get rsyncd running in the rsync_t domain. Rsync can also be run as
a socket-activated service. In that case, the rsyncd is not executed until a client tries to connect to the
service. To enable rsyncd to run as a socket-activated service, follow the steps above. To start rsyncd
as a socket-activated service, enter the following command as root:

~]# systemctl start rsyncd.socket

The next example shows how to get this daemon successfully running on a non-default port. TCP port
10000 is used in the next example.

Procedure 23.2. Running the rsync daemon on a non-default port

1. Modify the /etc/rsyncd.conf file and add the port = 10000 line at the top of the file in the
global configuration area (that is, before any file areas are defined). The new configuration file
will look like:

log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
lock file = /var/run/rsync.lock
port = 10000
[files]
 path = /srv/rsync
 comment = file area
 read only = false
 timeout = 300

2. After launching the rsync daemon with this new setting, a denial message similar to the
following is logged by SELinux:

Jul 22 10:46:59 localhost setroubleshoot: SELinux is preventing the rsync (rsync_t) from
binding to port 10000. For complete SELinux messages, run sealert -l c371ab34-639e-45ae-
9e42-18855b5c2de8

3. Use the semanage utility to add TCP port 10000 to the SELinux policy in rsync_port_t:

~]# semanage port -a -t rsync_port_t -p tcp 10000

4. Now that TCP port 10000 has been added to the SELinux policy for rsync_port_t, rsyncd will
start and operate normally on this port:

~]# systemctl start rsyncd.service

~]# netstat -lnp | grep 10000
tcp 0 0 0.0.0.0:10000 0.0.0.0:* LISTEN 9910/rsync

SELinux User's and Administrator's Guide

158

SELinux has had its policy modified and is now permitting rsyncd to operate on TCP port 10000.

[20] See the Rsync project page for more information.

[21] See the rsync_selinux(8) manual page for more information about rsync and SELinux.

CHAPTER 23. RSYNC

159

https://rsync.samba.org/

CHAPTER 24. POSTFIX
Postfix is an open-source Mail Transport Agent (MTA), which supports protocols like LDAP, SMTP
AUTH (SASL), and TLS.[22]

In Red Hat Enterprise Linux, the postfix package provides Postfix. Enter the following command to see
if the postfix package is installed:

~]$ rpm -q postfix
package postfix is not installed

If it is not installed, use the yum utility root to install it:

~]# yum install postfix

24.1. POSTFIX AND SELINUX

When Postfix is enabled, it runs confined by default. Confined processes run in their own domains, and
are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates the Postfix and related processes running in
their own domain. This example assumes the postfix package is installed and that the Postfix service has
been started:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The command returns Enforcing when SELinux is running in enforcing mode.

2. Enter the following command as the root user to start postfix:

~]# systemctl start postfix.service

Confirm that the service is running. The output should include the information below (only the
time stamp will differ):

~]# systemctl status postfix.service
postfix.service - Postfix Mail Transport Agent
 Loaded: loaded (/usr/lib/systemd/system/postfix.service; disabled)
 Active: active (running) since Mon 2013-08-05 11:38:48 CEST; 3h 25min ago

3. Run following command to view the postfix processes:

~]$ ps -eZ | grep postfix
system_u:system_r:postfix_master_t:s0 1651 ? 00:00:00 master
system_u:system_r:postfix_pickup_t:s0 1662 ? 00:00:00 pickup
system_u:system_r:postfix_qmgr_t:s0 1663 ? 00:00:00 qmgr

In the output above, the SELinux context associated with the Postfix master process is
system_u:system_r:postfix_master_t:s0. The second last part of the context,

SELinux User's and Administrator's Guide

160

postfix_master_t, is the type for this process. A type defines a domain for processes and a type
for files. In this case, the master process is running in the postfix_master_t domain.

24.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with Postfix. Different types all you to configure flexible access:

postfix_etc_t

This type is used for configuration files for Postfix in the /etc/postfix/ directory.

postfix_data_t

This type is used for Postfix data files in the /var/lib/postfix/ directory.

postfix_var_run_t

This type is used for Postfix files stored in the /run/ directory.

postfix_initrc_exec_t

The Postfix executable files are labeled with the postfix_initrc_exec_t type. When executed, they
transition to the postfix_initrc_t domain.

postfix_spool_t

This type is used for Postfix files stored in the /var/spool/ directory.

NOTE

To see the full list of files and their types for Postfix, enter the following command:

~]$ grep postfix /etc/selinux/targeted/contexts/files/file_contexts

24.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

postfix_local_write_mail_spool

Having this Boolean enabled allows Postfix to write to the local mail spool on the system. Postfix
requires this Boolean to be enabled for normal operation when local spools are used.

NOTE

CHAPTER 24. POSTFIX

161

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

24.4. CONFIGURATION EXAMPLES

24.4.1. SpamAssassin and Postfix

SpamAssasin is an open-source mail filter that provides a way to filter unsolicited email (spam
messages) from incoming email.[23]

When using Red Hat Enterprise Linux, the spamassassin package provides SpamAssassin. Enter the
following command to see if the spamassassin package is installed:

~]$ rpm -q spamassassin
package spamassassin is not installed

If it is not installed, use the yum utility as root to install it:

~]# yum install spamassassin

SpamAssassin operates in tandem with a mailer such as Postfix to provide spam-filtering capabilities. In
order for SpamAssassin to effectively intercept, analyze and filter mail, it must listen on a network
interface. The default port for SpamAssassin is TCP/783, however this can be changed. The following
example provides a real-world demonstration of how SELinux complements SpamAssassin by only
allowing it access to a certain port by default. This example will then demonstrate how to change the
port and have SpamAssassin operate on a non-default port.

Note that this is an example only and demonstrates how SELinux can affect a simple configuration of
SpamAssassin. Comprehensive documentation of SpamAssassin is beyond the scope of this document.
See the official SpamAssassin documentation for further details. This example assumes the
spamassassin is installed, that any firewall has been configured to allow access on the ports in use, that
the SELinux targeted policy is used, and that SELinux is running in enforcing mode:

Procedure 24.1. Running SpamAssassin on a non-default port

1. Use the semanage utility as root to show the port that SELinux allows the spamd daemon to
listen on by default:

~]# semanage port -l | grep spamd
spamd_port_t tcp 783

This output shows that TCP/783 is defined in spamd_port_t as the port for SpamAssassin to

SELinux User's and Administrator's Guide

162

http://spamassassin.apache.org/doc.html

This output shows that TCP/783 is defined in spamd_port_t as the port for SpamAssassin to
operate on.

2. Edit the /etc/sysconfig/spamassassin configuration file and modify it so that it will start
SpamAssassin on the example port TCP/10000:

Options to spamd
SPAMDOPTIONS="-d -p 10000 -c m5 -H"

This line now specifies that SpamAssassin will operate on port 10000. The rest of this example
will show how to modify the SELinux policy to allow this socket to be opened.

3. Start SpamAssassin and an error message similar to the following will appear:

~]# systemctl start spamassassin.service
Job for spamassassin.service failed. See 'systemctl status spamassassin.service' and
'journalctl -xn' for details.

This output means that SELinux has blocked access to this port.

4. A denial message similar to the following will be logged by SELinux:

SELinux is preventing the spamd (spamd_t) from binding to port 10000.

5. As root, run semanage to modify the SELinux policy in order to allow SpamAssassin to operate
on the example port (TCP/10000):

~]# semanage port -a -t spamd_port_t -p tcp 10000

6. Confirm that SpamAssassin will now start and is operating on TCP port 10000:

~]# systemctl start spamassassin.service

~]# netstat -lnp | grep 10000
tcp 0 0 127.0.0.1:10000 0.0.0.0:* LISTEN 2224/spamd.pid

7. At this point, spamd is properly operating on TCP port 10000 as it has been allowed access to
that port by the SELinux policy.

[22] For more information, see the Postfix section in the System Administrator's Guide.

[23] For more information, see the Spam Filters section in the System Administrator's Guide.

CHAPTER 24. POSTFIX

163

http://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-email-mta.html#s2-email-mta-postfix
http://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/s1-email-mda.html#s3-email-mda-spam

CHAPTER 25. DHCP
The dhcpd daemon is used in Red Hat Enterprise Linux to dynamically deliver and configure Layer 3
TCP/IP details for clients.

The dhcp package provides the DHCP server and the dhcpd daemon. Enter the following command to
see if the dhcp package is installed:

~]# rpm -q dhcp
package dhcp is not installed

If it is not installed, use the yum utility as root to install it:

~]# yum install dhcp

25.1. DHCP AND SELINUX

When dhcpd is enabled, it runs confined by default. Confined processes run in their own domains, and
are separated from other confined processes. If a confined process is compromised by an attacker,
depending on SELinux policy configuration, an attacker's access to resources and the possible damage
they can do is limited. The following example demonstrates dhcpd and related processes running in
their own domain. This example assumes the dhcp package is installed and that the dhcpd service has
been started:

1. Run the getenforce command to confirm SELinux is running in enforcing mode:

~]$ getenforce
Enforcing

The command returns Enforcing when SELinux is running in enforcing mode.

2. Enter the following command as the root user to start dhcpd:

~]# systemctl start dhcpd.service

Confirm that the service is running. The output should include the information below (only the
time stamp will differ):

~]# systemctl status dhcpd.service
dhcpd.service - DHCPv4 Server Daemon
 Loaded: loaded (/usr/lib/systemd/system/dhcpd.service; disabled)
 Active: active (running) since Mon 2013-08-05 11:49:07 CEST; 3h 20min ago

3. Run following command to view the dhcpd processes:

~]$ ps -eZ | grep dhcpd
system_u:system_r:dhcpd_t:s0 5483 ? 00:00:00 dhcpd

The SELinux context associated with the dhcpd process is system_u:system_r:dhcpd_t:s0.

25.2. TYPES

SELinux User's and Administrator's Guide

164

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with DHCP:

dhcp_etc_t

This type is mainly used for files in the /etc directory, including configuration files.

dhcpd_var_run_t

This type is used for the PID file for dhcpd, in the /var/run/ directory.

dhcpd_exec_t

This type is used for transition of DHCP executable files to the dhcpd_t domain.

dhcpd_initrc_exec_t

This type is used for transition of DHCP executable files to the dhcpd_initrc_t domain.

NOTE

To see the full list of files and their types for dhcpd, enter the following command:

~]$ grep dhcp /etc/selinux/targeted/contexts/files/file_contexts

CHAPTER 25. DHCP

165

CHAPTER 26. OPENSHIFT BY RED HAT
OpenShift by Red Hat is a Platform as a Service (PaaS) that enables developers to build and deploy web
applications. OpenShift provides a wide selection of programming languages and frameworks including
Java, Ruby, and PHP. It also provides integrated developer tools to support the application life cycle,
including Eclipse integration, JBoss Developer Studio, and Jenkins. OpenShift uses an open source
ecosystem to provide a platform for mobile applications, database services, and more. [24]

In Red Hat Enterprise Linux, the rhc package provides the OpenShift client tools. Enter the following
command to see if it is installed:

~]$ rpm -q rhc
package rhc is not installed

If rhc is not installed, see the OpenShift Enterprise Client Tools Installation Guide and OpenShift Online
Client Tools Installation Guide for detailed information on the OpenShift client tools installation process.

26.1. OPENSHIFT AND SELINUX

SELinux provides better security control over applications that use OpenShift because all processes are
labeled according to the SELinux policy. Therefore, SELinux protects OpenShift from possible malicious
attacks within different gears running on the same node.

See the Dan Walsh's presentation for more information about SELinux and OpenShift.

26.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with OpenShift. Different types allow you to configure flexible access:

Process types

openshift_t

The OpenShift process is associated with the openshift_t SELinux type.

Types on executables

openshift_cgroup_read_exec_t

SELinux allows files with this type to transition an executable to the openshift_cgroup_read_t
domain.

openshift_cron_exec_t

SELinux allows files with this type to transition an executable to the openshift_cron_t domain.

openshift_initrc_exec_t

SELinux allows files with this type to transition an executable to the openshift_initrc_t domain.

SELinux User's and Administrator's Guide

166

https://access.redhat.com/site/documentation/en-US/OpenShift_Enterprise/2/html-single/Client_Tools_Installation_Guide/index.html
https://access.redhat.com/site/documentation/en-US/OpenShift_Online/2.0/html-single/Client_Tools_Installation_Guide/index.html
http://people.fedoraproject.org/~dwalsh/SELinux/Presentations/openshift_selinux.ogv

Writable types

openshift_cgroup_read_tmp_t

This type allows OpenShift control groups (cgroup) read and access temporary files in the /tmp
directory.

openshift_cron_tmp_t

This type allows storing temporary files of the OpenShift cron jobs in /tmp.

openshift_initrc_tmp_t

This type allows storing the OpenShift initrc temporary files in /tmp.

openshift_log_t

Files with this type are treated as OpenShift log data, usually stored under the /var/log/ directory.

openshift_rw_file_t

OpenShift have permission to read and to write to files labeled with this type.

openshift_tmp_t

This type is used for storing the OpenShift temporary files in /tmp.

openshift_tmpfs_t

This type allows storing the OpenShift data on a tmpfs file system.

openshift_var_lib_t

This type allows storing the OpenShift files in the /var/lib/ directory.

openshift_var_run_t

This type allows storing the OpenShift files in the /run/ or /var/run/ directory.

26.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

openshift_use_nfs

Having this Boolean enabled allows installing OpenShift on an NFS share.

NOTE

CHAPTER 26. OPENSHIFT BY RED HAT

167

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

26.4. CONFIGURATION EXAMPLES

26.4.1. Changing the Default OpenShift Directory

By default, OpenShift stores its data in the /var/lib/openshift/ directory, which is labeled with the
openshift_var_lib_t SELinux type. To allow OpenShift to store data in a different directory, label the
new directory with the proper SELinux context.

The following procedure shows how to change the default OpenShift directory for storing data to
/srv/openshift/:

Procedure 26.1. Changing the Default OpenShift Directory for Storing Data

1. As root, create a new openshift/ directory within the /srv directory. The new directory is labeled
with the var_t type:

~]# mkdir /srv/openshift

~]$ ls -Zd /srv/openshift
drwxr-xr-x. root root unconfined_u:object_r:var_t:s0 openshift/

2. As root, use the semanage utility to map /srv/openshift/ to the proper SELinux context:

~]# semanage fcontext -a -e /var/lib/openshift /srv/openshift

3. Then, use the restorecon utility as root to apply the changes:

~]# restorecon -R -v /srv/openshift

4. The /srv/openshift/ directory is now labeled with the correct openshift_var_lib_t type:

~]$ls -Zd /srv/openshift
drwxr-xr-x. root root unconfined_u:object_r:openshift_var_lib_t:s0 openshift/

[24] To learn more about OpenShift, see Product Documentation for OpenShift Container Platform and Product

SELinux User's and Administrator's Guide

168

[24] To learn more about OpenShift, see Product Documentation for OpenShift Container Platform and Product
Documentation for OpenShift Online.

CHAPTER 26. OPENSHIFT BY RED HAT

169

https://access.redhat.com/documentation/en/openshift-container-platform/
https://access.redhat.com/documentation/en/openshift-online/

CHAPTER 27. IDENTITY MANAGEMENT
Identity Management (IdM) provides a unifying environment for standards-defined, common network
services, including PAM, LDAP, Kerberos, DNS, NTP, and certificate services. IdM allows
Red Hat Enterprise Linux systems to serve as domain controllers.[25]

In Red Hat Enterprise Linux, the ipa-server package provides the IdM server. Enter the following
command to see if the ipa-server package is installed:

~]$ rpm -q ipa-server
package ipa-server is not installed

If it is not installed, enter the following command as the root user to install it:

~]# yum install ipa-server

27.1. IDENTITY MANAGEMENT AND SELINUX

Identity Management can map IdM users to configured SELinux roles per host so that it is possible to
specify SELinux context for IdM access rights. During the user login process, the System Security
Services Daemon (SSSD) queries the access rights defined for a particular IdM user. Then the
pam_selinux module sends a request to the kernel to launch the user process with the proper SELinux
context according to the IdM access rights, for example guest_u:guest_r:guest_t:s0.

For more information about Identity Management and SELinux, see the Linux Domain, Identity,
Authentication, and Policy Guide for Red Hat Enterprise Linux 7.

27.1.1. Trust to Active Directory Domains

In previous versions of Red Hat Enterprise Linux, Identity Management used the WinSync utility to allow
users from Active Directory (AD) domains to access data stored on IdM domains. To do that, WinSync
had to replicate the user and group data from the AD server to the local server and kept the data
synchronized.

In Red Hat Enterprise Linux 7, the SSSD daemon has been enhanced to work with AD and users are able
to create a trusted relationship between IdM and AD domains. The user and group data are read directly
from the AD server. Additionally, Kerberos cross-realm trust allowing single sign-on (SSO)
authentication between the AD and IdM domains is provided. If SSO is set, users from the AD domains
can access data protected by Kerberos that is stored on the IdM domains without requiring a password.

This feature is not installed by default. To use it, install the additional ipa-server-trust-ad package.

27.2. CONFIGURATION EXAMPLES

27.2.1. Mapping SELinux users to IdM users

The following procedure shows how to create a new SELinux mapping and how to add a new IdM user to
this mapping.

Procedure 27.1. How to Add a User to an SELinux Mapping

1. To create a new SELinux mapping, enter the following command where SELinux_mapping is

SELinux User's and Administrator's Guide

170

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/index.html

1. To create a new SELinux mapping, enter the following command where SELinux_mapping is
the name of the new SELinux mapping and the --selinuxuser option specifies a particular
SELinux user:

~]$ ipa selinuxusermap-add SELinux_mapping --selinuxuser=staff_u:s0-s0:c0.c1023

2. Enter the following command to add an IdM user with the tuser user name to the SELinux
mapping:

~]$ ipa selinuxusermap-add-user --users=tuser SELinux_mapping

3. To add a new host named ipaclient.example.com to the SELinux mapping, enter the following
command:

~]$ ipa selinuxusermap-add-host --hosts=ipaclient.example.com SELinux_mapping

4. The tuser user gets the staff_u:s0-s0:c0.c1023 label when logged in to the
ipaclient.example.com host:

[tuser@ipa-client]$ id -Z
staff_u:staff_r:staff_t:s0-s0:c0.c1023

[25] For more information about Identity Management, see the Linux Domain, Identity, Authentication, and Policy
Guide for Red Hat Enterprise Linux 7.

CHAPTER 27. IDENTITY MANAGEMENT

171

https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Linux_Domain_Identity_Authentication_and_Policy_Guide/index.html

CHAPTER 28. RED HAT GLUSTER STORAGE
Red Hat Gluster Storage provides flexible and affordable unstructured data storage for the enterprise.
GlusterFS, a key building block of Gluster, is based on a stackable user-space design and aggregates
various storage servers over a network and interconnects them into one large parallel network file
system. The POSIX-compatible GlusterFS servers, which use the XFS file system format to store data
on disks, can be accessed using industry standard access protocols including NFS and CIFS.

See the Product Documentation for Red Hat Gluster Storage collection of guides for more information.

The glusterfs-server package provides Red Hat Gluster Storage. For detailed information about its
installation process, see the Installation Guide for Red Hat Gluster Storage.

28.1. RED HAT GLUSTER STORAGE AND SELINUX

When enabled, SELinux serves as an additional security layer by providing flexible mandatory access
control for the glusterd (GlusterFS Management Service) and glusterfsd (NFS server) processes as a
part of Red Hat Gluster Storage. These processes have advanced process isolation unbounded with the
glusterd_t SELinux type.

28.2. TYPES

The main permission control method used in SELinux targeted policy to provide advanced process
isolation is Type Enforcement. All files and processes are labeled with a type: types define a SELinux
domain for processes and a SELinux type for files. SELinux policy rules define how types access each
other, whether it be a domain accessing a type, or a domain accessing another domain. Access is only
allowed if a specific SELinux policy rule exists that allows it.

The following types are used with Red Hat Gluster Storage. Different types allow you to configure
flexible access:

Process types

glusterd_t

The Gluster processes are associated with the glusterd_t SELinux type.

Types on executables

glusterd_initrc_exec_t

The SELinux-specific script type context for the Gluster init script files.

glusterd_exec_t

The SELinux-specific executable type context for the Gluster executable files.

Port Types

gluster_port_t

This type is defined for glusterd. By default, glusterd uses 204007-24027, and 38465-38469 TCP
ports.

SELinux User's and Administrator's Guide

172

https://access.redhat.com/documentation/en/red-hat-storage/
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3/html/Installation_Guide/index.html

File Contexts

glusterd_brick_t

This type is used for files threated as glusterd brick data.

glusterd_conf_t

This type is associated with the glusterd configuration data, usually stored in the /etc directory.

glusterd_log_t

Files with this type are treated as glusterd log data, usually stored under the /var/log/ directory.

glusterd_tmp_t

This type is used for storing the glusterd temporary files in the /tmp directory.

glusterd_var_lib_t

This type allows storing the glusterd files in the /var/lib/ directory.

glusterd_var_run_t

This type allows storing the glusterd files in the /run/ or /var/run/ directory.

28.3. BOOLEANS

SELinux is based on the least level of access required for a service to run. Services can be run in a variety
of ways; therefore, you need to specify how you run your services. Use the following Booleans to set up
SELinux:

gluster_export_all_ro

Having this Boolean enabled allows glusterfsd to share files and directory as read-only. This Boolean
is disabled by default.

gluster_export_all_rw

Having this Boolean enabled allows glusterfsd to share files and directories with read and write
access. This Boolean is enabled by default.

gluster_anon_write

Having this Boolean enabled allows glusterfsd to modify public files labeled with the
public_content_rw_t SELinux type.

NOTE

CHAPTER 28. RED HAT GLUSTER STORAGE

173

NOTE

Due to the continuous development of the SELinux policy, the list above might not
contain all Booleans related to the service at all times. To list them, enter the following
command:

~]$ getsebool -a | grep service_name

Enter the following command to view description of a particular Boolean:

~]$ sepolicy booleans -b boolean_name

Note that the additional policycoreutils-devel package providing the sepolicy utility is
required for this command to work.

28.4. CONFIGURATION EXAMPLES

28.4.1. Labeling Gluster Bricks

A Gluster brick is an export directory on a server in the trusted storage pool. In case that the brick is not
labeled with the correct SELinux context, glusterd_brick_t, SELinux denies certain file access
operations and generates various AVC messages.

The following procedure shows how to label Gluster bricks with the correct SELinux context. The
procedure assumes that you previously created and formatted a logical volume, for example
/dev/rhgs/gluster, to be used as the Gluster brick.

For detailed information about Gluster bricks, see the Red Hat Gluster Storage Volumes chapter in the
Administration Guide for Red Hat Gluster Storage.

Procedure 28.1. How to Label a Gluster Brick

1. Create a directory to mount the previously formatted logical volume. For example:

~]# mkdir /mnt/brick1

2. Mount the logical volume, in this case /dev/vg-group/gluster, to the /mnt/brick1/ directory
created in the previous step.

~]# mount /dev/vg-group/gluster /mnt/brick1/

Note that the mount command mounts devices only temporarily. To mount the device
permanently, add an entry similar as the following one to the /etc/fstab file:

/dev/vg-group/gluster /mnt/brick1 xfs rw,inode64,noatime,nouuid 1 2

For more information, see the fstab(5) manual page.

3. Check the SELinux context of /mnt/brick1/:

~]$ ls -lZd /mnt/brick1/
drwxr-xr-x. root root system_u:object_r:unlabeled_t:s0 /mnt/brick1/

SELinux User's and Administrator's Guide

174

https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html/Administration_Guide/chap-Red_Hat_Storage_Volumes.html
https://access.redhat.com/documentation/en-US/Red_Hat_Storage/3.1/html-single/Administration_Guide/index.html

The directory is labeled with the unlabeled_t SELinux type.

4. Change the SELinux type of /mnt/brick1/ to the glusterd_brick_t SELinux type:

~]# semanage fcontext -a -t glusterd_brick_t "/mnt/brick1(/.*)?"

5. Use the restorecon utility to apply the changes:

~]# restorecon -Rv /mnt/brick1

6. Finally, verify that the context has been successfully changed:

~]$ ls -lZd /mnt/brick1
drwxr-xr-x. root root system_u:object_r:glusterd_brick_t:s0 /mnt/brick1/

CHAPTER 28. RED HAT GLUSTER STORAGE

175

CHAPTER 29. REFERENCES
The following references are pointers to additional information that is relevant to SELinux but beyond
the scope of this guide. Note that due to the rapid development of SELinux, some of this material may
only apply to specific releases of Red Hat Enterprise Linux.

Books

SELinux by Example

Mayer, MacMillan, and Caplan

Prentice Hall, 2007

SELinux: NSA's Open Source Security Enhanced Linux

Bill McCarty

O'Reilly Media Inc., 2004

Tutorials and Help

Tutorials and talks from Russell Coker

http://www.coker.com.au/selinux/talks/ibmtu-2004/

Dan Walsh's Journal

http://danwalsh.livejournal.com/

Red Hat Knowledgebase

https://access.redhat.com/site/

General Information

NSA SELinux main website

http://www.nsa.gov/research/selinux/index.shtml

NSA SELinux FAQ

http://www.nsa.gov/research/selinux/faqs.shtml

Mailing Lists

NSA SELinux mailing list

http://www.nsa.gov/research/selinux/list.shtml

Fedora SELinux mailing list

http://www.redhat.com/mailman/listinfo/fedora-selinux-list

Community

SELinux User's and Administrator's Guide

176

http://www.coker.com.au/selinux/talks/ibmtu-2004/
http://danwalsh.livejournal.com/
https://access.redhat.com/site/
http://www.nsa.gov/research/selinux/index.shtml
http://www.nsa.gov/research/selinux/faqs.shtml
http://www.nsa.gov/research/selinux/list.shtml
http://www.redhat.com/mailman/listinfo/fedora-selinux-list

SELinux Project Wiki

http://selinuxproject.org/page/Main_Page

SELinux community page

http://selinux.sourceforge.net/

IRC

irc.freenode.net, #selinux

CHAPTER 29. REFERENCES

177

http://selinuxproject.org/page/Main_Page
http://selinux.sourceforge.net/

APPENDIX A. REVISION HISTORY

Revision 0.3-06 Fri Aug 9 2019 Mirek Jahoda
Version for 7.7 GA publication.

Revision 0.3-05 Sat Oct 20 2018 Mirek Jahoda
Version for 7.6 GA publication.

Revision 0.3-03 Tue Apr 3 2018 Mirek Jahoda
Version for 7.5 GA publication.

Revision 0.3-01 Thu Jul 13 2017 Mirek Jahoda
Version for 7.4 GA publication.

Revision 0.2-18 Wed Nov 2 2016 Mirek Jahoda
Version for 7.3 GA publication.

Revision 0.2-11 Sun Jun 26 2016 Mirek Jahoda
Async release with fixes.

Revision 0.2-10 Sun Feb 14 2016 Robert Krátký
Async release with fixes.

Revision 0.2-9 Thu Dec 10 2015 Barbora Ančincová
Added the Red Hat Gluster Storage chapter.

Revision 0.2-8 Thu Nov 11 2015 Barbora Ančincová
Red Hat Enterprise Linux 7.2 GA release of the book.

Revision 0.2-7 Thu Aug 13 2015 Barbora Ančincová
Red Hat Enterprise Linux 7.2 Beta release of the book.

Revision 0.2-6 Wed Feb 18 2015 Barbora Ančincová
Red Hat Enterprise Linux 7.1 GA release of the book.

Revision 0.2-5 Fri Dec 05 2014 Barbora Ančincová
Update to sort order on the Red Hat Customer Portal.

Revision 0.2-4 Thu Dec 04 2014 Barbora Ančincová
Red Hat Enterprise Linux 7.1 Beta release of the book.

Revision 0.1-41 Tue May 20 2014 Tomáš Čapek
Rebuild for style changes.

Revision 0.1-1 Tue Jan 17 2013 Tomáš Čapek
Initial creation of the book for Red Hat Enterprise Linux 7

SELinux User's and Administrator's Guide

178

	Table of Contents
	PART I. SELINUX
	CHAPTER 1. INTRODUCTION
	ADDITIONAL RESOURCES
	1.1. BENEFITS OF RUNNING SELINUX
	1.2. EXAMPLES
	1.3. SELINUX ARCHITECTURE
	1.4. SELINUX STATES AND MODES
	1.5. ADDITIONAL RESOURCES

	CHAPTER 2. SELINUX CONTEXTS
	2.1. DOMAIN TRANSITIONS
	2.2. SELINUX CONTEXTS FOR PROCESSES
	2.3. SELINUX CONTEXTS FOR USERS

	CHAPTER 3. TARGETED POLICY
	3.1. CONFINED PROCESSES
	3.2. UNCONFINED PROCESSES
	3.3. CONFINED AND UNCONFINED USERS
	3.3.1. The sudo Transition and SELinux Roles

	CHAPTER 4. WORKING WITH SELINUX
	4.1. SELINUX PACKAGES
	4.2. WHICH LOG FILE IS USED
	4.3. MAIN CONFIGURATION FILE
	4.4. PERMANENT CHANGES IN SELINUX STATES AND MODES
	4.4.1. Enabling SELinux
	4.4.1.1. Permissive Mode
	4.4.1.2. Enforcing Mode

	4.4.2. Disabling SELinux

	4.5. CHANGING SELINUX MODES AT BOOT TIME
	4.6. BOOLEANS
	4.6.1. Listing Booleans
	4.6.2. Configuring Booleans
	4.6.3. Shell Auto-Completion

	4.7. SELINUX CONTEXTS – LABELING FILES
	4.7.1. Temporary Changes: chcon
	Quick Reference
	4.7.2. Persistent Changes: semanage fcontext
	Quick Reference

	4.8. THE FILE_T AND DEFAULT_T TYPES
	4.9. MOUNTING FILE SYSTEMS
	4.9.1. Context Mounts
	4.9.2. Changing the Default Context
	4.9.3. Mounting an NFS Volume
	4.9.4. Multiple NFS Mounts
	4.9.5. Making Context Mounts Persistent

	4.10. MAINTAINING SELINUX LABELS
	4.10.1. Copying Files and Directories
	4.10.2. Moving Files and Directories
	4.10.3. Checking the Default SELinux Context
	4.10.4. Archiving Files with tar
	4.10.5. Archiving Files with star

	4.11. INFORMATION GATHERING TOOLS
	avcstat
	seinfo
	sesearch

	4.12. PRIORITIZING AND DISABLING SELINUX POLICY MODULES
	Disabling a System Policy Module

	4.13. MULTI-LEVEL SECURITY (MLS)
	4.13.1. MLS and System Privileges
	4.13.2. Enabling MLS in SELinux
	4.13.3. Creating a User With a Specific MLS Range
	4.13.4. Setting Up Polyinstantiated Directories

	4.14. FILE NAME TRANSITION
	4.15. DISABLING PTRACE()
	4.16. THUMBNAIL PROTECTION

	CHAPTER 5. THE SEPOLICY SUITE
	5.1. THE SEPOLICY PYTHON BINDINGS
	5.2. GENERATING SELINUX POLICY MODULES: SEPOLICY GENERATE
	5.3. UNDERSTANDING DOMAIN TRANSITIONS: SEPOLICY TRANSITION
	5.4. GENERATING MANUAL PAGES: SEPOLICY MANPAGE

	CHAPTER 6. CONFINING USERS
	6.1. LINUX AND SELINUX USER MAPPINGS
	6.2. CONFINING NEW LINUX USERS: USERADD
	6.3. CONFINING EXISTING LINUX USERS: SEMANAGE LOGIN
	6.4. CHANGING THE DEFAULT MAPPING
	6.5. XGUEST: KIOSK MODE
	6.6. BOOLEANS FOR USERS EXECUTING APPLICATIONS
	guest_t
	xguest_t
	user_t
	staff_t

	CHAPTER 7. SECURING PROGRAMS USING SANDBOX
	7.1. RUNNING AN APPLICATION USING SANDBOX

	CHAPTER 8. SVIRT
	Non-Virtualized Environment
	Virtualized Environment
	8.1. SECURITY AND VIRTUALIZATION
	8.2. SVIRT LABELING

	CHAPTER 9. SECURE LINUX CONTAINERS
	CHAPTER 10. SELINUX SYSTEMD ACCESS CONTROL
	10.1. SELINUX ACCESS PERMISSIONS FOR SERVICES
	10.2. SELINUX AND JOURNALD

	CHAPTER 11. TROUBLESHOOTING
	11.1. WHAT HAPPENS WHEN ACCESS IS DENIED
	11.2. TOP THREE CAUSES OF PROBLEMS
	11.2.1. Labeling Problems
	11.2.1.1. What is the Correct Context?

	11.2.2. How are Confined Services Running?
	Port Numbers
	11.2.3. Evolving Rules and Broken Applications

	11.3. FIXING PROBLEMS
	11.3.1. Linux Permissions
	11.3.2. Possible Causes of Silent Denials
	11.3.3. Manual Pages for Services
	11.3.4. Permissive Domains
	11.3.4.1. Making a Domain Permissive
	11.3.4.2. Disabling Permissive Domains
	11.3.4.3. Denials for Permissive Domains

	11.3.5. Searching For and Viewing Denials
	ausearch
	aureport
	sealert
	11.3.6. Raw Audit Messages
	11.3.7. sealert Messages
	11.3.8. Allowing Access: audit2allow

	CHAPTER 12. FURTHER INFORMATION
	12.1. CONTRIBUTORS
	12.2. OTHER RESOURCES
	Fedora
	The National Security Agency (NSA)
	Tresys Technology
	The SELinux GitHub repositories
	SELinux Project Wiki
	The SELinux Notebook - The Foundations - 4th Edition
	DigitalOcean: An Introduction to SELinux on CentOS 7
	IRC

	PART II. MANAGING CONFINED SERVICES
	CHAPTER 13. INTRODUCTION
	CHAPTER 14. THE APACHE HTTP SERVER
	14.1. THE APACHE HTTP SERVER AND SELINUX
	14.2. TYPES
	14.3. BOOLEANS
	14.4. CONFIGURATION EXAMPLES
	14.4.1. Running a static site
	14.4.2. Sharing NFS and CIFS volumes
	14.4.3. Sharing files between services
	14.4.4. Changing port numbers

	CHAPTER 15. SAMBA
	15.1. SAMBA AND SELINUX
	15.2. TYPES
	15.3. BOOLEANS
	15.4. CONFIGURATION EXAMPLES
	15.4.1. Sharing directories you create
	15.4.2. Sharing a website

	CHAPTER 16. FILE TRANSFER PROTOCOL
	16.1. TYPES
	16.2. BOOLEANS

	CHAPTER 17. NETWORK FILE SYSTEM
	17.1. NFS AND SELINUX
	17.2. TYPES
	17.3. BOOLEANS
	17.4. CONFIGURATION EXAMPLES
	17.4.1. Enabling SELinux Labeled NFS Support

	CHAPTER 18. BERKELEY INTERNET NAME DOMAIN
	18.1. BIND AND SELINUX
	18.2. TYPES
	18.3. BOOLEANS
	18.4. CONFIGURATION EXAMPLES
	18.4.1. Dynamic DNS

	CHAPTER 19. CONCURRENT VERSIONING SYSTEM
	19.1. CVS AND SELINUX
	19.2. TYPES
	19.3. BOOLEANS
	19.4. CONFIGURATION EXAMPLES
	19.4.1. Setting up CVS

	CHAPTER 20. SQUID CACHING PROXY
	20.1. SQUID CACHING PROXY AND SELINUX
	20.2. TYPES
	20.3. BOOLEANS
	20.4. CONFIGURATION EXAMPLES
	20.4.1. Squid Connecting to Non-Standard Ports

	CHAPTER 21. MARIADB (A REPLACEMENT FOR MYSQL)
	21.1. MARIADB AND SELINUX
	21.2. TYPES
	21.3. BOOLEANS
	21.4. CONFIGURATION EXAMPLES
	21.4.1. MariaDB Changing Database Location

	CHAPTER 22. POSTGRESQL
	22.1. POSTGRESQL AND SELINUX
	22.2. TYPES
	22.3. BOOLEANS
	22.4. CONFIGURATION EXAMPLES
	22.4.1. PostgreSQL Changing Database Location

	CHAPTER 23. RSYNC
	23.1. RSYNC AND SELINUX
	23.2. TYPES
	23.3. BOOLEANS
	23.4. CONFIGURATION EXAMPLES
	23.4.1. Rsync as a daemon

	CHAPTER 24. POSTFIX
	24.1. POSTFIX AND SELINUX
	24.2. TYPES
	24.3. BOOLEANS
	24.4. CONFIGURATION EXAMPLES
	24.4.1. SpamAssassin and Postfix

	CHAPTER 25. DHCP
	25.1. DHCP AND SELINUX
	25.2. TYPES

	CHAPTER 26. OPENSHIFT BY RED HAT
	26.1. OPENSHIFT AND SELINUX
	26.2. TYPES
	26.3. BOOLEANS
	26.4. CONFIGURATION EXAMPLES
	26.4.1. Changing the Default OpenShift Directory

	CHAPTER 27. IDENTITY MANAGEMENT
	27.1. IDENTITY MANAGEMENT AND SELINUX
	27.1.1. Trust to Active Directory Domains

	27.2. CONFIGURATION EXAMPLES
	27.2.1. Mapping SELinux users to IdM users

	CHAPTER 28. RED HAT GLUSTER STORAGE
	28.1. RED HAT GLUSTER STORAGE AND SELINUX
	28.2. TYPES
	28.3. BOOLEANS
	28.4. CONFIGURATION EXAMPLES
	28.4.1. Labeling Gluster Bricks

	CHAPTER 29. REFERENCES
	APPENDIX A. REVISION HISTORY

