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Preface

These lecture notes form part of the syllabus for the first-semester course MAT-
INF1100 at the University of Oslo. The topics roughly cover two main areas: Nu-
merical algorithms, and what can be termed digital understanding. Together
with a thorough understanding of calculus and programming, this is knowledge
that students in the mathematical sciences should gain as early as possible in
their university career. As subjects such as physics, meteorology and statistics,
as well as many parts of mathematics, become increasingly dependent on com-
puter calculations, this training is essential.

Our aim is to train students who should not only be able to use a computer
for mathematical calculations; they should also have a basic understanding of
how the computational methods work. Such understanding is essential both in
order to judge the quality of computational results, and in order to develop new
computational methods when the need arises.

In these notes we cover the basic numerical algorithms such as interpola-
tion, numerical root finding, differentiation and integration, as well as numeri-
cal solution of ordinary differential equations. In the area of digital understand-
ing we discuss digital representation of numbers, text, sound and images. In
particular, the basics of lossless compression algorithms with Huffman coding
and arithmetic coding is included.

A basic assumption throughout the notes is that the reader either has at-
tended a basic calculus course in advance or is attending such a course while
studying this material. Basic familiarity with programming is also assumed.
However, I have tried to quote theorems and other results on which the pre-
sentation rests. Provided you have an interest and curiosity in mathematics, it
should therefore not be difficult to read most of the material with a good math-
ematics background from secondary school.

MAT-INF1100 is a central course in the project Computers in Science Edu-
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cation (CSE) at the University of Oslo. The aim of this project is to make sure
that students in the mathematical sciences get a unified introduction to com-
putational methods as part of their undergraduate studies. The basic founda-
tion is laid in the first semester with the calculus course, MAT1100, and the pro-
gramming course INF1100, together with MAT-INF1100. The maths courses that
follow continue in the same direction and discuss a number of numerical algo-
rithms in linear algebra and related areas, as well as applications such as image
compression and ranking of web pages.

Some fear that a thorough introduction of computational techniques in the
mathematics curriculum will reduce the students’ basic mathematical abilities.
This could easily be true if the use of computations only amounted to running
code written by others. However, deriving the central algorithms, programming
them, and studying their convergence properties, should lead to a level of math-
ematical understanding that should certainly match that of a more traditional
approach.

Many people have helped develop these notes which have matured over a
period of ten years. Øyvind Ryan, Andreas Våvang Solbrå, Solveig Bruvoll, and
Marit Sandstad have helped directly with recent versions, while Pål Hermunn
Johansen provided extensive programming help with an earlier version. For this
latest version, Andreas Våvang Solbrå has provided important assistance and
feedback. Geir Pedersen was my co-lecturer for four years. He was an extremely
good discussion partner on all the facets of this material, and influenced the list
of contents in several ways. I work at the Centre of Mathematics for Applica-
tions (CMA) at the University of Oslo, and I am grateful to the director, Ragnar
Winther, for his enthusiastic support of the CSE project and my extensive under-
takings in teaching. Over many years, my closest colleagues Geir Dahl, Michael
Floater, and Tom Lyche have shaped my understanding of numerical analysis
and allowed me to spend considerably more time than usual on elementary
teaching. Another colleague, Sverre Holm, has been my source of information
on signal processing. To all of you: thank you!

My previous academic home, the Department of Informatics and its chair-
man Morten Dæhlen, has been very supportive of this work by giving me the
freedom to extend the Department’s teaching, and by extensive support of the
CSE-project. It has been a pleasure to work with the Department of Mathemat-
ics for more than a decade, and I have many times been amazed by how much
confidence they seem to have in me. I have learnt a lot, and have thoroughly en-
joyed teaching at the cross-section between mathematics and computing. Now
that I am a part of the Department of Mathematics I am looking forward to assist
in forming its future scientific profile.

A course like MAT-INF1100 is completely dependent on support from other
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courses. Tom Lindstrøm has done a tremendous job with the parallel calcu-
lus course MAT1100, and its sequel MAT1110 on multivariate analysis and lin-
ear algebra. Hans Petter Langtangen has done an equally impressive job with
INF1100, the introductory programming course with a mathematical and scien-
tific flavour, and I have benefited from many hours of discussions with both of
them. Morten Hjorth-Jensen, Arnt-Inge Vistnes and Anders Malthe-Sørenssen
with colleagues have introduced a computational perspective in a number of
physics courses, and discussions with them have convinced me of the impor-
tance of introducing computations for all students in the mathematical sciences.
Thank you to all of you.

The CSE project is run by a group of people: Morten Hjorth-Jensen and An-
ders Malthe-Sørenssen from the Physics Department, Hans Petter Langtangen
from the Simula Research Lab and the Department of Informatics, Øyvind Ryan
from the CMA, Annik Myhre (Dean of Education at the MN-faculty1), Hanne
Sølna (Head of the Studies section at the MN-faculty1), Helge Galdal (Adminis-
trative Leader of the CMA), and myself. This group of people has been the main
source of inspiration for this work, and without you, there would still only be
uncoordinated attempts at including computations in our elementary courses.
Thank you for all the fun we have had.

The CSE project has become much more than I could ever imagine, and the
reason is that there seems to be a genuine collegial atmosphere at the University
of Oslo in the mathematical sciences. This means that it has been possible to
build momentum in a common direction not only within a research group, but
across several departments, which seems to be quite unusual in the academic
world. Everybody involved in the CSE project is responsible for this, and I can
only thank you all.

Finally, as in all teaching endeavours, the main source of inspiration is the
students, without whom there would be no teaching. Many students become
frustrated when their understanding of the nature of mathematics is challenged,
but the joy of seeing the excitement in their eyes when they understand some-
thing new is a constant source of satisfaction.

Blindern, August 2013

Knut Mørken

1The Faculty of Mathematics and Natural Sciences.
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CHAPTER 1

Introduction

Why are computational methods in mathematics important? What can we do
with these methods? What is the difference between computation by hand and
by computer? What do I need to know to perform computations on computers?

These are natural questions for a student to ask before starting a course on
computational methods. And therefore it is also appropriate to try and provide
some short answers already in this introduction. By the time you reach the end
of the notes you will hopefully have more substantial answers to these as well as
many other questions.

1.1 A bit of history

A major impetus for the development of mathematics has been the need for
solving everyday computational problems. Originally, the problems to be solved
were quite simple, like adding and multiplying numbers. These became rou-
tine tasks with the introduction of the decimal numeral system. Another an-
cient problem is how to determine the area of a field. This was typically done
by dividing the field into small squares, rectangles or triangles with known ar-
eas and then adding up. Although the method was time-consuming and could
only provide an approximate answer, it was the best that could be done. Then in
the 18th century Newton and Leibniz developed the differential calculus. This
made it possible to compute areas and similar quantities via quite simple sym-
bolic computations, namely integration and differentiation.

In the absence of good computational devices, this has proved to be a power-
ful way to approach many computational problems: Look for deeper structures
in the problem and exploit these to develop alternative, often non-numerical,
ways to compute the desired quantities. At the beginning of the 21st century
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this has developed mathematics into an extensive collection of theories, many
of them highly advanced and requiring extensive training to master. And math-
ematics has become much more than a tool to solve practical computational
problems. It has long ago developed into a subject of its own, that can be valued
for its beautiful structures and theories. At the same time mathematics is the
language in which the laws of nature are formulated and that engineers use to
build and analyse a vast diversity of man-made objects, that range from aircrafts
and economic models to digital music players and special effects in movies.

An outsider might think that the intricate mathematical theories that have
been developed have quenched the need for old fashioned computations. Noth-
ing could be further from the truth. In fact, a large number of the developments
in science and engineering over the past fifty years would have been impossible
without huge calculations on a scale that would have been impossible a hun-
dred years ago. The new device that has made such calculations possible is of
course the digital computer.

The birth of the digital computer is usually dated to the early 1940s. From
the beginning it was primarily used for mathematical computations, and today
it is an indispensable tool in almost all scientific research. But as we all know, the
usefulness of computers goes far beyond the scientific laboratories. Computers
are now essential tools in virtually all offices and homes in our society, and small
computers control a wide range of machines.

The one featureÂăof modern computers that has made such an impact on
science and society is undoubtedly the speed with which a computer operates.
We mentioned above that the area of a field can be computed by dividing the
field into smaller parts like triangles and rectangles whose areas are very simple
to compute. This has been known for hundreds of years, but the method was
only of limited interest as complicated shapes had to be split into a large number
of smaller parts to get sufficient accuracy. The symbolic computation methods
that were developed worked well, but only for certain special problems. Sym-
bolic integration, for example, is only possible for a small class of integrals; the
vast majority of integrals cannot be computed by symbolic methods. The de-
velopment of fast computers means that the old methods for computing areas,
based on dividing the shape into simple parts, are highly relevant as we can very
quickly sum up the areas of a large number of triangles or rectangles.

With all the spectacular accomplishments of computers one may think that
formal methods and proofs are not of interest any more. This is certainly not the
case. A truth in mathematics is only accepted when it can be proved through
strict logical reasoning, and once it has been proved to be true, it will always
be true. A mathematical theory may lose popularity because new and better
theories are developed, but the old theory remains true as long as those who
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discovered it did not make any mistakes. Later, new discoveries are made which
may bring the old, and often forgotten, theory back into fashion again. The sim-
ple computational methods is one example of this. In the 20th century mathe-
matics went through a general process of more abstraction and many of the old
computational techniques were ignored or even forgotten. When the computer
became available, there was an obvious need for computing methods and the
old techniques were rediscovered and applied in new contexts. All properties
of the old methods that had been established with proper mathematical proofs
were of course still valid and could be utilised straightaway, even if the methods
were several hundred years old and had been discovered at a time when digital
computers were not even dreamt of.

This kind of renaissance of old computational methods happens in most ar-
eas when computers are introduced as a tool. However, there is usually a contin-
uation of the story that is worth mentioning. After some years, when the classical
computational methods have been adapted to work well on modern comput-
ers, completely new methods often appear. The classical methods were usually
intended to be performed by hand, using pencil and paper. Three characteris-
tics of this computing environment (human with pencil and paper) is that it is
quite slow, is error prone, and has a preference for computations with simple
numbers. On the other hand, an electronic computer is fast (billions of oper-
ations pr. second), is virtually free of errors and has no preference for particu-
lar numbers. A computer can of course execute the classical methods designed
for humans very well. However, it seems reasonable to expect that even bet-
ter methods should be obtainable if one starts from scratch and develops new
methods that exploit the characteristics of the electronic computer. This has
indeed proved to be the case in many fields where the classical methods have
been succeeded by better methods that are completely unsuitable for human
operation.

1.2 Computers and different types of information

The computer has become a universal tool that is used for all kinds of different
purposes and tasks. To understand how this has become possible we must know
a little bit about how a computer operates. A computer can really only work with
numbers, and in fact, the numbers even have to be expressed in terms of 0s and
1s. It turns out that any number can be represented in terms of 0s and 1s so
that is no restriction. But how can computers work with text, sound, images and
many other forms of information when it can really only handle numbers?

3



1.2.1 Text

Let us first consider text. In the English alphabet there are 26 letters. If we in-
clude upper case and lower case letters plus comma, question mark, space, and
other common characters we end up with a total of about 100 different charac-
ters. How can a computer handle these characters when it only knows about
numbers? The solution is simple; we just assign a numerical code to each char-
acter. Suppose we use two decimal digits for the code and that ’a’ has the code
01, ’b’ the code 02 and so on. Then we can refer to the different letters via these
codes, and words can be referred to by sequences of codes. The word ’and’ for
example, can be referred to by the sequence 011404 (remember that each code
consists of two digits). Multi-word texts can be handled in the same way as long
as we have codes for all the characters. For this to work, the computer must
always know how to interpret numbers presented to it, either as numbers or
characters or something else.

1.2.2 Sound

Computers work with numbers, so a sound must be converted to numbers be-
fore it can be handled by a computer. What we perceive as sound corresponds
to small variations in air pressure. Sound is therefore converted to numbers by
measuring the air pressure at regular intervals and storing the measurements as
numbers. On a CD for example, measurements are taken 44 100 times a second,
so three minutes of sound becomes 7 938 000 measurements of air pressure.
Sound on a computer is therefore just a long sequence of numbers. The process
of converting a given sound to regular numerical measurements of the air pres-
sure is referred to as digitising the sound, and the result is referred to as digital
sound.

1.2.3 Images

Images are handled by computers in much the same way as sound. Digital cam-
eras have an image sensor that records the amount of light hitting its rectangular
array of points called pixels. The amount of light at a given pixel corresponds to a
number, and the complete image can therefore be stored by storing all the pixel
values. In this way an image is reduced to a large collection of numbers, a digital
image, which is perfect for processing by a computer.

1.2.4 Film

A film is just a sequence of images shown in quick succession (25-30 images
pr. second), and if each image is represented digitally, we have a film represented
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by a large number of numerical values, a digital film. A digital film can be ma-
nipulated by altering the pixel values in the individual images.

1.2.5 Geometric form

Geometric shapes surround us everywhere in the form of natural objects like
rocks, flowers and animals as well as man-made objects like buildings, aircrafts
and other machines. A specific shape can be converted to numbers by splitting
it into small pieces that each can be represented as a simple mathematical func-
tion like for instance a cubic polynomial. A cubic polynomial is represented in
terms of its coefficients, which are numbers, and the complete shape can be rep-
resented by a collection of cubic pieces, joined smoothly together, i.e., by a set
of numbers. In this way a mathematical model of a shape can be built inside a
computer.

Graphical images of characters, or fonts, is one particular type of geometric
form that can be represented in this way. Therefore, when you read the letters
on this page, whether on paper or a computer screen, the computer figured out
exactly how to draw each character by computing its shape from a collection of
mathematical formulas.

1.2.6 Laws of nature

The laws of nature, especially the laws of physics, can often be expressed in
terms of mathematical equations. These equations can be represented in terms
of their coefficients and solved by performing computations based on these co-
efficients. In this way we can simulate physical phenomena by solving the equa-
tions that govern the phenomena.

1.2.7 Virtual worlds

We have seen how we can represent and manipulate sound, film, geometry and
physical laws by computers. By combining objects of this kind, we can create
artificial or virtual worlds inside a computer, built completely from numbers.
This is exactly what is done in computer games. A complete world is built with
geometric shapes, creatures that can move (with movements governed by math-
ematical equations), and physical laws, also represented by mathematical equa-
tions. An important part of creating such virtual worlds is to deduce methods for
how the objects can be drawn on the computer screen — this is the essence of
the field of computer graphics.

A very similar kind of virtual world is used in machines like flight simula-
tors and machines used for training purposes. In many cases it is both cheaper
and safer to give professionals their initial training by using a computer simula-
tor rather than letting them try ’the real thing’. This applies to pilots as well as
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heart surgeons and requires that an adequate virtual world is built in terms of
mathematical equations, with a realistic user interface.

In many machines this is taken a step further. A modern passenger jet has a
number of computers that can even land the airplane. To do this the computer
must have a mathematical model of itself as well as the equations that govern
the plane. In addition the plane must be fitted with sensors that measure quan-
tities like speed, height, and direction. These data are measured at regular time
intervals and fed into the mathematical model. Instead of just producing a film
of the landing on a computer screen, the computer can actually land the aircraft,
based on the mathematical model and the data provided by the sensors.

In the same way surgeons may make use of medical imaging techniques to
obtain different kinds of information about the interior of the patient. This in-
formation can then be combined to produce an image of the area undergoing
surgery, which is much more informative to the surgeon than the information
that is available during traditional surgery.

Similar virtual worlds can also be used to perform virtual scientific experi-
ments. In fact a large part of scientific experiments are now performed by us-
ing a computer to solve the mathematical equations that govern an experiment
rather than performing the experiment itself.

1.2.8 Summary

Via measuring devices (sensors), a wide range of information can be converted
to digital form, i.e., to numbers. These numbers can be read by computers and
processed according to mathematical equations or other logical rules. In this
way both real and non-real phenomena can be investigated by computation. A
computer can therefore be used to analyse an industrial object before it is built.
For example, by making a detailed mathematical model of a car it is possible
to compute its fuel consumption and other characteristics by simulation in a
computer, without building a single car.

A computer can also be used to guide or run machines. Again the computer
must have detailed information about the operation of the machine in the form
of mathematical equations or a strict logical model from which it can compute
how the machine should behave. The result of the computations must then be
transferred to the devices that control the machine.

To build these kinds of models requires specialist knowledge about the phe-
nomenon which is to be modelled as well as a good understanding of the basic
tools used to solve the problems, namely mathematics, computing and comput-
ers.
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1.3 Computation by hand and by computer

As a student of mathematics, it is reasonable to expect that you have at least a
vague impression of what classical mathematics is. What I have in mind is the
insistence on a strict logical foundation of all concepts like for instance differen-
tiation and integration, logical derivation of properties of the concepts defined,
and the development of symbolic computational techniques like symbolic inte-
gration and differentiation. This is all extremely important and should be well-
known to any serious student of mathematics and the mathematical sciences.
Not least is it important to be fluent in algebra and symbolic computations.

When computations are central to classical mathematics, what then is the
new computational approach? To understand this we first need to reflect a bit
on how we do our pencil-and-paper computations. Suppose you are to solve a
system of three linear equations in three unknowns, like

2x +4y −2z = 2,

3x −6z = 3,

4x −2y +4z = 2.

There are many different ways to solve this, but one approach is as follows. We
observe that the middle equation does not contain y , so we can easily solve for
one of x or z in terms of the other. If we solve for x we can avoid fractions so this
seems like the best choice. From the second equation we then obtain x = 1+2z.
Inserting this in the first and last equations gives

2+4z +4y −2z = 2,

4+8z −2y +4z = 2,

or

4y +2z = 0,

−2y +12z =−2.

Using either of these equations we can express y or z in terms of one another.
In the first equation, however, the right-hand side is 0 and we know that this will
lead to simpler arithmetic. And if we express z in terms of y we avoid fractions.
From the first equation we then obtain z = −2y . When this is inserted in the
last equation we end up with −2y +12(−2y) = −2 or −26y = −2 from which we
see that y = 1/13. We then find z = −2y = −2/13 and x = 1+ 2z = 9/13. This
illustrates how an experienced equation solver typically works, always looking
for shortcuts and simple numbers that simplify the calculations.
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This is quite different from how a computer operates. A computer works
according to a very detailed procedure which states exactly how the calculations
are to be done. The procedure can tell the computer to look for simple numbers
and shortcuts, but this is usually a waste of time since most computers handle
fractions just as well as integers.

Another, more complicated example, is computation of symbolic integrals.
For most of us this is a bag of isolated techniques and tricks. In fact the Nor-
wegian mathematician Viggo Brun once said that differentiation is a craft; in-
tegration is an art. If you have some experience with differentiation you will
understand what Brun meant by it being a craft; you arrive at the answer by fol-
lowing fairly simple rules. Many integrals can also be solved by definite rules,
but the more complicated ones require both intuition and experience. And in
fact most indefinite integrals cannot be solved at all. It may therefore come as a
surprise to many that computers can be programmed to perform symbolic inte-
gration. In fact, Brun was wrong. There is a precise procedure which will always
give the answer to the integral if it exists, or say that it does not exist if this is the
case. For a human the problem is of course that the procedure requires so much
work that for most integrals it is useless, and integration therefore appears to be
an art. For computers, which work so must faster, this is less of a problem, see
Figure 1.1. Still there are plenty of integrals (most!) that require so many calcu-
lations that even the most powerful computers are not fast enough. Not least
would the result require so much space to print that it would be incomprehen-
sible to humans!

These simple examples illustrate that when (experienced) humans do com-
putations they try to find shortcuts, look for patterns and do whatever they can
to simplify the work; in short they tend to improvise. In contrast, computations
on a computer must follow a strict, predetermined algorithm. A computer may
appear to improvise, but such improvisation must necessarily be planned in ad-
vance and built into the procedure that governs the calculations.

1.4 Algorithms

In the previous section we repeatedly talked about the ’procedure’ that governs
a calculation. This procedure is simply a sequence of detailed instructions for
how the quantity in question can be computed; such procedures are usually re-
ferred to as algorithms. Algorithms have always been important in mathematics
as they specify how calculations should be done. In the past, algorithms were
usually intended to be performed manually by humans, but today many algo-
rithms are designed to work well on digital computers.

If we want an algorithm to be performed by a computer, it must be expressed
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in a form that the computer understands. Various languages, such as C++, Java,
Python, Matlab etc., have been developed for this purpose, and a computer pro-
gram is nothing but an algorithm translated into such a language. Programming
therefore requires both an understanding of the relevant algorithms and knowl-
edge of the programming language to be used.

We will express the algorithms we encounter in a language close to standard
mathematics which should be quite easy to understand. This means that if you
want to test an algorithm on a computer, it must be translated to your preferred
programming language. For the simple algorithms we encounter, this process
should be straightforward, provided you know your programming language well
enough.

1.4.1 Statements

The building blocks of algorithms are statements, and statements are simple op-
erations that form the basis for more complex computations.

Definition 1.1. An algorithm is a finite sequence of statements. In these notes
there are only five different kinds of statements:

1. Assignments

2. For-loops

3. If-tests

4. While-loops

5. Print statement

Statements may involve expressions, which are combinations of mathematical
operations, just like in general mathematics.

The first four types of statements are the important ones as they cause cal-
culations to be done and control how the calculations are done. As the name
indicates, the print statement is just a tool for communicating to the user the
results of the computations.

Below, we are going to be more precise about what we mean by the five kinds
of statements, but let us also ensure that we agree what expressions are. The
most common expressions will be formulas like a +bc, sin(a +b), or ex/y . But
an expression could also be a bit less formal, like “the list of numbers x sorted in
increasing order”. Usually expressions only involve the basic operations in the
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mathematical area we are currently studying and which the algorithm at hand
relates to.

1.4.2 Variables and assignment

Mathematics is in general known for being precise, but its notation sometimes
borders on being ambiguous. An example is the use of the equals sign, ’=’. When
we are solving equations, like x + 2 = 3, the equals sign basically tests equality
of the two sides, and the equation is either true or false, depending on the value
of x. On the other hand, in an expression like f (x) = x2, the equals sign acts
like a kind of definition or assignment in that we assign the value x2 to f (x). In
most situations the interpretation can be deduced by the context, but there are
situations where confusion may arise as we will see in section 2.3.1.

Computers are not very good at judging this kind of context, and therefore
most programming languages differentiate between the two different uses of ’=’.
For this reason it is also convenient to make the same kind of distinction when
we describe algorithms. We do this by using the operator = for assignment and
== for comparison.

When we do computations, we may need to store the results and interme-
diate values for later use, and for this we use variables. Based on the discussion
above, to store the number 2 in a variable a, we will use the notation a = 2; we
say that the variable a is assigned the value 2. Similarly, to store the sum of the
numbers b and c in a, we write a = b + c. One important feature of assignments
is that we can write something like s = s+2. This means: Take the value of s, add
2, and store the result back ins. This does of course mean that the original value
of s is lost.

Definition 1.2 (Assignment). The formulation

var = expression;

means that the expression on the right is to be calculated, and the result stored
in the variable var. For clarity the expression is often terminated by a semi-
colon.

Note that the assignment a = b + c is different from the mathematical equa-
tion a = b+c. The latter basically tests equality: It is true if a and b+c denote the
same quantities, and false otherwise. The assignment is more like a command:
Calculate the the right-hand side and store the result in the variable on the right.
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1.4.3 For-loops

Very often in algorithms it is necessary to repeat essentially the same thing many
times. A common example is calculation of a sum. An expression like

s =
100∑
i=1

i

in mathematics means that the first 100 integers should be added together. In
an algorithm we may need to be a bit more precise since a computer can really
only add two numbers at a time. One way to do this is

s = 0;
for i = 1, 2, . . . , 100

s = s + i ;

The sum will be accumulated in the variable s, and before we start the computa-
tions we make sure s has the value 0. The for-statement means that the variable
i will take on all the values from 1 to 100, and each time we add i to s and store
the result in s. After the for-loop is finished, the total sum will then be stored ins.

Definition 1.3 (For-loop). The notation

for var = list of values
sequence of statements;

means that the variable var will take on the values given by list of values.
For each such value, the indicated sequence of statements will be performed.
These may include expressions that involve the loop-variable var.

A slightly more complicated example than the one above is

s = 0;
for i = 1, 2, . . . , 100

x = sin(i );
s = s +x;

s = 2s;

which calculates the sum s = 2
∑100

i=1 sin i . Note that the two indented statements
are both performed for each iteration of the for-loop, while the non-indented
statement is performed after the for-loop has finished.
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1.4.4 If-tests

The third kind of statement lets us choose what to do based on whether or not a
condition is true. The general form is as follows.

Definition 1.4 (If-statement). Consider the statement

if condition
sequence of statements;

else
sequence of statements;

where condition denotes an expression that is either true or false. The meaning
of this is that the first group of statements will be performed if condition is true,
and the second group of statements if condition is false.

As an example, suppose we have two numbers a and b, and we want to find
the largest and store this in c. This can be done with the if-statement

if a < b
c = b;

else
c = a;

The condition in the if-test can be any expression that evaluates to true or
false. In particular it could be something like a == b which tests whether a and b
are equal. This should not be confused with the assignment a = b which causes
the value of b to be stored in a.

Our next example combines all the three different kinds of statements we
have discussed so far. Many other examples can be found in later chapters.

Example 1.5. Suppose we have a sequence of real numbers (ak )n
k=1, and we

want to compute the sum of the negative and the positive numbers in the se-
quence separately. For this we need to compute two sums which we will store
in the variables s1 and s2: In s1 we will store the sum of the positive numbers,
and in s2 the sum of the negative numbers. To determine these sums, we step
through the whole sequence, and check whether an element ak is positive or
negative. If it is positive we add it to s1 otherwise we add it to s2. The following
algorithm accomplishes this.

s1 = 0; s2 = 0;
for k = 1, 2, . . . , n

if ak > 0
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s1 = s1+ak ;
else

s2 = s2+ak ;

After these statements have been performed, the two variables s1 and s2 should
contain the sums of the positive and negative elements of the sequence, respec-
tively.

1.4.5 While-loops

The final type of statement that we need is the while-loop, which is a combina-
tion of a for-loop and an if-test.

Definition 1.6 (While-statement). Consider the statement

while condition
sequence of statements;

This will repeat the sequence of statements as long as condition is true.

Note that unless the logical condition depends on the computations in the
sequence of statements this loop will either not run at all or run forever. Note
also that a for-loop can always be replaced by a while-loop.

Consider once again the example of adding the first 100 integers. With a
while-loop this can be expressed as

s = 0; i = 1;
while i ≤ 100

s = s +1;
i = i + i ;

This example is expressed better with a for-loop, but it illustrates the idea
behind the while-loop. A typical situation where a while-loop is convenient is
when we compute successive approximations to some quantity. In such situa-
tions we typically want to continue the computations until some measure of the
error has become smaller than a given tolerance, and this is expressed best with
a while-loop.

1.4.6 Print statement

Occasionally we may want our toy computer to print something. For this we use
a print statement. As an example, we could print all the integers from 1 to 100
by writing
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for i = 1, 2, . . . , 100
print i ;

Sometimes we may want to print more elaborate texts; the syntax for this will be
introduced when it is needed.

1.5 Doing computations on a computer

So far, we have argued that computations are important in mathematics, and
computers are good at doing computations. We have also seen that humans
and computers do calculations in quite different ways. A natural question is
then how you can make use of computers in your calculations. And once you
know this, the next question is how you can learn to use computers in this way.

1.5.1 How can computers be used for calculations?

There are at least two essentially distinct ways in which you can use a computer
to do calculations:

1. You can use software written by others; in other words you may use the
computer as an advanced calculator.

2. You can develop your own algorithms and implement these in your own
programs.

Anybody who uses a computer has to depend on software written by others,
so if your are going to do mathematics by computer, you will certainly do so in
the ’calculator style’ sometimes. The simplest example is the use of a calculator
for doing arithmetic. A calculator is nothing but a small computer, and we all
know that calculators can be very useful. There are many programs available
which you can use as advanced calculators for doing common computations
like plotting, integration, algebra and a wide range of other mathematical rou-
tine tasks.

The calculator style of computing can be very useful and may help you solve
a variety of problems. The goal of these notes however, is to help you learn to
develop your own algorithms which you can then implement in your own com-
puter programs. This will enable you to deduce new computer methods and
solve problems which are beyond the reach of existing algorithms.

When you develop new algorithms, you usually want to implement the al-
gorithms in a computer program and run the program. To do this you need to
know a programming language, i.e., an environment in which you can express
your algorithm in such a way that a computer can execute the algorithm. It is
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therefore assumed that you are familiar with a suitable programming language
already, or that you are learning one while you are working with these notes. Vir-
tually any programming language like Java, C++, Python, Matlab, Mathematica,
. . . , will do. The algorithms in these notes will be written in a form that should
make it quite simple to translate them to your choice of programming language.
Note however that it will usually not work to just type the text literally into C++
or Python; you need to know the syntax (grammar) of the language you are using
and translate the algorithm accordingly.

1.5.2 What do you need to know?

There are a number of things you need to learn in order to become able to de-
duce efficient algorithms and computer programs:

• You must learn to recognise when a computer calculation is appropriate,
and when formal methods or calculations by hand are more suitable

• You must learn to translate your informal mathematical ideas into de-
tailed algorithms that are suitable for computers

• You must understand the characteristics of the computing environment
defined by your computer and the programming language you use

Let us consider each of these points in turn. Even if the power of a computer is
available to you, you should not forget your other mathematical skills. Some-
times your intuition, computation by hand or logical reasoning will serve you
best. On the other hand, with good algorithmic skills you can often use the com-
puter to answer questions that would otherwise be impossible even to consider.
You should therefore aim to gain an intuitive understanding for when a mathe-
matical problem is suitable for computer calculation. It is difficult to say exactly
when this is the case; a good learning strategy is to read these notes and see
how algorithms are developed in different situations. As you do this you should
gradually develop an algorithmic thinking yourself.

Once you have decided that some computation is suitable for computer im-
plementation you need to formulate the calculation as a precise algorithm that
only uses operations available in your computing environment. This is also best
learnt through practical experience, and you will see many examples of this pro-
cess in these notes.

An important prerequisite for both of the first points is to have a good under-
standing of the characteristics of the computing environment where you intend
to do your computations. At the most basic level, you need to understand the
general principles of how computers work. This may sound a bit overwhelming,
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but at a high level, these principles are not so difficult, and we will consider most
of them in later chapters.

1.5.3 Different computing environments

One interesting fact is that as your programming skills increase, you will begin to
operate in a number of different computing environments. We will not consider
this in any detail here, but a few examples may illustrate this point.

Sequential computing As you begin using a computer for calculations it is nat-
ural to make the assumption that the computer works sequentially and does one
operation at a time, just like we tend to do when we perform computations man-
ually.

Suppose for example that you are to compute the sum

s =
100∑
i=1

ai = a1 +a2 +·· ·+a100,

where each ai is a real number. Most of us would then first add a1 and a2, re-
member the result, then add a3 to this result and remember the new result, then
add a4 to this and so on until all numbers have been added. The good news is
that you can do exactly the same on a computer! This is called sequential com-
puting and is definitely the most common computing environment.

Parallel computing If a group of people work together it is possible to add
numbers faster than a single person can. The key observation is that the num-
bers can be summed in many different ways. We may for example sum the num-
bers in the order indicated by

s =
100∑
i=1

ai = a1 +a2︸ ︷︷ ︸
a1

1

+a3 +a4︸ ︷︷ ︸
a1

2

+a5 +a6︸ ︷︷ ︸
a1

3

+·· ·+a97 +a98︸ ︷︷ ︸
a1

49

+a99 +a100︸ ︷︷ ︸
a1

50

.

Here we have added ’1’ as a superscript to indicate that this is the first time we
group terms in the sum together — it is the first time step of the algorithm. The
key is that these partial sums, each with two terms, are independent of each
other. In other words we may hire 50 people, give them two numbers each, and
tell them to add their two numbers.

When everybody is finished, we can repeat this and ask 25 people to add the
50 results,

s =
50∑

i=1
a1

i = a1
1 +a1

2︸ ︷︷ ︸
a2

1

+a1
3 +a1

4︸ ︷︷ ︸
a2

2

+a1
5 +a1

6︸ ︷︷ ︸
a2

3

+·· ·+a1
47 +a1

48︸ ︷︷ ︸
a2

24

+a1
49 +a1

50︸ ︷︷ ︸
a2

25

.
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The superscript ’2’ here does not signify that the number in question should be
squared; it simply means that this is the second time step of the algorithm.

At the next time step we ask 13 people to the compute the 13 sums

s =
25∑

i=1
a2

i = a2
1 +a2

2︸ ︷︷ ︸
a3

1

+a2
3 +a2

4︸ ︷︷ ︸
a3

2

+a2
5 +a2

6︸ ︷︷ ︸
a3

3

+·· ·+a2
21 +a2

22︸ ︷︷ ︸
a2

11

+a2
23 +a2

24︸ ︷︷ ︸
a3

12

+ a2
25︸︷︷︸

a3
13

.

Note that the last person has an easy job; since the total number of terms in this
sum is an odd number she just needs to remember the result.

The structure should now be clear. At the next time step we ask 7 people
to compute pairs in the sum s = ∑13

i=1 a3
i in a similar way. The result is the 7

numbers a4
1, a4

2,. . . , a4
7. We then ask 4 people to compute the pairs in the sum

s = ∑7
i=1 a4

i which results in the 4 numbers a5
1, a5

2, a5
3 and a5

4. Two people can
then add pairs in the sum s = ∑4

i=1 a5
i and obtain the two numbers a6

1 and a6
2.

Finally one person computes the final sum as s = a6
1 +a6

2.
Note that at each time step, everybody can work independently. At the first

step we therefore compute 25 sums in the time that it takes one person to com-
pute one sum. The same is true at each step and the whole sum is computed in
6 steps. If one step takes 10 seconds, we have computed the sum of 100 num-
bers in one minute, while a single person would have taken 990 seconds or 16
minutes and 30 seconds.

Our simple example illustrates the concept of parallel computing. Instead of
making use of just one computing unit, we may attack a problem with several
units. Supercomputers, which are specifically designed for number crunching,
work on this principle. Today’s (June 2013) most powerful computer has 3 120
000 computing units.

An alternative to expensive supercomputers is to let standard PCs work in
parallel. They can either be connected in a specialised network or can commu-
nicate via the Internet.1 In fact, modern PCs themselves are so-called multi-
core computers which consist of several computing units or CPUs, although at
present, the norm is at most 4 or 8 cores.

One challenge with parallel computing that we have overlooked here is the
need for communication between the different computing units. Once the 25
persons have completed their sums, they must communicate their results to the
12 people who are going to do the next sums. This time is significant and super-
computers have very sophisticated communication channels. At the other end
of the scale, the Internet is in most respects a relatively slow communication
channel for parallel computing.

1There is a project aimed at computing large prime numbers that make use of the internet in
this way, see www.mersenne.org.
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Other computing environments Computing environments are characterised
by many other features than whether or not calculations can be done in parallel.
Other characteristics are the number of digits used in numerical computations,
how numbers are represented internally in the machine, whether symbolic cal-
culations are possible, and so on. It is not necessary to know the details of how
these issues are handled on your computer, but if you want to use the computer
efficiently, you need to understand the basic principles. After having studied
these notes you should have a decent knowledge of the most common comput-
ing environments.

Exercises for Section 1.5

Exercise 1. The algorithm in example 1.5 calculates the sums of the positve and
negative numbers in a sequence (ak )n

k=1. In this exercise you are going to adjust
this algorithm.

(a). Change the algorithm so that it computes the sum of the positive
numbers and the absolute value of the sum of the negative numbers.

(b). Change the algorithm so that it also determines the number of posi-
tive and negative elements in the sequence.

Exercise 2. Formulate an algorithm for adding two three-digit numbers. You
may assume that it is known how to sum one-digit numbers.

Exercise 3. Formulate an algorithm which describes how you multiply together
two three-digit numbers. You may assume that it is known how to add numbers.
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Part I

Numbers
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CHAPTER 2

0 and 1

’0 and 1’ may seem like an uninteresting title for this first proper chapter, but
most readers probably know that at the most fundamental level computers al-
ways deal with 0s and 1s. Here we will first learn about some of the advantages
of this, and then consider some of the mathematics of 0 and 1.

2.1 Robust communication

Suppose you are standing at one side of a river and a friend is standing at the
other side, 500 meters away; how can you best communicate with your friend in
this kind of situation, assuming you have no aids at your disposal? One possi-
bility would be to try and draw the letters of the alphabet in the air, but at this
distance it would be impossible to differentiate between the different letters as
long as you only draw with your hands. What is needed is a more robust way to
communicate where you are not dependent on being able to decipher so many
different symbols. As far as robustness is concerned, the best would be to only
use two symbols, say ’horizontal arm’ and ’vertical arm’ or ’h’ and ’v’ for short.
You can then represent the different letters in terms of these symbols. We could
for example use the coding shown in table 2.1 which is built up in a way that will
become evident in chapter 3. You would obviously have to agree on your coding
system in advance.

The advantage of using only two symbols is of course that there is little dan-
ger of misunderstanding as long as you remember the coding. You only have to
differentiate between two arm positions, so you have generous error margins for
how you actually hold your arm. The disadvantage is that some of the letters re-
quire quite long codes. In fact, the letter ’s’ which is among the most frequently
used in English, requires a code with five arm symbols, while the two letters ’a’
and ’b’ which are less common both require one symbol each. If you were to
make heavy use of this coding system it would therefore make sense to reorder
the letters such that the most frequent ones (in your language) have the shortest
codes.

2.2 Why 0 and 1 in computers?

The above example of human communication across a river illustrates why it
is not such a bad idea to let computers operate with only two distinct symbols
which we may call ’0’ and ’1’ just as well as ’h’ and ’v’. A computer is built to
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a h j vhhv s vhhvh
b v k vhvh t vhhvv
c vh l vhvv u vhvhh
d vv m vvhh v vhvhv
e vhh n vvhv w vhvvh
f vhv o vvvh x vhvvv
g vvh p vvvv y vvhhh
h vvv q vhhhh z vvhhv
i vhhh r vhhhv

Table 2.1. Representation of letters in terms of ’horizontal arm’ (’h’) and ’vertical arm’ (’v’).

manipulate various kinds of information and this information must be moved
between the different parts of the computer during the processing. By repre-
senting the information in terms of 0s and 1s, we have the same advantages as
in communication across the river, namely robustness and the simplicity of hav-
ing just two symbols.

In a computer, the 0s and 1s are represented by voltages, magnetic charges,
light or other physical quantities. For example 0 may be represented by a volt-
age in the interval 1.5 V to 3 V and 1 by a voltage in the interval 5 V to 6.5 V. The
robustness is reflected in the fact that there is no need to measure the voltage
accurately, we just need to be able to decide whether it lies in one of the two
intervals. This is also a big advantage when information is stored on an exter-
nal medium like a DVD or hard disk, since we only need to be able to store 0s
and 1s. A ’0’ may be stored as ’no reflection’ and a ’1’ as ’reflection’, and when
light is shone on the appropriate area we just need to detect whether the light is
reflected or not.

A disadvantage of representing information in terms of 0s and 1s is that we
may need a large amount of such symbols to encode the information we are in-
terested in. If we go back to table 2.1, we see that the ’word’ hello requires 18
symbols (’h’s and ’v’s), and in addition we have to also keep track of the bound-
aries between the different letters. The cost of using just a few symbols is there-
fore that we must be prepared to process large numbers of them.

Although representation of information in terms of 0s and 1s is very robust,
it is not foolproof. Small errors in for example a voltage that represents a 0 or 1
do not matter, but as the voltage becomes more and more polluted by noise, its
value will eventually go outside the permitted interval. It will then be impossible
to tell which symbol the value was meant to represent. This means that increas-
ing noise levels will not be noticed at first, but eventually the noise will break the
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threshold which will make it impossible to recognise the symbol and therefore
the information represented by the symbol.

When we think of the wide variety of information that can be handled by
computers, it may seem quite unbelievable that it is all comprised of 0s and 1s.
In chapter 1 we saw that information commonly processed by computers can be
represented by numbers, and in the next chapter we shall see that all numbers
may be expressed in terms of 0s and 1s. The conclusion is therefore that a wide
variety of information can be represented in terms of 0s and 1s.

Observation 2.1 (0 and 1 in computers). In a computer, all information is
usually represented in terms of two symbols, ’0’ and ’1’. This has the advan-
tage that the representation is robust with respect to noise, and the electronics
necessary to process one symbol is simple. The disadvantage is that the code
needed to represent a piece of information becomes longer than what would be
the case if more symbols were used.

Whether we call the two possible values 0 and 1, ’v’ and ’h’ or ’yes’ and ’no’
does not matter. What is important is that there are only two symbols, and what
these symbols are called usually depends on the context. An important area of
mathematics that depends on only two values is logic.

2.3 True and False

In everyday speech we make all kinds of statements and some of them are ob-
jective and precise enough that we can check whether or not they are true. Most
people would for example agree that the statements ’Oslo is the capital of Nor-
way’ and ’Red is a colour’ are true, while there is less agreement about the state-
ment ’Norway is a beautiful country’. In normal speech we also routinely link
such logical statements together with words like ’and’ and ’or’, and we negate a
statement with ’not’.

Mathematics is built by strict logical statements that are either true or false.
Certain statements which are called axioms, are just taken for granted and form
the foundation of mathematics (something cannot be created from nothing).
Mathematical proofs use logical operations like ’and’, ’or’, and ’not’ to combine
existing statements and obtain new ones that are again either true or false. For
example we can combine the two true statements ’π is greater than 3’ and ’π is
smaller than 4’ with ’and’ and obtain the statement ’π is greater than 3 and π is
smaller than 4’ which we would usually state as ’π lies between 3 and 4’. Likewise
the statement ’π is greater than 3’ can be negated to the opposite statement ’π
is less than or equal to 3’ which is false.
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Even though this description is true, doing mathematics is much more fun
than it sounds. Not all new statements are interesting even though they may
be true. To arrive at interesting new truths we use intuition, computation and
any other aids at our disposal. When we feel quite certain that we have arrived
at an interesting statement comes the job of constructing the formal proof, i.e.,
combining known truths in such a way that we arrive at the new statement. If
this sounds vague you should get a good understanding of this process as you
work your way through any university maths course.

2.3.1 Logical variables and logical operators

When we introduced the syntax for algorithms in section 1.4, we noted the pos-
sibility of confusion between assignment and test for equality. This distinction
is going to be important in what follows since we are going to discuss logical
expressions which may involve tests for equality.

In this section we are going to introduce the standard logical operators in
more detail, and to do this, logical variables will be useful. From elementary
mathematics we are familiar with using x and y as symbols that typically denote
real numbers. Logical variables are similar except that they may only take the
values ’true’ or ’false’ which we now denote by T and F. So if p is a logical variable,
it may denote any logical statement. As an example, we may set

p = (4 > 3)

which is the same as setting p = T. More interestingly, if a is any real number we
may set

p = (a > 3).

The value of p will then be either T or F, depending on the value of a so we may
think of p = p(a) as a function of a. We then clearly have p(2) = F and p(4) = T.
All the usual relational operators like <, >, ≤ and ≥ can be used in this way.

The function
p(a) = (a == 2)

has the value T if a is 2 and the value F otherwise. Without the special notation
for comparison this would become p(a) = (a = b) which certainly looks rather
confusing.

Definition 2.2. In the context of logic, the values true and false are denoted T
and F, and assignment is denoted by the operator =. A logical statement is an
expression that is either T or F and a logical function p(a) is a function that is
either T or F, depending on the value of a.
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Suppose now that we have two logical variables p and q . We have already
mentioned that these can be combined with the operators ’and’, ’or’ and ’not’
for which we now introduce the notation ∧, ∨ and ¬. Let us consider each of
these in turn.

The expression ¬p is the opposite of p, i.e., it is T if p is F and F if p is T, see
column three in table 2.2. The only way for p ∧ q to be T, is for both p and q
to be T; in all other cases it is F, see column four in the table. Logical or is the
opposite: The expression p ∨ q is only F if both p and q are F; otherwise it is T;
see column five in table 2.2.

p q ¬p p ∧q p ∨q p ⊕q

F F T F F F
T F F F T T
F T T F T T
T T F T T F

Table 2.2. Behaviour of the logical operators ¬ (not), ∧ (and), ∨ (or), and ⊕ (exclusive or).

This use of ’not’ and ’and’ is just like in everyday language. The definition
of ’or’, however, does not always agree with how it is used in speech. Suppose
someone says ’The apple was red or green’, is it then possible that the apple was
both red and green? Many would probably say no, but to be more explicit we
would often say ’The apple was either red or green (but not both)’.

This example shows that there are in fact two kinds of ’or’, an inclusive or (∨)
which is Twhen p and q are both T, and an exclusive or (⊕) which is Fwhen both
p and q are T, see columns five and six of Table 2.2.

Definition 2.3. The logical operators ’not’, ’and’, ’or’, and ’exclusive or’ are de-
noted by the symbols ¬, ∧, ∨, and ⊕, respectively and are defined in table 2.2.

So far we have only considered expressions that involve two logical variables.
If p, q , r and s are all logical variables, it is quite natural to consider longer ex-
pressions like

(p ∧q)∧ r, (2.1)

(p ∨q)∨ (r ∨ s), (2.2)

(we will consider mixed expressions later). The brackets have been inserted to
indicate the order in which the expressions are to be evaluated since we only
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know how to combine two logical variables at a time. However, it is quite easy to
see that both expressions remain the same regardless of how we insert brackets.
The expression in (2.1) is T only when all of p, q and r are T, while the expression
in (2.2) is always true except in the case when all the variables are F. This means
that we can in fact remove the brackets and simply write

p ∧q ∧ r,

p ∨q ∨ r ∨ s,

without any risk of misunderstanding since it does not matter in which order we
evaluate the expressions.

Many other mathematical operations, like for example addition and multi-
plication of numbers, also have this property, and it therefore has its own name;
we say that the operators ∧ and ∨ are associative. The associativity also holds
when we have longer expressions: If the operators are either all ∧ or all ∨, the
result is independent of the order in which we apply the operators.

What about the third operator, ⊕ (exculsive or), is this also associative? If we
consider the two expressions

(p ⊕q)⊕ r, p ⊕ (q ⊕ r ),

the question is whether they are always equal. If we check all the combinations
and write down a truth table similar to Table 2.2, we do find that the two expres-
sions are the same so the ⊕ operator is also associative. A general description of
such expressions is a bit more complicated than for ∧ and ∨. It turns out that if
we have a long sequence of logical variables linked together with ⊕, then the re-
sult is true if the number of variables that is T is an odd number and F otherwise.

The logical operator ∧ has the important property that p ∧q = q ∧p and the
same is true for ∨ and ⊕. This is also a property of addition and multiplication
of numbers and is usually referred to as commutativity.

For easy reference we sum all of this up in a theorem.

Proposition 2.4. The logical operators ∧, ∨ and ⊕ defined in Table 2.2 are all
commutative and associative, i.e.,

p ∧q = q ∧p,

p ∨q = q ∨p,

p ⊕q = q ⊕p,

(p ∧q)∧ r = p ∧ (q ∧ r ),

(p ∨q)∨ r = p ∨ (q ∨ r ),

(p ⊕q)⊕ r = p ⊕ (q ⊕ r ).

where p, q and r are logical variables.
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2.3.2 Combinations of logical operators

The logical expressions we have considered so far only involve one logical op-
erator at a time, but in many situations we need to evaluate more complex ex-
pressions that involve several logical operators. Two commonly occurring ex-
pressions are ¬(p ∧ q) and ¬(p ∨ q). These can be expanded by De Morgan’s
laws which are easily proved by considering truth tables for the two sides of the
equations.

Lemma 2.5 (De Morgan’s laws). Let p and q be logical variables. Then

¬(p ∧q) = (¬p)∨ (¬q),

¬(p ∨q) = (¬p)∧ (¬q).

De Morgan’s laws can be generalised to expressions with more than two op-
erators, for example

¬(p ∧q ∧ r ∧ s) = (¬p)∨ (¬q)∨ (¬r )∨ (¬s),

see exercise Exercise 3.

We are going to consider two more laws of logic, namely the two distributive
laws.

Theorem 2.6 (Distributive laws). If p, q and r are logical variables, then

p ∧ (q ∨ r ) = (p ∧q)∨ (p ∧ r ),

p ∨ (q ∧ r ) = (p ∨q)∧ (p ∨ r ).

As usual, these rules can be proved setting up truth tables for the two sides.

Exercises for Section 2.3

Exercise 1. Use a truth table to prove that the exclusive or operator ⊕ is associa-
tive, i.e., show that if p, q and r are logical operators then (p⊕q)⊕q = p⊕(q⊕r ).

Exercise 2. Prove de Morgan’s laws.
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Exercise 3. Generalise De Morgan’s laws to expressions with any finite number
of ∧- or ∨-operators, i.e., expressions on the form

¬(p1 ∧p2 ∧·· ·∧pn) and ¬(p1 ∨p2 ∨·· ·∨pn).

Hint: Use Lemma 2.5.

Exercise 4. Use truth tables to check that

(a). (p ∧q)∨ r = p ∧ (q ∨ r ).

(b). (p ∨q)∧ (q ∨ r ) = (p ∧ r )∨q .
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CHAPTER 3

Numbers and Numeral
Systems

Numbers play an important role in almost all areas of mathematics, not least in
calculus. Virtually all calculus books contain a thorough description of the nat-
ural, rational, real and complex numbers, so we will not repeat this here. An
important concern for us, however, is to understand the basic principles be-
hind how a computer handles numbers and performs arithmetic, and for this
we need to consider some facts about numbers that are usually not found in
traditional calculus texts.

Computers were originally thought of as computing devices — machines
that could do numerical computations quickly. Today most people use com-
puters for surfing the web, reading email or for entertainment, but more than
ever they are excellent number crunchers, capable of adding billions of num-
bers every second. And at the lowest level almost all operations in a computer
can be thought of as operations on numbers.

More specifically, we are going to review the basics of the decimal numeral
system, where the base is 10, and see how numbers may be represented equally
well in other numeral systems where the base is not 10. We will study represen-
tation of real numbers as well as arithmetic in different bases. Throughout the
chapter we will pay special attention to the binary numeral system (base 2) as
this is what is used in most computers. This will be studied in more detail in the
next chapter.
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3.1 Terminology and Notation

We will usually introduce terminology as it is needed, but certain terms need to
be agreed upon straightaway. In your calculus book you will have learnt about
natural, rational and real numbers. The natural numbers N0 = {0,1,2,3,4, . . . }1

are the most basic numbers in that both rational and real numbers can be con-
structed from them. Any positive natural number n has an opposite number
−n, and we denote by Z the set of natural numbers augmented with all these
negative numbers,

Z= {. . . ,−3,−2,−1,0,1,2,3, . . .}.

We will refer to Z as the set of integer numbers or just the integers.
Intuitively it is convenient to think of a real number x as a decimal number

with (possibly) infinitely many digits to the right of the decimal point. We then
refer to the number obtained by setting all the digits to the right of the decimal
point to 0 as the integer part of x. If we replace the integer part by 0 we obtain the
fractional part of x. If for example x = 3.14, its integer part is 3 and its fractional
part is 0.14. A number that has no integer part will often be referred to as a
fractional number. In order to define these terms precisely, we need to name the
digits in a number.

Definition 3.1. Let x = dk dk−1 · · ·d2d1d0 .d−1d−2 · · · be a decimal number
whose leading and trailing zeros have been discarded. Then the number
dk dk−1 · · ·d1d0 is called the integer part of x while the number 0.d−1d−2 · · ·
is called the fractional part of x.

This may look confusing, but a simple example should illuminate things: If
x = 3.14, we have d0 = 3, d−1 = 1, and d−2 = 4, with all other ds equal to zero.
The integer part is 3 and the fractional part is 0.14.

For rational numbers there are standard operations we can perform to find
the integer and fractional parts. When two positive natural numbers a and b are
divided, the result will usually not be an integer, or equivalently, there will be a
remainder. Let us agree on some notation for these operations.

Notation 3.2 (Integer division and remainder). If a and b are two integers,
the number a //b is the result obtained by dividing a by b and discarding the

1In most books the natural numbers start with 1, but for our purposes it is convenient to in-
clude 0 as a natural number as well. To avoid confusion we have therefore added 0 as a subscript.
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remainder (integer division). The number a %b is the remainder when a is
divided by b.

For example 3//2 = 1, 9//4 = 2 and 24//6 = 4, while 3%2 = 1, 23%5 = 3, and
24%4 = 0.

We will use standard notation for intervals of real numbers. Two real num-
bers a and b with a < b define four intervals that only differ in whether the end
points a and b are included or not. The closed interval [a,b] contains all real
numbers between a and b, including the end points. Formally we can express
this by [a,b] = {x ∈R | a ≤ x ≤ b}. The other intervals can be defined similarly,

Definition 3.3 (Intervals). Two real numbers a and b define the four intervals

(a,b) = {x ∈R | a < x < b} (open);

[a,b] = {x ∈R | a ≤ x ≤ b} (closed);

(a,b] = {x ∈R | a < x ≤ b} (half open);

[a,b) = {x ∈R | a ≤ x < b} (half open).

With this notation we can say that a fractional number is a real number in
the interval [0,1).

Exercises for Section 3.1

Exercise 1. Mark each of the following statements as true or false:

(a). a//b is always bigger than a%b.

(b). (a,b) is a subset of [a,b].

(c). The fractional part of π is 0.14.

(d). The integer part of π is 3.

Exercise 2. Compare each number below with definition 3.1, and determine
the values of the digits dk , dk−1, . . . , d0, d−1, . . . .

(a). x = 10.5.

(b). x = 27.1828.

(c). x = 100.20.
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(d). 0.0.

Exercise 3. Compute a //b and a %b in the cases below.

(a). a = 8, b = 3.

(b). a = 10, b = 2.

(c). a =−29, b = 7.

(d). a = 0, b = 1.

Exercise 4. Find a formula for computing the number of digits k = f (x) to the
left of the decimal point in a number x, see definition 3.1.

3.2 Natural Numbers in Different Numeral Systems

We usually represent natural numbers in the decimal numeral system, but in
this section we are going to see that this is just one of infinitely many numeral
systems. We will also give a simple method for converting a number from its
decimal representation to its representation in a different numeral system.

3.2.1 Alternative Numeral Systems

In the decimal system we express numbers in terms of the ten digits 0, 1, . . . , 8,
9, and let the position of a digit determine how much it is worth. For example
the string of digits 3761 is interpreted as

3761 = 3×103 +7×102 +6×101 +1×100.

Numbers that have a simple representation in the decimal numeral system are
often thought of as special. For example it is common to celebrate a 50th birth-
day in a special way or mark the centenary anniversary of an important event
like a country’s independence. However, the numbers 50 and 100 are only spe-
cial when they are written in the decimal numeral system.

Any natural number can be used as the base for a numeral system. Consider
for example the septenary numeral system which has 7 as the base and uses the
digits 0-6. In this system the numbers 3761, 50 and 100 become

3761 = 136527 = 1×74 +3×73 +6×72 +5×71 +2×70,

50 = 1017 = 1×72 +0×71 +1×70,

100 = 2027 = 2×72 +0×71 +2×70,
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so 50 and 100 are not quite as special as in the decimal system.
These examples make it quite obvious that we can define numeral systems

with almost any natural number as a base. The only restriction is that the base
must be greater than 1. To use 0 as base is quite obviously meaningless, and if
we try to use 1 as base we only have the digit 0 at our disposal, which means that
we can only represent the number 0. We record the general construction in a
formal definition.

Definition 3.4. Let β be a natural number greater than 1 and let n0, n1, . . . ,
nβ−1 be β distinct numerals (also called digits) such that ni denotes the integer
i . A natural number representation in base β is an ordered collection of digits
(dk dk−1 . . .d1d0)β which is interpreted as the natural number

dkβ
k +dk−1β

k−1 +dk−2β
k−2 +·· ·+d1β

1 +d0β
0 (3.1)

where each digit d j is one of the β numerals {ni }β−1
i=0 .

The definition is not quite precise: In (3.1) each digit d j should be inter-
preted as the integer represented by the digit, and not just the numeral, see the
example below for β= 16.

Formal definitions in mathematics often appear complicated until one gets
under the surface, so let us consider the details of the definition. The base β is
not so mysterious. In the decimal system β= 10, while in the septenary system
β = 7. The beginning of the definition simply states that any natural number
greater than 1 can be used as a base.

In the decimal system we use the digits 0–9 to write down numbers, and in
any numeral system we need digits that can play a similar role. If the base is 10
or less it is natural to use the obvious subset of the decimal digits as numerals.
If the base is 2 we use the two digits n0 = 0 and n1 = 1; if the base is 5 we use
the five digits n0 = 0, n1 = 1, n2 = 2, n3 = 3 and n4 = 4. However, if the base is
greater than 10 we have a challenge in how to choose numerals for the numbers
10, 11, . . . , β−1. If the base is less than 40 it is common to use the decimal digits
together with the initial characters of the latin alphabet as numerals. In base
β = 16 for example, it is common to use the digits 0–9 augmented with n10 = a,
n11 = b, n12 = c, n13 = d, n14 = e and n15 = f. This is called the hexadecimal
numeral system and in this system the number 3761 becomes

eb116 = e×162 +b×161 +1×160 = 14×256+11×16+1 = 3761.

Definition 3.4 defines how a number can be expressed in the numeral system
with base β. However, it does not say anything about how to find the digits of a
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fixed number. And even more importantly, it does not guarantee that a number
can be written in the base-β numeral system in only one way. This is settled in
our first lemma below.

Lemma 3.5. Any natural number can be represented uniquely in the base-β
numeral system.

Proof. To keep the argument as transparent as possible, we give the proof for a
specific example, namely a = 3761 and β = 8 (the octal numeral system). Since
84 = 4096 > a, we know that the base-8 representation cannot contain more than
4 digits. Suppose that 3761 = (d3d2d1d0)8; our job is to find the value of the four
digits and show that each of them only has one possible value.

We start by determining d0. By definition of base-8 representation of num-
bers we have the relation

3761 = (d3d2d1d0)8 = d383 +d282 +d18+d0. (3.2)

We note that only the last term in the sum on the right is not divisible by 8, so
the digit d0 must therefore be the remainder when 3761 is divided by 8. If we
perform the division we find that

d0 = 3761%8 = 1, 3761//8 = 470.

We observe that when the right-hand side of (3.2) is divided by 8 and the remain-
der discarded, the result is d382 +d28+d1. In other words be must have

470 = d382 +d28+d1.

But then we see that d1 must be the remainder when 470 is divided by 8. If we
perform this division we find

d1 = 470%8 = 6, 470//8 = 58.

Using the same argument as before we see that the relation

58 = d38+d2 (3.3)

must hold. In other words d2 is the remainder when 58 is divided by 8,

d2 = 58%8 = 2, 58//8 = 7.

If we divide both sides of (3.3) by 8 and drop the remainder we are left with 7 =
d3. The net result is that 3761 = (d3d2d1d0)8 = 72618.
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We note that during the computations we never had any choice in how to de-
termine the four digits, they were determined uniquely. We therefore conclude
that the only possible way to represent the decimal number 3761 in the base-8
numeral system is as 72618.

The proof is clearly not complete since we have only verified Lemma 3.5 in a
special case. However, the same argument can be used for any a and β and we
leave it to the reader to write down the details in the general case.

Lemma 3.5 says that any natural number can be expressed in a unique way
in any numeral system with base greater than 1. We can therefore use any such
numeral system to represent numbers. Although we may feel that we always use
the decimal system, we all use a second system every day, the base-60 system.
An hour is split into 60 minutes and a minute into 60 seconds. The great advan-
tage of using 60 as a base is that it is divisible by 2, 3, 4, 5, 6, 10, 12, 15, 20 and 30
which means that an hour can easily be divided into many smaller parts with-
out resorting to fractions of minutes. Most of us also use other numeral systems
without knowing. Virtually all electronic computers use the base-2 (binary) sys-
tem and we will see how this is done in the next chapter.

We only discuss representation of natural numbers in this section — nega-
tive numbers are simply represented by prefixing with −, just like for decimal
numbers. For example, the decimal number −3761 is represented as −72618 in
the octal numeral system.

3.2.2 Conversion to the Base-βNumeral System

The method used in the proof of Lemma 3.5 for converting a number to base β
is important, so we record it as an algorithm.

Algorithm 3.6. Let a be a natural number that in base β has the k + 1 digits
(dk dk−1 · · ·d0)β. These digits may be computed by performing the operations:

a0 = a;
for i = 0, 1, . . . , k

di = ai %β;
ai+1 = ai //β;

Let us add a little explanation since this is our first algorithm apart from the
examples in section 1.4. We start by setting the variable a0 equal to a, the num-
ber whose digits we want to determine. We then let i take on the values 0, 1, 2,
. . . , k. For each value of i we perform the operations that are indented, i.e., we
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compute the numbers ai %β and ai //β and store the results in the variables di

and ai+1.
Algorithm 3.6 demands that the number of digits in the representation to

be computed is known in advance. If we look back on the proof of Lemma 3.5,
we note that we do not first check how many digits we are going to compute,
since when we are finished the number that we divide (the number ai in Algo-
rithm 3.6) has become 0. We can therefore just repeat the two indented state-
ments in the algorithm until the result of the division becomes 0. The following
version of the algorithm incorporates this. We also note that we do not need to
keep the results of the divisions; we can omit the subscript and store the result
of the division a //β back in a.

Recall that the statement ’while a > 0’ means that all the indented state-
ments will be repeated until a becomes 0.

Algorithm 3.7. Let a be a natural number that in base β has the k + 1 digits
(dk dk−1 · · ·d0)β. These digits may be computed by performing the operations:

i = 0;
while a > 0

di = a %β;
a = a //β;
i = i +1;

It is important to realise that the order of the indented statements is not ar-
bitrary. When we do not keep all the results of the divisions, it is essential that
di (or d) is computed before a is updated with its new value. And when i is ini-
tialised with 0, we must update i at the end, since otherwise the subscript in di

will be wrong.
The variable i is used here so that we can number the digits correctly, starting

with d0, then d1 and so on. If this is not important, we could omit the first and
the last statements, and replace di by d . The algorithm then becomes

while a > 0
d = a %β;
a = a //β;
print d ;

Here we have also added a print-statement so the digits of a will be printed (in
reverse order).
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3.2.3 Tabular display of the conversion

The results produced by Algorithm 3.7 are conveniently organised in a table. The
example in the proof of Lemma 3.5 can be displayed as

3761 1
470 6

58 2
7 7

The left column shows the successive integer parts resulting from repeated divi-
sion by 8, whereas the right column shows the remainder in these divisions. Let
us consider one more example.

Example 3.8. Instead of converting 3761 to base 8 let us convert it to base 16.
We find that 3761//16 = 235 with remainder 1. In the next step we find 235//16 =
14 with remainder 11. Finally we have 14//16 = 0 with remainder 14. Displayed
in a table this becomes

3761 1
235 11

14 14

Recall that in the hexadecimal system the letters a–f usually denote the values
10–15. We have therefore found that the number 3761 is written eb116 in the
hexadecimal numeral system.

Since we are particularly interested in how computers manipulate numbers,
let us also consider an example of conversion to the binary numeral system, as
this is the numeral system used in most computers. Instead of dividing by 16 we
are now going to repeatedly divide by 2 and record the remainder. A nice thing
about the binary numeral system is that the only possible remainders are 0 and
1: it is 0 if the number we divide is an even integer and 1 if the number is an odd
integer.

Example 3.9. Let us continue to use the decimal number 3761 as an example,
but now we want to convert it to binary form. If we perform the divisions and
record the results as before we find
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3761 1
1880 0

940 0
470 0
235 1
117 1

58 0
29 1
14 0

7 1
3 1
1 1

In other words we have 3761 = 1110101100012. This example illustrates an im-
portant property of the binary numeral system: Computations are simple, but
long and tedious. This means that this numeral system is not so good for hu-
mans as we tend to get bored and make sloppy mistakes. For computers, how-
ever, this is perfect as computers do not make mistakes and work extremely fast.

3.2.4 Conversion between base-2 and base-16

Computers generally use the binary numeral system internally, and in chapter 4
we are going to study this in some detail. A major disadvantage of the binary
system is that even quite small numbers require considerably more digits than
in the decimal system. There is therefore a need for a more compact represen-
tation of binary numbers. It turns out that the hexadecimal numeral system is
convenient for this purpose.

Suppose we have the one-digit hexadecimal number x = a16. In binary it is
easy to see that this is x = 10102. A general four-digit binary number (d3d2d1d0)2

has the value

d020 +d121 +d222 +d323,

and must be in the range 0–15, which corresponds exactly to a one-digit hex-
adecimal number.

Observation 3.10. A four-digit binary number can always be converted to a
one-digit hexadecimal number, and vice versa.

This simple observation is the basis for converting general numbers between
binary and hexadecimal representation. Suppose for example that we have the
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eight-digit binary number x = 1100 11012. This corresponds to the number

1×20 +0×21 +1×22 +1×23 +0×24 +0×25 +1×26 +1×27

= (1×20 +0×21 +1×22 +1×23)+ (0×20 +0×21 +1×22 +1×23)24.

The two numbers in brackets are both in the range 0–15 and can therefore be
represented as one-digit hexadecimal numbers. In fact we have

1×20 +0×21 +1×22 +1×23 = 1310 = d16,

0×20 +0×21 +1×22 +1×23 = 1210 = c16.

But then we have

x = (1×20 +0×21 +1×22 +1×23)+ (0×20 +0×21 +1×22 +1×23)24

= d16 ×160 +161 ×c16 = cd16.

The short version of this detailed derivation is that the eight-digit binary number
x = 1100 11012 can be converted to hexadecimal by converting the two groups of
four binary digits separately. This results in two one-digit hexadecimal numbers,
and these are the hexadecimal digits of x,

11002 = c16, 11012 = d16, 1100 11012 = cd16.

This works in general.

Observation 3.11. A hexadecimal natural number can be converted to binary
by converting each digit separately. Conversely, a binary number can be con-
verted to hexadecimal by converting each group of four successive binary digits
into hexadecimal, starting with the least significant digits.

Example 3.12. Let us convert the hexadecimal number 3c516 to binary. We have

516 = 01012,

c16 = 11002,

316 = 00112,

which means that 3c516 = 11 1100 01012 where we have omitted the two leading
zeros.

Observation 3.11 means that to convert between binary and hexadecimal
representation we only need to know how to convert numbers in the range 0–15
(decimal). Many will perhaps do this by going via decimal representation, but
all the conversions can be found in table 3.1.
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Hex Bin Hex Bin Hex Bin Hex Bin

0 0 4 100 8 1000 c 1100
1 1 5 101 9 1001 d 1101
2 10 6 110 a 1010 e 1110
3 11 7 111 b 1011 f 1111

Table 3.1. Conversion between hexadecimal and binary representation.

Exercises for Section 3.2

Exercise 1. Mark each of the following statements as true or false:

(a). When numbers are represented in baseβ according to Definition 3.4,
the number 1 is always written the same way.

(b). The number 16 can be written in exactly two different ways in base
7.

(c). In base 16, a f < ba.

Exercise 2. Convert the following natural numbers to the indicated bases:

(a). 40 to base-4

(b). 17 to base-5

(c). 17 to base-2

(d). 123456 to base-7

(e). 22875 to base-7

(f ). 126 to base 16

Exercise 3. Convert to base-8:

(a). 10110012

(b). 1101112

(c). 101010102

42



Exercise 4. Convert to base-2:

(a). 448

(b). 1008

(c). 3278

Exercise 5. Convert to base-16:

(a). 10011012

(b). 11002

(c). 101001111001002

(d). 0.01011001012

(e). 0.000001010012

(f ). 0.1111111112

Exercise 6. Convert to base-2:

(a). 3c16

(b). 10016

(c). e5116

(d). 0.0aa16

(e). 0.00116

(f ). 0.f0116

Exercise 7. Conversion of special numbers.

(a). Convert 7 to base-7, 37 to base-37, and 4 to base-4 and formulate a
generalisation of what you observe.

(b). Determine β such that 13 = 10β. Also determine β such that 100 =
10β For which numbers a ∈N is there a β such that a = 10β?
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Exercise 8. Conversion of special numbers.

(a). Convert 400 to base-20, 4 to base-2, 64 to base-8, 289 to base-17 and
formulate a generalisation of what you observe.

(b). Determine β such that 25 = 100β. Also determine β such that 841 =
100β. For which numbers a ∈N is there a number β such that a = 100β?

(c). For which numbers a ∈N is there a number β such that a = 1000β?

3.3 Representation of Fractional Numbers

We have seen how integers can be represented in numeral systems other than
decimal, but what about fractions and irrational numbers? In the decimal sys-
tem such numbers are characterised by the fact that they have two parts, one to
the left of the decimal point, and one to the right, like the number 21.828. The
part to the left of the decimal point — the integer part — can be represented in
base-β as outlined above. If we can represent the part to the right of the decimal
point — the fractional part — in base-β as well, we can follow the convention
from the decimal system and use a point to separate the two parts. Negative ra-
tional and irrational numbers are as easy to handle as negative integers, so we
focus on how to represent positive numbers without an integer part, in other
words numbers in the open interval (0,1).

3.3.1 Rational and Irrational Numbers in Base-β

Let a be a real number in the interval (0,1). In the decimal system we can write
such a number as 0, followed by a point, followed by a finite or infinite number
of decimal digits, as in

0.45928. . .

This is interpreted as the number

4×10−1 +5×10−2 +9×10−3 +2×10−4 +8×10−5 +·· · .

From this it is not so difficult to see what a base-β representation must look like.
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Definition 3.13. Let β be a natural number greater than 1 and let n0, n1, . . . ,
nβ−1 beβ distinct numerals (also called digits) such that ni denotes the number
i . A fractional representation in base β is a finite or infinite, ordered collection
of digits (0.d−1d−2d−3 . . . )β which is interpreted as the real number

d−1β
−1 +d−2β

−2 +d−3β
−3 +·· · (3.4)

where each digit di is one of the β numerals {ni }β−1
i=0 .

As in the representation of integers, the numerals in (3.4)ăshould be inter-
preted as the integer the represent.

Definition 3.13 is considerably more complicated than definition 3.4 since
we may have an infinite number of digits. This becomes apparent if we try to
check the size of numbers on the form given by (3.4). Since none of the terms in
the sum are negative, the smallest number is the one where all the digits are 0,
i.e., where di = 0 for i =−1, −2, . . . . But this can be nothing but the number 0.

The largest possible number occurs when all the digits are as large as possi-
ble, i.e. when di =β−1 for all i . If we call this number x, we find

x = (β−1)β−1 + (β−1)β−2 + (β−1)β−3 +·· ·
= (β−1)β−1(1+β−1 +β−2 +·· ·

= β−1

β

∞∑
i=0

(β−1)i .

In other words x is given by a sum of an infinite geometric series with factor
β−1 = 1/β< 1. This series converges to 1/(1−β−1) so x has the value

x = β−1

β

1

1−β−1 = β−1

β

β

β−1
= 1.

Let us record our findings so far.

Lemma 3.14. Any number on the form (3.4) lies in the interval [0,1].

The fact that the base-β fractional number with all digits equal to β−1 is the
number 1 is a bit disturbing since it means that real numbers cannot be repre-
sented uniquely in base β. In the decimal system this corresponds to the fact
that 0.99999999999999. . . (infinitely many 9s) is in fact the number 1. And this is
not the only number that has two representations. Any number that ends with
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an infinite number of digits equal to β− 1 has a simpler representation. Con-
sider for example the decimal number 0.12999999999999. . . . Using the same
technique as above we find that this number is 0.13. However, it turns out that
these are the only numbers that have a double representation, see theorem 3.15
below.

3.3.2 Conversion of fractional numbers

Let us now see how we can determine the digits of a fractional number in a nu-
meral system other than the decimal one. As for natural numbers, it is easiest to
understand the procedure through an example, so we try to determine the dig-
its of 1/5 in the octal (base 8) system. According to definition 3.13 we seek digits
d−1d−2d−3 . . . (possibly infinitely many) such that the relation

1

5
= d−18−1 +d−28−2 +d−38−3 +·· · (3.5)

becomes true. If we multiply both sides by 8 we obtain

8

5
= d−1 +d−28−1 +d−38−2 +·· · . (3.6)

The number 8/5 lies between 1 and 2 and we know from Lemma 3.14 that the
sum d−28−1 +d−38−2 + ·· · can be at most 1. Therefore we must have d−1 = 1.
Since d−1 has been determined we can subtract this from both sides of (3.6)

3

5
= d−28−1 +d−38−2 +d−48−3 +·· · . (3.7)

This equation has the same form as (3.5) and can be used to determine d−2. We
multiply both sides of (3.7) by 8,

24

5
= d−2 +d−38−1 +d−48−3 +·· · . (3.8)

The fraction 24/5 lies in the interval (4,5) and since the terms on the right that
involve negative powers of 8 must be a number in the interval [0,1], we must
have d−2 = 4. We subtract this from both sides of (3.8) and obtain

4

5
= d−38−1 +d−48−2 +d−58−3 +·· · . (3.9)

Multiplication by 8 now gives

32

5
= d−3 +d−48−1 +d−58−2 +·· · .
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from which we conclude that d−3 = 6. Subtracting 6 and multiplying by 8 we
obtain

16

5
= d−4 +d−58−1 +d−68−2 +·· · .

from which we conclude that d−4 = 3. If we subtract 3 from both sides we find

1

5
= d−58−1 +d−68−2 +d−78−3 +·· · .

But this relation is essentially the same as (3.5), so if we continue we must gener-
ate the same digits again. In other words, the sequence d−5d−6d−7d−8 must be
the same as d−1d−2d−3d−4 = 1463. But once d−8 has been determined we must
again come back to a relation with 1/5 on the left, so the same digits must also
repeat in d−9d−10d−11d−12 and so on. The result is that

1

5
= 0.1463146314631463 · · ·8 .

Based on this procedure we can prove an important theorem.

Theorem 3.15. Any real number in the interval (0,1) can be represented in a
unique way as a fractional base-β number provided representations with in-
finitely many trailing digits equal to β−1 are prohibited.

Proof. We have already seen how the digits of 1/5 in the octal system can be
determined, and it is easy to generalise the procedure. However, there are two
additional questions that must be settled before the claims in the theorem are
completely settled.

We first prove that the representation is unique. If we look back on the con-
version procedure in the example we considered, we had no freedom in the
choice of any of the digits. The digit d−2 was for example determined by equa-
tion 3.8, where the left-hand side is 4.8 in the decimal system. Then our only
hope of satisfying the equation is to choose d−2 = 4 since the remaining terms
can only sum up to a number in the interval [0,1].

How can the procedure fail to determine the digits uniquely? In our example,
any digit is determined by an equation on the form (3.8), and as long as the left-
hand side is not an integer, the corresponding digit is uniquely determined. If
the left-hand side should happen to be an integer, as in

5 = d−2 +d−38−1 +d−48−3 +·· · ,

the natural solution is to choose d−2 = 5 and choose all the remaining digits as 0.
However, since we know that 1 may be represented as a fractional number with
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all digits equal to 7, we could also choose d−2 = 4 and di = 7 for all i < −2. The
natural solution is to choose d−2 = 5 and prohibit the second solution. This is
exactly what we have done in the statement of the theorem, so this secures the
uniqueness of the representation.

The second point that needs to be settled is more subtle; do we really com-
pute the correct digits? It may seem strange to think that we may not compute
the right digits since the digits are forced upon us by the equations. But if we look
carefully, the equations are not quite standard since the sums on the right may
contain infinitely many terms. In general it is therefore impossible to achieve
equality in the equations, all we can hope for is that we can make the sum on
the right in (3.5) come as close to 1/5 as we wish by including sufficiently many
terms.

Set a = 1/5. Then equation (3.7) can be written

8(a −d−18−1) = d−28−1 +d−38−2 +d−48−3 +·· ·

while (3.9) can be written

82(a −d−18−1 −d−28−2) = d−38−1 +d−48−2 +d−58−3 +·· · .

After i steps the equation becomes

8i (a −d−18−1 −d−28−2 −·· ·−d−i 8−i ) =
d−i−18−1 +d−i−28−2 +d−i−38−3 +·· · .

The expression in the bracket on the left we recognise as the error ei in approxi-
mating a by the first i numerals in the octal representation. We can rewrite this
slightly and obtain

ei = 8−i (d−i−18−1 +d−i−28−2 +d−i−38−3 +·· · ).

From Lemma 3.14 we know that the number in the bracket on the right lies in
the interval [0,1] so we have 0 ≤ ei ≤ 8−i . But this means that by including suffi-
ciently many digits (choosing i sufficiently big), we can get ei to be as small as we
wish. In other words, by including sufficiently many digits, we can get the octal
representation of a = 1/5 to be as close to a as we wish. Therefore our method
for computing numerals does indeed generate the digits of a.

3.3.3 An Algorithm for Converting Fractional Numbers

The basis for the proof of Theorem 3.15 is the procedure for computing the digits
of a fractional number in base-β. We only considered the case β = 8, but it is
simple to generalise the algorithm to arbitrary β.
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Algorithm 3.16. Let a be a fractional number whose first k digits in base β are
(0.d−1d−2 · · ·d−k )β. These digits may be computed by performing the opera-
tions:

for i =−1, −2, . . . , −k
di = ba ∗βc;
a = a ∗β−di ;

Compared with the description on pages 46 to 47 there should be nothing
mysterious in this algorithm except for perhaps the notation bxc. This is a fairly
standard way of writing the floor function which is equal to the largest integer
that is less than or equal to x. We have for example b3.4c = 3 and b5c = 5.

When converting natural numbers to base-β representation there is no need
to know or compute the number of digits beforehand, as is evident in algo-
rithm 3.7. For fractional numbers we do need to know how many digits to com-
pute as there may often be infinitely many. A for-loop is therefore a natural con-
struction in algorithm 3.16.

It is convenient to have a standard way of writing down the computations
involved in converting a fractional number to base-β, and it turns out that we
can use the same format as for converting natural numbers. Let us take as an
example the computations in the proof of theorem 3.15 where the fraction 1/5
was converted to base-8. We start by writing the number to be converted to the
left of the vertical line. We then multiply the number byβ (which is 8 in this case)
and write the integer part of the result, which is the first digit, to the right of the
line. The result itself we write in brackets to the right. We then start with the
fractional part of the result one line down and continue until the result becomes
0 or we have all the digits we want,

1/5 1 (8/5)
3/5 4 (24/5)
4/5 6 (32/5)
2/5 3 (16/5)
1/5 1 (8/5)

Here we are back at the starting point, so the same digits will just repeat again.

3.3.4 Conversion between binary and hexadecimal

It turns out that hexadecimal representation is handy short-hand for the binary
representation of fractional numbers, just like it was for natural numbers. To see
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why this is, we consider the number x = 0.110101112. In all detail this is

x = 1×2−1 +1×2−2 +0×2−3 +1×2−4 +0×2−5 +1×2−6 +1×2−7 +1×2−8

= 2−4(1×23 +1×22 +0×21 +1×20)+2−8(0×23 +1×22 +1×21 +1×20)

= 16−1(1×23 +1×22 +0×21 +1×20)+16−2(0×23 +1×22 +1×21 +1×20).

From table 3.1 we see that the two four-digit binary numbers in the brackets cor-
respond to the hexadecimal numbers 11012 = d16 and 1112 = 716. We therefore
have

x = 16−113+16−27 = 0.d716.

As for natural numbers, this works in general.

Observation 3.17. A hexadecimal fractional number can be converted to bi-
nary by converting each digit separately. Conversely, a binary fractional num-
ber can be converted to hexadecimal by converting each group of four successive
binary digits to hexadecimal, starting with the most significant digits.

A couple of examples will illustrate how this works in general.

Example 3.18. Let us convert the number x = 0.3a816 to binary. From table 3.1
we find

316 = 00112, a16 = 10102, 816 = 10002,

which means that

0.3a816 = 0.0011 1010 10002 = 0.0011 1010 12.

Example 3.19. To convert the binary number 0.1100 1001 0110 12 to hexadeci-
mal form we note from table 3.1 that

11002 = c16, 10012 = 916, 01102 = 616, 10002 = 816.

Note that the last group of binary digits was not complete so we added three
zeros. From this we conclude that

0.1100 1001 0110 12 = 0.c96816.
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3.3.5 Properties of Fractional Numbers in Base-β

Real numbers in the interval (0,1) have some interesting properties related to
their representation. In the decimal numeral system we know that fractions
with a denominator that only contains the factors 2 and 5 can be written as a
decimal number with a finite number of digits. In general, the decimal repre-
sentation of a rational number will contain a finite sequence of digits that are
repeated infinitely many times, while for an irrational number there will be no
such structure. In this section we shall see that similar properties are valid when
fractional numbers are represented in any numeral system.

For rational numbers algorithm 3.16 can be expressed in a different form
which makes it easier to deduce properties of the digits. So let us consider what
happens when a rational number is converted to base-β representation. A ratio-
nal number in the interval (0,1) has the form a = b/c where b and c are nonzero
natural numbers with b < c. If we look at the computations in algorithm 3.16, we
note that di is the integer part of (b ∗β)/c which can be computed as (b ∗β)//c.
The right-hand side of the second statement is a∗β−d1, i.e., the fractional part
of a ∗β. But if a = b/c, the fractional part of a ∗β is given by the remainder in
the division (b ∗β)/c, divided by c, so the new value of a is given by

a = (b ∗β)%c

c
.

This is a new fraction with the same denominator c as before. But since the
denominator does not change, it is sufficient to keep track of the numerator.
This can be done by the statement

b = (b ∗β)%c. (3.10)

The result is a new version of algorithm 3.16 for rational numbers.

Algorithm 3.20. Let a = b/c be a rational number in (0,1) whose first k digits
in base β are (0.d−1d−2 · · ·d−k )β. These digits may be computed by performing
the operations:

for i =−1, −2, . . . , −k
di = (b ∗β)//c;
b = (b ∗β)%c;

This version of the conversion algorithm is more convenient for deducing
properties of the numerals of a rational number. The clue is to consider more
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carefully the different values of b that are computed by the algorithm. Since b is
the remainder when integers are divided by c, the only possible values of b are
0, 1, 2, . . . , c − 1. Sooner or later, the value of b must therefore become equal
to an earlier value. But once b returns to an earlier value, it must cycle through
exactly the same values again until it returns to the same value a third time. And
then the same values must repeat again, and again, and again, . . . . Since the
numerals di are computed from b, they must repeat with the same frequency.
Note however that may be some initial digits that do not repeat. This proves
part of the following lemma.

Lemma 3.21. Let a be a fractional number. Then the digits of a written in base
β will eventually repeat, i.e.,

a = (0.d−1 · · ·d−i d−(i+1) · · ·d−(i+m)d−(i+1) · · ·d−(i+m) · · · )β
for some integer m ≥ 1 if and only if a is a rational number.

As an example, consider the fraction 1/7 written in different numeral sys-
tems. If we run algorithm 3.20 we find

1/7 = 0.00100100100100100 · · ·2 ,

1/7 = 0.01021201021201021 · · ·3 ,

1/7 = 0.17.

In the binary numeral system, there is no initial sequence of digits; the sequence
001 repeats from the start. In the trinary system, there is no intial sequence
either and the repeating sequence is 010212, whereas in the septenary system
the initial seqeunce is 1 and the repeating sequence 0 (which we do not write
according to the conventions of the decimal system).

An example with an initial sequence is the fraction 87/98 which in base 7 be-
comes 0.6133333 · · ·7. Another example is 503/1100 which is 0.457272727272 · · ·
in the decimal system.

The argument preceding lemma 3.21 proves the fact that if a is a rational
number, then the digits must eventually repeat. But this statement leaves the
possibility open that there may be nonrational (i.e., irrational) numbers that
may also have digits that eventually repeat. However, this is not possible and
this is the reason for the ’only if’-part of the lemma. In less formal language
the complete statement is: The digits of a will eventually repeat if a is a rational
number, and only if a is a rational number. This means that there are two state-
ments to prove: (i) The digits repeat if a is a rational number and (ii) if the digits
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do repeat then a must be a rational number. The proof of this latter statement is
left to excercise Exercise 7.

Although all rational numbers have repeating digits, for some numbers the
repeating sequence is ’0’, like 1/7 in base 7, see above. Or equivalently, some
fractional numbers can in some numeral systems be represented exactly by a
finite number of digits. It is possible to characterise exactly which numbers have
this property.

Lemma 3.22. The representation of a fractional number a in base-β consists
of a finite number of digits,

a = (0.d−1d−2 · · ·d−k )β,

if and only if a is a rational number b/c with the property that all the prime
factors of c divide β.

Proof. Since the statement is of the ’if and only if’ type, there are two claims to
be proved. The fact that a fractional number in base-β with a finite number of
digits is a rational number is quite straightforward, see exercise Exercise 8.

What remains is to prove that if a = b/c and all the prime factors of c divide
β, then the representation of a in base-β will have a finite number of digits. We
give the proof in a special case and leave it to the reader to write down the proof
in general. Let us consider the representation of the number a = 8/9 in base-
6. The idea of the proof is to rewrite a as a fraction with a power of 6 in the
denominator. The simplest way to do this is to observe that 8/9 = 32/36. We
next express 32 in base 6. For this we can use algorithm 3.7, but in this simple
situation we see directly that

32 = 5×6+2 = 526.

We therefore have

8

9
= 32

36
= 5×6+2

62 = 5×6−1 +2×6−2 = 0.526.

In the decimal system, fractions with a denominator that only has 2 and 5
as prime factors have finitely many digits, for example 3/8 = 0.375, 4/25 = 0.16
and 7/50 = 0.14. These numbers will not have finitely many digits in most other
numeral systems. In base-3, the only fractions with finitely many digits are the
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ones that can be written as fractions with powers of 3 in the denominator,

8

9
= 0.223,

7

27
= 0.0213,

1

2
= 0.111111111111 · · ·3 ,

3

10
= 0.02200220022 · · ·3 .

In base-2, the only fractions that have an exact representation are the ones with
denominators that are powers of 2,

1

2
= 0.5 = 0.12,

3

16
= 0.1875 = 0.00112,

1

10
= 0.1 = 0.00011001100110011 · · ·2 .

These are therefore the only fractional numbers that can be represented exactly
on most computers unless special software is utilised.

Exercises for Section 3.3

Exercise 1. Mark each of the following statements as true or false:

(a). The number 10β is greater in base β= 10 than in base β= 9.

(b). The number 0.1β is greater in base β= 10 than in base β= 9.

(c). The number 17β is always prime, regardless of the value of β.

(d). The number
ln

p
eπ

π

is a rational number.

Exercise 2. (Mid-way exam 2010) For which base β is it possible to represent
the rational number 2/3 with a fnite sequence of digits?
� β= 2
� β= 4
� β= 10
� β= 6
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Exercise 3. Convert the following rational numbers:

(a). 1/4 to base-2

(b). 3/7 to base-3

(c). 1/9 to base-3

(d). 1/18 to base-3

(e). 7/8 to base-8

(f ). 7/8 to base-7

(g). 7/8 to base-16

(h). 5/16 to base-8

(i). 5/8 to base-6

Exercise 4. Convert π to base-9.

Exercise 5. Special rational numbers.

(a). For which value of β is a = b/c = 0.bβ? Does such a β exist for all
a < 1? And for a ≥ 1?

(b). For which rational number a = b/c does there exist a β such that
a = b/c = 0.01β?

(c). For which rational number a = b/c is there a β such that a = b/c =
0.0bβ? If β exists, what will it be?

Exercise 6. If a = b/c, what is the maximum length of the repeating sequence?

Exercise 7. Show that if the digits of the fractional number a eventually repeat,
then a must be a rational number.

Exercise 8. Show that a fractional numbers in base-β with a finite number of
digits is a rational number.
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3.4 Arithmetic in Base β

The methods we learn in school for performing arithemetic are closely tied to
properties of the decimal numeral system, but the methods can easily be gener-
alised to any numeral system. We are not going to do this in detail, but some ex-
amples will illustrate the general ideas. All the methods should be familiar from
school, but if you never quite understood the arithmetic methods, you may have
to think twice to understand why it all works. Although the methods themselves
are the same across the world, it should be remembered that there are many
variations in how the methods are expressed on paper. You may therefore find
the description given here unfamiliar at first.

3.4.1 Addition

Addition of two one-digit numbers is just like in the decimal system as long as
the result has only one digit. For example, we have 48 + 38 = 4+ 3 = 7 = 78. If
the result requires two digits, we must remember that the carry is β in base-β,
and not 10. So if the result becomes β or greater, the result will have two digits,
where the left-most digit is 1 and the second has the value of the sum, reduced
by β. This means that

58 +68 = 5+6 = 11 = 8+11−8 = 8+3 = 138.

This can be written exactly the same way as you would write a sum in the deci-
mal numeral system, you must just remember that the value of the carry is β.

Let us now try the larger sum 4578 +3258. This requires successive one-digit
additions, just like in the decimal system. One way to write this is

1 1
4578

+3258

= 10048

This corresponds to the decimal sum 303+213 = 516.

3.4.2 Subtraction

One-digit subtractions are simple, for example 78 − 38 = 48. A subtraction like
148 −78 is a bit more difficult, but we can ’borrow’ from the ’1’ in 14 just like in
the decimal system. The only difference is that in base-8, the ’1’ represents 8 and
not 10, so we borrow 8. We then see that we must perform the subtraction 12−7
so the answer is 5 (both in decimal and base 8). Subtraction of larger numbers
can be done by repeating this. Consider for example 3218 − 1778. This can be
written
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8 8
/3/218

−1778

= 1228

By converting everything to decimal, it is easy to see that this is correct.

3.4.3 Multiplication

Let us just consider one example of a multiplication, namely 3124 × 124. As in
the decimal system, the basis for performing multiplication of numbers with
multiple digits is the multiplication table for one-digit numbers. In base 4 the
multiplication table is

1 2 3

1 1 2 3
2 2 10 12
3 3 12 21

We can then perform the multiplication as we are used to in the decimal system

3124 ×124

12304

3124

110104

The number 12304 in the second line is the result of the multiplication 3124×24,
i.e., the first factor 3124 multiplied by the second digit of the right-most factor
124. The number on the line below, 3124, is the first factor multiplied by the
first digit of the second factor. This second product is shifted one place to the
left since multiplying with the first digit in 124 corresponds multiplication by
1×4. The number on the last line is the sum of the two numbers above, with a
zero added at the right end of 3124, i.e., the sum is 12304 + 31204. This sum is
calculated as indicated in section 3.4.1 above.

Exercises for Section 3.4

Exercise 1. Tick the correct answer in each case.

(a). The equation 7β+8β = 13β is true in which numeral system?

� base 10

� base 11

� base 12

� base 13
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(b). Which of the following equations is true in base 9?

� 4 + 5 = 11

� 3 + 3 = 7

� 5 + 5 = 11

� 11 - 3 = 5

(c). (Mid-way exam 2009) In the numeral system with base β = 8, the
decimal number 40.125 becomes

� 40.18

� 50.38

� 40.118

� 50.18

Exercise 2. Perform the following additions:

(a). 37 +17

(b). 56 +46

(c). 1102 +10112

(d). 1223 +2013

(e). 435 +105

(f ). 35 +17

Exercise 3. Perform the following subtractions:

(a). 58 −28

(b). 1002 −12

(c). 5278 −3338

(d). 2103 −213

(e). 435 −145

(f ). 37 −117
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(g). −57

Exercise 4. Perform the following multiplications:

(a). 1102 ·102

(b). 1102 ·112

(c). 1103 ·113

(d). 435 ·25

(e). 7208 ·158

(f ). 2103 ·123

(g). 1012 ·112

Exercise 5. In this exercise we will consider an alternative method for division
by a natural number greater than or equal to 2. The method consists of the fol-
lowing simple algorithm:

1. Write the dividend as a number in the base of the divisor.

2. Carry out the division.

3. Convert the quotient back to base-10

(a). Use the method described above to carry out the following divisions:

I) 49/7

II) 365/8

III) 4720/16

(b). Formulate a general algorithm for this method of division for a given
dividend a and a given divisor β.
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CHAPTER 4

Computers, Numbers, and
Text

In this chapter we are going to study how numbers are represented in a com-
puter. We already know that at the most basic level, computers just handle se-
quences of 0s and 1s. We also know that numbers can be represented in different
numeral systems, in particular the binary (base-2) numeral system which is per-
fectly suited for computers. We first consider representation of integers which is
quite straightforward, and then representation of fractional numbers which is a
bit more challenging.

4.1 Representation of Integers

If computers are to perform calculations with integers, we must obviously have
a way to represent the numbers in terms of the computers’ electronic circuitry.
This presents us with one major challenge and a few minor ones. The big chal-
lenge is that integer numbers can become arbitrarily large in magnitude. This
means that there is no limit to the number of digits that may be needed to write
down integer numbers. On the other hand, the resources in terms of storage ca-
pacity and available computing time is always finite, so there will always be an
upper limit on the magnitude of numbers that can be handled by a given com-
puter. There are two standard ways to handle this problem.

The most common solution is to restrict the number of digits. If for sim-
plicity we assume that we can work in the decimal numeral system, we could
restrict the number of digits to 6. This means that the biggest number we can
handle would be 999999. The advantage of this limitation is that we could put
a lot of effort into making the computer’s operation on 6 digit decimal numbers
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Traditional SI prefixes

Symbol Value Symbol Value Alternative Value

kB (kilobyte) 210 KB 103 kibibyte 210

MB (megabyte) 220 MB 106 mibibyte 220

GB (gigabyte) 230 GB 109 gibibyte 230

TB (terabyte) 240 TB 1012 tibibyte 240

PB (petabyte) 250 PB 1015 pibibyte 250

EB (exabyte) 260 EB 1018 exbibyte 260

ZB (zettabyte) 270 ZB 1021 zebibyte 270

YB (yottabyte) 280 YB 1024 yobibyte 280

Table 4.1. The Si-prefixes for large collections of bits and bytes.

extremely efficient. On the other hand the computer could not do much other
than report an error message and give up if the result should become larger than
999999.

The other solution would be to not impose a specific limit on the size of the
numbers, but rather attempt to handle as large numbers as possible. For any
given computer there is bound to be an upper limit, and if this is exceeded the
only response would be an error message. We will discuss both of these ap-
proaches to the challenge of big numbers below.

4.1.1 Bits, bytes and numbers

At the most basic level, the circuitry in a computer (usually referred to as the
hardware) can really only differentiate between two different states, namely ’0’
and ’1’ (or ’false’ and ’true’). This means that numbers must be represented in
terms of 0 and 1, in other words in the binary numeral system. From what we
learnt in the previous chapter, this is not a difficult task, but for reasons of effi-
ciency the electronics have been designed to handle groups of binary digits. The
smallest such group consists of 8 binary digits (bits) and is called a byte. Larger
groups of bits are usually groups of bytes. For manipulation of numbers, groups
of 4 and 8 bytes are usually used, and computers have special computational
units to handle groups of bits of these sizes.

Fact 4.1. A binary digit is called a bit and a group of 8 bits is called a byte.
Numbers are usually represented in terms of 4 bytes (32 bits) or 8 bytes (64 bits).

The standard SI prefixes are used when large amounts of bits and bytes are
referred to, see table 4.1. Note that traditionally the factor between each prefix
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has been 1024 = 210 in the computer world, but use of the SI-units is now en-
couraged. However, memory size is always reported using the traditional binary
units and most operating systems also use these units to report hard disk sizes
and file sizes. So a file containing 3 913 880 bytes will typically be reported as
being 3.7 MB.

To illustrate the size of the numbers in table 4.1 it is believed that the world’s
total storage in 2006 was 160 exabytes, and the projection is that this will grow
to nearly one zettabyte by 2010.

4.1.2 Fixed size integers

Since the hardware can handle groups of 4 or 8 bytes efficiently, the representa-
tion of integers is usually adapted to this format. If we use 4 bytes we have 32
binary digits at our disposal, but how should we use these bits? We would cer-
tainly like to be able to handle both negative and positive numbers, so we use
one bit to signify whether the number is positive or negative. We then have 31
bits left to represent the binary digits of the integer. This means that the largest
32-bit integer that can be handled is the number where all 31 digits are 1, i.e.,

1 ·230 +1 · · ·229 +·· ·+1 ·22 +1 ·21 +1 ·20 = 231 −1.

Based on this it may come as a little surprise that the most negative number that
can be represented is −231 and not −231 + 1. The reason is that with 32 bits at
our disposal we can represent a total of 232 numbers. Since we need 231 bit com-
binations for the positive numbers and 0, we have 232 −231 = 231 combinations
of digits left for the negative numbers. Similar limits can be derived for 64-bit
integers.

Fact 4.2. The smallest and largest numbers that can be represented by 32-bit
integers are

Imin32 =−231 =−2 147 483 648, Imax32 = 231 −1 = 2 147 483 647.

With 64-bit integers the corresponding numbers are

Imin64 =−263 =−9 223 372 036 854 775 808,

Imax64 = 263 −1 = 9 223 372 036 854 775 807.

What we have discussed so far is the typical hardware support for integer
numbers. When we program a computer we have to use a suitable program-
ming language, and different languages may provide different interfaces to the
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hardware. There are a myriad of computer languages, and particularly the han-
dling of integers may differ quite a bit. We will briefly review integer handling in
two languages, Java and Python, as representatives of two different approaches.

4.1.3 Two’s complement

The informal description of how integers are represented left out most details.
Suppose for example that we use 4 bits, then we indicated that the number 0
would be represented as 0000, 1 as 0001, and the largest possible positive inte-
ger would be 0111 (7 in decimal). The negative numbers would have ’1’ as the
left-most bit, so −1 would be 1001. Adding numbers should just correspond to
addition in the binary system. It turns out that this leads to some problems.
Consider first what happens if we compute −1+1 using the normal rule of addi-
tion. In the computer this would become

1001+0001 = 1000. (4.1)

This result should obviously be treated as 0, so both 1000 and 0000 must repre-
sent zero. Consider next the addition

0111+0001 = 1000

which corresponds to adding 1 to the largest positive number. The result is the
same as in (4.1), i.e., negative 0, which is definitely troublesome. These two ex-
amples show that the naive representation of integers leads to complications.

The actual representation used in most computers avoids this by making use
of a technique called two’s complement. In this system the positive integers are
represented as above, but the negative integers are represented differently. For
4 bit integers, the representation is shown in table 4.2. We observe immediately
that there is only one representation of 0. But more importantly, addition has
become much simpler: We just add the two numbers, and if we get overflow we
discard the extra bit. Some examples will illustrate the details.

The addition −3+ 1 corresponds to 1101+ 0001 in two’s complement. By
using ordinary binary addition the result is 1110, which we see from the table is
the correct −2 in decimal.

The addition−1+1 was problematic before. In two’s complement it becomes
1111+0001. The result of this is the five bit number 10000, but we only have four
bits available so the fifth bit is discarded. The result is 0000 which represents 0,
the correct answer. It therefore appears that two’s complement has overcome
both the problems we had with the naive representation above.

Two’s complement representation can be summarised quite concisely with
a simple formula.
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Decimal Two’s compl. Decimal Two’s compl.

7 0111 -1 1111
6 0110 -2 1110
5 0101 -3 1101
4 0100 -4 1100
3 0011 -5 1011
2 0010 -6 1010
1 0001 -7 1001
0 0000 -8 1000

Table 4.2. Two’s complement representation of four bit integers.

Fact 4.3 (Two’s complement). With two’s complement representation a non-
negative number is represented by its binary digits, while a negative number x
is represented by the binary digits of the positive number

x− = 2n −|x|, (4.2)

where n is the total number of bits in the representation. Numbers are added
using the normal rules of arithmetic in the binary numeral system.

Example 4.4. Let us find the representation of x =−6 in two’s complement from
(4.2) when n = 4. In this case |x| = 6 so x− = 24 −6 = 10. The binary represen-
tation of the decimal number 10 is 1010 and this is the representation of −6 in
two’s complement.

4.1.4 Integers in Java

Java is a typed language which means that the type of all variables has to be
stated explicitly. If we wish to store 32-bit integers in the variable n, we use the
declaration int n and we say that n is an int variable. If we wish to use n as a
64-bit variable, we use the declaration long n and say that n is a long variable.
Integers appearing to the right of an assignment are considered to be of type
int, but you may specify that an integer is to be interpreted as a long integer by
appending an L. In other words, an expression like 2+3 will be computed as an
int whereas the expression 2L+3L will be computed as a long, using 64 bits.

Since Java has integer types of fixed size, something magic must happen
when the result of an integer computation becomes too large for the type. Sup-
pose for example that we run the code segment
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int a;
a = 2147483647;
a = a + 1;

The staring value for a is the largest possible 32-bit integer, and when we add 1
we obtain a number that is too big for an int. This is referred to by saying that
an overflow occurs. So what happens when an integer overflows in Java? The
statements above will lead to a receiving the value -2147483648, and Java gives
no warning about this strange behaviour! If you look carefully, the result is −231,
i.e., the smallest possible int. Basically Java (and similar languages) consider
the 32-bit integers to lie in a ring where the integer succeeding 231 − 1 is −231

(overflow in long integers are handled similarly). Sometimes this may be what
you want, but most of the time this kind of behaviour is probably going to give
you a headache unless you remember this paragraph!

Note that Java also has 8 bit integers (byte) and 16 bit integers (short).
These behave completely analogously to int and long variables.

It is possible to work with integers that require more than 64 bits in Java,
but then you have to resort to an auxiliary class called BigInteger. In this class
integers are only limited by the total resources available on your computer, but
the cost of resorting to BigInteger is a big penalty in terms of computing time.

4.1.5 Integers in Python

Python handles integers quite differently from Java. First of all you do not need
to declare the type of variables in Python. So if you write something like a=2+3
then Python will look at the right-hand side of the assignment, conclude that
this is an integer expression and store the result in an integer variable. An integer
variable in Python is called an int and on most computers this will be a 32-bit
integer. The good news is that Python handles overflow much more gracefully
than Java. If Python encounters an integer expression that is greater than 231−1
it will be converted to what is called a long integer variable in Python. Such
variables are only bounded by the available resources on the computer, just like
BigInteger in Java. You can force an integer expression that fits into an int
to be treated as a long integer by using the function long. For example, the
expression long(13) will give the result 13L, i.e., the number 13 represented as
a long integer. Similarly, the expression int(13L) will convert back to an int.

This means that overflow is very seldom a problem in Python, as virtually all
computers today should have sufficient resources to avoid overflow in ordinary
computations. But it may of course happen that you make a mistake that result
in a computation producing very large integers. You will notice this in that your
program takes a very long time and may seem to be stuck. This is because your
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computation is consuming all resources in the computer so that everything else
comes to a standstill. You could wait until you get an error message, but this may
take a long time so it is usually better to just abort the computation.

Since long integers in Python can become very large, it may be tempting
to use them all the time and ignore the int integers. The problem with this is
that the long integers are implemented in extra program code (usually referred
to as software), just like the BigInteger type in Java, and this is comparatively
slow. In contrast, operations with int integers are explicitly supported by the
hardware and is very fast.

4.1.6 Division by zero

Other than overflow, the only potential problem with integer computation is di-
vision by zero. This is mathematically illegal and results in an error message and
the computations being halted (or an exception is raised) in most programming
languages.

Exercises for Section 4.1

Exercise 1. (a). Suppose we use the method of Two’s compliment to store
integers with 8 bits of information. What would be the largest positive in-
teger we would be able to store?

� 128

� 256

� 127

� 255

(b). Suppose we execute the following short code in java, what would be
the output?

int a = 1;
int ap = 0;
while a > ap

a = a + 1;
ap = ap + 1;

print a;

� Nothing, the code would loop forever, or until the machine is out of
memory.

� a = 2147483647

67



� a = -2147483648

� a = 0

(c). What would happen if you were to execute a code similar to the one
in b), in Python?

� Nothing, the code would loop forever, or until the machine is out of
memory.

� a = 2147483647

� a =−2147483648

� a = 0

Exercise 2. This exercise investigates some properties of the two’s representa-
tion of integers with n = 4 bits. Table 4.2 will be useful.

(a). Perform the addition −3+3 with two’s complement.

(b). What is the result of the addition 7+1 in two’s complement?

(c). What is the result of the subtraction −8−1 in two’s complement?

Exercise 3. Suppose you have a computer which works in the ternary (base-3)
numeral system. Can you devise a three’s complement representation with 4
digits, similar to two’s complement?

4.2 Computers and real numbers

Computations with integers are not sufficient for many parts of mathematics;
we must also be able to compute with real numbers. And just like for integers,
we want fast computations so we can solve large and challenging problems. This
inevitably means that there will be limitations on the class of real numbers that
can be handled efficiently by computers.

4.2.1 The challenge of real numbers

To illustrate the challenge, consider the two real numbers

π= 3.141592653589793238462643383279502884197. . . ,

106π= 3.141592653589793238462643383279502884197. . .×106.
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Both of these numbers are irrational and require infinitely many digits in any
numeral system with an integer base. With a fixed number of digits at our dis-
posal we can only store the most significant (the left-most) digits, which means
that we have to ignore infinitely many digits. But this is not enough to distin-
guish between the two numbers π and 106π, we also have to store information
about the size of the numbers.

The fact that many real numbers have infinitely many digits and we can only
store a finite number of these means that there is bound to be an error when real
numbers are represented on a computer. This is in marked contrast to integer
numbers where there is no error, just a limit on the size of numbers. The errors
are usually referred to as rounding errors or round-off errors. These errors are
also present on calculators and a simple situation where round-off error can be
observed is by computing

p
2, squaring the result and subtracting 2. On one

calculator the result is approximately 4.4×10−16, a clear manifestation of round-
off error.

Usually the round-off error is small and remains small throughout a compu-
tation. In some cases however, the error grows throughout a computation and
may become significant. In fact, there are situations where the round-off error in
a result is so large that all the displayed digits are wrong! Computations which
lead to large round-off errors are said to be badly conditioned while computa-
tions with small errors are said to be well conditioned.

Since some computations may lead to large errors it is clearly important to
know in advance if a computation may be problematic. Suppose for example
you are working on the development of a new aircraft and you are responsible
for simulations of the forces acting on the wings during flight. Before the first
flight of the aircraft you had better be certain that the round-off errors (and other
errors) are under control. Such error analysis is part of the field called Numerical
Analysis.

4.2.2 The normal form of real numbers

To understand round-off errors and other characteristics of how computers han-
dle real numbers, we must understand how real numbers are represented. We
are going to do this by first pretending that computers work in the decimal nu-
meral system. Afterwards we will translate our observations to the binary repre-
sentation that is used in practice.

Any real number can be expressed in the decimal system, but infinitely many
digits may be needed. To represent such numbers with finite resources we must
limit the number of digits. Suppose for example that we use four decimal dig-
its to represent real numbers. Then the best representations of the numbers π,
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1/700 and 100003/17 would be

π≈ 3.142,

1

700
≈ 0.001429,

100003

17
≈ 5883.

If we consider the number 100000000/23 ≈ 4347826 we see that it is not repre-
sentable with just four digits. However, if we write the number as 0.4348×107 we
can represent the number if we also store the exponent 7. This is the background
for the following simple observation.

Observation 4.5 (Normal form of real number). Let a be a real number dif-
ferent from zero. Then a can be written uniquely as

a = b ×10n (4.3)

where b is bounded by
1

10
≤ |b| < 1 (4.4)

and n is an integer. This is called the normal form of a, and the number b is
called the significand while n is called the exponent of a. The normal form of
0 is 0 = 0×100.

Note that the digits of a and b are the same; to arrive at the normal form in
(4.3) we simply multiply a by the power of 10 that brings b into the range given
by (4.4).

The normal form of π, 1/7, 100003/17 and 10000000/23 are

π≈ 0.3142×101,

1

7
≈ 0.1429×100,

100003

17
≈ 0.5883×104,

10000000

23
≈ 0.4348×107.

From this we see that if we reserve four digits for the significand and one digit for
the exponent, plus a sign for both, then we have a format that can accommodate
all these numbers. If we keep the significand fixed and vary the exponent, the
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decimal point moves among the digits. For this reason this kind of format is
called floating point, and numbers represented in this way are called floating
point numbers.

It is always useful to be aware of the smallest and largest numbers that can
be represented in a format. With four digits for the significand and one digit for
the exponent plus signs, these numbers are

−0.9999×109,

0.1000×10−9,

−0.1000×10−9,

0.9999×109.

In practice, a computer uses a binary representation. Before we consider
details of how many bits to use etc., we must define a normal form for binary
numbers. This is a straightforward generalisation from the decimal case.

Observation 4.6 (Binary normal form of real number). Let a be a real num-
ber different from zero. Then a can be written uniquely as

a = b ×2n

where b is bounded by
1

2
≤ |b| < 1

and n is an integer. This is called the binary normal form of a, and the number
b is called the significand while n is called the exponent of a. The normal form
of 0 is 0 = 0×20.

This is completely analogous to the decimal version in Observation 4.5 in
that all occurrences of 10 have been replaced by 2. Most of today’s computers
use 32 or 64 bits to represent real numbers. The 32-bit format is useful for appli-
cations that do not demand high accuracy, but 64 bits has become a standard for
most scientific applications. Occasionally higher accuracy is required in which
case there are some formats with more bits or even a format with no limitation
other than the resources available in the computer.

4.2.3 32-bit floating-point numbers

To describe a floating point format, it is not sufficient to state how many bits are
used in total, we also have to know how many bits are used for the significand
and how many for the exponent. There are several possible ways to do this, but
there is an international standard for floating point computations that is used
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by most computer manufacturers. This standard is referred to as the IEEE1 754
standard, and the main details of the 32-bit version is given below.

Fact 4.7 (IEEE 32-bit floating point format). With 32-bit floating point num-
bers 23 bits are allocated for the significand and 9 bits for the exponent, both
including signs. This means that numbers have about 6–9 significant decimal
digits. The smallest and largest negative numbers in this format are

F−
min32 ≈−3.4×1038, F−

max32 ≈−1.4×10−45.

The smallest and largest positive numbers are

F+
min32 ≈ 1.4×10−45, F+

max32 ≈ 3.4×1038.

This is just a summary of the most important characteristics of the 32-bit
IEEE-standard; there are a number of details that we do not want to delve into
here. However, it is worth pointing out that when any nonzero number a is ex-
pressed in binary normal form, the first bit of the significand will always be 1
(remember that we simply shift the binary point until the first bit is 1). Since
this bit is always 1, it does not need to be stored. This means that in reality we
have 24 bits (including sign) available for the significand. The only exception to
this rule is when the exponent has its smallest possible value. Then the first bit
is assumed to be 0 (these correspond to so-called denormalised numbers) and
this makes it possible to represent slightly smaller numbers than would other-
wise be possible. In fact the smallest positive 32-bit number with 1 as first bit is
approximately 1.2×10−38.

4.2.4 Special bit combinations

Not all bit combinations in the IEEE standard are used for ordinary numbers.
Three of the extra ’numbers’ are -Infinity, Infinity and NaN. The infinities
typically occur during overflow. For example, if you use 32-bit floating point and
perform the multiplication 1030∗1030, the result will be Infinity. The negative
infinity behaves in a similar way. The NaN is short for ’Not a Number’ and is the
result if you try to perform an illegal operation. A typical example is if you try to
compute

p−1 without using complex numbers, this will give NaN as the result.
And once you have obtained a NaN result it will pollute anything that it touches;
NaN combined with anything else will result in NaN.

1IEEE is an abbreviation for Institute of Electrical and Electronics Engineers which is a profes-
sional technological association.
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4.2.5 64-bit floating-point numbers

With 64-bit numbers we have 32 extra bits at our disposal and the question is
how these should be used. The creators of the IEEE standard believed improved
accuracy to be more important than support for very large or very small num-
bers. They therefore increased the number of bits in the significand by 30 and
the number of bits in the exponent by 2.

Fact 4.8 (IEEE 64-bit floating point format). With 64-bit floating point num-
bers 53 bits are allocated for the significand and 11 bits for the exponent, both
including signs. This means that numbers have about 15–17 significant deci-
mal digits. The smallest and largest negative number in this format are

F−
min64 ≈−1.8×10308, F−

max64 ≈−5×10−324.

The smallest and largest positive numbers are

F+
min64 ≈ 5×10−324, F+

max64 ≈ 1.8×10308.

Other than the extra bits available, the 64-bit format behaves just like its 32-
bit little brother, with the leading 1 not being stored, the use of denormalised
numbers, -Infinity, Infinity and NaN.

4.2.6 Floating point numbers in Java

Java has two floating point types, float and double, which are direct imple-
mentations of the 32-bit and 64-bit IEEE formats described above. In Java the
result of 1.0/0.0 will be Infinity without a warning.

4.2.7 Floating point numbers in Python

In Python floating point numbers come into action as soon as you enter a num-
ber with a decimal point. Such numbers are represented in the 64-bit format
described above and most of the time the computations adhere to the IEEE stan-
dard. However, there are some exceptions. For example, the division 1.0/0.0
will give an error message and the symbol for ’Infinity’ is Inf.

In standard Python, there is no support for 32-bit floating point numbers.
However, you gain access to this if you import the NumPy library.

Exercises for Section 4.2

Exercise 1. Which of the following statements are true and which are false?
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(a). Any integer than can be represented in the 32 bit integer format, can
also be represented exactly in the 32-bit floating-point format.

(b). The distance between two neighbouring numbers in the IEEE 32-bit
floating-point format is always 1.4×10−45.

(c). When you add two sufficiently large floating-point numbers you will
get overflow, and the result will be a large negative number.

Exercise 2. We are going to write e in decimal, normal form, with 4 digits for
the significand. Which of the following is the correct normal form?
� e ≈ 2.718×100

� e ≈ 2.7181×100

� e ≈ 0.2718×101

� e ≈ 0.27181×101

Exercise 3. Write the largest and smallest 32-bit integers, represented in two’s
complement, as hexadecimal numbers.

Exercise 4. It is said that when the game of chess was invented, the emperor
was so delighted by the game, that he promised the inventor to grant him a wish.
The inventor said that he wanted a grain of rice in the first square of the chess-
board, two grains in the second square of the chessboard, four grains in the third
square, eight in the fourth and so on. The emperor considered this a very modest
request, but was it?

How many grains of rice would the inventor get? Translate this into a prob-
lem of converting numbers between different bases, and solve it. (Hint: A chess-
board is divided into 64 squares).

Exercise 5. Write the following numbers (or approximations of them) in normal
form, using both 4 and 8 digits

(a). 4752735

(b). 602214179∗1015

(c). 0.00008617343

(d). 9.81

(e). 385252

(f ). e10π

Exercise 6. Redo exercise Exercise 5d, but write the number in binary normal
form.
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4.3 Representation of letters and other characters

At the lowest level, computers can just handle 0s and 1s, and since any number
can be expressed uniquely in the binary number system it can also be repre-
sented in a computer (except for the fact that we may have to limit both the size
of the numbers and their number of digits). We all know that computers can
also handle text and in this section we are going to see the basic principles of
how this is done.

A text is just a sequence of individual characters like ’a’, ’B’, ’3’, ’.’, ’?’, i.e.,
upper- and lowercase letters, the digits 0–9 and various other symbols used for
punctuation and other purposes. So the basic challenge in handling text is how
to represent the individual characters. With numbers at our disposal, this is a
simple challenge to overcome. Internally in the computer a character is just
represented by a number and the correspondence between numbers and char-
acters is stored in a table. The letter ’a’ for example, usually has code 97. So
when the computer is told to print the character with code 97, it will call a pro-
gram that draws an ’a’2. Similarly, when the user presses the ’a’ on the keyboard,
it is immediately converted to code 97.

Fact 4.9 (Representation of characters). In computers, characters are repre-
sented in terms of integer codes and a table that maps the integer codes to
the different characters. During input each character is converted to the corre-
sponding integer code, and during output the code is used to determine which
character to draw.

Although the two concepts are slightly different, we will use the terms ’char-
acter sets’ and ’character mappings’ as synonyms.

From fact 4.9 we see that the character mapping is crucial in how text is han-
dled. Initially, the mappings were simple and computers could only handle the
most common characters used in English. Today there are extensive mappings
available that make the characters of most of the world’s languages, including
the ancient ones, accessible. Below we will briefly describe some of the most
common character sets.

4.3.1 The ASCII table

In the infancy of the digital computer there was no standard for mapping char-
acters to numbers. This made it difficult to transfer information from one com-
puter to another, and the need for a standard soon became apparent. The first

2The shape of the different characters are usually defined as mathematical curves.
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Dec Hex Char Dec Hex Char Dec Hex Char
32 20 SP 64 40 @ 96 60 ‘
33 21 ! 65 41 A 97 61 a
34 22 " 66 42 B 98 62 b
35 23 # 67 43 C 99 63 c
36 24 $ 68 44 D 100 64 d
37 25 % 69 45 E 101 65 e
38 26 & 70 46 F 102 66 f
39 27 ’ 71 47 G 103 67 g
40 28 ( 72 48 H 104 68 h
41 29 ) 73 49 I 105 69 i
42 2a * 74 4a J 106 6a j
43 2b + 75 4b K 107 6b k
44 2c , 76 4c L 108 6c l
45 2d - 77 4d M 109 6d m
46 2e . 78 4e N 110 6e n
47 2f / 79 4f O 111 6f o
48 30 0 80 50 P 112 70 p
49 31 1 81 51 Q 113 71 q
50 32 2 82 52 R 114 72 r
51 33 3 83 53 S 115 73 s
52 34 4 84 54 T 116 74 t
53 35 5 85 55 U 117 75 u
54 36 6 86 56 V 118 76 v
55 37 7 87 57 W 119 77 w
56 38 8 88 58 X 120 78 x
57 39 9 89 59 Y 121 79 y
58 3a : 90 5a Z 122 7a z
59 3b ; 91 5b [ 123 7b {
60 3c < 92 5c \ 124 7c |
61 3d = 93 5d ] 125 7d }
62 3e > 94 5e ˆ 126 7e ∼
63 3f ? 95 5f _ 127 7f BCD

Table 4.3. The ASCII characters with codes 32–127. The character with decimal code 32 is white space, and
the one with code 127 is ’delete’.

version of ASCII (American Standard Code for Information Interchange) was
published in 1963 and it was last updated in 1986. ASCII defines codes for 128
characters that are commonly used in English plus some more technical char-
acters. The fact that there are 128 = 27 characters in the ASCII table means that
7 bits are needed to represent the codes. Today’s computers usually handle one
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byte (eight bits) at a time so the ASCII character set is now normally just part of
a larger character set, see below.

Table 4.3 (towards the end of this chapter) shows the ASCII characters with
codes 32–127. We notice the upper case letters with codes 65–90, the lower case
letters with codes 97–122 and the digits 0–9 with codes 48–57. Otherwise there
are a number of punctuation characters and brackets as well as various other
characters that are used more or less often. Observe that there are no characters
from the many national alphabets that are used around the world. ASCII was
developed in the US and was primarily intended to be used for giving a textual
representation of computer programs which mainly use vocabulary from En-
glish. Since then computers have become universal tools that process all kinds
of information, including text in many different languages. As a result new char-
acter sets have been developed, but almost all of them contain ASCII as a subset.

Character codes are used for arranging words in alphabetical order. To com-
pare the two words ’high’ and ’all’ we just check the character codes. We see
that ’h’ has code 104 while ’a’ has code 97. So by ordering the letters according
to their character codes we obtain the normal alphabetical order. Note that the
codes of upper case letters are smaller than the codes of lower case letters. This
means that capitalised words and words in upper case precede words in lower
case in the standard ordering.

Table 4.4 shows the first 32 ASCII characters. These are quite different from
most of the others (with the exception of characters 32 and 127) and are called
control characters. They are not intended to be printed in ink on paper, but
rather indicate some kind of operation to be performed by the printing equip-
ment or a signal to be communicated to a sender or receiver of the text. Some of
the characters are hardly used any more, but others have retained their signif-
icance. Character 4 (ˆD) has the description ’End of Transmission’ and is often
used to signify the end of a file, at least under Unix-like operating systems. Be-
cause of this, many programs that operate on files, like for example text-editors,
will quit if you type ˆD (hold down the control-key while you press ’d’). Various
combinations of characters 10, 12 and 13 are used in different operating systems
for indicating a new line within a file. The meaning of character 13 (’Carriage
Return’) was originally to move back to the beginning of the current line and
character 10 (’Line Feed’) meant forward one line.

4.3.2 ISO latin character sets

As text processing by computer became generally available in the 1980s, exten-
sions of the ASCII character set that included various national characters used
in European languages were needed. The International Standards Organisation
(ISO) developed a number of such character sets, like ISO Latin 1 (’Western’),
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Dec Hex Abbr CS Description
0 00 NUL ˆ @ Null character
1 01 SOH ˆ A Start of Header
2 02 STX ˆ B Start of Text
3 03 ETX ˆ C End of Text
4 04 EOT ˆ D End of Transmission
5 05 ENQ ˆ E Enquiry
6 06 ACK ˆ F Acknowledgment
7 07 BEL ˆ G Bell
8 08 BS ˆ H Backspace
9 09 HT ˆ I Horizontal Tab

10 0a LF ˆ J Line feed
11 0b VT ˆ K Vertical Tab
12 0c FF ˆ L Form feed
13 0d CR ˆ M Carriage return
14 0e SO ˆ N Shift Out
15 0f SI ˆ O Shift In
16 10 DLE ˆ P Data Link Escape
17 11 DC1 ˆ Q XON
18 12 DC2 ˆ R Device Control 2
19 13 DC3 ˆ S XOFF
20 14 DC4 ˆ T Device Control 4
21 15 NAK ˆ U Negative Acknowledgement
22 16 SYN ˆ V Synchronous Idle
23 17 ETB ˆ W End of Trans. Block
24 18 CAN ˆ X Cancel
25 19 EM ˆ Y End of Medium
26 1a SUB ˆ Z Substitute
27 1b ESC ˆ [ Escape
28 1c FS ˆ \ File Separator
29 1d GS ˆ ] Group Separator
30 1e RS ˆ ˆ Record Separator
31 1f US ˆ _ Unit Separator

Table 4.4. The first 32 characters of the ASCII table. The first two columns show the code number in decimal
and octal, the third column gives a standard abbreviation for the character and the fourth column gives a
printable representation of the character. The last column gives a more verbose description of the character.

ISO Latin 2 (’Central European’) and ISO Latin 5 (’Turkish’), and so did several
computer manufacturers. Virtually all of these character sets retained ASCII in
the first 128 positions, but increased the code from seven to eight bits to acco-
modate another 128 characters. This meant that different parts of the Western
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world had local character sets which could encode their national characters, but
if a file was interpreted with the wrong character set, some of the characters be-
yond position 127 would come out wrong.

Table 4.5 shows characters 192–255 in the ISO Latin 1 character set. These in-
clude most latin letters with diacritics used in the Western European languages.
Positions 128–191 in the character set are occupied by some control characters
similar to those at the beginning of the ASCII table but also a number of other
useful characters.

4.3.3 Unicode

By the early 1990s there was a critical need for character sets that could han-
dle multilingual characters, like those from English and Chinese, in the same
document. A number of computer companies therefore set up an organisation
called Unicode. Unicode has since then organised the characters of most of the
world’s languages in a large table called the Unicode table, and new characters
are still being added. There are a total of about 100 000 characters in the ta-
ble which means that at least three bytes are needed for their representation.
The codes range from 0 to 1114111 (hexadecimal 10ffff16) which means that only
about 10 % of the table is filled. The characters are grouped together according
to language family or application area, and the empty spaces make it easy to add
new characters that may come into use. The first 256 characters of Unicode is
identical to the ISO Latin 1 character set, and in particular the first 128 charac-
ters correspond to the ASCII table. You can find all the Unicode characters at
http://www.unicode.org/charts/.

One could use the same strategy with Unicode as with ASCII and ISO Latin 1
and represent the characters via their integer codes (usually referred to as code
points) in the Unicode table. This would mean that each character would re-
quire three bytes of storage. The main disadvantage of this is that a program
for reading Unicode text would give completely wrong results if by mistake it
was used for reading ’old fashioned’ eight bit text, even if it just contained ASCII
characters. Unicode has therefore developed variable length encoding schemes
for encoding the characters.

4.3.4 UTF-8

A popular encoding of Unicode is UTF-83. UTF-8 has the advantage that ASCII
characters are encoded in one byte so there is complete backwards compatibility
with ASCII. All other characters require from two to four bytes.

3UTF is an abbreviation of Unicode Transformation Format.
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Dec Hex Char Dec Hex Char
192 c0 À 224 e0 à
193 c1 Á 225 e1 á
194 c2 Â 226 e2 â
195 c3 Ã 227 e3 ã
196 c4 Ä 228 e4 ä
197 c5 Å 229 e5 å
198 c6 Æ 230 e6 æ
199 c7 Ç 231 e7 ç
200 c8 È 232 e8 è
201 c9 É 233 e9 é
202 ca Ê 234 ea ê
203 cb Ë 235 eb ë
204 cc Ì 236 ec ì
205 cd Í 237 ed í
206 ce Î 238 ee î
207 cf Ï 239 ef ï
208 d0 Ð 240 f0 ð
209 d1 Ñ 241 f1 ñ
210 d2 Ò 242 f2 ò
211 d3 Ó 243 f3 ó
212 d4 Ô 244 f4 ô
213 d5 Õ 245 f5 õ
214 d6 Ö 246 f6 ö
215 d7 Œ 247 f7 œ
216 d8 Ø 248 f8 ø
217 d9 Ù 249 f9 ù
218 da Ú 250 fa ú
219 db Û 251 fb û
220 dc Ü 252 fc ü
221 dd Ý 253 fd ý
222 de Þ 254 fe þ
223 df SS 255 ff ß

Table 4.5. The last 64 characters of the ISO Latin1 character set.

To see how the code points are actually encoded in UTF-8, recall that the
ASCII characters have code points in the range 0–127 (decimal) which is 0016–
7 f16 in hexadecimal or 000000002–011111112 in binary. These characters are just
encoded in one byte in the obvious way and are characterised by the fact that the
most significant (the left-most) bit is 0. All other characters require more than
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one byte, but the encoding is done in such a way that none of these bytes start
with 0. This is done by adding some set fixed bit combinations at the beginning
of each byte. Such codes are called prefix codes. The details are given in a fact
box.

Fact 4.10 (UTF-8 encoding of Unicode). A Unicode character with code point
c is encoded in UTF-8 according to the following four rules:

1. If c = (d6d5d4d3d2d1d0)2 is in the decimal range 0–127 (hexadecimal
0016–7f16), it is encoded in one byte as

0d6d5d4d3d2d1d0. (4.5)

2. If c = (d10d9d8d7d6d5d4d3d2d1d0)2 is in the decimal range 128–2047
(hexadecimal 8016–7ff16) it is encoded as the two-byte binary number

110d10d9d8d7d6 10d5d4d3d2d1d0. (4.6)

3. If c = (d15d14d13d12d11d10d9d8d7d6d5d4d3d2d1d0)2 is in the decimal
range 2048–65535 (hexadecimal 80016–ffff16) it is encoded as the three-
byte binary number

1110d15d14d13d12 10d11d10d9d8d7d6 10d5d4d3d2d1d0. (4.7)

4. If c = (d20d19d18d17d16d15d14d13d12d11d10d9d8d7d6d5d4d3d2d1d0)2 is
in the decimal range 65536–1114111 (hexadecimal 1000016–10ffff16) it is
encoded as the four-byte binary number

11110d20d19d18 10d17d16d15d14d13d12

10d11d10d9d8d7d6 10d5d4d3d2d1d0. (4.8)

This may seem complicated at first sight, but is in fact quite simple and el-
egant. Note any given byte in a UTF-8 encoded text must start with the binary
digits 0, 10, 110, 1110 or 11110. If the first bit in a byte is 0, the remaining bits
represent a seven bit ASCII character. If the first two bits are 10, the byte is the
second, third or fourth byte of a multi-byte code point, and we can find the first
byte by going back in the byte stream until we find a byte that does not start with
10. If the byte starts with 110 we know that it is the first byte of a two-byte code
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point; if it starts with 1110 it is the first byte of a three-byte code point; and if it
starts with 11110 it is the first of a four-byte code point.

Observation 4.11. It is always possible to tell if a given byte within a text en-
coded in UTF-8 is the first, second, third or fourth byte in the encoding of a code
point.

The UTF-8 encoding is particularly popular in the Western world since all
the common characters of English can be represented by one byte, and almost
all the national European characters can be represented with two bytes.

Example 4.12. Let us consider a concrete example of how the UTF-8 code of
a code point is determined. The ASCII characters are not so interesting since
for these characters the UTF-8 code agrees with the code point. The Norwegian
character ’Å’ is more challenging. If we check the Unicode charts,4 we find that
this character has the code point c516 = 197. This is in the range 128–2047 which
is covered by rule 2 in fact 4.10. To determine the UTF-8 encoding we must
find the binary representation of the code point. This is easy to deduce from
the hexadecimal representation. The least significant numeral (5 in our case)
determines the four least significant bits and the most significant numeral (c)
determines the four most significant bits. Since 5 = 01012 and c16 = 11002, the
code point in binary is

000

c︷ ︸︸ ︷
1100

5︷ ︸︸ ︷
01012,

where we have added three 0s to the left to get the eleven bits referred to by
rule 2. We then distribute the eleven bits as in (4.6) and obtain the two bytes

11000011, 10000101.

In hexadecimal this corresponds to the two values c3 and 85 so the UTF-8 en-
coding of ’Å’ is the two-byte number c38516.

4.3.5 UTF-16

Another common encoding is UTF-16. In this encoding most Unicode charac-
ters with two-byte code points are encoded directly by their code points. Since
the characters of major Asian languages like Chinese, Japanese and Korean are
encoded in this part of Unicode, UTF-16 is popular in this part of the world.
UTF-16 is also the native format for representation of text in the recent versions

4The Latin 1 supplement can be found at www.unicode.org/charts/PDF/U0080.pdf/.
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of Microsoft Windows and Apple’s Mac OS X as well as in programming environ-
ments like Java, .Net and Qt.

UTF-16 uses a variable width encoding scheme similar to UTF-8, but the ba-
sic unit is two bytes rather than one. This means that all code points are encoded
in two or four bytes. In order to recognize whether two consecutive bytes in an
UTF-16 encoded text correspond to a two-byte code point or a four-byte code
point, the initial bit patterns of each pair of a four byte code has to be illegal
in a two-byte code. This is possible since there are big gaps in the Unicode ta-
ble. In fact certain Unicode code points are reserved for the specific purpose of
signifying the start of pairs of four-byte codes (so-called surrogate pairs).

Fact 4.13 (UTF-16 encoding of Unicode). A Unicode character with code
point c is encoded in UTF-16 according to two rules:

1. If the number

c = (d15d14d13d12d11d10d9d8d7d6d5d4d3d2d1d0)2

is a code point in the range 0–65535 (hexadecimal 000016–ffff16) it is en-
coded as the two bytes

d15d14d13d12d11d10d9d8 d7d6d5d4d3d2d1d0.

2. If the number

c = (d20d19d18d17d16d15d14d13d12d11d10d9d8d7d6d5d4d3d2d1d0)2

is a code point in the range 65536–1114111 (hexadecimal 1000016–
10ffff16), compute the number c ′ = c − 65536 (subtract 1000016). This
number can be represented by 20 bits,

c ′ = (d ′
19d ′

18d ′
17d ′

16d ′
15d ′

14d ′
13d ′

12d ′
11d ′

10d ′
9d ′

8d ′
7d ′

6d ′
5d ′

4d ′
3d ′

2d ′
1d ′

0)2.

The encoding of c is then given by the four bytes

110110d ′
19d ′

18 d ′
17d ′

16d ′
15d ′

14d ′
13d ′

12d ′
11d ′

10

110111d ′
9d ′

8 d ′
7d ′

6d ′
5d ′

4d ′
3d ′

2d ′
1d ′

0.

Superficially it may seem like UTF-16 does not have the prefix property, i.e.,
it may seem that a pair of bytes produced by rule 2 may occur as a pair generated
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by rule 1 and vice versa. However, the existence of gaps in the Unicode table
means that this problem does not occur.

Observation 4.14. None of the pairs of bytes produced by rule 2 in fact 4.13 will
ever match a pair of bytes produced by the first rule as there are no two-byte
code points that start with the bit sequences 110110 or 110111. It is therefore
always possible to determine whether a given pair of consecutive bytes in an
UTF-16 encoded text corresponds directly to a code point (rule 1), or is the first
or second pair of a four byte encoding.

The UTF-16 encoding has the advantage that all two-byte code points are
encoded directly by their code points. Since the characters that require more
than two-byte code points are very rare, this means that virtually all characters
are encoded directly in two bytes.

UTF-16 has one technical complication. Different computer architectures
code pairs of bytes in different ways: Some will insist on sending the eight most
significant bits first, some will send the eight least significant bits first; this is
usually referred to as little endian and big endian. To account for this there are
in fact three different UTF-16 encoding schemes, UTF-16, UTF-16BE and UTF-
16LE. UTF-16BE uses strict big endian encoding while UTF-16LE uses strict lit-
tle endian encoding. UTF-16 does not use a specific endian convention. Instead
any file encoded with UTF-16 should indicate the endian by having as its first
two bytes what is called a Byte Order Mark (BOM). This should be the hexadec-
imal sequence feff16 for big-endian and fffe16 for little-endian. This character,
which has code point feff, is chosen because it should never legitimately appear
at the beginning of a text.

4.3.6 UTF-32

UTF-32 encode Unicode characters by encoding the code point directly in four
bytes or 32 bits. In other words it is a fixed length encoding. The disadvantage is
that this encoding is rather extravagant since many frequently occurring char-
acters in Western languages can be encoded with only one byte, and almost all
characters can be encoded with two bytes. For this reason UTF-32 is little used
in practice.

4.3.7 Text in Java

Characters in Java are represented with the char data type. The representation
is based on the UTF-16 encoding of Unicode so all the Unicode characters are
available. The fact that some characters require four bytes to represent their
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code points is a complication, but this is handled nicely in the libraries for pro-
cessing text.

4.3.8 Text in Python

Python also has support for Unicode. You can use Unicode text in your source
file by including a line which indicates the specific encoding, for example as in

# coding=utf-8/

You can then use Unicode in your string constants which in this case will be en-
coded in UTF-8. All the standard string functions also work for Unicode strings,
but note that the default encoding is ASCII.

Exercises for Section 4.3

Exercise 1. Which of the following statements are true and which is false:

(a). A text encoded in ASCII will display correctly if it is treated as a text
encoded in ISO Latin 1.

(b). A text encoded in ISO Latin 1 will display correctly if it is treated as a
text encoded in ASCII.

(c). The UTF-8 code "11101101 10001101 10101100 01110001" corresponds
to a sequence of 4 characters.

(d). A text written with Norwegian letters (standard Latin alphabet, with
the addition of the letters ’æ’, ’ø’ and ’å’) encoded in UTF-8 will sometimes
require more space than if encoded in ISO Latin 1.

Exercise 2. Which encoding?

(a). (Exam 2007) In a text the are three different symbols, encoded with
one of the methods for representation of text discussed in this section. It
turns out that one symbol is represented with one byte, another with two
bytes and the third one with three bytes. Which of the following state-
ments is correct?

� The symbols could have been encoded with ASCII

� The symbols could have been encoded with UTF-8

� The symbols could have been encoded with UTF-16

� The symbols could have been encoded with ISO-Latin 1.
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(b). (Continuation exam 2007) In which of the following encoding schemes
is the Norwegian letter ’ø’ encoded with two bytes?

� ASCII

�UTF-8

� ISO Latin 1

�UTF-32

(c). (Continuation exam 2011) A text is stored in 4 different files with the
encoding schemes ISO Latin 1, UTF-8, UTF-16, UTF-32. Which of the fol-
lowing statements is then true?

� The file encoded with ISO-Latin 1 will be the largest.

� The file encoded with UTF-8 will be the largest.

� The file encoded with UTF-16 will be the largest.

� The file encoded with UTF-32 will be the largest.

Exercise 3. Determine the UTF-8 encodings of the Unicode characters with the
following code points:

(a). 5a16.

(b). f516.

(c). 3f816.

(d). 8f3716.

Exercise 4. Determine the UTF-16 encodings of the Unicode characters in ex-
ercise Exercise 3.

Exercise 5. In this exercise you may need to use the Unicode table which can
be found on the web page www.unicode.org/charts/.

(a). Suppose you save the characters ’æ’, ’ø’ and ’å’ in a file with UTF-8
encoding. How will these characters be displayed if you open the file in
an editor using the ISO Latin 1 encoding?

(b). What will you see if you do the opposite?

(c). Repeat (a) and (b), but use UTF-16 instead of UTF-8.
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(d). Repeat (a) and (b), but use UTF-16 instead of ISO Latin 1.

Exercise 6. Encoding your name.

(a). Write down the hexadecimal representation of your first name in ISO
Latin 1, UTF-8, and UTF-16 with BE (If your first name is only three let-
ters or less, do your last name as well, include a blank space between the
names).

(b). Consider the first 3 bytes in the codes for your name (not counting
the specific BE-code for UTF-16) and view each of them as an integer.
What decimal numbers do they correspond to? Can these numbers be
represented as 32-bit integers?

(c). Repeat b) for the first 4 bytes of your name (not counting the specific
BE-code).

Exercise 7. In this exercise you are going to derive an algorithm to find the nth
character in a UTF-8 encoded file. We assume that the file is given as an array of
8-bit integers, i.e., each integer is in the range 0–255.

(a). The UTF-8 encoding scheme uses a variable bit length (see Fact 4.10).
In order to determine whether a byte represents the start of a new charac-
ter, one must determine in which integer interval the byte lies.

Determine which integer intervals denote a new character and which in-
tervals denote the continuation of a character code.

(b). Derive an algorithm for finding the nth character. Your algorithm
may begin as follows:

counter = 0
while counter < n:

get a new byte
if by te is in correct interval:

act accordingly
else:

act accordingly

(c). In this exercise you are going to write a Python script for finding the
n-th sign in an UTF-8 encoded file. You may use this layout:
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# Coding: utf-8

# This part of the program creates a list ’bytelist’ where each
# element is the value of the corresponding byte in the file.

infile = open(’filename’, ’rb’)
bytelist = []
while True:

byte = infile.read(1)
if not byte:

break
bytelist.append(ord(byte))

# Your code goes here. The code should run through the byte list
# and match each sequence of bytes to a corresponding character.
# When you reach the n-th character, you should compute the code
# point, store it in the variable ’character’ and print it.

character = unichr(character)
print character

(d). Repeat the exercise for the UTF-16 encoding scheme

Exercise 8. You are given the following hexadecimal code:

41 42 43 44 4516.

Determine whether it is a text encoded in UTF-8 or UTF-16.

Exercise 9. You are given the following binary code:

11000101 10010011 11000011 10111000

What does this code translate to if it is a text encoded in

(a). UTF-8?

(b). UTF-16?
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Exercise 10. The following sequence of bytes represent a UTF-8 encoded text,
but some of the bytes are wrong. Find which ones they are, and explain why they
are wrong:

41 C3 98 41 C3 41 41 C3 98 98 41.

Exercise 11. The log2-function is defined by the relation

2log2 x = x.

Use this definition to show that

log2 x = ln x

ln2
.

Exercise 12. In this exercise, we want to create a fixed length encoding scheme
for simple Norwegian text. Our set of characters must include the 29 uppercase
Norwegian letters, a space character and a period character.

(a). How many bits are needed per character to represent this character
set?

(b). Now assume that we also want to add the lowercase letters, the num-
bers 0-9 and a more complete set of notation characters, so that the total
number of characters is 113. How many bits are now needed per charac-
ter?

(c). How many bits are needed per character in a fixed length encoding
scheme with n unique characters? (Hint: The result in exercise Exercise
11 might be useful.)

4.4 Representation of general information

So far we have seen how numbers and characters can be represented in terms
of bits and bytes. This is the basis for representing all kinds of different informa-
tion. Let us start with general text files.
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4.4.1 Text

A text is simply a sequence of characters. We know that a character is repre-
sented by an integer code so a text file is just a sequence of integer codes. If we
use the ISO Latin 1 encoding, a file with the text

Knut
Mørken

is represented by the hexadecimal codes (recall that each code is a byte)

4b 6e 75 74 0a 4d f8 72 6b 65 6e

The first four bytes you will find in table 4.3 as the codes for ’K’, ’n’, ’u’ and ’t’
(remember that the codes of latin characters in ISO Latin 1 are the same as in
ASCII). The fifth character has decimal code 10 which you find in table 4.4. This
is the Line feed character which causes a new line on my computer. The re-
maining codes can all be found in table 4.3 except for the seventh which has
decimal code 248. This is located in the upper 128 ISO Latin 1 characters and
corresponds to the Norwegian letter ’ø’ as can be seen in table 4.5.

If instead the text is represented in UTF-8, we obtain the bytes

4b 6e 75 74 0a 4d c3 b8 72 6b 65 6e

We see that these are the same as for ISO Latin 1 except that ’f8’ has become the
two bytes ’c3 b8’ which is the two-byte code for ’ø’ in UTF-8.

In UTF-16 the text is represented by the codes

ff fe 4b 00 6e 00 75 00 74 00 0a 00 4d 00 f8 00 72 00 6b 00 65 00 6e 00

All the characters can be represented by two bytes and the leading byte is ’00’
since we only have ISO Latin 1 characters. It may seem a bit strange that the
zero byte comes after the nonzero byte, but this is because the computer uses
little endian representation. A program reading this file would detect this from
the first two bytes which is the byte-order mark referred to on page 84.

4.4.2 Numbers

A number can be stored in a file by finding its binary representation and storing
the bits in the appropriate number of bytes. The number 13 = 11012 for example
could be stored as a 32 bit integer by storing the bytes 00 00 00 0d (in hexadeci-
mal).5 But here there is a possibly confusing point: Why can we not just store the

5As we have seen earlier integers are in fact stored in two’s complement.

90



number as a text? This is certainly possible and if we use UTF-8 we can store 13
as the two bytes 31 33 (in hexadecimal). This even takes up less space than the
four bytes required by the true integer format. For bigger numbers however the
situation is the opposite: Even the largest 32-bit integer can be represented by
four bytes if we use integer format, but since it is a ten-digit number we would
need ten bytes to store it as a text.

In general it is advisable to store numbers in the appropriate number format
(integer or floating point) when we have a large collection of them. This will
usually require less space and we will not need to first read a text and then extract
the numbers from the text. The advantage of storing numbers as text is that the
file can then be viewed in a normal text editor which for example may be useful
for debugging.

4.4.3 General information

Many computer programs process information that consists of both numbers
and text. Consider for example digital music. For a given song we may store its
name, artist, lyrics and all the sound data. The first three items of information
are conveniently stored as text. As we shall see later, the sound data is just a
very long list of numbers. If the music is in CD-format, the numbers are 16-bit
integers, i.e., integers in the interval[−215,215 −1] or [−32768,32767], and there
are 5.3 million numbers for each minute of music. These numbers can be saved
in text format which would require five bytes for most numbers. We can reduce
the storage requirement considerably by saving them in standard binary integer
format. This format only requires two bytes for each number so the size of the
file would be reduced by a factor of almost 2.5.

4.4.4 Computer programs

Since computers only can interpret sequences of 0s and 1s, computer programs
must also be represented in this form at the lowest level. All computers come
with an assembly or machine language which is the level just above the 0s and
1s. Programs written in higher level languages must be translated (compiled)
into assembly language before they can be executed. To do regular program-
ming in assembly language is rather tedious and prone to error as many details
that happen behind the scenes in high level languages must be programmed in
detail. Each command in the assembly language is represented by an appropri-
ate number of bytes, usually four or eight and therefore corresponds to a specific
sequence of 0s and 1s.
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4.5 A fundamental principle of computing

In this chapter we have seen that by combining bits into bytes, both numbers,
text and more general information can be represented, manipulated and stored
in a computer. It is important to remember though, that however complex the
information, if it is to be processed by a computer it must be encoded into a
sequence of 0s and 1s. When we want the computer to do anything with the
information it must interpret and assemble the bits in the correct way before it
can perform the desired operation. Suppose for example that as part of a pro-
gramming project you need to temporary store some information in a file, for
example a sound file in the simple format outlined in Subsection 4.4.3. When
you read the information back from the file it is your responsibility to interpret
the information in the correct way. In the sound example this means that you
must be able to extract the name of the song, the artist, the lyrics and the sound
data from the file. One way to do this is to use a special character, that is not
otherwise in use, to indicate the end of one field and the beginning of the next.
In the first three fields we can allow text of any length while in the last field only
16 bit integers are allowed. This is a simple example of a file format, i.e., a pre-
cise description of how information is stored. If your program is going to read
information from a file, you need to know the file format to read the information
correctly.

In many situations well established conventions will tell you the file format.
One type of convention is that filenames often end with a dot and three or more
characters that identify the file format. Some examples are .doc (Microsoft
Word), .html (web-documents), .mp3(mp3-music files), .jpg (photos in jpeg-
format). If you are going to write a program that will process one of these file
formats you have at least two options: You can find a description of the format
and write your own functions that read the information from the file, or you can
find a software library written by somebody else that has functions for reading
the appropriate file format and converting the information to text and numbers
that is returned to your program.

Program code is a different type of file format. A programming language
has a precise syntax, and specialised programs called compilers or interpreters
translate programs written according to this syntax into low level commands
that the computer can execute.

This discussion of file formats illustrates a fundamental principle in com-
puting: A computer must always be told exactly what to do, or equivalently, must
know how to interpret the 0s and 1s it encounters.
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Fact 4.15 (A principle of computing). For a computer to function properly it
must always be known how it should interpret the 0s and 1s it encounters.

This principle is absolute, but there are of course many ways to instruct a
computer how information should be interpreted. A lot of the interpretation is
programmed into the computer via the operating system, programs that are in-
stalled on the computer contain code for encoding and decoding information
specific to each program, sometimes the user has to tell a given program how
to interpret information (for example tell a program the format of a file), some-
times a program can determine the format by looking for special bit sequences
(like the endian convention used in a UTF-16 encoded file). And if you write
programs yourself you must of course make sure that your program can process
the information from a user in an adequate way.

Exercises for Section 4.5

Exercise 1. Determine the details of the mp3 file-format by searching the web.
A possible starting point is provided by the url

http://mpgedit.org/mpgedit/mpeg_format/mpeghdr.htm.

Exercise 2. Real numbers may be written as decimal numbers, usually with a
fractional part, and floating point numbers result when the number of digits
is required to be finite. But real numbers can also be viewed as limits of ra-
tional numbers which means that any real number can be approximated arbi-
trarily well be a rational number. An alternative to representing real numbers
with floating point numbers is therefore a representation in terms of rational
numbers. Discuss advantages and disadvantages with this kind of representa-
tion (how do the limitations of finite resources appear, will there be ’rounding
errors’ etc.).
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CHAPTER 5

Computer Arithmetic and
Round-Off Errors

In the two previous chapters we have seen how numbers can be represented in
the binary numeral system and how this is the basis for representing numbers
in computers. Since any given integer only has a finite number of digits, we
can represent all integers below a certain limit exactly. Non-integer numbers
are considerably more cumbersome since infinitely many digits are needed to
represent most of them, regardless of which numeral system we employ. This
means that most non-integer numbers cannot be represented in a computer
without committing an error which is usually referred to as round-off error or
rounding error.

As we saw in Chapter 4, the standard representation of non-integer num-
bers in computers is as floating-point numbers with a fixed number of bits. Not
only is an error usually committed when a number is represented as a floating-
point number; most calculations with floating-point numbers will induce fur-
ther round-off errors. In most situations these errors will be small, but in a long
chain of calculations there is a risk that the errors may accumulate and seriously
pollute the final result. It is therefore important to be able to recognise when
a given computation is going to be troublesome or not, so that we may know
whether the result can be trusted.

In this chapter we will start our study of round-off errors. The key observa-
tion is that subtraction of two almost equal numbers may lead to large round-
off error. There is nothing mysterious about this — it is a simple consequence
of how arithmetic is performed with floating-point numbers. We will therefore
need a quick introduction to floating-point arithmetic. We will also discuss the
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two most common ways to measure error, namely absolute error and relative
error.

5.1 Integer arithmetic and errors

Integers and integer arithmetic on a computer is simple both to understand and
analyse. All integers up to a certain size are represented exactly and arithmetic
with integers is exact. The only thing that can go wrong is that the result be-
comes larger than what is representable by the type of integer used. The com-
puter hardware, which usually represents integers with two’s complement (see
section 4.1.3), will not protest and just wrap around from the largest positive
integer to the smallest negative integer or vice versa.

As was mentioned in chapter 4, different programming languages handle
overflow in different ways. Most languages leave everything to the hardware.
This means that overflow is not reported, even though it leads to completely
wrong results. This kind of behaviour is not really problematic since it is usually
easy to detect (the results are completely wrong), but it may be difficult to un-
derstand what went wrong unless you are familiar with the basics of two’s com-
plement. Other languages, like Python, gracefully switch to higher precision. In
this case, integer overflow is not serious, but may reduce the computing speed.
Other error situations, like division by zero, or attempts to extract the square
root of negative numbers, lead to error messages and are therefore not serious.

The conclusion is that errors in integer arithmetic are not serious, at least
not if you know a little bit about how integer arithmetic is performed.

5.2 Floating-point arithmetic and round-off error

Errors in floating-point arithmetic are more subtle than errors in integer arith-
metic since, in contrast to integers, floating-point numbers can be just a little bit
wrong. A result that appears to be reasonable may therefore contain errors, and
it may be difficult to judge how large the error is. A simple example will illustrate.

Example 5.1. On a typical calculator we compute x = p
2, then y = x2, and fi-

nally z = y −2, i.e., the result should be z = (p
2
)2 −2, which of course is 0. The

result reported by the calculator is

z =−1.38032020120975×10−16.

This is a simple example of round-off error.

The aim of this section is to explain why computations like the one in ex-
ample 5.1 give this obviously wrong result. To do this we will give a very high-
level introduction to computer arithmetic and discuss the potential for errors in
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the four elementary arithmetic operations addition, subtraction, multiplication,
and division with floating-point numbers. Perhaps a bit surprisingly, the con-
clusion will be that the most critical operation is addition/subtraction, which in
certain situations may lead to dramatic errors.

A word of warning is necessary before we continue. In this chapter, and
in particular in this section, where we focus on the shortcomings of computer
arithmetic, some may conclude that round-off errors are so dramatic that we
had better not use a computer for serious calculations. This is a misunderstand-
ing. The computer is an extremely powerful tool for numerical calculations that
you should use whenever you think it may help you, and most of the time it will
give you answers that are much more accurate than you need. However, you
should be alert and aware of the fact that in certain cases errors may cause con-
siderable problems.

5.2.1 Truncation and rounding

Floating point numbers on most computers use binary representation, and we
know that in the binary numeral system all real numbers that are fractions on
the form a/b, with a an integer and b = 2k for some positive integer k can be
represented exactly (provided a and b are not too large), see lemma 3.22. This
means that numbers like 1/2, 1/4 and 5/16 are represented exactly.

On the other hand, it is easy to forget that numbers like 0.1 and 3.43 are
not represented exactly. And of course all numbers that cannot be represented
exactly in the decimal system cannot be represented exactly in the binary system
either. These numbers include fractions like 1/3 and 5/12 as well as all irrational
numbers. Even before we start doing arithmetic we therefore have the challenge
of finding good approximations to these numbers that cannot be represented
exactly within the floating-point model being used. We will distinguish between
two different ways to do this, truncation and rounding.

Definition 5.2 (Truncation). A number is said to be truncated to m digits
when each digit except the m leftmost ones is replaced by 0.

Example 5.3 (Examples of truncation). The number 0.33333333 truncated to 4
digits is 0.3333, while 128.4 truncated to 2 digits is 120, and 0.67899 truncated to
4 digits is 0.6789.

Note that truncating a positive number a to an integer is equivalent to ap-
plying the floor function to a, i.e., if the result is b then

b = bac.
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Truncation is a very simple way to convert any real number to a floating-
point number: We just start computing the digits of the number, and stop as
soon as we have all the required digits. However, the error will often be much
larger than necessary, as in the last example above. Rounding is an alternative to
truncation that in general will make the error smaller, but is more complicated.

Definition 5.4 (Rounding). A number is said to be rounded to m digits when
it is replaced by the nearest number with the property that all digits beyond
position m is 0.

Example 5.5 (Examples of rounding). The number 0.33333333 rounded to 4 dig-
its is 0.3333. The result of rounding 128.4 to 2 digits is 130, while 0.67899 rounded
to 4 digits is 0.6790.

Rounding is something most of us do regularly when we go shopping, as
well as in many other contexts. However, there is one slight ambiguity in the
definition of rounding: What to do when the given number is halfway between
two m digit numbers. The standard rule taught in school is to round up in such
situations. For example, we would usually round 1.15 to 2 digits as 1.2, but 1.1
would give the same error. For our purposes this is ok, but from a statistical
point of view it is biased since we always round up when in doubt.

5.2.2 A simplified model for computer arithmetic

The details of computer arithmetic are technical, but luckily the essential fea-
tures of both the arithmetic and the round-off errors are present if we use the
same model of floating-point numbers as in section 4.2. Recall that any positive
real number a may be written as a normalised decimal number

α×10n ,

where the number α is in the range [0.1,1) and is called the significand, while
the integer n is called the exponent.

Fact 5.6 (Simplified model of floating-point numbers). Most of the short-
comings of floating-point arithmetic become visible in a computer model that
uses 4 digits for the significand, 1 digit for the exponent plus an optional sign
for both the significand and the exponent.
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Two typical normalised (decimal) numbers in this model are 0.4521×101 and
−0.9×10−5. The examples in this section will use this model, but the results can
be generalised to a floating-point model in base β, see exercise Exercise 7.

In the normalised, positive real number a = α×10n , the integer n provides
information about the size of a, while α provides the decimal digits of a, as a
fractional number in the interval [0.1,1). In our simplified arithmetic model, the
restriction that n should only have 1 decimal digit restricts the size of a, while the
requirement that α should have at most 4 decimal digits restricts the precision
of a.

It is easy to realise that even simple operations may lead to numbers that ex-
ceed the maximum size imposed by the floating-point model — just consider a
multiplication like 108 ×107. This kind of problem is easy to detect and is there-
fore not serious. The main challenge with floating-point numbers lies in keeping
track of the number of correct digits in the significand. If you are presented with
a result like 0.4521× 101 it is reasonable to expect the 4 digits 4521 to be cor-
rect. However, it may well happen that only some of the first digits are correct.
It may even happen that none of the digits reported in the result are correct. If
the computer told us how many of the digits were correct, this would not be so
serious, but in most situations you will get no indication that some of the digits
are incorrect. Later in this section, and in later chapters, we will identify some
simple situations where digits are lost.

Observation 5.7. The critical part of floating-point operations is the potential
loss of correct digits in the significand.

5.2.3 An algorithm for floating-point addition

In order to understand how round-off errors occur in addition and subtraction,
we need to understand the basic algorithm that is used. Since a −b = a + (−b),
it is sufficient to consider addition of numbers. The basic procedure for adding
floating-point numbers is simple (in reality it is more involved than what is stated
here).

Algorithm 5.8. To add two floating-point numbers a and b on a computer, the
following steps are performed:

1. The number with largest absolute value, say a, is written in normalised
form

a =α×10n ,
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and the other number b is written as

b =β×10n

with the same exponent as a and the same number of digits for the sig-
nificand β.

2. The significands α and β are added,

γ=α+β

3. The result c = γ×10n is converted to normalised form.

This apparently simple algorithm contains a serious pitfall which is most
easily seen from some examples. Let us first consider a situation where every-
thing works out nicely.

Example 5.9 (Standard case). Suppose that a = 5.645 and b = 7.821. We con-
vert the numbers to normal form and obtain

a = 0.5645×101, b = 0.7821×101.

We add the two significands 0.5645+ 0.7821 = 1.3466 so the correct answer is
1.3466×101. The last step is to convert this to normal form. In exact arithmetic
this would yield the result 0.13466× 102. However, this is not in normal form
since the significand has five digits. We therefore perform rounding, 0.13466 ≈
0.1347, and get the final result

0.1347×102.

Example 5.9 shows that we easily get an error when normalised numbers are
added and the result converted to normalised form with a fixed number of digits
for the significand. In this first example all the digits of the result are correct, so
the error is far from serious.

Example 5.10 (One large and one small number). If a = 42.34 and b = 0.0033
we convert the largest number to normal form

42.34 = 0.4234×102.

The smaller number b is then written in the same form (same exponent)

0.0033 = 0.000033×102.
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The significand in this second number must be rounded to four digits, and the
result of this is 0.0000. The addition therefore becomes

0.4234×102 +0.0000×102 = 0.4234×102.

The error in example 5.10 may seem serious, but once again the result is
correct to four decimal digits, which is the best we can hope for when we only
have this number of digits available.

Example 5.11 (Subtraction of two similar numbers I). Consider next a case where
a = 10.34 and b = −10.27 have opposite signs. We first rewrite the numbers in
normal form

a = 0.1034×102, b =−0.1027×102.

We then add the significands, which really amounts to a subtraction,

0.1034−0.1027 = 0.0007.

Finally, we write the number in normal form and obtain

a +b = 0.0007×102 = 0.7000×10−1. (5.1)

Example 5.11 may seem innocent since the result is exact, but in fact it con-
tains the seed for serious problems. A similar example will reveal what may eas-
ily happen.

Example 5.12 (Subtraction of two similar numbers II). Suppose that a = 10/7
and b =−1.42. Conversion to normal form yields

10

7
≈ a = 0.1429×101, b =−0.142×101.

Adding the significands yield

0.1429−0.142 = 0.0009.

When this is converted to normal form, the result is

0.9000×10−3

while the true result rounded to four correct digits is

0.8571×10−3. (5.2)

101



5.2.4 Observations on round-off errors in addition/subtraction

In example 5.12 there is a serious problem: We started with two numbers with
full four digit accuracy, but the computed result had only one correct digit. In
other words, we lost almost all accuracy when the subtraction was performed.
The potential for this loss of accuracy was present in example 5.11 where we
also had to add digits in the last step (5.1), but there we were lucky in that the
added digits were correct. In example 5.12 however, there would be no way for
a computer to know that the additional digits to be added in (5.2) should be
taken from the decimal expansion of 10/7. Note how the bad loss of accuracy in
example 5.12 is reflected in the relative error.

One could hope that what happened in example 5.12 is exceptional; after
all example 5.11 worked out very well. This is not the case. It is example 5.11
that is exceptional since we happened to add the correct digits to the result in
(5.1). This was because the numbers involved could be represented exactly in
our decimal model. In example 5.12 one of the numbers was 10/7 which cannot
be represented exactly, and this leads to problems.

Our observations can be summed up as follows.

Observation 5.13. Suppose the k most significant digits in the two numbers a
and b are the same. Then k digits may be lost when the subtraction a − b is
performed with algorithm 5.8.

This observation is very simple: If we start out with m correct digits in both a
and b, and the k most significant of those are equal, they will cancel in the sub-
traction. When the result is normalised, the missing k digits will be filled in from
the right. These new digits are almost certainly wrong and hence the computed
result will only have m −k correct digits. This effect is called cancellation and is
a very common source of major round-off problems. The moral is: Be on guard
when two almost equal numbers are subtracted.

In practice, a computer works in the binary numeral system. However, the
cancellation described in observation 5.13 is just as problematic when the num-
bers are represented as normalised binary numbers.

Example 5.10 illustrates another effect that may cause problems in certain
situations. If we add a very small number ε to a nonzero number a the result
may become exactly a. This means that a test like

if a = a +ε

may in fact become true.
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Observation 5.14. Suppose that the floating-point model in baseβuses m dig-
its for the significand and that a is a nonzero floating-point number. The addi-
tion a +ε will be computed as a if

|ε| < 0.5β−m |a|. (5.3)

The exact factor to be used on the right in (5.3) depends on the details of the
arithmetic. The factor 0.5β−m used here corresponds to rounding to the nearest
m digits.

A general observation to made from the examples is simply that there are
almost always small errors in floating-point computations. This means that if
you have computed two different floating-point numbers a and ã that from a
strict mathematical point of view should be equal, it is very risky to use a test
like

if a = ã

since it is rather unlikely that this will be true.
One situation where this problem may occur is in a loop like

x = 0.0;
while x ≤ 1.0

print x
x = x +0.1;

What happens here is that 0.1 is added to x each time we pass through the loop,
and the loop stops when x becomes larger than 1.0. The last time the result may
become 1+ ε rather than 1, where ε is some small positive number, and hence
the last time through the loop with x = 1 may never happen.

In fact, for many floating-point numbers a and b, even the two computa-
tions a +b and b +a give different results!

5.2.5 Multiplication and division of floating-point numbers

Multiplication and division of floating-point numbers is straightforward. Per-
haps surprisingly, these operations are not susceptible to round-off errors. As
for addition, both the procedures for performing the operations, and the effect
of round-off error, is most easily illustrated by some examples.

Example 5.15. Consider the two numbers a = 23.57 and b = −6.759 which in
normalised form are

a = 0.2357×102, b =−0.6759×101.
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To multiply the numbers, we multiply the significands and add the exponents,
before we normalise the result at the end, if necessary. In our example we obtain

a ×b =−0.15930963×103.

The significand in the result must be rounded to four digits and yields the floating-
point number

−0.1593×103,

i.e., the number −159.3.

Let us also consider an example of division.

Example 5.16. We use the same numbers as in example 5.15, but now we per-
form the division a/b. We have

a

b
= 0.2357×102

−0.6759×101 = 0.2357

−0.6759
×101,

i.e., we divide the significands and subtract the exponents. The division yields
0.2357/−0.6759 ≈−0.3487202. We round this to four digits and obtain the result

a

b
≈−0.3487×101 =−3.487.

The most serious problem with floating-point arithmetic is loss of correct
digits. In multiplication and division this cannot happen, so these operations
are quite safe.

Observation 5.17. Floating point multiplication and division do not lead to
loss of correct digits as long as the the numbers are within the range of the
floating-point model. In the worst case, the last digit in the result may be one
digit wrong.

The essence of observation 5.17 is that the above examples are representa-
tive of what happens. However, there are some other potential problems to be
aware of.

First of all observation 5.17 only says something about one multiplication or
division. When many such operations are stringed together with the output of
one being fed to the next, the errors may accumulate and become large even
when they are very small at each step. We will see examples of this in later chap-
ters.

In observation 5.17 there is one assumption, namely that the numbers are
within the range of the floating-point model. This applies to each of the operands
(the two numbers to be multiplied or divided) and the result. When the numbers
approach the limits of our floating-point model, things will inevitably go wrong.
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Underflow. Underflow occurs when a positive result becomes smaller than the
smallest representable, positive number; the result is then set to 0. This also
happens with negative numbers with small magnitude. In most environments
you will get a warning, but otherwise the calculations will continue. This will
usually not be a problem, but you should be aware of what happens.

Overflow. When the absolute value of a result becomes too large for the floating-
point standard, overflow occurs. This is indicated by the result receiving the
value infinityor possibly positive infinityor negative infinity. There
is a special combination of bits in the IEEE standard for these infinity values.
When you see infinity appearing in your calculations, you should be aware;
the chances are high that the reason is some programming error, or even worse,
an error in your algorithm. An operation like a/0.0 will yield infinity when a
is a nonzero number.

Undefined operations. The division 0.0/0.0 is undefined in mathematics, and
in the IEEE standard this will give the result NaN (not a number). Other opera-
tions that may produce NaN are square roots of negative numbers, inverse sine
or cosine of a number larger than 1, the logarithm of a negative number, etc.
(unless you are working with complex numbers). NaN is infectious in the sense
that any arithmetic operation that combines NaN with a normal number always
yields NaN. For example, the result of the operation 1+NaN will be NaN.

5.2.6 The IEEE standard for floating-point arithmetic

On most computers, floating-point numbers are represented, and arithmetic
performed according to, the IEEE1 standard. This is a carefully designed sugges-
tion for how floating-point numbers should behave, and is aimed at providing
good control of round-off errors and prescribing the behaviour when numbers
reach the limits of the floating-point model. Regardless of the particular details
of how the floating-point arithmetic is performed, however, the use of floating-
point numbers inevitably leads to problems, and in this section we will consider
some of those.

One should be aware of the fact the IEEE standard is extensive and com-
plicated, and far from all computers and programming languages support the
full standard. So if you are going to do serious floating-point calculations you

1 IEEE is an abbreviation for Institute of Electrical and Electronic Engineers which is a large pro-
fessional society for engineers and scientists in the USA. The floating-point standard is described
in a document called IEEE standard reference 754.
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should check how much of the IEEE standard that is supported in your environ-
ment. In particular, you should realise that if you move your calculations from
one environment to another, the results may change slightly because of different
implementations of the IEEE standard.

Exercises for Section 5.2

Exercise 1. Mark each of the following statements as true or false.

(a). The number 8.73 truncated to an integer is becomes 9.

(b). The method taught in school of rounding decimal numbers to the
nearest integer and rounding 0.5 up to 1 gives the smallest statistical error
possible.

(c). Rounding will always give a results which is at least as large as the
result of truncation.

Exercise 2. (Mid-term 2011) Which of the following expressions may give large
errors for at least one value of x, when calculated on a machine using floating
point arithmetic?
� x4 +2
� x2 +x4

� a = x/(1+x2)
� 1/2+ sin(−x2)

Exercise 3. Rounding and truncation.

(a). Round 1.2386 to 1 digit.

(b). Round 85.001 to 1 digit.

(c). Round 100 to 1 digit.

(d). Round 10.473 to 3 digits.

(e). Truncate 10.473 to 3 digits.

(f ). Round 4525 to 3 digits.

Exercise 4. Try to describe a rounding rule that is symmetric, i.e., it has no sta-
tistical bias.
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Exercise 5. The earliest programming languages would provide only the method
of truncation for rounding non-integer numbers. This can lead sometimes lead
to large errors as 2.000 - 0.001 = 1.999 would be rounded of to 1 if truncated to
an integer. Express rounding a number to the nearest integer in terms of trun-
cation.

Exercise 6. Use the floating-point model defined in this chapter with 4 digits
for the significand and 1 digit for the exponent, and use algorithm 5.8 to do the
calculations below in this model.

(a). 12.24+4.23.

(b). 9.834+2.45.

(c). 2.314−2.273.

(d). 23.45−23.39.

(e). 1+x −ex for x = 0.1.

Exercise 7. Floating-point models for other bases.

(a). Formulate a model for floating-point numbers in base β.

(b). Generalise the rule for rounding of fractional numbers in the deci-
mal system to the octal system and the hexadecimal system.

(c). Formulate the rounding rule for fractional numbers in the base-β
numeral system.

Exercise 8. From the text it is clear that on a computer, the addition 1.0+ε will
give the result 1.0 if ε is sufficiently small. Write a computer program which can
help you to determine the smallest integer n such that 1.0+2−n gives the result
1.0

Exercise 9. Consider the simple algorithm
x = 0.0;
while x ≤ 2.0

print x
x = x +0.1;

What values of x will be printed?
Implement the algorithm in a program and check that the correct values are

printed. If this is not the case, explain what happened.
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Exercise 10. Rounding and different laws.

(a). A fundamental property of real numbers is given by the distributive
law

(x + y)z = xz + y z. (5.4)

In this problem you are going to check whether floating-point numbers
obey this law. To do this you are going to write a program that runs through
a loop 10 000 times and each time draws three random numbers in the in-
terval (0,1) and then checks whether the law holds (whether the two sides
of (5.4) are equal) for these numbers. Count how many times the law fails,
and at the end, print the percentage of times that it failed. Print also a set
of three numbers for which the law failed.

(b). Repeat (a), but test the associative law (x+y)+z = x+(y+z) instead.

(c). Repeat (a), but test the commutative law x + y = y +x instead.

(d). Repeat (a) and (b), but test the associative and commutative laws for
multiplication instead.

5.3 Measuring the error

In the previous section we saw that errors usually occur during floating point
computations, and we therefore need a way to measure this error. Suppose we
have a number a and an approximation ã. We are going to consider two ways to
measure the error in such an approximation, the absolute error and the relative
error.

5.3.1 Absolute error

The first error measure is the most obvious, it is essentially the difference be-
tween a and ã.

Definition 5.18 (Absolute error). Suppose ã is an approximation to the num-
ber a. The absolute error in this approximation is given by |a − ã|.

If a = 100 and ã = 100.1 the absolute error is 0.1, whereas if a = 1 and ã = 1.1
the absolute error is still 0.1. Note that if a is an approximation to ã, then ã is an
equally good approximation to a with respect to the absolute error.
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5.3.2 Relative error

For some purposes the absolute error may be what we want, but in many cases
it is reasonable to say that the error is smaller in the first example above than in
the second, since the numbers involved are bigger. The relative error takes this
into account.

Definition 5.19 (Relative error). Suppose that ã is an approximation to the
nonzero number a. The relative error in this approximation is given by

|a − ã|
|a| .

We note that the relative error is obtained by scaling the absolute error with
the size of the number that is approximated. If we compute the relative errors
in the approximations above we find that it is 0.001 when a = 100 and ã = 100.1,
while when a = 1 and ã = 1.1 the relative error is 0.1. In contrast to the absolute
error, we see that the relative error tells us that the approximation in the first
case is much better than in the latter case. In fact we will see in a moment that
the relative error gives a good measure of the number of digits that a and ã have
in common.

We use concepts which are closely related to absolute and relative errors in
many everyday situations. One example is profit from investments, like bank ac-
counts. Suppose you have invested some money and after one year, your profit
is 100 (in your local currency). If your initial investment was 100, this is a very
good profit in one year, but if your initial investment was 10 000 it is not so im-
pressive. If we let a denote the initial investment and ã the investment after one
year, we see that, apart from the sign, the profit of 100 corresponds to the ’abso-
lute error’in the two cases. On the other hand, the relative error corresponds to
profit measured in %, again apart from the sign. This says much more about how
good the investment is since the profit is compared to the initial investment. In
the two cases here, we find that the profit in % is 1 = 100% in the first case and
0.01 = 1% in the second.

Another situation where we use relative measures is when we give the con-
centration of an ingredient within a substance. If for example the fat content in
milk is 3.5 % we know that a grams of milk will contain 0.035a grams of fat. In
this case ã denotes how many grams that are not fat. Then the difference a − ã
is the amount of fat and the equation a − ã = 0.035a can be written

a − ã

a
= 0.035
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which shows the similarity with relative error.

5.3.3 Properties of the relative error

The examples above show that we may think of the relative error as the ‘concen-
tration’of the error |a − ã| in the total ‘volume’|a|. However, this interpretation
can be carried further and linked to the number of common digits in a and ã: If
the size of the relative error is approximately 10−m , then a and ã have roughly
m digits in common. If the relative error is r , this corresponds to − log10 r being
approximately m.

Observation 5.20 (Relative error and significant digits). Let a be a nonzero
number and suppose that ã is an approximation to a with relative error

r = |a − ã|
|a| ≈ 10−m (5.5)

where m is an integer. Then roughly the m most significant decimal digits of a
and ã agree.

Sketch of ‘proof’. Since a is nonzero, it can be written as a = α× 10n where α
is a number in the range 1 ≤ α < 10 that has the same decimal digits as a, and
n is an integer. The approximation ã be be written similarly as ã = α̃×10n and
the digits of α̃ are exactly those of ã. Our job is to prove that roughly the first m
digits of a and ã agree.

Let us insert the alternative expressions for a and ã in (5.5). If we cancel the
common factor 10n and multiply by α, we obtain

|α− α̃| ≈α×10−m . (5.6)

Since α is a number in the interval [1,10), the right-hand side is roughly a num-
ber in the interval [10−m ,10−m+1). This means that by subtracting α̃ from α, we
cancel out the digit to the left of the decimal point, and m −1 digits to the right
of the decimal point. But this means that the m most significant digits of α and
α̃ agree.

Some examples of numbers a and ã with corresponding relative errors are
shown in Table 5.1. In the first case everything works as expected. In the second
case the rule only works after a and ã have been rounded to two digits. In the
third example there are only three common digits even though the relative error
is roughly 10−4 (but note that the fourth digit is only off by one unit). Similarly,
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a ã r

12.3 12.1 1.6×10−2

12.8 13.1 2.3×10−2

0.53241 0.53234 1.3×10−4

8.96723 8.96704 2.1×10−5

Table 5.1. Some numbers a with approximations ã and corresponding relative errors r .

in the last example, the relative error is approximately 10−5, but a and ã only
have four digits in common, with the fifth digits differing by two units.

The last two examples illustrate that the link between relative error and sig-
nificant digits is just a rule of thumb. If we go back to the ‘proof’of observa-
tion 5.20, we note Âăthat as the left-most digit in a (and α) becomes larger,
the right-hand side of (5.6) also becomes larger. This means that the number
of common digits may become smaller, especially when the relative error ap-
proaches 10−m+1 as well. In spite of this, observation 5.20 is a convenient rule of
thumb.

Observation 5.20 is rather vague when it just assumes that r ≈ 10−m . The
basis for making this more precise is the fact that m is equal to − log10 r , rounded
to the nearest integer. This means that m is characterised by the inequalities

m −0.5 <− log10 r ≤ m +0.5.

and this is in turn equivalent to

r = ρ×10−m , where
1p
10

< ρ <p
10.

The absolute error has the nice property that if ã is a good approximation to
a, then a is an equally good approximation to ã. The relative error has a similar
property. It can be shown that if ã is an approximation to a with small relative
error, then a is also an approximation to ã with small relative error.

5.3.4 Errors in floating-point representation

Recall from chapter 3 that most real numbers cannot be represented exactly with
a finite number of decimals. In fact, there are only a finite number of floating-
point numbers in total. This means that very few real numbers can be repre-
sented exactly by floating-point numbers, and it is useful to have a bound on
how much the floating-point representation of a real number deviates from the
number itself. From observation 5.20 it is not suprising that the relative error is
a good tool for measuring this error.
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Lemma 5.21. Suppose that a is a nonzero real number within the range of
base-β normalised floating-point numbers with an m digit significand, and
suppose that a is represented by the nearest floating-point number ã. Then the
relative error in this approximation is at most

|a − ã|
|a| ≤ 5β−m . (5.7)

Proof. For simplicity we first do the proof in the decimal numeral system. We
write a as a normalised decimal number,

a =α×10n ,

where α is a number in the range [0.1,1). The floating-point approximation ã
can also be written as

ã = α̃×10n ,

where α̃ is α rounded to m digits. Suppose for example that m = 4 and α̃ =
0.3218. Then the absolute value of the significand |α| of the original number
must lie in the range [0.32175,0.32185), so in this case the largest possible dis-
tance between α and α̃ is 5 units in the fifth decimal, i.e., the error is bounded
by 5×10−5 = 0.5×10−4. A similar argument shows that in the general decimal
case we have

|α− α̃| ≤ 0.5×10−m .

The relative error is therefore bounded by

|α− α̃|
|a| ≤ 0.5×10−m ×10n

|α|×10n = 0.5×10−m

|α| ≤ 5×10−m

where the last inequality follows since |α| ≥ 0.1.

Although we only considered normalised numbers in bases 2 and 10 in chap-
ter 4, normalised numbers may be generalised to any base. In base β the dis-
tance between α and α̃ is at most 0.5ββ−m−1 = 0.5β−m , see exercise Exercise 7.
Since we also have |α| ≥ β−1, an argument completely analogous to the one in
the decimal case proves (5.7).

Note that lemma 5.21 states what we already know, namely that a and ã have
roughly m −1 or m digits in common.
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Exercises for Section 5.3

Exercise 1. Mark each of the following statements as true or false.

(a). The absolute error is always larger than the relative error.

(b). If the relative error is 0, then the absolute error is also 0.

(c). If ā and ã are two different approximations to a, with relative errors
ε1 and ε2, then the relative error of ā when compared to ã is less than or
equal to ε1 +ε2.

(d). If ā and ã are two different approximations to a, with absolute errors
ε1 and ε2, then the absolute error of ā when compared to ã is less than or
equal to ε1 +ε2.

Exercise 2. Suppose that ã is an approximation to a in the problems below, cal-
culate the absolute and relative errors in each case, and check that the relative
error estimates the number of correct digits as predicted by observation 5.20.

(a). a = 1, ã = 0.9994.

(b). a = 24, ã = 23.56.

(c). a =−1267, ã =−1267.345.

(d). a = 124, ã = 7.

Exercise 3. Compute the relative error of a with regard to ã for the examples in
exercise Exercise 2, and check whether the two errors are comparable as sug-
gested in the last sentence in section 5.3.3.

Exercise 4. Compute the relative errors in examples 5.9–5.12, and check whether
observation 5.20 is valid in these cases.

Exercise 5. The Vancouver stock exchange devised a short-lived index (weighted
average of the value of a group of stocks). At its inception in 1982, the index was
given a value of 1000.000. After 22 months of recomputing the index and trun-
cating to three decimal places at each change in market value, the index stood
at 524.881, despite the fact that its ‘true’ value should have been 1009.811. Find
the relative error in the stock exchange value.
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Exercise 6. In the 1991 Gulf War, the Patriot missile defence system failed due
to round-off error. The troubles stemmed from a computer that performed the
tracking calculations. The computer’s internal clock generated integer values
that were converted to real time values by multiplying the integer values by 0.1,
with the arithmetic carried out in binary. The approximation which was used for
0.1 was

0.110 ≈ 0.000110011001100110011002 = 209715

2097152
.

(a). Find the absolute and relative error in this approximation.

(b). The computed time values corresponded to time given in tenths of a
second and was therefore calculated 10 times every second by the equiv-
alent of the naive code

c = 209715/2097152
while not ready

t = t + it ∗ c

where it is the integer increment of the internal clock.

Find the accumulated error after 1 hour.

(c). Find an alternative algorithm that avoids the accumulation of round-
off error.

After the system had been running for 100 hours, an error of 0.3433 seconds
had accumulated. This discrepancy caused the Patriot system to continuously
recycle itself instead of targeting properly. As a result, an Iraqi Scud missile could
not be targeted and was allowed to detonate on a barracks, killing 28 people.

5.4 Rewriting formulas to avoid rounding errors

Certain formulas lead to large rounding errors when they are evaluated with
floating-point numbers. In some cases though, the result can be evaluated with
an alternative formula that is not problematic. In this section we will consider
some examples of this.

Example 5.22. Suppose we are going to evaluate the expression

1p
x2 +1−x

(5.8)
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for a large number like x = 108. The problem here is the fact that x and
p

x2 +1
are almost equal when x is large,

x = 108 = 100000000,√
x2 +1 ≈ 100000000.000000005.

Even with 64-bit floating-point numbers the square root will therefore be com-
puted as 108, so the denominator in (5.8) will be computed as 0, and we get
division by 0. This is a consequence of floating-point arithmetic since the two
terms in the denominator are not really equal. A simple trick helps us out of this
problem. Note that

1p
x2 +1−x

= (
p

x2 +1+x)

(
p

x2 +1−x)(
p

x2 +1+x)
=

p
x2 +1+x

x2 +1−x2 =
√

x2 +1+x.

This alternative expression can be evaluated for large values of x without any
problems with cancellation. The result for x = 108 is√

x2 +1+x ≈ 200000000

where all the digits are correct.

The fact that we were able to find an alternative formula in example 5.22 may
seem very special, but it it is not unusual. Here is another example.

Example 5.23. For most values of x, the expression

1

cos2 x − sin2 x
(5.9)

can be computed without problems. However, for x = π/4 the denominator is
0, so we get division by 0 since cos x and sin x are equal for this value of x. This
means that when x is close to π/4 we will get cancellation. This can be avoided
by noting that cos2 x − sin2 x = cos2x, so the expression (5.9) is equivalent to

1

cos2x
.

This can be evaluated without problems for all values of x for which the denom-
inator is nonzero, as long as we do not get overflow.

115



Exercises for Section 5.4

Exercise 1. (a). (Mid-term 2011) The number

5−p
5

5+p
5
+
p

5

2

is the same as

�
p

5

� 1+p
5

� 1

� 3/2

(b). (Mid-term 2011) Only one of the following statements is true, which
one?

� Computers will never give round off errors as long as we use positive
numbers.

� There is no limit to how lagre numbers we can work with on a given
computer.

�With 64-bit integers we van represent numbers of size up to 265.

� We can represent larger numbers with 64-bit floating point numbers
than with 64-bit integers.

Exercise 2. Identify values of x for which the formulas below may lead to large
round-off errors, and suggest alternative formulas which do not have these prob-
lems.

(a).
p

x +1−p
x.

(b). ln x2 − ln(x2 +x).

(c). cos2 x − sin2 x.

Exercise 3. Suppose you are going to write a program for computing the real
roots of the quadratic equation ax2 +bx + c = 0, where the coefficients a, b and
c are real numbers. The traditional formulas for the two solutions are

x1 = −b −
p

b2 −4ac

2a
, x2 = −b +

p
b2 −4ac

2a
.

Identify situations (values of the coefficients) where the formulas do not make
sense or lead to large round-off errors, and suggest alternative formulas for these
cases which avoid the problems.

116



Exercise 4. The binomial coefficient
(n

i

)
is defined as(

n

i

)
= n!

i ! (n − i )!
(5.10)

where n ≥ 0 is an integer and i is an integer in the interval 0 ≤ i ≤ n. The bino-
mial coefficients turn up in a number of different contexts and must often be cal-
culated on a computer. Since all binomial coefficients are integers (this means
that the division in (5.10) can never give a remainder), it is reasonable to use
integer variables in such computations. For small values of n and i this works
well, but for larger values we may run into problems because the numerator and
denominator in (5.10) may become larger than the largest permissible integer,
even if the binomial coefficient itself may be relatively small. In many languages
this will cause overflow, but even in a language like Python, which on overflow
converts to a format in which the size is only limited by the resources avail-
able, the performance is reduced considerably. By using floating-point numbers
we may be able to handle larger numbers, but again we may encounter too big
numbers during the computations even if the final result is not so big.

An unfortunate feature of the formula (5.10) is that even if the binomial coef-
ficient is small, the numerator and denominator may both be large. In general,
this is bad for numerical computations and should be avoided, if possible. If
we consider the formula (5.10) in some more detail, we notice that many of the
numbers cancel out,(

n

i

)
= 1 ·2 · · · i · (i +1) · · ·n

1 ·2 · · · i ·1 ·2 · · · (n − i )
= i +1

1
· i +2

2
· · · n

n − i
.

Employing the product notation we can therefore write
(n

i

)
as(

n

i

)
=

n−i∏
j=1

i + j

j
.

(a). Write a program for computing binomial coefficients based on this
formula, and test your method on the coefficients(

9998

4

)
= 416083629102505,

(
100000

70

)
= 8.14900007813826 ·10249,

(
1000

500

)
= 2.702882409454366 ·10299.
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Why do you have to use floating-point numbers and what results do you
get?

(b). Is it possible to encounter too large numbers during those computa-
tions if the binomial coefficient to be computed is smaller than the largest
floating-point number that can be represented by your computer?

(c). In our derivation we cancelled i ! against n! in (5.10), and thereby ob-
tained the alternative expression for

(n
i

)
. Another method can be derived

by cancelling (n − i )! against n! instead. Derive this alternative method in
the same way as above, and discuss when the two methods should be used
(you do not need to program the other method; argue mathematically).
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Part II

Sequences of Numbers
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CHAPTER 6

Numerical Simulation
of Difference Equations

An important ingredient in school mathematics is solution of algebraic equa-
tions like x +3 = 4. The challenge is to determine a numerical value for x such
that the equation holds. In this chapter we are going to give a brief review of
difference equations or recurrence relations. In contrast to traditional equations,
the unknown in a difference equation is not a single number, but a sequence of
numbers.

For some simple difference equations, an explicit formula for the solution
can be found with pencil-and-paper methods, and we will review some of these
methods in section 6.4. For most difference equations, there are no explicit so-
lutions. However, a large group of equations can be solved numerically, or sim-
ulated, on a computer, and in section 6.3 we will see how this can be done.

In chapter 5 we saw how real numbers can be approximated by floating-
point numbers, and how the limitations inherent in floating-point numbers some-
times may cause dramatic errors. In section 6.5 we will see how round-off errors
affect the simulation of even the simplest difference equations.

6.1 Why equations?

The reason equations are so useful is that they allow us to characterise unknown
quantites in terms of natural principles that may be formulated as equations.
Once an equation has been written down, we can apply standard techniques for
solving the equation and determining the unknown. To illustrate, let us consider
a simple example.

A common type of puzzle goes like this: Suppose a man has a son that is half
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his age, and the son will be 16 years younger than his father in 5 years time. How
old are they?

With equations we do not worry about the ages, but rather write down what
we know. If the age of the father is x and the age of the son is y , the first piece of
information can be expressed as y = x/2, and the second as y = x −16. This has
given us two equations in the two unknowns x and y ,

y = x/2,

y = x −16.

Once we have the equations we use standard techniques to solve them. In this
case, we find that x = 32 and y = 16. This means that the father is 32 years old,
and the son 16.

Exercises for Section 6.1

Exercise 1. One of the oldest known age puzzles is known as Diophantus’ rid-
dle. It comes from the Greek Anthology, a collection of puzzles compiled by
Metrodorus of Chios in about 500 AD. The puzzle claims to tell how long Dio-
phantus lived in the form of a riddle engraved on his tombstone:

God vouchsafed that he should be a boy for the sixth part of his life;
when a twelfth was added, his cheeks acquired a beard; He kindled
for him the light of marriage after a seventh, and in the fifth year
after his marriage He granted him a son. Alas! late-begotten and
miserable child, when he had reached the measure of half his fa-
ther’s life, the chill grave took him. After consoling his grief by this
science of numbers for four years, he reached the end of his life.

How old were Diophantus and his son at the end of their lives?

6.2 Difference equations defined

The unknown variable in a difference equation is a sequence of numbers, rather
than just a single number, and the difference equation describes a relation that
is required to hold between the terms of the unknown sequence. Difference
equations therefore allow us to model phenomena where the unknown is a se-
quence of values, like the annual growth of money in a bank account, or the
size of a population of animals over a period of time. The difference equation,
i.e., the relation between the terms of the unknown sequence, is obtained from
known principles, and then the equation is solved by a mathematical or numer-
ical method.
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Example 6.1. A simple difference equation arises if we try to model the growth
of money in a bank account. Suppose that the amount of money in the account
after n years is xn , and the interest rate is 5 % per year. If interest is added once
a year, the amount of money after n+1 years is given by the difference equation

xn+1 = xn +0.05xn = 1.05xn . (6.1)

This equation characterises the growth of all bank accounts with a 5 % interest
rate — in order to characterise a specific account we need to know how much
money there was in the account to start with. If the initial deposit was 100 000 (in
your favourite currency) at time n = 0, we have an initial condition x0 = 100 000.
This gives the complete model

xn+1 = 1.05xn , x0 = 100 000. (6.2)

This is an example of a first-order difference equation with an initial condition.
From the information in (6.2) we can compute the values of xn for n ≥ 0. If we
set n = 0, we find

x1 = 1.05x0 = 1.05×100 000 = 105 000.

We can then set n = 1 and obtain

x2 = 1.05x1 = 1.05×105 000 = 110 250.

These computations can clearly be continued for as long as we wish, and in this
way we can compute the value of xn for any positive integer n. For example, we
find that x10 ≈ 162 889.

Example 6.2. Suppose that we withdraw 1 000 from the account every year. If
we include this in our model we obtain the equation

xn+1 = 1.05xn −1 000. (6.3)

If we start with the same amount x0 = 100 000 as above, we now find x1 = 104 000,
x2 = 108 200, and x10 ≈ 150 312.

Example 6.3. As the capital accumulates, it is reasonable that the owner in-
creases the withdrawals. If for example the amount withdrawn increases by 300
each year, we get the model

xn+1 = 1.05xn − (1 000+300n). (6.4)

In this case we find x1 = 104 000, x2 = 107 900, and x10 = 134 844.
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Figure 6.1. The growth of capital according to the models (6.1) (largest growth), (6.3) (middle growth), and
(6.4) (smallest growth).

Plots of the development of the capital in the three different cases are shown
in figure 6.1. Note that in the case of (6.4) it appears that the growth of the capital
levels out. In fact, it can be shown that after about 45 years, all the capital will be
gone, and x46 will in fact be negative, i.e., money must be borrowed in order to
keep up the withdrawals.

After these simple examples, let us define difference equations in general.

Definition 6.4 (Difference equation). A difference equation or recurrence re-
lation is an equation that involves the terms of an unknown sequence {xn}. The
equation is said to be of order k if a term in the sequence depends on k previous
terms, as in

xn+k = f (n, xn , xn+1, . . . , xn+k−1), (6.5)

where f is a function of k +1 variables. The actual values of n for which (6.5)
should hold may vary, but would typically be all nonzero integers.

It is instructive to see how the three examples above fit into the general set-
ting of definition 6.4. In all three cases we have k = 1; in the case (6.1) we have
f (t , x) = 1.05x, in (6.3) we see that f (t , x) = 1.05x − 1000, and in (6.4) we have
f (t , x) = 1.05x − (1000+300t ).

The examples above all led to a simple first-order difference equation. Here
is an example where we end up with an equation of higher order.

Example 6.5. An illness spreads by direct contact between individuals. Each
day a person with the illness infects one new person, and the infected person
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becomes ill after three days. This means that on day n, the total number of ill
persons are the people who were ill yesterday, plus the number of people who
were infected three days ago. But this latter number equals the number of peo-
ple that were ill three days ago. If xn denotes the number of ill people on day n,
we therefore have

xn = xn−1 +xn−3, n = 3, 4, . . . ,

or
xn+3 = xn+2 +xn , n = 0, 1, . . .

We obtain a difference equation of order k if we assume that the incubation
time is k days. By reasoning in the same way we then find

xn+k = xn+k−1 +xn , n = 0, 1, . . . (6.6)

Note that in the case k = 2 we get the famous Fibonacci model.

6.2.1 Initial conditions

Difference equations are particularly nice from a computational point of view
since we have an explicit formula for a term in the sequence in terms of previous
terms. In the bank example above, next year’s balance is given explicitly in terms
of this year’s balance in formulas (6.1), (6.3), and (6.4), and this makes it easy to
successively compute the balance, starting with the first year.

For general equations, we can compute xn+k from the k previous terms in
the sequence, as in (6.5). In order for this to work, we must be able to start
somewhere, i.e., we need to know k consecutive terms in the sequence. It is
common to assume that these terms are x0, . . . , xk−1, but they could really be
any k consecutive terms.

Observation 6.6 (Initial conditions). For a difference equation of order k, the
solution is uniquely determined if k consecutive values of the solution is speci-
fied. These initial conditions are usually given as

x0 = a0, x1 = a1, . . . xk = ak ,

where a0, . . . , ak are given numbers.

Note that the number of initial conditions required equals the order of the
equation. The model for population growth (6.6) therefore requires k initial con-
ditions. A natural way to choose the initial conditions in this model is to set

x0 = ·· · = xk = 1. (6.7)
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This corresponds to starting with a population of one new-born pair which re-
mains the only one until this pair gives birth to another pair after k months.

6.2.2 Linear difference equations

It is convenient to classify difference equations according to their structure, and
for many purposes the simplest ones are the linear difference equations.

Definition 6.7. A kth-order difference equation is said to be linear and inho-
mogenous if it has the form

xn+k = g (n)+ f0(n)xn + f1(n)xn+1 +·· ·+ fk−1(n)xn+k−1,

where g and f0, . . . , fk−1 are functions of n. The equation is said to have con-
stant coefficients if the functions f0 . . . , fk−1 do not depend on n. It is said to
be homogenous if g (n) = 0 for all n.

From this definition we see that all the difference equations we have encoun-
tered so far have been linear, with constant coefficients. The equations (6.3) and
(6.4) are inhomogenous, the others are homogenous.

Linear difference equations are important because it is relatively simple to
predict and analyse their solutions, as we will see in section 6.4.

6.2.3 Solving difference equations

In examples 6.1–6.3 we saw how easy it is to compute the terms of the sequence
determined by a difference equation since the equation itself is quite simply a
formula which tells us how one term can be computed from the previous ones.
Provided the functions involved are computable and the calculations are done
correctly (without round-off errors), we can therefore determine the exact value
of any term in the solution sequence in this way. We refer to this as simulating
the difference equation.

There is another way to solve a difference equation, namely by determining
an explicit formula for the solution. For instance, the difference equations in
examples 6.1–6.3 turn out to have the solutions that are given by the formulas

xn = 100 000×1.05n , (6.8)

xn = 80 000×1.05n +20 000, (6.9)

xn =−40 000×1.05n +6 000n +140 000. (6.10)

The advantage of these formulas is that we can compute the value of a term im-
mediately, without first computing all the preceding terms. With such formulas
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we can also deduce the asymptotic behaviour of the solution. For example we
see straightaway from (6.10) that in the situation in example 6.3, all the capi-
tal will eventually be used up, since xn becomes negative for sufficiently large n.
Another use of solution formulas like the ones in (6.8)–(6.10) is for predicting the
effect of round-off errors on the numerical solutions computed by simulating a
difference equation, see section 6.5.

Observation 6.8 (Solving difference equations). There are two different ways
to ’solve’ a difference equation:

1. By simulating the equation, i.e., by starting with the initial values, and
then successively computing the numerical values of the terms of the so-
lution sequence, as in examples 6.1–6.3.

2. By finding an explicit formula for the solution sequence, as in (6.8)–
(6.10).

We emphasise that solution by formulas like (6.8)–(6.10) is only possible in
some special cases like linear equations with constant coefficients. On the other
hand, simulation of the difference equation is possible for very general equa-
tions in the form (6.5), the only requirement is that all the functions involved are
computable.

We will discuss simulation of difference equations in section 6.3, and then
review solution by a formula for linear equations in section 6.4. In section 6.5
we will then use our knowledge of solution formulas to analyse the effects of
round-off errors on the simulation of linear difference equations.

Exercises for Section 6.2

Exercise 1. (a). (Mid-term 2007) Which one of the following difference
equations is linear and has constant coefficients? � xn+1 +nxn = 1

� xn+2 −4xn+1 +x2
n = 0

� xn+1 −xn = 0

� xn+2 +4xn+1 +xn = sin(2n).

(b). If we have the difference equation xn+1 −xn = n, with x1 = 1, what is
the value of x5?

� 11

� 12
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� 13

� 14

Exercise 2. Compare with (6.5) and determine the function f for the difference
equations below. Also compute the values of x2, . . . , x5 in each case.

(a). xn+2 = 3xn+1 −xn , x0 = 2, x1 = 1.

(b). xn+2 = xn+1 +3xn , x0 = 4, x1 = 5.

(c). xn+2 = 2xn+1xn , x0 = 1, x1 = 2.

(d). xn+1 =−p4−xn , x0 = 0.

(e). 5xn+2 −3xn+1 +xn = n, x0 = 0, x1 = 1.

(f ). x2
n+1 +5xn = 1, x0 = 3.

Exercise 3. Which of the following equations are linear?

(a). xn+2 +3xn+1 − sin(n)xn = n!.

(b). xn+3 −xn+1 +x2
n = 0.

(c). xn+2 +xn+1xn = 0.

(d). nxn+2 −xn+1en +xn = n2.

6.3 Simulating difference equations

In examples 6.1–6.3 above we saw that it was easy to compute the numerical
values of the terms in a difference equation. In this section we are going to for-
malise this as an algorithm. Let us start by doing this for second-order linear
equations. These are equations in the form

xn+2 = g (n)+ f0(n)xn + f1(n)xn+1, x0 = a0, x1 = a1, (6.11)

where g , f0 and f1 are given functions of n, and a0 and a1 are given real numbers.
Let us consider an example to remind ourselves how the terms are computed.
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Example 6.9. We consider the difference equation

xn+2 = n +2xn −3nxn+1, x0 = 1, x1 = 2,

in other words we have g (n) = n, f0(n) = 2, and f1(n) = −3n in this case. If we
set n = 0 in the difference equation we can compute x2 as

x2 = 0+2×x0 −3×0×x1 = 2.

We continue and set n = 1 which yields

x3 = 1+2×x1 −3×1×x2 = 1+4−6 =−1.

We take one more step and obtain (n = 2)

x4 = 2+2×x2 −3×2×x3 = 2+4+6 = 12.

In general, these computations can be phrased as a formal algorithm.

Algorithm 6.10. Suppose the second-order equation (6.11) is given, i.e., the
functions g , f0, and f1 are given together with the initial values a0 and a1.
The following algorithm will compute the first N +1 terms x0, x1, . . . , xN of the
solution:

x0 = a0;
x1 = a1;
for i = 2, 3, . . . , N

xi = g (i −2)+ f0(i −2)xi−2 + f1(i −2)xi−1;

This algorithm computes all the N + 1 terms and saves them in the array
x = [x0, . . . , xN ]. Sometimes we are only interested in the last term xN , or we just
want to print out the terms as they are computed — then there is no need to
store all the terms.

Algorithm 6.11. The following algorithm computes the solution of (6.11), just
like algorithm 6.10, but prints each term instead of storing them:

xpp = a0;
xp = a1;
for i = 2, 3, . . . , N

x = g (i −2)+ f0(i −2)xpp + f1(i −2)xp ;
print x;
xpp = xp ;
xp = x;
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The algorithm is based on the simple fact that in order to compute the next
term, we only need to know the two previous terms, since the equation is of
second order. At time i , the previous term xi−1 is stored in xp and the term xi−2

is stored in xpp . Once xi has been computed, we must prepare for the next step
and make sure that xp is shifted down to xpp , which is not needed anymore, and
x is stored in xp . Note that it is important that these assignments are performed
in the right order. At the beginning, the values of xp and xpp are given by the
initial values.

In both of these algorithms it is assumed that the coefficients given by the
functions g , f0 and f1, as well as the initial values a0 and a1, are known. In prac-
tice, the coefficient functions would usually be entered as functions (or meth-
ods) in the programming language you are using, while the initial values could
be read from the terminal or via a graphical user interface.

Algorithms (6.10) and (6.11) can easily be generalised to 3rd or 4th order, or
equations of any fixed order, and not only linear equations. The most conve-
nient is to have an algorithm which takes the order of the equation as input.

Algorithm 6.12. The following algorithm computes and prints the first N +1
terms of the solution of the kth-order difference equation

xn+k = f (n, xn , xn+1, . . . , xn+k−1), n = 0, 1, . . . , N −k (6.12)

with initial values x0 = a0, x1 = a1, . . . , xk−1 = ak−1. Here f is a given function
of k +1 variables, and a0, . . . , ak−1 are given real numbers.

for i = 0, 1, . . . , k −1
zi = ai ;
print zi ;

for i = k, k +1, . . . , N
x = f (i −k, z0, . . . , zk−1);
print x;
for j = 0, . . . , k −2

zi = zi+1;
zk−1 = x;

Algorithm 6.12 is similar to algorithm 6.11 in that it does not store all the
terms of the solution sequence. To compensate it keeps track of the k previous
terms in the array z = [z0, . . . , zk−1]. The values xk , xk+1, . . . , xN are computed in
the second for-loop. By comparison with (6.12) we observe that i = n +k; this
explains i −k = n as the first argument to f . The initial values are clearly correct
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the first time through the loop, and at the end of the loop they are shifted along
so that the value in z0 is lost and the new value x is stored in zk−1.

Difference equations have the nice feature that a term in the unknown se-
quence is defined explicitly as a function of previous values. This is what makes
it so simple to generate the values by algorithms like the ones sketched here.
Provided the algorithms are correct and all operations are performed without
errors, the exact solution will be computed. When the algorithms are imple-
mented on a computer, this is the case if all the initial values are integers and all
computations can be performed without introducing floating-point numbers.
One example is the Fibonacci equation

xn+2 = xn +xn+1, x0 = 1, x1 = 1.

However, if floating-point numbers are needed for the computations, round-off
errors are bound to occur and it is important to understand how this affects the
computed solution. This is quite difficult to analyse in general, so we will restrict
our attention to linear equations with constant coefficients. First we need to
review the basic theory of linear difference equations.

Exercises for Section 6.3

Exercise 1. Mark each of the following statements as true or false.

(a). It is always possible to solve a difference equation numerically, given
the function describing the equation and an appropriate number of initial
conditions.

(b). Using Algorithm 6.10, i.e. storing all the values xi as we solve the dif-
ference equation numerically, we can find any number xi in the solution.

(c). When solving a difference equation numerically, we never need to
store more than the two previous terms in order to calculate the next one.

Exercise 2. Program algorithm 6.11 and test it on the Fibonacci equation

xn+2 = xn+1 +xn , x0 = 0, x1 = 1.

Exercise 3. Generalise algorithm 6.11 to third order equations and test it on the
Fibonacci like equation

xn+3 = xn+2 +xn+1 +xn , x0 = 0, x1 = 1, x2 = 1.
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Exercise 4. A close relative of the Fibonacci numbers is called the Lucas num-
bers, and these are defined by the difference equation

Ln+2 = Ln+1 +Ln , L0 = 2, L1 = 1.

Write a program which prints the following information:

(a). The 18th Lucas number.

(b). The first Lucas number greater than 100.

(c). The value of n for the number in (b).

(d). The Lucas number closest to 1000.

6.4 Review of the theory for linear equations

Linear difference equations with constant coefficients have the form

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = g (n)

where b0, . . . , bk−1 are real numbers and g (n) is a function of one variable. Ini-
tially we will focus on first-order (k = 1) and second-order (k = 2) equations for
which g (n) = 0 for all n (homogenous equations). We will derive explicit for-
mulas for the solutions of such equations, and from this, the behaviour of the
solution when n tends to infinity. This will help us to understand how round-off
errors influence the results of numerical simulations of difference equations—
this is the main topic in section 6.5.

6.4.1 First-order homogenous equations

The general first-order linear equation with constant coefficients has the form

xn+1 = bxn , (6.13)

where b is some real number. Often we are interested in xn for all n ≥ 0, but any
value of n ∈Zmakes sense in the following. From (6.13) we find

xn+1 = bxn = b2xn−1 = b3xn−2 = ·· · = bn+1x0. (6.14)

This is the content of the first lemma.
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Lemma 6.13. The first-order homogenous difference equation

xn+1 = bxn , n ∈Z,

where b is an arbitrary real number, has the general solution

xn = bn x0, n ∈Z.

If x0 is specified, the solution is uniquely determined.

The fact that the solution also works for negative values of n follows just like
in (6.14) if we rewrite the equation as xn = b−1xn+1 (assuming b 6= 0).

We are primarily interested in the case where n ≥ 0, and then we have the
following simple corollary.

Corollary 6.14. For n ≥ 0, the solution of the difference equation xn+1 = bxn

will behave according to one of the following three cases:

lim
n→∞ |xn | =


0, if |b| < 1;

∞, if |b| > 1;

|x0|, if |b| = 1.

Phrased differently, the solution of the difference equation will either tend
to 0 or ∞, except in the case where |b| = 1.

6.4.2 Second-order homogenous equations

The general second-order homogenous equation is

xn+2 +b1xn+1 +b0xn = 0. (6.15)

The basic idea behind solving this equation is to try with a solution xn = r n in
the same form as the solution of first-order equations, and see if there are any
values of r for which this works. If we insert xn = r n in (6.15) we obtain

0 = xn+2 +b1xn+1 +b0xn = r n+2 +b1r n+1 +b0r n = r n(r 2 +b1r +b0).

In other words, we must either have r = 0, which is uninteresting, or r must be a
solution of the quadratic equation

r 2 +b1r +b0 = 0
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which is called the characteristic equation of the difference equation. If the char-
acteristic equation has the two solutions r1 and r2, we know that both yn = r n

1
and zn = r n

2 will be solutions of (6.15). And since the equation is linear, it can be
shown that any combination

xn =Cr n
1 +Dr n

2

is also a solution of (6.15) for any choice of the numbers C and D . However,
in the case that r1 = r2 this does not give the complete solution, and if the two
solutions are complex conjugates of each other, the solution may be expressed
in a more adequate form that does not involve complex numbers. In either case,
the two free coefficients can be adapted to two initial conditions like x0 = a0 and
x1 = a1.

Theorem 6.15. The solution of the homogenous, second-order difference
equation

xn+2 +b1xn+1 +b0xn = 0 (6.16)

is governed by the solutions r1 and r2 of the characteristic equation

r 2 +b1r +b0 = 0

as follows:

1. If the two roots r1 and r2 are real and distinct, the general solution of
(6.16) is given by

xn =Cr n
1 +Dr n

2 .

2. If the two roots are equal, r1 = r2, the general solution of (6.16) is given
by

xn = (C +Dn)r n
1 .

3. If the two roots are complex conjugates of each other so that r1 = r and
r2 = r̄ , and r has the polar form as r = ρe iθ, then the general solution of
(6.16) is given by

xn = ρn(C cosnθ+D sinnθ).

In all three cases the solution can be determined uniquely by two initial condi-
tions x0 = a0 and x1 = a1, where a0 and a1 are given real numbers, since this
determines the two free coefficients C and D uniquely.
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The proof of the theorem is not so complicated and can be found in a text
on difference equations. A couple of examples will illustrate how this works in
practice.

Example 6.16. Let us consider the equation

xn+2 +5xn+1 −14xn = 0, x0 = 2, x1 = 9.

The characteristic equation is r 2 +5r −14 = 0 which has the two solutions r1 = 2
and r2 = 7. The general solution of the difference equation is therefore

xn =C 2n +D7n .

The two initial conditions lead to the system of two linear equations

2 = x0 =C +D,

9 = x1 = 2C +7D,

whose solution is C = 1 and D = 1. The solution that satisfies the initial condi-
tions is therfore

xn = 2n +7n .

Example 6.17. The difference equation

xn+2 −2xn+1 +2xn = 0, x0 = 1, x1 = 1,

has the characteristic equation r 2 −2r +2 = 0. The two roots are r1 = 1+ i and
r2 = 1− i . The absolute value of r = r1 is |r | =

p
12 +12 = p

2, while a drawing
shows that the argument of r is argr = π/4. The general solution of the differ-
ence equation is therefore

xn = (p
2
)n(

C cos(nπ/4)+D sin(nπ/4)
)
.

We determine C and D by enforcing the initial conditions

1 = x0 =
p

2
0

(C cos0+D sin0) =C ,

1 = x1 =
p

2
(
C cos(π/4)+D sin(π/4)

)=p
2
(
C
p

2/2+D
p

2/2
)=C +D.

From this we see that C = 1 and D = 0. The final solution is therefore

xn = (p
2
)n cos(nπ/4).

The following is a consequence of theorem 6.15 and is analogous to corol-
lary 6.14.
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Corollary 6.18. Suppose that one root, say r1, of the characteristic equation
satisfies |r1| > 1, that C 6= 0, and that |r2| < |r1|. Then

lim
n→∞ |xn | =∞.

On the other hand, if both |r1| < 1 and |r2| < 1, then

lim
n→∞xn = 0.

Note that in cases 2 and 3 in theorem 6.15, the two roots have the same ab-
solute value (in case 2 the roots are equal and in case 3 they both have absolute
value ρ). This means that it is only in the first case that we need to distinguish
between the two roots in the conditions in corollary 6.18.

Proof of corollary 6.18. In cases 2 and 3 in theorem 6.15 |r1| = |r2|, so if |r1| > 1
and |r2| < |r1| we must have two real roots. Then we can write the solution as

xn = r n
1

(
C +D

(r2

r1

)n
)

and therefore

lim
n→∞ |xn | = lim

n→∞ |r1|n
∣∣∣∣C +D

(r2

r1

)n
∣∣∣∣= |C | lim

n→∞ |r1|n =∞.

If both |r1| < 1 and |r2| < 1 and both roots are real, the triangle inequality
leads to

lim
n→∞ |xn | ≤ lim

n→∞

(
|C ||r1|n +|D||r2|n

)
= 0.

If r1 = r2, and |r1| < 1 (case 2 in theorem 6.15), we have the same conclusion
since n|r1|n tends to 0 when n tends to ∞. Finally, in the case of complex conju-
gate roots of absolute value less than 1 we have ρ < 1, so the term ρn will ensure
that |xn | tends to 0.

A situation that is not covered by corollary 6.18 is the case where both roots
are real, but of opposite sign, and larger than 1 in absolute value. In this case
the solution will also tend to infinity in most cases, but not always. Consider
for example the case where xn = 2n + (−2)n . Then x2n+1 = 0 for all n while
limn→∞ x2n =∞.
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6.4.3 Linear homogenous equations of general order

Consider now a kth-order, homogenous, and linear difference equation with
constant coefficients,

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = 0,

where all the coefficients {bi } are real numbers. It is quite easy to show that if we
have k solutions {xi

n}k
i=1, then the combination

xn =C1x1
n +C2x2

n +·· ·+Ck xk
n (6.17)

will also be a solution for any choice of the coefficients {Ci }. As we have already
seen, an equation of order k can be adapted to k initial values.

To determine k solutions, we follow the same procedure as for second-order
equations and try the solution xn = r n . We then find that r must solve the char-
acteristic equation

r k +bk−1r k−1 +·· ·+b1r +b0 = 0.

From the fundamental theorem of algebra we know that this equation has k dis-
tinct roots, and complex roots occur in conjugate pairs since the coefficients are
real. A theorem similar to theorem 6.15 can therefore be proved.

Observation 6.19. The general solution of the difference equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = 0

is a combination of k terms

xn =C1x1
n +C2x2

n +·· ·+Ck xk
n

where each term
{

xi
n

}
is a solution of the difference equation. The solution

{
xi

n

}
is essentially of the form xi

n = r n
i where ri is the i th root of the characteristic

equation
r k +bk−1r k−1 +·· ·+b1r +b0 = 0.

Note the word ’essentially’ in the last sentence: just like for quadratic equa-
tions we have to take special care when there are double roots (or roots of even
higher multiplicity) or complex roots.

Closed formulas for the roots can be found for quadratic, cubic and quartic
equations, but the expressions even for cubic equations can be rather compli-
cated. For higher degree than 2, one therefore has to resort to numerical tech-
niques, like the ones in chapter 10, for finding the roots.
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There is also an analog of corollary 6.18 which shows that a solution will
tend to zero if all roots have absolute value less than 1. And if there is a root
with absolute value greater than 1, whose corresponding coefficient in (6.17) is
nonzero, then the solution will grow beyond all bounds when n becomes large.

6.4.4 Inhomogenous equations

So far we have only discussed homogenous difference equations. For inhomoge-
nous equations there is an important, but simple lemma, which can be found in
standard text books on difference equations.

Lemma 6.20. Suppose that {xp
n } is a particular solution of the inhomogenous

difference equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = g (n). (6.18)

Then all other solutions of the inhomogenous equation will have the form

xn = xp
n +xh

n

where
{

xh
n

}
is some solution of the homogenous equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = 0.

More informally, lemma 6.20 means that we can find the general solution of
(6.18) by just finding one solution, and then adding the general solution of the
homogenous equation. The question is how to find one solution. The following
observation is useful.

Observation 6.21. One of the solutions of the inhomogenous equation

xn+k +bk−1xn+k−1 +·· ·+b1xn+1 +b0xn = g (n)

has the same form as g (n).

Some examples will illustrate how this works.

Example 6.22. Consider the equation

xn+1 −2xn = 3. (6.19)
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Here the right-hand side is constant, so we try with the a particular solution
xp

n = A, where A is an unknown constant to be determined. If we insert this in
the equation we find

A−2A = 3,

so A = −3. This means that xp
n = −3 is a solution of (6.19). Since the general

solution of the homogenous equation xn+1 − 2xn = 0 is xh
n = C 2n , the general

solution of (6.19) is
xn = xh

n +xp
n =C 2n −3.

In general, when g (n) is a polynomial in n of degree d , we try with a partic-
ular solution which is a general polynomial of degree d . When this is inserted
in the equation, we obtain a relation between two polynomials that should hold
for all values of n, and this requires corresponding coefficients to be equal. In
this way we obtain a set of equations for the coefficients.

Example 6.23. In the third-order equation

xn+3 −2xn+2 +4xn+1 +xn = n (6.20)

the right-hand side is a polynomial of degree 1. We therefore try with a solution
xp

n = A+Bn and insert this in the difference equation,

n = A+B(n +3)−2(A+B(n +2))+4(A+B(n +1))+ A+Bn = (4A+3B)+4Bn.

The only way for the two sides to be equal for all values of n is if the constant
terms and first degree terms on the two sides are equal,

4A+3B = 0,

4B = 1.

From these equations we find B = 1/4 and A =−3/16, so one solution of (6.20) is

xp
n = n

4
− 3

16
.

There are situations where the technique above does not work because the
trial polynomial solution is also a homogenous solution. In this case the degree
of the polynomial must be increased. For more details we refer to a text book on
difference equations.

Other types of right-hand sides can be treated similarly. One other type is
given by functions like

g (n) = p(n)an ,

where p(n) is a polynomial in n and a is a real number. In this case, one tries
with a solution xp

n = q(n)an where q(n) is a general polynomial in n of the same
degree as p(n).
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Example 6.24. Suppose we have the equation

xn+1 +4xn = n3n . (6.21)

The right hand side is a first-degree polynomial in n multiplied by 3n , so we try
with a particular solution in the form

xp
n = (A+Bn)3n .

When this is inserted in the difference equation we obtain

n3n = (
A+B(n +1)

)
3n+1 +4(A+Bn)3n

= 3n
(
3
(

A+B(n +1)
)+4A+4Bn

)
= 3n(7A+3B +7Bn).

Here we can cancel 3n , which reduces the equation to an equality between two
polynomials. If these are to agree for all values of n, the constant terms and the
linear terms must agree,

7A+3B = 0,

7B = 1.

This system has the solution B = 1/7 and A = −1/49, so a particular solution of
(6.21) is

xp
n =

(1

7
n − 1

49

)
3n .

The homogenous equation xn+1 −4xn = 0 has the general solution xh
n = C 4n so

according to lemma 6.20 the general solution of (6.21) is

xn = xh
n +xp

n =C 4n +
(1

7
n − 1

49

)
3n .

The theory in this section shows how we can obtain exact formulas for the
solution of a class of difference equations, which can be useful in many situ-
ations. For example, this makes it quite simple to determine the behaviour of
the solution when the number of time steps goes to infinity. Our main use of
this theory will be as a tool to analyse the effects of round-off errors on the so-
lution produced by a numerical simulation of linear, second order difference
equations.
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Exercises for Section 6.4

Exercise 1. Mark each of the following statements as true or false.

(a). It is always possible to solve a difference equation numerically, given
the function describing the equation and the appropriate number of ini-
tial conditions.

(b). Using Algorithm 6.10, i.e. by computing and storing all the values xi

as we solve the difference equation numerically, we can find any number
xi in the solution.

(c). When solving a difference equation numerically, we never need to
store more than the two previous terms in order to calculate the next one.

Exercise 2. Find a unique solution for xn for the following difference equations:

(a). xn+1 = 3xn , x0 = 5/3

(b). xn+2 = 3xn+1 +2xn , x0 = 3, x1 = 4.

(c). xn+2 =−2xn+1 −xn , x0 = 1, x1 = 1

(d). xn+2 = 2xn+1 +3xn , x0 = 2, x1 = 1

Exercise 3. Find a unique solution for xn for the following difference equations:

(a). xn+2 −3xn+1 −4xn = 2, x0 = 2, x1 = 4.

(b). xn+2 −3xn+1 +2xn = 2n +1, x0 = 1, x1 = 3.

(c). 2xn+2 −3xn = 15×2n , x0 = 3, x1 = 6.

(d). xn+1 −xn = 5n2n , x0 = 1, x1 = 5

Exercise 4. Find the unique solution of the difference equation described in
equation 6.4 with initial condition x0 = 100000, and show that all the capital
is indeed lost after 45 years.

Exercise 5. Remember that the Fibonacci numbers are defined as:

Fn+2 = Fn+1 +Fn ,F0 = 0,F1 = 1.

Remember also from exercise 6.3.Exercise 4 that the Lucas numbers are defined
as:

Ln+2 = Ln+1 +Ln ,L0 = 2,L1 = 1.

Use this to prove the following identities:

Ln = Fn+1 +Fn−1
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6.5 Simulation of difference equations and round-off errors

In practice, most difference equations are ’solved’ by numerical simulation, be-
cause of the simplicity of simulation, and because for most difference equations
it is not possible to find an explicit formula for the solution. In chapter 5, we
saw that computations on a computer often lead to errors, at least when we use
floating-point numbers. Therefore, when a difference equation is simulated via
one of the algorithms in section 6.3, we must be prepared for round-off errors.
In this section we are going to study this in some detail. We will restrict our at-
tention to linear difference equations with constant coefficients. Let us start by
stating how we intend to do this analysis.

Idea 6.25. To study the effect of round-off errors on simulation of difference
equations, we focus on a class of equations where exact formulas for the solu-
tions are known. These explicit formulas are then used to explain (and predict)
how round-off errors influence the numerical values produced by the simula-
tion.

We first recall that integer arithmetic is always correct, except for the possi-
bility of overflow, which is so dramatic that it is usually quite easy to detect. We
therefore focus on the case where floating-point numbers must be used. Note
that we use 64-bit floating-point numbers in all the examples in this chapter.

The effect of round-off errors becomes quite visible from a couple of exam-
ples.

Example 6.26. Consider the equation

xn+2 − 2

3
xn+1 − 1

3
xn = 0, x0 = 1, x1 = 0. (6.22)

Since the two roots of the characteristic equation r 2 −2r /3−1/3 = 0 are r1 = 1
and r2 =−1/3, the general solution of the difference equation is

xn =C +D
(
−1

3

)n
.

The initial conditions yield the equations

C +D = 1,

C −D/3 = 0,

which has the solution C = 1/4 and D = 3/4. The solution of (6.22) is therefore

xn = 1

4

(
1+ (−1)n31−n)

.

142



We observe that xn tends to 1/4 as n tends to infinity.
If we simulate equation (6.22) on a computer, the next term is computed by

the formula xn+2 = (2xn+1 + xn)/3. The division by 3 means that floating-point
numbers are required to evaluate this expression. If we simulate the difference
equation, we obtain the four approximate values

x̃10 = 0.250012701316,

x̃15 = 0.249999947731,

x̃20 = 0.250000000215,

x̃30 = 0.250000000000,

(throughout this section we will use x̃n to denote a computed version of xn),
which agree with the exact solution to 12 digits. In other words, numerical sim-
ulation in this case works very well and produces essentially the same result as
the exact formula, even if floating-point numbers are used in the calculations.

Example 6.27. We consider the difference equation

xn+2 − 19

3
xn+1 +2xn =−10, x0 = 2, x1 = 8/3. (6.23)

The two roots of the characteristic equation are r1 = 1/3 and r2 = 6, so the gen-
eral solution of the homogenous equation is

xh
n =C 3−n +D6n .

To find a particular solution we try a solution xp
n = A which has the same form

as the right-hand side. We insert this in the difference equation and find A = 3,
so the general solution is

xn = xh
n +xp

n = 3+C 3−n +D6n . (6.24)

If we enforce the initial conditions, we end up with the system of equations

2 = x0 = 3+C +D,

8/3 = x1 = 3+C /3+6D.
(6.25)

This may be rewritten as
C +D =−1,

C +18D =−1.
(6.26)

which has the solution C =−1 and D = 0. The final solution is therefore

xn = 3−3−n , (6.27)
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which tends to 3 when n tends to infinity.
Let us simulate the equation (6.23) on the computer. As in the previous ex-

ample we have to divide by 3 so we have to use floating-point numbers. Some
early terms in the computed sequence are

x̃5 = 2.99588477366,

x̃10 = 2.99998306646,

x̃15 = 3.00001192858.

These values appear to approach 3 as they should. However, some later values
are

x̃20 = 3.09329859009,

x̃30 = 5641411.98633,

x̃40 = 3.41114428655×1014,

(6.28)

and at least the last two of these are obviously completely wrong!

6.5.1 Explanation of example 6.27

The cause of the problem with the numerical simulations in example 6.27 is
round-off errors. In this section we are going to see how the general solution
formula (6.24) actually explains our numerical problems.

First of all we note that the initial values are x0 = 2 and x1 = 8/3. The first
of these will be represented exactly in a computer whether we use integers or
floating-point numbers, but the second one definitely requires floating-point
numbers. Note though that the fraction 8/3 cannot be represented exactly in bi-
nary with a finite number of digits, and therefore there will inevitably be round-
off error. This means that the initial value 8/3 at x1 becomes x1 = ã1 = 8/3+ ε,
where ã1 is the floating-point number closest to 8/3 and ε is some small number
of magnitude about 10−17.

But it is not only the initial values that are not correct. When the next term is
computed from the two previous ones, we use the formula

xn+2 =−10+ 19

3
xn+1 −2xn .

The number 10, and the coefficient −2 can be represented exactly. The middle
coefficient 19/3, however, cannot be represented exactly by floating-point num-
bers, and is replaced by the nearest floating-point number c̃ = 19/3+δ, where δ
is a small number of magnitude roughly 10−17.
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Observation 6.28. When the difference equation (6.23) is simulated numeri-
cally, round-off errors cause the difference equation and initial conditions to
become

xn+2 −
(19

3
+δ

)
xn+1 +2xn =−10, x0 = 2, x1 = 8/3+ε, (6.29)

where ε and δ are both small numbers of magnitude roughly 10−17.

The effect of round-off errors in the coefficients

So the actual computations are based on the difference equation (6.29), and not
(6.23), but we can still determine a formula for the exact solution that is being
computed. The characteristic equation now becomes

r 2 −
(19

3
+δ

)
r +2 = 0

which has the two roots

r1 = 1

6

(
19+3δ−

√
289+114δ+9δ2

)
, r2 = 1

6

(
19+3δ+

√
289+114δ+9δ2

)
.

The dependence on δ in these formulas is quite complicated, but can be sim-
plified by the help of Taylor-polynomials which we will learn about in chapter 9.
Using this technique, it is possible to show that

r1 ≈ 1

3
− δ

17
, r2 ≈ 6+ 18δ

17
.

In addition, since the right-hand side of (6.29) is constant, we try with a particu-
lar solution that is constant. If we do this we find the particular solution

xp
n = 30

10+3δ
.

This means that the general formula for the solution of the difference equation
(6.29) is

xn = 30

10+3δ
+C

(1

3
− δ

17

)n +D
(
6+ 18δ

17

)n
.

When δ is of magnitude 10−17, this expression will be very close to

xn = 3+C
(1

3

)n +D6n (6.30)

for all values of n that we typically encounter in practice. This simplifies the
analysis of round-off errors for linear difference equations considerably: We can
simply ignore round-off in the coefficients.
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Observation 6.29. The round-off errors that occur in the coefficients of the dif-
ference equation (6.29) do not lead to significant errors in the solution of the
equation. This is true for general, linear difference equations with constant co-
efficients: Round-off errors in the coefficients (and the right-hand side) are not
significant and may be ignored.

The effect of round-off errors in the initial values

We next consider the effect of round-off errors in the initial values. From what
we have just seen, we may assume that the result of the simulation is described
by the general formula (6.30). The initial values are

x0 = 2, x1 = 8/3+ε,

and this allows us to determine C and D in (6.30) via the equations

2 = x0 = 3+C +D,

8/3+ε= x1 = 3+C /3+6D.

If we solve these equations we find

C =−1− 3

17
ε, D = 3

17
ε. (6.31)

This is summarised in the next observation where for simplicity we have intro-
duced the notation ε̂= 3ε/17.

Observation 6.30. Because of round-off errors in the second initial value, the
result of numerical simulation of (6.24) corresponds to using a solution in the
form (6.24), where C and D are given by

C =−1+ ε̂, D = ε̂ (6.32)

and ε̂ is a small number. The sequence generated by the numerical simulation
therefore is therefore in the form

x̃n = 3− (1− ε̂)3−n + ε̂ 6n . (6.33)

From observation 6.30 it is easy to explain where the values in (6.28) come
from. Because of round-off errors, the computed solution is given by (6.33),
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where ε̂ is a small nonzero number. Even if ε̂ is small, the product ε̂ 6n will even-
tually become large, since 6n grows beyond all bounds when n becomes large.

We can in fact use the result of the numerical simulation to estimate ε̂. From
(6.28) we have x̂40 ≈ 3.4×1014, and for n = 40 we also have 3−n ≈ 8.2×10−20 and
6n ≈ 1.3×1031. Since we have used 64-bit floating-point numbers, this means
that only the last term in (6.33) is relevant (the other two terms affect the result
in about the 30th digit and beyond). This means that we can find ε̂ from the
relation

3.4×1014 ≈ x̃40 ≈ ε̂ 640 ≈ ε̂ 1.3×1031.

From this we see that ε̂ ≈ 2.6×10−17. This is a reasonable value since we know
that ε̂ is roughly as large as the round-off error in the initial values. With 64-
bit floating-point numbers we have about 15–18 decimal digits, so a round-off
error of about 10−17 is to be expected when the numbers are close to 1 as in this
example.

Observation 6.31. When ε̂ is nonzero in (6.33), the last term ε̂ 6n will even-
tually dominate the computed solution of the difference equation completely,
and the computations will end in overflow.

It is important to realise that the reason for the values generated by the nu-
merical simulation in (6.28) becoming large is not particularly bad round-off
errors; any round-off error at all would eventually lead to the same kind of be-
haviour. The general problem is that the difference equation corresponds to a
family of solutions given by

xn = 3+C 3−n +D6n , (6.34)

and different initial conditions pick out different solutions (different values of C
and D) within this family. The exact solution has D = 0. However, for numeri-
cal simulation with floating-point numbers it is basically impossible to get D to
be exactly 0, so the last term in (6.34) will always dominate the computed solu-
tion for large values of n and completely overwhelm the other two terms in the
solution.

6.5.2 Round-off errors for linear equations of general order

The difference equation in example 6.27 is not particularly demanding — we
will get the same effect whenever we have a difference equation where the ex-
act solution remains significantly smaller than the part of the general solution
corresponding to the largest root of the characteristic equation.
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Observation 6.32. Suppose the difference equation

xn+k +bn−k xn−k +·· ·+b1xn+1 +b0xn = g (n)

is simulated numerically with floating-point numbers, and let r be the root of
the characteristic equation,

r k +bk−1r k−1 +·· ·+b1r +b0 = 0,

with largest absolute value. If the particular solution of the inhomogenous
equation does not grow as fast as |r |n (in case |r | > 1), or decays faster than
|r |n (in the case |r | < 1), then the computed solution will eventually be domi-
nated by the solution corresponding to the root r , regardless of what the initial
values are.

In example 6.27, the solution family has three components: the two solu-
tions 6n and 3−n from the homogenous equation, and the constant solution 3
from the inhomogenous equation. When the solution we are interested in just
involves 3−n and 3 we get into trouble since we invariably also bring along 6n

because of round-off errors. On the other hand, if the exact initial values lead to
a solution that includes 6n , then we will not get problems with round-off: The
coefficient multiplying 6n will be accurate enough, and the other terms are too
small to pollute the 6n solution.

Example 6.33. We consider the third-order difference equation

xn+3 − 16

3
xn+2 + 17

3
xn+1 − 4

3
xn = 10×2n , x0 =−2, x1 =−17

3
, x2 =−107

9
.

The coefficients have been chosen so that the roots of the characteristic equa-
tion are r1 = 1/3, r2 = 1 and r3 = 4. To find a particular solution we try with
xp

n = A2n . If this is inserted in the equation we find A =−3, so the general solu-
tion is

xn =−3×2n +B3−n +C +D4n . (6.35)

The initial conditions force B = 0, C = 1 and D = 0, so the exact solution is

xn = 1−3×2n . (6.36)

The discussion above shows that this is bound to lead to problems. Because of
round-off errors, the coefficients B and D will not be exactly 0 when the equation
is simulated. Instead we will have

x̃n =−3×2n +ε13−n + (1+ε2)+ε34n
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Even if ε3 is small, the term ε34n will dominate when n becomes large. This is
confirmed if we do the simulations. The computed value x̃100 is approximately
4.5×1043, while the exact value is −3.8×1030, rounded to two digits.

Exercises for Section 6.5

Exercise 1. Mark each of the following statements as true or false.

(a). There will always be major round-off errors when we solve second
order difference equations numerically.

(b). When solving difference equations numerically, it is impossible to
know when we will end up with completely wrong answers due to round-
off errors.

Exercise 2. (a). (Mid-term 2009) We have the difference equation

3xn+2 +4xn+1 −4xn = 0, x0 = 1, x1 = 2/3

and simulate this with 64-bit floating-point numbers on a computer. For
large n, the computed solution x̄n will give the result

� underflow

� 1

� (2/3)n

� overflow and then NAN

(b). (Mid-term 2009) We have the difference equation

3xn+1 −xn/3 = 1, x1 = 1

and simulate this with 64-bit floating point numbers on a computer. For
large n, the computed x̄n solution will then approach

� n

� 1

� 0

� 3/8

(c). (Mid-term 2010) We have the difference equation

xn+1 −xn/3 = 2, x0 = 2,
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and simulate this with 64-bit floating-point numbers on a computer. For
all n larger than a certain limit, the computed solution x̄n will then give
the result

� 3

� 1

� 0

� 3−3n

Exercise 3. In each of the cases, find the analytical solution of the difference
equation, and describe the behavior of the simulated solution for large values of
n.

(a). xn+1 − 1
3 xn = 2, x0 = 2

(b). xn+2 −6xn+1 +12xn = 1, x0 = 1/7, x1 = 1/7

(c). 3xn+2 +4xn+1 −4xn = 0, x0 = 1, x1 = 2/3

Exercise 4. In this exercise we are going to study the difference equation

xn+1 −3xn = 5−n , x0 =−5/14. (6.37)

(a). Show that the general solution of (6.37) is

xn =C 3n − 5

14
5−n

and that the initial condition leads to the solution

xn =− 5

14
5−n .

(b). Explain what will happen if you simulate equation 6.37 numerically.

(c). Do the simulation and check that your prediction in (b) is correct.

Exercise 5. We consider the Fibonacci equation with nonstandard initial values

xn+2 −xn+1 −xn = 0, x0 = 1, x1 = (1−p
5)/2. (6.38)
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(a). Show that the general solution of the equation is

xn =C

(
1+p

5

2

)n

+D

(
1−p

5

2

)n

,

and that the initial values select the solution

xn =
(

1−p
5

2

)n

.

(b). What will happen if you simulate (6.38) on a computer?

(c). Do the simulation and check that your predictions are correct.

Exercise 6. We have the difference equation

xn+2 − 2

5
xn+1 + 1

45
xn = 0, x0 = 1, x1 = 1/15. (6.39)

(a). Determine the general solution of (6.39) as well as the solution se-
lected by the initial condition.

(b). Why must you expect problems when you do a numerical simulation
of the equation?

(c). Determine approximately the value of n when the numerical solu-
tion has lost all significant digits.

(d). Perform the numerical simulation and check that your predictions
are correct.

Exercise 7. In this exercise we consider the difference equation

xn+2 − 5

2
xn+1 +xn = 0, x0 = 1, x1 = 1/2.

(a). Determine the general solution, and the solution corresponding to
the initial conditions.

(b). What kind of behaviour do you expect if you simulate the equation
numerically?

(c). Do the simulation and explain your results.
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6.6 Summary

In this chapter we met the effect of round-off errors on realistic computations for
the first time. We saw that innocent-looking computations like the simulation of
the difference equation in example 6.27 led to serious problems with round-off
errors. By making use of the theory behind linear difference equations with con-
stant coefficients, we were able to understand why the simulations behave the
way they do. From this insight we also realise that for this particular equation
and initial values, the blow-up is unavoidable, just like cancellation is unavoid-
able when we subtract two almost equal numbers. Such problems are usually
referred to as being badly conditioned. On the other hand, a different choice of
initial conditions may lead to calculations with no round-off problems; then the
problem is said to be well conditioned.
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CHAPTER 7

Lossless Compression

Computers can handle many different kinds of information like text, equations,
games, sound, photos, and film. Some of these information sources require a
huge amount of data and may quickly fill up your hard disk or take a long time
to transfer across a network. For this reason it is interesting to see if we can
somehow rewrite the information in such a way that it takes up less space. This
may seem like magic, but does in fact work well for many types of information.
There are two general classes of methods, those that do not change the informa-
tion, so that the original file can be reconstructed exactly, and those that allow
small changes in the data. Compression methods in the first class are called loss-
less compression methods while those in the second class are called lossy com-
pression methods. Lossy methods may sound risky since they will change the
information, but for data like sound and images small alterations do not usually
matter. On the other hand, for certain kinds of information like for example text,
we cannot tolerate any change so we have to use lossless compression methods.

In this chapter we are going to study lossless methods; lossy methods will be
considered in a later chapter. To motivate our study of compression techniques,
we will first consider some examples of technology that generate large amounts
of information. We will then study two lossless compression methods in detail,
namely Huffman coding and arithmetic coding. Huffman coding is quite simple
and gives good compression, while arithmetic coding is more complicated, but
gives excellent compression.

In section 7.3.2 we introduce the information entropy of a sequence of sym-
bols which essentially tells us how much information there is in the sequence.
This is useful for comparing the performance of different compression strate-
gies.
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7.1 Introduction

The potential for compression increases with the size of a file. A book typically
has about 300 words per page and an average word length of four characters. A
book with 500 pages would then have about 600 000 characters. If we write in
English, we may use a character encoding like ISO Latin 1 which only requires
one byte per character. The file would then be about 700 KB (kilobytes)1, includ-
ing 100 KB of formatting information. If we instead use UTF-16 encoding, which
requires two bytes per character, we end up with a total file size of about 1300 KB
or 1.3 MB. Both files would represent the same book so this illustrates straight
away the potential for compression, at least for UTF-16 encoded documents.
On the other hand, the capacity of present day hard disks and communication
channels are such that a saving of 0.5 MB is usually negligible.

For sound files the situation is different. A music file in CD-quality requires
44 100 two-byte integers to be stored every second for each of the two stereo
channels, a total of about 176 KB per second, or about 10 MB per minute of
music. A four-minute song therefore corresponds to a file size of 40 MB and a
CD with one hour of music contains about 600 MB. If you just have a few CDs
this is not a problem when the average size of hard disks is approaching 1 TB
(1 000 000 MB or 1 000 GB). But if you have many CDs and want to store the
music in a small portable player, it is essential to be able to compress this in-
formation. Audio-formats like Mp3 and Aac manage to reduce the files down to
about 10 % of the original size without sacrificing much of the quality.

Not surprisingly, video contains even more information than audio so the
potential for compression is considerably greater. Reasonable quality video re-
quires at least 25 images per second. The images used in traditional European
television contain 576×720 small coloured dots, each of which are represented
with 24 bits2. One image therefore requires about 1.2 MB and one second of
video requires about 31MB. This corresponds to 1.9 GB per minute and 112 GB
per hour of video. In addition we also need to store the sound. If you have more
than a handful of films in such an uncompressed format, you are quickly going
to exhaust the capacity of even quite large hard drives.

These examples should convince you that there is a lot to be gained if we
can compress information, especially for video and music, and virtually all video
formats, even the high-quality ones, use some kind of compression. With com-
pression we can fit more information onto our hard drive and we can transmit
information across a network more quickly.

1Here we use the SI prefixes, see Table 4.1.
2This is a digital description of the analog PAL system.
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Figure 7.1. A representation of a black and white image, for example part of a scanned text document.

7.1.1 Run-length coding

We have already seen that English text stored in UTF-16 encoding can be com-
pressed to at least half the number of bits by encoding in UTF-8 instead. Another
simple strategy that sometimes work well is run-length encoding. One example
is text documents scanned in black and white. This will produce an image of
each page represented by a two-dimensional array of a large number of inten-
sity values. At a point which is covered by text the intensity value will be 1, at
all other points the value will be 0. Since most pages of text contain much more
white than black, there will be long sequences of 0s in the intensity array, see
figure 7.1. A simple way to compress such a file is to replace a sequence of n
consecutive 0s by a code like n. Programs that read this file must then of course
know that this code is to be interpreted as n consecutive 0s. As long as the se-
quences of 0s are long enough, this can lead to significant compression of the
image file.

Exercises for Section 7.1

Exercise 1. In general, encoding schemes for different kinds of information,
such as text, images and music, usually employ a fixed number of bits for each
piece of information (character, pixel or audio sample), no matter how complex
the information is. The idea behind lossless compression is that the simpler the
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structure of the information we want to store, the fewer bits we need to store it.
In this exercise, we are going to check this in some particular cases.

(a). Create the following three text files:

‘AAAAAAAAAAAAAAAAAAAAA’ (21 As),
‘AAAAAAAAAAAAAAAAAAAAB’ (20 As followed by one B),
‘AAAAAAAAAABAAAAAAAAAA’ (10 As followed by one B and 10
more As).

These files will all be the same size. Try to decide how their compressed
counterparts will compare in size. Carry out the compression using the
program gzip (see section 7.6), and check if your assumptions are correct.

(b). On a Windows computer, Open paint, make a large, all-black, image,
save it in .bmp format, and compress it with a program like winzip. Then
make a few stripes in different colors in the image, save it, compress it and
compare the size to the previous file.

7.2 Huffman coding

The discussion in section 7.1 illustrates both the potential and the possibility of
compression techniques. In this section we are going to approach the subject in
more detail and describe a much used technique.

Before we continue, let us agree on some notation and vocabulary.

Definition 7.1 (Jargon used in compression). A sequence of symbols is called
a text and is denoted x = {x1, x2, . . . , xm}. The symbols are assumed to be taken
from an alphabet that is denoted A = {α1,α2, . . . ,αn}, and the number of times
that the symbol αi occurs in x is called its frequency and is denoted by f (αi ).
For compression each symbol αi is assigned a binary code c(αi ), and the text x
is stored as the bit-sequence z obtained by replacing each character in x by its
binary code. The set of all binary codes is called a dictionary or code book.

If we are working with English text, the sequence x will just be a string of
letters and other characters like x = {h,e, l, l, o, , a, g, a, i, n, .} (the character after
’o’ is space, and the last character a period). The alphabet A is then the ordinary
Latin alphabet augmented with the space character, punctuation characters and
digits, essentially characters 32–127 of the ASCII table, see Table 4.3. In fact, the

156



ASCII codes define a dictionary since it assigns a binary code to each character.
However, if we want to represent a text with few bits, this is not a good dictionary
because the codes of very frequent characters are no shorter than the codes of
the characters that are hardly ever used.

In other contexts, we may consider the information to be a sequence of bits
and the alphabet to be {0,1}, or we may consider sequences of bytes in which
case the alphabet would be the 256 different bit combinations in a byte.

Let us now suppose that we have a text x = {x1, x2, . . . , xm} with symbols taken
from an alphabet A . A simple way to represent the text in a computer is to
assign an integer code c(αi ) to each symbol and store the sequence of codes
{c(x1),c(x2), . . . ,c(xm)}. The question is just how the codes should be assigned.

Small integers require fewer digits than large ones so a good strategy is to let
the symbols that occur most frequently in x have short codes and use long codes
for the rare symbols. This leaves us with the problem of knowing the boundary
between the codes. The following simple example illustrates this.

Example 7.2. Suppose we have the text x = DBACDBD. We note that the fre-
quencies of the four symbols are f (A) = 1, f (B) = 2, f (C ) = 1 and f (D) = 3. We
assign the shortest codes to the most frequent symbols,

c(D) = 0, c(B) = 1, c(C ) = 01, c(A) = 10.

If we replace the symbols in x by their codes we obtain the compressed text

z = 011001010,

altogether 9 bits, instead of the 56 bits (7 bytes) required by a standard text rep-
resentation. However, we now have a major problem, how can we decode and
find the original text from this compressed version? Do the first two bits repre-
sent the two symbols ’D’ and ’B’ or is it the symbol ’C’? One way to get round
this problem is to have a special code that we can use to separate the symbols.
But this is not a good solution as this would take up additional storage space.

Huffman coding uses a clever set of binary codes which makes it impossible
to confuse the different symbols in a compressed text even though they may
have different lengths.

Fact 7.3 (Huffman coding). In Huffman coding the most frequent symbols in
a text x get the shortest codes, and the codes have the prefix property which
means that the bit sequence that represents a code is never a prefix of any other
code. Once the codes are known the symbols in x are replaced by their codes
and the resulting sequence of bits z is the compressed version of x .
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This may sound a bit vague, so let us consider another example.

Example 7.4. Consider the same four-symbol text x = DBACDBD as in exam-
ple 7.2. We now use the codes

c(D) = 1, c(B) = 01, c(C ) = 001, c(A) = 000. (7.1)

We can then store the text as

z = 1010000011011, (7.2)

altogether 13 bits, while a standard encoding with one byte per character would
require 56 bits. Note also that we can easily decipher the code since the codes
have the prefix property. The first bit is 1 which must correspond to a ’D’ since
this is the only character with a code that starts with a 1. The next bit is 0 and
since this is the start of several codes we read one more bit. The only character
with a code that start with 01 is ’B’ so this must be the next character. The next
bit is 0 which does not uniquely identify a character so we read one more bit. The
code 00 does not identify a character either, but with one more bit we obtain the
code 000 which corresponds to the character ’A’. We can obviously continue in
this way and decipher the complete compressed text.

Compression is not quite as simple as it was presented in example 7.4. A
program that reads the compressed code must clearly know the codes (7.1) in
order to decipher the code. Therefore we must store the codes as well as the
compressed text z . This means that the text must have a certain length before it
is worth compressing it.

7.2.1 Binary trees

The description of Huffman coding in fact 7.3 is not at all precise since it does
not state how the codes are determined. The actual algorithm is quite simple,
but requires a new concept.

Definition 7.5 (Binary tree). A binary tree T is a finite collection of nodes
where one of the nodes is designated as the root of the tree, and the remain-
ing nodes are partitioned into two disjoint groups T0 and T1 that are also trees.
The two trees T0 and T1 are called the subtrees or children of T . Nodes which
are not roots of subtrees are called leaf nodes. A connection from one node to
another is called an edge of the tree.
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Figure 7.2. An example of a binary tree.

An example of a binary tree is shown in figure 7.2. The root node which is
shown at the top has two subtrees. The subtree to the right also has two subtrees,
both of which only contain leaf nodes. The subtree to the left of the root only has
one subtree which consists of a single leaf node.

7.2.2 Huffman trees

It turns out that Huffman coding can conveniently be described in terms of a
binary tree with some extra information added. These trees are usually referred
to as Huffman trees.

Definition 7.6. A Huffman tree is a binary tree that can be associated with an
alphabet consisting of symbols {αi }n

i=1 with frequencies f (αi ) as follows:

1. Each leaf node is associated with exactly one symbol αi in the alphabet,
and all symbols are associated with a leaf node.

2. Each node has an associated integer weight:

(a) The weight of a leaf node is the frequency of the symbol.

(b) The weight of a node is the sum of the weights of the roots of the
node’s subtrees.

3. All nodes that are not leaf nodes have exactly two children.

4. The Huffman code of a symbol is obtained by following edges from the
root to the leaf node associated with the symbol. Each edge adds a bit to
the code: a 0 if the edge points to the left and a 1 if it points to the right.

159



8

4

0

4

2

0

2

1

0

1

1

1

1

C

D

A B

Figure 7.3. A Huffman tree.

Example 7.7. In figure 7.3 the tree in figure 7.2 has been turned into a Huffman
tree. The tree has been constructed from the text CCDACBDC with the alphabet
{A,B,C,D} and frequencies f (A) = 1, f (B) = 1, f (C ) = 4 and f (D) = 2. It is easy
to see that the weights have the properties required for a Huffman tree, and by
following the edges we see that the Huffman codes are given by c(C ) = 0, c(D) =
10, c(A) = 110 and c(B) = 111. Note in particular that the root of the tree has
weight equal to the length of the text.

We will usually omit the labels on the edges since they are easy to remember:
An edge that points to the left corresponds to a 0, while an edge that points to
the right yields a 1.

7.2.3 The Huffman algorithm

In example 7.7 the Huffman tree was just given to us; the essential question is
how the tree can be constructed from a given text. There is a simple algorithm
that accomplishes this.

Algorithm 7.8 (Huffman algorithm). Let the text x with symbols {αi }n
i=1 be

given, and let the frequency of αi be f (αi ). The Huffman tree is constructed
by performing the following steps:

1. Construct a one-node Huffman tree from each of the n symbols αi and
its corresponding weight; this leads to a collection of n one-node trees.

2. Repeat until the collection consists of only one tree:
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(a) Choose two trees T0 and T1 with minimal weights and replace them
with a new tree which has T0 as its left subtree and T1 as its right
subtree.

3. The tree remaining after the previous step is a Huffman tree for the given
text x .

Most of the work in algorithm 7.8 is in step 2, but note that the number of
trees is reduced by one each time, so the loop will run at most n times.

The easiest way to get to grips with the algorithm is to try it on a simple
example.

Example 7.9. Let us try out algorithm 7.8 on the text ’then the hen began to eat’.
This text consists of 25 characters, including the five spaces. We first determine
the frequencies of the different characters by counting. We find the collection of
one-node trees

4
t

3
h

5
e

3
n

1
b

1
g

2
a

1
o

5
t

where the last character denotes the space character. Since ’b’ and ’g’ are two
characters with the lowest frequency, we combine them into a tree,

4
t

3
h

5
e

3
n

2

1 1
b g

2
a

1
o

5
t

The two trees with the lowest weights are now the character ’o’ and the tree we
formed in the last step. If we combine these we obtain

4
t

3
h

5
e

3
n

3

2

1 1

1

b g

o

2
a

5
t
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Now we have several choices. We choose to combine ’a’ and ’h’,

4
t

5

3 2
h a

5
e

3
n

3

2

1 1

1

b g

o

5
t

At the next step we combine the two trees with weight 3,
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Next we combine the ’t’ and the ’e’,
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5
t
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We now have two trees with weight 5 that must be combined

9

4 5
t e

10

5

3 2
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Again we combine the two trees with the smallest weights,

10

5

3 2

5

h a

t

15

6

3

2

1 1

1

3

9

4 5

b g
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n t e

By combining these two trees we obtain the final Huffman tree in figure 7.4.
From this we can read off the Huffman codes as

c(h) = 000,

c(a) = 001,

c(t) = 01,

c(b) = 10000,

c(g ) = 10001,

c(o) = 1001,

c(n) = 101,

c(t ) = 110,

c(e) = 111.

so we see that the Huffman coding of the text ’then the hen began to eat’ is

110 000 111 101 01 110 000 111 01 000 111 101 01 10000

111 10001 001 101 01 110 1001 01 111 001 110

The spaces and the new line have been added to make the code easier to read;
on a computer these will not be present.
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Figure 7.4. The Huffman tree for the text ’then the hen began to eat’.

The original text consists of 25 characters including the spaces. Encoding
this with standard eight-bit encodings like ISO Latin or UTF-8 would require
400 bits. Since there are only nine symbols we could use a shorter fixed width
encoding for this particular text. This would require five bits per symbol and
would reduce the total length to 125 bits. In contrast the Huffman encoding
only requires 75 bits.

7.2.4 Properties of Huffman trees

Huffman trees have a number of useful properties, and the first one is the prefix
property, see fact 7.3. This is easy to deduce from simple properties of Huffman
trees.

Proposition 7.10 (Prefix property). Huffman coding has the prefix property:
No code is a prefix of any other code.

Proof. Suppose that Huffman coding does not have the prefix property, we will
show that this leads to a contradiction. Let the code c1 be the prefix of another
code c2, and let ni be the node associated with the symbol with code ci . Then
the node n1 must be somewhere on the path from the root down to n2. But then
n2 must be located further from the root than n1, so n1 cannot be a leaf node,
which contradicts the definition of a Huffman tree (remember that symbols are
only associated with leaf nodes).
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We emphasise that it is the prefix property that makes it possible to use vari-
able lengths for the codes; without this property we would not be able to decode
an encoded text. Just consider the simple case where c(A) = 01, c(B) = 010 and
c(C ) = 1; which text would the code 0101 correspond to?

In the Huffman algorithm, we start by building trees from the symbols with
lowest frequency. These symbols will therefore end up the furthest from the root
and end up with the longest codes, as is evident from example 7.9. Likewise, the
symbols with the highest frequencies will end up near the root of the tree and
therefore receive short codes. This property of Huffman coding can be quanti-
fied, but to do this we must introduce a new concept.

Note that any binary tree with the symbols at the leaf nodes gives rise to a
coding with the prefix property. A natural question is then which tree gives the
coding with the fewest bits?

Theorem 7.11 (Optimality of Huffman coding). Let x be a given text, let T be
any binary tree with the symbols of x as leaf nodes, and let `(T ) denote the
number of bits in the encoding of x in terms of the codes from T . If T ∗ denotes
the Huffman tree corresponding to the text x then

`(T ∗) ≤ `(T ).

Theorem 7.11 says that Huffman coding is optimal, at least among coding
schemes based on binary trees. Together with its simplicity, this accounts for
the popularity of this compression method.

Exercises for Section 7.2

Exercise 1. Mark each of the following statements as true or false.

(a). Huffman coding uses a special code to separate each symbol in a
text.

(b). Huffman coding is the most optimal coding scheme based on binary
trees.

(c). Because there is no ambiguity in the Huffman algorithm we do not
need to store the code for each symbol in a text, only how many times
each symbol occurs.

(d). The Huffman algorithm assigns codes to symbols in the order of most
frequent symbol to least frequent symbol.
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Exercise 2. Only one of the following statements is true. Which one?
� Huffman coding allows you to store information with an absolute mini-

mum amount of bits.
�Huffman coding can only be used to store letters, not numbers.
� In Huffman coding, the most frequent symbols in a text get the shortest

codes.
� A node in a binary tree can have anywhere from 2 to 5 subtrees.

Exercise 3. In this exercise we are going to use Huffman coding to encode the
text ’There are many people in the world’, including the spaces.

(a). Compute the frequencies of the different symbols used in the text.

(b). Use algorithm 7.8 to determine the Huffman tree for the symbols.

(c). Determine the Huffman coding of the complete text. How does the
result compare with the entropy?

Exercise 4. We can generalise Huffman coding to numeral systems other than
the binary system.

(a). Suppose we have a computer that works in the ternary (base-3) nu-
meral system; describe a variant of Huffman coding for such machines.

(b). Generalise the Huffman algorithm so that it produces codes in the
base-n numeral system.

Exercise 5. In this exercise we are going to do Huffman coding for the text given
by x = {AB AC ABC A}.

(a). Compute the frequencies of the symbols, perform the Huffman al-
gorithm and determine the Huffman coding. Compare the result with the
entropy.

(b). Change the frequencies to f (A) = 1, f (B) = 1, f (C ) = 2 and compare
the Huffman tree with the one from (a).

Exercise 6. Recall from section 4.3.1 in chapter 4 that ASCII encodes the 128
most common symbols used in English with seven-bit codes. If we denote the
alphabet by A = {αi }128

i=1, the codes are

c(α1) = 0000000, c(α2) = 0000001, c(α3) = 0000010, . . .

c(α127) = 1111110, c(α128) = 1111111.

Explain how these codes can be associated with a certain Huffman tree. What
are the frequencies used in the construction of the Huffman tree?
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7.3 Probabilities and information entropy

Huffman coding is the best possible among all coding schemes based on binary
trees, but could there be completely different schemes, which do not depend
on binary trees, that are better? And if this is the case, what would be the best
possible scheme? To answer questions like these, it would be nice to have a way
to tell how much information there is in a text.

7.3.1 Probabilities rather than frequencies

Let us first consider more carefully how we should measure the quality of Huff-
man coding. For a fixed text x , our main concern is how many bits we need to
encode the text, see the end of example 7.9. If the symbol αi occurs f (αi ) times
and requires `(αi ) bits and we have n symbols, the total number of bits is

B =
n∑

i=1
f (αi )`(αi ). (7.3)

However, we note that if we multiply all the frequencies by the same constant,
the Huffman tree remains the same. It therefore only depends on the relative
frequencies of the different symbols, and not the length of the text. In other
words, if we consider a new text which is twice as long as the one we used in
example 7.9, with each letter occurring twice as many times, the Huffman tree
would be the same. This indicates that we should get a good measure of the
quality of an encoding if we divide the total number of bits used by the length of
the text. If the length of the text is m this leads to the quantity

B̄ =
n∑

i=1

f (αi )

m
`(αi ). (7.4)

If we consider longer and longer texts of the same type, it is reasonable to be-
lieve that the relative frequencies of the symbols would converge to a limit p(αi )
which is usually referred to as the probability of the symbol αi . As always for
probabilities we have

∑n
i=1 p(αi ) = 1.

Instead of referring to the frequencies of the different symbols in an alpha-
bet we will from now on refer to the probabilities of the symbols. We can then
translate the bits per symbol measure in equation 7.4 to a setting with probabil-
ities.
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Observation 7.12 (Bits per symbol). Let A = {α1, . . . ,αn} be an alphabet
where the symbolαi has probability p(αi ) and is encoded with `(αi ) bits. Then
the average number of bits per symbol in a text encoded with this alphabet is

b̄ =
n∑

i=1
p(αi )`(αi ). (7.5)

Note that the Huffman algorithm will work just as well if we use the prob-
abilities as weights rather than the frequencies, as this is just a relative scaling.
In fact, the most obvious way to obtain the probabilities is to just divide the fre-
quencies with the number of symbols for a given text. However, it is also pos-
sible to use a probability distribution that has been determined by some other
means. For example, the probabilities of the different characters in English have
been determined for typical texts. Using these probabilities and the correspond-
ing codes will save you the trouble of processing your text and computing the
probabilities for a particular text. Remember however that such pre-computed
probabilities are not likely to be completely correct for a specific text, particu-
larly if the text is short. And this of course means that your compressed text will
not be as short as it would be had you computed the correct probabilities.

In practice, it is quite likely that the probabilities of the different symbols
change as we work our way through a file. If the file is long, it probably contains
different kinds of information, as in a document with both text and images. It
would therefore be useful to update the probabilities at regular intervals. In the
case of Huffman coding this would of course also require that we update the
Huffman tree and therefore the codes assigned to the different symbols. This
may sound complicated, but is in fact quite straightforward. The key is that the
decoding algorithm must compute probabilities in exactly the same way as the
compression algorithm and update the Huffman tree at exactly the same posi-
tion in the text. As long as this requirement is met, there will be no confusion as
the compression end decoding algorithms will always use the same codes.

7.3.2 Information entropy

The quantity b̄ in observation 7.12 measures the number of bits used per symbol
for a given coding. An interesting question is how small we can make this num-
ber by choosing a better coding strategy. This is answered by a famous theorem.
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Theorem 7.13 (Shannon’s theorem). Let A = {α1, . . . ,αn} be an alphabet
where the symbol αi has probability p(αi ). Then the minimal number of bits
per symbol in an encoding using this alphabet is given by

H = H(p1, . . . , pn) =−
n∑

i=1
p(αi ) log2 p(αi ).

where log2 denotes the logarithm to base 2. The quantity H is called the infor-
mation entropy of the alphabet with the given probabilities.

Example 7.14. Let us return to example 7.9 and compute the entropy in this
particular case. From the frequencies we obtain the probabilities

c(t ) = 4/25,

c(h) = 3/25,

c(e) = 1/5,

c(n) = 3/25,

c(b) = 1/25,

c(g ) = 1/25,

c(a) = 2/25,

c(o) = 1/25,

c(t) = 1/5.

We can then compute the entropy to be H ≈ 2.93. If we had a compression al-
gorithm that could compress the text down to this number of bits per symbol,
we could represent our 25-symbol text with 74 bits. This is only one bit less than
what we obtained in example 7.9, so Huffman coding is very close to the best we
can do for this particular text.

Note that the entropy can be written as

H =
n∑

i=1
p(αi ) log2

(
1/p(αi )

)
.

If we compare this expression with equation (7.5) we see that a compression
strategy would reach the compression rate promised by the entropy if the length
of the code for the symbolαi was log2

(
1/p(αi )

)
. But we know that this is just the

number of bits in the number 1/p(αi ). This therefore indicates that an optimal
compression scheme would representαi by the number 1/p(αi ). Huffman cod-
ing necessarily uses an integer number of bits for each code, and therefore only
has a chance of reaching entropy performance when 1/p(αi ) is a power of 2 for
all the symbols. In fact Huffman coding does reach entropy performance in this
situation, see exercise Exercise 5.

Exercises for Section 7.3

Exercise 1. Mark each of the following statements as true or false.
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(a). The text "AAAABBBB" has less entropy than “AABAABBBA”.

(b). A text consisting of only one symbol repeated an arbitrary number
of times will always have 0 entropy.

(c). In general, long texts will have a higher entropy than short texts.

(d). The entropy of the answer to this question will be more than 2.3.

Exercise 2. (Exam 2010) The entropy of a text gives the minimum number of
bits needed per symbol that the text is coded with. If we use Huffman-coding
based on the frequency of the symbols in the text, which of these texts will not
achieve a minimal amount of bits per symbol?
� AABB
� ABCC
� ABBB
� ABCD

Exercise 3. Use the relation 2log2 x = x to derive a formula for log2 x in terms of
natural logarithms.

Exercise 4. Find the information entropy of the following famous quotes (in-
cluding spaces).

(a). ‘to be is to do’ — Socrates

(b). ‘do be do be do’ — Sinatra

(c). ‘scooby dooby doo’ — Scooby Doo

Exercise 5. (a). Search the www and find the probabilities of the differ-
ent letters in the English alphabet.

(b). Based on the probabilities you found in (a), what is the information
entropy of an English text?

(c). Try to repeat (a) and (b) for your own language.
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7.4 Arithmetic coding

When the probabilities of the symbols are far from being fractions with pow-
ers of 2 in their denominators, the performance of Huffman coding does not
come close to entropy performance. This typically happens in situations with
few symbols as is illustrated by the following example.

Example 7.15. Suppose that we have a two-symbol alphabet A = {0,1} with the
probabilities p(0) = 0.9 and p(1) = 0.1. Huffman coding will then just use the
obvious codes c(0) = 0 and c(1) = 1, so the average number of bits per symbol is
1, i.e., there will be no compression at all. If we compute the entropy we obtain

H =−0.9log2 0.9−0.1log2 0.1 ≈ 0.47.

So while Huffman coding gives no compression, there may be coding methods
that will reduce the file size to less than half the original size.

7.4.1 Arithmetic coding basics

Arithmetic codingÂăis a coding strategy that is capable of compressing files to a
size close to the entropy limit. It uses a different strategy than Huffman coding
and does not need an integer number of bits per symbol and therefore performs
well in situations where Huffman coding struggles. The basic idea of arithmetic
coding is quite simple.

Idea 7.16 (Basic idea of arithmetic coding). Arithmetic coding associates se-
quences of symbols with different subintervals of [0,1). The width of a subinter-
val is proportional to the probability of the corresponding sequence of symbols,
and the arithmetic code of a sequence of symbols is a floating-point number in
the corresponding interval.

To illustrate some of the details of arithmetic coding, it is easiest to consider
an example.

Example 7.17 (Determining an arithmetic code). We consider the two-symbol
text ’00100’. As for Huffman coding we first need to determine the probabilities
of the two symbols which we find to be p(0) = 0.8 and p(1) = 0.2. The idea is
to allocate different parts of the interval [0,1) to the different symbols, and let
the length of the subinterval be proportional to the probability of the symbol. In
our case we allocate the interval [0,0.8) to ’0’ and the interval [0.8,1) to ’1’. Since
our text starts with ’0’, we know that the floating-point number which is going to
represent our text must lie in the interval [0,0.8), see the first line in figure 7.5.
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0.64 0.96

000 001 010 011 100 101
110 111

0.512 0.768 0.928 0.996

Figure 7.5. The basic principle of arithmetic coding applied to the text in example 7.17.

We then split the two subintervals according to the two probabilities again.
If the final floating point number ends up in the interval [0,0.64), the text starts
with ’00’, if it lies in [0.64,0.8), the text starts with ’01’, if it lies in [0.8,0.96), the
text starts with ’10’, and if the number ends up in [0.96,1) the text starts with ’11’.
This is illustrated in the second line of figure 7.5. Our text starts with ’00’, so the
arithmetic code we are seeking must lie in the interval [0,0.64).

At the next level we split each of the four sub-intervals in two again, as shown
in the third line in figure 7.5. Since the third symbol in our text is ’1’, the arith-
metic code must lie in the interval [0.512,0.64). We next split this interval in the
two subintervals [0.512,0.6144) and [0.6144,0.64). Since the fourth symbol is ’0’,
we select the first interval. This interval is then split into [0.512,0.59392) and
[0.59392,0.6144). The final symbol of our text is ’0’, so the arithmetic code must
lie in the interval [0.512,0.59392).

We know that the arithmetic code of our text must lie in the half-open inter-
val [0.512,0.59392), but it does not matter which of the numbers in the interval
we use. The code is going to be handled by a computer so it must be repre-
sented in the binary numeral system, with a finite number of bits. We know that
any number of this kind must be on the form i /2k where k is a positive inte-
ger and i is an integer in the range 0 ≤ i < 2k . Such numbers are called dyadic
numbers. We obviously want the code to be as short as possible, so we are look-
ing for the dyadic number with the smallest denominator that lies in the inter-
val [0.512,0.59392). In our simple example it is easy to see that this number is
9/16 = 0.5625. In binary this number is 0.10012, so the arithmetic code for the
text ’00100’ is 1001.

Example 7.17 shows how an arithmetic code is computed. We have done all
the computations in decimal arithmetic, but in a program one would usually use
binary arithmetic.
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It is not sufficient to be able to encode a text; we must be able to decode
as well. This is in fact quite simple. We split the interval [0,1] into the smaller
pieces, just like we did during the encoding. By checking which interval contains
our code, we can extract the correct symbol at each stage.

7.4.2 An algorithm for arithmetic coding

Let us now see how the description in example 7.17 can be generalised to a sys-
tematic algorithm in a situation with n different symbols. An important tool in
the algorithm is a function that maps the interval [0,1] to a general interval [a,b].

Observation 7.18. Let [a,b] be a given interval with a < b. The function

g (z) = a + z(b −a)

will map any number z in [0,1] to a number in the interval [a,b]. In particular
the endpoints are mapped to the endpoints and the midpoint to the midpoint,

g (0) = a, g (1/2) = a +b

2
, g (1) = b.

We are now ready to study the details of the arithmetic coding algorithm.
As before we have a text x = {x1, . . . , xm} with symbols taken from an alphabet
A = {α1, . . . ,αn}, with p(αi ) being the probability of encountering αi at any
given position in x . It is much easier to formulate arithmetic coding if we in-
troduce one more concept.

Definition 7.19 (Cumulative probability distribution). Let A = {α1, . . . ,αn}
be an alphabet where the probability of αi is p(αi ). The cumulative proba-
bility distribution F is defined as

F (α j ) =
j∑

i=1
p(αi ), for j = 1, 2, . . . , n.

The related function L is defined by L(α1) = 0 and

L(α j ) = F (α j )−p(α j ) = F (α j−1), for j = 2, 3, . . . , n.
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It is important to remember that the functions F , L and p are defined for the
symbols in the alphabet A . This means that F (x) only makes sense if x =αi for
some i in the range 1 ≤ i ≤ n.

The basic idea of arithmetic coding is to split the interval [0,1) into the n
subintervals[

0,F (α1)
)
,

[
F (α1),F (α2)

)
, . . . ,

[
F (αn−2),F (αn−1)

)
,

[
F (αn−1),1

)
(7.6)

so that the width of the subinterval
[
F (αi−1),F (αi )

)
is F (αi )−F (αi−1) = p(αi ).

If the first symbol is x1 =αi , the arithmetic code must lie in the interval [a1,b1)
where

a1 = p(α1)+p(α2)+·· ·+p(αi−1) = F (αi−1) = L(αi ) = L(x1),

b1 = a1 +p(αi ) = F (αi ) = F (x1).

The next symbol in the text is x2. If this were the first symbol of the text,
the desired subinterval would be

[
L(x2),F (x2)

)
. Since it is the second symbol we

must map the whole interval [0,1) to the interval [a1,b1] and pick out the part
that corresponds to

[
L(x2),F (x2)

)
. The mapping from [0,1) to [a1,b1) is given by

g2(z) = a1 + z(b1 −a1) = a1 + zp(x1), see observation 7.18, so our new interval is

[a2,b2) =
[

g2
(
L(x2)

)
, g2

(
F (x2)

))= [
a1 +L(x2)p(x1), a1 +F (x2)p(x1)

)
.

The third symbol x3 would be associated with the interval
[
L(x3),F (x3)

)
if it

were the first symbol. To find the correct subinterval, we map [0,1) to [a2,b2)
with the mapping g3(z) = a2 + z(b2 −a2) and pick out the correct subinterval as

[a3,b3) =
[

g3
(
L(x3)

)
, g3

(
F (x3)

))
.

This process is then continued until all the symbols in the text have been pro-
cessed.

With this background we can formulate a precise algorithm for arithmetic
coding of a text of length m with n distinct symbols.

Algorithm 7.20 (Arithmetic coding). Let the text x = {x1, . . . , xm} be given,
with the symbols being taken from an alphabet A = {α1, . . . ,αn}, with prob-
abilities p(αi ) for i = 1, . . . , n. Generate a sequence of m subintervals of [0,1):

1. Set [a0,b0] = [
0,1).

2. For k = 1, . . . , m
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(a) Define the linear function gk (z) = ak−1 + z(bk−1 −ak−1).

(b) Set [ak ,bk ] =
[

gk
(
L(xk )

)
, gk

(
F (xk )

))
.

The arithmetic code of the text x is the midpoint C (x) of the interval [am ,bm),
i.e., the number

am +bm

2
,

truncated to ⌈
− log2

(
p(x1)p(x2) · · ·p(xm)

)⌉+1

binary digits. Here dwe denotes the smallest integer that is larger than or equal
to w.

A program for arithmetic coding needs to output a bit more information
than just the arithmetic code itself. For the decoding we also need to know ex-
actly which probabilities were used and the ordering of the symbols (this influ-
ences the cumulative probability function). In addition we need to know when
to stop decoding. A common way to provide this information is to store the
length of the text. Alternatively, there must be a unique symbol that terminates
the text so when we encounter this symbol during decoding we know that we
are finished.

Let us consider another example of arithmetic coding in a situation with a
three-symbol alphabet.

Example 7.21. Suppose we have the text x = {AC BBC A AB A A} and we want to
encode it with arithmetic coding. We first note that the probabilities are given
by

p(A) = 0.5, p(B) = 0.3, p(C ) = 0.2,

so the cumulative probabilities are F (A) = 0.5, F (B) = 0.8 and F (C ) = 1.0. This
means that the interval [0,1) is split into the three subintervals

[0,0.5), [0.5,0.8), [0.8,1).

The first symbol is A, so the first subinterval is [a1,b1) = [0,0.5). The second sym-
bol is C so we must find the part of [a1,b1) that corresponds to C . The mapping
from [0,1) to [0,0.5) is given by g2(z) = 0.5z so [0.8,1] is mapped to

[a2,b2) = [
g2(0.8), g2(1)

)= [0.4,0.5).

The third symbol is B which corresponds to the interval [0.5,0.8). We map [0,1)
to the interval [a2,b2) with the function g3(z) = a2 + z(b2 − a2) = 0.4+ 0.1z so
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[0.5,0.8) is mapped to

[a3,b3) = [
g3(0.5), g3(0.8)

)= [0.45,0.48).

Let us now write down the rest of the computations more schematically in a
table,

g4(z) = 0.45+0.03z, x4 = B , [a4,b4) = [
g4(0.5), g4(0.8)

)= [0.465,0.474),

g5(z) = 0.465+0.009z, x5 =C , [a5,b5) = [
g5(0.8), g5(1)

)= [0.4722,0.474),

g6(z) = 0.4722+0.0018z, x6 = A, [a6,b6) = [
g6(0), g6(0.5)

)= [0.4722,0.4731),

g7(z) = 0.4722+0.0009z, x7 = A, [a7,b7) = [
g7(0), g7(0.5)

)= [0.4722,0.47265),

g8(z) = 0.4722+0.00045z, x8 = B , [a8,b8) = [
g8(0.5), g8(0.8)

)= [0.472425,0.47256),

g9(z) = 0.472425+0.000135z, x9 = A,

[a9,b9) = [
g9(0), g9(0.5)

)= [0.472425,0.4724925),

g10(z) = 0.472425+0.0000675z, x10 = A,

[a10,b10) = [
g10(0), g10(0.5)

)= [0.472425,0.47245875).

The midpoint M of this final interval is

M = 0.472441875 = 0.011110001111000111112,

and the arithmetic code is M rounded to⌈
− log2

(
p(A)5p(B)3p(C )2)⌉+1 = 16

bits. The arithmetic code is therefore the number

C (x) = 0.01111000111100012 = 0.472427,

but we just store the 16 bits 0111100011110001. In this example the arithmetic
code therefore uses 1.6 bits per symbol. In comparison the entropy is 1.49 bits
per symbol.

7.4.3 Properties of arithmetic coding

In example 7.17 we chose the arithmetic code to be the dyadic number with the
smallest denominator within the interval [am ,bm). In algorithm 7.20 we have
chosen a number that is a bit easier to determine, but still we need to prove that
the truncated number lies in the interval [am ,bm). This is necessary because
when we throw away some of the digits in the representation of the midpoint,
the result may end up outside the interval [am ,bm]. We combine this with an
important observation on the length of the interval.
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Theorem 7.22. The width of the interval [am ,bm) is

bm −am = p(x1)p(x2) · · ·p(xm) (7.7)

and the arithmetic code C (x) lies inside this interval.

Proof. The proof of equation(7.7) is by induction on m. For m = 1, the length
is simply b1 −a1 = F (x1)−L(x1) = p(x1), which is clear from the last equation in
Definition 7.19. Suppose next that

bk−1 −ak−1 = p(x1) · · ·p(xk−1);

we need to show that bk − ak = p(x1) · · ·p(xk ). This follows from step 2 of algo-
rithm 7.20,

bk −ak = gk
(
F (xk )

)− gk
(
L(xk )

)
= (

F (xk )−L(xk )
)
(bk−1 −ak−1)

= p(xk )p(x1) · · ·p(xk−1).

In particular we have bm −am = p(x1) · · ·p(xm).
Our next task is to show that the arithmetic code C (x) lies in [am ,bm). Define

the number µ by the relation

1

2µ
= bm −am = p(x1) · · ·p(xm) or µ=− log2

(
p(x1) · · ·p(xm)

)
.

In general µwill not be an integer, so we introduce a new number λwhich is the
smallest integer that is greater than or equal to µ,

λ= dµe =
⌈
− log2

(
p(x1) · · ·p(xm)

)⌉
.

This means that 1/2λ is smaller than or equal to bm −am since λ≥ µ. Consider
the collection of dyadic numbers Dλ on the form j /2λ where j is an integer in
the range 0 ≤ j < 2λ. At least one of them, say k/2λ, must lie in the interval
[am ,bm) since the distance between neighbouring numbers in Dλ is 1/2λ which
is at most equal to bm − am . Denote the midpoint of [am ,bm) by M . There are
two situations to consider which are illustrated in figure 7.6.

In the first situation shown in the top part of the figure, the number k/2λ

is larger than M and there is no number in Dλ in the interval [am , M ]. If we
form the approximation M̃ to M by only keeping the first λ binary digits, we
obtain the number (k −1)/2λ in Dλ that is immediately to the left of k/2λ. This
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Figure 7.6. The two situations that can occur when determining the number of bits in the arithmetic code.

number may be smaller than am , as shown in the figure. To make sure that the
arithmetic code ends up in [am ,bm) we therefore use one more binary digit and
set C (x) = (2k−1)/2λ+1, which corresponds to keeping the firstλ+1 binary digits
in M .

In the second situation there is a number from Dλ in [am , M ] (this was the
case in example 7.17). If we now keep the first λ digits in M we would get C (x) =
k/2λ. In this case algorithm 7.20 therefore gives an arithmetic code with one
more bit than necessary. In practice the arithmetic code will usually be at least
thousands of bits long, so an extra bit does not matter much.

Now that we know how to compute the arithmetic code, it is interesting to
see how the number of bits per symbol compares with the entropy. The number
of bits is given by ⌈

− log2

(
p(x1)p(x2) · · ·p(xm)

)⌉+1.

Recall that each xi is one of the n symbols αi from the alphabet so by properties
of logarithms we have

log2

(
p(x1)p(x2) · · ·p(xm)

)= n∑
i=1

f (αi ) log2 p(αi )

where f (αi ) is the number of times that αi occurs in x . As m becomes large we
know that f (αi )/m approaches p(αi ). For large m we therefore have that the
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number of bits per symbol approaches

1

m

⌈
− log2

(
p(x1)p(x2) · · ·p(xm)

)⌉+ 1

m
≤− 1

m
log2

(
p(x1)p(x2) · · ·p(xm)

)+ 2

m

=− 1

m

n∑
i=1

f (αi ) log2 p(αi )+ 2

m

≈−
n∑

i=1
p(αi ) log2 p(αi )

= H(p1, . . . , pn).

In other words, arithmetic coding gives compression rates close to the best pos-
sible for long texts.

Corollary 7.23. For long texts the number of bits per symbol required by the
arithmetic coding algorithm approaches the minimum given by the entropy,
provided the probability distribution of the symbols is correct.

7.4.4 A decoding algorithm

We commented briefly on decoding at the end of section 7.4.1. In this section
we will give a detailed decoding algorithm similar to algorithm 7.20.

We will need the linear function that maps an interval [a,b] to the interval
[0,1], i.e., the inverse of the function in observation 7.18.

Observation 7.24. Let [a,b] be a given interval with a < b. The function

h(y) = y −a

b −a

will map any number y in [a,b] to the interval [0,1]. In particular the end-
points are mapped to the endpoints and the midpoint to the midpoint,

h(a) = 0, h
(
(a +b)/2

)= 1/2, h(b) = 1.

Linear functions like h in observation 7.24 play a similar role in decoding
as the gk s in algorithm 7.20; they help us avoid working with very small inter-
vals. The decoding algorithm assumes that the number of symbols in the text is
known and decodes the arithmetic code symbol by symbol. It stops when the
correct number of symbols have been found.
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Algorithm 7.25. Let C (x) be a given arithmetic code of an unknown text x
of length m, based on an alphabet A = {α1, . . . ,αn} with known probabilities
p(αi ) for i = 1, . . . , n. The following algorithm determines the symbols of the
text x = {x1, . . . , xm} from the arithmetic code C (x):

1. Set z1 =C (x).

2. For k = 1, . . . , m

(a) Find the integer i such that L(αi ) ≤ zk < F (αi ) and set

[ak ,bk ) = [
L(αi ),F (αi )

)
.

(b) Output xk =αi .

(c) Determine the linear function hk (y) = (y −ak )/(bk −ak ).

(d) Set zk+1 = hk (zk ).

The algorithm starts by determining which of the n intervals[
0,F (α1)

)
,

[
F (α1),F (α2)

)
, . . . ,

[
F (αn−2),F (αn−1)

)
,

[
F (αn−1),1

)
it is that contains the arithmetic code z1 = C (x). This requires a search among
the cumulative probabilities. When the index i of the interval is known, we
know that x1 = αi . The next step is to decide which subinterval of [a1,b1) =[
L(αi ),F (αi )

)
that contains the arithmetic code. If we stretch this interval out to

[0,1) with the function hk , we can identify the next symbol just as we did with
the first one. Let us see how this works by decoding the arithmetic code that we
computed in example 7.17.

Example 7.26 (Decoding of an arithmetic code). Suppose we are given the arith-
metic code 1001 from example 7.17 together with the probabilities p(0) = 0.8
and p(1) = 0.2. We also assume that the length of the code is known, the proba-
bilities, and how the probabilities were mapped into the interval [0,1]; this is the
typical output of a program for arithmetic coding. Since we are going to do this
manually, we start by converting the number to decimal; if we were to program
arithmetic coding we would do everything in binary arithmetic.

The arithmetic code 1001 corresponds to the binary number 0.10012 which
is the decimal number z1 = 0.5625. Since this number lies in the interval [0,0.8)
we know that the first symbol is x1 = 0. We now map the interval [0,0.8) and the
code back to the interval [0,1) with the function

h1(y) = y/0.8.
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We find that the code becomes

z2 = h1(z1) = z1/0.8 = 0.703125

relative to the new interval. This number lies in the interval [0,0.8) so the second
symbol is x2 = 0. Once again we map the current interval and arithmetic code
back to [0,1) with the function h2 and obtain

z3 = h2(z2) = z2/0.8 = 0.87890625.

This number lies in the interval [0.8,1), so our third symbol must be a x3 = 1. At
the next step we must map the interval [0.8,1) to [0,1). From observation 7.24
we see that this is done by the function h3(y) = (y−0.8)/0.2. This means that the
code is mapped to

z4 = h3(z3) = (z3 −0.8)/0.2 = 0.39453125.

This brings us back to the interval [0,0.8), so the fourth symbol is x4 = 0. This
time we map back to [0,1) with the function h4(y) = y/0.8 and obtain

z5 = h4(z4) = 0.39453125/0.8 = 0.493164.

Since we remain in the interval [0,0.8) the fifth and last symbol is x5 = 0, so the
original text was ’00100’.

7.4.5 Arithmetic coding in practice

Algorithms 7.20 and 7.25 are quite simple and appear to be easy to program.
However, there is one challenge that we have not addressed. The typical symbol
sequences that we may want to compress are very long, with perhaps millions
or even billions of symbols. In the coding process the intervals that contain the
arithmetic code become smaller for each symbol that is processed which means
that the ends of the intervals must be represented with extremely high precision.
A program for arithmetic coding must therefore be able to handle arbitrary pre-
cision arithmetic in an efficient way. For a time this prevented the method from
being used, but there are now good algorithms for handling this. The basic idea
is to organise the computations of the endpoints of the intervals in such a way
that early digits are not influenced by later ones. It is then sufficient to only work
with a limited number of digits at a time (for example 32 or 64 binary digits). The
details of how this is done is rather technical though.

Since the compression rate of arithmetic coding is close to the optimal rate
predicted by the entropy, one would think that it is often used in practice. How-
ever, arithmetic coding is protected by many patents which means that you have
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to be careful with the legal details if you use the method in commercial software.
For this reason, many prefer to use other compression algorithms without such
restrictions, even though these methods may not perform quite so well.

In long texts the frequency of the symbols may vary within the text. To com-
pensate for this it is common to let the probabilities vary. This does not cause
problems as long as the coding and decoding algorithms compute and adjust
the probabilities in exactly the same way.

Exercises for Section 7.4

Exercise 1. Mark each of the following statements as true or false.

(a). For long texts the number of bits per symbol required by the arith-
metic coding algorithm approaches the minimum given by the entropy,
provided the probability distribution of the symbols is correct.

(b). Because computers have limited precision, we can only code very
short texts (less than 64 characters) when using arithmetic coding.

(c). If we want to decode an aritmethically coded text, we need to know
which probabilities were used as well as the ordering of the symbols.

Exercise 2. In this exercise we use the two-symbol alphabet A = {A,B}.

(a). Compute the frequencies f (A) and f (B) in the text

x = {A A A A A A AB A A}

and the probabilities p(A) and p(B).

(b). We want to use arithmetic coding to compress the sequence in (a);
how many bits do we need in the arithmetic code? so that 6 bits are needed.

(c). Compute the arithmetic code of the sequence in (a).

Exercise 3. The four-symbol alphabet A = {A,B ,C ,D} is used throughout this
exercise. The probabilities are given by p(A) = p(B) = p(C ) = p(D) = 0.25.

(a). Compute the information entropy for this alphabet with the given
probabilities.

(b). Construct the Huffman tree for the alphabet. How many bits per
symbol is required if you use Huffman coding with this alphabet?
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(c). Suppose now that we have a text x = {x1, . . . , xm} consisting of m sym-
bols taken from the alphabet A . We assume that the frequencies of the
symbols correspond with the probabilities of the symbols in the alphabet.

How many bits does arithmetic coding require for this sequence and how
many bits per symbol does this correspond to?

(d). The Huffman tree you obtained in (b) is not unique. Here we will fix
a tree so that the Huffman codes are

c(A) = 00, c(B) = 01, c(C ) = 10, c(D) = 11.

Compute the Huffman coding of the sequence ’ACDBAC’.

(e). Compute the arithmetic code of the sequence in (d). What is the
similarity with the result obtained with Huffman coding in (d)?

Exercise 4. The three-symbol alphabet A = {A,B ,C } with probabilities p(A) =
0.1, p(B) = 0.6 and p(C ) = 0.3 is given. A text x of length 10 has been encoded by
arithmetic coding and the code is 1001101. What is the text x?

Exercise 5. We have the two-symbol alphabet A = {A,B} with p(A) = 0.99 and
p(B) = 0.01. Find the arithmetic code of the text

99 times︷ ︸︸ ︷
A A A · · · A A A B.

Exercise 6. The two linear functions in observations 7.18 and 7.24 are special
cases of a more general construction. Suppose we have two nonempty intervals
[a,b] and [c,d ], find the linear function which maps [a,b] to [c,d ].

Check that your solution is correct by comparing with observations 7.18 and 7.24.

7.5 Lempel-Ziv-Welch algorithm

The Lempel-Ziv-Welch algorithm is named after the three inventors and is usu-
ally referred to as the LZW algorithm. The original idea is due to Lempel and Ziv
and is used in the LZ77 and LZ78 algorithms.

LZ78 constructs a code book during compression, with entries for combina-
tions of several symbols as well as for individual symbols. If, say, the ten next
symbols already have an entry in the code book as individual symbols, a new

183



entry is added to represent the combination consisting of these next ten sym-
bols. If this same combination of ten symbols appears later in the text, it can be
represented by its code.

The LZW algorithm is based on the same idea as LZ78, with small changes
to improve compression further.

LZ77 does not store a list of codes for previously encountered symbol com-
binations. Instead it searches previous symbols for matches with the sequence
of symbols that are presently being encoded. If the next ten symbols match a
sequence 90 symbols earlier in the symbol sequence, a code for the pair of num-
bers (90,10) will be used to represent these ten symbols. This can be thought of
as a type of run-length coding.

7.6 Lossless compression programs

Lossless compression has become an important ingredient in many different
contexts, often coupled with a lossy compression strategy. We will discuss this
in more detail in the context of digital sound and images in later chapters, but
want to mention two general-purpose programs for lossless compression here.

7.6.1 Compress

The program compress is a much used compression program on UNIX plat-
forms which first appeared in 1984. It uses the LZW-algorithm. After the pro-
gram was published it turned out that part of the algorithm was covered by a
patent.

7.6.2 gzip

To avoid the patents on compress, the alternative program gzip appeared in
1992. This program is based on the LZ77 algorithm, but uses Huffman coding
to encode the pairs of numbers. Although gzip was originally developed for
the Unix platform, it has now been ported to most operating systems, see www.
gzip.org.

Exercises for Section 7.6

Exercise 1. If it is not already installed, install the program gzip on your com-
puter. Read the manual, and experiment with the program by compressing some
sample files and observing the amount of compression.
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CHAPTER 8

Digital Sound

A major part of the information we receive and perceive every day is in the form
of audio. Most of these sounds are transferred directly from the source to our
ears, like when we have a face to face conversation with someone or listen to the
sounds in a forest or a street. However, a considerable part of the sounds are gen-
erated by loudspeakers in various kinds of audio machines like cell phones, dig-
ital audio players, home cinemas, radios, television sets and so on. The sounds
produced by these machines are either generated from information stored in-
side, or electromagnetic waves are picked up by an antenna, processed, and
then converted to sound. It is this kind of sound we are going to study in this
chapter. The sound that is stored inside the machines or picked up by the an-
tennas is usually represented as digital sound. This has certain limitations, but
at the same time makes it very easy to manipulate and process the sound in a
computer. The purpose of this chapter is to give a brief introduction to digital
sound representation and processing.

We start by a short discussion of what sound is, which leads us to the con-
clusion that sound can be conveniently modelled by functions of a real variable
in section 8.1. From mathematics it is known that almost any function can be
approximated arbitrarily well by a combination of sines and cosines, and we dis-
cuss what this means when it is translated to the context of sound. We then go on
and discuss digital sound, and simple operations on digital sound in section 8.2.
FInally, we consider compression of sound in sections 8.4 and 8.5.

8.1 Sound

What we perceive as sound corresponds to the physical phenomenon of slight
variations in air pressure near our ears. Larger variations mean louder sounds,
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Figure 8.1. Two examples of audio signals.

while faster variations correspond to sounds with a higher pitch. The air pres-
sure varies continuously with time, but at a given point in time it has a precise
value. This means that sound can be considered to be a mathematical function.
In this section we briefly discuss the basic properties of sound, first the signifi-
cance of the size of the variations, and then the frequency of the variations. We
also consider the important fact that any sound may be considered to be built
from very simple basis sounds.

Before we turn to the details, we should be clear about the use of the word
signal which is often encountered in literature on sound and confuses many.

Observation 8.1. A sound can be represented by a mathematical function.
When a function represents a sound it is often referred to as a signal.

8.1.1 Loudness: Sound pressure and decibels

An example of a simple sound is shown in figure 8.1a. We observe that the initial
air pressure has the value 101 325, and then the pressure starts to vary more
and more until it oscillates regularly between the values 101 323 and 101 326. In
the area where the air pressure is constant, no sound will be heard, but as the
variations increase in size, the sound becomes louder and louder until about
time t = 0.6 where the size of the oscillations becomes constant. The following
summarises some basic facts about air pressure.

Fact 8.2 (Air pressure). Air pressure is measured by the SI-unit Pa (Pascal)
which is equivalent to N /m2 (force / area). In other words, 1 Pa corresponds
to the force exerted on an area of 1 m2 by the air column above this area. The
normal air pressure at sea level is 101 325 Pa.
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Fact 8.2 explains the values on the vertical axis in figure 8.1a: The sound
was recorded at the normal air pressure of 101 325 Pa. Once the sound started,
the pressure started to vary both below and above this value, and after a short
transient phase the pressure varied steadily between 101 324 Pa and 101 326
Pa, which corresponds to variations of size 1 Pa about the fixed value. Every-
day sounds typically correspond to variations in air pressure of about 0.002–2
Pa, while a jet engine may cause variations as large as 200 Pa. Short exposure to
variations of about 20 Pa may in fact lead to hearing damage. The volcanic erup-
tion at Krakatoa, Indonesia, in 1883, produced a sound wave with variations as
large as almost 100 000 Pa, and the explosion could be heard 5000 km away.

When discussing sound, one is usually only interested in the variations in
air pressure, so the ambient air pressure is subtracted from the measurement.
This corresponds to subtracting 101 325 from the values on the vertical axis in
figure 8.1a so that the values vary between −1 and 1. Figure 8.1b shows another
sound with a slow, cos-like, variation in air pressure, roughly between −1 and
1. Imposed on this are some smaller and faster variations. This combination of
several kinds of vibrations in air pressure is typical for general sounds.

The size of the variations in air pressure is directly related to the loudness
of the sound. We have seen that for audible sounds the variations may range
from 0.00002 Pa all the way up to 100 000 Pa. This is such a wide range that
it is common to measure the loudness of a sound on a logarithmic scale. The
following fact box summarises the previous discussion of what a sound is, and
introduces the logarithmic decibel scale.

Fact 8.3 (Sound pressure and decibels). The physical origin of sound is vari-
ations in air pressure near the ear. The sound pressure of a sound is obtained by
subtracting the average air pressure over a suitable time interval from the mea-
sured air pressure within the time interval. A square of this difference is then
averaged over time, and the sound pressure is the square root of this average.

It is common to relate a given sound pressure to the smallest sound pressure
that can be perceived, as a level on a decibel scale,

Lp = 10log10

(
p2

p2
ref

)
= 20log10

(
p

pref

)
.

Here p is the measured sound pressure while pref is the sound pressure of a just
perceivable sound, usually considered to be 0.00002 Pa.

The square of the sound pressure appears in the definition of Lp since this
represents the power of the sound which is relevant for what we perceive as loud-
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Figure 8.2. Variations in air pressure during parts of a song. Figure (a) shows 0.5 seconds of the song, figure (b)
shows just the first 0.015 seconds, and figure (c) shows the first 0.002 seconds.

ness.

The sounds in figure 8.1 are synthetic in that they were constructed from
mathematical formulas. The sounds in figure 8.2 show the variation in air pres-
sure for a real sound. In (a) there are so many oscillations that it is impossible to
see the details, but if we zoom in as in figure (c) we can see that there is a con-
tinuous function behind all the ink. It is important to realise that in reality the
air pressure varies more than this, even over the short time period in figure 8.2c.
However, the measuring equipment was not able to pick up those variations,
and it is also doubtful whether we would be able to perceive such rapid varia-
tions.
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8.1.2 The pitch of a sound

Besides the size of the variations in air pressure, a sound has another important
characteristic, namely the frequency (speed) of the variations. For most sounds
the frequency of the variations varies with time, but if we are to perceive varia-
tions in air pressure as sound, they must fall within a certain range.

Fact 8.4. For a human with good hearing to perceive variations in air pressure
as sound, the number of variations per second must be in the range 20–20 000.

To make these concepts more precise, we first recall what it means for a func-
tion to be periodic.

Definition 8.5. A real function f is said to be periodic with period τ if

f (t +τ) = f (t )

for all real numbers t .

Note that all the values of a periodic function f with period τ are known if
f (t ) is known for all t in the interval [0,τ). The prototypes of periodic functions
are the trigonometric ones, and particularly sin t and cos t are of interest to us.
Since sin(t +2π) = sin t , we see that the period of sin t is 2π and the same is true
for cos t .

There is a simple way to change the period of a periodic function, namely by
multiplying the argument by a constant.

Observation 8.6 (Frequency). If ν is an integer, the function f (t ) = sin2πνt is
periodic with period τ= 1/ν. When t varies in the interval [0,1], this function
covers a total of ν periods. This is expressed by saying that f has frequency ν.

Figure 8.3 illustrates observation 8.6. The function in figure (a) is the plain
sin t which covers one period in the interval [0,2π]. By multiplying the argument
by 2π, the period is squeezed into the interval [0,1] so the function sin2πt has
frequency ν = 1. Then, by also multiplying the argument by 2, we push two
whole periods into the interval [0,1], so the function sin2π2t has frequency ν=
2. In figure (d) the argument has been multiplied by 5 — hence the frequency is
5 and there are five whole periods in the interval [0,1]. Note that any function
on the form sin(2πνt +a) has frequency ν, regardless of the value of a.

189



1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

(a)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(c)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(d)

Figure 8.3. Versions of sin with different frequencies. The function in (a) is sin t , the one in (b) is sin2πt , the
one in (c) is sin2π2t , and the one in (d) is sin2π5t .

Since sound can be modelled by functions, it is reasonable to say that a
sound with frequency ν is a trigonometric function with frequency ν.

Definition 8.7. The function sin2πνt represents a pure tone with frequency ν.
Frequency is measured in Hz (Herz) which is the same as s−1.

With appropriate software it is easy to generate a sound from a mathematical
function; we can ’play’ a function. If we play a function like sin2π440t , we hear
a pleasant sound with a very distinct pitch, as expected.

There are many other ways in which a function can oscillate regularly. The
function in figure 8.1b for example, definitely oscillates 2 times every second,
but it does not have frequency 2 Hz since it is not a pure sin function. Likewise,
the two functions in figure 8.4 also oscillate twice every second, but are very
different from a smooth, trigonometric function. If we play a function like the
one in figure (a), but with 440 periods in a second, we hear a sound with the
same pitch as sin2π440t , but it is definitely not pleasant. The sharp corners
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Figure 8.4. Two functions with regular oscillations, but which are not simple, trigonometric functions.

translate into a rather shrieking, piercing sound. The function in figure (b) leads
to a smoother sound than the one in (a), but not as smooth as a pure sin sound.

8.1.3 Any function is a sum of sin and cos

A very common tool in mathematics is to approximate general functions by
combinations of more standard functions. Perhaps the most well-known exam-
ple is Taylor series where functions are approximated by combinations of poly-
nomials. In the area of sound it is of more interest to approximate with combi-
nations of trigonometric functions — this is referred to as Fourier analysis. The
following is an informal version of a very famous theorem.

Theorem 8.8 (Fourier series). Any reasonable function f can be approxi-
mated arbitrarily well on the interval [0,1] by a combination

f (t ) ≈ a0 +
N∑

k=1
(ak cos2πkt +bk sin2πkt ), (8.1)

by choosing the integer N sufficiently large. The coefficients {ak }N
k=0 and {bk }N

k=1
are given by the formulas

ak =
∫ 1

0
f (t )cos(2πkt )d t , bk =

∫ 1

0
f (t )sin(2πkt )d t .

The series on the right in (8.1) is called a Fourier series approximation of f .

An illustration of the theorem is shown in figure 8.5 where a cubic polyno-
mial is approximated by a Fourier series with N = 9. Note that the trigonometric
approximation is periodic with period 1, so the approximation becomes poor at
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Figure 8.5. Trigonometric approximation of a cubic polynomial on the interval [0,1]. In (a) both functions
are shown while in (b) the approximation is plotted on the interval [0,2.2].

the ends of the interval since the cubic polynomial is not periodic. The approxi-
mation is plotted on a larger interval in figure 8.5b where its periodicity is clearly
visible.

Since any sound may be considered to be a function, theorem 8.8 can be
translated to a statement about sound. We recognise both trigonometric func-
tions on the right in (8.1) as sounds with pure frequency k. The theorem there-
fore says that any sound may be approximated arbitrarily well by pure sounds
with frequencies 0, 1, 2, . . . , N , as long as we choose N sufficiently large.

Observation 8.9 (Decomposition of sound into pure tones). Any sound f is
a sum of pure tones with integer frequencies. The amount of each frequency
required to form f is the frequency content of f .

Observation 8.9 makes it possible to explain more precisely what it means
that we only perceive sounds with a frequency in the range 20–20 000.

Fact 8.10. Humans can only perceive variations in air pressure as sound if the
Fourier series of the sound signal contains at least one sufficiently large term
with frequency in the range 20–20 000.

The most basic consequence of observation 8.9 is that gives us an under-
standing of how any sound can be built from the simple building blocks of sin
and cos. But it is also the basis for many operations on sounds. As an exam-
ple, consider the function in figure 8.6 (a). Even though this function oscillates
5 times regularly between 1 and −1, the discontinuities mean that it is far from
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Figure 8.6. Approximations to two periodic functions with Fourier series. Since both functions are antisym-
metric, the cos part in (8.1) is zero in both cases (all the ak are zero). Figure (c) shows {ak }100

k=0 when f is the
function in figure (a), and the plot in (e) shows the resulting approximation (8.1) with N = 100. The plots in
figures (b), (d), and (e) are similar, except that the approximation in figure (f) corresponds to N = 20.

the simple sin2π5t which corresponds to a pure tone of frequency 5. If we com-
pute the Fourier coefficients, we find that all the ak are zero since the function
is antisymmetric. The first 100 of the bk coefficients are shown in figure (c). We
note that only {b10 j−5}10

j=1 are nonzero, and these decrease in magnitude. Note
that the dominant coefficient is b5, which tells us how much there is of the pure
tone sin2π5t in the square wave in (a). This is not surprising since the square
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wave oscillates 5 times in a second, but the additional nonzero coefficients pol-
lute the pure sound. As we include more and more of these coefficients, we
gradually approach the square wave in (a). Figure (e) shows the corresponding
approximation of one period of the square wave.

Figures 8.6 (b), (d), and (f) show the analogous information for a triangular
wave. The function in figure (a) is continuous and therefore the trigonometric
functions in (8.1) converge much faster. This can be seen from the size of the co-
efficients in figure (d), and from the plot of the approximation in figure (f). (Here
we have only included two nonzero terms. With more terms, the triangular wave
and the approximation become virtually indistinguishable.)

From figure 8.6 we can also see how we can use the Fourier coefficients to
analyse or improve the sound. Noise in a sound often correspond to the pres-
ence of some high frequencies with large coefficients, and by removing these, we
remove the noise. For example, in figure (b), we could set all the coefficients ex-
cept the first one to zero. This would change the unpleasant square wave to the
pure tone sin2π5t with the same number of oscillations per second. Another
common operation is to dampen the treble of a sound. This can be done quite
easily by reducing the size of the coefficients corresponding to high frequencies.
Similarly, the bass can be adjusted by changing the coefficients corresponding
to the lower frequencies.

Exercises for Section 8.1

Exercise 1. Mark each of the following statements as true or false.

(a). The function sin(1000t ) has a frequency of approximately 159 Hz.

(b). A constant pressure of 101 325.01 Pa will be precieved as a sound
with pressure 0.01 Pa, which corresponds to a sound of around 74 dB, if
we use a reference pressure of 0.00002 Pa.

(c). Any sound f is a sum of pure tones with integer frequencies, i.e.
functions of the form sin(2πkt ) and cos(2πkt ), where k is an integer.

8.2 Digital sound

In the previous section we considered some basic properties of sound, but it was
all in terms of functions defined for all times in some interval. On computers and
various kinds of media players the sound is usually digital, and in this section we
are going to see what this means.
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8.2.1 Sampling

Digital sound is very simple: The air pressure of a sound is measured a fixed
number of times per second, and the measurements are stored as numbers in a
file.

Definition 8.11 (Digital sound). A digital sound consists of an array a of
numbers, the samples, that correspond to measurements of the air pressure of a
sound, recorded at a fixed rate of s, the sample rate, measurements per second.
If the sound is in stereo there will be two arrays a1 and a2, one for each chan-
nel. Measuring the sound is also referred to as sampling the sound, or analog
to digital (AD) conversion.

There are many different digital sound formats. A couple of them are de-
scribed in the following two examples.

Fact 8.12 (CD-format). The digital sound on a CD has sample rate 44 100, and
each measurement is stored as a 16 bit integer.

Fact 8.13 (GSM-telephone). The digital sound in GSM mobile telephony has
sample rate 8 000, and each measurement is stored as a 13 bit number in a
floating-point like format.

There are many other digital sound formats in use, with sample rates as high
as 192 000 and above, using 24 bits and more to store each number.

8.2.2 Limitations of digital audio: The sampling theorem

An example of sampling is illustrated in figure 8.7. When we see the samples
on their own in figure (b) it is clear that some information is lost in the sam-
pling process. An important question is therefore how densely we must sample
a function in order to not lose too much information.

The difficult functions to sample are those that oscillate quickly, and the
challenge is to make sure there are no important features between the samples.
By zooming in on a function, we can reduce the extreme situation to something
simple. This is illustrated in Figure 8.8. If we consider one period of sin2πt ,
we see from figure (a) that we need at least two sample points, since one point
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Figure 8.7. An example of sampling. Figure (a) shows how the samples are picked from underlying continu-
ous time function. Figure (b) shows what the samples look like on their own.
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Figure 8.8. Sampling the function sin2πt with two points, and the function sin2π4t with eight points.

would clearly be too little. This translates directly into having at least eight sam-
ple points in figure (b) where the function is sin2π4t which has four periods in
the interval [0,1].

Suppose now that we have a sound (i.e., a function) whose Fourier series
contains terms with frequency at most equal to ν. This means that the function
in the series that varies most quickly is sin2πνt which requires 2ν sample point
per second. This informal observation is the content of an important theorem.
We emphasise that the simple argument above is no proof of this theorem; it just
shows that it is reasonable.

Theorem 8.14 (Shannon-Nyquist sampling theorem). A sound that includes
frequencies up to νHz must be sampled at least 2ν times per second if no infor-
mation is to be lost.

The sampling theorem partly explains why the sampling rate on a CD is 44
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100. Since the human ear can perceive frequencies up to about 20 000 Hz, the
sampling rate must be at least 40 000 to ensure that the highest frequencies are
accounted for. The actual sampling rate of 44 100 is well above this limit and
ensures that there is some room to smoothly taper off the high frequencies from
20 000 Hz.

8.2.3 Reconstructing the original signal

Before we consider some simple operations on digital sound, we need to discuss
a basic challenge: Sound which is going to be played back through an audio
system must be defined for continuous time. In other words, we must fill in all
the values of the air pressure between two sample points. There is obviously no
unique way to do this since there are infinitely many paths for a graph to follow
between to given points.

Fact 8.15 (Reconstruction of digital audio). Before a digital sound can be
played through an audio system, the gaps between the sample points must be
filled by some mathematical function. This process is referred to as digital to
analog (DA) conversion.

Figure 8.9 illustrates two ways to reconstruct an analog audio signal from
a digital one. In the top four figures, the points have been sampled from the
function sin2π4t , while in the lower two figures the samples are taken from
cos2π4t . In the first column, neighbouring sample points have been connected
by straight lines which results in a piecewise linear function that passes through
(interpolates) the sample points. This works very well if the sample points are
close together relative to the frequency of the oscillations, as in figure 8.9a. When
the samples are further apart, as in (c) and (e), the discontinuities in the deriva-
tive become visible, and we know that this may be heard as noise in the recon-
structed signal.

In the second column, the gap between two sample points has been filled
with a cubic polynomial, and neighbouring cubic polynomials have been joined
smoothly together so that the total function is continuous and has continuous
first and second derivative. We see that this works much better and produces a
smooth result that is very similar to the original trigonometric signal.

Figure 8.9 illustrates the general principle: If the sampling rate is high, quite
simple reconstruction techniques will be sufficient, while if the sampling rate is
low, more sophisticated methods for reconstruction will be necessary.
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Figure 8.9. Reconstruction of sampled data.

Exercises for Section 8.2

Exercise 1. Mark each of the following statements as true or false.

(a). If we sample the function sin(2π800t ) with 1000 samples per second
it may be perfectly reconstructed.

(b). The CD-format has a high enough sample rate to reconstruct any
sound that is perceivable by the human ear.

198



Exercise 2. (Exam 2009) A program generates a digital sound by measuring the
sound 22050 times per second (in one channel, i.e. not stereo), and each mea-
surement is stored as a 32 bit integer. For each minute of music, this gives a total
of
� 1 323 000 bytes
� 5 292 000 bytes
� 2 646 000 bytes
� 42 336 000 bytes

8.3 Simple operations on digital sound

So far we have discussed what digital sound is, the limitations in sampling, and
how the information missing in sampled information may be reconstructed. It
is now time to see how digital sound can be processed and manipulated.

Recall that a digital sound is just an array of sample values a = (ai )N
i=0 to-

gether with the sample rate s. Performing operations on the sound therefore
amounts to doing the appropriate computations with the sample values and the
sample rate.

The most basic operation we can perform on a sound is simply playing it,
and if we are working with sound we need a mechanism for doing this.

Playing a sound. Simple operations and computations with sound can be done
in any programming environment, but in order to play the sound, it is necessary
to use an environment that includes a command like play(a, s) (the ocm-
mand may of course have some other name; it is the functionality that is impor-
tant). This will simply play the array of samples a using the sample rate s. If no
play-function is available, you may still be able to play the result of your com-
putations if there is support for saving the sound in some standard format like
mp3. The resulting file can then be played by the standard audio player on your
computer.

The play-function is just a software interface to the sound card in your com-
puter. It basically sends the array of sample values and the sample rate to the
sound card which uses some method for reconstructing the sound to an analog
sound signal. This analog signal is then sent to the loudspeakers and we hear
the sound.

Fact 8.16. The basic command in a programming environment that handles
sound is a command
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play(a, s)

which takes as input an array of sample values a and a sample rate s, and plays
the corresponding sound through the computer’s loudspeakers.

Changing the sample rate. We can easily play back a sound with a different
sample rate than the standard one. If we have a sound (a, s) and we play it with
the command play(a, 2s), the sound card will assume that the time distance
between neighbouring samples is half the time distance in the original. The re-
sult is that the sound takes half as long, and the frequency of all tones is doubled.
For voices the result is a characteristic Donald Duck-like sound.

Conversely, the sound can be played with half the sample rate as in the com-
mand play(a, s/2). Then the length of the sound is doubled and all frequen-
cies are halved. This results in low pitch, roaring voices.

Fact 8.17. A digital sound (a, s) can be played back with a double or half sam-
ple rate with the commands

play(a, 2s)
play(a, s/2)

Playing the sound backwards. At times a popular game as been to play music
backwards to try and find secret messages. In the old days of analog music on
vinyl this was not so easy, but with digital sound it is quite simple; we just need
to reverse the samples. To do this we just loop through the array and put the last
samples first.

Fact 8.18. Let a = {ai }N
i=0 be the samples of a digital sound. Then the samples

b = {bi }N
i=0 of the reverse sound are given by

bi = aN−i , for i = 0, 1, . . . N .

Adding noise. To remove noise from recorded sound can be very challenging,
but adding noise is simple. There are many kinds of noise, but one kind is easily
obtained by adding random numbers to the samples of a sound.
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Fact 8.19. Let a be the samples of a digital sound, normalised so that each
sample is a real number in the interval [−1,1]. A new sound b with noise added
can be obtained by adding a random number to each sample,

bi = ai + c random()

where random() is a function that gives a random number in the interval
[−1,1], and c is a constant (usually smaller than 1) that dampens the noise.

This will produce a general hissing noise similar to the noise you hear on the
radio when the reception is bad. The factor c is important, if it is too large the
noise will simply drown the signal b.

Adding echo. An echo is a copy of the sound that is delayed and softer than
the original sound. We observe that the sample that comes m seconds before
sample i has index i −ms where s is the sample rate. This also makes sense
even if m is not an integer so we can use this to produce delays that are less than
one second. The one complication with this is that the number ms may not be
an integer. We can get round this by rounding ms to the nearest integer which
corresponds to adjusting the echo slightly.

Fact 8.20. Let (a, s) be a digital sound. Then the sound b with samples given
by

bi =
{

ai , for i = 0, 1, . . . , d −1;

ai + cai−d , for i = d, d +1, . . . , N ;

will include a echo of the original sound. Here d = round(ms) is the integer
closest to ms, and c is a constant which is usually smaller than 1.

As in the case of noise it is important to dampen the part that is added to the
original sound, otherwise the echo will be too loud. Note also that the formula
that creates the echo does not work at the beginning of the signal, so there we
just copy ai to bi .

Reducing the treble. The treble in a sound is generated by the fast oscillations
(high frequencies) in the signal. If we want to reduce the treble we have to adjust
the sample values in a way that reduces those fast oscillations. A general way of
reducing variations in a sequence of numbers is to replace one number by the
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average of itself and its neighbours, and this is easily done with a digital sound
signal. If we let the new sound signal be b = (bi )N

i=0 we can compute it as

bi =


ai , for i = 0;

(ai−1 +ai +ai+1)/3, for 0 < i < N ;

ai , for i = N .

This kind of operation is often referred to as filtering the sound, and the se-
quence {1/3,1/3,1/3} is referred to as a filter.

It is reasonable to let the middle sample ai count more than the neighbours
in the average, so an alternative is to compute the average as

bi =


ai , for i = 0;

(ai−1 +2ai +ai+1)/4, for 0 < i < N ;

ai , for i = N .

(8.2)

We can also take averages of more numbers. We note that the coefficients
used in (8.2) are taken from row 2 in Pascal’s triangle. If we pick coefficients
from row 4 instead, the computations become

bi =


ai , for i = 0, 1;

(ai−2 +4ai−1 +6ai +4ai+1 +ai+2)/16, for 1 < i < N −1;

ai , for i = N −1, N .

(8.3)

We have not developed the tools needed to analyse the quality of filters, but
it turns out that picking coefficients from a row in Pascal’s triangle works very
well, and better the longer the filter is.

Observation 8.21. Let a be the samples of a digital sound, and let {ci }2k
i=0 be the

numbers in row 2k of Pascal’s triangle. Then the sound with samples b given
by

bi =


ai , for i = 0, 1, . . . , k −1;(∑2k

j=0 c j ai+ j−k

)/
2k , for 1 < i < N −1;

ai , for i = N −k +1, N −k +2, . . . , N .

(8.4)

has reduced treble compared with the sound given by the samples a.
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Figure 8.10. Reducing the treble. Figure (a) shows the original sound signal, while the plot in (b) shows the
result of applying the filter from row 4 of Pascal’s triangle.
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Figure 8.11. Reducing the bass. Figure (a) shows the original sound signal, while the plot in (b) shows the
result of applying the filter in (8.5).

An example of the result of the averaging is shown in figure 8.10. Figure (a)
shows a real sound sampled at CD-quality (44 100 samples per second). Fig-
ure (b) shows the result of applying the averaging process in (8.6). We see that
the oscillations have been reduced, and if we play the sound it has considerably
less treble.

Reducing the bass. Another common option in an audio system is reducing
the bass. This corresponds to reducing the low frequencies in the sound, or
equivalently, the slow variations in the sample values. It turns out that this can
be accomplished by simply changing the sign of the coefficients used for reduc-
ing the treble. We can for instance change the filter described in (8.6) to

bi =


ai , for i = 0, 1;

(ai−2 −4ai−1 +6ai −4ai+1 +ai+2)/16, for 1 < i < N −1;

ai , for i = N −1, N .

(8.5)
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An example is shown in figure 8.11. The original signal is shown in figure (a) and
the result in figure (b). We observe that the samples in (b) oscillate much more
than the samples in (a). If we play the sound in (b), it is quite obvious that the
bass has disappeared almost completely.

Observation 8.22. Let a be the samples of a digital sound, and let {ci }2k
i=0 be the

numbers in row 2k of Pascal’s triangle. Then the sound with samples b given
by

bi =


ai , for i = 0, 1, . . . , k −1;(∑2k

j=0(−1)k− j c j ai+ j−k

)/
2k , for 1 < i < N −1;

ai , for i = N −k +1, N −k +2, . . . , N .

(8.6)

has reduced bass compared to the sound given by the samples b.

8.4 More advanced sound processing

The operations on digital sound described in section 8.3 are simple and can be
performed directly on the sample values. We saw in section 8.1.3 that a sound
defined for continuous time could be decomposed into different frequency com-
ponents, see theorem 8.8. The same can be done for digital sound with a digital
version of the Fourier decomposition. When the sound has been decomposed
into frequency components, the bass and treble can be adjusted by adjusting
the corresponding frequencies. This is part of the field of signal processing.

8.4.1 The Discrete Cosine Transform

In Fourier analysis a sound is decomposed into sines and cosines. For digital
sound a close relative, the Discrete Cosine Transform (DCT) is often used in-
stead. This just decomposes the digital signal into cosines with different fre-
quencies. The DCT is particularly popular for processing the sound before com-
pression, so we will consider it briefly here.

Definition 8.23 (Discrete Cosine Transform (DCT)). Suppose the sequence of
numbers u = {us}n−1

s=0 are given. The DCT of u is the sequence v whose terms are
given by

vs = 1p
n

n−1∑
r=0

ur cos
( (2r +1)sπ

2n

)
, for s = 0, . . . , n −1. (8.7)

204



With the DCT we compute the sequence v . It turns out that we can get back
to the u sequence by computations that are very similar to the DCT. This is called
the inverse DCT.

Theorem 8.24 (Inverse Discrete Cosine Transform). Suppose that the se-
quence v = {vs}n−1

s=0 is the DCT of the sequence u = {ur }n−1
r=0 as in (8.7). Then

u can be recovered from v via the formula

ur = 1p
n

(
v0 +2

n−1∑
s=1

vs cos
( (2r +1)sπ

2n

))
, for r = 0, . . . , n −1. (8.8)

The two formulas (8.7) and (8.8) allow us to switch back and forth between
two different representations of the digital sound. The sequence u is often re-
ferred to as representation in the time domain, while the sequence v is referred
to as representation in the frequency domain. There are fast algorithms for per-
forming these operations, so switching between the two representations is very
fast.

The new sequence v generated by the DCT tells us how much the sequence
u contains of the different frequencies. For each s = 0, 1, . . . , n −1, the function
cos sπt is sampled at the points tr = (2r + 1)/(2n) for r = 0, 1, . . . , n − 1 which
results in the values

cos
( sπ

2n

)
, cos

(3sπ

2n

)
, cos

(5sπ

2n

)
, . . . , cos

( (2n −1)sπ

2n

)
.

These are then multiplied by the ur and everything is added together.
Plots of these values for n = 6 are shown in figure 8.12. We note that as s

increases, the functions oscillate more and more. This means that v0 gives a
measure of how much constant content there is in the data, while (in this par-
ticular case where N = 5), v5 gives a measure of how much content there is with
maximum oscillation. In other words, the DCT of an audio signal shows the pro-
portion of the different frequencies in the signal.

Once the DCT of u has been computed, we can analyse the frequency con-
tent of the signal. If we want to reduce the bass we can decrease the vs-values
with small indices and if we want to increase the treble we can increase the vs-
values with large indices.

8.5 Lossy compression of digital sound

In a typical audio signal there will be most information in the lower frequencies,
and some frequencies will be almost completely absent, i.e., some of the vs-
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Figure 8.12. The 6 different versions of the cos function used in DCT for n = 6. The plots show piecewise
linear functions, but this is just to make the plots more readable: Only the values at the integers 0, . . . , 5 are
used.

values will be virtually zero. This can exploited for compression: We change
the small vs-values a little bit and set them to 0, and then store the signal by
storing the DCT-values. When the sound is to be played back, we first convert
the sdjusted DCT-values to the time domain with the inverse DCT as given in
theorem 8.24.

Example 8.25. Let us test a naive compression strategy based on the above idea.
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Figure 8.13. The signal in (a) is a small part of a song. The plot in (b) shows the DCT of the signal. In (d), all
values of the DCT that are smaller than 0.02 in absolute value have been set to 0, a total of 309 values. In (c)
the signal has been reconstructed from these perturbed values of the DCT. Note that all signals are discrete;
the values have been connected by straight lines to make it easier to interpret the plots.

The plots in figure 8.13 illustrate the principle. A signal is shown in (a) and its
DCT in (b). In (d) all values of the DCT with absolute value smaller than 0.02
have been set to zero. The signal can then be reconstructed with the inverse DCT
of theorem 8.24; the result of this is shown in (c). The two signals in (a) and (b)
visually look almost the same even though the signal in (c) can be represented
with less than 25 % of the information present in (a).

We test this compression strategy on a data set that consists of 300 001 points.
We compute the DCT and set all values smaller than a suitable tolerance to 0.
With a tolerance of 0.04, a total of 142 541 values are set to zero. When we then
reconstruct the sound with the inverse DCT, we obtain a signal that differs at
most 0.019 from the original signal. We can store the signal by storing a gzip’ed
version of the DCT-values (as 32-bit floating-point numbers) of the perturbed
signal. This gives a file with 622 551 bytes, which is 88 % of the gzip’ed version
of the original data.

The approach to compression that we have outlined in the above example is
essentially what is used in practice. The difference is that commercial software

207



does everything in a more sophisticated way and thereby gets better compres-
sion rates.

Fact 8.26 (Basic idea behind audio compression). Suppose a digital audio
signal u is given. To compress u, perform the following steps:

1. Rewrite the signal u in a new format where frequency information be-
comes accessible.

2. Remove those frequencies that only contribute marginally to human per-
ception of the sound.

3. Store the resulting sound by coding the adjusted frequency information
with some lossless coding method.

All the lossy compression strategies used in the commercial formats that we
review below, use the strategy in fact 8.26. In fact they all use a modified version
of the DCT in step 1 and a variant of Huffman coding in step 3. Where they vary
the most is probably in deciding what information to remove from the signal. To
do this well requires some knowledge of human perception of sound.

8.6 Psycho-acoustic models

In the previous sections, we have outlined a simple strategy for compressing
sound. The idea is to rewrite the audio signal in an alternative mathematical
representation where many of the values are small, set the smallest values to 0,
store this perturbed signal, and code it with a lossless compression method.

This kind of compression strategy works quite well, and is based on keep-
ing the difference between the original signal and the compressed signal small.
However, in certain situations a listener will not be able to perceive the sound as
being different even if this difference is quite large. This is due to how our audi-
tory system interprets audio signals and is referred to as psycho-acoustic effects.

When we hear a sound, there is a mechanical stimulation of the ear drum,
and the amount of stimulus is directly related to the size of the sample values of
the digital sound. The movement of the ear drum is then converted to electric
impulses that travel to the brain where they are perceived as sound. The per-
ception process uses a Fourier-like transformation of the sound so that a steady
oscillation in air pressure is perceived as a sound with a fixed frequency. In this
process certain kinds of perturbations of the sound are hardly noticed by the
brain, and this is exploited in lossy audio compression.
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The most obvious psycho-acoustic effect is that the human auditory system
can only perceive frequencies in the range 20 Hz – 20 000 Hz. An obvious way to
do compression is therefore to remove frequencies outside this range, although
there are indications that these frequencies may influence the listening experi-
ence inaudibly.

Another phenomenon is masking effects. A simple example of this is that a
loud sound will make a simultaneous quiet sound inaudible. For compression
this means that if certain frequencies of a signal are very prominent, most of the
other frequencies can be removed, even when they are quite large.

These kinds of effects are integrated into what is referred to as a psycho-
acoustic model. This model is then used as the basis for simplifying the spec-
trum of the sound in way that is hardly noticeable to a listener, but which allows
the sound to be stored with must less information than the original.

8.7 Digital audio formats

Digital audio first became commonly available when the CD was introduced in
the early 1980s. As the storage capacity and processing speeds of computers
increased, it became possible to transfer audio files to computers and both play
and manipulate the data. However, audio was represented by a large amount
of data and an obvious challenge was how to reduce the storage requirements.
Lossless coding techniques like Huffman and Lempel-Ziv coding were known
and with these kinds of techniques the file size could be reduced to about half
of that required by the CD format. However, by allowing the data to be altered
a little bit it turned out that it was possible to reduce the file size down to about
ten percent of the CD format, without much loss in quality.

In this section we will give a brief description of some of the most common
digital audio formats, both lossy and lossless ones.

8.7.1 Audio sampling — PCM

The basis for all digital sound is sampling of an analog (continuous) audio sig-
nal. This is usually done with a technique called Pulse Code Modulation (PCM).
The audio signal is sampled at regular intervals and the sampled values stored
in a suitable number format. Both the sampling rate and the number format
varies for different kinds of audio. For telephony it is common to sample the
sound 8000 times per second and represent each sample value as a 13-bit inte-
ger. These integers are then converted to a kind of 8-bit floating-point format
with a 4-bit significand. Telephony therefore generates 64 000 bits per second.

The classical CD-format samples the audio signal 44 100 times per second
and stores the samples as 16-bit integers. This works well for music with a rea-
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sonably uniform dynamic range, but is problematic when the range varies. Sup-
pose for example that a piece of music has a very loud passage. In this passage
the samples will typically make use of almost the full range of integer values,
from −215 − 1 to 215. When the music enters a more quiet passage the sample
values will necessarily become much smaller and perhaps only vary in the range
−1000 to 1000, say. Since 210 = 1024 this means that in the quiet passage the mu-
sic would only be represented with 10-bit samples. This problem can be avoided
by using a floating-point format instead, but very few audio formats appear to
do this.

Newer formats with higher quality are available. Music is distributed in var-
ious formats on DVDs (DVD-video, DVD-audio, Super Audio CD) with sampling
rates up to 192 000 and up to 24 bits per sample. These formats also support
surround sound (up to seven channels as opposed to the two stereo channels
on CDs).

Both the number of samples per second and the number of bits per sample
influence the quality of the resulting sound. For simplicity the quality is often
measured by the number of bits per second, i.e., the product of the sampling
rate and the number of bits per sample. For standard telephony we saw that the
bit rate is 64000 bits per second or 64 kb/s. The bit rate for CD-quality stereo
sound is 44100×2×16 bits/s = 1411.2 kb/s. This quality measure is particularly
popular for lossy audio formats where the uncompressed audio usually is the
same (CD-quality). However, it should be remembered that even two audio files
in the same file format and with the same bit rate may be of very different quality
because the encoding programs me be of different quality.

All the audio formats mentioned so far can be considered raw formats; it is
a description of how the sound is digitised. When the information is stored on a
computer, the details of how the data is organised must be specified, and there
are several popular formats for this.

8.7.2 Lossless formats

The two most common file formats for CD-quality audio are AIFF and WAV,
which are both supported by most commercial audio programs. These formats
specify in detail how the audio data should be stored in a file. In addition, there
is support for including the title of the audio piece, album and artist name and
other relevant data. All the other audio formats below (including the lossy ones)
also have support for this kind of additional information.

AIFF. Audio Interchange File Format was developed by Apple and published in
1988. AIFF supports different sample rates and bit lengths, but is most com-
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monly used for storing CD-quality audio at 44 100 samples per second and 16
bits per sample. No compression is applied to the data, but there is also a vari-
ant that supports lossless compression, namely AIFF-C.

WAV. Waveform audio data is a file format developed by Microsoft and IBM.
As AIFF, it supports different data formats, but by far the most common is stan-
dard CD-quality sound. WAV uses a 32-bit integer to specify the file size at the
beginning of the file which means that a WAV-file cannot be larger than 4 GB.
Microsoft therefore developed the W64 format to remedy this.

Apple Lossless. After Apple’s iPods became popular, the company in 2004 in-
troduced a lossless compressed file format called Apple Lossless. This format is
used for reducing the size of CD-quality audio files. Apple has not published the
algorithm behind the Apple Lossless format, but most of the details have been
worked out by programmers working on a public decoder. The compression
phase uses a two step algorithm:

1. When the nth sample value xn is reached, an approximation yn to xn is
computed, and the error en = xn − yn is stored instead of xn . In the sim-
plest case, the approximation yn would be the previous sample value xn−1;
better approximations are obtained by computing yn as a combination of
several of the previous sample values.

2. The error en is coded by a variant of the Rice algorithm. This is an algo-
rithm which was developed to code integer numbers efficiently. It works
particularly well when small numbers are much more likely than larger
numbers and in this situation it achieves compression rates close to the
entropy limit. Since the sample values are integers, the step above pro-
duces exactly the kind of data that the Rice algorithm handles well.

FLAC. Free Lossless Audio Code is another compressed lossless audio format.
FLAC is free and open source (meaning that you can obtain the program code).
The encoder uses an algorithm similar to the one used for Apple Lossless, with
prediction based on previous samples and encoding of the error with a variant
of the Rice algorithm.

8.7.3 Lossy formats

All the lossy audio formats described below apply a modified version of the DCT
to successive groups (frames) of sample values, analyse the resulting values, and
perturb them according to a psycho-acoustic model. These perturbed values
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are then converted to a suitable number format and coded with some lossless
coding method like Huffman coding. When the audio is to be played back, this
process has to be reversed and the data translated back to perturbed sample
values at the appropriate sample rate.

MP3. Perhaps the best known audio format is MP3 or more precisely MPEG-1
Audio Layer 3. This format was developed by Philips, CCETT (Centre commun
d’Ãl’tudes de tÃl’lÃl’vision et tÃl’lÃl’communications), IRT (Institut fÃijr Rund-
funktechnik) and Fraunhofer Society, and became an international standard in
1991. Virtually all audio software and music players support this format. MP3 is
just a sound format and does not specify the details of how the encoding should
be done. As a consequence there are many different MP3 encoders available, of
varying quality. In particular, an encoder which works well for higher bit rates
(high quality sound) may not work so well for lower bit rates.

MP3 is based on applying a variant of the DCT (called the Modified Discrete
Cosine Transform, MDCT) to groups of 576 (in special circumstances 192) sam-
ples. These MDCT values are then processed according to a psycho-acoustic
model and coded efficiently with Huffman coding.

MP3 supports bit rates from 32 to 320 kb/s and the sampling rates 32, 44.1,
and 48 kHz. The format also supports variable bit rates (the bit rate varies in
different parts of the file).

AAC. Advanced Audio Coding has been presented as the successor to the MP3
format by the principal MP3 developer, Fraunhofer Society. AAC can achieve
better quality than MP3 at the same bit rate, particularly for bit rates below 192
kb/s. AAC became well known in April 2003 when Apple introduced this format
(at 128 kb/s) as the standard format for their iTunes Music Store and iPod music
players. AAC is also supported by many other music players, including the most
popular mobile phones.

The technologies behind AAC and MP3 are very similar. AAC supports more
sample rates (from 8 kHz to 96 kHz) and up to 48 channels. AAC uses the MDCT,
just like MP3, but AAC processes 1 024 samples at time. AAC also uses much
more sophisticated processing of frequencies above 16 kHz and has a number of
other enhancements over MP3. AAC, as MP3, uses Huffman coding for efficient
coding of the MDCT values. Tests seem quite conclusive that AAC is better than
MP3 for low bit rates (typically below 192 kb/s), but for higher rates it is not so
easy to differentiate between the two formats. As for MP3 (and the other formats
mentioned here), the quality of an AAC file depends crucially on the quality of
the encoding program.
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There are a number of variants of AAC, in particular AAC Low Delay (AAC-
LD). This format was designed for use in two-way communication over a net-
work, for example the Internet. For this kind of application, the encoding (and
decoding) must be fast to avoid delays (a delay of at most 20 ms can be toler-
ated).

Ogg Vorbis. Vorbis is an open-source, lossy audio format that was designed
to be free of any patent issues and free to use, and to be an improvement on
MP3. At our level of detail Vorbis is very similar to MP3 and AAC: It uses the
MDCT to transform groups of samples to the frequency domain, it then applies
a psycho-acoustic model, and codes the final data with a variant of Huffman
coding. In contrast to MP3 and AAC, Vorbis always uses variable length bit rates.
The desired quality is indicated with an integer in the range −1 (worst) to 10
(best). Vorbis supports a wide range of sample rates from 8 kHz to 192 kHz and
up to 255 channels. In comparison tests with the other formats, Vorbis appear
to perform well, particularly at medium quality bit rates.

WMA. Windows Media Audio is a lossy audio format developed by Microsoft.
WMA is also based on the MDCT and Huffman coding, and like AAC and Vorbis,
it was explicitly designed to improve the deficiencies in MP3. WMA supports
sample rates up to 48 kHz and two channels. There is a more advanced version,
WMA Professional, which supports sample rates up to 96 kHz and 24 bit sam-
ples, but this has limited support in popular software and music players. There
is also a lossless variant, WMA Lossless. At low bit rates, WMA generally appears
to give better quality than MP3. At higher bit rates, the quality of WMA Pro seems
to be comparable to that of AAC and Vorbis.
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CHAPTER 9

Polynomial Interpolation

A fundamental mathematical technique is to approximate something compli-
cated by something simple, or at least less complicated, in the hope that the
simple can capture some of the essential information in the complicated. This
is the core idea of approximation with Taylor polynomials, a tool that has been
central to mathematics since the calculus was first discovered.

The wide-spread use of computers has made the idea of approximation even
more important. Computers are basically good at doing very simple operations
many times over. Effective use of computers therefore means that a problem
must be broken up into (possibly very many) simple sub-problems. The result
may provide only an approximation to the original problem, but this does not
matter as long as the approximation is sufficiently good.

The idea of approximation is often useful when it comes to studying func-
tions. Most mathematical functions only exist in quite abstract mathematical
terms and cannot be expressed as combinations of the elementary functions we
know from school. In spite of this, virtually all functions of practical interest can
be approximated arbitrarily well by simple functions like polynomials, trigono-
metric or exponential functions. Polynomials in particular are very appealing for
use on a computer since the value of a polynomial at a point can be computed
by utilising simple operations like addition and multiplication that computers
can perform extremely quickly.

A classical example is Taylor polynomials which is a central tool in calculus.
A Taylor polynomial is a simple approximation to a function that is based on in-
formation about the function at a single point only. In practice, the degree of a
Taylor polynomial is often low, perhaps only degree one (linear), but by increas-
ing the degree the approximation can in many cases become arbitrarily good
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over large intervals.
In this chapter we first give a review of Taylor polynomials. We assume that

you are familiar with Taylor polynomials already or that you are learning about
them in a parallel calculus course, so the presentation is brief, with few exam-
ples.

The second topic in this chapter is a related procedure for approximating
general functions by polynomials. The polynomial approximation will be con-
structed by forcing the polynomial to take the same values as the function at a
few distinct points; this is usually referred to as interpolation. Although polyno-
mial interpolation can be used for practical approximation of functions, we are
mainly going to use it in later chapters for constructing various numerical algo-
rithms for approximate differentiation and integration of functions, and numer-
ical methods for solving differential equations.

An important additional insight that should be gained from this chapter is
that the form in which we write a polynomial is important. We can simplify al-
gebraic manipulations greatly by expressing polynomials in the right form, and
the accuracy of numerical computations with a polynomial is also influenced by
how the polynomial is represented.

9.1 The Taylor polynomial with remainder

A discussion of Taylor polynomials involves two parts: The Taylor polynomial
itself, and the error, the remainder, committed in approximating a function by a
polynomial. Let us consider each of these in turn.

9.1.1 The Taylor polynomial

Taylor polynomials are discussed extensively in all calculus books, so the de-
scription here is brief. The essential feature of a Taylor polynomial is that it ap-
proximates a given function well at a single point.

Definition 9.1 (Taylor polynomial). Suppose that the first n derivatives of the
function f exist at x = a. The Taylor polynomial of f of degree n at a is written
Tn( f ; a) (sometimes shortened to Tn(x)) and satisfies the conditions

Tn( f ; a)(i )(a) = f (i )(a), for i = 0, 1, . . . , n. (9.1)

The conditions (9.1) mean that Tn( f ; a) and f have the same value and first
n derivatives at a. This makes it quite easy to derive an explicit formula for the
Taylor polynomial.
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Figure 9.1. The Taylor polynomials of sin x (around a = 0) for degrees 1 to 17.

Theorem 9.2. The Taylor polynomial of f of degree n at a is unique and can
be written as

Tn( f ; a)(x) = f (a)+ (x −a) f ′(a)+ (x −a)2

2
f ′′(a)+·· ·+ (x −a)n

n!
f (n)(a). (9.2)

Figure 9.1 shows the Taylor polynomials of sin x, generated about a = 0, for
degrees up to 17. Note that the even degree terms for these Taylor polynomials
are 0, so there are only 9 such Taylor polynomials. We observe that as the degree
increases, the approximation improves on an ever larger interval.

Formula (9.2) is a classical result of calculus which is proved in most calculus
books. Note however that the polynomial in (9.2) is written in non-standard
form.

Observation 9.3. In the derivation of the Taylor polynomial, the manipula-
tions simplify if polynomials of degree n are written as

pn(x) = c0 + c1(x −a)+ c2(x −a)2 +·· ·+cn(x −a)n .

This is an important observation: It is wise to adapt the form of the poly-
nomial to the problem that is to be solved. We will see another example of this
when we discuss interpolation below.
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The elementary exponential and trigonometric functions have very simple
and important Taylor polynomials.

Example 9.4 (The Taylor polynomial of ex ). The function f (x) = ex has the nice
property that f (n)(x) = ex for all integers n ≥ 0. The Taylor polynomial about
a = 0 is therefore very simple since f (n)(0) = 1 for all n. The general term in the
Taylor polynomial then becomes

(x −a)k f (k)(a)

k !
= xk

k !
.

This means that the Taylor polynomial of degree n about a = 0 for f (x) = ex is
given by

Tn(x) = 1+x + x2

2
+ x3

3!
+·· ·+ xn

n!
.

For the exponential function the Taylor polynomials will be very good approx-
imations for large values of n. More specifically, it can be shown that for any
value of x, the difference between Tn(x) and ex can be made as small as we wish
if we just let n be big enough. This is often expressed by writing

ex = 1+x + x2

2
+ x3

3!
+ x4

4!
+ x5

5!
+·· · .

It turns out that the Taylor polynomials of the trigonometric functions sin x
and cos x converge in a similar way. In exercise Exercise 6 these three Taylor
polynomials are linked together via a classical formula.

9.1.2 The remainder

The Taylor polynomial Tn( f ) is an approximation to f , and in many situations
it will be important to control the error in the approximation. The error can be
expressed in a number of ways, and the following two are the most common.

Theorem 9.5. Suppose that f is a function whose derivatives up to order
n + 1 exist and are continuous. Then the remainder in the Taylor expansion
Rn( f ; a)(x) = f (x)−Tn( f ; a)(x) is given by

Rn( f ; a)(x) = 1

n!

∫ x

a
f (n+1)(t )(x − t )n d t . (9.3)

The remainder may also be written as

Rn( f ; a)(x) = (x −a)n+1

(n +1)!
f (n+1)(ξ), (9.4)

where ξ is a number in the interval (a, x) (the interval (x, a) if x < a).
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The proof of this theorem is based on the fundamental theorem of calculus
and integration by parts, and can be found in any standard calculus text.

We are going to make use of Taylor polynomials with remainder in future
chapters to analyse the error in a number of numerical methods. Here we just
consider one example of how we can use the remainder to control how well a
function is approximated by a polynomial.

Example 9.6. We want to determine a polynomial approximation of the func-
tion sin x on the interval [−1,1] with error smaller than 10−5. We want to use
Taylor polynomials about the point a = 0; the question is how high the degree
needs to be in order to get the error to be small.

If we look at the error term (9.4), there is one factor that looks rather difficult
to control, namely f (n+1)(ξ): Since we do not know the degree, we do not really
know what this derivative is, and on top of this we do not know at which point
it should be evaluated either. The solution is not so difficult if we realise that we
do not need to control the error exactly, it is sufficient to make sure that the error
is smaller than 10−5.

We want to find the smallest n such that∣∣∣∣ xn+1

(n +1)!
f (n+1)(ξ)

∣∣∣≤ 10−5, (9.5)

where the function f (x) = sin x and ξ is a number in the interval (0, x). Here we
demand that the absolute value of the error should be smaller than 10−5. This is
important since otherwise we could make the error small by making it negative,
with large absolute value. The main ingredient in achieving what we want is
the observation that since f (x) = sin x, any derivative of f is either cos x or sin x
(possibly with a minus sign which disappears when we take absolute values).
But then we certainly know that ∣∣∣ f (n+1)(ξ)

∣∣∣≤ 1. (9.6)

This may seem like a rather crude estimate, which may be the case, but it was
certainly very easy to derive; to estimate the correct value of ξ would be much
more difficult. If we insert the estimate (9.6) on the left in (9.5), we can also
change our required inequality,∣∣∣∣ xn+1

(n +1)!
f (n+1)(ξ)

∣∣∣≤ |x|n+1

(n +1)!
≤ 10−5.

If we manage to find an n such that this last inequality is satisfied, then (9.5) will
also be satisfied. Since x ∈ [−1,1] we know that |x| ≤ 1 so this last inequality will
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be satisfied if
1

(n +1)!
≤ 10−5. (9.7)

The left-hand side of this inequality decreases with increasing n, so we can just
determine n by computing 1/(n+1)! for the first few values of n, and use the first
value of n for which the inequality holds. If we do this, we find that 1/8! ≈ 2.5×
10−5 and 1/9! ≈ 2.8×10−6. This means that the smallest value of n for which (9.7)
will be satisfied is n = 8. The Taylor polynomial we are looking for is therefore

p8(x) = T8(sin;0)(x) = x − x3

6
+ x5

120
− x7

5040
,

since the term of degree 8 is zero.
If we check the approximation at x = 1, we find p8(1) ≈ 0.8414682. Com-

paring with the exact value sin1 ≈ 0.8414710, we find that the error is roughly
2.73×10−6, which is close to the upper bound 1/9! which we computed above.

Figure 9.1 shows the Taylor polynomials of sin x about a = 0 of degree up to
17. In particular we see that for degree 7, the approximation is indistinguishable
from the original in the plot, at least up to x = 2.

The error formula (9.4) will be most useful for us, and for easy reference we
record the complete Taylor expansion in a corollary.

Corollary 9.7. Any function f whose first n + 1 derivatives are continuous at
x = a can be expanded in a Taylor polynomial of degree n at x = a with a cor-
responding error term,

f (x) = f (a)+ (x −a) f ′(a)+·· ·+ (x −a)n

n!
f (n)(a)+ (x −a)n+1

(n +1)!
f (n+1)(ξx ), (9.8)

where ξx is a number in the interval (a, x) (the interval (x, a) if x < a) that
depends on x. This is called a Taylor expansion of f .

The remainder term in (9.8) lets us control the error in the Taylor approxima-
tion. It turns out that the error behaves quite differently for different functions.

Example 9.8 (Taylor polynomials for f (x) = sin x). If we go back to figure 9.1,
it seems like the Taylor polynomials approximate sin x well on larger intervals as
we increase the degree. Let us see if this observation can be derived from the
error term

e(x) = (x −a)n+1

(n +1)!
f (n+1)(ξ). (9.9)
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Figure 9.2. In (a) the Taylor polynomial of degree 4 about the point a = 1 for the function f (x) = ex is shown.
Figure (b) shows the Taylor polynomial of degree 20 for the function f (x) = log x, also about the point a = 1.

When f (x) = sin x we know that | f (n+1)(ξ)| ≤ 1, so the error is bounded by

|e(x)| ≤ |x|n+1

(n +1)!

where we have also inserted a = 0 which was used in figure 9.1. Suppose we
want the error to be small on the interval [−b,b]. Then |x| ≤ b, so on this interval
the error is bounded by

|e(x)| ≤ bn+1

(n +1)!
.

The question is what happens to the expression on the right when n becomes
large; does it tend to 0 or does it not? It is not difficult to show that regardless of
what the value of b is, the factorial (n +1)! will tend to infinity more quickly, so

lim
n→∞

bn+1

(n +1)!
= 0.

In other words, if we just choose the degree n to be high enough, we can get the
Taylor polynomial to be an arbitrarily good approximation to sin x on an interval
[−b,b], regardless of what the value of b is.

Example 9.9 (Taylor polynomials for f (x) = ex ). Figure 9.2 (a) shows a plot of
the Taylor polynomial of degree 4 for the exponential function f (x) = ex , ex-
panded about the point a = 1. For this function it is easy to see that the Taylor
polynomials will converge to ex on any interval as the degree tends to infinity,
just like we saw for f (x) = sin x in example 9.8.
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Example 9.10 (Taylor polynomials for f (x) = ln x). The plot in figure 9.2 shows
the logarithm function f (x) = ln x and its Taylor polynomial of degree 20, ex-
panded at a = 1. The Taylor polynomial seems to be very close to ln x as long as
x is a bit smaller than 2, but for x > 2 it seems to diverge quickly. Let us see if this
can be deduced from the error term.

The error term involves the derivative f (n+1)(ξ) of f (x) = ln x, so we need a
formula for this. Since f (x) = ln x, we have

f ′(x) = 1

x
= x−1, f ′′(x) =−x−2, f ′′′(x) = 2x−3

and from this we find that the general formula is

f (k)(x) = (−1)k+1(k −1)! x−k , k ≥ 1. (9.10)

Since a = 1, this means that the general term in the Taylor polynomial is

(x −1)k

k !
f (k)(1) = (−1)k+1 (x −1)k

k
.

The Taylor expansion (9.8) therefore becomes

ln x =
n∑

k=1
(−1)k+1 (x −1)k

k
+ (x −1)n+1

n +1
ξ−n−1,

where ξ is some number in the interval (1, x) (in (x,1) if 0 < x < 1). The problem-
atic area seems to be to the right of x = 1, so let us assume that x > 1. In this case
ξ> 1, so therefore ξ−n−1 < 1. The error is then bounded by∣∣∣ (x −1)n+1

n +1
ξ−n−1

∣∣∣≤ (x −1)n+1

n +1
.

When x−1 < 1, i.e., when x < 2, we know that (x−1)n+1 will tend to zero when n
tends to infinity, and the denominator n+1 will just contribute to this happening
even more quickly.

For x > 2, one can try and analyse the error term, and if one uses the integral
form of the remainder (9.3) it is in fact possible to find an exact formula for the
error. However, it is much simpler to consider the Taylor polynomial directly,

pn(x) = T (ln;1)(x) =
n∑

k=1
(−1)k+1 (x −1)k

k
.

Note that for x > 2, the absolute value of the terms in the sum will become arbi-
trarily large since

lim
k→∞

ck

k
=∞

when c > 1. This means that the sum will jump around more and more, so there
is no way it can converge for x > 2, and it is this effect we see in figure 9.2 (b).
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Exercises for Section 9.1

Exercise 1. Mark each of the following statements as true or false.

(a). A function can have an infinite number of Taylor polynomials of a
given order n.

(b). The Taylor polynomial of a sum of functions f (x)+ g (x) of degree n
is equal to the sum of the Taylor polynomials of f (x) and g (x), i.e. Tn( f +
g ; a)(x) = Tn( f ; a)(x)+Tn(g ; a)(x).

(c). The Taylor polynomial of a product of functions f (x)g (x) of degree
n is equal to the product of the Taylor polynomials of f (x) and g (x), i.e.
Tn( f g ; a)(x) = Tn( f ; a)(x)Tn(g ; a)(x).

Exercise 2. (a). (Mid-term 2008) Suppose we compute the Taylor poly-
nomial of degree n about the point a = 0 for the functiion f (x) = cos(x);
what can we then say about the remainder Rn(x)?

� For every x the remainder wil increase when n increases.

� For any real number, the remainder will approach 0 when n tends to ∞,
the remainder will approach 0 when n tends to ∞.

� The remainder is 0 everywhere.

� The remainder will tend to 0 for x ∈ [−π, pi ], but not for other values of
x.

(b). (Mid-term 2010) You are going to approximate the function f (x) = ex

with a Taylor polynomial of degree n on the interval [0,1], expanded about
a = 0. It turns out that the error is bounded by

3xn+1

(n +1)!
.

What is the lowest degree n that causes the error to be smaller than 0.01
for all x in the interval [0,1]?

� n = 1

� n = 3

� n = 4

� n = 5
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(c). (Mid-term 2011) For which value of c will the Taylor-polynomial of
degree 3 around a = 0 for the function f (x) = (sin(x))−2x/(c + x2) equal
to x3/3?

� c = 1

� c = 0

� c =−1

� c = 2

(d). (Mid-term 2008) What is the Taylor polynomial of degree 2 about a =
0 for the function f (x) = x3?

� x3

� x2

� 0

� 1+3x +6x2

(e). (Mid-term 2008) What is the Taylor polynomial of degree 2 about a =
1 for the function f (x) = x3?

� x2

� 0

� 1+3x +3x2

� 1−3x +3x2

Exercise 3. In this exercise we are going to see that the calculations simplify if
we adapt the form of a polynomial to the problem to be solved. The function
f is a given function to be approximated by a quadratic polynomial near x = a,
and it is assumed that f can be differentiated twice at a.

(a). Assume that the quadratic Taylor polynomial is on the form p(x) =
b0 +b1x +b2x2, and determine the unknown coefficients from the three
conditions p(a) = f (a), p ′(a) = f ′(a), p ′′(a) = f ′′(a).

(b). Repeat (a), but write the unknown polynomial in the form p(x) =
b0 +b1(x −a)+b2(x −a)2.

Exercise 4. Find the second order Taylor approximation of the following func-
tions at the given point a.
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(a). f (x) = x3, a = 1

(b). f (x) = 12x2 +3x +1, a = 0

(c). f (x) = 2x , a = 0

Exercise 5. In many contexts, the approximation sin x ≈ x is often used.

(a). Explain why this approximation is reasonable.

(b). Estimate the error in the approximation for x in the interval [0,0.1]

Exercise 6. The Taylor polynomials of ex , cos x and sin x expanded around zero
are

ex = 1+x + x2

2
+ x3

6
+ x4

24
+ x5

120
+ x6

720
+ x7

5040
+·· ·

cos x = 1− x2

2
+ x4

24
− x6

720
+·· ·

sin x = x − x3

6
+ x5

120
− x7

5040
+·· ·

Calculate the Taylor polynomial of the complex exponential e i x , compare with
the Taylor polynomials above, and explain why Euler’s formula e i x = cos x +
i sin x is reasonable.

9.2 Interpolation and the Newton form

A Taylor polynomial based at a point x = a usually provides a very good approx-
imation near a, but as we move away from this point, the error will increase. If
we want a good approximation to a function f across a whole interval, it seems
natural that we ought to utilise information about f from different parts of the
interval. Polynomial interpolation lets us do just that.

9.2.1 The interpolation problem

Just like Taylor approximation is a generalisation of the tangent, interpolation is
a generalisation of the secant, see figure 9.3.

The idea behind polynomial interpolation is simple: We approximate a func-
tion f by a polynomial p by forcing p to have the same function values as f
at a number of points. A general parabola has three free coefficients, and we
should therefore expect to be able to force a parabola through three arbitrary
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Figure 9.3. Interpolation of ex at two points with a secant (a), and at three points with a parabola (b).

points. More generally, suppose we have n+1 distinct numbers {xi }n
i=0 scattered

throughout an interval [a,b] where f is defined. Since a polynomial of degree n
has n +1 free coefficients it is natural to try and find a polynomial of degree n
with the same values as f at the numbers {xi }n

i=0.

Problem 9.11 (Polynomial interpolation). Let f be a given function defined
on an interval [a,b], and let {xi }n

i=0 be n + 1 distinct numbers in [a,b]. The
polynomial interpolation problem is to find a polynomial pn = P ( f ; x0, . . . , xn)
of degree n that matches f at each xi ,

pn(xi ) = f (xi ), for i = 0, 1, . . . , n. (9.11)

The numbers {xi }n
i=0 are called interpolation points, the conditions (9.11) are

called the interpolation conditions, and the polynomial pn = P ( f ; x0, . . . , xn) is
called a polynomial interpolant.

The notation P ( f ; x0, . . . , xn) for a polynomial interpolant is similar to the no-
tation Tn( f ; a) for the Taylor polynomial. However, it is a bit cumbersome, so we
will often just use pn when no confusion is possible.

In many situations the function f may not be known, just its function values
at the points {xi }n

i=0, as in the following example.

Example 9.12. Suppose we want to find a polynomial that passes through the
three points (0,1), (1,3), and (2,2). In other words, we want to find a polynomial
p such that

p(0) = 1, p(1) = 3, p(2) = 2. (9.12)
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Figure 9.4. Three interpolation points and the corresponding quadratic interpolating polynomial.

Since there are three points it is natural to try and accomplish this with a quadratic
polynomial, i.e., we assume that p(x) = c0 + c1x + c2x2. If we insert this in the
conditions (9.12) we obtain the three equations

1 = p(0) = c0,

3 = p(1) = c0 + c1 + c2,

2 = p(2) = c0 +2c1 +4c2.

We solve these and find c0 = 1, c1 = 7/2, and c2 =−3/2, so p is given by

p(x) = 1+ 7

2
x − 3

2
x2.

A plot of this polynomial and the interpolation points is shown in figure 9.4.

There are at least four questions raised by problem 9.11: Is there a polyno-
mial of degree n that satisfies the interpolation conditions (9.11)? How many
such polynomials are there? How can we find one such polynomial? What is a
convenient way to write an interpolating polynomial?

9.2.2 The Newton form of the interpolating polynomial

We start by considering the last of the four questions above. We have already
seen that by writing polynomials in a particular form, the computations of the
Taylor polynomial simplified. This is also the case for interpolating polynomials.
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Definition 9.13 (Newton form). Let {xi }n
i=0 be n+1 distinct real numbers. The

Newton form of a polynomial of degree n is an expression in the form

pn(x) = c0 + c1(x −x0)+ c2(x −x0)(x −x1)+·· ·
+ cn(x −x0)(x −x1) · · · (x −xn−1). (9.13)

The advantage of the Newton form will become evident when we consider
some examples.

Example 9.14 (Newton form for n = 0). Suppose we have only one interpola-
tion point x0. Then the Newton form is just p0(x) = c0. To interpolate f at x0

we have to choose c0 = f (x0),

p0(x) = f (x0).

Example 9.15 (Newton form for n = 1). With two points x0 and x1 the Newton
form is p1(x) = c0+c1(x−x0). Interpolation at x0 means that f (x0) = p1(x0) = c0,
while interpolation at x1 yields

f (x1) = p1(x1) = f (x0)+ c1(x1 −x0).

Together this means that

c0 = f (x0), c1 = f (x1)− f (x0)

x1 −x0
. (9.14)

We note that c0 remains the same as in the case n = 0.

Example 9.16 (Newton form for n = 2). We add another point and consider in-
terpolation with a quadratic polynomial

p2(x) = c0 + c1(x −x0)+ c2(x −x0)(x −x1).

at the three points x0, x1, x2. Interpolation at x0 and x1 gives the equations

f (x0) = p2(x0) = c0,

f (x1) = p2(x1) = c0 + c1(x1 −x0),

which we note are the same equations as we solved in the case n = 1. From the
third condition

f (x2) = p(x2) = c0 + c1(x2 −x0)+ c2(x2 −x0)(x2 −x1),
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we obtain

c2 =
f (x2)− f (x0)− f (x1)− f (x0)

x1−x0
(x2 −x0)

(x2 −x0)(x2 −x1)
.

Playing around a bit with this expression one finds that it can also be written as

c2 =
f (x2)− f (x1)

x2−x1
− f (x1)− f (x0)

x1−x0

x2 −x0
. (9.15)

It is easy to see that what happened in the quadratic case happens in the
general case: The equation that results from the interpolation condition at xk

involves only the points
(
x0, f (x0)

)
,
(
x1, f (x1)

)
, . . . ,

(
xk , f (xk )

)
. This becomes

clear if we write down all the equations,

f (x0) = c0,

f (x1) = c0 + c1(x1 −x0),

f (x2) = c0 + c1(x2 −x0)+ c2(x2 −x0)(x2 −x1),

...

f (xk ) = c0 + c1(xk −x0)+ c2(xk −x0)(xk −x1)+·· ·
+ ck−1(xk −x0) · · · (xk −xk−2)+ ck (xk −x0) · · · (xk −xk−1).

(9.16)

This is an example of a triangular system where each new equation introduces
one new variable and one new point. This means that each coefficient ck only
depends on the data

(
x0, f (x0)

)
,
(
x1, f (x1)

)
, . . . ,

(
xk , f (xk )

)
, so the following the-

orem is immediate.

Theorem 9.17. Let f be a given function and x0, . . . , xn given and distinct in-
terpolation points. There is a unique polynomial of degree n which interpolates
f at these points. If the interpolating polynomial is expressed in Newton form,

pn(x) = c0 + c1(x −x0)+·· ·+cn(x −x0)(x −x1) · · · (x −xn−1), (9.17)

then ck depends only on
(
x0, f (x0)

)
,
(
x1, f (x1)

)
, . . . ,

(
xk , f (xk )

)
which is indi-

cated by the notation
ck = f [x0, . . . , xk ] (9.18)

for k = 0, 1, . . . , n. The interpolating polynomials pn and pn−1 are related by

pn(x) = pn−1(x)+ f [x0, . . . , xn](x −x0) · · · (x −xn−1).
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Figure 9.5. Interpolation of sin x with a line (a), a parabola (b), a cubic (c), and a quartic polynomial (d).

Some examples of interpolation are shown in figure 9.5. Note how the qual-
ity of the approximation improves with increasing degree.

Proof. Most of this theorem is a direct consequence of writing the interpolating
polynomial in Newton form, which becomes

pn(x) = f [x0]+ f [x0, x1](x −x0)+·· ·+ f [x0, . . . , xn](x −x0) · · · (x −xn−1) (9.19)

when we write the coeefficients as in (9.18). The coefficients can be computed,
one by one, from the equations (9.16), starting with c0. The uniqueness follows
since there is no choice in solving the equations (9.16); there is one and only one
solution.

Theorem 9.17 answers the questions raised above: Problem 9.11 has a so-
lution and it is unique. The theorem itself does not tell us directly how to find
the solution, but in the text preceding the theorem we showed how it could be
constructed. One concrete example will illustrate the procedure.
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Figure 9.6. The function f (x) =p
x (solid) and its cubic interpolant at the four points 0, 1, 2, and 3 (dashed).

Example 9.18. Suppose we have the four points xi = i , for i = 0, . . . , 3, and we
want to interpolate the function

p
x at these points. In this case the Newton

form becomes

p3(x) = c0 + c1x + c2x(x −1)+ c3x(x −1)(x −2).

The interpolation conditions become

0 = c0,

1 = c0 + c1,
p

2 = c0 +2c1 +2c2,
p

3 = c0 +3c1 +6c2 +6c3.

Not surprisingly, the equations are triangular and we find

c0 = 0, c1 = 1, c2 =−(1−p
2/2), c3 = (3+p

3−3
p

2)/6

Figure 9.6 shows a plot of this interpolant.

We emphasise that the Newton form is just one way to write the interpolating
polynomial — there are many alternatives. One of these is the Lagrange form
which is discussed in exercise Exercise 3 below.

Exercises for Section 9.2

Exercise 1. Mark each of the following statements as true or false.

(a). The interpolating polynomial of a sum of functions f (x)+g (x) of de-
gree n is equal to the sum of the interolating polynomials of f (x) and g (x)
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(b). The interpolating polynomial of a product of functions f (x)g (x) of
degree n is equal to the product of the interpolating polynomials of f (x)
and g (x).

(c). There are several polynomials of degree n that interpolates a given
function f at n +1 points.

Exercise 2. (Mid-term 2009) We interpolate the function f (x) = x2 with a poly-
nomial p3 of degree 3, at the points 0,1,2 and 3. What will the value of p3(4) be,
i.e., the value of p3(x) at x = 4?
� 16
� 0
� 8
� 4

Exercise 3. The data

x 0 1 3 4
f (x) 1 0 2 1

are given.

(a). Write the cubic interpolating polynomial in the form

p3(x) = c0(x−1)(x−3)(x−4)+c1x(x−3)(x−4)+c2x(x−1)(x−4)+c3x(x−1)(x−3),

and determine the coefficients from the interpolation conditions. This is
called the Lagrange form of the interpolating polynomial.

(b). Determine the Newton form of the interpolating polynomial.

(c). Verify that the solutions in (a) and (b) are the same.

Exercise 4. In this exercise we are going to consider an alternative proof that
the interpolating polynomial is unique.

(a). Suppose that there are two quadratic polynomials p1 and p2 that in-
terpolate a function f at the three points x0, x1 and x2. Consider the dif-
ference p = p2 −p1. What is the value of p at the interpolation points?

(b). Use the observation in (a) to prove that p1 and p2 must be the same
polynomial.

(c). Generalise the results in (a) and (b) to polynomials of degree n.
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9.3 Divided differences

The coefficients ck = f [x0, . . . , xk ] have certain properties that are useful both for
computation and understanding. When doing interpolation at the points x0, . . . ,
xk we can consider two smaller problems, namely interpolation at the points x0,
. . . , xk−1 as well as interpolation at the points x1, . . . , xk .

Suppose that the polynomial q0 interpolates f at the points x0, . . . , xk−1 and
that q1 interpolates f at the points x1, . . . , xk , and consider the polynomial de-
fined by the formula

p(x) = xk −x

xk −x0
q0(x)+ x −x0

xk −x0
q1(x). (9.20)

Our claim is that p(x) interpolates f at the points x0, . . . , xk , which means that
p = pk since a polynomial interpolant of degree k which interpolates k+1 points
is unique.

We first check that p interpolates f at an interior point xi with 0 < i < k. In
this case q0(xi ) = q1(xi ) = f (xi ) so

p(xi ) = xk −x

xk −x0
f (xi )+ x −x0

xk −x0
f (xi ) = f (xi ).

At x = x0 we have

p(x0) = xk −x0

xk −x0
q0(x0)+ x0 −x0

xk −x0
q1(x0) = q0(x0) = f (x0),

as required, and in a similar way we also find that p(xk ) = f (xk ).
Let us rewrite (9.20) in a more explicit way.

Lemma 9.19. Let P ( f ; x0, . . . , xk ) denote the polynomial of degree k that inter-
polates the function f at the points x0, . . . , xk . Then

P ( f ; x0, . . . , xk )(x) = xk −x

xk −x0
P ( f ; x0, . . . , xk−1)(x)+ x −x0

xk −x0
P ( f ; x1, . . . , xk )(x).

From this lemma we can deduce a useful formula for the coefficients of the
interpolating polynomial. We first recall that the term of highest degree in a
polynomial is referred to as the leading term,Âăand the coefficient of the leading
term is referred to as the leading coefficient. From equation (9.17) we see that the
leading coefficient of the interpolating polyonomial pk is f [x0, . . . , xk ]. This ob-
servation combined with Lemma 9.19 leads to a useful formula for f [x0, . . . , xk ].
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Theorem 9.20. Let ck = f [x0, . . . , xk ] denote the leading coefficient of the inter-
polating polynomial P ( f ; x0, . . . , xk ). This is called a kth order divided differ-
ence of f and satisfies the relations f [x0] = f (x0), and

f [x0, . . . , xk ] = f [x1, . . . , xk ]− f [x0, . . . , xk−1]

xk −x0
(9.21)

for k > 0.

Proof. The relation (9.21) follows from the relation in lemma 9.19 if we con-
sider the leading coefficients on both sides. On the left the leading coefficient is
f [x0, . . . , xk ]. The right-hand side has the form

xk −x

xk −x0

(
f [x0, . . . , xk−1]xk−1 + lower degree terms

)+
x −x0

xk −x0

(
f [x1, . . . , xk ]xk−1 + lower degree terms

)
= f [x1, . . . , xk ]− f [x0, . . . , xk−1]

xk −x0
xk + lower degree terms,

and from this (9.21) follows.

The significance of theorem 9.20 is that it provides a simple formula for com-
puting the coefficients of the interpolating polynomial in Newton form. The re-
lation (9.21) also explains the name ’divided difference’, and it should not come
as a surprise that f [x0, . . . , xk ] is related to the kth derivative of f , as we will see
below.

It is helpful to organise the computations of divided differences in a table,

x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]
...

(9.22)

Here an entry in the table (except for the first two columns) is computed by sub-
tracting the entry to the left and above from the entry to the left, and dividing by
the last minus the first xi involved. Then all the coefficients of the Newton form
can be read off from the diagonal. An example will illustrate how this is used.

Example 9.21. Suppose we have the data
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Figure 9.7. The data points and the interpolant in example 9.21.

x 0 1 2 3
f (x) 0 1 1 2

We want to compute the divided differences using (9.21) and organise the com-
putations as in (9.22),

x f (x)
0 0
1 1 1
2 1 0 −1/2
3 2 1 1/2 1/3

This means that the interpolating polynomial is

p3(x) = 0+1(x −0)− 1

2
(x −0)(x −1)+ 1

3
(x −0)(x −1)(x −2)

= x − 1

2
x(x −1)+ 1

3
x(x −1)(x −2).

A plot of this polynomial with the interpolation points is shown in figure 9.7.

There is one more important property of divided differences that we need to
discuss. If we look back on equation (9.14), we see that

c1 = f [x0, x1] = f (x1)− f (x0)

x1 −x0
.

From the mean value theorem for derivatives we can conclude from this that
f [x0, x1] = f ′(ξ) for some number ξ in the interval (x0, x1), provided f ′ is contin-
uous in this interval. The relation (9.21) shows that higher order divided differ-
ences are built form lower order ones in a similar way, so it should come as no
surprise that divided differences can be related to derivatives in general.
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Theorem 9.22. Let f be a function whose first k derivatives are continuous in
the smallest interval [a,b] that contains all the numbers x0, . . . , xk . Then

f [x0, . . . , xk ] = f (k)(ξ)

k !
(9.23)

where ξ is some number in the interval (a,b).

We skip the proof of this theorem, but return to the Newton form of the in-
terpolating polynomial,

pn = f [x0]+ f [x0, x1](x −x0)+·· ·+ · · · f [x0, . . . , xn](x −x0) · · · (x −xn−1).

Theorem 9.22 shows that divided differences can be associated with derivatives,
so this formula is very similar to the formula for a Taylor polynomial. In fact, if
we let all the interpolation points xi approach a common number z, it is quite
easy to show that the interpolating polynomial pn approaches the Taylor poly-
nomial

Tn( f ; z)(x) = f (z)+ f ′(z)(x − z)+·· ·+ f (n)(z)
(x − z)n

n!
.

Exercises for Section 9.3

Exercise 1. (a). (Mid-term 2010) We have the function f (x) = sin(x) and
the points x0 = 0, x1 =π/2 and x2 =π. Then the divided difference f [x0, x1, x2]
has the value

� −4/π2

� 4/π2

� 2/π

� −2/π

(b). (Mid-term 2010) We have the function f (x) = x4 and the points x = i ,
for i = 0,1, . . . ,5. Then the divided difference f [x0, x1, x2, x3, x4, x5] has the
value

� 24

� 6

� 12

� 0

Exercise 2. (a). The data
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x 0 1 2 3
f (x) 0 1 4 9

are sampled from the function f (x) = x2. Determine the third order di-
vided difference f [0,1,2,3].

(b). Explain why we always have f [x0, . . . , xn] = 0 if f is a polynomial of
degree at most n −1.

Exercise 3. (a). We have the data

x 0 1 2
f (x) 2 1 0

which have been sampled from the straight line y = 2− x. Determine the
Newton form of the quadratic, interpolating polynomial, and compare it
to the straight line. What is the difference?

(b). Suppose we are doing interpolation at x0, . . . , xn with polynomials
of degree n. Show that if the function f to be interpolated is a polynomial
p of degree n, then the interpolant pn will be identically equal to p. How
does this explain the result in (a)?

Exercise 4. Suppose we have the data

(0, y0), (1, y1), (2, y2), (3, y3) (9.24)

where we think of yi = f (i ) as values being sampled from an unknown function
f . In this problem we are going to find formulas that approximate f at various
points using cubic interpolation.

(a). Determine the straight line p1 that interpolates the two middle points
in (9.24), and use p1(3/2) as an approximation to f (3/2). Show that

f (3/2) ≈ p1(3/2) = 1

2

(
f (1)+ f (2)

)
.

Find an expression for the error.

(b). Determine the cubic polynomial p3 that interpolates the data (9.24)
and use p3(3/2) as an approximation to f (3/2). Show that then

f (3/2) ≈ p3(3/2) = −y0 +9y1 −9y2 + y3

16
.

What is the error?
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(c). Sometimes we need to estimate f outside the interval that contains
the interpolation points; this is called extrapolation. Use the same ap-
proach as in (a), but find an approximation to f (4). What is the error?

9.4 Computing with the Newton form

Our use of polynomial interpolation will primarily be as a tool for developing
numerical methods for differentiation, integration, and solution of differential
equations. For such purposes the interpolating polynomial is just a step on the
way to a final computational formula, and is not computed explicitly. There are
situations though where one may need to determine the interpolating polyno-
mial explicitly, and then the Newton form is usually preferred.

To use the Newton form in practice, we need two algorithms: One for de-
termining the divided differences involved in the formula (9.19), and one for
computing the value pn(x) of the interpolating polynomial for a given number
x. We consider each of these in turn.

The Newton form of the polynomial that interpolates a given function f at
the n +1 points x0, . . . , xn is given by

pn(x) = f [x0]+ f [x0, x1](x −x0)+·· ·+ f [x0, . . . , xn](x −x0) · · · (x −xn−1),

and to represent this polynomial we need to compute the divided differences
f [x0], f [x0, x1], . . . , f [x0, . . . , xn]. The obvious way to do this is as indicated in
the table (9.22) which we repeat here for convenience,

x0 f [x0]
x1 f [x1] f [x0, x1]
x2 f [x2] f [x1, x2] f [x0, x1, x2]
x3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3]
...

We start with the interpolation points x0, . . . , xn and the function f , and then
compute the values in the table, column by column. Let us denote the entries in
the table by (di ,k )n

i=0,k=0, where i runs down the columns and k indicates the col-
umn number, starting with 0 for the column with the function values. The first
column of function values is special and must be computed separately. Oth-
erwise we note that a value di ,k in column k is given by the two neighbouring
values in column k −1,

di ,k = di ,k−1 −di−1,k−1

xi −xi−k
, (9.25)
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for i ≥ k, while the other entries in column k are not defined. We start by com-
puting the first column of function values. Then we can use the formula (9.25)
to compute the next column. It would be natural to start by computing the diag-
onal entry and then proceed down the column. However, it is better to start with
the last entry in the column, and proceed up, to the diagonal entry. The reason
is that once an entry di ,k has been computed, the entry di ,k−1 immediately to
the left is not needed any more. Therefore, there is no need to use a two dimen-
sional array; we can just start with the one dimensional array of function values
and let every new column overwrite the one to the left. Since no column con-
tains values above the diagonal, we end up with the correct divided differences
in the one dimensional array at the end, see exercise Exercise 1.

Algorithm 9.23 (Computing divided differences). Let f be a given function,
and x0, . . . , xn given interpolation points for some nonnegative integer n. After
the code

for i = 0, 1, . . . , n
fi = f (xi );

for k = 1, 2, . . . n
for i = n, n −1, . . . , k

fi = ( fi − fi−1)
/

(xi −xi−k );

has been performed, the array f contains the divided differences needed for the
Newton form of the interpolating polynomial, so

pn = f0 + f1(x −x0)+ f2(x −x0)(x −x1)+·· ·+ fn(x −x0) · · · (x −xn−1). (9.26)

Note that this algorithm has two nested for-loops, so the number of subtrac-
tions is

n∑
k=1

n∑
i=k

2 =
n∑

k=1
2(n −k +1) = 2

n∑
k=1

k = n(n +1) = n2 +n

which follows from the formula for the sum on the first n integers. We note that
this grows with the square of the degree n, which is a consequence of the double
for-loop. This is much faster than linear growth, which is what we would have
if there was only the outer for-loop. However, for this problem the quadratic
growth is not usually a problem since the degree tends to be low — rarely more
than 10. If one has more points than this the general advice is to use some other
approximation method which avoids high degree polynomials since these are
also likely to lead to considerable rounding-errors.
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The second algorithm that is needed is evaluation of the interpolation poly-
nomial (9.26). Let us consider a specific example,

p3(x) = f0 + f1(x −x0)+ f2(x −x0)(x −x1)+ f3(x −x0)(x −x1)(x −x2). (9.27)

Given a number x, there is an elegant algorithm for computing the value of the
polynomial which is based on rewriting (9.27) slightly as

p3(x) = f0 + (x −x0)
(

f1 + (x −x1)
(

f2 + (x −x2) f3
))

. (9.28)

To compute p3(x) we start from the inner-most parenthesis and then repeatedly
multiply and add,

s3 = f3,

s2 = (x −x2)s3 + f2,

s1 = (x −x1)s2 + f1,

s0 = (x −x0)s1 + f0.

After this we see that s0 = p3(x). This can easily be generalised to a more formal
algorithm. Note that there is no need to keep the different si -values; we can just
use one variable s and accumulate the calculations in this.

Algorithm 9.24 (Horner’s rule). Let x0, . . . , xn be given numbers, and let
( fk )n

k=0 be the coefficients of the polynomial

pn(x) = f0 + f1(x −x0)+·· ·+ fn(x −x0) · · · (x −xn−1). (9.29)

After the code

s = fn ;
for k = n −1, n −2, . . . 0

s = (x −xk )∗ s + fk ;

the variable s will contain the value of pn(x).

Exercises for Section 9.4

Exercise 1. Use algorithm 9.23 to compute the divided differences needed to
determine the Newton form of the interpolating poynomial in exercise 9.3.Exer-
cise 2. Verify that no data are lost when variables are overwritten.
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9.5 Interpolation error

The interpolating polynomial pn is an approximation to f , but unless f itself is
a polynomial of degree n, there will be a nonzero error e(x) = f (x)−pn(x), see
exercise Exercise 3. At times it is useful to have an explicit expression for the
error.

Theorem 9.25. Suppose f is interpolated by a polynomial of degree n at n +1
distinct points x0, . . . , xn . Let [a,b] be the smallest interval that contains all the
interpolation points as well as the number x, and suppose that the function
f has continuous derivatives up to order n +1 in [a,b]. Then the error e(x) =
f (x)−pn(x) is given by

e(x) = f [x0, . . . , xn , x](x −x0) · · · (x −xn) = f (n+1)(ξx )

(n +1)!
(x −x0) . . . (x −xn), (9.30)

where ξx is a number in the interval (a,b) that depends on x.

Proof. The second equality in (9.30) follows from (9.23), so our job is to prove
the first equality. For this we add the (arbitrary) number x as an interpolation
point and consider interpolation with a polynomial of degree n+1 at the points
x0, . . . , xn , x. We use t as the free variable to avoid confusion with x. Then we
know that

pn+1(t ) = pn(t )+ f [x0, . . . , xn , x](t −x0) · · · (t −xn).

Since pn+1 interpolates f at t = x we have pn+1(x) = f (x) so

f (x) = pn(x)+ f [x0, . . . , xn , x](x −x0) · · · (x −xn)

which proves the first relation in (9.30).

Theorem 9.25 has obvious uses for assessing the error in polynomial inter-
polation and will prove very handy in later chapters.

The error term in (9.30) is very similar to the error term in the Taylor expan-
sion (9.8). A natural question to ask is therefore: Which approximation method
will give the smallest error, Taylor expansion or interpolation? Since the only
essential difference between the two error terms is the factor (x − a)n+1 in the
Taylor case and the factor (x − x0) · · · (x − xn) in the interpolation case, a reason-
able way to compare the methods is to compare the two polynomials (x −a)n+1

and (x −x0) · · · (x −xn).
In reality, we do not just have two approximation methods but infinitely

many, since there are infinitely many ways to choose the interpolation points.
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Figure 9.8. The solid, nonnegative graph is the polynomial factor (x −3/2)4 in the error term for Taylor ex-
pansion of degree 3 about the a = 3/2, while the other solid graph is the polynomial part x(x −1)(x −2)(x −3)
of the error term for interpolation at 0, 1, 2, 3. The dashed graph is the smallest possible polynomial part of
an error terms for interpolation at 4 points in [0,3].

In figure 9.8 we compare the two most obvious choices in the case n = 3 for the
interval [0,3]: Taylor expansion about the midpoint a = 3/2 and interpolation at
the integers 0, 1, 2, and 3. In the Taylor case, the polynomial (x−3/2)4 is nonneg-
ative and small in the interval [1,2], but outside this interval it grows quickly and
soon becomes larger than the polynomial x(x − 1)(x − 2)(x − 3) corresponding
to interpolation at the integers. We have also included a plot of a third polyno-
mial which corresponds to the best possible interpolation points in the sense
that the maximum value of this polynomial is as small as possible in the interval
[0,3], given that its leading coefficient should be 1.

If used sensibly, polynomial interpolation will usually provide a good ap-
proximation to the underlying data. As the distance between the data points
decreases, either by increasing the number of points or by moving the points
closer together, the approximation can be expected to become better. However,
we saw that there are functions for which Taylor approximation does not work
well, and the same may happen with interpolation. As for Taylor approximation,
the problem arises when the derivatives of the function to be approximated be-
come large. A famous example is the so-called Runge function 1/(1+ x2) on the
interval [−5,5]. Figure 9.9 shows the interpolants for degree 10 and degree 20.
In the middle of the interval, the error becomes smaller when the degree is in-
creased, but towards the ends of the interval the error becomes larger when the
degree increases.
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Figure 9.9. Interpolation of the function f (x) = 1/(1+ x2) on the interval [−5,5] with polynomials of degree
10 in (a), and degree 20 in (b). The points are uniformly distributed in the interval in each case.

9.6 Summary

In this chapter we have considered two different ways of constructing polyno-
mial interpolants. We first reviewed Taylor polynomials briefly, and then studied
polynomial interpolation in some detail. Taylor polynomials are for the main
part a tool that is used for various pencil and paper investigations, while inter-
polation is often used as a tool for constructing numerical methods, as we will
see in later chapters. Both Taylor polynomials and polynomial interpolation are
methods of approximation and so it is important to keep track of the error, which
is why the error formulas are important.

In this chapter we have used polynomials all the time, but have written them
in different forms. This illustrates the important principle that there are many
different ways to write polynomials, and a problem may simplify considerably
by adapting the form of the polynomial to the problem at hand.
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CHAPTER 10

Zeros of Functions

An important part of the mathematics syllabus in secondary school is equation
solving. This is important for the simple reason that equations are important
— a wide range of problems can be translated into an equation, and by solv-
ing the equation we solve the problem. We will discuss a couple of examples in
section 10.1.

In school you should have learnt to solve linear and quadratic equations,
some trigonometric equations, some equations involving logarithms and expo-
nential functions, as well as systems of two or three equations. Solving these
equations usually follow a fixed recipe, and it may well be that you managed to
solve all the equations that you encountered in school. For this reason you may
believe that the problem of solving equations is — a solved problem.

The truth is that most equations cannot be solved by traditional pencil-and-
paper methods. And even for equations that can be solved in this way, the ex-
pressions may become so complicated that they are almost useless for many
purposes. Consider for example the equation

x3 −3x +1 = 0. (10.1)

The Norwegian mathematician Niels Henrik Abel proved that all polynomial
equations of degree less than five can be solved by extracting roots, so we know
there is a formula for the solutions. The program Mathematica will tell us that
there are three solutions, one real and two complex. The real solution is given
by

−20 3

√
3

−9+p
12081

+ 3
√

2
(−9+p

12081
)

62/3
.
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Although more complicated than the solution of a quadratic equation, this is not
so bad. However, the solution becomes much more complicated for equations
of degree 4. For example, the equation

x4 −3x +1 = 0

has two complex and two real solutions, and one of the real solutions is given by√
3
√

81−p
5793+ 3

√
81+p

5793

2 6
p

2 3
p

3

+ 1

2

√√√√1

3

(
− 3

√
3

2

(
81−p

5793
)
− 3

√
3

2

(
81+p

5793
)

+ 18 6
p

2 3
p

3√
3
√

81−p
5793+ 3

√
81+p

5793


(the square root in the second line extends to end of the third line).

In this chapter we are going to approach the problem of solving equations in
a completely different way. Instead of looking for exact solutions, we are going to
derive numerical methods that can compute approximations to the roots, with
whatever accuracy is desired (or possible with the computer resources you have
available). In most situations numerical approximations are also preferable for
equations where the exact solutions can be found. For example the given root of
the cubic equation above with 20 correct digits is −0.099900298805472842029,
while the given solution of the quartic equation is 1.3074861009619814743 with
the same accuracy. For most purposes this is much more informative than the
large expressions above.

10.1 The need for numerical root finding

In this chapter we are going to derive three numerical methods for solving equa-
tions: the Bisection method, the Secant method and Newton’s method. Before
deriving these methods, we consider two practical examples where there is a
need to solve equations.

10.1.1 Analysing difference equations

In chapter 6 we studied difference equations and saw that they can easily be
simulated on a computer. However, we also saw that the computed solution
may be completely overwhelmed by round-off errors so that the true solution
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Figure 10.1. Plot with automatically placed labels.

is completely lost. Whether or not this will happen depends on the size of the
roots of the characteristic equation of the difference equation. As an example,
consider the difference equation

16xn+5 +5xn+4 −70xn+3 −24xn+2 +56xn+1 −16xn = 0

whose characteristic equation is

16r 5 +5r 4 −70r 3 −24r 2 +56r +16 = 0.

It is impossible to find exact formulas for the roots of this equation. However,
by using numerical methods like the ones we are going to derive in this chapter,
one quite easily finds that the five roots are (with five-digit accuracy)

r1 =−1.7761, r2 =−1.0985, r3 =−0.27959, r4 = 0.99015, r5 = 1.8515.

From this we see that the largest root is r5 ≈ 1.85. This means that regardless
of the initial values, the computed (simulated) solution will eventually be dom-
inated by the term r n

5 .

10.1.2 Labelling plots

A completely different example where there is a need for finding zeros of func-
tions is illustrated in figure 10.1 which is taken from chapter 9. This figure has
nine labels of the form n = 2k −1 for k = 1, . . . , 9, that are placed either directly
above the point where the corresponding graph intersects the horizontal line
y = 2 or below the point where the graph intersects the line y =−2. It would be
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possible to use an interactive drawing program and place the labels manually,
but this is both tedious and time consuming, and it would be difficult to place
all the labels consistently. With access to an environment for producing plots
that is also programmable, it is possible to compute the exact position of the
label.

Consider for example the label n = 9 which is to be placed above the point
where the Taylor polynomial of sin x, expanded about a = 0, intersects the line
y = 2. The Taylor polynomial is given by

p(x) = x − x3

6
+ x5

720
− x7

5040
+ x9

362880
,

so the x-value at the intersection point is given by the equation p(x) = 2, i.e., we
have to solve the equation

x − x3

6
+ x5

720
− x7

5040
+ x9

362880
−2 = 0.

This equation may have as many as nine real solutions, but from the plot we
see that the one we are interested in is close to x = 5. Numerical methods for
finding roots usually require a starting value near the root, and in our case it is
reasonable to use 5 as starting value. If we do this and use a method like one
of those derived later in this chapter, we find that the intersection between p(x)
and the horizontal line y = 2 is at x = 5.4683. This means that the label n = 9
should be drawn at the point with position (5.4683,2).

The position of the other labels may be determined similarly. In fact, this
procedure may be incorporated in a program with a loop where k runs from 1
to 9. For each k, we determine the Taylor polynomial p2k−1 and plot it, com-
pute the intersection xk with y = (−1)k+12, and draw the label n = 2k − 1 at(
xk , (−1)k+12

)
. This is exactly how figure 10.1 was produced, using Mathematica.

10.2 The Bisection method

There are a large number of numerical methods for computing roots of equa-
tions, but the simplest of all is the Bisection method. Before we describe the
method, let us review a basic mathematical result which forms the basis for the
method.

10.2.1 The intermediate value theorem

The mean value theorem is illustrated in figure 10.2a. It basically says that if a
function is positive at one point and negative at another, it must be zero some-
where in between.
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Figure 10.2. Illustration of the mean value theorem (a), and the first step of the Bisection method (b).

Theorem 10.1 (Intermediate value theorem). Suppose f is a function that is
continuous on the interval [a,b] and has opposite signs at a and b. Then there
is a real number c ∈ (a,b) such that f (c) = 0.

This result seems obvious since f is assumed to be continuous, but the proof,
which can be found in a standard calculus book, is not so simple. It may be eas-
ier to appreciate if we try to work with rational numbers only. Consider for exam-
ple the function f (x) = x2−2 on the interval [a,b] = [0,2]. This function satisfies
f (0) < 0 and f (2) > 0, but there is no rational number c such that f (c) = 0. The
zero in this case is of course c =p

2, which is irrational, so the main content of
the theorem is basically that there are no gaps in the real numbers.

10.2.2 Derivation of the Bisection method

The intermediate value theorem only tells that f must have a zero, but it says
nothing about how it can be found. However, based on the theorem it is easy to
devise a method for finding good approximations to the zero.

Initially, we know that f has opposite signs at the two ends of the interval
[a,b]. Our aim is to find a new interval [a1,b1], which is smaller than [a,b], such
that f also has opposite signs at the two ends of [a1,b1]. But this is not difficult:
We use the midpoint m0 = (a +b)/2 of the interval [a,b] and compute f (m0).
If f (m0) = 0, we are very happy because we have found the zero. If this is not
the case, the sign of f (m0) must either be equal to the sign of f (a) or the sign of
f (b). If f (m0) and f (a) have the same sign, we set [a1,b1] = [m0,b]; if f (m0) and
f (b) have the same sign, we set [a1,b1] = [a,m0]. The construction is illustrated
in figure 10.2b.

The discussion in the previous paragraph shows how we may construct a
new interval [a1,b1], with a width that is half that of [a,b], and with the property
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Figure 10.3. The first four steps of the bisection algorithm.

that f is also guaranteed to have a zero in [a1,b1]. But then we may of course
continue the process in the same way and determine another interval [a2,b2]
that is half the width of [a1,b1], and such that f is guaranteed to have a zero in
[a2,b2]. This process can obviously be continued until we hit a zero or the inter-
val has become so small that the zero is determined with sufficient accuracy.

Algorithm 10.2 (Bisection method). Let f be a continuous function that has
opposite signs at the two ends of the interval [a,b]. The following algorithm
computes an approximation mN to a zero c ∈ (a,b) after N bisections:

a0 = a;
b0 = b;
for i = 1, 2, . . . , N

mi−1 = (ai−1 +bi−1)/2;
if f (mi−1) == 0

ai = bi = mi−1;
if f (ai−1) f (mi−1) < 0
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Figure 10.4. The first four steps of the bisection algorithm for a function with five zeros in the initial interval.

ai = ai−1;
bi = mi−1;

else
ai = mi−1;
bi = bi−1;

mN = (aN +bN )/2;

This algorithm is just a formalisation of the discussion above. The for loop
starts with an interval [ai−1,bi−1] with the property that f (ai−1) f (bi−1) < 0. It
usually produces a new interval [ai ,bi ] of half the width of [ai−1,bi−1], such that
f (ai ) f (bi ) < 0. The exception is if we hit a zero c, then the width of the interval
becomes 0. Initially, we start with [a0,b0] = [a,b].

The first four steps of the Bisection method for the example in figure 10.2 are
shown in figure 10.3. An example where there are several zeros in the original
interval is shown in figure 10.4. In general, it is difficult to predict which zero the
algorithm zooms in on, so it is best to choose the initial interval such that it only
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contains one zero.

10.2.3 Error analysis

Algorithm 10.2 does N subdivisions and then stops, but it would be more desir-
able if the loop runs until the error is sufficiently small. In order to do this, we
need to know how large the error is.

If we know that a function f has a zero c in the interval [a,b], and we use
the midpoint m = (a +b)/2 as an approximation to the zero, what can we say
about the error? The worst situation is if the zero is far from the midpoint, and
the furthest from the midpoint we can get, is a or b, in which case the error is
(b −a)/2. This gives the following lemma.

Lemma 10.3. Suppose f is a function with a zero c in the interval [a,b]. If the
midpoint m = (a +b)/2 of [a,b] is used as an approximation to c, the error is
bounded by

|c −m| ≤ b −a

2
.

This simple tool is what we need to estimate the error in the Bisection method.
Each bisection obviously halves the width of the interval, so the error is also
halved each time.

Theorem 10.4. Suppose f is a function with only one zero c in the interval
[a,b] and let {mi } denote the successive midpoints computed by the Bisection
method. After N iterations, the error is bounded by

|c −mN | ≤ b −a

2N+1
. (10.2)

As N tends to infinity, the midpoints mN will converge to the zero c.

Here we have emphasised that f should have only one zero in [a,b]. If there
are several zeros, an estimate like (10.2) still holds for one of the zeros, but it is
difficult to say in advance which one.

This simple result allows us to control the number of steps necessary to
achieve a certain error ε. For in order to ensure that the error is smaller than
ε it is clearly sufficient to demand that the upper bound in the inequality (10.2)
is smaller than ε,

|c −mN | ≤ b −a

2N+1
≤ ε.
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The second inequality can be solved for N by taking logarithms. This yields

ln(b −a)− (N +1)ln2 ≤ lnε

which leads to the following observation.

Observation 10.5. Suppose that f has only one zero in [a,b]. If the number of
bisections in the Bisection method is at least

N ≥ ln(b −a)− lnε

ln2
−1 (10.3)

the error will be at most ε.

A simple word of advice: Do not try and remember the formula (10.3). It is
much better to understand (and thereby remember) how it was derived.

Example 10.6. Suppose we want to find the zero
p

2 with error less than 10−10

by solving the equation f (x) = x2 −2. We have f (1) =−1 and f (2) = 2, so we can
use the Bisection method, starting with the interval [1,2]. To get the error to be
smaller than 10−10, we know that N should be larger than

ln(b −a)− lnε

ln2
−1 = 10ln10

ln2
−1 ≈ 32.2.

Since N needs to be an integer this shows that N = 33 is guaranteed to make the
error smaller than 10−10. If we run algorithm 10.2 we find

m0 = 1.50000000000,

m1 = 1.25000000000,

m2 = 1.37500000000,

...

m33 = 1.41421356233.

We have
p

2 ≈ 1.41421356237 with eleven correct digits, and the actual error in
m33 is approximately 4.7×10−11.

Recall that when we are working with floating-point numbers, the relative
error is a better error measure than the absolute error. The relative error after i
iterations is given by

|c −mi |
|c| .
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From the inequality (10.2) we have an upper bound on the numerator. Recall
also that generally one is only interested in a rough estimate of the relative error.
It is therefore reasonable to approximate c by mi .

Observation 10.7. After i iterations with the Bisection method, the relative er-
ror is approximately bounded by

b −a

|mi |2i+1
. (10.4)

One may wonder if it is possible to estimate beforehand how many iterations
are needed to make the relative error smaller than some given tolerance, like we
did in observation 10.5 for the absolute error. This would require some advance
knowledge of the zero c, or the approximation mi , which is hardly possible.

Recall from observation 5.20 that if the relative error in an approximation c̃
to c is of magnitude 10−m , then c and c̃ have roughly m decimal digits in com-
mon. This is easily generalised to the fact that if the relative error is roughly 2−m ,
then c and c̃ have roughly m binary digits in common. Observation 10.7 shows
that the relative error in the Bisection method is roughly halved during each it-
eration (the variation in mi will not vary much in magnitude with i ). But this
means that the number of correct bits increases by one in each iteration. Since
32-bit floating-point numbers use 24 bits for the significand and 64-bit floating-
point numbers 54 bits, we can make the following observation.

Observation 10.8. The number of correct bits in the approximations to a zero
generated by the Bisection method increases by 1 per iteration. With 32-bit
floating-point numbers, full accuracy is obtained after 24 iterations, while full
accuracy is obtained after 54 iterations with 64-bit floating-point numbers.

10.2.4 Revised algorithm

If we look back on algorithm 10.2, there are several improvements we can make.
We certainly do not need to keep track of all the subintervals and midpoints, we
only need the last one. It is therefore sufficient to have the variables a, b and
m for this purpose. More importantly, we should use the idea from the previ-
ous section and let the number of iterations be determined by the requested
accuracy. Given some tolerance ε > 0, we could then estimate N as in observa-
tion 10.5. This is certainly possible, but remember that the absolute error may
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be an inadequate measure of the error if the magnitude of the numbers involved
is very different from 1.

Instead, we use the relative error. We use an integer counter i and the ex-
pression in (10.4) (with N replaced by i ) to estimate the relative error. We stop
the computations when i becomes so large that

b −a

|mi |2i+1
≤ ε.

This condition becomes problematic if mi should become 0. We therefore use
the equivalent test

b −a

2i+1
≤ ε|mi |

instead. If mi should become 0 for an i , this inequality will be virtually impossi-
ble to satisfy, so the computations will just continue.

Algorithm 10.9 (Revised Bisection method). Let f be a continuous function
that has opposite signs at the two ends of the interval [a,b]. The following
algorithm attempts to compute an approximation m to a zero c ∈ (a,b) with
relative error at most ε, using at most N bisections:

i = 0;
m = (a +b)/2;
abserr = (b −a)/2;
while i ≤ N and abserr > ε|m|

if f (m) == 0
a = b = m;

if f (a) f (m) < 0
b = m;

else
a = m;

i = i +1;
m = (a +b)/2;
abserr = (b −a)

/
2;

In the while loop we have also added a test which ensures that the while loop
does not run forever. This is good practice to ensure that your program does not
enter an infinite loop because some unforeseen situation occurs that prevents
the error from becoming smaller than ε.
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It must be emphasised that algorithm 10.9 lacks many details. For instance,
the algorithm should probably terminate if | f (m)| becomes small in some sense,
not just when it becomes zero. And there is no need to perform more itera-
tions than roughly the number of bits in the significand of the type of floating-
point numbers used. However, the basic principle of the Bisection method is
illustrated by the algorithm, and the extra details belong to the area of more ad-
vanced software development.

Exercises for Section 10.2

Exercise 1. Mark each of the following statements as true or false.

(a). The error bound in the bisection method is reduced by a factor 2 for
each iteration.

(b). When using the bisection method, at a given iteration, we use the
left endpoint as an approximation to the zero point.

(c). When using the bisection method, we may sometimes find that there
may be a zero on both sides of the midpoint.

(d). In cases where there is more than zero in an interval, the bisection
method will find all the zeros.

(e). If there is exactly one zero in the starting interval [a,b], the bisection
method will always converge to this zero.

Exercise 2. (a). (Mid-term 2006) We are trying to find the zeros of the
function f (x) = (x −3)(x2 −3x +2) using the bisection method. We start
with the interval [a,b] = [0,3.5], perform 1000 iterations and let x denote
the last estimate for the zero. What will the result be?

� x close to
p

2

�No convergence

� x close to 2

� x close to 1

(b). We use the bisection method to find a zero of the function f (x) =
cos(x) on the interval [0,10], where x is given in radians. Then the ap-
proximated solution will converge to

� π/2
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� 3π/2

� 5π/2

� The method will not converge

(c). (Mid-term 2005) We define a relative of the bisection method for solv-
ing the equation f (x) = 0, which we call the trisection method. Instead of
dividing the interval into parts each time, we divide it into three equal
parts and choose the subinterval where f has opposite signs at the ends.
If this occurs for several subintervals we choose the subinterval which is
furthest to the right on the real line. We start with the interval [0,1] and
know that f is continuous and only has one root in this interval, but we
do not know where the root is. Which is the smallest of the given number
of iterations that we need to use to be certain that the trisection method
gives an absolute error less than 10−12?

� 11

� 41

� 18

� 27

Exercise 3. The equation f (x) = x−cos x = 0 has a zero at x ≈ 0.739085133215160642.

(a). Use the Bisection method to find an approximation to the zero, start-
ing with [a,b] = [0,1]. How many correct digits do you have after ten
steps?

(b). How many steps do you need to get ten correct digits with the Bisec-
tion method?

(c). Write a program that implements the Bisection method, and com-
pute an approximation to the root with the number of iterations that you
found in (b). How does the actual error compare with the requirement of
ten correct digits?

(d). Make sure you are using 64 bit floating-point numbers and do 60
iterations. Verfiy that the error does not improve after about 54 iterations.

Exercise 4. Repeat exercise Exercise 3, but use the function f (x) = x2 −2 with a
suitable starting interval that contains the root

p
2. The first 20 digits of this root

are p
2 ≈ 1.4142135623730950488.
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Exercise 5. Apply the Bisection method to the function sin x on the interval
[−1,20] sufficiently many times to see which root is selected by the method in
this case.

Exercise 6. In this exercise we are going see how well the approximation (10.4)
of the relative error works in practice. We use the function f (x) = x2 −2 and the
root

p
2 for the tests.

(a). Start with the interval [1,1.5] and do 10 steps with the Bisection method.
Compute the relative error in each step by using the approximation (10.4).

(b). Compute the relative errors in the steps in (a) by using the approxi-
mation

p
2 ≈ 1.414213562 for the root. Based on this, what is your verdict

on the approximation used in (a)?

10.3 The Secant method

The Bisection method is robust and uses only the sign of f (x) at the end points
and the successive midpoints to compute an approximation to a zero. In many
cases though, the method appears rather unintelligent. An example is shown in
figure 10.5a. The values of f at a and b indicate that the zero should be close to
b, but still the Bisection method uses the midpoint as the guess for the zero.

10.3.1 Basic idea

The idea behind the Secant method is to use the zero of the secant between(
a, f (a)

)
and

(
b, f (b)

)
as an approximation to the zero instead of the midpoint,

as shown in figure 10.5b. Recall that the secant is the same as the linear inter-
polant to f at the points a and b, see section 9.2.

Idea 10.10 (Secant idea). Let f be a continuous function, let a and b be two
points in its domain, and let

s(x) = f (a)+ f (b)− f (a)

b −a
(x −a)

be the secant between the two points
(
a, f (a)

)
and

(
b, f (b)

)
. The Secant method

uses the zero

x∗ = b − b −a

f (b)− f (a)
f (b) (10.5)

of the secant as an approximation to a zero of f .
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Figure 10.5. An example of the first step with the Bisection method (a), and the alternative approximation to
the zero provided by the secant (b).

We observe that the secant is symmetric in the two numbers a and b, so the
formula (10.8) may also be written

x∗ = a − b −a

f (b)− f (a)
f (a).

In the Secant method it is convenient to label a and b as x0 = a and x1 = b
and denote the zero x∗ by x2. We are then in a position where we may repeat the
formula: From the two numbers x0 and x1, we compute the approximate zero
x2, then from the two numbers x1 and x2 we compute the approximate zero x3,
from x2 and x3 we compute the approximate zero x4, and so on. This is the basic
Secant method, and an example of the first few iterations of the method is shown
in figure 10.6. Note how the method quite quickly zooms in on the zero.

Algorithm 10.11 (Basic Secant method). Let f be a continuous function and
let x0 and x1 be two given numbers in its domain. The sequence {xi }N

i=0 given
by

xi = xi−1 − xi−1 −xi−2

f (xi−1)− f (xi−2)
f (xi−1), i = 2, 3, . . . , N , (10.6)

will in certain situations converge to a zero of f .

It is important to realise that unlike the Bisection method, the Secant method
may fail. One such example is shown in figure 10.7. The problem here is that the
two starting values are too far away from the zero to the left in the plot, and the
algorithm gets stuck in the area to the right where the function is small, without
ever becoming 0. This explains the expression “will in certain situations con-
verge” in algorithm 10.11.
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Figure 10.6. An example of the first four steps of the Secant method.

10.3.2 Testing for convergence

Algorithm 10.11 provides the basis for the secant algorithm. However, rather
than just do N iterations, it would be more useful to stop the iterations when a
certain accuracy has been attained. This turns out to be more difficult for the
Secant method than for the Bisection method since there is not such an explicit
error estimate available for the Secant method.

The Secant method produces a sequence of approximations x0, x1, . . . to a
zero, and we want to decide when we are within a tolerance ε of the zero. We
will often find ourselves in this kind of situation: Some algorithm produces a se-
quence of approximations, and we want to check whether we have convergence.

When we come close to the zero, the difference between successive approxi-
mations will necessarily become small. If we are working with the absolute error,
it is therefore common to use the number |xn − xn−1| as a measure of the abso-
lute error at iteration no. n. If we want to stop when the absolute error is smaller
than ε, the condition then becomes |xn −xn−1| ≤ ε.

Usually, it is preferable to work with the relative error, and then we need an
estimate for the zero as well. At step n of the algorithm, the best approximation
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Figure 10.7. An example where the Secant method fails.

we have for the zero is the latest approximation, xn . The estimate for the relative
error at step n is therefore

|xn −xn−1|
|xn |

.

To test whether the relative error is less than or equal to ε, we would then use
the condition |xn − xn−1| ≤ ε|xn |. We emphasise that this is certainly not exact,
and this kind of test cannot guarantee that the error is smaller than ε. But in the
absence of anything better, this kind of strategy is often used.

Observation 10.12. Suppose that an algorithm generates a sequence {xn}. The
absolute error in xn is then often estimated by |xn − xn−1|, and the relative er-
ror by |xn − xn−1|/|xn |. To test whether the relative error is smaller than ε, the
condition

|xn −xn−1| ≤ ε|xn |
is often used.
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When computing zeros of functions, there is one more ingredient that is
often used. At the zero c we obviously have f (c) = 0. It is therefore reason-
able to think that if f (xn) is small, then xn is close to a zero. It is easy to con-
struct functions where this is not the case. Consider for example the function
f (x) = x2 +10−30. This function is positive everywhere, but becomes as small as
10−30 at x = 0. Without going into further detail, we therefore omit this kind of
convergence testing, although it may work well in certain situations.

10.3.3 Revised algorithm

The following is a more detailed algorithm for the Secant method, where the test
for convergence is based on the discussion above.

Algorithm 10.13 (Revised Secant method). Let f be a continuous function,
and let x0 and x1 be two distinct initial approximations to a zero of f . The
following algorithm attempts to compute an approximation z to a zero with
relative error less than ε< 1, using at most N iterations:

i = 0;
xpp = x0;
xp = z = x1;
abserr = |z|;
while i ≤ N and abserr ≥ ε|z|

z = xp − f (xp)(xp −xpp)
/(

f (xp)− f (xpp)
)
;

abserr = |z −xp|;
xpp = xp;
xp = z;
i = i +1;

Since we are only interested in the final approximation of the root, there is
no point in keeping track of all the approximations. All we need to compute the
next approximation z, is the two previous approximations which we call xp and
xpp, just like in simulation of second order difference equations (in fact, the
iteration (10.6) in the Secant method can be viewed as the simulation of a non-
linear, second-order, difference equation). Before we enter the while loop, we
have to make sure that the test of convergence does not become true straight-
away. The first time through the loop, the test for convergence is |z| ≥ ε|z| which
will always be true (even if z = 0), since ε is assumed to be smaller than 1.
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10.3.4 Convergence and convergence order of the Secant method

So far we have focused on the algorithmic aspect of the Secant method, but an
important question is obviously whether or not the sequence generated by the
algorithm converges to a zero. As we have seen, this is not always the case, but if
f satisfies some reasonable conditions and we choose the starting values near a
zero, the sequence generated by the algorithm will converge to the zero.

Theorem 10.14 (Convergence of the Secant method). Suppose that f and its
first two derivatives are continuous in an interval I that contains a zero c of f ,
and suppose that there exists a positive constant γ such that | f ′(x)| > γ> 0 for
all x in I . Then there exists a constant K such that for all starting values x0

and x1 sufficiently close to c, the sequence produced by the Secant method will
converge to c and the error en = c −xn will satisfy

|en | ≤ K |en−1|r , n = 2, 3, . . . , (10.7)

where

r = 1

2
(1+p

5) ≈ 1.618.

We are not going to prove this theorem which may appear rather overwhelm-
ing, but let us comment on some of the details.

First of all we note the assumptions: The function f and its first two deriva-
tives must be continuous in an interval I that contains the zero c. In addi-
tion | f ′(x)| must be positive in this interval. This is always the case as long as
f ′(c) 6= 0, because then f ′(x) must also be nonzero near c. (The Secant method
works even if f ′(c) = 0, it will just require more iterations than in the case when
f ′(c) is nonzero.)

The other assumption is that the starting values x0 and x1 are “sufficiently
close to c”. This is imprecise, but means that it is in fact possible to write down
precisely how close x0 and x1 must be to c.

Provided the assumptions are satisfied, theorem 10.14 guarantees that the
Secant method will converge to the zero. However, the inequality (10.7) also
says something about how quickly the error goes to zero. Suppose that at some
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stage we have ek = 10−1 and that K is some number near 1. Then we find that

ek+1. er
k = 10−r ≈ 10−1.618 ≈ 2.41×10−2,

ek+2. er
k+1. er 2

k = 10−r 2 ≈ 2.41×10−3,

ek+3. 5.81×10−5,

ek+4. 1.40×10−7,

ek+5. 8.15×10−12,

ek+6. 1.43×10−18.

This means that if the size of the root is approximately 1, and we manage to get
the error to become 0.1, it will be as small as 10−18 (machine precision with 64-
bit floating-point numbers) only six iterations later.

Observation 10.15. When the Secant method converges to a zero c with f ′(c) 6=
0, the number of correct digits increases by about 62 % per iteration.

Example 10.16. Let us see if the predictions above happen in practice. We test
the Secant method on the function f (x) = x2 − 2 and attempt to compute the
zero c =p

2 ≈ 1.41421356237309505. We start with x0 = 2 and x1 = 1.5 and obtain

x2 ≈ 1.42857142857142857, e2 ≈ 1.4×10−2,

x3 ≈ 1.41463414634146341, e3 ≈ 4.2×10−4,

x4 ≈ 1.41421568627450980, e4 ≈ 2.1×10−6,

x5 ≈ 1.41421356268886964, e5 ≈ 3.2×10−10,

x6 ≈ 1.41421356237309529, e6 ≈ 2.4×10−16.

This confirms the claim in observation 10.15.

Exercises for Section 10.3

Exercise 1. Mark each of the following statements as true or false.

(a). If we use the secant method on a function that has exactly one zero,
the method will always converge.

(b). When the Secant method converges to a zero c with f ′(c) 6= 0, the
number of correct digits increases by about a factor of 1.62 per iteration.
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Exercise 2. (Exam 2010) You are to use the secant method to find the zero of
x3 −2 and start with the initial values x0 =−2 and x1 = 2. After one step, what is
the approximate zero x∗?

� x∗ =−0.2

� x∗ = 0

� x∗ = 0.33

� x∗ = 0.5

Exercise 3. (a). Find an equation which is zero at c = p
3. Use the Se-

cant method and determine an approximation to c with 2 correct digits
by hand. Program the Secant method, and determine an approximation
with 15 correct digits using the program.

(b). Repeat (a), but with c = 21/12.

(c). Repeat (a) but with c = e, where e = 2.71828 · · · is the base for natural
logarithms.

Exercise 4. Sketch the graphs of some functions and find an example where the
Secant method will diverge.

Exercise 5. In this exercise we are going to test the Secant method on the func-
tion f (x) = (x −1)3 with the starting values x0 = 0.5 and x1 = 1.2.

(a). Perform 7 iterations with the Secant method, and compute the rela-
tive error at each iteration.

(b). How many correct digits are gained in each of the iterations, and how
does this compare with observation 10.15? Explain your answer.

10.4 Newton’s method

We are going to study a third method for finding roots of equations, namely
Newton’s method. This method is quite similar to the Secant method, and the
description is quite similar, so we will be brief.
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10.4.1 Basic idea

In the Secant method we used the secant as an approximation to f and the zero
of the secant as an approximation to the zero of f . In Newton’s method we use
the tangent of f instead, i.e., the first-order Taylor polynomial of f at a given
point.

Idea 10.17 (Newton’s method). Let f be a continuous, differentiable function,
let a be a point in its domain, and let

T (x) = f (a)+ f ′(a)(x −a)

be the tangent of f at a. Newton’s method uses the zero

x∗ = a − f (a)

f ′(a)
(10.8)

of the tangent as an approximation to a zero of f .

Newton’s method is usually iterated, just like the Secant method. So if we
start with x0 = a, we compute the zero x1 of the tangent at x0. Then we repeat
and compute the zero x2 of the tangent at x1, and so on,

xn = xn−1 − f (xn−1

f ′(xn−1)
, n = 1, 2, . . . (10.9)

The hope is that the resulting sequence {xn} will converge to a zero of f . Fig-
ure 10.8 illustrates the first three iterations with Newton’s method for the exam-
ple in figure 10.6.

An advantage of Newton’s method compared to the Secant method is that
only one starting value is needed since the iteration (10.9) is a first-order (non-
linear) difference equation. On the other hand, it is sometimes a disadvantage
that an explicit expression for the derivative is required.

10.4.2 Algorithm

Newton’s method is very similar to the Secant method, and so is the algorithm.
We measure the relative error in the same way, and therefore the stopping crite-
rion is also exactly the same.
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Figure 10.8. An example of the first three steps of Newton’s method (a)–(c). The plot in shows a standard way
of illustrating all three steps in one figure.

Algorithm 10.18 (Newton’s method). Let f be a continuous, differentiable
function, and let x0 be an initial approximation to a zero of f . The follow-
ing algorithm attempts to compute an approximation z to a zero with relative
error less than ε< 1, using at most N iterations:

i = 0;
xp = z = x0;
abserr = |z|;
while i ≤ N and abserr ≥ ε|z|

z = xp − f (xp)
/

f ′(xp);
abserr = |z −xp|;
xp = z;
i = i +1;

What may go wrong with this algorithm is that, like the Secant method, it
may not converge, see the example in figure 10.9. Another possible problem is
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Figure 10.9. An example where Newton’s method fails to converge because of a bad starting value.

that we may in some cases get division by zero in the first statement in the while
loop.

10.4.3 Convergence and convergence order

The behaviour of Newton’s method is very similar to that of the Secant method.
One difference is that Newton’s method is in fact easier to analyse since it is a
first-order difference equation. The equivalent of theorem 10.14 is therefore
easier to prove in this case. The following lemma is a consequence of Taylor’s
formula.

Lemma 10.19. Let c be a zero of f which is assumed to have continuous
derivatives up to order 2, and let en = xn − c denote the error at iteration n
in Newton’s method. Then

en+1 = f ′′(ξn)

2 f ′(xn)
e2

n , (10.10)

where ξn is a number in the interval (c, xn) (the interval (xn ,c) if xn < c).

Proof. The basic relation in Newton’s method is

xn+1 = xn − f (xn)

f ′(xn)
.

If we subtract the zero c on both sides we obtain

en+1 = en − f (xn)

f ′(xn)
= en f ′(xn)− f (xn)

f ′(xn)
. (10.11)

268



Consider now the Taylor exansion

f (c) = f (xn)+ (c −xn) f ′(xn)+ (c −xn)2

2
f ′′(ξn),

where ξn is a number in the interval (xn ,c). Since f (c) = 0, this may be rewritten
as

− f (xn)+ (xn − c) f ′(xn) = (c −xn)2

2
f ′′(ξn).

If we insert this in (10.11) we obtain the relation

en+1 = e2
n

f ′′(ξn)

2 f ′(xn)
,

as required.

Lemma 10.19 is the basis for proving that Newton’s method converges. The
result is the following theorem.

Theorem 10.20. Suppose that f and its first two derivatives are continuous in
an interval I that contains a zero c of f , and suppose that there exists a positive
constant γ such that | f ′(x)| > γ> 0 for all x in I . Then there exists a constant K
such that for all initial values x0 sufficiently close to c, the sequence produced
by Newton’s method will converge to c and the error en = xn − c will satisfy

|en+1| ≤ K |en |2, n = 1, 2, . . . (10.12)

where K is some nonzero constant.

We will not prove this theorem, just comment on a few details. First of all
we note that the assumptions are basically the same as the assumptions in the
similar theorem 10.14 for the Secant method. The essential condition is that
f ′(c) 6= 0. Without this, the method still works, but the convergence is very slow.

The inequality (10.12) is obtained from (10.10) by taking the maximum of
the expression f ′′(x)/ f ′(y) on the right in (10.12), for all x and y in the interval
I . If f ′(c) = 0 this constant will not exist.

When we know that Newton’s method converges, the relation (10.12) tells us
how quickly it converges. If at some stage we have obtained ek ≈ 10−1 and K ≈ 1,
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we see that

ek+1 ≈ e2
k ≈ 10−2,

ek+2 ≈ e2
k+1 ≈ 10−4,

ek+3 ≈ e2
k+2 ≈ 10−8,

ek+4 ≈ e2
k+3 ≈ 10−16.

This means that if the root is approximately 1 in size and we somehow manage
to reach an error of about 10−1, we only need four more iterations to reach ma-
chine accuracy with 64-bit floating-point numbers. This shows the power of the
relation (10.12). An algorithm for which the error satisfies this kind of relation is
said to be quadratically convergent.

Observation 10.21. When Newon’s method converges to a zero c for which
f ′(c) 6= 0, the number of correct digits roughly doubles per iteration.

Let us end by redoing example 10.16 with Newton’s method and checking
observation 10.21 on a practical example.

Example 10.22. The equation is f (x) = x2 −2 which has the solution c = p
2 ≈

1.41421356237309505. If we run Newton’s method with the initial value x0 = 1.7,
we find

x1 ≈ 1.43823529411764706, e2 ≈ 2.3×10−1,

x2 ≈ 1.41441417057620594, e3 ≈ 2.4×10−2,

x3 ≈ 1.41421357659935635, e4 ≈ 2.0×10−4,

x4 ≈ 1.41421356237309512, e5 ≈ 1.4×10−8,

x5 ≈ 1.41421356237309505, e6 ≈ 7.2×10−17.

We see that although we only use one starting value, which is further from the
root than the best of the two starting values used with the Secant method, we still
end up with a smaller error than with the Secant method after five iterations.

Exercises for Section 10.4

Exercise 1. Mark each of the following statements as true or false.

(a). If both the secant method and Newton’s method converges, Newton’s
method will in general converge faster.

270



(b). Newton’s method needs two initial values

Exercise 2. (a). (Mid-term 2007) We are discussing methods for finding
solutions of the equation f (x) = 0, where f is a continuous function on
the interval [a,b]. Which of the following statements are correct?

� If f (x) is a polynomial of degree 4 or higher, the zeros can only be found
using numerical techniques.

� The bisection method gives a solution only if there is exactly one zero
in [a,b].

� The secant method can only be used when f (x) has different signs at
x = a and x = b.

� If it works, Newton’s method will converge faster than the bisection
method.

(b). (Continuation exam 2010) We use Newton’s method to find an ap-
proximation to the positive solution of x2 = 3, with starting value x0 = 1.
Then x2 is given by

� x2 = 1

� x2 = 2

� x2 = 9/4

� x2 = 7/4

(c). (Mid-term 2004) We apply Newton’s method xn+1 to the function
f (x) = x2 − A where A is a positive, real number. If we denote the error
by en = xn −p

A, we have

� en+1 = en
2xn

� en+1 = e2
n

2xn

� en+1 = e2
n

x2
n

� en+1 = en en−1
xn

(d). (Exam 2008) We have a function f (x) and we are going to find a nu-
merical approximation to the solution of the equation f (x) = 0. Then one
of the following statements are true:

� The secant method demands that f ′(x) is known.

� The secant method will usually converge faster than Newton’s method.
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�Newton’s method will converge for all functions f .

�Newton’s method will usually converge faster than the bisection method.

Exercise 3. Perform 7 iterations with Newton’s method with the function f (x) =
1− ln x which has the root x = e, starting with x0 = 3. How many correct digits
are there in the final approximation?

Exercise 4. In this exercise we are going to test the three numerical methods
that are discussed in this chapter. We use the equation f (x) = sin x = 0, and
want to compute the zero x =π≈ 3.1415926535897932385.

(a). Determine an approximation to π by performing ten manual steps
with the Bisecton method, starting with the interval [3,4]. Compute the
error in each step by comparing with the exact value.

(b). Determine an approximation by performing four steps with the Se-
cant method with starting values x0 = 4 and x1 = 3. Compute the error in
each step.

(c). Determine an approximation by performing four steps with New-
ton’s method with initial value x0 = 3. Compute the error in each step.

(d). Compare the errors for the three methods. Which one converges the
fastest?

Exercise 5. Repeat exercise Exercise 4 with the equation (x − 10/3)5 = 0. Why
do you think the error behaves differently than in exercise Exercise 4 for two
of the methods? Hint: Take a careful look at the conditions in theorems 10.14
and 10.20.

Exercise 6. In this exercise we will analyse the behaviour of the Secant method
and Newton’s method applied to the equation f (x) = x2 −2 = 0.

(a). Let {xn} denote the sequence generated by Newton’s method, and set
en = xn −p

2. Derive the formula

en+1 =
e2

n

2xn
(10.13)

directly (do not use lemma 10.19), and verify that the values computed in
example 10.22 satisfy this equation.
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(b). Derive a relation similar to (10.13) for the Secant method, and verify
that the numbers computed in example 10.16 satisfy this relation.

Exercise 7. Some computers do not have hardware for division, and need to
compute numbers like 1/R in some other way.

(a). Set f (x) = 1/x −R. Verify that the Newton iteration for this function
is

xn+1 = xn(2−Rxn),

and explain how this can be used to compute 1/R without division.

(b). Use the idea in (a) to compute 1/7 with an accuracy of ten decimal
digits.

Exercise 8. Suppose that you are working with a function f where both f , f ′

and f ′′ are continuous on all ofR. Suppose also that f has a zero at c, that f ′(c) 6=
0 and that Newton’s method generates a sequence {xn} that converges to c. From
lemma 10.19 we know that the error en = xn − c satisfies the relation

en+1 = 1

2

f ′′(ξn)

f ′(xn)
e2

n for n ≥ 0, (10.14)

where ξn is a number in the interval (c, xn) (or the interval (xn ,c) if xn < c).

(a). Use 10.14 to show that if f ′′(c) 6= 0, there exists an N such that either
xn > c for all n > N or xn < c for all n > N . (Hint: Use the fact that {xn}
converges to c and that neither f ′ nor f ′′ changes sign in sufficiently small
intervals around c.)

(b). Suppose that f ′(c) > 0, but that f ′′(c) = 0 and that the sign of f ′′

changes from positive to negative at c (when we move from left to right).
Show that there exists an N such that (xn+1−z)(xn−z) < 0 for all n > N . In
other words, the approximations xn will alternately lie to the left and right
of c when n becomes sufficiently large.

(c). Find examples that illustrate each of the three types of convergence
found in (a) and (b), and verify that the behaviour is as expected by per-
forming the computations (with a computer program).
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10.5 Summary

We have considered three methods for computing zeros of functions, the Bisec-
tion method, the Secant method, and Newton’s method. The Bisection method
is robust and works for almost any kind of equations and even for a zero c where
f (c) = f ′(c) = 0, but the convergence is relatively slow. The other two methods
converge much faster when the root c is simple, i.e., when f ′(c) 6= 0. The Se-
cant method is then a bit slower than Newton’s method, but it does not require
knowledge of the derivative of f .

If f ′(c) = 0, the Bisection method still converges with the same speed, as
long as an interval where f has opposite signs at the ends can be found. In this
situation the Secant method and Newton’s method are not much faster than the
Bisection method.

A major problem with all three methods is the need for starting values. This
is especially true for the Secant method and Newton’s method which may eas-
ily diverge if the starting values are not good enough. There are other, more
advanced, methods available which converge as quickly as Newton’s method,
without requiring precise starting values.

If you try the algorithms in this chapter on some examples, you are very likely
to discover that they do not always behave like you expect. The most likely prob-
lem is going to be the estimation of the (relative) error and therefore the stop-
ping criteria for the while loops. We therefore emphasise that the algorithms
given here are not at all fool-proof codes, but are primarily meant to illustrate
the ideas behind the methods.

Out of the many other methods available for solving equations, one deserves
to be mentioned specially. The Regula Falsi method is a mix between the Secant
method and the Bisection method. It is reminiscent of the Bisection method in
that it generates a sequence of intervals for which f has opposite signs at the
ends, but the intervals are not bisected at the midpoints. Instead, they are sub-
divided at the point where the secant between the graph at the two endpoints
is zero. This may seem like a good idea, but it is easy to construct examples
where this does not work particularly well. However, there are standard ways to
improve the method to avoid these problems.
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CHAPTER 11

Numerical Differentiation

Differentiation is a basic mathematical operation with a wide range of applica-
tions in many areas of science. It is therefore important to have good meth-
ods to compute and manipulate derivatives. You probably learnt the basic rules
of differentiation in school — symbolic methods suitable for pencil-and-paper
calculations. Such methods are of limited value on computers since the most
common programming environments do not have support for symbolic com-
putations.

Another complication is the fact that in many practical applications a func-
tion is only known at a few isolated points. For example, we may measure the
position of a car every minute via a GPS (Global Positioning System) unit, and
we want to compute its speed. When the position is known at all times (as a
mathematical function), we can find the speed by differentiation. But when the
position is only known at isolated times, this is not possible.

The solution is to use approximate methods of differentiation. In our con-
text, these are going to be numerical methods. We are going to present several
such methods, but more importantly, we are going to present a general strategy
for deriving numerical differentiation methods. In this way you will not only
have a number of methods available to you, but you will also be able to develop
new methods, tailored to special situations that you may encounter.

The basic strategy for deriving numerical differentiation methods is to evalu-
ate a function at a few points, find the polynomial that interpolates the function
at these points, and use the derivative of this polynomial as an approximation to
the derivative of the function. This technique also allows us to keep track of the
so-called truncation error, the mathematical error committed by differentiating
the polynomial instead of the function itself. In addition to the truncation error,
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there are also round-off errors, which are unavoidable when we use floating-
point numbers to perform calculations with real numbers. It turns out that nu-
merical differentiation is very sensitive to round-off errors, but these errors are
quite easy to analyse.

The general idea of the chapter is to introduce the simplest method for nu-
merical differentiation in section 11.1, with a complete error analysis. This may
appear a bit overwhelming, but it should not be so difficult since virtually all the
details are included. You should therefore study this section carefully, and if you
understand this, the simplest of the methods and its analysis, you should have
no problems understanding the others as well, since both the derivation and the
analysis is essentially the same for all the methods. The general strategy for de-
riving and analysing numerical differentiation methods is then summarised in
section 11.2. In the following sections we introduce three more differentiation
methods, including one for calculating second derivatives. For these methods
we just state the error estimates; the derivation of the estimates is left for the
exercises. Note that the methods for numerical integration in Chapter 12 are de-
rived and analysed in much the same way as the differentiation methods in this
chapter.

11.1 Newton’s difference quotient

We start by introducing the simplest method for numerical differentiation, de-
rive its error, and its sensitivity to round-off errors. The procedure used here for
deriving the method and analysing the error is used over again in later sections
to derive and analyse the other methods.

Let us first explain what we mean by numerical differentiation.

Problem 11.1 (Numerical differentiation). Let f be a given function that is
known at a number of isolated points. The problem of numerical differentia-
tion is to compute an approximation to the derivative f ′ of f by suitable com-
binations of the known function values of f .

A typical example is that f is given by a computer program (more specifi-
cally a function, procedure or method, depending on your choice of program-
ming language), and you can call the program with a floating-point argument
x and receive back a floating-point approximation of f (x). The challenge is to
compute an approximation to f ′(a) for some real number a when the only aid
we have at our disposal is the program to compute values of f .
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11.1.1 The basic idea

Since we are going to compute derivatives, we must be clear about how they are
defined. The standard definition of f ′(a) is by a limit process,

f ′(a) = lim
h→0

f (a +h)− f (a)

h
. (11.1)

In the following we will assume that this limit exists, in other words that f is
differentiable at x = a. From the definition (11.1) we immediately have a nat-
ural approximation of f ′(a): We simply pick a positive number h and use the
approximation

f ′(a) ≈ f (a +h)− f (a)

h
. (11.2)

Recall that the straight line p1 that interpolates f at a and a +h (the secant
based at these points) is given by

p1(x) = f (a)+ f (a +h)− f (a)

h
(x −a).

The derivative of this secant is exactly the right-hand side in (11.2) and corre-
sponds to the secant’s slope. The approximation (11.2) therefore corresponds to
approximating f by the secant based at a and a +h, and using its slope as an
approximation to the slope of f at a, see figure 11.1.

The tangent to f at a has the same slope as f at a, so we may also obtain
the approximation (11.2) by considering the secant based at a and a +h as an
approximation to the tangent at a, see again figure 11.1.

Observation 11.2 (Newton’s difference quotient). The derivative of f at a
can be approximated by

f ′(a) ≈ f (a +h)− f (a)

h
. (11.3)

This approximation is referred to as Newton’s difference quotient or just New-
ton’s quotient.

Let us consider some examples where Newton’s difference quotient are used
in numerical experiments

Example 11.3. As mentioned in the beginning of this chapter, it may be that the
position of an object is known only at isolated instances in time. Assume that we
have a file with GPS data. In the file we are looking at, the positions are stored
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Figure 11.1. The secant of a function based at a and a +h, as well as the tangent at a.

in terms of elevation, latitude, and longitude. Essentially these are what we call
spherical coordinates. From the spherical coordinates one can easily compute
cartesian coordinates, and also coordinates in a system where the three axes
point towards east, north and upwards, respectively, as in 2D and 3D maps. Time
data is also stored in the file.

Since the derivative of the position with respect to time is the speed (v(t ) =
s′(t )), with the data in the GPS file we can approximate the speed by computing
the the Newton difference quotient. The position is, however, given in terms of
three coordinates. If we denote by xn , yn , zn the cartesian coordinates at the
n’th time instance, and we apply Newton’s difference quotientat all time in-
stances, we get vectors vx,n , vy,n , vz,n , representing approximations to the speed
in the different directions. The speed vector at time instance n is the vector
(vx,n , vy,n , vz,n), and we define the speed at time instance n as |(vx,n , vy,n , vz,n)| =√

v2
x,n + v2

y,n + v2
z,n .

Let us test this on some actual GPS data. In Figure 11.2(a) we have plotted
the GPS data in a coordinate system where the axes represent the east and north
directions. In this system we can’t see the elevation information in the data.
In (b) we have plotted the data in a system where the axis represent the east
and upward directions instead. Finally, in (c) we have also plotted the speed
using the approximation we obtain from Newton’s difference quotient. When
visualized together with geographical data, such as colour indicating sea, forest,
or habitated areas, this gives very useful information.
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Figure 11.2. Experiments with GPS data in a file

Example 11.4. One can also apply the Newton difference quotient to sound sam-
ples stored in a digital sound file. The x-axis now represents time, and h is the
sampling period (the difference in time between two sound samples). We can
consider the set of all Newton difference quotients as sound samples in another
sound, and we can listen to it. When we do this we hear a sound where the bass
has been reduced. To see why, in chapter 8 we argued that we could reduce the
bass in sound by using a row in Pascals triangle with alternating sign, and (1,1)
is the first row in Pascals triangle. But f (a +h)− f (a) = h( f (a +h)− f (a))/h, so
that the Newton difference quotient is equivalent to the procedure for reducing
bass, up to multiplication with a constant. In summary, when we differentiate a
sound we reduce the bass in the sound.
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An alternative to the approximation (11.3) is the left-sided version

f ′(a) ≈ f (a)− f (a −h)

h
.

Not surprisingly, this approximation behaves similarly, and the analysis is also
completely analogous to that of the more common right-sided version.

In later sections, we will derive several formulas like (11.2). Which formula to
use in a particular situation, and exactly how to apply it, will have to be decided
in each case.

Example 11.5. Let us test the approximation (11.3) for the function f (x) = sin x
at a = 0.5 (using 64-bit floating-point numbers). In this case we know that the
exact derivative is f ′(x) = cos x so f ′(a) ≈ 0.8775825619 with 10 correct digits.
This makes it is easy to check the accuracy of the numerical method. We try
with a few values of h and find

h
(

f (a +h)− f (a)
)/

h E( f ; a,h)

10−1 0.8521693479 2.5×10−2

10−2 0.8751708279 2.4×10−3

10−3 0.8773427029 2.4×10−4

10−4 0.8775585892 2.4×10−5

10−5 0.8775801647 2.4×10−6

10−6 0.8775823222 2.4×10−7

where E( f ; a,h) = f ′(a)−(
f (a+h)− f (a)

)/
h. We observe that the approximation

improves with decreasing h, as expected. More precisely, when h is reduced by
a factor of 10, the error is reduced by the same factor.

11.1.2 The truncation error

Whenever we use approximations, it is important to try and keep track of the
error, if at all possible. To analyse the error in numerical differentiation, Tay-
lor polynomials with remainders are useful. We start by doing a linear Taylor
expansion of f (a +h) about x = a which results in the relation

f (a +h) = f (a)+h f ′(a)+ h2

2
f ′′(ξh), (11.4)

where ξh lies in the interval (a, a+h). This formula may be rearranged to give an
expression for the error,

f ′(a)− f (a +h)− f (a)

h
=−h

2
f ′′(ξh). (11.5)

This is often referred to as the truncation error of the approximation.
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Example 11.6. Let us check that the error formula (11.5) agrees with the nu-
merical values in example 11.5. We have f ′′(x) = −sin x, so the right-hand side
in (11.5) becomes

E(sin;0.5,h) = h

2
sinξh ,

where ξh ∈ (0.5,0.5+h). We do not know the exact value of ξh , but for the values
of h in question, we know that sin x is monotone on this interval. For h = 0.1 we
therefore have that the error must lie in the interval

[0.05sin0.5, 0.05sin0.6] = [2.397×10−2, 2.823×10−2],

and we see that the right end point of the interval is the maximum value of the
right-hand side in (11.5).

When h is reduced by a factor of 10, the number h/2 is reduced by the same
factor, while ξh is restricted to an interval whose width is also reduced by a factor
of 10. As h becomes even smaller, the number ξh will approach 0.5 so sinξh

will approach the lower value sin0.5 ≈ 0.479426. For h = 10−n , the error will
therefore tend to

10−n

2
sin0.5 ≈ 0.2397

10n ,

which is in close agreement with the numbers computed in example 11.5.

The observation at the end of example 11.6 is true in general: If f ′′ is contin-
uous, then ξh will approach a when h goes to zero. But even for small, positive
values of h, the error in using the approximation f ′′(ξh) ≈ f ′′(a) is usually ac-
ceptable. This is the case since we are almost always only interested in knowing
the approximate magnitude of the error, i.e., it is sufficient to know the error
with one or two correct digits.

Observation 11.7. The truncation error when using Newton’s quotient to ap-
proximate f ′(a) is given approximately by∣∣∣∣ f ′(a)− f (a +h)− f (a)

h

∣∣∣∣≈ h

2

∣∣ f ′′(a)
∣∣ . (11.6)

An upper bound on the truncation error

For practical purposes, the approximation (11.6) is usually sufficient. But let us
also take the time to present a more precise argument. We will use a technique
from chapter 9 and derive an upper bound on the truncation error.
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We go back to (11.5) and start by taking absolute values,

∣∣∣∣ f ′(a)− f (a +h)− f (a)

h

∣∣∣∣= h

2

∣∣ f ′′(ξh)
∣∣ .

We know that ξh is a number in the interval (a, a +h), so it is natural to replace
| f ′′(ξh)| by its maximum in this interval. Here we must be a bit careful since this
maximum does not always exist. But recall from the Extreme value theorem that
if a function is continuous, then it always attains its maximum on any closed
and bounded interval. It is therefore natural to include the end points of the in-
terval (a, a+h) and take the maximum over [a, a+h]. This leads to the following
lemma.

Lemma 11.8. Suppose f has continuous derivatives up to order two near a. If
the derivative f ′(a) is approximated by

f (a +h)− f (a)

h
,

then the truncation error is bounded by

E( f ; a,h) =
∣∣∣∣ f ′(a)− f (a +h)− f (a)

h

∣∣∣∣≤ h

2
max

x∈[a,a+h]

∣∣ f ′′(x)
∣∣ . (11.7)

11.1.3 The round-off error

So far, we have just considered the mathematical error committed when f ′(a) is
approximated by

(
f (a+h)− f (a)

)/
h. But what about the round-off error? In fact,

when we compute this approximation with small values of h we have to perform
the one critical operation f (a +h)− f (a), i.e., subtraction of two almost equal
numbers, which we know from chapter 5 may lead to large round-off errors. Let
us continue the calculations in example 11.5 and see what happens if we use
smaller values of h.

Example 11.9. Recall that we estimated the derivative of f (x) = sin x at a = 0.5
and that the correct value with ten digits is f ′(0.5) ≈ 0.8775825619. If we check
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values of h for 10−7 and smaller we find

h
(

f (a +h)− f (a)
)/

h E( f ; a,h)

10−7 0. 8775825372 2.5×10−8

10−8 0.8775825622 −2.9×10−10

10−9 0.8775825622 −2.9×10−10

10−11 0.8775813409 1.2×10−6

10−14 0.8770761895 5.1×10−4

10−15 0.8881784197 −1.1×10−2

10−16 1.110223025 −2.3×10−1

10−17 0.000000000 8.8×10−1

This shows very clearly that something quite dramatic happens. Ultimately,
when we come to h = 10−17, the derivative is computed as zero.

Round-off errors in the function values

Let us see if we can explain what happened in example 11.9. We will go through
the explanation for a general function, but keep the concrete example in mind.

The function value f (a) will usually not be representable exactly in the com-
puter and will therefore be replaced by the nearest floating-point number which
we denote f (a). We then know from lemma 5.21 that the relative error in this ap-
proximation will be bounded by 5×2−53 since floating-point numbers are repre-
sented in binary (β= 2) with 53 bits for the significand (m = 53). In other words,
if we set

ε1 = f (a)− f (a)

f (a)
, (11.8)

we have
|ε1| ≤ 5×2−53 ≈ 6×10−16. (11.9)

This means that |ε1| is the relative error, while ε1 itself is the signed relative error.
Note that ε1 will depend both on a and f , and in practice, there will usually

be better upper bounds on ε1 than the one in (11.9). In the following we will
denote the least upper bound by ε∗.

Notation 11.10. The maximum relative error that occurs when real numbers
are represented by floating-point numbers, and there is no underflow or over-
flow, is denoted by ε∗.

We will see later in this chapter that a reasonable estimate for ε∗ is ε∗ ≈ 7×
10−17. We note that equation (11.8) may be rewritten in a form that will be more
convenient for us.
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Observation 11.11. Suppose that f (a) is computed with 64-bit floating-point
numbers and that no underflow or overflow occurs. Then the computed value
f (a) satisfies

f (a) = f (a)(1+ε1) (11.10)

where |ε1| ≤ ε∗, and ε1 depends on both a and f .

The computation of f (a +h) is of course also affected by round-off error, so
in total we have

f (a) = f (a)(1+ε1), f (a +h) = f (a +h)(1+ε2), (11.11)

where |εi | ≤ ε∗ for i = 1, 2. Here we should really write ε2 = ε2(h), because the
exact round-off error in f (a +h) will inevitably depend on h in an apparently
random way.

Round-off errors in the computed derivative

The next step is to see how these errors affect the computed approximation of
f ′(a). Recall from example 5.12 that the main source of round-off in subtraction
is the replacement of the numbers to be subtracted by the nearest floating-point
numbers. We therefore consider the computed approximation to be

f (a +h)− f (a)

h
,

and ignore the error in the division by h. If we insert the expressions (11.11), and
also make use of equation (11.5), we obtain

f ′(a)− f (a +h)− f (a)

h
= f ′(a)− f (a +h)− f (a)

h
− f (a +h)ε2 − f (a)ε1

h

=−h

2
f ′′(ξh)− f (a +h)ε2 − f (a)ε1

h
,

(11.12)

where ξh ∈ (a, a+h). This shows that the total error in the computed approxima-
tion to the derivative consists of two parts: The truncation error that we derived
in the previous section, plus the last term on the right in (11.12), which is due to
the round-off when real numbers are replaced by floating-point numbers. The
truncation error is proportional to h and therefore tends to 0 when h tends to
0. The error due to round-off however, is proportional to 1/h and therefore be-
comes large when h tends to 0.

In observation 11.7 we obtained an approximate expression for the trunca-
tion error, for small values of h, by replacing ξh by a. When h is small we may
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also assume that f (a +h) ≈ f (a) so (11.12) leads to the approximate error esti-
mate

f ′(a)− f (a +h)− f (a)

h
≈−h

2
f ′′(a)− ε2 −ε1

h
f (a). (11.13)

The most uncertain term in (11.13) is the difference ε2 − ε1. Since we do not
even know the signs of the two numbers ε1 and ε2, we cannot estimate this dif-
ference accurately. But we do know that both numbers represent relative errors
in floating-point numbers, so the magnitude of each is about 10−17. If they are
of opposite signs, this magnitude may be doubled, so we replace the difference
ε2 − ε1 by 2ε̃(h) to emphasise the dependence on h. The error (11.13) then be-
comes

f ′(a)− f (a +h)− f (a)

h
≈−h

2
f ′′(a)− 2ε̃(h)

h
f (a). (11.14)

Let us check if this agrees with the computations in examples 11.5 and 11.9.

Example 11.12. For large values of h the first term on the right in (11.14) will
dominate the error, and we have already seen that this agrees very well with the
computed values in example 11.5. The question is how well the numbers in ex-
ample 11.9 can be modelled when h becomes smaller.

To investigate this, we denote the left-hand side of (11.14) by E( f ; a,h) and
solve for ε̃(h),

ε̃(h) ≈− h

2 f (a)

(
E( f ; a,h)+ h

2
f ′′(a)

)
.

From example 11.9 we have corresponding values of h and E( f ; a,h) which allow
us to estimate ε̃(h) (recall that f (x) = sin x and a = 0.5 in this example). If we do
this we can augment the table on page 283 with an additional column

h
(

f (a +h)− f (a)
)/

h E( f ; a,h) ε̃(h)

10−7 0. 8775825372 2.5×10−8 −7.6×10−17

10−8 0.8775825622 −2.9×10−10 2.8×10−17

10−9 0.8775825622 −2.9×10−10 5.5×10−19

10−11 0.8775813409 1.2×10−6 −1.3×10−17

10−14 0.8770761895 5.1×10−4 −5.3×10−18

10−15 0.8881784197 −1.1×10−2 1.1×10−17

10−16 1.110223025 −2.3×10−1 2.4×10−17

10−17 0.000000000 8.8×10−1 −9.2×10−18

We observe that all these values are considerably smaller than the upper limit
6× 10−16 in (11.9). (Note that in order to compute ε̃(h) correctly for h = 10−7,
you need to use the more accurate value 2.4695×10−8 for the error in this case.)
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Figure 11.3. Numerical approximation of the derivative of f (x) = sin x at x = 0.5 using Newton’s quotient,
see lemma 11.8. The plot is a log10-log10 plot which shows the logarithm to base 10 of the absolute value of
the total error as a function of the logarithm to base 10 of h, based on 200 values of h. The point −10 on the
horizontal axis therefore corresponds h = 10−10, and the point −6 on the vertical axis corresponds to an error
of 10−6. The solid line is a plot of the error estimate g (h) given by (11.15).

Figure 11.3 shows plots of the error. The numerical approximation has been
computed for the values h = 10−z , for z = 0, . . . , 20 in steps of 1/10, and the
absolute value of the total error plotted in a log-log plot. The errors are shown
as isolated dots, and the function

g (h) = h

2
sin0.5+ε 2

h
sin0.5 (11.15)

with ε = 7 × 10−17 is shown as a solid graph. This corresponds to adding the
absolute value of the truncation error and the round-off error, even in the case
where they have opposite signs. It appears that the choice of ε makes g (h) a
reasonable upper bound on the error so we may consider this to be a decent
estimate of ε∗.

The estimates (11.13) and (11.14) give the approximate error with sign. In
general, it is more convenient to consider the absolute value of the error. Start-
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ing with (11.13), we then have∣∣∣ f ′(a)− f (a +h)− f (a)

h

∣∣∣≈ ∣∣∣−h

2
f ′′(a)− ε2 −ε1

h
f (a)

∣∣∣
≤ h

2
| f ′′(a)|+ |ε2 −ε1|

h
| f (a)|

≤ h

2
| f ′′(a)|+ |ε2|+ |ε1|

h
| f (a)|

≤ h

2
| f ′′(a)|+ 2ε(h)

h
| f (a)|

where we used the triangle inequality in the first and second inequality, and ε(h)
is the largest of the two numbers |ε1| and |ε2|.

Observation 11.13. Suppose that f and its first two derivatives are continuous
near a. When the derivative of f at a is approximated by Newton’s difference
quotient (11.3), the error in the computed approximation is roughly bounded
by ∣∣∣∣ f ′(a)− f (a +h)− f (a)

h

∣∣∣∣. h

2

∣∣ f ′′(a)
∣∣+ 2ε(h)

h

∣∣ f (a)
∣∣ , (11.16)

where ε(h) is the largest of the relative errors in f (a) and f (a +h), and the no-
tation α.β indicates that α is approximately smaller than β.

An upper bound on the total error

The. notation is vague mathematically, so we include a more precise error es-
timate.

Theorem 11.14. Suppose that f and its first two derivatives are continuous
near a. When the derivative of f at a is approximated by

f (a +h)− f (a)

h
,

the error in the computed approximation is bounded by∣∣∣∣ f ′(a)− f (a +h)− f (a)

h

∣∣∣∣≤ h

2
M1 + 2ε∗

h
M2, (11.17)

where
M1 = max

x∈[a,a+h]

∣∣ f ′′(x)
∣∣ , M2 = max

x∈[a,a+h]

∣∣ f (x)
∣∣ .
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Proof. To get to (11.17) we start with (11.12), take absolute values, and use the
triangle inequality a number of times. We also replace

∣∣ f ′′(ξh)
∣∣ by its maximum

on the interval [a, a +h], and we replace f (a) and f (a +h) by their common
maximum on [a, a +h]. The details are:∣∣∣ f ′(a)− f (a +h)− f (a)

h

∣∣∣= ∣∣∣h

2
f ′′(ξh)− f (a +h)ε2 − f (a)ε1

h

∣∣∣
≤ h

2
| f ′′(ξh)|+ | f (a +h)ε2 − f (a)ε1|

h

≤ h

2
| f ′′(ξh)|+ | f (a +h)||ε2|+ | f (a)||ε1|

h

≤ h

2
M1 + M2|ε2|+M2|ε1|

h

= h

2
M1 + |ε2|+ |ε1|

h
M2

≤ h

2
M1 + 2ε∗

h
M2.

(11.18)

11.1.4 Optimal choice of h

Figure 11.3 indicates that there is an optimal value of h which minimises the
total error. We can find a decent estimate for this h by minimising the upper
bound in one of the error estimates (11.16) or (11.17). In practice it is easiest to
use (11.16) since the two numbers M1 and M2 in (11.17) depend on h (although
we could insert some upper bound which is independent of h).

The right-hand side of (11.16) contains the term ε(h) whose exact depen-
dence on h is very uncertain. We therefore replace ε(h) by the upper bound ε∗.
This gives us the error estimate

e(h) = h

2

∣∣ f ′′(a)
∣∣+ 2ε∗

h

∣∣ f (a)
∣∣ . (11.19)

To find the value of h which minimises this expression, we differentiate with
respect to h and set the derivative to zero. We find

e ′(h) =
∣∣ f ′′(a)

∣∣
2

− 2ε∗

h2

∣∣ f (a)
∣∣ .

If we solve the equation e ′(h) = 0, we obtain the approximate optimal value.

Lemma 11.15. Let f be a function with continuous derivatives up to order 2.
If the derivative of f at a is approximated as in lemma 11.8, then the value of h
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which minimises the total error (truncation error + round-off error) is approx-
imately

h∗ ≈ 2

√
ε∗

∣∣ f (a)
∣∣√∣∣ f ′′(a)
∣∣ .

It is easy to see that the optimal value of h is the value that balances the two
terms in (11.19), i.e., the truncation error and the round-off error are equal.

Example 11.16. Based on example 11.9, we saw above that a good value of ε∗

is 7× 10−17. Let us check what the optimal value of h is in this case. We have
f (x) = sin x and a = 0.5 so

h∗ = 2
p
ε= 2

√
7×10−17 ≈ 1.7×10−8.

For this value of h we find

sin(0.5+h∗)− sin0.5

h∗ = 0.877582555644682,

and the error in this case is about 6.2×10−9. It turns out that roughly all h in the
interval [3.2×10−9,2×10−8] give an error of about the same magnitude which
shows that the determination of h∗ is quite robust.

Exercises for Section 11.1

Exercise 1. Mark each of the following statements as true or false.

(a). When we use the approximation f ′(a) ≈ ( f (a+h)− f (a))/h on a com-
puter, we can always obtain higher accuracy by choosing a smaller value
for h.

(b). If we increase the number of bits for storing floating-point numbers
(e.g.128-bit precision), we can obtain better numerical approximations to
derivatives.

(c). We are using Newton’s difference quotient method to approximate
the derivative of the function f (x) = ex at the point x = 1 with a step value
of h = 0.1 (with 64-bit precission). If we change the step length to h = 0.01
then the error will be reduced by approximately a factor of 10.

(d). The approximation f ′(a) ≈ ( f (a+h)− f (a))/h will give the exact an-
swer (ignoring numerical round-off errors) if the function f is linear.
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(e). Since we cannot know exactly how well the values of f (a +h) and
f (a) are represented on a computer, it is difficult to estimate accurately
what the error will be in numerical differentiation.

Exercise 2. (a). (Exam 2010) We are to calculate an approximation to the
derivative f ′(a) to the function f (x) = cos(x) by the approximation

f ′(a) ≈ f (a +h)− f (a)

h
.

Then the absolute error for any h > 0 is bounded by (we do not take round
off errors into account)

� h2/2

� h2 cos(1)

� h cos(a)/4

� h/2

(b). (Exam 2008) We are going to calculate an approximation to the deriva-
tive f ′(a) of the function f by the approximation

f ′(a) ≈ f (a +h)− f (a)

h
.

If we are using floating point numbers the total error is bounded by (In
the two last alternatives ε∗ depends on the type of floating point numbers
used):

� h2

2 maxx∈[a,a+h]
∣∣ f ′′(x)

∣∣
� h3

6 maxx∈[a,a+h]
∣∣ f ′′′(x)

∣∣
� h2

6 maxx∈[a,a+h]
∣∣ f ′′′(x)

∣∣+ 6ε∗
h3 maxx∈[a,a+h]

∣∣ f (x)
∣∣

� h
2 maxx∈[a,a+h]

∣∣ f ′′(x)
∣∣+ 2ε∗

h maxx∈[a,a+h]
∣∣ f (x)

∣∣
Exercise 3. Some exercise

Exercise 4. Some exercise

Exercise 5. In this exercise we are going to numerically compute the derivative
of f (x) = ex at a = 1 using Newton’s quotient as described in observation 11.2.
The exact derivative to 20 digits is

f ′(1) ≈ 2.7182818284590452354.
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(a). Compute the approximation
(

f (1+h)− f (1)
)
/h to f ′(1). Start with

h = 10−4, and then gradually reduce h. Also compute the error, and deter-
mine an h that gives close to minimal error.

(b). Determine the optimal h as described in Lemma 11.15 and compare
with the value you found in (a).

Exercise 6. When deriving the truncation error given by (11.7) it is not obvious
what the degree of the Taylor polynomial in (11.4) should be. In this exercise you
are going to try and increase and reduce the degree of the Taylor polynomial and
see what happens.

(a). Redo the Taylor expansion in (11.4), but use the Taylor polynomial of
degree 2. From this try and derive an error formula similar to (11.5).

(b). Repeat (a), but use a Taylor polynomial of degree 0, i.e., just a con-
stant.

(c). Why can you conclude that the linear Taylor polynomial and the er-
ror term in (11.5) is the best?

11.2 Summary of the general strategy

Before we continue, let us sum up the derivation and analysis of the Newton’s
difference quotient in section 11.1, since this is standard for all differentiation
methods.

The first step is to derive the numerical method. In section 11.1 this was very
simple since the method came straight out of the definition of the derivative.
Just before observation 11.2 we indicated that the method can also be derived
by approximating f by a polynomial p and using p ′(a) as an approximation to
f ′(a). This is the general approach that we will use below.

Once the numerical method is known, we estimate the mathematical error
in the approximation, the truncation error. This we do by performing Taylor
expansions with remainders. For numerical differentiation methods which pro-
vide estimates of a derivative at a point a, we replace all function values at points
other than a by Taylor polynomials with remainders. There may be a challenge
in choosing the correct degree of the Taylor polynomial, see exercise 11.1.Exer-
cise 6.
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The next task is to estimate the total error, including the round-off error. We
consider the difference between the derivative to be computed and the com-
puted approximation, and replace the computed function evaluations by ex-
pressions like the ones in observation 11.11. This will result in an expression
involving the mathematical approximation to the derivative. This can be sim-
plified in the same way as when the truncation error was estimated, with the
addition of an expression involving the relative round-off errors in the function
evaluations. These estimates can then be simplified to something like (11.16)
or (11.17). As a final step, the optimal value of h can be found by minimising the
total error.

Procedure 11.17. The following is a general procedure for deriving numerical
methods for differentiation:

1. Interpolate the function f by a polynomial p at suitable points.

2. Approximate the derivative of f by the derivative of p. This makes it pos-
sible to express the approximation in terms of function values of f .

3. Derive an estimate for the error by expanding the function values (other
than the one at a) in Taylor series with remainders.

4. Derive an estimate of the round-off error by assuming that the relative
errors in the function values are bounded by ε∗. By minimising the total
error, an optimal step length h can be determined.

Exercises for Section 11.2

Exercise 1. Determine an approximation to the derivative f ′(a) using the func-
tion values f (a), f (a +h) and f (a +2h) by interpolating f by a quadratic poly-
nomial p2 at the three points a, a +h, and a +2h, and then using f ′(a) ≈ p ′

2(a).

11.3 A symmetric version of Newton’s quotient

The numerical differentiation method in section 11.1 is not symmetric about a,
so let us try and derive a symmetric method.

11.3.1 Derivation of the method

We want to find an approximation to f ′(a) using values of f near a. To obtain
a symmetric method, we assume that f (a −h), f (a), and f (a +h) are known
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values, and we want to find an approximation to f ′(a) using these values. The
strategy is to determine the quadratic polynomial p2 that interpolates f at a−h,
a and a +h, and then we use p ′

2(a) as an approximation to f ′(a).
We start by writing p2 in Newton form,

p2(x) = f [a −h]+ f [a −h, a](x − (a −h))

+ f [a −h, a, a +h](x − (a −h))(x −a). (11.20)

We differentiate and find

p ′
2(x) = f [a −h, a]+ f [a −h, a, a +h](2x −2a +h).

Setting x = a yields

p ′
2(a) = f [a −h, a]+ f [a −h, a, a +h]h.

To get a practically useful formula we must express the divided differences in
terms of function values. If we expand the second divided difference we obtain

p ′
2(a) = f [a−h, a]+ f [a, a +h]− f [a −h, a]

2h
h = f [a, a +h]+ f [a −h, a]

2
. (11.21)

The two first order differences are

f [a −h, a] = f (a)− f (a −h)

h
, f [a, a +h] = f (a +h)− f (a)

h
,

and if we insert this in (11.21) we end up with

p ′
2(a) = f (a +h)− f (a −h)

2h
.

We note that the approximation to the derivative given by p ′
2(a) agrees with the

slope of the secant based at a −h and a +h.

Lemma 11.18 (Symmetric Newton’s quotient). Let f be a given function, and
let a and h be given numbers. If f (a−h), f (a), f (a+h) are known values, then
f ′(a) can be approximated by p ′

2(a) where p2 is the quadratic polynomial that
interpolates f at a −h, a, and a +h. The approximation is given by

f ′(a) ≈ p ′
2(a) = f (a +h)− f (a −h)

2h
, (11.22)

and agrees with the slope of the secant based at a −h and a +h.
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Figure 11.4. The secant of a function based at a −h and a +h, as well as the tangent at a.

The symmetric Newton’s quotient is illustrated in figure 11.4. The derivative
of f at a is given by the slope of the tangent, while the approximation defined by
p ′

2(a) is given by the slope of tangent of the parabola at a (which is the same as
the slope of the secant of f based at a −h and a +h).

Let us test this approximation on the function f (x) = sin x at a = 0.5 so
we can compare with the original Newton’s quotient that we discussed in sec-
tion 11.1.

Example 11.19. We test the approximation (11.22) with the same values of h as
in examples 11.5 and 11.9. Recall that f ′(0.5) ≈ 0.8775825619 with 10 correct
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digits. The results are

h
(

f (a +h)− f (a −h)
)/

(2h) E( f ; a,h)

10−1 0.8761206554 1.5×10-3

10−2 0.8775679356 1.5×10-5

10−3 0.8775824156 1.5×10-7

10−4 0.8775825604 1.5×10-9

10−5 0.8775825619 1.8×10-11

10−6 0.8775825619 −7.5×10-12

10−7 0.8775825616 2.7×10-10

10−8 0.8775825622 −2.9×10-10

10−11 0.8775813409 1.2×10-6

10−13 0.8776313010 −4.9×10-5

10−15 0.8881784197 −1.1×10-2

10−17 0.0000000000 8.8×10-1

If we compare with examples 11.5 and 11.9, the errors are generally smaller for
the same value of h. In particular we note that when h is reduced by a factor
of 10, the error is reduced by a factor of 100, at least as long as h is not too
small. However, when h becomes smaller than about 10−6, the error starts to in-
crease. It therefore seems like the truncation error is smaller than for the original
method based on Newton’s quotient, but as before, the round-off error makes it
impossible to get accurate results for small values of h. The optimal value of h
seems to be h∗ ≈ 10−6, which is larger than for the first method, but the error is
then about 10−12, which is smaller than the best we could do with the asymmet-
ric Newton’s quotient.

11.3.2 The error

We analyse the error in the symmetric Newton’s quotient in exactly the same way
as we analysed the original Newton’s quotient in section 11.1. The idea is to re-
place f (a−h) and f (a+h) with Taylor expansions about a. Some trial and error
will reveal that the correct degree of the Taylor polynomials is quadratic, and the
Taylor polynomials with remainders may be combined into the expression

f ′(a)− f (a +h)− f (a −h)

2h
=−h2

12

(
f ′′′(ξ1)+ f ′′′(ξ2)

)
. (11.23)

The error formula (11.23) confirms the numerical behaviour we saw in exam-
ple 11.19 for small values of h since the error is proportional to h2: When h is
reduced by a factor of 10, the error is reduced by a factor 102.

The analysis of the round-off error is completely analogous to what we did
in section 11.1.3: Start with (11.23), take into account round-off errors, obtain

295



a relation similar to (11.12), and then derive the error estimate through a string
of equalities and inequalities as in (11.18). The result is a theorem similar to
theorem 11.14.

Theorem 11.20. Let f be a given function with continuous derivatives up to
order three, and let a and h be given numbers. Then the error in the symmetric
Newton’s quotient approximation to f (a),

f ′(a) ≈ f (a +h)− f (a −h)

2h
,

including round-off error and truncation error, is bounded by∣∣∣∣∣ f ′(a)− f (a +h)− f (a −h)

2h

∣∣∣∣∣≤ h2

6
M1 + ε∗

h
M2, (11.24)

where

M1 = max
x∈[a−h,a+h]

∣∣ f ′′′(x)
∣∣ , M2 = max

x∈[a−h,a+h]

∣∣ f (x)
∣∣ . (11.25)

The most important feature of this theorem is that it shows how the error
depends on h. The first term on the right in (11.24) stems from the truncation
error (11.23) which clearly is proportional to h2, while the second term corre-
sponds to the round-off error and depends on h−1 because we divide by h when
calculating the approximation.

It may be a bit surprising that the truncation error is smaller for the symmet-
ric Newton’s quotient than for the asymmetric one, since both may be viewed as
coming from a secant approximation to f . The reason is that in the symmetric
case, the secant is just a special case of a parabola which is generally a better
approximation than a straight line.

In practice, the interesting values of h will usually be so small that there is
very little error in using the approximations

M1 = max
x∈[a−h,a+h]

∣∣ f ′′′(x)
∣∣≈ ∣∣ f ′′′(a)

∣∣ , M2 = max
x∈[a−h,a+h]

∣∣ f (x)
∣∣≈ ∣∣ f (a)

∣∣ ,

in (11.24), particularly since we are only interested in the magnitude of the error
with only 1 or 2 digits of accuracy. If we make these simplifications we obtain a
slightly simpler error estimate.
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Figure 11.5. Log-log plot of the error in the approximation to the derivative of f (x) = sin x at x = 1/2 for
values of h in the interval [0,10−17], using the symmetric Newton’s quotient in theorem 11.20. The solid graph
represents the right-hand side of (11.26) with ε∗ = 7×10−17, as a function of h.

Observation 11.21. The error in the symmetric Newton’s quotient is approxi-
mately bounded by∣∣∣∣∣ f ′(a)− f (a +h)− f (a −h)

2h

∣∣∣∣∣. h2

6

∣∣ f ′′′(a)
∣∣+ ε∗

∣∣ f (a)
∣∣

h
. (11.26)

A plot of how the error behaves in the symmetric Newton’s quotient, together
with the estimate of the error on the right in (11.26), is shown in figure 11.5.

11.3.3 Optimal choice of h

As for the asymmetric Newton’s quotient, we can find an optimal value of h
which minimises the error. We can find this value of h if we differentiate the
right-hand side of (11.24) with respect to h and set the derivative to 0. This leads
to the equation

h

3
M1 − ε∗

h2 M2 = 0

which has the solution

h∗ =
3
p

3ε∗M2
3
p

M1
≈

3
√

3ε∗
∣∣ f (a)

∣∣
3
√∣∣ f ′′′(a)

∣∣ . (11.27)
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At the end of section 11.1.4 we saw that a reasonable value for ε∗ was ε∗ = 7×
10−17. The optimal value of h in example 11.19, where f (x) = sin x and a = 0.5,
then becomes h = 4.6×10−6. For this value of h the approximation is f ′(0.5) ≈
0.877582561887 with error 3.1×10−12.

Exercises for Section 11.3

Exercise 1. Mark each of the following statements as true or false.

(a). If we ignore round-off errors, the symmetric Newton’s quotient method
is exact for polynomials of degree 2 or lower.

(b). Even though the symmetric Newton differentiation scheme gives bet-
ter accuracy, there is a trade-off as it is much more computationally de-
manding (i.e. it requires many more calculations) than the non-symmetric
method.

Exercise 2. In this exercise we are going to check the symmetric Newton’s quo-
tient and numerically compute the derivative of f (x) = ex at a = 1, see exer-
cise 11.1.Exercise 5. Recall that the exact derivative with 20 correct digits is

f ′(1) ≈ 2.7182818284590452354.

(a). Compute the approximation
(

f (1+h)− f (1−h)
)
/(2h) to f ′(1). Start

with h = 10−3, and then gradually reduce h. Also compute the error, and
determine an h that gives close to minimal error.

(b). Determine the optimal h given by (11.27) and compare with the value
you found in (a).

Exercise 3. Determine f ′(a) numerically using the two asymmetric Newton’s
quotients

fr (x) = f (a +h)− f (a)

h
, fl (x) = f (a)− f (a −h)

h

as well as the symmetric Newton’s quotient. Also compute and compare the
relative errors in each case.

(a). f (x) = x2; a = 2; h = 0.01.

(b). f (x) = sin x; a =π/3; h = 0.1.

(c). f (x) = sin x; a =π/3; h = 0.001.
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(d). f (x) = sin x; a =π/3; h = 0.00001.

(e). f (x) = 2x ; a = 1; h = 0.0001.

(f ). f (x) = x cos x; a =π/3; h = 0.0001.

Exercise 4. In this exercise we are going to derive the error estimate (11.24). For
this it is a good idea to use the derivation in sections 11.1.2 and 11.1.3 as a model,
and try and follow the same strategy.

(a). Derive the relation (11.23) by replacing f (a −h) and f (a +h) with
appropriate Taylor polynomials with remainders around x = a.

(b). Estimate the total error by replacing the values f (a−h) and f (a+h)
by the nearest floating-point numbers f (a −h) and f (a +h). The result
should be a relation similar to equation (11.12).

(c). Find an upper bound on the total error by using the same steps as in
(11.18).

Exercise 5. (a). Show that the approximation to f ′(a) given by the sym-
metric Newton’s quotient is the average of the two asymmetric quotients

fr (x) = f (a +h)− f (a)

h
, fl (x) = f (a)− f (a −h)

h
.

(b). Sketch the graph of the function

f (x) = −x2 +10x −5

4

on the interval [0,6] together with the three secants associated with the
three approximations to the derivative in (a) (use a = 3 and h = 2). Can
you from this judge which approximation is best?

(c). Determine the three difference quotients in (a) numerically for the
function f (x) using a = 3 and h1 = 0.1 and h2 = 0.001. What are the rela-
tive errors?

(d). Show that the symmetric Newton’s quotient at x = a for a quadratic
function f (x) = ax2 +bx + c is equal to the derivative f ′(a).
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Exercise 6. Use the symmetric Newton’s quotient and determine an approxi-
mation to the derivative f ′(a) in each case below. Use the values of h given by
h = 10−k k = 4,5, . . . ,12 and compare the relative errors. Which of these values of
h gives the smallest error? Compare with the optimal h predicted by (11.27).

(a). The function f (x) = 1/(1+cos(x2)) at the point a =π/4.

(b). The function f (x) = x3 +x +1 at the point a = 0.

11.4 A four-point differentiation method

The asymmetric and symmetric Newton’s quotients are the two most commonly
used methods for approximating derivatives. Whenever possible, one would
prefer the symmetric version whose truncation error is proportional to h2. This
means that the error goes to 0 more quickly than for the asymmetric version, as
was clearly evident in examples 11.5 and 11.19. In this section we derive another
method for which the truncation error is proportional to h4. This also illustrates
the procedure 11.17 in a more complicated situation.

The computations below may seem overwhelming, and have in fact been
done with the help of a computer to save time and reduce the risk of miscal-
culations. The method is included here just to illustrate that the principle for
deriving both the method and the error terms is just the same as for the simpler
Newton’s quotient.

11.4.1 Derivation of the method

We want better accuracy than the symmetric Newton’s quotient which was based
on interpolation with a quadratic polynomial. It is therefore natural to base the
approximation on a cubic polynomial, which can interpolate four points. We
have seen the advantage of symmetry, so we choose the interpolation points
x0 = a −2h, x1 = a −h, x2 = a +h, and x3 = a +2h. The cubic polynomial that
interpolates f at these points is

p3(x) = f (x0)+ f [x0, x1](x −x0)+ f [x0, x1, x2](x −x0)(x −x1)

+ f [x0, x1, x2, x3](x −x0)(x −x1)(x −x2),

and its derivative is

p ′
3(x) = f [x0, x1]+ f [x0, x1, x2](2x −x0 −x1)

+ f [x0, x1, x2, x3]
(
(x −x1)(x −x2)+ (x −x0)(x −x2)+ (x −x0)(x −x1)

)
.
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If we evaluate this expression at x = a and simplify (this is quite a bit of work),
we find that the resulting approximation of f ′(a) is

f ′(a) ≈ p ′
3(a) = f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)

12h
. (11.28)

11.4.2 The error

To estimate the error, we expand the four terms in the numerator in (11.28) in
Taylor polynomials of degree 4 with remainders. We then insert these into the
formula for p ′

3(a) and obtain an analog to equation 11.12,

f ′(a)− f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)

12h
=

h4

45
f (v)(ξ1)− h4

180
f (v)(ξ2)− h4

180
f (v)(ξ3)+ h4

45
f (v)(ξ4),

where ξ1 ∈ (a −2h, a), ξ2 ∈ (a −h, a), ξ3 ∈ (a, a +h), and ξ4 ∈ (a, a +2h). We can
simplify the right-hand side and obtain an upper bound on the truncation error
if we replace the function values by upper bounds. The result is∣∣∣∣ f ′(a)− f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)

12h

∣∣∣∣≤ h4

18
M (11.29)

where
M = max

x∈[a−2h,a+2h]

∣∣ f (v)(x)
∣∣ .

The round-off error is derived in the same way as before. The quantities we
actually compute are

f (a −2h) = f (a −2h)(1+ε1), f (a +2h) = f (a +2h)(1+ε3),

f (a −h) = f (a −h)(1+ε2), f (a +h) = f (a +h)(1+ε4).

We estimate the difference between f ′(a) and the computed approximation,
make use of the estimate (11.29), combine the function values that are multi-
plied by εs, and approximate the maximum values by function values at a, com-
pletely analogously to what we did for Newton’s quotient.

Observation 11.22. Suppose that f and its first five derivatives are continu-
ous. If f ′(a) is approximated by

f ′(a) ≈ f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)

12h
,
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Figure 11.6. Log-log plot of the error in the approximation to the derivative of f (x) = sin x at x = 1/2, using
the method in observation 11.22, with h in the interval [0,10−17]. The function plotted is the right-hand side
of (11.30) with ε∗ = 7×10−17.

the total error is approximately bounded by∣∣∣∣∣ f ′(a)− f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)

12h

∣∣∣∣∣.
h4

18

∣∣ f (v)(a)
∣∣+ 3ε∗

h

∣∣ f (a)
∣∣ . (11.30)

We could of course also derive a more formal upper bound on the error, sim-
ilar to (11.17) and (11.24).

A plot of the error in the approximation for the sin x example that we used
for the previous approximations is shown in figure 11.6.

From observation 11.22 we can compute the optimal value of h by differen-
tiating the right-hand side with respect to h and setting it to zero. This leads to
the equation

2h3

9

∣∣ f (v)(a)
∣∣− 3ε∗

h2

∣∣ f (a)
∣∣= 0

which has the solution

h∗ =
5
√

27ε∗
∣∣ f (a)

∣∣
5
√

2
∣∣ f (v)(a)

∣∣ . (11.31)

For the example f (x) = sin x and a = 0.5 the optimal value of h is h∗ ≈ 8.8×10−4.
The actual error is then roughly 10−14.
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Exercises for Section 11.4

Exercise 1. Mark each of the following statements as true or false.

(a). The 4-point method with a step length of h = 0.2 will usually have a
smaller error than the symmetric Newton’s quotient method with h = 0.1.

(b). If we ignore round-off, the 4-point method is exact for all polynomi-
als.

Exercise 2. In this exercise we are going to check the 4-point method and nu-
merically compute the derivative of f (x) = ex at a = 1. For comparison, the exact
derivative to 20 digits is

f ′(1) ≈ 2.7182818284590452354.

(a). Compute the approximation

f (a −2h)−8 f (a −h)+8 f (a +h)− f (a +2h)

12h

to f ′(1). Start with h = 10−3, and then gradually reduce h. Also compute
the error, and determine an h that gives close to minimal error.

(b). Determine the optimal h given by (11.31) and compare with the ex-
perimental value you found in (a).

Exercise 3. Derive the estimate (11.29), starting with the relation just preceding
(11.29).

11.5 Numerical approximation of the second derivative

We consider one more method for numerical approximation of derivatives, this
time of the second derivative. The approach is the same: We approximate f by a
polynomial and approximate the second derivative of f by the second derivative
of the polynomial. As in the other cases, the error analysis is based on expansion
in Taylor series.
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11.5.1 Derivation of the method

Since we are going to find an approximation to the second derivative, we have
to approximate f by a polynomial of degree at least two, otherwise the second
derivative is identically 0. The simplest is therefore to use a quadratic polyno-
mial, and for symmetry we want it to interpolate f at a −h, a, and a +h. The
resulting polynomial p2 is the one we used in section 11.3 and it is given in equa-
tion (11.20). The second derivative of p2 is constant, and the approximation of
f ′′(a) is

f ′′(a) ≈ p ′′
2 (a) = 2 f [a −h, a, a +h].

The divided difference is easy to expand.

Lemma 11.23 (Three-point approximation of second derivative). The
second derivative of a function f at a can be approximated by

f ′′(a) ≈ f (a +h)−2 f (a)+ f (a −h)

h2 . (11.32)

11.5.2 The error

Estimation of the error follows the same pattern as before. We replace f (a −h)
and f (a+h) by cubic Taylor polynomials with remainders and obtain an expres-
sion for the truncation error,

f ′′(a)− f (a +h)−2 f (a)+ f (a −h)

h2 =−h2

24

(
f (i v)(ξ1)+ f (i v)(ξ2)

)
, (11.33)

where ξ1 ∈ (a −h, a) and ξ2 ∈ (a, a +h).

The round-off error can also be estimated as before. Instead of computing
the exact values, we actually compute f (a −h), f (a), and f (a +h), which are
linked to the exact values by

f (a −h) = f (a −h)(1+ε1), f (a) = f (a)(1+ε2), f (a +h) = f (a +h)(1+ε3),

where |εi | ≤ ε∗ for i = 1, 2, 3. We can then derive a relation similar to (11.12), and
by reasoning as in (11.18) we end up with an estimate of the total error.
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Figure 11.7. Log-log plot of the error in the approximation to the derivative of f (x) = sin x at x = 1/2 for h
in the interval [0,10−8], using the method in theorem 11.24. The function plotted is the right-hand side of
(11.30) with ε∗ = 7×10−17.

Theorem 11.24. Suppose f and its first three derivatives are continuous near
a, and that f ′′(a) is approximated by

f ′′(a) ≈ f (a +h)−2 f (a)+ f (a −h)

h2 .

Then the total error (truncation error + round-off error) in the computed ap-
proximation is bounded by∣∣∣∣∣ f ′′(a)− f (a +h)−2 f (a)+ f (a −h)

h2

∣∣∣∣∣≤ h2

12
M1 + 3ε∗

h2 M2, (11.34)

where
M1 = max

x∈[a−h,a+h]

∣∣∣ f (i v)(x)
∣∣∣ , M2 = max

x∈[a−h,a+h]

∣∣ f (x)
∣∣ .

As for the previous methods, we can simplify the right-hand side to∣∣∣∣∣ f ′′(a)− f (a +h)−2 f (a)+ f (a −h)

h2

∣∣∣∣∣. h2

12

∣∣∣ f (i v)(a)
∣∣∣+ 3ε∗

h2

∣∣ f (a)
∣∣ (11.35)

if we can tolerate an approximate upper bound.
Figure 11.7 shows the errors in the approximation to the second derivative

given in theorem 11.24 when f (x) = sin x and a = 0.5, and for h in the range
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[0,10−8]. The solid graph gives the function in (11.35) which describes an ap-
proximate upper bound on the error as a function of h, with ε∗ = 7×10−17. For h
smaller than 10−8, the approximation becomes 0, and the error constant. Recall
that for the approximations to the first derivative, this did not happen until h
was about 10−17. This illustrates the fact that the higher the derivative, the more
problematic is the round-off error, and the more difficult it is to approximate the
derivative with numerical methods like the ones we study here.

11.5.3 Optimal choice of h

As before, we find the optimal value of h by minimising the right-hand side of
(11.35). To do this we find the derivative with respect to h and set it to 0,

h

6

∣∣ f ′′′(a)
∣∣− 6ε∗

h3

∣∣ f (a)
∣∣= 0.

Observation 11.25. The upper bound on the total error (11.34) is minimised
when h has the value

h∗ =
4
√

36ε∗
∣∣ f (a)

∣∣
4
√∣∣ f (i v)(a)

∣∣ . (11.36)

When f (x) = sin x and a = 0.5 this gives h∗ = 2.2×10−4 if we use the value
ε∗ = 7×10−17. Then the approximation to f ′′(a) =−sin a is −0.4794255352 with
an actual error of 3.4×10−9.

Exercises for Section 11.5

Exercise 1. (a). (Exam 2009) We use the expression ( f (h)−2 f (0)+ f (h))/h2

to calculate approximations to f ′′(0) (we do the calculations exact, with-
out round off errors). Then the result will always be correct if f (x) is

� a trigonometric function

� a logarithmic function

� a polynomial of degree 4

� a polynomial of degree 3

(b). (Exam 2007) We approximate the second derivative of the function
f (x) at x = 0, by the approximation

D2 f (0) = f (h)−2 f (0)+ f (−h)

h2
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We assume that f is differentiable an infinite number of times, and we do
not take round off errors into account. Then the error∣∣ f ′′(0)−D2 f (0)

∣∣
is bounded by

� h2

12 maxx∈[−h,h]
∣∣ f ′′(x)

∣∣
� h2

48 maxx∈[−h,h]
∣∣ f (4)(x)

∣∣
� h

4 maxx∈[−h,h]
∣∣ f ′′(x)

∣∣
� h2

12 maxx∈[−h,h]
∣∣ f (4)(x)

∣∣
Exercise 2. We use our standard example f (x) = ex and a = 1 to check the 3-
point approximation to the second derivative given in (11.32). For comparison
recall that the exact second derivative to 20 digits is

f ′′(1) ≈ 2.7182818284590452354.

(a). Compute the approximation
(

f (a−h)−2 f (a)+ f (a+h)
)
/h2 to f ′′(1).

Start with h = 10−3, and then gradually reduce h. Also compute the actual
error, and determine an h that gives close to minimal error.

(b). Determine the optimal h given by (11.36) and compare with the value
you determined in (a).

Exercise 3. In this exercise you are going to do the error analysis of the three-
point method in more detail. As usual the derivation in sections 11.1.2 and 11.1.3
may be useful as a guide.

(a). Derive the relation (11.33) by performing the appropriate Taylor ex-
pansions of f (a −h) and f (a +h).

(b). Starting from (11.33), derive the analog of relation (11.12).

(c). Derive the estimate (11.34) by following the same recipe as in (11.18).

Exercise 4. This exercise illustrates a different approach to designing numerical
differentiation methods.
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(a). Suppose that we want to derive a method for approximating the deriva-
tive of f at a which has the form

f ′(a) ≈ c1 f (a −h)+ c2 f (a +h), c1,c2 ∈R.

We want the method to be exact when f (x) = 1 and f (x) = x. Use these
conditions to determine c1 and c2.

(b). Show that the method in (a) is exact for all polynomials of degree 1,
and compare it to the methods we have discussed in this chapter.

(c). Use the procedure in (a) and (b) to derive a method for approximat-
ing the second derivative of f ,

f ′′(a) ≈ c1 f (a −h)+ c2 f (a)+ c3 f (a +h), c1,c2,c3 ∈R,

by requiring that the method should be exact when f (x) = 1, x and x2. Do
you recognise the method?

(d). Show that the method in (c) is exact for all cubic polynomials.

Exercise 5. Previously we saw the that the Newton difference quotient could be
applied reduce bass in digital sound. What will happen to the sound if we in-
stead apply the numerical approximation of the second derivative to the sound
samples?

Exercise 6. Assume that x0, x1, . . . , xk is a uniform partition of [a,b]. It is pos-
sible to show that the divided difference f [x0, x1, . . . , xk ] can be written on the
form a

∑k
r=0 cr (−1)r f (xr ), where a is a constant and cr are taken from row k −1

in Pascal’s triangle. By following the same reasoning as in this section, or ap-
pealing to Theorem 9.22, it is also clear that higher order divided differences
are approximations to the higher order derivatives. Explain why this means that
applying approximations to the higher order derivatives to sound samples in a
sound will typically reduce bass in sound.
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CHAPTER 12

Numerical Integration

Numerical differentiation methods compute approximations to the derivative
of a function from known values of the function. Numerical integration uses the
same information to compute numerical approximations to the integral of the
function. An important use of both types of methods is estimation of derivatives
and integrals for functions that are only known at isolated points, as is the case
with for example measurement data. An important difference between differen-
tiation and integration is that for most functions it is not possible to determine
the integral via symbolic methods, but we can still compute numerical approx-
imations to virtually any definite integral. Numerical integration methods are
therefore more useful than numerical differentiation methods, and are essential
in many practical situations.

We use the same general strategy for deriving numerical integration meth-
ods as we did for numerical differentiation methods: We find the polynomial
that interpolates the function at some suitable points, and use the integral of the
polynomial as an approximation to the function. This means that the truncation
error can be analysed in basically the same way as for numerical differentiation.
However, when it comes to round-off error, integration behaves differently from
differentiation: Numerical integration is very insensitive to round-off errors, so
we will ignore round-off in our analysis.

The mathematical definition of the integral is basically via a numerical in-
tegration method, and we therefore start by reviewing this definition. We then
derive the simplest numerical integration method, and see how its error can be
analysed. We then derive two other methods that are more accurate, but for
these we just indicate how the error analysis can be done.

We emphasise that the general procedure for deriving both numerical dif-
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Figure 12.1. The area under the graph of a function.

ferentiation and integration methods with error analyses is the same with the
exception that round-off errors are not of must interest for the integration meth-
ods.

12.1 General background on integration

Recall that if f (x) is a function, then the integral of f from x = a to x = b is
written ∫ b

a
f (x)d x.

The integral gives the area under the graph of f , with the area under the positive
part counting as positive area, and the area under the negative part of f counting
as negative area, see figure 12.1.

Before we continue, we need to define a term which we will use repeatedly
in our description of integration.

Definition 12.1 (Partition). Let a and b be two real numbers with a < b. A
partition of [a,b] is a finite sequence {xi }n

i=0 of increasing numbers in [a,b] with
x0 = a and xn = b,

a = x0 < x1 < x2 · · · < xn−1 < xn = b.

The partition is said to be uniform if there is a fixed number h, called the step
length, such that xi −xi−1 = h = (b −a)/n for i = 1, . . . , n.
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Figure 12.2. The definition of the integral via inscribed and circumsribed step functions.

The traditional definition of the integral is based on a numerical approxi-
mation to the area. We pick a partition {xi }n

i=0 of [a,b], and in each subinterval
[xi−1, xi ] we determine the maximum and minimum of f (for convenience we
assume that these values exist),

mi = min
x∈[xi−1,xi ]

f (x), Mi = max
x∈[xi−1,xi ]

f (x),

for i = 1, 2, . . . , n. We can then compute two obvious approximations to the
integral by approximating f by two different functions which are both assumed
to be constant on each interval [xi−1, xi ]: The first has the constant value mi

and the other the value Mi . We then sum up the areas under each of the two
step functions an end up with the two approximations

I =
n∑

i=1
mi (xi −xi−1), I =

n∑
i=1

Mi (xi −xi−1), (12.1)

to the total area. In general, the first of these is too small, the other too large.
To define the integral, we consider larger partitions (smaller step lengths)

and consider the limits of I and I as the distance between neighbouring xi s goes
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to zero. If those limits are the same, we say that f is integrable, and the integral
is given by this limit.

Definition 12.2 (Integral). Let f be a function defined on the interval [a,b],
and let {xi }n

i=0 be a partition of [a,b]. Let mi and Mi denote the minimum
and maximum values of f over the interval [xi−1, xi ], respectively, assuming
they exist. Consider the two numbers I and I defined in (12.1). If sup I and
inf I both exist and are equal, where the sup and inf are taken over all possible
partitions of [a,b], the function f is said to be integrable, and the integral of f
over [a,b] is defined by

I =
∫ b

a
f (x)d x = sup I = inf I .

This process is illustrated in figure 12.2 where we see how the piecewise con-
stant approximations become better when the rectangles become narrower.

The above definition can be used as a numerical method for computing ap-
proximations to the integral. We choose to work with either maxima or minima,
select a partition of [a,b] as in figure 12.2, and add together the areas of the rect-
angles. The problem with this technique is that it can be both difficult and time
consuming to determine the maxima or minima, even on a computer. However,
it can be shown that the integral has a property that is very useful when it comes
to numerical computation.

Theorem 12.3. Suppose that f is integrable on the interval [a,b], let {xi }n
i=0 be

a partition of [a,b], and let ti be a number in [xi−1, xi ] for i = 1, . . . , n. Then
the sum

Ĩ =
n∑

i=1
f (ti )(xi −xi−1) (12.2)

will converge to the integral when the distance between all neighbouring xi s
tends to zero.

Theorem 12.3 allows us to construct practical, numerical methods for com-
puting the integral. We pick a partition of [a,b], choose ti equal to xi−1 or xi ,
and compute the sum (12.2). It turns out that an even better choice is the more
symmetric ti = (xi +xi−1)/2 which leads to the approximation

I ≈
n∑

i=1
f
(
(xi +xi−1)/2

)
(xi −xi−1). (12.3)

312



This is the so-called midpoint rule which we will study in the next section.

In general, we can derive numerical integration methods by splitting the
interval [a,b] into small subintervals, approximate f by a polynomial on each
subinterval, integrate this polynomial rather than f , and then add together the
contributions from each subinterval. This is the strategy we will follow for deriv-
ing more advanced numerical integration methods, and this works as long as f
can be approximated well by polynomials on each subinterval.

Exercises for Section 12.1

Exercise 1. Mark each of the following statements as true or false.

(a). Numerical integration methods are usually constructed by dividing
the interval of integration into many subintervals and using some sort of
approximation to the area under the function on each subinterval.

Exercise 2. In this exercise we are going to study the definition of the integral
for the function f (x) = ex on the interval [0,1].

(a). Determine lower and upper sums for a uniform partition consisting
of 10 subintervals.

(b). Determine the absolute and relative errors of the sums in (a) com-
pared to the exact value e −1 = 1.718281828 of the integral.

(c). Write a program for calculating the lower and upper sums in this ex-
ample. How many subintervals are needed to achieve an absolute error
less than 3×10−3?

12.2 The midpoint rule for numerical integration

We have already introduced the midpoint rule (12.3) for numerical integration.
In our standard framework for numerical methods based on polynomial approx-
imation, we can consider this as using a constant approximation to the function
f on each subinterval. Note that in the following we will always assume the par-
tition to be uniform.
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x1�2

(a)

x1�2 x3�2 x5�2 x7�2 x9�2

(b)

Figure 12.3. The midpoint rule with one subinterval (a) and five subintervals (b).

Algorithm 12.4. Let f be a function which is integrable on the interval [a,b],
and let {xi }n

i=0 be a uniform partition of [a,b]. In the midpoint rule, the integral
of f is approximated by∫ b

a
f (x)d x ≈ Imid(h) = h

n∑
i=1

f (xi−1/2), (12.4)

where
xi−1/2 = (xi−1 +xi )/2 = a + (i −1/2)h.

This may seem like a strangely formulated algorithm, but all there is to do is
to compute the sum on the right in (12.4). The method is illustrated in figure 12.3
in the cases where we have 1 and 5 subintervals.

12.2.1 A detailed algorithm

Algorithm 12.4 describes the midpoint rule, but lacks a lot of detail. In this sec-
tion we give a more detailed algorithm.

Whenever we compute a quantity numerically, we should try and estimate
the error, otherwise we have no idea of the quality of our computation. We did
this when we discussed algorithms for finding roots of equations in chapter 10,
and we can do exactly the same here: We compute the integral for decreasing
step lengths, and stop the computations when the difference between two suc-
cessive approximations is less than the tolerance. More precisely, we choose an
initial step length h0 and compute the approximations

Imid(h0), Imid(h1), . . . , Imid(hk ), . . . ,
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where hk = h0/2k . Suppose Imid(hk ) is our latest approximation. Then we esti-
mate the relative error by the number

|Imid(hk )− Imid(hk−1)|
|Imid(hk )| ,

and stop the computations if this is smaller than ε. To avoid potential division
by zero, we use the test

|Imid(hk )− Imid(hk−1)| ≤ ε|Imid(hk )|.

As always, we should also limit the number of approximations that are com-
puted, so we count the number of times we divide the subintervals, and stop
when we reach a predefined limit which we call M .

Algorithm 12.5. Suppose the function f , the interval [a,b], the length n0 of
the intitial partition, a positive tolerance ε < 1, and the maximum number of
iterations M are given. The following algorithm will compute a sequence of
approximations to

∫ b
a f (x)d x by the midpoint rule, until the estimated relative

error is smaller than ε, or the maximum number of computed approximations
reach M. The final approximation is stored in I .

n := n0; h := (b −a)/n;
I := 0; x := a +h/2;
for k := 1, 2, . . . , n

I := I + f (x);
x := x +h;

j := 1;
I := h ∗ I ;
abser r := |I |;
while j < M and abser r > ε∗|I |

j := j +1;
I p := I ;
n := 2n; h := (b −a)/n;
I := 0; x := a +h/2;
for k := 1, 2, . . . , n

I := I + f (x);
x := x +h;

I := h ∗ I ;
abser r := |I − I p|;
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Note that we compute the first approximation outside the main loop. This
is necessary in order to have meaningful estimates of the relative error the first
two times we reach the while loop (the first time we reach the while loop we will
always get past the condition). We store the previous approximation in I p and
use this to estimate the error in the next iteration.

In the coming sections we will describe two other methods for numerical
integration. These can be implemented in algorithms similar to Algorithm 12.5.
In fact, the only difference will be how the actual approximation to the integral
is computed.

Example 12.6. Let us try the midpoint rule on an example. As usual, it is wise to
test on an example where we know the answer, so we can easily check the quality
of the method. We choose the integral∫ 1

0
cos x d x = sin1 ≈ 0.8414709848

where the exact answer is easy to compute by traditional, symbolic methods. To
test the method, we split the interval into 2k subintervals, for k = 1, 2, . . . , 10, i.e.,
we halve the step length each time. The result is

h Imid(h) Error
0.500000 0.85030065 −8.8×10-3

0.250000 0.84366632 −2.2×10-3

0.125000 0.84201907 −5.5×10-4

0.062500 0.84160796 −1.4×10-4

0.031250 0.84150523 −3.4×10-5

0.015625 0.84147954 −8.6×10-6

0.007813 0.84147312 −2.1×10-6

0.003906 0.84147152 −5.3×10-7

0.001953 0.84147112 −1.3×10-7

0.000977 0.84147102 −3.3×10-8

By error, we here mean ∫ 1

0
f (x)d x − Imid(h).

Note that each time the step length is halved, the error seems to be reduced by a
factor of 4.

12.2.2 The error

Algorithm 12.5 determines a numerical approximation to the integral, and even
estimates the error. However, we must remember that the error that is computed
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is not always reliable, so we should try and understand the error better. We do
this in two steps. First we analyse the error in the situation where we use a very
simple partition with only one subinterval, the so-called local error. Then we use
this result to obtain an estimate of the error in the general case — this is often
referred to as the global error.

Local error analysis

Suppose we use the midpoint rule with just one subinterval. We want to study
the error

∫ b

a
f (x)d x − f

(
a1/2

)
(b −a), a1/2 = (a +b)/2. (12.5)

Once again, a Taylor polynomial with remainder helps us out. We expand f (x)
about the midpoint a1/2 and obtain,

f (x) = f (a1/2)+ (x −a1/2) f ′(a1/2)+ (x −a1/2)2

2
f ′′(ξ),

where ξ is a number in the interval (a1/2, x) that depends on x. Next, we integrate
the Taylor expansion and obtain

∫ b

a
f (x)d x =

∫ b

a

(
f (a1/2)+ (x −a1/2) f ′(a1/2)+ (x −a1/2)2

2
f ′′(ξ)

)
d x

= f (a1/2)(b −a)+ f ′(a1/2)

2

[
(x −a1/2)2]b

a +
1

2

∫ b

a
(x −a1/2)2 f ′′(ξ)d x

= f (a1/2)(b −a)+ 1

2

∫ b

a
(x −a1/2)2 f ′′(ξ)d x,

(12.6)
since the middle term is zero. This leads to an expression for the error,

∣∣∣∣∫ b

a
f (x)d x − f (a1/2)(b −a)

∣∣∣∣= 1

2

∣∣∣∣∫ b

a
(x −a1/2)2 f ′′(ξ)d x

∣∣∣∣ . (12.7)
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Let us simplify the right-hand side of this expression and explain afterwords. We
have

1

2

∣∣∣∣∫ b

a
(x −a1/2)2 f ′′(ξ)d x

∣∣∣∣≤ 1

2

∫ b

a

∣∣(x −a1/2)2 f ′′(ξ)
∣∣ d x

= 1

2

∫ b

a
(x −a1/2)2

∣∣ f ′′(ξ)
∣∣ d x

≤ M

2

∫ b

a
(x −a1/2)2 d x

= M

2

1

3

[
(x −a1/2)3]b

a

= M

6

(
(b −a1/2)3 − (a −a1/2)3)

= M

24
(b −a)3,

(12.8)

where M = maxx∈[a,b]| f ′′(x)|. The first inequality is valid because when we move
the absolute value sign inside the integral sign, the function that we integrate
becomes nonnegative everywhere. This means that in the areas where the in-
tegrand in the original expression is negative, everything is now positive, and
hence the second integral is larger than the first.

Next there is an equality which is valid because (x −a1/2)2 is never negative.
The next inequality follows because we replace

∣∣ f ′′(ξ)
∣∣ with its maximum on the

interval [a,b]. The next step is just the evaluation of the integral of (x − a1/2)2,
and the last equality follows since (b − a1/2)3 = −(a − a1/2)3 = (b − a)3/8. This
proves the following lemma.

Lemma 12.7. Let f be a continuous function whose first two derivatives are
continuous on the interval [a,b]. The error in the midpoint rule, with only one
interval, is bounded by∣∣∣∣∫ b

a
f (x)d x − f

(
a1/2

)
(b −a)

∣∣∣∣≤ M

24
(b −a)3,

where M = maxx∈[a,b]
∣∣ f ′′(x)

∣∣ and a1/2 = (a +b)/2.

Before we continue, let us sum up the procedure that led up to lemma 12.7
without focusing on the details: Start with the error (12.5) and replace f (x) by its
linear Taylor polynomial with remainder. When we integrate the Taylor polyno-
mial, the linear term becomes zero, and we are left with (12.7). At this point we
use some standard techniques that give us the final inequality.
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The importance of lemma 12.7 lies in the factor (b −a)3. This means that if
we reduce the size of the interval to half its width, the error in the midpoint rule
will be reduced by a factor of 8.

Global error analysis

Above, we analysed the error on one subinterval. Now we want to see what hap-
pens when we add together the contributions from many subintervals.

We consider the general case where we have a partition that divides [a,b]
into n subintervals, each of width h. On each subinterval we use the simple
midpoint rule that we just analysed,

I =
∫ b

a
f (x)d x =

n∑
i=1

∫ xi

xi−1

f (x)d x ≈
n∑

i=1
f (xi−1/2)h.

The total error is then

I − Imid =
n∑

i=1

(∫ xi

xi−1

f (x)d x − f (xi−1/2)h

)
.

We note that the expression inside the parenthesis is just the local error on the
interval [xi−1, xi ]. We therefore have

|I − Imid| =
∣∣∣∣∣ n∑
i=1

(∫ xi

xi−1

f (x)d x − f (xi−1/2)h

)∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∫ xi

xi−1

f (x)d x − f (xi−1/2)h

∣∣∣∣
≤

n∑
i=1

h3

24
Mi (12.9)

where Mi is the maximum of
∣∣ f ′′(x)

∣∣ on the interval [xi−1, xi ]. The first of these
inequalities is just the triangle inequality, while the second inequality follows
from lemma 12.7. To simplify the expression (12.9), we extend the maximum on
[xi−1, xi ] to all of [a,b]. This cannot make the maximum smaller, so for all i we
have

Mi = max
x∈[xi−1,xi ]

∣∣ f ′′(x)
∣∣≤ max

x∈[a,b]

∣∣ f ′′(x)
∣∣= M .

Now we can simplify (12.9) further,

n∑
i=1

h3

24
Mi ≤

n∑
i=1

h3

24
M = h3

24
nM . (12.10)

Here, we need one final little observation. Recall that h = (b−a)/n, so hn = b−a.
If we insert this in (12.10), we obtain our main error estimate.
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Theorem 12.8. Suppose that f and its first two derivatives are continuous on
the interval [a,b], and that the integral of f on [a,b] is approximated by the
midpoint rule with n subintervals of equal width,

I =
∫ b

a
f (x)d x ≈ Imid =

n∑
i=1

f (xi−1/2)h.

Then the error is bounded by

|I − Imid| ≤ (b −a)
h2

24
max

x∈[a,b]

∣∣ f ′′(x)
∣∣ , (12.11)

where xi−1/2 = a + (i −1/2)h.

This confirms the error behaviour that we saw in example 12.6: If h is re-
duced by a factor of 2, the error is reduced by a factor of 22 = 4.

One notable omission in our discussion of the error in the midpoint rule is
round-off error, which was a major concern in our study of numerical differenti-
ation. The good news is that round-off error is not usually a problem in numeri-
cal integration. The only situation where round-off may cause problems is when
the value of the integral is 0. In such a situation we may potentially add many
numbers that sum to 0, and this may lead to cancellation effects. However, this
is so rare that we will not discuss it here.

12.2.3 Estimating the step length

The error estimate (12.11) lets us play a standard game: If someone demands
that we compute an integral with error smaller than ε, we can find a step length h
that guarantees that we meet this demand. To make sure that the error is smaller
than ε, we enforce the inequality

(b −a)
h2

24
max

x∈[a,b]

∣∣ f ′′(x)
∣∣≤ ε

which we can easily solve for h,

h ≤
√

24ε

(b −a)M
, M = max

x∈[a,b]

∣∣ f ′′(x)
∣∣ .

This is not quite as simple as it may look since we will have to estimate M , the
maximum value of the second derivative, over the whole interval of integration
[a,b]. This can be difficult, but in some cases it is certainly possible, see exer-
cise Exercise 5.
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Exercises for Section 12.2

Exercise 1. Mark each of the following statements as true or false.

(a). When we use the midpoint rule for numerical integration, round-
off errors due to subtraction of two similar numbers is a major source of
errors.

(b). The midpoint rule gives the exact result for polynomials of degree 1.

(c). The midpoint rule gives the exact result for polynomials of degree 2.

(d). The global error in the midpoint method is one order lower than the
local error.

(e). When we decrease the step length h in the midpoint rule by a factor
of 3, the error is reduced by roughly a factor of 9.

Exercise 2. We use the midpoint rule to approximate the integral∫ 1

0
x2 d x

using the midpoint rule with 2 subintervals. What is the result?
� 5/16
� 1/4
� 4/9
� 2/5

Exercise 3. Calculate an approximation to the integral∫ π/2

0

sin x

1+x2 d x = 0.526978557614. . .

with the midpoint rule. Split the interval into 6 subintervals.

Exercise 4. In this exercise you are going to program algorithm 12.5. If you can-
not program, use the midpoint algorithm with 10 subintervals, check the error,
and skip (b).

(a). Write a program that implements the midpoint rule as in algorithm 12.5
and test it on the integral ∫ 1

0
ex d x = e −1.
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x0 x1

(a)

x0 x1 x2 x3 x4 x5

(b)

Figure 12.4. The trapezoidal rule with one subinterval (a) and five subintervals (b).

(b). Determine a value of h that guarantees that the absolute error is
smaller than 10−10. Run your program and check what the actual error
is for this value of h. (You may have to adjust algorithm 12.5 slightly and
print the absolute error.)

Exercise 5. Repeat the previous exercise, but compute the integral∫ 6

2
ln x d x = ln(11664)−4.

Exercise 6. Redo the local error analysis for the midpoint rule, but replace both
f (x) and f (a1/2) by linear Taylor polynomials with remainders about the left end
point a. What happens to the error estimate?

12.3 The trapezoidal rule

The midpoint rule is based on a very simple polynomial approximation to the
function f to be integrated on each subinterval; we simply use a constant ap-
proximation that interpolates the function value at the middle point. We are
now going to consider a natural alternative; we approximate f on each subin-
terval with the secant that interpolates f at both ends of the subinterval.

The situation is shown in figure 12.4a. The approximation to the integral is
the area of the trapezoidal polygon under the secant so we have

∫ b

a
f (x)d x ≈ f (a)+ f (b)

2
(b −a). (12.12)
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To get good accuracy, we will have to split [a,b] into subintervals with a partition
and use the trapezoidal approximation on each subinterval, as in figure 12.4b. If
we have a uniform partition {xi }n

i=0 with step length h, we get the approximation

∫ b

a
f (x)d x =

n∑
i=1

∫ xi

xi−1

f (x)d x ≈
n∑

i=1

f (xi−1)+ f (xi )

2
h. (12.13)

We should always aim to make our computational methods as efficient as pos-
sible, and in this case an improvement is possible. Note that on the interval
[xi−1, xi ] we use the function values f (xi−1) and f (xi ), and on the next interval
we use the values f (xi ) and f (xi+1). All function values, except the first and last,
therefore occur twice in the sum on the right in (12.13). This means that if we
implement this formula directly we do a lot of unnecessary work. From this the
following observation follows.

Observation 12.9 (Trapezoidal rule). Suppose we have a function f defined
on an interval [a,b] and a partition {xi }n

i=0 of [a,b]. If we approximate f by its
secant on each subinterval and approximate the integral of f by the integral of
the resulting piecewise linear approximation, we obtain the approximation∫ b

a
f (x)d x ≈ Itrap(h) = h

(
f (a)+ f (b)

2
+

n−1∑
i=1

f (xi )

)
. (12.14)

Once we have the formula (12.14), we can easily derive an algorithm similar
to algorithm 12.5. In fact the two algorithms are identical except for the part that
calculates the approximations to the integral, so we will not discuss this further.

Example 12.10. We test the trapezoidal rule on the same example as the mid-
point rule, ∫ 1

0
cos x d x = sin1 ≈ 0.8414709848.

As in example 12.6 we split the interval into 2k subintervals, for k = 1, 2, . . . , 10.
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The resulting approximations are

h Itrap(h) Error
0.500000 0.82386686 1.8×10-2

0.250000 0.83708375 4.4×10-3

0.125000 0.84037503 1.1×10-3

0.062500 0.84119705 2.7×10-4

0.031250 0.84140250 6.8×10-5

0.015625 0.84145386 1.7×10-5

0.007813 0.84146670 4.3×10-6

0.003906 0.84146991 1.1×10-6

0.001953 0.84147072 2.7×10-7

0.000977 0.84147092 6.7×10-8

where the error is defined by ∫ 1

0
f (x)d x − Itrap(h).

We note that each time the step length is halved, the error is reduced by a factor
of 4, just as for the midpoint rule. But we also note that even though we now
use two function values in each subinterval to estimate the integral, the error is
actually twice as big as it was for the midpoint rule.

12.3.1 The error

Our next step is to analyse the error in the trapezoidal rule. We follow the same
strategy as for the midpoint rule and use Taylor polynomials. Because of the
similarities with the midpoint rule, we skip some of the details.

The local error

We first study the error in the approximation (12.12) where we only have one
secant. In this case the error is given by∣∣∣∣∫ b

a
f (x)d x − f (a)+ f (b)

2
(b −a)

∣∣∣∣ , (12.15)

and the first step is to expand the function values f (x), f (a), and f (b) in Taylor
series about the midpoint a1/2,

f (x) = f (a1/2)+ (x −a1/2) f ′(a1/2)+ (x −a1/2)2

2
f ′′(ξ1),

f (a) = f (a1/2)+ (a −a1/2) f ′(a1/2)+ (a −a1/2)2

2
f ′′(ξ2),

f (b) = f (a1/2)+ (b −a1/2) f ′(a1/2)+ (b −a1/2)2

2
f ′′(ξ3),
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where ξ1 ∈ (a1/2, x), ξ2 ∈ (a, a1/2), and ξ3 ∈ (a1/2,b). The integration of the Taylor
series for f (x) we did in (12.6) so we just quote the result here,∫ b

a
f (x)d x = f (a1/2)(b −a)+ 1

2

∫ b

a
(x −a1/2)2 f ′′(ξ1)d x. (12.16)

We note that a−a1/2 =−(b−a)/2 and b−a1/2 = (b−a)/2, so the sum of the Taylor
series for f (a) and f (b) is

f (a)+ f (b) = 2 f (a1/2)+ (b −a)2

8
f ′′(ξ2)+ (b −a)2

8
f ′′(ξ3). (12.17)

If we insert (12.16) and (12.17) in the expression for the error (12.15), the first
two terms cancel, and we obtain∣∣∣∣∫ b

a
f (x)d x − f (a)+ f (b)

2
(b −a)

∣∣∣∣
=

∣∣∣∣1

2

∫ b

a
(x −a1/2)2 f ′′(ξ1)d x − (b −a)3

16
f ′′(ξ2)− (b −a)3

16
f ′′(ξ3)

∣∣∣∣
≤

∣∣∣∣1

2

∫ b

a
(x −a1/2)2 f ′′(ξ1)d x

∣∣∣∣+ (b −a)3

16
| f ′′(ξ2)|+ (b −a)3

16
| f ′′(ξ3)|.

The last relation is just an application of the triangle inequality. The first term
we estimated in (12.8), and in the last two we use the standard trick and take
maximum values of | f ′′(x)| over all of [a,b]. Then we end up with∣∣∣∣∫ b

a
f (x)d x − f (a)+ f (b)

2
(b −a)

∣∣∣∣≤ M

24
(b −a)3 + M

16
(b −a)3 + M

16
(b −a)3

= M

6
(b −a)3.

Let us sum this up in a lemma.

Lemma 12.11. Let f be a continuous function whose first two derivatives are
continuous on the interval [a,b]. The error in the trapezoidal rule, with only
one secant based at a and b, is bounded by∣∣∣∣∫ b

a
f (x)d x − f (a)+ f (b)

2
(b −a)

∣∣∣∣≤ M

6
(b −a)3,

where M = maxx∈[a,b]
∣∣ f ′′(x)

∣∣.
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This lemma is completely analogous to lemma 12.7 which describes the lo-
cal error in the midpoint rule. We particularly notice that even though the trape-
zoidal rule uses two values of f , the error estimate is slightly larger than the es-
timate for the midpoint rule. The most important feature is the exponent on
(b − a), which tells us how quickly the error goes to 0 when the interval width
is reduced, and from this point of view the two methods are the same. In other
words, we have gained nothing by approximating f by a linear function instead
of a constant. This does not mean that the trapezoidal rule is bad, it rather
means that the midpoint rule is surprisingly good.

Global error

We can find an expression for the global error in the trapezoidal rule in exactly
the same way as we did for the midpoint rule, so we skip the proof.

Theorem 12.12. Suppose that f and its first two derivatives are continuous on
the interval [a,b], and that the integral of f on [a,b] is approximated by the
trapezoidal rule with n subintervals of equal width h,

I =
∫ b

a
f (x)d x ≈ Itrap = h

(
f (a)+ f (b)

2
+

n−1∑
i=1

f (xi )

)
.

Then the error is bounded by

∣∣I − Itrap
∣∣≤ (b −a)

h2

6
max

x∈[a,b]

∣∣ f ′′(x)
∣∣ . (12.18)

The error estimate for the trapezoidal rule is not best possible in the sense
that it is possible to derive a better error estimate (using other techniques) with
the smaller constant 1/12 instead of 1/6. However, the fact remains that the
trapezoidal rule is a bit disappointing compared to the midpoint rule, just as we
saw in example 12.10.

Exercises for Section 12.3

Exercise 1. Mark each of the following statements as true or false.

(a). The trapezoidal rule is usually more accurate than the midpoint rule.

(b). Because every point of measurement in the trapezoidal rule is used
in two different subintervals, we must evaluate the function we want to
integrate twice at every point.

326



Exercise 2. We use the trapezoidal rule to approximate the integral∫ 1

0
x2 d x

using the trapezoidal rule with 2 subintervals. What is the result?
� 1/2
� 3/8
� 5/9
� 3/5

Exercise 3. Calculate an approximation to the integral∫ π/2

0

sin x

1+x2 d x = 0.526978557614. . .

with the trapezoidal rule. Split the interval into 6 subintervals.

Exercise 4. In this exercise you are going to program an algorithm like algo-
rithm 12.5 for the trapezoidal rule. If you cannot program, use the trapezoidal
rule manually with 10 subintervals, check the error, and skip the second part of
(b).

(a). Write a program that implements the midpoint rule as in algorithm 12.5
and test it on the integral ∫ 1

0
ex d x = e −1.

(b). Determine a value of h that guarantees that the absolute error is
smaller than 10−10. Run your program and check what the actual error
is for this value of h. (You may have to adjust algorithm 12.5 slightly and
print the absolute error.)

Exercise 5. Fill in the details in the derivation of lemma 12.11 from (12.16) and
(12.17).

Exercise 6. In this exercise we are going to do an alternative error analysis for
the trapezoidal rule. Use the same procedure as in section 12.3.1, but expand
both the function values f (x) and f (b) in Taylor series about a. Compare the
resulting error estimate with lemma 12.11.

Exercise 7. When h is halved in the trapezoidal rule, some of the function val-
ues used with step length h/2 are the same as those used for step length h. De-
rive a formula for the trapezoidal rule with step length h/2 that makes it easy
to avoid recomputing the function values that were computed on the previous
level.
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12.4 Simpson’s rule

The final method for numerical integration that we consider is Simpson’s rule.
This method is based on approximating f by a parabola on each subinterval,
which makes the derivation a bit more involved. The error analysis is essentially
the same as before, but because the expressions are more complicated, we omit
it here.

12.4.1 Derivation of Simpson’s rule

As for the other methods, we derive Simpson’s rule in the simplest case where we
approximate f by one parabola on the whole interval [a,b]. We find the polyno-
mial p2 that interpolates f at a, a1/2 = (a + b)/2 and b, and approximate the
integral of f by the integral of p2. We could find p2 via the Newton form, but in
this case it is easier to use the Lagrange form. Another simplification is to first
construct Simpson’s rule in the case where a =−1, a1/2 = 0, and b = 1, and then
generalise afterwards.

Simpson’s rule on [−1,1]

The Lagrange form of the polynomial that interpolates f at −1, 0, and 1 is given
by

p2(x) = f (−1)
x(x −1)

2
− f (0)(x +1)(x −1)+ f (1)

(x +1)x

2
,

and it is easy to check that the interpolation conditions hold. To integrate p2, we
must integrate each of the three polynomials in this expression. For the first one
we have

1

2

∫ 1

−1
x(x −1)d x = 1

2

∫ 1

−1
(x2 −x)d x = 1

2

[1

3
x3 − 1

2
x2

]1

−1
= 1

3
.

Similarly, we find

−
∫ 1

−1
(x +1)(x −1)d x = 4

3
,

1

2

∫ 1

−1
(x +1)x d x = 1

3
.

On the interval [−1,1], Simpson’s rule therefore corresponds to the approxima-
tion ∫ 1

−1
f (x)d x ≈ 1

3

(
f (−1)+4 f (0)+ f (1)

)
. (12.19)

Simpson’s rule on [a,b]

To obtain an approximation of the integral on the interval [a,b], we use a stan-
dard technique. Suppose that x and y are related by

x = (b −a)
y +1

2
+a (12.20)
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x0 x1 x2

(a)

x0 x1 x2 x3 x4 x5 x6

(b)

Figure 12.5. Simpson’s rule with one subinterval (a) and three subintervals (b).

so that when y varies in the interval [−1,1], then x will vary in the interval [a,b].
We are going to use the relation (12.20) as a substitution in an integral, so we
note that d x = (b −a)d y/2. We therefore have∫ b

a
f (x)d x = b −a

2

∫ 1

−1
f

(
b −a

2
(y +1)+a

)
d y = b −a

2

∫ 1

−1
f̃ (y)d y, (12.21)

where

f̃ (y) = f

(
b −a

2
(y +1)+a

)
.

To determine an approximation to the integral of f̃ on the interval [−1,1], we
use Simpson’s rule (12.19). The result is∫ 1

−1
f̃ (y)d y ≈ 1

3

(
f̃ (−1)+4 f̃ (0)+ f̃ (1)

)= 1

3

(
f (a)+4 f (a1/2)+ f (b)

)
,

since the relation in (12.20) maps −1 to a, the midpoint 0 to a1/2 = (a+b)/2, and
the right endpoint b to 1. If we insert this in (12.21), we obtain Simpson’s rule for
the general interval [a,b], see figure 12.5a.

Observation 12.13. Let f be an integrable function on the interval [a,b]. If f
is interpolated by a quadratic polynomial p2 at the points a, a1/2 = (a +b)/2
and b, then the integral of f can be approximated by the integral of p2,∫ b

a
f (x)d x ≈

∫ b

a
p2(x)d x = b −a

6

(
f (a)+4 f (a1/2)+ f (b)

)
. (12.22)

We may just as well derive this formula by doing the interpolation directly
on the interval [a,b], but then the algebra becomes quite messy.
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x0 x1 x2 x3 x4 x5 x6

Figure 12.6. Simpson’s rule with three subintervals.

12.4.2 Composite Simpson’s rule

In practice, we will usually divide the interval [a,b] into smaller subintervals and
use Simpson’s rule on each subinterval, see figure 12.5b. Note though that Simp-
son’s rule is not quite like the other numerical integration techniques we have
studied when it comes to splitting the interval into smaller pieces: The interval
over which f is to be integrated is split into subintervals, and Simpson’s rule is
applied on neighbouring pairs of intervals, see figure 12.6. In other words, each
parabola is defined over two subintervals which means that the total number of
subintervals must be even, and the number of given values of f must be odd.

If the partition is {xi }2n
i=0 with xi = a + i h, Simpson’s rule on the interval

[x2i−2, x2i ] is ∫ x2i

x2i−2

f (x)d x ≈ h

3

(
f (x2i−2)+4 f (x2i−1)+ f (x2i )

)
.

The approximation of the total integral is therefore∫ b

a
f (x)d x ≈ h

3

n∑
i=1

(
( f (x2i−2)+4 f (x2i−1)+ f (x2i )

)
.

In this sum we observe that the right endpoint of one subinterval becomes the
left endpoint of the neighbouring subinterval to the right. Therefore, if this is
implemented directly, the function values at the points with an even subscript
will be evaluated twice, except for the extreme endpoints a and b which only
occur once in the sum. We can therefore rewrite the sum in a way that avoids
these redundant evaluations.
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Observation 12.14. Suppose f is a function defined on the interval [a,b], and
let {xi }2n

i=0 be a uniform partition of [a,b] with step length h. The composite
Simpson’s rule approximates the integral of f by∫ b

a
f (x)d x ≈ ISimp(h) = h

3

(
f (a)+ f (b)+2

n−1∑
i=1

f (x2i )+4
n∑

i=1
f (x2i−1)

)
.

With the midpoint rule, we computed a sequence of approximations to the
integral by successively halving the width of the subintervals. The same is often
done with Simpson’s rule, but then care should be taken to avoid unnecessary
function evaluations since all the function values computed at one step will also
be used at the next step.

Example 12.15. Let us test Simpson’s rule on the same example as the midpoint
rule and the trapezoidal rule,∫ 1

0
cos x d x = sin1 ≈ 0.8414709848.

As in example 12.6, we split the interval into 2k subintervals, for k = 1, 2, . . . , 10.
The result is

h ISimp(h) Error
0.250000 0.84148938 −1.8×10-5

0.125000 0.84147213 −1.1×10-6

0.062500 0.84147106 −7.1×10-8

0.031250 0.84147099 −4.5×10-9

0.015625 0.84147099 −2.7×10-10

0.007813 0.84147098 −1.7×10-11

0.003906 0.84147098 −1.1×10-12

0.001953 0.84147098 −6.8×10-14

0.000977 0.84147098 −4.3×10-15

0.000488 0.84147098 −2.2×10-16

where the error is defined by∫ 1

0
f (x)d x − ISimp(h).

When we compare this table with examples 12.6 and 12.10, we note that the
error is now much smaller. We also note that each time the step length is halved,
the error is reduced by a factor of 16. In other words, by introducing one more
function evaluation in each subinterval, we have obtained a method with much
better accuracy. This will be quite evident when we analyse the error below.
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12.4.3 The error

An expression for the error in Simpson’s rule can be derived by using the same
technique as for the previous methods: We replace f (x), f (a) and f (b) by cubic
Taylor polynomials with remainders about the point a1/2, and then collect and
simplify terms. However, these computations become quite long and tedious,
and as for the trapezoidal rule, the constant in the error term is not the best
possible. We therefore just state the best possible error estimate here without
proof.

Lemma 12.16 (Local error). If f is continuous and has continuous derivatives
up to order 4 on the interval [a,b], the error in Simpson’s rule is bounded by

|E( f )| ≤ (b −a)5

2880
max

x∈[a,b]

∣∣∣ f (i v)(x)
∣∣∣ .

We note that the error in Simpson’s rule depends on (b −a)5, while the error
in the midpoint rule and trapezoidal rule depend on (b − a)3. This means that
the error in Simpson’s rule goes to zero much more quickly than for the other
two methods when the width of the interval [a,b] is reduced.

The global error

The approach we used to deduce the global error for the midpoint rule, see the-
orem 12.8, can also be used to derive the global error in Simpson’s rule. The
following theorem sums this up.

Theorem 12.17 (Global error). Suppose that f and its first 4 derivatives are
continuous on the interval [a,b], and that the integral of f on [a,b] is approxi-
mated by Simpson’s rule with 2n subintervals of equal width h. Then the error
is bounded by ∣∣E( f )

∣∣≤ (b −a)
h4

180
max

x∈[a,b]

∣∣∣ f (i v)(x)
∣∣∣ . (12.23)

The estimate (12.23) explains the behaviour we noticed in example 12.15:
Because of the factor h4, the error is reduced by a factor 24 = 16 when h is halved,
and for this reason, Simpson’s rule is a very popular method for numerical inte-
gration.
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Exercises for Section 12.4

Exercise 1. Mark each of the following statements as true or false.

(a). Simpson’s rule requires that we use an odd number of measurement
points.

(b). Simpson’s rule is exact for polynomials of degree 3 or lower.

Exercise 2. (a). (Exam 2010) Which of the integration method (trape-
zoidal, midpoint and Simpson’s) will be most accurate for a polynomial
of degree 1?

� Just the trapezoidal rule.

� Just Simpson’s rule.

� Just the midpoint rule.

� All will be equally accurate.

(b). (Continuation exam 2009) We use Simpson’s method to calculate ap-
proximations to

∫ b
a f (x)d x (We do not take round off errors into account).

Then the result will always be correct if f (x) is

� a trigonometric function.

� a logarithmic function.

� a polynomial of degree 2

� on the form g (x)/h(x) where f and g are polynomials of degree 2.

(c). (Exam 2008) The midpoint rule evaluates the integral of f on the in-
terval [a,b] by the approximation∫ b

a
f (x)d x ≈ (b −a) f ((a +b)/2).

Which of the following statements are true (we do not take round off errors
into account)?

� The midpoint rule is more accurate than Simpson’s rule.

� The midpoint rule and the trapezoidal rule always give the exact same
error.

� The midpoint rule only gives 0 error if f (x) = c for som arbitrary con-
stant c.

� The midpoint rule gives 0 error if f (x) is an arbitrary straight line in the
x, y-plane.
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Exercise 3. Calculate an approximation to the integral∫ π/2

0

sin x

1+x2 d x = 0.526978557614. . .

with Simpson’s rule. Split the interval into 6 subintervals.

Exercise 4. (a). How many function evaluations do you need to calcu-
late the integral ∫ 1

0

d x

1+2x

with the trapezoidal rule to make sure that the error is smaller than 10−10.

(b). How many function evaluations are necessary to achieve the same
accuracy with the midpoint rule?

(c). How many function evaluations are necessary to achieve the same
accuracy with Simpson’s rule?

Exercise 5. In this exercise you are going to program an algorithm like algo-
rithm 12.5 for Simpson’s rule. If you cannot program, use Simpson’s rule manu-
ally with 10 subintervals, check the error, and skip the second part of (b).

(a). Write a program that implements Simpson’s rule as in algorithm 12.5
and test it on the integral ∫ 1

0
ex d x = e −1.

(b). Determine a value of h that guarantees that the absolute error is
smaller than 10−10. Run your program and check what the actual error
is for this value of h. (You may have to adjust algorithm 12.5 slightly and
print the absolute error.)

Exercise 6. (a). Verify that Simpson’s rule is exact when f (x) = xi for i =
0, 1, 2, 3.

(b). Use (a) to show that Simpson’s rule is exact for any cubic polynomial.

(c). Could you reach the same conclusion as in (b) by just considering
the error estimate (12.23)?
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Exercise 7. We want to design a numerical integration method∫ b

a
f (x)d x ≈ w1 f (a)+w2 f (a1/2)+w3 f (b).

Determine the unknown coefficients w1, w2, and w3 by demanding that the in-
tegration method should be exact for the three polynomials f (x) = xi for i = 0,
1, 2. Do you recognise the method?

12.5 Summary

In this chapter we have derived three methods for numerical integration. All
these methods and their error analyses may seem rather overwhelming, but they
all follow a common thread:

Procedure 12.18. The following is a general procedure for deriving numerical
methods for integration of a function f over the interval [a,b]:

1. Interpolate the function f by a polynomial p at suitable points.

2. Approximate the integral of f by the integral of p. This makes it possible
to express the approximation to the integral in terms of function values
of f .

3. Derive an estimate for the local error by expanding the function values in
Taylor series with remainders about the midpoint a1/2 = (a +b)/2.

4. Derive an estimate for the global error by using the technique leading up
to theorem 12.8.
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CHAPTER 13

Numerical Solution of
Differential Equations

We have considered numerical solution procedures for two kinds of equations:
In chapter 10 the unknown was a real number; in chapter 6 the unknown was a
sequence of numbers. In a differential equation the unknown is a function, and
the differential equation relates the function itself to its derivative(s).

In this chapter we start by discussing what differential equations are. Our
discussion emphasises the simplest ones, the so-called first order equations,
which only involve the unknown function and its first derivative. We then con-
sider how first order equations can be solved numerically by the simplest method,
namely Euler’s method. We analyse the error in Euler’s method, and then intro-
duce some more advanced methods with better accuracy. After this we show
that the methods for handling one equation in one unknown generalise nicely
to systems of several equations in several unknowns. In fact, it turns out that
even a system of higher order equations can be rewritten as a system of first or-
der equations.

13.1 What are differential equations?

Differential equations is an essential tool in a wide range of applications. The
reason for this is that many phenomena can be modelled by a relationship be-
tween a function and its derivatives.

13.1.1 An example from physics

Consider an object moving through space. At time t = 0 it is located at a point P
and after a time t its distance to P corresponds to a number f (t ). In other words,
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the distance can be described by a function of time. The divided difference

f (t +∆t )− f (t )

∆t
(13.1)

then measures the average speed during the time interval from t to t +∆t . If we
take the limit in (13.1) as∆t approaches zero, we obtain the speed v(t ) at time t ,

v(t ) = lim
∆t→0

f (t +∆t )− f (t )

∆t
. (13.2)

Similarly, the divided difference of the speed is given by
(
v(t +∆t )− v(t )

)
/∆t .

This is the average acceleration from time t to time t +∆t , and if we take the
limit as ∆t tends to zero we get the acceleration a(t ) at time t ,

a(t ) = lim
∆t→0

v(t +∆t )− v(t )

∆t
. (13.3)

If we compare the above definitions of speed and acceleration with the defini-
tion of the derivative, we notice straightaway that

v(t ) = f ′(t ), a(t ) = v ′(t ) = f ′′(t ). (13.4)

Newton’s second law states that if an object is influenced by a force, its accel-
eration is proportional to the force. More precisely, if the total force is F , New-
ton’s second law can be written

F = ma (13.5)

where the proportionality factor m is the mass of the object.
As a simple example of how Newton’s law is applied, we consider an object

with mass m falling freely towards the earth. It is then influenced by two op-
posite forces, gravity and friction. The gravitational force is Fg = mg , where g
is acceleration due to gravitation alone. Friction is more complicated, but in
many situations it is reasonable to say that it is proportional to the square of the
speed of the object, or F f = cv2 where c is a suitable proportionality factor. The
two forces pull in opposite directions so the total force acting on the object is
F = Fg −F f . From Newton’s law F = ma we then obtain the equation

mg − cv2 = ma.

Gravity g is constant, but both v and a depend on time and are therefore func-
tions of t . In addition we know from (13.4) that a(t ) = v ′(t ) so we have the equa-
tion

mg − cv(t )2 = mv ′(t )
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which would usually be shortened and rearranged as

mv ′ = mg − cv2. (13.6)

The unknown here is the function v(t ), the speed, but the equation also involves
the derivative (the acceleration) v ′(t ), so this is a differential equation. This
equation is just a mathematical formulation of Newton’s second law, and the
hope is that we can solve the equation and thereby determine the speed v(t ).

13.1.2 General use of differential equations

The simple example above illustrates how differential equations are typically
used in a variety of contexts:

Procedure 13.1 (Modelling with differential equations).

1. A quantity of interest is modelled by a function x.

2. From some known principle, a relation between x and its derivatives is
derived; in other words, a differential equation is obtained.

3. The differential equation is solved by a mathematical or numerical
method.

4. The solution of the equation is interpreted in the context of the original
problem.

There are several reasons for the success of this procedure. The most basic
reason is that many naturally occurring quantities can be represented as math-
ematical functions. This includes physical quantities like position, speed and
temperature, which may vary in both space and time. It also includes quanti-
ties like ’money in the bank’ and even vaguer, but quantifiable concepts like for
instance customer satisfaction, both of which will typically vary with time.

Another reason for the popularity of modelling with differential equations
is that such equations can usually be solved quite effectively. For some equa-
tions it is possible to find an explicit formula for the unknown function, but this
is rare. For a wide range of equations though, it is possible to compute good
approximations to the solution via numerical algorithms, and this is the main
topic of this chapter.
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13.1.3 Different types of differential equations

Before we start discussing numerical methods for solving differential equations,
it will be helpful to classify different types of differential equations. The simplest
equations only involve the unknown function x and its first derivative x ′, as in
(13.6); this is called a first order differential equation. If the equation involves
higher derivatives up to order p it is called a pth order differential equation. An
important subclass are given by linear differential equations. A linear differential
equation of order p is an equation in the form

x(p)(t ) = f (t )+ g0(t )x(t )+ g1(t )x ′(t )+ g2(t )x ′′(t )+·· ·+ gp−1(t )x(p−1)(t ).

For all the equations we study here, the unknown function depends on only
one variable which we usually denote t . Such equations are referred to as ordi-
nary differential equations. This is in contrast to equations where the unknown
function depends on two or more variables, like the three coordinates of a point
in space, these are referred to as partial differential equations.

Exercises for Section 13.1

Exercise 1. Mark each of the following statements as true or false.

(a). The differential equation x ′(t )+ t 2x(t ) = t is linear.

(b). The differential equation x ′(t )+ t x(t )2 = t is linear.

(c). The differential equation x ′(t )+ t x(t )x ′(t ) = t is linear.

Exercise 2. Newton’s law of cooling says that the rate of heat loss of a body is pro-
portional to the difference in temperatures between the body and the surround-
ings. Assuming that you have a cup of coffee placed in a room, with a room tem-
perature of 20 degrees Centrigrade. What would be the appropriate differential
equation to model the temperature of the cup?
� T ′ = T −20
� T ′ = 20T
� T ′ = k(20−T )
� T ′ = 20−20T

Exercise 3. Which of the following differential equations are linear?

(a). x ′′+ t 2x ′+x = sin t .

(b). x ′′′+ (cos t )x ′ = x2.
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(c). x ′x = 1.

(d). x ′ = 1/(1+x2).

(e). x ′ = x/(1+ t 2).

13.2 First order differential equations

A first order differential equation is an equation in the form

x ′ = f (t , x).

Here x = x(t ) is the unknown function, and t is the free variable. The function
f tells us how x ′ depends on both t and x and is therefore a function of two
variables. Some examples may be helpful.

Example 13.2. Some examples of first order differential equations are

x ′ = 3, x ′ = 2t , x ′ = x, x ′ = t 3 +p
x, x ′ = sin(t x).

The first three equations are very simple. In fact the first two can be solved by
integration and have the solutions x(t ) = 3t +C and x(t ) = t 2 +C , respectively,
where C is an arbitrary constant in both cases. The third equation cannot be
solved by integration, but it is easy to check that the function x(t ) = Ce t is a
solution for any value of the constant C . It is worth noticing that all the first
three equations are linear.

For the first three equations there are simple procedures that lead to explicit
formulas for the solutions. In contrast to this, the last two equations do not have
solutions given by simple formulas, but we shall see that there are simple nu-
merical methods that allow us to compute good approximations to the solu-
tions.

The situation described in example 13.2 is similar to what we had for non-
linear equations and integrals: There are analytic solution procedures that work
in some special situations, but in general the solutions can only be determined
approximately by numerical methods.

In this chapter our main concern will be to derive numerical methods for
solving differential equations in the form x ′ = f (t , x) where f is a given function
of two variables. The description may seem a bit vague since f is not known
explicitly, but the advantage is that once a method has been derived we may
plug in almost any function f .
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13.2.1 Initial conditions

When we solve differential equations numerically we need a bit more informa-
tion than just the differential equation itself. If we look back on example 13.2,
we notice that the solution in the first three cases involved a general constant C ,
just like when we determine indefinite integrals. This ambiguity is present in all
differential equations, and cannot be handled very well by numerical solution
methods. We therefore need to supply an extra condition that will specify the
value of the constant. The standard way of doing this for first order equations is
to specify one point on the solution of the equation. In other words, we demand
that the solution should satisfy the equation x(a) = x0 for some real numbers a
and x0.

Example 13.3. Let us consider the differential equation x ′ = 2x. It is easy to
check that x(t ) =Ce2t is a solution for any value of the constant C . If we add the
initial value x(0) = 1, we are led to the equation 1 = x(0) =Ce0 =C , so C = 1 and
the solution becomes x(t ) = e2t .

If we instead impose the initial condition x(1) = 2, we obtain the equation
2 = x(1) =Ce2 which means that C = 2e−2. In this case the solution is therefore
x(t ) = 2e−2e2t = 2e2(t−1).

The general initial condition is x(a) = x0. This leads to x0 = x(a) = Ce2a or
C = x0e−2a . The solution is therefore

x(t ) = x0e2(t−a).

Adding an initial condition to a differential equation is not just a mathemat-
ical trick to pin down the exact solution; it usually has a concrete physical inter-
pretation. Consider for example the differential equation (13.6) which describes
the speed of an object with mass m falling towards earth. The speed at a certain
time is clearly dependent on how the motion started — there is a difference be-
tween just dropping a ball, and throwing it towards the ground. But note that
there is nothing in equation (13.6) to reflect this difference. If we measure time
such that t = 0 when the object starts falling, we would have v(0) = 0 in the situ-
ation where it is simply dropped, we would have v(0) = v0 if it is thrown down-
wards with speed v0, and we would have v(0) = −v0 if it was thrown upwards
with speed v0. Let us sum this up in an observation.

Observation 13.4 (First order differential equation). A first order differential
equation is an equation in the form x ′ = f (t , x), where f (t , x) is a function of
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Figure 13.1. Illustration of the geometric interpretation of differential equations. Figure (a) shows 400 tan-
gents generated by the equation x′ = t , and figure (b) the 11 solution curves corresponding to the initial condi-
tions x(0) = i /10 for i = 0, 1, . . . , 10. Figures (c) and (d) show the same information for the differential equation
x′ = cos6t/

(
1+ t +x2)

.

two variables. In general, this kind of equation has many solutions, but a spe-
cific solution is obtained by adding an initial condition x(a) = x0. A complete
formulation of a first order differential equation is therefore

x ′ = f (t , x), x(a) = x0. (13.7)

It is equations of this kind that we will be studying in most of the chapter,
with special emphasis on deriving numerical solution algorithms.

13.2.2 A geometric interpretation of first order differential equations

The differential equation in (13.7) has a natural geometric interpretation: At any
point (t , x), the equation x ′ = f (t , x) prescribes the slope of the solution through
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this point. A couple of examples will help illustrate this.

Example 13.5. Consider the differential equation

x ′ = f (t , x) = t .

This equation describes a family of functions whose tangents have slope t at any
point (x, t ). At the point (t , x) = (0,0), for example, the slope is given by

x ′(0) = f (0,0) = 0,

i.e., the tangent is horizontal. Similarly, at the point (t , x) = (0.5,1), the slope of
the tangent is given by

x ′(0.5) = f (0.5,1) = 0.5

which means that the tangent forms an angle of arctan0.5 ≈ 26.6◦ with the t-
axis.

In this way, we can compute the tangent direction at any point (x, t ) in the
plane. Figure 13.1aÂăshows 400 of those tangent directions at a regular grid of
points in the rectangle described by t ∈ [0,1.5] and x ∈ [0,1] (the length of each
tangent is not significant). Note that for this equation all tangents corresponding
to the same value of t are parallel. Figure 13.1b shows the actual solutions of the
differential equation for the 11 initial values x(0) = i /10 for i = 0, 1, . . . , 10.

Since f (t , x) = t is independent of x in this case, the equation can be solved
by integration. We find

x(t ) = 1

2
t 2 +C ,

where the constant C corresponds to the initial condition. In other words, we
recognise the solutions in (b) as parabolas, and the tangents in (a) as the tan-
gents of these parabolas.

Example 13.6. A more complicated example is provided by the differential equa-
tion

x ′ = f (t , x) = cos6t

1+ t +x2 . (13.8)

Figure 13.1c shows tangents of the solutions of this equation at a regular grid
of 400 points, just like in example 13.5. We clearly perceive a family of wave-
like functions, and this becomes clearer in figure 13.1d. The 11 functions in this
figure represent solutions of the (13.8), each corresponding to one of the initial
conditions x(0) = i /10 for i = 0, . . . , 10.

Plots like the ones in figure 13.1a and c are called slope fields, and are a com-
mon way to visualise a differential equation without solving it.
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Observation 13.7 (Geometric interpretation of differential equation). The
differential equation x ′ = f (t , x) describes a family of functions whose tangent
at the point (t , x) has slope f (t , x). By adding an initial condition x(a) = x0, a
particular solution, or solution curve, is selected from the family of solutions.

A plot of the tangent directions of the solutions of a differential equation is
called a slope field.

It may be tempting to connect neighbouring arrows in a slope field and use
this as an approximation to a solution of the differential equation. This is the
essence of Euler’s method which we will study in section 13.3.

13.2.3 Conditions that guarantee existence of one solution

The class of differential equations described by (13.7) is quite general since we
have not placed any restrictions on the function f , and this may lead to prob-
lems. Consider for example the equation

x ′ =
√

1−x2. (13.9)

Since we are only interested in solutions that are real functions, we have to be
careful so we do not select initial conditions that lead to square roots of negative
numbers. The initial condition x(0) = 0 would be fine, as would x(1) = 1/2, but
x(0) = 2 would mean that x ′(0) =

√
1−x(0)2 =p−3 which does not make sense.

For the general equation x ′ = f (t , x) there are many potential pitfalls like
this. As in the example, the function f may involve roots which require the ex-
pressions under the roots to be nonnegative, there may be logarithms which
require the arguments to be positive, inverse sines or cosines which require the
arguments to not exceed 1 in absolute value, fractions which do not make sense
if the denominator becomes zero, and combinations of these and other restric-
tions. On the other hand, there are also many equations that do not require any
restrictions on the values of t and x. This is the case when f (t , x) is a polynomial
in t and x, possibly combined with sines, cosines and exponential functions.

The above discussion suggests that the differential equation x ′ = f (t , x) may
not always have a solution. Or it may have more than one solution if f has cer-
tain kinds of problematic behaviour. The most common problem that may oc-
cur is that there may be one or more points (t , x) for which f (t , x) is not defined,
as was the case with equation (13.9) above. So-called existence and uniqueness
theorems specify conditions on f which guarantee that a unique solutions can
be found. Such theorems may appear rather abstract, and their proofs are often
challenging, so we will not discuss the details of such theorems here, but just
informally note the following fact.
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Fact 13.8. The differential equation

x ′ = f (t , x), x(a) = x0

has a solution for t near a provided the function f is nicely behaved near the
starting point (a, x0).

The term ’nice’ in fact 13.8 typically means that f should be well defined, and
both f and its first derivatives should be continuous. When we solve differential
equations numerically, it is easy to come up with examples where the solution
breaks down because of violations of the condition of ’nice-ness’.

13.2.4 What is a numerical solution of a differential equation?

In earlier chapters we have derived numerical methods for solving nonlinear
equations, for differentiating functions, and for computing integrals. A common
feature of all these methods is that the answer is a single number. However, the
solution of a differential equation is a function, and we cannot expect to find a
single number that can approximate general functions well.

All the methods we derive compute the same kind of approximation: They
start at the initial condition x(a) = x0 and then compute successive approxima-
tions to the solution at a sequence of points t1, t2, t3, . . . , tn in an interval [a,b],
where a = t0 < t1 < t2 < t3 < ·· · < tn = b.

Fact 13.9 (General strategy for numerical solution of differential equations).
Suppose the differential equation and initial condition

x ′ = f (t , x), x(a) = x0

are given together, with an interval [a,b] where a solution is sought. Suppose
also that an increasing sequence of t-values (tk )n

k=0 are given, with a = t0 and
b = tn , which in the following will be equally spaced with step length h, i.e.,

tk = a +kh, for k = 0, . . . , n.

A numerical method for solving the equation is a recipe for computing a se-
quence of numbers x0, x1, . . . , xn such that xk is an approximation to the true
solution x(tk ) at tk . For k > 0, the approximation xk is computed from one or
more of the previous approximations xk−1, xk−2, . . . , x0. A continuous approx-
imation is obtained by connecting neighbouring points by straight lines.
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Exercises for Section 13.2

Exercise 1. (a). (Continuation Exam 2009) We have the differential equa-
tion y ′+ r y = −r 2x with initial value y(0) = 1, where r is an arbitrary real
number. The solution is given by

� er x

� 1− r 2x

� 1+ r x

� 1− r x

(b). (Exam 2010) We are to solve differential equations numerically. For
three of the equations below we may encounter major problems if we
choose unfortunate starting values for x and t . Which equation will never
give such problems?

� x ′x = 1

� x ′ = e t +2

� x ′ = t + ln x

� x ′ = t/(x −2)

Exercise 2. Solve the differential equation

x ′+x sin t = sin t

and plot the solution on the interval t ∈ [−2π,2π] for the following initial values:

(a). x(0) = 1−e.

(b). x(4) = 1.

(c). x(π/2) = 2.

(d). x(−π/2) = 3.

Exercise 3. What features of the following differential equations could cause
problems if you try to solve them?

(a). x ′ = t/(1−x).

(b). x ′ = x/(1− t ).
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(c). x ′ = ln x.

(d). x ′x = 1.

(e). x ′ = arcsin x.

(f ). x ′ =
p

1−x2.

13.3 Euler’s method

Methods for finding analytical solutions of differential equations often appear
rather tricky and unintuitive. In contrast, many numerical methods are based on
simple, often geometric ideas. The simplest of these methods is Euler’s method
which is based directly on the geometric interpretation in observation 13.7.

13.3.1 Basic idea and algorithm

We assume that the differential equation is

x ′ = f (t , x), x(a) = x0,

and our aim is to compute a sequence of approximations (tk , xk )n
k=0 to the solu-

tion, where tk = a +kh.
The initial condition provides us with a point on the true solution, so (t0, x0)

is also the natural starting point for the approximation. To obtain an approxi-
mation to the solution at t1, we compute the slope of the tangent at (t0, x0) as
x ′

0 = f (t0, x0). This gives us the tangent T0(t ) = x0+(t −t0)x ′
0 to the solution at t0.

As the approximation x1 at t1 we use the value of the tangent T0 which is given
by

x1 = T0(t1) = x0 +hx ′
0 = x0 +h f (t0, x0).

This gives us the next approximate solution point (t1, x1). To advance to the
next point (t2, x2), we move along the tangent to the exact solution that passes
through (t1, x1). The derivative at this point is x ′

1 = f (t1, x1) and so the tangent is

T1(t ) = x1 + (t − t1)x ′
1 = x1 + (t − t1) f (t1, x1).

The approximate solution at t2 is therefore

x2 = x1 +h f (t1, x1).

If we continue in the same way, we can compute an approximation x3 to the
solution at t3, then an approximation x4 at t4, and so on.

From this description we see that the crucial idea is how to advance the ap-
proximate solution from a point (tk , xk ) to a point (tk+1, xk+1).
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Figure 13.2. Solution of the differential equation x′ = t 3 −2x with initial condition x(0) = 0.25 using Euler’s
method with step length h = 0.1. The top function is the exact solution.

Idea 13.10. In Euler’s method, an approximate solution (tk , xk ) is advanced to
(tk+1, xk+1) by following the tangent

Tk (t ) = xk + (t − tk )x ′
k = xk + (t − tk ) f (tk , xk )

at (tk , xk ) from tk to tk+1 = tk +h. This results in the approximation

xk+1 = xk +h f (tk , xk ) (13.10)

to x(tk+1).

Idea 13.10 shows how we can get from one point on the approximation to the
next, while the initial condition x(a) = x0 provides us with a starting point. We
therefore have all we need to compute a sequence of approximate points on the
solution of the differential equation. An example will illustrate how this works
in practice.

Example 13.11. We consider the differential equation

x ′ = t 3 −2x, x(0) = 0.25. (13.11)

Suppose we want to compute an approximation to the solution at the points
t1 = 0.1, t2 = 0.2, . . . , t10 = 1, i.e., the points tk = kh for k = 1, 2, . . . , 10, with
h = 0.1.
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We start with the initial point (t0, x0) = (0,0.25) and note that x ′
0 = x ′(0) =

03 −2x(0) =−0.5. The tangent T0(t ) to the solution at t = 0 is therefore given by

T0(t ) = x(0)+ t x ′(0) = 0.25−0.5t .

To advance the approximate solution to t = 0.1, we just follow this tangent,

x(0.1) ≈ x1 = T0(0.1) = 0.25−0.5×0.1 = 0.2.

At (t1, x1) = (0.1,0.2) the derivative is x ′
1 = f (t1, x1) = t 3

1 − 2x1 = 0.001 − 0.4 =
−0.399, so the tangent at t1 is

T1(t ) = x1 + (t − t1)x ′
1 = x1 + (t − t1) f (t1, x1) = 0.2− (t −0.1)0.399.

The approximation at t2 is therefore

x(0.2) ≈ x2 = T1(0.2) = x1 +h f (t1, x1) = 0.2−0.1×0.399 = 0.1601.

If we continue in the same way, we find (we only print the first 4 decimals)

x3 = 0.1289,

x7 = 0.0899,

x4 = 0.1058,

x8 = 0.1062,

x5 = 0.0910,

x9 = 0.1362,

x6 = 0.0853,

x10 = 0.1818.

This is illustrated in figure 13.2 where the computed points are connected by
straight line segments.

From the description above and example 13.11 it is easy to derive a more
formal algorithm.

Algorithm 13.12 (Euler’s method). Let the differential equation x ′ = f (t , x) be
given together with the initial condition x(a) = x0, the solution interval [a,b],
and the number of steps n. If the following algorithm is performed

h = (b −a)/n;
t0 = a;
for k = 0, 1, . . . , n −1

xk+1 = xk +h f (tk , xk );
tk+1 = a + (k +1)h;

the value xk will be an approximation to the solution x(tk ) of the differential
equation, for each k = 0, 1, . . . , n.
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13.3.2 Geometric interpretation

Recall that a differential equation without an initial condition in general has a
whole family of solutions, with each particular solution corresponding to a spe-
cific initial condition. With this in mind we can give a geometric interpretation
of Euler’s method. This is easiest by referring to a figure like figure 13.3 which
shows the behaviour of Euler’s method for the general equation

x ′ = f (t , x), x(a) = x0,

for which

f (t , x) = cos6t

1+ t +x2 , x(0) = 0.

The plot in figure 13.3a shows both the approximate solution (dots connected by
straight line segments)and the exact solution, but the figure in (b) illustrates bet-
ter how the approximation is obtained. We start off by following the tangent T0

at the initial condition (0,0). This takes us to a point (t1, x1) that is slightly above
the graph of the true solution. There is a solution curve that passes through this
second point which corresponds to the original differential equation, but with a
different initial condition,

x ′ = f (t , x), x(t1) = x1.

The solution curve given by this equation has a tangent at t1, and this is the line
we follow to get from (t1, x1) to (t2, x2). This takes us to another solution curve
given by the equation

x ′ = f (t , x), x(t2) = x2.

Euler’s method continues in this way, by jumping from solution curve to solution
curve.

Observation 13.13. Euler’s method may be interpreted as stepping between
different solution curves of the equation x ′ = f (t , x). At time tk , the tangent
Tk to the solution curve given by

x ′ = f (t , x), x(tk ) = xk

is followed to the point (tk+1, xk+1), which is a point on the solution curve given
by

x ′ = f (t , x), x(tk+1) = xk+1.
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Figure 13.3. The plot in (a) shows the approximation produced by Euler’s method to the solution of the differ-
ential equation x′ = cos6t/(1+ t +x2) with initial condition x(0) = 0 (smooth graph). The plot in (b) shows the
same solution augmented with the solution curves that pass through the points produced by Euler’s method.

Exercises for Section 13.3

Exercise 1. Mark each of the following statements as true or false.

(a). Euler’s method gives the values of the exact solution at all the points
x0, x1, . . . , xn if the differential equation is linear.

(b). In Euler’s method it is assumed that the solution is a straight line
between each calculated point.

Exercise 2. We have the differential equation x ′ =
p

1−x2, x(0) = 0 and want to
approximate the value of x(0.1) by using a single step with Euler’s method. What
will the approximated value be?
� x(0.1) = 1/10
� x(0.1) = 1
� 1/2
� 1/4

Exercise 3. Use Euler’s method with three steps with h = 0.1 on your calculator
to compute approximate solutions of the following differential equations:

(a). x ′ = t +x, x(0) = 1.

(b). x ′ = cos x, x(0) = 0.

(c). x ′ = t/(1+x2), x(0) = 1.

(d). x ′ = 1/x, x(1) = 1.
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(e). x ′ =
p

1−x2, x(0) = 0.

Exercise 4. Write a program that implements Euler’s method for first order dif-
ferential equations in the form

x ′ = f (t , x), x(a) = x0,

on the interval [a,b], with n time steps. You may assume that the function f and
the numbers a, b, x0, and n are given. Test the program on the equation x ′ = x
with x(0) = 1 on the interval [0,1]. Plot the exact solution x(t ) = e t alongside the
approximation and experiment with different values of n.

Exercise 5. Suppose we have the differential equation

x ′ = f (t , x), x(b) = x0,

and we seek a solution on the interval [a,b] where a < b. Adjust algorithm 13.12
so that it works in this alternative setting where the initial value is at the right
end of the interval.

Exercise 6. Recall that a common approximation to the derivative of x is given
by

x ′(t ) ≈ x(t +h)−x(t )

h
.

Derive Euler’s method by rewriting this and making use of the differential equa-
tion x ′(t ) = f

(
t , x(t )

)
.

13.4 Error analysis for Euler’s method

As for any numerical method that computes an approximate solution, it is im-
portant to have an understanding of the limitations of the method, especially its
error. As usual, the main tool is Taylor polynomials with remainders.

We will need one tool in our analysis that may appear unfamiliar, namely a
version of the mean value theorem for functions of two variables. Recall that for
a differentiable function g (t ) of one variable this theorem says that

g (t2)− g (t1) = g ′(ξ)(t2 − t1)

where ξ is a number in the interval (t1, t2). This has a natural generalisation to
functions of two variables.

Before we state this, we recall that a function g (t , x) of two variables can be
differentiated with respect to t simply by considering x to be a constant; the
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resulting derivative is denoted g t (t , x). Similarly, it may be differentiated with
respect to x by considering t to be constant; the resulting derivative is denoted
gx (t , x).

Theorem 13.14 (Mean value theorem). Let g (t , x) be a function of the two
variables t and x, and let gx denote the derivative of g with respect to x. If
gx is continuous in [x1, x2] then

g (t , x2)− g (t , x1) = gx (t ,ξ)(x2 −x1), (13.12)

where ξ is a number in the interval (x1, x2).

Note that theorem 13.14 is really just the same as the mean value theorem for
functions of one variable since the first variable t is constant. A simple example
will illustrate the theorem.

Example 13.15. Suppose g (t , x) = t x+t 2x2. To find gx , we consider t to be con-
stant, so

gx (t , x) = t +2t 2x.

The mean value theorem (13.12) therefore leads to the relation

t x2 + t 2x2
2 − t x1 − t 2x2

1 = (t +2t 2ξ)(x2 −x1)

where ξ is a number between x1 and x2.

13.4.1 Round-off error

The error analysis in this section does not include round-off errors. Just like for
numerical integration round-off is not usually significant when solving differen-
tial equations, so we will simply ignore such errors in our error estimates.

13.4.2 Local and global error

Figure 13.4 is a magnified version of figure 13.3b and illustrates how the error in
Euler’s method may evolve. At the starting point on the left the error is zero, but
using the tangent at this point as an approximation takes us to another solution
curve and therefore leads to an error at the second point. As we move to the third
point via the tangent at the second point, we jump to yet another solution curve,
and the error increases again. In this way we see that even though the local error
at each step may be quite small, the total (global) error may accumulate and
become much bigger.
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Figure 13.4. The figure illustrates how Euler’s method jumps between different solution curves and therefore
adds to the error for every step. Note though that the error changes sign towards the right of the interval.

In order to analyse the error in detail, we recall that the basic idea in Euler’s
method is to advance the solution from the point (tk , xk ) to (tk+1, xk+1) with the
relation

xk+1 = xk +h f (tk , xk ) (13.13)

which stems from the approximation with the linear Taylor polynomial x(tk+1) ≈
x(tk )+hx ′(tk ). If we include the error term in this simple Taylor approximation,
we obtain the exact identity

x(tk+1) = x(tk )+hx ′(tk )+ h2

2
x ′′(ξk ) = x(tk )+h f

(
tk , x(tk )

)+ h2

2
x ′′(ξk ), (13.14)

where ξk is a number in the interval (tk , tk+1). We subtract (13.13) and end up
with

x(tk+1)−xk+1 = x(tk )−xk +h
(

f
(
tk , x(tk )

)− f (tk , xk )
)+ h2

2
x ′′(ξk ). (13.15)

The number εk+1 = x(tk+1)− xk+1 is the global (signed) error accumulated by
Euler’s method at tk+1. This error has two sources:

1. The global error εk = x(tk )− xk accumulated up to the previous step. The
presence of this error also leads to an error in computing x ′(tk ) since we
use the value f (tk , xk ) instead of the correct value f

(
tk , x(tk )

)
.
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2. The local error we commit when advancing from (tk , xk ) to (tk+1, xk+1
)

and
ignoring the remainder in Taylor’s formula,

h2

2
x ′′(ξk ).

Note that the local error may vary in sign depending on the sign of x ′′(ξk ). This
means that the global error does not necessarily always increase with every step,
it may also become smaller.

The right-hand side of (13.15) can be simplified a little bit by making use of
the mean value theorem 13.14. This yields

f
(
tk , x(tk )

)− f (tk , xk ) = fx (tk ,θk )
(
x(tk )−xk

)= fx (tk ,θk )εk ,

where θk is a number in the interval
(
xk , x(tk )

)
. The result is summarised in the

following lemma.

Lemma 13.16. If the two first derivatives of f exist, the error in using Euler’s
method for solving x ′ = f (t , x) develops according to the relation

εk+1 =
(
1+h fx (tk ,θk )

)
εk +

h2

2
x ′′(ξk ). (13.16)

where ξk is a number in the interval (tk , tk+1) and θk is a number in the interval(
xk , x(tk )

)
. In other words, the global error at step k +1 has two sources:

1. The advancement of the global error at step k to the next step(
1+h fx (tk ,θk )

)
εk .

2. The local truncation error committed by only including two terms in the
Taylor polynomial,

h2x ′′(ξk )/2.

13.4.3 Untangling the local errors

Lemma 13.16 tells us how the error develops from one stage to the next, but we
would really like to know explicitly what the global error at step k is. For this we
need to simplify (13.16) a bit. The main complication is the presence of the two
numbers θk and ξk which we know very little about. We use a standard trick: We
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take absolute values in (13.16), use the triangle inequality, and replace the two
terms | fx (tk ,θk )| and |x ′′(ξk )| by their maximum values,

|εk+1| =
∣∣∣(1+h fx (tk ,θk )

)
εk +

h2

2
x ′′(ξk )

∣∣∣
≤

∣∣∣1+h fx (tk ,θk )
∣∣∣|εk |+

h2

2
|x ′′(ξk )|

≤ (1+hC )|εk |+
h2

2
D.

For this to work, we need some restrictions on f and its first derivative fx : We
need the two maximum values used to define the constants D = maxt∈[a,b]|x ′′(t )|
and C = maxt∈[a,b]| fx (t , x(t ))| to exist.

To simplify the notation we write C̃ = 1+hC and D̃ = Dh2/2, so the final
inequality is

|εk+1| ≤ C̃ |εk |+ D̃

which is valid for k = 0, 1, . . . , n −1. This is a ‘difference inequality’which can be
solved quite easily by unwrapping the error terms,

|εk+1| ≤ C̃ |εk |+ D̃

≤ C̃
(
C̃ |εk−1|+ D̃

)+ D̃ = C̃ 2|εk−1|+
(
1+ C̃

)
D̃

≤ C̃ 2(C̃ |εk−2|+ D̃
)+ (

1+ C̃
)
D̃

≤ C̃ 3|εk−2|+
(
1+ C̃ + C̃ 2)D̃

...

≤ C̃ k+1|ε0|+
(
1+ C̃ + C̃ 2 +·· ·+ C̃ k)

D̃ .

(13.17)

We note that ε0 = x(a)− x0 = 0 because of the initial condition, and the sum we
recognise as a geometric series. This means that

|εk+1| ≤ D̃
k∑

i=0
C̃ i = D̃

C̃ k+1 −1

C̃ −1
.

We insert the values for C̃ and D̃ and obtain

|εk+1| ≤ hD
(1+hC )k+1 −1

2C
. (13.18)

Let us sum up our findings and add some further refinements.
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Theorem 13.17 (Error in Euler’s method). Suppose that f , ft and fx are con-
tinuous and bounded functions for t ∈ [a,b] and x ∈ R. Let εk = x(tk ) − xk

denote the error at step k in applying Euler’s method with n steps of length h
to the differential equation x ′ = f (t , x) on the interval [a,b], with initial condi-
tion x(a) = x0. Then

|εk | ≤ h
D

2C

(
e(tk−a)C −1

)
≤ h

D

2C

(
e(b−a)C −1

)
(13.19)

for k = 0, 1, . . . , n. Here the constants C and D are given by

C = max
t∈[a,b],x∈R

| fx (t , x)|,

D = max
t∈[a,b]

|x ′′(t )|.

Proof. From Taylor’s formula with remainder we know that e t = 1+t+t 2eη/2 for
any positive, real number t , with η some real number in the interval (0, t ) (the
interval (t ,0) if t < 0). This means that 1+ t ≤ e t and therefore (1+ t )k ≤ ekt . If
we apply this to (13.18), with k +1 replaced by k, we obtain

|εk | ≤
hD

2C
ekhC ,

and from this the first inequality in (13.19) follows since kh = tk − a. The last
inequality is then immediate since tk −a ≤ b −a.

If we differentiate the differential equation, using the chain rule, we find x ′′ =
ft + fx f . By assuming that f , ft and fx are continuous and bounded it follows
that x ′′ is also continuous, and therefore that the constant D exists.

The error estimate (13.19) depends on the quantities h, D , C , a and b. Of
these, all except h are given by the differential equation itself, and are therefore
beyond our control. The step length h, however, can be varied as we wish, and
the most interesting feature of the error estimate is therefore how the error de-
pends on h. This is often expressed as

|εk | ≤O(h)

which simply means that |εk | is bounded by a constant times the step length
h, just like in (13.19),Âăwithout any specification of what the constant is. The
error in numerical methods for solving differential equations typically behave
like this.
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Definition 13.18 (Accuracy of a numerical method). A numerical method
for solving differential equations with step length h is said to be of order p if
the error εk at step k satisfies

|εk | ≤O(hp ),

i.e., if
|εk | ≤C hp ,

for some constant C that is independent of h.

The significance of the concept of order is that it tells us how quickly the
error goes to zero with h. If we first try to run the numerical method with step
length h and then reduce the step length to h/2 we see that the error will roughly
be reduced by a factor 1/2p . So the larger the value of p, the better the method,
at least from the point of view of accuracy.

The accuracy of Euler’s method can now be summed up quite concisely.

Corollary 13.19. Euler’s method is of order 1.

In other words, if we halve the step length, we can expect the error in Euler’s
method to also be halved. This may be a bit surprising in view of the fact that the
local error in Euler’s method is O(h2), see lemma 13.16. The explanation is that
although the error committed in replacing x(tk+1) by xk +h f (tk , xk ) is bounded
by K h2 for a suitable constant K , the error accumulates so that the global order
becomes 1 even though the local order is 2.

Exercises for Section 13.4

Exercise 1. Mark each of the following statements as true or false.

(a). The order of the global error in Euler’s method is one lower than the
order of the local error.

(b). Round-off errors is a major source of error when we use Euler’s method
to solve differential equations numerically.

(c). When we decrease the step length h in Euler’s method from 0.2 to
0.1, the local error will be reduced by a factor of roughly 4.
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Exercise 2. Suppose we perform one step of Euler’s method for the differential
equation

x ′ = sin x, x(0) = 1.

Find an upper bound for the absolute error.

13.5 Differentiating the differential equation

Our next aim is to develop a whole family of numerical methods that can attain
any order of accuracy, namely the Taylor methods. For these methods however,
we need to know how to determine higher order derivatives of the solution of a
differential equation at a point, and this is the topic of the current section.

We consider the standard equation

x ′ = f (t , x), x(a) = x0. (13.20)

The initial condition explicitly determines a point on the solution, namely the
point given by x(a) = x0, and we want to compute the derivatives x ′(a), x ′′(a),
x ′′′(a) and so on. It is easy to determine the derivative of the solution at x = a
since

x ′(a) = f
(
a, x(a)

)= f (a, x0).

To determine higher derivatives, we simply differentiate the differential equa-
tion. This is best illustrated by an example.

Example 13.20. Suppose the equation is x ′ = t +x2, or more explicitly,

x ′(t ) = t +x(t )2, x(a) = x0. (13.21)

At x = a we know that x(a) = x0, while the derivative may be determined from
the differential equation,

x ′(a) = a +x2
0 .

If we differentiate the differential equation, the chain rule yields

x ′′(t ) = 1+2x(t )x ′(t ) = 1+2x(t )
(
t +x(t )2) (13.22)

where we have inserted the expression for x ′(t ) given by the differential equation
(13.21). This means that at any point t where x(t ) (the solution) and x ′(t ) (the
derivative of the solution) is known, we can also determine the second derivative
of the solution. In particular, at x = a, we have

x ′′(a) = 1+2x(a)x ′(a) = 1+2x0(a +x2
0).
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Note that the relation (13.22) is valid for any value of t , but since the right-
hand side involves x(t ) and x ′(t ) these quantities must be known. The derivative
in turn only involves x(t ), so at a point where x(t ) is known, we can determine
both x ′(t ) and x ′′(t ).

What about higher derivatives? If we differentiate (13.22) once more, we find

x ′′′(t ) = 2x ′(t )x ′(t )+2x(t )x ′′(t ) = 2
(
x ′(t )2 +x(t )x ′′(t )

)
. (13.23)

The previous formulas express x ′(t ) and x ′′(t ) in terms of x(t ) and if we insert
this at x = a we obtain

x ′′′(a) = 2
(
x ′(a)2 +x(a)x ′′(a)

)= 2
((

a +x2
0

)2 +x0
(
1+2x0(a +x2

0)
))

.

In other words, at any point t where the solution x(t ) is known, we can also de-
termine x ′(t ), x ′′(t ) and x ′′′(t ). And by differentiating (13.23) the required num-
ber of times, we see that we can in fact determine any derivative x(n)(t ) at a point
where x(t ) is known.

It is important to realise the significance of example 13.20. Even though we
do not have a general formula for the solution x(t ) of the differential equation,
we can easily find explicit formulas for the derivatives of x at a single point where
the solution is known. One particular such point is the point where the initial
condition is given. The feasibility of doing this is of course that the derivatives
of the differential equation actually exist.

Lemma 13.21 (Determining derivatives). Let x ′ = f (t , x) be a differential
equation with initial condition x(a) = x0, and suppose that the derivatives of
f (t , x) of order p − 1 exist at the point

(
a, x0). Then the pth derivative of the

solution x(t ) at x = a can be expressed in terms of a and x0, i.e.,

x(p)(a) = Fp (a, x0), (13.24)

where Fp is a function defined by f and its derivatives of order less than p.

Example 13.22. The function Fp that appears in Lemma 13.21 may seem a bit
mysterious, but if we go back to example 13.20, we see that it is in fact quite
straightforward. In this specific case we have

x ′ = F1(t , x) = f (t , x) = t +x2, (13.25)

x ′′ = F2(t , x) = 1+2xx ′ = 1+2t x +2x3, (13.26)

x ′′′ = F3(t , x) = 2(x ′2 +xx ′′) = 2
(
(t +x2)2 +x(1+2t x +2x3)

)
. (13.27)
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This shows the explicit expressions for F1, F2 and F3. The expressions can usu-
ally be simplified by expressing x ′′ in terms of t , x and x ′, and by expressing x ′′′

in terms of t , x, x ′ and x ′′, as shown in the intermediate formulas in (13.25)–
(13.27).

It is quite straightforward to differentiate an explicit differential equation,
but it is also possible to differentiate the general equation x ′ = f (t , x). Using the
chain rule we find that

x ′′ = ft + fx f , (13.28)

and any derivative of x my be expressed in this general form.
Lemma 13.21 tells us that at some point t where we know the solution x(t ),

we can also determine all derivatives of the solution, just as we did in exam-
ple 13.20. The obvious place where this can be exploited is at the initial condi-
tion. But this property also means that if in some way we have determined an
approximation x̂ to x(t ), we can compute approximations to all derivatives at t
as well.

Example 13.23. Consider again example 13.20 and let us imagine that we have
an approximation x̂ to the solution x(t ) at t . We can then successively compute
the approximations

x ′(t ) ≈ x̂ ′ = F1(t , x̂) = f (t , x̂) = x + x̂2,

x ′′(t ) ≈ x̂ ′′ = F2(t , x̂) = 1+2x̂ x̂ ′,

x ′′′(t ) ≈ x̂ ′′′ = F3(t , x̂) = 2(x̂ ′2 + x̂ x̂ ′′).

This corresponds to finding the exact derivatives of the solution curve that has
the value x̂ ′ at t . The same is of course be done for a general equation.

Exercises for Section 13.5

Exercise 1. Compute x ′′(a) and x ′′′(a) of the following differential equations at
the given initial value.

(a). x ′ = x, x(0) = 1.

(b). x ′ = t , x(0) = 1.

(c). x ′ = t x − sin x, x(1) = 0.

(d). x ′ = t/x, x(1) = 1.
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13.6 Taylor methods

In this section we are going to derive the family of numerical methods that is
usually referred to as Taylor methods. An important ingredient in these meth-
ods is the computation of derivatives of the solution at a single point which we
discussed in section 13.5. We give the idea behind the methods and derive the
resulting algorithms, but just state what the error is. We focus on the quadratic
case as this is the simplest, but the general principle is not much more difficult.

13.6.1 The quadratic Taylor method

The idea behind Taylor methods is to approximate the solution by a Taylor poly-
nomial of a suitable degree. In Euler’s method, which is the simplest Taylor
method, we used the approximation

x(t +h) ≈ x(t )+hx ′(t ).

The quadratic Taylor method is based on the more accurate approximation

x(t +h) ≈ x(t )+hx ′(t )+ h2

2
x ′′(t ). (13.29)

To describe the algorithm, we need to specify how the numerical solution can
be advanced from a point (tk , xk ) to a new point (tk+1, xk+1) with tk+1 = tk +h.
The basic idea is to use (13.29) and compute xk+1 as

xk+1 = xk +hx ′
k +

h2

2
x ′′

k . (13.30)

The numbers xk , x ′
k and x ′′

k are approximations to the function value and deriva-
tives of the solution at t and are obtained via the recipe in lemma 13.21. An
example should make this clear.

Example 13.24. Let us consider the differential equation

x ′ = f (t , x) = F1(t , x) = t − 1

1+x
, x(0) = 1, (13.31)

which we want to solve on the interval [0,1]. To illustrate the method, we choose
a large step length h = 0.5 and attempt to find an approximate numerical solu-
tion at x = 0.5 and x = 1 using a quadratic Taylor method.

From (13.31) we obtain

x ′′(t ) = F2(t , x) = 1+ x ′(t )(
1+x(t )

)2 . (13.32)

363



To compute an approximation to x(h) we use the quadratic Taylor polynomial

x(h) ≈ x1 = x(0)+hx ′(0)+ h2

2
x ′′(0).

The differential equation (13.31) and (13.32) give us the values

x(0) = x0 = 1,

x ′(0) = x ′
0 = 0−1/2 =−1/2,

x ′′(0) = x ′′
0 = 1−1/8 = 7/8,

which leads to the approximation

x(h) ≈ x1 = x0 +hx ′
0 +

h2

2
x ′′

0 = 1− h

2
+ 7h2

16
= 0.859375.

To prepare for the next step we need to determine approximations to x ′(h)
and x ′′(h) as well. From the differential equation (13.31) and (13.32) we find

x ′(h) ≈ x ′
1 = F1(t1, x1) = t1 −1/(1+x1) =−0.037815126,

x ′′(h) ≈ x ′′
1 = F2(t1, x1) = 1+x ′

1/(1+x1)2 = 0.98906216,

rounded to eight digits. From this we can compute the approximation

x(1) = x(2h) ≈ x2 = x1 +hx ′
1 +

h2

2
x ′′

1 = 0.96410021.

The result is shown in figure 13.5a.

Figure 13.5 illustrates the first two steps of the quadratic Talor method for
two equations. The solid curve shows the two parabolas used to compute the
approximate solution points in both cases. In figure (a) it seems like the two
parabolas join together smoothly, but this is just a feature of the underlying dif-
ferential equation. The behaviour in (b), where the two parabolas meet at a
slight corner is more representative, although in this case, the first parabola is
almost a straight line. In practice, the solution between two approximate solu-
tion points will usually be approximated by a straight line, not a parabola.

Let us record the idea behind the quadratic Taylor method.
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Figure 13.5. The plots show the result of solving a differential equation numerically with the quadratic Taylor
method. The plot in (a) show the first two steps for the equation x′ = t −1/(1+ x) with x(0) = 1 and h = 0.5,
while the plot in (b) show the first two steps for the equation x′ = cos(3t/2) − 1/(1 + x) with x(0) = 1 and
h = 0.5. The dots show the computed approximations, while the solid curves show the parabolas that are used
to compute the approximations. The exact solution is shown by the dashed curve in both cases.

Idea 13.25 (Quadratic Taylor method). The quadratic Taylor method ad-
vances the solution from a point (tk , xk ) to a point (tk+1, xk+1) by evaluating
the approximate Taylor polynomial

x(t ) ≈ xk + (t − tk )x ′
k +

(t − tk )2

2
x ′′

k

at x = tk+1. In other words, the new value xk+1 is given by

xk+1 = xk +hx ′
k +

h2

2
x ′′

k

where the values xk , x ′
k and x ′′

k are obtained as described in lemma 13.21 and
h = tk+1 − tk .

This idea is easily translated into a simple algorithm. At the beginning of
a new step, we know the previous approximation xk , but need to compute the
approximations to x ′

k and x ′′
k . Once these are known we can compute x ′

k+1 and
tk+1 before we proceed with the next step. Note that in addition to the func-
tion f (t , x) which defines the differential equation we also need the function F2

which defines the second derivative, as in lemma 13.21. This is usually deter-
mined by manual differentiation as in the example 13.24 above.
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Algorithm 13.26 (Quadratic Taylor method). Let the differential equation
x ′ = f (t , x) be given together with the initial condition x(a) = x0, the solution
interval [a,b] and the number of steps n, and let the function F2 be such that
x ′′(t ) = F2

(
t , x(t )

)
. The quadratic Taylor method is given by the algorithmh = (b −a)/n;

t0 = a;
for k = 0, 1, . . . , n −1

x ′
k = f (tk , xk );

x ′′
k = F2(tk , xk );

xk+1 = xk +hx ′
k +h2x ′′

k /2;
tk+1 = a + (k +1)h;

After these steps the value xk will be an approximation to the solution x(tk ) of
the differential equation, for each k = 0, 1, . . . , n.

13.6.2 Taylor methods of higher degree

The quadratic Taylor method is easily generalised to higher degrees by including
more terms in the Taylor polynomial. The Taylor method of degree p uses the
formula

xk+1 = xk +hx ′
k +

h2

2
x ′′

k +·· ·+ hp−1

(p −1)!
x(p−1)

k + hp

p !
x(p)

k (13.33)

to advance the solution from the point (tk , xk ) to (tk+1, xk+1). Just like for the
quadratic method, the main challenge is the determination of the derivatives,
whose complexity may increase quickly with the degree. It is possible to make
use of software for symbolic computation to produce the derivatives, but it is
much more common to use a numerical method that mimics the behaviour of
the Taylor methods by evaluating f (t , x) at intermediate steps instead of com-
puting higher order derivatives, like the Runge-Kutta methods in section 13.7.3.

13.6.3 Error in Taylor methods

Euler’s method is the simplest of the Taylor methods, and the error analysis for
Euler’s method can be generalised to Taylor methods of general degree. The
principle is the same, but the details become more elaborate, so we do not give
these details here. However, it is easy to describe the general results.

Our main concern when it comes to the error is its order, i.e., what is the
power of h in the error estimate. A Taylor method of degree p advances the
solution from one step to the next with (13.33). The error in this approximation
is clearly proportional to hp+1 so the local error must be O(hp+1). But when the
local error terms are accumulated into the global error, the exponent is reduced
from p +1 to p, so the global error turns out to be proportional to hp .
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Theorem 13.27. The Taylor method of degree p is of order p, i.e., the global
error is proportional to hp .

Exercises for Section 13.6

Exercise 1. Mark each of the following statements as true or false.

(a). The quadratic Taylor method will give exact values in the calculated
points if the solution of the differential equation is a polynomial of degree
2 or lower.

(b). Arbitrarily accurate methods can be obtained by using higher or-
der Taylor methods, provided higher order derivatives are calculated cor-
rectly.

Exercise 2. Compute numerical solutions to x(1) for the equations below using
two steps with Euler’s method, the quadratic Taylor method and the quartic Tay-
lor method. For comparison the correct solution to 14 decimal digits is given in
each case.

(a). x ′ = t 5 +4, x(0) = 1,
x(1) = 31/6 ≈ 5.166666666667.

(b). x ′ = x + t , x(0) = 1,
x(1) ≈ 3.4365636569181.

(c). x ′ = x + t 3 −3(t 2 +1)− sin t +cos t , x(0) = 7,
x(1) ≈ 13.714598298644.

Exercise 3. We are given the differential equation

x ′ = e−t 2
, x(0) = 0.

Compute an estimate of x(0.5) by taking one step with each of the methods be-
low, and find an upper bound on the absolute error in each case.

(a). Euler’s method.

(b). The quadratic Taylor method.

(c). The cubic Taylor method.
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Exercise 4. In this exercise we are going to derive the quartic (degree four) Tay-
lor method and use it to solve the equation for radioactive decay in exercise Ex-
ercise 5.

(a). Derive the quartic Taylor method.

(b). Use the quartic Taylor method to find the concentration of RN-222
in the 300 atoms per mL sample after 6 days using 3 time steps and com-
pare your results with those produced by the quadratic Taylor method in
exercise Exercise 6. How much has the solution improved (in terms of ab-
solute and relative errors)?

(c). How many time steps would you have to use in the two Taylor meth-
ods to achive a relative error smaller than 10−5?

(d). What order would the Taylor order have to be to make sure that the
relative error is smaller than 10−5 with only 3 steps?

Exercise 5. In this exercise we are going to solve the differential equation

x ′ = f (t , x) = t 2 +x3 −x, x(0) = 1 (13.34)

numerically with the quadratic Taylor method.

(a). Find a formula for x ′′(t ) by differentiating equation 13.34.

(b). Use the quadratic Taylor method and your result from a) to find an
approximation to x(1) using 1, 2 and, 5 steps.

(c). Write a computer program that implements the quadratic Taylor method
and uses it to find an approximation of x(1) with 10, 100 and 1000 steps.

Exercise 6. In this exercise we are going to derive the cubic Taylor method and
use it for solving equation (13.34) in exercise Exercise 5.

(a). Derive a general algorithm for the cubic Taylor method.

(b). Find a formula for x ′′′(t ) by differentiating equation 13.34, and find
an approximation to x(1) using 1 time step with the cubic Taylor method.
Repeat using 2 time steps.

(c). How do the results from the cubic Taylor method compare with the
results from the quadratic Taylor method obtained in exercise Exercise 5?

(d). Implement the cubic Taylor method in a program and compute an
approximation to x(2) with 10, 100 and 1000 steps.
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13.7 Midpoint Euler and other Runge-Kutta methods

The big advantage of the Taylor methods is that they can attain any approxi-
mation order, see theorem 13.27. Their disadvantage is that they require sym-
bolic differentiation of the differential equation (except for Euler’s method). In
this section we are going to develop some methods of higher order than Euler’s
method that do not require differentiation of the differential equation. Instead
they advance from (tk , xk ) to (tk+1, xk+1) by evaluating f (t , x) at intermediate
points in the interval [tk , tk+1].

13.7.1 Euler’s midpoint method

The first method we consider is a simple improvement of Euler’s method. If we
look at the plots in figure 13.3, we notice how the tangent is a good approxima-
tion to a solution curve at the initial condition, but the quality of the approxima-
tion deteriorates as we move to the right. One way to improve on Euler’s method
is therefore to estimate the slope of each line segment better. In Euler’s midpoint
method this is done via a two-step procedure which aims to estimate the slope
at the midpoint between the two solution points. In proceeding from (tk , xk ) to
(tk+1, xk+1) we would like to use the tangent to the solution curve at the mid-
point tk +h/2. But since we do not know the value of the solution curve at this
point, we first compute an approximation xk+1/2 to the solution at tk +h/2 using
the traditional Euler’s method. Once we have this approximation, we can deter-
mine the slope of the solution curve that passes through the point and use this
as the slope for a straight line that we follow from tk to tk+1 to determine the
new approximation xk+1. This idea is illustrated in figure 13.6.

Idea 13.28 (Euler’s midpoint method). In Euler’s midpoint method the solu-
tion is advanced from (tk , xk ) to (tk +h, xk+1) in two steps: First an approxi-
mation to the solution is computed at the midpoint tk +h/2 by using Euler’s
method with step length h/2,

xk+1/2 = xk +
h

2
f (tk , xk ).

Then the solution is advanced to tk+1 by following the straight line from (tk , xk )
with slope given by f (tk +h/2, xk+1/2),

xk+1 = xk +h f (tk +h/2, xk+1/2). (13.35)
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Figure 13.6. The figure illustrates the first step of the midpoint Euler method, starting at x = 0.2 and with
step length h = 0.2. We start by following the tangent at the starting point (x = 0.2) to the midpoint (x =
0.3). Here we determine the slope of the solution curve that passes through this point and use this as the
slope for a line through the starting point. We then follow this line to the next t-value (x = 0.4) to determine
the first approximate solution point. The solid curve is the correct solution and the open circle shows the
approximation produced by Euler’s method.

Once the basic idea is clear it is straightforward to translate this into a com-
plete algorithm for computing an approximate solution to the differential equa-
tion.

Algorithm 13.29 (Euler’s midpoint method). Let the differential equation
x ′ = f (t , x) be given together with the initial condition x(a) = x0, the solution
interval [a,b] and the number of steps n. Euler’s midpoint method is given byh = (b −a)/n;

t0 = a;
for k = 0, 1, . . . , n −1

xk+1/2 = xk +h f (tk , xk )/2;
xk+1 = xk +h f (tk +h/2, xk+1/2);
tk+1 = a + (k +1)h;

After these steps the value xk will be an approximation to the solution x(tk ) of
the differential equation at tk , for each k = 0, 1, . . . , n.

As an alternative viewpoint, let us recall the two approximations for numer-
ical differentiation given by

x ′(t ) ≈ x(t +h)−x(t )

h
,

x ′(t +h/2) ≈ x(t +h)−x(t )

h
.

As we saw above, the first one is the basis for Euler’s method, but we know from
our study of numerical differentiation that the second one is more accurate. If
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Figure 13.7. Comparison of Euler’s method and Euler’s midpoint method for the differential equation x′ =
cos(6t )/(1+ t +x2) with initial condition x(0) = 1 with step length h = 0.1. The solid curve is the exact solution
and the two approximate solutions are dashed. The dotted curve in the middle is the approximation pro-
duced by Euler’s method with step length h = 0.05. The approximation produced by Euler’s midpoint method
appears almost identical to the exact solution.

we solve for x(t +h) we find

x(t +h) ≈ x(t )+hx ′(t +h/2)

and this relation is the basis for Euler’s midpoint method.

In general Euler’s midpoint method is more accurate than Euler’s method
since it is based on a better approximation of the first derivative, see figure 13.7
for an example. However, this extra accuracy comes at a cost: the midpoint
method requires two evaluations of f (t , x) per iteration instead of just one for
the regular method. In many cases this is insignificant, although there may be
situations where f is extremely complicated and expensive to evaluate, or the
added evaluation may just not be feasible. But even then it is generally better to
use Euler’s midpoint method with a double step length, see figure 13.7.

13.7.2 The error

The error in Euler’s midpoint method can be analysed with the help of Taylor
expansions. In this case, we first do a Taylor expansion with respect to t , and
then another Taylor expansion with respect to x. The analysis shows that the
extra evaluation of f at the midpoint improves the error estimate from O(h2)
(for Euler’s method) to O(h3), i.e., the same as the error for the quadratic Taylor
method. As for the Taylor methods, the global error is one order lower.
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Theorem 13.30. Euler’s midpoint method is of order 2, i.e., the global error is
proportional to h2.

13.7.3 Runge-Kutta methods

Runge-Kutta methods are generalisations of the midpoint Euler method. The
methods use several evaluations of f between each step in a clever way which
leads to higher accuracy.

In the simplest Runge-Kutta methods, the new value xk+1 is computed from
xk with the formula

xk+1 = xk +h
(
λ1 f (tk , xk )+λ2 f (tk + r1h, xk + r2h f (tk , xk )

)
, (13.36)

where λ1, λ2, r1, and r2 are constants to be determined. The idea is to choose
the constants in such a way that the relation (13.36) mimics a Taylor method of
the highest possible order. It turns out that the first three terms in the Taylor
expansion can be matched. This leaves one parameter free (we choose this to
be λ=λ2), and determines the other three in terms of λ,

λ1 = 1−λ, λ2 =λ, r1 = r2 = 1

2λ
.

This determines a whole family of second order accurate methods.

Theorem 13.31 (Second order Runge-Kutta methods). Let the differential
equation x ′ = f (t , x) with initial condition x(a) = x0 be given. Then the nu-
merical method which advances from (tk , xk ) to (tk+1, xk+1 according to the
formula

xk+1 = xk +h

(
(1−λ) f (tk , xk )+λ f

(
tk +

h

2λ
, xk +

h f (tk , xk )

2λ

))
, (13.37)

is 2nd order accurate for any nonzero value of the parameter λ, provided f and
its derivatives up to order two are continuous and bounded for t ∈ [a,b] and
x ∈R.

The strategy of the proof of theorem 13.31 is similar to the error analysis for
Euler’s method, but quite technical.

Note that Euler’s midpoint method corresponds to the particular second or-
der Runge-Kutta method with λ = 1. Another commonly used special case is
λ= 1/2. This results in the iteration formula

xk+1 = xk +
h

2

(
f (tk , xk )+ f

(
(tk , xk +h(tk , xk )

))
,
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which is often referred to as Heun’s method or the improved Euler’s method.
Note also that the original Euler’s method may be considered as the special case
λ= 0, but then the accuracy drops to first order.

It is possible to devise methods that reproduce higher degree polynomials
at the cost of more intermediate evaluations of f . The derivation is analogous
to the procedure used for the second order Runge-Kutta method, but more in-
volved because the degree of the Taylor polynomials are higher. One member of
the family of fourth order methods is particularly popular.

Theorem 13.32 (Fourth order Runge-Kutta method). Suppose the differen-
tial equation x ′ = f (t , x) with initial condition x(a) = x0 is given. The numeri-
cal method given by the formulas

k0 = f (tk , xk ),

k1 = f (tk +h/2, xk +hk0/2),

k2 = f (tk +h/2, xk +hk1/2),

k3 = f (tk +h, xk +hk2),

xk+1 = xk +
h

6
(k0 +2k1 +2k2 +k3),


k = 0, 1, . . . , n

is 4th order accurate provided the derivatives of f up to order four are continu-
ous and bounded for t ∈ [a,b] and x ∈R.

It can be shown that Runge-Kutta methods which use p evaluations pr. step
are pth order accurate for p = 1, 2, 3, and 4. However, it turns out that 6 evalua-
tions per step are necessary to get a method of order 5. This is one of the reasons
for the popularity of the fourth order Runge-Kutta methods — they give the most
orders of accuracy per evaluation.

Exercises for Section 13.7

Exercise 1. (a). (Continuation exam 2009) Which of the following state-
ments is true?

� When solving differential equations numerically, round-off errors are
never a problem.

�When doing numerical differentiation, round off errors are never a prob-
lem.

�When solving differential equations numerically, Euler’s method is usu-
ally less accurate than the 4th order Runge-Kutta method.
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�When doing numerical integration, the trapezoidal rule is usually more
accurate than Simson’s rule.

(b). (Exam 2009) Which of the following statements is true?

�When solving differential equations numerically, Euler’s method is usu-
ally more accurate than Euler’s midpoint method.

�When solving differential equations numerically, Taylor’s method of third
order is usually more accurate than Euler’s method.

�When solving differential equations numerically, Euler’s method is usu-
ally more accurate than Taylor’s method of second order.

�When numerical integration, the trapezoidal rule is usually more accu-
rate than Simpson’s rule.

(c). (Continuation exam 2007) Which of the following statements is true?

� The bisection method is a method for solving differential equations nu-
merically.

� Round-off errors never create problems when solving differential equa-
tions numerically.

�Difference equations is a special case of differential equations

�The 4th order Runge Kutta method is more accurate than Euler’s method.

Exercise 2. Consider the first order differential equation

x ′ = x, x(0) = 1.

(a). Estimate x(1) by using one step with Euler’s method.

(b). Estimate x(1) by using one step with the quadratic Taylor method.

(c). Estimate x(1) by using one step with Euler’s midpoint method.

(d). Estimate x(1) by using one step with the Runge Kutta fourth order
method.

(e). Estimate x(1) by using two steps with the Runge Kutta fourth order
method.

(f ). Optional: Write a computer program that implements one of the
above mentioned methods and use it to estimate the value of y(1) with
10, 100, 1000 and 10000 steps?
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(g). Do the estimates seem to converge?

(h). Solve the equation analytically and explain your numerical results.

Exercise 3. In this problem we are going to solve the equation

x ′ = f (t , x) =−x sin t + sin t , x(0) = 2+e,

numerically on the interval [0,2π].

(a). Use Euler’s method with 1, 2, 5, and 10 steps and plot the results.
How does the solution evolve with the number of steps?

(b). Use Euler’s midpoint method with 1 and 5 steps and plot the results.

(c). Compare the results from Euler’s midpoint method with those form
Euler’s method including the number of evaluations of f in each case.
Which method seems to be best?

Exercise 4. When investigating the stability of a numerical method it is com-
mon to apply the method to the model equation

x ′ =−λx, x(0) = 1

and check for which values of the step length h the solution blows up.

(a). Apply Euler’s method to the model equation and determine the range
of h-values that for which the solution remains bounded.

(b). Repeat (a) for Euler’s midpoint method.

(c). Repeat (a) for the second order Taylor method.

(d). Repeat (a) for the fourth order Runge-Kutte method.

Exercise 5. Rn-222 is a common radioactive isotope. It decays to 218-Po through
α-decay with a half-life of 3.82 days. The average concentration is about 150
atoms per mL of air. Radon emanates naturally from the ground, and so is typi-
cally more abundant in cellars than in a sixth floor apartment. Certain rocks like
granite emanates much more radon than other substances.

In this exercise we assume that we have collected air samples from different
places, and these samples have been placed in special containers so that no new
Rn-222 (or any other element) may enter the sample after the sampling has been
completed. We now want to measure the Rn-222 abundance as a function of
time, f (t ).
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(a). The abundance x(t ) of Rn-222 is governed the differential equation
x ′ =λx. Solve the differential equation analytically and determine λ from
the half-life given above.

(b). Make a plot of the solution for the first 10 days for the initial condi-
tions x(0) = 100, 150, 200 and 300 atoms per mL.

(c). The different initial conditions give rise to a family of functions. Do
any of the functions cross each other? Can you find a reason why they
do/do not?

(d). The four initial conditions correspond to four different air samples.
Two of them were taken from two different cellars, one was taken from an
upstairs bedroom, and the fourth is an average control sample. Which is
which?

Exercise 6. In this problem we are going to use Euler’s method to solve the
differential equation you found in exercise Exercise 5 with the inital condition
x(0) = 300 atoms per mL sample over a time period from 0 to 6 days.

(a). Use 3 time steps and make a plot where the points (ti , xi ) for each
time step are marked. What is the relative error at each point? (Compare
with the exact solution.)

(b). For each point computed by Euler’s method, there is an exact solu-
tion curve that passes through the point. Determine these solutions and
draw them in the plot you made in (a).

(c). Use Euler’s midpoint method with 3 time steps to find the concen-
tration of Rn-222 in the 300 atoms per mL sample after 6 days. Compare
with the exact result, and your result from exercise Exercise 6. What are
the relative errors at the computed points?

(d). Repeat (a), but use the quadratic Taylor method instead.

13.8 Systems of differential equations

So far we have focused on how to solve a single first order differential equa-
tion. In practice two or more such equations, coupled together, are necessary
to model a problem, and sometimes even equations of higher order. In this sec-
tion we are going to see how the methods we have developed above can easily be
adapted to deal with both systems of equations and equations of higher order.
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13.8.1 Vector notation and existence of solution

Many practical problems involve not one, but two or more differential equa-
tions. For example many processes evolve in three dimensional space, with sep-
arate differential equations in each space dimension.

Example 13.33. At the beginning of this chapter we saw that a vertically falling
object subject to gravitation and friction can be modelled by the differential
equation

v ′ = g − c

m
v2, (13.38)

where v = v(t ) is the speed at time t . How can an object that also has a hori-
zontal speed be modelled? A classical example is that of throwing a ball. In the
vertical direction, equation (13.38) is still valid, but since the y-axis points up-
wards, we change signs on the right-hand side and label the speed by a subscript
2 to indicate that this is movement along the y- (the second) axis,

v ′
2 =

c

m
v2

2 − g .

In the x-direction a similar relation holds, except there is no gravity. If we as-
sume that the positive x-axis is in the direction of the movement we therefore
have

v ′
1 =− c

m
v2

1 .

In total we have

v ′
1 =− c

m
v2

1 , v1(0) = v0x , (13.39)

v ′
2 =

c

m
v2

2 − g , v2(0) = v0y , (13.40)

where v0x is the initial speed of the object in the x-direction and v0y is the initial
speed of the object in the y-direction. If we introduce the vectors v = (v1, v2)
and f = ( f1, f2) where

f1(t , v ) = f1(t , v1, v2) =− c

m
v2

1 ,

f2(t , v ) = f2(t , v1, v2) = c

m
v2

2 − g ,

and the initial vector v 0 = (v0x , v0y ), the equations (13.39)–(13.40) may be rewrit-
ten more compactly as

v ′ = f (t , v ), v (0) = v 0.

Apart from the vector symbols, this is exactly the same equation as we have stud-
ied throughout this chapter.
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The equations in example 13.33 are quite specialised in that the time vari-
able does not appear on the right, and the two equations are independent of
each other. The next example is more general.

Example 13.34. Consider the three equations with initial conditions

x ′ = x y +cos z, x(0) = x0, (13.41)

y ′ = 2− t 2 + z2 y, y(0) = y0, (13.42)

z ′ = sin t −x + y, z(0) = z0. (13.43)

If we introduce the vectors x = (x, y, z), x0 = (x0, y0, z0), and the vector of func-
tions f (t , x) = (

f1(t , x), f2(t , x), f3(t , x)
)

defined by

x ′ = f1(t , x) = f1(t , x, y, z) = x y +cos z,

y ′ = f2(t , x) = f2(t , x, y, z) = 2− t 2 + z2 y,

z ′ = f3(t , x) = f3(t , x, y, z) = sin t −x + y,

we can write (13.41)–(13.43) simply as

x ′ = f (t , x), x(0) = x0.

Examples 13.33–13.34 illustrate how vector notation may camouflage a sys-
tem of differential equations as a single equation. This is helpful since it makes
it quite obvious how the theory for scalar equations can be applied to systems of
equations. Let us first be precise about what we mean with a system of differen-
tial equations.

Definition 13.35. A system of M first order differential equations in M un-
knowns with corresponding initial conditions is given by a vector relation in
the form

x ′ = f (t , x), x(a) = x0. (13.44)

Here x = x(t ) = (
x1(t ), . . . , x M (t )

)
is a vector of M unknown scalar functions,

and f (t , x) : RM+1 → RM is a vector function of the M +1 variables t and x =
(x1, . . . , xM ), i.e.,

f (t , x) = (
f1(t , x), . . . , fM (t , x)

)
,

while x0 = (x1,0, . . . , xM ,0) is a vector in RM of initial values. The notation x ′

denotes the vector of derivatives of the components of x with respect to t ,

x ′ = x ′(t ) = (
x ′

1(t ), . . . , x ′
M (t )

)
.
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It may be helpful to write out the vector equation (13.44) in detail,

x ′
1 = f1(t , x) = f1(t , x1, . . . , xM ), x1(0) = x1,0

...

x ′
M = fM (t , x) = fM (t , x1, . . . , xM ), xM (0) = xM ,0.

We see that both the examples above fit into this setting, with M = 2 for exam-
ple 13.33 and M = 3 for example 13.34.

Before we start considering numerical solutions of systems of differential
equations, we need to know that solutions exist.

Theorem 13.36. The system of equations

x ′ = f (t , x), x(a) = x0

has a solution near the initial value (a, x0) provided all the component func-
tions are reasonably well-behaved near this point.

13.8.2 Numerical methods for systems of first order equations

There are very few analytic methods for solving systems of differential equa-
tions, so numerical methods are essential. It turns out that most of the meth-
ods for a single equation generalise to systems. A simple example illustrates the
general principle.

Example 13.37 (Euler’s method for a system). We consider the equations in ex-
ample 13.34,

x ′ = f (t , x), x(a) = x0,

where

f (t , x) = (
f1(t , x1, x2, x3), f2(t , x1, x2, x3), f3(t , x1, x2, x3)

)
= (x1x2 +cos x3,2− t 2 +x2

3 x2, sin t −x1 +x2).

Euler’s method is easily generalised to vector equations as

xk+1 = xk +h f (tk , xk ), k = 0, 1, . . . , n −1. (13.45)

If we write out the three components explicitly, this becomes

xk+1
1 = xk

1 +h f1(tk , xk
1 , xk

2 , xk
3 ) = xk

1 +h
(
xk

1 xk
2 +cos xk

3

)
,

xk+1
2 = xk

2 +h f2(tk , xk
1 , xk

2 , xk
3 ) = xk

2 +h
(
2− t 2

k + (xk
3 )2xk

2

)
,

xk+1
3 = xk

3 +h f3(tk , xk
1 , xk

2 , xk
3 ) = xk

3 +h
(
sin tk −xk

1 +xk
2

)
,

 (13.46)
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for k = 0, 1, . . . , n − 1, with the starting values (a, x0
1 , x0

2 , x0
3) given by the initial

condition. Although they look rather complicated, these formulas can be pro-
grammed quite easily. The trick is to make use of the vector notation in (13.45),
since it nicely hides the details in (13.46).

Example 13.37 illustrates Euler’s method for a system of equations, and the
other methods we have discussed earlier in the chapter also generalise to sys-
tems of equations in a straightforward way.

Observation 13.38 (Generalisation to systems). Euler’s method, Euler’s mid-
point method, and the Runge-Kutta methods all generalise naturally to systems
of differential equations.

For example the formula for advancing one time step with Euler’s midpoint
method becomes

xk+1 = xk +h f
(
tk +h/2, xk +h f (tk , xk )/2

)
,

while the fourth order Runge-Kutta method becomes

k0 = f (tk , xk ),

k1 = f (tk +h/2, xk +hk0/2),

k2 = f (tk +h/2, xk +hk1/2),

k3 = f (tk +h, xk +hk2),

xk+1 = xk +
h

6
(k0 +2k1 +2k2 +k3).

Systems of differential equations is an example where the general mathe-
matical formulation is simpler than most concrete examples. In fact, if each
component of these formulas are written out explicitly, the details quickly be-
come overwhelming, so it is important to stick with the vector notation. This
also applies to implementation in a program: It is wise to use the vector formal-
ism and mimic the mathematical formulation as closely as possible.

In principle the Taylor methods also generalise to systems of equations, but
because of the need for manual differentiation of each component equation, the
details swell up even more than for the other methods.

13.8.3 Higher order equations as systems of first order equations

Many practical modelling problems lead to systems of differential equations,
and sometimes higher order equations are necessary. It turns out that these can
be reduced to systems of first order equations as well.
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Example 13.39. Consider the second order equation

x ′′ = t 2 + sin(x +x ′), x(0) = 1, x ′(0) = 0. (13.47)

This equation is nonlinear and cannot be solved with any of the standard ana-
lytical methods. If we introduce the new function x2 = x ′, we notice that x ′

2 = x ′′,
so the differential equation can be written

x ′
2 = t 2 + sin(x +x2), x(0) = 1, x2(0) = 0.

If we also rename x as x1 = x, we see that the second order equation in (13.47)
can be written as the system

x ′
1 = x2, x1(0) = 1, (13.48)

x ′
2 = t 2 + sin(x1 +x2), x2(0) = 0. (13.49)

In other words, equation (13.47) can be written as the system (13.48)–(13.49).
We also see that this system can be expressed as the single equation in (13.47),
so the two equations (13.48)–(13.49) and the single equation (13.47) are in fact
equivalent in the sense that a solution of one automatically gives a solution of
the other.

The technique used in example 13.39 works in general—a pth order equa-
tion can be rewritten as a system of p first order equations.

Theorem 13.40. The pth order differential equation

x(p) = g
(
t , x, x ′, . . . , x(p−1)) (13.50)

with initial conditions

x(a) = d0, x ′(a) = d1, . . . , x(p−2)(0) = dp−2, x(p−1)(0) = dp−1 (13.51)

is equivalent to the system of p equations in the p unknown functions x1, x2,
. . . , xp ,

x ′
1 = x2, x1(a) = d0,

x ′
2 = x3, x2(a) = d1,

...

x ′
p−1 = xp , xp−1(a) = dp−2,

x ′
p = g (t , x1, x2, . . . , xp−1), xp (a) = dp−1,

(13.52)

in the sense that the component solution x1(t ) of (13.52) agrees with the solu-
tion x(t ) of (13.50)–(13.51).
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Proof. The idea of the proof is just like in example 13.39. From the first p − 1
relations in (13.52) we see that

x2 = x ′
1, x3 = x ′

2 = x ′′
1 , . . . , xp = x ′

p−1 = x ′′
p−2 = ·· · = x(p−1)

1 .

If we insert this in the last equation in (13.52) we obtain a pth order equation for
x1 that is equivalent to (13.50). In addition, the initial values in (13.52) translate
into initial values for x1 that are equivalent to (13.51),Âăso x1 must solve (13.50)–
(13.51). Conversely, if x is a solution of (13.50)–(13.51), it is easy to see that the
functions

x1 = x, x2 = x ′, x3 = x ′′, . . . , xp−1 = x(p−2), xp = x(p−1)

solve the system (13.52).

Theorem 13.40 shows that if we can solve systems of differential equations
we can also solve single equations of order higher than one. It turns out that we
even handle systems of higher order equations in this way.

Example 13.41 (System of higher order equations). Consider the system of dif-
ferential equations given by

x ′′ = t +x ′+ y ′, x(0) = 1, x ′(0) = 2,

y ′′′ = x ′y ′′+x, y(0) =−1, y ′(0) = 1, y ′′(0) = 2.

We introduce the new functions x1 = x, x2 = x ′, y1 = y , y2 = y ′, and y3 = y ′′. Then
the above system can be written as

x ′
1 = x2, x1(0) = 1,

x ′
2 = t +x2 + y2, x2(0) = 2,

y ′
1 = y2, y1(0) =−1,

y ′
2 = y3, y2(0) = 1,

y ′
3 = x2 y3 +x1, y3(0) = 2.

Example 13.41 illustrates how a system of higher order equations may be
expressed as a system of first order equations. Perhaps not surprisingly, a gen-
eral system of higher order equations can be converted to a system of first order
equations. The main complication is in fact notation. We assume that we have
r equations involving r unknown functions x1, . . . , xr . Equation no. i expresses
some derivative of xi on the left in terms of derivatives of itself and the other
functions,

x(pi )
i = gi

(
t , x1, x ′

1, . . . , x(p1−1)
1 , . . . , xr , x ′

r , . . . , x(pr −1)
r

)
, i = 1, . . . , r . (13.53)
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In other words, the integer pi denotes the derivative of xi on the left in equation
no. i , and it is assumed that in the other equations the highest derivative of xi is
pi −1 (this is not an essential restriction, see exercise Exercise 2).

To write the system (13.53) as a system of first order equations, we just follow
the same strategy as in example 13.41: For each variable xi , we introduce the pi

variables
xi ,1 = xi , xi ,2 = x ′

i , xi ,3 = x ′′
i , . . . , xi ,pi = x(pi−1)

i .

Equation no. i in (13.53) can then be replaced by the pi first order equations

x ′
i ,1 = xi ,2,

x ′
i ,2 = xi ,3,

...

x ′
i ,pi−1 = xi ,pi ,

x ′
i ,pi

= gi
(
t , x1,1, . . . , x1,p1 , . . . , xr,1, . . . , xr,pr

)
for i = 1, . . . , r . We emphasise that the general procedure is exactly the same as
the one used in example 13.41, it is just that the notation becomes rather heavy
in the general case.

We record the conclusion in a non-technical theorem.

Theorem 13.42. A system of differential equations can always be written as a
system of first order equations.

Exercises for Section 13.8

Exercise 1. (Continuation exam 2009) The solution x(t ) of the differential equa-
tion x ′′ + sin(t x ′) − x2 = e t is equal to the solution x1(t ) of the system of two
equations
� x ′

1 = x1, x ′
2 = e t − sin(t x2)+x2

1
� x ′

1 = x2, x ′
2 = e t − sin(t x1)+x2

2
� x ′

1 = x2, x ′
2 = e t − sin(t x2)+x2

1
� x ′

1 = x2, x ′
2 = e t − sin(t x1)+x2

1

13.9 Final comments

Our emphasis in this chapter has been to derive some of the best-known meth-
ods for numerical solution of first order ordinary differential equations, includ-
ing a basic error analysis, and treatment of systems of equations. There are a
number of additional issues we have not touched upon.
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There are numerous other numerical methods in addition to the ones we
have discussed here. The universal method that is optimal for all kinds of appli-
cations does not exist; you should choose the method that works best for your
particular kind of application.

We have assumed that the step size h remains fixed during the solution pro-
cess. This is convenient for introducing the methods, but usually too simple
for solving realistic problems. A good method will use a small step size in areas
where the solution changes quickly and longer step sizes in areas where the so-
lution varies more slowly. A major challenge is therefore to detect, during the
computations, how quickly the solution varies, or equivalently, how large the
error is locally. If the error is large in an area, it means that the local step size
needs to be reduced; it may even mean that another numerical method should
be used in the area in question. This kind of monitoring of the error, coupled
with local control of the step size and choice of method, is an important and
challenging characteristic of modern software for solving differential equations.
Methods like these are called adaptive methods.

We have provided a basic error analysis of the Euler’s method, and this kind
of analysis can be extended to the other methods without much change. The
analysis accounts for the error committed by making use of certain mathemat-
ical approximations. In most cases this kind of error analysis is adequate, but
in certain situations it may also be necessary to pay attention to the round-off
error.

Exercises for Section 13.9

Exercise 1. Write the following systems of differential equations as systems of
first order equations. The unknowns x, y , and z are assumed to be functions of
t .

(a).
y ′′ = y2 −x +e t ,

x ′′ = y −x2 −e t .

(b).
x ′′ = 2y −4t 2x,

y ′′ =−2x −2t x ′.

(c).
x ′′ = y ′′x + (y ′)2x,

y ′′ =−y.
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(d).
x ′′′ = y ′′x2 −3(y ′)2x,

y ′′ = t +x ′.

Exercise 2. Write the system

x ′′ = t +x + y ′,
y ′′′ = x ′′′+ y ′′,

as a system of 5 first order equations. Note that this system is not on the form
(13.53) since x ′′′ appears on the right in the second equation. Hint: You may
need to differentiate one of the equations.

Exercise 3. Write the following differential equations as systems of first order
equations. The unknowns x, y , and z are assumed to be functions of t .

(a). x ′′+ t 2x ′+3x = 0.

(b). mx ′′ =−ks x −kd x ′.

(c). y ′′(t ) = 2(e2t − y2)1/2.

(d). 2x ′′−5x ′+x = 0 with initial conditions x(3) = 6, x ′(3) =−1.

Exercise 4. Solve the system

x ′′ = 2y − sin
(
4t 2x

)
, x(0) = 1, x ′(0) = 2,

y ′′ =−2x − 1

2t 2(x ′)2 +3
, y(0) = 1, y ′(0) = 0,

numerically on the interval [0,2]. Try both Euler’s method and Euler’s midpoint
method with two time steps and plot the results.

Exercise 5. This exercise is based on example 13.33 in which we modelled the
movement of a ball thrown through air with the equations

v ′
1 =− c

m
v2

1 , v1(0) = v0x ,

v ′
2 =

c

m
v2

2 − g , v2(0) = v0y ,

We now consider the launch of a rocket. In this case, the constants g and c will
become complicated functions of the height y , and possibly also of x. We make
the (rather unrealistic) assumption that

c

m
= c0 −ay
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where c0 is the air resistance constant at the surface of the earth and y is the
height above the earth given in kilometers. We will also use the fact that gravity
varies with the height according to the formula

g = g0

(y + r )2 ,

where g0 is the gravitational constant times the mass of the earth, and r is the
radius of the earth. Finally, we use the facts that x ′ = v1 and y ′ = v2.

(a). Find the second order differential equation for the vertical motion
(make sure that the positive direction is upwards).

(b). Rewrite the differential equation for the horizontal motion as a sec-
ond order differential equation that depends on x, x ′, y and y ′.

(c). Rewrite the coupled second order equations from (a) and (b) as a
system of four first order differential equations.

(d). Optional: Use a numerical method to find a solution at t = 1 hour
for the initial conditions x(0) = y(0) = 0, x ′(0) = 200 km/h and y ′(0) =
300 km/h. Use a = 1.9∗10−4 Nh2

km3kg
, g0 = 3.98∗108 (km)2m

s2 and c0 = 0.19 Nh2

km2kg
.

These units are not so important, but mean that distances can be mea-
sured in km and speeds in km/h.

Exercise 6. Radon-222 is actually an intermediate decay product of a decay
chain from Uranium-238. In this chain there are 16 subsequent decays which
takes 238-U into a stable lead isotope (206-Pb). In one part of this chain 214-Pb
decays through β-decay to 214-Bi which then decays through another β-decay
to 214-Po. The two decays have the respective halflifes of 26.8 minutes and 19.7
minutes.

Suppose that we start with a certain amount of 214-Pb atoms and 214-Bi
atoms, we want to determine the amounts of 214-Pb and 214-Bi as functions of
time.

(a). Phrase the problem as a system of two coupled differential equa-
tions.

(b). Solve the equations from (a) analytically.

(c). Suppose that the inital amounts of lead and bismuth are 600 atoms
and 10 atoms respectively. Find the solutions for these initial conditions
and plot the two functions for the first 1.5 hours.

386



(d). When is the amount of bismuth at its maximum?

(e). Compute the number of lead and bismuth atoms after 1 hour with
Euler’s method. Choose the number of steps to use yourself.

(f ). Repeat (e), but use the fourth order Runge-Kutta method instead and
the same number of steps as in (e).

Exercise 7. A block of mass m is attached to a horizontal spring. As long as the
displacement x (measured in centimeters) from the equilibrium position of the
spring is small, we can model the force as a constant times this displacement,
i.e. F = −kx, where k = 0.114 N/cm is the spring constant. (This is Hooke’s
law). We assume the motion of the spring to be along the x-axis and the position
of the centre of mass of the block at time t to be x(t ). We then know that the
acceleration is given by a(t ) = x ′′(t ). Newton’s second law applied to the spring
now yields

mx ′′(t ) =−kx(t ). (13.54)

Suppose that the block has mass m = 0.25kg and that the spring starts from rest
in a position 5.0cm from its equilibrium so x(0) = 5.0 cm and x ′(0) = 0.0cm/s.

(a). Rewrite this second order differential equation (13.54) as a system of
two coupled differential equations and solve the system analytically.

(b). Use the second order Runge-Kutta method to solve the set of differ-
ential equations in the domain t ∈ [0,1.5] seconds with 3 time steps, and
plot the analytical and approximate numerical solutions together.

(c). Did your numerical method and the number of steps suffice to give
a good approximation?

Exercise 8. This is a continuation of exercise Exercise 7, and all the constants
given in that problem will be reused here. We now consider the case of a vertical
spring and denote the position of the block at time t by y(t ). This means that in
addition to the spring force, gravity will also influence the problem. If we take
the positive y-direction to be up, the force of gravity will be given by

Fg =−mg . (13.55)

Applying Newton’s second law we now obtain the differential equation

my ′′(t ) =−k y(t )−mg . (13.56)

The equilibrium position of the spring will now be slightly altered, but we as-
sume that y = 0 corresponds to the horizontal spring equilibrium position.
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(a). What is the new equilibrium position y0?

(b). We let the spring start from rest 5.0cm above the new equilibrium,
which means that we have x(0) = 5.0cm+ y0, x ′(0) = 0.0cm/s. Rewrite the
second order differential equation as a system of two first order ones and
solve the new set of equations analytically.

(c). Choose a numerical method for solving the equations in the interval
t ∈ [0,1.5] seconds. Choose a method and the number of time steps that
you think should make the results good enough.

(d). Plot your new analytical and numerical solutions and compare with
the graph from exercise Exercise 7. What are the differences? Did your
choice of numerical method work better than the second order Runge-
Kutta method in exercise Exercise 7?
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Part III

Functions of two variables
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CHAPTER 14

Numerical differentiation of
functions of two variables

So far, most of the functions we have encountered have only depended on one
variable, but both within mathematics and in applications there is often a need
for functions of several variables. In this chapter we will deduce methods for
numerical differentiation of functions of two variables. The methods are simple
extensions of the numerical differentiation methods for functions of one vari-
able.

14.1 Functions of two variables

In this section we will review some basic results on functions of two variables,
in particular the definition of partial and directional derivatives. For proofs, the
reader is referred to a suitable calculus book.

14.1.1 Basic definitions

Functions of two variables are natural generalisations of functions of one vari-
able that act on pairs of numbers rather than a single number. We assume that
you are familiar with their basic properties already, but we repeat the definition
and some basic notation.

Definition 14.1 (Function of two variables). A (scalar) function f of two vari-
ables is a rule that to a pair of numbers (x, y) assigns a number f (x, y).
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Figure 14.1. The plot in (a) shows the function f (x, y) = x2 + y2 with x and y varying in the interval [−1,1].
The function in (b) is defined by the rule that f (x, y) = 0 except in a small area around the y-axis and the line
y = 1, where the value is f (x, y) = 1.

The obvious interpretation is that f (x, y) gives the height above the point in
the plane given by (x, y). This interpretation lets us plot functions of two vari-
ables, see figure 14.1.

The rule f can be given by a formula like f (x, y) = x2+y2, but this is not nec-
essary, we just need to be able to determine f (x, y) from x and y . In figure 14.1
the function in (a) is given by a formula, while the function in (b) is given by the
rule

f (x, y) =


1, if |x| ≤ 0.1. and 0 ≤ y ≤ 1;

1, if |y −1| ≤ 0.1 and −1 ≤ x ≤ 1;

0, otherwise.

We will sometimes use vector notation and refer to (x, y) as the point x ; then
f (x, y) can be written simply as f (x). There is also convenient notation for a set
of pairs of numbers that are assembled from two intervals.

Notation 14.2. Let the two sets of numbers A and B be given. The set of all
pairs of numbers fromA and B is denotedA×B,

A×B= {
(a,b) | a ∈A and b ∈B}

.

The setA×A is denotedA2.

The most common set of pairs of numbers is R2, the set of all pairs of real
numbers.
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To define differentiation we need the concept of an interior point of a set.
This is defined in terms of small discs.

Notation 14.3. The disc with radius r and centre x ∈ R2 is denoted B(x ;r ). A
point x in a subset A of R2 is called an interior point of A if there is a real
number ε > 0 such that the disc B(x ;ε) lies completely in A. The disc B(x ;ε) is
called a neighbourhood of x .

More informally, an interior point of A is a point which is completely sur-
rounded by points fromA.

14.1.2 Differentiation

Differentiation generalises to functions of two variables in a simple way: We
keep one variable fixed and differentiate the resulting function as a function of
one variable.

Definition 14.4 (Partial derivatives). Let f be a function defined on a set A⊆
R2. The partial derivatives of f at an interior point (a,b) ∈A are given by

∂ f

∂x
(a,b) = lim

h→0

f (a +h,b)− f (a,b)

h
,

∂ f

∂y
(a,b) = lim

h→0

f (a,b +h)− f (a,b)

h
.

From the definition we see that the partial derivative ∂ f /∂x is obtained by
fixing y = b and differentiating the function g1(x) = f (x,b) at x = a. Similarly, the
partial derivative with respect to y is obtained by fixing x = a and differentiating
the function g2(y) = f (a, y) at y = b.

Geometrically, the partial derivatives give the slope of f at (a,b) in the di-
rections parallel to the two coordinate axes. The directional derivative gives the
slope in a general direction.

Definition 14.5. Suppose the function f is defined on the set A ⊆ R2 and that
a is an interior point of A. The directional derivative at a in the direction r is
given by the limit

f ′(a;r ) = lim
h→0

f (a +hr )− f (a)

h
,
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provided the limit exists.

It turns out that for reasonable functions, the directional derivative can be
computed in terms of partial derivatives.

Theorem 14.6. Suppose the function is defined on the set A⊆R2 and that a is
an interior point of A. If the two partial derivatives ∂ f /∂x and ∂ f /∂y exist in
a neighbourhood of a and are continuous at a, then the directional derivative
f ′(a;r ) exists for all directions r = (r1,r2) and

f ′(a;r ) = r1
∂ f

∂x
(a)+ r2

∂ f

∂y
(a).

The conditions in theorem 14.6 are not very strict, but should be kept in
mind. In particular you should be on guard when you need to compute direc-
tional derivatives near points where the partial derivatives do not exist.

If we consider a function like f (x, y) = x3 y + x2 y2, the partial derivatives are
∂ f /∂x = 3x2 y + 2x y2 and ∂ f /∂y = x3 + 2x2 y . Each of these can of course be
differentiated again,

∂2 f

∂x2 = 6x y +2y2,

∂2 f

∂y2 = 2x2,

∂2 f

∂y∂x
= ∂

∂y

(
∂ f

∂x

)
= 3x2 +4x y,

∂2 f

∂x∂y
= ∂

∂x

(
∂ f

∂y

)
= 3x2 y +4x y.

We notice that the two mixed derivatives are equal. In general the derivatives

∂2 f

∂x∂y
(a),

∂2 f

∂y∂x
(a)

are equal if they both exist in a neighbourhood of a and are continuous at a. All
the functions we consider here have mixed derivatives that are equal. We can of
course consider partial derivatives of any order.

Notation 14.7 (Higher order derivatives). The expression

∂n+m f

∂xn∂ym

denotes the result of differentiating f , first m times with respect to y, and then
differentiating the result n times with respect to x.

394



-2
-1

0
1

2

-1

0

1

2

3

0

1

2

3

4

Figure 14.2. An example of a parametric surface.

14.1.3 Vector functions of several variables

The theory of functions of two variables extends nicely to functions of an arbi-
trary number of variables and functions where the scalar function value is re-
placed by a vector. We are only going to define these functions, but the whole
theory of differentiation works in this more general setting.

Definition 14.8 (General functions). A function f : Rn 7→ Rm is a rule that to
n numbers x = (x1, . . . , xn) assigns m numbers f (x) = (

f1(x), . . . , fm(x)
)
.

Apart from the case n = 2, m = 1 which we considered above, we are inter-
ested in the case n = 2, m = 3.

Definition 14.9. A function from f :R2 7→R3 is called a parametric surface.

An example of a parametric surface is shown in figure 14.2. Parametric sur-
faces can take on almost any shape and are therefore used for representing ge-
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ometric form in computer programs for geometric design. These kinds of pro-
grams are used for designing cars, aircrafts and other industrial objects as well
as the 3D objects and characters in animated movies.

Exercises for Section 14.1

Exercise 1. Mark each of the following statements as true or false.

(a). For most well-behaved functions, we have that

∂2 f (x, y)

∂x∂y
= ∂2 f (x, y)

∂y∂x
.

(b). The function f(x, y) = (x + y, x − y) is scalar.

14.2 Numerical differentiation

The reason that we may want to compute derivatives numerically are the same
for functions of two variables as for functions of one variable: The function
may only be known via some procedure or computer program that can compute
function values.

Theorem 14.6 shows that we can compute directional derivatives very easily
as long as we can compute partial derivatives. The basic problem in numer-
ical differentiation is therefore to find numerical approximations to the partial
derivatives. Since only one variable varies in the definition of a first-order partial
derivative, we can actually use the approximations that we obtained for func-
tions of one variable. The simplest approximation is the following.

Proposition 14.10. Let f be a function defined on a set A ⊆ R2 and suppose
that the points (a,b), (a + r h1,b) and (a,b + r h2) all lie in A for any r ∈ [0,1].
Then the two partial derivatives ∂ f /∂x and ∂ f /∂y can be approximated by

∂ f

∂x
(a,b) ≈ f (a +h1,b)− f (a,b)

h1
,

∂ f

∂y
(a,b) ≈ f (a,b +h2)− f (a,b)

h2
.
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The errors in the two estimates are

∂ f

∂x
(a,b)− f (a +h1,b)− f (a,b)

h1
= h1

2

∂2 f

∂x2 (c1,b), (14.1)

∂ f

∂y
(a,b)− f (a,b +h2)− f (a,b)

h2
= h2

2

∂2 f

∂y2 (a,c2), (14.2)

where c1 is a number in (a, a +h1) and c2 is a number in (a, a +h2).

Proof. We will just consider the first approximation. For this we define the func-
tion g (x) = f (x,b). From ’Setning 9.15’ in the Norwegian notes we know that

g ′(x) = g (a +h1)− g (a)

h1
+ h1

2
g ′′(c1)

where c1 is a number in the interval (a, a + h1). From this the relation (14.1)
follows.

The other approximations to the derivatives in chapter 9 of the Norwegian
notes lead directly to approximations of partial derivatives that are not mixed.
For example we have

∂ f

∂x
= f (a +h,b)− f (a −h,b)

2h
+ h2

6

∂3 f

∂x3 (c,b) (14.3)

where c ∈ (a −h, a +h). A common approximation of a second derivative is

∂2 f

∂x2 ≈ − f (a −h,b)+2 f (a,b)− f (a +h,b)

h2 ,

with error bounded by
h2

12
max

z∈(a−h,a+h)

∣∣∣∂4 f

∂x4 (z,b)
∣∣∣,

see exercise 9.11 in the Norwegian notes. These approximations of course work
equally well for non-mixed derivatives with respect to y .

Approximation of mixed derivatives requires that we use estimates for the
derivatives both in the x- and y-directions. This makes it more difficult to keep
track of the error. In fact, the easiest way to estimate the error is with the help
of Taylor polynomials with remainders for functions of two variables. However,
this is beyond the scope of these notes.

Let us consider an example of how an approximation to a mixed derivative
can be deduced.
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Example 14.11. Let us consider the simplest mixed derivative,

∂2 f

∂x∂y
(a,b).

If we set

g (a) = ∂ f

∂y
(a,b) (14.4)

we can use the approximation

g ′(a) ≈ g (a +h1)− g (a −h1)

2h1
.

If we insert (14.4) in this approximation we obtain

∂2 f

∂x∂y
(a,b) ≈

∂ f

∂y
(a +h1,b)− ∂ f

∂y
(a −h1,b)

2h1
. (14.5)

Now we can use the same kind of approximation for the two first-order partial
derivatives in (14.5),

∂ f

∂y
(a +h1,b) ≈ f (a +h1,b +h2)− f (a +h1,b −h2)

2h2
,

∂ f

∂y
(a −h1,b) ≈ f (a −h1,b +h2)− f (a −h1,b −h2)

2h2
.

If we insert these expressions in (14.5) we obtain the final approximation

∂2 f

∂x∂y
(a,b) ≈

f (a +h1,b +h2)− f (a +h1,b −h2)− f (a −h1,b +h2)+ f (a −h1,b −h2)

4h1h2
.

If we introduce the notation

f (a −h1,b −h2) = f−1,−1,

f (a −h1,b +h2) = f−1,1,

f (a +h1,b −h2) = f1,−1,

f (a +h1,b +h2) = f1,1,
(14.6)

we can write the approximation more compactly as

∂2 f

∂x∂y
(a,b) ≈ f1,1 − f1,−1 − f−1,1 + f−1,−1

4h1h2
.

These approximations require f to be a ’nice’ function. A sufficient condition is
that all partial derivatives up to order four are continuous in a disc that contains
the rectangle with corners (a −h1,b −h2) and (a +h1,b +h2).
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Figure 14.3. The weights involved in computing the mixed second derivative with the approximation in ex-
ample 14.11. This kind of figure is referred to as the computational molecule of the approximation.

We record the approximation in example 14.11 in a proposition. We do not
have the right tools to estimate the error, but just indicate how it behaves.

Proposition 14.12 (Approximation of a mixed derivative). Suppose that f
has continuous derivatives up to order four in a disc that contains the rect-
angle with corners (a −h1,b −h2) and (a +h1,b +h2). Then the mixed second
derivative of f can be approximated by

∂2 f

∂x∂y
(a,b) ≈ f1,1 − f1,−1 − f−1,1 + f−1,−1

4h1h2
, (14.7)

where the notation is defined in (14.6). The error is proportional to h2
1h2

2.

Numerical approximations of other mixed partial derivatives can be derived
with the same technique as in example 14.11, see exercise Exercise 2.

A formula like (14.7) is often visualised with a drawing like the one in fig-
ure 14.3 which is called a computational molecule. The arguments of the func-
tion values involved in the approximation are placed in a rectangular grid to-
gether with the corresponding coefficients of the function values. More com-
plicated approximations will usually be based on additional values and involve
more complicated coefficients.

Approximations to derivatives are usually computed at many points, and of-
ten the points form a rectangular grid as in figure 14.4. The computations can be
performed by moving the computational molecule of the approximation across
the grid and computing the approximation at each point, as indicated by the
grey area in figure 14.4.

399



Figure 14.4. Numerical approximations to partial derivatives are often computed at all points of a grid like
the one shown here by sliding around the grid a computational molecule like the one in figure 14.3.

Exercises for Section 14.2

Exercise 1. Mark each of the following statements as true or false.

(a). All the methods we have for numerical integration in one dimension
can be used to find partial derivatives along a particular axis for scalar
functions of two variables.

Exercise 2. In this exercise we are going to derive approximations to mixed deriva-
tives.

(a). Use the approximation g ′(a) = (
g (a +h)− g (a −h)

)
/(2h) repeatedly

as in example 14.11 and deduce the approximation

∂3 f

∂x2∂y
≈ f2,1 −2 f0,1 + f−2,1 − f2,−1 +2 f0,−1 − f−2,−1

8h2
1h2

.

Hint: Use the approximation in (14.7).

(b). Use the same techniqueÂăas in (a) and deduce the approximation

∂4 f

∂x2∂y2 ≈
f2,2 −2 f0,2 + f−2,2 −2 f2,0 +4 f0,0 −2 f−2,0 + f2,−2 −2 f0,−2 + f−2,−2

16h2
1h2

2

.

Hint: Use the approximation in (a) as a starting point.
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Exercise 3. Determine approximations to the two mixed derivatives

∂3 f

∂x2∂y
,

∂4 f

∂x2∂y2 ,

in Exercise 2, but use the approximation g ′(a) = (
g (a+h)−g (a)

)
/h at every stage.
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CHAPTER 15

Digital images
and image formats

An important type of digital media is images, and in this chapter we are going to
review how images are represented and how they can be manipulated with sim-
ple mathematics. This is useful general knowledge for anyone who has a digital
camera and a computer, but for many scientists, it is an essential tool. In as-
trophysics data from both satellites and distant stars and galaxies is collected in
the form of images, and information extracted from the images with advanced
image processing techniques. Medical imaging makes it possible to gather dif-
ferent kinds of information in the form of images, even from the inside of the
body. By analysing these images it is possible to discover tumours and other
disorders.

15.1 What is an image?

Before we do computations with images, it is helpful to be clear about what an
image really is. Images cannot be perceived unless there is some light present,
so we first review superficially what light is.

15.1.1 Light

Fact 15.1 (What is light?). Light is electromagnetic radiation with wave-
lengths in the range 400–700 nm (1 nm is 10−9 m): Violet has wavelength
400 nm and red has wavelength 700 nm. White light contains roughly equal
amounts of all wave lengths.
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Other examples of electromagnetic radiation are gamma radiation, ultravi-
olet and infrared radiation and radio waves, and all electromagnetic radiation
travel at the speed of light (3 × 108 m/s). Electromagnetic radiation consists
of waves and may be reflected and refracted, just like sound waves (but sound
waves are not electromagnetic waves).

We can only see objects that emit light, and there are two ways that this can
happen. The object can emit light itself, like a lamp or a computer monitor, or
it reflects light that falls on it. An object that reflects light usually absorbs light
as well. If we perceive the object as red it means that the object absorbs all light
except red, which is reflected. An object that emits light is different; if it is to be
perceived as being red it must emit only red light.

15.1.2 Digital output media

Our focus will be on objects that emit light, for example a computer display. A
computer monitor consists of a rectangular array of small dots which emit light.
In most technologies, each dot is really three smaller dots, and each of these
smaller dots emit red, green and blue light. If the amounts of red, green and
blue is varied, our brain merges the light from the three small light sources and
perceives light of different colours. In this way the colour at each set of three
dots can be controlled, and a colour image can be built from the total number
of dots.

It is important to realise that it is possible to generate most, but not all,
colours by mixing red, green and blue. In addition, different computer monitors
use slightly different red, green and blue colours, and unless this is taken into
consideration, colours will look different on the two monitors. This also means
that some colours that can be displayed on one monitor may not be displayable
on a different monitor.

Printers use the same principle of building an image from small dots. On
most printers however, the small dots do not consist of smaller dots of different
colours. Instead as many as 7–8 different inks (or similar substances) are mixed
to the right colour. This makes it possible to produce a wide range of colours, but
not all, and the problem of matching a colour from another device like a monitor
is at least as difficult as matching different colours across different monitors.

Video projectors builds an image that is projected onto a wall. The final im-
age is therefore a reflected image and it is important that the surface is white so
that it reflects all colours equally.

The quality of a device is closely linked to the density of the dots.
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Fact 15.2 (Resolution). The resolution of a medium is the number of dots per
inch (dpi). The number of dots per inch for monitors is usually in the range
70–120, while for printers it is in the range 150–4800 dpi. The horizontal and
vertical densities may be different. On a monitor the dots are usually referred
to as pixels (picture elements).

15.1.3 Digital input media

The two most common ways to acquire digital images is with a digital camera
or a scanner. A scanner essentially takes a photo of a document in the form of
a rectangular array of (possibly coloured) dots. As for printers, an important
measure of quality is the number of dots per inch.

Fact 15.3. The resolution of a scanner usually varies in the range 75 dpi to 9600
dpi, and the colour is represented with up to 48 bits per dot.

For digital cameras it does not make sense to measure the resolution in dots
per inch, as this depends on how the image is printed (its size). Instead the
resolution is measured in the number of dots recorded.

Fact 15.4. The number of pixels recorded by a digital camera usually varies
in the range 320× 240 to 6000× 4000 with 24 bits of colour information per
pixel. The total number of pixels varies in the range 76 800 to 24 000 000 (0.077
megapixels to 24 megapixels).

For scanners and cameras it is easy to think that the more dots (pixels), the
better the quality. Although there is some truth to this, there are many other
factors that influence the quality. The main problem is that the measured colour
information is very easily polluted by noise. And of course high resolution also
means that the resulting files become very big; an uncompressed 6000× 4000
image produces a 72 MB file. The advantage of high resolution is that you can
magnify the image considerably and still maintain reasonable quality.

15.1.4 Definition of digital image

We have already talked about digital images, but we have not yet been precise
about what it is. From a mathematical point of view, an image is quite simple.
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(a) (b) (c)

Figure 15.1. Different version of the same image; black and white (a), grey-level (b), and colour (c).

Fact 15.5 (Digital image). A digital image P is a rectangular array of intensity
values {pi , j }m,n

i , j=1. For grey-level images, the value pi , j is a single number, while
for colour images each pi , j is a vector of three or more values. If the image is
recorded in the rgb-model, each pi , j is a vector of three values,

pi , j = (ri , j , gi , j ,bi , j ),

that denote the amount of red, green and blue at the point (i , j ).

The value pi , j gives the colour information at the point (i , j ). It is important
to remember that there are many formats for this. The simplest case is plain
black and white images in which case pi , j is either 0 or 1. For grey-level images
the intensities are usually integers in the range 0–255. However, we will assume
that the intensities vary in the interval [0,1], as this sometimes simplifies the
form of some mathematical functions. For colour images there are many differ-
ent formats, but we will just consider the rgb-format mentioned in the fact box.
Usually the three components are given as integers in the range 0–255, but as for
grey-level images, we will assume that they are real numbers in the interval [0,1]
(the conversion between the two ranges is straightforward, see section 15.2.3
below). Figure 15.1 shows an image in different formats.

Fact 15.6. In these notes the intensity values pi , j are assumed to be real num-
bers in the interval [0,1]. For colour images, each of the red, green, and blue
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(a) (b)

Figure 15.2. Two excerpt of the colour image in figure 15.1. The dots indicate the position of the points (i , j ).

intensity values are assumed to be real numbers in [0,1].

If we magnify a small part of the colour image in figure 15.1, we obtain the
image in figure 15.2 (the black lines and dots have been added). A we can see,
the pixels have been magnified to big squares. This is a standard representation
used by many programs — the actual shape of the pixels will depend on the
output medium. Nevertheless, we will consider the pixels to be square, with
integer coordinates at their centres, as indicated by the grids in figure 15.2.

Fact 15.7 (Shape of pixel). The pixels of an image are assumed to be square
with sides of length one, with the pixel with value pi , j centred at the point (i , j ).

15.1.5 Images as surfaces

Recall from chapter 14 that a function f : R2 7→ R can be visualised as a surface
in space. A grey-level image is almost on this form. If we define the set of integer
pairs by

Zm,n = {
(i , j ) | 1 ≤ i ≤ m and 1 ≤ j ≤ n

}
,

we can consider a grey-level image as a function P :Zm,n 7→ [0,1]. In other words,
we may consider an image to be a sampled version of a surface with the intensity
value denoting the height above the (x, y)-plane, see figure 15.3.
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Figure 15.3. The grey-level image in figure 15.1 plotted as a surface. The height above the (x, y)-plane is given
by the intensity value.

Fact 15.8 (Grey-level image as a surface). Let P = (p)m,n
i , j=1 be a grey-level im-

age. Then P can be considered a sampled version of the piecewise constant
surface

FP : [1/2,m +1/2]× [1/2,n +1/2] 7→ [0,1]

which has the constant value pi , j in the square (pixel)

[i −1/2, i +1/2]× [ j −1/2, j +1/2]

for i = 1, . . . , m and j = 1, . . . , n.

What about a colour image P? Then each pi , j = (ri , j , gi , j ,bi , j ) is a triple of
numbers so we have a mapping

P :Zm,n 7→R3.

If we compare with definition 14.9, we see that this corresponds to a sampled
version of a parametric surface if we consider the colour values (ri , j , gi , j ,bi , j )
to be x-, y-, and z-coordinates. This may be useful for computations in certain
settings, but visually it does not make much sense, see figure 15.4
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Figure 15.4. A colour image viewed as a parametric surface in space.

Exercises for Section 15.1

Exercise 1. (a). (Continuation exam 2009) A program generates digital
video where every frame contains 800×600 points and there is 25 frames
per second. For every second of video this gives

� 64 000 000 bytes

� 144 000 000 bytes

� 36 000 000 bytes

� 12 000 000 bytes

(b). Which of the following statements is true?

� The three base colors used in color images on computers are usually
red, yellow and blue.

� An image of 2 000 000 × 2 000 000 pixels is said to be 2 Megapixels large.

� Electromagnetic radiation with wavelength 0.5 mm is in the range of
visible light.

� The three base colours used in color images on computers are usually
red, green and blue.

15.2 Operations on images

When we know that a digital image is a two-dimensional array of numbers, it is
quite obvious that we can manipulate the image by performing mathematical
operations on the numbers. In this section we will consider some of the simpler
operations.
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(a) (b) (c)

Figure 15.5. The red (a), green (b), and blue (c) components of the colour image in figure 15.1.

15.2.1 Normalising the intensities

We have assumed that the intensities all lie in the interval [0,1], but as we noted,
many formats in fact use integer values in the range 0–255. And as we perform
computations with the intensities, we quickly end up with intensities outside
[0,1] even if we start out with intensities within this interval. We therefore need
to be able to normalise the intensities. This we can do with the simple linear
function in observation 7.24,

g (x) = x −a

b −a
, a < b,

which maps the interval [a,b] to [0,1]. A simple case is mapping [0,255] to [0,1]
which we accomplish with the scaling g (x) = x/255. More generally, we typically
perform computations that result in intensities outside the interval [0,1]. We can
then compute the minimum and maximum intensities pmin and pmax and map
the interval [pmin, pmax] back to [0,1]. Several examples of this will be shown
below.

15.2.2 Extracting the different colours

If we have a colour image P = (ri , j , gi , j ,bi , j )m,n
i , j=1 it is often useful to manipulate

the three colour components separately as the three images

Pr = (ri , j )m,n
i , j=1, Pr = (gi , j )m,n

i , j=1, Pr = (bi , j )m,n
i , j=1.

These are conveniently visualised as grey-level images as in figure 15.5.
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(a) (b) (c)

Figure 15.6. Alternative ways to convert the colour image in figure 15.1 to a grey level image. In (a) each
colour triple has been replaced by its maximum, in (b) each colour triple has been replaced by its sum and the
result mapped to [0,1], while in (c) each triple has been replaced by its length and the result mapped to [0,1].

15.2.3 Converting from colour to grey-level

If we have a colour image we can convert it to a grey-level image. This means that
at each point in the image we have to replace the three colour values (r, g ,b) by a
single value p that will represent the grey level. If we want the grey-level image to
be a reasonable representation of the colour image, the value p should somehow
reflect the intensity of the image at the point. There are several ways to do this.

It is not unreasonable to use the largest of the three colour components as a
measure of the intensity, i.e, to set p = max(r, g ,b). The result of this can be seen
in figure 15.6a.

An alternative is to use the sum of the three values as a measure of the total
intensity at the point. This corresponds to setting p = r + g +b. Here we have
to be a bit careful with a subtle point. We have required each of the r , g and b
values to lie in the range [0,1], but their sum may of course become as large as
3. We also require our grey-level values to lie in the range [0,1] so after having
computed all the sums we must normalise as explained above. The result can
be seen in figure 15.6b.

A third possibility is to think of the intensity of (r, g ,b) as the length of the
colour vector, in analogy with points in space, and set p =

√
r 2 + g 2 +b2. Again

we may end up with values in the range [0,3] so we have to normalise like we did
in the second case. The result is shown in figure 15.6c.

Let us sum this up as an algorithm.
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(a) (b) (c)

Figure 15.7. The negative versions of the corresponding images in figure 15.6.

Algorithm 15.9 (Conversion from colour to grey level). A colour image P =
(ri , j , gi , j ,bi , j )m,n

i , j=1 can be converted to a grey level image Q = (qi , j )m,n
i , j=1 by one

of the following three operations:

1. Set qi , j = max(ri , j , gi , j ,bi , j ) for all i and j .

2. (a) Compute q̂i , j = ri , j + gi , j +bi , j for all i and j .

(b) Transform all the values to the interval [0,1] by setting

qi , j =
q̂i , j

maxk,l q̂k,l
.

3. (a) Compute q̂i , j =
√

r 2
i , j + g 2

i , j +b2
i , j for all i and j .

(b) Transform all the values to the interval [0,1] by setting

qi , j =
q̂i , j

maxk,l q̂k,l
.

In practice one of the last two methods are usually preferred, perhaps with
a preference for the last method, but the actual choice depends on the applica-
tion.
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15.2.4 Computing the negative image

In film-based photography a negative image was obtained when the film was
developed, and then a positive image was created from the negative. We can
easily simulate this and compute a negative digital image.

Suppose we have a grey-level image P = (pi , j )m,n
i , j=1 with intensity values in

the interval [0,1]. Here intensity value 0 corresponds to black and 1 corresponds
to white. To obtain the negative image we just have to replace an intensity p by
its ’mirror value’ 1−p.

Fact 15.10 (Negative image). Suppose the grey-level image P = (pi , j )m,n
i , j=1 is

given, with intensity values in the interval [0,1]. The negative image Q =
(qi , j )m,n

i , j=1 has intensity values given by qi , j = 1−pi , j for all i and j .

15.2.5 Increasing the contrast

A common problem with images is that the contrast often is not good enough.
This typically means that a large proportion of the grey values are concentrated
in a rather small subinterval of [0,1]. The obvious solution to this problem is to
somehow spread out the values. This can be accomplished by applying a func-
tion f to the intensity values, i.e., new intensity values are computed by the for-
mula

p̂i , j = f (pi , j )

for all i and j . If we choose f so that its derivative is large in the area where many
intensity values are concentrated, we obtain the desired effect.

Figure 15.8 shows some examples. The functions in the left plot have quite
large derivatives near x = 0.5 and will therefore increase the contrast in images
with a concentration of intensities with value around 0.5. The functions are all
on the form

fn(x) = arctan
(
n(x −1/2)

)
2arctan(n/2)

+ 1

2
. (15.1)

For any n 6= 0 these functions satisfy the conditions fn(0) = 0 and fn(1) = 1. The
three functions in figure 15.8a correspond to n = 4, 10, and 100.

Functions of the kind shown in figure 15.8b have a large derivative near x = 0
and will therefore increase the contrast in an image with a large proportion of
small intensity values, i.e., very dark images. The functions are given by

gε(x) = ln(x +ε)− lnε

ln(1+ε)− lnε
, (15.2)
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Figure 15.8. The plots in (a) and (b) show some functions that can be used to improve the contrast of an
image. In (c) the middle function in (a) has been applied to the intensity values of the image in figure 15.6c,
while in (d) the middle function in (b) has been applied to the same image.

and the ones shown in the plot correspond to ε= 0.1, 0.01, and 0.001.

In figure 15.8c the middle function in (a) has been applied to the image in
figure 15.6c. Since the image was quite well balanced, this has made the dark
areas too dark and the bright areas too bright. In figure 15.8d the function in (b)
has been applied to the same image. This has made the image as a whole too
bright, but has brought out the details of the road which was very dark in the
original.
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Observation 15.11. Suppose a large proportion of the intensity values pi , j of
a grey-level image P lie in a subinterval I of [0,1]. Then the contrast of the
image can be improved by computing new intensities p̂i , j = f (p, j ) where f is a
function with a large derivative in the interval I .

We will see more examples of how the contrast in an image can be enhanced
when we try to detect edges below.

15.2.6 Smoothing an image

When we considered filtering of digital sound in section 4.4.2 of the Norwegian
notes, we observed that replacing each sample of a sound by an average of the
sample and its neighbours dampened the high frequencies of the sound. We can
do a similar operation on images.

Consider the array of numbers given by

1

16

1 2 1
2 4 2
1 2 1

 . (15.3)

We can smooth an image with this array by placing the centre of the array on
a pixel, multiplying the pixel and its neighbours by the corresponding weights,
summing up and dividing by the total sum of the weights. More precisely, we
would compute the new pixels by

p̂i , j = 1

16

(
4pi , j +2(pi , j−1 +pi−1, j +pi+1, j +pi , j+1)

+pi−1, j−1 +pi+1, j−1 +pi−1, j+1 +pi+1, j+1
)
.

Since the weights sum to one, the new intensity value p̂i , j is a weighted aver-
age of the intensity values on the right. The array of numbers in (15.3) is in
fact an example of a computational molecule, see figure 14.3. For simplicity
we have omitted the details in the drawing of the computational molecule. We
could have used equal weights for all nine pixels, but it seems reasonable that
the weight of a pixel should be larger the closer it is to the centre pixel.

As for audio, the values used are taken from Pascal’s triangle, since these
weights are known to give a very good smoothing effect. A larger filter is given
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(a) (b) (c)

Figure 15.9. The images in (b) and (c) show the effect of smoothing the image in (a).

by the array

1

1024



1 6 15 20 15 6 1
6 36 90 120 90 36 6

15 90 225 300 225 90 15
20 120 300 400 300 120 20
15 90 225 300 225 90 15
6 36 90 120 90 36 6
1 6 15 20 15 6 1


. (15.4)

These numbers are taken from row six of Pascal’s triangle. More precisely, the
value in row k and column l is given by the product

(6
k

)(6
l

)
. The scaling 1/4096

comes from the fact that the sum of all the numbers in the table is 26+6 = 4096.
The result of applying the two filters in (15.3) and (15.4) to an image is shown

in figure 15.9 (b) and (c) respectively. The smoothing effect is clearly visible.

Observation 15.12. An image P can be smoothed out by replacing the intensity
value at each pixel by a weighted average of the intensity at the pixel and the
intensity of its neighbours.

15.2.7 Detecting edges

The final operation on images we are going to consider is edge detection. An
edge in an image is characterised by a large change in intensity values over a
small distance in the image. For a continuous function this corresponds to a
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large derivative. An image is only defined at isolated points, so we cannot com-
pute derivatives, but we have a perfect situation for applying numerical differ-
entiation. Since a grey-level image is a scalar function of two variables, the nu-
merical differentiation techniques from section 14.2 can be applied.

Partial derivative in x-direction. Let us first consider computation of the par-
tial derivative ∂P/∂x at all points in the image. We use the familiar approxima-
tion

∂P

∂x
(i , j ) = pi+1, j −pi−1, j

2
, (15.5)

where we have used the convention h = 1 which means that the derivative is
measured in terms of ’intensity per pixel’. We can run through all the pixels in
the image and compute this partial derivative, but have to be careful for i = 1
and i = m where the formula refers to non-existing pixels. We will adapt the
simple convention of assuming that all pixels outside the image have intensity
0. The result is shown in figure 15.10a.

This image is not very helpful since it is almost completely black. The rea-
son for this is that many of the intensities are in fact negative, and these are just
displayed as black. More specifically, the intensities turn out to vary in the inter-
val [−0.424,0.418]. We therefore normalise and map all intensities to [0,1]. The
result of this is shown in (b). The predominant colour of this image is an average
grey, i.e, an intensity of about 0.5. To get more detail in the image we therefore
try to increase the contrast by applying the function f50 in equation 14.6 to each
intensity value. The result is shown in figure 15.10c which does indeed show
more detail.

It is important to understand the colours in these images. We have com-
puted the derivative in the x-direction, and we recall that the computed val-
ues varied in the interval [−0.424,0.418]. The negative value corresponds to the
largest average decrease in intensity from a pixel pi−1, j to a pixel pi+1, j . The
positive value on the other hand corresponds to the largest average increase in
intensity. A value of 0 in figure 15.10a corresponds to no change in intensity
between the two pixels.

When the values are mapped to the interval [0,1] in figure 15.10b, the small
values are mapped to something close to 0 (almost black), the maximal values
are mapped to something close to 1 (almost white), and the values near 0 are
mapped to something close to 0.5 (grey). In figure 15.10c these values have just
been emphasised even more.

Figure 15.10c tells us that in large parts of the image there is very little vari-
ation in the intensity. However, there are some small areas where the intensity
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(a) (b) (c)

Figure 15.10. The image in (a) shows the partial derivative in the x-direction for the image in 15.6. In (b) the
intensities in (a) have been normalised to [0,1] and in (c) the contrast as been enhanced with the function f50,
equation 15.1.

changes quite abruptly, and if you look carefully you will notice that in these ar-
eas there is typically both black and white pixels close together, like down the
vertical front corner of the bus. This will happen when there is a stripe of bright
or dark pixels that cut through an area of otherwise quite uniform intensity.

Since we display the derivative as a new image, the denominator is actually
not so important as it just corresponds to a constant scaling of all the pixels;
when we normalise the intensities to the interval [0,1] this factor cancels out.

We sum up the computation of the partial derivative by giving its computa-
tional molecule.

Observation 15.13. Let P = (pi , j )m,n
i , j=1 be a given image. The partial derivative

∂P/∂x of the image can be computed with the computational molecule

1

2

 0 0 0
−1 0 1
0 0 0

 .

As we remarked above, the factor 1/2 can usually be ignored. We have in-
cluded the two rows of 0s just to make it clear how the computational molecule
is to be interpreted; it is obviously not necessary to multiply by 0.
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Partial derivative in y-direction. The partial derivative ∂P/∂y can be com-
puted analogously to ∂P/∂x.

Observation 15.14. Let P = (pi , j )m,n
i , j=1 be a given image. The partial derivative

∂P/∂y of the image can be computed with the computational molecule

1

2

0 1 0
0 0 0
0 −1 0

 .

The result is shown in figure 15.12b. The intensities have been normalised
and the contrast enhanced by the function f50 in (15.1).

The gradient. The gradient of a scalar function is often used as a measure of
the size of the first derivative. The gradient is defined by the vector

∇P =
(
∂P

∂x
,
∂P

∂y

)
,

so its length is given by

|∇P | =
√(

∂P

∂x

)2

+
(
∂P

∂y

)2

.

When the two first derivatives have been computed it is a simple matter to com-
pute the gradient vector and its length; the resulting is shown as an image in
figure 15.11c.

The image of the gradient looks quite different from the images of the two
partial derivatives. The reason is that the numbers that represent the length of
the gradient are (square roots of) sums of squares of numbers. This means that
the parts of the image that have virtually constant intensity (partial derivatives
close to 0) are coloured black. In the images of the partial derivatives these val-
ues ended up in the middle of the range of intensity values, with a final colour of
grey, since there were both positive and negative values.

Figure 15.11a shows the computed values of the gradient. Although it is pos-
sible that the length of the gradient could become larger than 1, the maximum
value in this case is about 0.876. By normalising the intensities we therefore in-
crease the contrast slightly and obtain the image in figure 15.11b.
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(a) (b) (c)

Figure 15.11. Computing the gradient. The image obtained from the computed gradient is shown in (a) and
in (b) the numbers have been normalised. In (c) the contrast has been enhanced with a logarithmic function.

(a) (b) (c)

Figure 15.12. The first-order partial derivatives in the x-direction (a) and y-direction (b), and the length of
the gradient (c). In all images, the computed numbers have been normalised and the contrast enhanced.

To enhance the contrast further we have to do something different from
what was done in the other images since we now have a large number of in-
tensities near 0. The solution is to apply a function like the ones shown in fig-
ure 15.8b to the intensities. If we use the function g0.01 defined in equation(15.2)
we obtain the image in figure 15.11c.
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15.2.8 Comparing the first derivatives

Figure 15.12 shows the two first-order partial derivatives and the gradient. If
we compare the two partial derivatives we see that the x-derivative seems to
emphasise vertical edges while the y-derivative seems to emphasise horizontal
edges. This is precisely what we must expect. The x-derivative is large when
the difference between neighbouring pixels in the x-direction is large, which is
the case across a vertical edge. The y-derivative enhances horizontal edges for a
similar reason.

The gradient contains information about both derivatives and therefore em-
phasises edges in all directions. It also gives a simpler image since the sign of the
derivatives has been removed.

15.2.9 Second-order derivatives

To compute the three second order derivatives we apply the corresponding com-
putational molecules which we described in section 14.2.

Observation 15.15 (Second order derivatives of an image). The second or-
der derivatives of an image P can be computed by applying the computational
molecules

∂2P

∂x2 :

 0 0 0
−1 2 −1
0 0 0

 ,

∂2P

∂y∂x
:

1

4

−1 0 1
0 0 0
1 0 −1

 ,

∂2P

∂y2 :

0 1 0
0 2 0
0 −1 0

 .

With the information in observation 15.15 it is quite easy to compute the
second-order derivatives, and the results are shown in figure 15.13. The com-
puted derivatives were first normalised and then the contrast enhanced with
the function f100 in each image, see equation 15.1.

As for the first derivatives, the xx-derivative seems to emphasise vertical
edges and the y y-derivative horizontal edges. However, we also see that the
second derivatives are more sensitive to noise in the image (the areas of grey are
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(a) (b) (c)

Figure 15.13. The second-order partial derivatives in the x-direction (a) and x y-direction (b), and the y-
direction (c). In all images, the computed numbers have been normalised and the contrast enhanced.

less uniform). The mixed derivative behaves a bit differently from the other two,
and not surprisingly it seems to pick up both horizontal and vertical edges.

Exercises for Section 15.2

Exercise 1. Mark each of the following statements as true or false.

(a). A computational molecule must always be symmetric around the
center point.

(b). Sharp edges in images correspond to large values of the second deriva-
tive along a line, i.e. large values of

pi+1, j −2pi , j +pi+1, j ,

which corresponds to the numerical expression for the second derivative
found in Chapter 11.

15.3 Image formats

Just as there are many audio formats, there are many image formats, and in this
section we will give a superficial description of some of them. Before we do this
however, we want to distinguish between two important types of graphics rep-
resentations.
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Figure 15.14. The difference between vector graphics ((a) and (c)) and raster graphics ((b) and (d)).

15.3.1 Raster graphics and vector graphics

At the beginning of this chapter we saw that everything that is printed on a com-
puter monitor or by a printer consists of small dots. This is a perfect match for
digital images which also consist of a large number of small dots. However, as
we magnify an image, the dots in the image become visible as is evident in fig-
ure 15.2.

In addition to images, text and various kinds of line art (drawings) are also
displayed on monitors and printed by printers, and must therefore be repre-
sented in terms of dots. There is a big difference though, in how these kinds of
graphical images are stored. As an example, consider the plots in figure 15.14. In
figure (c), the plot in (a) has been magnified, without any dots becoming visible.
In (d), the plot in (b) has been magnified, and here the dots have become clearly
visible. The difference is that while the plots in (b)-(d) are represented as an im-
age with a certain number of dots, the plots in (a)-(d) are represented in terms
of mathematical primitives like lines and curves — this is usually referred to as a
vector representation or vector graphics. The advantage of vector graphics is that
the actual dots to be used are not determined until the figure is to be drawn. This
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Figure 15.15. The character ’S’ in the font Times Roman. The dots are parameters that control the shape of
the curves.

means that in figure (c) the dots which are drawn were not determined until the
magnification was known. On the other hand, the plot in (b) was saved as an
image with a fixed number of dots, just like the pictures of the bus earlier in the
chapter. So when this image is magnified, the only possibility is to magnify the
dots themselves, which inevitably produces a grainy picture like the one in(d).

In vector graphics formats all elements of a drawing are represented in terms
of mathematical primitives. This includes all lines and curves as well as text. A
line is typically represented by its two endpoints and its width. Curved shapes
are either represented in terms of short connected line segments or smoothly
connected polynomial curve segments. Whenever a drawing on a monitor or
printer is requested, the actual dots to be printed are determined from the math-
ematical representation. In particular this applies to fonts (the graphical shapes
of characters) which are usually represented in terms of quadratic or cubic poly-
nomial curves (so-called Bezier curves), see figure 15.15 for an example.

Fact 15.16. In vector graphics a graphical image is represented in terms of
mathematical primitives like lines and curves, and can be magnified without
any loss in quality. In raster graphics, a graphical image is represented as a dig-
ital image, i,.e., in terms of pixels. As the image is magnified, the pixels become
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visible and the quality of the image deteriorates.

15.3.2 Vector graphics formats

The two most common vector graphics formats are Postscript and PDF which
are formats for representing two-dimensional graphics. There are also standards
for three-dimensional graphics, but these are not as universally accepted.

Postscript. Postscript is a programming language developed by Adobe Sys-
tems in the early 1980s. Its principal application is representation of page im-
ages, i.e., information that may be displayed on a monitor or printed by a printer.
The basic primitives in Postscript are straight line segments and cubic polyno-
mial curves which are often joined (smoothly) together to form more complex
shapes. Postscript fonts consist of Postscript programs which define the out-
lines of the shapes of all the characters in the font. Whenever a Postscript pro-
gram needs to print something, software is required that can translate from the
mathematical Postscript representation to the actual raster representation to be
use on the output device. This software is referred to as a Postscript interpreter
or driver. Postscript files are standard text files so the program that produces a
page can be inspected (and edited) in a standard editor. A disadvantage of this
is that Postscript files are coded inefficiently and require a lot of storage space.
Postscript files have extension .eps or .ps.

Since many pages contain images, Postscript also has support for including
raster graphics within a page.

PDF. Portable Document Format is a standard for representing page images
that was also developed by Adobe. In contrast to Postscript, which may require
external information like font libraries to display a page correctly, a PDF-file
contains all the necessary information within itself. It supports the same mathe-
matical primitives as Postscript, but codes the information in a compact format.
Since a page may contain images, it is also possible to store a digital image in
PDF-format. PDF-files may be locked so that they cannot be changed. PDF is
in wide-spread use across computer platforms and is a preferred format for ex-
changing documents. PDF-files have extension .pdf.

15.3.3 Raster graphics formats

There are many formats for representing digital images. We have already men-
tioned Postscript and PDF; here we will mention a few more which are pure im-
age formats (no support for vector graphics).
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Before we describe the formats we need to understand a technical detail
about representation of colour. As we have already seen, in most colour im-
ages the colour of a pixel is represented in terms of the amount of red, green
and blue or (r, g ,b). Each of these numbers is usually represented by eight bits
and can take integer values in the range 0–255. In other words, the colour in-
formation at each pixel requires three bytes. When colour images and monitors
became commonly available in the 1980s, the file size for a 24-bit image file was
very large compared to the size of hard drives and available computer memory.
Instead of storing all 24 bits of colour information it was therefore common to
create a table of 256 colours with which a given image could be represented quite
well. Instead of storing the 24 bits, one could just store the table at the beginning
of the file, and at each pixel, the eight bits corresponding to the correct entry in
the table. This is usually referred to as eight-bit colour and the table is called a
look-up table or palette. For large photographs, 256 colours is far from sufficient
to obtain reasonable colour reproduction.

Images may contain a large amount of data and have great potential for both
lossless and lossy compression. For lossy compression, strategies similar to the
ones used for audio compression are used. This means that the data are trans-
formed by a DCT or wavelet transform (these transforms generalise easily to im-
ages), small values are set to zero and the resulting data coded with a lossless
coding algorithm.

Like audio formats, image formats usually contain information like resolu-
tion, time when the image was recorded and similar information at the begin-
ning of the file.

GIF. Graphics Interchange Format was introduced in 1987 as a compact repre-
sentation of colour images. It uses a palette of at most 256 colours sampled from
the 24-bit colour model, as explained above. This means that it is unsuitable for
colour images with continuous colour tones, but it works quite well for smaller
images with large areas of constant colour, like logos and buttons on web pages.
Gif-files are losslessly coded with a variant of the Lempel-Ziv-Welch algorithm.
The extension of GIF-files is .gif.

TIFF. Tagged Image File Format is a flexible image format that may contain
multiple images of different types in the same file via so-called ’tags’. TIFF sup-
ports lossless image compression via Lempel-Ziv-Welch compression, but may
also contain JPEG-compressed images (see below). TIFF was originally devel-
oped as a format for scanned documents and supports images with one-bit pixel
values (black and white). It also supports advanced data formats like more than
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eight bits per colour component. TIFF-files have extension .tiff.

JPEG. Joint Photographic Experts Group is an image format that was approved
as an international standard in 1994. JPEG is usually lossy, but may also be loss-
less and has become a popular format for image representation on the Internet.
The standard defines both the algorithms for encoding and decoding and the
storage format. JPEG divides the image into 8× 8 blocks and transforms each
block with a Discrete Cosine Transform. These values corresponding to higher
frequencies (rapid variations in colour) are then set to 0 unless they are quite
large, as this is not noticed much by human perception. The perturbed DCT val-
ues are then coded by a variation of Huffman coding. JPEG may also use arith-
metic coding, but this increases both the encoding and decoding times, with
only about 5 % improvement in the compression ratio. The compression level
in JPEG images is selected by the user and may result in conspicuous artefacts
if set too high. JPEG is especially prone to artefacts in areas where the inten-
sity changes quickly from pixel to pixel. The extension of a JPEG-file is .jpg or
.jpeg.

PNG. Portable Network Graphics is a lossless image format that was published
in 1996. PNG was not designed for professional use, but rather for transferring
images on the Internet, and only supports grey-level images and rgb images
(also palette based colour images). PNG was created to avoid a patent on the
LZW-algorithm used in GIF, and also GIF’s limitation to eight bit colour infor-
mation. For efficient coding PNG may (this is an option) predict the value of a
pixel from the value of previous pixels, and subtract the predicted value from the
actual value. It can then code these error values using a lossless coding method
called DEFLATE which uses a combination of the LZ77 algorithm and Huffman
coding. This is similar to the algorithm used in lossless audio formats like Apple
Lossless and FLAC. The extension of PNG-files is .png.

JPEG 2000. This lossy (can also be used as lossless) image format was devel-
oped by the Joint Photographic Experts Group and published in 2000. JPEG 2000
transforms the image data with a wavelet transform rather than a DCT. After sig-
nificant processing of the wavelet coefficients, the final coding uses a version
of arithmetic coding. At the cost of increased encoding and decoding times,
JPEG 2000 leads to as much as 20 % improvement in compression ratios for
medium compression rates, possibly more for high or low compression rates.
The artefacts are less visible than in JPEG and appear at higher compression
rates. Although a number of components in JPEG 2000 are patented, the patent
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holders have agreed that the core software should be available free of charge,
and JPEG 2000 is part of most Linux distributions. However, there appear to be
some further, rather obscure, patents that have not been licensed, and this may
be the reason why JPEG 2000 is not used more. The extension of JPEG 2000 files
is .jp2.

Exercises for Section 15.3

Exercise 1. Mark each of the following statements as true or false.

(a). Vector graphics scales better than raster graphics when you zoom in
closely on it.
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APPENDIX

Answers

Section 1.5

E xercise 1.(a).

s1 := 0; s2 := 0;
for k := 1, 2, . . . , n

if ak > 0
s1 := s1+ak ;

else
s2 := s2+ak ;

s2 :=−s2;

Note that we could also replace the statement in the else-branch by s2 := s2−ak

and leave out the last statement.

E xercise 1.(b). We introduce two new variables pos and neg which count the
number of positive and negative elements, respectively.

s1 := 0; pos := 0;
s2 := 0; neg := 0;
for k := 1, 2, . . . , n

if ak > 0
s1 := s1+ak ;
pos := pos +1;

else
s2 := s2+ak ;
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neg := neg +1;
s2 :=−s2;

Exercise 2 . We represent the three-digit numbers by their decimal numerals
which are integers in the range 0–9. The numerals of the number x = 431 for
example, is represented by x1 = 1, x2 = 3 and x3 = 4. Adding two arbitrary such
numbers x and y produces a sum z which can be computed by the algorithm

if x1 + y1 < 10
z1 := x1 + y1;

else
x2 := x2 +1;
z1 := x1 + y1 −10;

if x2 + y2 < 10
z2 := x2 + y2;

else
x3 := x3 +1;
z2 := x2 + y2 −10;

if x3 + y3 < 10
z3 := x3 + y3;

else
z4 := 1;
z3 := x3 + y3 −10;

Exercise 3 . We use the same representation as in the solution for exercise 3.
Multiplication of two three-digit numbers x and y can then be performed by the
formulas

pr oduct1 := x1 ∗ y1+10∗x1 ∗ y2 +100∗x1 ∗ y3;
pr oduct2 := 10∗x2 ∗ y1+100∗x2 ∗ y2 +1000∗x2 ∗ y3;
pr oduct3 := 100∗x3 ∗ y1+1000∗x3 ∗ y2 +10000∗x3 ∗ y3;
pr oduct := pr oduct1+pr oduct2+pr oduct3;

Section 2.3

Exercise 1 . The truth table is
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p q r p ⊕q (p ⊕q)⊕ r q ⊕ r p ⊕ (q ⊕ r )

F F F F F F F
F F T F T T T
F T F T T T T
F T T T F F F
T F F T T F T
T F T T F T F
T T F F F T F
T T T F T F T

Exercise 2 . Solution by truth table for ¬(p ∧q) =¬(p ∨q)

p q p ∧q ¬p ¬q ¬(p ∧q) (¬p)∨ (¬q)

F F F T T T T
F T F T F T T
T F F F T T T
T T T F F F F

Solution by truth table for ¬(p ∨q) =¬(p ∧q)

p q p ∨q ¬p ¬q ¬(p ∨q) (¬p)∧ (¬q)

F F F T T T T
F T T T F F F
T F T F T F F
T T T F F F F

Section 3.1

Exercise 1 .

E xercise 1.(a). False

E xercise 1.(b). True

E xercise 1.(c). False

E xercise 1.(d). True
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Section 3.2

Exercise 1 .

E xercise 1.(a). True

E xercise 1.(b). False

E xercise 1.(c). True.

E xercise 2.(a). 220

E xercise 2.(b). 32

E xercise 2.(c). 10001

E xercise 2.(d). 1022634

E xercise 2.(e). 123456

E xercise 2.(f). 7e

E xercise 3.(a). 131

E xercise 3.(b). 67

E xercise 3.(c). 252

E xercise 4.(a). 100100

E xercise 4.(b). 100000000

E xercise 4.(c). 11010111

E xercise 5.(a). 4d

E xercise 5.(b). c

E xercise 5.(c). 29e4

E xercise 5.(d). 0.594

E xercise 5.(e). 0.052
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E xercise 5.(f). 0. f f 8

Exercise 6 .

E xercise 6.(a). 111100

E xercise 6.(b). 100000000

E xercise 6.(c). 111001010001

E xercise 6.(d). 0.000010101010

E xercise 6.(e). 0.000000000001

E xercise 6.(f). 0.111100000001

E xercise 7.(a). 7 = 107, 37 = 1037 and 4 = 104

E xercise 7.(b). β= 13,β= 100

E xercise 8.(a). 400 = 10020, 4 = 1002 and 278 = 10017

E xercise 8.(b). β= 5,β= 29

Section 3.3

E xercise 1.(a). True

E xercise 1.(b). False

E xercise 1.(c). False

E xercise 1.(d). False

E xercise 3.(a). 0.01

E xercise 3.(b). 0.102120102120102120. . .

E xercise 3.(c). 0.01

E xercise 3.(d). 0.001111111. . .

E xercise 3.(e). 0.7

E xercise 3.(f). 0.6060606. . .

E xercise 3.(g). 0.e

E xercise 3.(h). 0.24

E xercise 3.(i). 0.343

Exercise 4 . π9 ≈ 3.129

Exercise 6 . c −1
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Section 3.4

E xercise 1.(a). The third alternative is correct

E xercise 1.(c). 50.18

Exercise 2 .

E xercise 2.(a). 47

E xercise 2.(b). 136

E xercise 2.(c). 100012

E xercise 2.(d). 11003

E xercise 2.(e). 1035

E xercise 2.(f). 45 = 47

Exercise 3 .

E xercise 3.(a). 38

E xercise 3.(b). 112

E xercise 3.(c). 1748

E xercise 3.(d). 1123

E xercise 3.(e). 245

E xercise 4.(a). 11002

E xercise 4.(b). 100102

E xercise 4.(c). 12103

E xercise 4.(d). 1415

E xercise 4.(e). 136208

E xercise 4.(f). 102203

E xercise 4.(g). 11112
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Section 4.1

E xercise 1.(c). The first alternative is correct.

Section 4.2

Exercise 3 . Largest integer: 7 f f f f f f f16.
Smallest integer: 8000000016.

E xercise 5.(a). 0.4752735×107

E xercise 5.(b). 0.602214179×1024

E xercise 5.(c). 0.8617343×10−4.

Exercise 6 . 0.1001 1100 1111 0101 1010. . .×24

Section 4.3

E xercise 3.(a). 0101 10102 = 5a16

E xercise 3.(b). 1100 0011 1011 01012 = c3b516

E xercise 3.(c). 1100 1111 1011 10002 = c f b816

E xercise 3.(d). 1110 1000 1011 1100 1011 01112 = e8bcb716

Exercise 4 . 0000 0000 0101 10102 = 005a16

0000 00001111 01012 = 00 f 516

0000 0011 1111 10002 = 03 f 816

1000 1111 0011 01112 = 8 f 3716

E xercise 5.(a). ï£¡: Ãï£¡, ï£¡: Ã,̧ ï£¡: ÃU

E xercise 5.(b). Nothing or error message; these codes are not valid UTF-8 codes.

E xercise 5.(c). £¡: NULï£¡, ï£¡: NULï£¡, ï£¡: NULï£¡; each character is preceded
(or followed for LE) by a trailing null character, this has no visible impact on
the displayed text. The opposite again yields illegitimate UTF-16 encodings (too
short).

E xercise 5.(d). The conversion from UTF-8 to UTF-16 yields the following Hangul
symbols:

ï£¡: , ï£¡: , ï£¡:Ş:
The conversion from UTF-16 to UTF-8 yields illegitimate codes, though there

will be an allowed null character preceding (or following for LE) each prohibited
letter.
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Section 4.5

Section 5.2

Exercise 2 . The last expression.

E xercise 6.(a). 0.1647×102

E xercise 6.(b). 0.1228×102

E xercise 6.(c). 0.4100×10−1

E xercise 6.(d). 0.6000×10−1

E xercise 6.(e). −0.5000×10−2

E xercise 7.(a). Normalised number in base β: A nonzero number a is written as

a =α×βn

where β−1 ≤ |α| < 1.

Exercise 8 . One possible program:

n := 1;
while 1.0+2−n > 1.0

n := n +1;
print n;

Section 5.3

E xercise 2.(a). r = 0.0006

E xercise 2.(b). r ≈ 0.0183

E xercise 2.(c). r ≈ 2.7×10−4

E xercise 2.(d). r ≈ 0.94

Section 5.4

E xercise 1.(a). 3/2

E xercise 1.(b). The last alternative is the correct one.
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Section 6.1

Exercise 1 . In simpler English the riddle says: Diophantus’ youth lasted 1/6
of his life. He had the first beard in the next 1/12 of his life. At the end of the
following 1/7 of his life Diophantus got married. Five years later his son was
born. His son lived exactly 1/2 of Diophantus’ life. Diophantus died 4 years after
the death of his son. Solution: If d and s are the ages of Diophantus and his son
when they died, then the epitaph corresponds to the two equations

d = (1/6+1/12+1/7)d +5+ s +4,

s = 1/2d .

If we solve these we obtain s = 42 years and d = 84 years.

Section 6.2

E xercise 2.(a). x2 = 1, x3 = 2, x4 = 5, x5 = 13

E xercise 2.(b). x2 = 17, x3 = 32, x4 = 83, x5 = 179

E xercise 2.(c). x2 = 4, x3 = 16, x4 = 128, x5 = 4096

E xercise 3.(a). Linear.

E xercise 3.(b). Nonlinear.

E xercise 3.(c). Nonlinear.

E xercise 3.(d). Linear.

Section 6.3

Section 6.4

E xercise 2.(a). xn = 3n · 5
3

E xercise 2.(c). xn = (1−2n)(−1)n

E xercise 2.(d). xn = 3
4 ·3n + 5

4 (8−1)n
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Section 6.5

E xercise 2.(a). overflow and then NAN.

E xercise 2.(b). 3/8

E xercise 3.(a). xn = 3−3−n .

E xercise 3.(b). xn = 1/7.

E xercise 3.(c). xn = (2/3)n .

E xercise 6.(a). Solution determined by the initial conditions: xn = 15−n .

E xercise 6.(c). n ≈ 24.

E xercise 7.(a). Solution determined by the initial conditions: xn = 2−n .

Section 7.1

Section 7.2

E xercise 4.(a). Use ternary trees instead of binary ones. (Each tree has either
zero or three subtrees/children).

E xercise 4.(b). Use n-nary trees. (Each tree has either zero or n subtrees/chil-
dren)

Exercise 6 . Frequencies used are all 1.

Section 7.3

E xercise 1.(a). The statement is false.

E xercise 1.(b). The statement is true

E xercise 1.(c). The statement is false

E xercise 1.(d). The statement is false.

Exercise 3 . log2 x = ln x/ln2.
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Section 7.4

E xercise 2.(a).
f (A) = 9,

f (B) = 1,

p(A) = 0.1,

p(B) = 0.9,

E xercise 2.(b). 6 bits

E xercise 2.(c). 011100

E xercise 3.(a). H = 2

E xercise 3.(b). 2 bits per symbol

E xercise 3.(c). 2m + 1 bits 2m+1
m ≈ 2 bits per symbol

E xercise 3.(d).

00 10 11 01 00 10

E xercise 3.(e).

00 10 11 01 00 10 1

Exercise 4 .

BCBBCBBBCB

Exercise 5 .

01 01 11 10 00

Exercise 6 .

f (x) = c + (y −a)
d − c

b −a
(.6)

Section 7.6

Section 8.1

Section 8.2

Section 9.1

E xercise 4.(a). T2(x;1) = 1−3x +3x2.

E xercise 4.(b). T2(x;0) = 12x2 +3x +1.

E xercise 4.(c). T2(x;0) = 1+x ln2+ (ln2)2x2/2.
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Section 9.2

E xercise 3.(a).

p3(x) =− (x −1)(x −3)(x −4)

12
− x(x −1)(x −4)

3
+ x(x −1)(x −3)

12
.

E xercise 3.(c).

p3(x) = 1−x + 2

3
x(x −1)− 1

3
x(x −1)(x −3).

Section 9.3

E xercise 2.(a). f [0,1,2,3] = 0.

E xercise 3.(a). The Newton form is

p2(x) = 2−x.

E xercise 4.(a). Linear interpolant p1:

p1(x) = y1 + (y2 − y1)(x −1).

Error at x:

f [1,2, x](x −1)(x −2) = f ′′(ξ)

2
(x −1)(x −2)

where ξ is a number in the smallest interval (a,b) that contains all of 1, 2, and x.
Error at x = 3/2:

f ′′(ξ1)

8
where ξ is a number in the interval (1,2).

E xercise 4.(b). Cubic interpolant:

p3(x) = y0 + (y1 − y0)x + y2 −2y1 + y0

2
x(x −1)+ y3 −3y2 +3y1 − y0

6
x(x −1)(x −2).

Error:

f [0,1,2,3, x]x(x −1)(x −2)(x −3) = f (i v)(ξ)

4!
x(x −1)(x −2)(x −3)

where ξ is now a number in the smallest open interval that contains all of 0, 1, 2,
3, and x. With x = 3/2 this becomes

3

128
f (i v)(ξ3)

where ξ3 is a number in the interval (0,3).

440



Section 9.4

Section 10.2

E xercise 3.(a). Approximation after 10 steps: 0.73876953125.

E xercise 3.(b). To get 10 correct digits it is common to demand that the relative
error is smaller than 5×10−11, even though this does not always ensure that we
have 10 correct digits. A challenge with the relative error is that it requires us
to know the exact zero. In our case we have a very good approximation that we
could use, but as we commented when we discussed properties of the relative
error, it is sufficient to use a rough estimate, like 0.7 in this case. The required
inequality is therefore

1

2N 0.7
≤ 5×10−11.

This inequality can be easily solved and leads to N ≥ 35.

E xercise 3.(c). Actual error: 1.3×10−11

Section 10.3

E xercise 3.(a). f (x) = x2−3. One iteration gives the approximation 1.6666666666666667
which has two correct digits (

p
3 ≈ 1.7320508075688772935 with 20 correct dig-

its). After 6 iterations we obtain the approximation 1.732050807568877.

E xercise 3.(b). f (x) = x12 −2.

E xercise 3.(c). f (x) = ln x −1.

Section 10.4

Exercise 3 . If you do the computations with 64-bit floating-point numbers, you
have full machine accuracy after just 4 iterations. If you do 7 iterations you ac-
tually have about 164 correct digits.

E xercise 4.(a). Midpoint after 10 iterations: 3.1416015625.

E xercise 4.(b). Approximation after 4 iterations: 3.14159265358979.

E xercise 4.(c). Approximation after 4 iterations: 3.14159265358979.

E xercise 6.(b). en+1 = en−1en
/

(xn−1 +xn), where en =p
2−xn .

E xercise 7.(b). After 5 iterations we have the approximation 0.142857142857143
in which all the digits are correct (the fourth approximation has approximate
error 6×10−10). The code can look as follows:
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N=30
epsilon=10**(-10)
i=0
xp=z=0.1
R=7.0
abserr=abs(z)
while i <= N and abserr >= epsilon*abs(z):
z=xp*(2.0-R*xp)
print i,z
abserr=abs(z-xp)
xp=z
i=i+1

E xercise 8.(c). An example where xn > c for n > 0 is f (x) = x2 −2 with c = p
2

(choose for example x0 = 1). If we use the same equation, but choose x0 = −1,
we converge to −p2 and have xn < c for large n (in fact n > 0).

An example where the iterations jump around is in computing an approxi-
mation to a zero of f (x) = sin x, for example with x0 = 4 (convergence to c =π).

Section 11.1

E xercise 5.(b). h∗ ≈ 8.4×10−9.

Section 11.2

Exercise 1 . f ′(a) ≈ p ′
2(a) =−( f (a +2h)−4 f (a +h)+3 f (a))/(2h).

Section 11.3

E xercise 2.(b). h∗ ≈ 5.9×10−6.

E xercise 3.(b). With 6 digits:
( f (a +h)− f (a))/h = 0.455902, relative error: 0.0440981.
( f (a)− f (a −h))/h = 0.542432, relative error: 0.0424323.
( f (a +h)− f (a −h))/(2h) = 0.499167, relative error: 0.000832917.

E xercise 5.(c). With 6 digits:
( f (a +h)− f (a))/h = 0.975, relative error: 0.025.
( f (a)− f (a −h))/h = 1.025, relative error: 0.025.
( f (a +h)− f (a −h))/(2h) = 1, relative error: 8.88178×10−16.
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E xercise 6.(a). Optimal h: 2.9×10−6.

E xercise 6.(b). Optimal h: 3.3×10−6

Section 11.4

E xercise 2.(b). Opitmal h: 9.9×10−4.

Section 11.5

E xercise 2.(b). Optimal h: 2.24×10−4.

E xercise 4.(a). c1 =−1/(2h), c2 = 1/(2h).

E xercise 4.(c). c1 =−1/h2, c2 = 2/h2, c3 =−1/h2.

Section 12.1

E xercise 2.(a). I ≈ 1.63378, I ≈ 1.805628.

E xercise 2.(b).
∣∣I − I

∣∣≈ 0.085, |I−I |
|I | = 0.0491781.∣∣∣I − I

∣∣∣≈ 0.087,

∣∣∣I−I
∣∣∣

|I | = 0.051.

Section 12.2

Exercise 2 . 5/16.

Exercise 3 . Approximation: 0.530624 (with 6 digits).

E xercise 4.(a). Approximation with 10 subintervals: 1.71757 (with 6 digits)

E xercise 4.(b). h ≤ 2.97×10−5.

Exercise 5 . Approximation with 10 subintervals: 5.36648 (with 6 digits). h ≤
4.89×10−5.

Section 12.3

Exercise 2 . 3/8

Exercise 3 . Approximation: 0.519725 (with 6 digits).

E xercise 4.(a). Approximation with 10 subintervals: 1.71971 (with 6 digits).

E xercise 4.(b). h ≤ 1.48×10−5.
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Section 12.4

Exercise 3 . Approximation: 0.527217 (with 6 digits).

E xercise 4.(a). 115 471 evaluations.

E xercise 4.(b). 57 736 evaluations.

E xercise 4.(c). 383 evaluations.

E xercise 5.(a). Approximation with 10 subintervals: 1.718282782 (with 10 dig-
its).

E xercise 5.(b). h ≤ 1.8×10−2.

Exercise 7 . w1 = w3 = (b −a)/6, w2 = 2(b −a)/3.

Section 13.1

E xercise 3.(a). Linear.

E xercise 3.(b). Nonlinear.

E xercise 3.(c). Nonlinear.

E xercise 3.(d). Nonlinear.

E xercise 3.(e). Linear.

Section 13.2

E xercise 3.(a). x(t ) = 1 will cause problems.

E xercise 3.(b). The differential equation is not defined for t = 1.

E xercise 3.(c). The equation is not defined when x(t ) is negative.

E xercise 3.(d). The equation does not hold if x ′(t ) = 0 or x(t ) = 0 for some t .

E xercise 3.(e). The equation is not defined for |x(t )| > 1.

E xercise 3.(f). The equation is not defined for |x(t )| > 1.
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Section 13.3

E xercise 3.(a). x(0.3) ≈ 1.362.

E xercise 3.(b). x(0.3) ≈ 0.297517.

E xercise 3.(c). x(0.3) ≈ 1.01495.

E xercise 3.(d). x(1.3) ≈ 1.27488.

E xercise 3.(e). x(0.3) ≈ 0.297489.

Section 13.4

Exercise 2 .

|R1(h)| ≤ h2

4
.

Section 13.5

E xercise 1.(a). x ′′(0) = 1, x ′′′(0) = 1.

E xercise 1.(b). x ′′(0) = 1, x ′′′(0) = 0.

E xercise 1.(c). x ′′(1) = 0, x ′′′(1) = 0.

E xercise 1.(d). x ′′(1) = 0, x ′′′(1) = 0.

Section 13.6

E xercise 2.(a). Euler: x(1) ≈ 5.01563.
Quadratic Taylor: x(t ) ≈ 5.05469.
Quartic Taylor: x(t ) ≈ 5.14583.

E xercise 2.(b). Euler: x(1) ≈ 2.5.
Quadratic Taylor: x(t ) ≈ 3.28125.
Quartic Taylor: x(t ) ≈ 3.43469.

E xercise 2.(c). Euler: x(1) ≈ 12.6366.
Quadratic Taylor: x(t ) ≈ 13.7823.
Quartic Taylor: x(t ) ≈ 13.7102.
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E xercise 3.(a). Euler: x(0.5) ≈ 1.5.
Since we only take one step, Euler’s method is just the approximation

x(h) ≈ x(0)+hx ′(0)

where h = 0.5, x(0) = 1, and x ′(t ) = e−t 2
. The error is therefore given by the

remainder in Taylor’s formula

R1(h) = h2

2
x ′′(ξ1),

where ξ1 ∈ (0,h). Since the right-hand side

g (t ) = e−t 2

of the differential equation is independent of x, we simply have

x ′′(t ) = d

d t

(
x ′(t )

)= d

d t

(
g (t )

)= d

d t

(
e−t 2

)
=−2te−t 2

.

To bound the absolute error |R1(h)|, we therefore need to bound the absolute
value of this expression. A simple upper bound is obtained by using the esti-
mates |t | ≤ 0.5 and e−t 2 ≤ 1,

|R1(0.5)| ≤ 0.52

2
0.5 = 1

16
= 0.0625.

The actual error turns out to be about 0.039.

E xercise 3.(b). Quadratic Taylor: x(0.5) ≈ 1.5.
In this case we need to estimate R2(0.5), where

R2(h) = h3

6
x ′′′(ξ2)

and ξ2 ∈ (0,h). We have x ′′′(t ) = g ′′(t ) = 2(2t 2 −1)e−t 2
. The maximum of the first

factor is 2 on the interval [0,0.5] and the maximum of the second factor is 1. We
therefore have

|R2(0.5)| ≤ 2
0.53

6
≈ 0.042.

E xercise 3.(c). Cubic Taylor: x(0.5) ≈ 1.458333.
In this case the remainder is

R3(h) = h4

24
x ′′′′(ξ3),
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where ξ3 ∈ (0,h) and x ′′′′(t ) = g ′′′(t ) = 4t (3−2t 2)e−t 2
. The quick estimate is

4t ≤ 2, 3−2t 2 ≤ 3, e−t 2 ≤ 1

which leads to

|R3(0.5)| ≤ 0.54

24
×3×2 = 0.54

4
≈ 0.016.

The true error is approximately 0.0029.
We can improve the estimate slightly by finding the maximum of g ′′′(t ). On

the interval [0,0.5] this is an increasing function so its maximum is g ′′′(0.5) ≈
3.89 ≤ 4. This leads to the slightly better estimate

|R3(0.5)| ≤ 0.54

24
4 ≈ 0.010.

E xercise 5.(a). x ′′(t ) = 2t + (3x2 −1)x ′(t ).

E xercise 5.(b). Quadratic Taylor with 1 step: x(1) ≈ 1.
Quadratic Taylor with 2 steps: x(1) ≈ 4.
Quadratic Taylor with 5 steps: x(1) ≈ 28651.2.

E xercise 5.(c). Quadratic Taylor with 10 steps: x(2) ≈ 6×10122.
Quadratic Taylor with 100 or 1000 steps leads to overflow.

E xercise 6.(b). x ′′′(t ) = 2+6xx ′2 +3x2x ′′−x ′′.
One time step: x(2) ≈ 3.66667.
Two time steps: x(2) ≈ 22.4696.

E xercise 6.(d). 10 time steps: x(2) ≈ 1.5×10938 (overflow with 64 bit numbers).
100 time steps: overflow.
1000 time steps: overflow.

Section 13.7

E xercise 2.(a). x(1) ≈ 2.

E xercise 2.(b). x(1) ≈ 2.5.

E xercise 2.(c). x(1) ≈ 2.5.

E xercise 2.(d). x(1) ≈ 2.70833.

E xercise 2.(e). x(1) ≈ 2.71735.
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E xercise 3.(a). Approximation at t = 2π:
Euler’s method with 1 step: x(2π) ≈ 11.0015.
Euler’s method with 2 steps: x(2π) ≈ 4.71828.
Euler’s method with 5 steps: x(2π) ≈ 0.276243.
Euler’s method with 10 steps: x(2π) ≈ 2.14625.

E xercise 3.(b). Approximation at t = 2π:
Euler’s midpoint method with 1 step: x(2π) ≈ 4.71828.
Euler’s midpoint method with 5 steps: x(2π) ≈ 3.89923.

Section 13.8

Exercise 1 . The third alternative is correct.

Section 13.9

E xercise 1.(a). We set x1 = y , x2 = y ′, x3 = x, and x4 = x ′. This gives the system

x ′
1 = x2,

x ′
2 = x2

1 −x3 +e t ,

x ′
3 = x4,

x ′
4 = x1 −x2

3 −e t .

E xercise 1.(b). We set x1 = x, x2 = x ′, x3 = y , and x4 = y ′. This gives the system

x ′
1 = x2,

x ′
2 = 2x3 −4t 2x1,

x ′
3 = x4,

x ′
4 =−2x1 −2t x2.

E xercise 3.(a). With x1 = x and x2 = x ′ we obtain

x ′
1 = x2,

x ′
2 = (−3x1 − t 2x2).

E xercise 3.(b). With x1 = x and x2 = x ′ we obtain

x ′
1 = x2,

x ′
2 = (−ks x1 −kd x2)/m.

Exercise 4 . Euler with 2 steps:

x(2) ≈ 7, x ′(2) ≈ 6.53657, y(2) ≈−1.33333, y ′(2) ≈−8.3619.

Euler’s midpoint method with 2 steps:

x(2) ≈ 7.06799, x ′(2) ≈−1.0262, y(2) ≈−8.32262, y ′(2) ≈−15.2461.
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Section 14.1

Section 14.2

Exercise 3 .
∂3 f

∂x2∂y
≈ f2,1 − f2,0 −2 f1,1 +2 f1,0 + f0,1 − f0,0

h2
1h2

.

∂4 f

∂x2∂y2 ≈ f2,2 −2 f2,1 + f2,0 −2 f1,2 +4 f1,1 −2 f1,0 + f0,2 −2 f0,1 + f0,0

h2
1h2

2

.

Section 15.1

Section 15.2

Section 15.3
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