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Preface

This book on unconstrained and bound constrained optimization can be used as a tutorial for
self-study or areference by those who solve such problemsin their work. It can also serveasa
textbook in an introductory optimization course.

Asin my earlier book [154] on linear and nonlinear equations, we treat a small number of
methods in depth, giving a less detailed description of only afew (for example, the nonlinear
conjugate gradient method and the DIRECT algorithm). We aim for clarity and brevity rather
than compl ete generality and confine our scope to algorithmsthat are easy to implement (by the
reader!) and understand.

One consequence of this approach is that the algorithmsin this book are often special cases
of more general ones in the literature. For example, in Chapter 3, we provide details only
for trust region globalizations of Newton’s method for unconstrained problems and line search
globalizations of the BFGS quasi-Newton method for unconstrained and bound constrained
problems. We refer the reader to the literature for more genera results. Our intention is that
both our algorithms and proofs, being special cases, are more concise and simple than othersin
the literature and illustrate the central issues more clearly than afully general formulation.

Part |1 of this book covers some algorithms for noisy or global optimization or both. There
are many interesting algorithms in this class, and this book is limited to those deterministic
algorithms that can be implemented in a more-or-less straightforward way. We do not, for
example, cover simulated annealing, genetic algorithms, response surface methods, or random
search procedures.

The reader of this book should be familiar with the material in an elementary graduate level
coursein numerical analysis, in particular direct and iterative methods for the solution of linear
equations and linear least squares problems. The material in texts such as [127] and [264] is
sufficient.

A suite of MATLAB* codes has been written to accompany this book. These codes were
used to generate the computational examples in the book, but the algorithms do not depend
on the MATLAB environment and the reader can easily implement the algorithms in another
language, either directly from the algorithmic descriptions or by translating the MATLAB code.
The MATLAB environment is an excellent choice for experimentation, doing the exercises, and
small-to-medium-scale production work. Large-scale work on high-performance computersis
best done in another language. The reader should also be aware that there is a large amount of
high-quality software availablefor optimization. Thebook [195], for example, providespointers
to several useful packages.

Parts of this book are based upon work supported by the National Science Foundation over
severa years, most recently under National Science Foundation grants DMS-9321938, DM S-
9700569, and DM S-9714811, and by all ocations of computing resourcesfromtheNorth Carolina
Supercomputing Center. Any opinions, findings, and conclusionsor recommendations expressed

*MATLAB isaregistered trademark of The MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760, USA, (508)
653-1415, info@mathworks.com, http://www.mathworks.com.
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in this material are those of the author and do not necessarily reflect the views of the National
Science Foundation or of the North Carolina Supercomputing Center.

The list of students and colleagues who have helped me with this project, directly, through
collaborationg/discussions on issues that | treat in the manuscript, by providing pointers to the
literature, or as a source of inspiration, is long. | am particularly indebted to Tom Banks, Jim
Banoczi, John Betts, David Bortz, Steve Campbell, Tony Choi, Andy Conn, Douglas Cooper, Joe
David, John Dennis, Owen Edlinger, Jorg Gablonsky, Paul Gilmore, Matthias Heinkenschlof3,
LauraHelfrich, LeaJenkins, VickieKearn, Carl and Betty Kelley, DebbieL ockhart, Casey Miller,
Jorge Moré, Mary Rose Muccie, John Nelder, Chung-Wei Ng, Deborah Poulson, Ekkehard
Sachs, Dave Shanno, Joseph Skudlarek, Dan Sorensen, John Strikwerda, Mike Tocci, Jon Tolle,
VirginiaTorczon, FloriaTosca, Hien Tran, Margaret Wright, Steve Wright, and Kevin Yoemans.

C.T.Kelley
Raleigh, North Carolina
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How to Get the Software

All computations reported in this book were done in MATLAB (version 5.2 on various SUN
SPARCstations and on an Apple Macintosh Powerbook 2400). The suiteof MATLAB codesthat
we used for the examples is available by anonymous ftp from ftp.math.ncsu.edu in the directory

FTP/ kel | ey/ opti m zati on/ mat| ab
or from SIAM’s World Wide Web server at
http://ww. si am or g/ books/ fr 18/

One can obtain MATLAB from
The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA 01760-2098

(508) 647-7000

Fax: (508) 647-7001

E-mail: info@mathworks.com
WWW: http://www.mathworks.com
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Chapter 1

Basic Concepts

1.1 The Problem

The unconstrained optimization problem isto minimize areal-valued function f of N variables.
By thiswe mean to find alocal minimizer, that is, apoint «* such that

(1.1 f(z™) < f(z) for al z near z*.
It is standard to express this problem as
(1.2 min f(x)

or to say that we seek to solve the problem min f. The understanding isthat (1.1) meansthat we
seek alocal minimizer. We will refer to f asthe objective function and to f(«*) asthe minimum
or minimum value. If alocal minimizer z* exists, we say aminimumis attained at x*.

We say that problem (1.2) is unconstrained because we impose no conditions on the inde-
pendent variables = and assume that f is defined for all .

The local minimization problem is different from (and much easier than) the global mini-
mization problemin which aglobal minimizer, apoint z* such that

(1.3 f@) < f(z) foral z,

is sought.
The constrained optimization problem is to minimize afunction f over aset U ¢ RV. A
local minimizer, therefore, isan «* € U such that

(1.49) f(z*) < f(x) foral x € U near x*.
Similar to (1.2) we expressthis as
(L5) min f(z)

or say that we seek to solve the problem ming f. A global minimizer isapoint * € U such
that
(1.6) f(z*) < f(x)fordl z € U.

We consider only the simplest constrained problemsin this book (Chapter 5 and §7.4) and refer
the reader to [104], [117], [195], and [66] for deeper discussions of constrained optimization
and pointers to software.

Having posed an optimization problem one can proceed in the classical way and use methods
that require smoothness of f. That is the approach we take in thisfirst part of the book. These

3
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4 ITERATIVE METHODS FOR OPTIMIZATION

methods can fail if the objective function has discontinuities or irregularities. Such nonsmooth
effects are common and can be caused, for example, by truncation error ininternal calculations
for f, noiseininterna probabilistic modelingin f, tablelookup within f, or use of experimental
datain f. We address a class of methods for dealing with such problemsin Part I1.

1.2 Notation

In this book, following the convention in [154], vectors are to be understood as column vectors.
Thevector z* will denoteasolution, = apotential solution, and {x, } .>o the sequence of iterates.
Wewill refer to g astheinitial iterate. x issometimestimidly called theinitial guess. Wewill
denote the ith component of a vector « by (z); (note the parentheses) and the ith component
of zy by (z1);. We will rarely need to refer to individual components of vectors. We will let
0f /0x; denote the partial derivative of f with respect to (x),;. Asisstandard [154], ¢ = = — z*
will denote the error, e,, = x,, — «* the error in the nth iterate, and B(r) the ball of radius r
about *
B(r) = {xz|lle|l <r}.

Forz € RN welet Vf(z) € RY denotethe gradient of f,
Vf(ﬂ?) = (af/axlvvaf/am]v)v

when it exists.
Welet V2 f denote the Hessian of f,

(V2f)ij = 0% f|0:0x;,

when it exists. Note that V2 f is the Jacobian of V f. However, V2 f has more structure than
a Jacobian for a general nonlinear function. If f istwice continuoudly differentiable, then the
Hessian is symmetric (V2 f);; = (V2 f);:) by equality of mixed partial derivatives[229].

In this book we will consistently use the Euclidean norm

N

lzll = | > (@)

=1

When we refer to a matrix norm we will mean the matrix norm induced by the Euclidean norm

A
4] = max 1421
220 ||z

In optimization definiteness or semidefiniteness of the Hessian plays an important role in
the necessary and sufficient conditions for optimality that we discussin §1.3 and 1.4 and in our
choice of algorithms throughout this book.

DEerINITION 1.2.1. An N x N matrix A ispositive semidefiniteif 27 Az > 0 for all z € RVN.
A ispositive definite if 27 Az > 0 for all z € RN, 2 # 0. If A has both positive and negative
eigenvalues, we say A isindefinite. If A issymmetric and positive definite, we will say A isspd.

Wewill usetwo forms of the fundamental theorem of cal culus, onefor the function—gradient
pair and one for the gradient—Hessian.

THEOREM 1.2.1. Let f be twice continuously differentiable in a neighborhood of a line
segment between points z*, x = 2* 4+ e € RY; then

f(x) = f(z") +/0 Vf(z* +te)Tedt

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.
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BASIC CONCEPTS 5

and

1
Vf(x) =Vf(z") —|—/ V2f(z* 4 te)edt.

0

A direct consequence (see Exercise 1.7.1) of Theorem 1.2.1 isthefollowing form of Taylor’s
theorem we will use throughout this book.

THEOREM 1.2.2. Let f be twice continuously differentiable in a neighborhood of a point
x* € RN. Thenfor e € RN and ||e|| sufficiently small

(1.7) fa™+e) = fa") + V(@) e+ eV f(a)e/2+ of[le]®).

1.3 Necessary Conditions

Let f be twice continuoudly differentiable. We will use Taylor’s theorem in a simple way to
show that the gradient of f vanishesat alocal minimizer and the Hessian is positive semidefinite.
These are the necessary conditions for optimality.

The necessary conditions relate (1.1) to a nonlinear equation and allow one to use fast al-
gorithms for nonlinear equations [84], [154], [211] to compute minimizers. Therefore, the
necessary conditions for optimality will be used in acritical way in the discussion of local con-
vergence in Chapter 2. A critical first step in the design of an algorithm for a new optimization
problem is the formulation of necessary conditions. Of course, the gradient vanishes at a maxi-
mum, too, and the utility of the nonlinear equations formulation is restricted to a neighborhood
of aminimizer.

THEOREM 1.3.1. Let f be twice continuously differentiable and let z* be a local minimizer
of f. Then
Vi*) =0.

Moreover V2 f(z*) is positive semidefinite.

Proof. Let u € R be given. Taylor's theorem states that for all real ¢ sufficiently small
tQ
flx* +tu) = f(z*) +tV (") Tu+ 5uTV2f(ac*)u + o(t?).

Since z* isalocal minimizer we must havefor ¢ sufficiently small 0 < f(z* + tu) — f(2*) and
hence

) V(@) Tu+ %uTVQ F@yu+o(t) > 0

for all ¢ sufficiently small and all w € RY. Soif wesett = 0 andu = —V f(2*) we obtain
IV£(@")I* = 0.

Setting V f (z*) = 0, dividing by ¢, and setting ¢ = 0 in (1.8), we obtain

1
§UTV2f(JJ*)u >0

for al u € RY. This completesthe proof. [
The condition that V f(z*) = 0 is caled the first-order necessary condition and a point
satisfying that condition is called a stationary point or acritical point.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.
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1.4 Sufficient Conditions

A stationary point need not be a minimizer. For example, the function ¢(t) = —t* satisfies the
necessary conditionsat 0, which isamaximizer of ¢. To obtain aminimizer we must require that
the second derivative be nonnegative. This aloneis not sufficient (think of ¢(¢) = ¢*) and only
if the second derivative is strictly positive can we be completely certain. These are the sufficient
conditions for optimality.

THEOREM 1.4.1. Let f betwice continuously differentiablein a neighborhood of x*. Assume
that V f(x*) = 0 and that V2 f (2*) is positive definite. Then z* isalocal minimizer of f.

Proof. Let 0 # u € RY. For sufficiently small ¢+ we have
t2
fla* +tu) = fla) +tVf(a*) u+ guTVQf(af*)u +o(t?)

= 1)+ LtV o),

Hence, if A > 0 isthe smallest eigenvalue of V2 f(2*) we have
* _ * é 2 2
F@ +tu) = £@*) = Sl + o(t) > 0

for t sufficiently small. Hence x* isalocal minimizer. O

1.5 Quadratic Objective Functions

The simplest optimization problems are those with quadratic objective functions. Here
T 1 T
(2.9 flz)=—a b+ 2% Hz.

We may, without loss of generality, assumethat H is symmetric because

T
(1.10) 2T Hy =27 (H—;H) x

Quadratic functionsform the basisfor most of the algorithmsin Part |, which approximate an
objective function f by aquadratic model and minimize that model. In this section we discuss
some elementary issues in quadratic optimization.

Clearly,

Vif(x)=H
for al x. The symmetry of H implies that

Vf(x)=—-b+ Hzx.

DEFINITION 1.5.1. The quadratic function f in (1.9) isconvex if H is positive semidefinite.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.
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1.5.1 Positive Definite Hessian

The necessary conditionsfor optimality imply that if aquadratic function f hasalocal minimum
x*, then H is positive semidefinite and

(1.11) Hz* =b.

In particular, if H isspd (and hence nonsingular), the unique global minimizer is the solution of
the linear system (1.11).

If H isadense matrix and N isnot too large, it is reasonable to solve (1.11) by computing
the Cholesky factorization [249], [127] of H

H=1LL",

where L isanonsingular lower triangular matrix with positive diagonal, and then solving (1.11)
by two triangular solves. If H is indefinite the Cholesky factorization will not exist and the
standard implementation [127], [249], [264] will fail because the computation of the diagonal
of L will require areal square root of a negative number or a division by zero.

If N isvery large, H is sparse, or a matrix representation of H is not available, a more
efficient approach is the conjugate gradient iteration [154], [141]. Thisiteration requires only
matrix—vector products, a feature which we will use in a direct way in §52.5 and 3.3.7. Our
formulation of the algorithm uses x as both an input and output variable. On input 2 contains
T, theinitial iterate, and on output the approximate solution. We terminate the iteration if the
relative residua is sufficiently small, i.e.,

16— Hel| < e[b]
or if too many iterations have been taken.
ALGoriTHM 1.5.1. cg(x, b, H, ¢, kmax)
1 r=b—Hx,po=|r|*> k=1
2. DoWhile \/pr—1 > €||b]| and k < kmax

@ ifk=1thenp=r

else

B = pr-1/pr—2andp =1+ fp
(b) w=Hp
© a=pp1/p"w
dz=x+ap
e r=r—aw
® or=1rl?
(9) k=k+1

Note that if H is not spd, the denominator in o = pi_1/p’w may vanish, resulting in
breakdown of the iteration.

Theconjugategradient iteration minimizes f over anincreasing sequence of nested subspaces
of RN [127], [154]. We have that

flzg) < f(x) fordl z € xo + Ky,

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.
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8 ITERATIVE METHODS FOR OPTIMIZATION

where IC, isthe Krylov subspace
Ky = Span(TOa HTOa BERE) Hkilro)

fork > 1.

Whilein principle the iteration must converge after IV iterations and conjugate gradient can
be regarded asadirect solver, N is, in practice, far too many iterations for the large problemsto
which conjugate gradient is applied. As an iterative method, the performance of the conjugate
gradient algorithm depends both on b and on the spectrum of H (see [154] and the references
cited therein). A general convergence estimate [68], [60], which will suffice for the discussion

here, is
k
k(H)—1
1.12 e — 2 g < 2||lxg —z* S
(1.12) e — 2"l < 2o ||H[ o

In (1.12), the H-norm of avector is defined by
lullFy = u" Hu
for an spd matrix H. x(H) isthe [ condition number
w(H) = | H|[[H.

For spd H
w(H) = N7,

where \; and A, are the largest and smallest eigenvalues of H. Geometrically, x(H) islarge if
the ellipsoidal level surfaces of f are very far from spherical.

The conjugate gradient iteration will perform well if x(H) isnear 1 and may perform very
poorly if x(H) islarge. The performance can beimproved by preconditioning, which transforms
(1.11) into one with a coefficient matrix having eigenvalues near 1. Supposethat M is spd and
asufficiently good approximation to H ! so that

H(Ml/2HM1/2)

ismuch smaller that x(H). Inthat case, (1.12) would indicate that far fewer conjugate gradient
iterations might be needed to solve

(1.13) MYV2HMY?2 = MY/?p

than to solve (1.11). Moreover, the solution z* of (1.11) could be recovered from the solution
z* of (1.13) by
(1.14) = MYz

In practice, the square root of the preconditioning matrix A/ need not be computed. The algo-
rithm, using the same conventions that we used for cg, is

ArGoriTeM 1.5.2. pcg(z, b, H, M, €, kmazx)

1L r=b—Hz,po=|r|* k=1

2. DoWhile \/pr—1 > €|[b|| and k < kmax
@ z=Mr

(b) 71 =2Tr
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(o ifk=1theng=0andp ==z

else

B=Tk—1/Tk—2,0 =2+ Bp
(d) w=Hp
© a=rm_1/pTw
rx=x+ap
(@ r=r—aw
() pr=rTr
i kE=k+1

Notethat only products of M with vectorsin RV are needed and that amatrix representation
of M need not be stored. We refer the reader to [11], [15], [127], and [154] for more discussion
of preconditioners and their construction.

1.5.2 Indefinite Hessian

If H isindefinite, the necessary conditions, Theorem 1.3.1, imply that there will be no local
minimum. Even so, it will be important to understand some properties of quadratic problems
withindefinite Hessianswhen wedesign algorithmswithinitial iteratesfar fromlocal minimizers
and we discuss some of the issues here.
If
wI'Hu < 0,

we say that v isadirection of negative curvature. If « isadirection of negative curvature, then
f(x + tu) will decreaseto —oco ast — oo.

1.6 Examples

It will be useful to have some example problems to solve as we develop the algorithms. The
examples here are included to encourage the reader to experiment with the algorithms and play
with the MATLAB codes. The codes for the problems themselves are included with the set of
MATLAB codes. The author of this book does not encourage the reader to regard the examples
as anything more than examples. In particular, they are not real -world problems, and should not
be used as an exhaustive test suite for a code. While there are documented collections of test
problems (for example, [10] and[26]), thereader should always eval uate and comparea gorithms
in the context of higher own problems.

Some of the problems are directly related to applications. When that is the case we will cite
some of therelevant literature. Other examples are included because they are small, simple, and
illustrate important effects that can be hidden by the complexity of more serious problems.

1.6.1 Discrete Optimal Control

Thisisaclassic example of aproblem inwhich gradient evaluations cost little more than function
evaluations.

We begin with the continuous optimal control problems and discuss how gradients are com-
puted and then move to the discretizations. We will not dwell on the functional analytic issues
surrounding the rigorous definition of gradients of maps on function spaces, but thereader should
be aware that control problems require careful attention to this. The most important results can
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10 ITERATIVE METHODS FOR OPTIMIZATION

befoundin[151]. Thefunction space setting for the particular control problemsof interest inthis
section can be found in [170], [158], and [159], as can adiscussion of more general problems.
Theinfinite-dimensional problemis

(1.15) muin /s

where .

(116) f(w) = / L(y(t), u(t), 1) dt,
0

and we seek an optimal point w € L°°[0,T]. w is caled the control variable or simply the
control. The function L is given and y, the state variable, satisfies the initial value problem
(with g = dy/dt)

(1.17) y(t) = o(y(t), u(t), t),y(0) = yo.

One could view the problem (1.15)—1.17) as a constrained optimization problem or, aswe
do here, think of the evaluation of f asrequiring the solution of (1.17) before theintegral on the
right side of (1.16) can be evaluated. This means that evaluation of f requires the solution of
(1.17), which is called the state equation.

V f(u), the gradient of f at u with respect to the L? inner product, is uniquely determined,

if it exists, by
(L18) Fu+w) — f(w) - / (V£ (w) (E)w(t) dt = of Ju])
as||w|| — 0, uniformly inw. If V f(u) existsthen
o N (Bl d — Pt Ew)
/0 v = L

If L and ¢ are continuoudly differentiable, then V f (u), asafunction of ¢, is given by

(1.19) VIw)(t) = p)du(y(t), u(t), ) + Lu(y(t), u(t), t).

In (1.19) p, the adjoint variable, satisfies the final-value problem on [0, T']

(1.20) _p(t) = p(t)(by (y(t)7 u(t)v t) + Ly (y(t)v u(t)’ t),p(T) = 0.

So computing the gradient requires « and y, hence a solution of the state equation, and p, which
requires a solution of (1.20), afinal-value problem for the adjoint equation. In the general case,
(1.17) is nonlinear, but (1.20) is alinear problem for p, which should be expected to be easier
to solve. Thisisthe motivation for our claim that a gradient evaluation costs little more than a
function evaluation.

The discrete problems of interest here are constructed by solving (1.17) by numerical in-
tegration. After doing that, one can derive an adjoint variable and compute gradients using a
discrete form of (1.19). However, in [139] the equation for the adjoint variable of the discrete
problem is usually not a discretization of (1.20). For the forward Euler method, however, the
discretization of the adjoint equation is the adjoint equation for the discrete problem and we use
that discretization here for that reason.

Thefully discrete problem is min,, f, whereu € RY and
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and the states {z; } are given by the Euler recursion

Yji+1 =Yy +h¢((y>J7(u)J7]) forj = 07"'7N7 17

whereh =T /(N — 1) and z isgiven. Then
(Vf(w); = (P)idu((y)is ()5, 5) + Lu((y);, (W), ),

where (p) y = 0 and
(P)j—1 = (9); + h(<p>j¢y<<y>j7 (W);24) + Ly(v);, <u>j,j>) forj=N,....L

1.6.2 Parameter Identification

This example, taken from [13], will appear throughout the book. The problem is small with
N = 2. The god is to identify the damping ¢ and spring constant & of a linear spring by
minimizing the difference of a numerical prediction and measured data. The experimental
scenario is that the spring-mass system will be set into motion by an initial displacement from
equilibrium and measurements of displacements will be taken at equally spaced incrementsin
time.

The mation of an unforced harmonic oscillator satisfiesthe initial value problem

(1.21) v’ + cu’ + ku = 0;u(0) = ug, u’(0) = 0,

ontheinterva [0, T]. Welet z = (c, k)T be the vector of unknown parameters and, when the
dependence on the parameters needs to be explicit, we will write u(t : x) instead of u(t) for the

solution of (1.21). If the displacement is sampled at {¢;}}2,, wheret; = (j — 1)T/(M — 1),

and the observations for v are {u;} jle , then the objective function is
1 M
(122) Fla) =5 D lulty =) — .
j=1

Thisis an example of anonlinear least squares problem.
u is differentiable with respect to z when ¢ — 4k = 0. In that case, the gradient of f is

(Tl < ) — )
(29 VI = ( ZjM:1 Qullat) (u(ty @) —uy) |

We can compute the derivatives of w(¢ : x) with respect to the parameters by solving the
sensitivity equations. Differentiating (1.21) with respect to ¢ and & and setting w; = du/dc and
wq = Ou/0k we obtain

wi + v + cw] 4+ kwy = 0; w1 (0) = wi(0) =0,
(1.24)
wy + cwh + u + kwy = 0; w2(0) = whH(0) = 0.

If cislarge, theinitia valueproblems(1.21) and (1.24) will be stiff and one should use agood
variable step stiff integrator. We refer the reader to [110], [8], [235] for details on thisissue. In
the numerical examplesin this book we used the MATLAB codeode15s from[236]. Stiffness
can also arise in the optimal control problem from §1.6.1 but does not in the specific examples
we useinthisbook. We caution the reader that when one uses an ODE code the results may only
be expected to be accurate to the tolerances input to the code. This limitation on the accuracy
must be taken into account, for example, when approximating the Hessian by differences.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.



Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

12 ITERATIVE METHODS FOR OPTIMIZATION

1.6.3 Convex Quadratics

While convex quadratic problems are, in a sense, the easiest of optimization problems, they
present surprising challenges to the sampling algorithms presented in Part 11 and can illustrate
fundamental problemswith classical gradient-based methods like the steepest descent algorithm
from §3.1. Our exampleswill all take N = 2, b = 0, and

As O
H= < 0 A >
where 0 < A, < A;. Thefunction to be minimizedis
flz) = 2T Hzx

and the minimizer isz* = (0,0)7.
As \;/)\s becomes large, the level curves of f become elongated. When A\, = \; = 1,
min, f isthe easiest problem in optimization.

1.7 Exercises on Basic Concepts

1.7.1. Prove Theorem 1.2.2.

1.7.2. Consider the parameter identification problemfor z = (c, k,w, ¢)T € R* associated with
theinitial value problem

v’ + cu’ + ku = sin(wt + ¢); u(0) = 10,4(0) = 0.

For what values of x isu differentiable? Derive the sensitivity equations for those values
of z for which v is differentiable.

1.7.3. Solve the system of sensitivity equations from exercise 1.7.2 numericaly for ¢ = 10,
k=1,w =m, and ¢ = 0 using the integrator of your choice. What happensif you use a
nonstiff integrator?

174. Let N =2,d = (1,1)T, and let f(z) = 2¥d + 27x. Compute, by hand, the minimizer
using conjugate gradient iteration.

1.7.5. For thesame f asin exercise 1.7.4 solve the constrained optimization problem

min f(z),

where U isthe circle centered at (0,0)7 of radius 1/3. You can solve this by inspection;
no computer and very little mathematics is needed.
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Chapter 2

Local Convergence of Newton’s
Method

By alocal convergence method we mean one that requires that theinitial iterate xq iscloseto a
local minimizer * at which the sufficient conditions hold.

2.1 Types of Convergence

We begin with the standard taxonomy of convergence rates [84], [154], [211].
DEFINITION 2.1.1. Let {z,,} C RY andz* € RY. Then
e 1, — x* g-quadraticaly if z,, — a* and thereis K > 0 such that

|zns1 — 2| < Kllzn — 27|,

e z, — x* g-superlinearly with g-order o > 1 if z,, — z* and thereis K’ > 0 such that
[Zn+1 — 2| < K@, — 2|
e 1, — x* g-superlinearly if

lim JZntr =] — I_y,
n—oo |z — x|
e 1, — z* g-linearly with g-factor o € (0, 1) if

[€nt1 — 27| < ollen — 27|

for n sufficiently large.

DEerINITION 2.1.2. Aniterativemethod for computing =* issaidtobelocally (g-quadratically,
g-superlinearly, g-linearly, etc.) convergent if the iterates converge to x* (g-quadratically, g-
superlinearly, g-linearly, etc.) given that the initial data for the iteration is sufficiently good.

We remind the reader that a g-superlinearly convergent sequence is also g-linearly conver-
gent with g-factor o for any o > 0. A g-quadratically convergent sequence is g-superlinearly
convergent with g-order of 2.

13
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14 ITERATIVE METHODS FOR OPTIMIZATION

In some cases the accuracy of the iteration can be improved by means that are external
to the algorithm, say, by evaluation of the objective function and its gradient with increasing
accuracy as the iteration progresses. In such cases, one has no guarantee that the accuracy of
theiteration ismonotonically increasing but only that the accuracy of the resultsisimproving at
arate determined by the improving accuracy in the function—gradient evaluations. The concept
of r-type convergence captures this effect.

DeFINITION 2.1.3. Let {z,,} C RY and z* € RY. Then {z,,} convergesto x* r-( quadrat-
ically, superlinearly, linearly) if there is a sequence {¢,,} C R converging g-(quadratically,
superlinearly, linearly) to 0 such that

H:Cn - :C*” < gnn

We say that {«,,} converges r-superlinearly with r-order o > 1 if &, — 0 g-superlinearly with
g-order a.

2.2 The Standard Assumptions

We will assume that local minimizers satisfy the standard assumptions which, like the standard
assumptions for nonlinear equations in [154], will guarantee that Newton’s method converges
g-quadratically to z*. We will assume throughout this book that f and z* satisfy Assumption
221

ASSUMPTION 2.2.1.

1. fistwice differentiable and
(21 IV2f(x) = V2 f ()]l < vllz —yll.

2. Vf(z*) =0.

3. V2f(z*) is positive definite.

Wesometimessay that f istwiceLipschitzcontinuously differentiablewith Lipschitz constant
~ to mean that part 1 of the standard assumptions holds.

If the standard assumptions hold then Theorem 1.4.1 implies that =* is a local minimizer
of f. Moreover, the standard assumptions for nonlinear equations [154] hold for the system
V f(z) = 0. Thismeansthat al of theloca convergence results for nonlinear equations can be
applied to unconstrained optimization problems. In this chapter wewill quote those resultsfrom
nonlinear equations as they apply to unconstrained optimization. However, these statements
must be understood in the context of optimization. We will use, for example, the fact that the
Hessian (the Jacobian of V f) is positive definite at * in our solution of the linear equation for
the Newton step. We will aso use thisin our interpretation of the Newton iteration.

2.3 Newton’s Method

Asin [154] we will define iterative methodsin terms of the transition from a current iteration z.
to anew one x, . Inthe case of a system of nonlinear equations, for example, =, isthe root of
the local linear model of F' about z..

M.(z) = F(z.) + F'(z.)(z — z.).
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Solving M, (x4 ) = 0 leads to the standard formula for the Newton iteration
(22) Ty = Te — F/(xc)_lF(xc)'

One could say that Newton’s method for unconstrained optimization is simply the method
for nonlinear equations applied to V f () = 0. While thisis technically correct if z. isnear a
minimizer, it is utterly wrong if x. is near a maximum. A more precise way of expressing the
ideaisto say that = isaminimizer of the local quadratic model of f about x...

1
me(x) = f(ze) + Vf(xc)T(.Z‘ — ) + §(I - IC)TVQf('TC)(x — ).
If V2 f(z.) ispositive definite, then the minimizer 2, of m,. istheuniquesolution of Vim,.(z) =
0. Hence,
0=Vme(ry) = Vf(ze) + V2f(2e) (2 — 20).
Therefore,
(233) Ty =Te — (VZf(a:C))71Vf(xc),

whichisthesameas(2.2) with F replaced by V f and F’ by V2 f. Of course, 2, isnot computed
by forming an inverse matrix. Rather, given z., V f(z.) is computed and the linear equation

(2.4 VQf(mc)S = _Vf(xc)

is solved for the step s. Then (2.3) simply saysthat . = z. + s.

However, if u,. isfar from aminimizer, V2 f(u.) could have negative eigenvalues and the
quadratic model will not have local minimizers (see exercise 2.7.4), and M., the local linear
model of V f about w., could have roots which correspond to local maxima or saddle points
of m.. Hence, we must take care when far from a minimizer in making a correspondence
between Newton's method for minimization and Newton’'s method for nonlinear equations. In
this chapter, however, we will assume that we are sufficiently near alocal minimizer for the
standard assumptions for local optimality to imply those for nonlinear equations (as applied to
V f). Most of the proofsin this chapter are very similar to the corresponding results, [154], for
nonlinear equations. We include them in the interest of completeness.

We begin with alemma from [154], which we state without proof.

LemMma 2.3.1. Assume that the standard assumptions hold. Then thereisé > 0 so that for

al z € B(9)

(2.5) IV2f(2)]] < 2| V2 f (=),

(2.6) (V2 F (@)~ < 2(V2 ()7,

and

(2.7) I(V2F ()M Hell/2 < IV f ()] < 2V f(@)l]le]l-

Asafirst example, we prove the local convergence for Newton's method.

THEOREM 2.3.2. Let the standard assumptions hold. Then thereare K > 0 and § > 0 such
that if . € B(8), the Newton iterate from z.. given by (2.3) satisfies

(2.8) e+l < Kllec]*.
Proof. Let 6 besmall enough so that the conclusionsof LemmaZ2.3.1 hold. By Theorem 1.2.1
1
€4 = €Cc — v2f(xc)71vf($c) = (VQJC(5UC))71/ (VQJC(J'C) - VQf(a:* +tec))e dt.
0
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By Lemma 2.3.1 and the Lipschitz continuity of V2 f,

lle Il < NIV @) " DY lleel? /2.

This completes the proof of (2.8) with K = ~||(V2f(x*))"!|. O
As in the nonlinear equations setting, Theorem 2.3.2 implies that the complete iteration is
locally quadratically convergent.

THEOREM 2.3.3. Let the standard assumptions hold. Then there is 6 > 0 such that if
xo € B(6), the Nenton iteration

Tn+l = Tp — (VQf(xn))ilvf(x")
converges g-quadratically to x*.

Proof. Let 6 be small enough so that the conclusions of Theorem 2.3.2 hold. Reduce ¢ if
needed sothat K6 = n < 1. Thenif n > 0 and x,, € B(6), Theorem 2.3.2 implies that

(2.9) lensill < Klleal® < nlleal < flea

andhencex,, 1 € B(nd) C B(6). Therefore, if =, € B(6) wemay continuetheiteration. Since
xo € B(8) by assumption, the entire sequence {x,,} C B(8). (2.9) then impliesthat =, — z*
g-quadratically. O

Newton’'s method, from the local convergence point of view, is exactly the same as that
for nonlinear equations applied to the problem of finding aroot of V f. We exploit the extra
structure of positive definiteness of V2 f with an implementation of Newton’s method based on
the Cholesky factorization [127], [249], [264]

(2.10) V2f(u) = LL",

where L islower triangular and has a positive diagonal .
We terminate the iteration when V f is sufficiently small (see [154]). A natura criterion is
to demand arelative decrease in ||V f|| and terminate when

(211) IVf(@n)ll < 7V £ (o),

where 7. € (0,1) isthe desired reduction in the gradient norm. However, if ||V f(xo)]|| is very
small, it may not be possible to satisfy (2.11) in floating point arithmetic and an algorithm based
entirely on (2.11) might never terminate. A standard remedy is to augment the relative error
criterion and terminate the iteration using a combination of relative and absolute measures of
Vf,i.e,when

(2.12) IV f(@a)ll < 71V £ (20) || + Ta-

In (2.12) 7, isan absolute error tolerance. Hence, the termination criterion input to many of the
algorithms presented in this book will be in the form of avector 7 = (7., 7,) of relative and
absolute residuals.

ALGORITHM 2.3.1. newt on(z, f,7)
Loro=|[Vf()]
2. Dowhile ||V f(x)|| > Tr70 + Ta

(@ Compute V2 f(x)
(b) Factor V2f(x) = LLT
(©) Solve LLTs = -V f(x)
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d)z=x2+s
(e) Compute V f(zx).

Algorithm newt on, as formulated above, is not completely satisfactory. The value of the
objectivefunction f isnever used and step 2b will fail if V2 f isnot positive definite. Thisfailure,
in fact, could serve as a signal that one istoo far from a minimizer for Newton’s method to be
directly applicable. However, if we are near enough (see Exercise 2.7.8) to alocal minimizer,
as we assume in this chapter, all will be well and we may apply all the results from nonlinear
equations.

2.3.1 Errors in Functions, Gradients, and Hessians

In the presence of errors in functions and gradients, however, the problem of unconstrained
optimization becomes more difficult than that of root finding. We discuss this difference only
briefly here and for the remainder of this chapter assume that gradients are computed exactly, or
at least as accurately as f, say, either analytically or with automatic differentiation [129], [130].
However, we must carefully study the effects of errorsin the evaluation of the Hessian just as
we did those of errorsin the Jacobian in [154].

A significant differencefrom the nonlinear equationscase arisesif only functionsareavailable
and gradients and Hessians must be computed with differences. A simple one-dimensional
analysis will suffice to explain this. Assume that we can only compute f approximately. If we
compute f = f+e¢ ¢ rather than f, then aforward difference gradient with difference increment

h . .
+h) —
Duste) = K= 1)
differsfrom f' by O(h+ey/h) andthiserrorisminimizedif h = O(,/€5). Inthat casetheerror
inthegradientise, = O(h) = O(,/¢y). If aforward difference Hessian is computed using Dy,
as an approximation to the gradient, then the error in the Hessian will be

2.13) A =0(/g) = O/

and the accuracy in V2 f will be much less than that of a Jacobian in the nonlinear equations
case.

If €7 is significantly larger than machine roundoff, (2.13) indicates that using numerical
Hessians based on a second numerical differentiation of the objective function will not be very
accurate. Even in the best possible case, where ¢ is the same size as machine roundoff, finite
difference Hessianswill not bevery accurateand will bevery expensiveto computeif theHessian
isdense. If, as on most computers today, machine roundoff is (roughly) 1016, (2.13) indicates
that aforward difference Hessian will be accurate to roughly four decimal digits.

One can obtain better results with centered differences, but at a cost of twice the number of
function evaluations. A centered difference approximationto V f is

flx+h) = flz—h)

Dyf(z) = o

and the error is O(h? + ¢;/h), which is minimized if h = O(e}/*) leading to an error in the
gradient of ¢, = O(c}'®). Therefore, acentral difference Hessian will have an error of

A =0((e)*?) = O(e}),

which is substantially better. We will find that accurate gradients are much more important than
accurate Hessians and one option is to compute gradients with central differences and Hessians
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with forward differences. If one does that the centered difference gradient error is O(efc/ %) and
therefore the forward difference Hessian error will be

A=0(yg) =0

More elaborate schemes [22] compute a difference gradient and then reuse the function evalua-
tionsin the Hessian computation.

In many optimization problems, however, accurate gradients are available. When that is the
case, numerical differentiation to compute Hessiansis, like numerical computation of Jacobians
for nonlinear equations [154], a reasonable idea for many problems and the less expensive
forward differences work well.

Clever implementations of difference computation can exploit sparsity in the Hessian [67],
[59] to evaluate a forward difference approximation with far fewer than N evaluations of V f.
In the sparse case it is also possible [22], [23] to reuse the points from a centered difference
approximeation to the gradient to create a second-order accurate Hessian.

Unless ¢,(z,) — 0 as the iteration progresses, one cannot expect convergence. For this
reason estimateslike (2.14) are sometimes called local improvement [88] results. Theorem 2.3.4
isatypical example.

THEOREM 2.3.4. Let the standard assumptions hold. Then thereare K > 0, § > 0, and
61 > O suchthat if x. € B(6) and ||A(z.)|| < 61 then

vy = e — (V2 f(@e) + Aze) " (V[ () + €g ()
is defined (i.e., V2 f(x.) + A(z.) isnonsingular) and satisfies

(2.14) le < K(llecl® + 1Az llec]| + lleg(we))-

Proof. Let 6 be small enough so that the conclusions of Lemma 2.3.1 and Theorem 2.3.2
hold. Let

ol =z — (V2 f(2e) 'V ()
and note that
vy =2 +((V2f(2e) ™ = (VA (o) + Alze)) ")V (ze) = (V2 f () + Alwe)) ™ egae).
Lemma 2.3.1 and Theorem 2.3.2 imply

et < Kllee|? +2(V2f(xe)) ™" = (V2 f(2e) + Awe)) THIIVZF (@) l]lecl]
(2.15)
HI(VZ f(xe) + Alze)) Hllleg(ze) -

1Al < (V2 f (@)~ 7H/4,
then Lemma 2.3.1 implies that

1A < (V2 f ()7 /2
and the Banach Lemma[12], [154] statesthat V2 f(x.) + A(x.) isnonsingular and
(V2 () + Aze) M < 20[(V2F () HE < 41V () 7M.
Hence,

(V2 f (@)™ = (V2 f(e) + Alze)) M < 8II(V2f (@) TP A@)-
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We use these estimates and (2.15) to obtain
lexll < Kllec* +16[(V2 £ () THIPIV2F (@) I Ae) el + 41 (V2 f (7)) lleg(ze) -
Setting B
K = K +16](V2f (") PNV F (@) + 41 (V2 f () 71|

completesthe proof. O

Asisthe case with equations, (2.14) implies that one cannot hope to find a minimizer with
more accuracy that one can evaluate V f. In most cases the iteration will stagnate once ||¢| is
(roughly) the same size ase,. The speed of convergence will be governed by the accuracy in the
Hessian.

The result for the chord method illustrates this latter point. In the chord method we form
and compute the Cholesky factorization of V2 f(x() and use that factorization to compute all
subsequent Newton steps. Hence,

oy = — (V2 (20) "'V f(2e)

and
(2.16) Az < llwo — x|l < y(lleoll + [lecl])-

Algorithmically the chord iteration differsfrom the Newton iteration only in that the computation
and factorization of the Hessian is moved outside of the main loop.

ArLcoriTeM 2.3.2. chor d(z, f,7)
L oro=|[Vf()]
2. Compute V2 f(x)
3. Factor V2f(z) = LLT
4. Do while ||V f(z)|| > 7770 + T4
(@ Solve LLTs = -~V f(x)
by z=x+s
(c) Compute V f(z).
The convergence theory follows from Theorem 2.3.4 with e, = 0 and A = O(||eo ).

THEOREM 2.3.5. Let the standard assumptions hold. Then thereare Ko > 0and 6 > 0
such that if zyp € B(6) the chord iterates converge g-linearly to «* and

(2.17) lent1ll < Kelleollllen-

Proof. Let 6 be small enough so that the conclusions of Theorem 2.3.4 hold. Assume that
en,eo € B(6). Combining (2.16) and (2.14) implies

len+1ll < K(llenll(X +7) +lleolDllenl] < K (1 +27)8]enll.
Hence, if 6 issmall enough so that

K(l+2y)6=n<1,

thenthe chord iterates convergeg-linearly to z*. Q-linear convergenceimpliesthat ||e,, || < |eol|
and hence (2.17) holds with K = K(1 + 2v). O
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The Shamanskii method [233], [154], [211] is a generdization of the chord method that
updates Hessians after every m + 1 nonlinear iterations. Newton's method corresponds to
m = 1 and the chord method to m = oo. The convergence result is a direct consequence of
Theorems 2.3.3 and 2.3.5.

THEOREM 2.3.6. Let the standard assumptions hold and let m > 1 be given. Then there are
Kg > 0andé > 0suchthatif zy € B(6) the Shamanskii iterates converge g-superlinearly to
«* with g-order m and
(218) lens1ll < Ksllea||™ 1

Asone more application of Theorem 2.3.4, we analyze the effects of adifference approxima
tion of the Hessian. We follow the notation of [154] where possible. For example, to construct
a Hessian matrix, whose columns are V2 f(z)e;, where e; is the unit vector with jth compo-
nent 1 and other components 0, we could approximate the matrix—vector products V2 f(z)e; by
forward differences and then symmetrize the resulting matrix. We define

(2.19) Vi (@) = (An + AR)/2,
where A}, isthe matrix whose jth columnis D f(z : e;). Dj f(x : w), the difference approxi-
mation of the action of the Hessian V2 f () on a vector w, is defined to be the quotient

0, w =0,

(2.20) Dif(@:w) = v @+ hw/|w]) - V()

h/ljwl] ’

w # 0.
Note that we may also write
D3 f(z:w) = Dp(VF)(z:w),

wherethenotation Dy, taken from[154], denotesnumerical directional derivative. If ||z|| isvery
large, then the error in computing the sum z + hw/||w|| will have to be taken into consideration
in the choice of h.

We warn the reader, as we did in [154], that D?f(z : w) is not a linear map and that
D?f(x : w)isnot, in general, the same as V2 f(x)w.

If we compute V f (x) + ¢, () and the gradient errors satisfy an estimate of the form

leg(2)]| <€
for al x, then the computed difference Hessianis V,(V f + ¢4) and satisfies
(2.21) IV2f(z) — Vi(Vf +e)(@)]| = O(h + €/h).

So, asin [154], the choice h = +/€ is optimal in the sense that it minimizes the quantity in the
O-termin (2.21).
Thelocal convergence theorem in this caseis[88], [154], [278], asfollows.

THEOREM 2.3.7. Let the standard assumptions hold. Then there are 6, €, and Kp > 0 such
that if z. € B(9), |leg(x)|| < & for all z € B(6), and
h > My/leg(zc)]|

then
vy = e — (Vi (Vf(xe) +eg(2) T V() +eg(2))
satisfies
e+ |l < Kp(& + (€ + h)llecl)).
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2.3.2 Termination of the Iteration

It is not safe to terminate the iteration when f(z.) — f(x) is smal, and no conclusions can
safely be drawn by examination of the differences of the objective function values at successive
iterations. While some of the algorithms for difficult problemsin Part 11 of this book do indeed
terminate when successive function values are closg, thisis an act of desperation. For example,

if
f(SCn) = _Zj_17
j=1

then f(z,) — —oobut f(x,41) — f(xn) = —1/(n+ 1) — 0. The reader has been warned.

If the standard assumptions hold, then one may terminate the iteration when the norm of V f
is sufficiently small relativeto V f () (see[154]). We will summarize the key points here and
refer the reader to [154] for the details. Theideaisthat if V2 f(z*) iswell conditioned, then a
small gradient norm impliesasmall error norm. Hence, for any gradient-based iterative method,
termination on small gradientsis reasonable. In the special case of Newton’s method, the norm
of the step isavery good indicator of the error and if oneiswilling to incur the added cost of an
extraiteration, avery sharp bound on the error can be obtained, as we will see below.

LemMma 2.3.8. Assume that the standard assumptions hold. Let 6 > 0 be small enough so
that the conclusions of Lemma 2.3.1 hold for = € B(6). Then for all - € B(6)

lell o IVF@)I _ 4s(V2f())llell

The meaning of (2.22) is that, up to a constant multiplier, the norm of the relative gradient
is the same as the norm of the relative error. This partially motivates the termination condition
(2.12).

In the special case of Newton’s method, one can use the steplength as an accurate estimate
of the error because Theorem 2.3.2 implies that

(223) llecll = llsll + O(llec|®).

Hence, near the solution s and e, are essentially the same size. The cost of using (2.23) is that
all the information needed to compute =, = x. + s has been computed. If we terminate the
iteration when || s|| is smaller than our desired tolerance and then take z, asthe final result, we
have attained more accuracy than we asked for. One possibility isto terminate theiteration when
|ls]| = O(\/75) for some 7, > 0. This, together with (2.23), will imply that |e.|| = O(\/75)
and hence, using Theorem 2.3.2, that

(2.24) le+|l = O(llec?) = O(rs).

For a superlinearly convergent method, termination on small stepsis equaly valid but one
cannot use (2.24). For a superlinearly convergent method we have

(2.29) llecll = llsll + o(llec]l) and [le+[| = o(]ec[])-

Hence, we can conclude that ||e4 || < 75 if ||s|| < 7. Thisis aweaker, but still very useful,
result.

For ag-linearly convergent method, such asthe chord method, making termination decisions
based on the norms of the stepsis much riskier. The relative error in estimating ||e.|| by ||s|| is

leell = lIslll  llee +sll _ [l

llecll = lleell el
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Hence, estimation of errorsby stepsisworthwhile only if convergenceisfast. One can go further
[156] if one has an estimate p of the g-factor that satisfies

e+l < pllecl|-
In that case,
(L= p)llecll < [lecll = [le+]l < llec — el = [|s]-
Hence P
(2.26) el < pliecll < T lsl|

So, if the g-factor can be estimated from above by p and

sl < (1= p)7s/p,

then |le4|| < 7. This approach is used in ODE and DAE codes [32], [234], [228], [213],
but requires good estimates of the g-factor and we do not advocate it for g-linearly convergent
methodsfor optimization. Thedanger isthat if the convergenceis sl ow, the approximate g-factor
can be a gross underestimate and cause premature termination of the iteration.

It isnot uncommon for evaluations of f and V f to be very expensive and optimizations are,
therefore, usualy allocated a fixed maximum number of iterations. Some agorithms, such as
the DIRECT, [150], algorithm we discuss in §8.4.2, assign a limit to the number of function
evaluations and terminate the iteration in only this way.

2.4 Nonlinear Least Squares

Nonlinear least squares problems have objective functions of the form

M
1 1
(2.27) @)= 53 @) = S R@)" R().
=1
Thevector R = (ry,...,7r)) iscaled the residual. These problems arise in data fitting, for

example. In that case M is the number of observations and NV is the number of parameters;
for these problems A/ > N and we say the problem is overdetermined. If M = N we have a
nonlinear equation and thetheory and methodsfrom [154] areapplicable. If M < N theproblem
is underdetermined. Overdetermined least squares problems arise most often in data fitting
applications like the parameter identification examplein §1.6.2. Underdetermined problems are
less common, but are, for example, important in the solution of high-index differential algebraic
equations [48], [50].

The local convergence theory for underdetermined problems has the additional complexity
that the limit of the Gauss—Newton iteration is not uniquely determined by the distance of the
initial iterate to the set of points where R(z*) = 0. In §2.4.3 we describe the difficulties and
state a simple convergence resullt.

If z* isalocal minimizer of f and f(«*) = 0, the problem min f is called a zero residual
problem (a remarkable and suspicious event in the data fitting scenario). If f(z*) is small, the
expected result in datafitting if the model (i.e., R) isgood, the problemiscalled asmall residual
problem. Otherwise one has alarge residual problem.

Nonlinear least squares problems are an i ntermedi ate stage between nonlinear equations and
optimization problems and the methods for their solution reflect this. We define the M x N
Jacobian R’ of R by

(2.28) (R'(x))ij = Ori/0x;, 1 <i < M, 1<j <N.
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With this notation it is easy to show that

(2.29) Vf(z) = R'(x)"R(z) € RV.

The necessary conditions for optimality imply that at a minimizer z*
(2.30) R (z)TR(z*) = 0.

In the underdetermined case, if R'(x*) hasfull row rank, (2.30) impliesthat R(z*) = 0; thisis
not the case for overdetermined problems.

The cost of a gradient is roughly that of a Jacobian evaluation, which, as is the case with
nonlinear equations, isthe most oneiswilling to accept. Computation of theHessian (an N x N
matrix)

(2.31) V2f(z) = R (z)T R (x Z ()T V27 (z)
requires computation of the M Hessians {V2r;} for the second-order term

M

ijlm(x)Tvzri(x)

and istoo costly to be practical.
We will aso express the second-order term as

M

Y @) V() = R (@) Ra).

where the second derivative R” is atensor. The notation is to be interpreted in the following
way. Forv € RM, R"(z)Tvisthe N x N matrix

M

R’ (z)"v = V*(R(z)"v) = Zizl(v)iv2ri(x).

We will use the tensor notation when expanding R about z* in some of the analysis to follow.

2.4.1 Gauss—Newton lteration

The Gauss-Newton algorithm simply discards the second-order term in V2 f and computes a
step
s = —(R'(z)" R (2)) 'V f(e)
(2.32)
= _(R/(mc)TR/(xC))_1R/($C)TR($C)~

The Gauss-Newtoniterateisz, = x.+s. Onemotivation for thisapproachisthat R (x)” R(x)
vanishesfor zeroresidual problemsand therefore might be negligiblefor small residual problems.

Implicit in (2.32) is the assumption that R’ (x.)” R'(x.) is nonsingular, which implies that
M > N. Another interpretation, which also covers underdetermined problems, isto say that the
Gauss—Newton iterate is the minimum norm solution of the local linear model of our nonlinear
least squares problem

(2.33) min 2| Rlre) + R (a)(w — x|

Using (2.33) and linear least squares methods is a more accurate way to compute the step than
using (2.32), [115], [116], [127]. In the underdetermined case, the Gauss-Newton step can
be computed with the singular value decomposition [49], [127], [249]. (2.33) is an overde-
termined, square, or underdetermined linear least squares problem if the nonlinear problem is
overdetermined, square, or underdetermined.
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The standard assumptions for nonlinear least squares problems follow in Assumption 2.4.1.

AssuMPTION 2.4.1. x* isa minimizer of | R||3, R is Lipschitz continuously differentiable
near z*, and R (z*)T R'(z*) has maximal rank. The rank assumption may also be stated as

o R'(x*)is nonsingular (M = N),
e R'(x*) has full column rank (M > N),

e R'(z*) has full row rank (M < N).

2.4.2 Overdetermined Problems

THEOREM 2.4.1. Let M > N. Let Assumption 2.4.1 hold. Then thereare K > 0and 6 > 0
such that if 2z, € B(6) then the error in the Gauss-Newton iteration satisfies

(2.34) le < K (llecl® + 1R [lec])-

Proof. Let § besmall enough sothat ||z —z*|| < & impliesthat R/ (x)” R'(z) isnonsingular.
Let ~ be the Lipschitz constant for R'.

By (2.32)
er =ec— (R'(x) R (z.)) "' R (z)" R(x,)
(2.35)
= (R'(2c) R (2)) T R ()T (R (zc)ee — R(xe))-
Note that

R'(z.)e. — R(z.) = R'(zc)e. — R(z*) + R(z*) — R(z.)
= —R(z*) + (R (xzc)ec + R(xz*) — R(x.)).

Now,
IR (xc)ec + R(x*) = R(ze)|| < llec]* /2

and, since R'(z*)T R(z*) = 0,

—R'(z)"R(z*) = (R'(z*) — R'(z))" R(x").

Hence,
lexll < (R (ze) TR () HII[(R (2*) — R (2c)) T R(z*)||
R @) R @) IR (@) e
(2.36) 5
x* (e )T |le
<R (@) R ()~ e (“R( B c||>.
Setting
/I T
K = g (R () R (@)~ (””Rz”>
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completes the proof. O

Thereare several important consequences of Theorem 2.4.1. Thefirst isthat for zero residual
problems, the local convergence rate is g-quadratic because the || R(z*)]|||e.|| term on the right
side of (2.34) vanishes. For a problem other than azero residual one, even g-linear convergence
is not guaranteed. In fact, if z. € B(6) then (2.35) will imply that ||e|| < r|le.| for some
0<r<lif
(237) K6+ |R (@)]) <r

and therefore the g-factor will be K'|| R’ («*)||. Hence, for small residual problems and accurate
initial data the convergence of Gauss—Newton will be fast. Gauss—-Newton may not converge at
all for large residual problems.

Equation (2.36) exposes a more subtle issue when the term

(R'(z*) — R'(zc))" R(z")
is considered as awhole, rather than estimated by
Vel ()]
Using Taylor's theorem and the necessary conditions (R'(z*)T R(z*) = 0) we have
R'(z)'R(*) = [R'(2*) + R"(2*)ec + O(|lec||*)]" R(z*)

= el R"(z")TR(z*) + O([lec]?)-

Recall that
R”(JI*)TR(JT*) — VQf(x*) _ R/(JI*)TR,(Z‘*)
and hence
I(R (2%) = R ()T R(a") |
(2.38)

< V2 f (") = R (@) R (@) || R(z*)]| + O(llec|®)-

Inasense(2.38) saysthat evenfor alargeresidual problem, convergence can befastif the problem
is not very nonlinear (small R”'). In the special case of alinear least squares problem (where
R = 0) Gauss-Newton becomes simply the solution of the normal equations and convergesin
one iteration.

So, Gauss-Newton can be expected to work well for overdetermined small residual problems
and good initial iterates. For large residual problems and/or initial data far from the solution,
there is no reason to expect Gauss—Newton to give good results. We address these issues in
£3.2.3.

2.4.3 Underdetermined Problems

We begin with the linear underdetermined least squares problem
(2.39) min || Az — b||?.

If AisM x N with M < N there will not be a unique minimizer but there will be a unique
minimizer with minimum norm. The minimum norm solution can be expressed in terms of the
singular value decomposition [127], [249] of A,

(2.40) A=UxVT,
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In(2.40), X isan N x N diagona matrix. Thediagonal entriesof X, {0, } arecalled thesingular
values. o; > 0ando; = 0if ¢ > M. The columns of the M/ x N matrix U andthe N x N
meatrix V' are called the left and right singular vectors. U and V' have orthonormal columns and
hence the minimum norm solution of (2.39) is

z = A'p,

where At = V2ITUT,
st = diag(o],..., ol),

0;17 o 7& 0,
ot
07 g; = 0.

and

At is called the Moore-Penrose inverse [49], [189], [212]. If A isasquare nonsingular matrix,
then A" = A—1;if M > N then the definition of A" using the singular value decomposition is
gtill valid; and, if A hasfull column rank, AT = (AT A)~1 AT,

Two simple properties of the Moore—Penrose inverse are that A A is a projection onto the
range of AT and AA' isaprojection onto the range of A. This means that

(2.41) ATAAT = AT (ATA)T = ATA, AATA = A, and (AAT)T = AAT,

So the minimum norm solution of the loca linear model (2.33) of an underdetermined
nonlinear least squares problem can be written as[17], [102]

(242 s = —R'(z.) R(z.)
and the Gauss-Newton iteration [17] is
(2.43) ry =x.— R (x.)R(z.).

Thechallengeinformulating alocal convergenceresult isthat thereisnot aunigque optimal point
that attracts the iterates.
Inthelinear case, where R(x) = Ax — b, one gets

ry =x.— AT (Az. —b) = (I — ATA)z, — ATb.

Set e = © — ATb and note that
AtAAth = ATp

by (2.41). Hence
ep = (I—ATAe,.

This does not imply that =, = A'b, the minimum norm solution, only that =, is a solution of
the problem and the iteration converges in one step. The Gauss-Newton iteration cannot correct
for errorsthat are not in the range of A'.
Let
Z ={x| R(z) = 0}.

We show in Theorem 2.4.2, a special case of the result in [92], that if the standard assumptions
hold at a point z* € Z, then the iteration will converge g-quadraticaly to a point z* € Z.
However, there is no reason to expect that z* = x*. In genera z* will depend on x(, avery
different situation from the overdetermined case. The hypotheses of Theorem 2.4.2, especially
that of full columnrank in R’ (), areless general than thosein [24], [17], [25], [92], and [90].
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THEOREM 2.4.2. Let M < N and let Assumption 2.4.1 hold for somez* € Z. Thenthereis
6 > 0 such that if
[0 — 27| <6,

then the Gauss—Newton iterates
Tn+1 = Tpn — Rl(xn)TR(ajn)
exist and converge r-quadratically to a point z* € Z.

Proof. Assumption 2.4.1 and resultsin [49], [126] imply that if ¢ is sufficiently small then
thereis p; such that R’ ()" is Lipschitz continuous in the set

B = {z] ]l "]l < p1}

and the singular values of R’(z) are bounded away from zero in ;. We may, reducing p; if
necessary, apply the Kantorovich theorem [154], [151], [211] to show that if z € B; andw € Z
issuch that
|z — wl| = min ||z — z],
z€Z

thenthereis ¢ = £(z) € Z such that
lw — €(@)ll = O(llx — wlf*) < [|lz —w]|/2
and ¢ isin therange of R'(w)',i.e,
R(w) R (w)(z - &(z)) = = — &(2).

The method of the proof is to adjust ¢ so that the Gauss—Newton iterates remain in B; and
R(x,) — 0 sufficiently rapidly. We begin by requiring that § < p1/2.

Letz, € By andlete = = — (). Taylor'stheorem, the fundamental theorem of calculus,
and (2.41) imply that

e, =e.— R(z.) R(z.)
= ec — (R/(zc)" = R'(&(2)))R(x) — R/ (xx)" R(x)
=eo — R'(z*) R(x) + O(lec||?)

= (I = R' (") R (z*))ec + O(Jlec]?) = O([lec|?).

If we defined(z) = min.cz ||z — z|| then thereis K such that

(2.44) d(zy) < |log = &(ze)|| < Killwe — &(ze)|* < Kaid(z.)*.
Now let
pa = min(p1, (2K:1) 7).
So if
2o € By = (||l — 2" < pa}
then
(2.45) d(}) < d() /2

Finaly, thereis K5 such that

lo+ =@l < llwe — 2% + los — zell = [lwe — 2*[| + | R (ze)  R(zc) |

< lwe — 2| + Kallze = £(xc)-
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We now require that
P2
2.46 b5< —— 2.
(246) 21+ K»)
We complete the proof by induction. If ||zo —z*|| < ¢ and the Gauss-Newton iterates {x }}/_,
arein B3, then x,,41 isbedefined and, using (2.46) and (2.44),

n+1
i1 — 2% < [lwo — 27| + K3 > d(ax) < 6 + 2Ksd(x0) < p1.
k=0

Hence, the Gauss—-Newton iterates exist, remainin By, and d,, — 0.
To show that the sequence of Gauss—-Newton iterates does in fact converge, we observe that
thereis K3 such that

|4 = zell = R (zc) ' R(ze) || < Ksllze — &(xe)|| < Ksd(ae).
Therefore (2.45) impliesthat for any m,n > 0,

|Znm = @all < S5 e — @
n+m 1-2=m
= l=n d(xl) = d(l‘n)

2
< 2d(xy,) < 27" d(z0).
Hence, {x} isa Cauchy sequence and therefore convergesto apoint z* € Z. Since
[n — 27| < 2d(zn),

(2.44) implies that the convergence is r-quadratic. O

2.5 Inexact Newton Methods

An inexact Newton method [74] uses an approximate Newton step s = = — ., requiring only
that

(2.47) V2 f(xe)s + V f(@e)l| < nellV f (o),

i.e., that the linear residual be small. We will refer to any vector s that satisfies (2.47) with
1. < 1 asaninexact Newton step. We will refer to the parameter 7. on the right-hand side of
(2.47) astheforcing term [99] .

Inexact Newton methods are al so called truncated Newton methods [75], [198], [199] in the
context of optimization. Inthisbook, we consider Newton—terative methods. Thisisthe classof
inexact Newton methods in which the linear equation (2.4) for the Newton step is also solved by
an iterative method and (2.47) is the termination criterion for that linear iteration. It is standard
to refer to the sequence of Newton steps {z,, } asthe outer iteration and the sequence of iterates
for the linear equation as the inner iteration. The naming convention (see [33], [154], [211])
isthat Newton—CG, for example, refers to the Newton—terative method in which the conjugate
gradient [141] algorithm is used to perform the inner iteration.

Newton—CG is particularly appropriate for optimization, as we expect positive definite Hes-
sians near a loca minimizer. The results for inexact Newton methods from [74] and [154]
are sufficient to describe the local convergence behavior of Newton—-CG, and we summarize
the relevant results from nonlinear equations in §2.5.1. We will discuss the implementation of
Newton-CG in §2.5.2.
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2.5.1 Convergence Rates

We will prove the simplest of the convergence results for Newton-CG, Theorem 2.5.1, from
which Theorem 2.5.2 follows directly. We refer the reader to [74] and [154] for the proof of
Theorem 2.5.3.

THEOREM 2.5.1. Let the standard assumptions hold. Then there are 6 and K; such that if
z. € B(9), s satisfies (2.47), and . = z. + s, then

(2.48) lle+ Il < Kr(lleell + ne)llecl|-

Proof. Let 6 be small enough so that the conclusions of Lemma 2.3.1 and Theorem 2.3.2
hold. To prove thefirst assertion (2.48) note that if

r= fvzf(:rc)s —Vif(z.)
isthe linear residual, then
s+ (V2 f(2) 'V f(we) = =(V2f(x) " 'r

and
(2.49) e =ects=e.— (V2f(x:) 'Vf(ze) — (V2f(x.)) .

Now, (2.47), (2.7), and (2.6) imply that
I + (V2f () ' V@)l < V2 f(e) " Hinel V(o)
< 4R(V2f(@*))nellec] -
Hence, using (2.49) and Theorem 2.3.2, we have that
lexll < llee = V2f(ze) 7'V fae) || + 46(F" (27))nellec|
< Kllec|” + 46(V2 £ (@*))nellecll,
where K isthe constant from (2.8). If we set
K = K +4k(V2f(x*)),

the proof is complete. O

THEOREM 2.5.2. Let the standard assumptions hold. Then there are 6 and 7 such that if
xo € B(6), {n.} C [0, 7], then the inexact Newton iteration

Tn+l = Tn + Sn;s

where
Hv2f($n)3n + Vi(zn)|| < nnllVf(zn)l,

converges g-linearly to 2*. Moreover
e ifn, — 0 the convergenceis g-superlinear, and

o ifn, < K,||Vf(xy,)||?” for some K, > 0 the convergence is g-superlinear with g-order
1+p.
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The similarity between Theorem 2.5.2 and Theorem 2.3.5, the convergence result for the
chord method, should be clear. Rather than require that the approximate Hessian be accurate,
we demand that the linear iteration produce a sufficiently small relative residual. Theorem 2.5.3
isthe remarkabl e statement that any reduction intherelative linear residual will sufficefor linear
convergence in a certain norm. This statement implies [154] that |V f(z,,)|| will converge to
zero g-linearly, or, equivalently, that =,, — =* g-linearly with respect to || - ||, which is defined
by

[l = V2 f(z*)z].

THEOREM 2.5.3. Let the standard assumptions hold. Then thereis ¢ such that if z. € B(6),
s satisfies (2.47), 4 = x. + s,andn. < n <7 < 1, then

(250) llell < llec]l-

THEOREM 2.5.4. Let the standard assumptions hold. Then thereis é such that if 2y € B(6),
{n.} C [0,n] withn < 77 < 1, then the inexact Newton iteration

Tnt+1 = Tn + Sn,

where
IV2 f(@n)sn + VF(@a)ll < 0allV f(an)]
converges g-linearly with respect to || - || to z*. Moreover

e if , — 0 the convergenceis g-superlinear, and

o ifn, < K,||Vf(xy,)||? for some K, > 0 the convergence is g-superlinear with g-order
1+ p.

Q-linear convergence of {x,,} to alocal minimizer with respect to || - ||. is equivaent to
g-linear convergence of {V f(x,,)} to zero. We will use the rate of convergence of {V f(z,)}
in our computational examples to compare various methods.

2.5.2 Implementation of Newton-CG

Our implementation of Newton—CG approximately solvesthe equation for the Newton step with
CG. We make the implicit assumption that V f has been computed sufficiently accurately for
D3 f(x : w) to be auseful approximate Hessian of the Hessian—vector product V2 f (z)w.

Forward Difference CG

Algorithm f dcg isan implementation of the solution by CG of the equation for the Newton step
(2.4). In this algorithm we take care to identify failure in CG (i.e., detection of a vector p for
which p” Hp < 0). Thisfailure either meansthat H issingular (p” Hp = 0; see exercise 2.7.3)
or that p” Hp < 0, i.e., p isadirection of negative curvature. The algorithms we will discuss
in §3.3.7 make good use of directions of negative curvature. The initial iterate for forward
difference CG iteration should be the zero vector. Inthisway thefirst iterate will give a steepest
descent step, afact that is very useful. The inputs to Algorithm f dcg are the current point ,
the objective f, the forcing term n, and alimit on the number of iterations kmazx. The output is
the inexact Newton direction d. Note that in step 2b D3 f(z : p) is used as an approximation to
V2 f(2)p.

Avrcoritam 2.5.1. f dcg(z, f,n, kmaz, d)
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L r=—Vf@), po = Irl3 k= 1,d = 0.
2. DoWhile \/pp—1 > n||Vf(z)|| and k < kmazx

@ ifk=1thenp=r
else
B = pr-1/pr—2andp=r+ fp
(b) w= Djf(z:p)
If pTw = 0 signal indefiniteness; stop.
If pTw < 0 signal negative curvature; stop.

© a=pra/pTw

(d d=d+ ap
e r=r—oaw
® pr =7l
@ k=k+1

Preconditioning can be incorporated into a Newton—CG algorithm by using a forward dif-
ference formulation, too. Here, asin [154], we denote the preconditioner by M. Asidefrom M,
the inputs and output of Algorithm f dpcg are the same as that for Algorithm f dcg.

AvrcoritaMm 2.5.2. f dpcg(z, f, M, n, kmaz, d)
L r =~V f(2), po = Il k= 1,d =0,
2. DoWhnile \/pr—1 > n||V f(z)|| and k < kmax

@ z=Mr

(0) 71 =2"7r

() ifk=1theng=0andp =z
else
B="Th_1/Th—2, =2+ PFp

(d) w=Dj f(z:p)
If pTw = 0 signal indefiniteness; stop.
If pTw < 0 signal negative curvature; stop.

© a=m-1/p"w

) d=d+ap
(@ r=r—aw
(") o =r"r
) k=k+1

In our formulation of Algorithmsf dcg and f dpcg, indefiniteness is a signal that we are
not sufficiently near a minimum for the theory in this section to hold. In §3.3.7 we show how
negative curvature can be exploited when far from the solution.

Oneview of preconditioning isthat itisno morethan arescaling of theindependent variables.
Suppose, rather than (1.2), we seek to solve

(2.51) min f(y),
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where f(y) = f(M'/2y) and M isspd. If y* isaloca minimizer of f, then z* = M'/2y* is
alocal minimizer of f and the two problems are equivalent. Moreover, if z = M2y and V,,
and V,, denote gradientsin the « and y coordinates, then

Vyf(y) = M2V, f(x)

and
V2 f(y) = MVA(V2 f () M2,

Hence, the scaling matrix plays the role of the square root of the preconditioner for the precon-
ditioned conjugate gradient algorithm.

Newton-CG

The theory guarantees that if x( is near enough to alocal minimizer then V2 f(z,,) will be spd
for the entire iteration and x,, will converge rapidly to z*. Hence, Algorithm newt cg will not
terminate with failure because of an increase in f or an indefinite Hessian. Note that both the
forcing term n and the preconditioner M can change as the iteration progresses.

ALGORITHM 2.5.3. newt cg(z, f,7,7)
Lore=ro=|[Vf(z)l

2. Dowhile |V f(z)|| > 7,70 + Ta

(a) Select n and a preconditioner M.

(b) fdpcg(z, f, M,n, kmaz, d)
If indefiniteness has been detected, terminate with failure.

(© z=xz+d.

(d) Evaluate f and V f(x).
If f has not decreased, terminate with failure.

© r+ = Vf@),0=ry/re;re =14

The implementation of Newton—-CG is simple, but, as presented in Algorithm newt cg,
incomplete. The algorithm requires substantial modification to be able to generate the good
initial data that the local theory requires. We return to thisissuein §3.3.7.

There is a subtle problem with Algorithm f dpcg in that the algorithm is equivalent to the
application of the preconditioned conjugate gradient algorithm to thematrix B that isdetermined
by

Bp; =w; = Dif(x:pi),1<i<N.

However, sincethemapp — D3 f(x : p) isnot linear in p, the quality of B asan approximation
to V2 f(x) may degrade as the linear iteration progresses. Usually thiswill not cause problems
unless many iterations are needed to satisfy the inexact Newton condition. However, if one does
not see the expected rate of convergence in aNewton—CG iteration, this could be afactor [128].
One partial remedy isto use a centered-difference Hessian—vector product [162], which reduces
the error in B. In exercise 2.7.15 we discuss a more complex and imaginative way to compute
accurate Hessians.
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2.6 Examples

In this section we used the collection of MATLAB codes but disabl ed the features (see Chapter 3)
that assist in convergence when far from a minimizer. We took care to make certain that the
initial iterates were near enough to the minimizer so that the observations of local convergence
corresponded to the theory. In practical optimization problems, good initial datais usually not
available and the globally convergent methods discussed in Chapter 3 must be used to start the
iteration.

Theplotsin thissection have the characteristics of local convergencein that both the gradient
norms and function values are decreasing. The reader should contrast this with the examplesin
Chapter 3.

2.6.1 Parameter ldentification

For thisexample, M = 100, and the observations are those of the exact solutionwithc = k = 1,
which we computed analytically. Weused T' = 10 and uy = 10. We computed the displacement
and solved the sensitivity equations with the stiff solver ode15s. These results could be
obtained as well in a FORTRAN environment using, for example, the LSODE code [228]. The
relative and absolute error tolerances for the integrator were both set to 10~8. In view of the
expected accuracy of the gradient, we set the forward difference increment for the approximate
Hessianto h = 10~%. We terminated the iterations when ||V f|| < 10~%. Our reasons for this
are that, for the zero residual problem considered here, the standard assumptions imply that
f(z) = O(||V f(z)||) for z near the solution. Hence, since we can only resolve f to an accuracy
of 1078, iteration beyond the point where ||V f|| < 10~* cannot be expected to lead to afurther
decreasein f. Infact we observed thisin our computations.

The iterations are very sensitive to the initial iterate. We used zo = (1.1,1.05)7; initial
iterates much worse than that caused Newton’s method to fail. The more robust methods from
Chapter 3 should be viewed as essential components of even a simple optimization code.

In Table 2.1 we tabulate the history of the iteration for both the Newton and Gauss—Newton
methods. As expected for asmall residual problem, Gauss—-Newton performs well and, for this
example, even converges in fewer iterations. The real benefit of Gauss—Newton is that com-
putation of the Hessian can be avoided, saving considerable computational work by exploiting
the structure of the problem. In the computation reported here, the MATLAB f | ops com-
mand indicates that the Newton iteration took roughly 1.9 million floating point operations and
Gauss-Newton roughly 650 thousand. This difference would be much more dramatic if there
were more than two parameters or the cost of an evaluation of f depended on NV in asignificant
way (which it does not in this example).

Table 2.1: Parameter identification problem, locally convergent iterations.

Newton Gauss-Newton
Vi@l @) Vi@l f(@a)
2.33e+01 7.88e-01 2.33et01  7.88e-01
6.87e+t00  9.90e-02 1.77e+00  6.76e-03
4.59%e-01 6.58e-04 1.01e-02 4.57e-07
2.96e-03 3.06e-08 9.84e-07 2.28e-14
2.16e-06 4.15e-14

A WNPF OIS

Figure 2.1 isagraphical representation of the convergence history from Table 2.1. We think
that the plots are a more effective way to understand iteration statistics and will present mostly
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graphs for the remainder of the book. The concavity of the plots of the gradient norms is the
signature of superlinear convergence.

) Newton’s Method o Newton’s Method
10 10
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5 <107
2 >
£10° 5
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Figure 2.1: Local Optimization for the Parameter ID Problem

We next illustrate the difference between Gauss-Newton and Newton on a nonzero residual
problem. We use the same example as before with the observations randomly perturbed. We
used the MATLAB r and function for this, perturbing the samples of the analytic solution by
.5 x rand(M, 1). The least squares residual is about 3.6 and the plots in Figure 2.2 indicate
that Newton’s method is still converging quadratically, but the rate of Gauss-Newton is linear.
Thelinear convergence of Gauss—Newton can be seen clearly from the linear semilog plot of the
gradient norms. Even so, the Gauss—-Newton iteration was more efficient, in terms of floating
point operation, than Newton’s method. The Gauss—Newton iteration took roughly 1 million
floating point operations while the Newton iteration took 1.4 million.

2.6.2 Discrete Control Problem
We solve the discrete control problem from §1.6.1 with N = 400, 7 = 1, yg = 0,

L(y,u,t) = (y — 3)* + .5u?, and ¢(y, u, t) = uy + t*

with Newton—CG and two different choices, n = .1,.0001, of the forcing term. The initia
iterate was uy = (10, 10, ..., 10)7 and the iteration was terminated when ||V f|| < 107%. In
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Figure 2.2: Local Optimization for the Parameter 1D Problem, Nonzero Residual

Figure 2.3 one can seethat the small forcing term produces an iteration history with the concavity
of superlinear convergence. The limiting g-linear behavior of an iteration with constant » is not
yet visible. The iteration with the larger value of 7 isin the g-linearly convergent stage, as the
linear plot of V f against the iteration counter shows.

The cost of the computation is not reflected by the number of nonlinear iterations. When
n = .0001, thehighaccuracy of thelinear solveisnot rewarded. Thecomputationwithn = .0001
required 8 nonlinear iterations, atotal of 32 CG iterations, roughly 1.25 million floating point
operations, and 41 gradient evaluations. The optimization with = .1 needed 10 nonlinear
iterations, a total of 13 CG iterations, roughly 820 thousand floating point operations, and 24
gradient evaluations.

2.7 Exercises on Local Convergence

2.7.1. Apply Newton's method with (@) analytic first and second derivatives, (b) anaytic first
derivatives and forward difference second derivatives, and (c) forward difference first and
second derivativesto find alocal minimum of

1. f(z) = sin®(z),
2. f(x)

2
e* , and
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Figure 2.3: Newton—CG for the Discrete Control Problem: n = .1,.0001

3. f(z) =2
Use difference stepsof h = 10~1,1072, 104, and 10~8. Explain your results.

2.7.2. Repeat part (c) of exercise 2.7.1. Experiment with
f(z) = e+ 10~ *rand(z) and f(x) = 2% + 10 *rand(z),

where rand denotes the random number generator in your computing environment. Ex-
plain the differencesin the results.

2.7.3. Show that if A issymmetric, p # 0, and p” Ap = 0, then A iseither singular or indefinite.

2.7.4. Showthatif b € RN andthe N x N matrix A issymmetric and has anegative eigenval ue,
then the quadratic functional

m(z) = 2T Az + 27b

does not have a minimizer. Show that if « is an eigenvector corresponding to a negative
eigenvalue of the Hessian, then v is adirection of negative curvature.

2.75. If N = 1, the local quadratic model could easily be replaced by a local quartic (i.e.,
fourth-degree) model (what would be wrong with a cubic model?). If amethod is based
on minimization of the local quartic model, what kind of local convergence would you
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expect? How would you extend this method to the case NV > 1? Look at [30] for some
results on this.

2.7.6. Show that if the standard assumptions hold, A is sufficiently small, and « is sufficiently
near z*, the difference Hessian defined by (2.19), V2 f(z), is spd.

2.7.7. Write alocally convergent Newton method code based on accurate function and gradient
information and forward difference Hessiansusing (2.19). Be surethat your code testsfor
positivity of the Hessian so that you can avoid convergence to alocal maximum. Isthe
test for positivity expensive? Apply your code to the parameter 1D problem from §1.6.2.
If you use an ODE solver that lets you control the accuracy of the integration, try values
of the accuracy from 108 to 10~2 and see how the iteration performs. Be sure that your
difference Hessian reflects the accuracy in the gradient.

2.7.8. Let the standard assumptions hold and let \, > 0 be the smallest eigenvalue of V2 f(z*).
Give the best (i.e., largest) bound you can for p such that V2 f(z) is positive definite for
dl z € B(p).

2.7.9. Usethe definition of A' to prove (2.41).

2.7.10. Fill inthe missing detailsin the proof of Theorem 2.4.2 by showing how the Kantorovich
theorem can be used to prove the existence of £(x).

2.7.11. Let f(z) = 2% and e4(z) = sin(100z)/10. Using an initial iterate of zo = 1, try to find
alocal minimum of f + €7 using Newton’'s method with analytic gradients and Hessians.
Repeat the experiment with difference gradients and Hessians (try forward differences
with astep sizeof h = .2).

2.7.12. Solvethe parameter |D problem from §2.6 with the observations perturbed randomly (for
example, you could usethe MATLAB r and function for this). Vary the amplitude of the
perturbation and see how the performance of Newton and Gauss-Newton changes.

2.7.13. Derive sensitivity equations for the entries of the Hessian for the parameter ID objective
function. In general, if there are P parameters, how many sensitivity equations would
need to be solved for the gradient? How many for the Hessian?

2.7.14. Solvethediscrete control problem from §2.6.2 using Newton—CG with forcing terms that
depend on n. Consider n,, = .5/n, n, = min(.1, ||V f(u,)||), and some of the choices
from [99]. Vary N and the termination criteria and compare the performance with the
constant n choicein §2.6.2.

27.15. Let F: RN — RM (where M and N need not be the same) be sufficiently smooth (how
smooth isthat?) and be such that £' can also be computed for complex arguments. Show
that [181], [245]
Im(F(x +ihu))/h = F'(z)u + O(h?),

where I'm denotes imaginary part. What happensif thereiserror in £'? How can you use
this fact to compute better difference gradients and Hessians?

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.



Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.



Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

Chapter 3

Global Convergence

Thelocally convergent algorithms discussed in Chapter 2 can and do fail when theinitial iterate
is not near the root. The reasons for this failure, as we explain below, are that the Newton
direction may fail to be a direction of descent for f and that even when a search direction is a
direction of decrease of f, as —V f is, the length of the step can be too long. Hence, taking a
Newton (or Gauss—-Newton, or inexact Newton) step can lead to an increase in the function and
divergence of the iteration (see exercise 3.5.14 for two dramatic examples of this). The globally
convergent algorithms developed in this chapter partially address this problem by either finding
aloca minimum or failing in one of asmall number of easily detectable ways.

These are not agorithms for globa optimization. When these algorithms are applied to
problems with many local minima, the results of the iteration may depend in complex ways on
theinitial iterate.

3.1 The Method of Steepest Descent

The steepest descent direction from x isd = —V f(x). The method of steepest descent [52]
updates the current iteration . by the formula

(3.1) Ty =z — AV f(2).

If we take the simple choice A = 1, then x, is not guaranteed to be nearer a solution than z..,
even if x. isvery near a solution that satisfies the standard assumptions. The reason for thisis
that, unlike the Newton direction, the steepest descent direction scaleswith f. The Newton step,
on the other hand, isthe samefor f asitisfor cf for any ¢ # 0 but need not be a direction of
decreasefor f.

To make the method of steepest descent succeed, it isimportant to choose the steplength .
Oneway to do this, which we analyzein §3.2, istolet A = ™, where 3 € (0,1) andm > 0 is
the smallest nonnegative integer such that there is sufficient decreasein f. In the context of the
steepest descent algorithm, this means that

32 flwe = AV f(zc)) = flze) < —aX||Vf(ze)l*.

This strategy, introduced in [7] and called the Armijo rule, is an example of a line search in
which one searches on a ray from x. in adirection in which f islocally decreasing. In (3.2),
a € (0,1) isaparameter, which we discuss after we fully specify the algorithm. This strategy
of repeatedly testing for sufficient decrease and reducing the stepsizeif thetest isfailed iscalled
backtracking for obvious reasons.

39
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The motivation for (3.2) isthat if we approximate f by the linear model
me = f(xe) + Vf(ze)(z — ),
then the reduction in the model (i.e., the predicted reductionin f) is
pred = me(we) — me(z4) = M|V f(z)]|*.
(3.2) saysthat the actual reductionin f

ared = f(xc) — f(x4)

isat least as much as afraction of the predicted reduction in the linear model. The parameter «
istypically setto 1074,

The reason we demand sufficient decrease instead of simple decrease (i.e., f(z.) < f(z4)
or o = 0) islargely theoretical; a nonzero value of « is required within the proof to insure that
the iteration does not stagnate before convergence.

ALcoriTHM 3.1.1. st eep(z, f, kmazx)
1. Fork=1,...,kmax

(8 Compute f and V f; test for termination.
(b) Find the least integer m > 0 such that (3.2) holdsfor A = g™.
(©) x =2+ \d.

2. If k = kmax and the termination test is failed, signal failure.

The termination criterion could be based on (2.12), for example.

3.2 Line Search Methods and the Armijo Rule
We introduce a few new concepts so that our proof of convergence of Algorithm st eep will
also apply to a significantly more general class of algorithms.

DEerINITION 3.2.1. Avector d € RY isa descent direction for f at z if

df (z + td)

_ T
o =Vf(z)'d<D0.

t=0

Clearly the steepest descent direction d = —V f(z) is a descent direction. A line search
algorithm searches for decrease in f in a descent direction, using the Armijo rule for stepsize
control, unless V f(z) = 0.

We will consider descent directions based on quadratic models of f of the form

() = f(ee) + V(o) (@ = o) + 5 (@ = o) Hole = 22),

where H ., which is sometimes called the model Hessian, isspd. Welet d = x — x. be such that
m(x) isminimized. Hence,

Vm(z) =Vf(z.)+ He(z —x.) =0

and hence
(3.3 d=—H'Vf(z.).
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The steegpest descent direction satisfies (3.3) with H. = I. However, the Newton direction
d = —V2f(x)~'V f(z) may fail to be adescent direction if = isfar from aminimizer because
V2 f may not be spd. Hence, unlike the case for nonlinear equations [154], Newton’s method is
not a generally good global method, even with aline search, and must be modified (see [113],
[117], [231], and [100]) to make sure that the model Hessians are spd.

Theagorithm we analyze in this section isan extension of Algorithm st eep that allowsfor
descent directions that satisfy (3.3) for spd H. We modify (3.2) to account for H and the new
descent direction d = —H 'V f(z). The general sufficient decrease condition is

(3.4) f(ze+2d) — f(z.) < aAVf(z.)7d.

Here, asin (3.2), a € (0, 1) isan agorithmic parameter. Typicaly o = 1074,

The stepsize reduction schemein step 1b of Algorithm st eep iscrude. If 5 istoo large, too
many stepsize reductions may be needed before astep isaccepted. If 5 istoo small, the progress
of the entire iteration may be retarded. We will address this problem in two ways. 1n §3.2.1 we
will construct polynomial models of f aong the descent direction to predict an optimal factor
by which to reduce the step. In §3.3.3 we describe a method which remembers the steplength
from the previous iteration.

Our proofs require only the following general line search strategy. If a steplength \. has
been rejected (i.e., (3.4) failswith A = A.), construct

(35) )\Jr S [/Blow)\cvﬁhigh)\c]a

where 0 < Biow < Bhrigh < 1. The choice 8 = Biow = PBhign is the simple rule in Algo-
rithmst eep. Anexact line search, in which )\ isthe exact minimum of f(x.+ Ad), isnot only
not worth the extra expense but can degrade the performance of the algorithm.

ArcoriTHM 3.2.1. opt ar m(x, f, kmax)
1. Fork=1,...,kmax

(8 Compute f and V f; test for termination.
(b) Construct an spd matrix H and solve (3.3) to obtain a descent direction d.

(c) Beginning with A = 1, repeatedly reduce A\ using any strategy that satisfies (3.5)
until (3.4) holds.

(d) z =2+ \d.

2. If k = kmax and the termination test is failed, signal failure.

In the remainder of this section we prove that if the sequence of model Hessians remains
uniformly bounded and positive definite and the sequence of function values { f (z,) } isbounded
from below, then any limit point of the sequence {xz;} generated by Algorithm opt ar mcon-
vergestoapoint x* that satisfiesthe necessary conditionsfor optimality. Wefollow that analysis
with alocal convergence theory that is much less impressive than that for Newton’s method.

We begin our analysiswith asimple estimate that follows directly from the spectral theorem
for spd matrices.

LemMma 3.2.1. Let H be spd with smallest and largest eigenvalues 0 < A; < A;. Then for
al z € RV,
NIl < 2T H T < AT

Thefirst stepintheanalysisisto use Lemma3.2.1to obtain alower bound for the steplength.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.



Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

42 ITERATIVE METHODS FOR OPTIMIZATION

LemMma 3.2.2. Assume that V f is Lipschitz continuous with Lipschitz constant L. Let
a € (0,1), z € RN, and H be an spd matrix. Let A\, > 0 bethe smallest and \; > ), the
largest eigenvalues of H. Let d be given by (3.3). Assumethat V f (x) # 0. Then (3.4) holds for
any A such that

(3.6) 0<arg Al-a)

Lk(H)
Proof. Letd = —H 'V f(z). By the fundamental theorem of calculus

fx+Xd) — f(z) = /01Vf(x+t)\d)T>\ddt.

Hence
flx4+Xd) = f(z)+A\Vf(x)Td
3.7)
A Sy (Vf(x + tAd) — Vf(2))Td dt.
Therefore,

Fo+ M) = flo = MHV (@) < (@) + A F@)d+ 2L a2,

Positivity of H, Lemma3.2.1, and x(H) = M\, ! imply that
ldl* = [H'Vf(@)]* < A2V (@) V()

< ANV f(2)Td = —w(H)N;IVf(2)Td.
Hence
fl@+2d) < f(z) + (A= NLA w(H)/2)V f(2)"d,

which implies (3.4) if
a < (1—=ALA;'R(H)/2).

Thisisequivaent to (3.6). O

Lemma 3.2.3. Let V£ be Lipschitz continuous with Lipschitz constant L. Let {z;} be the
iteration given by Algorithm opt ar mwith spd matrices H,, that satisfy

(3.8) k(Hyp) <R
for all k. Then the steps

Sk = Tr1 — Tk = \edy = — N\ Hy 'V f(2)

satisfy
(39) ae > A= Dowds1=)
Lk
and at most "
(310 m = log (S(L’_;a)) /10g(Bhign)

stepsize reductions will be required.

Proof. In the context of Algorithm opt ar m Lemma 3.2.2 implies that the line search will

terminate when
2X:(1 — @)

LK(Hk) ’
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if not before. The most that one can overshoot thisis by afactor of 3;,.,, which proves (3.9).
The line search will require at most m stepsize reductions, where m is the least honnegative
integer such that
2X:(1 — @) -
m > Bhigh-
Thisimplies (3.10). O
The convergence theorem for Algorithm opt ar msaysthat if the condition numbers of the
matrices H and the norms of the iterates remain bounded, then every limit point of the iteration
is a stationary point. Boundedness of the sequence of iterates implies that there will be limit
points, but there is no guarantee that there is a unique limit point.

THEOREM 3.2.4. Let V f be Lipschitz continuous with Lipschitz constant .. Assume that
the matrices H}, are spd and that there are & and \; such that x(Hj) < &, and || Hy|| < A, for
all k. Then either f(xy) isunbounded from below or
(3.12) klim Vf(zk) =0
and hence any limit point of the sequence of iterates produced by Algorithm opt ar mis a
stationary point.

In particular, if f(x) isbounded from below and x,, — =* isany convergent subsequence
of {z}, then V f(z*) = 0.

Proof. By construction, f(xy) is a decreasing sequence. Therefore, if f(z;) is bounded
from below, then limy,_, o f(x) = f* existsand

(312) lim f(zi1) = far) = 0.
By (3.4) and Lemma 3.2.3 we have
Flanen) = flan) < —aMVf (o) Hy 'V f (k)

< —adN |V F(@)]? < 0.

Hence, by (3.12)
IV f(zp)|? < A (f () _j\f(xkﬂ)) o
(67

as k — oo. Thiscompletesthe proof. O

The analysis of the Armijo rule is valid for other line search methods [84], [125], [272],
[273]. The key points are that the sufficient decrease condition can be satisfied in finitely many
steps and that the stepsizes are bounded away from zero.

3.2.1 Stepsize Control with Polynomial Models

Having computed adescent direction d from z., one must decide on a stepsize reduction scheme
for iterationsin which (3.4) failsfor A = 1. A common approach [73], [84], [114], [197], [117]
isto model

§(A) = flae + Ad)
by a cubic polynomial. The dataon hand initidly are
£(0) = f(),€'(0) = Vf(ze)Td <0, and £(1) = f(x + d),

which is enough to form a quadratic model of £. So, if (3.4) does not hold with A = )y = 1,
i.e.,
§(1) = f(we+d) > foe) + an(a:c)Td =¢(0) + ag/(o)’
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we approximate ¢ by the quadratic polynomial

g(A) = £(0) + €' (0)A+ (£(1) — £(0) — €'(0))A?

and let \; be the minimum of ¢ on the interval [G1ou, Brigr] C (0, 1). This minimum can be
computed directly since « € (0, 1) and failure of (3.4) imply

q"(A) =2(£(1) = £(0) — £'(0)) > 2(er — 1)&'(0) > 0.

Therefore, the global minimum of ¢ is

NN
- 2(8(1) = £(0) = €(0))
So
Blowv /\t < ﬂlowa
(313) /\+ = )\t, /glou) <A < /Bh’igha

Bhighs At = Bhigh-

If our first reduced value of A\ does not satisfy (3.4), we base additional reductions on the
data

§(0) = f(xC)>£l(O) = Vf(xc)Td,f()\_),f(/\c),

where \. < A_ arethe most recent values of ) to fail to satisfy (3.4). Thisis sufficient data to
approximate £ with a cubic polynomial

q(N\) = £(0) + &' (0)A + cad? + c3)\?,
where ¢, and ¢ can be determined by the equations
a(Ae)  =&(A) = f(ze + Acd),
q(A-) =&A-) = flze + A-d),

which form the nonsingular linear system for ¢, and ¢

NN\ (e \ [ € —€(0) — €(0)A
(314) ( MoAS ) ( e ) - ( €0) = £(0) — €' (0)A - )
Aswith the quadratic case, ¢ has alocal minimum [84] at
(3.15) s \/0356— 3cs¢'(0)
3

With )\, in hand, we compute A using (3.13). The application of (3.13) is called safeguarding
and is important for the theory, as one can see from the proof of Theorem 3.2.4. Safeguarding
is also important in practice because, if the cubic model is poor, the unsafeguarded model can
make steplength reductions that are so small that the iteration can stagnate or so large (i.e., hear
1) that too many reductions are needed before (3.4) holds.
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3.2.2 Slow Convergence of Steepest Descent

Unfortunately, methods based on steepest descent do not enjoy good local convergence prop-
erties, even for very ssimple functions. To illustrate this point we consider the special case of
convex quadratic objective functions

1
fx) = §$TAJJ —b'x +a,

where A isspd, b € RY, and a is a scalar. We will look at a very simple example, using
the method of steepest descent with H, = I (so \; = Ay = 1) and show how the speed of
convergence depends on conditioning and scaling.

LemMma 3.2.5. Let f be a convex quadratic and let H,, = I for all k. Then the sequence
{z}} generated by Algorithm opt ar mconverges to the unique minimizer of f.

Proof. In exercise 3.5.4 you are asked to show that f is bounded from below and that
Vf(z) = Az — b. Hence V f (x*) vanishesonly at z* = A~'b. Since V2f(z) = A isspd, the
second-order sufficient conditions hold and z* is the unique minimizer of f.

Theorem 3.2.4 implies that

klim Vi(zg) = Axp — b= A(zy — ") =0,

and hencez;, — z*. O

Sincethe steepest descent iteration converges to the unique minimizer of aconvex quadratic,
we can investigate the rate of convergence without concern about the initial iterate. We do this
interms of the A-norm. The problems can beillustrated with the smplest casea = 0 and b = 0.

PrOPOSITION 3.2.6. Let f(x) = 27 Ax/2 and let {z;} be given by Algorithm opt ar mwith
Hj, = I for all k. Then the sequence {z;,} satisfies

(3.16) rsilla = (1= O(k(A) ™)) lkla-

Proof. The sufficient decrease condition, (3.4), impliesthat for all &
af Avpy — 2l Az = 2(f(@p41) — f(2r))
(3.17) < 2aVf(zp)" (whe1 — k)
=20\, Vf(zp)Td = —2aX,(Azy)T (Axy,).
The Lipschitz constant of V f issimply A; = || A||; hence we may write (3.9) as

208(1 — )
)\lﬁ(A) '

(3.18) A >\ =
In terms of the A-norm, (3.17) can be written as
lrsal% = llzklld < —202N |z,

where we use the fact that

|Az||* = (AZ)T(Az) > N2l Az = PWIEL
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Hence,
zrsalh < (1 =200 |zl < (1= da(l — @) Br(A)72) o]

This completes the proof. O
Now we consider two specific examples. Let N = 1 and define

fl@) = wa?/2,

where
(3.19) w<2(1—a).

Inthiscase z* = 0. Wehave V f(z) = f’(x) = wz and hencefor al = € R,

wx2

Jw=Vi@) - f@) =2 (1-w?-1)

w?x?

2

(w=2)

< —a|f'(z)]? = —aw?z?

because (3.19) implies that
w—2< —2a.

Hence (3.4) holds withd = V f(z) and A = 1 for @l € R. The rate of convergence can be
computed directly since
xy = (1 —w)a,

for al .. The convergenceisg-linear with g-factor 1 —w. Soif w isvery smal, the convergence
will be extremely slow.
Similarly, if w islarge, we see that

w2a2
flx = AVf(x)) — f(z) = 5 (Aw —2) < —adw?z?

only if

So

21 — ) 2(1 — o)

<P =A<
If w isvery large, many steplength reductions will be required with each iteration and the line
search will be very inefficient.

These are examples of poor scaling, where a change in f by a multiplicative factor can
dramatically improve the efficiency of the line search or the convergence speed. In fact, if
w = 1, steepest descent and Newton’s method are the same and only one iteration is required.

The casefor ageneral convex quadraticissimilar. Let \; and A be the largest and smallest
eigenvalues of the spd matrix A. We assumethat b = 0 and a = 0 for this example. We let v,
and u, be unit eigenvectors corresponding to the eigenvalues A; and \;. If

As <2(1 —a)

is small and the initial iterate is in the direction of u,, convergence will require a very large
number of iterations (slow). If \; islarge and the initial iterateisin the direction of v;, the line
search will be inefficient (many stepsize reductions at each iteration).
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Newton’s method does not suffer from poor scaling of f and converges rapidly with no need
for aline search when the initial iterate is near the solution. However, when far away from the
solution, the Newton direction may not be a descent direction at al and the line search may
fail. Making the transition from steepest descent, which is a good agorithm when far from
the solution, to Newton's or some other superlinearly convergent method as the iteration moves
toward the solution, is the central problem in the design of line search algorithms. The scaling
problems discussed above must also be addressed, even when far from the solution.

3.2.3 Damped Gauss—Newton Iteration

Aswe showed in §2.4, the steepest descent direction for the overdetermined | east squares objec-
tive

1< 2 1 T
f@) = 5 2 @)} = 5R@)" R()

~Vf(r) = —R'(2)"R(z).

The steepest descent algorithm could be applied to nonlinear least squares problems with the
good global performance and poor local convergence that we expect.
The Gauss—-Newton direction at =

d% = ~(R'(2)"R'(2)) ' R'(2)" R(x)
is not defined if R’ failsto have full column rank. If R’ does have full column rank, then
(d99) TV f(z) = (R (2)"R(x))" (R (2)" R (z)) "' R'(z)" R(x) < 0,

and the Gauss—Newton direction isadescent direction. The combination of the Armijo rulewith
the Gauss-Newton direction is called damped Gauss—Newton iteration.

A problem with the damped Gauss-Newton algorithm is that, in order for Theorem 3.2.4 to
be applicable, thematrices { R’ (z)” R’ (z1)} must not only have full column rank but also must
be uniformly bounded and well conditioned, which are very strong assumptions (but if they are
satisfied, damped Gauss—Newton is a very effective algorithm).

The Levenberg—Marquardt method [172], [183] addresses these issues by adding a regular-
ization parameter v > 0to R/ (z.)” R/ (z.) to obtain . = z. + s where

(3.20) s=—(vd + R (z)" R (z.)) 'R (zc)T R(.),

where I isthe N x N identity matrix. The matrix v.I + R'(x.)T R'(x.) is positive definite.
The parameter v is called the Levenberg—Marquardt parameter.

Itisnot necessary to compute R/ (z.)” R’ (z..) to compute a L evenberg—Marquardt step [76].
One can aso solve the full-rank (M + N) x N linear least squares problem

2

(3.21) min;m 13%) }S N { R(grc) }

to compute s (see exercise 3.5.6). Compare this with computing the undamped Gauss—Newton
step by solving (2.33).

If one couples the Levenberg—Marquardt method with the Armijo rule, then Theorem 3.2.4
is applicable far from aminimizer and Theorem 2.4.1 nearby. We ask the reader to provide the
details of the proof in exercise 3.5.7.
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THEOREM 3.2.7. Let R’ beLipschitzcontinuous. Let z;, bethe Levenberg—Marquardt—Armijo
iterates. Assume that || R’(x)|| is uniformly bounded and that the sequence of Levenberg—
Marquardt parameters {v } is such that

k(vrd + R (2x)" R (z1))

is bounded. Then
Jim R'(z1)"R(z1) = 0.

Moreover, if 2* is any limit point of {x} at which R(2*) = 0, Assumption 2.4.1 holds, and
v, — 0, then z, — x* g-superlinearly. If, moreover,

v, = O(|| B(z)]])

as k — oo then the convergenceis g-quadratic.

For example, if k(R (zx)T R/ (x1,)) and | R ()| are bounded then v, = min(1, || R(x4)]|)
would satisfy the assumptions of Theorem 3.2.7. For azero residual problem, this addresses the
potential conditioning problems of the damped Gauss—-Newton method and still gives quadratic
convergence in theterminal phase of the iteration. The Levenberg—Marquardt—Armijo iteration
will also converge, albeit slowly, for alarge residual problem.

Wewill not discuss globally convergent methodsfor underdetermined | east squares problems
in this book. We refer the reader to [24], [252], and [253] for discussion of underdetermined
problems.

3.2.4 Nonlinear Conjugate Gradient Methods

Operationally, the conjugate gradient iteration for a quadratic problem updates the current iter-
ation with a linear combination of the current residual » and a search direction p. The search
direction is itself alinear combination of previous residuals. Only  and p need be stored to
continue the iteration. The methods discussed in this section seek to continue this ideato more
nonlinear problems.

Nonlinear conjugate gradient algorithms have the significant advantage of low storage over
most of the other algorithms covered in this book, the method of steepest descent being the
exception. For problems so large that the Newton or quasi—Newton methods cannot be imple-
mented using the availabl e storage, these methods are among the few options (see[177] and [5]
for examples).

Linear conjugate gradient seeks to minimize f(z) = #7 Hx/2 — x7b. The residua r =
b — Hz issmply —V f(z), leading to a natural extension to nonlinear problems in which
To = Po = Vf(.’lio) and, for k > 1,

(322 ry = Vf(xr) and pr = v + Bepr—1.

The update of x
Th+1 = Tk + QgPk

can be done with a simple anaytic minimization in the quadratic case, but aline search will be
needed in the nonlinear case. The missing pieces, therefore, are the choice of 3, the way the
line search will be done, and convergence theory. Theory is needed, for example, to decide if
pi iIsadescent direction for al k.

The general form of the algorithm is very simple. The inputs are an initial iterate, which
will be overwritten by the solution, the function to be minimized, and a termination vector
T = (7., 7,) Of relative and absolute residuals.

ArcoriTaMm 3.2.2. nl cg(x, f,T)
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Lorg=|Vf(@)|;k=0
2. Dowhile ||V f(z)|| > 770 + Ta

@ Ifk=0thenp=—-Vf(x)€ese
p=-Vf(z)+pBp
b)) z=x+ap

The two most common choicesfor 3, both of which are equivalent to the linear CG formula
in the quadratic case, are the Fletcher—Reeves [106]

rr_ [VF@RIP
(3.23) TV (k)]

and Polak—Ribiere [215], [216]

V()" (Vf(ze) = Vi(zr))
IV f(zk-1)]?

formulas. The Fletcher—Reeves method has been observed to take long sequences of very small
steps and virtually stagnate [112], [207], [208], [226]. The Polak—Ribiere formula performs
much better and is more commonly used but has a less satisfactory convergence theory.

The line search has more stringent requirements, at least for proofs of convergence, than
are satisfied by the Armijo method that we advocate for steepest descent. We require that the
steplength parameter satisfies the Wolfe conditions [272], [273]

(3.24) By =

(3.25) f(@e + anpr) < f(r) + 00V (i) pi
and
(3.26) Vf(xk + arpe) ok > 05V f(2) Py

where 0 < 0, < og < 1. Thefirst of the Wolfe conditions (3.25) is the sufficient decrease
condition, (3.4), that all line search agorithms must satisfy. The second (3.26) is often, but not
always, implied by the Armijo backtracking scheme of alternating a test for sufficient decrease
and reduction of the steplength. One can design a line search method that will, under modest
assumptions, find a steplength satisfying the Wolfe conditions [104], [171], [193].

The convergence result [3] for the Fletcher—Reeves formula requires a bit more. The proof
that p;, is descent direction requires the strong Wolfe conditions, which replace (3.26) by

(3.27) IV f(xk + cnpr) o] < =05V f(xr) pi

and demand that 0 < o, < o3 < 1/2. Thealgorithm from [193], for example, will find a point
satisfying the strong Wolfe conditions.

THEOREM 3.2.8. Assume that the set

N =A{z[f(x) < f(z0)}

is bounded and that f is Lipschitz continuously differentiable in a neighborhood of A/. Let
Algorithmnl c g beimplemented with the Fletcher—Reevesformulaand alinesearchthat satisfies
the strong Wolfe conditions. Then

lm V f(z) = 0.
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This result has been generalized to allow for any choice of 3, such that |3, < B¢ [112].
A similar result for the Polak—Ribiére method, but with more complex conditions on the line
search, has been proved in [134]. This complexity in the line search is probably necessary, as
there are examples where reasonable line searches lead to failure in the Polak—Ribiére method,
[222]. One can also prove convergenceif 352 isreplaced by max(8L %, 0) [112].

Thereis continuing research on these methods and we point to [112], [134], [205], and [202]
as good sources.

3.3 Trust Region Methods

Trust region methods overcome the problems that line search methods encounter with non-spd
approximate Hessians. In particular, a Newton trust region strategy allows the use of complete
Hessian information even in regionswhere the Hessian has negative curvature. The specific trust
region methods we will present effect a smooth transition from the steepest descent direction to
the Newton direction in away that gives the global convergence properties of steepest descent
and the fast local convergence of Newton's method.

Theideaisvery simple. We let A be the radius of the ball about . in which the quadratic
model

me(z) = f(we) + V(@) (@ = 2e) + (2 — 2)T He(x — 20) /2
can be trusted to accurately represent the function. A is called the trust region radius and the
ball
T(A) = {z]||lz - z|| < A}
is caled the trust region.

We compute the new point z by (approximately) minimizing m. over 7 (A). The trust
region problem for doing that is usually posed in terms of the difference s; between x. and the
minimizer of m.. in the trust region
(3.28) H?\TISHA Mme(ze + 5).

We will refer to either the trial step s, or the trial solution =, = x. + s; as the solution to the
trust region problem.

Having solved the trust region problem, one must decide whether to accept the step and/or to
changethetrust regionradius. Thetrust region methodsthat wewill discussin detail approximate
the solution of the trust region problem with the minimizer of the quadratic model along a
piecewise linear path contained in the trust region. Before discussing these specific methods,
we present a special case of aresult from [223] on global convergence.

A prototype trust region algorithm, upon which we base the specific instances that follow, is
Algorithm 3.3.1.

ArcoriteM 3.3.1. t r basi c(z, f)
1. Initialize the trust region radius A.
2. Do until termination criteria are satisfied

(a) Approximately solve the trust region problemto obtain z;.

(b) Test both the trial point and the trust region radius and decide whether or not to
accept the step, the trust region radius, or both. At least one of = or A will change
in this phase.

Most trust region algorithms differ only in how step 2a in Algorithm t r basi ¢ is done.

There are a so different waysto implement step 2b, but these differ only in minor details and the
approach we present next in §3.3.1 is very representative.
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3.3.1 Changing the Trust Region and the Step

The trust region radius and the new point are usually tested simultaneously. While a notion of
sufficient decreaseisimportant, thetest iscentered on how well thequadratic model approximates
the function inside the trust region. We measure this by comparing the actual reductionin f

ared = f(xc) — f(x1)
with the predicted reduction, i.e., the decrease in the quadratic model
pred = me(z.) —me(x) = =V f(ve) sy — sf Hesy /2.

pred > 0 for al the trust region algorithms we discuss in this book unless V f(z.) = 0. We
will introduce three control parameters

Ho S Hlow < Nhigha

which are used to determineif thetrial step should bergjected (ared/pred < o) and/or thetrust
region radius should be decreased (ared/pred < piow), increased (ared/pred > pipign), OF l€ft
unchanged. Typical values are .25 for 10, and .75 for ppign. Both py = 1074 or o = fiow
are used. One can also use the sufficient decrease condition (3.4) to determine if the trial step
should be accepted [84].

We will contract and expand the trust region radius by simply multiplying A by constants

0 < wgown < 1 < wyp.

Typical values are wyoun, = 1/2 and w,, = 2. There are many other ways to implement atrust
region adjustment algorithm that also give global convergence. For example, the relative error
|pred — ared|/||V f]| can be used [84] rather than the ratio ared/pred. Finaly we limit the
number of times the trust region radius can be expanded by requiring

(3.29) A < Cr||Vf(ze)l,

for some C'r > 1, which may depend on z.. This only serves to eliminate the possibility of
infinite expansion and is used in the proofs. Many of the dogleg methods which we consider
later automatically impose (3.29).

The possibility of expansion is important for efficiency in the case of poor scaling of f.
The convergence theory presented here [162] also uses the expansion phase in the proof of
convergence, but that is not essential. We will present the algorithm to test the trust regionin a
manner, somewhat different from much of the literature, that only returns once anew iterate has
been accepted.

ALGORITHM 3.3.2. trt est (z., x¢, x4, f, A)
1 z==x,
2. Dowhilez = z,.

(a) ared = f(xc) - f(wt)! St = Ty — T¢, pred = _vf(xc)TSt - ‘91?I{Ct9t/2

(b) If ared/pred < po thenset z = z., A = wyownd, and solve the trust region
problem with the new radius to obtain a new trial point. If the trust region radius
was just expanded, set z = x9!9.

(©) If po < ared/pred < pyow, thenset z = x; and A = wyownA.
(d) If piiow < ared/pred < pinigh, Set z = .
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(€) If ppign < ared/predand ||si|| = A < Cr||Vf(z)|, thensetz = z., A = wypA,
and solve the trust region problem with the new radius to obtain a new trial point.
Soretheold trial point as z¢!? in case the expansion fails.

3 zy =2z

TheloopinAlgorithmt rt est servesthe same purposeastheloopinalinesearch algorithm
such as Algorithm st eep. One must design the solution to the trust region problem in such a
way that that loop will terminate after finitely many iterations and ageneral way to do that isthe
subject of the next section.

We incorporate Algorithm t r t est into a general trust region algorithm paradigm that we
will use for the remainder of this section.

ArcoriTHM 3.3.3. trgen(z, f)

1. Initialize A
2. Do forever

(8 Letx. = 2. Compute V f(z.) and an approximate Hessian H...
(b) Solvethetrust region problemto obtain a trial point ;.
(c) Caltrtest (x.,z,x, f,A)

Hessians and gradients are computed only in step 2a of Algorithmt r gen.

3.3.2 Global Convergence of Trust Region Algorithms

While one can, in principal, solve the trust region problem exactly (see §3.3.4), it is simpler
and more efficient to solve the problem approximately. It is amazing that one need not do a
very good job with the trust region problem in order to get global (and even locally superlinear)
convergence.

Our demands of our solutions of the trust region problem and our local quadratic models
are modest and readily verifiable. The parameter o in part 1 of Assumption 3.3.1, like the
parameter Cr in (3.29), is used in the analysis but plays no role in implementation. In the
specific algorithms that we discuss in this book, o can be computed. Part 2 follows from well-
conditioned and bounded model Hessians if Algorithm t rt est is used to manage the trust
region.

AssumMPTION 3.3.1.
1. Thereiso > 0 such that
(3.30) pred = f(xe) —me(xr) = ol|Vf(ze) || min(([s[], |V (ze)]])-
2. Thereis M > 0 such that either ||s;|| > ||V f(x.)||/M or ||s¢|| = Ae.
The global convergence theorem based on this assumption should be compared with the

similar result on line search methods—Theorem 3.2.4.

TaeoreM 3.3.1. Let Vf be Lipschitz continuous with Lipschitz constant L. Let {x}
be generated by Algorithmt r gen and let the solutions for the trust region problems satisfy
Assumption 3.3.1. Assume that the matrices { H; } are bounded. Then either f is unbounded
frombelow, V f(z;) = 0 for some finite &, or
(3.3D) lim Vf(zr)=0.

k—o0
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Proof. Assumethat V f(x) # 0 for al k and that f is bounded from below. We will show
that thereis Mr € (0, 1] such that once an iterate istaken (i.e., the step is accepted and the trust
region radius is no longer a candidate for expansion), then

(3.32) sl > Mz ||V f(x)]]-

Assume (3.32) for the present. Since sy, is an acceptable step, Algorithmtrt est and part 1 of
Assumption 3.3.1 imply that

aredy, > popredy, = pol|V f (zx) o min([|sk ||, [V f (zx)])-
We may then use (3.32) to obtain
(3.33) aredy > poo My ||V f (z) ||

Now since f(zy) is adecreasing sequence and f is bounded from below, limy_, ., ared;, = 0.
Hence (3.33) implies (3.31).
Itremainsto prove(3.32). Tobeginnotethatif ||s|| < Ay thenby part 2 of Assumption 3.3.1

skl = IV f(ze)ll /M.
Hence, we need only consider the casein which
(3:34) skl = Ax and [|si ]| < [|V.f(zk)l,

sinceif (3.34) does not hold then (3.32) holds with My = min(1, 1/M).
We will complete the proof by showing that if (3.34) holds and s, is accepted, then

20 min(1 — ppigh, (1 — ,uo)w;pQ)
M+ L

(3.35) [skll = Ax > IV f(zk)l]-

Thiswill complete the proof with

20 min(1 — ppign, (1 — po)wy,2
MT:min<1,1/M, g (1 = phign, (1 — po) p)).

M+ L
Now increase the constant A/ > 0 in part 1 of Assumption 3.3.1 if needed so that
(3.36) |Hy|| < M for al k.

We prove (3.35) by showing that if (3.34) holds and (3.35) does not hold for atria step s;,
then the trust region radius will be expanded and the step corresponding to the larger radius will
be acceptable. Let s; be atrial step such that ||s;|| < ||V f(zk)]| and

20 min(1 — ppign, (1 — ﬂo)wipz)
M+ L

We use the Lipschitz continuity of V f and (3.36) to obtain

(3.37) lstll = A <

IV f (i)l

1

ared; = —Vf(zy) s — / (Vf(zp +tse) — V() s dt
0

1
= pred; + s} Hgs¢/2 — / (Vf(zg +tse) — Vf(xg)) s dt
0

> predy — (M + L)||s¢||*/2.
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Therefore, using (3.30) from Assumption 3.3.1, we have

ared; > 1 (M + L)|s¢?

pred; 2pred,
(3.38)
(M +L)]s|?

2 S ) TV F @) e )

Now since ||s¢|| < ||V f(zx)| by (3.34) we have

min([|V £ (zx)|[, [sell) = [ls:|

and hence
(3.39)

aredy, (M + L)||se|
>l - — > i
predy, = 2[Vf(ap)llo ~ Fien

by (3.37). Hence, an expansion step will be taken by replacing A, by A" = w,,A, and s, by
57, the minimum of the quadratic model in the new trust region.
Now (3.38) still holds and, after the expansion,

sl < wupllsiell < wupl|V f (i)l-

So
min(||V.f (zx)ll, [Is¢" 1) > lls ||/ wup.

Hence,

ared; . (M +L)|s;|1?

predi  — 20|V f(xx) | min([|V.f (zx), lIs1])

+ 2
>1-— (M + L)wyp||s{ || >1— (M + L)wyp st > o
2V f(zp)llo 2|V f(zr)lle

by (3.37). Hence, the expansion will produce an acceptable step. This means that if the final
accepted step satisfies (3.34), it must also satisfy (3.35). This completes the proof. O

3.3.3 A Unidirectional Trust Region Algorithm

The most direct way to compute atrial point that satisfies Assumption 3.3.1isto mimic theline
search and simply minimize the quadratic model in the steepest descent direction subject to the
trust region bound constraints.
In this algorithm, given a current point x. and trust region radius A, our trial point is the
minimizer of
Ve(A) = me(ze — AV f(2c))

subject to the constraint that
z(A) =z, — AV f(z.) € T(AL).
Clearly the solution is z(\) where

TGl if Y/ (2e) THY fze) <0,
(340) A=

- IV f o) I A, -
min (me)THCVf(wc)’ vac)n) if Vf (o) HoV f () > 0.
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x(f\), the minimizer of the quadratic model in the steepest descent direction, subject to the trust
region bounds, is called the Cauchy point. We will denote the Cauchy point by z¢7 .2

Then with 2" as trial point, one can use Theorem 3.3.1 to derive a global convergence
theorem for the unidirectional trust region.

THEOREM 3.3.2. Let V£ be Lipschitz continuous with Lipschitz constant L. Let {x} be
generated by Algorithmt r gen with z; = 2°* and (3.40). Assume that the matrices { .} are
bounded. Then either f(z}) isunbounded frombelow, V f(z;) = 0 for some finite &, or

khm Vi(zg)=0.

Proof. We show that z; satisfies part 2 of Assumption 3.3.1. If ||s;|| = A, thenthe assertion
holdstrivialy. If ||s;|| < A, then, by definition of 27,

IV () 2V £ ()
V() THNV f(ae)

Hence, if || H.|| < M,
[sell = IV f(@e) |l /M

as asserted.
We leave the proof that x, satisfies part 1 for the reader (exercise 3.5.8). O
The assumptions we used are stronger that those in, for example, [104] and [223], where

liminf ||V f(zg)]| =0

rather than V f (z;) — 0 is proved.

3.3.4 The Exact Solution of the Trust Region Problem

The theory of constrained optimization [117], [104] leads to a characterization of the solutions
of the trust region problem. In this section we derive that characterization via an elementary
argument (see also [84], [242], and [109]). This book focuses on approximate solutions, but the
reader should be aware that the exact solution can be computed accurately [192], [243].

TueoreM 3.3.3. Let g € RY and let A bea symmetric N x N matrix. Let
m(s) = g7s + 5T As/2.
A vector s isa solution to

341 min m(s
( ) Isll<A (s)

if and only if thereis v > 0 such that
(A+vl)s=—g

and either v =0 or ||s|| = A.

Proof. If ||s|| < A then Vm(s) = g + As = 0, and the conclusion follows with v = 0. To
consider the case where ||s|| = A, let A; < Ay < --- Ay bethe eigenvalues of A.

1In some of the literature, [84], for example, H.. is assumed to be positive definite and the Cauchy point is taken to
be the global minimizer of the quadratic model.
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Clearly, for any v,
m(s) =gls+sTAs/2
=gTs+sT(A+vl)s/2 — vAZ)2.
Consider the function, defined for v > vy = max(0, —\1),
s(v) = —(A+vI) g
Since

lim s(v) =0

V—00

and ||s(v)]| isacontinuous decreasing function of v € (v, co) we see that if

lim [s(v)] > A

v—1g

then thereisaunique v such that ||s(v)|| = A. Sincev > vy, A + vI is positive semidefinite;
therefore, s(v) isagloba minimizer of

gTs+sT(A+vI)s/2.
Hence, we must have
m(s) > m(s(v))

for all s suchthat ||s|| = A. Hence, s(v) isasolution of (3.41).
Theremaining caseis
lim ||s(v)] < A.
v—1g

Thisimplies that ¢ is orthogonal to the nontrivial space Sy of eigenfunctions corresponding to
—1y (for otherwise thelimit would beinfinite). If welet s = s; + s2, Where s, isthe projection
of s onto Sy, we have

m(s) =sTg+sT(A+uwvg)s1/2+ sk (A+1p)s2/2 — 1pA2/2
= S{g + S{(A + )\0)81/2 — Z/QA2/2.

Hence, m(s) isminimized by setting s; equal to the minimum normsolutionof (A+vp)z = —g
(which exists by orthogonality of g to Sy) and letting s, be any element of Sy such that

s2]* = A% = [s1]|*.

This compl etes the proof. O

3.3.5 The Levenberg—Marquardt Parameter

The solution of thetrust region problem presented in §3.3.4 suggests that, rather than controlling
A, one could set
sy = —(vI+ H.) 'y,

adjust v inresponseto ared/pred instead of A, and still maintain global convergence. A natura
application of this idea is control of the Levenberg—Marquardt parameter. This results in a
much simpler algorithm than L evenberg—Marquardt—Armijo in that the stepsize control can be
eliminated. We need only vary the Levenberg—Marquardt parameter as the iteration progresses.
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We present the algorithm from [190] to illustrate this point. For an inexact formulation, see
[276].
The Levenberg—Marquardt quadratic model of least squares objective

1 = 2 1 T
fa) =53 (@)} = 5R()" R(x)

with parameter v, at the point z.. is
me(x) = f(ze) + (x — )" R (ze) " R(ze)
(3.42)
+3(x — o) T (R (2e) "R (we) + vel ) (z — ).
The minimizer of the quadratic model isthetria point
(3.43) 2y = e — (R (20)" R (xe) + vel) 'R (2)" R(xe),
thestepis s = z; — x., and the predicted reduction is
pred =m(z.) —m(zy) = —s" R (xe)" R(z.) — 55" (R (zc)" R (zc) + vel)s
= —sTR/(z0) " R(xc) + 55T R ()" R(xc) = — 35TV f(x.).

The algorithm we present below follows the trust region paradigm and decides on accepting
the trial point and on adjustments in the Levenberg—Marquardt parameter by examinaing the

ratio
ared _ flze) = fxe)
pred m(z.) — m(xy)
I~ f)
STV f(ze)

In addition to the trust region parameters 0 < waown < 1 < wyp aNd 1o < fiow < Phigh
we require adefault value v of the Levenberg—Marquardt parameter.

The agorithm for testing the trial point differsfrom Algorithmt r t est inthat we decrease
(increase) v rather that increasing (decreasing) atrust regionradiusif ared/pred islarge (small).
We aso attempt to set the Levenberg—Marquardt parameter to zero when possible in order to
recover the Gauss—-Newton iteration’s fast convergence for small residual problems.

ArcoritaMm 3.34. trtest| Mz, x4, x4, f,v)
1 z==x,
2. Dowhilez = z,.

@ ared = f(xe) = f(x1), 5t = T — T, pred = =V f(2) " s1/2.

(b) If ared/pred < po thenset z = z., v = max(wy,v, 1), and recompute the trial
point with the new value of v.

(©) If po < ared/pred < piow, thenset z = z, and v = max(wypv, 1o).

(d) If pow < ared/pred, thenset z = ;.
If pepign < ared/pred, then set v = wygun .
If v <y, thensety = 0.

3 xy =z
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TheL evenberg—Marquardt version of Algorithmt r gen issimpleto describeand implement.

ALcoriTHM 3.35. | evmar (z, R, kmax)
1. Setv =
2. Fork=1,..., kmax

(8 Letz.==z.

(b) Compute R, f, R/, and V f; test for termination.
(c) Compute z; using (3.43).

(d) Caltrtest!l mz., z¢,z, f,v)

We state a convergence result [190], [276] without proof.

THEOREM 3.3.4. Let R be Lipschitz continuously differentiable. Let {x} and {v;} be the
sequence of iterates and Levenberg—Marquardt parameters generated by Algorithm | evimar
with kmaz = co. Assumethat {v;} is bounded from above. Then either R/ (x;,)T R(x,) = 0
for some finite k or

klir{:o R'(z3)"R(z1) = 0.
Moreover, if z* isa limit point of {x}} for which R(z*) = 0 and R’(z*) has full rank, then
x, — x* g-quadratically and v, = 0 for & sufficiently large.

3.3.6 Superlinear Convergence: The Dogleg

The convergence of the unidirectional trust region iteration can be as slow as that for steepest
descent. To improve the convergence speed in the terminal phase we must alow for approx-
imations to the Newton direction. The power of trust region methods is the ease with which
the transition from steepest descent, with its good global properties, to Newton’s method can be
managed.

We define the Newton point at . as

e =z, — H'Vf(z.).
If H.isspd, the Newton point isthe global minimizer of thelocal quadratic model. On the other
hand, if H. has directions of negative curvature the local quadratic model will not have afinite
minimizer, but the Newton point is still useful. Note that if H = I the Newton point and the
Cauchy point are the same if the Newton point isinside the trust region.

We will restrict our attention to a special class of algorithms that approximate the solution
of the trust region problem by minimizing m.. along a piecewise linear path S C 7 (A). These
paths are sometimes call ed doglegs because of the shapes of the early examples[84], [80], [218],
[217], [220]. Inthe case where V2 f () is spd, one may think of the dogleg path as a piecewise
linear approximation to the path with parametric representation

{z = (M + V2 f(2))"'Vf(z) |0 < A}

Thisisthe path on which the exact solution of the trust region problem lies.

The next step up from the unidirectional path, the classical dogleg path [220], has as many
asthree nodes, =, z¢7*, and 2¥. Here 2$'* isthe global minimizer of the quadratic model in
the steepest descent direction, which will exist if and only if V f(z.)T H.V f(2.) > 0. If 2¢F*
existsand
(3.44) (N — 2FP) T (xCP* —2,) > 0,

(& c (&
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wewill let z¥ bethe terminal node. If (3.44) holds, asit dwayswill if H. isspd, then the path
can be parameterized by the distance from x. and, moreover, m,. decreases along the path. If
(3.44) does not hold, we do not use =¥ as a node and revert to the unidirectional path in the
steepest descent direction.

Note that (3.44) implies
(3.45) Vix)" (x —z.) <o.

We can express the conditions for using the three node path rather than the unidirectional path

very simply. If 2" ison the boundary of the trust region then we accept &7 asthetrial point.

If 2¢F = 2CP* isin theinterior of the trust region, then we test (3.44) to decide what to do.
With thisin mind our trial point for the classical dogleg algorithm will be

z¢r if |2, — 287 = A
or z¢P* exists and (3.44) fails,
(3.46) Ay = =N if |2, — 2CF| < ||z — 2| < A

and (3.44) holds,

yP(A) otherwise.

Here y? (A) isthe unique point between ¢'F and 22V such that ||z — x| = A.
The important properties of dogleg methods are as follows:

¢ No two points on the path have the same distance from z.; hence the path may be param-
eterized as z(s), where s = ||z(s) — z.||.

e m.(x(s)) isastrictly decreasing function of s.

This enables us to show that the dogleg approximate solution of the trust region problem sat-
isfies Assumption 3.3.1 and apply Theorem 3.3.1 to conclude global convergence. Superlinear
convergence will follow if H,, isasufficiently good approximation to V2 f (xy,).

LemMma 3.3.5. Let z.., H., and A be given. Let H.. be nonsingular,
sV = —H 'Wf(x.), anda =z, + sV.
Assumethat V f(z.)T H.V f (x.) > 0 and let

CPx _ _CPx _ ||Vf(ﬂl?c)||2
T T T T (@) THY ()

Vi(xe).

Let S bethe piecewise linear path from z. to 2°7* to 2. Then if
(3.47) (sN — sCPNTsCPx 5
for any § < ||s™V|| thereisa unique point z(§) on S such that

[[2(8) = e[l = 6.

Proof. Clearly the statement of the result holds on the segment of the path from z to ¢ 7.
To prove the result on the segment from 2¢7* to 2V we must show that

B(3) = (1= 25 + A2
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is strictly monotone increasing for A € (0, 1).
Since (3.47) implies that

™ Hs“P* ) > (s™) TP > (|72
and therefore that [|s™V|| > ||s“7*||, we have

(b’()\) _ (SN _ SCP*)T((l _ )\)SCP* _|_)\SN)
— _(1 _ )\)HSCP*H2 4 (1 _ )\)(SN)TSCP* + /\||SN||2 _ /\(SN)TSCP*

> A(IsMP = (sM)Ts9P*) = AV = [s“FD]IsN ] > 0.
Hence, ¢ isan increasing function and the proof is complete. O
The next stage is to show that the local quadratic model decreases on the dogleg path S.
LeEMMA 3.3.6. Let the assumptions of Lemma 3.3.5 hold. Then the local quadratic model

1
me(z) = f(zc) + Vf(xC)T(x — @) + 5(1‘ - xc)THc(x — )
is strictly monotone decreasingon S.

Proof. Since zS'F* is the minimum of the local quadratic model in the steepest descent
direction, we need only show that m.. is strictly decreasing on the segment of the path between
z¢P* and V. Set

P = me(ze+ (1= XN)sT* +AsT)

flae) + V()T (1= 2)sP* 4+ AsV)

+2((1 =N + AsN)TH (1= N)sOP + asM).
Noting that H.s = —V f(z.) and s°F* = —AV f(.), we obtain
) = flae) = M1 = 22|V f(ze)]|?
A1 = A/2)V f ()TN
+5(1 = NNV f (o) THeV f ().
Therefore,
V) = 231 = V)|V ()|
1 =NV (@) sV = (1= NV f(2e)"HV f(ce)-

Since .
)\vf(CUC)THcvf(CC) = va(xC)”Q

we have, using (3.44),
W) = 1= NAIVF@)? = V(@) THV f(x))

= (1= NV f(x)T(AVf(zc) — H7 'V f(x))

= (e — 2P (@) — x) <0,
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completing the proof. O

At this point we have shown that the approximate trust region problem has a unique solution.
To proveglobal convergencewe need only verify that the approximate solution of thetrust region
problem 2 satisfies Assumption 3.3.1.

THEOREM 3.3.7. Let V£ be Lipschitz continuous with Lipschitz constant L. Let {x} be
generated by Algorithm t r gen and the solutions for the trust region problem be given by
(3.46). Assume that the matrices { H),} are bounded. Then either f(zy) is unbounded from
below, V f(z)) = 0 for somefinite k, or

(3.48) klim Vf(zg) =0.

Proof. We need to check that the solutions of the trust region problem satisfy Assump-
tion 3.3.1. Part 2 of the assumption follows from the definition, (3.46), of 2" and the bounded-
ness of the approximate Hessians. Let

[Hk|| < M

foral k. If ||s|| < A, then (3.46) impliesthat (3.44) must hold and so z; = x7 isthe Newton
point. Hence,
skl = llex — il = 1 H 'V f (@)l 2 1V f ()l /M,

which proves part 2.

Verification of part 1 will complete the proof. There are several casesto consider depending
on how = is computed.

If 2P = 2CF then either |sCT|| = A. or (3.44) fails. We first consider the case where
V()T HV f(xe) < 0. Inthat case ||sO7|| = A, and A = A, /||V f(x.)]|. Therefore,

pred = MVf(@)l? = 5 V(@) THV f(x.)

vf(xc)THch('rc)
2|V f(ze)l?

= Ac|[Vf ()|l — AZ

> AV f (o)l = lIslIIV £ (e)ll-

Hence (3.30) holdswith o = 1.
Now assumethat V f (z.)TH.V f(z.) > 0 and ||s°F|| = A.. Inthis case

IVl . A
Vo THN () = [V

and so R .
pred = )\||Vf(1‘c)||2 - %Vf(xc)THCVf(:cc)

V()" HeV f(2)
2V f(ze)|?

= AV f(ze)|l — AZ

> Ac”vf(xc)H/Q’

whichis (3.30) witho = 1/2.
If (3.44) fails, V f(z.)TH.V f(x.) > 0,and ||s°P|| < A, then

IV (ze)|I?

A ) THY ()’
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and R s
pred =NV f(xe)|* = %V f(xe)"HoV f ()

el AP
2Vf(xc)THCVf(a:C) 2
sl
2 b

which is (3.30) witho = 1/2.
Thefina caseisif (3.44) holdsand 2 # 2“7, Inthat case the predicted reduction is more
than Cauchy decrease, i.e., the decrease obtained by taking the Cauchy point, and hence

o V@)
= WV (we) HV(x.)

Vi)
- 2M )
whichis (3.30) with o = 1/(2M). This completes the proof. O
The last part of the proof of this theorem is very important, asserting that any solution of
the trust region problem for which pred is at least a fixed fraction of Cauchy decrease will give
global convergence. We refer the reader to [232] and [104] for a more general and detailed
treatment using this point of view.

pred

CoroLLARY 3.3.8. Any algorithmfor solving the trust region problemthat satisfies for some

T>0
C’P))

(&

pred > 7(me(x.) — me(x
satisfies (3.30) for o = 7/2.

Thetrust region CG agorithm we present in §3.3.7 can be analyzed with this corollary.

If H, = V£ (x) or asufficiently good approximation, then the classical dogleg will become
Newton's method (or a superlinearly convergent method) as theiterations approach aminimizer
that satisfies the standard assumptions. Hence, the algorithm makes a smooth and automatic
transition into the superlinearly convergent stage.

THEOREM 3.3.9. Let V f be Lipschitz continuous with Lipschitz constant L. Let {x;} be
generated by Algorithmt r gen and the solutionsfor thetrust region problemaregiven by (3.46).
Assumethat Hy, = V2 f(x) and that the matrices { H,} are bounded. Let f be bounded from
below. Let z* bea minimizer of f at which the standard assumptions hold. Thenif x* isa limit
point of =, then x;, — x* and the convergence islocally g-quadratic.

Proof. Sincez* isalimit point of {x}, thereis, for any p > 0, ak sufficiently large so that
lewll < o, |1 Hill < 2V F (@), 1H < 20192 (@) 7,

and z;, is near enough for the assumptions of Theorem 2.3.2 to hold. If Hy isspd, sois H,;l
and for such k, (3.44) holds. Hence, the dogleg path hasthe nodes z,, z{' ', and 2. Moreover,
if pissufficiently small, then

[ H ' f ()| < 2llel| < 2p.

We complete the proof by showing that if p is sufficiently small, the trust region radius will be
expanded if necessary until the Newton step isin the trust region. Once we do this, the proof is
complete as then the local quadratic convergence of Newton's method will take over.
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Now
predy = |[sklllIV f (zx)/2
by the proof of Theorem 3.3.7. Using H;, = V2 f(z) we have

1

aredy, = —Vf(xp) sy — / (Vf(xp +tsm) — Vf(ap) sy dt
0

1

_ predy + TV f(ax) 002 — / (Vf (@ + tsin) — V F(an)) s dt
0

= predy, + O([[sk[[[IV f (z)[ p)

andthereforeared/pred = 1—0O(p). Hence, for p sufficiently small, thetrust region radiuswill
be increased, if necessary, until the Newton point is inside the trust region and then a Newton
step will be taken. This completesthe proof. O

The classical dogleg algorithm isimplemented in Algorithm nt r ust , which uses the trust
radius adjustment scheme from Algorithm t rt est . It is to be understood that t r t est is
implemented so that z; is given by (3.46) and hence t rt est only samples points on the
piecewise linear search path determined by the Cauchy point, the Newton point, and (3.44).

ALGoriTHM 3.3.6. nt r ust (z, f,7)
1. Compute f(z) and V f(x)

2. 7 =7,+7|[Vf(z)|

3. Dowhile ||V f(z)|| > T

(@ Compute and factor V2 f(x)

(b) Compute the Cauchy and Newton points and test (3.44)
(c) Calltrtest (z,a¢, x4, f, A)

(d) Compute f(zy)and Vf(z4); o = x4

We implement Algorithm nt r ust in the collection of MATLAB codes.

3.3.7 A Trust Region Method for Newton-CG

Inthissectionwe present abrief account of analgorithm from[247] (seealso[257]) that combines
the trust region paradigm of §3.3.6 with the inexact Newton ideas of §2.5.2. We follow §2.5.2
and denote the preconditioner by M andlet C = M —!. We solvethe scaled trust region problem

min d),
lldllc<A 9(d)

where the quadratic model is till

o(d) = Vf(z)'d+ %dTvzf(x)d.

Herethe C-normis
ldllc = (d"Cd)'/>.

The agorithmic description of the trust region problem solver from the TR-CG method
given below is from [162]. In [247] the algorithm is expressed in terms of C rather than M.
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This is a dogleg method in that the approximate solution of the trust region problem lies on a
piecewise linear path with the CG iterations as nodes. Aslong as CG is performing properly
(i.e., p"w > 0) nodes are added to the path until the path intersects the trust region boundary. If
adirection of indefinitenessisfound (p”w < 0), then that direction isfollowed to the boundary.
In this way a negative curvature direction, if found in the course of the CG iteration, can be
exploited.

The inputs to Algorithm t r cg are the current point x, the objective f, the forcing term 7,
and the current trust region radius A. The output is the approximate solution of the trust region
problem d. This algorithm is not the whole story, as once the trust region problem is solved
approximately, one must use f(x. + d) to compute ared and then make a decision on how the
trust region radius should be changed. Our formulation differs from that in [247] in that the
termination criterion measures relative residuals in the I2-norm rather than in the C-norm. This
change in the norm has no effect on the analysisin[247], and, therefore, we can apply theresults
in §2.5 directly to draw conclusions about local convergence.

AvrcoritaMm 3.3.7. trcg(d, =, f, M, n, A, kmax)
1 r=-Vf(@)po=|rl3k=1d=0
2. DoWhile \/pr—1 > n||Vf(x)|2 and k < kmax

@ z=Mr

0 Th_1 =2"7r

(¢ ifk=1theng=0andp =z
else
B="Tr-1/Th—2,p =2+ (D

(d) w=V?f(z)p
If pTw < 0 then
Find 7 such that ||d + 7p|lc = A
d = d+ Tp; return

© a=m_1/pTw
®r=r—auw

@ prp=r"r

(h) d=d+ap

(i) If[|dllc > A then
Find 7 such that ||d + 7p|lc = A
d = d+ Tp; return

() d=dik=k+1

Algorithmt r cg does what we would expect a dogleg algorithm to do in that the piecewise
linear path determined by the iteration moves monotonically away from x (inthe|| - ||c-norm!)
and the quadratic model decreases on that path [247]. Algorithmt r cg will, therefore, compute
the same Newton step asAlgorithm f dpcg. One might think that it may be difficult to compute
the C-norm if one has, for example, a way to compute the action of M on a vector that does
not require computation of the matrix C'. However, at the cost of storing two additional vectors
we can update C'p and Cd as the iteration progresses. So, when p is updated to z + Gp then
Cp = r + SCp can be updated at the same time without computing the product of C' with p.
Then ||p|lc = pT Cp. Similarly d = d + Tp impliesthat Cd = Cd + 7Clp.

Algorithm cgt r ust combines the solution of the trust region problem from t r cg, the
trust region radius adjustment scheme fromt rt est , and (indirectly) the locally convergent
algorithm newt cg. The result fits nicely into our paradigm algorithmt r gen.
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ArcoriTHM 3.3.8. cgt rust (z, f, 7)
1. Initialize A, M, n, kmazx.
2. Do forever

(@ Letz.==x. ComputeV f(x.).
(b) Calltrcg(d,x, f, M,n, A, kmax) to solve the trust region subproblem.
Sete, =z +d.

(c) Caltrtest (x.,xsx, f,A),
solving the trust region subproblemwith Algorithmt r cg.

(d) Update n.

Theorem 3.3.10 combines severa results from [247].

THeoREM 3.3.10. Let f be twice Lipschitz continuously differentiable. Let M be a given
positive definite matrix and let {, } satisfy 0 < n,, < 1 for all n. Let {z,,} be the sequence
generated by Algorithmcgt r ust and assumethat {||V2 f(z,,)||} is bounded. Then

(3.49) lim Vf(x,)=0.
Moreover, if * is a local minimizer for which the standard assumptions hold and z,, — «*,
then

e if 5, — 0 the convergenceis g-superlinear, and

o ifn, < K,||Vf(xy,)||” for some K, > 0 the convergence is g-superlinear with g-order
1+p.

Finally, thereare § and A such that if ||z — z*|| < é and Ay < A then z,, — x*.

One can, as we do in the MATLAB code cgt r ust , replace the Hessian—vector product
with a difference Hessian. The accuracy of the difference Hessian and the loss of symmetry
present the potential problem that was mentioned in §2.5. Another, very different, approach is
to approximate the exact solution of the trust region subproblem with an iterative method [243].

3.4 Examples

The results we report here used the MATLAB implementations of steepest descent, st eep. m
damped Gauss-Newton, gaussn. m the dogleg trust region algorithm for Newton’s method,
nt r ust . m and the PCG—dogleg agorithms, cgt r ust . m from the software collection.

Our MATLAB implementation of Algorithm st eep guards against extremely poor scaling
and very long steps by setting A to

(3.50) Xo = min(1,100/(1 + |V £(2)]))

at the beginning of the line search. We invite the reader in Exercise 3.5.3 to attempt the control
examplewith Ag = 1.

We not only present plots, which are an efficient way to understand convergencerates, but we
also report counts of function, gradient, and Hessian eval uations and the results of the MATLAB
f 1 ops command.
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3.4.1 Parameter ldentification

We consider the problem from §2.6.1 except we usetheinitial dataz, = (5,5)”. Boththe Gauss—
Newton and Newton methodswill fail to convergewith thisinitial datawithout globalization (see
Exercise 3.5.14). Newton's method has particul ar trouble with this problem because the Newton
direction is not adescent direction in the early phases of theiteration. The termination criterion
and difference increment for the finite difference Hessian was the same as for the computation
in§2.6.1.

In Figure 3.1 we compare the performance of the Newton dogleg algorithm with the steepest
descent algorithm. Our implementation of the classical dogleg in nt r ust uses the standard
values
(351) Wdown = .5,wup =2, o = Uiow = -2, and Hhigh = 75,

Theplotsclearly show thelocally superlinear convergence of Newton’s method and thelinear
convergence of steepest descent. However, the graphs do not completely show the difference
in computational costs. In terms of gradient evaluations, steepest descent was marginally better
than the Newton dogleg a gorithm, requiring 50 gradients as opposed to 55 (which includesthose
needed for the 18 difference Hessian eval uati ons) for the Newton dogleg algorithm. However, the
steepest descent algorithm required 224 function evaluations, while the Newton dogleg needed
only 79. Asaresult, the Newton dogleg code was much more efficient, needing roughly 5million
floating point operations instead of the 10 million needed by the steepest descent code.

In Figure 3.2 we plot the performance of the damped Gauss-Newton and Levenberg—
Marquardt algorithms. These exploit the least squares structure of the problem and are locally
superlinearly convergent because this is a zero residual problem. They also show that ago-
rithmsthat effectively exploit the structure of the least squares problem are much more efficient.
Gauss-Newton required 6 gradient eval uations, 14 function eval uations, and 750 thousand fl oat-
ing point operations, and Levenberg—Marquardt required 12 gradients, 23 functions, and 1.3
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million floating point operations.

3.4.2 Discrete Control Problem
We consider the discrete control problem from §1.6.1 with N = 400,77 =1, yo = 0,
L(y,u,t) = (y — 3)® + .5 xu?, and ¢(y, u, t) = uy + t°.
We chose the poor initia iterate
uo(t) = 5 + 300sin(207t).

This problem can be solved very efficiently with Algorithm cgt r ust . In our implementa-
tion we use the same parametersfrom (3.51). In Figure 3.3 we compare the dogleg—CG iteration
with steepest descent. We terminated both iterations when ||V f|| < 10~8. For the dogleg—CG
code we used = .01 throughout the entire iteration and an initial trust region radius of ||ug||.
The steepest descent computation required 48 gradient eval uations, 95 function eval uations, and
roughly 1 million floating point operations, and dogleg—CG needed 17 gradient evaluations, 21
function evaluations, and roughly 530 thousand floating point operations. Note that the steepest
descent algorithm performed very well in the terminal phase of theiteration. The reason for this
isthat, in this example, the Hessian is near the identity.

3.5 Exercises on Global Convergence

3.5.1. Let F beanonlinear function from RV — RV, Let
f(@) = IF@)|?/2.
What is V f? When is the Newton step for the nonlinear equation F'(z) = 0,
d=—F(x) ' Fla),
adescent direction for f at x7?
3.5.2. ProveLemma3.2.1.

3.5.3. Implement Algorithm st eep without the scaling fixup in (3.50). Apply this crippled
algorithm to the control problem example from §3.4.2. What happens and why?

3.5.4. Show that if f isaconvex quadratic then f isbounded from below.

3.5.5. Verify (3.40).

3.5.6. Show that the Levenberg—Marquardt steps computed by (3.20) and (3.21) are the same.
3.5.7. Prove Theorem 3.2.7.

3.5.8. Complete the proof of Theorem 3.3.2.

3.5.9. Prove Theorem 3.3.4.

3.5.10. Look at thetrust region algorithm for nonlinear equationsfrom [218] or [84]. What arethe
costs of that algorithm that are not present in aline search? When might this trust region
approach have advantages for solving nonlinear equations? Could it be implemented
inexactly?
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3.5.11. The double dogleg method [80], [84] puts a new node on the dogleg path in the Newton
direction, thereby trying more aggressively for superlinear convergence. Implement this
method, perhaps by modifying the MATLAB code nt r ust . m and compare the results
with the examplesin §3.4. Prove convergence results like Theorems 3.3.7 and 3.3.9 for
this method.

3.5.12. In[51] atrust region agorithm was proposed that permitted inaccurate gradient computa-
tions, with the relative accuracy being tightened as the iteration progresses. Look at [51]
and try to design a similar algorithm based on the line search paradigm. What problems
do you encounter? How do you solve them?

3.5.13. Suppose one modifies Algorithm t r t est by not resolving the trust region problem if
the trial point is rejected, but instead performing a line search from z,, and setting A =
|lx+ — z.||, where - is the accepted point from the line search. Discuss the merits of
this modification and any potential problems. See [209] for the devel opment of thisidea.

3.5.14. Write programs for optimization that take full Gauss-Newton or Newton steps (you can
cripple the MATLAB codes gaussn. mand nt r ust . mfor this). Apply these codes to
the parameter identification problem from §3.4.1. What happens?

3.5.15. Write anonlinear CG code and apply it to the problemsin §3.4. Try at |east two waysto
manage the line search. How important are the (strong) Wolfe conditions?

3.5.16. Discusstheimpact of using adifference Hessianin Algorithmt r cg. How will the global
convergence of Algorithm cgt r ust be affected? How about the local convergence?
Consider the accuracy in the evaluation of V f in your results.

3.5.17. Without looking at [247] describein general terms how the proof of Theorem 3.3.1 should
be modified to prove Theorem 3.3.10. Then examine the proof in [247] to seeif you | eft
anything out.
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Chapter 4

The BFGS Method

Quasi-Newton methods update an approximation of V2 f(z*) as the iteration progresses. In
general the transition from current approximations x. and H, of =* and V2 f(z*) to new ap-
proximations x4 and H_. isgiven (using aline search paradigm) by the following steps:

1. Compute asearch directiond = —H_ 'V f(z.).
2. Find x4 = z. + Ad using aline search to insure sufficient decrease.
3. Usez,., x4+, and H, to update H. and obtain H .

The way inwhich H, is computed determines the method.

The BFGS (Broyden, Fletcher, Goldfarb, Shanno) [36], [103], [124], [237] method, which
isthe focus of this chapter, and the other methods we will mentionin §4.3 are also called secant
methods because they satisfy the secant equation

4.1 His=y.

In(4.1)
s=xzy —zcandy =Vf(xy)— Vf(ze).

If N = 1, al secant methods reduce to the classical secant method for the single nonlinear
equation f/(z) =0, i.e,
fl(@e)(xe — )
4.2 Ty =T — 7,
@2 P ) - )
where z_ istheiterate previousto x..

The standard quasi-Newton update for nonlinear equations is Broyden's [34] method, a
rank-one update,

(y - HCS)ST

4.3 Hy=H +-——7F—.
( ) + -+ sTs
Broyden's method does not preserve the structural properties needed for line search methodsin
optimization, namely, symmetry and positive definiteness, and could, in fact, encourage con-
vergence to alocal maximum. For that reason quasi-Newton methods in optimization are more
complex than those used for nonlinear equations. The methods of analysis and implementation
are more complex aswell.

In this chapter we will concentrate on the BFGS method [36], [103], [124], [237], which is
the rank-two update

T T
yy"  (Hes)(Hes)

4.4 H, =H, + 20— — =2V
(44) + et yTs sTH,s

We will briefly discuss other updates and variations that exploit problem structurein §4.3.

71
Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.



Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

72 ITERATIVE METHODS FOR OPTIMIZATION

4.1 Analysis

Thissection beginswith some simple observations on nonsingularity and positivity of theupdate.
Itisvery useful for both theory and practice to express (4.4) in terms of theinverse matrices.
The formulawe usein thisbook isLemma4.1.1.

Lemma 4.1.1. Let H, bespd, y*'s # 0, and H, given by (4.4). Then H;l is nonsingular
and

T T T

_ sy 1 (] EE

45 H'=|(I-2-)|H I—Z— =
(4 * ( yTS) ¢ ( yTS>+ s

Proof. Seeexercise4.5.2. O
LeEmma 4.1.2. Let H, bespd, y*'s > 0, and H given by (4.4). Then H_ isspd.

Proof. Positivity of H,. and y”'s # 0 imply that for all z # 0,
T,\2 T 2
CTo | Ly, GTHe)

T
2 Hyz= .
* yL's sTH.s

Using the symmetry and positivity of H., we have
(2T H.s)* < (s"H.s) (2T H.2),
with equality only if z = 0 or s = 0, and, therefore, since z, s # 0 and y”'s > 0,

(zTy)?
yl's

TH 2> >0,

asasserted. 0O
If yT's < 0 the update is considered afailure.

4.1.1 Local Theory

The local theory [37] requires accurate initial approximations to both z* and V2 f(z*). The
statement of the convergence result is easy to understand.

THEOREM 4.1.3. Let the standard assumptions hold. Then thereis § such that if
lzo — 2™ < 6 and || Ho — V2 f (") < 6,

then the BFGSiterates are defined and converge g-superlinearly to z*.

Technical Details

The proof of Theorem 4.1.3 is technical and we subdivide it into several lemmas. Our proof is
a hybrid of ideas from [37], [135], and [154]. Similar to other treatments of this topic [45] we
begin with the observation (see §2.5.2) that one may assume V2 f(x*) = I for the convergence
analysis.

LeEmMA 4.1.4. Let the standard assumptions hold and let

fly) = f(Ay),
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where A = (V2f(z*))~/2. Let 2. and H,. be given and let &, = A~'z.and H, = AH_.A.
Then the BFGS updates (., H, ) for f and (i, H. ) for f arerelated by

iy =A"'z, and H, = AH_A.

In particular, the BFGS sequence for f exists (i.e,, H,, isspd for all n) if and only if the BFGS
sequencefor f doesand the convergence of {x., } isg-superlinear if and only if the convergence
of {Z,}is.

Proof. The proof isasimple calculation and is left for exercise 4.5.3. O
Hence we can, with no loss of generality, assumethat V2 f(z*) = I, for if thisis not so, we
can replace f by f and obtain an equivalent problem for whichiit is.
Keeping in mind our assumption that V2 f(z*) = I, we denote errorsin the inverse Hessian
by
E=H'-Vfx)'=H"'-1I
These errors satisfy asimple recursion [37].

LemMma 4.1.5. Let the standard assumptions hold. Let H. be spd and
Ty =x.— H 'V f(x,).
Then thereis 6y such that if
0 < [lze — || < 6 and || B || < bo,
then y”'s > 0. Moreover, if H, isthe BFGSupdate of H, then
(4.6) E. = (I —wwl)E.(I —wwh) 4+ A,
where w = s/||s|| and for some Ka > 0

(4.7) [A]] < Kalls]l.
Proof. Let 6y be small enough so that V f(z.) # 0 if . # =*. Theorem 1.2.1 implies that
Vi(xe) = /01 V2 f(x* 4 tec)ecdt = e, + Aqe,
where A, isthe matrix given by

1
Ay = / (V2f(z* +te.) — ) dt.
0

Clearly
1AL < Allecll /2,
and
s=—H'Vf(z.) =+ E)I+ Ar)e,.
Therefore,
llecll(1 = éo) (1 = 760/2) < [|s]| < [lec||(1 + bo)(1 + ~60/2)
and hence
(4.8) 0 < lecll/2 <|lsl| < 2[lecll
if, say,
(4.9) 6o < min(1/4,1/(27)).
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We will assume that (4.9) holds for the rest of this section.
The standard assumptions, our assumption that V2 f(z*) = I, and the fundamental theorem
of calculusimply that

1
y =Vfry)—Vf(ze) =/ V2f(x.+ts)sdt
(4.10) 0

1
= st [ (TGt 1)~ Dot =5+ s,
0

where A isthe matrix given by

1
Agz/ (V2 f(ze +ts) — I)dt.
0

The standard assumptionsimply that [|Az || < v(|le+ || + [lec[|) /2. Hence, (4.8) implies that
(4.11) yTs =sTs 4+ (A2s)Ts > [|s]2(1 = 3yllec]l/2)[Is]*(1 = 3760/2) > 0
provided 69 < 2v/3. We have that

sy” _ ssT + s(Ags)T _ sst As = wwT — A,
yTs  sTs+ (Ag8)Ts  sTs

(4.12)
where (see exercise 4.5.4), for some C' > 0,
(4.13) [As]] < C]ls]|.
Subtracting (V2 f(z*))~! = I from (4.5) and using (4.12) gives us
By = —ww” +A)H NI —ww” + Af) +ww’ — 1
= (I —ww?)(E. + (I —ww?) +ww? — T+ A
= (I - wwT)Eo(I - waT) + A,

where
A= NH NI —ww” + ADY + (I —wo)H AL,

Therefore, if (4.9) holdsthen 1 + 69 < 3/2 and

[A[ < (1+60)1As][(2 + [|As]]) < [[s[[3C(2 + Clis])/2

< 30|52 + 2C60) /2.

Reduce 6 if necessary so that 2C'6, < 1 and the proof is complete with Kao = 9C/2. D

Lemmad4.1.5impliesthat the approximate Hessiansdo not drift too far from theexact Hessian
if the initial data are good. This property, called bounded deterioration in [37], will directly
imply local g-linear convergence.

CoroLLARY 4.1.6. Let theassumptionsof Lemma4.1.5 hold and let 6, be asin the statement
of Lemma 4.1.5. Then

(4.14) IE I < [[Eell + Kallsl < [[Eell + Ka(llecll + lle+[])-
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Proof. The leftmost inequality follows from Lemma 4.1.5 and the fact that 7 — ww” isan
orthogonal projection. The final inequality follows from the triangle inequality. O

We are now ready to provelocal g-linear convergence. Thisisof interest initsown right and
isacritical step in the superlinear convergence proof. Note that, unlike the statement and proof
of Theorem 2.3.4, we do not express the estimatesin terms of |H — V2 f(z*)|| = ||[H — I|| but
intermsof £ = H~! — I. The two approaches are equivalent, sinceif | E|| < 6, < 1/2, then
|H=t| < 3/2 and the Banach lemmaimpliesthat || H|| < 2. Hence

[H = I[1/2 < || Ho[| = | Hy — 1|
< |H;t =1l = |[H;H (Hy = )|
< |H N Hy = 1] < 3| Hy, — 1| /2.

THEOREM 4.1.7. Let the standard assumptions hold and let o € (0, 1). Then thereis é, such
that if
(4.15) lzo — || < 8¢ and || Hy " — V2 f () 7H| < &,

then the BFGSiterates are defined and converge g-linearly to 2* with g-factor at most o.
Proof. For 6 sufficiently small and

(4.16) lze —a*| < dand | Ee|| = | H' — 1] <6,
the standard assumptions imply that there is K such that
(4.17) lell < K(IEellllecl| + llecl*) /2 < Ké|lecll.

Reduce 4 if necessary sothat K6 < o toobtain ||e.|| < o||e.||. The method of proof isto select
6¢ S0 that (4.16) is maintained for the entire iteration if the initial iterates satisfy (4.15).
With thisin mind we set

Ka(l -
(4.18) 8 = 6*/2 (1 + W) < 6*/2
— 0
where K » isfrom Lemma4.1.5. Now if ||Hy — I]| < &, then
[Eoll < 6¢/(1 —6¢) <26 < 67

which is the estimate we need.
Now by Corollary 4.1.6

B[] < [|Eoll + Ka(1+0)lleo-

The proof will be complete if we can show that (4.15) and (4.18) imply that || E,,|| < §* for all
n. Wedo thisinductively. If |[E,,|| < §* and |lej1] < o|le;|| foral j < n, then (4.14) implies

[Ensill < En]l + Ka(llenll + Hen-H”) < HEnH + Ka(l+ U)H€n||

SEnll + Ka(l+0)o"|leoll < [|En| + Ka(l+0)o™é

< || Boll + 8eKa(l + ">Zj=o""

o (1 sy

We complete the induction and the proof by invoking (4.18) to conclude that || E,, 11 ]| < 6*. O
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Proof of Theorem 4.1.3

The Dennis-Moré condition [82], [81] is a necessary and sufficient condition for superlinear
convergence of quasi-Newton methods. In terms of the assumptions we make in this section,
the condition is

(4.19) lim =0,

n—oo | sy

where {s,,} isthe sequence of stepsand {E,, } is the sequence of errorsin the inverse Hessian.
We will only state and prove the special case of the necessary condition that we need and refer
the reader to [82], [81], [84], or [154] for more general proofs.

THEOREM 4.1.8. Let the standard assumptions hold; let { H,, } be a sequence of nonsingular
N x N matrices satisfying
(4.20) [Hnl < M

for some M > 0. Let 29 € R begivenand let {x,}°° , begiven by
Tp4l = Tp — Hglv.f(l'n)

for some sequence of nonsingular matrices H,,. Thenif x,, — z* g-linearly, x,, # x* for any
n, and (4.19) holdsthen x,, — z* g-superlinearly.

Proof. We begin by invoking (4.10) to obtain
Eysn = (H7:1 —I)sp, = (H;1 = I)(yn — A2s) = Epyn + O(||5n||2)
Convergence of x,, to z* impliesthat s,, — 0 and hence (4.19) can be written as

(4.21) ti 1Envell _

n—oo ||yl

where Yn = vf(xn—‘rl) - Vf(zn)
Now let o be the g-factor for the sequence {z,,}. Clearly

(I =a)llenll < l[snll < (14 0)len]]-

Hence (4.21) is equivaent to

(4.22) tim 1Eatnll _

oo |leg|

Since H,, 'V f(z,) = —s, ad s, =y, + O(||s,]|?) we have
Enyn = (Hy' = D)(Vf(2ni1) = VF(zn))
= H 'V (@ni1) + sn = Yn = Hy 'V (@41) + O(50]|?)
= H,  eni1 + O(lleall? + lIsnll?) = Hy tenta + O([lenll?)-
Therefore, (4.22) implies that

1Enynll _ [[H; enqall

_ L oleall) = a1t L o,y = 0
HenH ”enH

llenl]

asn — oo, proving g-superlinear convergence. 0

For the remainder of this section we assume that (4.15) holds and that 6, is small enough so
that the conclusions of Theorem 4.1.7 hold for some o € (0, 1). An immediate consequence of
thisisthat

(4.23) > lsall < oo
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The Frobenius norm of amatrix A is given by
N
(4.24) 1A% =D (A3
i,j=1

It is easy to show that (see exercise 4.5.5) for any unit vector v € RY,
(4.25) 1A = w01 < [AlI% — [|Av]* and [|(1 — vo™) A% < || A7
We have, using (4.6), (4.7), and (4.25), that
(426) [|Ens1lB < [1EallE — [ Bnwall® + Ollsnll) = (1 = 62) | Enlli + O(|Isall),
where w,, = s,,/||s,|| and

”Enwn”
o ) TEr

if £, # 0,

1 if £, = 0.
Using (4.23) we see that for any k > 0,
k k
anoeinE"”% = Zn:O”EnH% — | Epi1]|% +O(1)
= |Eoll% — | Brra |3 + O(1) < oo

Hence 8, || Ey, | r — O.

However,
|Epwy| if B, #0
gnHEnHF =
0 if £, =0
= By = 1225l
[[snll

Hence (4.19) holds. This completes the proof of Theorem 4.1.3.

4.1.2 Global Theory

If one uses the BFGS model Hessian in the context of Algorithm opt ar m then Theorem 3.2.4
can be applied if the matrices { H, } remain bounded and well conditioned. However, even if a
limit point of theiterationisaminimizer x* that satisfiesthe standard assumptions, Theorem 3.2.4
does not guarantee that the iteration will convergeto that point. The situation in which x isnear
x* but H isnot near V2 f(z*) is, from the point of view of the local theory, no better than that
when x isfar from x*. In practice, however, convergence (often superlinear) is observed. The
result in this section is a partial explanation of this.

Our description of theglobal theory, usingthe Armijo line search paradigm from Chapter 3, is
based on [43]. We also refer the reader to [221], [45], and [269] for older resultswith adifferent
line search approach. Results of thistype require strong assumptionson f and the initial iterate
xg, but the reward is global and locally superlinear convergence for a BFGS-Armijo iteration.

ASSUMPTION 4.1.1. The set

D= {z|f(z) < f(x0)}
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isconvex and f is Lipschitz twice continuously differentiablein D. Moreover, there are A, >
A_ > 0 such that
(V2 f(2)) € A=, ]

forall z € D.

Assumption 4.1.1 implies that f has a unique minimizer z* in D and that the standard
assumptions hold near z*.

THEOREM 4.1.9. Let Assumption 4.1.1 hold and let H, be spd. Then the BFGS-Armijo
iteration converges g-superlinearly to z*.

The results for local and global convergence do not completely mesh. An implementation
must alow for the fact that Assumption 4.1.1 may fail to hold, even near the root, and that
yT's < 0 isapossibility when far from the root.

4.2 Implementation

The two implementation i ssues that we must confront are storage of the data needed to maintain
the updates and a strategy for dealing with the possibility that y”s < 0. We address the
storage question in §4.2.1. For the second issue, when 47 s is not sufficiently positive, we restart
the BFGS update with the identity. We present the details of thisin §4.2.2. Our globalization
approach, also givenin §4.2.2, isthe simplest possible, the Armijo rule asdescribed in Chapter 3.

We choose to discuss the Armijo rule in the interest of simplicity of exposition. However,
while the Armijo rule is robust and sufficient for most problems, more complex line search
schemes have been reported to be more efficient [42], and one who seeks to write a general
purpose optimization code should give careful thought to the best way to globalize a quasi-
Newton method. Inthecaseof BFGS, for example, oneisalwaysseeking to useapositive definite
guadratic model, even in regions of negative curvature, and in such regions the approximate
Hessian could be reinitialized to the identity more often than necessary.

4.2.1 Storage

For the present we assume that y”'s > 0. We will develop a storage-efficient way to compute
the BFGS step using the history of the iteration rather than full matrix storage.

The implementation recommended hereis one of many that storesthe history of theiteration
and uses that information recursively to compute the action of H, ! on avector. Thisideawas
suggested in [16], [186], [206], and other implementations may be found in [44] and [201].
All of these implementations store the iteration history in the pairs { sy, v, } and we present a
concrete example in Algorithm bf gsr ec. A better, but somewhat less direct, way is based on
theideasin[91] and [275] and requiresthat only asingle vector be stored for each iteration. We
assume that we can compute the action of H;” ! onavector efficiently, say, by factoring H, at the
outset of the iteration or by setting Hy = I. We will use the BFGS formulafrom Lemma4.1.1.

One way to maintain the update is to store the history of the iteration in the sequences of
vectors {yx } and {s;} where

sk = Tpp1 — 2 A yp = Vf(2py1) — V(2g).
If one hasdonethisfor k = 0,...,n — 1, one can compute the new search direction
dn = —H, 'V f(n)

by arecursive algorithm which applies (4.5).
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Algorithm bf gsr ec overwrites a given vector d with H 'd. The storage needed is one
vector for d and 2n vectorsfor the sequences { sy, yx }Z;& . A method for computing the product
of H; ' and avector must also be provided.

ALGORITHM 4.2.1. bf gsrec(n, {s}, {yr}, Hy ', d)
1. Ifn=0,d= H;'d; return

2. a= 55_1d/y5_13; d=d— ay,_1

3. call bf gsrec(n — 1, {si}, {yx}, Hy ', d)

4,

d=d+ (a— (yg—ld/yg—lsnfl))snfl

Algorithm bf gsr ec hasthe great advantage, at |east in alanguage that efficiently supports
recursion, of being very simple. More complex, but nonrecursive versions, have been described
in[16], [201], and [44].

The storage cost of two vectors per iteration can be significant, and when available storageis
exhausted one can simply discard theiteration history and restart with Hy. Thisapproach, which
we implement in the remaining algorithms in this section, takes advantage of the fact that if H
isspd then — H; 'V f () will be adescent direction, and hence useful for aline search. Another
approach, called the limited memory BFGS [44], [207], [176], [201], keeps all but the oldest
(s,y) pair and continues with the update. Neither of these approaches for control of storage,
while essentia in practice for large problems, has the superlinear convergence properties that
the full-storage algorithm does.

At a cost of amodest amount of complexity in the formulation, we can reduce the storage
cost to one vector for each iteration. The method for doing thisin[275] beginswith an expansion
of (4.5) as

HJZI = H. ' +aoses; + Bo((H 'ye)se + se(Hy Mye)T),

here Yese+ye H 'ye ~1
7 e P
Now note that
H'ye = H 'V f(xy) = HO 'V (xe) = HO'V f(24) + 50/ Ae
and obtain

427)  HI'=H '+ aises; + Po(se(Hy 'V () + (H 'V f(24))se),

where
a1 = g + Qﬁo/)\c.
Also
dy =-H_'Vf(zy)
T T T
scyc - ycsc SCSC Vf(x‘f’)
(4.28) = — (I — ycTSc) H; 1 (I —g c) Vi(xy) — 7?;3%
= Acse + B.H7 'V f(xy),
where - - TV ()
Y -1 _ YeSe Sc Vf Ty
(4.29) A. = s H; (I —CT c) Vf(zy)+ 7/\cycTSc
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and .
(4.30) B.=-1+ %(“)

yc SC

At this point we can compute d_,, and therefore A, and s using only H 'V f(z.). We do not
need H, at al. We can now form H with the new data for the next iterate and will show that
we do not need to store the vectors {yy }.

Since (verify thisl) B. # 0, we have

1 _ St ACSC

HC Vf(IJ,_) = BC)\+ Bc .
Combining thiswith (4.27) gives
(4.31) H-Zl = Hgl + O‘cscsz + ﬂc(scsi + 5+53)7
where
(4.32) e = o + 28yA./B. and B, = — o

By
This leads to the expansion

(433) H’;il = Hal + Zaksksg + ﬁk(sks;{+1 =+ Sk+185).

k=0

Upon reflection the reader will see that thisis a complete algorithm. We can use (4.28) and H,,
to compute d,,41. Then we can compute A,,;; and s,,4; and use them and (4.32) to compute
a, and 3,,. Thisnew data can be used to form H;jl with (4.33), which we can use to compute
dn+2 and continue the iteration.

Inthisway only the steps { s, } and the expansion coefficients { ;. } and { 5. } need be stored.
Algorithm bf gsopt isan implementation of these ideas.

ArcoriTHM 4.2.2. bf gsopt (z, f, €)
1 g=-Vf(z),n=0.
2. While||g|| > ¢

@ Ifn=0,d, =— alg
otherwise compute A, B, and d,, using (4.28), (4.29), and (4.30).
(b) Compute A\, s, and x = z,, 11 with the Armijo rule.
(¢) If n > 0 compute ov,,_1 and 3,1 using (4.32).
d) g=-Vf(z),n=n+1.

4.2.2 A BFGS-Armijo Algorithm

In this section we present a simple implementation that shows how the theoretical results can
be applied in algorithm design. Let HP7“S pe the BFGS update from H.. and define the two
modified BFGS (MBFGS) updates by

[ HBFGS ifyTs >0,
(4.34) Hy = { I if yT's <0,
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and BFGS  jf T
| H? if y's >0,
(4.35) Hy = { H, if yT's <0.

In the MBFGSL method, (4.34), the model Hessian is reinitialized to I if y7's < 0. Inthe
early phase of this iteration, where V2 f may have negative eigenvalues, y's < 0 is certainly
possible and the search direction could be the steepest descent direction for severa iterations.

An MBFGS2 step (4.35) keeps the history of the iteration even if y“s < 0. One view
is that this approach keeps as much information as possible. Another is that once y''s < 0,
the iteration history is suspect and should be thrown away. Both forms are used in practice.
Our MATLAB code bf gswopt uses MFBGS1 and maintains an approximation to ! using
Algorithm bf gsopt . We also guard against poor scaling by using (3.50).

4.3 Other Quasi-Newton Methods

The DFP (Davidon, Fletcher, Powell) update [71], [72], [105]

(y — Hes)y" +yly — Hes)™  [(y — Hes) ylyy”
4, H, =H —
( 36) + ct yTS (yT$)2

has similar local convergence propertiesto BFGS but does not perform aswell in practice[224],
[225].

Two updates that preserve symmetry, but not definiteness, are the PSB (Powell symmetric
Broyden) update [219],

(y — H.s)sT + sy — Hes)T [sT(y — Hes)]ssT
4.37 H,=H, - ;
(4317) + -t sTs (sTs)?

and the symmetric rank-one (SR1) [35] update,

y— Hes)(y — HCS)T

_ (
(4.38) Hy = Het 50 L

By preserving the symmetry of the approximate Hessians, but not the positive definiteness,
these updates present a problem for a line search globalization but an opportunity for a trust
region approach. The SR1 update has been reported to outperform BFGS algorithms in certain
cases [165], [41], [64], [65], [163], [258], [118], [250], [119], [268], [164], in which either the
approximate Hessians can be expected to be positive definite or atrust region framework is used
[41], [64], [69].

One may update the inverse of the SR1 approximate Hessian using the Sherman—Morrison
formula, (4.39), a simple relation between the inverse of a nonsingular matrix and that of a
rank-one update of that matrix [93], [239], [240], [14].

ProposITION 4.3.1. Let H beanonsingular N x N matrixandletu, v € RY. Then H +uv™
isinvertibleif and only if 1 +vT H 1w # 0. Inthis case

™1 _ (7 _ (H 'u)o” 1
(4.39) (H+uwv" )™ = (I T+ oTH 1w H™.
The proof is simply a direct verification of (4.39).

The SR1 agorithm terminates in finitely many iterations for convex quadratic optimization
problems[101]. Since the denominator (y — H..s)* s could vanish, the update could completely
fail and implementations must examine the denominator and take appropriate action if it istoo
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small. This update does not enforce or require positivity of the approximate Hessian and has
been used effectively to exploit negative curvature in atrust region context [165], [41].

For overdetermined nonlinear least squares problems one can try to approximate the second-
order termin V2 f while computing R’ R’ exactly. Suppose

Vif(z)~ H = C(z) + A,

where the idea is that C, the computed part, is significantly easier to compute than A, the
approximated part. Thisis certainly the case for nonlinear least squares, where C = R'"R'. A
guasi-Newton method that intends to exploit this structure will update A only; hence

H+ = C(l’+) + A+.

Superlinear convergence proofs require, in one way or another, that H,s = y. Therefore, in
terms of A, one might require the update to satisfy

(4.40) Ays=y" =y —C(zy)s.

The definition of y# given in (4.40) is called the default choice in [87]. This s not the only
choice for y#, and one can prove superlinear convergence for this and many other choices [87],
[84]. Thisidea, using several different updates, has been used in other contexts, such as optimal
control [159], [164].

Analgorithm of thistype, using SR1 to update A and adifferent choicefor 37, was suggested
in[20] and [21]. The nonlinear least squares update from [77], [ 78], and [84] uses a DFP update
and yet another y* to compute A,

#_ #T o ## T #_ T, 31 L
(441) A, = A, + (Y7 = Acs)y y (" —Aes)” [y A(:S)Ty ly"y"
2
y# s (y#*" s)

The application of thisidea to large-residua least squares problems is not trivial, and scaling
issues must be considered in a successful implementation.

Our proof of superlinear convergence can be applied to updateslike (4.41). We state aspecial
case of aresult from [87] for the BFGS formulation

#o# T T
yry (Acs)(Acs)
4.42 Ay = A - .
( ) + c+ y#Ts STACS

THEOREM 4.3.2. Let the standard assumptions hold and assume that
A* = V2f(2*) — C(x%)
isspd. Then thereis ¢ such that if
lzo — 2™[| < dand [[Ag — A™[| <,

then the quasi-Newton iterates defined by (4.42) exist and converge g-superlinearly to z*.

Thisresult can be readily proved using the methods in this chapter (see [159]).

Quasi-Newton methods can a so be designed to take into account special structure, such as
the sparsity pattern of the Hessian. One can update only those elements that are nonzero in the
initial approximation to the Hessian, requiring that the secant equation Hs = y holds. Such
updates have been proposed and analyzed in varying levels of generality in [83], [87], [185],
[238], [256], and [255].
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Another approach isto use the dependency of f on subsets of the variables, astructurethat is
often present in discretizations of infinite-dimensional problems where coefficients of operators
can be updated rather than entire matrix representations of those operators. We refer the reader
to [133], [131], and [132] for an algebraic viewpoint based on finite-dimensional analysis and
to [159], [157], [164], [160], and [163] for an operator theoretic description of these methods.

When appliedto discretizati ons of i nfinite-dimensi onal optimization problems, quasi-Newton
methods perform best when they also work well on theinfinite-dimensional problemitself. Work
on BFGS in Hilbert space can be found, for example, in [135], [158], and [159].

Quasi-Newton methods have been designed for underdetermined problems[184], and Broy-
den’s method itself has been applied to linear least squares problems[111], [148].

4.4 Examples

The computations in this section were done with the MATLAB code bf gswopt . For the small
parameter ID problem, where evaluation of f isfar more expensive than the cost of maintaining
or factoring the (very small!) approximate Hessian, one could also use a brute force approach
inwhich H isupdated and factored anew with each iteration.

4.4.1 Parameter ID Problem

We solve the parameter 1D problem with the same dataasin §3.4.1 using Hy, = [ astheinitia
Hessian. We compare the BFGS solution with the Gauss—-Newton iteration from §3.4.1. From
Figure 4.1 one can see the local superlinear convergence and the good performance of the line
search. However, as one should expect, the Gauss—-Newton iteration, being designed for small
residual least squares problems, was more efficient. The Gauss—-Newton iteration required 14
function evaluations, 6 gradients, and roughly 1.3 million floating point operations, while the
BFGS-Armijo iteration needed 29 function evaluations, 15 gradients, and 3.8 million floating
point operations.

4.4.2 Discrete Control Problem

We return to the example from §3.4.2. For our first example we use theinitial iterate

BFGS aso requires an initial approximation to the Hessian and we consider two such approxi-
mations:
(4.43) H,=25]andH; = 1.

The Hessian for the continuous problem is a compact perturbation of the identity and the
theory from [158] and [135] indicates that H, is a much better approximate Hessian than I,,.
The results in Figure 4.2 support that idea. For the better Hessian, one can see the concavity
of superlinear convergence in the plot of the gradient norm. The computation for the better
Hessian required 12 iterations and roughly 572 thousand fl oating point operations, while the one
with the poor Hessian took 16 iterations and roughly 880 thousand floating point operations.
Stepsi ze reductions were not required for the good Hessian and were needed four times during
the iteration for the poor Hessian. However, the guard against poor scaling (3.50) was needed
in both cases.

When we used the same poor initial iterate that we used in §3.4.2

uo(t) = 5+ 300sin(207t)
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Figure 4.1: BFGS-Armijo and Gauss—Newton for the Parameter ID Problem
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Figure 4.2: BFGS-Armijo for Discrete Control Problem
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and allocated 50 vectors to Algorithm bf gsopt , there was no longer a benefit to using the
good Hessian. In fact, asis clear from Figure 4.3 the poor Hessian produced a more rapidly
convergent iteration.

4.5
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Figure 4.3: BFGS-Armijo for Discrete Control Problem: Poor Initial Iterate

Exercises on BFGS

Usethe secant method (4.2) withinitial datax_; = 1andzq = .9tominimize f(z) = x*.
Explain the convergence of theiteration.

Prove Lemma4.1.1. It might help to use the secant equation.

Prove Lemma4.1.4.

Verify (4.13) and compute the constant C.

Prove (4.25).

Asan exercisein character building, implement Algorithm bf gsr ec nonrecursively.

Show how the Sherman—-Morrison formula can be used to implement the SR1 update in
such away that only one vector need be stored for each iterate.

State and prove alocal convergence theorem for DFP and/or PSB.

Implement the DFP and PSB update and compare their performance with BFGS on the
examples from §4.4.
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4.5.10. Show that, for positive definite quadratic problems, the BFGS method with an exact line
search (i.e., one that finds the minimum of f in the search direction) is the same as CG
[201], [200].

45.11. Prove Theorem 4.3.2.
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Chapter 5

Simple Bound Constraints

5.1 Problem Statement

The goal of this chapter is to show how the techniques of Chapters 2, 3, and 4 can be used to
solve asimple constrained optimization problem. The algorithm we suggest at theend in §5.5.3
isauseful extension of the BFGS-Armijo agorithm from Chapter 4. We will continue thisline
of development when we solve noisy problemsin Chapter 7.

Let {L;}}¥, and {U;}¥, be sequences of real numbers such that

(5.1 —oo < L; < U; < 4o00.

The bound constrained optimization problem isto find alocal minimizer z* of afunction f of
N variables subject to the constraint that

(5.2) *eQ={xeRV|L; < (x); <U;}.
By this we mean that x* satisfies

(5.3 f(z*) < f(x) foral z € Q near z*.
It is standard to express this problem as

(5.4) min f (z)
or asming f. Theset Q iscalled the feasible set and apoint in Q2 is called afeasible point.
Because the set 2 is compact there is always a solution to our minimization problem [229].
The inequalities L; < (z); < U; are caled inequality constraints or simply constraints.
We will say that the ith constraint is active at = € ) if either (z); = L; or (z); = U;. If the
ith constraint is not active we will say that it isinactive. The set of indices ¢ such that the ith
constraint is active (inactive) will be called the set of active (inactive) indices at «.
We will write A(x) and Z () for the active and inactive sets at .

5.2 Necessary Conditions for Optimality

For a continuoudly differentiable function of one variable, the necessary conditions for uncon-
strained optimality at «* are simply f/(z*) = 0 and, if f is twice continuously differentiable,
f"(z*) > 0. A bound constrained problem in one variable restricts the domain of f to an
interval [a, b], and the necessary conditions must be changed to admit the possibility that the

87
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minimizer is one of the endpoints. If +* = a isalocal minimizer, then it need not be the case
that f/(a) = 0; however, because a isalocal minimizer, f(x) > f(a) fordl a < z sufficiently
near a. Hence f’(a) > 0. Nothing, however, can be said about . Similarly, if z* = bisa
local minimizer, f/(b) < 0. If f isdifferentiable on [a, b] (i.e., on an open set containing [a, b)),
then the necessary conditionsfor all three possibilities, z* = a, z* = b,and a < z* < b canbe
neatly expressed by the following theorem.

THEOREM 5.2.1. Let f be a continuously differentiable function of one variable on the
interval [a, b]. Let 2* bealocal minimum of f on [a, b]. Then

(5.5) f(@*)(x —z*) > 0foral z € [a, b
and, if f istwice continuously differentiable on [a, b],

(5.6) (@) (z* —a)(b—2") > 0.

The analogue (5.5) is expressed by the idea of stationarity.
DEFINITION 5.2.1. A point z* € Q) is stationary for problem (5.4) if

(5.7) Vi) (x —z*) > 0forall z € Q.

As in the unconstrained case, stationary points are said to satisfy the first-order necessary
conditions.

The fact that optimality implies stationarity is proved with Taylor’s theorem just asit wasin
the unconstrained case.

THEOREM 5.2.2. Let f becontinuously differentiableon 2 andlet =* bea solution of problem
(5.4). Then z* isa stationary point for problem (5.4).

Proof. Let 2* beasolution of problem (5.4) and let y € Q2. As isconvex, theline segment
joining z* and y isentirely in 2. Hence, the function

o(t) = f(z" +t(y —z7))

isdefined for ¢ € [0,1] and hasalocal minimum at ¢ = 0. Therefore, by Theorem 5.2.1
0<¢'(0) = Vf(@) (y - ")

as asserted. O

The case of afunction of asingle variable isless useful in explaining the role of the second
derivative. However, we can get a complete picture by looking at functions of two variables.
To illustrate theideaswe let N = 2 and let f be atwice Lipschitz continuously differentiable
function on Q = [0, 1] x [0, 1]. If z* isasolution of (5.4) and no constraints are active, then
V2 f(x*) is positive semidefinite by the same arguments used in the unconstrained case. If one
or more constraints are active, however, then, just as in the one variable case, one cannot draw
conclusions about the positivity of V2 f(z*). Suppose the minimizer isat z* = (&,0) with
0 < ¢ < 1. While nothing can be said about 92 f (z*) /022, the function ¢(t) = f(¢,0), defined
on [0, 1], must satisfy

¢"(€) = & f(z*)/ 0T > 0.

Hence, second partialsin directions corresponding to the inactive constraints must be nonnega-
tive, while nothing can be said about directions corresponding to active constraints.
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We define the reduced Hessian to help make this idea precise.

DEFINITION 5.2.2. Let f betwice differentiable at = € 2. The reduced Hessian V% f(z) is
the matrix whose entries are

bi; ifi e A(z) or j € A(x),

(5.8) (VRS (2))ij = {
(V2f(x));; otherwise.

We can now present the second-order necessary conditions.

THEOREM 5.2.3. Let f betwice Lipschitzcontinuously differentiableand let z* bethe solution
of problem (5.4). Then the reduced Hessian V% f(z*) is positive semidefinite.

Proof. Assume that there are M inactive indicesand N — M active indices. We partition
x € €, reordering the variables if needed, into x = (&, ¢) with £ corresponding to the inactive
indices and ¢ to the active. The map

P(§) = f(§:¢7)

has an unconstrained local minimizer at £* € RM and hence V2 ¢ is positive semidefinite. Since
the reduced Hessian can be written as

sy = T4 )

if the variables are partitioned in this way, the proof is complete. O
We let P denote the projection onto 2, that is, the map that takes = into the nearest paint (in
the /2-norm) in  to z. We have that

(5.9 P(x); =

Theorem 5.2.4 states our final necessary condition; we defer the proof to §5.4.4.

THEOREM 5.2.4. Let f be continuoudly differentiable. A point z* € Q is stationary for
problem (5.4) if and only if
(5.10) ¥ =P(x" — AV f(z"))

for all A > 0.

5.3 Sufficient Conditions

With the definition of the reduced Hessian in hand, the sufficient conditionsare easy to formul ate.
We begin by strengthening the notion of stationarity. If «* is stationary, i € Z(z*), and e; isa
unit vector in the sth coordinate direction, then 2* + te; € Q for al ¢ sufficiently small. Since

df(mdittel) = £V [f(z*)"e; >0,

therefore
(Vf(z"));=0foralie Z(z*).

We will use the concept of nondegenerate stationary point or strict complementarity in our
formulation of the sufficient conditions.
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DEerFINITION 5.3.1. A point z* € () is a nondegenerate stationary point for problem (5.4) if
+* isa stationary point and

(5.11) (VF(z*)): # 0for all i € A(z*).

If z* isalso a solution of problem (5.4) we say that * is a nondegenerate local minimizer.

Our nondegeneracy condition is aso referred to as strict complementarity.
If S isany set of indices define

('r)ia 1€ 87
(Psz)i = {
0, i¢S.

Nondegeneracy isimportant not only in the formulation of sufficient conditions but also in
the design of termination criteria. Thefirst step in the use of nondegeneracy isLemma5.3.1.

Lemma 5.3.1. Let z* be a nondegenerate stationary point. Assume that .4 = A(x*) isnot
empty. Then thereis o such that

Vi) (= 2) = V(@) Pale — ") 2 o Pale — 27|

for all x € Q.
Proof. If i € A then nondegeneracy and stationarity imply that there is o > 0 such that
either

(xf)=Liand (Vf(z*)); > oor(x}) =U;and (Vf(z¥)); < —0.
If z € Qthenforalic A,
(Vf(@"))i(x —a%)i = of(z — 7).
Therefore, since ||z||; > ||z]|2,
V@) Pa(z —a*) > o||Palz — "),

asasserted. 0
For a nondegenerate stationary point the sufficiency conditions are very similar to the un-
constrained case.

THEOREM 5.3.2. Let z* € Q) be a nhondegenerate stationary point for problem (5.4). Let
f be twice differentiable in a neighborhood of x* and assume that the reduced Hessian at «*
is positive definite. Then z* is a solution of problem (5.4) (and hence a nondegenerate local
minimizer).

Proof. Let x € Q and define ¢(¢) = f(z* + t(x — =*)). We complete the proof by showing
that either (i) ¢’(0) > 0 or (ii) ¢'(0) = 0,¢"”(0) > 0. Let e = x — =* and note that

#'(0) = Vf(x*) e = Vf(x*) (Pae+ Pre).
Stationarity impliesthat V f (z*)TPze = 0. If P4e # 0 then nondegeneracy implies that
V)T Pae>0
and hence (i) holds. If P 4e = 0 then
¢"(0) = (z — ") PV f(a")Pr(z — a*) = (x — ") VRS (@) (@ — 2%) > 0,

proving (ii). O
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5.4 The Gradient Projection Algorithm

The gradient projection algorithm is the natural extension of the steepest descent algorithm to
bound constrained problems. It shares all the advantages and disadvantages of that algorithm.
Our approach follows that of [18]. Given acurrent iterate z.. the new iterateis

Ty = P(xc - )\Vf(l‘b)),

where )\ is a steplength parameter given by the Armijo rule or some other line search scheme.
In this section we will restrict our attention to the simplest form of the Armijo rule. In order to
implement any line search scheme, we must specify what we mean by sufficient decrease. For
A > 0 define

(5.12) z(A) =P(x — AV f(x)).

For bound constrained problemswewill expressthe sufficient decrease condition for line searches
(compare with (3.4)) as

(5.13) @) = f@) < Sl — w02

Aswith (3.4), « isaparameter and istypically set to 10~ [84].
The general algorithmic description followsin Algorithm 5.4.1.

AvrcoriTHM 5.4.1. gr adpr 0j (z, f, nmax)
1. Forn=1,...,nmax

(8 Compute f and V f; test for termination.
(b) Findtheleast integer m such that (5.13) holds for A = 5.
(€ =z =z(N).

2. If n = nmaz and the termination test isfailed, signal failure.

The next step isto elaborate on the termination criterion.

5.4.1 Termination of the lteration

The termination criterion for unconstrained optimization that we have used previously must be
modified if we are to properly take the constraints into account. V f need not be zero at the
solution, but anatural substituteisto terminate theiteration if the difference between « and z(1)
issmall. Asin the case of unconstrained optimization or nonlinear equations, we must invoke
the sufficient conditions to show that such a termination criterion will accurately measure the
error.

Asusual, welete =z — z*.

We begin with alemma that connects the active and inactive sets at a nondegenerate local
minimizer with nearby points.

LemmA 5.4.1. Let f betwice continuously differentiable on 2 and let x* be a nondegenerate
stationary point for problem (5.4). Let A € (0, 1]. Then for « sufficiently near z*,

1. A(z) C A(z*) and (z); = (z*); for all i € A(x).
2. A(z(\) = A(z*) and (z())); = (a*); for all i € A(z*).
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Proof. Let
A= A(z"), I* =Z(z"), A= A(z), and Z = Z(x).

Let
61 = min{(U; — (+7):), ((+7)i = Li), (Ui = Li)/2}.
Ifi € Z* and ||e|| < 61 then L; < (z); < U;. Hence,
" cT
proving the first assertion that A C .A*. Moreover, since

llell < 61 < min{(U; — Li)/2},

then (z); = (z*); foral i € A.
Now let A* and 7 bethe active and inactive setsfor z(\) = P(z — AV f(x)). Leti € A*.
By Lemma5.3.1 and continuity of V f thereis 8 such that if |le]| < 8- then

(V" +e))i(zx —x*); > olz —z*|; /2.

Therefore, if
|le]] < 65 < min(o/2,62),
theni € A* and (z(\)); = (z*);. Hence A* C AN
It remainsto prove that A* C A*. By definition of P we have
[P(z) =PIl < llz—yll

foral z,y € RYN. Continuity of V2 f impliesthat V f is Lipschitz continuous. We let I denote
the Lipschitz constant of V f in Q2. By stationarity and Theorem 5.2.4,

2" = 2*(\) = P(z* — AVf(z")),
and, therefore,

[z* —2(N)[| = [P(z* = AV f(2*)) = P(z = AV f(2))|
(5.14)
<llell + MV f(z*) = V@) < (1 +LA)|e]-

If thereisi € A* N Z* then we must have

(5.15) o = 2]l 2 61 = min{(U; — &%), (= = L)}

However, if
||€H < by = min(63,61/(1 + L))

then (5.14) implies that (5.15) cannot hold. This completes the proof. O

THEOREM 5.4.2. Let f betwicecontinuously differentiableon (2 andlet z* beanondegenerate
stationary point for problem (5.4). Assume that sufficient conditions hold at =*. Then there are
6 and M such that if ||e|| < 6 and A(x) = A(z*) then

(5.16) lell/M <z = 21|} < Mle]|
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Proof. Again we let L denote the Lipschitz constant of V f in 2 and
A" = A(x"),IT" =I(z"), A= A(z), and Z = I(x).
Using stationarity we obtain
[z =z = lle—(z(1) —2*(1)]l
< lell +P(z = Vf(z) = P(z® = V("))
< 2lell + IV f(z) = V(@) < (2+ L)fe]l.

Hence, theright inequality in (5.16) holds.
To verify the left inequality in (5.16) we apply Lemmab5.4.1. Let ¢; be such that |le|| < 61
implies that the conclusions of Lemma5.4.1 hold for A = 1. The lemmaimplies that

{ (Vf(x)) i€I*,

(€):i=0, ic A"

(5.17) (x—z(1)); =

Theremaining caseisif i € Z = Z*. The sufficiency conditions imply that thereis u > 0
such that
ul P V2 f(2*)Preu > p||Preu

for all u € RY. Hence, thereis 6, so that if ||e|| < &2 then

‘ 2

u Pre V2 f(z)Preu > pl|Pr-ul?/2

foralu e RV.
Therefore, sincee = Pz-e,

1
|Pre(z — 2(1)|? = /OeTPI*VQf(m* + te)edt

1
= / el P V2 f(a* + te)Pr-edt
0

> || Prell* /2.

Therefore, ||x —2(1)|| > min(1, \/u/2)||e|| and setting M = max{2+ L, 1, /2/u} completes
the proof. O

Following the unconstrained case, we formul ate atermination criterion based on relative and
absolute reductions in the measure of stationarity ||« — z(1)||. Givenrg = ||zg — z¢(1)|| and
relative and absol ute tolerances 7. and 7, the termination criterion for Algorithm gr adpr oj is

(5.18) |z —2(1)|| < 74 + T070.

5.4.2 Convergence Analysis

The convergence analysis is more complicated than that for the steepest descent algorithm be-
cause of the care that must be taken with the constraints. Our analysis begins with several
preliminary lemmas.

LemmA 5.4.3. For all z,y € Q,
(5.19) (y —z(N)" (x(N) =z + AV f(x)) = 0.
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Proof. By definition of P
[2(A) =2+ AVf (@) < [ly — 2 + AV [ (2)]|
fordl y € Q. Hencet = 0 isaloca minimum for
¢(t) = |1 = t)a(X) +ty —a + AV f(2)[|*/2

and, therefore,
0<¢'(0) = (y—2z(N)" (&(N) =z + AV f(2))

as asserted. O
We will most often use the equivalent form of (5.19)

(5.20) (@ —2(\)(y —2(N) <AV (@) (y — z(N)).
Setting y = z in (5.20), we state Corollary 5.4.4.
COROLLARY 5.4.4. Forall z € Qand A > 0,

(5.21) lz = z(N)]* < AV f(2)" (z — 2(X)).

An important result in any line search analysisis that the steplengths remain bounded away
from 0.

THEOREM 5.4.5. Assume that V f is Lipschitz continuous with Lipschitz constant L. Let
x € . Then the sufficient decrease condition (5.13) holdsfor all A such that

(5.22) 0<r< 2=

Proof. We begin with the fundamental theorem of calculus. Settingy = = — z(\) we have

f@—y) - f(&) = fz(N) — flz) = - / Vi — ty)Tyd.

Hence,

(5.23)

Rearranging termsin (5.23) gives
(5.24) A(f(x) = (V) = AVF ()T (z — z(N) + AE,

where N
E= / (Vf(x — ty) — V() ydt
0

and hence
IE|| < Lllz — x(A)[?/2.
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So
(5.25) A(f(z) = fz(N)) 2 AVf(2)" (z — 2(N)) = ALz — z(N)]|* /2.

Therefore, using Corollary 5.4.4 we obtain

A f(z) = fz(N) = (1 = AL/2)[lz — z(N)]?

which completes the proof. O
The consequence for the Armijo rule is that the line search will terminate when

m 2(1 — a) m—1
< ——<
<= <p
if not before. Hence, alower bound for the steplengthsis
_ 928(1 —

THEOREM 5.4.6. Assume that V f is Lipschitz continuous with Lipschitz constant L. Let
{z,} be the sequence generated by the gradient projection method. Then every limit point of
the sequence is a stationary point.

Proof. Sincethe sequence { f(z,,)} isdecreasingand f isbounded from below on €2, f(z,,)
has alimit f*. The sufficient decrease condition, as in the proof of Theorem 3.2.4, and (5.26)
imply that

|27 — xn+1||2 SAMSf(n) = f(@nt1))/a < (f(zn) = f(Tny1))/a —0

asn — oo.
Now let y € Q and n > 0. By (5.20) we have

Vf(xn)T(a:n - y) = vf(zn)T(xn+l - y) + Vf(a:n)T(xn - xn-&-l)

<N @0 — 2pg)T (@ng1 —y) + V(@) (@0 — 2nyga).
Therefore, by (5.26),

Vi) (@0 —y) < llen = zaea [ 20 = yll + IV (@)D,
(5.27) i
Vi) (@ —y) < llen = 2ot [A iz =yl + [V @)D

If x,, — z* isaconvergence subseguence of {z, }, then we may take limitsin (5.27) as
I — oo and complete the proof. O

5.4.3 Identification of the Active Set

The gradient projection iteration has the remarkable property that if it converges to a nondegen-
erate local minimizer, then the active set A™ of x,, isthe same as A* after only finitely many
iterations.

THEOREM 5.4.7. Assumethat f is Lipschitz continuoudly differentiable and that the gradient
projection iterates {«,, } converge to a nondegenerate local minimizer «*. Then thereisng such
that A(x,,) = A(z*) for all n > nyg.

Proof. Let \ be the lower bound for the steplength. Let 6 be such that the conclusions of
Lemma5.4.1 hold for A = A (and hence for al A > \). Let ny be such that ||e,,|| < é for all
n > ng — 1 and the proof is complete. O
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5.4.4 A Proof of Theorem 5.2.4

We close this section with a proof of Theorem 5.2.4. We define a nonsmooth function
(5.28) F(z) =2z —Plx — Vf(x)).

Using (5.12),
F(z) =2 —z(1).

We now prove Theorem 5.2.4.
Proof. Corollary 5.4.4 states that

o =2 (N[]P < AV f(2*)T (" = 2*(N)).
If weset x = 2*()\) in the definition of stationarity (5.7) we have
Vi) (@ =2 (V) <0

and hence z* = z*(\).

Conversely assume that «* = z*(\) for al A > 0. Thisimpliesthat «* isleft invariant by
the gradient projection iteration and is therefore a stationary point. O

By setting A = 1 we obtain a simple consequence of Theorem 5.2.4.

CoroLLARY 5.4.8. Let f be a Lipschitz continuously differentiable function on 2. Then if
x* isstationary then F(z*) = 0.

5.5 Superlinear Convergence

Once the gradient projection iteration has identified the active constraints, P 4(,-)x* is known.
At that point the minimization problem for Pzz* is unconstrained and, in principal, any super-
linearly convergent method for unconstrained optimization could then be used.

The problem with this idea is, of course, that determining when the active set has been
identified is possible only after the problem has been solved and an error in estimating the active
set can have devastating effects on convergence. In this section we discuss two approaches: one,
based on Newton's method, is presented only as alocal method; the other is a BFGS-Armijo
method similar to Algorithm bf gsopt .

We will begin with the development of the local theory for the projected Newton method
[19]. Thisanalysisillustrates the important problem of estimation of the active set. Aswith the
unconstrained minimization problem, the possibility of negative curvature makes this method
difficultto globalize (but see§5.6 for pointerstotheliteratureontrust region methods). Following
the approach in §4.2 we describe a projected BFGS-Armijo schemein §5.5.3.

5.5.1 The Scaled Gradient Projection Algorithm
One might think that the theory developed in §5.4 applies equally well to iterations of the form

Ty = P(J?c - /\H(_lv,f(],‘())

where H. is spd. Thisis not the case as the following simple example illustrates. Let N = 2,
L;,=0,andU; = 1forall 7. Let

f(@) = llz = (=1,1/2)7|*/2;
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then the only local minimizer for (5.3) isz* = (0,1/2). Let z. = (0,0) (not alocal mini-
mizer!); then V f(z.) = (1,-1/2)T. If

4 (21
at=(7 )
then H_ ! (and hence H..) is spd, and

HI'Vf(z.) = ( % é ) ( 711/2 ) - ( 3(/)2 )

Therefore, for all A > 0,

= ((8) (1)) (3 (8)

The reason that z.(\) = z. for @l A > 0 isthat the search direction for the unconstrained
problem has been rotated by H_ ! to be orthogonal to the direction of decrease in the inactive
directions for the constrained problem. Hence, unlike the constrained case, positivity of the
model Hessian is not sufficient and we must be able to estimate the active set and model the
reduced Hessian (rather than the Hessian) if we expect to improve convergence.

The solution proposed in [19] is to underestimate the inactive set in a careful way and
therefore maintain a useful spd approximate reduced Hessian. For x € ) and

0 <e<min(U; — L;)/2,
we define A¢(x), the e-active set at x, by
(5.29) Af(z) ={i|U; — (x); <eor(z); — L; < e}

And let Z7¢(x), the e-inactive set, be the complement of A¢(z).
Given0 < e, < min(U; — L;)/2, x., and an spd matrix H.., we model the reduced Hessian
with R ., the matrix with entries

(Sij ifi € A (LL'C) orje Ace (LL'C),
Rc = ’P.AEU (xc) + PIEC (:L'C)I_-I’C,PIEE (xc) = {
(H.)i; otherwise.
(5.30)
When the explicit dependence on x., €., and H, isimportant we will write
R(xe, €c, He).

So, for example,
V4 f(ze) = R(xe, 0, V2 f(x,)).

Given 0 < e < min(U; — L;)/2 and an spd H, define
eHe(\) = Pz — AR(z, 6, H) 'V f(2)).

It requires proof that
Fa™eN) < f(z)

for A sufficiently small. We prove more and show that the sufficient decrease condition

(5.31) F@™eN) = f(z) < —aV f(@)" (@ — ™))
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holds for sufficiently small A.

LemMa 55.1. Letz € Q,0 < ¢ < min(U; — L;)/2, and H be spd with smallest and largest
eigenvalues0 < A; < \;. Let V f beLipschitz continuous on 2 with Lipschitz constant L. Then
thereis A(e, H) such that (5.31) holds for all

(5.32) A < e H).

Proof. The proof will show that
V@) (@ =2 W) 2 NV (@) (@ —2(V)
and then use the method of proof from Theorem 5.4.5. We do this by writing
V@) (@ = 2™(N) = (Pac) V(@) (@ = 2™ N) + (Pre@y V()" (& — (V)

and considering the two terms on the right side separately.
We begin by looking at (P ac(,)V f(x))” (z — 2%-<())). Note that

(zHE()\)), = (z(N)); fori € A<(x)
and, therefore,
(5.33) (Pac @) V(@) (x — 2™(N) = (Pac@) V(@) (2 — z(N)).

We will need to show that

(5.34) (Pac() V(@) (& = z(N) > 0.

Now assume that in(Us — L)

(53 PN Sea V@)

Since A(x) C A°(z) wecan investigate the contributions of A(z) and A¢(x) NZ(x) separately.
If i € A(x) then (5.35) impliesthat either (z — z()\)); = A(Vf(z)); 0 ( (A\); =0.1In

r—x
either case (z — z(A));(Vf(z)); > 0. Ifi € A°(z)NZ(x) and (x —z(N)); # NV f(x))z,then
it must bethe casethat i € A(z())) and thereforewe must still have (x — z (X)) (V f(x)); >
Hence (5.34) holds.

Now if 4 € Z¢(x) then, by definition,

Ll‘-i-eﬁ(l‘)iSUi—E

and, hence, if

(5.36) A< o = €

maxzeq [|R(z, €, H) 7'V f(2)]|o
then 7 isin the inactive set for both 27-¢(\) and z:(\). Therefore, if (5.36) holds then

(PIe(z)Vf(x))T(m —azfhe())) = )\(P_’Z’e(I)Vf(x))TH_lpl'e(I)vf(m)

(5.37) > N AT Preay (@ — 2(V)||?

=X (Pre(o) V. (2)T (. — z(N)).
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Hence, using Corollary 5.4.4, (5.33), (5.34), and (5.37), we obtain
V@) (@ —aN) = (Pac) V(@) (z—zTN)
+(Pre(@) V()" (x — z™(N))

> (Pac@) V@) (@ = 2(\) + X (Pre(y Vf () (@ — 2(N))

> min(L, A )V F(@)T (@ — 2(0) > 2D 0 g ()2
(5.38)
The remainder of the proof is amost identical to that for Theorem 5.4.5. The fundamental
theorem of calculus and the Lipschitz continuity assumption imply that

F@™\) = f(2) < =V f(@) (= 2™N) + Lz -z
We apply (5.38) and obtain

FaeN) = f(2) < (1 = Lamax(1, \)Vf(2)" (z — 27(N)),
which implies (5.31) if 1 — LAmax(1, A;) > « which will follow from

(1-a)

. <Ag=—0n—
(539) ASAs max (1, \;)L

This completes the proof with A = min(A;, Ag, A3). O

An agorithm based on these ideas is the scaled gradient projection algorithm. The name
comesfrom the scaling matrix H that isused to computed thedirection. Theinputsaretheinitial
iterate, the vectors of upper and lower bounds v and [, the relative-absolute residual tolerance
vector 7 = (7., 7, ), and alimit on the number of iterations. Left unstated in the algorithmic
description are the manner in which the parameter ¢ is computed and the way in which the
approximate Hessians are constructed.

ArcoriTHM 5.5.1. sgr adpr o (z, f, 7, nmax)
1. Forn=1,...,nmax

(8 Compute f and V f; test for termination using (5.18).
(b) Computee andan spd H.
(c) Solve
Rz, e, H)d = =V f(z.).
(d) Find the least integer m such that (5.13) holdsfor A = ™.
(€ z=z(N).

2. If n = nmax and the termination test is failed, signal failure.

If our model reduced Hessians remain uniformly positive definite, a global convergence
result completely analogous to Theorem 3.2.4 holds.

THEOREM 5.5.2. Let V f be Lipschitz continuouswith Lipschitz constant L. Assumethat the
matrices H,, are symmetric positive definite and that there are = and \; such that x(H,,) < &,
and | H,|| < A; for al n. Assume that thereise > 0 suchthat € < ¢, < min(U; — L;)/2 for
all n.
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Then
(5.40) lim ||z, —z,(1)[ =0,

n—oo

and hence any limit point of the sequence of iterates produced by Algorithm sgr adpr oj isa
stationary point.

In particular, if z,,, — z* is any convergent subsequence of {z,,}, then z* = z*(1). If z,,
converges to a nondegenerate local minimizer x*, then the active set of z,, isthe same asthat of
x* after finitely many iterations.

Proof. With Lemma5.5.1 and its proof in hand, the proof follows the outline of the proof of
Theorem 5.4.6. We invite the reader to work through it in exercise 5.8.3. 0

5.5.2 The Projected Newton Method

The requirement in the hypothesis of Theorem 5.5.2 that the sequence {¢,, } be bounded away
from zero is used to guarantee that the steplengths \,, are bounded away from zero. Thisis
needed because e appears in the numerator in (5.36). However, once the active set has been
identified and oneis near enough to anondegenerate local minimizer for the reduced Hessiansto
be spd, oneis solving an unconstrained problem. Moreover, once near enough to that minimizer,
the convergence theory for Newton's method will hold. Then one can, in principle, sete,, = 0
and the iteration will be g-quadratically convergent. In this section we discuss an approach from
[19] for making atransition from the globally convergent regime described in Theorem 5.5.2 to
the locally convergent setting where Newton's method converges rapidly.
If theinitial iterate x( is sufficiently near a nondegenerate local minimizer x* and we take

inAlgorithm sgr adpr oj , then the resulting projected Newton method will take full steps (i.e.,
A = 1) and, if ¢, ischosen with care, converge g-quadratically to x*.
A specific form of the recommendation from [19], which we use here, is

(541 €, = min(||x, — z,(1)||, min(U; — L;)/2).

Note that while z,, isfar from a stationary point and the reduced Hessian is spd, then ¢,, will be
bounded away from zero and Theorem 5.5.2 will be applicable. The convergence result islike
Theorem 2.3.3 for local convergence but makes the strong assumption that H,, isspd (valid near
x*, of course) in order to get aglobal result.

Algorithm pr oj newt isthe formal description of the projected Newton algorithm. Itisa
bit more than just a specific instance of Algorithm gr adpr oj . Keep in mind that if the initial
iterate is far from x* and the reduced Hessian is not spd, then the line search (and hence the
entire iteration) may fail. The algorithm tests for this. This possibility of indefinitenessis the
weaknessin any line search method that uses V2 f when far from the minimizer. The inputsto
Algorithm pr oj newt arethe sameasthosefor Algorithm gr adpr oj . Theagorithm exploits
the fact that
(5.42) R(z, 6, Vif(2)) = R(x,¢6, V2 f(2))

which follows from A(z) C A*(x).

ALGORITHM 5.5.2. pr oj newt (z, f, 7, nmax)
1. Forn=1,...,nmax

(@) Compute f and V f; test for termination using (5.18).
(b) Sete= |z —xz(1)].
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(c) Computeand factor R = R(z, ¢, V4 f(x)). If R isnot spd, terminate with a failure
message.

(d) SolveRd = -V f(x.).

(e) Find theleast integer m such that (5.13) holdsfor A = g™.

) z=z(N).

2. If n = nmazx and the termination test isfailed, signal failure.
THEOREM 5.5.3. Let z* be a nondegenerate local minimizer. Then if z is sufficiently near

to z* and A(xo) = A(x*) then the projected Newton iteration, with e,, = ||z, — x,,(1)]], will
converge g-quadratically to z*.

Proof. Our assumption that the active set has been identified, i.e.,
Alze) = Az ) = A7),

implies that
PA(xc)ec = ’PA(%)GJ,_ =0.
Hence, we need only estimate Pz, e to prove the result.
Let
6* = min (|(I)1 — UZ‘, ‘(fﬂ), — Lq‘) > 0.
€L (x*)
We reduce ||e]| if necessary so that
llel| < 6"/M,

where M isthe constant in Theorem 5.4.2. We may then apply Theorem 5.4.2 to conclude that
both e, < 6* and |le.|| < é*. Thenany index i € A% (x.) must also bein A(z.) = A(z*).
Hence

(5.43) A (z.) = Alz.) = A(z™).
From this we have
(544) R(IEC, €c, v%%f(fcc)) = v%%f(mc)

Hence, for ||e.|| sufficiently small the projected Newton iteration is
vy = Plre — (Vif(2)) TV f(2e))-

By the fundamental theorem of calculus,
(5.45) Vi(ze) = Vf(a*) + V2 f(zc)ec + Bi,

where .
E, = / (V2f(z* +te.) — V2 f(xe))e. dt
0

and hence || E1|| < Ki|le.||* for some K > 0.
By the necessary conditions,

(5.46) Pr)Vf(x") = Pr-)Vf(z*) = 0.
By thefact that Z(x.) = Z(x*), we have the equivalent statements

c

(5.47) € = PI(w yee and 'PA(JCC)ec =0.
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Therefore, combining (5.45), (5.46), (5.47),
Pre) V(@) = Pre,)V2f(2e)Pr(a,) e + Pr(a,) Er
(5.48) = PA(z.)c + Prz) V2 f (@) Pr(s,)€c + Pz Er
= Vif(zc)ec + Prwo Er.
So, by definition of V%,

Proo) (VRS (2e) 7'V () = (Vif(2) T Pray Vi (2e) = ec + Ea,

where || Es|| < Kslle.||? for some K5 > 0.
Since Pz(;,)Pw = PPz, w foral w € RN,

Preot+ = PriayPlae — (Vif(2e)) "V f(ze)
= PPris,) (@ — (Vif(2) 'V f(2c)) = P(a” — Ba).

Therefore, ||e || < Kz||e.||? asasserted. O

5.5.3 A Projected BFGS-Armijo Algorithm
We can apply the structured quasi-Newton updating scheme from §4.3 with

(5.49) C(I) = PA((:L‘)

and update an approximation to the part of the model Hessian that acts on the e inactive set. In
this way we can hope to maintain a positive definite model reduced Hessian with, say, a BFGS
update. So if our model reduced Hessian is

R=C(z) + A,

we can use (4.42) to update A (with Ay = Pz« (), for example), aslong asthe ¢ active set does
not change. If one begins the iteration near a nondegenerate local minimizer with an accurate
approximation to the Hessian, then one would expect, based on Theorem 5.5.3, that the active
set would remain constant and that the iteration would converge g-superlinearly.

However, if theinitial dataisfar from alocal minimizer, the active set can change with each
iteration and the update must be designed to account for this. One way to do thisis to use a
projected form of the BFGS update of A from (4.42),

#o# T T
Yy (Acs)(Acs)
(5.50) Ay = P1+ACPI+ + y#Ts - Pz, ST As Pr.,

with

y* =Pr (Vf(ws) = V(ae).
Here 7, = Z¢+ (x4 ). This update carries as much information as possible from the previous
model reduced Hessian while taking care about proper approximation of the active set. Asin

the unconstrained case, if y#Ts < 0 we can either skip the update or reinitialize A to Pz.
Aisnot spd if any constraints are active. However, we can demand that A be symmetric
indefinite, and a generalized inverse At exists. We have

(5.51) (Pa+A)t=Pa+ Al
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If A(z.) = A(x,) any of the low-storage methods from Chapter 4 can be used to update A'.
In this case we have

#T #gT T
(552) AL:(I—SyT>Az<I—y;>+ S
y# s y* s y* s
Since s = Pz, s if A(zy) = A(z.), we could replace s by s# = Pz, sin (5.52).

If the set of active constraints changes, then (5.52) is no longer true and we cannot replace
s by s#. One approach isto store A, update it as afull matrix, and refactor with each nonlinear
iteration. Thisis very costly for even moderately large problems. Ancther approach, used in
[250], isto reinitialize A = PPz whenever the active set changes. The problem with this is that
in the terminal phase of the iteration, when most of the active set has been identified, too much
information islost when A is reinitialized.

In this book we suggest an approach based on the recursive BFGS update that does not
discard information corresponding to that part of the inactive set that is not changed. Theideais
that even if the active set has changed, we can still maintain an approximate generalized inverse
with

sty#T y# st sHs#L
5.53 Al =(1- Pr, APz, [ T— .
(553 + ( y#Tgw | T T s# +y#Ts#

The formulation we use in the MATLAB code bf gsbound is based on (5.52) and Al-
gorithm bf gsrec. Algorithm bf gsr ecb stores the sequences {y}f} and {sk#} and uses
Algorithm bf gsr ec and the projection Pz, to update At astheiteration progresses. The data
are the same as for Algorithm bf gsr ec with the addition of

Pz, = Pzen(z,)-

Note that the sequences {y7 } and {s}* } are changed early in the call and then the unconstrained
algorithm bf gsr ec isused to do most of the work.

ArcoriTHM 5.5.3. bf gsr ech(n, {sk#}, {y;f}, Al d,Pr,)
1 d="7Pz,d

2. 1fn=0,d = Ald; return

3 a= 5#:71‘1/3/#—1T5#; d=d—ay}_

4. call bf gsrec(n —1,{s*4}, {y7}, A, d)

5. d=d+(a— @l d/yf, s#u1)s#uos

6. d =Py, d.

The projected BFGS-Armijo algorithm that we used in the example problems in §5.7 is
based on Algorithm bf gsr ecb. Note that we reinitialize ns to zero (i.e., reinitialize A to Pz)

when y#sTs < 0. We found experimentally that this was better than skipping the update.
AvrcoritaM 5.5.4. bf gsopt b(z, f, 7, u,1)

1L ns=n=0;pgo=pg=z—Plx—Vf(x))
2. e = min(min(U; — L;)/2, ||pgl]); A = A(z); T = Z%(x); Ao = Pz

3. While||pg|| < 7o + 7 llpgol|
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(8 d = —Vf(x); Call bf gsrech(ns, {s7}, {y7}, Al,d, Pr)

(b) d=—PuVf(z)+d

(c) Findtheleastinteger m suchthat (5.13) holdsfor A = 8. Set s7, = Pr(x()\) —x)
(@ zp=2(\);y = Vf(xp) — Vf(x); x=xp; yii, = Pr(V f(xp) — Vf(z))

(e IfyffSTsfs > 0thenns =ns+1,elsens =0

(f) z=ap;pg=2 - Pz - Vf(r))

(9) € = min(min(U; — L;)/2,||pgl); A= A¢(x); T =I¢(x)

(hy n=n+1

Theorem 4.1.3 can be applied directly once the active set has been identified and a good
initial approximation to the reduced Hessian is available. The reader isinvited to construct the
(easy!) proof in exercise 5.8.6.

THEOREM 5.5.4. Let z* be a nondegenerate local minimizer. Then if z is sufficiently near
to z*, A(zg) = A(z*), and A, sufficiently near to Pr(,)V? f(2*)Pz(,+), then the projected
BFGSiteration, with ¢, = ||, — x,,(1)]], will converge g-superlinearly to =*.

A global convergenceresult for this projected BFGS algorithm can be derived by combining
Theorems 5.5.2 and 4.1.9.

THEOREM 5.5.5. Let V f be Lipschitz continuous on 2. Assume that the matrices H,, are
constructed with the projected BFGSmethod (5.50) and satisfy the assumptions of Theorem5.5.2.
Then (5.40) and the conclusions of Theorem 5.5.2 hold.

Moreover, if x* isa nondegenerate local minimizer such that thereisng such that A(x,,) =
A(z*) for all n > ng, H,, isspd, and the set

D ={z|f(x) < f(xn,) and A(z) = A(z")}

is convex, then the projected BFGS-Armijo algorithm converges g-superlinearly to x*.

5.6 Other Approaches

Our simple projected-BFGS method iseffective for small to medium sized problemsand for very
large problemsthat are discretizations of infinite-dimensional problemsthat havethe appropriate
compactness properties. The example in §4.4.2 nicely illustrates this point. For other kinds of
large problems, however, more el aborate methods are needed, and we present some pointers to
the literature in this section.

The limited memory BFGS method for unconstrained problems described in [44] and [176]
has also been extended to bound constrained problems [42], [280]. More general work on line
search methods for bound constrained problems can be found in [47], [194], and [42].

Very genera theories have been developed for convergence of trust region methods for
bound constrained problems. The notion of Cauchy decrease can, for example, be replaced by
the decrease from a gradient projection step for the quadratic model [191], [259], [66]. One
could look for minima of the quadratic model along the projection path [63], [64], or attempt to
project the solution of an unconstrained model using the reduced Hessian [162].

A completely different approach can be based on interior point methods. Thisis an active
research area and the algorithms are not, at |east at this moment, easy to implement or analyze.
This line of research began with [57] and [58]. We refer the reader to [86] and [266] for more
recent accounts of this aspect of the field and to [140] and [79] for some applications to control
problems and an account of the difficulties in infinite dimensions.
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5.6.1 Infinite-Dimensional Problems

Theresultsinthispart of thisbook do not extend in adirect way toinfinite-dimensional problems.
One reason for thisis that often infinite-dimensiona problems have countably infinitely many
constraints or even a continuum of constraints; hence €2 is not compact in the norm topology of
the Banach space in which the problem is posed and appeal s to various types of weak continuity
must be made (see[122] for an example of such arguments and [122] and [10] for applications).
Moreover, identification of an active set in finitely many iterations is not always possible. A
more complete account of thisissue may be found in [254], [162], [161].

These are not the only complicationsthat can arise in infinite dimension. Even the projected
gradient method presents challenges, especially if the minima fail to be nondegenerate in the
sense of this book [94], [95]. Convergence behavior for discretized problems can be different
from that for the continuous problem [97]. Nonequivalence of norms makes convergence results
difficult to formulate and analyze for both line search [96], [254], [98] and trust region [140],
[162] methods.

The functional analytic structure of many control problems can be exploited with fast mul-
tilevel methods. Both second kind multigrid methods from [138] and variants of the Atkinson—
Brakhage method [9], [31] have been applied to fixed point formulations of parabolic boundary
control problems in one space dimension [136], [137], [153], [162], [161].

5.7 Examples

The computations in this section were done with the MATLAB code bf gsbound. Inthiscode
the storage is limited to five pairs of vectors, and 5 = .1 was used in the line search.

5.7.1 Parameter ID Problem

We consider the parameter problem from §3.4.1 with bounds L = (2,0)” and U = (20, 5)7.
The initial iterate zo = (5,5)7 is feasible, but the global minimum of (1,1)7 isnot. Asone
might expect, the lower bound constraint on (z); isactive at the optimal point z* ~ (2,1.72)7".
The termination criterion for both the gradient projection and projected BFGS algorithms was
lu— u(1)]| < 107,

The gradient projection algorithm failed. While the value of the objective function was
correct, the projected gradient norm failed to converge and the active set was not identified.
The projected BFGS iteration converged in 35 iterations. One can see the local superlinear
convergence in Figure 5.1 from the plot of the projected gradient norms. The cost of the BFGS
iteration was 121 function evaluations, 36 gradients, and roughly 5.3 million floating point
operations.

5.7.2 Discrete Control Problem

We base the two control problem examples on the example from §1.6.1.
Our first exampletakes N = 2000, T = 1, yg = 0,
L(y,u,t) = (y = 3)* + .1 xu?, and ¢(y, u,t) = uy + 2,

with the bound constraints
S <u<L?2,

and the initial iterate ug = 2. We terminated the iteration when |ju — u(1)|| < 1075, In
Figure 5.2 we plot the solution of this problem. Clearly the active set is not empty for the
constrained problem.
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We solve the constrained problem with Algorithm gr adpr oj and Algorithm bf gsopt b.
In Figure 5.3 we plot the function value and the norm of the projected gradient u — u(1).
The projected BFGS iteration required 71 function evaluations, 36 gradient evaluations, and
roughly 5.6 million floating point operations, while the gradient projection needed 183 function
evaluations, 92 gradient evaluations, and roughly 10.4 million floating point operations.

Our second control problem example solves the same problem as in §3.4.2 using the con-
straints

—206 < u < 206.

We terminate the iteration when [lu — u(1)|| < 107°, which is exactly the condition used in
§3.4.2 when the active set is empty. The solution to the unconstrained problem is feasible,
the active set is empty, and the initia iterate is feasible. Both the gradient projection iteration
and the projected BFGS iteration converge to the solution of the unconstrained problem. The
constraints are not active at either the initial iterate or the fina solution but are active inside
the line search for the first iterate and for the second iterate. Asis clear from a comparison
of Figures 5.4 and 3.3, this small change has a dramatic effect on the cost of the optimization,
eliminating the need for the scaling fixup (3.50). The gradient projection method, requiring 15
function evaluations, 8 gradient evaluations, and roughly 167 thousand floating point operations,
is far more efficient that the steepest descent iteration reported in §3.4.2. The projected BFGS
iteration was somewhat worse, needing 223 thousand operations, but only 13 function eval uations
and 7 gradient evaluations. In this example the cost of maintaining the BFGS update was not
compensated by a significantly reduced iteration count.

5.8 Exercises on Bound Constrained Optimization

5.8.1. Supposethat f iscontinuously differentiable, that «* is a nondegenerate local minimizer
for problem (5.4), and all constraints are active. Show that thereis ¢ such that

1. ifz € B(6) thenz* = P(x — V f(z)), and
2. the gradient projection algorithm convergesin oneiteration if xo € B(6).

5.8.2. Show that if H = I then (5.31) and (5.13) are equivalent.
5.8.3. Prove Theorem 5.5.2.
5.8.4. Verify (5.42).

5.8.5. Suppose the unconstrained problem (1.2) hasasolution z* at which the standard assump-
tions for unconstrained optimization hold. Consider the bound constrained problem (5.3)
for w and [ such that z* € Q and A(z*) isnot empty. Isz* anondegenerate local mini-
mizer? If not, how are the resultsin this chapter changed? You might try acomputational
example to see what's going on.

5.8.6. Prove Theorem 5.5.4.

5.8.7. Verify (5.51).

5.8.8. Verify (5.52).

5.8.9. Formulate a generalization of (4.33) for updating Af.

5.8.10. What would happen in the examples if we increased the number of (y, s) pairs that were
stored? By how much would the BFGS cost be increased?
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Optimization of Noisy Functions
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Chapter 6

Basic Concepts and Goals

The algorithms in Part | cannot be implemented at all if the gradient of f is not available,
either analytically or via a difference. Even if gradients are available, these algorithms are
not satisfactory if f has many local minimathat are not of interest. We limit our coverage to
deterministic sampling algorithms which are generally applicable and are more or less easy to
implement. Of these algorithms, only the DIRECT algorithm [150] covered in §8.4.2 is truly
intended to be a global optimizer.

The study of optimization methodsthat do not require gradientsisan active research area(see
[227] for asurvey of some of this activity), even for smooth problems [61], [62]. Even though
some of the methods, such as the Nelder—-Mead [204] and Hooke—Jeeves [145] algorithms are
classic, most of the convergence analysisin this part of the book was done after 1990.

Thealgorithmsand theoretical resultsthat we present in thispart of the book arefor objective
functionsthat are perturbations of simple, smooth functions. The surfacesin Figure 6.1 illustrate
this problem. The optimization landscape on the left of Figure 6.1, taken from [271], arose in
a problem in semiconductor design. The landscape on the right is a simple perturbation of a
convex quadratic.
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Figure 6.1: Optimization Landscapes

We do not discuss agorithms that explicitly smooth the objective function or apply afilter,
such as the ones in [168] and [187]. For genera problems, these must sample the variable
space in some way, for example by performing high-dimensional integration, and are too costly.
However, in some specia cases these integrals can be performed analytically and impressive
results for special-purpose filtering algorithms for computational chemistry have been reported
in, for example, [196] and [277]. Nor do we discuss anal og methods (see[149] for awell-known
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Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.



Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

112 ITERATIVE METHODS FOR OPTIMIZATION

example).

We also omit stochastic methods like the special -purpose methods discussed in [38] and [39],
or more radical general-purpose global optimization algorithms, such as simulated annealing
[166] (see[1] and [265] for surveysof recent work), interval methods[152], or genetic algorithms
[143], [144] (see [246] or [123] for a survey), which are random to some extent or random
search algorithms. These probabilistic methods, however, should be considered when the more
conservative algorithms such as the ones in this part of the book fail.

6.1 Problem Statement

Consider an objectivefunction f that isaperturbation of asmooth function f, by asmall function
)

(6.1) f(x) = fs(zx) + o(x).

Small oscillationsin ¢ could cause f to have several local minimathat would trap any conven-
tiona gradient-based algorithms. The perturbation ¢ can, in general, be random or based on the
output of an experiment, [250], and may not return the same value when called twice with the
same argument. Hence ¢ need not even be afunction. We assume that ¢ is everywhere defined
and bounded to make the statement of the results simpler.

6.2 The Simplex Gradient

Most of the the algorithms in this part of the book examine a simplex of pointsin R" at each
iteration and then change the simplex in response. In this section we devel op the tools needed to
describe and analyze these agorithms. The fundamental ideais that many sampling algorithms
require enough information to approximate the gradient by differences and that the accuracy in
that difference approximation can be used to analyze the convergence. However, for problems
of theform (6.1), one must take care not to make the differenceincrements so small asto attempt
to differentiate the noise.

The ideas in this section were originally used in [155] to analyze the Nelder—Mead [204]
algorithm, which we discuss in §8.1. However, the ideas can be applied to several classes of
algorithms, and we follow the development in [29] in this section.

DEFINITION 6.2.1. Asimplex S in RY isthe convex hull of N + 1 points, {z;} 41

the jth vertex of S. Welet V' (or V/(S)) denotethe N x N matrix of simplex directions

;1S

V(S) = (332 —X1,T3 — L1y, TNH1 — 961) = (Uh s 7UN)-
We say S isnonsingular if V' isnonsingular. The simplex diameter diam(S) is

diam(S) = max |z; — ;]
1<i,j<SN+1

We will refer to the (2 condition number (V') of V as the simplex condition.
Welet §(f : S) denote the vector of objective function differences

5(f+8) = (f(ma) = f(z1), f(m3) = f(m1),- .., flwngr) — fla1))".

We will not use the simplex diameter directly in our estimates or algorithms. Rather we will use
two oriented lengths

04(8) =, max oy~ ando_(S) =, min o1 — .

Clearly,
04+ (5) < diam(S) < 204(5).
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6.2.1 Forward Difference Simplex Gradient

DEFINITION 6.2.2. Let S beanonsingular simplex with vertices {x; }jy:ﬁl

D(f: S)is

. Thesimplex gradient

D(f:8)=V"Ts(f:8).

Note that the matrix of simplex directions and the vector of objective function differences
depend on which of the verticesis labeled ;. Most of the agorithms we consider in this part
of the book use a vertex ordering or sample on aregular stencil. In this way the algorithms, in
one way or another, use asimplex gradient.

This definition of simplex gradient is motivated by the first-order estimate in Lemma 6.2.1.

LEmMA 6.2.1. Let S beasimplex. Let V f be Lipschitz continuous in a neighborhood of S
with Lipschitz constant 2K ;. Then thereis K > 0, depending only on K such that

(6.2) IVf(z1) = D(f : )| < Kru(V)oy(5).

Proof. Our smoothness assumptions on f and Taylor’'s theorem imply that for al 2 < j <
N +1,

[f(21) = faj) + 0] V(@) < Kyllogl|* < Kpos(S)*.

Hence
16(f: S) = VIV f(z1)|| < NYV2Kjo i (S)?

and hence, setting K = N'/2 K,
IVf(z1) = D(f : S)|| < K|V T[lor ().

The conclusion follows from the fact that o (S) < ||[V||. O

Search algorithms are not intended, of course, for smooth problems. Minimization of ob-
jective functions of the form in (6.1) is one of the applications of these methods. A first-order
estimate that takes perturbations into account is our next result.

We will need to measure the perturbations on each simplex. To that end we define for any
set T

[l = sup [[¢(z)]-
zeT
A first-order estimate al so holdsfor the simplex gradient of an objectivefunction that satisfies
(6.2).

LEMMA 6.2.2. Let S be a nonsingular simplex. Let f satisfy (6.1) and let V f, be Lipschitz
continuousin a neighborhood of S with Lipschitzconstant 2 K. Thenthereis K > 0, depending
only on K, such that

| o o g I6ls
63) IV £.an) = D7 $)1 < Kuv) (09 + 2505

Proof. Lemma6.2.1 (applied to f,) implies

IV fs(z1) — D(fs : S)|| < K NY?k(V)o4(S).
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Now, since [|6(¢ : S)|| < 2V N|¢||s, and o4 (S) < ||V,
ID(f:8)=D(fs: S <NV = S) = 6(fs : S = [IV-TIl[6(g = S

I#lls

< ANV [lglls < 2N2(V) 5SS
+

This completes the proof with K = N'/2K, +2N'/2. 0

The constants K in (6.2) and (6.3) depend on S only through the Lipschitz constants of f,
and V f, in aneighborhood of .S. We will expressthat dependenceas K = K (.S) when needed.

The algorithms in this section are most profitably applied to problems of the form (6.1), and
the god is to extract as much information as possible from the smooth part f; of f without
wasting effort in a futile attempt to minimize the noise. In order to formulate our goal for
convergence clearly, we explore the conseguences of asmall simplex gradient in the specia (and
not uncommon) case that the amplitude of the noiseis small in Lemma6.2.3.

LEmMA 6.2.3. Let f satisfy (6.1) and let V f, be continuously differentiable in a compact set
Q c RN. Assumethat £, has a unique critical point z*in Q. Then thereis Kq > 0 such that

for any simplex .S C Q with vertices {z; }jj\’:ﬁl,

oy — 2| < Ko (||D<f S)l+ A(V) (MS) ’ Jf(ﬁ))) |

Proof. The compactness of €2 and our smoothness assumptions on f, imply that thereis 53,
such that

IVfs(@)| = Bollz — ™|
fordl z € 2. We apply (6.3) to obtain

lzy —2*| < B5 IV Es(a)]

g : I6ls ))
< (1D 511+ Kn(v) (0205) + Lol
This completes the proof with Ko = 3, ' max(1, K). O

By sampling in an organi zed way simplex-based a gorithms, some directly and someimplic-
itly, attempt to drive the simplex gradient to a small value by changing the size of the simplices
over which f is sampled. The motion of the simplices and the scheme for changing the size
(especialy the reduction in size) accounts for the differencesin the algorithms. Theorem 6.2.4,
adirect consequence of Lemma 6.2.3, quantifiesthis. Wewill consider a sequence of uniformly
well-conditioned simplices. Such simplices are generated by several of the algorithms we will
study later.

THEOREM 6.2.4. Let f satisfy (6.1) and let V f, be continuously differentiable in a compact
set Q C RN. Assume that f, has a unique critical point z* in Q. Let S* be a sequence of
simplices having vertices {xf };V;gl. Assume that thereis M such that

S* c Qand k(V(S*)) < M for all k.
Then,
1. if

klim cr+(Sk) =0, lim 191l

o (57
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and limsup,,_, . [|D(f : S*)|| = ¢, for somee > 0, then thereis K g > 0 such that

limsup ||z — 2¥|| < Kge;

k—oo
2. if, for somee > 0,

limsup ||p|| g+ < eQ,IikminfUJr(Sk) > ¢, and likminf |D(f : S*)|| <e,

— 00

then thereis Kg > 0 such that

limsup [|2* — 2¥|| < Kg(e + limsup oy (S¥)).

k—oo k—oo

6.2.2 Centered Difference Simplex Gradient

In this section we define the centered difference simplex gradient and prove a second-order
estimate. We will then prove two variants of Theorem 6.2.4, one to show how the role of the
noise ¢ differsfrom that in the one-sided derivative case and a second to quantify how the values

of f onthe stencil can be used to terminate an iteration.
DEFINITION 6.2.3. Let S beanonsingular simplexin RY with vertices {x; };V:ﬁl and simplex

directionsv; = z;4+1 — 1. Thereflected simplex R = R(S) isthesimplex with vertices z;, and
T =T —’UijI'j:L...,N.
The central simplex gradient Do (f : S) is

Dots:§)= 2USIHDUR) VTG :5) =8l s 7)),

For example, if N =1 and x5 = x1 + h, thenry = 21 — h. Hence

flzi+h) = f(z1) flx1—h) — f(z1)
h —h '

D(f:9)= and D(f : R) =

Therefore,

flxi+h)— flzi —h)
2h

Dc(f : S) = Dc(f : R) =

isthe usual central difference.
Lemmas 6.2.5 and 6.2.6 are the second-order analogues of Lemmas 6.2.1 and 6.2.2.

LEmMMA 6.2.5. Let S be a nonsingular simplex and let V2 f be Lipschitz continuous in a
neighborhood of S U R(.S) with Lipschitz constant 3K . Then thereis K > 0 such that

(6.4) IV£(21) = Do(f = S)|| < Kr(V)oi(5)?.

Proof. The Lipschitz continuity assumption impliesthat foral 2 < j < N +1,

|f(2;) = F(r;) + 2V f(z1)"v;] < Kello;||® < Keoi (S)°.
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Asin the proof of Lemma6.2.1 we have
IVE(S(f:8) = 6(f: R) = VIV f(a1)|| < N'* Koo (S)?,

and hence the result followswith K = NY/2K .. O

LEMMA 6.2.6. Let S beanonsingular simplex. Let f satisfy (6.1) and let V2 £, be Lipschitz
continuousin a neighborhood of S U R(S) with Lipschitz constant 3K ¢s. Thenthereis K > 0,
depending only on K, such that

- . - oo ()2 o I9lls
(6.5) [V fs(z1) = De(f : 9)|| < K (V)< +(8) +o—+(5)>'

Proof. This proof isvery similar to that of Lemma 6.2.2 and is|eft to the reader. O

The quality of the information that can be obtained from the central simplex gradient is
higher than that of the forward. The difference in practice can be dramatic, as the examples
in §7.6 illustrate. The consequences of a small central simplex gradient follow directly from
Lemma6.2.6.

LEmMMA 6.2.7. Let f satisfy (6.1) and let V2 f, be continuously differentiable in a compact
set Q ¢ RY. Assumethat f, has a unique critical point z*in Q. Then thereis Kq > 0 such
that if a simplex S and itsreflection R(S) are both contained in €2 then

o1 — 2| < Ko (nDc(f )|+ w(V) (U+<5>2 - olfg))) |

Lemma 6.2.7 is al one needs to conclude convergence from a sequence of small central
simplex gradients.

THEOREM 6.2.8. Let f satisfy (6.1) and let V2 £, be continuously differentiablein a compact
set Q@ ¢ RN. Assumethat f, has a unique critical point z* in 2. Let S* be a sequence of
simplices having vertices {m}“ };V:ﬁl. Assume that thereis M such that

S* R(S*) c Qand k(V(S*)) < M for all k.

Then,
1. if

lim o, (S*) =0, lim G

= 07
k—o0 k—o0 O'+(Sk)

and lim sup,,_ ., || Do (f : S*)|| = ¢, for somee > 0, then thereis K s > 0 such that

limsup ||z* — 2¥|| < Kge;

k—oo
2. if, for somee > 0,

limsup ||¢||s+ < eg,likminf0+(5k) > €%, and likrnianDc(f : 5P| < €,

k—oo

then thereis Ks > 0 such that

limsup ||z* — 2¥|| < Kg(e + limsup o, (S*))2.

k—oo k—oo
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Theorem 6.2.8, like Theorem 6.2.4, motivates using a small simplex gradient as a test for
convergence. Suppose ||¢|l.c < e and an algorithm generates sequences of simplices whose
vertices are intended to approximate a minimizer of f.. We can usetheresultsin §2.3.1 to con-
clude that simplices with o, (S) << €'/2 will result in inaccurate forward difference gradients
and those with o, (S) << ¢2/3 in inaccurate central difference gradients. This indicates that
the central simplex gradient will be less sensitive to noise than the forward. While this is not
usually critical in computing a difference Hessian, where the loss of accuracy may cause slow
convergence, it can cause failure of the iteration if one is computing a difference gradient.

If onewantsto terminate the algorithm when the simplex gradient issmall, say, < 7, arough
estimate of the minimal possible value of 7 is 7 = O(¢'/?) for aforward difference simplex
gradient and 7 = O(¢%/?) for acentral simplex gradient.

Moreover, if oneis using a centered difference, one has information on the values of f at
enough points to make an important qualitative judgment. In order to evaluate a central simplex
gradient f must be ssmpled at z; and z; £ v; for 1 < j < N. If f(z1) < f(x1 £ v;) for
al 1 < j < N, then one can question the validity of using the ssmplex gradient as a descent
direction or as a measure of stationarity. We call this stencil failure. We will use stencil failure
asatermination criterion in most of the algorithmswe discussin this part of the book. Our basis
for that isaresult from [29], which only requires differentiability of f.

THEOREM 6.2.9. Let S beanonsingular simplex such that for somey— € (0,1) and x4 > 0,
(6.6) k(V) < kyandzTVVTz > p_o, (S)?|z|? for all z.

Let f satisfy (6.1) and let V f; be Lipschitz continuoudly differentiable in a ball B of radius
204 (S) about x;. Assume that

67) flan) < mindf (@1 £ v,)}:

Then, if K isthe constant from Lemma 6.2.2,

(6.8) |V fo(z1)|| < 8u'Kry <a+(5) + Jﬂg)) -

Proof. Let R(S), the reflected simplex, have vertices z; and {r;})_,. (6.7) implies that
each component of 6(f : S) and 6(f : R) is positive. Now since

we must have
0 <6(f:976(f:R)

(6.9) = (VIVTIS(f - SHT(V(R)TV(R)TT8(f « R))

=-D(f:STVVTD(f: R).
We apply Lemma6.2.2to both D(f : S) and D(f : R) to obtain
D(f:5)=Vfix1)+ Eyand D(f : R) = Vfs(x1) + Es,

where, since k(V) = k(V(R)) < k4,

19115
14l < Ky (25 + 1202,
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Since | V]| < 204 (S) we have by (6.9)

om0 VI@)TVVIV (@) < 40w (S)IV fulan) [(1B ] + 1| B2l
6.10
+4o (S)2| B || 2l

The assumptions of the lemma give alower estimate of the |eft side of (6.10),
wIVVTw > p_oy (8)?||wl?.

Hence,
IV2f (1) < 0IV2f(z) +e,

where, using (6.10),

b=8u; ' Keky <o+(S) + ¢l )

o+(9)
and 2
c=4p" (Kyry)? (U+(S) + jﬂ;) - %BQ'

S0 b? — 4c = b*(1 — p_ /4) and the quadratic formula then implies that
< b+\/b2*407b1+\/1—ﬂ—/4 <b

IV2 f (1)

as asserted. O

6.3 Examples

Our examples are sel ected to represent avariety of problemsthat can be attacked by the methods
in this part of the book and, at the same time, are easy for the reader to implement. Many of the
problems to which these methods have been applied have complex objective functions and have
been solved as team efforts [107], [250], [121], [70], [69]. In many such cases the objective
function is not even available as a single subroutine as the optimizer, simulator, and design tool
are one package. Hence, the exampleswe present in this part of the book are even more artificial
than the onesin the first part. The cost of an evaluation of f ismuch lessin these examplesthan
itisin practice.

6.3.1 Weber’s Problem

Our discussion of this problem is based on [182]. Weber’s problemisto locate a central facility
(awarehouse or factory, for example) so that the total cost associated with distribution to several
demand centersis minimized. The model isthat the cost is proportional to the distance from the
facility. The proportionality constant may be positive reflecting transportation costs or negative
reflecting environmental concerns.

If the locations of the demand centers are {z;} C R? and the corresponding weights are
{w;}, then the objective function is

(6.11) flz) = Zwi“‘r — zil| = Zwi\/[(z)l = (zih]? + [(2)2 — (2i)2]*

We will assume that

Zwi > 0,
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so that aglobal optimumexists. If ), w; < 0theninf f = —oo and thereisno global optimum.

Weber's problem is not differentiable at x = 2; because the square root function is not
differentiable at 0. A gradient-based algorithm, applied in a naive way, will have difficulty with
thisproblem. There are special-purpose algorithms (see[182] for asurvey) for Weber’s problem,
especialy if al theweightsare positive. Our maininterestisin the casewhere at least oneweight
is negative. In that case there may be multiple local minima.

We will consider two examples. The first, and simplest, is from [182]. This example has
three demand centers with

w=<2,4,—5>Tand<z1,z2,Z3>:( 290 43).

42 11 88

The global minimum is at z* = (90, 11)7, at which the gradient is not defined. The complex
contours near the minimizer in Figure 6.2 illustrate the difficulty of the problem.

20

Figure 6.2: Contour/Surface for Weber’s Function: First Example

Our second example has two local minimizers, at (—10, —10) and (25, 30) with the global
minimizer at (25, 30). There are four demand centers with

o r _/-10 0 5 25
’LU—(Q, 47271) and(zl,z2723’24)—(_10 0 8 30 .

See Figure 6.3.
Our third example adds the oscillatory function

é(z) = sin(.003527 ) + 5sin(.003(z — y) T (z — ))

to the second example, where y = (—20,0)7. This complicates the optimization landscape
significantly, as the surface and contour plotsin Figure 6.4 show.

6.3.2 Perturbed Convex Quadratics

The sum of asimple convex quadratic and |ow-amplitude high-frequency perturbation will serve
asamodel problem for all the algorithmsin this section. For example, the function graphed on
theright in Figure 6.1,

f(z) = 222(1 + .75 cos(80x) /12) + cos(100x)? /24
isone of the examplesin [120]. Our genera form will be

612 flx) = (z—&)"H(z—&)(1+aicos(bi (z — &) +er(z — &) (z = &)))
A
+a2(1 + COS(bg(I’ — gg)T + CQ(I’ — gg)T(I — 52))) + a3|rand\,
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Figure 6.4: Contour/Surface plots for Weber’s Function: Third Example

where {¢;}, {a;}, {b;}, {¢,;} are given and rand is a random number generator. f has been
designed so that theminimumvalueisO(a; +as+as). Theunperturbedcasea; = as = a3 =0
isalso of interest for many of the algorithmsin this part of the book.

6.3.3 Lennard-Jones Problem

The objective functionisasimple model of the potential energy in amolecule of identical atoms.
Assume that there are M atoms and that ¢; € R? isthe position of the ith atom. Letting

dij = 1€ = &l

and
v=F, ... )T e RY

where N = 3M, we have that the Lennard-Jones energy functionis

(6.13) flz) = ZZZ; (di;'* = 2d;5°) .

f has many local minimizers (O(eM2) is one conjecture [142]) and the values at the mini-
mizersare close. Hence, the L ennard—Jones function does not conform to the noisy perturbation
of a smooth function paradigm. The reader is asked in some of the exercises to see how the
methods perform.
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6.4 Exercises on Basic Concepts
6.4.1. Show that if w; > 0 for al i then Weber's problem has a unique local minimum.
6.4.2. ProveLemma6.2.6.

6.4.3. Try to minimize the Lennard-Jones functional using some of the algorithmsfrom thefirst
part of the book. Vary theinitial iterate and M. Compare your best results with those in
[142], [40], and [210].
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Chapter 7

Implicit Filtering

7.1 Description and Analysis of Implicit Filtering

The implicit filtering algorithm was originaly formulated in [270], [251], and [271], as a
difference-gradient implementation of the gradient projection algorithm [18] in which the dif-
ference increment is reduced in size as the iteration progresses. A different formulation for
unconstrained problemswith certain convexity properties wasintroduced at about the sametime
in[279]. From the point of view of this book, the simplex gradient is used in adirect way. The
algorithmic description and analysisin this chapter uses the results from §6.2 directly. We will
focus on unconstrained problems and derive the convergence results that implicit filtering shares
with the search algorithmsin Chapter 8.

Implicit filtering, by using an approximate gradient directly, offers the possibility of im-
proved performance with quasi-Newton methods and can be easily applied to bound constrained
problems. We explore these two possibilitiesin §§7.2 and 7.4.

In its simplest unconstrained form, implicit filtering is the steepest descent algorithm with
difference gradients, where the difference increment varies as the iteration progresses. Because
the gradient is only an approximation, the computed steepest descent direction may fail to be a
descent direction and the line search may fail. In thisevent, the difference increment is reduced.

For agivenz € RN and h > 0 we let the simplex S(z, h) be the right simplex from 2 with
edges having length h. Hence the verticesare x and « + hv; for 1 <i < N withV = 1. So
k(V') = 1. The performance of implicit filtering with acentral difference gradientisfar superior
to that with the forward difference gradient [120], [187], [250]. We will, therefore, use centered
differences in the discussion. We illustrate the performance of forward difference gradientsin
67.6.

We set

Vif(x) = Dc(f : S(x,h)).
We use asimple Armijo [7] line search and demand that the sufficient decrease condition
(7.1) fl@ = AVif(@)) = f(z) < X[V f(2)]?

holds (compare with (3.4)) for some . > 0.
Our central difference steepest descent algorithm f dst eep terminates when

(7.2) IVhf (@) < Th

for some 7 > 0, when more than pmax iterations have been taken, after a stencil failure, or
when the line search fails by taking more than amax backtracks. Eventhefailuresof f dst eep
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can be used to advantage by triggering a reduction in h. The line search parameters «, 5 and
the parameter 7 in the termination criterion (7.2) do not affect the convergence analysis that we
present here but can affect performance.

ArLcoritaM 7.1.1. f dst eep(z, f,pmax, T, h, amazx)
1. Forp=1,...,pmax

(8 Compute f and V,, f; terminateif (6.7) or (7.2) hold.

(b) Findtheleastinteger 0 < m < amax such that (7.1) holdsfor A = ™. If no such
m exists, terminate.

(©) ==z —AVf(z).
Algorithm f dst eep will terminate after finitely many iterations because of the limits on
the number of iterations and the number of backtracks. If theset {z | f(z) < f(x0)} isbounded
then the iterationswill remainin that set. Implicit filtering callsf dst eep repeatedly, reducing

h after each termination of f dst eep. Aside from the data needed by f dst eep, one must
provide a sequence of difference increments, called scalesin [120].

ArcoriteM 7.1.2. i nfil ter 1(z, f, pmax, T, {h}, amazx)

1 Fork=0,...
Cal f dst eep(z, f, pmaz, 1, hy, amazx)

The convergence result follows from the second-order estimate, (6.5), the consequences of a
stencil failure, Theorem 6.2.9, and the equalities hy, = o (S*) and x(V*) = 1. A similar result
for forward differences would follow from (6.3).

THEOREM 7.1.1. Let f satisfy (6.1) and let V f, be Lipschitz continuous. Let hj, — 0, {zx}
be the implicit filtering sequence, and S* = S(x, hy,). Assume that (7.1) holds (i.e., there is no
line search failure) for all but finitely many k. Then if

(7.3) Jim (e + b dllsx) = 0

then any limit point of the sequence {x } isacritical point of f;.
Proof. If either (7.1) or (6.7) hold for al but finitely many & then, asis standard,
Vi f(ar) = Do(f : 8%) — 0.
Hence, using (7.3) and Lemma 6.2.2,
Vis(zr) — 0,

as asserted. O

7.2 Quasi-Newton Methods and Implicit Filtering

Theuniquefeature of implicit filtering isthe possibility, for problemsthat are sufficiently smooth
near a minimizer, to obtain faster convergence in the terminal phase of the iteration by using a
guasi-Newton update of amodel Hessian. Thisideawasfirst proposed in [250] and [120].

We begin with a quasi-Newton form of Algorithm f dst eep. In this agorithm a quasi-
Newton approximation to the Hessian is maintained and the line search is based on the quasi-
Newton direction

d=—-H'V, f(x)
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terminating when either
(7.4) f(x+ M) — f(x) < aAV,f(z)Td

or too many stepsize reductions have been taken. With the application to implicit filtering in
mind, Algorithm f dquasi replacesthe quasi-Newton H with the identity matrix when theline
search fails.

Avrcoritam 7.2.1. f dquasi (z, f, H,pmax, 7, h, amax)
1. Forp=1,...,pmazx

(a) Compute f, V,f andd = —H 'V}, f; terminate if (7.2) holds.

(b) Findtheleastinteger 0 < m < amax such that (7.4) holdsfor A = ™.
(€ z=z+ Ad.

(d) Update H with a quasi-Newton formula.

In the context of implicit filtering, where N is small, the full quasi-Newton Hessian or its
inverse is maintained throughout the iteration. Our MATLAB codes store the model Hessian.

ALGORITHM 7.2.2. i nfil ter 2(z, f,pmaz, T,{h}, amaz)
1. H=1.

2. Fork=0,...
Cal f dquasi (z, f, H,pmax, 7, hy,, amazx).

In [250] and [120] the SR1 method was used because it performed somewhat better than the
BFGS method in the context of a particular application. The examplesin §7.6 show the opposite
effect, and both methods have been successfully used in practice.

7.3 Implementation Considerations

Implicit filtering has several iterative parameters and requires some algorithmic decisionsin its
implementation. The parameterspmax, amazx, and 5 play the samerolethat they doin any line
search algorithm. In our MATLAB codei nfi | . m which we used for all the computations
reported in this book, we set pmaax = 200 * n, amaz = 10,and G = 1/2.

The performance of implicit filtering can be sensitiveto thevalue of 7 [250], with small values
of 7 leading to stagnation and values of 7 that are too large leading to premature termination of
f dquasi . Using stencil failure asatermination criterion reduces the sensitivity to small values
of 7 and we use 7 = .01 in the computations.

The sequence of scalesisat best aguess at the level of the noisein the problem. If several of
the scales are smaller than the level of the noise, the line search will fail immediately and work
at these scales will be wasted. Our implementation attempts to detect this by terminating the
optimization if the x is unchanged for three consecutive scales.

The simplex gradient may be avery poor approximation to the gradient. In some such cases
the function evaluation at atrial point may fail to return avalue [250] and one must either trap
thisfailure and return an artificially large value, impose bound constraints, or impose alimit on
the size of the step. In our computations we take the latter approach and limit the stepsize to
10h by setting

—H_lvhf(w) if HH—thf(a:)H < 10h,
(7.5) d= —10hH 'V}, f(z)
[H='Vif(@)]

otherwise.
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Thechoiceof aquasi-Newton method to usewithimplicit filteringisan areaof activeresearch
[56], [55]. Both SR1 and BFGS have been used, with SR1 performing modestly better in some
applications with bound constraints [270], [251], [271], [250], [55]. The implementation of
implicit filtering in the collection of MATLAB codesi nf i | . muses BFGS as the default but
has SR1 as an option. We found BFGS with central differences to be consistently better in the
preparation of the (unconstrained!) computational examples in this book.

7.4 Implicit Filtering for Bound Constrained Problems

Implicit filtering was initially designed as an agorithm for bound constrained problems [250],
[120]. The bound constrained version we present here is simply a projected quasi-Newton
algorithm like the one presented in §5.5.3. There are other approaches to the implementation
and no best approach has emerged. We refer the reader to [120] and [55] for discussions of the
options.

We begin with scaling and the difference gradient. Central differences perform better, but
we do not evaluate f outside of the feasible region. Hence, if apoint on the centered difference
stencil is outside of the feasible region, we use a one-sided differencein that direction. In order
to guarantee that at least one point in each direction is feasible, we scale the variables so that

The sufficient decrease condition is (compare with (5.31))

(7.6) fla(\) = f(z) < aVif(2)T (@A) - 2),

where
x(A) =Pz — AV f(x)).

One could terminate the iteration at a given scale when the analogue to (7.2)

(7.7) |z —z(1)|| < Th
holds or when
(7.8) f(ze) < f(z £r;) foral z & r; feasible,

which isthe analogue to (6.7) for bound constrained problems.

Quasi-Newton methods for bound constraints can be constructed more simply for small
problems, like the ones to which implicit filtering is applied, where it is practical to store the
model of the inverse of the reduced Hessian as a full matrix. By using full matrix storage, the
complexity of bf gsr ecb is avoided. One such aternative [53], [54], [55] to the updates in
§5.5.3 isto update the complete reduced Hessian and then correct it with information from the
new active set. This results in atwo-stage update in which a model for the inverse of reduced
Hessian is updated with (4.5) to obtain

T T T

_ Sy _1 (E; SS
7.9 PR (i I—Z— =
(79 iz < yTS) e < yTS) T

Then the new reduced Hessian is computed using the active set information at the new point
(7.10) Ry'=Pa, +Pr, Ry ,Pr,.

It is easy to show that Theorems 5.5.4 and 5.5.5 hold for this form of the update.

A FORTRAN implementation [119] of implicit filtering for bound constrained problemsis
in the software collection. Intheoriginal version of that implementation a projected SR1 update
was used and a Cholesky factorization of the matrix R was performed to verify positivity. The
model Hessian was reinitialized to the identity whenever the scale or the active set changed.
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7.5 Restarting and Minima at All Scales

No agorithm in this part of the book is guaranteed to find even alocal minimum, much less
a global one. One approach to improving the robustness of these algorithms is to restart the
iteration after one sweep through the scales. A point x that is not changed after a cal to
Algorithmi nfilterl (orinfilter2 orthebound constrained form of either) is caled a
minimum at all scales.

If f satisfies(6.1), f, hasauniquecritical point that isalso alocal minimum that satisfiesthe
standard assumptions (and hence is a global minimum for f,), and certain (strong!) technical
assumptions on the decay of ¢ near the minimum hold, then[120] aminimum at all scalesisnear
that global minimum of f,. Intheunconstrained casethis statement followsfrom thetermination
criteria ((7.2) and (6.7)) for implicit filtering, Lemma6.2.3 (or 6.2.7) and, if central differences
are used, Theorem 6.2.9. The analysisin[120] of the bound constrained caseis more technical.

In practice, restarts are expensive and need not be donefor most problems. However, restarts
have been reported to make a difference in some cases[178]. It is also comforting to know that
onehasaminimum at al scales, and the author of thisbook recommendstesting potential optima
with restarts before one uses the results in practice but not at the state where one is tuning the
optimizer or doing preliminary evaluation of the results.

7.6 Examples

Many of these examplesare from [56]. For all the exampleswe report results with and without a
guasi-Newton Hessian. We report results for both forward and central differences. Inthefigures
the solid line corresponds to the BFGS Hessian, the dashed-dotted line to the SR1 Hessian, and
the dashed lineto H = I, the steepest descent form of implicit filtering.

Unlike the smooth problems considered earlier, where convergence of the gradient to zero
was supported by theory, convergence of the simplex gradient to zero is limited by the noisein
the objective. We illustrate performance by plotting both the objective function value and the
norm of the ssimplex gradient. From these examples it is clear that the the graphs of function
value against the count of function evaluations is a better indicator of the performance of the
optimizer.

Inall caseswe terminated the iteration when either f dquasi had been called for each scale
or a budget of function evaluations had been exhausted. Once the code completes an iteration
and the number of function evaluations is greater than or equal to the budget, the iteration is
terminated.

The examples include both smooth and honsmooth problems, with and without noise. A
serious problem for some algorithms of this type is their failure on very easy problems. For
most of the algorithms covered in this part of the book, we will present examples that illustrate
performance on this collection of problems.

7.6.1 Weber’s Problem

The three Weber’'s function examples all have minimizers at points at which the objective is
nondifferentiable. For the computations we used an initia iterate of (10, —10)7, a budget of
200 function evaluations, and {10 x 27"}8__, asthe sequence of scales.

In each of the examples the performance of the two quasi-Newton methods was virtually
identical and far better than that without a quasi-Newton model Hessian. Forward and central
differences for the first two problems (Figures 7.1 and 7.2) perform almost equally well, with
forward having adlight edge. In Figure 7.3, however, the forward difference version of implicit
filtering finds alocal minimum different from the global minimum that is located by central
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differencing. This, of course, is consistent with the theory, which does not claim that implicit
filtering is aglobal optimizer.

7.6.2 Parameter ID

We consider the parameter |D examplefrom §1.6.2 using the datafrom §2.6.1. Recall that inthis
example we use as data the values of the exact solution for ¢ = k£ = 1 at the points¢; = ¢/100
for 1 < i < 100. Theinitial iterate was (5, 5)T’; the sequence of scaleswas {27%}12 ,. Implicit
filtering, like the globally convergent algorithmsin thefirst part of the book, isfairly insensitive
to the choice of initia iterate, as we will see when we revisit this examplein §8.5.2.

We report on both low (rtol = atol = 10~3, Figure 7.4) and high (rtol = atol = 1075,
Figure 7.5) accuracy computations. Note that after 200 function evaluations the function re-
duction from the central difference BFGS form of implicit filtering flattens out in both plots at
roughly the expected level of O(tol) while the other methods have not. This effect, which is
not uncommon, is one reason for our preference for the BFGS central difference form of the
agorithm.

7.6.3 Convex Quadratics

The performance of the central difference BFGS form of implicit filtering should be very good,
since (see exercises 7.7.1 and 7.7.2) the difference approximation of the gradient is exact. We
would expect that good performanceto persistinthe perturbed case. Weillustratethiswith results
on two problems, both given by (6.12). One is an unperturbed problem (a; = b; = ¢; = 0
for al j) where H is adiagona matrix with (H);; = 1/(2¢) for 1 < i < N. The other isa
perturbed problem with

& = (sin(1),sin(2),...,sin(N) T, & =0,& = (1,...,1)T,

aq :CLQZ.OI,CL:),:O,bl :(17...,1)T7b2:0, and01 = ¢y = 107.
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If ag # 0 then f may not return the same value when called with the same argument twice.
The reader isinvited to explore the consequences of thisin exercise 7.7.3.

The performance of the algorithmsin this part of the book sometimes depends on the size of
the problem much more strongly than the Newton-based methodsin Part I. In the case of implicit
filtering, that dependence is mostly aresult of the cost of evaluation of the simplex gradient. To
illustrate this we consider our quadratic problemsfor N = 4 (Figures 7.6 and 7.8) and N = 32
(Figures 7.7 and 7.9).

For al the quadratic examplesthe initial iterate was

(1,2,...,N)T

To = 10N

and the sequence of scaleswas {27%}10 .

7.7 Exercises on Implicit Filtering

7.7.1. Let S be anonsingular simplex. Show that Do (f : S) = f(x1) if f is a quadratic
function.

7.7.2. How would you expect forward and centered difference implicit filtering to perform when
appliedto f(x) = z”x? Would the performance be independent of dimension? Test your
expectation with numerical experimentation.

7.7.3. Useimplicit filtering to minimize the perturbed quadratic function with nonzero val ues of
as.

7.7.4. Try to solve the Lennard-Jones problem with implicit filtering for various values of M
and variousinitial iterates. Compare your best resultswith thosein [142], [40], and [210].
Are you doing any better than you did in exercise 6.4.3?

7.7.5. Show that Theorems5.5.4 and 5.5.5 hold if the projected BFGS updateisimplemented us-
ing (7.9) and (7.10). How would theseformulasaffect animplementationlikebf gsr ecb,
which is designed for problems in which full matrices cannot be stored?
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Chapter 8

Direct Search Algorithms

In this chapter we discuss the class of direct search algorithms. These methods use values of
f taken from a set of sample points and use that information to continue the sampling. Unlike
implicit filtering, these methods do not explicitly use approximate gradient information. Wewill
focus on three such methods: the Nelder—Mead simplex algorithm [204], the multidirectional
search method [85], [261], [262], and the Hooke—Jeeves algorithm [145]. Each of these can be
analyzed using the simplex gradient techniques from Chapter 6. We will not discuss the very
genera results based on the taxonomies of direct search methodsfrom [263], [174], and [179] or
the recent research on the application of these methodsto bound [173] or linear [ 175] constraints.

Weinclude at the end of thischapter ashort discussion of methods based on surrogate models
and a brief account of a very different search method, the DIRECT algorithm[150]. These two
final topics do not lead to algorithms that are easy to implement, and our discussions will be
very genera with pointersto the literature.

8.1 The Nelder—-Mead Algorithm

8.1.1 Description and Implementation

The Nelder—Mead [204] simplex algorithm maintains a simplex .S of approximations to an
optimal point. In this algorithm the vertices {x; }f’;ql are sorted according to the objective
function values

(8.1) fl@1) < flag) <o < flanga)

x; is called the best vertex and =1 the worst. If severa vertices have the same objective
value as 1, the best vertex is not uniquely defined, but this ambiguity has little effect on the
performance of the algorithm.

The algorithm attempts to replace the worst vertex x 1 with anew point of the form

(8.2 z(p) =1+ pT — pry41,

where 7 is the centroid of the convex hull of {z;} ;

1IN
(8.3 T = Nzizlxi'
The value of 1 is selected from a sequence

-1 <,u7',c<0</1'0c < fr < fe
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by rules that we formally describe in Algorithm nel der . Our formulation of the algorithm
alowsfor termination if either f(zy1)— f(x1) issufficiently small or auser-specified number
of function evaluations has been expended.

AvrcoriteM 8.1.1. nel der (S, f, 7, kmax)

1. Evaluate f at the vertices of .S and sort the vertices of S so that (8.1) holds.
2. St fecount = N + 1.
3. While f(zny1) — f(z1) > 7

(8 ComputeZ, (8.3), z(1r), (8.2),and f, = f(x(ur)). feount = feount + 1.

(b) Reflect: If fecount = kmax then exit. If f(z1) < f. < f(xn), replace zy 1 with
x(u,-) and go to step 3g.

(c) Expand: If fcount = kmax thenexit. If f. < f(x1) thencompute f. = f(x(ue))-
feount = fcount + 1. If fo < f,, replace 1 with z(u.); otherwise replace
41 With z(u,). Goto to step 3g.

(d) Outside Contraction: If fcount = kmax then exit. If f(zn) < fr < f(zn11),
compute f. = f(z(ttoc)). feount = feount + 1. If f. < f, replace z 1 with
z(uoc) and go to step 3g; otherwise go to step 3f.

(e) Inside Contraction: If fecount = kmax then exit. If f. > f(zn41) compute
fe = f(x(pic))- feount = feount + 1. If fo < f(xn41), replace x 41 with
x(u;.) and go to step 3g; otherwise go to step 3f.

(f) Shrink: If fcount > kmax — N, exit. For 2 <i < N 4+ 1: seta; = x1 — (z; —
21)/2; compute f(;).

(g) Sort: Sort the vertices of S so that (8.1) holds.

A typical sequence [169] of candidate valuesfor p is
{M’m Hey Hocs /inc} = {L 2, 1/2a _1/2}'

Figure 8.1 isan illustration of the optionsin two dimensions. The vertices labeled 1, 2, and
3 are those of the original simplex.

The Nelder—Mead algorithm is not guaranteed to converge, even for smooth problems[89],
[188]. The failure mode is stagnation at a nonoptimal point. In §8.1.3 we will present some
examples from [188] that illustrate this failure. However, the performance of the Nelder—Mead
algorithm in practice is generally good [169], [274]. The shrink step israre in practice and we
will assumeintheanalysisin §8.1.2 that shrinksdo not occur. Inthat case, whileaNelder—-Mead
iterate may not result in areduction in the best function value, the average value

1 N+1
f= mzjzl f(x5)

will be reduced.
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oc

3 2
Figure 8.1: Nelder—Mead Smplex and New Points

8.1.2 Sufficient Decrease and the Simplex Gradient

Our study of the Nelder—Mead algorithm is based on the simple ideas in §3.1. We will denote
the vertices of the simplex S* at the kth iteration by {x?}j.v:"il. We will simplify notation by

suppressing explicit mention of S* in what follows by denoting
VE=V(S*), 8" =6(f: S*), K¥ = K(S*), and D*(f) = D(f : S*).

If V0 is nonsingular then V* is nonsingular for all £ > 0 [169]. Hence if S is nonsingular so
is S* for all k and hence D*(f) is defined for all k.

We formalize this by assuming that our sequence of simplices satisfies the following assump-
tion.

AssumPTION 8.1.1. For all k,

e S*¥ isnonsingular.

e The vertices satisfy (8.1).

° fk+1 < fk-

Assumption 8.1.1 is satisfied by the Nelder—-Mead sequence if no shrink steps are taken
and the initial simplex directions are linearly independent [169]. The Nelder—Mead algorithm

demands that the average function value improve, but no control is possible on which value is
improved, and the simplex condition number can become unbounded.
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We can define a sufficient decrease condition for search algorithms that is analogous to the
sufficient decrease condition for steepest descent and related algorithms (3.2). We will ask that
the k + 1st iteration satisfy
(8.4) fEE— fF < —a|| DR f2.

Here oo > 0 is a small parameter. Our choice of sufficient decrease condition is motivated by the
smooth case and steepest descent, where (3.2) and the lower bound —\ on A from Lemma 3.2.3
lead to

F@ren) = fzn) < —Xal|Vf(z)]?,
which is a smooth form of (8.4). Unlike the smooth case, however, we have no descent direction
and must incorporate X into «. This leads to the possibility that if the simplex diameter is much
smaller than || D f ||, (8.4) could fail on the first iterate. We address this problem with the scaling

- U+(SO)
“= Y pos|

A typical choice in line search methods, which we use in our numerical results, is og = 1074,
The convergence result for smooth functions follows easily from Lemma 6.2.1.

THeorREM 8.1.1. Let a sequence of simplices satisfy Assumption 8.1.1 and | et the assumptions
of Lemma 6.2.1 hold, with the Lipschitz constants K* uniformly bounded. Assume that {i’“} is
bounded from below. Then if (8.4) holds for all but finitely many k£ and

klim o (SF)k(VF) =0,

then any accumulation point of the simplicesis a critical point of f.

Proof. The boundedness from below of {ff} and (8.4) imply that f* — 0. Assumption 8.1.1
and (8.4) imply that lim;_... D f = 0. Hence (6.2) implies

Jim [Vf(@)] < lim (Ka(V*)ou(S5) + D ) = 0.

Hence, if 2* is any accumulation point of the sequence {z¥} then V f(x*) = 0. This completes
the proof since x(V*) > 1 and therefore o, (V¥) — 0. O

The result for the noisy functions that satisfy (6.1) with f smooth reflects the fact that
the resolution is limited by the size of ¢. In fact, if o (S*) is much smaller than ||¢||gx, no
information on f, can be obtained by evaluating f at the vertices of S* and once o (S*) is
smaller than |\<;S||§/,€2 no conclusions on V f; can be drawn. If, however, the noise decays to zero
sufficiently rapidly near the optimal point, the conclusions of Theorem 8.1.1 still hold.

THEOREM 8.1.2. Let a sequenceof simplices satisfy Assumption 8.1.1 and | et the assumptions
of Lemma 6.2.2 hold with the Lipschitz constants & ¥ uniformly bounded. Assume that { f Flis
bounded from below. Then if (8.4) holds for all but finitely many & and if

(8.5) lim x(V*) <J+(Sk)+ [61ls: ) =0,

k—o0 (7+(Sk)
then any accumulation point of the ssmplicesisa critical point of f,.

Proof. Our assumptions, as in the proof of Theorem 8.1.1, imply that D* f — 0. Recall that
Lemma 6.2.2 implies that

(8.6) | DX fell < 1D* ] + K (VF) <a+<S’“> e ) :
o4+ (S%)

and the sequence { K*} is bounded because { K*} is. Hence, by (8.5), D*f, — 0ask — co. O
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Figure 8.2: Unmodified Nelder—Mead, (7, 0, ¢) = (1, 15, 10)

8.1.3 McKinnon’s Examples
In this set of three examples from [188], V = 2, and

f(x) 00|(@h|” + (2)2 + (@), (2)1 <0,
0(z)] + (z)2 + ()3, (z)1 > 0.

The examples in [188] consider the parameter sets

(3,6,400),
(1,0,¢) ={ (2,6,60),
(1,15,10).

The initial simplex was
1= (1,17, 20 = 0y, AT, 25 = (0,0)7, where A. = (1+/33)/8.

With this data, the Nelder—Mead iteration will stagnate at the origin, which is not a critical point
for f. The stagnation mode is repeated inside contractions that leave the best point (which is not
a minimizer) unchanged.

We terminated the iteration when the difference between the best and worst function values
was < 1078,

We illustrate the behavior of the Nelder—Mead algorithm in Figures 8.2, 8.3, and 8.4. In all
the figures we plot, as functions of the iteration index, the difference between the best and worst
function values, o, the maximum oriented length, the norm of the simplex gradient, and the /2
condition number of the matrix of simplex directions. In all three problems stagnation is evident
from the behavior of the simplex gradients. Note also how the simplex condition number is
growing rapidly.
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Figure 8.3: Unmodified Nelder—-Mead, (7,0, ¢) = (2, 6, 60)
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Figure 8.4: Unmodified Nelder—Mead, (7, 6, ¢) = (3, 6,400)
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8.1.4 Restarting the Nelder—-Mead Algorithm

When the Nelder—-Mead iteration stagnates, a restart with the same best point and a different set
of directions can help sometimes. In order to formulate a restart scheme, one must first develop
a strategy for detecting stagnation. One might think that a large simplex condition would suffice
for this. However [204], the ability of the Nelder—Mead simplices to drastically vary their shape
is an important feature of the algorithm and looking at the simplex condition alone would lead
to poor results. Failure of (8.4), however, seems to indicate that something is wrong, and we
will use that as our stagnation detector.

Having detected stagnation, one must modify the simplex. Simply performing a shrink
step is not effective. The method we advocate here, from [155], is the oriented restart. The
motivation is that if the simplex gradient can be trusted to be in the correct orthant in %V, a new,
smaller simplex with orthogonal edges oriented with that quadrant should direct the iteration in
a productive direction.

We propose performing an oriented restart when (8.4) fails but f**! — f* < 0. This means

replacing the current simplex with vertices {x; }j.\f:ﬁl, ordered so that (8.1) holds, with a new

smaller simplex having vertices (before ordering!) {y; }j-vjll with y; = 21 and
8.7) yi =y — Bj1ej1 for2 <j < N +1,
where, for 1 <1 < N, ¢; is the Ith coordinate vector,

1 [ SR @), (Ao
1

2| o_(sh), (D*f), =0,

and (D¥ f); is the Ith component of D* f. If D* f = 0 we assume that the Nelder-Mead iteration
would have been terminated at iteration & because there is no difference between best and worst
values.

So, before ordering, the new simplex has the same first point as the old. The diameter of the
new simplex has not been increased since the diameter of the new simplex is at most o (S*).
Moreover all edge lengths have been reduced. So after reordering o, (S¥*1) < o_ (S*). As for
K, after the oriented shrink, but before reordering, «(V') = 1. After reordering, of course, the
best point may no longer be x1. In any case the worst-case bound on « is

8.8) RV = [VEH2 < (14 VN)2

In any case, the new simplex is well conditioned.

Returning to the McKinnon examples, we find that an oriented restart did remedy stagnation
for the smooth examples. The graphs in Figures 8.5, 8.6, and 8.7 report the same data as for the
unmodified algorithm, with stars on the plots denoting oriented restarts.

For the smoothest example, (7,6, ¢) = (3, 6, 400), the modified form of Nelder—-Mead took a
single oriented restart at the 21st iteration. For the less smooth of these two, (7, 6, ¢) = (2, 6, 60),
a single restart was taken on the 19th iteration. As one can see from Figures 8.6 and 8.7 the
restart had an immediate effect on the simplex gradient norm and overcame the stagnation.

For the nonsmooth example, (7,6, ¢) = (1, 15,10), in Figure 8.5, the modified algorithm
terminated with failure after restarting on the 44th, 45th, and 46th iterations. Since the objective
is not smooth at the stagnation point, this is the best we can expect and is far better than the
behavior of the unmodified algorithm, which stagnates with no warning of the failure.
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Figure 8.5: Modified Nelder—Mead, (7, 6, ¢) = (1, 15,10)
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Figure 8.6: Modified Nelder—Mead, (7, 6, ¢) = (2, 6, 60)
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Figure 8.7: Modified Nelder—Mead, (7, 6, ¢) = (3, 6,400)

8.2 Multidirectional Search

8.2.1 Description and Implementation

One way to address the possible ill-conditioning in the Nelder—Mead algorithm is to require that
the condition numbers of the simplices be bounded. The multidirectional search (MDS) method
[85], [261], [262] does this by making each new simplex congruent to the previous one. The
results in this section, mostly taken from [29], show that MDS has convergence properties like
those of implicit filtering.

In the special case of equilateral simplices, V* is a constant multiple of V° and the simplex
condition number is constant. If the simplices are not equilateral, then (V') may vary depending
on which vertex is called x1, but (6.6) will hold in any case.

Figure 8.8 illustrates the two-dimensional case for two types of simplices. Beginning with
the ordered simplex S¢ with vertices x1, x2, 23 one first attempts a reflection step, leading to a
simplex S™ with vertices x1, ry, 3.

If the best function value of the vertices of S” is better than the best f(x;) in SY, S is
(provisionally) accepted and expansion is attempted. The expansion step differs from that in
the Nelder—Mead algorithm because N new points are needed to make the new, larger simplex
similar to the old one. The expansion simplex S¢ has vertices x1, e, e3 and is accepted over S”
if the best function value of the vertices of S¢ is better than the best in S™. If the best function
value of the vertices of S™ is not better than the best in S¢, then the simplex is contracted and
the new simplex has vertices =1, co, c3. After the new simplex is identified, the vertices are
reordered to create the new ordered simplex S.

Similar to the Nelder—-Mead algorithm, there are expansion and contraction parameters f.
and p.. Typical values for these are 2 and 1/2.

AvrcoritaM 8.2.1. mds (S, f, 7, kmax)
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Right Simplex

Equilateral Simplex
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x1 c2 x2

e3

e3
e2

Figure 8.8: MDS Smplices and New Points

1. Evaluate f at the vertices of S and sort the vertices of S so that (8.1) holds.
2. Set fcount = N + 1.
3. Wnilef(xNH) — f(l‘1) >T

(@) Reflect: If fcount = kmax then exit.
Forj=2,...,N+1: r; = x1 —(x; —x1); Compute f(r;); fcount = fecount+1.
If f(z1) > min;{f(r;)} then goto step 3b else goto step 3c.

(b) Expand:
i Forj=2,..., N+ 1 ej = 21 — pe(x; —x1); Compute f(e;); fecount =
feount + 1.

ii. Ifmin;{f(r;)} > min;{f(e;)} then
forj=2,.. N+ 1. z; =e;j

else
forj=2,.. N+1 z;=ry
iii. Goto step 3d

(c) Contract: For j =2,...,N + 1. 2; = 21 + pc(z; — 21), Compute f(x;)
(d) Sort: Sort the vertices of S so that (8.1) holds.

If the function values at the vertices of S¢ are known, then the cost of computing S+ is 2N
additional evaluations. Just as with the Nelder—Mead algorithm, the expansion step is optional
but has been observed to improve performance.

The extension of MDS to bound constrained and linearly constrained problems is not trivial.
We refer the reader to [173] and [175] for details.

8.2.2 Convergence and the Simplex Gradient

Assume that the simplices are either equilateral or right simplices (having one vertex from which
all V edges are at right angles). In those cases, as pointed out in [262], the possible vertices
created by expansion and reflection steps form a regular lattice of points. If the MDS simplices
remain bounded, only finitely many reflections and expansions are possible before every point
on that lattice has been visited and a contraction to a new maximal simplex size must take place.
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This exhaustion of a lattice takes place under more general conditions [262] but is most clear for
the equilateral and right simplex cases.

Theorem 6.2.9 implies that infinitely many contractions and convergence of the simplex
diameters to zero imply convergence of the simplex gradient to zero. The similarity of The-
orem 6.2.9 to Lemma 6.2.2 and of Theorem 8.2.1, the convergence result for multidirectional
search, to Theorem 8.1.2 is no accident. The Nelder—Mead iteration, which is more aggressive
than the multidirectional search iteration, requires far stronger assumptions (well conditioning
and sufficient decrease) for convergence, but the ideas are the same. Theorems 6.2.9 and 8.2.1
can be used to extend the results in [262] to the noisy case. The observation in [85] that one
can apply any heuristic or machine-dependent idea to improve performance, say, by exploring
far away points on spare processors (the “speculative function evaluations” of [46]) without
affecting the analysis is still valid here.

THEOREM 8.2.1. Let f satisfy (6.1) and assume that the set
{z] f(z) < f9)}
is bounded. Assume that the simplex shape is such that
(8.9) Jim. o (S¥) —o0.
Let B* beaball of radius 20, (S*) about 2¥. Then if
I

Koo 04 (SF)

=0

then every limit point of the verticesisa critical point of f,.

Recall that if the simplices are equilateral or right simplices, then (8.9) holds (see exer-
cise 8.6.2).

8.3 The Hooke-Jeeves Algorithm

8.3.1 Description and Implementation

The Hooke-Jeevesalgorithmis like implicit filtering in that the objective is evaluated on a stencil
and the function values are used to compute a search direction. However, unlike implicit filtering,
there are only finitely many possible search directions and only qualitative information about
the function values is used.

The algorithm begins with a base point = and pattern size h, which is like the scale in implicit
filtering. In the next phase of the algorithm, called the exploratory movein [145], the function is
sampled at successive perturbations of the base point in the search directions {v; }, where v; is
the jth column of a direction matrix V. In [145] and our MATLAB implementation V' = I. The
current best value f., = f(z.) and best point x; are recorded and returned. x is initialized
to . The sampling is managed by first evaluating f at z., + v; and only testing ., — v;
if f(xes +v;) > f(ze). The exploratory phase will either produce a new base point or fail
(meaning that ., = x). Note that this phase depends on the ordering of the coordinates of x.
Applying a permutation to 2 could change the output of the exploration.

If the exploratory phase has succeeded, the search direction is

(8.10) A =gy —x

and the new base point is x,. The subtle part of the algorithm begins here. Rather than center
the next exploration at ., which would use some of the same points that were examined in
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the previous exploration, the Hooke—Jeeves pattern move step is aggressive and tries to move
further. The algorithm centers the next exploratory move at

ro=x+2d77 = x4+ dF7.

If this second exploratory move fails to improve upon f(x.;), then an exploratory move with
Zp, @S the center is tried. If that fails A is reduced, x is set to z.;, and the process is started over.
Note that when A has just been set, the base point and the center of the stencil for the exploratory
moves are the same, but afterward they are not.

If, after the first exploratory move, z., = z (i.e., as it will be if = is the best point in the
pattern), then « is left unchanged and h is reduced.

Therefore, whenever h is reduced, the stencil centered at = has z itself as the best point.
This is exactly the situation that led to a shrink in the MDS algorithm and, as you might expect,
will enable us to prove a convergence result like those in the previous sections. In [145] h was
simply multiplied by a constant factor. Our description in Algorithm hooke follows the model
of implicit filtering and uses a sequence of scales. Choice of perturbation directions could be
generalized to any simplex shape, not just the right simplices used in [145].

Figure 8.9 illustrates the idea for V = 2. The base point x lies at the center of the stencil. If

f@]) < f@), fzz) < f@), fl2y) = f(2), and f(z3) = f(2),

then the new base point x; will be located above and to the right of . The next exploratory
move will be centered at ¢, which is the center of the stencil in the upper right corner of the
figure.

The reader, especially one who plans to implement this method, must be mindful that points
may be sampled more than once. For example, in the figure, if the exploratory move centered
at z¢ fails, f will be evaluated for the second time at the four points in the stencil centered
at x; unless the algorithm is implemented to avoid this. The MDS method is also at risk of
sampling points more than once. The implementations of Hooke—Jeeves and MDS in our suite
of MATLAB codes keep the most recent 4N iterations in memory to guard against this. This
reevaluation is much less likely for the Nelder—Mead and implicit filtering methods. One should
also be aware that the Hooke—Jeeves algorithm, like Nelder—Mead, does not have the natural
parallelism that implicit filtering and MDS do.

One could implement a variant of the Hooke—Jeeves iteration by using z¢ = « + df’’
instead of z = = + 2d¥7 and shrinking the size of the simplex on stencil failure. This is the
discrete form of the classical coordinate descent algorithm [180] and can also be analyzed by
the methods of this section (see [279] for a different view).

Our implementation follows the model of implicit filtering as well as the description in
[145]. We begin with the exploratory phase, which uses a base point z;, base function value
fo = f(xp), and stencil center z. Note that in the algorithm z;, = x¢ for the first exploration
and zc = x,+d™ 7 thereafter. Algorithm hj expl or e takes a base point and a scale and returns
a direction and the value at the trial point x + d. We let V' = I be the matrix of coordinate
directions, but any nonsingular matrix of search directions could be used. The status flag s is
used to signal failure and trigger a shrink step.

ArLcoriTeM 8.3.1. hj expl or e(xy, zc, f, h, sy)
1 foy=f(xp);d=0; 57 =0; zcp = ) fop = fap); 2t = 2

2. forj=1,...,N: p=ua+ hv;; if f(p) > fp thenp = z; — hv;;
if f(p) < fothenay =z = p; fo = f(2eh)

. ifawe #ap; s =12 =xeh
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Figure 8.9: Hooke-Jeeves Pattern and New Points

The exploration is coupled to the pattern move to complete the algorithm for a single value
of the scale. The inputs for Algorithm hj sear ch are an initial iterate x, the function, and the
scale. On output, a point z is returned for which the exploration has failed. There are other
considerations, such as the budget for function evaluations, that should trigger a return from the
exploratory phase in a good implementation. In our MATLAB code hooke. mwe pay attention
to the number of function evaluations and change in the function value as part of the decision to
return from the exploratory phase.

ALcoriTHM 8.3.2. hj sear ch(z, f, h)
Laoy=a2c=2,5;,=1

2. Call hj expl or e(z, z¢, f, h, sf)
3. Whilesy =1

@d=z—xp,zp=x,2c=2+d

(b) Call hj expl ore(z,zc, f,h,sf);
If sy =0; xc = x; Call hj expl ore(z,zc, f,h,sy)
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Step 3b requires care inimplementation. If sy = 0 onexit from the first call to hj expl or e,
one should only test f at those points on the stencil centered at 2 that have not been evaluated
before.

The Hooke—Jeeves algorithm simply calls hj sear ch repeatedly as h varies over a sequence
{h} of scales.

ALGoriTHM 8.3.3. hooke(z, f, {ht})

1. Fork=1,...
Call hj sear ch(x, f, hi)

As is the case with implicit filtering, the Hooke—Jeeves algorithm can be applied to bound
constrained problems in a completely natural way [145], [227] by simply restricting the stencil
points to those that satisfy the bounds and avoiding pattern moves that leave the feasible region.

The Hooke—Jeeves algorithm shares with implicit filtering the property that extension to
bound constrained problems is trivial [145]. One simply restricts the exploratory and pattern
moves to the feasible set.

8.3.2 Convergence and the Simplex Gradient

As with MDS, if the set of sampling points remains bounded, only finitely many explorations
can take place before hj sear ch returns and the scale must be reduced. The conditions for
reduction in the scale include failure of an exploratory move centered at the current best point x.
This means that we can apply Theorem 6.2.9 with k. = 1 to prove the same result we obtained
for MDS.

THEOREM 8.3.1. Let f satisfy (6.1). Let {« } be the sequence of Hooke-Jeeves best points.
Assume that the set

{z| f(x) < f(z0)}
isbounded. Thenlet b, — 0 and if
e

k—oo 0+(Sk)

:O’

where B* isthe ball of radius 2k, about x,, then every limit point of {z} isacritical point of

Js-

8.4 Other Approaches

In this section we briefly discuss two methods that have been used successfully for noisy prob-
lems. These methods are substantially more difficult to implement than the ones that we have
discussed so far and we will give few details. The pointers to the literature are a good starting
place for the interested and energetic reader.

8.4.1 Surrogate Models

As any sampling method progresses, the function values can be used to build a (possibly)
quadratic model based, for example, on interpolation or least squares fit-to-data. Such mod-
els are called surrogates or response surfaces. Even for smooth f there are risks in doing this.
Points from early in the iteration may corrupt an accurate model that could be built from the
more recent points; however, the most recent points alone may not provide a rich enough set of
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interpolatory data. The function being modeled could be too complex to be modeled in a sim-
ple way (think of the Lennard—Jones function), and very misleading results could be obtained.
However, this approach is often very productive even for smooth problems in which evaluation
of f is very expensive (see [28] for a high-flying example).

Initialization of the model requires an initial set of points at which to sample f. Selection of
this point set is not a trivial issue, and the regular stencils used in implicit filtering and the direct
search algorithms are very poor choices. The study of this issue alone is a field in itself, called
design and analysis of computer experiments (DACE) [27], [167], [230].

Having built such a model, one then finds one or more local minima of the model. One can
use either a conventional gradient-based method, a sampling algorithm of the type discussed in
Chapters 7 or 8, or an algorithm that is itself based on building models like the one described in
[62], the nongradient-based approaches being used when the model is expected to be multimodal
or nonconvex. Upon minimizing the model, one then evaluates f again at one or more new points.

The implementation of such a scheme requires careful coordination between the sampling
of the function, the optimization of the model, and the changing of the set of sample points. We
refer the reader to [28] and [4] for more information on recent progress in this area.

8.4.2 The DIRECT Algorithm

Suppose f is a Lipschitz continuous function on [a, b] with Lipschitz constant L. If one has a
priori knowledge of L, one can use this in a direct search algorithm to eliminate intervals of
possible optimal points based on the function values at the endpoints of these intervals. The
Shubert algorithm [146], [214], [241] is the simplest way to use this idea. The method begins
with the fact that

(8.11) f(@) = fiow(w,a,b) = max(f(a) — L(z — a), f(b) — L(b— x))

for all € [a,b]. If one samples f repeatedly, one can use (8.11) on a succession of intervals
and obtain a piecewise linear approximation to f. If I, = [an,b,] C [a,b] then f(z) >
fiow(x, an, by) on I, the minimum value of f;,,, (z, an,b,) is

Vi = (flan) + f(bn) — L(bn — an))/2,

and the minimizer is

My = (f(an) = f(bn) + L(bn + an))/(2L).

The algorithm begins with I = [a, b], selects the interval for which V;, is least, and divides at
M,. This means that if K intervals have been stored we have, replacing 7,, and adding I to
the list,

I, = [an, M,] and I 11 = [M,,, by].

The sequence of intervals is only ordered by the iteration counter, not by location. In this way
the data structure for the intervals is easy to manage.

If there are p and % such that p # k and V), > max(f(ax), f(bx)), then I,, need not be
searched any longer, since the best value from I, is worse than the best value in I,. The
algorithm’s rule for division automatically incorporates this information and will never sample
from I,,.

There are two problems with this algorithm. One cannot expect to know the Lipschitz
constant L, so it must be estimated. An estimated Lipschitz constant that is too low can lead to
erroneous rejection of an interval. An estimate that is too large will lead to slow convergence,
since intervals that should have been discarded will be repeatedly divided. The second problem
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10 @

Figure 8.10: Selection of Intervalsin DIRECT

is far more serious. The obvious generalization of the Shubert algorithm to more than one
dimension would replace intervals by N-dimensional hyperrectangles and require sampling at
each of the 2™V vertices of the rectangle to be divided. This exponential complexity makes this
trivial generalization of the Shubert algorithm completely impractical.

The DIRECT algorithm [150] attempts to address these problems by sampling at the midpoint
of the hyperrectangle rather than the vertices and indirectly estimating the Lipschitz constant as
the optimization progresses. The scheme is not completely successful in that the mesh of sample
points becomes everywhere dense as the optimization progresses. Hence the algorithm becomes
an exhaustive search, a fact that is used in [150] to assert global convergence. In spite of the
exponential complexity of exhaustive search, even one with a fixed-size mesh (a problem with
any deterministic algorithm that is truly global [248]), DIRECT has been reported to perform well
in the early phases of the iteration [150], [108] and for suites of small test problems. DIRECT is
worth consideration as an intermediate algorithmic level between methods like implicit filtering,
Nelder—Mead, Hooke—Jeeves, or MDS on the conservative side and nondeterministic methods
like simulated annealing or genetic algorithms on the radical side.

We will describe DIRECT completely only for the case N = 1. This will make clear how
the algorithm implicitly estimates the Lipschitz constant. The extension to larger values of N
requires careful management of the history of subdivision of the hyperrectangles, and we will give
asimple pictorial account of that. For more details we refer to [150], [147], or the documentation
[108] of the FORTRAN implementation of DIRECT from the software collection.

As with the Shubert algorithm we begin with an interval [a, b] but base our lower bound and
our subdivision strategy on the midpoint ¢ = (a + b)/2. If the Lipschitz constant L is known
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then

f(@) = f(e) = L(b—a)/2.

If we are to divide an interval and also retain the current value ¢ as the midpoint of an interval
in the set of intervals, we must divide an interval into three parts. If there are K intervals on
the list and an interval I,, = [a,, b,] with midpoint ¢,, has been selected for division, the new
intervals are

IK+1 = [ana Ap, + (bn - an)/SLIn = [an + (bn - an)/37 bTL - (b’ﬂ - an)/3]’ and
IK+2 - [bn - (bn - (ln)/Ba bn]-

So ¢, is still the midpoint of I,, and two new midpoints have been added.

The remaining part of the algorithm is the estimation of the Lipschitz constant and the
simultaneous selection of the intervals to be divided. If the Lipschitz constant were known, an
interval would be selected for division if f(c) — L(b — a)/2 were smallest. This is similar to
the Shubert algorithm. In order for there to even exist a Lipschitz constant that would force
an interval to be selected for division in this way, that interval must have the smallest midpoint
value of all intervals having the same length. Moreover, there should be no interval of a different
length for which f(c) — L(b — a)/2 was smaller.

The DIRECT algorithm applies this rule to all possible combinations of possible Lipschitz
constants and interval sizes. If one plots the values of f at the midpoints against the lengths of
the intervals in the list to obtain a plot like the one in Figure 8.10, one can visually eliminate
all but one interval for each interval length. By taking the convex hull of the lowest points, one
can eliminate interval lengths for which all function values are so high that f(c) — L(b — a)/2
would be smaller for the best point at a different length no matter what L was. For example, the
three points that intersect the line in Figure 8.10 would correspond to intervals that would be
subdivided at this step. The slopes of the line segments through the three points are estimates
of the Lipschitz constant. These estimates are not used explicitly, as they would be in the
Shubert algorithm, but implicitly in the process of selection of intervals to be divided. Unlike
the Shubert algorithm, where the Lipschitz constant is assumed known, the DIRECT algorithm
will eventually subdivide every interval.

The resulting algorithm may divide more than a single interval at each stage and the number
of intervals to be divided may vary. This is easy to implement for a single variable. However,
for more than one variable there are several ways to divide a hyperrectangle into parts and one
must keep track of how an interval has previously been divided in order not to cluster sample
points prematurely by repeatedly dividing an interval in the same way. Figures 8.11 and 8.12,
taken from [108], illustrate this issue for N = 2. In Figure 8.11 the entire rectangle will be
divided. Shading indicates that the rectangle has been selected for division. Four new midpoints
are sampled. The subdivision into new rectangles could be done in two ways: the figure shows
an initial horizontal subdivision followed by a vertical division of the rectangle that contains the
original center. The second division is shown in Figure 8.12. The two shaded rectangles are
selected for division. Note that four new centers are added to the small square and two to the
larger, nonsquare, rectangle. In this way the minimum number of new centers is added.

DIRECT parallelizes in a natural way. All hyperrectangles that are candidates for division
may be divided simultaneously, and for each hyperrectangle the function evaluations at each of
the new midpoints can also be done in parallel. We refer the reader to [150] and [108] for details
on the data structures and to [108] for a FORTRAN implementation and additional discussion
on the exploitation of parallelism.

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.



Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

152 ITERATIVE METHODS FOR OPTIMIZATION
O6 Os O
Os ® 9 Os Os @9 Os Os @9 Os
O2 O2 02

O6 Os O6
09 09
Os o Os 070504 @3 Os 070508 @9 Os
04 o4
02 03 02 O6 03 02 06

Figure 8.12: Second Division of Rectangles with DIRECT

8.5 Examples

In each of the examples we compare the central difference BFGS form of implicit filtering from
§7.6 (solid line) with the Nelder—Mead (dashed line), Hooke—Jeeves (solid line with circles), and
MDS (dashed-dotted line) algorithms.

For each example we specified both an initial iterate and choice of scales. This is sufficient
to initialize both implicit filtering and Hooke—Jeeves. We used the implicit filtering forward
difference stencil as the initial simplex for both Nelder-Mead and MDS.

The plots reflect the differences in the startup procedures for the varying algorithms. In
particular, Nelder—Mead and MDS sort the simplex and hence, if the initial iterate is not the best
point, report the lower value as the first iterate.

The relative performance of the various methods on these example problems should not be
taken as a definitive evaluation, nor should these examples be thought of as a complete suite of test
problems. One very significant factor that is not reflected in the results in this section is that both
implicit filtering [69], [55] and multidirectional search [85] are easy to implement in parallel,
while Nelder—-Mead and Hooke—Jeeves are inherently sequential. The natural parallelism of
implicit filtering and multidirectional search can be further exploited by using idle processors to
explore other points on the line search direction or the pattern.

8.5.1 Weber’s Problem

The initial data were the same as that in §7.6.1. Implicit filtering does relatively poorly for this
problem because of the nonsmoothness at optimality. The resluts for these problems are plotted
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Figure 8.13: First Weber Example

in Figures 8.13, 8.14, and 8.15. The other three algorithms perform equally well. Note in the
third example that MDS finds a local minimum that is not the global minimum.

8.5.2 Parameter ID

In the computations reported in this section each algorithm was allowed 500 evaluations of f
and the sequence of scales was {277}12 .

We begin with the two examples from §7.6.2. With the initial iterate of (5,5)7, the exact
solution to the continuous problem lies on the grid that the Hooke—Jeeves algorithm uses to search
for the solution. This explains the unusually good performance of the Hooke—Jeeves optimization
shown in both Figures 8.16 and 8.17. When the initial iterate is changed to (5.1,5.3)7, the
performance of Hooke—Jeeves is very different as one can see from Figures 8.18 and 8.19. The
other algorithms do not have such a sensitivity to the initial iterate for this example. We have no
explanation for the good performance turned in by the Nelder—-Mead algorithm on this problem.

8.5.3 Convex Quadratics

The problems and initial data are the same as those in §7.6.3. This is an example of how sampling
algorithms can perform poorly for very simple problems and how this poor performance is made
worse by increasing the problem size. Exercise 7.7.4 illustrates this point very directly. One
would expect implicit filtering to do well since a central difference gradient has no error for
quadratic problems. For the larger problem (N = 32, Figures 8.21 and 8.23), both the Nelder—
Mead and MDS algorithms perform poorly while the Hooke—Jeeves algorithm does surprisingly
well. The difference in performance of the algorithms is much smaller for the low-dimensional
problem (N = 4, Figures 8.20 and 8.22).
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Figure 8.17: Parameter ID, tol = 1075, 7o = (5,5)7
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Figure 8.19: Parameter 1D, tol = 1075, 5 = (5.1,5.3)T

Buy this book from SIAM at http://www.ec-securehost.com/SIAM/FR18.html.



Copyright ©1999 by the Society for Industrial and Applied Mathematics. This electronic version is for personal use and may not be duplicated or distributed.

SEARCH ALGORITHMS 157

function value

10 0 50 100 150 200 250 300 350 400
function evaluations
Figure 8.20: Unperturbed Quadratic, N = 4
10*

function value

1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500
function evaluations

Figure 8.21: Unperturbed Quadratic, N = 32
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8.6 Exercises on Search Algorithms

8.6.1. Let S; for 1 <1 < 3 be the simplices having one vertex at (z!); = (10, 10, 10, 10) and
direction vectors V! given by

V! = diag(1,2,3,4), V? = diag(4,3,2,1), V? = diag(2,2,2,2).

Foreach! = 1,2, 3, apply the Nelder-Mead algorithm to the function f defined forz € R*
by

(11 — 2ox3x4)? + (w0 — 2324)° + (23 — 24)? + 27

with the initial simplex V!. What happened? This example is one of Nelder’s favorites
[203].

8.6.2. Show that if the set {x | f(z) < f(«9)} is bounded and Sj, is either an equilateral or a
right simplex, then (8.9) holds.

8.6.3. One can modify MDS [260] by eliminating the expansion step and only computing re-
flected points until one is found that is better than x,. If no reflected points are better,
then perform a contraction step. Prove that Theorem 8.2.1 holds for this implementation.
Implement MDS in this way and compare it with Algorithm nds. Are the savings in calls
to f for each iterate realized in a savings for the entire optimization?

8.6.4. The easiest problem in optimization is to minimize z72. Give the algorithms in this
section a chance to show what they can do by using them to solve this problem. Try several
initial iterates (or initial simplices/patterns) and several problem dimensions (especially
N = 8,16, 32).

8.6.5. The search methods in this section impose a structure on the sampling and thereby hope
to find a useful optimal point far more efficiently than using an unstructured deterministic
or random search. Implement an unstructured search and use your algorithm to minimize
T2z when N = 2. For an example of such a method, take the one from [6], please.

8.6.6. The Spendley, Hext, and Himsworth algorithm [244] manages the simplices in a very
different way from those we’ve discussed in the text. Use the information in [244] and
[267] to implement this algorithm. Use Theorem 6.2.9 to prove convergence for N = 2.
What happens to both your implementation and analysis when you try N = 3 or arbitrary
N? Explain Table 5 in [244].

8.6.7. Useany means necessary to solve the Lennard—Jones problem. Have your results improved
since you tried exercises 6.4.3 and 7.7.4?
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