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Abstract

In this paper, we study the ability of learning automata-based schemes in escaping from local
minima when standard backpropagation (BP) fails to 2nd the global minima. It is demonstrated
through simulation that learning automata-based schemes compared to other schemes such as
SAB, Super SAB, Fuzzy BP, adaptive steepness method, and variable learning rate method have
a higher ability to escape from local minima. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The multilayer feedforward neural network models with error backpropagation (BP)
algorithm have been widely researched and applied. Despite the many successful ap-
plications of BP, it has many drawbacks. For complex problems it may require a long
time to train the networks, and it may not converge at all. Long training time can be
the result of the non-optimum values for the parameters of the training algorithm. It is
not easy to choose appropriate values for these parameters for a particular problem. The
parameters are usually determined by trial and error and using the past experiences. For
example, if the learning rate is too small, convergence can be very slow: if too large,
paralysis and continuous instability can result. Moreover, the best value at the begin-
ning of training may not be so good later. Thus, research has suggested algorithms for
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automatically adjusting the parameters of the training algorithm as training
proceeds, such as algorithms proposed by Arabshahi et al. [1], Kandil et al. [13],
Parlos et al. [24], Cater [6], Franzini [9], Vosl et al. [30], Tesnuro and Janssens [28],
Devos and Orban [8], Darken et al. [7], Tollenaere [29], Chan and Fallside [6a],
Jacobs [12], Sperduti and Starita [27] and Riedmiller and Heinrich
[25] to mention a few. Several learning automata-(LA) based procedures have been
developed, recently [16–19,2,4,23]. In these methods, variable structure learning
automata (VSLA) or 2xed structure learning automata (FSLA) have been used to
2nd the appropriate values of parameters for the BP training algorithm. In these
schemes either a separate learning automaton is associated with each layer or
each neuron of the network or a single automaton is associated with the whole
network to adapt the appropriate parameters. It is shown that, the learning rate
adapted in such a way increases the rate of convergence of the network by a large
amount [23,3].
Many researchers have looked at the powerful interpolation capabilities of BP as a

means for learning sophisticated concepts. When looking at it in this direction one soon
becomes interested in 2nding out what BP can, and cannot learn. For example, learning
complex Boolean functions is far more complicated than solving ordinary pattern recog-
nition problems. These functions typically involve inputs with few coordinates, but very
complex mappings. For this kind of problem BP may fail in discovering local minima,
particularly with minimal architectures. As pointed out by numerous researchers, BP
can be trapped in local minima during gradient descent, and in many of these cases it
seems very unlikely that any learning algorithm could perform satisfactorily in terms
of computational requirements.
When we use learning automata as the adaptation technique for BP parameters,

the search for optimum is carried out in probability space rather than in parameter
space as is the case with other adaptation algorithms. In the standard gradient method,
the new operation point lies within a neighborhood distance of the previous point.
This is not the case for adaptation algorithm based on stochastic principles such as
LA, as the new operating point is determined by probability function and is there-
fore not considered to be near the previous operating point. This gives the algorithm
a higher ability to locate the global minima. In this article, we study the ability of
LA-based schemes in escaping from local minima when standard BP fails to 2nd
the global minima. In this paper, it is demonstrated through simulation that LA-based
schemes compared to other schemes such as SAB [12], SuperSAB [12], adaptive steep-
ness method (ASBP) [27], variable learning rate (VLR) method [15] and Fuzzy BP
[1] have a higher ability to escape from local minima, that is, BP parameter adap-
tation using the LA-based schemes increases the likelihood of bypassing the local
minimum.
The rest of the paper is organized as follows. Section 2 brieGy presents the

basic BP algorithm and LA. Existing LA-based adaptation schemes for BP parame-
ters are described in Section 3. Section 4 demonstrates through simulations the abil-
ity of LA-based schemes in escaping from local minima. The last section is the
conclusion.
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2. Backpropagation algorithm and learning automata

In this section, in all brevity, we discuss the fundamentals of BP learning algorithm
and LA.
Backpropagation algorithm: Error BP training algorithm which is an iterative gradi-

ent descent algorithm is a simple way to train multilayer feedforward neural networks
[26]. The BP algorithm is based on the following gradient descent rule:

W (n+ 1) = W (n) + �G(n) + �[W (n)−W (n− 1)]; (1)

where W is the weight vector, n is the iteration number, � is learning rate, � is
momentum factor, and G is gradient of error function that is given by

G(n) =−∇Ep(n); (2)

where Ep is the sum of squared error given by

Ep(n) =
1
2

#outputs∑
j=1

[Tp;j − Op;j]2 for p = 1; 2; : : : ; #patterns; (3)

where Tp;j and Op;j are the desired and actual outputs for pattern p at output node
j. One of the major problems encountered during implementation of the BP learning
rule is proper choice and update of the learning rate � to allow convergence, while
maintaining the number of iterations required for the training algorithm at a reason-
able number. One of the main reasons for investigating the possibility of the adaptive
learning rate rule is the desire to reduce the sensitivity of the learning to the learning
rate, without adding more tuning parameters.
In the BP algorithm framework, each computational unit computes the same activa-

tion function. The computation of the sensitivity for each neuron requires the derivative
of activation function, therefore, this function must be continuous and diKerentiable. The
activation function is normally a sigmoid function chosen between 1=1 + exp(−� net)
and tanh (� net). The coeLcient of the exponent of the exponential term determines
the steepness of linearity of that function. The steepness parameter � is often set to a
constant value and is not changed by the learning algorithm. We gain much Gexibility,
if we move the net inputs of the sigmoidal function near their active regions, where
the associated gradient is not very close to zero. This prevents the BP algorithm to be
trapped at some points in the network parameters space, where the BP algorithm would
eKectively stop, even though it is not close to a local minima point. This will cause
the gradient of the error function to be small if the sigmoidal is shifted far outside the
active region of the input to the function. Therefore, it is better to center each sigmoid
to be inside the active region of the sigmoidal function.
The momentum term in weight adaptation Eq. (1) causes a large change in the

weight if the changes are currently large, and decreases as the changes become less.
This means that the network is less likely to get stuck in local minima early on,
since the momentum term will push the changes towards the local downward trend.
Momentum is of great assistance in speeding up convergence along shallow gradients,
allowing the path the network takes towards the solution to pick up speed in the
downhill direction. The error surface may consist of long gradually sloping ravines,
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which 2nish at minima. Convergence along these ravines is slow, and usually, the
algorithm oscillates across the ravine valley as it moves towards a solution. This is
diLcult to speed up without increasing the chance of overshooting the minima, but the
addition of the momentum term is fairly successful. This diLculty could be removed
if we select the momentum factor to be small near minima and to be large far from
minima.
Learning automata: LA operating in unknown random environments have been used

as models of learning systems. These automata choose an action at each instant from
a 2nite action set, observe the reaction of the environment to the chosen action and
modify the selection of the next action on the basis of this reaction.
A learning automaton is a quintuple 〈�; �; �; F; G〉, where � = (�1; : : : ; �R) is the set

of actions that it must choose from, � = (�1; : : : ; �s) is the set of states, � = {0; 1}
is the set of inputs, where “1” represents a penalty and “0” a reward, G :� → � is
the output map and determines the action taken by the automaton if it is in state �j,
and F :� × � → � is the transition map and de2nes the transition of the state of the
automaton on receiving an input, F may be stochastic.
The selected action serves as the input to the environment which in turn emits a

stochastic response �(n) at the time n. �(n) is an element of � = {0; 1} and is the
feedback response of the environment to the automaton. The environment penalizes
(i.e., �(n) = 1) the automaton with the penalty ci, which is action-dependent. On the
basis of the response �(n), the state of the automaton �(n) is updated and a new action
is chosen at the time (n+1). Note that {ci} are unknown initially and it is desired that
as a result of interaction with the environment, the automaton arrives at the action which
presents it with the minimum penalty response in an expected sense. If the probability
of the transition from one state to another state and probabilities of correspondence
of action and state are 2xed, the automaton is said to be a 2xed-structure automaton
FSLA, and otherwise the automaton is said to be a variable-structure automaton VSLA.
Examples of the FSLA type that we use in this paper are Tsetline, Krinsky, TsetlineG,
and Krylov automata [23].
We summarize some of the FSLA and variable structure automata in the following

paragraphs.
The two-state automata (L2;2): This automaton has two states, �1 and �2 and two

actions �1 and �2. The automaton accepts input from a set of {0; 1} and switches its
states upon encountering an input 1 (unfavorable response) and remains in the same
state on receiving an input 0 (favorable response). An automata that uses this strategy
is refered to as L2;2, where the 2rst subscript refers to the number of states and second
subscript to the number of actions.
The two-action automata with memory (L2N;2): This automaton has 2N states and

two actions and attempts to incorporate the past behavior of the system in its decision
rule for choosing the sequence of actions. While the automata L2;2 switches from one
action to another on receiving a failure response from environment, L2N;2 keeps an
account of the number of success and failures received for each action. It is only when
the number of failures exceeds the number of successes, or some maximum value N ,
the automata switches from one action to another. The procedure described above is
one convenient method of keeping track of performance of the actions �1 and �2. As
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Fig. 1. The state transition graph for L2N;2.

Fig. 2. The state transition graph for Krinsky automata.

such, N is called memory depth associated with each action, and automata is said to
have a total memory of 2N . For every favorable response, the state of automata moves
deeper into the memory of corresponding action, and for an unfavorable response,
moves out of it. The state transition graph of L2N;2 automata is shown in Fig. 1.
The Krinsky automata: This automaton behaves exactly like L2N;2 automaton when

the response of the environment is unfavorable, but for favorable response, any state �i

(for i=1; : : : ; N ) passes to the state �1 and any state �i (for i=N +1; : : : ; 2N ) passes
to the state �N+1. This implies that a string of N consecutive unfavorable responses
is needed to change from one action to another. The state transition graph of Krinsky
automata is shown in Fig. 2.
The Krylov automata: This automaton has state transitions that are identical to the

L2N;2 automaton when the output of the environment is favorable. However, when the
response of the environment is unfavorable, a state �i (i 	=1; N; N +1; 2N ) passes to a
state �i+1 with probability 0.5 and to a state �i−1 with probability 0.5. When i=1 or
i = N + 1; �i stays in the same state with probability 0.5 and moves to �i+1 with the
same probability. When i = N; automaton state moves to �N−1 and �N with the same
probability 0.5. When i = 2N; automaton state moves from �2N−1 and �N with the
same probability 0.5. The state transition graph of Krylov automata is shown in Fig. 3.
The J automata: The J automata which we denote by J (K; N ) has KN states and

K actions and attempts to incorporate the past behavior of the system in its decision
rule for choosing the sequence of actions. States with numbers (k − 1)N + 1 through
kN correspond to action k. The state transition graph of this automata for favorable
response and unfavorable response is shown in Fig. 4.
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Fig. 3. The state transition graph for Krylov automata.

Fig. 4. The state transition graph for JKN;K .

All these automata can be extended to multiple action automata. In this paper, we
refer to an automaton by the name of automaton followed by the list of parameters
for that automaton, the 2rst parameter refers to the number of actions and the second
parameter refers to the memory depth for each action. For the sake of simplicity in
the presentation, we denote FSLA Automata with K actions and memory depth of N
by Automata(K; N ).
Variable structure learning automata: Variable structure automata are represented

by the sextuple 〈�; �; �; p; G; T 〉, where � is a set of input actions, � is a set of internal
states, � is a set of outputs, p denotes state probability vector governing the choice of
the state at each stage k; G is the output mapping, and T is learning algorithm. The
learning algorithm is a recurrence relation and is used to modify the state probability
vector.
It is evident that the crucial factor aKecting the performance of the variable structure

learning automata is the learning algorithm for updating the action probabilities. Various
learning algorithms have been reported in the literature [23]. Let �i be the action chosen
at time k as a sample realization from distribution p(k). The linear reward-inaction
algorithm (LR−1) is one of the earliest schemes. In an LR−1 scheme, the recurrence
equation for updating p is de2ned as

pj(k) =

{
pj(k) + a(1− pj(k)) if i = j;

pj(k)(1− a) if i 	= j
(4)
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when � is zero and p is unchanged when � is one. The parameter ‘a’ is called step
length. It determines the amount of increase (decrease) of the action probabilities.
For the linear reward �-penalty algorithm (LR−�P) scheme, the recurrence equation for
updating p is de2ned as

pj(k) =

{
pj(k) + a(1− pj(k)) if i = j;

pj(k)(1− a) if i 	= j
(5)

when �(k) = 0 and

pj(k) =




pj(k)(1− b) if i = j
b

r − 1
+ (1− b)pj(k) if i 	= j

(6)

when �(k) = 1. The parameters ‘a’ and ‘b’ represent reward and penalty parameters,
respectively. The parameter ‘a’(‘b’) determines the amount of increase (decrease) of
the action probabilities. For the sake of simplicity in presentation, we denote VSLA
Automata with K actions by Automata(K). For more information on learning automata
refer to [21–23,20,14].

3. LA-based schemes for adaptation of BP parameters

In this section, we 2rst brieGy describe LA-based schemes [16–18,2,4] for adaptation
of BP parameters. In all the existing schemes, one or more automaton have been asso-
ciated with the network. The LA based on the observation of the random response of
the neural network, adapt one or more BP parameters. The interconnection of learning
automata and neural network is shown in Fig. 5. Note that, the neural network is the
environment for the learning automata. The learning automaton adjusts the parameters
of the BP algorithm according to the amount of the error received from neural network.
The actions of the automata correspond to the values of the parameter being calculated
and input to the automata is some function of the error in the output of neural network.
Existing LA-based procedures for adaptation of BP parameters can be classi2ed into

four classes which we call class A, B, C, and D. In the next few paragraphs we brieGy
describe these classes.

Fig. 5. The interconnection of learning automata and neural network.
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Class A schemes: In class A schemes, an automaton is associated with the network to
adapt the corresponding BP parameter. The learning automaton assigned to the network
chooses an action and the value of this action is used for training the network for some
number of epochs. Then a function of error between the desired and the actual outputs
of network is considered as the response from the environment. A window on the past
values of the errors are swiped and the average value of the error in this window is
computed. If the diKerence of the average errors in the last two epochs is less than the
prede2ned threshold value, then the response of the environment is favorable and if
this diKerence is greater than the threshold value, then the response of the environment
is unfavorable.
Class B schemes: In class B schemes, an automaton is associated with each layer

of the network for adaptation of the corresponding BP parameter for that layer. The
learning automaton chooses an action and the value of the chosen action is used for
training of the network in that layer for some number of epochs. In this scheme,
the response of the environment to the output layer automaton is computed in the
same manner as in class A schemes. The responses to the hidden layers automata are
computed as in class A except that the estimated error in each hidden layer is used
instead of the actual error.
Class C schemes: In class C schemes, one automaton is associated with each link of

the network in order to adjust the parameter of that link. In this class, the automaton
receives favorable response from the environment if the algebraic sign of the derivative
of error with respect to the weight in the two consecutive iterations are the same, and
receives unfavorable response if the algebraic sign of the derivative of error with respect
to the weight in the two consecutive iterations alternate.
Class D schemes: In class D schemes, one automaton is associated with each neuron

of the network to adjust the parameter of that neuron. In this class, the automaton
receives favorable response from the environment if the algebraic sign of the derivative
of error with respect to the parameter being adjusted in the two consecutive iterations
are the same and receives unfavorable response if the algebraic sign of the derivative
of error with respect to the parameter in the two consecutive iterations alternates.
For the sake of convenience in the presentation, we use the following naming con-

ventions to refer to diKerent LA-based schemes in classes A, B, C, and D. Without
loss of generality, we assume that in class A and class B, the neural network has one
hidden layer.
Automata-AX(!): A scheme in class A for adjusting parameter ! which uses X

structure learning automata.
Automata:Automata1-Automata2-BX(!): A scheme in class B which uses X structure

learning automata for hidden layer and X structure learning automata Automata2 for
output layer.
Automata-CX(!): A scheme in class C for adjusting parameter ! which uses X

structure learning automata Automata.
Automata-DX(!): A scheme in class D for adjusting parameter ! which uses X

structure learning automata Automata.
The rate of convergence can be improved if both the learning rate and steepness pa-

rameter are adapted simultaneously. Simultaneous, use of class C and class D schemes
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for adaptation of learning rate and steepness parameters is also reported in [23]. In
[23] a class C scheme is used for adaptation of learning rate and a class D scheme
is used for adaptation of steepness parameter. An LA-based scheme that simultane-
ously adapts learning rate and steepness parameter is denoted by Automata1-Automata2-
CDF(�; �), if FSLA is used and Automata1-Automata2-CDV(�; �), if VSLA is used.
A simple method of increasing the learning rate and stability of training algorithm is

to modify the standard BP by including the momentum factor [26] as given in Eq. (1).
An LA-based scheme which simultaneously adapts the learning rate and momentum is
denoted by Automata1-Automata2-CF((; �).
The letters F and V in the above names denote FSLA and VSLA, respectively. X

denotes either 2xed or variable. For all the LA-based schemes reported in the literature,
it is shown below through simulation that the use of LA for adaptation of BP-learning
algorithm parameters increases the rate of convergence by a large amount.
In the remaining part of this section we 2rst discuss non-LA methods for the purpose

of comparison with LA-based methods described above and then show some simulation
results.
Variable learning rate (VLR): VLR is a scheme in which the learning rate varies

according to the performance of the algorithm [15]. If the error decreases after a
weight update, then the learning rate is increased by some factor (e.g., 1.05). If the
error increases more than some percentage (typically one to 2ve percent), then the
weight update is discarded and the learning rate is decreased by some factor (e.g., 0.7)
and the momentum term (if it is used) is set to zero. When a successful step is taken
the momentum term is reset to its original value. If the algorithm is working well, and
the error continues to go down, then learning rate will increase and convergence will
speed up.
Fuzzy control of BP (FuzzyBP): The central idea behind FuzzyBP is the implemen-

tation of heuristics for determining the values of learning rate and momentum factor
in terms of fuzzy rules. This is done by considering the error, E(n), and the change
in the error, RE(n), at instant n, where RE(n)=E(n)−E(n− 1). The values of E(n)
and RE(n) are categorized in the fuzzy linguistic sets such as low, medium, and high.
The change in the learning rate, R�(n) = �(n)− �(n− 1), also takes the fuzzy values
of negative small, zero, and positive small. All these values are expressed in terms of
membership functions. Based on the crisp values of E(n) and RE(n) value of R�(n)
is determined from fuzzy rules.
Adaptive steepness (ASBP): ASBP [27] method is a method, which uses gradient

descent rule for adaptation of steepness parameter. In this method each neuron k has
steepness parameter �k , which is changed by the following rule:

R�k =−�
@E
@�k

:

Self-adaptive BP (SAB): SAB was developed independently by Jacobs [12] and
Devos and Orban [8]. SAB is a local method in which every weight has its own
learning rate. In this method, every learning rate on every dimension is adapted based
on the error surface independently. The learning rate increases if in two consecutive
iterations gradient has the same sign and the learning rate should be a small constant
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Fig. 6. (a) Standard BP; (b) Tsetline-AF((); (c) Krinsky-AF((); (d) Krylov-AF((); and (e) LR−�p-AV(().

Fig. 7. (a) Standard BP; (b) Tsetline-AF; (c) Tsetline–Krinsky-BF; (d) Tsetline–Tsetline-BF; and
(e) Tsetline–TsetlineG-BF.

value if the sign of gradient in two consecutive iterations alternates. SAB performs
better than the BP, because it can adjust the learning rate over a wide range, but it has
two drawbacks: (1) The selection of initial value ( is hard to determine; (2) If the sign
of gradient alternates, the learning rate is reset to initial value. SuperSAB algorithm
which is proposed by Tollenaere [29] overcomes these problems.
In order to compare the eKectiveness of diKerent LA-based, schemes in diKerent

classes for the adaptation of BP parameters, we use Figs. 6–9 from Refs. [23,4].
Shown in these 2gures are typical error curves for diKerent LA-based methods. As
is shown, LA-based schemes result in dramatically faster convergence, and have sig-
ni2cantly smaller tail than standard BP and some other non-LA-based schemes. In
Fig. 6, the eKectiveness of diKerent schemes from class A is compared [4]. Fig. 7
compares diKerent schemes in class B and one scheme from class A. For this simu-
lation, Tsetline learning automata are associated with the hidden layer and the eKect
of association of diKerent learning automata with the output layer is shown for digit
problem. Fig. 8 compares the performance of diKerent schemes from class A with J-CF
scheme from class C for the digit problem. Fig. 9 compares the performance of ASBP
method with J-DF(�) scheme from class D and standard BP for parity problem. To the
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Fig. 8. (a) Standard BP; (b) Tsetline-AF((); (c) Krinsky-AF((); (d) Krylov-AF((); (e) LR−�P-AV(();
(f) VLR; (g) J-CF(().

Fig. 9. (a) Standard BP; (b) ASBP; (c) J-DF(�).

author’s knowledge, ASBP method is the only method for the adaptation of steepness
parameter.

4. LA-based schemes and local minima

In this section, we examine the ability of the learning automata-based schemes to
escape from local minima. For this propose, we choose two problems in which local
minima occur frequently [11]. These examples consider the sigmoidal network for
the XOR Boolean function with the quadratic cost function and the standard learning
environment.
To show the superiority of LA-based adaptation algorithm in terms of escaping from

local minima, we test 12 diKerent LA-based algorithms, 2ve from class A, four from
class B, 1 from class C, 1 from class D, and 1 from class CD, and compare their results
with the standard BP and 2ve other known adaptation methods: SAB [12], SuperSAB
[29], VLR method [15], ASBP method [27], and fuzzy BP [1]. In all simulations, each
learning automaton has K actions equally spaced in the interval (0; 1]. Window size,
threshold value, and the maximum number of epochs are chosen to be 10, 0.01 and
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Table 1

Pattern X0 X1 Desired output

A 0 0 0
B 1 0 1
C 1 1 0
D 0 1 1
E 0.5 0.5 0

Fig. 10. Network architecture for test problems.

32 000, respectively. For LR−�P learning automata the reward and penalty parameters
are chosen to be 0:001 and 0.0001, respectively.

Example 1. The training set of this example is given in Table 1.
The network has two input nodes x0 and x1, two hidden units, and one output unit

as shown in Fig. 10. In this problem, if hidden units produce the lines 2l and 3l,
then the local minima has occurred and if hidden units produce the lines 2g and 3g,
then the global minima occurred [10]. Fig. 11 shows these con2gurations. The error
surface and contour plot of the network as a function of weights w20 aid w42 are given
in Figs. 12 and 13.
Depending on the initial weights, the gradient can get stuck in points where the error

is far from being zero. The presence of these local minima is intuitively related to the
symmetry of the learning environment. Experimental evidence of the presence of local
minima is given in Fig. 12. The local minimum is related to the weights w20 =w21 and
w30 = w31 [11]. Table 2 shows the result of simulations for 100 runs for two diKerent
cases. For case 1, the initial weights are chosen in such a way that all the algorithms
start from local minima. For case 2, the initial weights are chosen in such a way that all
the algorithms start from a point near local minima (w20=w21=w30=0:025). From Table
2 we note that for standard BP and also for standard BP when VLR, FuzzyBP, or ASBP
are used to adapt the learning rate none of the 100 runs converge to the global minima.
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Fig. 11. Lines produced by hidden units of neural network.

Fig. 12. Error surface as a function of weights w20 and w42.

Among the non-LA-based methods, the SAB and SuperSAB methods perform the
best. For the SuperSAB scheme, 10 out of 100 runs converge to global minima which
is comparable to some of the LA-based schemes we have tested. The best result is
obtained for algorithm J(4; 4)-J(4; 4)-CDF(�; �) for which 12 out of 100 runs converge
to global minimum. The next best result belongs to J(4; 4)-J(4; 4)-CF(�) scheme.

Example 2. This example considers the sigmoidal network for the XOR Boolean
function (see Fig. 9) and standard training patterns (the 2rst four rows of Table 1).
Following [5]; it can be shown that there is a manifold local minima given by
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Fig. 13. Contour map of Fig. 11.

Table 2

Algorithm Class %Converged

Case 1 Case 2

BP 0 0
SAB 2 9
SuperSAB 5 10
VLR 0 0
FuzzyBP 0 0
ASBP 0 0
Tsetline(4; 4)-AF(�) A 2 9
Krinsky(4; 4)-AF(�) A 7 11
Krylov-(4; 4)-AF(�) A 3 9
LR−�P(10)-AF(�) A 8 11
Tsetline(4; 4)-AF(�) A 0 0
Tsetline(4; 4)-TsetlineG(2; 4)-BF(�) B 6 10
Tsetline(4; 4)-Krylov(4; 4)-BF(�) B 8 12
Tsetline(4; 4)-Krinsky(4; 4)-BF(�) B 6 8
Tsetline(4; 4)-Tsetline(4; 4)-BF(�) B 4 19
J(4; 4)-DF(�) D 6 18
J(4; 4)-CF(�) C 9 18
J(4; 4)-J(4; 4)-CDF(�; �) CD 12 22

{w20 = w21 = w2 = w30 = w31 = w3 = 0; w42 = w43; w42 + w4 = 0} with error of 0.5. An
example of local minima and its contour are given in Figs. 14 and 15. Table 3 shows
the result of simulations for 100 runs for two diKerent cases. For Case 1, the initial
weights are chosen in such a way that all the algorithms start from local minima. For
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Fig. 14. Error surface as a function of weights w42 and w4.

Fig. 15. Contour map of Fig. 14.

case 2, initial weights are chosen in such a way that all the algorithms start from a
point near local minima (w20 = w21 + 0:01).

For this example, the results obtained for LA-based scheme are much better than
the results obtained for example 1. Among the non-LA-based methods again SAB and
SuperSAB perform the best and among the LA-based schemes J(4; 4)-J(4; 4)-CF(�)
produced the best result. Again note the superiority of the LA-based schemes over the
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Table 3

Algorithm Class %Converged

Case 1 Case 2

BP 0 0
SAB 0 43
SuperSAB 0 45
VLR 0 0
FuzzyBP 0 0
ASBP 0 0
Tsetline(4, 4)-AF(�) A 0 13
Krinsky(4, 4)-AF(�) A 0 38
Krylov(4, 4)-AF(�) A 0 36
LR−�P(10)-AF(�) A 0 46
Tsetline(4, 4)-AF(�) A 0 0
Tsetline(4, 4)–TsetlineG(2,4)-BG(�) B 0 29
Tsetline(4, 4)–Krylov(4,4)-BF(�) B 0 51
Tsetline(4, 4)–Krinsky(4,4)-BF(�) B 0 54
Tsetline(4, 4)–Tsetline(4,4)-BF(�) B 0 64
J(4, 4)-DF(�) D 0 56
J(4, 4)-CF(�) C 54 76
J(4, 4)-J(4, 4)-CDF(�; �) CD 38 74

non-LA schemes. For this example, for Case 1 none of the non-LA-based methods
were able to converge to the global minima.

Remark 1. The reason for a higher performance of both J-J-CDF(�; �) and J-CF(�)
schemes compared to the other LA-based schemes is that they have a closer relationship
with the Jacobs heuristics [12]. These heuristics; which are given below; are suggested
as guidelines for accelerating the convergence of BP-learning algorithm through learn-
ing rate adaptation.

• Every adjustable network parameter of cost function should have its own individual
learning-rate parameter.

• Every learning-rate parameter should be allowed to vary from one iteration to the
other.

• When the derivative of cost function with respect to the synaptic weight has the same
algebraic sign for several consecutive iterations of the algorithm; the learning-rate
parameter for that particular weight should be increased.

• When the algebraic sign of the derivative of cost function with respect to the synaptic
weight alternates for several consecutive iterations of the algorithm; the learning-rate
parameter for that particular weight should be decreased.

Careful inspection of J-CF(�) and J-J-CDF(�; �) shows that the above heuristics are
somehow incorporated into these schemes.

Remark 2. The reason for such a good performance of LA-based schemes is that
in the standard gradient method; the new operation point lies within a neighborhood
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distance of the previous point. This is not the case for an adaptation algorithm based on
stochastic principles; as the new operating point is determined by probability function
and is therefore not considered to be near the previous operating point. This gives the
algorithm higher ability to locate the global optimum. In general; the LA approach has
two distinct advantages over classical hill climbing methods: (1) the parameter space
need not be metric and (2) since the search space is conducted in the path probability
space instead of parameter space; a global rather than a local optimum can be found.

5. Conclusion

In this paper, we studied the ability of LA-based schemes to escape from local min-
ima when standard BP fails to 2nd the global minimum. It is demonstrated through
simulations that LA-based schemes compared to other schemes such as SAB, Super-
SAB, Fuzzy BP, ASBP method, and VLR-method have a higher ability to escape from
local minima. It must be mentioned that just as BP cannot guarantee convergence to the
global minimum solution, neither can LA-based schemes. This is a problem inherent to
a localized optimization technique such as steepest descent, of which backpropagation
is a special case.
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