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Abstract
Following the first paper on quantum algorithms for SDP-solving by Brandão and Svore [13] in
2016, rapid developments have been made on quantum optimization algorithms. In this paper
we improve and generalize all prior quantum algorithms for SDP-solving and give a simpler and
unified framework.

We take a new perspective on quantum SDP-solvers and introduce several new techniques.
One of these is the quantum operator input model, which generalizes the different input models
used in previous work, and essentially any other reasonable input model. This new model assumes
that the input matrices are embedded in a block of a unitary operator. In this model we give a
Õ
((√

m+
√
nγ
)
αγ4) algorithm, where n is the size of the matrices, m is the number of constraints,

γ is the reciprocal of the scale-invariant relative precision parameter, and α is a normalization factor
of the input matrices. In particular for the standard sparse-matrix access, the above result gives
a quantum algorithm where α = s. We also improve on recent results of Brandão et al. [12], who
consider the special case when the input matrices are proportional to mixed quantum states that
one can query. For this model Brandão et al. [12] showed that the dependence on n can be replaced
by a polynomial dependence on both the rank and the trace of the input matrices. We remove the
dependence on the rank and hence require only a dependence on the trace of the input matrices.

After we obtain these results we apply them to a few different problems. The most notable
of which is the problem of shadow tomography, recently introduced by Aaronson [2]. Here we
simultaneously improve both the sample and computational complexity of the previous best results.
Finally we prove a new Ω̃(

√
mαγ) lower bound for solving LPs and SDPs in the quantum operator

model, which also implies a lower bound for the model of Brandão et al. [12].
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99:2 Improvements in Quantum SDP-Solving with Applications

1 Semidefinite programs

In this paper we consider semidefinite programs (SDPs). SDPs have many applications in op-
timization, notable examples include approximation of NP-hard problems like MAXCUT [21]
and polynomial optimization through the Sum-Of-Squares hierarchy [24, 29]. SDPs have also
found applications in quantum information theory. Examples include POVM measurement
design [18] and finding the winning probability of non-local games [16].

We consider the basic (primal) form of an SDP as follows:

OPT = max Tr (CX) (1)
s.t. Tr (AjX) ≤ bj for all j ∈ [m],

X � 0,

where [m] := {1, . . . ,m}. The input to the problem consists of n× n Hermitian constraint
matrices A1, . . . , Am, an objective matrix C, and reals b1, . . . , bm. For normalization purposes
we assume ‖C‖ , ‖Aj‖ ≤ 1. The number of constraints is m (we do not count the standard
X � 0 constraint for this). The variable X of this SDP is an n × n positive semidefinite
(psd) matrix. We assume that A1 = I and b1 = R, giving a known bound on the trace of a
solution: Tr (X) ≤ R. A primal SDP also has a dual. For a primal SDP of the above form (1)
the dual SDP is

OPT = min bT y (2)

s.t.
m∑
j=1

yjAj − C � 0,

y ≥ 0.

We assume that the dual optimum is attained and that an explicit r ≥ 1 is known such that
at least one optimal dual solution y exists ‖y‖1 ≤ r. These assumptions imply that strong
duality holds, justifying the use of OPT for both optimal values. The parameters r and R
correspond to the scale of the SDP, without these bounds we could scale the SDP such that
a larger error can be allowed. In some cases r ·R may be quite large, but there are natural
problems, where it is constant, cf. zero-sum games [4]. Finally, note that linear programs
(LPs) correspond to the case where all constraint matrices are diagonal.

In this paper we build on the observation that a normalized psd matrix can be naturally
represented as a quantum state. Since operations on quantum states can sometimes be
cheaper to perform on a quantum computer than operations on classical descriptions of
matrices, this can give rise to faster algorithms for solving SDPs on a quantum computer [13].

We say an algorithm is an ε-approximate quantum SDP-solver if for all input numbers
g ∈ R and ζ ∈ (0, 1), with success probability 1− ζ, all of the following hold:

(i) The algorithm finds a vector y′∈Rm+1 and a number z∈R defining its output

X := z
e
−
∑m

j=1
y′

jAj+y′
0C

Tr
(
e
−
∑m

j=1
y′

j
Aj+y′

0C
) . (3)

The output X is an ε-feasible primal solution with objective value at least g − ε, i.e.,

∀j ∈ [m] : Tr (XAj) ≤ bj + ε,

and Tr (XC) ≥ g − ε. If the algorithm cannot find such an output X, then it correctly
concludes that no feasible solution exist (if we set ε = 0).
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(ii) The algorithm finds a y ∈ Rm+1 that is an ε-feasible solution to the dual problem with
objective value at most g + ε, i.e.,

m∑
j=1

yjAj − C � −εI, (4)

and bT y ≤ g + ε, or it correctly concludes that no feasible y exists (if we set ε = 0).
(iii) The algorithm determines whether OPT ≤ g−ε or OPT ≥ g+ε. If OPT ∈ (g−ε, g+ε)

then it may output either. (Note that this essentially follows from (i)-(ii).)
Notice that this solves a decision version of the problem. However, we can easily find an
approximation of OPT using binary search on g if we have an ε-approximate SDP-solver.
Since ε is scale depended we actually care about the dependence on the scale invariant
parameter γ := Rr/ε. An algorithm that only satisfies (i) will be called an ε-approximate
SDP primal oracle. For such an algorithm the relevant scale invariant parameter is γ := R/ε.
Due to the form of the objective value constraint in the first point, and to simplify statements
like (3), we write A0 := −C and b0 := −g.

Notation

We use the following definition for Õ:

Õd,e (f(a, b, c)) := O (f(a, b, c) · polylog(f(a, b, c), d, e)) .

We define Ω̃ in a similar way and Θ̃ as the intersection of the two. We write δij for the
Kronecker delta function and ej for the jth basis vector in the standard basis when the
dimension of the space is clear from context. For a Hermitian matrix H we write Spec(H)
for its spectrum (set of eigenvalues). For a function f : R→ R we write f(H) for the matrix
we get by applying f to the eigenvalues of H, i.e.,

f(H) = U

f(λ1)
. . .

f(λn)

U−1 where H = U

λ1
. . .

λn

U−1.

2 SDP-solving frameworks

In this section we present two frameworks for SDP-solving, providing the basis of our quantum
algorithms. First we present an algorithm to implement a primal oracle, and then the Arora-
Kale framework, which is used for finding a good approximation of the optimal value and an
almost feasible solution to the dual. These together implement a full SDP-solver.

Both frameworks have a very similar iterative structure, with iteration count Õn
(
γ2),

where 1/γ is the relevant scale-invariant precision parameter (as we will see the value of γ
differs by a factor r in the two cases). The main difference is that the iterative step of the
primal oracle framework requires only a simple search, whereas in the Arora-Kale framework
one needs to solve a slightly more complex task. Both algorithms start with y = 0, and in
each step only a constant number of indices of y are incremented, thus in both cases we will
work with a y vector that is non-negative and Õn

(
1/θ2)-sparse.

ICALP 2019
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2.1 An SDP primal oracle

For the primal oracle we use the same algorithm as Brandão et al. [12] following the proof of
Lemma 4.6 of Lee, Raghavendra and Steurer [25]. A few small reductions are required to
apply this technique. To be able to work with density operators instead of X, the bjs in the
constraints 1 . . .m are scaled down by a factor R, such that every solution X ′ to the new
SDP has trace at most 1. Then, we add one new variable denoted by ω such that

ρ :=
[
X ′ 0
0 ω

]
.

Now Tr (ρ) = 1 and ρ � 0 imply that Tr (X ′) ≤ 1, and we get a new SDP that is equivalent to
the previous one. It can be shown that in our input models this reduction does not introduce
more than a constant factor overhead in the complexity; note that this reduction also illustrates
that for an SDP primal oracle ε

R is the relevant scale-invariant precision parameter.
The following meta-algorithm for an SDP primal oracle assumes access to (some form

of) a description of the SDP after the above-discussed reduction, and provides an output as
in Eq. (3) of (i)
1. Let y = 0 ∈ Rm+1 and θ = ε

2R .

2. Repeat ln(n)
θ2 times the following:

a. Define ρ := e
−
∑m

j=0
yjAj/Tr

(
e
−
∑m

j=0
yjAj

)
.

b. Find an index j such that Tr (Ajρ) ≥ bj or conclude correctly that for all j, Tr (Ajρ) ≤
bj + θ.

c. If no j is found, then we are done and output y and z = RTr (X ′), where Tr (X ′) is
the probability1 of measuring ρ to be in the subspace corresponding to the variable X ′.

d. Otherwise update y ← y + θej .

3. Conclude that there is no solution for θ = 0.

2.2 The Arora-Kale framework

Similarly to previous work [13] we build our results on the Arora-Kale framework. For a
detailed description see the original paper by Arora and Kale [7]. For our application, the
following broad overview suffices.2

Now we describe the Arora-Kale meta-algorithm. This algorithm assumes access to (some
form of) a description of the SDP, such that the first constraint is Tr (X) ≤ R, i.e., A1 =I

and b1 =R. It provides an output as in Eq. (4) of (ii). (Remember that we set A0 = −C
and b0 = −g.)
1. Let y = 0 ∈ Rm+1 and set θ = ε

6Rr .

2. Repeat ln(n)
θ2 times the following:

(a) Define ρ := e
−
∑m

j=0
yjAj/Tr

(
e
−
∑m

j=0
yjAj

)
.

1 Note that a θ-approximation of Tr
(
X ′
)
is easy to compute by means of amplitude estimation if ρ can

be efficiently prepared as a quantum state – which is the case in our algorithms.
2 For more discussion on general (quantum) SDP-solvers along this line, see [5].
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(b) Find a ỹ in the polytope

Pδ(ρ) :=
{
ỹ ∈ Rm+1 : bT ỹ ≤ 0,

m∑
j=0

ỹjTr (Ajρ) ≥ −δ,

ỹ ≥ 0, ỹ0 = 1
2r , ‖ỹ‖1 ≤ 1

}
.

for δ=θ; if cannot find such a ỹ then conclude that none exists for δ=0.
(c) If no such ỹ exists, then conclude that OPT > g and stop.
(d) If such a ỹ exists, then update y ← y + θỹ.

3. Conclude OPT ≤ g + ε and output 2rθ
ln(n)y + ε

Re1 − e0 as a dual solution.

Note that in the above meta-algorithm, up to a constant factor, the θ parameter is
essentially γ−1= ε

rRs , illustrating that γ−1 is the relevant scale-invariant precision parameter
for SDP-solving, for a more detailed discussion see [5].

Brandão and Svore [13] observed that ρ := e
−
∑

j
yjAj/Tr

(
e
−
∑

j
yjAj

)
is a quantum

Gibbs state and this state can be prepared efficiently on a quantum computer, allowing
fast trace estimation, in particular resulting in a quadratic speedup in n compared to
classical methods.

A procedure that solves step (b) is called a θ-oracle, not to be confused with the input
oracles. In the rest of this paper we will assume that the cost of updating the y vector is
no more than the cost of a θ-oracle call. This is justified, because we use the geometric
approach of Apeldoorn et al. [5, Lemma 16] for implementing a 3-sparse γ−1-oracle. Their
oracle returns a 3-sparse vector, and thus requires updating only 3 entries of y, which can be
done efficiently using an efficient data structure.

3 Input models & Subroutines

We consider three input models: the sparse matrix model, the quantum state model, and the
quantum operator model. The first two models were already studied in previous work. The
quantum operator model is a common generalization of the other two models, and in fact
any other reasonable model for SDPs, as we show.

In all models we assume quantum oracle access to the numbers bj via the input oracle Ob
satisfying3 for all j ∈ [m] :

Ob|j〉|0〉 = |j〉|bj〉.

For all input oracles we assume we can apply both the oracle and its inverse4 in a controlled
fashion.

Sparse matrix model

In the sparse matrix model the input matrices are assumed to be s-row sparse for a known
bound s ∈ [n], meaning that there are at most s non-zero elements per row. The model is
close to the classical model for sparse matrices. Access to the Aj matrices is provided by

3 For simplicity we assume the bitstring representation has at most O (log(nmRr/ε)) bits.
4 When we talk about samples, e.g. in Section 4.1 of the full version of this paper [3], then we do not

assume we can apply the inverse operation.

ICALP 2019
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two oracles, similar to previous work on Hamiltonian simulation in [9]. The first of the two
oracles is a unitary Osparse, which serves the purpose of sparse access. This oracle calculates
the index : [m]× [n]× [s] → [n] function, which for input (j, k, `) gives the column index
of the `th non-zero element in the kth row of Aj . We assume this oracle computes the
index “in place”:

Osparse|j, k, `〉 = |j, k, index(j, k, `)〉. (5)

(In the degenerate case where the kth row has fewer than ` non-zero entries, index(j, k, `) is
defined to be ` together with some special symbol indicating this case.)

We also need another oracle OA, returning a bitstring3 representation of (Aj)ki for every
j ∈ [m] and k, i ∈ [n]:

OA|j, k, i, z〉 = |j, k, i, z ⊕ (Aj)ki〉. (6)

This model corresponds directly to a classical way of accessing sparse matrices.

Quantum state model

In contrast to the sparse matrix model, the quantum state model is inherently quantum and
has no classical counterpart for SDPs. In this model we assume that each Aj has a fixed
decomposition of the form

Aj = µ+
j %

+
j − µ

−
j %
−
j + µIjI

for (subnormalized) density operators %±j , non-negative reals µ±j and real number µIj ∈ R.

I Definition 1 (Subnormalized density operators & Purification). A subnormalized density
operator % is a psd matrix of trace at most 1. A purification of a subnormalized density
operator % is a 3-register pure state such that tracing out the third register5 and projecting on
the subspace where the second register is |0〉 yields %.

We write “%” and “ς” for subnormalized density operators to distinguish them from
normalized density operators, for which we write “ρ” and “σ”.

We assume access to an oracle Oµ that takes as input an index j and outputs binary
representations3 of µ+

j , µ
−
j and µIj .

Furthermore we assume access to a state-preparing oracle O|·〉 that prepares purifications5
|ψ±j 〉 of %

±
j :

O|·〉|j〉|±〉|0〉 = |j〉|±〉|ψ±j 〉.

Finally we assume that a bound B ∈ R+ is known such that

∀j : µ+
j + µ−j ≤ B.

Note that a tight upper bound B can easily be found using O (
√
m) quantum queries to Oµ

by means of maximum finding [17].

5 For simplicity we assume that for a d-dimensional density operator a purification has at most polylog(d)
qubits.
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Quantum operator model

Motivated by recent work [27, 20] we propose a new input model that we call the quantum
operator model. In this model the input matrices are given by a unitary that implements a
block-encoding:

I Definition 2 (Block encoding). Suppose that A is a w-qubit operator, α, ε ∈ R+ and k ∈ N,
then we say that the (a+ w)-qubit unitary U is an (α, a, ε)-block-encoding of A, if∥∥A− α(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)

∥∥ ≤ ε.
Roughly speaking this means that A is represented by a unitary

U ≈
(
A/α .

. .

)
.

In the quantum operator model we assume access to an oracle OU that acts as follows:

OU |j〉|ψ〉 = |j〉(Uj |ψ〉).

Where Uj is an (α, a, 0)-block-encoding6 of Aj , for some fixed7 α ∈ R and for a =
O (log(nmRr/ε)).

In Section 5 of the full version of this paper [3] we show that the sparse input model can
be reduced to the quantum operator model with α = s and that the quantum state model
can be reduced to it with α = B. We also argue that if we can perform a measurement
corresponding to Aj � 0 using a ancilla qubits, i.e., accept a state ρ with probability Tr (Ajρ),
then we can implement a (1, a+ 1, 0)-block-encoding of Aj . In this way this input model is a
common generalization of all reasonable input models for SDPs, since at the very least an
input model should allow you to calculate Tr (AjX).

Therefore if one can perform a POVM measurement on a quantum computer with a
measurement operator M , one can also implement a block-encoding of M , and use it as an
input matrix in our operator model. Similarly, being able to perform Hamiltonian simulation
with a Hermitian matrix H gives access to H as a block-encoding, as shown by [28, 20].
Recent work [22] introduced QROM data structures that allow the efficient creation of a
superposition over matrix elements of a matrix M . It turns out [15] that the corresponding
block-encoding can be implemented with Õn,γ (1) QROM calls, such that even for non-sparse
matrices one has α ≤

√
n.

Computational cost

We analyze the query complexity of algorithms and subroutines, i.e., the number of queries to
controlled versions of the input oracles and their inverses. We denote the optimal quantum
query complexity of an ε-approximate quantum SDP-solver with success probability 2/3
by TSDP (ε) (this is a “meta quantity”, which becomes concrete once the input model is
specified). We only consider success probability 2/3 to simplify the notation and proofs.
However in all cases an ε-approximate SDP-solver with success probability 1− ζ can easily
be constructed using O (log(1/ζ)TSDP (ε)) queries.

6 If n is not a power of 2, then we simply define Aj to be zero on the additional 2w − n dimensions.
7 Having a single normalization parameter α is not a serious restriction as it is easy to make a block-

encoding more subnormalized so that every Aj gets the same normalization, cf. Lemma 14 of the full
version of this paper [3].

ICALP 2019
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In our algorithms we assume access to a quantum-read/classical-write RAM (known as
QCRAM), and assume one read/write operation has a constant gate complexity8; the size
of the QCRAM that we use is typically Õn,m

((
Rr
ε

)2) bits. Most often in our results the
number of non-query elementary operations, i.e., two-qubit gates and QCRAM calls, matches
the query complexity up to polylog factors. In particular, if not otherwise stated, in our
results a T -query quantum algorithm uses at most Õn,m (T ) elementary operations.

Subroutines

We work with two major subroutines which need to be implemented according to the specific
input model. First, the algorithms require an implementation of a Gibbs-sampler.

I Definition 3 (Gibbs-sampler). A θ-precise Gibbs-sampler on bounded input vectors y ∈
Rm+1
≥0 is a quantum circuit that works under the promise that the support of y has size at

most d, and ‖y‖1 ≤ K. It takes as input a data structure storing the vector y, and for any
input satisfying the promise, it creates as output a purification of a θ-approximation of the
Gibbs state

e
−
∑m

j=0
yjAj/Tr

(
e
−
∑m

j=0
yjAj

)
.

The minimum cost of such a circuit is denoted by TGibbs(K, d, 4θ) (this is again a “meta
quantity”, which becomes concrete once the input model is specified).

For technical reasons we also allow Gibbs-samplers that require a random classical in-
put seed S ∈ {0, 1}a for some a = O (log(1/θ)). In this case the output should be a
θ-approximation of the Gibbs state with high probability (≥ 4/5) over a uniformly random
input seed S.

We use the approximate Gibbs states in order to estimate the quantity Tr (Ajρ).

I Definition 4 (Trace estimator). A (θ, σ)-trace estimator is a quantum circuit that as input
takes a quantum state ρ and index j. It outputs a sample from a random variable Zj ∈ R
which is an estimator of Tr (Ajρ) with bias at most θ:

|Tr (Ajρ)− E[Zj ]| ≤ θ,

and the standard deviation of Zj is at most σ. We write TσTr(θ) for the minimum cost of
such a circuit (this is again a “meta quantity” as in the above definition).

4 Prior work

Classical SDP-solvers roughly fall into two categories: those with logarithmic dependence
on R, r and 1/ε, and those with polynomial dependence on these parameters but better
dependence on m and n. In the first category the best known algorithm [26] at the time of
writing has complexity

ÕRr/ε
(
m(m2 + nω +mns)

)
.

where ω ∈ [2, 2.38] is the yet unknown exponent of matrix multiplication.

8 Note that read/write operations of a QRAM or QCRAM of size S can be implemented using Õ (S)
two-qubit gates, so this assumption could hide a factor in the gate complexity which is at most Õ (S).
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In the second category Arora and Kale [7] gave an alternative framework for solving SDPs,
using a matrix version of the “multiplicative weights update” method, see Section 2. Their
framework can be tuned for specific types of SDPs, allowing for near linear-time algorithms in
the case of for example the Goemans-Williamson SDP for the approximation of the maximum
cut in a graph [21].

In 2016 Brandão and Svore [13] used the Arora-Kale framework to implement a general
quantum SDP-solver in the sparse matrix model. They observed that the matrix

ρ := e
−
∑m

j=0
yjAj

Tr
(
e
−
∑m

j=0
yjAj

) ,
that is used for calculations in the Arora-Kale framework is in fact a log(n)-qubit Gibbs
state and can be efficiently prepared as a quantum state on a quantum computer. Using
this they achieved a quantum speedup in terms of n. Combining this with a Grover-like
speedup allowed for a speedup in terms of m as well, leading to an ε-approximate quantum
SDP solver with complexity

Õ

(
√
mns2

(
Rr

ε

)32
)
.

They also showed an Ω(
√
m+

√
n) quantum query lower bound for solving SDPs when all

other parameters are constant. This left as open question whether a better lower bound,
matching the

√
mn upper bound, could be found. The upper bound for the sparse input

model was subsequently improved by van Apeldoorn et al. [5] to

Õ

(
√
mns2

(
Rr

ε

)8
)
.

van Apeldoorn et al. also gave an Ω(
√

max(n,m) min(n,m)3/2) lower bound, albeit for
non-constant parameters R and r. This bound implies that there is no general quantum
SDP-solver that has a o(nm) dependence on n and m and logarithmic dependence on R, r
and 1/ε. They also showed that every SDP-solver whose efficiency relies on outputting sparse
dual solutions (including their algorithm and that of Brandão and Svore [13]) is limited, since
problems with a lot of symmetry (like maxflow-mincut) in general require non-sparse dual
solutions. Furthermore, they showed that for many combinatorial problems (like MAXCUT)
R and r increase linearly with n and m.

Very recently Brandão et al. [11] gave an improved SDP-solver for the quantum state
input model9 that has a complexity bound with logarithmic dependence on n:

TSDP (ε) = Õn
(√

m poly
(
Rr

ε
,B, max

j∈{0,...,m}
[rank(Aj)]

))
.

Brandão et al. also applied their algorithm to the problem of shadow tomography, giving the
first non-trivial application of a quantum SDP-solver.

Subsequently these results where further improved by the introduction of the Fast
Quantum OR lemma by the same authors [12]. Approaches prior to [12] searched for a
violated constraint in the SDP using Grover-like techniques, resulting in a multiplicative

9 This model was already introduced in the first version of [13] together with a similar complexity
statement, but there were some unresolved issues in the proof, that were only fixed by the contributions
of [11].
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complexity of Gibbs-sampling and searching. The Fast Quantum OR lemma can be used to
separate the search phase from the initial Gibbs-state preparation phase. This led to the
improved complexity bound [12] of

Õn
((√

m+ poly( max
j∈{0...m}

[rank(Aj)])
)

poly
(
Rr

ε
,B

))
.

We thank the authors of [12] for sending us an early draft of [12] introducing the Fast Quantum
OR Lemma, which enabled us to work on these improvements. During the correspondence the
application of the Fast OR lemma to the sparse matrix model was independently suggested
by Brandão et al. [30] and by us.

5 Our results

In this paper we present multiple results. The main contribution consists of multiple
improvements to the algorithms for SDP solving, based on combining various recent quantum
algorithmic developments. Although some of these improvements require quite technical
proofs, they come from simple new perspectives and ideas, often combining previous works in
new ways. We also apply the resulting algorithms to a few problems in convex optimization.
Finally, we prove a new lower bound that fits the novel input models that we work with.

5.1 Improvements to the quantum algorithms
In this paper we build on the Arora-Kale framework for SDP-solving in a similar fashion as
[5, 13] and also use results from [11, 25] to construct a primal oracle. We improve on the
previous results about quantum SDP-solving in three different ways:

Two-Phase Quantum Search and Minimum Finding

We give a computationally more efficient version of the Gentle Quantum Search Lemma [2]
using the Fast Quantum OR Lemma from [12]. We also extend this to minimum finding
to get our Two-Phase Quantum Minimum Finding (Lemma 7 of the full version of this
paper [3]). As independently observed by the authors of [12] the Fast Quantum OR Lemma
gives a speed-up for SDP primal oracles in general. Moreover, using Two-Phase Quantum
Minimum Finding, we show how to improve the upper bound on the complexity of general
SDP-solving from

TSDP (ε) = Õn
(√
mTσTr((4γ)−1)TGibbs(γ, γ2, γ−1)γ3σ

)
(7)

as implied in previous work [13, 5] to

TSDP (ε) = Õn
((√

mTσTr((4γ)−1) + TGibbs(γ, γ2, γ−1)
)
γ4σ2) , (8)

where γ = Θ(Rr/ε). For the complexity of SDP primal oracles, the same upper bounds hold.

Quantum operator model and efficient data structures

We introduce the quantum operator input model unifying prior approaches. We show that
both the sparse model and the quantum state model can be reduced to the quantum operator
model with a constant overhead and with the choices of α = s and α = B respectively.
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Moreover, we show that for σ = Θ(1), we have that

TσTr((4γ)−1) = Õγ (α) ,

in the quantum operator model.
The complexity of Gibbs-sampling in the sparse matrix input model previously was [5]:

TGibbs(K, d, θ) = Õθ
(√
nKs2d2) .

By considering the operator model, in which we can show how to simulate a linear combination
of Hamiltonians efficiently, we can improve this to

TGibbs(K, d, θ) = Õθ,d
(√
nKα

)
.

This result is based on the idea of gradually building up an efficient data structure for state
preparation, following ideas of [22]. This demonstrates that these data structures can be used
efficiently even if one does not assume preprocessed data. Moreover, it shows that working
in the operator model does not only unify prior approaches but also inspires more efficient
quantum algorithms due to its conceptual clarity.

Table 1 Summary of the role of our various improvements, the theorem numbers refer to
the numbers in the full version of the paper [3]. The main new results are on the bottom, the
other complexity statements represent partial results following from only applying some of the
improvements. We present the results for the sparse matrix and quantum state input models
for comparison to prior work. However, note that our results presented for sparse input hold
more generally for the quantum operator input model; to get the corresponding results one should
just replace s by α in the table. Thereby similar bounds hold in the case of the quantum state
input model too, after replacing s by B, which can be beneficial when B2.5γ2.5 ≥

√
n. Notation:

rk = maxj∈{0,...,m} rank(Aj) and γ = Rr
ε
.

Without OR lemma / Two-Phase Search

Sparse input Quantum state input

Previous Õ
(√

mns2γ8) Õn

(√
mpoly (γ,B, rk)

)
Gibbs-sampling [5] [11]

Improved Õ
(√

mnsγ4) Õn

(√
mB3.5γ6.5)

Gibbs-sampling Corollary 18 Corollary 25

With OR lemma / Two-Phase Search

Sparse input Quantum state input

Previous Õ
((√

m+
√
nsγ5) sγ4) Õn

((√
m+ poly(rk)

)
poly (γ,B)

)
Gibbs-sampling Theorem10 8 + [5] [12]

Improved Õ
((√

m+
√
nγ
)
sγ4) Õn

(
(
√
m+B2.5γ3.5)Bγ4)

Gibbs-sampling Theorem 17 Theorem 24

Gibbs sampling for the quantum state model

We develop a new method for Gibbs-sampling in the quantum state model. As noted in [12]
this model has the nice property that it is relatively easy to find the important eigenspaces
of the input matrices. We introduce a new technique for finding these important eigenspaces
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that, in contrast to the approach in [12], does not introduce a dependence on the rank of the
input matrices in the complexity. In particular we improve the complexity bound of [12]

TGibbs(K, d, θ) = O
(
poly(K,B, d, 1/θ, max

j∈{0...m}
[rank(Aj)])

)
,

to

TGibbs(K, d, θ) = Õd,θ,n
(
(KB)3.5) ,

both making the polynomial dependence explicit and improving it.
An important consequence of this improvement is that we do not get a dependence on

the rank of the input matrices in the complexity of SDP solving, unlike Brandão et al. [12].
Since the most natural use for the quantum state model is when the Aj matrices naturally
correspond to quantum states, B is often just 1. However, if the states are highly mixed,
then the rank is about n, eliminating the speedup over the sparse input model when a rank
dependence is present. Finally note that this Gibbs-sampling method is only beneficial
if
√
n ≤ (KB)2.5, otherwise the reduction to the quantum operator model with α = B gives

a better algorithm.

For the quantum operator input model the above improvements lead to the complexity bound

TSDP (ε) = Õ
((√

m+
√
nγ
)
αγ4) , (9)

where γ := Rr
ε . Note that the Ω(

√
n+
√
m) lower bound of [13] also applies to the quantum

operator model due to our reductions, matching the above upper bound (9) up to polylog
factors in n and m when γ and α are constant. For the quantum state input model our
improved Gibbs-sampler yields the complexity bound

TSDP (ε) = Õn
((√

m+B2.5γ3.5)Bγ4) .
In both cases, the same bound holds for an SDP primal oracle but with γ := R/ε.

5.2 Applications
In Section 4 of the full version of this paper [3] we give some applications of quantum
SDP-solvers. Due to the large error dependence the last two of these are not of practical
interest. However they do show that a theoretical improvement in one of the parameters is
possible over classical computers and more specified quantum algorithms might improve the
error dependence.

Shadow tomography of quantum states

We extend the idea of applying SDP-solving to the problem of shadow tomography: given an
unknown, n-dimensional quantum state ρ, find ε-additive approximations of the expectation
values Tr (E1ρ) , . . . ,Tr (Emρ) of several binary measurement operators. This problem was
introduced by Aaronson in [2], he gave an efficient algorithm in terms of the number of
samples from ρ. In particular he proved that Õ

(
log4(m) log(n)/ε5) samples suffice. Brandão

et al. [12] applied their SDP-solver to get a more efficient algorithm in terms of computation
time when the measurements Ei are given in the quantum state model, while keeping the
sample complexity as low as poly(log(m), log(n), 1/ε,B). We simultaneously improve on
both results, giving a sample bound of Õ

(
log4(m) log(n)/ε4) while also improving the best
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known time complexity [2, 12] of the implementation for all input models. Finally we show
that if we can efficiently implement the measurements Tr (E1ρ) , . . . ,Tr (Emρ) on a quantum
computer, then we can also efficiently represent E1, . . . , Em using the quantum operator
input model, hence the computational complexity can be stated in terms of the number of
measurements needed.

Quantum state discrimination

We apply the SDP-solvers to the problem of quantum state discrimination: given a set of
quantum states, what is the best POVM for discriminating between the states? We consider
the case of minimizing the total error in the measurements. In this case we get an algorithm
with running time Õ

(√
k poly(d, 1/ε)

)
in the sparse input model, where k is the number of

states and d is the dimension of the states. Due to the quantum state model for SDP-solving,
we can also solve the problem when the states that need to be discriminated are actually
given as quantum states, rather than classical descriptions of density operators.

Optimal design

We apply our sparse SDP-solver to the problem of E-optimal design: given a set of k
experiments, find the optimal distribution of the experiments that minimizes the variance in
our knowledge of a d-dimensional system. Our final bound is Õ

(
(
√
k +
√
d)poly(1/ε, P )

)
,

where P is a parameter that depends on the standard deviation of the experiments.

5.3 Lower bounds
We end the paper with proving new lower bounds. Lower bounds on the quantum query
complexity of SDP-solving for the sparse input model were presented in previous works [13, 5].
We add to this by giving Ω̃(

√
mB/ε) and Ω̃(

√
mα/ε) bounds for the quantum state model

and quantum operator model respectively. These lower bounds show that the
√
m factor

and the polynomial dependence on the parameters B,α, and 1/ε are necessary.
Compared to problems with a discrete input, proving lower bounds on continuous-input

quantum problems gives rise to extra challenges and often requires more involved techniques,
see for example the work of Belovs [8] on generalizations of the adversary method. Due to
these difficulties, fewer results are known in this regime. Examples of known continuous-input
lower-bound results include phase-estimation related problems (cf. Bessen [10]) and the
complexity-theoretic version of the no-cloning theorem due to Aaronson [1]. Recently, a
new hybrid-method based approach was developed by Gilyén et al. [19] in order to handle
continuous-input oracles, which they use for proving a lower bound for gradient computation.
We use their techniques to prove our lower bounds, combined with efficient reductions between
input models stemming from the smooth-functions of Hamitonians techniques developed in
the work of van Apeldoorn et al. [5].

6 Subsequent work

A few months after the first version of our paper was posted on the arXiv, Kerenidis and
Prakash [23] gave a quantum interior point algorithm for solving LPs and SDPs. They work
in an input model where the input matrices are stored in QROM, which input model is
also covered by our quantum operator input model. However, it is hard to compare their
complexities to ours, because their final complexity statement depends polynomially on the
condition number of the matrices that the interior point method encounters, and they do not
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give explicit bounds for these condition numbers. Also they have two accuracy parameters,
while one accuracy parameter only appears as a logarithmic factor, their complexity depends
polynomially on the other.

Very recently Apeldoorn et al. [6] and Chakrabarti et al. [14] developed improved quantum
algorithms for general black-box convex optimization. Since we work in a model where we are
given access directly to the constraints defining the problem, our results are incomparable.
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