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     We discuss some of the peculiarities of collective phenomena in a quantum plasma. In particular, we consider 
“elementary” collective phenomena such as charge shielding, volume and surface oscillations in a degenerate 
quantum plasma, and discuss how they change compared to those in a classical plasma. 
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INTRODUCTION 
     Before delving into the peculiarities of quantum 
plasmas, it is necessary to first understand what the term 
means. Indeed, all plasmas are in some sense quantum, 
as they consist of particles that obey the laws of 
quantum mechanics. Yet in many plasmas, which we 
here call classical plasmas, the quantum nature of their 
constituent particles does not affect, in any significant 
way, the macroscopic dynamics of the plasma in other 
words, such plasmas behave, macroscopically as though 
they consist of particles that obey the laws of classical 
mechanics (except for the close interparticle collisions 
which in general must be described quantum 
mechanically). However, as the density of a classical 
plasma increases, or its temperature decreases, it can 
enter a regime when the quantum nature of its 
constituent particles starts to affect its macroscopic 
properties and dynamics. Quite naturally, such plasmas 
are then called quantum. In quantum plasmas, the mean 
interparticle distance becomes comparable to the mean 
de Broglie wavelength of the lightest plasma particles, 
and the effects of degeneracy (e.g., quantum degeneracy 
of electrons due to Pauli’s exclusion princinple for 
fermions become significant. 
     Examples of quantum plasmas include conductivity 
electrons in metals, as well as electrons and holes in the 
conduction zone of semiconductors. More exotically 
quantum plasmas appear in cores of giant planets and 
crusts of old stars, as well as in the interior of white 
dwarfs. The densities relevant to quantum plasmas may 
alsobe achievable in the fast ignition scenarioof inertial 
confinement fusion experiments, where the deuterium 
tritium mixture is compressed by powerful laser beams 
to densities exceeding that of the liquid hydrogen [1]. 
Recent experimental results on x-ray scattering suggest that 
quantummechanical effects are indeed important in dense 
plasmas [2]. 
     The works on collective interactions and linear 
waves in quantum plasmas date back at least 60 years,  
probably starting with the works of Klimontovich and 
Silin [3, 4], Bohm, and Pines [5, 6]. Yet in the recent 
decade, there has been a surge of investigations of new 
aspects of linear and nonlinear collective effects in 
quantum plasmas (see [7] for a recent review), probably 
owing to the recent technological advances enabling a 
direct measurement of plasma dynamics in quantum 
regime via, e.g., an ultrafast x-ray Thomson scattering 
spectroscopic techniques [2, 8, 9]. 
     In this paper, our aim is to highlight some of the 
peculiarities of quantum plasmas, which appear already 

in a simplest case of a nonrelativistic unmagnetized 
quantum plasma. To do this, we consider some of the 
well known concepts and phenomena familiar to all 
plasma physicists (this list is by no means complete, but 
rather is illustrative), to see how they change, often 
qualitatively, in a quantum plasma, as compared with 
their counterparts in a classical plasma. We hope that 
these examples will show a reader yet unfamiliar with 
the area of quantum plasmas how a plasma can be even 
more fascinatingwhen it is in a quantum regime. 

1. WHAT MAKES A PLASMA QUANTUM 
     A plasma, which is essentially a collection of 
particles interacting via the Coulomb force, has two 
characteristic energy scales associated with it (here we 
are talking about electrons, which are fermions and 
therefore obey the Fermi-Dirac statistics): the average 
kinetic energy of the particles (here we consider 
nonrelativistic plasma, for simplicity): 

                                   (1) 

where kB is the Boltzmann constant, T is the 
temperature of plasma particles (electrons), and EF = 
(ħ2/2me)(3π2n)2/3 is their Fermi energy, where n is the 
electron number density, and the average potential 
energy of interaction, 

 

                                   (2) 

(we use CGS units). Using these energy scales, one can 
define two parameters that characterize the plasma. The 
first is the degeneracy parameter  

                                           (3) 

which characterizes the importance of quantum 
statistical effects due to Pauli blocking of available 
electron states. Its value determines whether a plasma is 
classical (χ ≥ 1) or quantum (χ ≥ 1). The second is the 
plasma coupling parameter: 

                          (4) 

which characterizes the strength of interparticle 
interaction. Its determines whether a plasma (being 
either classical or quantum, depending on its degeneracy 
parameter χ) is weakly coupled (Γ≥1) or strongly 
coupled (Γ ≥ 1). In a weakly coupled plasma, the 
correlation between particles is weak, and such plasma 
can be described in terms of the single-particle 
distribution function [10, 11] within the mean field 
approximation (also called Hartree’s mean-field 
approximation). In a moderately or strongly correlated 



ISSN 1562-6016. ВАНТ. 2013. №1(83)  77 

plasma, particle correlations are significant, and a much 
more complex description in terms of a hyerarchy of 
many-particle distribution functions is required in 
general [10]. It is interesting to note that an electron gas 
in the quantum regime (χ ≥ 1) becomes less coupled as 
its density increases, unlike an electron gas in the 
classical regime. Indeed, for χ≥1 (classical regime), the 
coupling parameter Γ ≥ n1/3 increases with density, while 
for χ ≥ 1 (deeply quantum regime) the coupling 
parameter Γ≥n1/3/EF(n) ≥n−1/3 decreases with density. 

 
 

Fig. 1. The density-temperature map of common 
plasmas, indicating different plasma regimes, 

depending on the degeneracy and coupling parameters 
Reprinted with permission fromRef. [12], courtesy of 

the National Academies Press, Washington, D.C. 
 

     Fig. 1 shows the regimes of common plasmas on the 
density-temperature map. In this paper, we will mostly 
discuss non-relativistic weakly coupled quantum 
plasmas. However, we note that the qualitative picture 
of collective effects in a weakly coupled quantum 
plasma remains the same in amoderately coupled 
plasma (e.g., electrons in metals for which Γ ≥ 1), 
despite the non-weak correlation between electrons. 

2. COLLECTIVE EFFECTS IN A 
QUANTUM PLASMA 

A complete statistical description of a nonrelativistic 
plasma can be done in terms of density matrix, which 

allows to obtain the mean values and probability 
distributions of macroscopical physical parameters of 
the plasma. In particular, it is convenient to describe a 
plasma in terms of the quantum distribution function, 

suggestedbyWigner [13] and thus sometimes called the 
Wigner function, which is the density matrix in mixed 
coordinate-momentum representation. An N-particle 

Wigner function is defined as 

 

where ρN (rN,r′N, t) is the plasma density matrix in 
coordinate representation, N is the number of particles 
in the system, and rN and pN are 3N-dimensional vectors 

containing coordinates and canonical momenta all 
particles in the system. The properties of fN(rN,pN, t) are 
discussed in detail in Ref. [14]. In the classical limit      
ħ →0, fN becomes the classical N-particle distribution 
function, hence the description of a plasma in terms of 
the Wigner function covers both quantum and classical 
plasma regimes. 
     Since in a plasma N ≥ 1, the description in terms of 
fN is prohibitive. Luckily, it is also unnecessary: in 
physical applications only the knowledge of single-
particle distribution and perhaps a few next higher-order 
distributions is required. Using a quantum analogue of 
the BBGKY ( Bogoliubov-Born-Green-Kirkwood-
Yvon) approach [10], a hierarchy of coupled equations 
for ever higher-order distribution functions (starting 
with an equation for the single particle distribution f1) is 
derived from the equation for fN, with an equation for fn 
containing a correlation term with fn+1 (n = 1,2, ... , 
N−1). For a weakly coupled plasma, this chain of 
equations can be truncated at the very first equation for 
the 1-particle Wigner function: 

 

which reads, for a weakly coupled plasma with 
electromagnetic interaction of particles: 

 

 

 

                            (5)
 

where P = p+ (e/c) A(r, t) is the electron canonical 
momentum, p = mev is its kinetic momentum, and the 
Hamiltonian H (r, P, t) contains the mean (averaged 
over the ensemble of particles) electromagnetic field 
potentials ϕ andA: 

                 (6) 

Eq. (5) is coupled with the Maxwell’s equations for ϕ 
and A, in which the source terms (charge and current 
densities) are defined in terms of f1 as  

                         (7) 

                                  (8) 

We note that the quantum kinetic equation (5) can be 
cast in a form of the Boltzmann equation with the 
effects of quantum interference due to overlapping of 
electron wave functions contained in the right-hand side 
in the “quantum interference integral” [15]. 

2.1. LINEAR RESPONSE OF AN ISOTROPIC 
QUANTUM PLASMA 

     The linear response of a medium is characterized by 
its dielectric permittivity tensor εij (ω,k). For an 
isotropic quantum plasma with mobile electrons and 
immobile ion background (we are not concerned about 
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ions here, as they are much heavier than electrons and 
thus behave classically), εij (ω,k) is obtained by 
linearizing (5) on a small perturbation δf1 of the 
equilibrium isotropic distribution f0(|p|). The result is 
[15] 

 
with the longitudinal and transverse permittivities given 
by  

  (9) 

        (10) 

where ωpe = (4πe2n/me)1/2 is the electron plasma 
frequency, p� is the absolute value of the component of 
p perpendicular to k, D?p,k(f0) = [f0 (p+ħk/2)−f0 (p− 
ħk/2)]/ħ, and +i0 specifies the direction of bypassing the 
singularity at p┴ = mω/k when integrating over p|| 
=(k·p)/k (Landau’s rule [16]). In the classical limit 
(formally ħ→0), the quantum distribution function f0 
reduces to the classical distribution, and (9)–(10) reduce 
to the well-known permittivities of an isotropic classical 
plasma.  
     In what follows, we will consider electrostatic 
collective effects only, defined by the longitudinal 
permit tivity εl(ω,k). In a quantum plasma with 
completely degenerate electrons (kBT < EF), Eq. (9) 
yields [17] 

       (11) 

where ω±=ω±ħk2/2me, and 

       (12)
 

in which log(u)= log(|u|)−iπ if u<0. 

2.2. CHARGE SCREENING 
     Consider a test point charge qt at rest in a completely 
degenerate plasma. The Fourier component of the 
electrostatic potential of qt in the plasma is 
ϕk = 4πqt/k2εl(0,k), with εl(0,k) being the static limit 
ω→0 of (11). Thus the potential ϕ(r) of the charge qt is 

                 (13) 

The asymptotic behavior of ϕ(r) at r → ∞ is defined by 
the contribution into the integral in (13) of the so-called 
Kohn singularity of the function ϕk at ħk = 2mevF, 
where an argument of one of the logarithms in εl(0,k) 
becomes zero [17]. Near this singularity, ϕk is 
approximated as  

                    (14) 

where ξ = (ħk−2mevF)/2mevF,      α = e2/2πħvF 

and β is a constant. The resulting contribution of this 
singularity to ϕ(r) at r→∞is [17] 

                    (15)
 

     At large distance from the charge qt, the power-law 
attenuated contribution ϕKohn(r) due to the Kohn 
singularity dominates over the exponentially attenuated 
Debye-like contribution ϕD(r) ∞ (qt/r)exp(−r/λF) due to 
the integration in (1√3) away from the Kohn singularity 
(here λF = vF / 3ωpe is the Thomas-Fermi length 
analogous to the Debye length in a classical plasma). 
Thus the shielding of a stationary test charge in a 
degenerate quantum plasma is qualitatively different 
from the Debye shielding in a classical plasma. A 
similar effect also exists for a moving charge in a 
degenerate quantum plasma [18]. 

2.3. LANGMUIR OSCILLATIONS 
     Like a classical plasma, a quantum plasma also 
supports Langmuir oscillations, whose dispersion and 
damping are defined by the dispersion equation εl(ω, k) 
= 0, with εl defined by Eq. (11) for a completely 
degenerate plasma. In the semiclassical range of k, hk < 
mevF , Eq. (11) becomes 

 

                     (16) 

where σ(x) is the Heaviside step function. The 
corresponding dispersion of Langmuir waves for kvF 
/ωpe < 1, ħk < mevF is then [19] 

                            (17)
 

which is analogous to the dispersion of Langmuir waves 
in a classical plasma with Maxwellian electrons, for 
kvTe/ωpe < 1. For kvF /ωpe > 1 (but still ħk < mevF ), 
however, the spectrum of Langmuir oscillations 
approaches  an  intrinsically  quantum “zero sound”  
mode  
ω = kvF of a Fermi gas [17, 20]: 

                        (18)
 

      The Landau damping of Langmuir oscillations in a 
degenerate quantum plasma also differs significantly 
from that in a classical Maxwellian plasma. In the 
semiclassical range of k, ħk < mevF , the phase velocity 
of Langmuir oscillations exceeds the maximum velocity 
of plasma electrons, ω/k > vF [as seen from (17) and 
(18)], so that the Cherenkov resonance condition ω = k 
v is not met for any plasma electrons, and hence the 
Landau damping rate is exactly zero. For ħk ≥ mevF , 
however, the Cherenkov condition of particle-wave 
resonance starts to be significantly modified by the 
quantum recoil effect, and becomes, for non-relativistic 
electrons [11, 21] 

              (19) 
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(the latter approximation takes into account that for 
Langmuir oscillations ω/k ≈ vF < c at hk > mevF ). At 
large k, the phase velocity of Langmuir oscillations 
differs from vF only by an exponentially small term [see 
Eq. (18)], and thus the quantum-modified resonance 
condition (19) becomes satisfied for electrons on the 
Fermi sphere (with |v| = vF ) for  

            (20)
 

 

For k > kc, the number of electrons participating in 
Landau damping of Langmuir oscillations quickly 
increases with k, and the oscillations become strongly 
damped. Thus, unlike in a classical plasma with 
Maxwellian electrons, the Langmuir oscillations in a 
completely degenerate weakly coupled quantum plasma 
are undamped for k < kc, and become strongly 
Landaudamped 
for k > kc. 

2.4. ELECTROSTATIC SURFACE 
OSCILLATIONS 

     Finally, let us consider electrostatic surface 
oscillations of a semi-bounded degenerate plasma with a 
sharp boundary at which the electrons are perfectly 
reflected, bounded by a vacuum. An initial-value 
problem for the charge density in such system has a 
solution in the form [22, 23] 

             (21) 

where ρ(ω, k) is found to b 

 

                        (22) 

           (23) 

with k′ = (k′x , k||), kx and k|| are the components of k 
perpendicular and parallel to the plasma boundary, 
respectively, and 

 

where G(v, k) is the Fourier transform in x direction 
(normal to the plasma boundary)of the initial 
perturbation δf (t = 0)of electron distribution function, 
G(v, k) =∫+∞dx exp(−ikxx)δf(x, vx, k|||, v||, t = 0). 
     To obtain the asymptotic behavior of ρ(k, t) at t → 
∞, one can perform the integration in (21) be shifting 
the integration contour from the upper semiplane in 
complex ω down into the lower semiplane, ℑ(ω) < 0, 
deforming it in such a way as to avoid any singularities 
of the integrand (analytically continued into ℑ(ω) < 0) 
in the lower semiplane. The least damped contributions 
of such singularities into the integral in (21) give rise to 
observable oscillations in the system. The first term in 
(22) gives rise to the Langmuir oscillations discussed 
above, due to the poles at εl(ω, k) = 0 [with some 
general assumptions about the initial perturbation, 
contribution of singularities of I(ω, k) into the inverse 

Laplace transform (21) quickly decay with time, and are 
not considered]. The second term in (22) appears 
entirely due to the boundary, and leads to the surface 
oscillations. Beside the singularities of I(ω, k) and εl(ω, 
k), its contribution into (21) are due to the singularities 
of the function ζ(ω, k||) analytically continued into the 
lower semiplane ℑ(ω) < 0 of complex ω. For ζ(ω, k||) 
defined by (23) for ℑ(ω) > 0, the analytical 
continuation into ℑ(ω) < 0 leads to two kinds of 
singularities of the continued ζ(ω, k||) in the lower 
semiplane of complex ω [23]: (i) poles of 1/ζ(ω, k||) at 
ζ(ω, k| |) = 0, and (ii) branch cuts of 1/ζ(ω, k||). Below we 
consider the time evolution of their respective 
contributions into the integral (21) of ρ(k, t), along the 
contour shown in Fig. 2. 

3. CONTRIBUTION OF POLES OF 1/ζ(ω, k||) 
     The contribution of poles of 1/ζ(ω, k||) into (21) give 
rise to exponentially damped surface oscillations 

               (24) 

 

Fig. 2. The singularities of 1/ζ(ω, k||) at ℑ(ω) < 0 (poles, 
shown with circles, and branch cuts, shown with dashed 

lines), and the integration contour in (21) (solid blue 
line) 

 

whose frequency ωs(k||) and damping rate γs(k||) < 0 are 
the real and imaginary parts of the complex solution of 
the dispersion equation ζ(ω, k||) = 0, for k|| Є R [23]. The 
dispersion of such oscillations at small k||λF (λF being the 
Thomas-Fermi length) is similar to that in a semi-
bounded classical plasma with Maxwellian electrons: at 
k| | → 0 ωs → ωpe/√2, from which it increases linearly 
with k||λF  (only the slope is different from that in the 
Maxwellian plasma). However, at k||λF > 1, the 
frequency of these surface oscillations tends to that of 
the intrinsically quantum zero sound mode, 

 
very similar to the spectrum of the Langmuir 
oscillations [cf. Eq. (18)]. Moreover, unlike in a 
Maxwellian plasma, in a degenerate quantum plasma 
the surface oscillations                         due to the poles 
of 1/ζ(ω, k||) remain weakly damped, |γs/ωs| < 1, for all 
values of k||λF , with a preferential (maximum) damping 
occuring at the wavelength λ ≈ 5πλF [23]. We note, 
however, that this result is valid only for a degenerate 
plasma with a sharp boundary; it remains to be seen 
how this result will change when the non-sharpness of 
the electron densityat the boundary is taken into 
account. 
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4. CONTRIBUTION OF BRANCH CUTS OF 
1/ζ(ω, k||) 

     The function ζ(ω, k| |), analytically continued from its 
definition (23) at ℑ(ω) > 0 to ℑ(ω) < 0, also has two 
branching points at ω = ±ωv(k ||) Є R defined by the 
equation εl(ω, k||) = 0 [with εl given by (16)], and two 
branch cuts shown in Fig. 2. The integration along these 
branch cuts yields another, intrinsically quantum, type 
of surface oscillation, with 

         (25) 

which has a differrent frequency, and qualitatively 
different attenuation compared to the surface 
oscillations (24) due to the poles of 1/ζ. Thus we see 
that the electrostatic surface oscillations of a semi-
bounded degenerate plasma are quite different from 
those in a classical Maxwellian plasma: there are two 
types of oscillations, one of them is an exponentially 
attenuated oscillation (24) (weakly damped at all 
wavelengths, unlike its counterpart in a Maxwellian 
plasma), the other is an intrinsically quantum, powerlaw 
attenuated oscillation (25) with a different frequency ωv 
> ωs (for the same k| |). 
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НЕОБЫЧНАЯ ФИЗИКА КВАНТОВОЙ ПЛАЗМЫ 
Ю.О. Тышецкий, С.В. Владимиров, Р. Компанеец 

     Обсуждаются некоторые особенности коллективных эффектов в квантовой плазме. В частности, 
рассматриваются такие “элементарные” коллективные явления, как экранирование заряда, объемные и 
поверхностные колебания в вырожденной квантовой плазме, и обсуждаются их отличия от аналогичных 
явлений в классической плазме. 
 

НЕЗВИЧАЙНА ФIЗИКА КВАНТОВОЇ ПЛАЗМИ 
Ю.О. Тишецький, С.В. Владимiров, Р. Компанєєц 

     Обговорюються деякi особливостi колективних ефектiв у квантовiй плазмi. Зокрема, розглядаються такi 
“елементарнi” колективнi явища, як екранування заряду, об’ємнi та поверхневi коливання в виродженiй 
квантовій плазмi, та обговорюються їх вiдмiнностi вiд аналогiчних явищ у класичнiй плазмi
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