

SQL Server Execution Plans

Third Edition

For

SQL Server 2008 through to 2017

and Azure SQL Database

By Grant Fritchey

Published by Redgate Publishing 2018

First Edition 2008

Copyright Grant Fritchey 2008, 2012, 2018

ISBN 978-1-910035-22-1

The right of Grant Fritchey to be identified as the author of this work has been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval system,
or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or otherwise)
without the prior written consent of the publisher. Any person who does any unauthorized act in relation to this
publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out,
or otherwise circulated without the publisher's prior consent in any form other than which it is published and
without a similar condition including this condition being imposed on the subsequent publisher.

Technical Reviewer: Hugo Kornelis

Editor: Tony Davis

Typeset by Gower Associates

Contents

Chapter 1: Introducing the Execution Plan 26

What Happens When a Query is Submitted? 27

Query compilation phase 28

Query parsing 28

Query binding 28

Query optimization 29

Query execution phase 31

Working with the Optimizer 32

The importance of statistics 33

The plan cache and plan reuse 35

Plan aging 35

Manually clearing the plan cache 36

Avoiding cache churn: query parameterization 37

Plan recompilation 38

Getting Started with Execution Plans 38

Permissions required to view execution plans 39

Execution plan formats 39

XML plans 40

Text plans 40

Graphical plans 41

Retrieving cached plans 41

Plans for ad hoc queries: estimated and actual plans 41

Will the estimated and actual plans ever be different? 42

Capturing graphical plans in SSMS 44

Capturing our first plan 46

The components of a graphical execution plan 47

Operators 48

Data flow arrows 49

Estimated operator costs 50

Estimated total query cost relative to batch 51

Operator properties 51

Tooltips 53

Saving execution plans 55

Chapter 2: Getting Started Reading Plans 57

The Language of Execution Plans 57

Common operators 57

Reading a plan: right to left, or left to right? 60

Streaming versus blocking operators 62

What to Look for in an Execution Plan 63

First operator 63

Warnings 64

Estimated versus actual number of rows 65

Operator cost 65

Data flow 66

Extra operators 67

Read operators 67

The Information Behind the First Operator 68

Optimization level 71

Parameter List 73

QueryHash and QueryPlanHash 75

SET options 75

Other Useful Tools and Techniques when Reading Plans 76

I/O and timing statistics using SET commands 77

Include Client Statistics 78

SQL Trace and Profiler 78

Extended Events 78

Chapter 3: Data Reading Operators 80

Reading an Index 80

Index Scans 81

Clustered Index Scan 82

Index Scan 85

Are scans "bad?" 86

Index seeks 87

Clustered Index Seek 87

Index Seek (nonclustered) 89

Key lookups 91

Reading a Heap 94

Table Scan 94

RID Lookup 96

Chapter 4: Joining Data 99

Logical Join Operations 100

Fulfilling JOIN Commands 100

Nested Loops operator 102

Estimated and Actual Number of Rows properties 104

Outer References property 106

Rebind and Rewind properties 107

Hash Match (join) 109

How Hash Match joins work 110

Hashing and Hash Tables 111

Performance considerations for Hash Match joins 111

Compute Scalar 113

Merge Join 115

How Merge Joins work 115

Performance considerations for Merge Joins 117

Adaptive Join 120

Other Uses of Join Operators 124

Concatenating Data 126

Chapter 5: Sorting and Aggregating Data 129

Queries with ORDER BY 129

Sort operations 130

Sort operations and the Ordered property of Index Scans 131

Dealing with expensive Sorts 132

Top N Sort 133

Distinct Sort 135

Sort warnings 136

Aggregating Data 140

Stream Aggregate 140

Hash Match (Aggregate) 143

Filtering aggregations using HAVING 146

Plans with aggregations and spools 148

Table Spool 149

Index Spool 150

Working with Window Functions 152

Chapter 6: Execution Plans for Data Modifications 159

Plans for INSERTs 159

INSERT operator 161

Constant Scan operator 162

Clustered Index Insert operator 165

Assert operator 167

Plans for UPDATEs 168

Table Spool (Eager Spool) operator 169

Clustered Index Update operator 170

Plans for DELETEs 171

A simple DELETE plan 171

A per-index DELETE plan 173

Plans for MERGE queries 177

Chapter 7: Execution Plans for Common T-SQL Statements 185

Stored Procedures 185

Subqueries 191

Derived Tables Using APPLY 195

Common Table Expressions 199

Views 206

Standard views 206

Indexed views 208

Functions 212

Scalar functions 212

Table valued functions 216

Chapter 8: Examining Index Usage 221

Standard Indexes 221

How the optimizer selects which indexes to use 222

Estimated costs and statistics 222

Selectivity and cardinality estimations 223

Indexes and selectivity 223

Statistics header 226

Density graph 226

The histogram 227

Using covering indexes 230

What can go wrong? 231

Problems with statistics 232

Problems with parameter sniffing 236

Stored procedures and parameter sniffing 237

What to do if parameter sniffing causes performance problems 240

Columnstore Indexes 241

Using a columnstore index for an aggregation query 242

Aggregate pushdown 245

No seek operation on columnstore index 246

Predicate pushdown in a columnstore index 246

Batch mode versus row mode 247

Memory-optimized Indexes 248

Using memory-optimized tables and indexes 248

No option to seek a hash index for a range of values 253

Plans with natively-compiled stored procedures 254

Chapter 9: Exploring Plan Reuse 258

Querying the Plan Cache 258

Plan Reuse and Ad Hoc Queries 260

The cost of excessive plan compilation 264

Simple parameterization for "trivial" ad hoc queries 266

Simple parameterization in action 266

"Unsafe" simple parameterization 270

Programming for Plan Reuse: Parameterizing Queries 273

Prepared statements 274

Stored procedures 278

What can go wrong with plan reuse for parameterized queries? 281

Fixing Problems with Plan Reuse if You Can't Rewrite the Query 281

Optimize for ad hoc workloads 282

Forced parameterization 285

Plan guides 288

Template plan guides 289

SQL plan guides 291

Object plan guides 293

Viewing, validating, disabling, and removing plan guides 295

Plan forcing 296

Using plan guides to do plan forcing 297

Using Query Store to do plan forcing 300

Chapter 10: Controlling Execution Plans with Hints 303

The Dangers of Using Hints 303

Query Hints 304

HASH | ORDER GROUP 305

MERGE | HASH | CONCAT UNION 307

LOOP | MERGE | HASH JOIN 309

FAST n 314

FORCE ORDER 316

MAXDOP 319

OPTIMIZE FOR 322

RECOMPILE 327

EXPAND VIEWS 331

IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX 332

Join Hints 333

Table Hints 335

NOEXPAND 336

INDEX() 337

FORCESEEK/FORCESCAN 341

Chapter 11: Parallelism in Execution Plans 344

Controlling Parallel Query Execution 344

Max degree of parallelism 345

Cost threshold for parallelism 347

Blockers of parallel query execution 348

Parallel Query Execution 349

Examining a parallel execution plan 350

Are parallel plans good or bad? 358

Chapter 12: Batch Mode Processing 360

Batch Mode Processing Defined 360

Plan for Queries that Execute in Batch Mode 361

Batch mode prior to SQL Server 2016 364

Mixing columnstore and rowstore indexes 366

Batch mode adaptive memory grant 369

Loss of Batch Mode Processing 372

Chapter 13: The XML of Execution Plans 374

A Brief Tour of the XML Behind a Plan 374

The XML for an estimated plan 374

The XML for an actual plan 381

Safely Saving and Sharing Execution Plans 382

When You'll Really Need the XML Plan 383

Use the XML plan for plan forcing 383

First operator properties when capturing plans using Extended Events 384

Pre-SQL Server 2012: full "missing index" details 385

Querying the Plan Cache 386

Why query the XML of plans? 387

Query the plan XML for specific operators 388

Querying the XML for missing index information 389

Chapter 14: Plans for Special Data Types and Cursors 393

XML 394

Plans for queries that convert relational data to XML (FOR XML) 394

Plans for basic FOR XML queries 394

Returning XML as XML data type 397

Plans for Explicit mode FOR XML queries 399

Plans for queries that convert XML to relational data (OPENXML) 401

Plans for querying XML using XQuery 405

Plans for queries that use the .exist method 406

Plans for queries that use the .query method 408

When to use XQuery 412

JavaScript Object Notation 413

Hierarchical Data 418

Spatial Data 420

Cursors 424

Static cursor 424

Keyset cursor 431

Dynamic cursor 434

Chapter 15: Automating Plan Capture 436

Why Automate Plan Capture? 436

Tools for Automating Plan Capture 437

Automating plan capture using Extended Events 438

Create an event session using the SSMS GUI 439

Create an event session in T-SQL 444

Viewing the event data 445

Ensuring "lightweight" event sessions when capturing the plan 450

Automating plan capture using SQL Trace 452

Trace events for execution plans 452

Creating a Showplan XML trace using Profiler 453

Creating a server-side trace 456

Chapter 16: The Query Store 458

Behavior of the Query Store 458

Query Store Options 460

Retrieving Plans from the Query Store 462

SSMS reports 462

Overview of Query Store reports 463

The Top Resource Consuming Queries report 466

Retrieve Query Store plans using T-SQL 468

Control Plans Using Plan Forcing 472

How to force a plan 473

Automated plan forcing 478

Remove Plans from the Query Store 483

Chapter 17: SSMS Tools for Exploring Execution Plans 486

The Query 486

The SQL Server Management Studio 17 Tools 488

Analyze Actual Execution Plan 489

Compare Showplan 491

Find Node 496

Live execution plans 498

Live per-operator statistics using sys.dm_exec_query_profiles 499

Using the query_thread_profile extended event 501

Live execution plans in SSMS 502

Viewing the live execution plan in Activity Monitor 503

Other Execution Plan Tools 505

Plan Explorer 505

Supratimas 505

SSMS Tools Pack – Execution Plan Analyzer 505

SQL Server performance monitoring tools 506

19

About the Author

Grant Fritchey is a SQL Server MVP with over 30 years' experience in IT including time
spent in support, development, and database administration.

Grant has worked with SQL Server since version 6.0, back in 1995. He has developed in
VB, VB.Net, C#, and Java. Grant joined Redgate as a Product Evangelist in January 2011.

He writes articles for publication at SQL Server Central, Simple Talk, and other community
sites, and has published multiple books including the one you're reading now and SQL Server
Query Performance Tuning, 5th Edition (Apress, 2018). Grant also blogs on this topic and
others at https://scarydba.com.

You can contact him through grant@scarydba.com.

About the Technical Reviewer
Hugo Kornelis has been working in IT for almost 35 years, the last 20 of which have been
focused almost completely on SQL Server.

Within the SQL Server community, Hugo has answered thousands of questions on various
online forums. He also blogs at https://sqlserverfast.com/blog/, has contributed articles to
SQL Server Central and Simple Talk, and has authored a Pluralsight course on relational
database design. He has been a speaker at many conferences in Europe, and a few in the rest
of the world. In recognition of his community contributions, Microsoft has awarded Hugo
SQL Server MVP and Data Platform MVP 11 times (2006–2016).

Hugo has started to document his impressive knowledge of execution plans on
sqlserverfast.com, which is an excellent resource for anyone who has finished reading this
book and wants to know even more about all the nitty-gritty detail in their execution plans.
You'll find articles that expose interesting or uncommon patterns in execution plans, and
describe exactly how each one works, as well as The SQL Server Execution Plan Reference
(https://sqlserverfast.com/epr/), which, eventually, will list all operators, with their exact
behavior and all their properties.

https://scarydba.com
https://sqlserverfast.com/blog/
https://sqlserverfast.com/
https://sqlserverfast.com/epr/

20

Introduction

Frequently, a T-SQL query you wrote behaves in ways you don't expect, and causes slow
response times for the application users, and resource contention on the server. Sometimes,
you didn't write the offending query; it came from a third-party application, or was code
generated by an improperly-used Object Relational Mapping layer. In any of these situations,
and a thousand others, query tuning becomes quite difficult.

Often, it's very hard to tell, just by looking at the T-SQL code, why a query is running
slowly. SQL is a declarative language, and a T-SQL query describes only the set of data that
we want SQL Server to return. It does not tell SQL Server how to execute the query,
to retrieve that data.

When we submit a query to SQL Server, several server processes kick into action whose
collective job is to manage the querying or modification of the data. Specifically, a compo-
nent of the relational database engine called the Query Optimizer has the job of examining
the submitted query text and defining a strategy for executing it. The strategy takes the form
of an execution plan, which contains a series of operators, each describing an action to
perform on the data.

So, if a query is performing poorly, and you can't understand why, then the execution plan
will tell you, not only what data set is coming back, but also what SQL Server did, and in
what order, to get that data. It will reveal how the data was retrieved, and from which tables
and indexes, what types of joins were used, at what point filtering and sorting occurred, and a
whole lot more. These details will often highlight the likely source of any problem.

What the Execution Plan Reveals
An execution plan is, literally, a set of instructions on how to execute a query. The optimizer
passes each plan on to the execution engine, which executes the query according to those
instructions. The optimizer also stores plans in an area of memory called the plan cache, so
that it can reuse existing execution strategies where possible.

During development and testing, you can request the plan very easily, using a few buttons in
SQL Server Management Studio. When investigating a query problem on a live production
system, you can often retrieve the plan used for that query from the plan cache, or from the
Query Store.

21

Armed with the execution plan, you have a unique window into what's going on behind the
scenes in SQL Server, and a wealth of information on how SQL Server has decided to resolve
the T-SQL that you passed to it. You can see things like:

• the order in which the optimizer chose to access the tables referenced in the query
• which indexes it used on each table, and how the data was pulled from them
• how many rows the optimizer thought an operator would return, based on its

statistical understanding of the underlying data structures and data, and how many
rows it found in reality

• how keys and referential constraints affect the optimizer's understanding of the
data, and therefore the behavior of your queries

• how data is being joined between the tables in your query
• when filtering and sorting occurred, how any calculations and aggregation were

performed, and more.

Execution plans are one of your primary tools for understanding how SQL Server does what
it does. If you're a data professional of any kind there will be times when you need to wade
into the guts of an execution plan, and so you'll need to know what it is that you're looking at,
and how to proceed.

That is why I wrote this book. My goal was to gather into a single location as much useful
information on execution plans as possible. I'll walk you through the process of reading
them, and show you how to understand the information that they present to you. Specifically,
I will cover:

• how to capture execution plans using manual and automatic methods
• a documented method for interpreting execution plans, so that you can make sense

of them in your own environment
• how SQL Server represents and interprets the common SQL Server objects, such as

indexes, views, stored procedures, derived tables, and so on, in execution plans
• how to control execution plans with hints and plan guides, and why this is a

double-edged sword
• how the Query Store works with, and collects data on, execution plans and how

you can take control of them using the Query Store.

These topics and a slew of others, all related to execution plans and their behavior, are
covered throughout this book. I focus always on the details of the execution plans, and how
the behaviors of SQL Server are manifest in the execution plans.

22

As we work through each topic, I'll explain all the individual elements of the execution plan,
how each operator works, how they interact, and the conditions in which each operator works
most efficiently. With this knowledge, you'll have everything you need to allow you to tackle
every execution plan, regardless of complexity, and understand what it does.

Fixing Query Problems Using Execution Plans
Execution plans provide all the information you need, to understand how SQL Server
executed your queries. Paradoxically though, given that most people look at an execution
plan hoping to improve the performance of a query, this book isn't, and couldn't be, a book
about query performance tuning. The two topics are linked, but separate. If you are specifi-
cally looking for information on how to optimize T-SQL, or build efficient indexes, then you
need a book dedicated to those topics.

Neither is the execution plan the first place to look, if you need to tune performance on a
production system. You'll check for misconfigurations of servers or database settings, you'll
look for obvious points of resource contention on the server, which may be causing severe
locking and blocking problems, and so on. At this point, if performance is still slow, you'll
likely have narrowed the cause down to a few "hot" tables and one or two queries on those
tables. Then, you can examine the plans and look for possible causes of the problem.

However, execution plans are not necessarily designed to help the occasional user find the
cause of a query problem quickly, in the heat of firefighting poor SQL Server performance.
You need first to have invested time in learning the "language" of the plan and how to read it,
and what led SQL Server to choose that plan, and those operators, to execute your query.

And this book is that investment.

As you work through it, you will start to recognize each of the different operators SQL Server
might use to access the data in a table, or to join two tables, or to group and aggregate data.
As you learn how these operators work, and how they process the data they receive, you will
begin to recognize why some operators are designed for handling small numbers of rows,
and why others are better for larger data sets. You will start to understand the "properties" of
the data (such as uniqueness, and logical ordering) that will allow certain operators to work
more efficiently.

As you make connections between all of this and the behavior and performance of your
queries, you will suddenly find that you have an expectation of what a plan will reveal before

23

you even look at it, based on your understanding of the query logic, and of the data. There-
fore, any unexpected operators in the plan will catch your attention, and you'll know where
to look for possible issues, and what to do about them.

You are now at the stage where you can use plans to solve problems. Usually the optimizer
makes good choices of plan. Occasionally, it errs. The possible causes are many. Perhaps, it
is missing critical information about the database, because of a lack of keys or constraints.
Adding them might improve the query performance. Sometimes, its statistical understanding
of the data is inaccurate, or out of date. It may simply have no efficient means to retrieve the
initial data set, and you need to add an index or modify an existing one. Sometimes our query
logic simply defeats efficient optimization, and the best course is a rewrite, although that's
not always possible when troubleshooting a production system.

This book's job is to teach you how to read the plan, so that you can understand what is
causing the bad performance. It is then your job to work out how best to fix it, armed with the
understanding of execution plans that will give a much better chance of success.

This knowledge is also hugely valuable when writing new queries, or updating existing code.
Once you've verified that the code returns the correct results, you can test its performance.
Does it fall within expectations? If not, before you rip up the query and try again, look at
the plan, because you may just have made a simple mistake that means SQL Server isn't
executing it as efficiently as it could.

If you can test the query under different data loads, you'll be able to gauge whether query
performance will scale smoothly once the query hits a full production-size database. As the
data volume grows, and the data changes, the optimizer will often devise a different plan. Is it
still an efficient plan? If not, perhaps you can then try to rewrite the query, or modify the data
structures, to prevent performance issues before the code ever reaches production!

Before deploying T-SQL code, every database developer and DBA should get into the habit
of looking at the execution plan for any query that is beyond a certain level of complexity, if
it is intended to be run on a large-scale production database.

24

Changes in this Third Edition

The way I think about how to use execution plans, and how to read them, has changed a lot
over the years. I've now rearranged the book to reflect that. After the early chapters have
established an understanding of the basics of the optimizer and how to capture execution
plans, the later chapters focus more on the methods of reading plans, not just on what is in
the operators and their properties. And, of course, Microsoft has continued to make changes
to SQL Server, so there are new operators and mechanisms that must be covered.

Some of the new topics include:

• automate capturing execution plans using Extended Events
• new warnings and operators
• batch mode processing
• adaptive query processing
• additional functionality added to SQL Server 2014, 2016, and 2017, as well as

Azure SQL Database.

There are lots more changes because, with the help of my tech editor, Hugo Kornelis, and
long-time (and long-suffering) editor, Tony Davis, we've basically rewritten this book from
the ground up.

With the occasional hiatus, this book took over three years to rewrite and, during that time,
three versions of SQL Server were released, and who knows how many changes in Azure
were introduced. Microsoft has also divorced SQL Server Management System (SSMS)
releases from the main product, so that more and more new functionality has been intro-
duced, faster. I've done my level best to keep up, and the text should be up to date for May
2018. Any changes that came out after that, won't be in this edition of the book.

Code Examples
Throughout this book, I'll be supplying T-SQL code that you're encouraged to run for your-
self, to generate execution plans. From the following URL, you can obtain all the code you
need to try out the examples in this book:
https://scarydba.com/resources/ExecutionPlansV3.zip.

https://scarydba.com/resources/ExecutionPlansV3.zip

25

Most of the code will run on all editions and versions of SQL Server, starting from
SQL Server 2012. Most, although not all, of the code will work on Azure SQL Database.
Unless noted otherwise, all examples were written for, and tested on, the SQL Server
sample database, AdventureWorks2014, and you can get a copy of it from GitHub:
https://bit.ly/2yyW1kh.

If you test the code on a different version of AdventureWorks, or if Microsoft updates
AdventureWorks2014, then statistics can change, and you may see a different execution
plan than the one I display in the book. If you are working with procedures and scripts other
than those supplied, please remember that encrypted stored procedures will not display an
execution plan.

The initial execution plans will be simple and easy to read from the samples presented in the
text. As the queries and plans become more complicated, the book will describe the situation
but, to see the graphical execution plans or the complete set of XML, it will be necessary for
you to generate the plans. So, please, read this book next to your machine, if possible, so that
you can try running each query yourself!

https://bit.ly/2yyW1kh

26

Chapter 1: Introducing the Execution Plan
An execution plan is a set of instructions for executing a query. Devised by the SQL Server
Query Optimizer, an execution plan describes the set of operations that the execution engine
needs to perform to return the data required by a query.

The execution plan is your window into the SQL Server Query Optimizer and query execu-
tion engine. It will reveal which tables and indexes a query accessed, in which order, how
they were accessed, what types of joins were used, how much data was retrieved initially, and
at what point filtering and sorting occurred. It will show how aggregations were performed,
how calculated columns were derived, how and where foreign keys were accessed, and more.

Any problems created by the query will frequently be apparent within the execution plan,
making it an excellent tool for troubleshooting poorly-performing queries. Rather than guess
at why a query is sending your I/O through the roof, you can examine its execution plan
to identify the exact operation, and associated section of T-SQL code, that is causing the
problem. For example, the plan may reveal that a query is reading every row in a table or
index, even though only a small percentage of those rows are being used in the query. By
modifying the code within the WHERE clause, SQL Server may be able to devise a new plan
that uses an index to find directly (or seek) only the required rows.

This chapter will introduce execution plans. We'll explore the basics of obtaining an execu-
tion plan and start the process of learning how to read them, covering the following topics:

• A brief background on the query optimizer – execution plans are a result of the
optimizer's operations, so it's useful to know at least a little bit about what the opti-
mizer does, and how it works.

• The plan cache and plan reuse – execution plans are usually stored in an area of
memory called the plan cache and may be reused. We'll discuss why plan reuse is
important.

• Actual and estimated execution plans – clearing up the confusion over estimated
versus actual execution plans and how they differ.

• Capturing an execution plan – we'll capture a plan for a simple query and intro-
duce some of the basic elements of a plan, and the information they contain.

27

Chapter 1: Introducing the Execution Plan

What Happens When a Query is Submitted?
Every time we submit a query to SQL Server, several server processes kick into action; their
job collectively is to manage the querying or modification of that data. Within the relational
engine, the query is parsed by the parser, bound by the algebrizer and then finally optimized
by the query optimizer, where the most important part of the work occurs. Collectively, we
refer to these processes as query compilation. The SQL Server relational engine takes the
input, which is the SQL text of the submitted query, and compiles it into a plan to execute
that query. In other words, the process generates an execution plan, effectively a series of
instructions for processing the query.

Figure 1-1: Query compilation and execution.

The plan generated is stored in an area of memory called the plan cache. The next time the
optimizer sees the same query text, it will check to see if a plan for that SQL text exists in the
plan cache. If it does, it will pass the cached plan on to the query execution engine, bypassing
the full optimization process.

The query execution engine will execute the query, according to the instructions laid out
in the execution plan. It will generate calls to the storage engine, the process that manages
access to disk and memory within SQL Server, to retrieve and manipulate data as required by
the plan.

28

Chapter 1: Introducing the Execution Plan

Query compilation phase

Since execution plans are created and managed from within the relational engine, that's
where we'll focus our attention in this book. The following sections review briefly what
happens during query compilation, covering the parsing, binding, and particularly the optimi-
zation phase, of query processing.

Query parsing
When a request to execute a T-SQL query reaches SQL Server, either an ad hoc query from
a command line or application program, or a query in a stored procedure, user-defined func-
tion, or trigger, the query compilation and execution process can begin, and the action starts
in the relational engine.

As the T-SQL arrives in the relational engine, it passes through a process that checks that the
T-SQL is written correctly, that it's well formed. This process is query parsing. If a query
fails to parse correctly, for example, if you type SELETC instead of SELECT, then parsing
stops and SQL Server returns an error to the query source. The output of the Parser process
is a parse tree, or query tree (or it's even called a sequence tree). The parse tree represents the
logical steps necessary to execute the requested query.

Query binding
If the T-SQL string has parsed correctly, the parse tree passes to the algebrizer, which
performs a process called query binding. The algebrizer resolves all the names of the various
objects, tables, and columns referred to within the query string. It identifies, at the individual
column level, all the data types (varchar(50) versus datetime and so on) for the
objects being accessed. It also determines the location of aggregates, such as SUM and MAX,
within the query, a process called aggregate binding.

This algebrizer process is important because the query may have aliases or synonyms,
names that don't exist in the database, that need to be resolved, or the query may refer to
objects not in the database. When objects don't exist in the database, SQL Server returns an
error from this step, defining the invalid object name (except in the case of deferred name
resolution). As an example, the algebrizer would quickly find the table Person.Person in
the AdventureWorks database. However, the Product.Person table, which doesn't
exist, would cause an error and the whole compilation process would stop.

29

Chapter 1: Introducing the Execution Plan

Stored procedure and deferred name resolution
On creating a stored procedure, its statement text is parsed and stored in sys.sql_mod-
ules catalog view. However, the tables referenced by the text do not have to exist in the
database at this point. This gives more flexibility because, for example, the text can reference a
temporary table that is not created by the stored procedure, and does not yet exist, but that we
know will exist at execution time. At execution time, the query processor finds the names of
the objects referenced, in sys.sql_modules, and makes sure they exist.

The algebrizer outputs a binary called the query processor tree, which is then passed on to
the query optimizer. The output also includes a hash, a coded value representing the query.
The optimizer uses the hash to determine whether there is already a plan for this query stored
in the plan cache, and whether the plan is still valid. A plan is no longer considered valid after
some changes to the table (such as adding or dropping indexes), or when the statistics used
in the optimization were refreshed since the plan was created and stored. If there is a valid
cached plan, then the process stops here and the cached plan is reused.

Query optimization
The query optimizer is a piece of software that considers many alternate ways to achieve the
requested query result, as defined by the query processor tree passed to it by the algebrizer.
The optimizer estimates a "cost" for each possible alternative way of achieving the same
result, and attempts to find a plan that is cheap enough, within as little time as is reasonable.

Most queries submitted to SQL Server will be subject to a full cost-based optimization
process, resulting in a cost-based plan. Some very simple queries can take a "fast track" and
receive what is known as a trivial plan.

Full cost-based optimization
The full cost-based optimization process takes three inputs:

• The Query processor tree – gives the optimizer knowledge of the logical query
structure and of the underlying tables and indexes.

• Statistics – index and column statistics give the optimizer an understanding of
volume and distribution of data in the underlying data structures.

• Constraints – the primary keys, enforced and trusted referential constraints, and any
other types of constraints in place on the tables and columns that make up the query,
tell the optimizer the limits on possible data stored within the tables referenced.

30

Chapter 1: Introducing the Execution Plan

Using these inputs, the optimizer applies its model, essentially a set of rules, to transform
the logical query tree into a plan containing a set of operators that, collectively, will physi-
cally execute the query. Each operator performs a dedicated task. The optimizer uses various
operators for accessing indexes, performing joins, aggregations, sorts, calculations, and so
on. For example, the optimizer has a set of operators for implementing logical join conditions
in the submitted query. It has one specialized operator for a Nested Loops implementation,
one for a Hash Match, one for a Merge, and one for an Adaptive Join.

The optimizer will generate and evaluate many possible plans, for each candidate testing
different methods of accessing data, attempting different types of join, rearranging the join
order, trying different indexes, and so on. Generally, the optimizer will choose the plan that
its calculations suggest will have the lowest total cost, in terms of the sum of the estimated
CPU and I/O processing costs.

During these calculations, the optimizer assigns a number to each of the steps within the plan,
representing its estimation of the combined amount of CPU and disk I/O time it thinks each
step will take. This number is the estimated cost for that step. The accumulation of costs for
each step is the estimated cost for the execution plan itself. We'll shortly cover the estimated
costs, and why they are estimates, in more detail.

Plan evaluation is a heuristic process. The optimizer is not attempting to find the best
possible plan but rather the lowest-cost plan in the fewest possible iterations, meaning the
shortest amount of time. The only way for the optimizer to arrive at a perfect plan would be
to be able to take an infinite amount of time. No one wants to wait that long on their queries.

Having selected the lowest-cost plan it could find within the allotted number of iterations,
the query execution component will use this plan to execute the query and return the required
data. As noted earlier, the optimizer will also store the plan in the plan cache. If we submit
a subsequent request with identical SQL text, it will bypass the entire compilation process
and simply submit the cached plan for execution. A parameterized query will be parsed, and
if a plan with a matching query hash is found in the cache, the remainder of the process is
short-circuited.

31

Chapter 1: Introducing the Execution Plan

Trivial plans

For very simple queries, the optimizer may simply decide to apply a trivial plan, rather than
go through the full cost-based optimization process. The optimizer's rules for deciding when
it can simply use a trivial plan are unclear, and probably complex. However, for example, a
very simple query, such as a SELECT statement against a single table with no aggregates or
calculations, as shown in Listing 1-1, would receive a trivial plan.

SELECT d.Name
FROM HumanResources.Department AS d
WHERE d.DepartmentID = 42;

Listing 1-1

Adding even one more table, with a JOIN, would make the plan non-trivial. Also, if addi-
tional indexes exist on the table, or if the possibility of parallelism exists (discussed more in
Chapter 11), then you will get further optimization of the plan.

It's also worth noting here that this query falls within the rules covered by auto-parameter-
ization, so the hard-coded value of "42" will be replaced with a parameter when the plan is
stored in cache, to enable plan reuse. We'll cover that in more detail in Chapter 9.

All data manipulation language (DML) statements are optimized to some extent, even if
they receive only a trivial plan. However, some types of Data Definition Language (DDL)
statement may not be optimized at all. For example, if a CREATE TABLE statement parses
correctly, then there is only one "right way" for the SQL Server system to create a table.
Other DDL statements, such as using ALTER TABLE to add a constraint, will go through
the optimization process.

Query execution phase
The query execution engine executes the query per the instructions set out in the execution
plan. At runtime, the execution engine cannot change the optimizer's plan. However, it can
under certain circumstances force a plan to be recompiled. For example, if we submit to
the query processor a batch or a stored procedure containing multiple statements, the whole
batch will be compiled at once, with plans produced for every statement. Even if we have
IF…THEN or CASE flow control in our queries, all statements within the batch will be
compiled. At runtime, each plan is checked to ensure it's still valid. As for plans taken in
the plan cache, if the plan's associated statement references tables that have changed or had

32

Chapter 1: Introducing the Execution Plan

statistics updated since the plan was compiled, then the plan is no longer considered valid.
If that occurs, then the execution is temporarily halted, the compilation process is invoked,
and the optimizer will produce a new plan, only for the affected statement in the batch
or procedure.

Introduced in SQL Server 2017, there is also the possibility of interleaved execution when
the object being referenced in the query is a multi-statement table valued user-defined
function. During an interleaved execution, the optimizer generates a plan for the query, in
the usual fashion, then the optimization phase pauses, the pertinent subtree of a given plan
is executed to get the actual row counts, and the optimizer then uses the actual row counts to
optimize the remainder of the query. We'll cover interleaved execution and multi-statement
table valued user-defined functions in more detail in Chapter 8.

Working with the Optimizer
Most application developers, when writing application code, are used to exerting close
control, not just over the required result of a piece of code, but also over how, step by step,
that outcome should be achieved. Most compiled languages work in this manner. SQL Server
and T-SQL behave in a different fashion.

The query optimizer, not the database developer, decides how a query should be executed.
We focus solely on designing a T-SQL query to describe logically the required set of data. We
do not, and should not, attempt to dictate to SQL Server how to execute it.

What this means in practice is the need to write efficient SQL, which generally means using a
set-based approach that describes as succinctly as possible, in as few statements as possible,
just the required data set. This is the topic for a whole other book, and one that's already been
written by Itzik Ben-Gan, Inside SQL Server T-SQL Querying.

However, beyond that, there are some practical ways that the database developer or DBA can
help the optimizer generate efficient plans, and avoid unnecessary plan generation:

• maintaining accurate, up-to-date statistics
• promoting plan reuse.

33

Chapter 1: Introducing the Execution Plan

The importance of statistics

As we've discussed, the optimizer will choose the lowest-cost plan, based on estimated cost.
The principal driver of these estimates is the statistics on your indexes and data. Ultimately,
this means that the quality of the plan choice is limited by the quality of the statistics the
optimizer has available for the target tables and indexes.

We don't want the optimizer to read all the data in all the tables referenced in a query
each time it tries to generate a plan. Instead, the optimizer relies on statistics, aggregated
information based on a sample of the data, that provides the information used by the
optimizer to represent the entire collection of data.

The estimated cost of an execution plan depends largely on its cardinality estimations, in
other words, its knowledge of how many rows are in a table, and its estimations of how many
of those rows satisfy the various search and join conditions, and so on.

New cardinality estimator in SQL Server 2014
In SQL Server 2014, the cardinality estimator within SQL Server was updated for the first
time since SQL Server 7.0. It's very likely that you may see a difference in plans generated in
SQL Server 2014 compared to previous versions, just because of the update to the cardinality
estimator, let alone any updates to other processes within the optimizer.

These cardinality estimations rely on statistics collected on columns and indexes within the
database that describe the data distribution, i.e. the number of different values present, and
how many occurrences of each value. This in turn determines the selectivity of the data.
If a column is unique, then it will have the highest possible selectivity, and the selectivity
degrades as the level of uniqueness decreases. A column such as "gender," for example, will
likely have a low selectivity.

If statistics exist for a relevant column or index, then the optimizer will use them in its calcu-
lations. If statistics don't exist then, by default, they'll be created immediately, in order for the
optimizer to consume them.

The information that makes up statistics is divided into three subsections:
• the header – general data about a given set of statistics
• the density graph – the selectivity, uniqueness, of the data, and, most importantly
• a histogram – a tabulation of counts of the occurrence of a particular value, taken from

up to 200 data points that are chosen to best represent the complete data in the table.

34

Chapter 1: Introducing the Execution Plan

It's this "data about the data" that provides the information necessary for the optimizer to
make its calculations. The key measure is selectivity, i.e. the percentage of rows that pass
the selection criteria. The worst possible selectivity is 1.0 (or 100%) meaning that every row
will pass. The cardinality for a given operator in the plan is then simply the selectivity of that
operator multiplied by the number of input rows.

The reliance the optimizer has on statistics means that your statistics need to be as accurate
as possible, or the optimizer could make poor choices for the execution plans it creates.
Statistics, by default, are created and updated automatically within the system for all indexes
or for any column used as a Predicate, as part of a WHERE clause or JOIN criteria.

The automatic update of statistics that occurs, assuming it's on, only samples a subset of the
data in order to reduce the cost of the operation. This means that, over time, the statistics
can become a less-and-less-accurate reflection of the actual data. All of this can lead to SQL
Server making poor choices of execution plans.

There are other statistical considerations too, around the objects types we choose to use in
our SQL code. For example, table variables do not ever have statistics generated on them,
so the optimizer makes assumptions about them, regardless of their actual size. Prior to SQL
Server 2014, that assumption was for one row. SQL Server 2014 and SQL Server 2016 now
assume one hundred rows in multi-statement user-defined functions, but remain with the one
row for all other objects. SQL Server 2017 can, in some instances, use interleaved execution
to arrive at more accurate row counts for these functions.

Temporary tables do have statistics generated on them and their statistics are stored in
the same type of histogram as permanent tables, and the optimizer can make use of these
statistics. In places where statistics are needed, say, for example, when doing a JOIN to a
temporary table, you may see advantages in using a temporary table over a table variable.
However, further discussion of such topics is beyond the scope of this book.

As you can see from all the discussion about statistics, their creation and maintenance have
a large impact on your systems. More importantly, statistics have a large impact on your
execution plans. For more information on this topic, check out Erin Stellato's article
Managing SQL Server Statistics in Simple Talk (http://preview.tinyurl.com/yaae37gj).

http://preview.tinyurl.com/yaae37gj

35

Chapter 1: Introducing the Execution Plan

The plan cache and plan reuse
All the processes described previously, which are required to generate execution plans, have
an associated CPU cost. For simple queries, SQL Server generates an execution plan in less
than a millisecond, but for very complex queries, it can take seconds or even minutes to
create an execution plan.

Therefore, SQL Server will store plans in a section of memory called the plan cache, and
reuse those plans wherever possible, to reduce that overhead. Ideally, if the optimizer encoun-
ters a query it has seen before, it can bypass the full optimization process and just select the
plan from the cache.

However, there are a few reasons why the plan for a previously executed query may no
longer be in the cache. It may have been aged out of the cache to make way for new plans,
or forced out due to memory pressure, or someone manually clearing the cache. In addition,
certain changes to the underlying database schema, or statistics associated with these objects,
can cause plans to be recompiled (i.e. recreated from scratch).

Plan aging
Each plan has an associated "age" value that is the estimated CPU cost of compiling the plan
multiplied by the number of times it has been used. So, for example, a plan with an estimated
compilation cost of 10 that has been referenced 5 times has an "age" value of 50. The idea is
that frequently-referenced plans that are expensive to compile will remain in the cache for as
long as possible. Plans undergo a natural aging process. The lazywriter process, an internal
process that works to free all types of cache (including the plan cache), periodically scans the
objects in the cache and decreases this value by one each time.

Plans will remain in the cache unless there is a specific reason they need to be moved out.
For example, if the system is under memory pressure, plans may be aged, and cleared out,
more aggressively. Also, plans with the lowest age value can be forced out of the cache if the
cache is full and memory is required to store newer plans. This can become a problem if the
optimizer is being forced to produce a very high volume of plans, many of which are only
ever used one time by one query, constantly forcing older plans to be flushed from the cache.
This a problem known as cache churn, which we'll discuss again shortly.

36

Chapter 1: Introducing the Execution Plan

Manually clearing the plan cache

Sometimes, during testing, you may want to flush all plans from the cache, to see how
long a plan takes to compile, or to investigate how minor query adjustments might lead to
slightly different plans. The command DBCC FREEPROCCACHE will clear the cache for
all databases on the server. In a production environment, that can result in a significant and
sustained performance hit because then each subsequent query is a "new" query and must go
through the optimization process. We can flush only specific queries or plans by supplying
a plan_handle or sql_handle. You can retrieve these values from either the plan
cache itself using Dynamic Management Views (DMVs) such as sys.dm_exec_query_
stats, or the Query Store (see Chapter 16). Once you have the value, simply run DBCC
FREEPROCCACHE(<plan_handle>) to remove a specific plan from the plan cache.

Similarly, we can use DBCC FLUSHPROCINDB(db_id) to remove all plans for a specific
database, but the command is not officially documented. SQL Server 2016 introduced a
new, fully-documented method to remove all plans for a single database, which is to run the
following command within the target database:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE
Criteria for plan reuse

When we submit a query to the server, the algebrizer process creates a hash value for the
query. The optimizer stores the hash value in the QueryHash property of the associated
execution plan (covered in more detail in Chapter 2). The job of the QueryHash is to iden-
tify queries with the same, or very similar logic (there are rare cases where logically different
queries end up with the same hash value, known as hash collisions).

For each submitted query, the optimizer looks for a matching QueryHash value among
the plans in the plan cache. If found, it performs a detailed comparison of the SQL text of
the submitted query and SQL text associated with the cached plan. If they match exactly
(including spaces and carriage returns) this returns the plan_handle, a value that uniquely
identifies the plan in memory. This plan may be reused, if the following are also true:

• the plan was created using the same SET options (see Chapter 2) – otherwise
there will be multiple plans created even if the SQL texts are identical

• the database IDs match – identical queries against different databases will have
separate plans.

Note that it's also possible that lack of schema-qualification for the referenced objects in the
query will lead to separate plans for different users.

37

Chapter 1: Introducing the Execution Plan

Generally, however, a plan will be reused if all four of the above match (QueryHash, SQL
text, SET options, database ID). If so, the entire cost of the optimization process is skipped
and the execution plan in the plan cache is reused.

Avoiding cache churn: query parameterization
It is an important best practice to write queries in such a way that SQL Server can reuse the
plans in cache. If we submit ad hoc queries to SQL Server and use hard-coded literal values
then, for most of those queries, SQL Server will be forced to complete the full optimization
process and compile a new plan each time. On a busy server, this can quickly lead to cache
bloat, and to older plans being forced relatively quickly from the cache.

For example, let's say we submit the query in Listing 1-2.

SELECT p.ProductID ,
 p.Name AS ProductName ,
 pi.Shelf ,
 l.Name AS LocationName
FROM Production.Product p
 INNER JOIN Production.ProductInventory AS pi
 ON pi.ProductID = p.ProductID
 INNER JOIN Production.Location AS l
 ON l.LocationID = pi.LocationID
WHERE l.Name = 'Paint';
GO

Listing 1-2

We then submit the same query again, but for a different location name (say, 'Tool
Cribs' instead of 'Paint'). This will result in two separate plans stored in cache, even
though the two queries are essentially the same (they will have the same QueryHash
values, assuming no other changes are made).

To ensure plan reuse, it's best to use either stored procedures or parameterized queries, where
the variables within the query are identified with parameters, rather than hard-coded literals,
and we simply pass in the required parameter values at runtime. This way, the SQL text the
optimizer sees will be "set in stone," maximizing the possibility of plan reuse.

These are also called "prepared queries" and are built from the application code. For an
example of using prepared statements, see this article in Technet (http://preview.tinyurl.com/
ybvc2vcs). You can also parameterize a query by using sp_executesql from within your
T-SQL code.

http://preview.tinyurl.com/ybvc2vcs
http://preview.tinyurl.com/ybvc2vcs

38

Chapter 1: Introducing the Execution Plan

Another way to mitigate the churn from ad hoc queries is to use a server setting called
Optimize For Ad Hoc Workloads. Turning this on will cause the optimizer to create what
is known as a "plan stub" in the plan cache, instead of putting the entire plan there the first
time a plan is created. This means that single-use plans will take up radically less memory
in your plan cache.

Plan recompilation
Certain events and actions, such as changes to an index used by a query, can cause a plan to
be recompiled, which simply means that the existing plan will be marked for recompilation,
and a new plan generated the next time the query is called. It is important to remember
this, because recompiling execution plans can be a very expensive operation. This only
becomes a problem if our actions as programmers force SQL Server to perform excessive
recompilations.

We'll discuss recompiles in more detail in Chapter 9, but the following actions can lead to
recompilation of an execution plan (see http://preview.tinyurl.com/y947r969 for a full list):

• changing the structure of a table, view or function referenced by the query
• changing, or dropping, an index used by the query
• updating the statistics used by the query
• calling the function sp_recompile
• mixing DDL and DML within a single batch
• changing certain SET options within the T-SQL of the batch
• changes to cursor options within the query
• deferred compiles
• changes to a remote rowset if you're using a function like OPENQUERY.

Getting Started with Execution Plans
Execution plans assist us in writing efficient T-SQL code, troubleshooting existing T-SQL
behavior or monitoring and reporting on our systems. How we use them and view them is up
to us, but first we need to understand what information is contained within the plans, and how
to interpret that information. One of the best ways to learn about execution plans is to see
them in action, so let's get started.

http://preview.tinyurl.com/y947r969

39

Chapter 1: Introducing the Execution Plan

Permissions required to view execution plans
In order to view execution plans for queries you must have the correct permissions within
the database. If you are sysadmin, dbcreator or db_owner, you won't need any other
permission. If you are granting this permission to developers who will not be in one of those
privileged roles, they'll need to be granted the ShowPlan permission within the database
being tested. Run the statement in Listing 1-3.

GRANT SHOWPLAN TO [username];

Listing 1-3

Substituting the username will enable the user to view execution plans for that database.
Additionally, in order to run the queries against the Dynamic Management Objects (DMO),
either VIEW SERVER STATE or VIEW DATABASE STATE, depending on the DMO in
question, will be required. We'll explore DMOs more in Chapter 15.

Execution plan formats
SQL Server can output the execution plan in three different ways:

• as an XML plan
• as a text plan
• as a graphical plan.

The one you choose will depend on the level of detail you want to see, and on the methods
used to capture or view that plan.

In each format, we can retrieve the execution plan without executing the query, (so without
runtime information), which is known as the estimated plan, or we can retrieve the plan
with added runtime information, which of course requires executing the query, and is known
as the actual plan. While, strictly speaking, the terms actual and estimated are exclusive
to graphical plans, it is common to see them applied to all execution plan formats and, for
simplicity, we'll use those terms for each format here.

40

Chapter 1: Introducing the Execution Plan

XML plans
XML plans present a complete set of data available on a plan, all on display in the structured
XML format. The XML format is great for transmitting to other data professionals if you
want help on an execution plan or need to share with coworkers. Using XQuery, we can also
query the XML data directly (see Chapter 13).

We can use one of the following two commands to retrieve the plan in XML format:
• SET SHOWPLAN_XML ON – generates the estimated plan (i.e. the query is not

executed).
• SET STATISTICS_XML ON – generates the actual execution plan (i.e. with

runtime information).
XML plans are extremely useful, but mainly for querying, not for standard-style reading of
plans, since the XML is not human readable. Useful though these types of plan are, you're
more likely to use graphical plans for simply browsing the execution plan.

Every graphical execution plan is actually XML under the covers. Within SSMS, simply
right-click on the plan itself. From the context menu select Show Execution Plan XML… to
open a window with the XML of the execution plan.

Text plans
These can be quite difficult to read, but detailed information is immediately available. Their
text format means that they we can copy or export them into text manipulation software
such as NotePad or Word, and then run searches against them. While the detail they provide
is immediately available, there is less detail overall from the execution plan output in these
types of plan, so they can be less useful than the other plan types.

Text plans are on the deprecation list from Microsoft. They will not be available in a future
version of SQL Server. I don't recommend using them.

Nevertheless, here are the possible commands we can use to retrieve the plan in text format:
• SET SHOWPLAN_ALL ON – retrieves the estimated execution plan for the query.
• SET STATISTICS PROFILE ON – retrieves the actual execution plan for

the query.
• SET SHOWPLAN_TEXT ON – retrieves the estimated plan but with a very limited

set of data, for use with tools like osql.exe.

41

Chapter 1: Introducing the Execution Plan

Graphical plans
Graphical plans are the most commonly viewed format of execution plan. They are quick
and easy to read. We can view both estimated and actual execution plans in graphical format
and the graphical structure makes understanding most plans very easy. However, the detailed
data for the plan is hidden behind Tooltips and Property sheets, making it somewhat more
difficult to get to, other than in a one-operator-at-a-time approach.

Retrieving cached plans
There is some confusion regarding the different types of plan and what they really mean.
I've heard developers talk about estimated and actual plans as if they were two completely
different plans. Hopefully this section will clear things up. The salient point is that the query
optimizer produces the plan, and there is only one valid execution plan for a query, at any
given time.

When troubleshooting a long-running query retrospectively, we'll often need to retrieve the
cached plan for that query from the plan cache. As discussed earlier, once the optimizer
selects a new plan for a query, it places it in the plan cache, and passes it on to the query
execution engine for execution. Of course, the optimizer never executes any queries, it
merely formulates the plan based on its knowledge of the underlying data structures and
statistical knowledge of the data. Cached plans don't contain any runtime information, except
for the row counts in interleaved plans.

We can retrieve this cached plan manually, via the Dynamic Management Objects, or using a
tool such as Extended Events. We'll cover techniques to automate capture of the cached plan
later in the book (Chapter 15).

Plans for ad hoc queries: estimated and actual plans
Most of the time in this book, however, we'll retrieve the execution plan simply by executing
ad hoc queries within SSMS. At the point we submit the query, we have the option to request
either the estimated plan or the actual plan.

If we request the estimated plan, we do not execute the query; we merely submit the query
for inspection by the optimizer, in order to see the associated plan. If there exists in the plan
cache a plan that exactly matches the submitted query text, then the optimizer simply returns
that cached plan. If there is no match, the optimizer performs the optimization process and

42

Chapter 1: Introducing the Execution Plan

returns the new plan. However, because there is no intent to execute the query, the next two
steps are skipped (i.e. placing the plan in the cache, if it's a new plan, and sending it for
execution). Since estimated plans never access data, they are very useful during development
for testing large, complex queries that could take a long time to run.

If, when we submit the query, we request a plan with runtime information, (what SSMS
refers to as an actual plan), then all three steps in the process are performed.

If there is a cached plan that exactly matches the submitted query text, then the optimizer
simply passes the cached plan to the execution engine, which executes it, and adds the
requested runtime values to the displayed plan. If there is no cached plan, the optimizer
produces a new plan, places it in the cache and passes it on for execution and, again, we see
the plan with runtime information. For example, we'll see runtime values for the number of
rows returned and the number of executions of each operator, alongside the optimizer's esti-
mated values. Note that SQL Server does not store anywhere a second copy of the plan with
the runtime information. These values are simply injected into the copy of the plan, whether
displayed in SSMS, or output through other means.

Will the estimated and actual plans ever be different?
Essentially, the answer to this is "No." As emphasized previously, there is only one valid
execution plan for a query at any given time, and the estimated and actual plans will not
be different.

You may see differences in parallelization between the runtime plan and the estimated plan,
but this doesn't mean the execution engine "changed" the plan. At compile time, if the opti-
mizer calculates that the cost of the plan might exceed the cost threshold for parallelism, then
it produces a parallel version of the plan (see Chapter 11). However, the engine gets the final
say on whether the query is executed in parallel, based on current server activity and avail-
able resources. If resources are too scarce, it will simply strip out the parallelism and run a
serial version of the plan.

Sometimes, you might generate an estimated plan and then, later, an actual plan for the same
query, and see that the plans are different. In fact, what will have happened here is that, in
the time between the two requests, something happened to invalidate the existing plan in
the cache, forcing the optimizer to perform a full optimization and generate a new plan. For
example, changes in the data or data structures might have caused SQL Server to recompile

43

Chapter 1: Introducing the Execution Plan

the plan. Alternatively, processes or objects within the query, such as interleaving
Data Definition Language (DDL) and data manipulation language (DML), result in a
recompilation of the execution plan.

If you request an actual plan and then retrieve from the cache the plan for the query you just
executed (we'll see how to do that in Chapter 9), you'll see that the cached plan is the same as
your actual plan, except that the actual plan has runtime information.

One case where the estimated and actual plans will be genuinely different is when the
estimated plan won't work at all. For example, try generating an estimated plan for the simple
bit of code in Listing 1-4.

CREATE TABLE TempTable
 (
 Id INT IDENTITY(1, 1) ,
 Dsc NVARCHAR(50)
);
INSERT INTO TempTable
 (Dsc
)
 SELECT [Name]
 FROM [Sales].[Store];
SELECT *
FROM TempTable;
DROP TABLE TempTable;

Listing 1-4

You will get this error:

Msg 208, Level 16, State 1, Line 7
Invalid object name 'TempTable'.

The optimizer runs the statements through the algebrizer, the process outlined earlier that is
responsible for verifying the names of database objects but, since SQL Server has not yet
executed the query, the temporary table does not yet exist.

The plan will get marked for deferred name resolution. In other words, while the batch is
parsed, bound, and compiled, the SELECT query is excluded from compilation because the
algebrizer has marked it as deferred. Capturing the estimated plan doesn't execute the query,
and so doesn't create the temporary table, and this is the cause of the error. At runtime, the
query will be compiled and now a plan does exist. If you execute Listing 1-4 and request the
actual execution plan, it will work perfectly.

44

Chapter 1: Introducing the Execution Plan

A second case where the estimated and actual plans will be different, new in SQL Server
2017, is when the optimizer uses interleaved execution. If we request an estimated plan for
a query that contains a multi-statement table valued function (MSTVF), then the optimizer
will use a fixed cardinality estimation of 100 rows for the MSTVF. However, if we request an
actual plan, the optimizer will first generate the plan using this fixed estimate, and then run
the subtree containing the MSTVF to get the actual row counts returned, and recompile the
plan based on these real row counts. Of course, this plan will be stored in the plan cache, so
subsequent requests for either an estimated or an actual plan will return the same plan.

Capturing graphical plans in SSMS
In SSMS, we can capture both the estimated and the actual plans for a query, and there are
several ways to do it, in each case. Perhaps the most common, or at least the route I usually
take, is to use the icons in the toolbar. Figure 1-2 shows the Display Estimated Execution
Plan icon.

Figure 1-2: Capturing the estimated plan.

A few icons to the right, we have the Include Actual Execution Plan icon, as shown in
Figure 1-3.

45

Chapter 1: Introducing the Execution Plan

Figure 1-3: Capturing the actual plan.

Alternatively, for either type of plan, you could:
• right-click in the query window and select the same option from the context menu
• click on the Query option in the menu bar and select the same choice
• use the keyboard shortcut (CTRL+L for estimated; CTRL+M for actual within

SSMS or CTRL+ALT+L and CTRL+ALT+M for the same within Visual Studio).
For estimated plans, we have to click the icon, or use one of the alternative methods, each
time we want to capture that type of plan for a query. For the actual plan, each of these
methods acts as an "on/off" switch for the query window. When the actual plan is switched
on, at each execution, SQL Server will then capture an actual execution plan for all queries
run from that window, until you turn it off again for each query window within SSMS.

Finally, there is one additional way to view a graphical execution plan, a live execution plan.
The view of the plan is based on a DMV, sys.dm_exec_query_statistics_xml,
introduced in SQL Server 2014. This DMV returns live statistics for the operations within an
execution plan. The graphical view of this DMV was introduced in SQL Server 2016. You
toggle it on or off similarly to what you do with an actual execution plan. Figure 1-4 shows
the button.

46

Chapter 1: Introducing the Execution Plan

Figure 1-4: Enabling the live execution plan.

We’ll explore this completely in Chapter 17.

Capturing our first plan
It's time to capture our first execution plan. We'll start off with a relatively simple query that
nevertheless provides a fairly complete view into everything you're going to do when reading
execution plans.

As noted in the introduction to this book, we strongly encourage you to follow along with the
examples, by executing the relevant script and viewing the plans. Occasionally, especially
as we reach more complex examples later in the book, you may see a plan that differs from
the one presented in the book. This might be because we are using different versions of
SQL Server (different service pack levels and cumulative updates), different editions, or
we are using slightly different versions of the AdventureWorks sample database. We use
AdventureWorks2016 in this book; other versions are slightly different, and even if you
use the same version, its schema or statistics may have been altered over time. So, while most
of the plans you get should be very similar, if not identical, to what we display here, don't be
too surprised if you try the code and see something different.

Open a new query tab in SSMS and run the query shown in Listing 1-5.

USE AdventureWorks2014;
GO
SELECT p.LastName + ', ' + p.FirstName,
 p.Title,
 pp.PhoneNumber
FROM Person.Person AS p
 INNER JOIN Person.PersonPhone AS pp

47

Chapter 1: Introducing the Execution Plan

 ON pp.BusinessEntityID = p.BusinessEntityID
 INNER JOIN Person.PhoneNumberType AS pnt
 ON pnt.PhoneNumberTypeID = pp.PhoneNumberTypeID
WHERE pnt.Name = 'Cell'
 AND p.LastName = 'Dempsey';
GO

Listing 1-5

Click the Display Estimated Execution Plan icon and in the execution plan tab you will see
the estimated execution plan, as shown in Figure 1-5.

Figure 1-5: Estimated execution plan.

Notice that there is no Results tab, because we have not actually executed the query. Now,
highlight the Include Actual Execution Plan icon and execute the query. This time you'll
see the result set retuned (a single row) and the Execution plan tab will display the actual
execution plan, which should also look as shown in Figure 1-5.

The components of a graphical execution plan
We're now going to explore each section of the plan from Figure 1-5 in more detail, but still
at a high level. We won't start exploring the details of individual operators until Chapter 3.
You'll notice that it's rather difficult to read the details on the plan in Figure 1-5. Here, and
throughout the book we'll be following a method where I show the whole plan, and then drill
down into sections of the plan to discuss individual parts or segments of the plan.

Most people start on the right-hand side, when reading plans, where you will find the opera-
tors that read data out of the base tables and indexes. From there we follow the data flow, as
indicated by the arrows, from right to left until it reaches the SELECT operator, where the

48

Chapter 1: Introducing the Execution Plan

rows are passed back to the client. However, it's equally valid to read the plan from left to
right, which is the order in which the operators are called – essentially data is pulled from
right to left as each operator in turn calls the child operator on its right, but we'll discuss this
in more detail in Chapter 3.

Operators
Operators, represented as icons in the plan, are the workhorses of the plan. Each operator
implements a specific algorithm designed to perform a specialized task. The operators in a
plan tell us exactly how SQL Server chose to execute a query, such as how it chose to access
the data in a certain table, how it chose to join that data to rows in a second table, how and
where it chose to perform any aggregations, sorting, calculations, and so on.

In this example, let's start on the right-hand side of the plan, with the operators shown in
Figure 1-6.

 Figure 1-6: Two data access operators and a join operator.

Here we see two data access operators passing data to a join operator. The first operator is
an Index Seek, which is pulling data from the Person table using a nonclustered index,
Person.IX_Person_LastName_FirstName_MiddleName. Each qualifying row
(rows where the last name is Dempsey) passes to a Nested Loops operator, which is going to
pull additional data, not held in the nonclustered index, from the Key Lookup operator.

Each operator has both a physical and a logical element. For example, in Figure 1-6, Nested
Loops is the physical operator, and Inner Join is the logical operation it performs.

49

Chapter 1: Introducing the Execution Plan

So the logical component describes what the operator actually does (an INNER JOIN opera-
tion) and the physical part is how the optimizer chose to implement it (using a Nested Loops
algorithm).

From the first Nested Loops operator, the data flows to a Compute Scalar operator. For each
row, it performs its required task (in this case, concatenating the first and last names with a
comma) and then passes it on to the operator on its left. This data is joined with matching
rows in the PersonPhone table, and then in turn with matching rows in the PhoneNum-
berType table. Finally, the data flows to the SELECT operator.

 Figure 1-7: Broader section of the plan showing more operators.

The SELECT icon is one that you're going to frequently reference for the important data
it contains. Of course, every operator contains important data (see the Operator properties
section, a little later), but what sets the SELECT operator apart is that it contains data about
the plan as a whole, whereas other icons only expose information about the operator itself.

Data flow arrows
The arrows represent the direction of data flow between the operators, and the thickness of
the arrow reflects the amount of data passed, a thicker arrow meaning more rows. Arrow
thickness is another visual clue as to where performance issues may lie. For example, you
might see a big thick arrow emerging from a data access operator, on the right side of the
plan, but very thin arrows on the left, since your query ultimately returns only two rows.
This is a sign that a lot of data was processed to produce those two output rows. That may be
unavoidable for the functional requirements of the query, but equally it might be something
you can avoid.

50

Chapter 1: Introducing the Execution Plan

You can hover with the mouse pointer over these arrows and it will show the number of rows
that it represents in a tooltip that you can see in Figure 1-8. In an execution plan that contains
runtime statistics (the actual plan), the thickness is determined by the actual, rather than the
estimated, number of rows.

 Figure 1-8: Tooltip for the data flow arrow.

Estimated operator costs
Below each individual icon in a plan is displayed a number as a percentage. This number
represents the estimated cost for that operator relative to the estimated cost of the plan as a
whole. These numbers are best thought of as "cost units," based on the mathematical calcu-
lations of anticipated CPU and I/O within the optimizer. The estimated costs are useful as
measures, but these costs don't represent real-world measures of actual CPU and I/O. There is
generally a correlation between high estimated cost within the plan, and higher actual perfor-
mance costs, but these are still just estimated values.

The origin of the estimated cost values
The story goes that the developer tasked with creating execution plans in SQL Server 7 used
his workstation as the basis for these numbers, and they have never been updated. See Danny
Ravid's blog at: http://preview.tinyurl.com/yawet2l3.

All operators will have an associated cost, and even an operator displaying 0% will actu-
ally have a small associated cost, which you can see in the operator's properties (which we'll
discuss shortly).

If you compare the operator- and plan-costs side by side for the estimated and actual plan of
the same query, you'll see that they are identical. Only the optimizer generates these cost
values, which means that all costs in all plans are estimates, based on the optimizer's statis-
tical knowledge of the data.

http://preview.tinyurl.com/yawet2l3

51

Chapter 1: Introducing the Execution Plan

Estimated total query cost relative to batch

At the top of every execution plan is displayed as much of the query string as will fit into the
window, and a "cost (relative to the batch)" of 100%.

Figure 1-9: Query and the estimated query cost at the top of the execution plan.

Just as each query can have multiple operators, and each of those operators will have a cost
relative to the query, you can also run multiple queries within a batch and get execution plans
for them. Each plan will then have different costs. The estimated cost of the total query is
divided by the estimated cost of all queries in a batch. Each operator within a plan displays
its estimated costs relative to the plan it's a part of, not to the batch as a whole.

Never lose sight of the fact that the costs you see, even in actual plans, are an estimated
cost, not real, measured, performance metrics. If you focus your tuning efforts exclusively
on the queries or operators with high estimated costs, and it turns out the cost estimations are
incorrect, then you may be looking in the wrong area for the cause of performance issues.

Operator properties
Right-click any icon within a graphical execution plan and select the Properties menu item
to get a detailed list of information about that operation. Each operator performs a distinct
task and therefore each operator will have a distinct set of property data. The vast majority
of useful information to help you read and understand execution plans is contained in the
Properties window for each operator. It's a good habit to get into when reading an execu-
tion plan to just leave the Properties window open and pinned to your SSMS window at all
times. Sadly, due to the vagaries of the SSMS GUI, you may sometimes have to click two
places to get the properties you want to properly display.

Figure 1-10 compares the Properties window for the same Index Seek operator at the
top right of Figure 1-5, which performs a seek operation on a nonclustered index on the
Person table. The left-hand pane is from the estimated plan, and the right-hand pane is
for the actual plan.

52

Chapter 1: Introducing the Execution Plan

Figure 1-10: Comparing properties of the Index Seek operator for the
estimated and actual plans.

As you can see, in the actual plan we see the actual, as well as the estimated, number of rows
that passed through that operator, as well as the actual number of times the operator was
executed. Here we see that the optimizer estimated 1.3333 rows and 2 were actually returned.

When comparing the properties of an operator, for the estimated and actual plans, look out
for very big differences between the estimated and the actual number of rows returned,
such as an estimated row count of 100 and an actual row count of 100,000 (or vice versa).
If a query that returns hundreds of thousands of rows uses a plan the optimizer devised for
returning 10 rows, it is likely to be very inefficient, and you will need to investigate the
possible cause. It might be that the row count has changed significantly since the plan was
generated but statistics have not yet auto-updated, or it might be caused by problems with
parameter sniffing, or by other issues. We'll return to this topic in detail in Chapter 9.

53

Chapter 1: Introducing the Execution Plan

I'm not going into detail here on all the properties and their meanings, but I'll mention briefly
a few that you'll refer to quite frequently:

• Actual Number of Rows – the true number of rows returned according to runtime
statistics. The availability of this value in actual plans is the biggest difference
between these and cached plans (or estimated plans). Look out for big differences
between this value and the estimated value.

• Defined Values – values introduced by this operator, such as the columns returned,
or computed expressions from the query, or internal values introduced by the
query processor.

• Estimated Number of Rows – calculated based on the statistics available to the
optimizer for the table or index in question. These are useful for comparing to the
Actual Number of Rows.

• Estimated Operator Cost – the estimated operator cost as a figure (as well as
a percentage). This is an estimated cost even in actual plans.

• Object – the object accessed, such as the index being accessed by a scan or
a seek operation.

• Output List – columns returned.
• Predicate – a "pushed down" search Predicate.
• Table Cardinality – number of rows in the table.

You'll note that some of the properties, such as Object, have a triangle icon on their left, indi-
cating that they can be expanded. Some of the longer property descriptions have an ellipsis
at the end, which allows us to open a new window, making the longer text easier to read.
Almost all properties, when you click on them, display a description at the bottom of the
Property pane.

All these details are available to help us understand what's happening within the query in
question. We can walk through the various operators, observing how the subtree cost accu-
mulates, how the number of rows changes, and so on. With these details, we can identify
queries that are estimated to use excessive amounts of CPU or tables that need more indexes,
or identify other performance issues.

Tooltips
Associated with each of the icons and the arrows is a pop-up window called a tooltip, which
you can access by hovering your mouse pointer over the icon or arrow. I already used one of
these in Figure 1-8. Essentially, the tooltip for an operator is a cut-down version of the full

54

Chapter 1: Introducing the Execution Plan

Properties window. It’s worth noting that the tooltip and the properties for given operators
change as SQL Server itself changes. You may see differences in the tooltips between one
version of SQL Server and the next. Most of the examples in this book are from SQL Server
2016.

Figure 1-11 shows the tooltip window for the SELECT operator for the estimated execution
plan for the query in Listing 1-4.

Figure 1-11: Tooltip for the SELECT operator.

The properties of the SELECT operator are often particularly interesting, since this provides
information relating to the plan as a whole. For example, we see the following two property
values (among others, several of which we'll review in detail in Chapter 2):

• Cached plan size – how much memory the plan generated by this query will take
up in the plan cache. This is a useful number when investigating cache perfor-
mance issues because you'll be able to see which plans are taking up more memory.

• Degree of Parallelism – whether this plan was designed to use (or did use)
multiple processors. This plan uses a single processor as shown by the value of 1.
(See Chapter 11.)

55

Chapter 1: Introducing the Execution Plan

In Figure 1-11, we also see the statement that represents the entire query that SQL Server is
processing. You may not see the statement if it's too long to fit into the tooltip window. The
same thing applies to other properties in other operators. This is yet another reason to focus
on using the Properties window when working with execution plans.

The information available in the tooltips can be extremely limited. But, it's fairly quick to see
the information available in them since all you have to do is hover your mouse to get the tips.
To get a more consistent and more detailed view of information about the operations within
an execution plan, you should use the full Properties window.

Saving execution plans
We can save an execution plan from the graphical execution plan interface by right-clicking
within the execution plan and selecting Save Execution Plan As. Way back in SQL Server
2005, we then had to change the filter to "*.*" and, when typing the name of the file we
wanted to save, add .sqlplan as the extension. Thankfully, SQL Server 2008, and later, auto-
matically selects the .sqlplan file type.

What we are saving is simply an XML file. One of the benefits of extracting an XML plan
and saving it as a separate file is that we can share it with others. For example, we can send
the XML plan of a slow-running query to a DBA friend and ask them their opinion on how
to rewrite the query. Once the friend receives the XML plan, he or she can open it up in
Management Studio and review it as a graphical execution plan.

You can look at the underlying XML of a plan as well by right-clicking on the plan and
selecting Show Execution Plan XML from the context menu. That will open the raw XML
in another window where you can browse the XML manually if you like. Alternatively, you
can open the .sqlplan file in Notepad. We'll explore the XML within execution plans in detail
in Chapter 13.

Summary
In this chapter, we've described briefly the role of the query optimizer in producing the
execution plan for a query, and how it selects the lowest-cost plan, based on its knowledge of
the data structures and statistical knowledge of the data distribution. We also covered the plan
cache, the importance of plan reuse, and how to promote this.

56

Chapter 1: Introducing the Execution Plan

We explored the different execution plan formats, and then focused on graphical execution
plans, how to read these plans, and the various components of these plans. We are going to
spend a lot of time within the graphical plans when interpreting individual execution plans,
so understanding the information available within the plans is important.

I also tried to clear up any confusion regarding what the terms "estimated plan" and "actual
plan" really mean. I've even heard people talk about "estimated and actual plans" as if they
were two completely different plans, or that the estimated plan might be somehow "inaccu-
rate." Hopefully this chapter dispelled those misunderstandings.

57

Chapter 2: Getting Started Reading Plans
The aim of this chapter is to show you how to start reading graphical execution plans. We're
still going to stay relatively high level, using a few simple queries and basic filters to explain
the mechanics of reading a plan, and what to look for in a plan. In subsequent chapters, we'll
start drilling down into the details of the various individual operators and their properties.

Specifically, we'll cover:

• a brief review of most common execution plan operators – categorized per their
basic function.

• the basics of how to read a graphical plan – do we read a plan right to left, or left
to right? Both!

• what to look for in a plan – a few key warning signs and operator properties that
can often help rapidly identify potential issues.

• the SELECT operator – contains a lot of useful information about the plan as a
whole.

The Language of Execution Plans
In some ways, learning how to read execution plans is like learning a new language, except
that this language is based on a series of operators, each of which is represented as an icon
in a graphical plan. Fortunately, unlike a language, the number of words (operators) we must
learn is minimal. There are approximately 85 available operators and most queries use only a
small subset of them.

Common operators
Books Online (http://preview.tinyurl.com/y97wndcf) lists all the operators in (sort of) alpha-
betical order. This is fine as a reference, but it isn't the easiest way to learn them, so we will
forgo being "alphabetically correct" here.

http://preview.tinyurl.com/y97wndcf

58

Chapter 2: Getting Started Reading Plans

A graphical execution plan displays three distinct types of operator:
• Physical Operators (and their associated logical operations) appear as blue-

based icons and represent query execution. They include DML and parallelism
operators. These are the only type of operator you'll see in an actual execution plan.

• Cursor Operators have yellow icons and represent T-SQL cursor operations.
• Language Elements are green icons and represent T-SQL language elements, such

as ASSIGN, DECLARE, IF, WHILE, and so on.

The focus of this chapter, and of the book, is on the physical operators and their corre-
sponding logical operations. However, we will also cover cursor operators in Chapter 14,
and there will be a few dives into some of the special information available in the language
element operators.

A physical operator represents the physical algorithm chosen by the optimizer to implement
the required logical operation. Every physical operator is associated with one or more logical
operations. Generally, the name of the physical operator will be followed in brackets by the
name of the associated logical operation (although Microsoft isn't entirely consistent about
this). For example, Nested Loops (Inner Join), where Nested Loops is the physical
implementation of the logical operation, Inner Join.

The optimizer has at its disposal sets of operators for reading data, combining data, ordering
and grouping data, modifying data, and so on. Each operator performs a single, specialized
task. The following table lists some of the more common physical operators, categorized
according to their basic purpose.

Reading data Combining data Grouping and ordering data

Table/Index Scan

Index Seek

Lookup

Constant Scan

Nested Loops

Merge Join

Hash Match

Adaptive Join

Sequence

Concatenation

Switch

Sort

Stream Aggregate

Hash Match (Aggregate)

Window Aggregate

Segment

Window Spool

59

Chapter 2: Getting Started Reading Plans

Manipulating data Modifying data Performance

Compute Scalar

Filter

Top

Sequence Project

Table/Index Insert

Table/Index Update

Table/Index Delete

Table/Index Merge

Assert

Split

Collapse

Bitmap

Spools

Parallelism

Which plan operators you see most frequently as a developer or DBA depends a lot on the
nature of the workload. For an OLTP workload you will hope to see a lot of Index Seek
and Nested Loops operators, characteristic of frequent queries that return relatively small
amounts of data. For a BI system, you are likely to see more Index Scans, since these are
often more efficient when reading a large proportion of data in a table, and Merge Join or
Hash Match joins, which are join algorithms that become more efficient when joining larger
data streams.

Understanding all the internal mechanisms of a given operator is only possible if you run
a debugger on SQL Server. I absolutely do not recommend that you do this, but if you're
looking for deep knowledge of operator internals, then I recommend Paul White's blog
(http://preview.tinyurl.com/y75n6f5z).

Generally, however, we can learn a lot about what an operator is doing by observing how
they function and relate to one another within execution plans. The key is to start by trying
to understand the basic mechanics of the plan as a whole, and then drill down into the "inter-
esting" operators. These might be the operators with the highest estimated cost, such as a
high-cost Index Scan or seek, or it might be a "blocking" operator such as a Sort (more on
blocking versus streaming operators shortly). Having chosen a starting point, look at the
properties of these operators, where all the details about the operator are available. Each
operator has a different set of characteristics. For example, they manage memory in different
ways. Some operators, primarily Sort, Hash Match, and Adaptive Join, require a variable
amount of memory in order to execute. As such, a query with one of these operators may have
to wait for available memory prior to execution, possibly adversely affecting performance.

http://preview.tinyurl.com/y75n6f5z

60

Chapter 2: Getting Started Reading Plans

Reading a plan: right to left, or left to right?

Should we read an execution plan from right to left, or from left to right? The answer, as we
discussed briefly in Chapter 1, is that we generally read execution plans from right to left,
following the data flow arrows, but that it is equally valid, and frequently helpful, to read
from left to right.

Let's take a look at a very simple example. Listing 2-1 shows a simple query against the
AdventureWorks2014 database, retrieving details from the Person.Person table,
within a certain date range.

SELECT TOP (5)
 BusinessEntityID ,
 PersonType ,
 NameStyle ,
 Title ,
 FirstName ,
 LastName ,
 ModifiedDate
FROM Person.Person
WHERE ModifiedDate >= '20130601'
 AND ModifiedDate <= CURRENT_TIMESTAMP ;

Listing 2-1

Figure 2-1 shows the resulting execution plan.

Figure 2-1: Simple execution plan, read right to left.

If we read the plan from right to left, following the data flow direction, the first action in the
plan is to read the data from the Person table, via a Clustered Index Scan. The data passes
to the Top operator, which in turn passes the first five rows back to the SELECT. This is a
perfectly valid way to read the plan, and is the way most people read one. However, this data

61

Chapter 2: Getting Started Reading Plans

flow order could imply that, first, the Clustered Index Scan reads the data in the Person
table and passes on the rows that match the search condition in the WHERE clause (there are
over 13 K qualifying rows), and then the Top operator only sends on the first five.

Of course, this would be highly inefficient, and is not what happens, as you can tell from
the thin arrow between the Clustered Index Scan and Top operators. The Clustered Index
Scan only reads 5 rows from the Person table.

Figure 2-2: Actual number of rows processed.

In fact, this example illustrates clearly that, during plan execution, the operators are called
from left to right, so if we follow the order in which the operators are called, we must read
the plan left to right.

Each operator supports a GetNext method ("Give me the next row") and the first action in
this case is a GetNext call from the Top operator to the Clustered Index Scan, which passes
the first qualifying row, filtered according to the WHERE clause, back to Top and then the
cycle repeats for each row, steadily streaming rows back to the client. Once the Top operator
has all the rows it needs, five rows in this case, execution stops, so the rest of the table is
never read.

62

Chapter 2: Getting Started Reading Plans

Streaming versus blocking operators

Many of the operators you see in plans will be non-blocking, a.k.a. streaming, operators.
A streaming operator creates output data at the same time as it receives the input. In other
words, it will pass on rows to the next operator as soon as it has performed its task on
that row.

Some operators, however, are blocking operators and must gather the entire set of input data
and then perform their work on the entire data set, before passing on any rows. Add ORDER
BY ModifiedDate to Listing 2-1, and re-execute the query, requesting the actual execution
plan, as shown in Figure 2-3.

Figure 2-3: Execution plan showing blocking operators.

The Clustered Index Scan (discussed in detail later in Chapter 3) is a streaming operator,
and passes on rows as they are read from the index. A scan indicates that it will read all rows
in the table, or index, until all rows are processed (unless a different operator, such as Top
in the previous example, ends execution early). When it finds a row that falls in the required
date range, it passes that row on to the next operator, in this case, a Sort.

The Sort operator reorders data, representing here the ORDER BY statement in the query.
The Sort operator is a blocking operator. This logical operation is a Top N Sort because of
the TOP operation in the query. It must read every row from its child operator, in this case
over 13K qualifying rows, sort them according to the specified criteria, ModifiedDate, and
then pass on the top five rows. In this sort of situation, especially for a very large input, such
blocking operators could slow down performance.

Some operators are only semi-blocking, and must complete only part of their work
before releasing the first row. For example, the join operator Hash Match first processes
 all rows from its first input, but then processes and returns rows from the second input as
it reads them.

63

Chapter 2: Getting Started Reading Plans

Microsoft maintains no definitive listing of blocking and non-blocking operators. Instead,
you can infer their behavior by the definitions and relationships within the plan. Again, the
key to understanding execution plans is to start to learn how to understand what the operators
do and how this affects your query.

The warning shown in the plan in Figure 2-3, the little exclamation point, will be discussed in
the next section.

What to Look for in an Execution Plan
As queries grow complex, so their executions plans can quickly become rather unwieldy
and harder to understand, regardless of whether we read the plan right to left or left to right.
Rather than trawling through every operator, we can often identify potential issues by looking
out for a few key warning signs, and by examining the properties behind certain important
operators.

The following recommendations don't preclude the need to understand the plan as a whole,
and its operators, but they can help you read through a plan a little faster than trying to trace
all the data paths and all the behaviors one at a time.

We'll discuss why each of these are important "pointers" to sources of possible problems, but
we won't drill into specific examples. Throughout the rest of the book, we'll expand on these
recommendations, with specific examples.

First operator
The first operator, on the left-hand side of the execution plan, is the SELECT/INSERT/
UPDATE/DELETE (and sometimes others, such as MERGE) operator, and the first time you
look at an execution plan it's always worth examining its properties.

Whereas the Properties window for other operators reveals information specific to the action
of that operator, the first operator offers a lot of information about the plan itself and its
generation. It includes information such as the time, CPU and memory required to compile
the plan, the ANSI connection settings, whether the optimizer completed optimization or
terminated the optimization process early because a good enough plan was found or it didn't
find what it considered an optimal plan (this is referred to as a "timeout").

64

Chapter 2: Getting Started Reading Plans

 Figure 2-4: First operator properties.

We'll review some of the details of this operator later in this chapter, and continue,
throughout the book, to explore the interesting pieces of information it provides.

When capturing plans using Extended Events (see Chapter 15), you may not see the first
operator and all the great information it provides, which is a pity. However, most of the
important information is still available in the plans captured through Extended Events, within
the XML that defines the plan.

Warnings
Within an execution plan, you may see (on SQL Server 2012 and later) small icons appear
on an operator, specifically a yellow or red exclamation mark. These are warnings. Not every
warning indicates a grave problem, but whenever you see one, check the properties for that
icon, which will contain a description of the warning.

65

Chapter 2: Getting Started Reading Plans

Figure 2-5: Execution plan with a warning.

Figure 2-5 shows a warning on the SELECT (in this case caused by a memory allocation
mismatch), but there are other types of warning, such as a warning on a Sort operator that
spilled to disk, and we'll go over several of them as we encounter them in execution plans
throughout the rest of the book.

Estimated versus actual number of rows
It is very important to remember that all costs you will ever see in a plan are based on cardi-
nality estimations, never on actual row and execution counts. Therefore, these costs are only
as accurate as the optimizer's cardinality estimations.

One of the first things to check in a plan before digging deeper, and certainly before looking
at the costs associated with individual operators, is to compare estimated and actual row
counts and make sure they are within reasonable margins, to confirm the accuracy of the
cardinality estimates associated with the estimated costs. Sometimes, you'll see an operator
with a very high estimated cost, because the optimizer estimated it would need to process
many rows, when in fact it had to process very few rows (or vice versa, for low estimated
costs).

If estimated and actual rows counts differ significantly, you need to work out the cause and
fix that first. Only then can you look at estimated cost of operators.

Operator cost
Having verified that cardinality estimates were accurate, we can look for the costliest opera-
tors as a means of determining where to focus our initial efforts. It's often useful to compare
the cost of one operator to another within the plan. However, we can't compare operator cost
within one plan to operator cost within a second plan because the cost estimates are math-
ematical constructs and don't really lend themselves directly to that type of comparison.

66

Chapter 2: Getting Started Reading Plans

Also, some operators, and we'll discuss them as we go, don't have costs associated with
them, or they're "fixed" costs based on assumptions within the optimizer, which may or may
not be accurate. For example, a Compute Scalar operator always has a very low fixed cost
(zero-point-lots-of-zeros-one), which is often fine but occasionally misleading, as we'll see in
Chapter 4.

So, while cost estimates are important and we will use them, just remember that they can't be
blindly trusted as an accurate measure of actual cost within the plan.

"Missing Index" suggestions
Often, you'll see a message at the top of a plan saying that there is a missing index that will "re-
duce the cost" of an operator by some impressive percentage. Treat them as suggestions only,
rather than going ahead and creating each index that's suggested. Remember, an index that
may help a single query, which is all that a given execution plan represents, may be detrimen-
tal to the performance of your workload as a whole. Also, there may be more than one index
suggested. You’ll only see one at the top of the plan. Check the first operator to see if there are
additional suggestions.

Data flow
As discussed previously, the data flow within an execution plan is defined by the arrows
connecting one operator to the next. These arrows, because they represent the flow of data,
are frequently referred to as pipes. The thickness of the pipe is based on actual row count
when available (actual execution plan), and on estimates otherwise (cached or estimated
plan). A thicker pipe indicates more data being processed; a thinner pipe indicates less data.
In some cases, some of the operators in an actual plan do not report an actual row count, in
which case the estimated row count is used to set the pipe size.

Look out not only for "fat pipes," but also for abrupt transitions in pipe thickness as you read
through the execution plan. For example, a very fat pipe at the beginning of a plan narrowing
to a very thin pipe on the left-hand side of the plan suggests that filtering is happening late.
Small pipes that get bigger and bigger suggest that your query is somehow multiplying data.

67

Chapter 2: Getting Started Reading Plans

Extra operators
There is not really any such thing as an extra operator; every operator in a plan performs a
specific function. The idea of an "extra" operator is one that I've made up as a good way to
help people get started reading execution plans. Here's how it works.

Every time you're reading a plan and you see an operator you've never seen, or an operator
that you've seen and understand, but can't determine why it's in the spot it's in within the plan,
then that is an "extra" operator. It's an operator that you don't know, or you don't understand
why it's affecting the plan.

Your response is simple: understand what the operator is and what it's doing and then it is no
longer an "extra" operator.

Read operators
We'll detail the various read operators in the next chapter. The ones we'll focus on here are
the scan and the seek. A scan operator (an Index Scan or Table Scan) is just an indicator of
one type of data access that reads across the pages in an index or a table. However, it's a type
of data access that indicates, frequently, that a lot of rows are being accessed.

A seek operator is an indicator of another type of data access that uses the structure of an
index to identify a starting point, and possibly an ending point, for a targeted scan through
the pages of an index. A seek indicates, most of the time, that only a small number of rows
are being accessed.

Most people when reading plans have a "scans bad, seeks good" mentality. In fact, neither
of these operations is good or bad, by definition. What you want to look out for in a plan
are high-cost scans that retrieve limited data sets (sometimes indicating a missing or poorly
structured index), or seeks that retrieve extremely large data sets.

68

Chapter 2: Getting Started Reading Plans

The Information Behind the First Operator

Many people in the habit of reading plans right to left immediately focus their attention on
the data access operators over on the right-hand side. They forget to look at the properties of
the first operator, which is a pity because they are missing a lot of valuable information about
the plan, as a whole. Hopefully, this section will put that right. As you will see, there is a lot
of information available in the first operator about the process that the optimizer went
through to arrive at this plan.

That's why the first operator in a plan, reading left to right, makes a good starting point for
exploring the execution plan of any query. Microsoft defines these operations as "Language
Elements." They represent the process that the query is performing. The official name of the
first operator is the Result Showplan operator, but all the labels within plans and the tooltip
refer to it by a different name: SELECT in a SELECT query, UPDATE in an UPDATE
query, and various other names are possible. Rather than confusing things, we'll use its actual
name, such as SELECT, rather than refer to it as the Result Showplan.

Let's start with a simple query against the HumanResources.Department table in the
AdventureWorks2014 database.

SELECT d.DepartmentID,
 d.Name,
 d.GroupName
FROM HumanResources.Department AS d
WHERE d.GroupName = 'Manufacturing';

Listing 2-2

Execute the query in SSMS and capture the execution plan for this query, as shown
in Figure 2-6.

69

Chapter 2: Getting Started Reading Plans

Figure 2-6: Simple plan.

The plan has only two operators, a Clustered Index Scan, which we'll discuss in Chapter 3,
and the SELECT. When exploring the information provided by the SELECT operator, use
the full Properties window, because the tooltip, shown in Figure 2-7, provides only a subset
of the available information and almost none of the most important ones.

 Figure 2-7: Tooltips often don't display important properties.

To bring up the full Properties window, as shown in Figure 2-8, simply right-click on the
SELECT operator and select Properties from the context menu. Throughout the rest of the
book, we'll be using only the Properties window, so it makes sense to pin this window to
your SSMS desktop. This will preclude the need to right-click on each operator and you can
simply select the operator from that point forward.

70

Chapter 2: Getting Started Reading Plans

 Figure 2-8: Full property page for SELECT operator.

All of the property values are stored with the plan and are visible in the XML as well as in
the graphical plan. I'm not going to explain every property here, but I will start by listing out
a few that are occasionally useful and then describe, in a bit more detail, some of the ones
that you will use on a regular basis:

• Cached plan size – This property is important because it indicates just how much
memory this plan will take up within the plan cache of SQL Server.

• CardinalityEstimationModelVersion – Starting with SQL Server 2014, a new
cardinality estimator can be used by the optimizer. You can tell if the plan in ques-
tion is using the new or the old. The value in Figure 2-8 is 140, signifying the new
estimator. If it was 70, it would be the old version from SQL Server 7.

• CompileCPU, CompileMemory, CompileTime – The resources used to produce
the plan. The time is in milliseconds. The memory is in kilobytes.

71

Chapter 2: Getting Started Reading Plans

• RetrievedFromCache – This is something of a misnomer. Instead of telling you
that this plan was pulled from cache, it basically says that this plan was stored
in the cache. You'll only see a value of "False" here if the plan in question is not
stored in cache.

• QueryTimeStats – Introduced in SQL Server 2016, this property shows the
execution time for the query, when you're capturing an actual query.

Optimization level
This shows the level of optimization required to produce the plan. Generally, you'll see either
"Trivial" or "Full." A trivial plan, such as this one, can only be resolved one way by the
optimizer, as described in Chapter 1. Exactly what makes a plan trivial is the lack of choices
possible to the optimizer. For example, a SELECT * statement against a single table without
a WHERE clause can only be resolved one way. Another example is an INSERT statement
against a table using VALUES. This can only be resolved a single way by the optimizer,
making the plan trivial.

Full optimization just means it's not a trivial plan, but doesn't actually tell you the extent of
work that the optimizer put into the optimization of this particular plan. To see the optimiza-
tion level in action, we'll add a JOIN to the query as you can see in Listing 2-3.

SELECT d.DepartmentID,
 d.Name,
 d.GroupName,
 edh.StartDate
FROM HumanResources.Department AS d
INNER JOIN HumanResources.EmployeeDepartmentHistory AS edh
 ON edh.DepartmentID = d.DepartmentID
WHERE d.GroupName = 'Manufacturing';

Listing 2-3

Figure 2-9 shows the actual execution plan.

72

Chapter 2: Getting Started Reading Plans

Figure 2-9: Execution plan illustrating FULL optimization.

We won't examine the whole plan now as it contains operators we won't discuss till later in
the book. However, if we look at the properties for the SELECT operator, we see FULL
optimization level, as shown in Figure 2-10.

Figure 2-10: Subset of SELECT operator properties.

We also see a value for a related property called Reason For Early Termination Of
Statement Optimization.

If a plan is produced via the FULL optimization process, then there will be a reason for the
optimizer to stop processing and present its selected plan. For simple queries, the reason
you'll commonly see here is Good Enough Plan Found. This means that after at least one of
the optimization phases, the estimated cost of the cheapest plan was below the threshold for
entering the next phase, and therefore the optimizer selected that plan as good enough.

73

Chapter 2: Getting Started Reading Plans

For more complex queries, if this property value is not reported, it indicates that the plan was
simply the one selected by the full optimization process after completing all possible optimi-
zations in whatever phase the optimizer chose to put the plan through.

You'll see two other values in this property, Timeout and Memory Limit Exceeded. A value
of Timeout indicates that the optimizer attempted to go through its full optimization process,
but didn't succeed. Instead, it ran through as many optimization attempts as it thought neces-
sary for the query, but it didn't find what it considered to be a mathematically good enough
plan. So, it returned the least-cost plan that it had found so far.

A value of Memory Limit Exceeded means an extremely large and complex query against
very complex structures. The plan generated is probably not optimal for the query if you have
a Timeout or Memory Limit Exceeded. However, without simplifying your query or your
structure, you're unlikely to get a better plan.

Parameter List
In our query in Listing 2-2, the single-table query, we hard-coded the value supplied for
GroupName, in the WHERE clause. In other words, we did not use parameters or local vari-
ables. However, the Properties window displays a Parameter List, the expanded view of
which is shown in Figure 2-11, where we see a parameter named @1 and its corresponding
compile time and runtime values.

Figure 2-11: SELECT properties showing the Parameter List.

Since this is a very simple query, the optimizer has been able to perform a process called
simple parameterization. This is a process where the optimizer recognizes that, if you
were using a parameter instead of the hard-coded value supplied, it would be able to create
an execution plan it can reuse. So, it substitutes a parameter of its own. In this case, the
optimizer parameterized our search argument so that the WHERE clause of our query is now

74

Chapter 2: Getting Started Reading Plans

WHERE d.GroupName = @1. As a result, we can see this parameter in the SELECT oper-
ator of our queries. When you see this sort of parameterization, it is also important to inspect
the query (in the SELECT operator) to check which of the hard-coded values in the original
query is replaced by which parameter.

Without simple parameterization, if we were to execute the query in Listing 2-2 again, but
with a different value in the search condition, such as WHERE d.GroupName = 'Sales
and Marketing', then the query text has changed, no plan will match, and the optimizer
will generate a new plan, even though we've executed what is essentially the same query.

However, with our newly parameterized query, the query text remains static from one execu-
tion to the next, and SQL Server swaps in the required value for the @1 parameter on each
subsequent execution. Assuming no SET options change, the optimizer will reuse the existing
plan. Figure 2-12 shows the Parameter List for a second execution of the query, with a
different value supplied in the search condition.

Figure 2-12: SELECT properties with varying Compiled and Runtime values.

However, you will note that we don't see a Parameter List in the SELECT properties for
the two-table query in Listing 2-3. The optimizer can only perform simple parameterization
for simple, one-table queries. The best way to promote plan reuse is to actively parameterize
your queries, using stored procedures.

Whenever a parameter is used, the value passed to that parameter is used to compare to the
statistics of the column or index being used. This is known as "parameter sniffing" (or "vari-
able sniffing"). The use of the specific value leads the optimizer to make better choices based
on your statistics. So, you can look to the SELECT operator to get the compile and runtime
values for parameters to understand how parameter sniffing was resolved on any given query.
We'll discuss parameter sniffing, and the occasional problems it causes, in more detail when
we get to stored procedures.

75

Chapter 2: Getting Started Reading Plans

QueryHash and QueryPlanHash

The QueryHash is a hash value of the query, which is stored with the plan and used by the
optimizer to identify plans with the same or very similar logic. As discussed in Chapter 1, if
the value of a submitted query matches the QueryHash for a plan in the cache, the optimizer
analyzes the SQL text and, if it's identical, can reuse the plan, assuming no difference in
SET options, or database ID. The QueryHash can be very useful in situations where you're
dealing with ad hoc or dynamic T-SQL and need to identify if there are multiple, similar
queries in the system for which separate plans are being created.

The QueryPlanHash is like the QueryHash value but for the plan itself. It identifies plans
that are the same in terms of the operations they perform, and the order they perform them.

Leaving aside cases where the optimizer performs "auto-parameterization," we can have
cases such as the following:

• If we make a change only to literal values, and it doesn't affect the plan, we can see
multiple plans in the cache, each with the same QueryHash and the same Query-
PlanHash.

• If we change only the literals but it results in a different plan, then we'll see
multiple plans, each with the same QueryHash but different values for Query-
PlanHash.

• If we make a logical change to the query that does not affect the execution plan,
then we might see multiple plans in the cache, each with a different QueryHash
but the same QueryPlanHash.

SET options
Figure 2-13 shows the ANSI connection settings and other SET options that were used when
the plan was created. These are very handy values because, as mentioned above, changing
these settings can result in multiple plans in the cache for what are, in all other respects,
identical queries.

76

Chapter 2: Getting Started Reading Plans

Figure 2-13: ANSI settings within SELECT properties.

Other Useful Tools and Techniques when Reading
Plans
One of the primary (but not the only) uses of execution plans is in understanding how a query
is being executed, in order to understand why it is performing poorly.

As such, it's often very useful to collect performance metrics alongside your execution plans,
especially when you're attempting to tune a query in your development environment. There
are multiple ways to gather query metrics:

• SET STATISTICS IO/TIME
• Include Client Statistics
• SQL Trace (Profiler)
• Extended Events
• Query Store (covered in Chapter 16)

There are actually a few other ways, but these are the most used and the most useful. I'm
going to recommend that you use Extended Events for detailed metrics, and Query Store,
where possible, for aggregated metrics. There are several reasons for this, but let's start with
using STATISTICS IO/TIME.

77

Chapter 2: Getting Started Reading Plans

I/O and timing statistics using SET commands
People often use STATISTICS IO/TIME to capture individual query performance
when tuning a query. All we do is surround the query with the SET commands, as shown
in Listing 2-4.

SET STATISTICS IO ON;
SET STATISTICS TIME ON;
 SELECT d.DepartmentID,
 d.Name,
 d.GroupName
 FROM HumanResources.Department AS d
 WHERE d.GroupName = 'Manufacturing';
SET STATISTICS IO OFF;
SET STATISTICS TIME OFF;

Listing 2-4

Look at the complete output of these values for the execution of a single query as shown
in Listing 2-5.

SQL Server parse and compile time:
 CPU time = 0 ms, elapsed time = 0 ms.
(2 row(s) affected)
Table 'Department'. Scan count 1, logical reads 2, physical reads
0, read-ahead reads 0, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.
(1 row(s) affected)
SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 6 ms.
SQL Server Execution Times:
 CPU time = 0 ms, elapsed time = 0 ms.

Listing 2-5

Without someone explaining to you exactly what to look for, can you tell the number of reads
and exactly how long the query took to execute? Once it's explained, sure, but the output
here is quite unclear. The one advantage is that the I/O is broken down by table, which can
be handy at times; because of this, depending on the situation, I will use STATISTICS IO,
but with the following caveat: capturing STATISTICS IO can negatively impact execution
time because of the additional overhead of transferring the I/O information to the client after

78

Chapter 2: Getting Started Reading Plans

it's captured. If you're attempting to tune a query and you want to see if it's running faster or
slower, as well as capture the number of reads, you need your measures to be accurate and
they simply won't be with STATISTICS IO.

Also, it also doesn't always reveal all the work done. For example, if you have code that
makes a lot of calls to a user-defined function, it won't count that I/O, whereas Extended
Events does.

Include Client Statistics
If you are investigating queries that run fast but often, then the overhead of showing the
results in grid or text is often significant enough to invalidate the performance measurements.

A useful technique in such cases is to change the query options to discard the results after
execution, then add a high number after GO commands so that the query runs lots of times
(e.g. GO 100 to run a query 100 times), and use SSMS's Include Client Statistics option to
look at the elapsed time.

SQL Trace and Profiler
The Profiler GUI uses a different buffering mechanism than Trace Events which can directly
affect your server in such a way that gathering metrics can negatively impact the server or
even take it down. I don't recommend ever running Profiler on your production server, and
running it on a development server can invalidate the gathering of metrics. Trace Events can't
be filtered at the point of capture. Instead, all Trace Events are captured and then filtered
afterwards, radically increasing their overhead on your system. Further, Trace and Profiler are
on the list for deprecation. This means that in an upcoming edition of SQL Server they will
no longer be available. It's time to stop using them.

Extended Events
My recommendation is to capture your I/O and timing metrics using Extended Events.
They're in active support from Microsoft. They offer better and more effective filtering than
Trace. They operate lower within the call stack within SQL Server so they have a much
lower impact on performance. Their measure of performance and reads is clear and easy to
understand. When working in SQL Server 2012 or greater, there's a fully-functional graphical
interface for looking at the metrics gathered.

79

Chapter 2: Getting Started Reading Plans

Because of all these reasons, I strongly advise you to use Extended Events. Listing 2-6 offers
a basic mechanism for capturing stored procedures and batches.

CREATE EVENT SESSION QueryPerformance ON SERVER
ADD EVENT sqlserver.rpc_completed (
 WHERE (sqlserver.database_name = N'AdventureWorks2014')),
ADD EVENT sqlserver.sql_batch_completed (
 WHERE (sqlserver.database_name = N'AdventureWorks2014'))
ADD TARGET package0.event_file (SET filename = N'QueryPerformance')
WITH (MAX_MEMORY = 4096 KB,
 EVENT_RETENTION_MODE = ALLOW_SINGLE_EVENT_LOSS,
 MAX_DISPATCH_LATENCY = 3 SECONDS,
 MAX_EVENT_SIZE = 0 KB,
 MEMORY_PARTITION_MODE = NONE,
 TRACK_CAUSALITY = OFF,
 STARTUP_STATE = OFF);

Listing 2-6

Summary
This chapter introduced the basics of reading execution plans, starting with defining the
"language" used by the plans themselves. We also introduced a basic set of things to look
for within execution plans. This can act as a guide to reading all execution plans, no matter
how large. Just remember that the details of the plan are very important and the information
presented here is only a guide. We covered the often-neglected information behind the first
operator. We rounded off with some useful tools and techniques that are often used side by
side with execution plans to gather useful execution statistics.

80

Chapter 3: Data Reading Operators
In this chapter, we're going to examine the data reading operators, which represent the
 optimizer's different mechanisms for reading data. They can also act as a filtering
mechanism, to pass on the qualifying rows to the next operator.

We'll cover the following operators in detail:
• Clustered Index Scan
• Index Scan (nonclustered)
• Clustered Index Seek
• Index Seek (nonclustered)
• Key Lookup (clustered)
• Table Scan
• RID Lookup (heap).

As we progress, you'll learn how the operators work, and start to deepen your knowledge of
execution plans generally, the various operators that they use, and how to read the plan and to
understand the optimizer's choices on how the query should be executed.

Reading an Index
Traditional SQL Server indexes, which excludes memory-optimized, columnstore, full-
text indexes, and others, consist of 8 K pages connected in a b+tree structure. These
are frequently referred to as balanced-tree, bushy-tree or even Bayer-tree, after the lead
researcher who developed them.

The overriding majority of tables in a SQL Server database should have a clustered index.
The leaf-level pages of a clustered index store the data rows, ordered according to all the
columns of the clustered index key. A clustered index is not a "copy" of the table. It is the
table, with a b+tree structure built on top of it, so that the data is organized by the clustering
key. This explains why we can only create one clustered index per table.

81

Chapter 3: Data Reading Operators

In addition to a clustered index, most tables have one or more nonclustered indexes,
designed to improve the performance of critical, frequent, and expensive queries. A
nonclustered index has the same b+tree structure, but the leaf-level pages do not contain
the data rows, just the data for the index key columns, plus the clustered index key columns
(assuming the table is not a heap), plus any columns that we optionally add to the index using
the INCLUDE clause.

There are essentially three classes of operator that SQL Server can use to access data in
an index: scan, seek, or lookup.

Index Scans

In a scan operation, SQL Server navigates down to the first or last leaf-level page of the index
and then scans forward or backward through the leaf pages. A scan often reads all the pages
in the leaf level of the index, but may read only a portion of the index in some cases.

A scan often occurs when all rows need to be read to satisfy the definition of the query. You
can also see a scan when so many rows need to be read that scanning them all would take less
time than navigating the index structure to find them (a.k.a. "seeking," discussed shortly).
Sometimes, the optimizer chooses a scan because there is no usable index for the Predicate
columns, or because the query is written in such a way that performing a seek against the
index is not possible (for example, a function against a column will lead to scans).

If a scan occurs on a clustered index, we'll see the Clustered Index Scan operator, and if
it's on a nonclustered index, we'll see an Index Scan (nonclustered) operator. It's the same
operation in either case. In the case of a heap table, a table without a clustered index, you'll
see a Table Scan, which is effectively the same operation, just done against a different
structure, the heap as opposed to an index. This will be discussed further later in the chapter.

82

Chapter 3: Data Reading Operators

Clustered Index Scan
Listing 3-1 shows a simple query on the Employee table, looking for people with birthdays
over 50 years ago.

SELECT e.LoginID,
 e.JobTitle,
 e.BirthDate
FROM HumanResources.Employee AS e
WHERE e.BirthDate < DATEADD(YEAR, -50, GETUTCDATE());

Listing 3-1

Figure 3-1 shows the actual execution plan.

Figure 3-1: Execution plan with a Clustered Index Scan.

The optimizer chose a Clustered Index Scan operator to retrieve the required data. If your
Property window is already up, click on the Clustered Index Scan to load it with informa-
tion from that operator. Otherwise, right-click on the icon and select Properties from the
context menu.

You're going to notice a lot of properties that repeat from one operator to the next. Some of
these properties can be useful in understanding how the operator works and what it is doing,
but some properties are reported for many operators, but are only interesting in the context
of specific operators. For example, Rebinds and Rewinds (estimated and actual) are only
important when dealing with the Nested Loops operator, but there are no joins of that type
in this plan so, in this case, those values are useless to you.

83

Chapter 3: Data Reading Operators

Figure 3-2: Properties of the Clustered Index Scan operator.

Some of the properties are self-explanatory. Looking at Figure 3-2, near the bottom of the
Properties, you find the Object property. This indicates which object this operator refer-
ences. In this case, the clustered index used was HumanResources.Employee.PK_
Employee_BusinessEntityID.

Other interesting properties could include the Output List. These are the columns that are
output from the operation. Near the top, though, you'll also see Defined Values. These are the
values added to the process by this operator. In this case, the Output List and the Defined
Values are the same, but in other cases, such as when a calculation is done in a Compute
Scalar operator (discussed in the next chapter), or in any other operator, you'll see additional
information in Defined Values.

84

Chapter 3: Data Reading Operators

As discussed in detail in previous chapters, all the properties that start with "Estimated," such
as Estimated I/O Cost and Estimated CPU Cost are measures assigned by the optimizer,
but do not represent actual I/O and CPU measures. Even in an actual plan, these values
represent the estimates from the optimizer based on statistics. Each operator's estimated cost
contributes to the overall estimated cost of the plan.

Since we captured an actual execution plan, we see both the Estimated Number of Rows
and the Actual Number of Rows, which is the estimated and actual number of rows output
by the operator. In this case, the operator outputs 26 rows (the number of rows with a
BirthDate more than 50 years in the past). You can also see the number of rows that
were accessed via the Number of Rows Read property. In this case it's 290, or the entire
clustered index.

The Ordered property is False, indicating that the optimizer did not require the data to be
retrieved in index key order. If we were to add an ORDER BY e.BusinessEntityID
clause to Listing 3-1, then this property value would change to True, because it could use
the clustered key order to perform that operation. The optimizer can choose to use the order
of the index for its scans. This can be very useful if one of the next operators in line needed
ordered data, because then no extra sorting operation is needed, possibly making this execu-
tion plan more efficient, depending on the needs of the query.

The Predicate property is important, and shows the Predicate applied by this operator (click
on the ellipsis to see the full text):

[AdventureWorks2014].[HumanResources].[Employee].[BirthDate] as [e].
[BirthDate]<dateadd(year,(-50),getutcdate())

The operator is a scan, and it reads all the pages in the leaf level of the index. In other words,
it reads all the rows in the table, 290 in this case (see the Table Cardinality property value).
While a scan generally reads all rows, it does not always return them all. Here, it evaluates
the Predicate for each of the 290 rows it reads, and outputs only the 26 rows that match the
condition. This is an important difference between a Predicate, and a Seek Predicate (which
we'll see shortly, when we discuss Index Seek operations). Although the filtering looks
similar in each case, the latter reads only the rows that match the condition.

So why do we see a scan in this case? Simply because the optimizer does not have an index avail-
able that matches our Predicate column. The clustered index key is on BusinessEntityID
so the data in the leaf level is organized by that column. The scan operator has to scan all the leaf
pages to find the matching rows. Reading one page is one logical read, so the number of logical
reads required to return the data will depend on the number of pages in the leaf level of the index.

85

Chapter 3: Data Reading Operators

Index Scan

An Index Scan is the same as a Clustered Index Scan. It's just against a different type of
object. Let's examine the query in Listing 3-2.

SELECT e.LoginID,
 e.BusinessEntityID
FROM HumanResources.Employee AS e;

Listing 3-2

This small query is only retrieving two values, LoginID and BusinessEntityID.
There happens to be an index on the HumanResources.Employee table, AK_
Employee_LoginID. Figure 3-3 shows the execution plan.

Figure 3-3: Execution plan with an Index Scan.

Since the query in question doesn't have a WHERE clause, there's little the optimizer can do
to pick and choose how it's going to retrieve the information. It has to do a scan. However,
based on the columns selected, it has a choice where it does that scan. Our index, AK_
Employee_LoginID is keyed on the LoginID column. Since the clustered index key
for this table is on BusinessEntityID, that key is included with the nonclustered index.
This means that the optimizer can choose this index to satisfy the query. Further, since the
size of this index, measured in the number of pages, is smaller than the primary key index,
scans of this index will be faster and use fewer resources.

Other than the reasons for the choice of this index, the process of the scan is the same. It's
retrieving the data from the leaf level of the index.

86

Chapter 3: Data Reading Operators

Are scans "bad?"
Scans are not a "bad" thing. If we want all, or most, of the data from a modestly-sized table,
they can be a very efficient operation. In our Clustered Index Scan example, the fact that
the operator processes 290 rows to output only 21 won't have a significant impact on perfor-
mance in most systems. However, what if the optimizer opted to use a scan to output 21 rows
from a table containing not 300 but 3 million rows? At that point, we are performing a lot
of unnecessary logical reads, and we may need to consider either tuning the query to make
better use of our existing index, or adding an index that will allow the optimizer to choose a
plan where the SQL Server engine will only need to read the pages containing the 21 rows
that we need to return.

As discussed earlier, there are other reasons we may see a scan operation. Sometimes,
our query logic causes the optimizer to choose a scan when an index exists that it could,
notionally, seek. One example of this would be when you have a query that embeds the
indexed column in an expression. This prevents the optimizer from being able to determine
which of the values stored in that column may match, because it has to evaluate the
expression for each row, and so it has to scan the entire index.

It's also possible for the statistics on an index to become stale over time. In these cases, the
optimizer can overestimate the number of rows that are likely to be returned, choosing to
scan when a seek could have been more efficient.

Sometimes, our query may simply require all, or most, of the rows, so a scan is the most
efficient way to do it. In the example in Listing 3-2, the lack of a WHERE clause forced the
optimizer to request to return every row in the table.

An obvious question to ask, if you see an Index Scan in your execution plan, is whether you
are processing more rows than is necessary. The business case, or the application, may ask
for all the rows from a table, but then filter those down on the client or within the applica-
tion. It's not unreasonable to push back on such requests. You could also see an unexpected
number of rows where you know that you are filtering on a well-structured index with up-to-
date statistics and you still see a scan. In this case, you should question why and how a scan
is being used.

Processing unnecessary rows wastes SQL Server resources and hurts overall performance.
That's why a scan can be an indicator of a potential issue, but a scan is not, by definition,
a bad thing.

87

Chapter 3: Data Reading Operators

Index seeks

In a seek operation, SQL Server navigates directly to the page(s) containing the qualifying
rows, or to the start/end of a range of rows, and processes only the rows that it needs
to output.

Just as a scan is not necessarily "bad," a seek is not always "good." A seek is an efficient way
to retrieve a small number of rows from a relatively large table. However, a seek operator
can sometimes become highly inefficient, for example if inaccurate statistics have caused the
optimizer to underestimate massively the number of rows it will need the operator to process.

A seek occurs when:
• an index exists that matches a Predicate column used in the query, and the index

covers the query (can provide all the columns the query needs)
• an index matches the Predicate column used in the query, does not cover the query,

but the Predicate is highly selective (returns only a small percentage of the rows).
If a seek occurs on a clustered index, we'll see the Clustered Index Seek operator, and if
it's on a nonclustered index, we'll see an Index Seek (nonclustered) operator. It's the same
operation in either case.

Clustered Index Seek
Let's examine a new query.

SELECT e.BusinessEntityID,
 e.NationalIDNumber,
 e.LoginID,
 e.VacationHours,
 e.SickLeaveHours
FROM HumanResources.Employee AS e
WHERE e.BusinessEntityID = 226;

Listing 3-3

88

Chapter 3: Data Reading Operators

Execute this query and capture the actual plan and you will see the Clustered Index Seek
operator, chosen by the optimizer to read the clustered index on the Employee table.

Figure 3-4: A simple plan showing a Clustered Index Seek operator.

Now that our query contains a search Predicate (BusinessEntityID) that matches the
key of the clustered index, SQL Server's use of that index becomes analogous to looking up
a word in the index of a book to get the exact pages that contain that word. The seek operator
uses the key values to identify the row, or rows, of data needed and navigates through the
b+tree structure directly to those pages.

This means that an Index Seek reads only those pages that contain data that is included in
the filter. To return a single row while using an index, such as in the example, SQL Server
performs only three logical reads to retrieve the data. This includes the pages it reads as it
walks through the b+tree of the index to find the leaf-level page where the row is stored, plus
the read of the leaf-level page.

As such, seeks can significantly reduce I/O compared to a scan, assuming the filter defines
a small enough subset of the entire data set. Of course, the leaf-level pages of a clustered
index store the actual data rows so no extra steps are required to return all the data required
by the query.

Figure 3-5 shows a section of the properties for our Clustered Index Seek.

Figure 3-5: Properties of the Index Seek operator.

89

Chapter 3: Data Reading Operators

The index used, shown in the Object property, is the same as the example from Listing 3-1,
specifically the PK_Employee_BusinessEntityID, which happens to be both the
PRIMARY KEY constraint and the clustered index for this table. In this case, the index
was created automatically to enforce the constraint; they are different objects but with the
same name.

A seek operator has a property called Seek Predicates, which displays each of the predicates
used to define the rows that need to be read:

Seek Keys[1]: Prefix: [AdventureWorks2014].[HumanResources].[Employee].
BusinessEntityID = Scalar Operator(CONVERT_IMPLICIT(int,[@1],0))

Once again, we can see the effects of simple parameterization. This time we also see a
CONVERT_IMPLICIT function applied to the @1 parameter value, for BusinessEn-
tityID, since the value we supplied (226) is inferred to be a smallint, and needs to be
converted to an int to enable a seek. The optimizer chooses the data type for simple param-
eterization based on the size of the value passed to it. If we passed a larger value, it would
create the parameter as an int and it would create a second execution plan. However, as you
can see, this didn't affect the choice of an Index Seek operation; some type conversions are
harmful and lead to a scan when a seek should have been possible, others do not.

Index Seek (nonclustered)
Let's execute a simple query against the Person.Person table.

SELECT p.BusinessEntityID,
 p.LastName,
 p.FirstName
FROM Person.Person AS p
WHERE p.LastName LIKE 'Jaf%';

Listing 3-4

This query takes advantage of a nonclustered index (IX_Person_LastName_First-
Name_MiddleName) on the table as you can see from the execution plan in Figure 3-6.

90

Chapter 3: Data Reading Operators

Figure 3-6: Plan showing Index Seek operator on nonclustered index.

A seek operator on a nonclustered index works in the same way as a seek operator on a
clustered index. As such, there are no new properties to see for this operator compared to the
Clustered Index Seek. However, it's worth noting that for this Index Seek (nonclustered)
operator, we see both Predicate and Seek Predicates properties.

The Predicate looks like this, and essentially matches our WHERE clause:

[AdventureWorks2014].[Person].[Person].[LastName] as [p].[LastName] like
N'Jaf%'

The Seek Predicates property shows the following:

Seek Keys[1]:
 Start: [AdventureWorks2014].[Person].[Person].LastName >= Scalar
Operator(N'Jaf'),
 End: [AdventureWorks2014].[Person].[Person].LastName < Scalar
Operator(N'JaG')

Instead of a LIKE 'Jaf%', as was passed in the query, the optimizer has modified the logic
it uses so that an additional filter has been added as follows (minus a bit of formatting):

Person.LastName >= 'Jaf' AND Person.LastName < 'JaG'.

This is a good example of the sort of work performed by the optimizer, as outlined in Chapter
1. In this case, the optimizer optimized the WHERE clause Predicate, rewriting it from a LIKE
condition to an interval defined by an AND condition. This is based on the fact that all values
matching the LIKE condition logically have to be in the specified interval. Depending on
collation, the interval might also contain values not matching the LIKE condition. Therefore,
the latter is not removed but repeated in the Predicate property.

91

Chapter 3: Data Reading Operators

There's nothing new for us to see in the SELECT operator in the plan, except to note that
this statement, unlike many of the simple statements we've been using as examples, did not
go through simple parameterization. This is because a LIKE Predicate can be handled in
different ways, depending whether the text-matching pattern starts with a wildcard, and so
the optimizer can't do the parameterization.

As noted earlier, for a nonclustered index the leaf-level pages contain only the indexed
columns, plus columns from the clustered index (BusinessEntityID, in this example),
plus any columns we included using the INCLUDE clause. In this example, all the columns
required by the query are contained in the leaf level of the nonclustered index. In other
words, this is a covering index for this query.

Key lookups

A Key Lookup (Clustered) operator occurs in addition to an Index Seek (or sometimes an
Index Scan), when the index used does not cover the query. The optimizer uses a Key
Lookup to the clustered index, which will retrieve values for columns not available in the
nonclustered index.

Let's take the same query from Listing 3-4 and modify it just slightly so that we also return
the NameStyle column, as shown in Listing 3-5.

SELECT p.BusinessEntityID,
 p.LastName,
 p.FirstName,
 p.NameStyle
FROM Person.Person AS p
WHERE p.LastName LIKE 'Jaf%';

Listing 3-5

If we run this query and capture the plan, it should look something like Figure 3-7.

92

Chapter 3: Data Reading Operators

Figure 3-7: A plan with a Key Lookup operator.

The optimizer has still chosen an Index Seek (nonclustered) operator on the same nonclus-
tered index as we saw previously, IX_Person_LastName_FirstName_MiddleName.
However, in terms of the columns required by the query, the leaf level of the index stores
only LastName, FirstName (since these are part of the index key), and Busines-
sEntityID (the clustered index key). It does not contain the NameStyle column, and
so we see the additional Key Lookup operator, which uses the clustered index key values
to retrieve the corresponding value for the NameStyle column from the leaf level of the
clustered index.

A Nested Loops operator, which combines the results of these two operations, always
accompanies a Key Lookup. We won't examine that operator until the next chapter.

Let's review some of the properties for this Key Lookup operator:

Figure 3-8: Properties showing the Output List of columns.

93

Chapter 3: Data Reading Operators

The Object property shows PK_Person_BusinessEntityID, which is the clustered
index on this table, and the target of the Key Lookup. The expanded Output List, confirms
that the output from this operator is the NameStyle column.

The Seek Predicates property shows the following:

Seek Keys[1]: Prefix: [AdventureWorks2014].[Person].[Person].
BusinessEntityID = Scalar Operator([AdventureWorks2014].[Person].[Person].
[BusinessEntityID] as [p].[BusinessEntityID])

If we look at the values for Estimated and Actual Number of rows, we see that it is 1 row,
in each case, so the Key Lookup operator was only executed one time.

Figure 3-9: Properties comparing Estimated Number of Rows and Number of Executions.

94

Chapter 3: Data Reading Operators

A Key Lookup, depending on the number of rows being returned, could be an indication
that query performance might benefit from a covering index, although it's never a good idea
to create a covering index for every single query that uses a lookup, because that would
result in a wild growth of little-used indexes. A Key Lookup becomes expensive only when
it is executed a lot of times, because each lookup is a Clustered Index Seek that will cause
several logical reads (usually three), to traverse the b+tree structure to the page containing
the data.

If a Key Lookup seems problematic, it's a good habit to verify that all the columns being
returned are needed by the consuming application. If they are, then try to cover the query by
extending an existing index, rather than creating a new one.

A covering index is created by either having all the columns necessary as part of the key of
the index, or by using the INCLUDE operation to store extra columns at the leaf level of the
index so that they're available for use with the index.

Reading a Heap
A heap is a table without a clustered index and therefore the rows are not stored in any order
(beyond "order of arrival"). We can add nonclustered indexes to a heap. In this case, the
nonclustered index has the location, the row identifier, where the row is stored within the
heap rather than the clustered key value.

There are only two ways SQL Server can read data from a heap: via a scan or via a lookup.

Table Scan

Table Scans only occur against heap tables, so let's experiment now with a couple of queries
against tables without a clustered index.

95

Chapter 3: Data Reading Operators

SELECT dl.DatabaseUser,
 dl.PostTime,
 dl.Event,
 dl.DatabaseLogID
FROM dbo.DatabaseLog AS dl;

Listing 3-6

This query results in the execution plan on display in Figure 3-10.

Figure 3-10: Execution plan with a Table Scan operator.

There's nothing new in the SELECT operator, so we can go straight to the other operator in
this plan, Table Scan. When reading an index, the equivalent operator is a Clustered Index
Scan.

A Table Scan can occur for several reasons, but it's often because there are no useful
nonclustered indexes on the table, and the query optimizer has to search through every row
in order to identify the rows to return. Another common cause of a Table Scan is a query that
requests all the rows of a table, as is the case in this example.

When all, or the majority, of the rows of a table are returned then, whether an index exists or
not, it is often faster to scan through each row and return them than look up each row in an
index. Last, sometimes, especially for a table with few rows, scanning the table is faster even
when there could be a selective index.

If the number of rows in a table is relatively small, Table Scans are generally not a problem.
On the other hand, if the table is large and many more rows are processed than you need for
the query, then you might want to investigate ways to rewrite the query to read fewer rows, or
add an appropriate index to speed performance.

96

Chapter 3: Data Reading Operators

RID Lookup

We can put filter criteria into a query that could result in a RID Lookup as in Listing 3-7.

SELECT dl.DatabaseUser,
 dl.PostTime,
 dl.Event,
 dl.DatabaseLogID
FROM dbo.DatabaseLog AS dl
WHERE dl.DatabaseLogID = 1;

Listing 3-7

This query results in a different execution plan than before.

Figure 3-11: Execution plan showing a RID Lookup operator.

We have an Index Seek operator and a RID Lookup (Heap) operator, and a Nested Loops
operator combining the two streams.

97

Chapter 3: Data Reading Operators

RID Lookup is the heap equivalent of the Key Lookup operation. As was mentioned before,
nonclustered indexes don't always have all the data needed to satisfy a query. When they do
not, an additional operation is required to get that data. When there is a clustered index on the
table, it uses a Key Lookup operator as described above. When there is no clustered index,
the table is a heap and must look up data using an internal identifier known as the Row ID
or RID.

To return the results for this query, the query optimizer first performs an Index Seek on the
primary key. While this index is useful in identifying the rows that meet the WHERE clause
criteria, all the required data columns are not present in the index. How do we know this? In
the Properties for the Index Seek, we see the value Bmk1000 in the Output List.

 Figure 3-12: Output list in the properties of the Index Seek.

This "Bmk1000" is an additional column, not referenced in the query. It's the RID, i.e. the
location of the row in the heap, and it will be used in the Nested Loops operator to join with
data from the RID Lookup operation. The Bmk prefix is a throwback from when these types
of lookup operations were called "Bookmark Lookups."

If we look at the Seek Predicates of the RID Lookup operator as shown in Figure 3-13, you
can see that the Bmk1000 value is used again:

Figure 3-13: Seek Predicates defined in the properties of the Index Seek operator.

Bmk1000 is the key value, which is a row identifier or RID, from the nonclustered index. In
this case, SQL Server had to look up only one row, which isn't a big deal from a performance
perspective. If a RID Lookup returns many rows, however, you may need to consider taking
a close look at the query to see how you can make it perform better by using less disk I/O –
perhaps by rewriting the query, by adding a clustered index, or by using a covering index.

98

Chapter 3: Data Reading Operators

Summary
This chapter explained all the various mechanisms involved in reading data into execution
plans using scans, seeks, and lookups against indexes, and scans and RID Lookups against
heap tables. A scan operator in a plan is not necessarily a bad thing, nor is a seek neces-
sarily ideal. You need to read through the properties of the operators within execution plans
to understand what each operator is doing, how many rows it processed, how many rows
it returned, how the filtering mechanism worked, and so on. This will be a common theme
throughout the rest of the book.

99

Chapter 4: Joining Data
In the previous chapter, we kept things simple, and stuck to single-table queries. However,
in any real database, most of the execution plans you ever look at will have at least one join
operator. After all, what's a relational database without the joins between tables? SQL Server
is a relational database engine, which means that part of the designed operation is to combine
data from different tables into single data sets. The execution plan exposes the operators that
the optimizer uses to combine data.

This chapter is concerned mainly with various logical join operations in T-SQL. When imple-
menting the join, SQL Server will take the two data inputs, one from each table generally,
and combine the data according to the join criteria. The optimizer might choose to implement
the join using one of four physical join operators:

• Nested Loops – For each row in the top data set, perform one search of the other
data set for matching values.

• Hash Match – Using each row in the top data set, create a hash table, which will
then be probed using the rows from the second data set to find any matching value.

• Merge Join – Read data from both inputs simultaneously and merge the two
inputs, joining each matching row value. This requires both inputs to be sorted on
the join column(s).

• Adaptive Join – Introduced in SQL Server 2017, this operator implements both
the Nested Loops and the Hash Match algorithms, and chooses the option with the
lowest cost at runtime, when the actual number of rows in the top input is known.

As we'll discuss, the physical join operator chosen by the optimizer will depend both on the
size of the two input data streams and on how they are ordered.

Having covered these, we'll consider briefly other tasks that the optimizer can fulfill using
JOIN operators, as well as other ways of combining data, such as via the UNION T-SQL
command, and how SQL Server implements such operations.

100

Chapter 4: Joining Data

Logical Join Operations

The join operators above implement eight logical join operations and two operations that
combine data in a way that is not actually considered a join, as follows:

• Inner Join
• Outer Join (Left, Right, or Full)
• Semi Join (Left or Right)
• Anti Semi Join (Left or Right)
• Concatenation and Union.

The first two can be specified directly in T-SQL, whereas the Semi Joins are the logical oper-
ation associated with EXISTS (or NOT EXISTS) and IN, and Concatenation and Union
are associated with UNION ALL and UNION.

The optimizer will choose what is deems to be the lowest-cost physical operator (Nested
Loops, Hash Match, or Merge Join) to implement the logical join conditions described in
the T-SQL statement.

Fulfilling JOIN Commands
This section is concerned explicitly with how the optimizer uses join operators to fulfill
T-SQL JOIN commands.

Let's start off with the query in Listing 4-1, which retrieves Employee information from
the AdventureWorks2014 database, concatenating the FirstName and LastName
columns in order to return the information in a more pleasing manner.

SELECT e.JobTitle, a.City,
 p.LastName + ', ' + p.FirstName AS EmployeeName
 FROM HumanResources.Employee AS e
 INNER JOIN Person.BusinessEntityAddress AS bea
 ON e.BusinessEntityID = bea.BusinessEntityID
 INNER JOIN Person.Address AS a
 ON bea.AddressID = a.AddressID
 INNER JOIN Person.Person AS p
 ON e.BusinessEntityID = p.BusinessEntityID;

Listing 4-1

101

Chapter 4: Joining Data

Figure 4-1 shows the full, actual execution plan for this query.

 Figure 4-1: Execution plan showing two Nested Loops joins.

This plan has more operators than any we've seen so far but, as with every plan, we can read
it either by starting at the top right and following the data arrows left, or read from left to
right, following the order in which the operators are called.

If we were trying to tune this query, we might be tempted to simply jump in and look at those
operators with the highest estimated cost, namely the Clustered Index Seek against the
Person.Person table (27%), or the Index Scan on the Person.Address table (48%),
or the Hash Match join operator (16%).

However, a better approach is first to take some time to understand broadly what the plan
does. Reading right to left, it first joins matching rows in the Employee and Busines-
sEntityAddress tables using a Nested Loops operator, then uses a Hash Match oper-
ator to join rows in that data stream with rows in the Address table, based on matching
AddressID values, and then uses another Nested Loops operator to join those rows with
matching rows in the Person table (on BusinessEntityID). Finally, it adds a computed
scalar value to each row and returns it.

We're going to focus on the role of each of the join operators, within the context of the plan
as a whole, so we're just going to start in the top right of the plan, and take a more detailed
look at the first Nested Loops join operator.

102

Chapter 4: Joining Data

Nested Loops operator

 A Nested Loops operator, often referred to as a nested iteration, takes a set of data, referred
to as the "outer input," and compares it, one row at a time, to another set of data, called
the "inner input" (on the graphical plan, these correspond to the two pipes feeding into the
Nested Loops operator: the outer input on the top side, and the inner input on the bottom
side). This sounds very like a cursor and, in effect, it is one. In fact, in this case, it's two
cursors. The first cursor is the outer input data set. It will be processed one row at a time.
The second cursor is the inner input, which will be processed one row at a time for each row
from the outer input. As a result, the operator (or operators) in the inner input, the lower
branch in the graphical plan, will each be executed multiple times, once for each row found
in the outer input.

A Nested Loops operator can be highly efficient, as long as the outer input is small and it is
cheap to search the inner input, which in the case of simple join operations is often achieved
by indexing the "inner table" on the join column.

The execution plan in Figure 4-1 has two Nested Loops join operators. Let's start with an
exploded view of the top right-hand corner of the plan, and take a look at one of them in
more detail.

Figure 4-2: Nested Loops join within an inner and outer input.

103

Chapter 4: Joining Data

In Figure 4-2, a Nested Loops iteration drives the joining of matching rows in the
Employee and BusinessEntityAddress table. Notice that, in this example, an
Inner Join is the logical operation associated with this physical operator.

The outer input for this Nested Loops operator is the data produced by a scan of the clustered
index on the Employee table. It scans the entire index, retuning every row (290 rows, in
this case). For each of these rows, the Nested Loops operator calls the operator in the inner
input, searching for rows in the BusinessEntityAddress table with a matching Busi-
nessEntityID value. In this case, this means that it executes 290 Index Seek operations
on the clustered index. Figure 4-3 shows the properties of the Nested Loops operator.

Figure 4-3: Property page of the Nested Loops operator.

As with most operators, there is a common set of properties on display, some of which don't
apply and some of which are more useful than others. The following subsections review a
few of the properties that are of interest in this case.

104

Chapter 4: Joining Data

Estimated and Actual Number of Rows properties
Often, it's interesting to compare the Actual Number of Rows, 290, to the Estimated
Number of Rows, 275.573 (proving this is a calculation, since you can't possibly
return .573 rows).

A difference this small is not worth worrying about, but a larger discrepancy can be an
indication that the optimizer has used inaccurate estimations of the number of rows that will
need to be processed when selecting the plan, which could result in a suboptimal plan choice.
There are many possible causes of this. For example, perhaps the optimizer had to generate
a plan for a query containing a Predicate on a column with missing or stale statistics, or the
optimizer may have reused a plan where the data volume or distribution in a column has
changed significantly since the statistics were last created or updated. Alternatively, the data
distribution in a column may be very non-uniform, making accurate cardinality estimations
difficult, or the query may contain logic that defeats accurate estimations. Parameter sniffing
may have occurred, resulting in a plan generated for an input parameter value with an esti-
mated row count that is atypical of the row counts for subsequent input values. Chapter 8
discusses parameter sniffing in some detail.

There is another Nested Loops operator in Figure 4-1, which takes the 290 rows from the
Hash Match join (discussed shortly) as the outer input, and so performs 290 separate seek
operations of the clustered index on the inner Person table, joining matching rows in that
table. Since the Clustered Index Seek on Person is estimated to be the costliest operation
in the plan, it's worth peeking at its properties (see Figure 4-4).

Again, the first thing is to check that there is no wild disparity between estimated and actual
number of rows processed. Initially, it seems like there might be, since the Estimated
Number of Rows is just 1 but the Actual Number of Rows is 290. However, SSMS is
inconsistent in how it reports these numbers; the estimated row count is per execution, and
the optimizer estimated this Clustered Index Seek will be executed 275.573 times, for an
estimated 275.573 rows returned. The actual rows count is simply the total number of rows
processed, which is 290 (an average of 1 row returned per execution).

105

Chapter 4: Joining Data

Figure 4-4: Nested Loops operator showing runtime statistics.

The fact that the optimizer estimates that it will execute this Clustered Index Seek on the
Persons table about 257 times explains at least partly why it is the highest-cost operator in
the plan. The Clustered Index Seek on the BusinessEntityAddress table is estimated
to be executed even more often, 290 times, but because this table uses far fewer bytes per
row it has one less level of index pages, reducing the amount of work per seek from three to
two logical reads.

Taking the time to understand how the operations interact will permit you to understand why
the costs are distributed the way they are.

106

Chapter 4: Joining Data

Outer References property

There are two ways that the Nested Loops operator can resolve a join condition. One way
is via the Outer References property. In this case, operators on the inner input of the join,
the lower branch in a graphical plan, use values from the outer input to deliver the results.
If ten values are pushed down from the outer input into the inner input, referred to as Outer
References, then this implies that the inner input will be executed ten times, searching for
matching rows. The inner input will only ever return matching rows, and so the Nested
Loops operator does not have to do any work in terms of validating matching data.

You can see the Outer References property within the tooltip or the property page of the
Nested Loops operator, as shown in Figure 4-5.

Figure 4-5: Outer References details of the Nested Loops join.

You can see that in this case values from the BusinessEntityID column are being
pushed down to the inner input. The BusinessEntityID column is the leading column
of a usable index on BusinessEntityAddress, so by pushing it into the inner input it
facilitates a seek operation (see Figure 4-2).

Incidentally, the other value pushed down, Expr1008, has no other reference anywhere
within the execution plan, even if you search the XML. Therefore, it's likely that it's an arti-
fact of the process of comparison in the Clustered Index Seek operator.

107

Chapter 4: Joining Data

The second way that the Nested Loops operator can resolve a join condition is via the
Predicate property. This happens when the inner input has no pushed-down values, so it
will always return the same results on every subsequent execution. Here, the Nested Loops
operator applies the join Predicate to the rows returned from the inner input, and only passes
on matching rows. We'll see an example of this in Chapter 5.

Rebind and Rewind properties
A Rebind and a Rewind both count of the number of times the Init() method is called by an
operator, but do so under different circumstances. The Init() method initializes the operator
and sets up any required data structures. In most cases, this happens once for an operator, in
any plan. However, a Nested Loops operator executes its inner input once for every row in
the outer input. This means that the Init() method on the operators in the inner input can be
called more than once.

Every execution is either a Rebind or a Rewind. A Rebind occurs for the very first
execution of the inner input, and then each time the values of the column pushed down
from the outer input change (i.e. when the values marked by Outer References change).

A Rewind occurs when the values are unchanged, or when there are no Outer References
(so the join condition is resolved using a Predicate, within the Nested Loops operator). In the
latter case, you'll always see a single Rebind for the first execution, and then, from that point
forward, a series of Rewinds.

For the Nested Loops operator depicted in Figure 4-5, the join is resolved using values in the
BusinessEntityID column as the Outer References, and there are 290 distinct values for
this column (it is the primary key). Notionally, this means that all 290 executions of the inner
input are Rebinds.

However, Figure 4-6 shows the properties of the Clustered Index Seek, which is the inner
input of the Nested Loops operator, and we can see that the Rebinds and Rewinds are zero
in each case.

108

Chapter 4: Joining Data

Figure 4-6: Properties of the Clustered Index Seek.

Of course, knowing whether the outer input value changed is only useful to the optimizer if
the results of the previous execution of the inner input, for the same value, are stored some-
where. For example, Spool operators save their results in a worktable, a Sort saves them in
memory and a Table Valued Function populates a table variable. When these operators are
present, the optimizer can streamline the execution process because, if it knows it has the
rows it needs stored somewhere then, when a Rewind occurs, there is no need to re-do all the
work to produce them again.

Therefore, Rebinds and Rewinds are only relevant, and the property values only populated,
when the Nested Loops operator interacts with one of the following operators, each of which
can save the results from its previous execution:

• Index Spool
• Remote Query
• Row Count Spool
• Sort
• Table Spool
• Table valued function.

109

Chapter 4: Joining Data

We won't describe any of the operators listed above until Chapter 5, so we won't walk
through an example here. However, let's say the outer input of a Nested Loops join produces
14 rows, the join condition is resolved using Outer References and there are 10 distinct
values in the Outer References column. The inner input is an Index Spool, the properties of
which show that the 14 executions of this inner input comprise 10 Rebinds and 4 Rewinds.

Figure 4-7: Rebinds and Rewinds for an Index Spool.

For each Rewind, there is no need to execute any operators downstream (to the right) of the
spool, as the matching values are already stored in the spool's worktable. This means that
each of these operators execute only 10 times, once for each Rebind of the inner input.

Hash Match (join)

The optimizer can use a Hash Match operator to implement any of the logical JOIN opera-
tions, though it can only use it to implement a UNION in cases where the probe input is
guaranteed to have no duplicates, and it is not used at all for Concatenation (UNION ALL),
which is instead done by the Concatenate operator. A Hash Match can also aggregate data
from a single data input, but we'll focus exclusively on join implementations here, covering
aggregation in Chapter 5.

110

Chapter 4: Joining Data

When used to implement logical join operations, the Hash Match operator makes a single
pass over two data inputs. One data input (the "build") is stored in memory, in a so-called
hash table, and then this structure is used to compare data by probing, or comparing, from
the other data input, to arrive at the matching output set.

How Hash Match joins work
Figure 4-8 shows an exploded view of the section of the plan for Listing 4-1 that contains
a Hash Match, in this case used to implement an inner join.

Figure 4-8: Hash Match join showing two inputs.

In a Hash Match join operator, the top input is called the Build input and the bottom
input is called the Probe input. In this example, the Build input is the 290 rows produced
by the first Nested Loops operator in the plan, discussed above. This is by far the smaller
of the two inputs.

The Hash Match operator reads the Build input, hashes the join column (in this case
AddressID), and stores the column values, and their hashes, in a hash table, in memory.
It then reads the rows in the Probe input one row at a time, in this case the 19614 rows that
result from a Nonclustered Index Scan on the Address table. For each row, it produces a
hash value for the AddressID column that it can compare to the hashes in the hash table,
looking for matching values.

111

Chapter 4: Joining Data

Hashing and Hash Tables
Hashing is a programmatic technique where data is converted into a simple number to make
searching for that data much more efficient. For example, SQL Server converts a row of data
in a table into a value that is derived from the columns in that row that are designated as the
input to the hash function.

A hash table is a data structure in which SQL Server attempts to divide all the elements into
equal-sized categories, or buckets, to allow quick access to the elements. The hashing func-
tion determines into which bucket an element goes. For example, SQL Server can take a
column from a table, hash it into a hash value, and then store the matching rows in memory,
within the hash table, in the appropriate bucket.

Figure 4-9 shows the Hash Keys Build and Hash Keys Probe properties for the Hash
Match join operator. These properties reveal which columns from each input are hashed by
the operator, when building the hash table and comparing the rows from the Probe input.

Figure 4-9: Hash Keys Build and Hash Keys Probe values.

Performance considerations for Hash Match joins
A Hash Match join operator is blocking during the Build phase. It has to gather all the data
in order to build a hash table prior to performing its join operations and producing output.
The optimizer will only tend to choose Hash Match joins in cases where the inputs are not
sorted according to the join column. Hash Match joins can be efficient in cases where there

112

Chapter 4: Joining Data

are no usable indexes or where significant portions of the index will be scanned. If the inputs
are already sorted on the join column, or are small and cheap to sort, then the optimizer may
often opt to use a Merge Join instead.

However, a Hash Match join is often the best choice when you have two unsorted inputs,
both large, or one small and one large. The optimizer will always choose what it estimates to
be the smaller of the data inputs to be the Build input, which provides the values in the hash
table. The goal is many hash buckets with few rows per bucket (i.e. minimal hash collisions,
as few duplicate hashed values as possible). This makes finding matching rows in the Probe
input fast, even with two large inputs, because the optimizer only needs to search for matches
in the basket with the same hash value, instead of scanning all the rows.

Performance problems with Hash Match only really occur when the Build input is much
larger than the optimizer anticipated, so that it exceeds the memory grant, and subsequently
spills to disk.

So, given that the section of our plan, in Figure 4-6, contains what the optimizer reckons
are the second and third most expensive operators in the plan, in the Index Scan on the
Address table, and the Hash Match join itself, should we attempt to "tune" these
operations? Sometimes, you can. While a Hash Match join may represent the current,
most efficient way for the query optimizer to join two tables, it's possible that we can tune
our query to make available to the optimizer more-efficient join techniques, such as using
Nested Loops or Merge Join operators. For example, seeing a Hash Match join in an
execution plan sometimes indicates:

• a missing or unusable index
• a WHERE clause with a calculation or conversion that makes it non-SARGable

(a commonly used term meaning that the search argument, "sarg," can't be used);
this means it won't use an existing index.

However, it depends simply on what's happening in the query. Generally, you don't tune
individual operators; you use them to understand the execution plan. Some expensive
operators can be targeted, others are estimated to be expensive but aren't really, and some
really are expensive but are still an essential element of the cheapest plan overall. A Hash
Match join often falls in the latter category, as the alternatives are either Nested Loops with
lots of executions of the inner input, or using sorts to enable a Merge Join (covered later). In
this case, with no WHERE clause, the Hash Match is simply an efficient mechanism to put all
the data together to satisfy the query in question.

113

Chapter 4: Joining Data

Compute Scalar

As each row emerges from the second Nested Loops operator, in our plan in Figure 4-1, it
passes into a Compute Scalar operator. This is not a type of join operation but since it
appears in our plan, we'll cover it here.

Figure 4-10: Compute Scalar operator.

Figure 4-11 shows the Properties window for this operator.

 Figure 4-11: Properties of the Compute Scalar operator.

114

Chapter 4: Joining Data

This is simply a representation of an operation to produce one or more simple, scalar values,
usually from a calculation – in this case, the alias EmployeeName, which combines the
columns Contact.LastName and Contact.FirstName with a comma between
them. While this was not a zero-cost operation, 0.000027, the cost estimate is so trivial in
the context of the query as to be essentially free. You can see what this operation is doing by
looking at the definition for the highlighted property, Defined Values, but to really see what
the operation is doing, click on the ellipsis on the right side of the property page. This will
open the expression definition as shown in Figure 4-12.

Figure 4-12: Defined values of the Compute Scalar operator.

While the Compute Scalar operator in this case is very straightforward and clear, this
won't always be the case. These operations are not costed completely by the optimizer, so
you may see situations where the estimates for the work involved are radically off. The value
is calculated as 0.0000001 * (Estimated Number of Rows), regardless of the complexity or
number of calculations being done. Also, the logical representation of where the Compute
Scalar occurs within the plan is represented here; it's not necessarily where the physical
process occurs within the plan. That's why you sometimes see no values for actual number of
rows or actual executions on a Compute Scalar operator, in an actual execution plan; if all
the computations are processed elsewhere, the operator does not run at all and can therefore
not track these numbers.

Because of the lack of accurate estimated costs, you should understand exactly what a
Compute Scalar operation represents within your execution plan because they can represent
a hidden cost, especially when scalar user-defined functions (UDFs) are involved.

115

Chapter 4: Joining Data

Merge Join

A Merge Join operator works from ordered data only. It takes the data from two inputs and
uses the fact that the data in each input is ordered on the join column to simply merge the two
inputs, joining rows based on the matching values, which it can do very easily because the
order of the values will be identical. A Merge Join is a non-blocking operator; as it joins
each row, with matching values on the join column, it passes it on to the next operator
upstream.

If each data input is ordered by the join column, this can be one of the most efficient join
operations. However, the data is frequently not ordered, and so sorting it for a Merge Join
requires the addition of a Sort operator to ensure it works; the sorting requirement can make
plans with a Merge Join operation less efficient, depending on how the sort is satisfied.

However, because a Merge Join ensures that the output from the join process itself is also
ordered, it may sometimes be better to pay the cost of a single Sort operation to ensure
ordered output for additional Merge Join operations in a plan.

How Merge Joins work
To demonstrate a Merge Join operator, we need a new query.

SELECT c.CustomerID
FROM Sales.SalesOrderDetail AS sod
 INNER JOIN Sales.SalesOrderHeader AS soh
 ON sod.SalesOrderID = soh.SalesOrderID
 INNER JOIN Sales.Customer AS c
 ON soh.CustomerID = c.CustomerID;

Listing 4-2

Figure 4-13 shows the execution plan for this query.

116

Chapter 4: Joining Data

 Figure 4-13: Execution plan showing a Merge Join.

Here, the optimizer has selected a Merge Join operator to perform the INNER JOIN
between the Customer and SalesOrderHeader tables, based on matching values of
CustomerID. Since the query did not specify a WHERE clause, a scan was performed on
each table to return all the rows in each table. Also, you'll note that the order of the join
operations is not the same as that specified by the query. The optimizer can choose to rear-
range the order of tables within the plan as it sees fit, to arrive at the best possible plan. Here,
the input with guaranteed unique values, the Customer table, is used as the top input, so we
have a one-to-many join.

The data in the top input, the Clustered Index Scan on the Customer table, is ordered by
CustomerID. The bottom input is the data from a Nonclustered Index Scan on the Sale-
sOrderHeader table. Again, this nonclustered index is ordered by CustomerID. In other
words, both data inputs are ordered on the join column, as confirmed, in the Properties of the
Merge Join operator.

Figure 4-14: Properties of the Merge Join showing Where property values.

Once the Merge Join has joined two of the tables, the optimizer joins the third table to the
first two using a Hash Match join, as discussed earlier. Finally, the joined rows are returned.

117

Chapter 4: Joining Data

Performance considerations for Merge Joins
The key to the performance of a Merge Join is that the inputs are sorted by the join columns.
We can see that the results from the scans are sorted if we consult the properties of those
operators. Figure 4-13 shows the Clustered Index Scan operator, with an Ordered property
value of True, meaning that the optimizer requires the input to be ordered.

Figure 4-15: Scan properties showing Ordered value.

If you see an Ordered property set to False, that doesn't mean that the data being retrieved
is not, in fact, ordered; it merely means that the optimizer does not require the data to be
ordered to satisfy the rest of the plan.

So, in this example, the output of the scans is ordered by the join columns, and no additional
sorting is necessary. If one or more of the inputs is not ordered, and the query optimizer
chooses to sort the data in a separate operation before it performs a Merge Join, it might
indicate that you need to reconsider your indexing strategy, especially if the Sort operation is
for a large data input. Could you, for example, modify an existing index so that the optimizer
can avoid the need for the Sort operation?

The Merge Join in this example is for a one-to-many join, as we can see by inspecting the
Many to Many property value for the operator, which is False.

118

Chapter 4: Joining Data

Figure 4-16: Merge Join properties showing Many to Many value.

However, a Merge Join for a many-to-many join condition can prove to be a lot more
expensive, and the performance a lot worse. Consider the example in Listing 4-3.

SET STATISTICS IO ON;
SELECT sod.ProductID,
 sod.SalesOrderID,
 pv.BusinessEntityID,
 pv.StandardPrice
FROM Sales.SalesOrderDetail AS sod
INNER JOIN Purchasing.ProductVendor AS pv
 ON pv.ProductID = sod.ProductID;
SET STATISTICS IO OFF;

Listing 4-3

Figure 4-17 shows the execution plan for this query.

119

Chapter 4: Joining Data

Figure 4-17: Execution plan with a Many to Many Merge Join.

The optimizer tries to infer uniqueness on the join columns of each input, by looking at
unique indexes as well as at plan elements, such as a Distinct or Aggregate operator in a
branch of the plan. If one of the inputs of the join would be guaranteed unique, it would be
the top input, Many to Many would be False, and the join efficient. However, in this case,
both inputs can, and do, have multiple rows with the same ProductID value. In the Merge
Join, Many to Many is true, and the join becomes less efficient. This can be seen in the SET
STATISTICS IO output:

(74523 rows affected)
Table 'Worktable'. Scan count 19, logical reads 18013, physical
reads 0, read-ahead reads 0, lob logical reads 0, lob physical
reads 0, lob read-ahead reads 0.
Table 'ProductVendor'. Scan count 1, logical reads 7, physical
reads 1, read-ahead reads 8, lob logical reads 0, lob physical
reads 0, lob read-ahead reads 0.
Table 'SalesOrderDetail'. Scan count 1, logical reads 250, physical
reads 0, read-ahead reads 326, lob logical reads 0, lob physical
reads 0, lob read-ahead reads 0.

The problem is that, for a Many to Many join, rows from the bottom input must be copied
to a worktable in tempdb. If a new row from the top input has the same value in the join
column as the previous, the temporary table is used to rewind to the start of the duplicates
as needed in the comparison. If the data from the top input changes, the temporary table is
cleared out and loaded with new matching rows from the bottom. The I/O stats demonstrate
the impact of this extra activity in the temporary table: the number of logical reads is more
than 98% of the total number of logical reads of the query as a whole.

In this case, there are duplicates for ProductID in both tables so there is little we can do to
change this. However, it is not uncommon to see Merge Join operators with Many to Many

120

Chapter 4: Joining Data

set to True where it could have been False. This is often related to missing constraints in
the tables, or to embedding columns in expressions (such as implicit or explicit data type
conversions). The optimizer can only correctly infer uniqueness if there is a uniqueness
constraint on a column that is not embedded in an expression.

Adaptive Join

Introduced in SQL Server 2017, and also available in Azure SQL Database and Azure SQL
Data Warehouse, the Adaptive Join is a new join operation. Currently it only works with
batch mode (see Chapter 12), but that may change as cumulative updates are released, or in
updates to Azure.

The optimizer can choose an Adaptive Join operator to defer the exact choice of physical
join algorithm, either a Hash Match or a Nested Loops, until runtime, when the actual
number of rows in the top input is known rather than estimated.

To see the Adaptive Join in action, we need a batch mode plan, which requires a column-
store index. Listing 4-4 creates a nonclustered columnstore index on the Production.
TransactionHistory table.

Once you've finished testing the example in this section, please return to this listing and run
the DROP INDEX batch to remove the columnstore index.

DROP INDEX IF EXISTS ix_csTest ON Production.TransactionHistory;
GO
CREATE NONCLUSTERED COLUMNSTORE INDEX IX_CSTest
ON Production.TransactionHistory
(
 TransactionID,
 ProductID,
 ActualCost
);

Listing 4-4

121

Chapter 4: Joining Data

With this index in place, executing the simple query in Listing 4-5 (on SQL Server 2017 or
Azure SQL Database, with database compatibility level set to at least 140 in either case) will
result in an Adaptive Join.

SELECT p.Name AS ProductName,
 th.ActualCost
FROM Production.TransactionHistory AS th
 JOIN Production.Product AS p
 ON p.ProductID = th.ProductID
WHERE th.ActualCost > 0
 AND th.ActualCost < .21;

Listing 4-5

Figure 4-18 shows the actual execution plan.

Figure 4-18: Execution plan showing an Adaptive Join.

The first thing I want to point out about this plan is the warning we have on the SELECT
operator, which is an Excessive Memory Grant warning. We'll deal with that warning in
Chapter 12.

The first thing you will likely notice about the Adaptive Join operator is that, unlike all the
other join operators we've seen up to this point, it has three inputs. The top input is a scan of
a nonclustered columnstore index (we won't cover the specifics of plans involving column-
store indexes until Chapter 12). The lower inputs, an Index Scan plus Filter and a Clustered
Index Seek are, respectively, the operators to support either a Hash Match join, or a Nested
Loops join.

122

Chapter 4: Joining Data

Since a columnstore index doesn't have statistics in the same way that a rowstore index
does, there's not always an easy way for the optimizer to accurately estimate the number
of rows returned.

All operations necessary for either join type are defined and stored with the execution plan at
compilation time. If this plan were retrieved from the plan cache, or the Query Store, it would
show both possible branches to support both possible join types. In short, you can't tell which
path was taken without considering the properties of an actual plan. Any estimated plan will
show both possible branches.

Just as for the Hash Match join operator, the Adaptive Join operator has a Build phase,
which stores the rows for the top input in a hash table in memory, which is why there is a
memory grant. The operator is blocking during this phase.

Once the top input is processed and stored in the hash table, the exact number of rows is
known. This number is now used to decide whether to proceed as a Hash Match or Nested
Loops join. That determination is made by comparing the number of values in the hash table
to a threshold determined by the optimizer. For any given join operation, that value could
vary depending on the data structures, the query, and the statistics on the indexes. You can
check the value being used by looking to the properties of the Adaptive Join operator.

Figure 4-19: The Adaptive Threshold Rows property.

If the number of rows in the hash table is above this value, in this case 18 rows or greater,
then a Hash Match join will be used. The hash table will use the upper branch of the two
inputs to gather the necessary data and, from that point forward, acts just like a Hash Match
join. In this case, that would mean an Index Scan against the Product table using the
AK_Product_Name index. If the number of rows in the hash table falls below the
threshold value, then the Nested Loops method is used, resulting in one Clustered
Index Seek on the Product table, using a completely different index, PK_Product_
ProductID, for each of the rows in the hash table.

There are three ways, within the execution plan, to tell which of the two choices was used
during execution. Each method obviously requires you to capture an actual execution plan.
The first method is to look to the properties of the Adaptive Join itself. Figure 4-20 shows
that in this case the Actual Join Type is HashMatch.

123

Chapter 4: Joining Data

Figure 4-20: Adaptive Join properties showing Actual and Estimated Join Type.

At the bottom is the Estimated Join Type, also HashMatch. So, the Estimated Number of
Rows and the Actual Number of Rows were reasonably accurate. The row threshold was met,
so the Adaptive Join used the hash table to complete the join process as a Hash Match join.

Another way to see what type of join was used is to look at the two inputs in the plans. Figure
4-21 shows the tooltip for each pipe feeding to the Adaptive Join. The top tooltip is for the
Hash Match join input and the bottom is for the Nested Loops join input.

Figure 4-21: Two tooltips showing Actual Number of Rows.

124

Chapter 4: Joining Data

You can see that the top input had 5 actual rows and the bottom input has 0, indicating that,
in this case, the Adaptive Join consumed the first of the two possible inputs.

Finally, you can look at the end of the branch, the data access point within the execution plan
to count the number of executions. This can be the most reliable method since, even if zero
rows were returned, at least one execution of one of the operators would still be recorded.
Figure 4-22 illustrates the bottom branch which was not executed:

Figure 4-22: Properties showing no executions for an Index Seek.

You can also use Extended Events to capture Adaptive Join "misses," using the event adap-
tive_join_skipped to find out why an Adaptive Join couldn't be used by the optimizer, for a
particular query.

To summarize, the Adaptive Join offers the optimizer the best of both worlds (almost). If
the actual rowcounts are low, the Nested Loops branch of the plan will execute. This ends
up costing slightly more than if the optimizer had just chosen a Nested Loops join during
optimization, but if it had chosen the Hash Match join during optimization, for what turned
out to be a low rowcount, it would have been a far less efficient plan. For high rowcounts, the
Nested Loops branch of the adaptive plan will execute, which results in a very similar plan
cost as for a standard Hash Match join.

Other Uses of Join Operators
The optimizer uses the physical join operators to fulfill tasks other than the T-SQL JOIN
keyword. In Chapter 3, for example, we saw the optimizer use a Nested Loops operator to
combine data from an Index Seek and its associated Key Lookup data.

In addition, sometimes the optimizer uses a join operator to implement a non-join request in
a query, such as APPLY or EXISTS. We'll save coverage of APPLY until Chapter 7, but let's
take a brief look here at how the optimizer implements EXISTS operations. These are some-
times called Semi Joins, because even though the sources need to be combined, returned data
is still from a single source only. Listing 4-6 shows a simple example.

125

Chapter 4: Joining Data

SELECT bom.ProductAssemblyID,
 bom.PerAssemblyQty
FROM Production.BillOfMaterials AS bom
WHERE EXISTS (SELECT *
 FROM Production.BillOfMaterials AS bom2
 WHERE bom.BillOfMaterialsID = bom2.ComponentID
 AND bom2.EndDate IS NOT NULL
);

Listing 4-6

When we run this query, the execution plan is a little different than the straightforward join
operations listed earlier.

 Figure 4-23: Execution plan showing Right Semi Join.

The optimizer selected a plan that performs a scan of the clustered index two times to satisfy
the query and then the results are put together using a Hash Match join operation. However,
this Hash Match is designated as a Right Semi Join, unlike the earlier ones which were all
Inner Joins.

Unlike an Outer Join, which will return all valid combinations of rows from the two inputs
plus a single copy of each unmatched row from the top input, a Semi Join returns a single
copy of each row from one input that has at least one matching row in the other input. It
does not add rows from the other input to the data; it is only used for the existence of a
matching row.

The optimizer uses, in this case, a Hash Match operator to perform the Semi Join logical
processing. A hash table of values from the first data set is created and then probes from the
second data set are used to find matching values. If any value matches, the row from the
second data set is returned and no other comparisons are made.

126

Chapter 4: Joining Data

There are both Right and Left Semi Joins. The optimizer determines which direction it's
going to perform the functions depending on the rest of the necessary operations to satisfy
the query in question.

You may also see Anti Semi Join logical join types used in an execution plan. As suggested
by the name, these are the reverse of the Semi Join operations: they return a single copy
of each row from one input that does not have a match in the other input (similar to NOT
EXISTS).

Concatenating Data
Finally, as well as joining data together, it is possible to concatenate data. The most common
type of data concatenation is through the UNION ALL keyword. However, you may also
see concatenation operations occur within an execution plan from other types of queries.
For example, using variables in an IN clause may result in a concatenation operation within
an execution plan. A Concatenation operator will always have two or more inputs, and it
simply processes each of the inputs in order, from top to bottom, and concatenates them.

Let's look at a simple example of concatenation.

SELECT p.LastName,
 p.BusinessEntityID
FROM Person.Person AS p
UNION ALL
SELECT p.Name,
 p.ProductID
FROM Production.Product AS p;

Listing 4-7

This query combines a list of the Person.LastName column with the Product.Name
column. The execution plan looks like Figure 4-24.

127

Chapter 4: Joining Data

 Figure 4-24: Execution plan showing Concatenation operator.

This execution plan is very straightforward. The Concatenation operator first calls the top
input, passing rows retrieved to its parent, until it has received all rows. After that it moves
on to the second input, repeating the same process. Each of the data access operators is
simply retrieving all the data from the referenced indexes. In this case, there are only the two
data sets, but Concatenation can have as many inputs as necessary. If we look at the proper-
ties for the operator, shown in Figure 4-25, you can see how the information is resolved.

 Figure 4-25: Properties of the Concatenation operator.

128

Chapter 4: Joining Data

The Defined Values have been expanded out so that you can see the combined
output, defined as Union1002, consists of the LastName and Name columns from
the respective tables.

Summary
This chapter represents a major step in learning how to read graphical execution plans.
However, as we discussed at the beginning of the chapter, we only focused on join operators
and we only looked at simple queries.

So, if you decide to analyze a 2000-line query and get a graphical execution plan that is just
about as long, don't expect to be able to analyze it immediately. Learning how to read and
analyze execution plans takes time and effort. However, having gained some experience, you
will find that it becomes easier and easier to read and analyze, even for the most complex of
execution plans. You already have enough knowledge to get started. Just remember to follow
the key points to look for in a plan. They will act as guide-posts as you step through the
operations of the plan.

129

Chapter 5: Sorting and Aggregating Data
In this chapter, we explore the execution plans for queries that sort, aggregate, and manipu-
late data. In some cases, we'll see that the plans can quickly get radically more complicated,
but the mechanisms for reading and understanding these plans really don't change.

Specifically, we will cover:
• Sorting data – queries with ORDER BY and the operators the optimizer

can use to perform the data ordering.
• Aggregating data – queries that use GROUP BY, or that perform

aggregations, covering:
• Standard aggregation functions, such as SUM, COUNT, and so on
• Filtering aggregations using HAVING
• Window functions – how the optimizer executes these queries.

Queries with ORDER BY
When retrieving data from a table, there is no defined order in which that data will be
returned. If we want to guarantee the order in which the data is returned, we need to use
the ORDER BY clause to establish that order. If the optimizer can retrieve the data from an
index in which the data is already in the required order, and all the operators within the plan
preserve that order, then no additional operations are necessary. If not, a Sort operator will
be necessary in the plan. As we discussed in Chapter 2, Sort is a blocking operator; it must
gather all the rows that it needs before passing on the first row to the calling operator.

We'll cover the following varieties of sort operation:
• Sort
• Top N Sort
• Distinct Sort

We'll also see what can cause Sort warnings to appear in the plan, and what this means.

130

Chapter 5: Sorting and Aggregating Data

Sort operations

Let's start with a very simple SELECT statement, returning data from the ProductInven-
tory table, ordered according to shelf location.

SELECT pi.Shelf
FROM Production.ProductInventory AS pi
ORDER BY pi.Shelf;

Listing 5-1

Figure 5-1 shows the execution plan.

Figure 5-1: Execution plan showing a Sort operator.

Following the data flow from right to left, we see a Clustered Index Scan on the Produc-
tion.ProductInventory table. The optimizer had no choice but to scan all the rows,
since our query provided no WHERE clause filtering. The Clustered Index Scan passes 1069
rows to the Sort operator; we can see this by hovering over the arrow leading to the Sort
operator, to bring up the tooltip window, or by looking at the Actual Number of Rows in the
Properties pane for the scan.

The Clustered Index Scan passes on the rows in the order they are read from the index, in
this case probably ordered by ProductID. Any order is not guaranteed, and we know this
because the Ordered property is set to False, which means that the optimizer does not need
the rows returned from the index to be in any order (more on the Ordered property shortly).

131

Chapter 5: Sorting and Aggregating Data

Figure 5-2: Properties of the Clustered Index Scan showing an unordered scan.

Since there is no index on the Shelf column, the optimizer must use a Sort operator within
the query execution to achieve the required ordering. Once the Sort has all 1069 rows, it
orders the data by Shelf and the rows pass back to the calling SELECT, and back to the
client.

If an ORDER BY clause does not specify order, the default order is ascending, as you will see
from the properties for the Sort icon in Figure 5-3.

Figure 5-3: Order By property within the Sort operator.

Sort operations and the Ordered property of Index Scans
The execution engine can use the following retrieval methods to fulfill an Index Scan
(clustered and nonclustered):

• Ordered – simply follow the index structure to the first leaf page, and then the
page pointers until the end of the index, or until all the required data is collected.
Data is returned in logical index order, but if data must come from disk then the
access pattern is random.

• IAM – this is like a Table Scan and uses index allocation map pages to find pages
allocated to index. Data is returned in "semi-random" order, but disk access is
sequential, as long as the data page is not fragmented at the operating system level.

132

Chapter 5: Sorting and Aggregating Data

If the optimizer sets Ordered to False, it means that it doesn't care about order. In that case,
at runtime the engine can choose either retrieval method, if it can guarantee to return the
correct results (not always possible for IAM).

The optimizer sets Ordered to True if it needs the data to be in order. In that case the engine
will always use the ordered retrieval method. For example, if instead of ORDER BY Shelf,
this query used ORDER BY ProductID, then the query optimizer sets the Ordered property
to True. Now that the data, as retrieved through the index, is already in the correct logical
order, there is no need for a Sort operator in the execution plan.

Figure 5-4: A Clustered Index Scan showing an Ordered scan in the tooltip.

Dealing with expensive Sorts
In Figure 5-1, the Sort operation is estimated to account for 76% of the cost of the query.
This is no reason to panic. There are only two operators in this entire plan, and so 76% is
quite reasonable as a percentage of all the work being done. If there were 5 or 10 operators
and one of them was 76% of the estimated cost, then that would be much more concerning
over all.

133

Chapter 5: Sorting and Aggregating Data

Nevertheless, if sorting takes a significant portion of a query's total estimated cost and the
query is running slowly, or otherwise causing issues, then you may need to review it carefully
and see if you can optimize it.

A Sort operation, like any other expensive operation, may not be problematic in and of itself.
The first thing you need to do is establish why the operation is there; it may be there simply
to fulfill an ORDER BY clause, but there are other reasons. You may also see the Sort operator
added by the optimizer when the data must be ordered for a Merge Join operation, just as
an example. In more complex plans, the purpose of a Sort may not be immediately obvious,
since it could be necessary for other parts of the execution plan. Once you understand why
the sort is there, then the next question to ask is, "Is the Sort really necessary?"

You may find cases where an ORDER BY clause has been added to a query when it wasn't
needed. Developers often use an ORDER BY when developing and debugging a query
because it's easier to verify results that way, and then to forget to take it out, even though it's
not needed in the final production code.

Beyond that, SQL Server often performs the Sort operation within the query execution due to
the lack of an appropriate index. With the appropriate index, in this case an index ordered by
Shelf, the data may come presorted. It is not always possible, or desirable, to create a new
index, but if it is, you might save sorting overhead. If it were decided that the rows did not
have to be returned ordered by Shelf, then we might be in an easier situation.

If the data must be ordered by Shelf, and we're not able to create an index, then the alterna-
tives are limited, unless we're allowed to alter the logic of the query. Notably, for example,
this query has no WHERE clause. Is the query returning more rows than are strictly necessary?
Even if a WHERE clause exists, you need to ensure that it limits the number of rows to only
the required number of rows to be sorted, not rows that will never be used. Regardless, the
Sort operation will still be expensive, just because sorting is not a cheap operation.

If an execution plan has multiple Sort operators, review the query to see if they are all neces-
sary, or if you can rewrite the code so that fewer sorts will accomplish the goal of the query.
Obviously, this is not always possible or even desirable. However, because the Sort operator
is so expensive, it's worth ensuring that you need to order the data.

Top N Sort
A different kind of Sort operation can be performed when the number of rows to be returned
are limited. Consider the query in Listing 5-2.

134

Chapter 5: Sorting and Aggregating Data

SELECT TOP (50)
 p.LastName,
 p.FirstName
FROM Person.Person AS p
ORDER BY p.FirstName DESC;

Listing 5-2

This query selects the last and first names of the 50 people that come last in the alphabet,
when sorted by first name. Figure 5-5 shows how the optimizer resolves this query.

Figure 5-5: An execution plan displaying a Top N Sort operator.

There is no index that can satisfy the ORDER BY clause in the query. However, there is an
index other than the clustered index on the table that holds the FirstName and LastName
columns, IX_Person_LastName_FirstName_MiddleName. This index will only
hold the key columns defined plus the clustered key column, so it will be a smaller index than
the clustered index. Therefore, scanning it will be cheaper, which is why it was chosen by the
optimizer. All 19,972 rows will be scanned and fed into the Sort operator.

The Sort operator in this case is a unique type, Top N Sort. Like the regular Sort operator,
this is a blocking operator. It will retrieve all 19,972 rows and then sort the data, and then
return the first 50 rows. This is defined right within the properties.

Figure 5-6: Properties of Top N Sort operator.

You can also see it in the data pipe leading away from the Sort operator in the execution
plan shown in Figure 5-5. Below 100 rows, a sort mechanism that uses CPU more than
memory is in play, to help with memory management. Above 100 rows, more memory
intensive mechanisms are used, because the CPU cost would be far too high.

135

Chapter 5: Sorting and Aggregating Data

Distinct Sort
Sometimes, the optimizer may choose to use a Sort operation to satisfy a query that does
not specify an ORDER BY clause. The intent of Listing 5-3 is to return a list of the unique
combinations of the parts of a name, LastName, FirstName, MiddleName, Suffix.

SELECT DISTINCT
 p.LastName,
 p.FirstName,
 p.MiddleName,
 p.Suffix
FROM Person.Person AS p;

Listing 5-3

Figure 5-7 shows the resulting execution plan, a scan of the clustered index followed by a
Sort operation.

Figure 5-7: An execution plan with a Distinct Sort operator.

This time, we see a Distinct Sort. The optimizer is using the Sort operation, not only to
order the data, but also to eliminate duplicates. You can see what's happening by expanding
the Properties of the Sort operator to look at the Order By property, shown in Figure 5-8.

Figure 5-8: Properties of Sort (Distinct Sort) operator demonstrating sorting
on all columns.

By sorting on all columns in the SELECT list, duplicate rows are immediately adjacent, and
so can easily be skipped when the Sort operator returns the sorted data.

136

Chapter 5: Sorting and Aggregating Data

Sort warnings

The Sort operator is very dependent on the row estimates provided to the optimizer because
it needs memory to perform the sort. When an inadequate amount of memory is allocated for
a sort, data gets stored in tempdb through a process referred to as a spill. This is so problem-
atic for performance that, in SQL Server 2012 and later, you get a warning in the execution
plan itself (or in an Extended Event, starting in SQL Server 2008).

Listing 5-4 shows an apparently simple query that returns the data in descending order
of the ModifiedDate.

SELECT sod.CarrierTrackingNumber,
 sod.LineTotal
FROM Sales.SalesOrderDetail AS sod
WHERE sod.UnitPrice = sod.LineTotal
ORDER BY sod.ModifiedDate DESC;

Listing 5-4

Figure 5-9 shows the actual execution plan that this query generates.

Figure 5-9: An execution plan that has generated a Sort warning.

There are several things worth exploring in this execution plan, but the one that should
immediately pop out is the warning symbol on the Sort operator below.

Figure 5-10: The Sort warning, blown up for easier viewing.

If you hover over the operator, the tooltip will show a message about the warning, but the
details are in the properties, so we'll go there first. The full message of the warning is shown
in Figure 5-11.

137

Chapter 5: Sorting and Aggregating Data

Figure 5-11: Full description of the Sort warning.

The warning lays out specifically what happened. An additional 346 pages were used in
tempdb despite memory being allocated for 2,928 KB. Why did this happen? That informa-
tion is also available in the properties. Figure 5-12 has the full property sheet with a few facts
highlighted.

Figure 5-12: Difference between the Estimated and Actual Rows leading to a spill.

138

Chapter 5: Sorting and Aggregating Data

As you can see, the Estimated Number of Rows is 12,131.7. The actual number of rows was
74,612. That's nearly six times as many rows being processed as SQL Server expected. While
the memory grant does include some margin of error, there was not enough memory allocated
to deal with this much data. That's why the Sort operation was forced to spill to tempdb.
Your investigation then has to determine where the estimates went wrong. The way to do that
is to walk through the other operators in the execution plan.

The data being read from the disk is coming from the Clustered Index Scan of the
PK_SalesOrderDetail index, at the far right of the plan in Figure 5-9. The
Estimated Number of Rows is 121,317 and the actual number of rows is the same.
This means that the initial operation went as expected.

The next two operators are Compute Scalar. The first has a pair of calculations shown in
Figure 5-13.

Figure 5-13: Details of the first Compute Scalar operator.

These two calculations are benign and directly related to the data we're working with in
the query. The next Compute Scalar operator is simply aliasing the calculations from the
preceding operator. LineTotal is a computed column in the table definition, and this is
how you can see that within the execution plan.

139

Chapter 5: Sorting and Aggregating Data

Figure 5-14: Calculation made by the second Compute Scalar operator.

None of these processes will affect the row estimates. The next operation is the Filter oper-
ator (covered in more detail later in the chapter). A Filter operator inspects the data in each
row it receives with the goal of eliminating rows that are not required; only rows that meet
the Predicate criteria are passed on to the calling operator.

Normally, this type of operation is done at the table or index level, through seeks and scans.
However, because we're dealing with calculated values, the LineTotal, those calculations
must be performed before the data set can be filtered. We can see the Predicate calculation
in the properties of the operator. All the brackets and fully-qualified object names may make
reading a little difficult. The core calculation is sod.UnitPrice = sod.LineTotal.

Figure 5-15: Details of the Predicate property of the Filter operator.

However, this calculation is itself not the issue. Instead, we need to look to the Estimated
Number of Rows processed by the Filter operator, 12,131.7. In other words, of the 121,317
rows that were read from the clustered index, the optimizer assumed only 10% would match
the Predicate condition. This is a fixed estimate, which the optimizer uses because it can't
know for certain how many values will match, when comparing to a calculated value.

In fact, 74,612 were returned, and this is the cause of the inappropriate memory estimates for
the Sort operator and the subsequent spill to tempdb.

140

Chapter 5: Sorting and Aggregating Data

Aggregating Data
One of the most common uses for data, after it has been collected and cleaned, is to apply
some math to it to get the number of records (COUNT), the mean value of a column (AVG),
the maximum value (MAX), and others. These calculations require that we combine the data
in a process known as "aggregation."

Aggregation is a powerful feature within T-SQL that enables us, in many instances, to
perform these types of calculations in a much more efficient manner because we can
aggregate the data as we retrieve it. In short, if we get aggregation operations early in a
plan, we're frequently working with less data in the rest of the plan, making that plan more
efficient. We're also saving huge amounts of network traffic, if the alternative is to aggregate
on the client.

This section will explore the mechanisms through which SQL Server aggregates information,
based on the data, your data structures, and the T-SQL code you have written.

Stream Aggregate

The first aggregation operator we'll look at is the Stream Aggregate. This operator
uses data that is sorted to build a set of aggregate values. We'll use the simple query in
Listing 5-5 to create an aggregate count of the number of TerritoryID values within
the Sales.Customer table.

SELECT c.TerritoryID,
 COUNT(*)
FROM Sales.Customer AS c
GROUP BY c.TerritoryID;

Listing 5-5

141

Chapter 5: Sorting and Aggregating Data

If we run this query and capture the execution plan, we'll see the Stream Aggregate operator
in use.

Figure 5-16: Execution plan with a Stream Aggregate operator.

Reading this plan in the order of data flow, we see that it uses the IX_Customer_TerritoryID
nonclustered index to scan the data. This data flows into the Stream Aggregate operator,
which aggregates the data, and then on to a Compute Scalar operator before returning as a
result set.

The first requirement for the use of the Stream Aggregate operator is that the data be sorted
by the columns being aggregated. If we check the properties of the Index Scan operator,
we'll see that the Ordered property is set to True, meaning that the data will be accessed in
the logical order in which it's stored in the index (by TerritoryID), and so no additional Sort
operator is required. This helps explain why the optimizer has chosen to use this nonclustered
index to retrieve the data.

Figure 5-17: Properties of the Index Scan showing an Ordered operation.

We can look the properties of the Stream Aggregate operator to see how the data is being
processed. Figure 5-18 shows the properties for the GROUP BY clause of our query.

142

Chapter 5: Sorting and Aggregating Data

Figure 5-18: Group By properties of the Stream Aggregate operator.

The Defined Values property discloses the calculations we're requesting from
this aggregation.

Figure 5-19: Output of the aggregated values shown as Defined Values.

The aggregations occur within the Stream Aggregate operator, as it reads the ordered data.
The AggType of countstar indicated that in this case it's performing an aggregate count for
each TerritoryID value.

Why, then, is there a Compute Scalar operator within this plan? Figure 5-20 shows
its properties.

Figure 5-20: Compute Scalar operator showing data conversion.

143

Chapter 5: Sorting and Aggregating Data

The output data type of the countstar aggregation from the operator properties shown in
Figure 5-19 is BIGINT. The optimizer added a Compute Scalar operator to perform an
implicit conversion of that data to a type of INT, before returning it within the result set
of the query because this query is asking for a COUNT (which outputs as INT). This is
changing the data to an INT. If we used COUNT_BIG in the query, the Compute Scalar
would be removed.

The Stream Aggregate operator is generally straightforward. It calculates the information
as it retrieves it, in a stream, because the data is ordered. This can make for a very efficient
operation. However, the requirement that the data be ordered implies that, depending on the
data structures involved, a Sort operation may be a part of the plan. This could possibly lead
to poor performance of the Stream Aggregate, suggesting the need for a new or different
index to better support retrieving the data in an ordered fashion.

Hash Match (Aggregate)

Let's consider another simple aggregate query against a single table, where we want to know
the average discount offered, for each unit price.

SELECT sod.UnitPrice,
 AVG(sod.UnitPriceDiscount)
FROM Sales.SalesOrderDetail AS sod
GROUP BY sod.UnitPrice;

Listing 5-6

Figure 5-21 shows the actual execution plan.

Figure 5-21: Execution plan generated with a Hash Match aggregation operator.

144

Chapter 5: Sorting and Aggregating Data

The data flow of the query execution begins with a Clustered Index Scan, because all rows
are returned by the query; there is no WHERE clause to filter the rows. Next, the optimizer
aggregates these rows, to start the process of the requested AVG aggregate calculation. To
count the number of rows for each UnitPrice, the optimizer chooses to perform a Hash
Match (Aggregate) operator.

In Chapter 4, we looked at the Hash Match(Join) operator for joins. This same Hash Match
operator can also occur when we perform aggregations within a query, or because the opti-
mizer decides to use aggregation for some other reason. As with a Hash Match with a join,
a Hash Match with an aggregate causes SQL Server to create a temporary hash table in
memory in which it stores the results of all aggregate computations; it can count rows, track
minimum and maximum values, calculate a sum, and so on.

In this example, for each value in the GROUP BY column, which is UnitPrice, it stores
a row with that UnitPrice, a tally of rows and a total discount. As it builds the hash
table, it increases the tally and total discount whenever it processes a row with the
same UnitPrice.

As a general rule, the memory used by a Hash Match(Aggregate) will usually be less than
that used by a Hash Match(Join), because the join operator must create a hash table for all
the data, while for the aggregate operator, the hash table contains only the aggregation key
and the computation results. Certainly, one can envision exceptions; for example, if we have
a very small table consisting of two columns, but a query with a very large number of aggre-
gate calculations, but generally the rule will hold true.

We can see how the aggregations are performed by looking at the properties of the Hash
Match(Aggregate), shown in Figure 5-22.

145

Chapter 5: Sorting and Aggregating Data

Figure 5-22: Properties of the Hash Match aggregate operator detailing
the function of the operator.

Highlighted at the top you can see there are two aggregates, and neither is the average. The
first is a COUNT * calculation being executed to get a row count for each UnitPrice,
returned as Expr1006. The second aggregation is a SUM of the UnitPriceDiscount
column for each UnitPrice, returned as Expr1007. Further down you can see how the
hash table is being created on the UnitPrice column.

As you can see from the Output List, the UnitPrice, Expr1006 and Expr1007 are
passed on to a Compute Scalar operator, which performs the calculation below for each
UnitPrice value.

146

Chapter 5: Sorting and Aggregating Data

 [Expr1001] = Scalar Operator(CASE WHEN [Expr1006]=(0) THEN NULL
ELSE [Expr1007]/CONVERT_IMPLICIT(money,[Expr1006],0) END)

If a given UnitPrice value, as expressed by Expr1006, has no rows, then this will
return NULL for that UnitPrice. If there are rows for that UnitPrice, the average
UnitPriceDiscount is calculated by dividing Expr1007 by Expr1006, first having
converted Expr1006 to a MONEY data type, using the CONVERT_IMPLICIT command.

Quite often, aggregations within queries can be comparatively expensive operations,
depending on the number of rows that need to be aggregated. However, it is almost always
far more efficient to aggregate on the server, and push a limited number of rows over to the
client, than to push all data and aggregate on the client. Also, in cases where the aggregated
data is used in the rest of a larger query, or stored in a temporary table and then joined to
other data, the savings get even bigger because all subsequent operators work on far
fewer rows.

One tactic when attempting to tune an aggregation is to add a covering index, or to
remove unneeded columns so that an existing index becomes covering, sorted on the
GROUP BY columns. This will allow the optimizer to use the Stream Aggregate instead
of Hash Match Aggregate.

You can also pre-aggregate data by using an indexed view, although that tactic incurs the
overhead of maintaining the data in the view, as well as the table, when data is modified.

Filtering aggregations using HAVING

The optimizer uses the Filter operator to limit the output to the rows that meet the specified
criteria. In Listing 5-7 we add a HAVING clause, to limit the result set to only those rows
where the average unit price discount is greater than 0.2.

147

Chapter 5: Sorting and Aggregating Data

SELECT sod.UnitPrice,
 AVG(sod.UnitPriceDiscount)
FROM Sales.SalesOrderDetail AS sod
GROUP BY sod.UnitPrice
HAVING AVG(sod.UnitPriceDiscount) > .2

Listing 5-7

Figure 5-23 shows the execution plan, which now contains a Filter operator after the
Compute Scalar.

Figure 5-23: Execution plan uses a Filter operator to satisfy the HAVING clause.

The Filter operator limits the output to those values of the column, UnitPriceDiscount,
that have an average value greater than .2, to satisfy the HAVING clause. This is accom-
plished by applying a Predicate against the output of the Compute Scalar operator, as we
can see from the properties of the Filter operator.

Figure 5-24: Properties of the Filter operating showing
the filtering calculation.

In this case, the nature of the HAVING clause meant that the optimizer had no way to verify
the Predicate without first doing the aggregation. The Hash Match (Aggregate) receives
121317 rows and passes on 287 (hover over the data flow arrows to see this), which is the
number processed by the Filter operator.

However, if there is a way to filter before aggregation, the optimizer will usually find it. To
offer a trivial example, if we were to change the HAVING clause to sod.UnitPrice >
800, the optimizer is sensible enough to, essentially, rewrite HAVING to WHERE, in which
case the filtering is pushed down into the Clustered Index Scan, as you'll see by running the
modified query and examining the Predicate property of this operator (rewriting the query to
use WHERE rather than HAVING will have the same effect).

148

Chapter 5: Sorting and Aggregating Data

Figure 5-25: An execution plan that shows filtering occurring during aggregation.

When filtering on aggregated rows, the optimizer has no choice but to add a Filter operator
to the plan, after the aggregation is complete. Notionally, this adds a minimal extra cost to
the plan. However, this is more than compensated for by the need to return fewer rows to the
client. Also, when the aggregated and filtered data is used elsewhere in a larger query, the
savings are even greater. If the optimizer can find a way to apply the filtering earlier, it will
do it.

Plans with aggregations and spools
A Spool operator uses a temporary worktable to store data that may need to be reused
multiple times within an execution plan. This section will review a couple of examples where
spools are used to store the results of aggregation calculations for plans that use Nested
Loops joins. However, spools can appear in many other situations where, by storing the
results in a worktable, the optimizer can reuse that data many times, instead of having to
execute sets of operators multiple times.

There are several types of spool, represented by the following physical operators: Index
Spool, Rowcount Spool, Table Spool and Window Spool. Here, we’ll only consider the
Table Spool and the Index Spool, as they appear in the context of queries that contain aggre-
gations. SQL Server will always have a clustered index for storing the data for any spool; an
Index Spool will have an additional nonclustered index to make it easier to retrieve the data.

There are two logical types of Spool operator, Lazy Spool and Eager Spool. A Lazy Spool
is a streaming operator. It requests a row from its child operator, stores it, and then passes
it to its parent, passing control back to that parent. An Eager Spool, on the other hand, is a
blocking operator, that will call its child node until it has all the rows, and only then return
the first row from its worktable. Generally the optimizer will avoid the Eager Spool, but it is
ideal for certain situations such as Halloween protection (covered in Chapter 6).

149

Chapter 5: Sorting and Aggregating Data

Table Spool
Let's start with an aggregation example that uses a Table Spool. The query in Listing 5-8
uses a subquery to calculate the total tax amount paid by customers, according to sales
region (TerritoryID).

SELECT sp.BusinessEntityID,
 sp.TerritoryID,
 (SELECT SUM(TaxAmt)
 FROM Sales.SalesOrderHeader AS soh
 WHERE soh.TerritoryID = sp.TerritoryID)
FROM Sales.SalesPerson AS sp
WHERE sp.TerritoryID IS NOT NULL
ORDER BY sp.TerritoryID;

Listing 5-8

Figure 5-26 shows the execution plan.

 Figure 5-26: An execution plan using a Table Spool with aggregation.

The outer input of the Nested Loops join operator is a scan of the clustered index on the
SalesPerson table, which returns 14 rows (sorted by TerritoryID). This means that
the inner input, a Table Spool, will execute 14 times.

The first execution of the inner input is always a Rebind, so the Table Spool calls for a row
from the Hash Match, which in turn calls for a row from the Clustered Index Scan on
SalesOrderHeader. The Hash Match operator uses a temporary hash table to calculate
the total tax amount collected for each distinct TerritoryID value in SalesOrder-
Header. There are 10 distinct values of TerritoryID and, at some point, it will start
returning each of these 10 rows to the Table Spool, which stores these in its worktable while
passing them on (it's a Lazy Spool), until it has passed on all 10 rows.

150

Chapter 5: Sorting and Aggregating Data

If we examine the properties of the Nested Loops operator we see that it satisfies the join
condition using a Predicate (see the Nested Loops operator section of Chapter 4 for a discus-
sion of this topic). Essentially, the inner input is static, and will produce the same result for
every value in the outer input.

For each of the other 13 rows returned from SalesPerson to the Nested Loops operator,
the outer input has to rewind. This is where the Table Spool comes into play. Instead of
calling the Hash Match again, 13 times, the worktable defined by the Table Spool is used.

 Figure 5-27: Properties showing how the Table Spool was used to filter data.

If you inspect the properties of the Table Spool you'll see 13 Rewinds and 1 Rebind. The
Hash Match and Clustered Index Scan are only executed once each, for the initial Rebind,
to load the data into the Table Spool.

This is a simple example of how the optimizer can use a Table Spool to make aggregation
queries more efficient, where a single Table Spool reused its own information. However,
very often, you'll encounter cases where a spool shares its information with other Spool
operators in the same plan. If you check the properties of the Table Spool, you'll see that it
has a Node ID value of 4. If a second spool were to reuse data from this first spool, then in
the properties for the second spool you'd see both its own Node ID value, and a Primary
Node ID value, which in this case would be 4. We'll see an example of this in Chapter 6.

Index Spool
To see an Index Spool operator, we just need to add a useful index that the optimizer can use
to find the rows with matching TerritoryID values, in the SalesOrderHeader table.

151

Chapter 5: Sorting and Aggregating Data

CREATE INDEX IX_SalesOrderHeader_TerritoryID
ON Sales.SalesOrderHeader
(
 TerritoryID
)
INCLUDE
(
 TaxAmt
);

Listing 5-9

Now, re-execute the query in Listing 5-8. Figure 5-28 shows the execution plan, which is
similar to the previous plan, except that now, for the inner input of the Nested Loops join, we
see an Index Seek against the SalesOrderHeader table, a streaming aggregation instead
of the blocking Hash Match aggregation, and then an Index Spool instead of a Table Spool.

Figure 5-28: An execution plan using an Index Spool operator for aggregation.

The 14 rows returned by the scan of the SalesPerson table are ordered by the Sort
operation on TerritoryID. Examine the properties of the Nested Loops operator and
you'll see that it satisfies the join condition using the TerritoryID values as Outer
References. That means that each of the values from the 14 rows is pushed down into the
inner input, which returns only matching rows based on the Index Seek operation.

As before, the first execution of the inner input is a Rebind. The value of 1, the first
TerritoryID row's value, is pushed down to the other operators. The Index Spool first
initializes its child operators. The Stream Aggregate starts requesting rows from Index
Seek, which uses the pushed-down value to find matching rows in the index. The spool
passes the matching rows to the Stream Aggregate, which then returns a single row, the
aggregation result for TaxAmt, to the Index Spool, which then stores it in an indexed
worktable and returns it to Nested Loops.

152

Chapter 5: Sorting and Aggregating Data

The second and third rows coming into Nested Loops also have a TerritoryID value of
1, so the next two executions of Index Spool are Rewinds. Index Spool will not call Stream
Aggregate, and instead immediately returns the previously stored results from the worktable.

For the fourth row, we have a TerritoryID value of 2, a new value. The data change
forces the Index Spool to register a Rebind initializing the other operators again with the
new pushed-down value. This will be the fourth execution of the Index Spool, but only the
second execution of each of the child operators.

This pattern repeats until all 14 rows are processed. Look at the properties of the Index
Spool and you'll see that there are 10 Rebinds and 4 Rewinds. Look at the properties of the
Stream Aggregate or the Index Seek and you see only 10 executions, corresponding to the
10 distinct values for TerritoryID in the 14 rows.

Remember to drop the index created in Listing 5-9 before continuing.

DROP INDEX IX_SalesOrderHeader_TerritoryID ON Sales.
SalesOrderHeader;

Listing 5-10

Working with Window Functions
Introduced in SQL Server 2008, the OVER clause defines how to sort and partition the data,
to which an aggregate function can be applied. A Window function is essentially one that
operates on a window, or partition of data, as defined within the OVER clause. The ranking
functions, ROW_NUMBER, RANK, DENSE_RANK and NTILE, are all Window functions.
Aggregate functions, such as SUM or AVG, also support the OVER clause, but are not consid-
ered Window functions.

The query in Listing 5-10 partitions the data according to the CustomerID value,
and within each partition orders the data by order date. To each partition, we apply the
ROW_NUMBER ranking function, which simply numbers each row in each partition, so if a
customer made 5 orders in that period, there would be 5 rows in their partition, numbered 1
to 5, with the earliest order having a RowNum of 1.

153

Chapter 5: Sorting and Aggregating Data

SELECT soh.CustomerID,
 soh.SubTotal,
 ROW_NUMBER() OVER (PARTITION BY soh.CustomerID
 ORDER BY soh.OrderDate ASC) AS RowNum,
 soh.OrderDate
FROM Sales.SalesOrderHeader AS soh
WHERE soh.OrderDate BETWEEN '20130101'
 AND '20130701'

Listing 5-11

Figure 5-29 shows the resulting execution plan.

Figure 5-29: Execution plan to satisfy a Windowing function using a Segment
and a Sequence operator.

Since there is no index that supports the WHERE clause, the optimizer chooses to scan the
clustered index. It returns the orders that fall within the required period. These rows are then
sorted by CustomerID, and secondarily by OrderDate in preparation for splitting the
data into partitions.

Next, we encounter two new operators that we have not yet explored, Segment and
Sequence Project (Compute Scalar). Whenever you see an operator with which you're
unfamiliar, or familiar operators whose role is not immediately clear to you, this is usually a
good place to start.

A Segment operator splits the data into a series of partitions, or segments, based on the parti-
tion column or columns, defined within the query. In this case, we have chosen to partition
the data by CustomerID. If we examine the Group By property of this operator, we see
that the data is being grouped on the CustomerID column. We can also see that an output
column is created, Segment1002, which marks the start of each new segment.

154

Chapter 5: Sorting and Aggregating Data

Figure 5-30: Properties of the Segment operator showing the segmentation of the data.

All this data passes to the Sequence Project (Compute Scalar) operator, which is used
exclusively by ranking functions, and works off an ordered set of data, with segment marks
added by the Segment operator.

In Figure 5-31, we can see that in this case the Sequence Project operator simply counts the
number of rows in each segment, and assigns a sequential number to them, rather like having
an IDENTITY column assigned to each partition.

Figure 5-31: Properties of the Sequence operator showing the function of the operation.

That example is fine, but it doesn't show off the aggregations that are possible when you
begin to use windowing functions. Listing 5-11 adds an additional column to the query, the
average value of the SubTotal, across a given CustomerID, for the data range in ques-
tion.

155

Chapter 5: Sorting and Aggregating Data

SELECT soh.CustomerID,
 soh.SubTotal,
 AVG (soh.SubTotal) OVER (PARTITION BY soh.CustomerID) AS
AverageSubTotal,
 ROW_NUMBER() OVER (PARTITION BY soh.CustomerID ORDER BY soh.
OrderDate ASC) AS RowNum
FROM Sales.SalesOrderHeader AS soh
WHERE soh.OrderDate
BETWEEN '20130101' AND '20130701';

Listing 5-12

If we examine the execution plan for this query we'll see, in Figure 5-32, one that is much
more complex than others have been so far in the book.

 Figure 5-32: A more complex plan showing additional window functions.

That is hard to read, so we'll drill down on parts of the execution plan. Figure 5-33 shows the
primary section relating to the data retrieval.

 Figure 5-33: Details of the plan from Figure 5-32.

Just as before, there is no index that supports our WHERE clause, so we see a Clustered
Index Scan. The data is ordered again through a Sort operation and then it is passed to the
now familiar Segment operator. From there it passes to a Table Spool (Lazy Spool), which
is the outer input of a Nested Loops join operator. The inner input is another Nested Loops
join, for which Figure 5-34 shows the outer and inner inputs.

156

Chapter 5: Sorting and Aggregating Data

 Figure 5-34: Additional details of the plan from Figure 5-32.

In Figure 5-34, you can see where we are reusing the data stored in the Table Spool operator.
This operator deals with segmented data by slightly changing its behavior. In normal opera-
tion, a Lazy Spool reads a row, stores it and passes it on straight away. However, in this
case, the Table Spool reads all rows for a segment of data, and then sends on the row for that
segment to the following operations.

The data from the Table Spool is passed to a Stream Aggregate operator. The Stream
Aggregate operation can be used because the data is ordered based on the Sort operator we
see in Figure 5-33. If we look at the Stream Aggregate properties, we can then understand
what it's doing within this execution plan.

Figure 5-35: Properties of the Stream Aggregate operator.

157

Chapter 5: Sorting and Aggregating Data

There are two new values being created, a count of the values within the aggregate of the
CustomerID and a sum of the SubTotal column across that same aggregate. All of this
is then passed to a Compute Scalar operator which performs another calculation.

 Figure 5-36: Calculation within the Compute Scalar operator.

This is creating a new value, Expr1001, which will either be null, or an average calculation
of the values created in the Stream Aggregate. In short, this part of the process is satis-
fying the AVG function called for in the query in Listing 5-11. The output from the Scalar
Operator is then run through another Nested Loops operator, which refers to our temporary
storage in the Table Spool. Why?

This is where things get fun. We must aggregate our data in order to arrive at an average,
so the number of rows being returned is going to change. You can see this if you look at
the actual rows output from the Stream Aggregate operator and compare it to the number
of rows output from the second instance of the Table Spool operator in Figure 5-34. The
aggregate output is 2,464 and the temporary storage output is 2,784. The Nested Loops is
necessary to put together the output of the aggregation operation with the information being
stored temporarily in the Table Spool. All this is passed to the other Nested Loops operator
(originally shown in Figure 5-33) to be combined with the output of the Table Spool for final
processing of the query as shown in Figure 5-37.

158

Chapter 5: Sorting and Aggregating Data

 Figure 5-37: Details of the plan from Figure 5-32 showing Segment and Sequence
operators.

This final section of the execution plan is where we see the functions necessary to support
the ROW_NUMBER() function, from the original query in Listing 5-10. There is no final
Sort operation because I dropped the ORDER BY clause in the query in Listing 5-11, just to
simplify things a little bit.

Through all this now, you can see how the Window functions can be used for aggregations,
how these functions and methods are satisfied within the execution plan, and how you read
through an execution plan to understand what functions are being performed where. Reading
through the plan is possible because you can see the creation of values such as Expr1004
and Expr1005 within the Stream Aggregate to be followed by their use to create an average
represented by Expr1001 created in the Compute Scalar operator. You can also see how
each of the Table Spool operators is used to move the data through the necessary processing
to arrive at the requested output.

Summary
This chapter focused primarily on the ordering and aggregation of data. You've seen several
examples of execution plans that showed how to follow properties and values as they move
between operators within an execution plan. This is one of the fundamentals to reading your
own execution plan and you'll see it again and again throughout the rest of the book. During
all this discussion we brought up the cost of certain operations. Just remember that no opera-
tion is inherently problematic. Each just represents the optimizer's best attempts at resolving
the query in question. Don't focus on eliminating or changing any given operator; focus
instead on the query in question.

159

Chapter 6: Execution Plans for Data
Modifications

All the previous execution plans in the book have been for SELECT queries. However, the
optimizer also generates execution plans for all data modification queries issued for the data-
base, to instruct the execution engine how best to undertake the requested data change. This
chapter will examine the characteristics of execution plans for INSERT, UPDATE, DELETE,
and MERGE queries. You're going to find the execution plans for data modification queries
very handy. You'll see how IDENTITY columns get resolved during INSERTs, and how
referential constraints are managed during DELETEs, just to name a couple of the processes
exposed within the execution plan. You'll also be able to use these plans in tuning your data
modification queries, just like you would a SELECT query.

Plans for INSERTs
INSERT queries are always executed against a single table. This would lead you to believe
that their execution plans will be simple. However, to account for IDENTITY columns,
computed columns, referential integrity checks, and other table structures, execution plans
for insert queries can be quite complicated.

Listing 6-1 shows a very simple INSERT query.

INSERT INTO Person.Address
(
 AddressLine1,
 AddressLine2,
 City,
 StateProvinceID,
 PostalCode,
 rowguid,
 ModifiedDate
)
VALUES
(N'1313 Mockingbird Lane', -- AddressLine1 - nvarchar(60)
 N'Basement', -- AddressLine2 - nvarchar(60)
 N'Springfield', -- City - nvarchar(30)

160

Chapter 6: Execution Plans for Data Modifications

 79, -- StateProvinceID - int
 N'02134', -- PostalCode - nvarchar(15)
 NEWID(), -- rowguid - uniqueidentifier
 GETDATE() -- ModifiedDate - datetime
);

Listing 6-1

Just as for any other query, we can capture either the estimated or the actual execution plan.
As discussed in Chapter 1, if we request the estimated plan, we don't execute the query and
so don't insert any data; we simply submit the query for inspection by the optimizer, in order
to see the plan.

If we want to see runtime information, we execute the query, requesting the actual plan. If we
want to see the actual plan without modifying the data, we could wrap the query in a transac-
tion and roll back that transaction after capturing the plan.

In this case, we'll just capture the estimated plan, as shown in Figure 6-1.

Figure 6-1: Estimated plan showing an INSERT.

The physical structure of the table that the INSERT query accesses can affect the resulting
execution plan. This table has an IDENTITY column and a FOREIGN KEY constraint.

Just as with the SELECT queries we've examined, we can read this plan from right to left
(data flow order) or from left to right (operator call order). However, before we attempt to
follow the various steps in the plan, we'll start by looking behind the "first operator" because,
as we discovered in Chapter 2, it contains a lot of useful information about the plan.

161

Chapter 6: Execution Plans for Data Modifications

INSERT operator
Figure 6-2 shows the properties for the INSERT operator for this plan.

Figure 6-2: Properties for the INSERT operator.

Despite the larger number of operators in this plan, the optimizer still classified it as a
trivial plan. Also note that the optimizer has performed simple parameterization on this
query, swapping the hard-coded values supplied in the VALUES clause in Listing 6-1,
with parameters, in order to promote plan reuse.

We can see how the parameters were resolved by looking at the ParameterizedText
property value, shown in Listing 6-2 (after copying and pasting, and applying formatting
to make it readable).

162

Chapter 6: Execution Plans for Data Modifications

(@1 nvarchar(4000),@2 nvarchar(4000),@3 nvarchar(4000),@4 int,@5
nvarchar(4000))
INSERT INTO [Person].[Address]
 ([AddressLine1],
 [AddressLine2],
 [City],
 [StateProvinceID],
 [PostalCode],
 [rowguid],
 [ModifiedDate]
)
VALUES (@1,
 @2,
 @3,
 @4,
 @5,
 newid(),
 getdate()
)

Listing 6-2

Let's now step through the plan, reading from right to left, following the data flow. We started
with an operator that is new to us: Constant Scan.

Constant Scan operator

The Constant Scan operator introduces into the results one or more rows, originating from
a "scan of an internal table of constants." In other words, the rows come from the properties
of the operator itself, specifically the Values properties, rather than from any external data
source.

A Constant Scan generates one or more rows, consisting of one or more columns, and
it has many possible roles within an execution plan. To understand its role in any specific

163

Chapter 6: Execution Plans for Data Modifications

execution plan, you need to look at what values it produces, and where in the plan these
values are used. To do this, we need to look at the detailed properties of the operators.

You can see what columns it returned from the Output List property, and the row values
from the Values property. Figure 6-3 shows the properties of the Constant Scan for a trivial
query (SELECT * FROM (VALUES (1,2),(3,4),(5,6)) AS x(a,b);), showing
that the operator generates two columns (Union1006, Union1007) and three rows.

Figure 6-3: The defined values of the Constant Scan operator.

In less trivial cases, it's useful to follow the column names given in the Output List
throughout the plan to see where else they are used, and why they are required.

For the Constant Scan in Figure 6-1, the Output List is blank, and the Values property
absent, indicating that the operator generates a single, empty row. We can also see the row is
empty by hovering over the data output pipe from Constant Scan. Notice that the Row Size
is 9 B (which indicates column header only).

 Figure 6-4: Tooltip showing an empty row returned a Constant Scan.

Sometimes, in a plan, you will see that a Constant Scan returns an empty row, essentially a
place holder for information that will be added by other operators within the plan, such as a
Compute Scalar. In Figure 6-1, the Constant Scan is followed by not one, but two of them.

164

Chapter 6: Execution Plans for Data Modifications

The first Compute Scalar operator reads each of the rows from the Constant Scan (in this
case, one row only) and for each row calls a function called getidentity, as you can see
from the Defined Values property of this operator.

[Expr1002] = Scalar Operator(getidentity((373576369),(11),NULL))

This is where SQL Server generates an identity value, for the AddressID column, which
is the Primary Key and is an IDENTITY column. The first two values being passed are the
object_id and the database_id. I don't know what the third parameter represents, but
here it's a NULL value.

The fact that this operation precedes the INSERT, and any integrity checks, within the plan,
helps explain why, when an INSERT fails, you still get a gap in the IDENTITY values for
a table. The input for this operator was a single empty row, and so its output, after adding
Expr1002, is just a single row with one column holding the IDENTITY value.

The second Compute Scalar operator reads the row from the previous operator, and adds
to it a series of columns for most of the parameterized values in the query, plus the new
uniqueidentifier (guid) value, and the date and time from the GETDATE function.

The Defined Values property, in Figure 6-5 illustrates all this.

Figure 6-5: Defined Values of the Compute Scalar operator.

The hard-coded strings in the query were converted to variables with a data type of nvar-
char(4000). The expression for each column value converts them from their inferred data
type to the data type of the corresponding column in the table.

The output from this second Compute Scalar, as confirmed by its Output List property,
is a single row with columns containing the IDENTITY value (Expr1002) defined earlier,
the parameter values (Expr1003 – 1006), the guid value (Expr1007) and the getdate
value (Expr1008).

165

Chapter 6: Execution Plans for Data Modifications

The reason we have 7 column values to insert (not including the identity), and only 6 defined
values is that the inferred data type for the StateProvinceID variable is an INT, so this
doesn't need conversion.

The Clustered Index Insert operator receives this single row, containing all of these values.

Clustered Index Insert operator

The Clustered Index Insert operator represents the insert of our data into the clustered
index. In the execution plan in Figure 6-1, this operation represents most of the estimated
cost of this plan (92%). Probably the most important property on this operator, for this
example, is the Object property, shown in Figure 6-6.

Figure 6-6: Multiple indexes on display in Clustered Index Insert operator.

You see that the insert affects four different indexes, one being the clustered index into which
we insert the new row, and the other three being three nonclustered indexes on this table, to
which data also needs to be added. In this case, these additional nonclustered indexes are
modified by adding them to the object list of the clustered index modification operator. The
alternative is that they can be modified from within their own operators (a per-index plan;
we'll see a per-index DELETE plan later).

Filtered indexes and indexed, or materialized, views are always modified from within their
own operators.

166

Chapter 6: Execution Plans for Data Modifications

You can see the parameters that have been created and formatted in the ScalarOperator
property that is inside the Predicate property.

Figure 6-7: Parameters evaluated in the ScalarOperator.

This data is broken down within the properties of the operator, but they're broken down
individually, so it doesn't make them any easier to read. I've highlighted the @4 value of the
StateProvinceID, mentioned earlier, highlighting the fact that it reads this variable
directly, whereas all the other columns are set using the expressions, Expr1003, and so on,
generated earlier in the Compute Scalar operator.

The next item of interest is the value of the Output List property, the Person.Address.
StateProvinceId as shown in Figure 6-8. Since this column is a FOREIGN KEY,
SQL Server needs to check for referential integrity.

Figure 6-8: Output List property of a Clustered Index Insert.

We now come to the familiar Nested Loops join operator (the final part of the plan is
reproduced in Figure 6-9).

167

Chapter 6: Execution Plans for Data Modifications

 Figure 6-9: Section of the execution plan with the Nested Loops operator.

The Nested Loops receives the row with the StateProvinceID that has already been
inserted, and then calls the Clustered Index Seek, which reads the PRIMARY KEY column
of the parent table to check that the value we're inserting exists in that column. You'll note
that the Nested Loops operator is marked as a Left Semi Join. This means that it's only
looking for a single match rather than finding all matches. The output from the Nested Loops
join is a new expression, which is tested by the next operator, Assert.

Assert operator

An Assert operator verifies that a certain condition, or conditions, can be met, all of which it
lists in the Predicate property, which returns NULL if they are all met. Each non-NULL value
results in a rollback; the exact error message is determined by the actual value.

In this example, the Assert operator checks that the value of Expr1012 is not NULL. Or, in
other words, that the data inserted into the Person.Address.StateProvinceId field
matched a piece of data in the Person.StateProvince table; this was the referential
check. You can see this in the Predicate property in Figure 6-10.

168

Chapter 6: Execution Plans for Data Modifications

Figure 6-10: The Predicate property of the Assert operator.

Plans for UPDATEs
UPDATE queries also work against one table at a time. Depending on the structure of the
table, and the columns to be updated, the effect on the execution plan could be as significant
as that shown above for the INSERT query. Consider the UPDATE query in Listing 6-3.

UPDATE Person.Address
SET City = 'Munro',
 ModifiedDate = GETDATE()
WHERE City = 'Monroe';

Listing 6-3

Figure 6-11 shows the estimated execution plan (not included is a Missing Index hint
suggesting a possible index on the City column, to help the performance of the query).

 Figure 6-11: Execution plan showing an UPDATE.

Once again, we can start reading this plan by checking the UPDATE operator to see what's
there. However, in this case, nothing new is introduced. This plan has gone through FULL
optimization and a "Good Enough Plan Found" was the reason for early termination.

Stepping through the plan, reading from right to left, the first operator is an Index Scan on
the table, which scans all the rows in this index, and will return only those rows WHERE
[City] = 'Monroe' (see the Predicate property of the Index Scan).

169

Chapter 6: Execution Plans for Data Modifications

The optimizer estimates that it will return only 4.6 rows, which helps explain why an index
on City was suggested by the optimizer. As always, whether you create it depends entirely
on the importance of the query within your workload, or its frequency of execution.

The Index Scan operator is called by the next operator along, a Table Spool (Eager Spool).

Table Spool (Eager Spool) operator

As we discussed in Chapter 5, the Table Spool operator provides a mechanism for storing the
incoming data in a worktable, so that it may be reused, perhaps several times, within an
execution plan. However, this is the first time we've encountered an Eager Spool, which
keeps requesting rows from its child operator until it has all of them, and only then will pass
on the first row. This means that it is a blocking operator, which the optimizer will generally
try to avoid. However, in this case, it's exactly the behavior that is required; it is there to
prevent the Halloween Problem (see: http://en.wikipedia.org/wiki/Halloween_Problem).

The spool reads all of the rows to be updated and stores them in its worktable, and this data is
referenced throughout the rest of the processing of the query. By using only that worktable to
drive the rest of the query, we are guaranteed to not see already updated data again.

The next three operators are all Compute Scalar operators, which we have seen before. In
this case, they are used to evaluate expressions and to produce a computed scalar value, such
as the GETDATE() function used in the query.

After these simple and clear computations, there are also computations creating the
Expr1012 value, derived from the Expr1006 value, which are less easy to explain.
Potentially, they play some role in ensuring that the data being updated is updated correctly
and safely, but equally they could be an artifact of how the execution plan is generated. A
Compute Scalar operator is very low cost, to the point where the optimizer sometimes does
not even bother to remove computations that are no longer needed.

http://en.wikipedia.org/wiki/Halloween_Problem

170

Chapter 6: Execution Plans for Data Modifications

Clustered Index Update operator

Now we get to the core of the UPDATE query, the Clustered Index Update operator. This
operator reads its input data, uses it to identify the rows to be updated, and updates them. If
you examine the Object property you'll find that two objects are getting updated: the clus-
tered index itself, and a nonclustered index that happens to have the City column as one of
its keys.

In this example, the Clustered Index Update operator is updating rows passed in from an
Index Scan, but in certain cases it can find the rows to update by itself, based on a Predicate.
Listing 6-4 creates a very simple table, loads a row into it, and runs an UPDATE on that row.

CREATE TABLE dbo.Mytable (id INT IDENTITY(1, 1) PRIMARY KEY
CLUSTERED,
 val VARCHAR(50));
INSERT dbo.Mytable (val)
VALUES ('whoop' -- val
);
UPDATE dbo.Mytable
SET val = 'WHOOP'
WHERE id = 1;

Listing 6-4

The execution plan for the UPDATE is very simple because all the work is performed directly
within the Clustered Index Update operator. The rows are filtered and updated in place. You
can see the details by looking at the properties of the operator, the Seek Predicate property,
in particular.

171

Chapter 6: Execution Plans for Data Modifications

Figure 6-12: A simple execution plan for an UPDATE.

Plans for DELETEs
What kind of execution plan is created for a DELETE query? Let's find out!

A simple DELETE plan
Run the code in Listing 6-5 and capture the actual execution plan.

BEGIN TRAN;
DELETE FROM Person.EmailAddress
WHERE BusinessEntityID = 42;
GO
ROLLBACK TRAN;

Listing 6-5

Figure 6-13 shows the actual execution plan.

 Figure 6-13: Simple execution plan for a DELETE.

172

Chapter 6: Execution Plans for Data Modifications

Not all execution plans are complicated and hard to understand. In this case, the Clustered
Index Delete operator defines the rows in the clustered index that need to be deleted, and
deletes them. Not all DELETE plans will look this simple if the optimizer needs to validate
referential integrity for the DELETE operation but, in this case, it didn't.

The DELETE operator shows a TRIVIAL plan and simple parameterization to help promote
plan reuse. Figure 6-14 shows the properties of the Clustered Index Delete.

Figure 6-14: Clustered Index DELETE operator properties.

As we have seen previously in this chapter, the Object property shows that more than just the
clustered index has been modified. Even with this very simple execution plan, you can see
that the nonclustered index modification is covered within this one operator. Also, you can
see how the row or rows that will be deleted are found through the Seek Predicate operator.
Finally, within the expression, you see that simple parameterization has occurred because
we're not comparing the actual value of 42 that was supplied, but rather @1, a parameter.

173

Chapter 6: Execution Plans for Data Modifications

A per-index DELETE plan
In the examples so far, all nonclustered indexes were modified in the same operator that
modifies the clustered index. You'll see this referred to, occasionally, as a "narrow" plan.
Another way that the optimizer can choose to modify all the required nonclustered indexes
on a table is to process the modification of each one separately, referred to as a "wide" or
"per-index" plan.

To see an example of a wide DELETE plan, we'll first create a materialized view and then
delete some data.

CREATE OR ALTER VIEW dbo.TransactionHistoryView
WITH SCHEMABINDING
AS
SELECT COUNT_BIG(*) AS ProductCount,
 th.ProductID
FROM Production.TransactionHistory AS th
GROUP BY th.ProductID
GO
CREATE UNIQUE CLUSTERED INDEX TransactionHistoryCount
ON dbo.TransactionHistoryView(ProductID)
GO
BEGIN TRAN;
DELETE FROM Production.TransactionHistory
WHERE ProductID = 711;
ROLLBACK TRAN;

Listing 6-6

The resulting execution plan is much more complex than before.

Figure 6-15: A per-index DELETE execution plan.

In reading this plan, we're going to start off on the left-hand side, following the order of
execution. There are two things we must address there, before we switch back over to the
data flow order of operations. Figure 6-16 shows the first two operators of the plan.

174

Chapter 6: Execution Plans for Data Modifications

Figure 6-16: The DELETE operator receiving information from the Sequence operator.

After the DELETE operator, which we've already discussed in this chapter, the next operator,
in order of execution, is the Sequence operator. It takes some number of inputs, in this
case two, and processes them in precise order, from top to bottom. The inputs are related
objects in which data must be modified, and the operations must be performed in the correct
sequence. In our example, the optimizer needs to delete data from a clustered index, and
its associated nonclustered indexes, and then from a second clustered index that defines the
materialized view.

With a Sequence operator, almost always as part of an UPDATE or DELETE, each input
represents a different object within the database. Even if multiple values can be returned from
the various inputs to the Sequence operator, only the bottom, the final, input is passed on.

This makes the Sequence a partially blocking operator, since all processing for one input
must be complete before the next is started. Only when all other inputs have completed, and
the bottom input starts, will the Sequence start to pass rows it receives on to the next oper-
ator. Understanding that we're dealing with the Sequence operator will make the rest of the
plan easier to understand.

Figure 6-17 shows the operators that comprise the top input for the Sequence operator.

Figure 6-17: The operators in the top input to a Sequence operator.

The start of the processing in the data flow direction begins with an Index Seek operation
against the IX_TransactionHistory_ProductID nonclustered index. The output
from that index is a listing of TransactionID values that match the input value of 711,
provided for the ProductID, from Listing 6-6.

175

Chapter 6: Execution Plans for Data Modifications

This listing of TransactionID values then goes to the Clustered Index Delete opera-
tion which will take care of removing all data from the clustered index that defines the table.
Figure 6-18 shows the output from the Clustered Index Delete operator.

Figure 6-18: The Output List property from a Clustered Index Delete.

If you check the output, you'll see the column, ProductID, which will be used elsewhere
in the plan. The output is then loaded into a Table Spool operator for later use. Any time you
start to deal with table spools, it's always a good idea to get the NodeID value (in this case it
is 2), which you can find from the Properties or the tooltip (more on this shortly).

The Table Spool is just temporary storage for use later in the plan and nothing else is done to
this data during this process except to load it into the Spool for later use. The logical opera-
tion is an Eager Spool. An Eager Spool will first collect all information from preceding
operators before passing on any rows. This means that all rows that match our criteria,
ProductID = 711, are already deleted, before the rest of the plan receives any data from
this operator.

That completes the top input to the Sequence operator. Figure 6-19 shows the bottom input.

Figure 6-19: Complete bottom input of the Sequence Operator.

We'll break this down a little farther, for ease of reading, with Figure 6-20 showing the far
right of the plan, up to the Nested Loops operator.

176

Chapter 6: Execution Plans for Data Modifications

Figure 6-20: Identifying matching rows in materialized view.

We start with another Table Spool operator. This Table Spool operator has its own NodeID,
showing where it falls within the processing of the plan. However, it has an additional piece
of information, the Primary Node ID, indicating that it is reusing data stored in the Table
Spool found in the top input.

Figure 6-21: Properties of the Table Spool operator.

All that information was loaded once from the output of the Clustered Index Delete
operator, in the top input, and now is going to be reused in this set of operations in the
bottom input.

The next operator is a Stream Aggregate operator (see Chapter 5), which takes the output
from the deleted values in the clustered index and aggregates them in order to make them
match the data in the materialized view. The Nested Loops join then adds the corresponding
data, as it is currently stored in the materialized view.

Figure 6-22 shows the next section of the lower input of the Sequence operator.

177

Chapter 6: Execution Plans for Data Modifications

Figure 6-22: The DELETE of the materialized view.

The Compute Scalar computes the new value for use in the materialized view by subtracting
the number of deleted rows by ProductID (as computed in the Stream Aggregate) from
the originally stored data. The Table Spool operator has its own NodeID, and no Parent
NodeID, so isn't reusing data from elsewhere. In this case, it's again protecting against the
Halloween Problem. Finally, we see a Clustered Index Update that modifies the data in the
materialized view itself.

This example illustrates the alternative way to maintain indexes in data modification plans.
It is up to the optimizer to decide to use either method, or a mix. This decision is as always
based on estimations on the cost of maintaining indexes in random order, versus the cost
of saving the rows in a Table Spool, sorting them, and then maintaining the indexes with
pre-ordered data. Though this example showed a DELETE plan, the same options apply to
INSERT, UPDATE, and MERGE plans.

Drop the materialized view before we continue.

DROP INDEX TransactionHistoryCount ON dbo.TransactionHistoryView;
GO
DROP VIEW dbo.TransactionHistoryView;
GO

Listing 6-7

Plans for MERGE queries
With SQL Server 2008, Microsoft introduced the MERGE query. This is a method for modi-
fying data in your database in a single query, instead of one query for INSERTs, one for
UPDATEs, and another for DELETEs. The nickname for this is an "upsert." The simplest
application of the MERGE query is to perform an UPDATE if there are existing key values in
a table, or an INSERT if they don't exist. The query in Listing 6-7 UPDATEs or INSERTs
rows to the Purchasing.Vendor table.

178

Chapter 6: Execution Plans for Data Modifications

DECLARE @BusinessEntityId INT = 42,
 @AccountNumber NVARCHAR(15) = N'SSHI',
 @Name NVARCHAR(50) = N'Shotz Beer',
 @CreditRating TINYINT = 2,
 @PreferredVendorStatus BIT = 0,
 @ActiveFlag BIT = 1,
 @PurchasingWebServiceURL NVARCHAR(1024) = N'http://
shotzbeer.com',
 @ModifiedDate DATETIME = GETDATE();
BEGIN TRANSACTION;
MERGE Purchasing.Vendor AS v
USING
(SELECT @BusinessEntityId,
 @AccountNumber,
 @Name,
 @CreditRating,
 @PreferredVendorStatus,
 @ActiveFlag,
 @PurchasingWebServiceURL,
 @ModifiedDate) AS vn (BusinessEntityId, AccountNumber,
NAME, CreditRating, PreferredVendorStatus, ActiveFlag,
PurchasingWebServiceURL, ModifiedDate)
ON (v.AccountNumber = vn.AccountNumber)
WHEN MATCHED THEN
 UPDATE SET v.Name = vn.NAME,
 v.CreditRating = vn.CreditRating,
 v.PreferredVendorStatus = vn.PreferredVendorStatus,
 v.ActiveFlag = vn.ActiveFlag,
 v.PurchasingWebServiceURL =
vn.PurchasingWebServiceURL,
 v.ModifiedDate = vn.ModifiedDate
WHEN NOT MATCHED THEN
 INSERT (BusinessEntityID,
 AccountNumber,
 Name,
 CreditRating,
 PreferredVendorStatus,
 ActiveFlag,
 PurchasingWebServiceURL,
 ModifiedDate)

179

Chapter 6: Execution Plans for Data Modifications

 VALUES (vn.BusinessEntityId, vn.AccountNumber, vn.NAME,
vn.CreditRating, vn.PreferredVendorStatus, vn.ActiveFlag,
 vn.PurchasingWebServiceURL, vn.ModifiedDate);
ROLLBACK TRANSACTION;

Listing 6-8

This query uses the alternate key, the AccountNumber column, on the Purchasing.
Vendor table. If the value supplied (in this case 'SSHI') matches a key value in this
column, then the query will run an UPDATE, and if it doesn't, it will perform an INSERT.
Figure 6-22 shows the execution plan.

Figure 6-23: Full plan for the MERGE query.

As you can see, that plan is a bit large for the book, so I'll break this plan down in
right-to-left order.

 Figure 6-24: Loading the Constant Scan and checking for a row.

This first section of the plan contains a series of steps to prepare for the main operations to
come. The Constant Scan generates one empty row, a place holder for data so that all the
operators will have information to work with, even if it's an empty set. The Nested Loops
operator uses this empty row to drive a single execution of its inner input, where the Index
Seek against the Vendor.AK_Vendor_AccountNumber nonclustered index will pull
back any rows to be updated (i.e. that match the supplied Seek Predicate). We'd expect one
row at most, since it's a UNIQUE index but, in this case, the Properties for the data flow
between the Index Seek and the first Compute Scalar reveals zero rows returned.

180

Chapter 6: Execution Plans for Data Modifications

Figure 6-25: Properties of the Compute Scalar operator.

For every row it receives, the Compute Scalar operator creates a value TrgPrb1001 and
sets it to a value of 1, as you will see in the Defined Values property value for the operator.

The Nested Loops operator combines the empty column from the Constant Scan with the
data (if any) from the Compute Scalar, by using a Left Outer Join. If, as in our case, no
data is returned by the Compute Scalar, it still returns a row, using NULL values. The
effect of this is that the value 1 is passed into TrgPrb1001 if the Index Seek finds a
row, or NULL if it doesn't. This is used later in the plan to determine if any rows exist
for UPDATE or DELETE.

The next part of the plan is a series of Compute Scalar operations, as shown in Figure 6-25.

 Figure 6-26: Multiple calculations against the data to determine what to do with it.

The hard part of reading a plan like this is trying to figure out what each of the Compute
Scalar operators does. This is revealed by the Defined Values and Output List property
values. Working from the right again, the first Compute Scalar operator in Figure 6-25
performs a calculation:

[Action1003] = Scalar Operator(ForceOrder(CASE WHEN [TrgPrb1001] IS
NOT NULL THEN (1) ELSE (4) END))

This Compute Scalar operator creates a new value, called Action1003 in my case, and
since TrgPrb1001 is null, the value is set to "4." Depending on your SQL Server version,
and the updates applied, you may see different values for Action1003 or Expr1005, or
any of the various generated values within the plan, even though you may have an otherwise
identical plan. This simply reflects minor changes within the optimizer and the order in which
it initializes each of these expressions.

181

Chapter 6: Execution Plans for Data Modifications

The next Compute Scalar operator loads all the variable values into the row, and performs
two other calculations:

[Expr1004] = Scalar Operator([@ActiveFlag]), [Expr1005] =
Scalar Operator([@PurchasingWebServiceURL]), [Expr1006] =
Scalar Operator([@PreferredVendorStatus]), [Expr1007] = Scalar
Operator([@CreditRating]), [Expr1008] = Scalar Operator(CASE
WHEN [Action1003]=(4) THEN [@BusinessEntityId] ELSE
[AdventureWorks2014].[Purchasing].[Vendor].[BusinessEntityID]
as [v].[BusinessEntityID] END), [Expr1009] = Scalar Operator([@
ModifiedDate]), [Expr1010] = Scalar Operator([@Name]), [Expr1011]
= Scalar Operator(CASE WHEN [Action1003]=(4) THEN [@AccountNumber]
ELSE [AdventureWorks2014].[Purchasing].[Vendor].[AccountNumber] as
[v].[AccountNumber] END)

Looking at the expression for Expr1011, we can begin to understand what's happening.
The first Compute Scalar output, TrgPrb1001, determined if the row existed in the
table. If it existed, then the second Compute Scalar would have set Action1003 equal
to 1, meaning that the row did exist, and this new Compute Scalar would have used the
value from the table but, instead, it's evaluating Action1003 and choosing the variable @
AccountNumber, since an INSERT is needed. The same logic is used in Expr1008 for
the BusinessEntityId value. The result of this Compute Scalar is that all expressions
hold the correct value for the INSERT or UPDATE, as determined by the Action1003.

Moving to the left, the next Compute Scalar operator validates what Action1003 is and
sets a new value, Expr1023, based on this formula:

[Expr1023] = Scalar Operator(CASE WHEN [Action1003] = (1) THEN
(0) ELSE [Action1003] END)

We know that Action1003 is set to 4, so this expression will be set to 4.

The final Compute Scalar operator sets two values equal to themselves, for some reason
that's not completely clear to me. It may be some internal process within the optimizer that
is evidenced here in the execution plan. Finally, we're ready to move on with the rest of the
execution plan.

182

Chapter 6: Execution Plans for Data Modifications

Figure 6-27: Final steps in the Merge operation.

The Clustered Index Merge receives all the information added to the data stream by the
various operators, and uses it to determine if the action is an INSERT, an UPDATE, or a
DELETE, and performs that action. You can see the outcome within the Action Column
property of the operator, in Figure 6-27, which shows a value of Action1003.

Figure 6-28: Action Column values for Clustered Index Merge operator.

Of course, in this case, it's only either an INSERT or UPDATE. You can even see the infor-
mation in the Predicate property of the operator.

Figure 6-29: Predicate values of the Clustered Index Merge operator.

183

Chapter 6: Execution Plans for Data Modifications

Appropriately, in this case, because of all the work that the Merge operation must perform in
modifying two indexes, the optimizer estimates that this operation will account for 75% of
the cost of the execution plan.

Next, an Assert operator runs a check against a constraint in the database, validating that the
data is within a certain range. The data passes to the Nested Loops operator, which is used
to retrieve values used for validation that the BusinessEntityId referential integrity is
intact, through the Clustered Index Seek against the BusinessEntity table. This action
is only performed in this case, since this is an INSERT operation, as determined earlier by
the definition of the value of Action1003. The Nested Loops operator has a Pass Through
function, which skips invoking the inner input, in other cases. We can see that in Figure 6-30.

Figure 6-30: The evaluation that determines if it is a Pass Through.

The information gathered by that join passes to another Assert operator, which validates the
referential integrity, assuming that it was an INSERT action. The query is then completed.

As you can see, a lot of action takes place within execution plans but, with careful review, it
is possible to identify most of what is going on.

Prior to the MERGE query, you may have done a query of this type dynamically. You either
had different procedures for each of the processes, or different queries within an IF clause.
Either way, you ended up with multiple execution plans in the cache, for each process. This
is no longer the case. If you were to modify the query in Listing 6-7 and change one simple
value as in Listing 6-9…

…
@AccountNumber NVARCHAR(15) = 'SPEEDCO0001',
…

Listing 6-9

…the exact same query with the exact same execution plan will now UPDATE the data for
values where the AccountNumber is equal to that passed through the parameter. Therefore,
this plan, with the Merge operator, creates a single reusable plan for all the data manipulation
operations it supports.

184

Chapter 6: Execution Plans for Data Modifications

Summary
This chapter dealt with the plans for relatively simple data modification queries. The key
lessons are that you read these queries in the same way that you read a SELECT query and
use the same tools such as properties, and the estimated costs, to try to understand how and
why the optimizer has implemented the plan in this way.

185

Chapter 7: Execution Plans for Common
T-SQL Statements

In Chapters 2 through 6, we dealt with single statement T-SQL queries. As we saw, some-
times even these relatively simple queries can generate complicated execution plans. In this
chapter, we'll extend our scope to consider plans for common T-SQL statements and objects,
such as stored procedures, subqueries, derived tables, common table expressions, views, and
functions.

As the T-SQL statements get more complex, so the plans that the optimizer creates can get
bigger, and more time-consuming to decipher. However, just as a large T-SQL statement can
be broken down into a series of simple steps, large execution plans are simply extensions of
the same simple plans we have already examined, just with more, and different, operators.

Again, please bear in mind that the plans you see, if you follow along, may vary slightly from
what's shown in the text, due to different service pack levels, hot-fixes, differences in the
AdventureWorks database, its statistics, and data.

Stored Procedures
The best place to get started is with stored procedures, which may comprise a single query,
or a whole series of queries. In the latter case, you will see multiple execution plans, but the
way you tackle each of these plans is no different than any other execution plan.

Listing 7-1 shows a TaxRateByState stored procedure, the intent of which is to return
information on tax rates that are less than a defined value, in this case 7.5. This is a typical
example of a procedure that was probably built up over time, by someone who is not an
expert at T-SQL. It involves a series of steps to pull together some data, manipulate that data,
then return a result set. There are circumstances where this approach is justified, but others
where it is not the optimal solution.

CREATE OR ALTER PROCEDURE Sales.TaxRateByState @CountryRegionCode
NVARCHAR(3)
AS
SET NOCOUNT ON;
CREATE TABLE #TaxRateByState

186

Chapter 7: Execution Plans for Common T-SQL Statements

(
 SalesTaxRateID INT NOT NULL,
 TaxRateName NVARCHAR(50) COLLATE DATABASE_DEFAULT NOT NULL,
 TaxRate SMALLMONEY NOT NULL,
 TaxType TINYINT NOT NULL,
 StateName NVARCHAR(50) COLLATE DATABASE_DEFAULT NOT NULL
);
INSERT INTO #TaxRateByState
(
 SalesTaxRateID,
 TaxRateName,
 TaxRate,
 TaxType,
 StateName
)
SELECT st.SalesTaxRateID,
 st.Name,
 st.TaxRate,
 st.TaxType,
 sp.Name AS StateName
FROM Sales.SalesTaxRate AS st
 JOIN Person.StateProvince AS sp
 ON st.StateProvinceID = sp.StateProvinceID
WHERE sp.CountryRegionCode = @CountryRegionCode;
DELETE #TaxRateByState
WHERE TaxRate < 7.5;
SELECT soh.SubTotal,
 soh.TaxAmt,
 trbs.TaxRate,
 trbs.TaxRateName
FROM Sales.SalesOrderHeader AS soh
 JOIN Sales.SalesTerritory AS st
 ON st.TerritoryID = soh.TerritoryID
 JOIN Person.StateProvince AS sp
 ON sp.TerritoryID = st.TerritoryID
 JOIN #TaxRateByState AS trbs
 ON trbs.StateName = sp.Name;
GO

Listing 7-1

It would be possible to write the same logic in just a single query, without the need for a
temporary table. However, this is the type of code you encounter in real-life systems, and

187

Chapter 7: Execution Plans for Common T-SQL Statements

sometimes you just need to understand the cause of the performance issue, via the plan,
and decide on a fix, without necessarily having the time, or even the opportunity, to do
 a full rewrite.

Also, note that NVARCHAR(3) isn't the best data type for use for the @CountryRegion-
Code parameter; CHAR(3) would be far more efficient and sensible. However,
NVARCHAR(3) is the data type used for that column, in the table, so the stored procedure
follows suit, to avoid data type conversion issues.

We can execute the stored procedure by passing in a value, as shown in Listing 7-2.

EXEC Sales.TaxRateByState @CountryRegionCode = N'US';
GO

Listing 7-2

Figure 7-1 shows the resulting actual execution plan, which is a little more complex than
ones we've seen previously.

Figure 7-1: Multiple execution plans from a single stored procedure.

188

Chapter 7: Execution Plans for Common T-SQL Statements

An interesting point is that we don't have a stored procedure in sight. Instead, the optimizer
treats the T-SQL within the stored procedure in the same way as if we had written and run the
SELECT statement, through the query window.

The more statements get added to a given stored procedure, the more execution plans you'll
see. In the event of some type of looping query, you can see hundreds of execution plans.
Capturing all the execution plans in such cases can cause performance problems with SSMS.
If you are dealing with that situation, your approach should be to use an estimated plan where
possible. If you must see an actual plan, then capture plans for individual statements using a
filtered Extended Event session, or use SET STATISTICS XML ON and OFF statements, if
you can modify the code.

The stored procedure in Listing 7-1 has five statements but we see only three execution plans
in Figure 7-1. The Data Definition Language (DDL) statement to create the temporary table,
#TaxRateByState, doesn't get an execution plan. A DDL statement can only be resolved
one way, so they do not go through optimization, therefore there is no execution plan. We
also don't see a plan for the SET NOCOUNT statement. An estimated plan will show a T-SQL
operator for these statements, but not any kind of fuller execution plan.

Just as when we execute a batch containing two or more queries, for a stored procedure
containing two or more statements, the execution plan shows the estimated cost of each
query, relative to the batch. These values appear as the Query cost (relative to the batch), at
the head of each plan, and we can use them to identify the plan that needs the most attention,
for performance tuning. As always, though, treat these estimated costs with caution, and only
use them if there is no large disparity between the estimated and actual row counts.

Query 1 accounts for an estimated 3% of the total cost, and it's the plan for populating the
temporary table with tax rate information for each state in the supplied country, in this case
the USA. We won't explore the plan in detail, but it's worth taking a peek at the properties of
the INSERT operator.

Figure 7-2: Properties of the INSERT operator showing the Parameter List.

189

Chapter 7: Execution Plans for Common T-SQL Statements

The interesting value properties here are in the Parameter List, which contains the Param-
eter Compiled Value, the parameter value that the optimizer used to compile the plan for the
stored procedure. Below it is the Parameter Runtime Value, showing the value when this
query was called.

When we run the batch in Listing 7-2, to execute the stored procedure, SQL Server first
compiles the batch only, and sets the value of the @CountryRegionCode to N'US'. It
then runs the EXEC command, and checks in the plan cache to see if there is a plan to execute
the stored procedure. In this case there isn't, so it will then invoke the compiler again to
create a plan for the procedure. At this point, the optimizer can "sniff" the parameter value,
and generate a plan, using statistics for that value. If we execute the stored procedure again
with a different parameter value, this time there will be a plan the optimizer can reuse, and
we see a different runtime value but the same compiled value.

Figure 7-3: Properties of the SELECT operator with changes to parameters.

This is only significant if the compiled value returned a row count that was very "atypical"
compared to most values used to execute the procedure. The section on Indexes and selec-
tivity, in Chapter 8, provides more information about parameter sniffing, and compiled
values, so we won't go into further details here.

Query 2 is the plan to delete rows that fall below our tax rate threshold value, which in this
case leaves only 5 rows in the temporary table.

Query 3 joins to our temporary table, and several others, to return our results. This query
looks to be the place to start our serious investigation, since the optimizer thinks it accounts
for the majority (96%) of the cost for executing the stored procedure, as shown in Figure 7-4.

190

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-4: The execution plan for Query 3, 96% of the estimated cost of the batch.

Visually it's not a terribly complex plan, but there is a lot going on. Starting on the right, we
have a Nested Loops join operator where the outer input is a scan of the temporary table,
which returns 5 rows. This will incur 5 executions of the inner input, an Index Seek against
the StateProvince table. The output of this Nested Loops join operator is the outer input
from another Nested Loops join, so we get 5 executions on the inner input, a Key Lookup
on the clustered index of the StateProvince table to retrieve the values not stored in the
nonclustered index, in this case, the TerritoryID values.

The output of the second Nested Loops join is the Build input for a Hash Match join oper-
ator, where the Probe input is a Clustered Index Seek against the SalesOrderHeader
table.

The Hash Match operator reads the Build input, hashes the join column (in this case
TerritoryID), and stores the column values, and their hashes, in a hash table in memory.
It then reads the rows in the Probe input one row at a time, in this case 31465 rows, and for
each row, it produces a hash value for the TerritoryID column that it can compare to the
hashes in the hash table, looking for matching values, and starts retuning the matching rows
(23752 in total).

As you can see, execution plans for stored procedures are not special, and are not different
from other execution plans. You just need to identify the plan, or plans, within that are
causing the issue, and assess possible fixes.

191

Chapter 7: Execution Plans for Common T-SQL Statements

Subqueries
A common and useful, but occasionally problematic, approach to querying data is to select
information from other tables within the query, but not as part of a JOIN statement. Instead,
we embed a SELECT statement within another SELECT, INSERT, UPDATE, or DELETE
statement. We can use a subquery in any part of the query where expressions are allowed, but
you'll most commonly see them in the WHERE, SELECT and FROM clauses.

Listing 7-3 illustrates a correlated subquery that accesses the Production.Produc-
tionListPriceHistory table. This table maintains a history of prices for each product,
and the date ranges for which a given price was valid. It's quite common to see subqueries
used like this, for tables that hold "versioned" data. In this case, we use it to ensure we only
see the most recent "version" of the list price for each product.

However, for reasons that we'll discuss as we examine the plan, it's not necessarily the
optimal solution.

SELECT p.Name,
 p.ProductNumber,
 ph.ListPrice
FROM Production.Product AS p
 INNER JOIN Production.ProductListPriceHistory AS ph
 ON p.ProductID = ph.ProductID
 AND ph.StartDate = (SELECT TOP (1)
 ph2.StartDate
 FROM Production.
ProductListPriceHistory AS ph2
 WHERE ph2.ProductID = p.ProductID
 ORDER BY ph2.StartDate DESC);

Listing 7-3

Notice that the subquery references the ProductID values from the outer query so, for each
row from the outer query, that row's ProductID value is plugged into the subquery and
compared with the ProductID value of the ProductListPriceHistory table. As a
result, the subquery is executed once for each row returned by the outer query. The TOP (1)
clause, with the ORDER BY, ensures that, in each case, the subquery only returns the most
recent row (showing the current list price). Depending on the query, sometimes the optimizer
can figure out a more efficient way to achieve the desired results. As we'll see, this is not one
of those situations.

192

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-5 shows the actual execution plan.

Figure 7-5: Execution plan for a subquery.

Reading the plan from right to left, we see two Clustered Index Scans, one on Produc-
tion.Product and one on Production.ProductListPriceHistory. These two
data streams are combined using the Merge Join operator, using ProductID as the join
column; you can see this in the Where (join columns) property in the Merge Join operator.

Figure 7-6: Merge Join columns defined.

Since the Merge Join requires that both data inputs are ordered on the join key, in this case
the ProductID, you'll see that the Ordered property is set to True for each of the scans.

193

Chapter 7: Execution Plans for Common T-SQL Statements

This means that the execution engine will use the Ordered retrieval method to fulfill them
(see Chapter 5), and the data will be retrieved in the logical index order, in each case. In this
example, both clustered indexes are ordered by ProductID.

Figure 7-7: Clustered Index Scan showing that it is Ordered.

So, the Merge Join simply takes the data from two inputs and uses the fact that the data
in each input is ordered on the join column to merge them, joining rows based on the
matching values. You can refer to Chapter 4 for further details on how various flavors of
Merge Join work.

There are 395 merged rows, which are the 395 rows with list price entries. Incidentally, this
is clearly an atypical data distribution, since there are 504 products in the Products table,
and you'd generally expect there to be one or more price list entries for each product. In any
event, these rows form the outer input for a Nested Loops join operator, which implies that
the inner input will be executed 395 times. If you check the Outer References property of
the Nested Loops, you'll see that values from the ProductID and StartDate column are
being pushed down to the inner input.

The clustered index on the ProductListPriceHistory table is on (ProductID,
StartDate) and for each execution, we're looking for rows matching the ProductID
value pushed down from the outer input. However, the TOP operator ensures that it only
reads the row with the most recent StartDate (remember that execution order is left to
right). The Filter operator will either pass on or reject that single row, depending on whether
there is a match on StartDate (the other pushed-down column value). Figure 7-8 shows
the expanded Predicate property value for the Filter operator.

194

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-8: Details on the Predicate property.

A couple of other points to note here. Firstly, the Filter is executed 395 times (as are its child
operators). It returns the most recent row for each of the 293 distinct ProductID values;
you can see from the Output List that it does not return any data, just an empty row shell
for each row that passes its filter criteria. The row itself is empty because the only thing that
Nested Loops needs to make its decision is the presence or absence of a row. Finally, notice
that the Startup Expression is False in this case, meaning the child operators will be called
for every execution. If you were to see Startup Expression Predicate, the child operators
would only be called for rows that met that Predicate condition.

Hopefully, it's clear that the fundamental problem with this plan is the number of executions
of the inner input of the Nested Loops join. Imagine some different numbers: let's say we
have 200 products and an average of 15 prices per product in the ProductListPrice-
History history. The Merge Join will produce 3000 rows, so the outer input of the Nested
Loops operator has 3000 rows, and the inner input then executes 3000 times, reading the
same 200 rows repeatedly. That would cause a high number of logical reads; the optimizer is
likely to choose a different plan under those conditions, if it can find one.

There are many ways you could consider trying to optimize this query and I can't cover
them all here. One option would be to replace the SELECT TOP(N)…ORDER BY logic with
SELECT MAX(ph2.StartDate)…. If you were to try this, you'd see a change from a
Nested Loops join to two Merge Joins and an improvement in performance. Try it out and
read through the plan. Another option is to use a derived table instead of a subquery and we'll
see how that works in the next section.

195

Chapter 7: Execution Plans for Common T-SQL Statements

Derived Tables Using APPLY
One of the ways that we can access data through T-SQL is via a derived table. If you are
unfamiliar with them, think of a derived table as a virtual table created on the fly from within
a SELECT statement.

You create derived tables by writing a subquery within a set of parentheses in the FROM
clause of an outer query. Once you apply an alias, this subquery is treated as a table by the
T-SQL code. Prior to SQL Server 2005, any derived table had to be fully independent of the
main query. However, SQL Server 2005 introduced the APPLY operator, which allows us to
create a correlation between the main query and the derived table. The APPLY operator will
evaluate the subquery (or Table Valued Function) once for every row produced by the part of
the FROM clause to the left of the APPLY clause. This is the logical definition; the optimizer
is, of course, free to find a different, faster implementation, if it can.

There are two forms of the APPLY operator, CROSS APPLY and OUTER APPLY. The former
combines each row from the left input with each row returned from the right input. The latter
does the same, but also retains the row from the left input if nothing is returned from the right
input, using NULL values for columns originating from the right input. If you are unfamiliar
with the Apply operator, check out http://bit.ly/1FFmldl (it's an MSDN entry for SQL Server
2008R2, but it's still correct).

In my own code, one place where I've come to use derived tables frequently is when dealing
with data that changes over time, for which I should maintain history. This query approach,
shown in Listing 7-4, is an alternative to the subquery we saw in the Listing 7-3. It produces
the same results as Listing 7-3, but uses the APPLY operator. The big difference is that the
data becomes available to the rest of the query, when the subquery is in the FROM, making it
a derived table. For a subquery used anywhere else in the query, its result is only available in
the location where it is specified.

SELECT p.Name,
 p.ProductNumber,
 ph.ListPrice
FROM Production.Product p
 CROSS APPLY
 (
 SELECT TOP (1)
 ph2.ProductID,
 ph2.ListPrice

http://bit.ly/1FFmldl

196

Chapter 7: Execution Plans for Common T-SQL Statements

 FROM Production.ProductListPriceHistory ph2
 WHERE ph2.ProductID = p.ProductID
 ORDER BY ph2.StartDate DESC
) ph;

Listing 7-4

The introduction of the APPLY operator changes the execution plan substantially, as shown
in Figure 7-9.

Figure 7-9: Execution plan for the APPLY command.

In this plan, we see that the outer input to the Nested Loops operator is a Clustered Index
Scan of the Products tables, which produces 504 rows. This implies that the inner input
will be executed 504 times. The values of the ProductID column are pushed down as
Outer References, and used to seek matching rows in the ProductListPriceHistory
table, and the TOP operator again ensures that each seek operation returns only the row with
the most recent list price.

So, which method of writing this query do you think is the most efficient? One way to find
out is to capture and compare performance metrics for each query run (duration, number of
logical reads performed, and so on).

As discussed in Chapter 2, the lowest-impact way to do this is using Extended Events. Also,
when you do go to measure performance (duration), it's a very good idea to stop capturing
the execution plans because that introduces substantial observer effect. Figure 7-10 shows the
results, captured using the Extended Events session provided in Listing 2-6.

197

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-10: Performance results for the APPLY command.

Although both queries returned identical result sets, the subquery in the ON clause (Listing
7-3) uses fewer logical reads (811) compared to the query using APPLY and a derived table
(Listing 7-4), which caused 1024 logical reads.

The simple explanation for the difference is that in the correlated subquery the expensive
inner input of the Nested Loops join is executed 395 times (once per list price), and in the
derived table query it's executed once per product (504 times). As noted earlier, we're dealing
with a rather strange data distribution in this case, where 211 products have no list price
and the remaining 293 have one or more list prices. With a more typical data distribution,
consisting of multiple list prices for all, or most, products, we could easily have expected the
derived table version to outperform the subquery.

Things get more interesting if we add the WHERE clause in Listing 7-5 to the outer query of
each of the previous listings.

WHERE p.ProductID = 839

Listing 7-5

When we rerun Listing 7-3 with the added WHERE clause, we get the plan shown in
Figure 7-11.

Figure 7-11: New execution plan after adding a WHERE clause.

The Filter operator is gone but, more interestingly, the optimizer has changed the order of
evaluation; the TOP operator now appears in the part of the plan to resolve the outer query
where, before, it was in the part of the plan to resolve the subquery. First, it finds the single
requested row from the Product table and then immediately evaluates the subquery to find

198

Chapter 7: Execution Plans for Common T-SQL Statements

the most recent StartDate for that ProductID. If you check the properties of the right-
most Clustered Index Seek on ProductListPriceHistory, you'll see that it refer-
ences the ph2 alias, which tells us it's evaluating the subquery.

The next inner join to ProductListPriceHistory is on both ProductID and
StartDate, with StartDate being pushed down from the outer input (see the Outer
References property of the Nested Loops join). Also, if you check out the Seek Predicates
property of the Clustered Index Seek on the left, which displays each of the predicates used
to define the rows that need to be read, it references both ProductID and StartDate.

The end result is that, instead of Index Scans, and the inefficiencies caused by executing the
inner input of a Nested Loops join hundreds of times, we now have three Clustered Index
Seek operations, with an equal estimated cost distribution, and two Nested Loops joins. The
Merge Join we saw in Figure 7-5 was appropriate when we were dealing with scans of the
data, but was not used, nor applicable, when the introduction of the WHERE clause reduced
the data set. The inner input of each Nested Loops join is executed only once, since the
WHERE clause means the outer input produces only a single row.

If we add the WHERE clause to Listing 7-4 (APPLY and a derived table), we see the plan
shown in Figure 7-12.

Figure 7-12: How the WHERE clause changes the APPLY plan.

This plan is almost identical to the one seen in Figure 7-9, with the only change being that the
Clustered Index Scan has changed to a Clustered Index Seek. This change was possible
because the inclusion of the WHERE clause allows the optimizer to take advantage of the
clustered index to identify the row needed, rather than having to scan through them all to find
the correct row to return.

Let's compare the I/O statistics for each of the queries:

199

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-13: Performance metrics after adding a WHERE clause.

Now, with the addition of a WHERE clause, the derived query is more efficient, with only
4 logical reads versus the sub-select query with 6 logical reads, and a marginal increase in
speed. If you run the query frequently, you'll find that the APPLY query is consistently faster.
If we increase the data volumes, it's very likely that you'll see the APPLY operator perform
even better than the other method.

With the WHERE clause in place, the subquery became relatively costlier to maintain when
compared to the speed provided by APPLY. Understanding the execution plan makes a real
difference in deciding which T-SQL constructs to apply to your own code. Just remember
that you should use the best possible representative data on your tests, in order to get behav-
iors and performance similar to your production environment. Also remember that, as data
changes, so the distribution of that data may change, which can result in differences in execu-
tion plans and differences in performance. If your data is modified frequently, you may have
to reevaluate queries on a regular basis.

Common Table Expressions
SQL Server 2005 introduced the Common Table Expression (CTE), a T-SQL construct with
behavior that appears similar to derived tables. A CTE is a "temporary result set" that exists
only within the scope of a single SQL statement. It allows access to functionality within a
single SQL statement that was previously only available through the use of functions, tempo-
rary tables, cursors, and so on. Unlike a derived table, a CTE can be self-referential and
referenced repeatedly within a single query. Also unlike a derived table, a CTE cannot be
correlated, even when used with APPLY. For more details on CTEs, check out this article on
Simple Talk: http://bit.ly/1NCr8k0.

Despite the description of a CTE as a temporary result set, don't assume that the CTE is
processed in a separate manner from the rest of the T-SQL. Fundamentally, this is still a
derived table, just like the other examples we've already seen. The primary difference will be
when the CTE is self-referencing. A recursive CTE always uses two (or, rarely, more)

http://bit.ly/1NCr8k0

200

Chapter 7: Execution Plans for Common T-SQL Statements

queries, combined with UNION ALL. The first query, known as the "anchor member," can be
executed on its own to produce a result. The second query, the "recursive member," refer-
ences the CTE itself. It uses the data coming from the anchor member to produce more rows,
but then recursively continues to produce even more data using the rows it produces itself.
This is the logical definition; we will see how it executes shortly.

The built-in stored procedure, dbo.uspGetEmployeeManagers, in Adventure-
Works, uses a CTE called EMP_cte in a classic recursive exercise, listing employees and
their managers.

CREATE OR ALTER PROCEDURE dbo.uspGetEmployeeManagers
 @BusinessEntityID INT
AS
BEGIN
 SET NOCOUNT ON;
 -- Use recursive query to list out all Employees required for a
Manager
 WITH EMP_cte(BusinessEntityID, OrganizationNode, FirstName,
LastName, JobTitle,
 RecursionLevel) -- CTE name and columns
 AS (
 SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName,
p.LastName,
 e.JobTitle, 0 -- Get the initial Employee
 FROM HumanResources.Employee e
 INNER JOIN Person.Person AS p
 ON p.BusinessEntityID = e.BusinessEntityID
 WHERE e.BusinessEntityID = @BusinessEntityID
 UNION ALL
 SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName,
p.LastName,
 e.JobTitle, RecursionLevel + 1 -- Join recursive
member to anchor
 -- and to the next
recursive member
 FROM HumanResources.Employee e
 INNER JOIN EMP_cte
 ON e.OrganizationNode = EMP_cte.OrganizationNode.
GetAncestor(1)
 INNER JOIN Person.Person p
 ON p.BusinessEntityID = e.BusinessEntityID
)

201

Chapter 7: Execution Plans for Common T-SQL Statements

 -- Join back to Employee to return the manager name
 SELECT EMP_cte.RecursionLevel, EMP_cte.BusinessEntityID, EMP_
cte.FirstName,
 EMP_cte.LastName, EMP_cte.OrganizationNode.ToString()
 AS OrganizationNode, p.FirstName AS 'ManagerFirstName',
 p.LastName AS 'ManagerLastName' -- Outer select from
the CTE
 FROM EMP_cte
 INNER JOIN HumanResources.Employee e
 ON EMP_cte.OrganizationNode.GetAncestor(1) =
e.OrganizationNode
 INNER JOIN Person.Person p
 ON p.BusinessEntityID = e.BusinessEntityID
 ORDER BY RecursionLevel, EMP_cte.OrganizationNode.ToString()
 OPTION (MAXRECURSION 25)
END;
GO

Listing 7-6

You can see the anchor member, the first query in the UNION ALL within the CTE, which
will return data based on the BusinessEntityID value that gets passed to it as a param-
eter. It's commented in the code as -- Get the initial Employee. The recursion then
occurs in the second query within the UNION ALL. It's commented as -- Join recur-
sive member to anchor and the next recursive member. It uses the function,
GetAncestor, to retrieve additional data based on that defined within the anchor member.

Let's execute this procedure and capture the actual plan.

EXEC dbo.uspGetEmployeeManagers
 @BusinessEntityID = 9;

Listing 7-7

As Figure 7-14 shows, the execution plan is reasonably complex and will be impossible to
read as is within this book.

202

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-14: Full recursive execution plan from a CTE.

However, our hard work in previous chapters is now paying off. There aren't any operators
in this plan you've not seen before, so even though it's a big plan, with patience it should be
relatively easy to understand. Let's break down the plan into sections, starting with the top
right section, shown in Figure 7-15.

Figure 7-15: Portion of the CTE execution plan showing initial data access.

We're going to read this section of the plan from left to right (logical call order), starting with
Index Spool operator, because this operator, in conjunction with a Table Spool operator that
we'll encounter shortly, essentially marks the start of the recursion process, in the CTE. As
discussed in Chapter 5, a Spool operator uses a temporary worktable to store data that may
need to be used multiple times, or reused, within an execution plan. The recursive nature of
the query above requires that SQL Server store the data as it recursively builds the result set.
This Index Spool is a Lazy Spool, a streaming operator that requests a row from its child
operator, stores it, and then passes it on immediately to its parent, the one preceding it logi-
cally passing control back to that parent.

In this case, the Index Spool operator has a Node ID value of 4, and it's storing the results
from a Concatenation operator, which resolves the UNION ALL operation seen in Listing
7-6. As discussed in Chapter 4, this operator simply processes each of its inputs in order,
from top to bottom, and concatenates them. A Concatenation operator will always have two
or more inputs. It calls the top input, passing rows retrieved to its parent, until it has received
all rows. After that it moves on to the second input, repeating the same process.

203

Chapter 7: Execution Plans for Common T-SQL Statements

In this case, the top input collects the data for the "anchor member" of the CTE. It performs
a Nested Loops join of the data from two Clustered Index Seeks against HumanRe-
sources.Employee and Person.Person. This produces a single row (for the
employee with BusinessEntityID of 9). We then have two Compute Scalar operators,
each of which returns an expression, both of which are set to zero. One is for the recursion
level, and the other for the derived column, called RecursionLevel, in the CTE.

After all rows from the top input are processed, the Concatenation operator switches to its
second input and never returns to the first input. Figure 7-16 displays the bottom input to the
Concatenation operator, which resolves the recursive member.

Figure 7-16: Portion of the CTE execution plan showing use of Table Spool.

This is where things get interesting. This section of the plan finds each of the managers
(direct manager, manager's manager and so on). SQL Server implements the recursion
method via the Table Spool operator, combined with the Index Spool in the top input. The
Primary Node ID for the Table Spool is 4, indicating that it consumes the data previously
loaded into the Index Spool operator. You can see this in Figure 7-17, along with some other
property values for the Table Spool.

Figure 7-17: Table spool properties showing the Primary Node ID and With Stack.

204

Chapter 7: Execution Plans for Common T-SQL Statements

The With Stack property, set to True, as shown in Figure 7-17 is a necessary part of the
recursive query. Storing data as a stack means that new data is always added at the top and
the data is always read from the top. After being read, the data is removed. When you see
a With Stack property set to True, the behavior of the Index Spool is changed to that of a
"stack." This is crucial for driving the recursive evaluation of the CTE. As the recursive
member executes, the Table Spool reads and removes the anchor row from the spool. The
rest of this plan fragment then finds the anchor value's manager. The manager is stored in the
spool by the Index Spool operator (NodeID 4), and that row is then read and removed when
the Table Spool is ready to request the next row. From there, the recursion continues. The job
of the Assert operator, over on the left-hand side of Figure 7-16 is to verify the MAXRECUR-
SION(25) in the query, aborting execution when that level is exceeded.

So, the Table Spool (Node ID 14) produces a copy of the data stored by the Index Spool
operator (Node ID 4). When the operator is first called, it will produce a copy of the anchor
row, and then whatever is stored later, on subsequent calls. The Table Spool operator loops
through the rows from the Index Spool, and joins the data to data from the tables defined in
the second part of the UNION ALL definition, within the CTE.

The Table Spool returns four rows. The Compute Scalar operator, next to the Table Spool,
is used to calculate the current recursion level by adding one to the value. This data stream
forms the outer input to a Nested Loops join, which joins to the Employee table on a
built-in function, GetAncestor, which in turn joins to the Person table on Busines-
sEntityID. The inner input performs the Nested Loops join between the Employee
and Person tables. Figure 7-18 shows the properties of the Clustered Index Scan of the
Employee table, where you can see the number of times this scan was executed.

The Estimated Number of Executions is 4, and Estimated Number of rows is 290 and
so four times 290 is 1160 rows in total, which matches exactly the Actual Number of
Rows value.

205

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-18: Clustered Index Scan of the Employee table.

We then have a Filter operator. The optimizer has decided to do a full scan of the
Employee table and then, in this Filter operator, compare the OrganizationNode
of each row to the GetAncestor of the row from the CTE, and keep only the rows that
match. For the first three rows processed (the one from the anchor member and the first two
returned from the recursive member), this filter keeps only one row, the employee's direct
manager. The fourth row processed is the CEO, who has no manager, so the filter now returns
no row at all and the recursion stops. Hence the right-most section of the plan returns four
rows in total: one from the anchor member and three from the recursive member, listing the
employee's managers all the way to the CEO.

So, we have one row from the anchor and three rows from the recursive member giving
the four rows in total emerging from the Concatenation operation, but only three rows are
returned in the final results. After the recursion process is finished, we do one more inner join
of each row returned, to their manager, at which point, the last row returned from the recur-
sive CTE, the CEO, fails to find data for their ManagerFirstName and ManagerLast-
Name columns and so the row is lost.

206

Chapter 7: Execution Plans for Common T-SQL Statements

Views
A view is essentially just a "stored query." In other words, a logical way of representing data
as if it were in a table, without creating a new table. The various uses of views are well docu-
mented (preventing certain columns from being selected, reducing complexity for end-users,
and so on). Here, we will just focus on what happens within an execution plan when working
with a view.

One note of caution regarding views. Views are not tables, as will become clear when we
examine their execution plans, but they look like tables, and so there is an inclination to use
them as tables, joining one view to the next, or nesting multiple views inside of other views.
This leads to horrible query performance, because the complexity of the execution plans
overwhelms the optimizer. This bad practice, a common code smell, should be avoided.

Standard views
The view, Sales.vIndividualCustomer, provides a summary of customer data,
displaying information such as their name, email address, physical address, and demographic
information. A very simple query to get a specific customer would look something like
Listing 7-13. While using SELECT * is not the best way to write queries, in this case I'm
doing it to illustrate what happens when a query is run against a view and all the data refer-
enced by that view are retrieved.

SELECT *
FROM Sales.vIndividualCustomer
WHERE BusinessEntityId = 8743;

Listing 7-8

Figure 7-19 shows the resulting graphical execution plan.

Figure 7-19: The full plan of the query against a view.

207

Chapter 7: Execution Plans for Common T-SQL Statements

This is another plan that is very difficult to read on the printed page, so Figure 7-20 shows an
exploded view of just the five operators on the right-hand side of the plan.

 Figure 7-20: Subsection of the plan showing standard operators.

What happened to the view, vIndividualCustomer, which we referenced in this query?
Remember that, while SQL Server treats views similarly to tables, a view is just a stored
query definition, which sits on top of the base tables (and possibly other views) from which
they derive. During query binding (see Chapter 1), the algebrizer "expands" the view, i.e.
replaces it with its definition, and then the result is passed to the optimizer. So the optimizer
never even sees the view, only the query that defines it. The optimizer simply optimizes
access to the eight tables and the seven joins defined within this view.

In short, while a view can make coding easier, it doesn't in any way change the need of the
query optimizer to perform the actions defined within the view. This is an important point to
keep in mind, since developers frequently use views to mask the complexity of a query.

What happens if we change the query to use a list of columns in the SELECT statement?

SELECT ic.BusinessEntityID,
 ic.Title,
 ic.LastName,
 ic.FirstName
FROM Sales.vIndividualCustomer AS ic
WHERE BusinessEntityID = 8743;

Listing 7-9

This results in quite a different execution plan, shown in Figure 7-21.

208

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-21: Same view, but a different execution plan.

Notice just how different the execution plan shape and the number of operators are in Figure
7-21, when compared to Figure 7-19, even though we are querying the same view. This is
because a step in the process called "simplification" will eliminate tables that are not needed
to satisfy the query. In this case, without referencing all the columns, the optimizer can elimi-
nate them from the plan.

It is worth noting that you could probably write a query that references even fewer of the
tables. The simplification process won't always catch every possible excess table. For
example, the EmailAddress table is still being referenced within the plan.

Indexed views
An indexed view, also called a "materialized" view or even a "persisted" view, is essentially
a "view plus a clustered index." A clustered index stores the column data as well as the index
data, so creating a clustered index on a view results in what is effectively a new physical
table in the database. Indexed views can often speed up the performance of many queries, as
the data is directly stored in the indexed view, negating the need to join and look up the data
from multiple tables each time the query is run.

Creating an indexed view is, to say the least, a costly operation. Fortunately, it's also a one-
time operation, which we can schedule when our server is less busy. Indexed views also
come with an internal maintenance cost for SQL Server. If the base tables in the indexed
view are relatively static, there is little overhead associated with maintaining indexed views.
However, it's quite different if the base tables are subject to frequent modification. For
example, if one of the underlying tables is subject to a hundred INSERT statements a minute,
then each INSERT will have to be updated in the indexed view. As a DBA, you must decide
if the overhead associated with the internal maintenance of an indexed view is worth the
gains provided by creating the indexed view in the first place.

209

Chapter 7: Execution Plans for Common T-SQL Statements

Queries that contain aggregates are good candidates for indexed views because the creation
of the aggregates only has to occur once, when the index is created, and the aggregated
results can be returned with a simple SELECT query, rather than having the added overhead
of running the aggregates through a GROUP BY each time the query runs. There is also a
substantial I/O saving when aggregation is done within an indexed view.

For example, one of the indexed views supplied with AdventureWorks2014 is
vStateProvinceCountryRegion. You can see the complete query in Listing 7-10.
There I drop and recreate the view, and then create the clustered index that makes it an
indexed view.

DROP VIEW Person.vStateProvinceCountryRegion;
GO
CREATE OR ALTER VIEW Person.vStateProvinceCountryRegion
WITH SCHEMABINDING
AS
SELECT sp.StateProvinceID,
 sp.StateProvinceCode,
 sp.IsOnlyStateProvinceFlag,
 sp.Name AS StateProvinceName,
 sp.TerritoryID,
 cr.CountryRegionCode,
 cr.Name AS CountryRegionName
FROM Person.StateProvince sp
 INNER JOIN Person.CountryRegion cr
 ON sp.CountryRegionCode = cr.CountryRegionCode;
GO
CREATE UNIQUE CLUSTERED INDEX IX_vStateProvinceCountryRegion
ON Person.vStateProvinceCountryRegion
(
 StateProvinceID ASC,
 CountryRegionCode ASC
);
GO

Listing 7-10

If I run the query in Listing 7-10 and try to capture the execution plan, there is one; even
though each of these statements is a DDL statement. This is because, in order to satisfy the
final statement which creates the index on the view, the query that defines the view must be
run. Figure 7-22 shows the execution plan for this query.

210

Chapter 7: Execution Plans for Common T-SQL Statements

 Figure 7-22: Execution plan for the creation of an Indexed View.

This looks like some of the plans we saw in Chapter 6. We're selecting from the two tables
defined in the view and a Nested Loops operator is used to put the data together before
supplying it to an Index Insert (Clustered) operator. This is the process of creating the
indexed view.

We can run a query from the view and see the execution plan.

SELECT vspcr.StateProvinceCode,
 vspcr.IsOnlyStateProvinceFlag,
 vspcr.CountryRegionName
FROM Person.vStateProvinceCountryRegion AS vspcr ;

Listing 7-11

The execution plan that results from this query reflects, not a regular index, but an indexed
view, assuming you're using either Enterprise or Developer Edition. If you're using Standard
Edition, prior to SQL Server 2016 SP1, or Express Edition, where neither do indexed view
matching by default, you'll need to use the WITH NOEXPAND hint to see the same behavior.

Figure 7-23: Execution plan against an indexed view.

211

Chapter 7: Execution Plans for Common T-SQL Statements

From our previous experience with execution plans containing views, you might have
expected to see two tables and the join in the execution plan. Instead, we see a single Clus-
tered Index Scan operation. Rather than execute each step of the view, the optimizer went
straight to the clustered index that makes this an indexed view.

Since the indexes that define an indexed view are available to the optimizer, they are also
available to queries that don't even refer to the view. For example, the query in Listing 7-12
gives a very similar execution plan to the one shown in Figure 7-23, because the optimizer
recognizes the index as the best way to access the data (again this assumes the use of Enter-
prise or Developer Edition).

SELECT sp.Name AS StateProvinceName,
 cr.Name AS CountryRegionName
FROM Person.StateProvince sp
INNER JOIN Person.CountryRegion cr
 ON sp.CountryRegionCode = cr.CountryRegionCode;

Listing 7-12

However, as the query grows in complexity, this behavior is neither automatic nor guaran-
teed. For example, consider the query in Listing 7-13.

SELECT a.City,
 v.StateProvinceName,
 v.CountryRegionName
FROM Person.Address a
JOIN Person.vStateProvinceCountryRegion v
 ON a.StateProvinceID = v.StateProvinceID
WHERE a.AddressID = 22701;

Listing 7-13

If you expected to see a join between the indexed view and the Person.Address table,
you would be disappointed.

212

Chapter 7: Execution Plans for Common T-SQL Statements

 Figure 7-24: Execution plan of the expanded indexed view.

Instead of using the clustered index that supports the materialized view, as we saw in Figure
7-23, the algebrizer performs the same type of index expansion as it did when presented with
a regular view. The query that defines the view is fully resolved, substituting the tables that
make it up instead of using the clustered index provided with the view.

The algebrizer in SQL Server will expand views every time. The optimizer has a process that
determines that direct table access will be less costly than using the indexed view. Again,
there is a way around this with the NOEXPAND hint, covered in Chapter 10.

Functions
There are two kinds of user-defined functions within SQL Server:

• Scalar functions – return a single value.
• Table valued functions – return a table.

Their behavior within execution plans can be somewhat deceptive.

Scalar functions
Let's start with a scalar function that is part of AdventureWorks2014, called dbo.
ufnGetStock. Listing 7-14 shows the query.

CREATE OR ALTER FUNCTION dbo.ufnGetStock(@ProductID int)
RETURNS int
AS

213

Chapter 7: Execution Plans for Common T-SQL Statements

-- Returns the stock level for the product.
BEGIN
 DECLARE @ret int;
 SELECT @ret = SUM(p.Quantity)
 FROM Production.ProductInventory p
 WHERE p.ProductID = @ProductID
 AND p.LocationID = '6'; -- Only look at inventory in the
misc storage
 IF (@ret IS NULL)
 SET @ret = 0
 RETURN @ret
END;
GO

Listing 7-14

We can see the function in action with a query looking for stock levels of only
black products.

SELECT p.Name,
 dbo.ufnGetStock(p.ProductID) AS StockLevel
FROM Production.Product AS p
WHERE p.Color = 'Black';

Listing 7-15

If we run the query and capture the actual execution plan, there's not much to it, as shown in
Figure 7-25.

Figure 7-25: Introducing the scalar function in a plan.

The Clustered Index Scan makes sense because there is no index that can support the
WHERE clause on the Color column. So, the entire index must be scanned and then
the Predicate applied to return only the 93 rows with a Color of black. To see what the
Compute Scalar operator is up to, we must go into the properties and look at the Defined
Values to see the calculation.

214

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-26: Function calculation within the Compute Scalar operator.

As you can see, that's the execution of the scalar function. So that's pretty much all we need
to look at, right? Not exactly. This UDF is accessing data through the query in Listing 7-14.
That access cannot be seen anywhere in Figure 7-27. Instead of capturing an actual plan for
Listing 7-15, if we capture an estimated plan, different information is surfaced.

Figure 7-27: Estimated plan showing full extent of plans needed for function.

Instead of a single execution plan, there are two. The second plan represents the scalar func-
tion. This is a hidden cost behind the Compute Scalar operator in the plan shown in Figure
7-25. The plan in Figure 7-27 introduces a lot of functionality.

215

Chapter 7: Execution Plans for Common T-SQL Statements

Reading the plan from the left, the first operator we see is a T-SQL operator labeled as UDF,
representing the user-defined function. There are no properties of note beyond an estimated
cost. Going to the right we see three sub-branches (in effect, three plans), one for each of the
statements in the UDF.

The first operator we encounter on the top branch is a SELECT. We will see one SELECT
operator for each SELECT statement in a UDF. If we had a UDF with three SELECT state-
ments, they will each have their values for Plan Hash, Optimization Level, and so on. This
sub-branch is used for the query that computes @Ret, by aggregating data from Product-
Inventory. It uses a Clustered Index Seek to find matching data, and then a Stream
Aggregate and Compute Scalar to produce the desired result. We've seen all these operators
before, throughout the book, but this is the first time they've been hidden away!

In the second sub-branch, we see a COND operator. This is a Conditional, in this case
performing the NULL check you can see within the function in Listing 7-14. If @ret is
NULL, the COND operator calls the ASSIGN operator, which sets @ret to 0.

The final sub-branch shows the RETURN operator, which represents the RETURN statement
from Listing 7-14.

As the plan in Figure 7-30 shows, there is more going on behind the scenes with a scalar
function than is immediately apparent. This is especially true of a scalar function that is
accessing data. If we were to capture STATISTICS IO results for executing Listing 7-17, it
would report only 15 logical reads to return the 93 rows. Unfortunately, as noted in Chapter
2, it fails to count additional I/O resulting from calls to the user-defined function. The user-
defined function is called from the Compute Scalar of the "main" plan, once for each of the
93 rows returned from the Product table. This means that each of the steps in the execution
plan for the UDF itself is executed 93 times.

If you capture the performance metrics, using our Extended Events session (Listing 2.6), you
will see that in fact it performs 211 logical reads, and that the query references not 93 but
365 rows. Each of the 93 executions of the UDF does an Index Seek to find all rows for one
specific ProductID, processing 365 rows in total, but performing a lot of unnecessary I/O
to return them. If we had avoided the UDF and just written a join between the two tables,
chances are that the same number of rows would have been written, but using far fewer
logical reads.

216

Chapter 7: Execution Plans for Common T-SQL Statements

Table valued functions
User-defined table valued functions come in two different varieties with two different modes
of behavior. First is the inline Table Valued Function (iTVF). These are sometimes referred to
as parameterized views because of how they operate. The second is the multi-statement table
valued function. These allow for complex queries consisting of multiple statements. These
functions are each exposed in execution plans in different ways.

Listing 7-16 shows how we could rewrite the function from Listing 7-14 as in iTVF.

CREATE FUNCTION dbo.GetStock (@ProductID INT)
RETURNS TABLE
AS
RETURN
(
 SELECT SUM(pi.Quantity) AS QuantitySum
 FROM Production.ProductInventory AS pi
 WHERE pi.ProductID = @ProductID
 AND pi.LocationID = '6'
);

Listing 7-16

To use the function in a query we'll have to modify Listing 7-15 slightly.

SELECT p.Name,
 gs.QuantitySum
FROM Production.Product AS p
CROSS APPLY dbo.GetStock(p.ProductID) AS gs
WHERE p.Color = 'Black';

Listing 7-17

The resulting actual execution plan is completely different from what we saw for the
scalar function.

217

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-28: Plan for a Table Valued Function.

The most immediate question you might have is: why is there no aggregation operator in the
plan? How does the SUM get computed? The answer is that the optimizer uses information in
the query used to define the iTVF (the filter on LocationID) along with metadata (the fact
that there is a unique index on ProductID) to conclude that per product, there will be at
most one row with LocationID = 6. Since there can never be more than 1 row per product,
aggregating by product is unnecessary.

Reading from the left we see a Merge Join operator, which is performing a right Outer Join
between the ProductInventory and Product tables. We see a Clustered Index Scan
on the ProductInventory table, with a pushed-down Predicate on LocationID. The
Compute Scalar is an implicit convert of the Quantity value to an integer. Quantity is
defined as SMALLINT, but the SUM aggregation automatically converts that to INT. Without
the aggregation in the plan, the conversion must be done in a Compute Scalar. This data is
merged with the data from a Clustered Index Scan of Product.

Unlike the scalar function earlier, the inline function is fully exposed in a single execution
plan. An estimated plan of Listing 7-17 would be the same as Figure 7-28, minus the runtime
values. There are no hidden costs, and rows required to satisfy the query are accurately
reflected within the execution plan.

A multi-statement table valued UDF behaves completely differently. Listing 7-18 shows how
we could rewrite our inline function to be a multi-statement UDF.

218

Chapter 7: Execution Plans for Common T-SQL Statements

CREATE FUNCTION dbo.GetStock2 (@ProductID INT)
RETURNS @GetStock TABLE (QuantitySum int NULL)
AS
BEGIN
 INSERT @GetStock
 (
 QuantitySum
)
 SELECT SUM(pi.Quantity) AS QuantitySum
 FROM Production.ProductInventory AS pi
 WHERE pi.ProductID = @ProductID
 AND pi.LocationID = '6';
 RETURN;
END

Listing 7-18

If we modify Listing 7-17 to use this function and then run the query, the execution plan
changes as in Figure 7-29.

 Figure 7-29: Multi-statement table valued function execution plan.

You can easily see that we are once again facing a situation where there is hidden
functionality. We have a new operator, Table Valued Function, on the inner input
of a Nested Loops join.

The single most important property value to examine for the Table Valued Function
operator is the Estimated Number of Rows, which is 100.

219

Chapter 7: Execution Plans for Common T-SQL Statements

Figure 7-30: Properties of the Table Valued Function operator.

In fact, the estimated rows returned for a multi-statement table valued function will always
be 100 rows. The cardinality estimator uses a hard-coded value for table variables. Prior to
SQL Server 2014 this value was 1. From SQL Server 2014 onwards, this value is 100. That
row count is completely separated from reality.

In this case, an estimated 100 rows returned, per execution, and an estimated 93 executions
(once for each row produced by the outer input), giving a total of 9300 rows. In fact, it only
returns 1 row per execution, 93 in total.

To see the functionality behind the Table Valued Function operator, we must look to the
estimated plan again. Figure 7-31 shows the full function.

220

Chapter 7: Execution Plans for Common T-SQL Statements

 Figure 7-31: Estimated plan showing full functionality of the Table Valued Function.

You can see that, in this situation, the multi-statement function looks very similar to the
original scalar function. The one addition is the Table Insert operator that's necessary to load
the table variable within the function. Once more, this represents a hidden cost to the query.
If we look at the I/O from the Extended Events for the GetStock function and compare it
to GetStock2 function we see them go from 44 reads to 1141 reads. The optimizer is just
not given adequate information to make good choices, when dealing with a multi-statement
user-defined function.

Summary
This chapter demonstrated the sort of execution plans that we can expect to see when our
code uses stored procedures, views, derived tables, CTEs, and user-defined functions. They
are more complex than the ones we've seen in earlier chapters, but all the principles are the
same; there is nothing special about larger and more complicated execution plans except
that their size and level of complexity requires more time to read them. If you follow the
same patterns of using the information in the first operator to understand how the engine is
resolving the query, and then reading the properties to understand how the information is
flowing between the operators, you'll be fine.

221

Chapter 8: Examining Index Usage
It's difficult to understate the impact that a carefully selected set of indexes will have on
the quality of the plans that the optimizer generates, and the performance of your queries.
However, we can't always solve a performance problem just by adding an index. It is entirely
possible to have too many indexes, so we must be judicious in their use.

We need to ensure that the indexes we choose to create are well designed and selective for
the predicates used by your most important queries. This also means making sure that your
statistics accurately reflect the data that is stored within the index.

This chapter will describe how the optimizer uses these statistics to make selectivity and
cardinality estimations, and what can go wrong, either because the statistics are unreliable,
or because the optimizer used accurate statistics to generate a plan that was good for some
execution of a parameterized query, but bad for others.

Finally, we'll examine some of the important execution plan features you'll see
for queries that use two relatively new index types, Columnstore indexes and Memory-
optimized indexes.

Standard Indexes
For a typical OLTP workload, comprising the sorts of example queries seen throughout
this book, our indexing strategy will primarily rely on standard clustered and nonclustered
indexes:

• Clustered indexes – the primary means of storing and accessing most tables
within the standard relational storage of SQL Server.

• Nonclustered indexes – a secondary method of accessing data, in support of the
clustered index on a table, designed to improve the performance of frequent and
expensive queries in the workload.

Generally, if a suitable index is available, then the query optimizer will choose an
effective plan that uses it. If there isn't, then you risk poor execution plans and poor
query performance.

222

Chapter 8: Examining Index Usage

When a table is altered to add a clustered index, it replaces the heap table with an index that
stores all the table's data, ordered such that it is easy to access rows based on the clustering
key value, or a range of consecutive key values. Most tables will have a clustered index,
plus one or more nonclustered indexes. A nonclustered index is similar in that its intent is
to make it easy to access data by certain key values but, instead of storing all data, it stores
only the index key values, with a pointer to the location of the full data, usually the values of
the clustered index key or, for a heap table, an internal value known as the row identifier. A
nonclustered index can also store additional data columns at the leaf level with the use of the
INCLUDE operator.

An important part of any tuning effort involves choosing the right clustered index, and then
a set of supporting nonclustered indexes, for each table in the database. As we've discussed
throughout the book, we are not trying to cover every query with an index. Instead, our goal
is to create the minimal set of indexes that will be most beneficial to the optimizer in helping
it resolve, as cheaply as possible, the most important, expensive and frequent queries in
our workload.

How the optimizer selects which indexes to use
We've already seen plenty of examples of the optimizer choosing to use certain indexes to
locate and retrieve the data the query needs to read or modify. Sometimes, however, the
optimizer will, perplexingly, choose a different plan that ignores what appears to be a useful
index. There is always a reason for this, revealed by the execution plan, often by examining
the estimated costs for the operators, estimated and actual row counts, as well as other
behaviors and properties of each index-reading operator, and their interaction with other
operators in the execution plan, as we'll see shortly.

First, we need to recap a little on how the optimizer chooses which indexes to use (it's
essentially the same process for any operator).

Estimated costs and statistics
As we discussed way back in Chapter 1, the optimizer will choose the lowest-cost plan, based
on estimated cost values. It will choose the plan that its calculations suggest will have the
lowest total cost, in terms of the sum of the estimated CPU and I/O processing costs. Each
operator's estimated cost contributes to the overall estimated cost of the plan.

223

Chapter 8: Examining Index Usage

The accuracy of the optimizer's estimated costs depends largely on the accuracy of its statis-
tical knowledge of the data: its data about the data. These statistics, collected automatically
for each index, and many columns as well, provide aggregated information to the optimizer,
based on a sample of the data. They describe, hopefully accurately, the volume and distribu-
tion of all the data in the table.

For example, the statistics used by the optimizer include a density graph, which predicts
the "uniqueness" of the data in a column (the number of different values present) and a
histogram, which predicts the number of occurrences of each value. The optimizer needs to
know this information accurately, because it is a key factor in its decisions on which indexes
to use, and how.

Selectivity and cardinality estimations
The key measure for the optimizer in determining whether to use an index, and how to
read that index, is the likely selectivity of a query predicate that the index could support.
The selectivity of a predicate, for a given index, is the expected ratio of matching rows.
Count the total number of rows in the table (z), count the number of distinct values (x) for
a given column, or combination of columns, across all the rows, and then (x/z) gives the
selectivity of the index, for an equality predicate comparing the column (or columns) against
unknown values.

A highly selective index will have a low selectivity value. For example, a selectivity of
0.01 (1%) means that the optimizer expects 1% of the total rows in the table to match the
predicate. Conversely, the worst possible selectivity is 1.0 (or 100%) meaning that every row
will match the predicate condition.

The cardinality for a given operator in a plan, shown in the Estimated Number of Rows
property, is computed based on the selectivity of each predicate in the filter, some other data
available from the statistics, and some assumptions about the data in the tables. The nature of
calculations varies depending on the operator. For example, for a Merge Join, the Estimated
Number of Rows is based on the estimated cardinalities of the two input streams and some
very complex calculations on the histograms of those two input streams (if available).

Indexes and selectivity
Essentially, a query is resolved by a chain of successive operations on the data, as described
in its execution plan. Therefore, an indexing strategy that can help the optimizer reduce the
amount of data being manipulated, as soon as possible in the chain, is likely to work best.

224

Chapter 8: Examining Index Usage

To do this, we need an index to be selective, for the filtering predicates used by the queries
you intend it to help. If an index exists that matches a predicate column used by certain
queries in the workload, and if the optimizer gauges that, for a given query, the selectivity of
the predicate is sufficiently high, then it will consider the index to be a good candidate to use
in the plan. Usually, this means that the estimated cardinality will be low, meaning only a few
rows will be accessed, which will lower the overall estimated cost of the operator.

To demonstrate how the optimizer makes decisions on how to read data from tables, we'll
create a copy of the SalesOrderDetail table, in AdventureWorks. We'll assume that at
some point a developer added a couple of nonclustered indexes that he or she thought might
help certain queries.

DROP TABLE IF EXISTS NewOrders ;
GO
SELECT SalesOrderID,
 SalesOrderDetailID,
 CarrierTrackingNumber,
 OrderQty,
 ProductID,
 SpecialOfferID,
 UnitPrice,
 UnitPriceDiscount,
 LineTotal,
 rowguid,
 ModifiedDate
INTO dbo.NewOrders
FROM Sales.SalesOrderDetail;
GO
ALTER TABLE dbo.NewOrders
ADD CONSTRAINT PK_NewOrders_SalesOrderID_SalesOrderDetailID
PRIMARY KEY CLUSTERED
(
 SalesOrderID,
 SalesOrderDetailID
);
CREATE NONCLUSTERED INDEX IX_NewOrders_ProductID
ON dbo.NewOrders (ProductID);
GO
CREATE NONCLUSTERED INDEX IX_NewOrders_OrderQty
ON dbo.NewOrders(OrderQty);
GO

Listing 8-1

225

Chapter 8: Examining Index Usage

We'll run the following simple query to return order details for a known order quantity (20)
and capture the actual execution plan.

SELECT OrderQty,
 SalesOrderID,
 SalesOrderDetailID,
 LineTotal
FROM dbo.NewOrders
WHERE OrderQty = 20;

Listing 8-2

Figure 8-1 shows the execution plan. We see that the optimizer chose to use an Index Seek
on our nonclustered index on OrderQty, even though this index is not covering for this
query. A total of 46 rows are returned from the Index Seek and, because the index is not
covering, this results in 46 executions of the Key Lookup.

Figure 8-1: The index selection process.

To help us understand the decisions that the optimizer has made, we can look at the
statistics for the IX_NewOrders_OrderQty index, using the DBCC SHOW_STATIS-
TICS command.

DBCC SHOW_STATISTICS('dbo.NewOrders',
 'IX_NewOrders_OrderQty');

Listing 8-3

226

Chapter 8: Examining Index Usage

This returns three result sets, the first showing the header, with general details about the
statistics, the second the density graph, and finally the histogram with the tabulation of
counts for each indexed column value that's sampled in the statistics.

Statistics header
The header displays the name of the index, the number of rows in the table, and the number
of rows sampled by the create/update statistics algorithm to generate the statistics, in this case
all 12317 rows. It also shows that there are 40 rows, or steps, in this histogram.

Figure 8-2: The header information in the statistics for IX_NewOrders_OrderQty.

There are only ever up to 200 data points or steps in the histogram. In this case, there are
40 steps. Since there are 41 distinct values in the OrderQty column, that may appear
surprising, but this is simply a consequence of how the algorithm for building the histogram
works; it simply tries to identify the most "interesting" data points, with a maximum of 200,
in a single pass of the data.

Density graph
The density graph provides the optimizer with its estimations of the number of distinct values
in a column or index. The lower the density, the higher the "uniqueness," and the more selec-
tive is the index. A unique column in a 10000-row table has a density of 1/10000 or 0.0001.
An equality predicate on this column has a selectivity of 0.0001 (or 0.01 percent), the exact
same number, because they are computed in the same way.

However, density and selectivity aren't the same thing. For example, density is also used to
estimate the number of rows after an aggregation operator: if the same 10000-row table has
5 distinct values for Color, then the density of Color will be 1/5, or 0.2; the estimated
number of rows when you group by Color is then computed as 1/0.2 which brings us
back to 5.

227

Chapter 8: Examining Index Usage

Figure 8-3 shows that the density for the OrderQty column is 0.02439024.

Figure 8-3: The density graph for IX_NewOrders_OrderQty.

The optimizer can use the density graph to estimate the selectivity of a predicate, for an
equality predicate comparing the column (or columns) against unknown values. If a query
uses a predicate on OrderQty and the optimizer cannot "sniff" the parameter or variable
value, it simply takes the density value for the OrderQty column, which is 0.02439024,
multiplies it by the total number of rows in the table (121317) and estimates a cardinality of
2958.95 rows.

If we're performing an inequality predicate against unknown values, then the optimizer
always uses a default estimated selectivity of 30%, and no density is used.

The other rows in the density graph refer to the density for predicates that use a combina-
tion of OrderQty and the clustered index key column values, also stored in the index.
As you can see, for this index the density for a predicate on a combination of OrderQty
and SalesOrderID is about 1000 times less that for OrderQty alone, meaning that an
equality predicate on this combination of columns is about 1000 times more selective than a
predicate on OrderQty. This density level makes the index a very attractive option for the
optimizer, for an equality predicate on these columns, comparing to unknown values.

The histogram
Often, the optimizer knows the parameter or variable value to which it is comparing,
either because it sniffed it, or because we hard-coded it. In such cases, the optimizer
uses the histogram to get a better estimate of the cardinality for the predicate.

In Listing 8-2, where we supplied a hard-coded OrderQty value of 20 and in the histogram,
this value matches exactly one of the ranges defined by the RANGE_HI_KEY. The optimizer
reads a cardinality value (row count) of 46, from the EQ_ROWS column for that row.

228

Chapter 8: Examining Index Usage

Figure 8-4: An extract from the histogram for IX_NewOrders_OrderQty.

If there is no exact match, the optimizer uses a slightly different approach to the row count
estimates. For example, if we changed the literal value for OrderQty to 35, in Listing
8-2, we can see that there is a match for 34 and 36 in the RANGE_HI_KEY column, but no
match for 35. Since the RANGE_HI_KEY defines the top of a range, the value of 35 lies
within the range defined by 36, and the optimizer uses the AVG_RANGE_ROWS value for
that row as the row count estimate, 2 rows. It derives the AVG_RANGE_ROWS value simply
by dividing RANGE_ROWS (the estimated number of rows that make up the range defined
by the RANGE_HI_KEY) by DISTINCT_RANGE_ROWS (number of distinct values within
the range). You may see a different row number estimate, depending on your version of SQL
Server or AdventureWorks, or on whether you modified your database structures, rebuilt
indexes, or updated your statistics.

229

Chapter 8: Examining Index Usage

Armed with its cardinality estimate (46 rows), the optimizer calculates the total estimated
cost of performing a seek followed by 46 lookups, and compares it to its alternatives, (in
this case simply performing a single scan of the clustered index), and chooses the cheapest
option. The higher the estimated row count, the more lookups will need to be performed, and
there will be a tipping point where the optimizer decides to simply scan the clustered index.

In this example, the tipping point is somewhere around 400 rows. If you execute Listing 8-2
with a literal value of 11 (estimated 392 rows), we still see the seek/lookup plan, but use a
value of 12 (estimated 466 rows) and it tips, and we see the clustered index scan.

Figure 8-5: A clustered index scan caused by a change in estimated rows.

What if we were to rewrite Listing 8-2 to use a local variable, instead of a hard-coded literal?

DECLARE @OrderQuantity SMALLINT
SET @OrderQuantity = 20
SELECT OrderQty,
 SalesOrderID,
 SalesOrderDetailID,
 LineTotal
FROM dbo.NewOrders
WHERE OrderQty = @OrderQuantity;

Listing 8-4

When we execute this, we'll see the plan with the clustered index scan, even though in terms
of actual number of rows returned, we are below the tipping point. The reason is that the
optimizer cannot sniff the value supplied, when we use local variables (unless statement-level
recompile takes place because of an OPTION (RECOMPILE) hint), and so it simply uses
the density graph to estimate a cardinality of 2958.95 rows, as described earlier, which we
can confirm from the Properties sheet for the Clustered Index Scan. This estimated number
of rows is way above the tipping point for the optimizer to choose a scan in preference to the
seeks plus lookups.

230

Chapter 8: Examining Index Usage

 Figure 8-6: Properties showing the Estimated Number of Rows.

If we were to modify the WHERE clause in Listing 8-4 to use an inequality search condi-
tion, OrderQty > @OrderQuantity, then you'll see that the optimizer reverts to using a
hard-coded cardinality estimation of 30% of the rows in the table, estimating 36,395.1 rows
when only 164 are returned. This will always result in the plan with the scan whereas, for a
OrderQty value of 20, the optimizer would choose the seek/lookup plan in cases where it
knows or can sniff the value, since it can once again use the histogram to get accurate cardi-
nality estimations.

Using covering indexes
In the previous examples, our index on the OrderQty column did not cover any of our
queries. When the optimizer chose to use the index, the plans incurred the extra cost of
performing lookups on the clustered index, to retrieve the column values not contained in the
nonclustered index.

As discussed in Chapter 3, we create a covering index either by having all the columns
necessary as part of the key of the index, or by using the INCLUDE operation to store extra
columns at the leaf level of the index so that they're available for use with the index.

A lookup always adds some extra cost, but when the number of rows is small then that extra
cost is also small, and the extra cost may be an acceptable tradeoff against the total cost for
the entire application of adding a covering index.

Remember that adding an index, however selective, comes at a price during INSERTs,
UPDATEs, DELETEs and MERGEs as the data within each index is reordered, added, or
removed. We need to weigh the importance, frequency of execution, and actual run time
of the query, against the overhead caused by adding an extra index, or by adding an extra
column to the INCLUDE clause of an existing index.

231

Chapter 8: Examining Index Usage

If this were a critical or frequent query, we might consider replacing the existing index with
one that included the LineTotal column to cover the query, and perhaps other columns, if
it meant that the same index would then also cover several other queries in the workload.

What can go wrong?
There are many reasons why the optimizer might be unable to use what looks like a very suit-
able index, or appears to ignore it, and we can't cover them in this book.

Sometimes, it's a problem with the code. For example, a mismatch between the parameter
data type and the column type forces implicit conversion on the indexed column, and this
will prevent the optimizer from seeking the index. Sometimes, a query contains logic that
defeats accurate estimations. Complex predicates are harder to estimate than simple predi-
cates. Inequality predicates are sometimes harder to estimate than equality predicates and,
in cases where the parameter or variable values can't be sniffed, the optimizer simply uses
a hard-coded selectivity estimation (30%). Expressions with a column embedded are harder
to estimate than expressions where the column is by itself and the expression is on the
other side.

Sometimes, the optimizer chooses what appears to be a less ideal index because it is,
in fact, cheaper overall, perhaps because that index presents the data in an order that
facilitates a merge join or stream aggregate later in the plan, instead of its more expensive
counterparts. Or, because it allows the optimizer to observe ORDER BY without having to
add a Sort operator.

We can't cover every case, so in this section we'll focus only on problems that occur when
the optimizer's selectivity and cardinality estimations don't match reality. The optimizer
thinks an operator will only need to process 10 rows, but it processes 10,000, or vice versa.

If the optimizer cannot accurately estimate how many rows are involved in each operation
in the plan, or it reuses a plan with estimated row counts that are no longer valid, then it
may ignore even well-constructed and highly selective indexes, or use inappropriate indexes,
and therefore create suboptimal execution plans. These problems often manifest in large
discrepancies between actual and estimated row counts in the plan, and the potential causes
are numerous.

232

Chapter 8: Examining Index Usage

Problems with statistics
Regarding statistics, the optimizer can use a suboptimal plan for several possible reasons:

• Missing statistics – no statistics are available on the column used in the predicate,
perhaps because certain database options prevent their creation, such as the AUTO_
CREATE_STATISTICS option being set to OFF.

• Stale statistics – it had to generate a plan for a query containing a predicate on a
column with statistics that have not recently updated, and no longer reflect accu-
rately the true distribution.

• Reusing a suboptimal cached plan– the optimizer reused a plan that was good
when it was created, but the data volume or distribution has changed significantly
since then, and the plan is no longer optimal.

• Skewed data distribution – the optimizer had to generate a plan for a query
containing a predicate on a column where the data distribution was very non-
uniform, making accurate cardinality estimations difficult.

Let's see an example. Listing 8-5 captures an actual execution plan for a simple query against
our NewOrders table. It then inserts new rows. It only inserts 5% of the total number
currently in the table, which is below the threshold required to trigger an automatic statistics
update, but it does it in a way designed to skew the data distribution.

Next, it recaptures the plan for the same query. Finally, it manually updates the statistics, and
captures the plan a final time. If you're following along, you might also consider creating and
starting the Extended Events session I show in Chapter 2 (Listing 2-6), to capture the I/O and
timing metrics for each query.

233

Chapter 8: Examining Index Usage

SET STATISTICS XML ON;
GO
SELECT OrderQty,
 CarrierTrackingNumber
FROM dbo.NewOrders
WHERE ProductID = 897;
GO
SET STATISTICS XML OFF;
GO
--Modify the data
BEGIN TRAN;
INSERT INTO dbo.NewOrders (SalesOrderID,
 CarrierTrackingNumber,
 OrderQty,
 ProductID,
 SpecialOfferID,
 UnitPrice,
 UnitPriceDiscount,
 LineTotal,
 rowguid,
 ModifiedDate)
SELECT TOP (5) PERCENT
 SalesOrderID,
 CarrierTrackingNumber,
 OrderQty,
 897,
 SpecialOfferID,
 UnitPrice,
 UnitPriceDiscount,
 LineTotal,
 rowguid,
 ModifiedDate
FROM Sales.SalesOrderDetail
ORDER BY SalesOrderID;
GO
SET STATISTICS XML ON;
GO
SELECT OrderQty,
 CarrierTrackingNumber
FROM dbo.NewOrders
WHERE ProductID = 897;
GO
SET STATISTICS XML OFF;
GO

234

Chapter 8: Examining Index Usage

--Manually update statistics
UPDATE STATISTICS dbo.NewOrders
GO
SET STATISTICS XML ON;
GO
SELECT OrderQty,
 CarrierTrackingNumber
FROM dbo.NewOrders
WHERE ProductID = 897;
GO
SET STATISTICS XML OFF;
GO
ROLLBACK TRAN;
--Manually update statistics
UPDATE STATISTICS dbo.NewOrders;
GO

Listing 8-5

By using SET STATISTICS XML statements, along with separating the code into batches,
we can capture just the execution plans for those specific batches, and omit the other plans
such as the one that is generated for the INSERT statement. First, here is the plan for the
query before inserting the extra rows.

Figure 8-7: The initial execution plan before statistics are updated.

The optimizer chose to seek the nonclustered index on ProductID. The index does
not cover the query, but it estimates that the seek will return only 50.817 rows. It gets
this estimate from the AVG_RANGE_ROWS value column of the histogram for the IX_
ProductID_NewOrders index, as described earlier.

235

Chapter 8: Examining Index Usage

In fact, it returns only two rows, but even so the optimizer estimates that the extra overhead
of the Key Lookup operator, for around 51 rows, is small enough to prefer this route over
scanning the clustered index.

Figure 8-7 shows the plan after we "skewed" the data with our INSERT statement.

 Figure 8-8: Inefficient execution plan for out-of-date statistics.

We see the same plan. The optimizer has simply encountered a query it has seen before,
selected the existing plan from the cache and passed it on to the execution engine.

However, now the Actual Number of Rows for the Index Seek is 6068, so the Key Lookup
is executed 6068 times. The initial query had 52 logical reads, but the subsequent query had
19385, as measured in Extended Events.

Finally, we update the statistics, so the plan in cache will be invalidated, causing a new one to
be compiled. With up-to-date statistics, the plan is now reflected in Figure 8-7.

 Figure 8-9: Correct execution plan for up-to-date statistics.

This is a good and appropriate strategy for the query on this table, as it is now. Since a large
percentage of the table now matches the criteria defined in the WHERE clause of Listing 8-2,
the Clustered Index Scan makes sense. Further, the number of reads has dropped to 1,723
even though the exact same number of rows is being returned.

236

Chapter 8: Examining Index Usage

This example illustrates the importance of statistics in helping the optimizer to make good
choices, and how those choices affect the behavior of indexes that we can see within the
execution plans generated. Bad statistics will result in bad choices of plan. A discussion
on maintaining statistics is outside the scope of this book, but certainly you should always
leave AUTO_UPDATE_STATISTICS enabled, and possibly consider running UPDATE
STATISTICS as a scheduled maintenance job for big tables, if required. For data skews that
affect important queries, you might consider investigating filtered statistics.

Problems with parameter sniffing
In correctly-parameterized queries, and when we use correctly-written objects such as stored
procedures and functions, the optimizer can peek at the value passed to a parameter, and use
it to compare to the statistics of the index key (or the column), specifically the histogram.
This is known as parameter sniffing and it allows the optimizer to get accurate cardinality
estimates, rather than relying on "averages," based on statistical density of the index or
column, or on hard-coded estimates (such as 30%).

When SQL Server runs the batch to execute a stored procedure, for example, it first compiles
the batch. At this point, it sets the value of any variables, and evaluates any expressions. It
then runs the EXEC command, checking in the plan cache to see if there is a plan to execute
the stored procedure. If there isn't one, it invokes the compiler again to create a plan for
the procedure. At this point, the optimizer can "sniff" the parameter value it detected when
running the EXEC command in the batch.

In some cases, parameter sniffing is unequivocally our friend. For example, let's say we
have a million-row Orders table that we query using an inequality predicate (such as a date
range), and only ever return a small subset of the data, typically results for the last week.
Without parameter sniffing, we'll always get a plan generated to accommodate an estimated
row count of 300,000 (30% of 1 million), which is likely to be a bad plan, if the queries
typically only return tens or hundreds of rows.

In other cases, such as if our queries filter on the PRIMARY KEY column, or on a key with an
even data distribution, then parameter sniffing is largely irrelevant.

Often, we're somewhere in between, and problematic parameter sniffing occurs when queries
filter on keys with uneven data distribution, and the optimizer reuses a cached plan generated
for a sniffed input parameter value with an estimated row count that turns out to be atypical
of the row counts for subsequent input values.

237

Chapter 8: Examining Index Usage

Stored procedures and parameter sniffing

In Listing 8-6, we simply turn our NewOrders query from Listing 8-2 into a stored
procedure but, to keep things interesting, with the slight kink that the @OrderQty
parameter is optional.

CREATE OR ALTER PROCEDURE dbo.OrdersByQty
 @OrderQty SMALLINT = NULL
AS
SELECT SalesOrderID,
 SalesOrderDetailID,
 OrderQty,
 LineTotal
FROM dbo.NewOrders
WHERE
 (
 OrderQty = @OrderQty
 OR @OrderQty IS NULL
);
GO

Listing 8-6

We already know what if we supply a literal value of OrderQty=20 for the original query,
the optimizer will create a plan with the nonclustered index seek and the key lookups (see
Figure 8-1). Figure 8-10 shows the actual plan when we execute this procedure supplying an
OrderQty value of 20.

Figure 8-10: Parameter sniffing results in a plan with Key Lookups.

238

Chapter 8: Examining Index Usage

The optimizer has used parameter sniffing and created a plan optimized for a parameter value
of 20, which we can see from the properties of the SELECT operator.

Figure 8-11: Parameter List showing the same runtime and
compile time parameter values.

This means that we see the same nonclustered index and key lookup combination, but with
the difference that here the optimizer scans rather than seeks the nonclustered index (I'll
explain why, shortly).

The timing and I/O metrics tell us that SQL Server performs 424 logical reads and the execu-
tion time was about 10 milliseconds.

If the optimizer had not been able to sniff the parameter value, we know that it would have
used the density graph for the nonclustered index to estimate a cardinality of 2958.95 rows,
and chosen a clustered index scan (see Figure 8-3). So, this is an example of the optimizer
making good use of its ability to sample the data directly through parameter sniffing to arrive
at a more efficient execution plan; scanning the smaller nonclustered index and performing a
few key lookups is cheaper than scanning the clustered index.

However, parameter sniffing can have a darker side. Let's re-execute the stored procedure and
pass it a different value.

EXEC dbo.OrdersByQty @OrderQty = 1;
GO

Listing 8-7

It reuses the execution plan from the cache, but now 74954 rows match the parameter value,
rather than 46, which means 74954 executions of the Key Lookup, instead of 46. It performs
239186 logical reads, and takes about 1400 ms.

If you see performance issues with stored procedures, it's worth checking the properties
of the first operator for the plan to see if the compile and runtime values for any parameters
are different.

239

Chapter 8: Examining Index Usage

Figure 8-12: Parameter List showing different runtime and
compile time parameter values.

If they are, that's your cue to investigate 'bad' parameter sniffing as the cause. Of course,
here, we know the optimizer would choose a different plan for Listing 8-7 if it were starting
from scratch. Listing 8-8 retrieves the plan_handle value for our stored procedure, from
the sys.dm_exec_procedure_stats DMV and uses it to flush just that single plan
from the procedure cache.

DECLARE @PlanHandle VARBINARY(64);
SELECT @PlanHandle = deps.plan_handle
FROM sys.dm_exec_procedure_stats AS deps
WHERE deps.object_id = OBJECT_ID('dbo.OrdersByQty');
IF @PlanHandle IS NOT NULL
 BEGIN
 DBCC FREEPROCCACHE(@PlanHandle);
 END
GO

Listing 8-8

Run Listing 8-7 again and the optimizer uses the histogram to get an estimated row count
of 74954 (spot on), and you'll see the clustered index scan plan, and only 1512 logical reads
instead of 239186.

Finally, why does the optimizer use an Index Scan, rather than Seek operator in Figure
8-10? If we check the properties of the Index Scan, we'll see that the Predicate condition is
OrderQty = @OrderQty OR @OrderQty IS NULL. The reason is simply that the opti-
mizer must always ensure that a plan is safe for reuse. If it has selected the expected Index
Seek with a Seek Predicate of OrderQty = @OrderQty, then what would happen if that
plan were reused when no value for @OrderQty was supplied? The seek predicate would be
an equality with NULL and no rows would be returned, when of course the intent would be to
return rows for all order quantities.

240

Chapter 8: Examining Index Usage

What to do if parameter sniffing causes performance problems

There are many possible ways to address problems relating to parameter sniffing, depending
on the exact situation. If the data distribution is "jagged" with lots of variations in row counts
returned, depending on the input parameter value, then this will often increase the likelihood
of problematic parameter sniffing.

In such cases, you might consider adding the OPTION (RECOMPILE) hint to the end of the
affected query (or queries). For example, if a stored procedure has three queries and only one
of them suffers from bad sniffing, then only add the hint to the affected query; recompiling
all three is a waste of resources.

This will force SQL Server to recompile the plan for that query every time, and optimize it
for the specific value passed in. Use of this hint within our OrderByQty stored procedure
would both fix the problem with problematic parameter sniffing, and mean that the optimizer
could choose a plan with the usual Index Seek / Key Lookup combination (instead of the
Index Scan / Key Lookup seen in Figure 8-10, since it will then know that the plan will
never be reused.

However, the downside with the OPTION (RECOMPILE) solution, generally, is the extra
compilations it causes. For stored procedures and other code modules, all statements,
including the one with OPTION(RECOMPILE), will still be in the plan cache, but the plan for
the OPTION(RECOMPILE) statement will still recompile for every execution, which means
that its plan is not reused. When we use the hint for ad hoc queries, the optimizer marks the
plan created so that it is not stored in cache at all.

An alternative is to persuade the optimizer to always pick a specific plan; since the problem
is caused by the optimizer optimizing the query based on an inappropriate parameter value,
the solution might be to specify what parameter value the optimizer must use to create the
plan, using the OPTION (OPTIMIZE FOR <value>) query hint. We'll cover hints in
detail in Chapter 10. Yet another alternative, is to use a plan-forcing technique, discussed in
Chapter 9.

Of course, this relies on us knowing the best parameter value to pick, one that will most often
result in an efficient or at least good-enough execution plan. For example, from the previous
example, we might choose to optimize for an OrderQty value of 20, if we felt the plan in
Figure 8-10 would generally be the best plan. The issue you can hit here is that data changes
over time and that value may no longer work well in the future.

241

Chapter 8: Examining Index Usage

Yet another alternative is to generate a generic plan, by optimizing for an unknown value.
We can do this, in this case, by adding the OPTION (OPTIMIZE FOR (@OrderQty
UNKNOWN)) hint to the query in our stored procedure. The optimizer will use the density
graph to arrive at a cardinality estimation (in this case, always estimating that 2958.95 rows
will return), and we'll see the plan in Figure 8-9.

The issue comes when good enough just isn't, for certain values, such that performance
suffers unduly where a more specific plan would work better. In short, everything is a trade-
off. There isn't always a single correct answer.

Columnstore Indexes
Columnstore indexes were a new index type introduced in SQL Server 2012, in addition
to the existing index types. With a columnstore index, the storage architecture is different.
It doesn't use the B-tree as a primary storage mechanism (although part of the data can be
stored in a B-tree), and it stores data by column instead of by row. So, rather than storing
as many rows as will fit on a data page, the columnstore index takes all values for a single
column and stores them in one or more pages.

A clustered columnstore index replaces the heap table with an index that stores all the table's
data in a column-wise structure. A nonclustered columnstore index can be applied to any
table, alongside traditional "rowstore" clustered and nonclustered indexes.

CS indexes achieve high data compression and are designed to improve the performance of
analysis, reporting, and aggregation queries such as those found in a data warehouse. In other
words, typical workloads for CS indexes involve a combination of large tables (millions, or
even billions, of rows), and queries that operate on all rows or on large selections. In fact,
simple queries that retrieve a single row or small subsets of rows usually perform much
worse with the columnstore indexes than they do with traditional indexes, because in the
former case SQL Server needs to read a page for each column in the table to reconstruct
each row.

Further, the nature of the storage of the columnstore index makes putting less than 100,000
rows into the index much less efficient than storing greater than that value of rows. Quoting
from the Microsoft documentation, you should consider using a clustered columnstore index
on a table when: Each partition has at least a million rows. Columnstore indexes have
rowgroups within each partition. If the table is too small to fill a rowgroup within each
partition, you won't get the benefits of columnstore compression and query performance.

242

Chapter 8: Examining Index Usage

As well as having a different architecture, columnstore indexes also support a new kind of
query execution model, optimized for modern hardware, called batch mode, the traditional
model being row mode. We won't cover plans for queries that use the batch mode execution
model until Chapter 12.

This section is going to focus purely on how columnstore indexes are exposed within the
execution plans and some important properties that you need to pay attention to when
working with these indexes. For further detail regarding columnstore indexes, and their use
in query tuning, their behavior and storage mechanisms, and maintenance, I suggest the
following resources:

• Columnstore indexes: overview – the Microsoft documentation:
http://bit.ly/1djYOCW

• SQL Server Central Stairway to Columnstore Indexes – written by
Hugo Kornelis, the technical reviewer of this book:
http://bit.ly/2CBiXoQ

• Columnstore indexes: what's new – includes a useful table summarizing
support for various CS features from SQL Server 2012 onwards:
http://bit.ly/2oD9keB

• Niko Neugebauer's Columnstore series – extensive and comprehensive
coverage of all aspects of using columnstore indexes, though the early
articles cover the basics:
http://www.nikoport.com/columnstore/

Using a columnstore index for an aggregation query
Despite being designed for analytics queries on very large tables, you can occasionally
see improved performance using the columnstore index even within an OLTP system, if,
for example, you have reporting queries that pull data from very large tables. A minimum
number of recommended rows to really see big performance gains is one million.

We'll start with a simple query on the TransactionHistory table, with no columnstore
indexes created. This table is not an ideal candidate for a columnstore index, since it contains
only 113 K rows, and is subject to OLTP-style, rather than DW-style, workloads. However,
columnstore indexes are well suited to aggregation queries, so this simple example serves
perfectly well as a first demo of how columnstore indexes work.

http://bit.ly/1djYOCW
http://bit.ly/2CBiXoQ
http://bit.ly/2oD9keB
http://www.nikoport.com/columnstore/

243

Chapter 8: Examining Index Usage

SELECT p.Name,
 COUNT(th.ProductID) AS CountProductID,
 SUM(th.Quantity) AS SumQuantity,
 AVG(th.ActualCost) AS AvgActualCost
FROM Production.TransactionHistory AS th
 JOIN Production.Product AS p
 ON p.ProductID = th.ProductID
GROUP BY th.ProductID,
 p.Name;

Listing 8-9

The execution plan shown in Figure 8-13 illustrates some of the potential load on the server
from this query.

Figure 8-13: Execution plan for an aggregation query (no Columnstore index).

Our query has no WHERE clause, so the optimizer sensibly decides to scan the clustered index
to retrieve all the data from the TransactionHistory table. We then see a Hash Match
(Aggregate) operator. As discussed in Chapter 5, SQL Server creates a temporary hash table
in memory in which it stores the results of all aggregate computations. In this case, the hash
table is created on the ProductID column, and for each distinct ProductID value it
stores a row count tally, total Quantity, and total ActualCost, increasing the counts and
totals whenever it processes a row with the same ProductID. A Compute Scalar computes
the requested AVG, by dividing the row tally for each ProductID by the total Actual-
Cost (it also performs some data type conversions). This data stream forms the Build input
for a Hash Match (inner join) operator, where the Probe input is an Index Scan against the
Product table, to join the Name column.

This simple query returns 441 rows and in my tests returned them in 127ms, on average,
with 803 logical reads. Let's see what happens when we add a nonclustered columnstore to
the table.

244

Chapter 8: Examining Index Usage

CREATE NONCLUSTERED COLUMNSTORE INDEX ix_csTest
ON Production.TransactionHistory
(
 ProductID,
 Quantity,
 ActualCost,
 ReferenceOrderID,
 ReferenceOrderLineID,
 ModifiedDate
);

Listing 8-10

If we rerun the query from Listing 8-9, we'll see significant changes in performance. In my
tests, the query time dropped from an average of 127ms to an average of 55ms, and the
number of logical reads plummeted from 803 to 84, because the columnstore structure allows
the engine to read only the requested columns and skip the other columns in the table. You'll
likely see variance on the number of reads, because of how columnstore builds the index and
compresses the data.

Figure 8-14 shows the execution plan.

Figure 8-14: Execution plan for an aggregation query (with Columnstore index).

We've seen the Adaptive Join before, in Chapter 4, so we won't describe that part of the plan
again here. Note that you'll only see this operator if your database compatibility level is set to
140 or higher.

We'll use this plan, and one for a similar query with a WHERE clause filter, to explore differ-
ences you'll encounter in execution plans, when the optimizer chooses to access data using a
columnstore index.

245

Chapter 8: Examining Index Usage

Aggregate pushdown
The first difference from the plan we saw before creating the CS index is that we now see
a Columnstore Index Scan. If we look at its property sheet, some of the values may seem
confusing at first, since it seems to suggest that the estimated number of rows returned is
113443, but the actual number of rows is 0!

Figure 8-15: Columnstore Index Scan properties showing locally aggregated rows.

This is a special feature of CS indexes in action, called "aggregate pushdown," introduced
in SQL Server 2016, where some, or all, of the aggregation is done by the scan itself. This is
possible because of the pivoted storage mechanisms of the columnstore index. The aggrega-
tion results are "injected directly" into the aggregation operator, in this case the Hash Match
(Aggregate) operator. The arrow from the operator displays only rows that cannot be locally
aggregated. This explains why the Hash Match (Aggregate) operator appears to make the
arrow thicker (effectively adding rows).

In Figure 8-15, the Actual Number of Locally Aggregated Rows value indicates the
number of rows that were aggregated within the scan and not returned in "the normal way" to
the Hash Match (Aggregate), in this case all the rows (113443). On a Columnstore Index
Scan operator, the Actual Number of Rows is the number of rows that were not aggregated
in the scan and were hence returned "normally," in this case, zero rows.

246

Chapter 8: Examining Index Usage

No seek operation on columnstore index
Let's add a simple filter to our previous aggregation query.

SELECT p.Name,
 COUNT(th.ProductID) AS CountProductID,
 SUM(th.Quantity) AS SumQuantity,
 AVG(th.ActualCost) AS AvgActualCost
FROM Production.TransactionHistory AS th
 JOIN Production.Product AS p
 ON p.ProductID = th.ProductID
WHERE th.TransactionID > 150000
GROUP BY th.ProductID,
 p.Name;

Listing 8-11

The plan is the same shape, and has the same operators as the one in Figure 8-14; we still
see the Columnstore Index Scan. There is no Seek operator for a columnstore index, simply
due to how the index is organized; the data in a columnstore index is not sorted in any way,
so there is no way to find specific values directly.

Predicate pushdown in a columnstore index
If we examine the properties of the Columnstore Index Scan in the plan for Listing 8-11,
we see that the WHERE clause predicate was pushed down.

Figure 8-16: Predicate within the columnstore index.

Predicate pushdown in a Columnstore Index Scan is even more important than in a
Rowstore Index Scan, because pushed predicates can result in rowgroup elimination
(sometimes, for historic reasons, incorrectly called segment elimination). In a columnstore
index, each partition is divided into units called rowgroups, and each rowgroup contains up
to about a million rows that are compressed into columnstore format at the same time.

247

Chapter 8: Examining Index Usage

Rowgroup elimination is visible in SET STATISTICS IO, by looking at the
"segment skipped" count.

(434 rows affected)
Table 'TransactionHistory'. Scan count 2, logical reads 0, physical
reads 0, read-ahead reads 0, lob logical reads 63, lob physical
reads 0, lob read-ahead reads 0.
Table 'TransactionHistory'. Segment reads 1, segment skipped 0.
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob
read-ahead reads 0.
Table 'Product'. Scan count 1, logical reads 6, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob
read-ahead reads 0.

In this example, on a small table, all data is in a single rowgroup, so we don't see rowgroup
elimination, of course. However, if you have a 60 million row table then predicate pushdown
can lead to rowgroup elimination and you will see an improvement in query performance.

Batch mode versus row mode
We cover Batch mode in detail in Chapter 12, and the only details I want to call out here are
the Actual Execution Mode and Estimated Execution Mode for the Columnstore Index
Scan operator, both of which are Batch in this case (see Figure 8-15).

This indicates that the plan was optimized for batch mode operation, and so we're seeing the
full potential of the columnstore index. If a query is unexpectedly slow when using a column-
store index then it's worth comparing the actual and estimated execution modes. If the former
shows row and the latter, batch, then you have a plan optimized for batch mode that for some
reason had to fall back into row mode during execution. This is very bad for query perfor-
mance, but is only an issue on SQL Server 2012, where a batch mode plan can fall back to
row mode when a hash operation spills to tempdb.

248

Chapter 8: Examining Index Usage

Memory-optimized Indexes
Indexes perform the same purpose for memory-optimized tables as for the disk-based
tables that we've used up to now. However, they are very different structures, representing a
complete redesign of the data access and locking structures, and specifically designed to get
the best possible performance from being in-memory.

Memory-optimized tables, introduced in SQL Server 2014, support two new types of
nonclustered index:

• Hash indexes – a completely new type of index, for memory-optimized tables,
used for performing lookups on specific values. It's essentially an array of hash
buckets, where each bucket points to the location of a data row, in memory.

• Range indexes – used for retrieving ranges of values, and more akin to the familiar
B-tree index, except these memory-optimized counterparts use a different, Bw-tree
storage structure.

Again, memory-optimized tables and indexes are designed to meet the specific performance
requirements of very-high-throughput OLTP systems, with many inserts per second, but as
well as inserts, updates, and deletes. In other words, the sort of situation where you're likely
to experience the bottleneck of page latches in memory, when accessing disk-based tables.

Even if you’re not hitting the memory latch issues, but you have an extremely write-heavy
database, you could see some benefits from memory-optimized tables. Otherwise, the
only other regular use of memory-optimized tables is to enhance the performance of
table variables.

Again, our goal in this section is purely to examine some of the main features of execution
plans for queries that access memory-optimized tables and indexes. For further details of
their design and use, as well as the various caveats that may prevent you from using them,
I'd suggest the Microsoft online documentation (http://bit.ly/2EQl2Lc) and Kalen Delaney's
book on the topic (http://bit.ly/2BpDxXI).

Using memory-optimized tables and indexes
Listing 8-12 creates a test database and, in it, three memory-optimized tables (copied from
AdventureWorks 2014), and then fills them with data. Please adjust the values of the file
properties, FILENAME, SIZE and FILEGROWTH, as suitable for your system.

http://bit.ly/2EQl2Lc
http://bit.ly/2BpDxXI

249

Chapter 8: Examining Index Usage

CREATE DATABASE InMemoryTest
ON PRIMARY (NAME = InMemTestData,
 FILENAME = 'C:\Data\InMemTest.mdf',
 SIZE = 10GB,
 FILEGROWTH = 10GB),
 FILEGROUP InMem CONTAINS MEMORY_OPTIMIZED_DATA (NAME = InMem,
 FILENAME = 'c:\
data\inmem.ndf')
LOG ON (NAME = InMemTestLog,
 FILENAME = 'C:\Data\InMemTestLog.ldf',
 SIZE = 5GB,
 FILEGROWTH = 1GB);
GO
--Move to the new database
USE InMemoryTest;
GO
--Create some tables
CREATE TABLE dbo.Address (AddressID INTEGER NOT NULL IDENTITY
PRIMARY KEY NONCLUSTERED HASH
 WITH
(BUCKET_COUNT = 128),
 AddressLine1 VARCHAR(60) NOT NULL,
 City VARCHAR(30) NOT NULL,
 StateProvinceID INT NOT NULL)
WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);
GO
CREATE TABLE dbo.StateProvince (StateProvinceID INTEGER NOT NULL
PRIMARY KEY NONCLUSTERED,
 StateProvinceName VARCHAR(50) NOT
NULL,
 CountryRegionCode NVARCHAR(3) NOT
NULL)
WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);
CREATE TABLE dbo.CountryRegion (CountryRegionCode NVARCHAR(3) NOT
NULL PRIMARY KEY NONCLUSTERED,
 CountryRegionName NVARCHAR(50) NOT
NULL)
WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA);

250

Chapter 8: Examining Index Usage

--Add Data to the tables
--Cross database queries can't be used with in-memory tables
SELECT a.AddressLine1,
 a.City,
 a.StateProvinceID
INTO dbo.AddressStage
FROM AdventureWorks2014.Person.Address AS a;
INSERT INTO dbo.Address (AddressLine1,
 City,
 StateProvinceID)
SELECT a.AddressLine1,
 a.City,
 a.StateProvinceID
FROM dbo.AddressStage AS a;
DROP TABLE dbo.AddressStage;
SELECT sp.StateProvinceID,
 sp.Name,
 sp.CountryRegionCode
INTO dbo.ProvinceStage
FROM AdventureWorks2014.Person.StateProvince AS sp;
INSERT INTO dbo.StateProvince (StateProvinceID,
 StateProvinceName,
 CountryRegionCode)
SELECT ps.StateProvinceID,
 ps.Name,
 ps.CountryRegionCode
FROM dbo.ProvinceStage AS ps;
DROP TABLE dbo.ProvinceStage;
SELECT cr.CountryRegionCode,
 cr.Name
INTO dbo.CountryStage
FROM AdventureWorks2014.Person.CountryRegion AS cr;
INSERT INTO dbo.CountryRegion (CountryRegionCode,
 CountryRegionName)
SELECT cs.CountryRegionCode,
 cs.Name
FROM dbo.CountryStage AS cs
DROP TABLE dbo.CountryStage;
GO

Listing 8-12

Before we dive in, let's first run a query that accesses the standard, disk-based Adventure-
Works tables, for comparison.

251

Chapter 8: Examining Index Usage

SELECT a.AddressLine1,
 a.City,
 sp.Name,
 cr.Name
FROM Person.Address AS a
 JOIN Person.StateProvince AS sp
 ON sp.StateProvinceID = a.StateProvinceID
 JOIN Person.CountryRegion AS cr
 ON cr.CountryRegionCode = sp.CountryRegionCode
WHERE a.AddressID = 42;

Listing 8-13

It produces a standard execution plan with no real surprises, or new lessons to be learned.

 Figure 8-17: Execution plan for query accessing standard tables.

We can run essentially the same standard query against our InMemoryTest table, thanks
to the Query Interop component of in-memory OLTP, which allows interpreted T-SQL to
reference memory-optimized tables.

USE InMemoryTest;
GO
SELECT a.AddressLine1,
 a.City,
 sp.StateProvinceName,
 cr.CountryRegionName
FROM dbo.Address AS a
 JOIN dbo.StateProvince AS sp
 ON sp.StateProvinceID = a.StateProvinceID
 JOIN dbo.CountryRegion AS cr
 ON cr.CountryRegionCode = sp.CountryRegionCode
WHERE a.AddressID = 42;

Listing 8-14

252

Chapter 8: Examining Index Usage

The execution plan it produces is not very abnormal looking either.

 Figure 8-18: Execution plan for query accessing memory-optimized tables.

However, there are a few differences:
• We can see a new Index Seek (NonClusteredHash) operator for accessing

 the Address table.
• Examine the Storage property of any of the Index Seek operators, and you'll

see it's MemoryOptimized instead of RowStore.
• Estimated costs for the seeks are lower because the memory-optimized index

is assumed to be more efficient.
On the last point, remember that lower cost estimated doesn't necessarily mean that these
operations cost more or less. You can't effectively compare the costs of operations within a
given plan with the costs of operations within another plan. They're just estimates. Estimates
for a regular plan account for the fact that some of the costs will be accessing data from
the disk whereas the cost estimates for in-memory plans will only be retrieving data from
memory.

Standard queries against memory-optimized tables will generate a completely standard
execution plan. You'll be able to understand which indexes have been accessed, and how
they're accessed. Internally there's a lot going on, but visibly, in the graphical plan, there's
just nothing much to see.

It gets more interesting when we look at a slightly different query.

253

Chapter 8: Examining Index Usage

No option to seek a hash index for a range of values
Let's modify the query just a little bit, looking for a range of addresses rather than just one.

SELECT a.AddressLine1,
 a.City,
 sp.StateProvinceName,
 cr.CountryRegionName
FROM dbo.Address AS a
 JOIN dbo.StateProvince AS sp
 ON sp.StateProvinceID = a.StateProvinceID
 JOIN dbo.CountryRegion AS cr
 ON cr.CountryRegionCode = sp.CountryRegionCode
WHERE a.AddressID BETWEEN 42
 AND 52;

Listing 8-15

If I run the equivalent query against the normal AdventureWorks database I'll get an
execution plan as shown in Figure 8-19.

 Figure 8-19: Standard execution plan with Index Seek operators.

The BETWEEN operator doesn't affect whether the clustered index is used for a seek
operation. It's still an efficient mechanism for retrieving data from the clustered index
on the Address table. Contrast this with the execution plan against the memory-optimized
hash index.

254

Chapter 8: Examining Index Usage

Figure 8-20: Execution plan for query using memory-optimized hash index.

Instead of a seek against the hash index, we see a table scan against the Address table.
This is because the hash index isn't conducive to selections of range values, but instead is
optimized for point lookups. Notice also that the optimizer cannot push down a search
predicate into a scan when running in Interop mode, so it must pass all 19,614 rows to
the Filter operator.

If this was the common type of query being run against this table, we'd need to have a
memory-optimized nonclustered index on the table to better support this type of query. You
can use your execution plans to evaluate this type of information within memory-optimized
tables and queries.

Plans with natively-compiled stored procedures
One additional object that was introduced with memory-optimized tables is the natively-
compiled stored procedure. Currently, the behavior here is different than the standard queries
as demonstrated above. Listing 8-17 creates a natively-compiled stored procedure from the
query in Listing 8-15.

CREATE OR ALTER PROC dbo.AddressDetails @AddressIDMin INT, @
AddressIDMax INT
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER AS
BEGIN ATOMIC WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE
= N'us_english')
 SELECT a.AddressLine1,
 a.City,
 sp.StateProvinceName,
 cr.CountryRegionName

255

Chapter 8: Examining Index Usage

FROM dbo.Address AS a
 JOIN dbo.StateProvince AS sp
 ON sp.StateProvinceID = a.StateProvinceID
 JOIN dbo.CountryRegion AS cr
 ON cr.CountryRegionCode = sp.CountryRegionCode
WHERE a.AddressID BETWEEN @AddressIDMin
 AND @AddressIDMax;
END
GO
EXECUTE dbo.AddressDetails @AddressIDMin = 42, -- int
 @AddressIDMax = 52; -- int

Listing 8-16

We cannot execute the query and get an actual execution plan. That's a limitation with the
compiled procedures. We can get an estimated plan.

Figure 8-21: Execution plan for query accessing a natively-compiled stored procedure.

We still see the Table Scan on the Address table, because there is no supporting index, but
this time, but if we examine its properties, we see that predicate pushdown is supported in
natively-compiled code.

Figure 8-22: Predicate pushdown in natively-compiled code.

256

Chapter 8: Examining Index Usage

A scan within a memory-optimized table is faster, and different internally, than a standard
table, but if the table has a few million rows it will still take time to scan all of them, and
a Bw-tree index would still be useful for this query. Even if did choose to alter the table to
supply an index, the plan itself won't recompile and show us differences, it'll just choose the
index at runtime.

Note that all the estimated costs are zero because Microsoft are costing these procedures in a
new way that isn't reflected externally. There is not a single value beyond zero in any of the
estimated costs inside any of the properties for any of the operators. Let's look at the proper-
ties of the SELECT operator.

Figure 8-23: SELECT operator properties showing estimated costs of zero
for natively-compiled code.

That represents the complete set of properties available. None of the useful properties we've
discussed earlier in the book such as the Reason for Early Termination exist here. This is
because of differences in how these plans are stored (for example, this plan is not in the plan
cache) and how they are generated.

As of this writing, SQL Server 2017 execution plans, when used with the compiled memory-
optimized stored procedures, are less useful. Missing the row counts and costs affects your
ability to make decisions based on the plans, but they still provide good information, which
should allow you to see the actions taken when the query executes, and figure out why a
query is slow.

257

Chapter 8: Examining Index Usage

Summary
It's difficult to overstate the impact of indexes and their supporting statistics on the quality of
the plans that the optimizer generates.

You can't always solve a performance problem just by adding an index. It is entirely possible
to have too many indexes, so you must be judicious in their use. You need to ensure that the
index is selective, and you must make appropriate choices regarding the addition or inclusion
of columns in your indexes, both clustered and nonclustered.

You will also need to be sure that your statistics accurately reflect the data that is stored
within the index because the choice of index used in plan is based on the optimizer's esti-
mated row count and estimated operator costs, and the estimated row counts are based on
statistics. If you use hard-coded input parameter values, then the optimizer can use statistics
for that specific value, but SQL Server loses the ability to reuse plans for those queries. If the
optimizer can sniff parameters, such as when we use a stored procedure, it can use accurate
statistics, but a reused plan based on a sniffed parameter can backfire if the next parameter
has a hugely different rowcount.

258

Chapter 9: Exploring Plan Reuse
All the processes the optimizer needs to perform to generate execution plans, come at a
cost. It costs time and CPU resources to devise an execution strategy for a query. For simple
queries, SQL Server can generate a plan in less than a millisecond, but on typical OLTP
systems there are lots of these short, fast queries and the costs can add up. If the workload
also includes complex aggregation and reporting queries, then it will take the optimizer
longer to create an execution plan for each one.

Therefore, it makes sense that SQL Server wants to avoid paying the cost of generating a
plan every single time it needs to execute a query, and that's why it tries its best to reuse
existing query execution strategies. The optimizer saves them as reusable plans, in an area of
memory called the plan cache. Ideally, if the optimizer encounters a query it has seen before,
it grabs a ready-made execution strategy for it from the plan cache, and passes it straight to
the execution engine. That way, SQL Server spends valuable CPU resources executing our
queries, rather than always having to first devise a plan, and then execute it.

SQL Server will try its best to promote plan reuse automatically, but there are limits to what
it can do without our help as programmers. Fortunately, armed with some simple techniques,
we can ensure that our queries are correctly parameterized, and that plans get reused as often
as possible; I'm going to show you exactly what you need to do. We'll also explore some of
the problems that can occur with plan reuse and what you can do about them.

Querying the Plan Cache
As discussed in Chapter 1, when we submit any query for execution, the optimizer generates
a plan if one doesn't already exist that it can reuse, and stores it in an area of the buffer pool
called the plan cache. Our goal as programmers, DBAs and database developers, is to help
promote efficient use of this memory, which means that the plan for a query gets reused from
cache, and not created or recreated each time the query is called, unless changes in structures
or statistics necessitate recompiling the plan.

259

Chapter 9: Exploring Plan Reuse

The plan cache has four cache stores that store plans (see https://bit.ly/2mgrS6s for more
detail). The compiled plans in which we're interested will be stored in either the SQL plans
cache store (CACHESTORE_SQLCP) or the Object plans store (CACHESTORE_OBJCP),
depending on object type (objtype):

• SQL plans store contains plans for ad hoc queries, which have an objtype of
Adhoc, as well as plans for auto-parameterized queries, and prepared statements,
both of which have an objtype of Prepared.

• Object plans store contains plans for procedures, functions, triggers, and some
other types of object, and each plan will have an associated Object ID value. Plans
for stored procedures, scalar user-defined functions, or multi-statement table-
valued functions have an objtype of Proc, and triggers have an objtype
of Trigger.

To examine plans currently in the cache, as well as to explore plan reuse, we can query a set
of execution-related Dynamic Management Objects (DMOs). Whenever we execute an ad
hoc query, a batch, or an object such as a stored procedure, the optimizer stores the plan. An
identifier, called a plan_handle, uniquely identifies the cached query plan for every query,
batch, or stored procedure that has been executed.

We can supply the plan_handle as a parameter to the sys.dm_exec_sql_text
function to return the SQL text associated with a plan, as well as to the sys.dm_exec_
query_plan function, to return the execution plan in XML format. Several DMOs store
the plan_handle, but in this chapter, we'll primarily use:

• sys.dm_exec_cached_plans – returns a row for every cached plan and
provides information such as the type of plan, the number of times it has been
used, and its size.

• sys.dm_exec_query_stats – returns a row for every query statement in
every cached plan, and provides execution statistics, aggregated over the time the
plan has been in cache. Many of the columns are counters, and provide informa-
tion about how many times the plan has been executed, and the resources that were
used.

There are also a few DMOs that provide similar aggregated execution statistics to
sys.dm_exec_query_stats, but for specific objects, each of which will have a
separate plan, with an associated object_id value. We have sys.dm_exec_proce-
dure_stats for stored procedures, sys.dm_exec_trigger_stats for triggers and
sys.dm_exec_function_stats for user-defined scalar functions. Even though multi-
statement table-valued functions do get a plan, with an object_id value, these plans only

260

Chapter 9: Exploring Plan Reuse

appear in sys.dm_exec_query_stats. Inline views and table-valued functions
do not get a separate plan because their behavior is incorporated into the plan for the
query referencing them.

All the previous DMOs are for investigating plans for queries that have completed execu-
tion. However, since the execution plan is already stored in the cache when execution
starts, we also can look at the plan for queries that are still executing, using the sys.dm_
exec_requests DMV. This is useful if your system is experiencing resource pressure
right now, due to currently-executing, probably long-running, queries. This DMV stores the
plan_handle and a range of other information, including execution stats, for any currently
executing query, whether it's ad hoc, or a prepared statement, or part of a code module.

Using these DMOs, we can construct simple queries that for each plan_handle will
return, for example, the associated query text, and an XML value representing the cached
plan for that query, along with a lot of other useful information. We'll see some examples as
we work through the chapter, though I won't be covering the DMOs in detail.

More on the DMOs
You can refer to the Microsoft documentation (http://bit.ly/2m1F6CA), or Louis Davidson
and Tim Ford's excellent book, Performance Tuning with SQL Server Dynamic Management
Views (https://bit.ly/2Je3evr), which is available as a free eBook. Glenn Berry's diagnostic
queries (http://bit.ly/Q5GAJU) include lots of examples on using DMOs to query the cache
in. Finally, you can skip writing your own queries and use Adam Machanic's sp_WhoIsActive
(http://whoisactive.com/).

Plan Reuse and Ad Hoc Queries
When a query is submitted, the engine first computes the QueryHash and looks for matching
values in the plan cache. If any are found, it does a detailed comparison of the full SQL text.
If they are identical then, assuming there are also no differences in SET options or database
ID, it can bypass the compilation process and simply submit the cached plan for execution.
This is efficient plan reuse at work, and we'd like to promote this as far as possible. Unfortu-
nately, use of ad hoc queries with hard-coded literals, to cite one example, defeats plan reuse.

Listing 9-1 clears out the plan cache and then executes a batch consisting of three ad hoc
queries, which concatenate the name columns in the Person table of AdventureWorks. The
first and second queries are identical in all but the value supplied for BusinessEntityID,
and the second and third differ only in white space formatting.

http://bit.ly/2m1F6CA
https://bit.ly/2Je3evr
http://bit.ly/Q5GAJU
http://whoisactive.com/

261

Chapter 9: Exploring Plan Reuse

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;
GO
SELECT ISNULL(p.Title, '') + ' ' + p.FirstName + ' ' + p.LastName
FROM Person.Person AS p
WHERE p.BusinessEntityID = 5;
SELECT ISNULL(p.Title, '') + ' ' + p.FirstName + ' ' + p.LastName
FROM Person.Person AS p
WHERE p.BusinessEntityID = 6;
SELECT ISNULL(p.Title, '') + ' ' + p.FirstName + ' ' + p.LastName
FROM Person.Person AS p WHERE p.BusinessEntityID = 6;
GO

Listing 9-1

The plans for each query are the same in each case, consisting of only three operators.
If you examine the QueryHash and QueryPlanHash values of the SELECT operator,
you'll see that these are identical for each plan. However, let's see what's stored in the plan
cache. All the DMOs used in this query are server-scoped, so the database context for the
query is irrelevant.

SELECT cp.usecounts,
 cp.objtype,
 cp.plan_handle,
 DB_NAME(st.dbid) AS DatabaseName,
 OBJECT_NAME(st.objectid, st.dbid) AS ObjectName,
 st.text,
 qp.query_plan
FROM sys.dm_exec_cached_plans AS cp
 CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st
 CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) AS qp
WHERE st.text LIKE '%Person%'
 AND st.dbid = DB_ID('AdventureWorks2014')
 AND st.text NOT LIKE '%dm[_]exec[_]%' ;

Listing 9-2

Figure 9-1 shows the result set, with one entry.

Figure 9-1: Results from querying the plan cache.

262

Chapter 9: Exploring Plan Reuse

When we submit to the query processor a batch, or a stored procedure or function, containing
multiple statements, the whole batch will be compiled at once, and so the optimizer has
produced a plan for the whole Adhoc batch. If you check the value of the text column,
you'll see it's the SQL text of the entire batch. The final column in the result set, query_plan,
contains the XML representation of the query execution plan. When viewing the results in
grid view, these XML values are displayed as hyperlinks, and we can click on one to show
the graphical form of the execution plan. As you can see, the optimizer produces a plan for
the batch, which contains individual plans for every statement in the batch.

Figure 9-2: Three execution plans that look the same despite being from three queries.

The first column of the result set, in Figure 9-1, usecounts, tells us the number of times a
plan has been looked up in the cache. In this case it's once, and the only way the plan for this
batch will be reused is if we submit the exact same batch again; same formatting, same literal
values. If we re-execute just part of the same batch, such as the last query then, after rerun-
ning Listing 9-2, we'll see a new entry, and a new plan generated.

The sys.dm_exec_query_stats DMV shows us a slightly different view on this, since
it returns one row for every query statement in a cached plan.

263

Chapter 9: Exploring Plan Reuse

SELECT SUBSTRING(
 dest.text,
 (deqs.statement_start_offset / 2) + 1,
 (CASE deqs.statement_end_offset
 WHEN -1 THEN
 DATALENGTH(dest.text)
 ELSE
 deqs.statement_end_offset - deqs.
statement_start_offset
 END
) / 2 + 1
) AS QueryStatement,
 deqs.creation_time,
 deqs.execution_count,
 deqp.query_plan
FROM sys.dm_exec_query_stats AS deqs
 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp
 CROSS APPLY sys.dm_exec_sql_text(deqs.plan_handle) AS dest
WHERE dest.text LIKE '%Person%'
 AND deqp.dbid = DB_ID('AdventureWorks2016')
 AND dest.text NOT LIKE '%dm[_]exec[_]%'
ORDER BY deqs.execution_count DESC,
 deqs.creation_time;

Listing 9-3

To see some differences in counts and batches, execute the final statement in the batch from
Listing 9-1 two times. Figure 9-3 shows the results after executing the whole of Listing 9-1
once, and then those additional two executions.

Figure 9-3: Multiple executions from the plan cache.

Of course, I could have opted, in Listing 9-3, to return many other columns containing
useful execution statistics, such as the aggregated physical and logical reads and writes,
and CPU time, resulting from all executions of each plan, since that information was stored
in the cache.

264

Chapter 9: Exploring Plan Reuse

The cost of excessive plan compilation
One of the worst offenders for misuse of the plan cache is the unnecessary overuse of
ad hoc, unparameterized queries. These are sometimes generated dynamically by a poorly-
written application library, or by an incorrectly-configured Object-Relational Mapping
(ORM) layer between the application and the database. You also see a lot more plan compiles
when an ORM tool is coded poorly so that it creates different parameter definitions based on
the length of the string being passed, for example VARCHAR(3) for 'Dog' or VARCHAR(5)
for 'Horse'.

Dynamic SQL is any SQL declared as a string data type, and an ad hoc query is any query
where the query text gets submitted to SQL Server directly, rather than being included in a
code module (stored procedure, scalar user-defined function, multi-statement user-defined
function, or trigger). Examples include unparameterized queries typed in SSMS, and
dynamic SQL queries submitted through EXEC(@sql) or through sp_excutesql, as
well as any query that is submitted and sent from a client program, which may be parameter-
ized, in a prepared statement, or may just be an unparameterized string, depending on how
the client code is built.

In extreme cases, unparameterized queries run iteratively, row by row, instead of a single set-
based query. Listing 9-4 uses our previous query in a couple of iterations. The first iteration
hard codes the @id value (for BusinessEntityID) into a dynamic SQL string and passes
the string into the EXECUTE command.

The second iteration uses the sp_executesql procedure to create a prepared statement
containing a parameterized string, to which we pass in parameter values. This approach
allows for plan reuse. Don't worry too much about the details here, as we'll discuss prepared
statements later in the chapter. The key point here is that we want to compare the work
performed by SQL Server to execute the same ad hoc SQL multiple times, in one case where
it can't reuse plans, and in one where it can.

Of course, both iterative approaches are still highly inefficient, given that we can achieve the
desired result set in a set-based way, with a single execution of one query.

DECLARE @ii INT;
DECLARE @IterationsToDo INT = 500;
DECLARE @id VARCHAR(8);
SELECT @ii = 1;
WHILE @ii <= @IterationsToDo

265

Chapter 9: Exploring Plan Reuse

BEGIN
 SELECT @ii = @ii + 1,
 @id = CONVERT(VARCHAR(5), @ii);
 EXECUTE ('SELECT ISNULL(Title, '''') + '' '' + FirstName + ''
'' + LastName FROM Person.Person WHERE BusinessEntityID =' + @id);
END;
GO
DECLARE @ii INT;
DECLARE @IterationsToDo INT = 500;
DECLARE @id VARCHAR(8);
SELECT @ii = 1;
WHILE @ii <= @IterationsToDo
BEGIN
 SELECT @ii = @ii + 1,
 @id = CONVERT(VARCHAR(5), @ii);
 EXEC sys.sp_executesql N'
 SELECT ISNULL(Title, '''') + '' '' + FirstName + '' '' + LastName
FROM Person.Person WHERE BusinessEntityID = @id',
N'@id int',
@id = @ii;
END;
GO

Listing 9-4

If you capture performance metrics using Extended Events, you'll see that the first iteration
performs about 3,500 logical reads and takes 368,890 microseconds, the second performs
1,500 logical reads and takes 26,329 microseconds. Note that STATISTICS IO doesn't
show the extra work; you see only work done directly by the query, not the extra work done
on behalf of the query, for plan cache management.

The approach, using ad hoc, dynamic, unparameterized strings, floods the plan cache
with 500 single-use copies of the same plan (you can run Listing 9-2 to verify). The extra
logical reads this requires, over the iterative approach that reuses the plan, is extra work
associated with compiling and storing these plans. It's only an extra 4 logical reads per
iteration, but if your system is inundated with unparameterized ad hoc queries, all this extra
work adds up quickly.

It causes bigger problems, too. It increases the amount of CPU processing the server must
perform, in continuously and unnecessarily compiling and storing new plans. It also wastes
memory resources, using buffer cache memory to store plans that will only ever be used
once. Unless you have the luxury of enough server memory to accommodate every parameter

266

Chapter 9: Exploring Plan Reuse

combination of every query, it can lead to "cache churn," where older plans, ones that might
be useful, reusable plans, are continuously evicted to make room for the flood of ad hoc
query plans. In severe cases, it can lead to memory pressure.

If you're experiencing such problems, there are various ways to query the plan cache to
confirm or disprove that it's related to excessive use of ad hoc queries. For example, the
simple query in Listing 9-5 will tell you the proportion of each type of compiled plan in
the cache.

SELECT decp.objtype,
 CAST(100.0 * COUNT(*) / SUM(COUNT(*)) OVER () AS DECIMAL(5,
2)) AS plans_In_Cache
FROM sys.dm_exec_cached_plans AS decp
GROUP BY decp.objtype
ORDER BY plans_In_Cache;

Listing 9-5

The results of this query don't mean much, as a one-off execution. You will need to monitor
the values over time, and understand what the expected numbers are for your system, along-
side metrics such as Batch Requests/sec and SQL Compilations/sec, using Perfmon, or
track events directly with Extended Events. You can also retrieve the plan types from the
Query Store.

Various online resources provide more detailed scripts to examine use and abuse of the plan
cache; see, for example, https://bit.ly/2EfYOkl.

Simple parameterization for "trivial" ad hoc queries
For very simple, one-table queries, the optimizer might recognize that, if a query supplied
a parameter instead of a literal, it would be able to create an execution plan it could reuse.
In such cases, the optimizer will try to automatically create a parameter for you, through a
process called "simple parameterization." This only works for execution plans that qualify as
trivial plans (see Chapter 1), because it is only for these that the optimizer can be certain that
the same plan will work well, regardless of the parameter value supplied.

Simple parameterization in action
We encountered simple parameterization back in Chapter 2, but didn't cover it in any detail,
so let's see it in action again. Execute Listing 9-6 and capture the actual plan.

https://bit.ly/2EfYOkl

267

Chapter 9: Exploring Plan Reuse

SELECT a.AddressID,
 a.AddressLine1,
 a.City
FROM Person.Address AS a
WHERE a.AddressID = 42;

Listing 9-6

Figure 9-4 shows the very simple execution plan. I've highlighted the first, visible indica-
tion that the optimizer has performed simple parameterization. You can see the query that is
highlighted is different than the query I wrote and executed, because the hard-coded value for
AddressID has been replaced by a parameter called @1.

Figure 9-4: First visual evidence of simple parameterization.

If the query text is longer, you might not see this clue in the graphical execution plan.
The best place to look is in the properties of the SELECT operator, specifically the
Parameter List.

Figure 9-5: SELECT properties showing evidence of simple parameterization.

268

Chapter 9: Exploring Plan Reuse

Just as we see for stored procedures, or any other parameterized query, the Parameter List
shows the name of any parameters, their compile-time and runtime values, and their data
types. We have no control over the naming of these parameters; they will be simply listed in
the order that the optimizer creates them. We also have no control over the data types;
the optimizer chooses the data type for simple parameterization based on the size of the
value passed to it. You can also see that the query engine respected the parameterization,
by looking at the value at the bottom of Figure 9-5, StatementParameterizationType.
If this value is 0, no parameterization occurred. In this case the value is 2, indicating
simple parameterization.

Re-execute Listing 9-6, but with a hard-coded value of 100, and you'll see that the compile-
time value remains at 42, but the runtime value changes to 100. If we query sys.dm_
exec_cached_plans (see Listing 9-2), then we see the following output.

Figure 9-6: Plan usecounts from the plan cache.

The bottom entry in the output shows that the optimizer reused the existing plan that it
created for the auto-parameterized query, effectively turning it into a prepared statement.
In the text column, we can see the parameter it used (@1) and its data type, in this case
tinyint. For integers, the optimizer uses the smallest data type that can fit the value. If
we'd passed in a value of, say, 300 instead of 42, then the data type would be a smallint
instead of a tinyint. This can mean that even when simple parameterization occurs, we
can still have more than one plan in cache for the same trivial query, but with differences in
the size of the parameter. This is not a major concern, but it's something to be aware of.

The first two entries in Figure 9-6 are for the individual ad hoc queries (with hard-coded
literals). However, if you click on the links to the query plans for each of these entries, you'll
see that they consist only of a SELECT operator. The first thing SQL Server does when
we issue a query is search for an exact textual match in the plan cache. This is done before
simple parameterization, and obviously requires that the pre-parameterization query is stored.
However, these "placeholder" plans are never completed or executed. You can confirm this
by querying sys.dm_exec_query_stats (Listing 9-3), which shows just a single plan
for this query, executed twice.

269

Chapter 9: Exploring Plan Reuse

You can also use the Query Store to retrieve the execution counts, compile counts, the type of
plan, and the type of parameterization. Listing 9-7 shows the information available.

SELECT qsqt.query_sql_text,
 qsq.query_parameterization_type_desc,
 qsq.count_compiles,
 qsp.is_trivial_plan,
 qsrs.count_executions
FROM sys.query_store_query AS qsq
 JOIN sys.query_store_query_text AS qsqt
 ON qsqt.query_text_id = qsq.query_text_id
 JOIN sys.query_store_plan AS qsp
 ON qsp.query_id = qsq.query_id
 JOIN sys.query_store_runtime_stats AS qsrs
 ON qsrs.plan_id = qsp.plan_id
WHERE qsqt.query_sql_text LIKE '%@1%';

Listing 9-7

The results would look like Figure 9-7.

Figure 9-7: Results from the Query Store showing multiple executions.

The optimizer must be sure that any possible query that could use the auto-parameterized
plan will be executed safely, and it won't apply it in cases that could cause plan instability. In
short, it is very cautious in its application of simple parameterization, and is easily deterred.

As noted earlier, a prerequisite is that the plan is trivial, as it was for our query in Listing
9-6, and as indicated by an Optimization Level of TRIVIAL in Figure 9-5 and the is_
trivial_plan indicator in Figure 9-7. However, that doesn't mean any trivial plan will be
auto-parameterized. If you capture the actual plans for the queries in Listing 9-1, and check
the properties of the SELECT operator, you'll see that they also get trivial plans, but you'll
see no parameter list. In this case, simple parameterization is defeated by our inclusion of the
ISNULL function in the query (remove it, and it works). In Chapter 3 (Listing 3-4), we saw a
similar case, where simple parameterization was defeated by use of a LIKE predicate.

270

Chapter 9: Exploring Plan Reuse

What happens if we need to join to another table in our query?

SELECT a.AddressID,
 a.AddressLine1,
 a.City,
 bea.BusinessEntityID
FROM Person.Address AS a
 JOIN Person.BusinessEntityAddress AS bea
 ON bea.AddressID = a.AddressID
WHERE a.AddressID = 42;

Listing 9-8

Figure 9-8 shows the relevant properties from the resulting plan. As you can see, the
Optimization Level will be FULL, rather than TRIVIAL. Since a trivial plan is a
pre-condition of simple parameterization, we'll see no parameters.

Figure 9-8: SELECT properties showing the Optimization Level.

There are many other clauses and conditions that will defeat simple parameterization
if included in a query, such as GROUP BY, DISTINCT, TOP, UNION, INTO, BULK
INSERT, COMPUTE, and others. For more details, refer to Microsoft documentation at
https://bit.ly/2LS6Api.

"Unsafe" simple parameterization
Simple parameterization, and the rules that govern it, are not quite as simple as they might
seem. Try capturing an actual plan for the query in Listing 9-9.

SELECT Person.FirstName + ' ' + Person.LastName,
 Person.Title
FROM Person.Person
WHERE Person.LastName = 'Diaz';

Listing 9-9

https://bit.ly/2LS6Api

271

Chapter 9: Exploring Plan Reuse

The properties of the SELECT operator do show a Parameter List, apparently indicating
that the optimizer did simple parameterization. But did it? Look higher, and you'll see that
the Optimization Level is FULL, and earlier I said that TRIVIAL was a prerequisite for
simple parameterization.

Figure 9-9: SELECT properties showing parameterization, but not really.

In fact, simple parameterization has not occurred. Change 'Diaz' to 'Brown' in Listing 9-9,
rerun it, and then query either the sys.dm_exec_cached_plans or sys.dm_exec_
query_stats DMO. You will see two plans, one for each execution, each unparameter-
ized. We can also see that the StatementParameterizationType property, only
visible if Query Store is enabled in the database, and a value only found in actual plans
because it's a runtime metric, is set to the value of 0. This indicates that no parameters were
used in the execution of the query.

The query plan as captured in the Query Store also shows the attempt to parameterize,
including the parameterized version of the statement. However, the query_parameter-
ization_type column value will be zero, indicating that there was no parameterization,
and the query_sql_text column shows the original query text, not the parameterized
version it would show if the parameterization had been successful.

272

Chapter 9: Exploring Plan Reuse

Not all details of the simple parameterization process are fully documented, so the following
is merely an "educated speculation," based on current understanding and observations. It
appears that there are two phases. The first phase, prior to actual compilation, looks at only
the query text to determine whether the query might qualify for simple parameterization. A
long list of keywords is checked and, if none of them occur in the query, it will be parameter-
ized and handed to the optimizer. Otherwise the query is sent to the optimizer unchanged,
with all the constants in place.

The optimizer will, as always, first check whether TRIVIAL optimization applies. Apart
from the same list of keywords checked for simple parameterization, this now also considers
other database objects such as constraints, indexes, and so on. At this stage, the optimizer
might conclude that simple parameterization is unsafe. The parameterization is undone and
the original, unparameterized query is compiled.

Unfortunately, this series of events results in SSMS showing (and Query Store capturing)
the execution plan as if it were parameterized. The fact that the StatementParameter-
izationType property has a value of zero (see Figure 9-9) is the only indicator that the
displayed execution plan is not the plan that was used.

Of course, when a query does qualify for simple parameterization in the first check, and then
also qualifies for trivial optimization in the second check, the parameterized version of the
query will be compiled, and all plans shown in SSMS, in Query Store, and in the DMOs, will
show the parameterized version.

If you simply omit the Title column from Listing 9-9 and rerun it, you'll see that simple
parameterization now succeeds.

Inclusion of the Title column, in Listing 9-9 necessitated a Key Lookup, which means
that is a threshold at which a clustered index scan is the better option; without Title, the
index is covering and will always be used. Probably, this explains why simple parameteriza-
tion is now "safe."

Finally, you'll see from the Parameter Data Type value that, for strings, the optimizer
chooses a very long maximum length, and so will be able to reuse this plan for input strings
that are much longer.

273

Chapter 9: Exploring Plan Reuse

Figure 9-10: SELECT properties showing successful simple parameterization.

Programming for Plan Reuse: Parameterizing
Queries
As we saw earlier, if we simply hardcode values directly into a dynamic SQL string and
then pass it directly into SQL Server for execution using the EXECUTE command, or by any
other method, the optimizer cannot reuse a cached plan for a subsequent execution where the
SQL string differs only by the coded value. While plan reuse is our focus here, a far bigger
problem with this approach is its vulnerability to SQL Injection attacks. I cannot cover the
latter topic here, but will happily refer you to Erland Sommarskog (http://www.sommarskog.
se/dynamic_sql.html) for further details.

To avoid this vulnerability when issuing dynamic SQL, and to ensure your plans will be
reused rather than regenerated each time, we need to parameterize the SQL text, so that the
optimizer sees the exact same SQL text each time you execute the query. However, as the
previous discussion indicates, we can't rely on the optimizer's simple parameterization for
anything other than the most trivial queries, and sometimes not even those.

http://www.sommarskog.se/dynamic_sql.html
http://www.sommarskog.se/dynamic_sql.html

274

Chapter 9: Exploring Plan Reuse

As T-SQL coders, we need to promote plan reuse, by using parameters in our queries. From
application code, we can do this by creating a prepared statement, using the ODBC ADO.
NET and OLEDB APIs. This parameterizes the query, and then we pass in the parameter
values, for each execution of the parameterized SQL text.

In SQL Server, the best approach, especially for more complex queries to which we need
to pass parameters in (and out), and that we wish to reuse, we use code modules such as
stored procedures or functions. However, we can also create prepared statements using
sp_executesql, or even sp_prepare.

Prepared statements
Listing 9-10 shows how to create a parameterized statement in SQL Server using sp_
executesql (see Listing 9-4 for another example).

DECLARE @sql NVARCHAR(400);
DECLARE @param NVARCHAR(400);
SELECT @sql =
 N'SELECT p.Name,
 p.ProductNumber,
 th.ReferenceOrderID
 FROM Production.Product AS p
 JOIN Production.TransactionHistory AS th
 ON th.ProductID = p.ProductID
 WHERE th.ReferenceOrderID = @ReferenceOrderID;';
SELECT @param = N'@ReferenceOrderID int';
EXEC sys.sp_executesql @sql, @param, 53465;

Listing 9-10

When SQL Server compiles the batch containing the prepared statement, it will set the values
of any variables, and then run the EXECUTE command, and at this point can sniff the param-
eter values. This means that it can use statistics to come up with a very accurate row count
estimate for the predicate (72 rows). Figure 9-11 shows the resulting plan.

275

Chapter 9: Exploring Plan Reuse

Figure 9-11: Execution plan showing sniffed parameters.

In a similar fashion, Listing 9-11 shows how to define parameters through prepared state-
ments in your application (this example uses C#), making use of the API of OLEDB or
ODBC.

using System.Collections.Generic;
using System.Text;
using System.Data;
using System.Data.SqlClient;
namespace ExecuteSQL
{
 class Program
 {
 static void Main(string[] args)
 {
 string connectionString = "Data Source=MySQLInstance;Da
tabase=AdventureWorks2014;Integrated Security=true";
 try
 {
 using (SqlConnection myConnection = new SqlConnecti
on(connectionString))
 {
 myConnection.Open();
 SqlCommand prepStatement = myConnection.
CreateCommand();
 prepStatement.CommandText = @"SELECT p.Name,
p.ProductNumber,

276

Chapter 9: Exploring Plan Reuse

 th.ReferenceOrderID
 FROM Production.Product AS p
 JOIN Production.TransactionHistory
AS th
 ON th.ProductID = p.ProductID
 WHERE th.ReferenceOrderID = @
ReferenceOrderID";
 prepStatement.Parameters.Add("@ReferenceOrderID,"
SqlDbType.Int);
 prepStatement.Prepare();
 prepStatement.Parameters["@ReferenceOrderID"].Value
= 53465;
 prepStatement.ExecuteReader ();
 }
 }
 catch (SqlException e)
 {
 Console.WriteLine(e.Message);
 Console.Read();
 }
 }
 }
}

Listing 9-11

If you execute this and examine the plan cache (Listing 9-2 or 9-3) you'll find the plan shown
in Figure 9-11. If you look at the SELECT operator as we have done throughout this chapter,
you’ll see that the @ReferenceOrderID was parameterized and that the value was
sniffed, with a compile value of 53465 and that the StatementParameterization-
Type has a value of 1, which means the user explicitly parameterized the query, as shown in
Figure 9-12.

Different types of prepared statement behave differently. A .NET application can build
a query in a StringBuilder object, then prepare and execute it; technically, that's a
prepared statement, but it would have all the characteristics of dynamic SQL.

277

Chapter 9: Exploring Plan Reuse

Figure 9-12: SELECT properties showing the prepared statement parameterization.

Similarly, we can also create a prepared statement in SQL using the built-in sp_prepare
stored procedure, although there's not much practical need for it and, again, it behaves some-
what differently.

DECLARE @sql NVARCHAR(400);
DECLARE @param NVARCHAR(400);
DECLARE @PreparedStatement INT;
DECLARE @MyID INT;
SELECT @sql =
 N'SELECT p.Name,
 p.ProductNumber,
 th.ReferenceOrderID
 FROM Production.Product AS p
 JOIN Production.TransactionHistory AS th
 ON th.ProductID = p.ProductID
 WHERE th.ReferenceOrderID = @ReferenceOrderID;';
SELECT @param = N'@ReferenceOrderID int';
SELECT @MyID = 53465;
EXEC sp_prepare @PreparedStatement OUTPUT, @param, @sql;
EXEC sp_execute @PreparedStatement, @MyID;
EXEC sp_unprepare @PreparedStatement;

Listing 9-12

278

Chapter 9: Exploring Plan Reuse

Using this technique, the compilation occurs in two steps: first, prepare (without values) and
then execute (with values). The plan is generated during the prepare step and, since there are
no values, the parameters cannot be sniffed and are treated as normal local variables. This is
different than what we showed with the C# code from Listing 9-11.

Therefore, prepared statements created in this fashion always cause optimization for
unknown values, and so the optimizer will use the density graph to arrive at a cardinality esti-
mation, in this case 3.05 rows, and will generate an appropriate plan, which is rather different
from the one we saw in Figure 9-10. You'll have to clear the cache to see this plan, else you'll
see a reuse of the plan for Listing 9-9, because the SQL text is identical in each case.

Figure 9-13: Execution plan from the sp_prepare statement query.

This is the same plan as we'd see if we'd simply set the value of @ReferenceOrderID
using a local variable (DECLARE @ReferenceOrderID INT). While it may look like a
parameter, the two behave differently and are handled in different ways by the optimizer, as
we saw in Chapter 8.

In this case, the efficiency of this plan will decrease, the more rows are returned by the top
inputs into each of the Nested Loops joins. However, in this case, it isn't a significant perfor-
mance issue, and the plan is good enough for all values that can be passed in.

As we saw, when we parameterize SQL using sp_executesql, use a code-based prepared
statement, or a stored procedure based on this query, we get the optimizer plan for the sniffed
parameter value, but we may see erratic performance as a result.

Stored procedures
We've already seen plenty of examples in this book, especially in Chapter 7, of encapsu-
lating a parameterized query in a stored procedure. When you call a stored procedure, a plan
is created and placed in a cache that is associated with the object ID of the procedure. This
makes plan reuse straightforward and simple, both to work with and to understand.

279

Chapter 9: Exploring Plan Reuse

Listing 9-13 uses the same query as the previous two listings, but this time in a
stored procedure.

CREATE OR ALTER PROC dbo.ProductTransactionHistoryByReference (@
ReferenceOrderID INT)
AS
BEGIN
 SELECT p.Name,
 p.ProductNumber,
 th.ReferenceOrderID
 FROM Production.Product AS p
 JOIN Production.TransactionHistory AS th
 ON th.ProductID = p.ProductID
 WHERE th.ReferenceOrderID = @ReferenceOrderID;
END
GO

Listing 9-13

I can execute the stored procedure with the command in Listing 9-14.

EXEC dbo.ProductTransactionHistoryByReference @ReferenceOrderID =
41798;

Listing 9-14

A big advantage of investigating cached plans for stored procedures is that I can now retrieve
its plan directly from cache. In this case, it will be the plan that is optimized for low esti-
mated row counts, where the leftmost join is a Nested Loops (Figure 9-13).

SELECT DB_NAME(deps.database_id) AS DatabaseName,
 deps.cached_time,
 deps.min_elapsed_time,
 deps.max_elapsed_time,
 deps.last_elapsed_time,
 deps.total_elapsed_time,
 deqp.query_plan
FROM sys.dm_exec_procedure_stats AS deps
 CROSS APPLY sys.dm_exec_query_plan(deps.plan_handle) AS deqp
WHERE deps.object_id = OBJECT_ID('AdventureWorks2014.dbo.ProductTra
nsactionHistoryByReference');

Listing 9-15

280

Chapter 9: Exploring Plan Reuse

This query will return all the various runtimes (in microseconds), which are stored with
the cached plan and are updated for as long as the object remains in cache, and doesn't get
recompiled. The cached_time shows when the object was added to the cache. Figure 9-14
shows the results of running Listing 9-15, after two executions of Listing 9-14.

Figure 9-14: Execution metrics of the stored procedure.

The compile time is included in the *_elapsed_time metrics, so the first execution (6900
microseconds) is substantially slower than the second (80). If we execute the procedure a
third time, but with a parameter value of 53465, you'll see that the last_elapsed_time
is longer (about 12 K microseconds, in my case) because the plan optimized for returning 3
rows is now returning 72. This is not a significant performance issue, but would be more of a
concern if there were parameter values that returned significantly more rows.

Listing 9-15, using the object_id as a filter, is the best way to investigate plans for stored
procedures. However, we can also examine the plans for individual statements within a
stored procedure, using sys.dm_exec_query_stats.

SELECT dest.text,
 deqp.query_plan,
 deqs.execution_count,
 deqs.max_worker_time,
 deqs.max_logical_reads,
 deqs.max_logical_writes
FROM sys.dm_exec_query_stats AS deqs
 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp
 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest
WHERE dest.text LIKE 'CREATE PROC dbo.ProductTransactionHistoryByRe
ference%';

Listing 9-16

I used the LIKE statement, and the 'CREATE…' filter, because the text column in this case
shows the object definition of the procedure (or function or trigger) that was called.

281

Chapter 9: Exploring Plan Reuse

What can go wrong with plan reuse for parameterized queries?
Once the optimizer generates a plan for a prepared statement or stored procedure, all
subsequent executions will use that plan, until the plan is, for whatever reason, removed
from cache. As we discussed briefly above, and in more detail in Chapter 8, if the distribution
of rows in an index is very uneven, the optimizer will choose very different plans, depending
on the parameter value supplied. In these cases, parameter sniffing can sometimes cause you
performance problems.

If you can alter the query text, then the common solutions include use of various query
hints, such as OPTION (RECOMPILE)if you want the optimizer to produce a new plan
on every execution of the statement to which it's applied. For stored procedures and
other code modules, all statements will still be in the plan cache, but the plan for the
OPTION(RECOMPILE) statement will still recompile for every execution, which means
that its plan is not reused. For ad hoc parameterized queries (including prepared statements),
use of this hint means the plan is not stored at all. In either case, this means that you lose out
on reducing recompiles, but at least you do still save space in the plan cache.

The alternative if you don't want to recompile is to use Query Store to force a plan. Another
option is to use various forms of the OPTION (OPTIMIZE FOR…) hint, if you want the
optimizer to always use a plan for specific parameter value, or to always use a "generic" plan,
based on average statistics.

We'll see a few of these hints briefly later, when we discuss plan guides and plan forcing.
Hints will be covered in full detail in Chapter 10, and the Query Store in Chapter 16.

Fixing Problems with Plan Reuse if You Can't
Rewrite the Query
There are two distinct types of problem that we may need to fix, and that are especially hard
to fix with third-party vendor code that you can't change. One is pressure on memory and
CPU resources, caused by the optimizer compiling a very high volume of ad hoc query plans
that it cannot reuse, because of a workload consisting of unparameterized ad hoc queries.

The second is erratic performance of parameterized queries when reusing cached plans,
caused by cases of "bad" parameter sniffing.

282

Chapter 9: Exploring Plan Reuse

Optimize for ad hoc workloads
Let's imagine that a third-party application, where you have no control over the submitted
SQL text, is generating a huge number of ad hoc queries, many of which are only ever
executed once. Another possibility is that an ORM tool, which should be using
parameterized queries, is instead badly configured and generates ad hoc queries instead.
Either of these situations results in plan cache bloat, and is a contributing factor to memory
pressure on the server.

Probably the first option you should consider in this type of situation is to enable the server-
wide setting optimize for ad hoc workloads. I emphasize server-wide because this
setting will affect all databases on the server, and you'll need to test its impact carefully
before choosing to enable it in production. Starting with SQL Server 2016, though, you can
use the database scoped configuration settings to enable, or disable, this setting at the
database level.

With this setting enabled, the query optimizer still optimizes each query in the usual way,
but with one critical difference. Rather than immediately storing a plan in cache, it instead
stores a plan stub, or placeholder. If the same query is executed a second time, then the plan
must be compiled again, and now it is added to the cache for future reuse. This reduces
significantly the amount of memory the plan cache uses for managing execution plans that
are only ever executed once, at the cost of one additional compile for queries that are called
more than once.

Listing 9-17 initializes the optimize for ad hoc workloads setting, and then clears
out the entire plan cache. I'm using the DBCC command just for demonstration purposes. It's
better to either use targeted plan cache removal by passing a plan handle, or to only remove
plans for a single database using ALTER DATABASE SCOPED CONFIGURATION CLEAR
PROCEDURE_CACHE.

EXECUTE sp_configure 'show advanced options', '1';
RECONFIGURE;
GO
EXECUTE sp_configure 'optimize for ad hoc workloads', 1;
RECONFIGURE;
DBCC FREEPROCCACHE;
GO

Listing 9-17

283

Chapter 9: Exploring Plan Reuse

Listing 9-18 shows how to initialize the setting at the database level in Azure SQL Database,
using database scoped configuration changes.

ALTER DATABASE SCOPED CONFIGURATION SET OPTIMIZE_FOR_AD_HOC_
WORKLOADS = ON;
ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

Listing 9-18

To see optimize for ad hoc in action, let's execute a query. This one uses several literals
in a search to find email addresses that start with "david" belonging to people from the state
of Washington.

SELECT 42 AS TheAnswer,
 em.EmailAddress,
 a.City
FROM Person.BusinessEntityAddress AS bea
 JOIN Person.Address AS a
 ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
 JOIN Person.EmailAddress AS em
 ON bea.BusinessEntityID = em.BusinessEntityID
WHERE em.EmailAddress LIKE 'david%'
 AND sp.StateProvinceCode = 'WA';

Listing 9-19

Figure 9-15 shows the actual execution plan. If you were to inspect the properties of the
SELECT operator, you'd see that the text of the Statement is identical to the text we
submitted, and there is no Parameter List. In other words, no parameterization occurred.

284

Chapter 9: Exploring Plan Reuse

Figure 9-15: Execution plan for the query in Listing 9-19.

Now let's see what's in the plan cache, by querying sys.dm_exec_cached_plans. I
used the query in Listing 9-2, adapted slightly so that it also returns the cp.size_in_
bytes column.

Figure 9-16: Output from sys.dm_exec_cached_plans showing no execution plan.

Having enabled optimize for ad hoc workloads, and run this ad hoc for the first
time, the optimizer compiles the plan, but it doesn't store it in the plan cache. There is just a
small (424 byte) plan "stub" with an associated plan_handle.

If you were to run Listing 9-19 one more time and re-query sys.dm_exec_cached_
plans, the results will be different. The optimizer has compiled the plan again, and this time
stored it.

Figure 9-17: Output from sys.dm_exec_cached_plans with an execution plan.

Notice that the usecount didn't go up by one, because this is effectively a new query plan
in cache. Subsequent executions of the same query will result in the execution count ticking
over as normal, with no further compilations. If we execute the same query, but this time
looking for emails starting with "paul" then we'll see a new "stub" entry for that query, then a
normal plan the next time the exact same text is submitted.

Before we move on, let's disable the setting to avoid confusion.

285

Chapter 9: Exploring Plan Reuse

EXECUTE sp_configure 'show advanced options', 1;
RECONFIGURE;
GO
EXECUTE sp_configure 'optimize for ad hoc workloads', 0;
RECONFIGURE;
GO
EXECUTE sp_configure 'show advanced options', 0;
RECONFIGURE;
GO

Listing 9-20

Forced parameterization
The 'optimize for ad hoc workloads' reduces the memory required in the plan
cache for plans that will only ever be used once, but it does not help promote plan reuse. If
your OLTP system is subject to a heavy workload comprising ad hoc queries, and the sheer
number of plan compilations is contributing heavily to existing CPU pressure, then you may
need a different approach. If you can't rewrite the queries to parameterize them, then you may
consider using forced parameterization, although there can be substantial drawbacks, as we'll
discuss later in this section.

We saw earlier that the optimizer applies simple parameterization very cautiously, occasion-
ally replacing literals with parameters, in trivial plans, based on a complex set of rules.

If we enable forced parameterization, then the optimizer attempts to replace all literal
values with a parameter, with the following important exceptions (among others, see
https://bit.ly/2JhrIb2):

• literals in the select list of any SELECT statement are not replaced
• parameterization does not occur within individual T-SQL statements inside stored

procedures, triggers, and UDFs, which get execution plans of their own
• The pattern and escape_character arguments of a LIKE clause
• XQuery literals are not replaced with parameters.

Normally, forced parameterization is set at the database level, by setting the PARAMETER-
IZATION option to FORCED, and will apply to all queries on that basis. You also have the
option of choosing to set it only for a single query using the query hint, PARAMETERIZA-
TION FORCED, but this hint is only available as a plan guide, which we cover later in
this chapter.

https://bit.ly/2JhrIb2

286

Chapter 9: Exploring Plan Reuse

Listing 9-21 shows a simple ad hoc query like the one we encountered earlier in the chapter,
and which does not get simple parameterization.

SELECT ISNULL(Person.Title, '') + ' ' + Person.FirstName + ' ' +
Person.LastName
FROM Person.Person
WHERE Person.BusinessEntityID = 278;

Listing 9-21

Figure 9-18 shows the results of running Listing 9-3, to see what's in the plan cache.

Figure 9-18: Query without parameterization from cache.

Let's now enable forced parameterization and clean out the buffer cache, which happens
automatically when you change the parameterization option.

ALTER DATABASE AdventureWorks2014 SET PARAMETERIZATION FORCED;
GO

Listing 9-22

Now run Listing 9-21 again. If you capture the actual plan and examine the properties
of the SELECT operator, you'll see that, this time, they were parameterized. We see a
Parameter List, and a StatementParameterizationType of 3, indicating
forced parameterization.

Figure 9-19: SELECT properties showing that forced parameterization occurred.

287

Chapter 9: Exploring Plan Reuse

Just as for simple parameterization, with forced parameterization we still have no control
over the parameter names, which are just based on the order in which parameters are created,
which in turn is driven by the order in which the literal values appear in the query. Crucially,
we can't control the data types picked for parameterization, either.

Figure 9-20 shows the plan cache after executing Listing 9-21 one more time, but with a
different literal value, proving that the plan was reused.

Figure 9-20: A parameterized query is now in cache.

Is this a good thing? For this query, yes. The plan uses a Seek of the clustered index, and will
always produce the same plan, regardless of parameter value. However, the problem with
enforcing parameterization is that it is a very blunt instrument. It will force the optimizer
to parameterize all queries running on the database, for better or worse. If some queries get
parameterized that otherwise would have many different plans, according to the exact value
supplied then, while you might reduce compilations, you're possibly heading for bad param-
eter sniffing problems.

Forced parameterization also has limitations. What if your OLTP system is subject to many
wildcard searches, with hard-coded literals? Rerun Listing 9-19, which contains just such
a wildcard search for email addresses. You'll see that the execution plan is the same as that
shown in Figure 9-10. However, the query text stored with the plan is no longer the same. It
now looks as below (formatted for legibility).

SELECT 42 AS TheAnswer,
 em.EmailAddress,
 a.City
FROM Person.BusinessEntityAddress AS bea
 JOIN Person.Address AS a
 ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
 JOIN Person.EmailAddress AS em
 ON bea.BusinessEntityID = em.BusinessEntityID
WHERE em.EmailAddress LIKE 'david%'
 AND sp.StateProvinceCode = @0

288

Chapter 9: Exploring Plan Reuse

Instead of the two-character string we supplied in the original query definition, the parameter
@0 is used in the comparison to the StateProvinceCode field. If this query is called
again with a different two- or three-character state code, the plan will be reused. This could
affect performance, either positively or negatively. Also, because LIKE is in the exception
list for forced parameterization, this plan will only be reused for a search for email addresses
that start with 'david', in any state.

As a small side note, the query stored with the plan did not include the semicolon statement
terminator that I had in my original query.

Before proceeding, be sure to reset the parameterization of the database.

ALTER DATABASE AdventureWorks2014 SET PARAMETERIZATION SIMPLE;
GO

Listing 9-23

Plan guides
The optimize for ad hoc workloads setting and forced parameterization, at the
database level, may be useful options for fixing problems related to ad hoc query workloads,
especially where you don't have the option of fixing the code. However, they are both broad-
reaching in their impact.

Plan guides offer you a way to control certain aspects of the optimizer's behavior, and there-
fore "guide" towards the plan you want, in cases where you can't modify the database code or
schema. They allow us to apply valid query hints to the code, without editing the T-SQL code
in any way. They're available on all SQL Server Editions except Express Edition.

We can create plan guides for stored procedures and other database objects (object plan
guides), or for SQL statements that are not part of a database object (SQL plan guides
and template plan guides). Their advantage over the optimize for ad hoc work-
loads setting and forced parameterization is that they affect only the specific objects or
queries to which we apply them. I'll offer typical examples of how you might use each of
these types of plan guide to tackle problems related to plan reuse (of course, they have
broader applications, too).

Before we start, my customary words of caution: exercise due care when implementing plan
guides, because changing how the optimizer deals with a query can degrade its performance,
if used incorrectly. As I stress heavily in Chapter 10, hints and therefore plan guides, can be

289

Chapter 9: Exploring Plan Reuse

dangerous. They are not suggestions that the optimizer might consider, they are commands
that the optimizer must obey. Also, any performance advantage a plan guide offers today may
soon start to work against you, as the database and its data change over time.

As with hints, plan guides should be a last resort, not a standard tactic. As code, structures, or
the data change, the forced plan may become suboptimal, hurting performance. Proper testing
and due diligence must be observed prior to applying forcing with plan guides, or with Query
Store. Then, over time, you should reevaluate the plans being forced in this fashion. Finally,
plan guides are a tool for dealing with some types of issues around plan reuse, but plan
forcing through the Query Store, covered later in this chapter, is now a preferred mechanism
over plan guides.

You can monitor the success or failure of any of the plan guides using the Extended Events
plan_guide_successful and plan_guide_unsuccessful.

Template plan guides
Let's say there are only a few problematic ad hoc queries that you'd like the optimizer to
parameterize, while not affecting the optimization behaviors for any other queries on the
database. In other words, you'd like a solution like forced parameterization, but localized to
just those problem queries. This is where template plan guides can be useful.

Let's suppose that we decide that our query from Listing 9-17 must have its PARAMETER-
IZATION set to FORCED, but the query comes from vendor code that we can't edit. We can
simply create a template plan guide to implement forced parameterization, just for that query,
rather than changing the settings on the entire database. A template plan guide will override
parameterization settings in queries.

The first step is to use the sp_get_query_template stored procedure to retrieve the
template. We use the query text as input, and the outputs, which "mimic the parameterized
form of a query that results from using forced parameterization," we store in variables and
then pass to the sp_create_plan_guide procedure, to create the template plan guide.

The @templatetext output parameter will contain the parameterized form of the query
text, as a string, and the @parameters output parameter will contain a comma-separated
list of parameter names and data types.

290

Chapter 9: Exploring Plan Reuse

DECLARE @templateout NVARCHAR(MAX),
 @paramsout NVARCHAR(MAX);
EXEC sys.sp_get_query_template @querytext = N'SELECT 42 AS
TheAnswer
 ,em.EmailAddress
 ,e.BirthDate
 ,a.City
FROM Person.Person AS p
 JOIN HumanResources.Employee e
 ON p.BusinessEntityID = e.BusinessEntityID
 JOIN Person.BusinessEntityAddress AS bea
 ON p.BusinessEntityID = bea.BusinessEntityID
 JOIN Person.Address a
 ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
 JOIN Person.EmailAddress AS em
 ON e.BusinessEntityID = em.BusinessEntityID
WHERE em.EmailAddress LIKE ''david%''
 AND sp.StateProvinceCode = ''WA'';',
 @templatetext = @templateout OUTPUT,
 @parameters = @paramsout OUTPUT;
EXEC sys.sp_create_plan_guide
 @name = N'MyTemplatePlanGuide',
 @stmt = @templateout,
 @type = N'TEMPLATE',
 @module_or_batch = NULL,
 @params = @paramsout,
 @hints = N'OPTION(PARAMETERIZATION FORCED)';

Listing 9-24

The input parameters for sp_create_plan_guide are as follows:
• @name – the plan guide name will operate within the context of the database, not

the server, which also means the guide only works within that database.
• @stmt – must be an exact match to the query that the query optimizer will be

called on to match, although white space and carriage returns don't matter. When
the optimizer finds code that matches, it will look up and apply the correct plan
guide. In this case, we supply the variable storing the @templatetext output.

• @type – the type of plan guide, in this case a template plan guide.

291

Chapter 9: Exploring Plan Reuse

• @module_or_batch – we'd specify the name of the target object if we were
creating an object plan guide. We'd supply NULL otherwise.

• @params – only applicable to template plan guides, and is a comma-separated
list of parameter names and data types.

• @hints – specifies any hints that need to be applied, in this case
OPTION(PARAMETERIZATION FORCED).

Run Listing 9-24, and then rerun Listing 9-19 and you'll see that this query is now subject to
forced parameterization, as indicated in the properties of the SELECT operator. Unlike for
other types of plan guides, the template plan guide itself isn't identified within the execution
plan. You can use the Extended Event plan_guide_successful to ensure that the plan
guide was applied.

SQL plan guides
Rather than having problems with unparameterized queries, perhaps your system executes
lots of parameterized queries, and you're getting performance problems with some of them,
due to bad parameter sniffing.

In the earlier section on Prepared statements, we encountered a parameterized query where
the optimizer's choice of plan depended on the input value. When the cardinality estimation
was just a few rows, we saw a simple plan consisting of Nested Loops joins (Figure 9-13).
For higher estimated rows returned, we saw a more complex-looking plan with a Merge Join
(Figure 9-11).

We've decided that the simpler plan is the best plan for most possible input values, and so we
want to apply the OPTIMIZE FOR hint to get that plan. However, again, we can't add a hint
because we have no control over the SQL executed. This is one example of where a SQL plan
guide can be useful.

One option would be to force the optimizer to produce a plan for a specific value, one that we
know results in the simpler plan, for example OPTIMIZE FOR (@ReferenceOrderID
= 41798). However, what if the data changes and suddenly this input value returns many
rows? The plan will change, and this could impact the performance of other executions of the
prepared statement.

Instead, we'll create a SQL plan guide that uses the OPTIMIZE FOR hint with a value of
UNKNOWN to force a more generic plan on the optimizer, based on average statistics, which
results in the simple plan we want and is less susceptible to instability over time.

292

Chapter 9: Exploring Plan Reuse

EXEC sys.sp_create_plan_guide
 @name = N'MySQLPlanGuide',
 @stmt = N'SELECT p.Name,
 p.ProductNumber,
 th.ReferenceOrderID
 FROM Production.Product AS p
 JOIN Production.TransactionHistory AS th
 ON th.ProductID = p.ProductID
 WHERE th.ReferenceOrderID = @ReferenceOrderID;',
 @type = N'SQL',
 @module_or_batch = NULL,
 @params = N'@ReferenceOrderID int',
 @hints = N'OPTION (OPTIMIZE FOR UNKNOWN)';

Listing 9-25

Now if we rerun the prepared statement in Listing 9-10, the optimizer will no longer do
parameter sniffing and arrive at the plan with the Merge Join, but will instead create the plan
based on average statistics, shown in Figure 9-21.

Figure 9-21: Execution plan resulting from the hint in the plan guide.

The properties of the SELECT operator show that the plan guide was applied.

293

Chapter 9: Exploring Plan Reuse

Figure 9-22: SELECT properties showing the plan guide in use.

This means you have a method to see if a plan guide was accurately applied to a stored
procedure, and to identify plans where a plan guide affected the optimizer, when trouble-
shooting an inherited database.

Object plan guides
Perhaps your system executes lots of parameterized queries, in stored procedure form, and
again you're getting performance problems with some of them, due to bad parameter sniffing.
You've identified a stored procedure, dbo.uspGetManagerEmployees (which is a
built-in stored procedure in AdventureWorks), where you're willing to take the hit of
having SQL Server compile a plan for every execution, by applying the RECOMPILE hint.
However, this isn't a procedure you can edit. So you decide to create an object plan guide to
apply the RECOMPILE hint. We can only use object plan guides for queries that execute in
the context of T-SQL stored procedures, scalar user-defined functions, multi-statement table-
valued user-defined functions, and DML triggers.

294

Chapter 9: Exploring Plan Reuse

EXEC sys.sp_create_plan_guide
 @name = N'MyObjectPlanGuide',
 @stmt = N'WITH [EMP_cte]([BusinessEntityID],
[OrganizationNode],
 [FirstName], [LastName],
[RecursionLevel])
 -- CTE name and columns
AS (
SELECT e.[BusinessEntityID], e.[OrganizationNode], p.[FirstName],
 p.[LastName], 0 -- Get initial list of Employees for Manager
n
FROM [HumanResources].[Employee] e
 INNER JOIN [Person].[Person] p
 ON p.[BusinessEntityID] = e.[BusinessEntityID]
WHERE e.[BusinessEntityID] = @BusinessEntityID
UNION ALL
SELECT e.[BusinessEntityID], e.[OrganizationNode], p.[FirstName],
 p.[LastName], [RecursionLevel] + 1
-- Join recursive member to anchor
FROM [HumanResources].[Employee] e
 INNER JOIN [EMP_cte]
 ON e.[OrganizationNode].GetAncestor(1) =
 [EMP_cte].[OrganizationNode]
 INNER JOIN [Person].[Person] p
 ON p.[BusinessEntityID] = e.[BusinessEntityID]
)
SELECT [EMP_cte].[RecursionLevel],
 [EMP_cte].[OrganizationNode].ToString() as
[OrganizationNode],
 p.[FirstName] AS ''ManagerFirstName'',
 p.[LastName] AS ''ManagerLastName'',
 [EMP_cte].[BusinessEntityID], [EMP_cte].[FirstName],
 [EMP_cte].[LastName] -- Outer select from the CTE
FROM [EMP_cte]
 INNER JOIN [HumanResources].[Employee] e
 ON [EMP_cte].[OrganizationNode].GetAncestor(1) =
 e.[OrganizationNode]
 INNER JOIN [Person].[Person] p
 ON p.[BusinessEntityID] = e.[BusinessEntityID]
ORDER BY [RecursionLevel], [EMP_cte].[OrganizationNode].ToString()
OPTION (MAXRECURSION 25) ',
 @type = N'OBJECT',
 @module_or_batch = N'dbo.uspGetManagerEmployees',

295

Chapter 9: Exploring Plan Reuse

 @params = NULL,
 @hints = N'OPTION(RECOMPILE,MAXRECURSION 25)';

Listing 9-26

Again, the @stmt parameter must contain SQL text that is an exact match to that which the
query optimizer sees (barring white space and carriage returns). Remember that a procedure
could have more than one statement and you want to apply the hint to the correct one within
the procedure.

This time, the @type parameter is a database object, and in the @module_or_batch
parameter we specify the name of the target object.

For the @hints parameter, we apply the RECOMPILE hint, but notice that this query
already had a hint, MAX RECURSION. That hint had also to be part of my @stmt in order to
match what was inside the stored procedure. The plan guide replaces the existing OPTION,
so if we need it to be carried forward, we must add it to the plan guide.

From this point forward, without making a single change to the actual definition of the stored
procedure, when we execute it, the optimizer will recompile the plan for the specified query
every time, and optimize it for the specific value provided. Note that you cannot alter a stored
procedure that has a plan guide.

Again, you can identify that a guide has been used by looking at the SELECT operator of the
resulting execution plan.

Viewing, validating, disabling, and removing plan guides
To see a list of plan guides within the database, just SELECT from the dynamic management
view, sys.plan_guides.

SELECT *
FROM sys.plan_guides;

Listing 9-27

After you apply cumulative updates, upgrade your instance of SQL Server, or even deploy
changes to your database, it’s a good idea to ensure that your plan guides, if any, are intact.
You can validate the plan guides using fn_validate_plan_guide.

296

Chapter 9: Exploring Plan Reuse

SELECT pg.plan_guide_id,
 pg.name,
 fvpg.message,
 fvpg.severity,
 fvpg.state
FROM sys.plan_guides AS pg
 OUTER APPLY sys.fn_validate_plan_guide(pg.plan_guide_id) AS
fvpg;

Listing 9-28

The value being passed is the plan_guide_id, retrieved from the sys.plan_guides
system view. If the plan guide is valid, nothing is returned. If the plan guide is invalid you’ll
get the first error found by the validation process. This query, then, will list all the plan guides
and show any that have errors.

Aside from the procedure to create plan guides, a second one, sp_control_plan_
guide, allows you to drop, disable (which saves the definition but stops SQL Server
from using it), or enable a specific plan guide; or drop, disable, or enable all plan guides
in the database.

Simply run execute the sp_control_plan_guide procedure, changing the
@operation parameter appropriately. Listing 9-29 will remove all the plan guides
created in this chapter.

EXEC sys.sp_control_plan_guide @operation = N'DROP ALL', @name =
N'*';

Listing 9-29

Plan forcing
There may be situations where adding hints using plan guides does not produce consistent
results. While hints dictate how the optimizer deals with certain aspects of a query (such as
dictating use of a join operator), sometimes they still allow the optimizer room to pick from
multiple candidate plans, of which some are good and some are bad. You cannot control
which one is picked.

In such cases, where you can't touch the code, and you want to "strong-arm" the optimizer
into picking the plan you want, you can use plan forcing. I'll show you how to use a plan
guide to force the use of your plan for a query, by applying the USE PLAN query hint. I'll

297

Chapter 9: Exploring Plan Reuse

then show an alternative approach to plan forcing using Query Store (a topic we'll cover
in detail in Chapter 16). As you will see, it is much easier to use plan forcing within Query
Store than it is to implement a plan guide.

As with hints, and plan guides, and for all the reasons discussed previously, plan forcing
should be a final attempt at solving an otherwise unsolvable problem. As the data and
statistics change, or new indexes are added, plan guides can become outdated and the
exact thing that saved you so much processing time yesterday will be costing you more
and more tomorrow.

Using plan guides to do plan forcing
The USE PLAN query hint, introduced in SQL Server 2005, allows you to come as close as
you can to gaining total control over a query execution plan. This hint allows you to take an
execution plan, captured as XML, and then use that plan on a given query from that point
forward. This doesn't stop the optimizer from doing its job. You'll still get full optimization
depending on the query, but the optimization is used only to verify that the forced plan will
be valid for the query.

With plan guides, you cannot force a plan on:
• INSERT, UPDATE, DELETE, or MERGE queries
• Queries that use cursors other than static, fast_forward, forward_only

or insensitive.
While you can simply attach an XML plan directly to the query in question, XML execution
plans are very large. If your attached plan exceeds 8 K in size, then SQL Server can no longer
cache the query, because it exceeds the 8 K string literal cache limit. For this reason, you
should employ USE PLAN, within a plan guide, so that the query in question will be cached
appropriately, enhancing performance. It also means that you avoid thousand-line queries,
improving the readability and maintainability of the code, and you avoid having to deploy
and redeploy the query to your production system, if you want to add or remove a plan.

Listing 9-30 shows a simple CreditInfoBySalesPerson stored procedure, for
reporting some information from the SalesOrderHeader table.

CREATE PROCEDURE Sales.CreditInfoBySalesPerson (@SalesPersonID INT)
AS
SELECT soh.AccountNumber,
 soh.CreditCardApprovalCode,
 soh.CreditCardID,

298

Chapter 9: Exploring Plan Reuse

 soh.OnlineOrderFlag
FROM Sales.SalesOrderHeader AS soh
WHERE soh.SalesPersonID = @SalesPersonID;

Listing 9-30

When the procedure is run using the value for @SalesPersonID = 277, a Clustered
Index Scan results.

Figure 9-23: Execution plan with a scan for a large data set.

If we remove the plan from cache and change the value to 285, we see an Index Seek with a
Key Lookup.

Figure 9-24: Execution plan with a Seek and Key Lookup for a smaller data set.

In situations like this, you might generally choose to recompile, using the RECOMPILE hint,
but let's assume that is not acceptable, in this case. The next valid option is to add a plan guide
that uses the OPTIMIZE FOR hint, as described previously. The Clustered Index Scan has the
advantage of predictable and consistent performance, whereas the plan with the Index Seek and
Key Lookup will likely have more erratic performance patterns.

However, your testing suggests that, for most values of SalesPersonID, the Index Seek
with a Key Lookup is much faster than the Clustered Index Scan and, rather than use a
plan guide and OPTIMIZE FOR hint, you're going to force the optimizer to always use your
preferred plan.

299

Chapter 9: Exploring Plan Reuse

First, we need to create an XML plan that behaves the way we want. We do this by taking the
SQL text out of the stored procedure and modifying it to behave the correct way. This results
in the desired plan, which we capture by wrapping it within STATISTICS XML, which will
generate an actual execution plan in XML. You can also use a graphical plan and then right-
click to capture the XML.

SET STATISTICS XML ON;
GO
SELECT soh.AccountNumber,
 soh.CreditCardApprovalCode,
 soh.CreditCardID,
 soh.OnlineOrderFlag
FROM Sales.SalesOrderHeader AS soh
WHERE soh.SalesPersonID = 285;
GO
SET STATISTICS XML OFF;
GO

Listing 9-31

This simple query generates a 117-line XML plan, which I won't show here. With the
XML plan in hand, we'll create a plan guide to apply it to the stored procedure. You can
 just right-click on the XML Showplan link, select Copy and paste it in as the value for
the @hints parameter.

EXEC sys.sp_create_plan_guide
 @name = N'UsePlanPlanGuide',
 @stmt = N'SELECT soh.AccountNumber,
 soh.CreditCardApprovalCode,
 soh.CreditCardID,
 soh.OnlineOrderFlag
FROM Sales.SalesOrderHeader AS soh
WHERE soh.SalesPersonID = @SalesPersonID;',
 @type = N'OBJECT',
 @module_or_batch = N'Sales.CreditInfoBySalesPerson',
 @params = NULL,
 @hints = N'<ShowPlanXML xmlns="http://sche...

Listing 9-32

300

Chapter 9: Exploring Plan Reuse

If we supply a valid XML plan to @hints, then sp_create_plan_guide automatically
interprets this as a USE PLAN hint. Now, we execute the query using the value that generates
the non-preferred plan.

EXEC Sales.CreditInfoBySalesPerson @SalesPersonID = 277;

Listing 9-33

However, we still get the execution plan we want, as shown in Figure 9-25.

Figure 9-25: Execution plan using the Seek because of the plan guide.

The fatter data transfer pipes between the operators in Figure 9-25, compared to Figure 9-24,
tells us that more data is being moved through the plan, as expected. You can also inspect the
properties of the SELECT operator to verify that the plan guide was used.

Using Query Store to do plan forcing
If you're working on Azure SQL Database or SQL Server 2016 and later, an easier way to
solve the same problem is to use plan forcing in Query Store. I'm assuming you have Query
Store enabled. If not, go to Chapter 16 to learn how.

Execute the query in Listing 9-34.

301

Chapter 9: Exploring Plan Reuse

SELECT Object_Name(qsq.object_id) AS ObjectName,
 Cast(qsp.query_plan AS XML) AS xmlplan, qsq.query_id, qsp.plan_id
 FROM sys.query_store_query AS qsq
 JOIN sys.query_store_plan AS qsp
 ON qsp.query_id = qsq.query_id
 WHERE qsq.object_id = Object_Id('Sales.CreditInfoBySalesPerson');

Listing 9-34

You should see three execution plans, all with the same query_id but different values for
plan_id. The first two are the plans for the initial two executions of the stored procedure,
with @SalesPersonID values of 277 and 285, and the third is technically a different plan
because it is now a forced plan.

Figure 9-26: Three plans in the Query Store.

If we had edited the query text directly, to add the hint, then the query_id would have
been different as well. However, in this case we used a plan guide so the query text was still
exactly the same.

Let's say that this time we want to force the Clustered Index Scan plan for this procedure
(Figure 9-23), then we can pull a plan directly out of the Query Store and put it into the plan
cache. In my case, plan_id 5111 is the one I want.

EXEC sys.sp_query_store_force_plan @query_id = 5004, @plan_id =
5111;

Listing 9-35

Execute CreditInfoBySalesPerson with a parameter value of 285, and you'll see
the Clustered Index Scan plan instead of the Index Seek and Key Lookup plan. And
remember, unless you dropped it, the UsePlanPlanGuide guide, forcing the latter plan, is
still in place. Query Store plan forcing will take precedence over a plan guide.

302

Chapter 9: Exploring Plan Reuse

To unforce the plan, run Listing 9-36.

EXEC sp_query_store_unforce_plan @query_id = 5004, @plan_id = 5111;

Listing 9-36

You many also want to run Listing 9-29 one more time, if you still have plan forcing with a
plan guide in place.

Again, plan forcing is a quick, although temporary, method for addressing bad parameter
sniffing. I call the fix temporary because, as with any of the other bad-parameter-sniffing
fixes, you'll want to reassess it over time as the data, your systems, and your code change.

Summary
Creating execution plans is a costly operation for SQL Server. Because of this, you want
to reuse plans as often as you can, and in as many ways as you can. Using parameterized
queries, whether stored procedures or prepared statements, is a great way to get this done.
Other methods of controlling plan use and reuse such as forced parameterization and Opti-
mize For Ad Hoc Workloads can also help reduce the load placed on the server by the
optimization process.

Using plan guides and plan forcing, you can take direct control away from the optimizer and
attempt to achieve better performance for your queries. However, by taking control of the
optimizer you can introduce problems as big as those you're attempting to solve. Be very
judicious in the use of some of the methods outlined in this chapter. Take your time and test
everything you do to your systems. You will also need to regularly retest your systems
wherever you've taken direct control using plan guides. Use the information that you've
gleaned from the other chapters in this book to be sure that the choices you're making are
the right ones.

303

Chapter 10: Controlling Execution Plans
with Hints

The query optimizer gets it right most of the time, but occasionally it chooses a plan that
isn't the best one possible. As discussed in Chapter 8, the optimizer bases its plan choices
on selectivity and cardinality estimates that are derived from statistics. If a column has a
particularly "jagged" distribution, even statistics that are as good, and as up to date, as SQL
Server can make them can't accurately describe it. Sometimes, our queries use complex
predicates that are hard to estimate, or that force the optimizer to use a hard-coded selectivity
estimation. These issues could cause the optimizer to err in its choice of plan, resulting in
suboptimal query performance.

In such cases, we might decide to force the optimizer's hand, by applying hints that tell it
how to access certain tables, or which join strategy to use, or how it should optimize a whole
set of operations for a given query. This, of course, will result in a different plan from the one
the optimizer would have chosen if given a free hand.

I'll describe those query, join, and table hints that directly affect the choice of execution plan.
I won't cover hints that affect the strategy for executing rather than compiling the query (such
as locking hints), or any that have minimal impact on plan choice. I'll also explain why it's a
very good idea, generally, to be extremely cautious when applying hints to your queries, and
I'll point out the specific dangers associated with certain hints.

The Dangers of Using Hints
While you may find situations where a hint does indeed help performance, you should
use them sparingly, because hints can be dangerous. Even their name is misleading; hints
are not suggestions that the optimizer might consider, they are commandments that the
optimizer must follow. Even if you supply a hint with which it is technically impossible for
the optimizer to comply, it will still attempt to apply the hint, and throw an error. You'll see
an example of that later, when we discuss the INDEX() hint.

While hints allow you to control the behavior of the optimizer, it doesn't mean your choices
are necessarily better than the optimizer's choices. If you find yourself putting hints on most
of your queries and stored procedures, then you're doing something wrong. Yes, the right hint

304

Chapter 10: Controlling Execution Plans with Hints

on the right query can improve query performance. However, the exact same hint used
on another query can create more problems than it solves, radically slowing your query
and leading to severe blocking and timeouts in your application. Even a hint that is "good"
right now can turn out to be very bad with time, because it removes the optimizer's
subsequent ability to make a better plan choice, in response to changes in the data
distribution, or in response to an upgrade to a new SQL Server version, or the application
of a new service pack.

Over the coming sections, I'll describe the various hints we can use, and problems that
we're hoping to solve by applying that hint. You'll see examples where a hint improves
performance, or changes the behavior in a positive manner, and also some where a hint
degrades performance. Again, this is not a chapter about hints, per se, but rather their effect
on execution plans. For more details on hints, please refer to the Microsoft documentation
(http://bit.ly/2pt7UF2).

For any hint, only apply it after copious testing, and with thorough documentation. You need
to make it as easy as possible for others to find where hints are used, to understand the intent
of the hint, and therefore to schedule regular tests to verify that its use is still valid, as the
system and its data change over time.

Query Hints
Query hints take control of an entire query and can affect all operators within the execu-
tion plan. We can use query hints to force the use of a specific operator for all aggregations
in a query, or for all joins. We can use them to instruct the optimizer to optimize a query
for a defined parameter value, or to compile a new plan on every execution of that query, to
control use of parallelism for that query, and more. Some query hints are useful occasionally,
while a few are for rare circumstances. As with all hints, injudicious use of query hints can
cause you more problems than they solve!

We specify query hints in the OPTION clause. Listing 10-1 shows the basic syntax.

 SELECT ...
 OPTION (<hint>,<hint>...);

Listing 10-1

http://bit.ly/2pt7UF2

305

Chapter 10: Controlling Execution Plans with Hints

We can't apply query hints to data manipulation statements INSERT, except as part of an
associated SELECT operation, and we can't use query hints in subqueries since the hint must
apply to the entire query.

HASH | ORDER GROUP
The HASH GROUP and ORDER GROUP hints apply to all aggregations in the query caused by
GROUP BY or DISTINCT. Generally, the optimizer will choose the most appropriate of the
two aggregation mechanisms it has available, Hash Match (which is hash based) or Stream
Aggregate (which is order based). The HASH GROUP hint forces it to use the former, and the
ORDER GROUP hint, the latter.

In Listing 10-2, we have a simple GROUP BY query that returns a count of the number of
occurrences of each distinct value in the Suffix column of the Person table.

SELECT p.Suffix,
 COUNT(*) AS SuffixUsageCount
FROM Person.Person AS p
GROUP BY p.Suffix;

Listing 10-2

Let's suppose that you, as the DBA, maintain a high-end shop where the sales-force submits
many queries against an ever-changing set of data. One of the sales applications frequently
calls the query in Listing 10-2 and your job is to make this query run as fast as possible.

The first thing you'll do, of course, is look at the execution plan, as shown in Figure 10-1.

Figure 10-1: Unforced execution plan using a Hash Match for aggregation.

As you can see, the optimizer has chosen to use hashing for this query. The "unordered" data
from the Clustered Index Scan is grouped within the Hash Match (Aggregate) operator.
This operator builds a hash table, creating entries for each of the distinct values in the data
supplied by the Clustered Index Scan, and maintains a count of each of those values.

306

Chapter 10: Controlling Execution Plans with Hints

As a reference point, on my system, and on my version of AdventureWorks, the scan on the
Person table caused 3,819 reads, the plan had an estimated cost of 2.99727, and the query
ran in about 9.7ms.

Although not the most expensive operation in the plan (that's the Clustered Index Scan),
you may have read that the Hash Match could cause problems because of the overhead of
building and populating a table in memory, and because this is a "blocking" operation.
Therefore, let's see what happens if we force the optimizer to use a Stream Aggregate
instead, by adding the ORDER GROUP hint to the query.

SELECT p.Suffix,
 COUNT(p.Suffix) AS SuffixUsageCount
FROM Person.Person AS p
GROUP BY p.Suffix
OPTION (ORDER GROUP);

Listing 10-3

Figure 10-2 shows the new plan.

Figure 10-2: Execution plan forced to use Stream Aggregate operator.

Since stream aggregation requires sorted data (See Chapter 5), and since there is no index
that SQL Server can use to directly produce rows ordered by Suffix, the optimizer intro-
duced a Sort operator to enforce the required ordering, and the estimated cost of the plan
jumped 39% to 4.17893, with the source of the increased cost being the Sort operation. As a
result, this query now runs in 18ms, instead of the original 9.7ms, a 100% increase.

The broader problem with this hint, as with all hints, is that it forces a certain behavior,
regardless of changes to the database structure, such as addition or removal of indexes,
or to the data. Instead of adding the hint, it's much better to find out why the optimizer
doesn't use stream aggregation, and then fix the root cause. For example, if appropriate
for the query workload, you might consider adding a new nonclustered index, or modifying
an existing index.

307

Chapter 10: Controlling Execution Plans with Hints

MERGE | HASH | CONCAT UNION
These query hints affect how the optimizer deals with UNION operations in your queries,
instructing the optimizer to use either merging, hashing, or concatenation of the data sets.
If a UNION operation is causing performance issues, you may be tempted to use these hints
to guide the optimizer's behavior. As discussed in Chapter 4, the optimizer will never use a
Hash Match operator for a UNION ALL concatenation, and so the HASH UNION hint doesn't
work for UNION ALL queries.

The example query in Listing 10-4 is not running fast enough to satisfy the demands
of the application.

SELECT pm1.Name,
 pm1.ModifiedDate
FROM Production.ProductModel AS pm1
UNION
SELECT p.Name,
 p.ModifiedDate
FROM Production.Product AS p;

Listing 10-4

When a query has been identified as running slow, it's time to look at the execution plan, as
seen in Figure 10-3.

Figure 10-3: An execution plan for a UNION operation using concatenation.

The Concatenation operator simply concatenates the 128 rows from the top input with the
504 rows from the bottom and, in the context of the plan, it is very cheap. The Sort operator,
specifically a Distinct Sort (see Chapter 5), is in the plan to remove duplicates, as required
by the UNION clause, and is relatively expensive. The query took about 121ms to run
 with 29 reads.

308

Chapter 10: Controlling Execution Plans with Hints

Perhaps forcing the use of a join operator to implement the UNION clause, instead of concat-
enation, might enable the optimizer to remove the expensive Sort operator, and improve
performance? As a first test, you apply the MERGE UNION hint.

SELECT pm1.Name,
 pm1.ModifiedDate
FROM Production.ProductModel AS pm1
UNION
SELECT p.Name,
 p.ModifiedDate
FROM Production.Product AS p
OPTION (MERGE UNION);

Listing 10-5

The plan confirms that you have forced the UNION operation to use the Merge Join (Union)
instead of the Concatenation operator.

Figure 10-4: Forcing the execution plan to use a Merge Join for the UNION.

Now that we're joining rather than concatenating the rows, we no longer see the Distinct
Sort. However, since the Merge Join only works with sorted data feeds, we've also forced
the optimizer to use two Sort operators to sort each of the inputs. The execution time went up
to 193ms from 121ms and the reads went to 41 from 29. Clearly, this didn't work.

What if you tried the HASH UNION hint? Note that use of this hint will only work if the
probe (bottom) input is guaranteed to have no duplicates, as is true here.

SELECT pm1.Name,
 pm1.ModifiedDate
FROM Production.ProductModel AS pm1
UNION

309

Chapter 10: Controlling Execution Plans with Hints

SELECT p.Name,
 p.ModifiedDate
FROM Production.Product AS p
OPTION (HASH UNION);

Listing 10-6

Figure 10-5 shows the new execution plan, with the Sort operations eliminated although, if
the bottom input had had duplicates, the optimizer would have needed to add a Sort (Distinct
Sort) or other operator to the input to remove them. You can verify this by removing the
Name column from Listing 10-6.

Figure 10-5: Execution plan forced to use a Hash Match Union operator.

We achieved our initial goal of eliminating the post-union Sort operator without introducing
any new Sort operators. It turns out that, in this case, using a Hash Match to perform the
UNION operation is less expensive than performing a Concatenation followed by a Distinct
Sort, and the execution time has decreased from 121ms on average to 99ms, while the reads
remained the same. Of course, it's possible that with bigger, or different, tables the dynamic
might change.

LOOP | MERGE | HASH JOIN
These query hints make all the join operations in the query, including the semi-joins used to
fulfill the EXISTS or IN clauses, use the method supplied by the hint. However, note that,
if we also apply a join hint (covered later) on a specific join, then the more granular join hint
takes precedence over the general query hint.

310

Chapter 10: Controlling Execution Plans with Hints

Let's say that our system is suffering from poor disk I/O, so we need to reduce the number of
reads that our queries generate. By collecting data from Extended Events and Performance
Monitor, we identify the query in Listing 10-7 as one that needs some tuning.

SELECT pm.Name,
 pm.CatalogDescription,
 p.Name AS ProductName,
 i.Diagram
FROM Production.ProductModel AS pm
 LEFT JOIN Production.Product AS p
 ON pm.ProductModelID = p.ProductModelID
 LEFT JOIN Production.ProductModelIllustration AS pmi
 ON p.ProductModelID = pmi.ProductModelID
 LEFT JOIN Production.Illustration AS i
 ON pmi.IllustrationID = i.IllustrationID
WHERE pm.Name LIKE '%Mountain%'
ORDER BY pm.Name;

Listing 10-7

Figure 10-6 shows the plan

Figure 10-6: A mix of Nested Loops and Hash Match joins.

The query predicate, WHERE pm.name LIKE '%Mountain%', is non-SARGable, a
term used for predicates that can't be used by the optimizer in an Index Seek, and so the
Clustered Index Scan operator on the ProductModel table makes sense. The query has
no filter on the Product table, so the scan is the only option. The optimizer uses a Hash
Match operator to join the Product and ProductModel tables , accounting for 39% of
the estimated cost of the plan. It then performs the required Sort which, because the opti-
mizer estimates only about 99 matching rows, should be cheap. It then uses Nested Loops
joins to construct the rest of the data set. The optimizer chooses to scan the ProductMod-
elIllustration and Illustration tables rather than seek them, probably because
they're both so small that the cost estimates are all too small to make a significant difference
to the total query cost.

311

Chapter 10: Controlling Execution Plans with Hints

In my tests, this query ran in about 74ms, requiring 485 logical reads, as measured using
Extended Events (see Chapter 2, Listing 2-6).

Again, let's say you've read that Hash Match joins incur the overhead of creating an
in-memory worktable that is prone to spilling to tempdb. Maybe it will be cheaper if we
force the use of Nested Loops joins, by adding the LOOP JOIN hint to the end of the query?

…OPTION (LOOP JOIN);

Listing 10-8

Figure 10-7 shows the new plan.

Figure 10-7: Forcing the execution plan to use only Nested Loops joins.

As expected, we've forced the optimizer to use Nested Loops joins throughout. As a result,
it's moved the Sort operation to directly after the scan of the ProductModel table, which
it can do because a Nested Loops join will always preserve the order of the outer input, so
now will sort only an estimated 40 rows (actual number is 37). Also, we should have elimi-
nated the need for in-memory worktables. But has it reduced the I/O?

Sadly, no. The query now performs 1250 logical reads, and ran in about 73ms. This is
due to the increased logical reads on the Product table. Thanks to us forcing the use of
Nested Loops joins, this table is now scanned 37 times, once for every row returned by
our Sort operator. On the plus side, if you check the MemoryGrantInfo property of the
Select operator, for Figure 10-7, you'll see that the query has a significantly smaller memory
grant compared to the original plan, which may be a consideration if this were a frequently-
executed query.

312

Chapter 10: Controlling Execution Plans with Hints

What if we modify the query to use the MERGE JOIN hint, instead?

OPTION (MERGE JOIN);

Listing 10-9

Figure 10-8 shows the new plan.

Figure 10-8: An execution plan that only contains Merge Joins.

The plan is a different shape, and looks more complicated mainly because, inauspiciously, we
now see three Sort operators rather than one. The Sort on the Name column is now the final
operation, before returning the results. The two new Sort operators are required because, as
discussed in Chapter 4, the data in each input must be ordered on the join column, and the
data stream from the Product table, and the one emerging from the second Merge Join,
are not in the required order.

Did we manage to reduce logical reads? In fact, yes, this plan performs only 116 logical
reads. However, in my tests, performance did not improve (around 83ms in my tests). The
first problem is the extra overhead of the sorting operations; the memory grant is almost
double that of the original query. The second problem is the rightmost Merge Join is a many-
to-many join, which requires the creation of a worktable in tempdb, and is far less efficient
(see Chapter 4, Listing 4-3 and subsequent discussion).

Given that we said we were worried about the overhead of worktables, we'd be unlikely to try
the final option, the HASH JOIN hint, but let's see what it might do.

OPTION (HASH JOIN);

Listing 10-10

313

Chapter 10: Controlling Execution Plans with Hints

Figure 10-9 shows the new plan.

Figure 10-9: Forcing the plan to use Hash Joins.

We now see three Hash Match joins, and we're back down to only one Sort (on name), but
it's over on the left-hand side. This is the only place the optimizer can safely put it since the
Hash Match joins are not guaranteed to preserve the order of the probe input (if they were,
then the sort could go directly after the scan of ProductModel).

How does it perform? Well, we've reduced logical reads to 97, the best so far, but the query
runs in about the same time as the original query. If we are seeing lots of I/O contention, this
could be a possible win, but you'd need to test this in an environment with additional load
to understand if there are contention issues. Also, we've significantly increased the memory
cost; the memory grant is up to about 6080 KB, due to the overhead of hashing values in all
tables and creating hash tables for the build inputs.

Overall, our efforts have reaped minimal rewards, and whether you chose to use one of
these hints would depend on the contention points in your system. More significantly, all our
efforts with hints have ignored the bigger problem with this query, which is the use of the
LIKE '%Mountain%' in the WHERE clause. This is an operator that can only be resolved
by scans against the table, and it's those scans that are our primary problem. The best solution
for this query could be to modify the database structure so that the need for the LIKE query,
using wild cards, is removed. When modifying the code or structure is not possible, you may
have to resort to query hints to attempt to gain improvements where you can.

314

Chapter 10: Controlling Execution Plans with Hints

FAST n
Let's assume for a moment that we are less concerned about the overall performance of the
database, generally a very poor proposition, than we are about perceived performance of the
application. The users would like an immediate return of data to the screen, even if it's not the
complete result set, and even if they end up waiting longer for the complete result set. This
could be a handy way to get a little bit of information in front of people quickly, so that they
can decide whether it's important, and either move on or wait for the rest of the data.

The FAST n hint provides this ability by getting the optimizer to focus on finding the execu-
tion plan that will return the first "n" rows as fast as possible, where "n" is a positive integer
value. Consider the following query and execution plan.

SELECT soh.SalesOrderNumber,
 soh.OrderDate,
 soh.DueDate,
 sod.CarrierTrackingNumber,
 sod.OrderQty
FROM Sales.SalesOrderDetail AS sod
 JOIN Sales.SalesOrderHeader AS soh
 ON sod.SalesOrderID = soh.SalesOrderID
ORDER BY soh.DueDate DESC;

Listing 10-11

Figure 10-10 shows the plan. The Estimated Subtree Cost of this plan is 11.4, so if your
cost threshold for parallelism setting (see Chapter 11) is at 11.4 or higher, you'll
see the parallelized version of this plan.

Figure 10-10: An execution plan optimized to return all data quickly.

315

Chapter 10: Controlling Execution Plans with Hints

I won't explain this plan in any detail, except to point out the warning visible on the
SELECT operator. If you look at the Warnings property of the SELECT operator,
you'll find the following:

Type conversion in expression (CONVERT(nvarchar(23),[soh].
[SalesOrderID],0)) may affect "CardinalityEstimate" in query plan
choice

This is caused by a calculated column in the SalesOrderHeader table. This is an
example of a false warning. It doesn't affect our query in any way because we're not referring
to that column in any filtering clause.

This query performs adequately considering the fact that it's selecting all the data from
the tables without any sort of filtering operation, but let's try to get some, but not all, rows
back faster from this query by adding the FAST n hint to return the first 10 rows as quickly
as possible.

OPTION (FAST 10);

Listing 10-12

Figure 10-11: An execution plan optimized to return only 10 rows.

Now, the optimizer chooses a Nested Loops operator to perform the join, rather than a
Merge Join. This plan returns first rows very fast, but the rest of the processing was some-
what slower, which is perhaps to be expected, since the optimizer focuses its efforts on
getting just the first ten rows back as soon as possible. The way this works, internally, is that
the optimizer treats this query as if it had a TOP (10) clause and was only ever going to
return 10 rows. That changes completely the execution plan choices; the plan you get will
usually be the same as the plan for a query that uses TOP, but without the operators that
implement the TOP clause.

316

Chapter 10: Controlling Execution Plans with Hints

The total estimated cost for the original query was 11.3573. The hint reduced that cost to
2.72567. While that sounds great, remember that is the estimated cost for only the first
10 rows. This is also why the plan in Figure 10-11 shows some "bad" row estimates. For
example, if you were to check the properties of the Sort operator, you'd see that the optimizer
estimated that it would return 2.6 rows (the actual number of rows was 31465).

We've made the choice that we don't care about overall performance impact on the system,
we just want to see the first 10 rows very fast. However, we can't ignore the fact that the
number of logical reads increases dramatically, from 1,935 for the un-hinted query to 106,505
for the hinted query. Depending on the load on your system and the contention on your disk,
getting a responsive appearance on your application could seriously negatively impact the
overall system.

FORCE ORDER
Once again, our monitoring tools have identified a query that is performing poorly. It's a long
query with a higher number of tables being joined, as shown in Listing 10-13, which could be
a concern, because the more tables there are involved, the harder the optimizer has to work.

Normally, the optimizer will determine the order in which the joins occur, rearranging them
as it sees fit. However, the optimizer can make incorrect choices when the statistics are not
up to date, when the data distribution is less than optimal, or if the query has a high degree of
complexity, with many joins. In the latter case, the optimizer may even time out when trying
to rearrange the tables because there are so many of them for it to try to deal with.

Using the FORCE ORDER hint, you can make the optimizer use the order of joins as you
have defined them in the query. This might be an option if you are sure that your join order is
better than that supplied by the optimizer, if you're experiencing timeouts in the optimization
process, or if you see lots of compiles or recompiles from a query, and system performance is
suffering as a result (although, testing is, as always, in order).

SELECT pc.Name AS ProductCategoryName,
 ps.Name AS ProductSubCategoryName,
 p.Name AS ProductName,
 pdr.Description,
 pm.Name AS ProductModelName,
 c.Name AS CultureName,
 d.FileName,
 pri.Quantity,
 pr.Rating,

317

Chapter 10: Controlling Execution Plans with Hints

 pr.Comments
FROM Production.Product AS p
 LEFT JOIN Production.ProductModel AS pm
 ON p.ProductModelID = pm.ProductModelID
 LEFT JOIN Production.ProductSubcategory AS ps
 ON p.ProductSubcategoryID = ps.ProductSubcategoryID
 LEFT JOIN Production.ProductInventory AS pri
 ON p.ProductID = pri.ProductID
 LEFT JOIN Production.ProductReview AS pr
 ON p.ProductID = pr.ProductID
 LEFT JOIN Production.ProductDocument AS pd
 ON p.ProductID = pd.ProductID
 LEFT JOIN Production.Document AS d
 ON pd.DocumentNode = d.DocumentNode
 LEFT JOIN Production.ProductCategory AS pc
 ON ps.ProductCategoryID = pc.ProductCategoryID
 LEFT JOIN Production.ProductModelProductDescriptionCulture AS
pmpdc
 ON pm.ProductModelID = pmpdc.ProductModelID
 LEFT JOIN Production.ProductDescription AS pdr
 ON pmpdc.ProductDescriptionID = pdr.ProductDescriptionID
 LEFT JOIN Production.Culture AS c
 ON c.CultureID = pmpdc.CultureID;

Listing 10-13

Based on your knowledge of the data, you're confident that you've put the joins in the correct
order. Figure 10-12 shows the current execution plan.

Figure 10-12: Large execution plan with more tables.

318

Chapter 10: Controlling Execution Plans with Hints

This plan is far too large to review on this page in the book. The image in Figure 10-12 gives
you a good idea of the overall structure and shape of the execution plan. Figure 10-13 shows
an exploded view of the bottom right of the plan, showing just a few of the tables and the
order in which they are being joined.

Figure 10-13: Subset of execution plan in Figure 10-12 showing table join order.

Following the data flow, we first see the Hash Match join between ProductModel and
Product. This data forms the bottom input to a Hash Match join to ProductSubcate-
gory and this joined data stream forms the bottom input to Hash Match join to Product-
Inventory, and so on. However, in execution order, the optimizer starts right at the other
end, with Culture, then ProductDescription, then Product-ModelProduct-
DescriptionCulture and so on.

If you check the properties of the SELECT operator, you'll see that the optimizer timed out
when generating this execution plan.

Figure 10-14: SELECT property showing the Reason For Early Termination.

With a larger number of tables, and a timeout in the optimizer, there's a good chance that
not all possible permutations of the join order were attempted. If we had exhausted other
attempts at tuning this query, we might attempt to wrest control from the optimizer by using a
query hint. Take the same query and apply the FORCE ORDER query hint.

319

Chapter 10: Controlling Execution Plans with Hints

OPTION (FORCE ORDER);

Listing 10-14

It results in the plan shown in Figure 10-15.

Figure 10-15: A new execution plan shape because of the FORCE ORDER hint.

You can tell, just by comparing the shapes of the plan in Figure 10-12 to the one in Figure
10-15 that a substantial change has occurred. The optimizer is now accessing the tables
exactly in the order specified by the query. Again, we'll zoom in on the set of operators on the
right-hand side of the plan, so that you can see how the join order has changed.

 Figure 10-16: Subset of Figure 10-15 showing a different table order in the joins.

Now the join order is from the Product table, followed by the ProductModel, exactly
as specified in the query. This data forms the top input to a Merge Join to ProductSub-
category, which forms the top input to Merge Join to ProductInventory, and so on.
This order forces the optimizer to do more Sort operations, and the execution time went from
149ms in the first query to 166ms in the second. While it is possible to get direct control over
the optimizer to achieve positive results, this is not one of those cases.

MAXDOP
In this example, we have one of those nasty problems where a query that sometimes runs
just fine, sometimes runs incredibly slowly. We have investigated the issue, using Extended
Events or the Query Store to capture the execution plan of a query, over time, with various
parameters. We finally arrive at two execution plans. Figure 10-17 shows the execution plan
that results in better performance on my system.

320

Chapter 10: Controlling Execution Plans with Hints

Figure 10-17: A serial execution plan that runs quickly.

Figure 10-18 shows the slower execution plan (I modified this image for readability).

Figure 10-18: A parallel execution plan that, in this case, doesn't run as fast.

This is an example of where the optimizer has estimated that the cost of executing the plan
in a serial fashion might exceed the 'cost threshold for parallelism' sp_
configure option, and so produces a parallel plan, whereby the work required to execute
the query is split across multiple CPUs (see Chapter 11 for more detail). Ideally, this should
be helping the performance of your system, but it seems to be hurting it in this specific case.

Of course, the first question to ask here is why we have two plans with two different costs.
What caused the new compile in the first place, and why are the costs different? If this were
a parameterized query, then parameter sniffing might be a likely culprit (see Chapter 8), and
we'd investigate that possibility first. However, in this case we're dealing with a simple query
and, for this discussion, we've decided to fix the problem the "easy" way, with a hint.

We can control parallelism by setting the Max Degree of Parallelism value at the
server level. You can also control this setting at the database level, and this is generally
considered the better approach. A properly configured system will benefit from parallel
execution, so you shouldn't simply turn it off. We'll also assume that you've tuned the value
of cost threshold for parallelism, on your server, in order to be sure that only
high-cost queries are experiencing parallelism. (A strong recommendation: don't leave it at
the default value of 5; for details see this blog post: http://bit.ly/2DM92sc.)

However, having done this work, you still have the occasional outliers where the execution
engine chooses to use the parallel plan. It's for cases like this that the MAXDOP hint becomes
useful, since it controls the use of parallelism within an individual query, rather than working
using the server-wide setting of max degree of parallelism.

For example, we can suppress parallelism altogether for this query by setting MAXDOP to
1. More commonly, we'd use it to set MAXDOP to a value greater than 1, but less than the
number of processors, to ensure that a long-running query doesn't hog all resources.

http://bit.ly/2DM92sc

321

Chapter 10: Controlling Execution Plans with Hints

This example is somewhat contrived in that, as part of the query, I'm going to reset the cost
threshold for parallelism for my system to a low value, to enable this query to be
run in parallel.

--enable advanced options
EXEC sys.sp_configure 'show advanced options', 1
GO
RECONFIGURE WITH OVERRIDE
GO
--change the cost threshold to 1
EXEC sp_configure 'cost threshold for parallelism', 1;
GO
RECONFIGURE WITH OVERRIDE;
GO
--Execute the query which will go parallel
SELECT wo.DueDate,
 MIN(wo.OrderQty) AS MinOrderQty,
 MIN(wo.StockedQty) AS MinStockedQty,
 MIN(wo.ScrappedQty) AS MinScrappedQty,
 MAX(wo.OrderQty) AS MaxOrderQty,
 MAX(wo.StockedQty) AS MaxStockedQty,
 MAX(wo.ScrappedQty) AS MaxScrappedQty
FROM Production.WorkOrder AS wo
GROUP BY wo.DueDate
ORDER BY wo.DueDate;
GO
--reset the cost threshold to the default value
--if your cost threshold is set to a different value, change the 5
EXEC sys.sp_configure 'cost threshold for parallelism', 5;
GO
RECONFIGURE WITH OVERRIDE;
GO
--disable advanced options
EXEC sys.sp_configure 'show advanced options', 0
GO
RECONFIGURE WITH OVERRIDE
GO

Listing 10-15

This will result in an execution plan that takes full advantage of parallel processing, as shown
in Figure 10-18.

322

Chapter 10: Controlling Execution Plans with Hints

Let's now modify the query to include the MAXDOP hint.

OPTION (MAXDOP 1);

Listing 10-16

The use of the hint makes the new execution plan use a single processor, so no parallelism
occurs at all. Add the hint to the end of the query in Listing 10-15 and then rerun the code.
The plan will be the same as Figure 10-17.

Generally, you'd expect the performance of certain operators, such as the Sort arising from
our ORDER BY clause in Listing 10-15, to benefit greatly from parallelism, as it reduces
both CPU cost and runtime. Balancing these kinds of savings is the extra overhead associ-
ated with the parallelism operators that take the data from a single stream to a set of parallel
streams, and then bring it all back together again. On my system, is seems that these extra
costs outweighed the savings. However, with a properly configured cost threshold for
parallelism setting, you'd expect most queries that cross that threshold to benefit from
parallel execution.

OPTIMIZE FOR
You can use the OPTIMIZE FOR hint in any situation where you want to attempt to control
how the optimizer deals with parameter values. Let's say that you have identified a query
that will run at an adequate speed for hours or days, and then it suddenly performs horribly.
With a lot of investigation and experimentation, you find that the parameters supplied by the
application to run the procedure or parameterized query usually result in an execution plan
that performs very well. Sometimes, though, a certain value or subset of values supplied to
the parameters after a recompile event, results in an execution plan that performs extremely
poorly. This is an instance of the bad parameter sniffing problem, as discussed in Chapter 8.

When you're hitting a bad parameter sniffing situation, you can use the OPTIMIZE FOR
hint, which instructs the optimizer to optimize the query for the value that you supply, rather
than a sniffed parameter value. Starting with SQL Server 2008, we can also use the OPTI-
MIZE FOR hint with a value of UNKNOWN to force a more generic plan on the optimizer,
rather than a specific plan for a specific value.

We can demonstrate the utility of this hint with a very simple set of queries.

SELECT AddressID,
 AddressLine1,
 AddressLine2,

323

Chapter 10: Controlling Execution Plans with Hints

 City,
 StateProvinceID,
 PostalCode,
 SpatialLocation,
 rowguid,
 ModifiedDate
FROM Person.Address
WHERE City = 'Mentor';
SELECT AddressID,
 AddressLine1,
 AddressLine2,
 City,
 StateProvinceID,
 PostalCode,
 SpatialLocation,
 rowguid,
 ModifiedDate
FROM Person.Address
WHERE City = 'London';

Listing 10-17

We'll run these at the same time, and we get two different execution plans.

Figure 10-19: Two different execution plans for two different values.

324

Chapter 10: Controlling Execution Plans with Hints

Each query is returning the data from the table in a way that is optimal for the value passed
to it, based on the indexes and the statistics of the table. The first execution plan, for the first
query, where City = 'Mentor' scans the Address table to find matching values. Next, it
must perform a Key Lookup operation to get the rest of the data. The data is joined through
the Nested Loops operation. The value of London is much less selective, so the optimizer
decides to perform a scan of the clustered index only, which you can see in the second
execution plan in Figure 10-19.

If this query were in a stored procedure, which was executed first with a value of Mentor,
then the next time we executed it with a value of London, the plan would be reused (unless
it was recompiled for some reason), and we'd likely see a lot of key lookups and very poor
performance.

We might consider adding a OPTIMIZE FOR (@City = 'London') query hint. While
this might seem a sensible option in this case, the more general problem with the OPTIMIZE
FOR <value> hint, is that it's susceptible to "turning bad," as data in the table changes
over time.

Let's now see what happens if we use local variables in our T-SQL, as shown in
Listing 10-18.

DECLARE @City NVARCHAR(30)
SET @City = 'Mentor'
SELECT AddressID,
 AddressLine1,
 AddressLine2,
 City,
 StateProvinceID,
 PostalCode,
 SpatialLocation,
 rowguid,
 ModifiedDate
FROM Person.Address
WHERE City = @City;
SET @City = 'London'
SELECT AddressID,
 AddressLine1,
 AddressLine2,
 City,
 StateProvinceID,
 PostalCode,
 SpatialLocation,

325

Chapter 10: Controlling Execution Plans with Hints

 rowguid,
 ModifiedDate
FROM Person.Address
WHERE City = @City;

Listing 10-18

Now, we see the same plan, with a clustered index scan, for both queries.

Figure 10-20: Identical execution plans for queries using a local variable.

As described in Chapter 8, the optimizer cannot sniff the value supplied, when we use local
variables, unless statement-level recompile takes place because of an OPTION (RECOM-
PILE) hint (covered later). It optimizes for the average distribution, using the density value,
to arrive at a cardinality estimation (it's the ratio of number of rows in the table to number of
distinct values). If we know that the resulting plan will be good enough for most executions,
then we might consider using the OPTIMIZE FOR UNKNOWN hint to force the optimizer to
produce that generic plan. Listing 10-19 shows an example (I've simply moved the query into
a stored procedure).

326

Chapter 10: Controlling Execution Plans with Hints

CREATE OR ALTER PROCEDURE dbo.AddressByCity @City NVARCHAR(30)
AS
SELECT AddressID,
 AddressLine1,
 AddressLine2,
 City,
 StateProvinceID,
 PostalCode,
 SpatialLocation,
 rowguid,
 ModifiedDate
FROM Person.Address
WHERE City = @City
OPTION (OPTIMIZE FOR UNKNOWN);
GO
EXEC dbo.AddressByCity @City = N'Mentor';

Listing 10-19

Even though Mentor is an uncommon city, and so our nonclustered index is selective for
this predicate, we still see the "generic" plan.

 Figure 10-21: The plan once the OPTIMIZE FOR hint has been applied.

Use of the OPTIMIZE FOR hint requires intimate knowledge of the underlying data.
Choosing the wrong value for OPTIMIZE FOR will not only fail to help performance, but
could have a very serious negative impact. It’s also very important that you maintain the hint,
and adapt it as necessary, as the data changes over time.

In the example above, there was only a single variable, so there was only a single hint
needed. If you need to control the value used for optimization for more than a single variable
in a query, you can set as many hints as necessary. Listing 10-20 shows an example of the
necessary syntax.

327

Chapter 10: Controlling Execution Plans with Hints

CREATE OR ALTER PROCEDURE dbo.AddressDetails
 @City NVARCHAR(30),
 @PostalCode NVARCHAR(15),
 @AddressLine2 NVARCHAR(60) NULL
AS
SELECT a.AddressLine1,
 a.AddressLine2,
 a.SpatialLocation
FROM Person.Address AS a
WHERE a.City = @City
 AND a.PostalCode = @PostalCode
 AND (a.AddressLine2 = @AddressLine2
 OR @AddressLine2 IS NULL)
OPTION (OPTIMIZE FOR (@City = 'London', @PostalCode = 'W1Y 3RA'));

Listing 10-20

The OPTIMIZE FOR hint is one of the few that I use regularly, though still not often.
Even so, I strongly recommend you exercise caution and perform lots of tests before applying
the OPTIMIZE FOR hint. As the data changes over time, you will need to re-evaluate
whether the choice you made is still the correct one. In my experience, the OPTIMIZE FOR
UKNOWN hint is generally more stable than optimizing for a particular value, because of
those data changes.

RECOMPILE
We discussed use of the RECOMPILE hint in Chapter 8, as a common cure for bad parameter
sniffing when using stored procedures or other forms of parameterized SQL, such as prepared
statements. We apply the hint to any of the individual queries within the procedure, and it
will force SQL Server to recompile the plan for that query every time. The new compile will
optimize the plan for the current values of all variables and parameters used in the query
(rather than reuse the plan for a previously sniffed value).

The RECOMPILE query hint was introduced in SQL Server 2005 along with statement-
level recompiles. For stored procedures and other code modules, all statements including
the one with OPTION(RECOMPILE) will still be in the plan cache, but the plan for the
OPTION(RECOMPILE) statement will still recompile for every execution, which means
that the plan is not reused in any way.

328

Chapter 10: Controlling Execution Plans with Hints

When we use the hint for ad hoc queries, the optimizer marks the plan created so that it is not
stored in the cache at all. We discussed the problems that ad hoc queries can cause, such as
cache bloat, in Chapter 9. If the problem is caused by lack of parameterization, then the most
common fix is to enable the Optimize for Ad Hoc Workloads setting. However, if your
system executes lots of parameterized ad hoc queries, and you're getting performance prob-
lems with bad parameter sniffing, then you might opt to take the hit of having SQL Server
compile a plan for every execution, by applying the RECOMPILE hint.

Consider the pair of queries in Listing 10-21.

SELECT soh.SalesOrderNumber ,
 soh.OrderDate ,
 soh.SubTotal ,
 soh.TotalDue
FROM Sales.SalesOrderHeader soh
WHERE soh.SalesPersonID = 279;
GO
SELECT soh.SalesOrderNumber ,
 soh.OrderDate ,
 soh.SubTotal ,
 soh.TotalDue
FROM Sales.SalesOrderHeader soh
WHERE soh.SalesPersonID = 280;

Listing 10-21

This results in the mismatched set of query plans in Figure 10-22, once again demonstrating
the optimizer's "tipping point" between choosing a plan with a seek and lookups, versus scan-
ning the clustered index (as discussed in detail in Chapter 8).

329

Chapter 10: Controlling Execution Plans with Hints

Figure 10-22: The execution plans change radically when recompiled.

If you examine the Parameter List property of either SELECT operator, it appears that both
these queries have gone through Simple Parameterization (covered in Chapter 9). However,
the value of the StatementParameterizationType property, lower down, tells us that, in fact,
they were not parameterized.

Figure 10-23: A failed attempt at Simple Parameterization.

330

Chapter 10: Controlling Execution Plans with Hints

If this query runs as a prepared statement, we'll see different behavior. Using sp_prepare
always causes optimization for unknown values (see Chapter 9), and so the optimizer will use
the density graph to arrive at a cardinality estimation and generate an appropriate plan, which
will then be reused for subsequent executions.

DECLARE @IDValue INT;
DECLARE @MaxID INT = 280;
DECLARE @PreparedStatement INT;
SELECT @IDValue = 279;
EXEC sp_prepare @PreparedStatement OUTPUT,
 N'@SalesPersonID INT',
 N'SELECT soh.SalesPersonID, soh.SalesOrderNumber,
 soh.OrderDate,
 soh.SubTotal,
 soh.TotalDue
FROM Sales.SalesOrderHeader soh
WHERE soh.SalesPersonID = @SalesPersonID';
WHILE @IDValue <= @MaxID
BEGIN
 EXEC sp_execute @PreparedStatement, @IDValue;
 SELECT @IDValue = @IDValue + 1;
END;
EXEC sp_unprepare @PreparedStatement;

Listing 10-22

If you query the plan cache (as shown in Chapter 9), or the query store (see Chapter 16),
you'll see a single plan, the clustered index scan plan, used twice. This is what you'll see,
regardless of whether you execute using the value of 280 first instead of 279, because the
optimizer isn't doing parameter sniffing, it's optimizing for an unknown value.

If this lack of parameter sniffing is causing performance issues for one of the queries, and so
you prefer to optimize for sniffed variables, then you might consider simply adding OPTION
(RECOMPILE) to the end of the prepared statement.

…
EXEC sp_prepare @PreparedStatement OUTPUT,
 N'@SalesPersonID INT',
 N'SELECT soh.SalesPersonID, soh.SalesOrderNumber,
 soh.OrderDate,
 soh.SubTotal,
 soh.TotalDue
FROM Sales.SalesOrderHeader soh

331

Chapter 10: Controlling Execution Plans with Hints

WHERE soh.SalesPersonID = @SalesPersonID
OPTION (RECOMPILE)';
…

Listing 10-23

If you execute Listing 10-23 and capture the plans in SSMS, you'll see the two different plans
again, but if you check the plan cache you'll see that neither is cached.

EXPAND VIEWS
The EXPAND VIEWS query hint eliminates the use of the indexed, or materialized, views
within a query and forces the optimizer to go directly to tables for the data. The optimizer
replaces the referenced indexed view with the view definition (in other words, the query used
to define the view) just like it normally does with a standard view; but when the EXPAND
VIEWS hint is used it will then not try to match the expanded queries with usable indexed
views. This behavior can be overridden on a view-by-view basis by adding the WITH
(NOEXPAND) clause to any indexed views within the query. Indexed view matching is
Enterprise only, so this hint has no effect in a Standard system.

In some instances, the plan generated by referencing the indexed view performs worse than
the one that uses the view definition. In most cases, the reverse is true. Test this hint to ensure
its use doesn't negatively affect performance.

Using one of the indexed views supplied with AdventureWorks2014, we can run the
following simple query.

SELECT vspcr.StateProvinceCode,
 vspcr.StateProvinceName,
 vspcr.CountryRegionName
FROM Person.vStateProvinceCountryRegion AS vspcr;

Listing 10-24

Figure 10-24 shows the resulting execution plan.

332

Chapter 10: Controlling Execution Plans with Hints

Figure 10-24: Execution plan using an indexed view.

A view is changed into an indexed view by creating a clustered index on it, which stores the
data defined by the query in the view. This execution plan makes perfect sense, since the
data needed to satisfy the query is available in the indexed view. Things change, as we see in
Figure 10-25, if we add the query hint, OPTION (EXPAND VIEWS).

Figure 10-25: View definition expanded out because of the query hint.

Now we're no longer scanning the indexed view. Within the compilation process (before the
optimizer is invoked), the view has been expanded into its definition, and so the effect of the
hint is that the view matching phase of optimization is skipped. As a result, we see the Clus-
tered Index Scan against the Person.CountryRegion and Person.StateProv-
ince tables. These are then joined using a Merge Join, after the data in the StateProv-
ince stream is run through a Sort operation. The first query ran in about 54ms, but the
second ran in about 189ms, so we're talking a substantial decrease in performance to use the
hint in this situation.

IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX
As discussed in Chapter 8, the optimizer can choose to use a columnstore index, where
appropriate. Columnstore indexes are extremely efficient when assisting aggregation queries,
but much less efficient for traditional point lookup queries. As with all the other choices
made by the optimizer, the choice of a columnstore index may not always be appropriate.

333

Chapter 10: Controlling Execution Plans with Hints

You can use this query hint to ensure that any existing nonclustered columnstore index is
ignored, for the entire query. If the table in question has a clustered columnstore index, this
hint does not affect its use within the execution plan.

Join Hints
A join hint provides a means to force SQL Server to use one of the three standard join
methods that we detailed in Chapter 4, but for a specific join operation rather than all join
operations, as we saw when we applied the query hints earlier.

By incuding one of the join hints in your T-SQL, you will potentially override the
optimizer's choice of the most efficent join method. Also, as soon as you force a particular
join, you're also forcing the join order, effectively the same as using OPTION (FORCE
ORDER). In general, this is not a good idea, and if you're not careful you could seriously
impede performance.

Application of the join hint applies to any query (SELECT, INSERT, or DELETE) where
joins can be applied. Join hints are specified as part of the JOIN clause between two inputs
(such as tables). You can use the LOOP, HASH, or MERGE join hints in the same fashion. The
core behavior won't change. You'll just get a different join depending on the hint you use.
Worth noting is that you can't force an Adaptive Join using hints, at time of writing.

There is a fourth join method, the Remote join, that is used when dealing with data from a
remote server. The REMOTE join hint forces the join operation from your local machine onto
the remote server. This has no effect on execution plans, so we won't be drilling down on this
functionality here.

Since all join hints work basically the same, I'm only going to demonstrate the HASH join
hint, to force use of a Hash Join operator. We'll reuse the simple query from an earlier query
(Listing 10-7) that lists Product Models, Products, and Illustrations.

SELECT pm.Name,
 pm.CatalogDescription,
 p.Name AS ProductName,
 i.Diagram
FROM Production.ProductModel AS pm
 LEFT JOIN Production.Product AS p
 ON pm.ProductModelID = p.ProductModelID
 LEFT JOIN Production.ProductModelIllustration AS pmi

334

Chapter 10: Controlling Execution Plans with Hints

 ON p.ProductModelID = pmi.ProductModelID
 LEFT JOIN Production.Illustration AS i
 ON pmi.IllustrationID = i.IllustrationID
WHERE pm.Name LIKE '%Mountain%'
ORDER BY pm.Name;

Listing 10-25

Once again, we'll get the execution plan shown in Figure 10-26.

Figure 10-26: An execution plan with joins chosen by the optimizer.

As discussed earlier, this plan (I won't describe it again) entails 485 logical reads and the
query ran in about 74ms.

The top input to the final Nested Loops join returns 455 rows, which means that the Clus-
tered Index Scan on the Illustration table executes 455 times. What happens if we
decide that we're smarter than the optimizer and that it really should be using a Hash Match
join instead of that Nested Loops join? We can force the issue by adding the HASH hint to
the join condition between Illustration and ProductModelIllustration.

SELECT pm.Name,
 pm.CatalogDescription,
 p.Name AS ProductName,
 i.Diagram
FROM Production.ProductModel AS pm
 LEFT JOIN Production.Product AS p
 ON pm.ProductModelID = p.ProductModelID
 LEFT JOIN Production.ProductModelIllustration AS pmi
 ON pm.ProductModelID = pmi.ProductModelID
 LEFT HASH JOIN Production.Illustration AS i
 ON pmi.IllustrationID = i.IllustrationID
WHERE pm.Name LIKE '%Mountain%'
ORDER BY pm.Name;

Listing 10-26

If we execute this new query, we'll see the plan shown in Figure 10-27.

335

Chapter 10: Controlling Execution Plans with Hints

Figure 10-27: The new plan with a forced Nested Loops join.

Sure enough, where previously we saw a Nested Loops operator, we now see the Hash
Match operator. However, the rest of the plan has changed shape as well. The optimizer has
decided that the most efficient way to deal with Hash Match (which it has no choice but to
implement due to our hint), is to change the other joins to Merge. This adds the requirement
to Sort the data from the Product table.

Interestingly, in this case, we drop to 34 logical reads and the execution time drops, just a
little, to 74.1ms on average. It’s entirely possible that by eliminating the loops we are getting
superior performance. The actual difference between 77 and 74 is small, but the reads going
from 485 to 34 is a substantial saving. Additional testing on a system under load would be
required to determine if, for certain, this hint resulted in superior performance.

Table Hints
Table hints enable you to control how the optimizer "uses" a table when generating an execu-
tion plan for the query to which the table hint is applied. For example, you can force the use
of a Table Scan for that query, or specify which index you want the optimizer to use.

As with the query and join hints, using a table hint circumvents the normal optimizer
processes and can lead to serious performance issues. Further, since table hints can affect
locking strategies, they could possibly affect data integrity leading to incorrect or lost data.
Use table hints sparingly and judiciously!

Most of the table hints are primarily concerned with locking strategies. Since they don't affect
execution plans, we won't be covering them. The table hints covered below have a direct
impact on the execution plans. For a full list of table hints, please refer to Books Online.

The correct syntax is to use the WITH keyword, and then list the hints within a set of paren-
theses. Listing 10-27 shows an example of applying table hints when the table name directly
follows the FROM clause, but they can also be used when the table name follows a JOIN or
APPLY keyword.

336

Chapter 10: Controlling Execution Plans with Hints

FROM TableName WITH (hint, hint,…)

Listing 10-27

The WITH keyword is not required in all cases, nor are the commas required in all cases
but, rather than attempt to guess or remember which hints are the exceptions, all hints can
be placed within the WITH clause. As a best practice, separate hints with commas to ensure
consistent behavior and future compatibility. Even with the hints that don't require the WITH
keyword, it must be supplied if more than one hint is to be applied to a given table.

NOEXPAND
When one or more indexed views are referenced within a query, the use of the NOEXPAND
table hint will prevent view expansion, roughly the opposite of the EXPAND VIEW hint we
used earlier. The query hint affects all views in the query. The table hint will prevent the
indexed view to which it applies from being "expanded" into its underlying view definition.
The primary use of this hint is to get indexed views to be used inside the plans on Standard
Edition systems, because they won't use the materialized view otherwise.

SQL Server Enterprise and Developer editions use the indexes in an indexed view if the
optimizer determines that index is best for the query. This is indexed view matching, and it
requires the following settings for the connection:

• ANSI_NULL set to On
• ANSI_WARNINGS set to On
• CONCAT_NULL_YIELDS_NULL set to On
• ANSI_PADDING set to On
• ARITHABORT set to On
• QUOTED_IDENTIFIER set to On
• NUMERIC_ROUNDABORT set to Off.

Using the NOEXPAND hint forces the optimizer to use one of the indexes from the indexed
view. In Chapter 7 (Listing 7-11), we used a query that referenced one of the indexed views,
vStateProvinceCountryRegion, in AdventureWorks2014. During the compila-
tion process, the indexed view was replaced with its definition and then the optimizer did not
undo that during view matching, and we saw an execution plan that featured a three-table
join. Via use of the NOEXPAND table hint, in Listing 10-28, we change that behavior.

337

Chapter 10: Controlling Execution Plans with Hints

SELECT a.City,
 v.StateProvinceName,
 v.CountryRegionName
FROM Person.Address AS a
 JOIN Person.vStateProvinceCountryRegion AS v WITH (NOEXPAND)
 ON a.StateProvinceID = v.StateProvinceID
WHERE a.AddressID = 22701;

Listing 10-28

Now, instead of a three-table join, we get the execution plan in Figure 10-28.

Figure 10-28: A smaller execution due to the use of the NOEXPAND hint.

Now, not only are we using the clustered index defined on the view, but we're also seeing
a performance increase, albeit a very small one, from 189ms to 162ms on average on my
system. The reads dropped from 6 to 4. In this situation, eliminating the overhead of the extra
join resulted in improved performance. That will not always be the case, so you must test the
use of hints very carefully.

INDEX()
The INDEX() table hint allows you to specify the index to be used when accessing a table.
The syntax supports two methods, or four if you include the WITH (INDEX = (name or
number)), although this syntax doesn't support multiple indexes, so is generally not used.

338

Chapter 10: Controlling Execution Plans with Hints

We can specify the index to use by its number or its name. Indexes are numbered within the
sys.indexes table. You'll have to look up any given index there. The numbers 0 and 1
cause different behaviors. 0 forces a scan of the clustered index or the heap, while 1 forces
either a scan or a seek on a clustered index and produces an error on a heap. The syntax is
as follows.

…FROM dbo.TableName WITH (INDEX(2))…

Listing 10-29

Alternatively, we can simply refer to the index by name, which I recommend, because the
order in which indexes are applied to a table can change, so you can't guarantee the value for
the number of the index.

…FROM dbo.TableName WITH (INDEX (IndexName))…

Listing 10-30

You can only have a single INDEX() hint for a given table, but you can define multiple
indexes within that one hint. This is applicable when you're attempting to perform index joins
to retrieve data, forcing an intersection between all indexes on the table, i.e. forcing the opti-
mizer to use all listed indexes, in listed order.

…FROM TableName WITH (INDEX (IndexName1,IndexName2))…

Listing 10-31

This does not cause the optimizer to pick among only the mentioned indexes, but forces it to
use all of them, in the order specified. Within the comma-separated list of indexes, you can
match the index number and index name formats. For a quick demo, examine the plan for the
following query.

CREATE TABLE dbo.IndexSample (ID INT NOT NULL IDENTITY(1, 1),
 ColumnA INT,
 ColumnB INT,
 ColumnC INT,
 CONSTRAINT IndexSamplePK
 PRIMARY KEY
 (
 ID
));

339

Chapter 10: Controlling Execution Plans with Hints

CREATE INDEX FirstIndex ON dbo.IndexSample (ColumnA);
CREATE INDEX SecondIndex ON dbo.IndexSample (ColumnB);
CREATE INDEX ThirdIndex ON dbo.IndexSample (ColumnC);
SELECT isa.ID,
 isa.ColumnA,
 isa.ColumnB,
 isa.ColumnC
FROM dbo.IndexSample AS isa WITH (INDEX(FirstIndex, SecondIndex,
ThirdIndex));
DROP TABLE dbo.IndexSample;

Listing 10-32

Now, let's take a simple query that lists department, job title, and employee name.

SELECT de.Name,
 e.JobTitle,
 p.LastName + ', ' + p.FirstName
FROM HumanResources.Department AS de
 JOIN HumanResources.EmployeeDepartmentHistory AS edh
 ON de.DepartmentID = edh.DepartmentID
 JOIN HumanResources.Employee AS e
 ON edh.BusinessEntityID = e.BusinessEntityID
 JOIN Person.Person AS p
 ON e.BusinessEntityID = p.BusinessEntityID
WHERE de.Name LIKE 'P%';

Listing 10-33

We get a reasonably straightforward execution plan, as shown in Figure 10-29.

Figure 10-29: Execution plan using indexes chosen by the optimizer.

340

Chapter 10: Controlling Execution Plans with Hints

We see a series of Index Seek and Clustered Index Seek operators, joined together by
Nested Loops operators. Suppose we're convinced that we can get better performance if
we could eliminate the Index Seek on the HumanResources.Department table, and
instead use that table's clustered index, PK_Department_DepartmentID. We could
accomplish this using the INDEX() hint, as shown in Listing 10-34.

SELECT de.Name,
 e.JobTitle,
 p.LastName + ', ' + p.FirstName
FROM HumanResources.Department AS de WITH (INDEX(PK_Department_
DepartmentID))
 JOIN HumanResources.EmployeeDepartmentHistory AS edh
 ON de.DepartmentID = edh.DepartmentID
 JOIN HumanResources.Employee AS e
 ON edh.BusinessEntityID = e.BusinessEntityID
 JOIN Person.Person AS p
 ON e.BusinessEntityID = p.BusinessEntityID
WHERE de.Name LIKE 'P%';

Listing 10-34

Figure 10-30 shows the resulting execution plan.

 Figure 10-30: An execution plan with forced index choices.

After the hint is added, we can see a Clustered Index Scan of one index replacing the Index
Seek of the other index, just as we told the optimizer to do, although we didn't specify either
seek or scan, through the use of the table hint. This change results in a slight improvement in
performance in the query, with the execution time coming in at 103ms as opposed to 217ms
without the hint. Interestingly, the number of reads for the query overall remained consistent
at 1042, regardless of the index used.

341

Chapter 10: Controlling Execution Plans with Hints

FORCESEEK/FORCESCAN
As we have seen throughout this chapter, it is possible to make some choices for the opti-
mizer, which can either hurt or enhance performance. One area that lots of people worry
about is the use of indexes. Seeing an index scan leads many people to want to force an
index seek in its place, working under the assumption that seeks are always better than scans.
However, this is not always the case.

Nevertheless, we can use the FORCESEEK or FORCESCAN table hints to force the specified
type of operator, without forcing the index used. It's rather like the reverse of an index hint,
which forces the index but allows the optimizer to choose between scan or seek.

Let's take the query in Listing 10-35 as an example.

SELECT p.Name AS ComponentName,
 p2.Name AS AssemblyName,
 bom.StartDate,
 bom.EndDate
FROM Production.BillOfMaterials AS bom
 JOIN Production.Product AS p
 ON p.ProductID = bom.ComponentID
 JOIN Production.Product AS p2
 ON p2.ProductID = bom.ProductAssemblyID;

Listing 10-35

As you can probably guess from looking at the query, without a WHERE clause to provide any
sort of filtering, scans have been used to retrieve the data from the tables in question. You can
see this in the execution plan shown in Figure 10-31.

Figure 10-31: An execution plan using scans because of a lack of a WHERE clause.

342

Chapter 10: Controlling Execution Plans with Hints

This is completely normal behavior considering the query in question. However, people
really like to see those seeks. Looking at the plan, you can see that the highest estimated cost
of any of the index operations is the scan against the BillOfMaterials table. Let's see if
forcing a seek operation will improve performance.

SELECT p.Name AS ComponentName,
 p2.Name AS AssemblyName,
 bom.StartDate,
 bom.EndDate
FROM Production.BillOfMaterials AS bom WITH (FORCESEEK)
 JOIN Production.Product AS p
 ON p.ProductID = bom.ComponentID
 JOIN Production.Product AS p2
 ON p2.ProductID = bom.ProductAssemblyID;

Listing 10-36

Taking the choices for a scan away from the optimizer, it is forced to use a seek operation and
that also forces other changes on the execution plan, as you can see in Figure 10-32.

Figure 10-32: Execution plan forcing a Seek operation through the table hint.

The scan of the BillOfMaterials table has been replaced with a seek. Also, the Hash
Match operator has been replaced with a Nested Loops. The question is not what changes
occurred in the plan, however. The question is, what happened to performance. The execu-
tion time went from about 145ms on average to about 290ms. The reads jumped from 34 to
1160. Not only was the query slower because of the seek and the loops join, but the number
of reads means that there will be a marked increase in contention for resources on a system
under load.

343

Chapter 10: Controlling Execution Plans with Hints

The FORCESCAN operator can be used to go the other way, changing a seek to a scan. Either
of these table hints may be useful, depending on the circumstances. However, you must exer-
cise extreme caution in the use of all the table, query, and join hints.

Summary
While the optimizer makes very good decisions most of the time, it may sometimes make
less than optimal choices. Taking control of the queries using table, join, and query hints,
when appropriate, can often be the right choice. However, remember that the data in your
database is constantly changing. Any choices you force on the optimizer through hints today,
to achieve whatever improvement you're hoping for, may become a major pain in the future.

If you decide to use hints, test them prior to applying them, and remember to document their
use in some manner so that you can come back and test them again periodically as your
database grows and changes. As Microsoft releases patches and service packs, the behavior
of the optimizer can change. Be sure to retest any queries using hints after an upgrade to your
server. I intentionally demonstrated cases where the query hints hurt as well as help, as this
simply reflects reality. Hints more often hurt performance than they help it. Use of these hints
should be a last resort, not a standard method of operation.

344

Chapter 11: Parallelism in Execution
Plans

SQL Server can take advantage of a server's multiple processors, by spreading the processing
of certain operations across the CPUs available to it. Firstly, lots of small queries can run at
the same time, each on their own thread. These queries will just have normal execution plans.
Secondly, a single query can execute across multiple threads. This latter case, the parallel
execution of a single query, will result in a different execution plan, and these differences are
our focus in this chapter.

Essentially, when the optimizer detects that its estimated cost for a plan exceeds the "cost
threshold," beyond which parallelization of the query will benefit performance, it produces
a parallel version of the plan. The work performed by any "parallelized" operators in the
parallel plan can be distributed across multiple CPUs, the goal being that, by dividing the
work into smaller chunks, the overall operation performs quicker.

For large-scale queries, and for queries using columnstore indexes, query parallelism is
extremely desirable for performance. For smaller, OLTP-style queries, it can cause more
problems than it solves. By understanding how to read parallelized plans, you'll start to
understand how it affects the overall cost of the plan, which operators benefit most, and
where the added overhead of parallelism might come into play.

This chapter focuses on the details of parallel execution of a single plan, and only on plans
that use the traditional row mode execution model, where the operators pass around data row
by row. As mentioned briefly in Chapter 8, columnstore indexes support a new type of query
execution model, called batch mode, where operators pass around batches of rows rather
than single rows. Chapter 12 will cover batch mode in detail, including parallel execution
plans that use columnstore indexes.

Controlling Parallel Query Execution
SQL Server has two instance-wide configuration options that determine if, or when, the
optimizer might generate parallel execution plans, and also control the parallel execution of
queries by the engine. The max degree of parallelism (I'll sometimes use MAXDOP
for brevity) setting determines the maximum number of processors that the SQL Server

345

Chapter 11: Parallelism in Execution Plans

execution engine can use when executing a parallel query, and the cost threshold for
parallelism setting, which specifies the threshold, or minimum cost, at which SQL
Server creates and runs parallel plans; the cost being measured in this case is the estimated
cost of the execution plan.

Of course, parallel query execution requires SQL Server to have access to more than
one processor. At compilation time, if the optimizer determines that only one processor is
available, or that MAXDOP is set to 1, then it will not produce parallel plans. Otherwise, the
optimizer will select a plan in the usual fashion and, if the estimated cost of that plan exceeds
the cost threshold for parallelism value, it will produce a parallel version of
the plan.

At runtime, the execution engine then determines across how many processors to parallelize
the query, up to the maximum value defined by the instance-level MAXDOP setting, or by
use of the MAXDOP query hint (see Chapter 10). Also, the engine must check with the OS to
determine if sufficient threads (an operating system construct that allows multiple concurrent
operations) are available for use, prior to launching a parallel process. Plans that are eligible
for parallelism may not go parallel. If the execution engine decides that, even though a plan
qualifies for parallel execution, there aren't enough resources to support it, then it will simply
strip out the parallelism and run a serial version of the plan (Query Store is the only place
you'll see both versions of the plan).

Max degree of parallelism
By default, MAXDOP is set to 0 (zero), which means that SQL Server can use all available
processors to execute a query. If you wish to suppress parallel execution, you set this option
to a value of 1. If you wish to specify the number of processors to use for a query execution,
then you can set a value of greater than 1, and up to 64.

Without thorough measurement, and tested proof that query parallelism is always going
to cause issues, I recommend leaving parallelism on, for most systems. However, I also
recommend that you don't leave MAXDOP set to zero. Instead, you'll want to set it to a value
greater than 1, but less than the total number of available processors, to prevent an expensive,
parallelized query from blocking other queries, by "hogging" all available processors.

A very general recommendation is to set this value to half the number of physical cores
on your machine, but this doesn't begin to cover all the subtlety and nuances of this topic.
Determining a precise setting for MAXDOP requires precise knowledge of your operating
system, your hardware, whether your system is virtualized and the type of workload that

346

Chapter 11: Parallelism in Execution Plans

your system runs. Microsoft offers some recommendations on how to determine the right
MAXDOP setting for your system: https://bit.ly/2uwvUeI. Paul Randal and the SQLskills team
also provide some very detailed recommendations, and punch holes in common myths on the
topic: https://bit.ly/2GwQ9Pu. Between these two resources, you should be able to determine
the right answer for your system.

You can query the current setting and determine the configuration of this option via the
following scripts shown in Listing 11-1.

EXEC sys.sp_configure @configname = 'show advanced options',
 @configvalue = 1;
GO
RECONFIGURE WITH OVERRIDE;
GO
--show the current value
EXEC sys.sp_configure @configname = 'max degree of parallelism'
--change value
EXEC sys.sp_configure @configname = 'max degree of parallelism',
 @configvalue = 4;
GO
RECONFIGURE WITH OVERRIDE;
GO
EXEC sys.sp_configure @configname = 'show advanced options',
 @configvalue = 0;
GO
RECONFIGURE WITH OVERRIDE;
GO

Listing 11-1

The first statement turns on the advanced options, necessary to access the degree of
parallelism. The system is then reconfigured, necessary to actually activate the new setting.
Then we query the configuration by passing the first parameter value and not the second to
the system procedure, sys.sp_configure.

Figure 11-1: The max degree of parallelism set to the default value of 0.

https://bit.ly/2uwvUeI
https://bit.ly/2GwQ9Pu

347

Chapter 11: Parallelism in Execution Plans

The run_value shows the current setting which, in this case, is the default value of 0. To
change the value we call sys.sp_configure, passing two values, the setting we wish to
change, max degree of parallelism, and the value we wish to change it to, 4. The
script then resets the advanced options display.

If we were to query the setting again after running the script, we would see the run_value
had changed to 4.

Cost threshold for parallelism
The optimizer assigns estimated costs to operators within the execution plan. These costs,
at one point in the past, represented an estimation of the number of seconds each operation
would take. Today, simply think of the cost as just that, estimated cost units. The accumulated
values of each of the costs assigned to the operators is the estimated cost of the plan itself.
If that estimated cost is greater than the cost threshold for parallelism, then that
operation may be executed as a parallel operation.

The default value for the cost threshold for parallelism is 5. This was probably a
good default value back in 1998, when it was first established for SQL Server 7. The number
and power of processors, and the type of processors, all have changed radically since then,
and I strongly advise you to change that value to something much higher. My rough recom-
mendation would be 25 or more for a reporting system or data warehouse, and 50 for an
OLTP system. I make these choices because, in general, you're more likely to see large-scale
data movement in reporting systems, where a parallel plan is more likely to benefit query
processing. An OLTP system generally only deals with smaller data sets and therefore should
be using its processors for lots of queries, not a single query.

Regardless, you should not leave the cost threshold for parallelism at the default
value, and Listing 11-2 shows how to change it, using the same sys.sp_configure func-
tion as previously.

EXEC sys.sp_configure @configname = 'show advanced options',
 @configvalue = 1;
GO
RECONFIGURE WITH OVERRIDE;
GO
EXEC sys.sp_configure @configname = 'cost threshold for
parallelism',
 @configvalue = 50;
GO

348

Chapter 11: Parallelism in Execution Plans

RECONFIGURE WITH OVERRIDE;
GO
EXEC sys.sp_configure @configname = 'show advanced options',
 @configvalue = 0;
GO
RECONFIGURE WITH OVERRIDE;
GO

Listing 11-2

Blockers of parallel query execution
A few code statements can force the entire plan to be serial, regardless of your settings for
your MAXDOP or cost threshold:

• Scalar functions using T-SQL
• CLR multi-statement, table-valued, or user-defined functions that access data
• Some internal functions in SQL Server such as ERROR_NUMBER(),

IDENT_CURRENT(), @@TRANCOUNT and others
• Accessing system tables
• Dynamic cursors.

There are also some T-SQL functions and objects that lead to parts of a plan executing in
serial mode (this list can vary depending on the version of SQL Server):

• Recursive CTEs
• TOP
• Paging functions such as ROW_NUMBER
• Backward scans
• Multi-statement, table-valued, user-defined functions
• Global scalar aggregates.

The parts of any T-SQL statement using these objects and functions will prevent parallel
execution within the plan for the parts of the plan that satisfy these functions.

349

Chapter 11: Parallelism in Execution Plans

Parallel Query Execution

When the optimizer determines that a query could benefit from parallelization, it creates
a version of the plan optimized for parallel execution. In this parallel plan, you'll see all
the familiar operators you've seen previously in the book, except with the yellow "double
arrow" icon, indicating that the work performed by the operator will be split across proces-
sors. In effect, these operators do the same work as in a serial plan, but on less data. You'll
also see extra operators, which handle distribution of data across threads. In plans, these are
called Parallelism operators, but they are often referred to as Exchange operators. These do
the "marshaling" job of partitioning the workload into multiple streams of data, passing it
through the various parallel operators, and gathering all the streams back together again. You
can see an example of these in Figure 11-2.

Figure 11-2: Examples of parallel operators in an execution plan.

Most operators are not parallelism aware; they just do their normal work on whatever data
they get; the only difference is that they will only process some proportion of the rows,
rather than all of them, as they would in a serial plan. In fact, scans, and seeks when used to
return ranges of consecutive rows, are the only operators that change their behavior between
parallel and serial plans, and we'll discuss that in more detail shortly.

350

Chapter 11: Parallelism in Execution Plans

Examining a parallel execution plan

We'll start with an aggregation query, of the sort that you might find in a data warehouse. If
the data set this query operates against is very large, it might benefit from parallelism.

SELECT so.ProductID,
 COUNT(*) AS Order_Count
FROM Sales.SalesOrderDetail so
WHERE so.ModifiedDate >= '20140301'
 AND so.ModifiedDate < DATEADD(mm, 3, '20140301')
GROUP BY so.ProductID
ORDER BY so.ProductID;

Listing 11-3

Figure 11-3 shows the estimated execution plan, which seems straightforward.

Figure 11-3: A plan that is executing in serial fashion.

There is nothing in this plan that we haven't seen before. One interesting point is that the
optimizer decided to use the Hash Match operator, and then Sort the aggregated data, rather
than the alternative, which would be to Sort the data emerging from the scan on SalesOr-
derDetail by ProductID and then use the Stream Aggregate operator. The reason is
that the extra cost of sorting about 24 K rows in the latter case, rather than 178 in the former,
outweighed any savings from using the cheaper aggregation operator.

Let's move on to see what happens if the optimizer decided to produce a parallelized version
of his plan. In this simple example, the total cost of the plan is only 1.3 (you can see this from
the Estimated Subtree Cost property of the SELECT operator, so I'll need to artificially
lower the cost threshold for parallelism to 1.

EXEC sys.sp_configure @configname = 'show advanced options',
 @configvalue = 1;
GO
RECONFIGURE WITH OVERRIDE;
GO

351

Chapter 11: Parallelism in Execution Plans

EXEC sys.sp_configure @configname = 'cost threshold for
parallelism',
 @configvalue = 1;
GO
RECONFIGURE WITH OVERRIDE;
GO
SET STATISTICS XML ON;
SELECT so.ProductID,
 COUNT(*) AS Order_Count
FROM Sales.SalesOrderDetail AS so
WHERE so.ModifiedDate >= 'March 3, 2014'
 AND so.ModifiedDate < DATEADD(mm,
 3,
 'March 1, 2014')
GROUP BY so.ProductID
ORDER BY so.ProductID;
SET STATISTICS XML OFF;
GO
EXEC sys.sp_configure @configname = 'cost threshold for
parallelism',
 @configvalue = 5; --your value goes here
GO
RECONFIGURE WITH OVERRIDE;
GO
EXEC sys.sp_configure @configname = 'show advanced options',
 @configvalue = 0;
GO
RECONFIGURE WITH OVERRIDE;
GO

Listing 11-4

Figure 11-4 shows the execution plan.

Figure 11-4: A plan that has gone to parallel execution.

Let's start on the left, with the SELECT operator. If you look at its Properties sheet, you can
see the Degree of Parallelism property, which in this case is 4, indicating that the execution
of this query was split between each of the four available processors. If there had been exces-
sive load on the system at the time of execution, the plan might not have gone parallel, or,

352

Chapter 11: Parallelism in Execution Plans

it might have used fewer processors. The Degree of Parallelism property is a performance
metric, captured at runtime and displayed with an actual plan, and so will reflect accurately
the parallelism used at runtime.

Figure 11-5: Properties of the SELECT operator showing the Degree of Parallelism.

Looking at the graphical execution plan, we'll start from the right and follow the
data flow. First, we find a Clustered Index Scan operator. Figure 11-6 shows part
of its Properties sheet.

Figure 11-6: Properties of the Clustered Index Scan showing parallel artifacts.

353

Chapter 11: Parallelism in Execution Plans

The Parallel property is set to True. More interesting is that the Number of Executions
value indicates that this operator was called 4 times, once for each thread. At the very top of
the sheet, you can that 23883 rows matched our predicate on ModifiedDate, and we can
see how these rows were distributed across four threads, in my case quite unevenly.

Scans and seeks are among the few operators that change their behavior between parallel and
serial plans. In parallel plans, rows are provided to each worker thread using a demand-based
system where the operator requests rows from a Storage Engine feature called the Parallel
Page Supplier, which responds to each request by supplying a batch of rows to any thread
that asks for more work (this feature is not part of the query processor, so it doesn't appear in
the plan).

The data passes on to a Hash Match operator, which is performing an aggregate count for
each ProductID value, as defined by the GROUP BY clause within the T-SQL, but only
for each row on its thread (the Hash Match is not parallelism aware). The result will be
one row for each ProductID value that appears on a thread (plus its associated count). It
is likely that there will be other rows for the same ProductID in the other threads, so the
resulting aggregates are not the final values, which is why, in the execution plans shown in
Figure 11-4, the logical operation performed by the Hash Match is listed as a Partial Aggre-
gate, although in every other respect the operator functions in the same way as a Hash Match
(Aggregate).

If you inspect the Properties of the Hash Match (Partial Aggregate) operator (Figure 11-7),
you'll see that it was called 4 times, and again you will see the distribution of the partially
aggregated rows across the threads.

Remember that you can, and likely will, see different row counts at this stage of the plan,
depending on the degree of parallelism you see in your tests, and on how the rows are distrib-
uted across those threads. There are 178 distinct ProductID values in the selected data. If
all rows for each ProductID ended up on the same thread, then you'd see the theoretical
minimum total of 178 rows, because the partial aggregate would already be the final aggre-
gate. The theoretical maximum number of rows occurs when every ProductID value
occurs on every thread. If there are 4 threads, as in my case, the theoretical maximum is
4*178 = 712 rows. I see 470 rows, nicely in between the theoretical minimum and maximum.

354

Chapter 11: Parallelism in Execution Plans

Figure 11-7: Properties of the Hash Match showing parallel artifacts.

The rows pass to a Parallelism operator (often referred to, remember, as an Exchange oper-
ator), which implements the Repartition Streams operation. You can think of this operator,
generally, as being responsible for routing rows to the right thread. Sometimes this is done
just to balance the streams, trying to make sure that a roughly equal amount of work is
performed by each stream. Other times, its main function is to ensure that all rows that need
to be processed by a single instance of an operator are on the same thread. This is an example
of the latter; the operator is used to ensure that the columns with matching ProductID
values are all on the same thread, so that the final, global aggregation can be performed. We
can see that in the properties the partitioning type is Hash (there are other partitioning types
too, such as Round Robin and Broadcast) and the partition column is ProductID.

355

Chapter 11: Parallelism in Execution Plans

Figure 11-8: Partition Column properties of the Repartition Streams operation.

Figure 11-9 shows the results of this "rerouting" in the operator properties.

Figure 11-9: Rows rearranged inside the threads.

356

Chapter 11: Parallelism in Execution Plans

You can see the Actual Number of Rows property, and how the threads have been rear-
ranged with a roughly even distribution of rows. A more even distribution of data across
threads was a happy side-effect in this case. However, if the ProductID values had not
been spread equally in the hash algorithm used, then this could just as easily have added
more skew.

Conceptually, you can imagine the plan, up to this point, as looking like Figure 11-10. Again,
the exact row counts will differ for you, but it demonstrates the execution of the query on
multiple threads, and the distribution, then repartitioning, of the rows across those threads.

Figure 11-10: An imaginary example of what is happening in parallel execution.

After the partial aggregation and repartitioning, all rows for a given ProductID value
will be on the same thread, which means that each of the four threads will have up to four
rows per ProductID. The rows need to be aggregated again to complete the "local-global
aggregation."

Now that the number of rows is reduced substantially by the partial aggregation, the opti-
mizer estimates that it is cheaper to sort the data into the correct order so that a Stream
Aggregate operator can do the final aggregation, rather than use another Hash Match. A
Sort operator is one that benefits greatly from parallelization, and often shows a significant
reduction in total cost, compared to the equivalent serial Sort.

357

Chapter 11: Parallelism in Execution Plans

The next operator is another Parallelism operator, performing the Gather Streams opera-
tion. The function of this operator is somewhat self-explanatory, in that it gathers the streams
back together, to present the data as a single data set to the query or operator calling it. The
output from this operator is now a single thread of data. The one, very important, property
that I will call out here is the Order By property, as shown in Figure 11-11.

Figure 11-11: Properties of the Parallelism operator showing the Order By property.

In the previous Parallelism operator (Repartition Streams), this property was absent,
meaning that it just read each of the input threads and sent packets of rows on to each output
thread as soon as it could. The incoming order of the data is not guaranteed to be preserved.

However, if the order is preserved, then you will see different behavior. If the data in each
thread is already in the correct order, then an order-preserving exchange operator will wait
for data to be available on all inputs, and merge them into a single stream that is still in the
correct order. This means that an order-preserving Exchange can be a little slower than one
that doesn't preserve order. However, because parallelized sorting is so efficient, the opti-
mizer will usually favor a plan with a parallel sort, and an order-preserving Parallelism
operator, over a plan with a non-order-preserving Parallelism operator, and a serial sort of all
the data.

From this point on, the plan is just a normal, "serial" plan, working on a single thread of data,
which passes next to the Compute Scalar operator, which converts the aggregated column to
an int. This implies that internally, during the aggregation phases of the plan, that value was
a bigint, but it's unclear. Finally, the data is returned through the SELECT operator.

358

Chapter 11: Parallelism in Execution Plans

Are parallel plans good or bad?
Parallelism comes at a cost. It takes processing time and power to divide an operation into
various threads, coordinate the execution of each of those threads, and then gather all the
data back together again. If only a few rows are involved, then that cost will far outweigh the
benefits of putting multiple CPUs to work on the query.

However, given how quickly operator costs increase, and the cost of certain operators in
particular (such as Sorts), with the number of rows to process, it's likely that parallelism
will make a lot of sense for any long-running, processor-intensive, large-volume queries,
including most queries that use columnstore indexes. You'll see this type of activity mainly in
reporting, warehouse, or business intelligence systems.

In an OLTP system, where the majority of the transactions are small and fast, parallelism
can sometimes cause a query to run slower that it would have run with a serial plan. Some-
times, it can cause the parallelized query to run a bit faster, but the extra resources used cause
queries on all other connections to run slower, reducing overall performance of the system.
Most of the time the optimizer does a good job of avoiding these situations, but it can some-
times make poor choices. However, even in OLTP systems, some plans, such as for reporting
queries, will still benefit from parallelism. The general driving factor here is the estimated
costs of these plans, which is why setting the cost threshold for parallelism
setting becomes so important.

There is no hard-and-fast rule for determining when parallelism may be useful, or when
it will be costlier. The best approach is to observe the execution times and wait states of
queries that use parallelism, as well as the overall workload, using metrics such as "requests
per second." If the system deals with an especially high level of concurrent requests, then
allowing one user's query to parallelize and occupy all available CPUs will probably cause
blocking problems. Where necessary, either change the system settings to increase the cost
threshold and MAXDOP, or use the MAXDOP query hint in individual cases.

It all comes down to testing to see if you are gaining a benefit from the parallel processes,
and query execution times are usually the surest indicator of this. If the time goes down
with MAXDOP set to 1 during a test, that's an indication that the parallel plan is hurting you,
but it doesn't mean you should disable parallelism completely. You need to go through the
process of choosing appropriate settings for Max Degree of Parallelism and Cost
Threshold for Parallelism, and then measure your system performance and
behaviors with parallel plans executing.

359

Chapter 11: Parallelism in Execution Plans

Summary
The chapter explained the basics of how you can read through a parallel execution plan.
Parallelism doesn't fundamentally change what you do when reading execution plans, it
just requires additional knowledge and understanding of a few new Parallelism operators,
and the potential impact on other operators in the plan, so you can start to see what types
of queries really benefit, and to spot the cases where the added overhead of parallelism
becomes significant.

Parallel execution of queries can be a performance enhancer. It can also hurt performance.
You need to ensure that you've set your system up correctly, both the Max Degree of
Parallelism and the Cost Threshold for Parallelism. With those values
correctly set, you should benefit greatly by limiting the execution of parallel queries to those
that really need it.

360

Chapter 12: Batch Mode Processing
Introduced with the columnstore index in 2012, batch mode processing is a new way for the
query engine to process queries, allowing it to pass batches of rows between operators, rather
than individual rows, which can radically improve performance in some situations.

For many queries that use columnstore indexes, parallel execution is desirable for perfor-
mance. As a result, batch mode processing tends to be discussed together with parallel
processing, but in fact parallel execution is not required for all types of batch mode
processing, and batch mode is available in non-parallel execution in SQL Server 2016 and
later, as well as in Azure SQL Database.

Elsewhere in the book, such as when we discussed Adaptive Joins back in Chapter 4, you've
seen some evidence of the row or batch mode processing in the properties of operators,
but here we're going to discuss in detail what it is and how it works, the characteristics of
execution plans for queries that use batch mode and, finally, some of its limitations.

At the time of writing, only tables with columnstore indexes support this new batch mode
execution model, and so this chapter will only discuss execution plans for queries that access
tables with a columnstore index, and execute in batch mode. However, Microsoft recently
announced that an upcoming release of SQL Server will also introduce batch mode to
rowstore queries, so this type of processing is going to expand.

Batch Mode Processing Defined
The traditional processing mechanism, row mode, has been described throughout the book.
An operator will request rows from the preceding operator, process each row that it receives
and then pass that row on to the next operator as it requests rows (or, in the case of a blocking
operator, request all input rows one by one, and then return all result rows one by one). This
constant request negotiation is a costly operation within SQL Server. It can, and does, slow
things down, especially when we start dealing with very large data sets.

Batch mode processing reduces the frequency of the negotiation process, thereby increasing
performance. Instead of passing along individual rows, operators pass rows on in batches,
generally 900-row batches, and then only the batches are negotiated. So, if we assume 9,000
rows moving between operators, instead of 9,000 negotiations to move the rows, you'll
see 10 negotiations (9,000 rows / 900 = 10 batches), radically reducing the overhead for
processing the data.

361

Chapter 12: Batch Mode Processing

The batch mode size won't always be 900 rows; that is the value provided by Microsoft
as guidance. However, it can vary as it's largely dependent on the number and size of the
columns being passed through the query. You'll see some examples where the batch size is
less than 900, but I've yet to see a case where it is more than 900 rows in a batch, although
I've seen no evidence that 900 is a hard maximum, and you may see different behaviors,
depending on the SQL Server version.

Plan for Queries that Execute in Batch Mode
As discussed in Chapter 8, columnstore indexes are designed to improve workloads that
involve a combination of very large tables (millions of rows), and analysis, reporting and
aggregation queries that operate on all rows, or on large selections. It is for these types of
queries that batch mode execution can really improve performance, rather than typical OLTP
queries that process single rows or small collections of rows.

We're going to focus on how row and batch mode processing appear in execution plans, and
how you can determine which processing mode you're seeing, again based on information
supplied through the execution plan.

To get started with batch mode, and demonstrate the resulting changes in behavior within
execution plans, we'll need to create a columnstore index on a pretty big table. Fortunately,
Adam Machanic has posted a script that can create a couple of large tables within Adventure-
Works for just this sort of testing. You can download the script from http://bit.ly/2mNBIhg.

With the larger tables in place, Listing 12-1 creates a nonclustered columnstore index on the
bigTransactionHistory table.

CREATE NONCLUSTERED COLUMNSTORE INDEX TransactionHistoryCS
ON dbo.bigTransactionHistory
(
 ProductID,
 TransactionDate,
 Quantity,
 ActualCost,
 TransactionID
);

Listing 12-1

http://bit.ly/2mNBIhg

362

Chapter 12: Batch Mode Processing

We'll start off with a simple query that groups information together for analysis, as shown in
Listing 12-2.

SELECT th.ProductID,
 AVG(th.ActualCost),
 MAX(th.ActualCost),
 MIN(th.ActualCost)
FROM dbo.bigTransactionHistory AS th
GROUP BY th.ProductID;

Listing 12-2

Figure 12-1 shows the actual execution plan.

 Figure 12-1: The Columnstore Index Scan operator.

On my system, the database compatibility level is 140, and the cost threshold for
parallelism is 50 (the estimated cost of the serial plan is just under 25; see the Esti-
mated Subtree Cost property of the SELECT operator). If your compatibility level setting
is different, or your cost threshold setting is below 25, then you may see a parallelized
version of the plan.

Following the flow of data from right to left, the first operator is the Columnstore Index
Scan (described in Chapter 8). There is nothing in Figure 12-1 to indicate visually whether
this operator is using batch mode or row mode, but the Properties sheet, shown in Figure
12-2 reveals the pertinent pieces of information.

363

Chapter 12: Batch Mode Processing

 Figure 12-2: Batch mode in the properties of the Columnstore Index Scan operator.

As you can see in Figure 12-2, there is an estimated and actual execution mode that will
designate an operator as performing in batch mode or not. This operator was estimated to use
batch mode and then, when the query ran, batch mode was used. Prior to SQL Server 2016,
with a non-parallel plan such as this, batch mode was not available for serial plans such as
this (more on this shortly).

This operator scanned the whole table (over 31 million rows) and returned to the Hash
Match (Aggregate) operator 29,666,619 rows, in 32,990 batches. The remaining 1,596,982
were aggregated locally (due to aggregate pushdown, as described in Chapter 8); the results
of this local aggregation were injected directly into the Hash Match (Aggregate) operator's
results. Aggregation was on the ProductID. Figure 12-3 shows the tooltip for the Hash
Match, which will also reveal whether operators in the plan used batch mode processing.

364

Chapter 12: Batch Mode Processing

Figure 12-3: Portion of the Hash Match operator's tooltip.

The Hash Match operator also used batch mode processing. It received almost 30 million
rows in 32990 batches and, after aggregation, returned 25,200 rows in 28 batches. So, there
were about 899 rows per batch coming in and 846 going out, both close to the 900 value
stated earlier.

Batch mode prior to SQL Server 2016
If we change the compatibility level of the database from the SQL Server 2017 value of 140
to the SQL Server 2014 value of 120, it can change the behavior of our batch mode opera-
tions, because fewer operations supported batch mode in earlier versions of SQL Server.

ALTER DATABASE AdventureWorks2014
SET COMPATIBILITY_LEVEL = 120;

Listing 12-3

Now, when we rerun the query from Listing 12-2, we'll get a parallelized execution plan, as
shown in Figure 12-5.

Figure 12-4: A parallel execution plan against a columnstore index.

365

Chapter 12: Batch Mode Processing

The primary, visible difference between the plan in Figure 12-4 and the one in Figure 12-1 is
the addition of the Parallelism (Gather Streams) operator that pulls parallel execution back
into a single data stream.

Prior to SQL Server 2016, it was very common for queries to never go into batch mode
unless they were costly enough to run in parallel, because it was a requirement of batch mode
processing that the plan be parallel. In this instance, because batch mode was not available to
the serial plan, the cost of that serial plan was high enough that the cost threshold for
parallelism was exceeded, and the plan went parallel. If you want to verify this, you can
add the OPTION (MAXDOP 1) hint to Listing 12.2, and capture the actual plan, and you'll
see that the cost of the serial plan is now approximately 150. You'll also notice that the opti-
mizer no longer chooses the columnstore index, and that's because the estimated cost of using
it in a serial plan is even higher (approximately 200). You can verify this by adding an index
hint (see Chapter 10) to force use of the columnstore index.

More generally, depending on the query, you may also see different costs in different SQL
Server versions and compatibility modes, due to changes in both the options that the query
optimizer can use and the cardinality estimation engine in use.

In SQL Server 2012 and 2014 (and corresponding compatibility levels), a query below
the threshold for parallelism would never use batch mode. In those earlier SQL Server
versions, if you wanted to see batch mode within your queries, you would need to lower
the cost threshold for parallelism. If that wasn't viable, you would be forced to modify the
query to add an undocumented trace flag, 8649, that artificially lowers the cost threshold for
parallelism to zero, making sure that any query will run in parallel. Listing 12-4 shows how
to use the QUERYTRACEON 8649 hint to force parallel execution.

SELECT th.ProductID,
 AVG(th.ActualCost),
 MAX(th.ActualCost),
 MIN(th.ActualCost)
FROM dbo.bigTransactionHistory AS th
GROUP BY th.ProductID
OPTION(QUERYTRACEON 8649);

Listing 12-4

Before we continue, let's change the compatibility mode back to 140.

366

Chapter 12: Batch Mode Processing

ALTER DATABASE AdventureWorks2014
SET COMPATIBILITY_LEVEL = 140;

Listing 12-5

Mixing columnstore and rowstore indexes
The previous section showed how execution plans exposed batch mode processing. Your
next question might be: what happens when you're mixing columnstore and rowstore indexes
within the same query? In fact, batch mode works regardless of the type of index used to read
the rows. The only requirement for batch mode is that at least one of the tables in the query
must have a columnstore index (even if it's not useful for the query). As long as this is true
then you may see plans with some operators using row mode and some using batch mode
processing, depending on the operators involved. Let's see an example that joins rowstore
and columnstore data.

SELECT bp.Name,
 AVG(th.ActualCost),
 MAX(th.ActualCost),
 MIN(th.ActualCost)
FROM dbo.bigTransactionHistory AS th
 JOIN dbo.bigProduct AS bp
 ON bp.ProductID = th.ProductID
GROUP BY bp.Name;

Listing 12-6

Figure 12-5 shows the resulting execution plan (if your cost threshold for paral-
lelism is 26 or more).

Figure 12-5: An execution plan combining rowstore and columnstore data.

367

Chapter 12: Batch Mode Processing

Once again, if you inspect the properties of the Columnstore Index Scan, you'll see that it is
using batch mode execution, and that it again uses an early aggregation enhancement called
aggregate pushdown, where some (or sometimes all) of the aggregation is done by the scan
itself, as the data is read. Doing this reduces the number of rows returned to the Hash Match
by about 1.5 million.

The data passes to a Hash Match (Aggregate) operator which, again, is using batch mode
execution. You might be surprised to see not one but two aggregation operators in this plan,
for what is a relatively simply query. This is another example of the optimizer opting to use
both local and global aggregation. We also saw a "local-global" aggregation in Chapter 11
(Listing 11-4), as part of a row-mode parallel plan. In that case, the Hash Mash operator was
clearly marked as (Partial Aggregate), because it was only working on the data in this one
thread, but it behaved in the same way as a normal aggregate operator.

Here, the Defined Values and Hash Key Build properties of the Hash Match (Aggregate)
offer some insight into what is occurring. Figure 12-6 shows the Defined Values.

Figure 12-6: Defined Values showing partial aggregation.

You can see that a value called [partialagg1005] is created, consisting of the aggregation
of several columns in the data set. The aggregation is being performed on the ProductID
column, as shown in the Hash Keys Build property.

368

Chapter 12: Batch Mode Processing

Figure 12-7: Local aggregation based on ProductID.

Based on the output from the Columnstore Index Scan index, the optimizer has decided that
an early aggregation on ProductID will make the later aggregation, by the product Name
as we defined in the T-SQL, more efficient. Consequently, the number of rows returned to
the subsequent join operation is reduced from approximately 30 million rows (from the base
table) to just 25200 (the number of distinct ProductID values), as shown by the Actual
Number of Rows property.

This data stream is joined with rows in the bigProduct table, based on matching
ProductID values. It uses an Adaptive Join (see Chapter 4), again executing in batch
mode. The Actual Join Type used is Hash Match, with the Clustered Index Scan as the
lower input (chosen because the number of rows returned exceeds the Adaptive Threshold
Rows property value). The Clustered Index Scan used row mode processing.

At this point the product Name column values are available and, after a batch mode Sort
operator, we see the Stream Aggregate operator, which uses the partial aggregates to
perform the final "global" aggregation on Name.

Figure 12-8: Global aggregation for final values.

The Stream Aggregate operator used row mode processing, since it does not support
batch mode.

369

Chapter 12: Batch Mode Processing

Batch mode adaptive memory grant
Finally, for batch mode processing, let's look at one more query, a stored procedure as shown
in Listing 12-7.

CREATE OR ALTER PROCEDURE dbo.CostCheck (@Cost MONEY)
AS
SELECT p.Name,
 AVG(th.Quantity)
FROM dbo.bigTransactionHistory AS th
 JOIN dbo.bigProduct AS p
 ON p.ProductID = th.ProductID
WHERE th.ActualCost = @Cost
GROUP BY p.Name;

Listing 12-7

Listing 12-8 shows how we could execute the CostCheck procedure.

EXEC dbo.CostCheck @Cost = 0;

Listing 12-8

Figure 12-9 shows the execution plan.

Figure 12-9: Execution plan with a Warning indicator.

You'll see the warning there on the SELECT operator of the plan. While we can see the
warning from the tooltip, it will only show the first warning. If there is more than one
warning, it's best to use the properties. Figure 12-10 shows the Warnings section of the
properties for the SELECT.

370

Chapter 12: Batch Mode Processing

 Figure 12-10: MemoryGrantWarning properties.

The full text of the warning is as follows:

The query memory grant detected "ExcessiveGrant," which may impact
the reliability. Grant size: Initial 80840 KB, Final 80840 KB, Used
3192 KB.

The initial estimate on rows from the columnstore index was 12.3 million, but the actual
was only 10.8 million. From there, the Hash Match operator estimated that the aggregation,
based on the statistics sampled, would return 25200 rows. The Hash Match (Aggregate),
in this example, uses a hash table optimized for aggregation, because it stores GROUP BY
values and intermediate aggregation results, instead of storing all input rows unchanged, as
other Hash Match operators do. This means that its memory grant is based on the estimated
number of rows produced (25200), not read. However, it only produced 10 K rows. This
over-estimation also affects the memory grant for the subsequent Adaptive Join which, until
the end of its build phase, will require memory at the same time as the Hash Match, and the
memory grant for the Sort.

In short, these over-estimated row counts meant that a larger amount of memory was
requested, 80840, than was consumed, 3192. However, while SQL Server often allows
a large margin for error in its memory allocations to prevent spills, these relatively
modest over-estimations don't quite explain why the memory grant estimate is quite
so big in this case.

Starting in SQL Server 2017 and in Azure SQL Database, the query engine can now adjust
the memory grant for subsequent executions, either up or down, based on the values of the
previous executions of the query. In short, if we re-execute the query, the memory allocation,
during batch mode processing, will adjust itself on the fly. Let's take an example. Assuming
I've just executed Listing 12-8, I'm going to execute the stored procedure again, supplying a
different value for the @Cost parameter.

371

Chapter 12: Batch Mode Processing

EXEC dbo.CostCheck @Cost = 15.035;

Listing 12-9

This query has a similar result set. Executing this will result in reusing the execution plan
already in cache. However, because we're doing batch mode processing, the memory grant
can be adjusted on subsequent executions based on similar processes that enable the adaptive
join. The plan now looks as shown in Figure 12-11.

Figure 12-11: Execution plan without a warning.

The warning has been removed, even though the plan has not been recompiled, statistics
haven't been adjusted, or any of the other processes that would normally result in a change to
the memory allocation. The memory grant has been adjusted on the fly as we can see in the
SELECT operator properties in Figure 12-12.I've also expanded the Parameter List prop-
erty, to verify that the optimizer has reused the plan compiled for a Cost of zero.

Figure 12-12: Properties showing adjusted memory.

372

Chapter 12: Batch Mode Processing

The adaptive memory can work in either direction, either under- or over-calculated memory
allocations, to adjust the memory during subsequent executions of similar allocations.
However, this could lead to thrashing if a query has lots of different types of allocations so, at
some point, automatically, the adaptive memory will be turned off. This is tracked on a per-
plan basis. It can be turned off for one query and still works for other queries, and it will be
turned on again every time the plan for a query is recompiled.

You can't tell directly from a single plan whether adaptive memory has been turned off for
that plan. You would have to set up monitoring through Extended Events to observe that
behavior. If you suspect it's happened, you can compare the values of the memory allocation
from one execution to the next. If they are not changing, even though the query experiences
spills or large over-allocation, then the adaptive memory grant has been disabled.

While adaptive memory is only available currently with batch mode processing, Microsoft
has stated that they will enable row mode adaptive memory processing at some point in
the future.

Loss of Batch Mode Processing
SQL Server 2017, when dealing with columnstore indexes, has a very heavy bias towards
using batch mode processing for all, or at least part, of any query executed against the
columnstore index. If you're working on SQL Server 2014 or 2016, then you'll find that
certain of the following operations will not run in batch mode:

• UNION ALL
• OUTER JOIN
• IN/EXISTS or NOT IN/NOT EXISTS
• OR in WHERE
• Aggregation without GROUP BY
• OVER

You will need to check the actual execution plan, because it's going to show whether the
operators within the plan used batch mode or if they went to row mode. However, on
testing all these in SQL Server 2017, the plan always went, in whole or in part, to batch
mode processing.

373

Chapter 12: Batch Mode Processing

Summary
The new batch mode execution mode means that the query engine can pass around large
groups of rows at once, rather than moving data row by row. In addition, there are some
specific performance optimizations that are only available in batch mode.

For now, batch mode comes with certain preconditions. It currently only works with queries
on tables that have a columnstore index, but that is going to change in the future. In older
SQL Server versions, batch mode is supported by a relatively limited set of operators.

Batch mode can offer huge performance benefits when processing large data sets, but queries
that perform point lookups and limited range scans are still better off in row mode.

374

Chapter 13: The XML of Execution Plans
Behind each of the execution plans we've been examining up to this point in the book is
XML. An "XML plan" is not in any way different from a graphical plan; it contains the same
information you can find in the operators and properties of a graphical plan. XML is just a
different format in which to view that same plan. If we save a plan, it will be saved in its
native XML format, which makes it easy to share with others.

I would imagine that very few people would prefer to read execution plans in the raw
XML format, rather than graphical. Also, the XML having received barely a mention in the
previous twelve chapters of this book, it should be clear that you don't need to read XML to
understand execution plans. However, there are a few cases where access to it will be useful,
which I'll highlight, and then we'll discuss the one overriding reason why you may want to
use the raw XML data: programmability. You can run XQuery T-SQL queries against XML
files and XML plans. In effect, this gives us a direct means of querying the plans in the
Plan Cache.

A Brief Tour of the XML Behind a Plan
The easiest way to view the XML for any given plan in SSMS is simply to right-click on any
graphical plan and select Show Execution Plan XML from the context menu.

If required, you can capture the XML plan programmatically, by encapsulating the batch
within SET SHOWPLAN_XML ON/OFF commands, for the estimated plan, or SET STATIS-
TICS XML ON/OFF for the actual plan (more on this later).

The XML for an estimated plan
Display the estimated plan for the query in Listing 13-1, which retrieves some details for
customers in the state of New York..

SELECT c.CustomerID, a.City, s.Name, st.Name
 FROM Sales.Customer AS c
 JOIN Sales.Store AS s
 ON c.StoreID = s.BusinessEntityID
 JOIN Sales.SalesTerritory AS st

375

Chapter 13: The XML of Execution Plans

 ON c.TerritoryID = st.TerritoryID
 JOIN Person.BusinessEntityAddress AS bea
 ON c.CustomerID = bea.BusinessEntityID
 JOIN Person.Address AS a
 ON bea.AddressID = a.AddressID
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
 WHERE st.Name = 'Northeast' AND sp.Name = 'New York';
GO

Listing 13-1

Figure 13-1 shows the usual graphical plan.

Figure 13-1: Execution plan for New York state customers query.

Right-click in any white space area of the plan and choose Show Execution Plan XML to
get to the XML behind this estimated plan. The results, even for our simple query, are too
large to output here, and Figure 13-2 just shows the opening section. Content is often added
in new SQL Server versions, and the order of attributes, and sometimes elements, can differ
between versions, so don't worry if it looks different on your system.

376

Chapter 13: The XML of Execution Plans

Figure 13-2: The XML of an execution plan.

Right at the start, we have the schema definition. The XML has a standard structure,
consisting of elements and attributes, as defined and published by Microsoft. A review
of some of the common elements and attributes and the full schema is available at
https://bit.ly/2BU9Yhf .

Listed first are the BatchSequence, Batch, and Statements elements. In this
example, we're only looking at a single batch and a single statement, so nothing else
is displayed.

https://bit.ly/2BU9Yhf

377

Chapter 13: The XML of Execution Plans

Next, as part of the StmtSimple element, we see the text of the query followed by a list of
attributes of the statement itself. After that, the StatementSetOptions element shows
the database-level options that were in force. Listing 13-2 shows the StmtSimple and
StatementSetOptions for the estimated plan.

<StmtSimple StatementText="SELECT c.CustomerID, a.City, s.Name,
 st.Name FROM Sales.Customer AS c
 JOIN Sales.Store AS s ON c.StoreID =
s.BusinessEntityID
 JOIN Sales.SalesTerritory AS st
 …etc…
 WHERE st.Name = 'Northeast'AND sp.Name =
'New York'"
 StatementId="1" StatementCompId="1"
StatementType="SELECT"
 StatementSqlHandle="0x0900A7CAC098F11600D1596466
7F6395453000000 …"
 DatabaseContextSettingsId="3" ParentObjectId="0"
 StatementParameterizationType="0"
RetrievedFromCache="true"
 StatementSubTreeCost="1.04758" StatementEstRows="1"
 SecurityPolicyApplied="false" StatementOptmLevel="FULL"
 QueryHash="0x6F422E0A48C0E2DA" QueryPlanHash="0xBF47C49
83DC8361D"
 StatementOptmEarlyAbortReason="TimeOut"
 CardinalityEstimationModelVersion="140">
 <StatementSetOptions QUOTED_IDENTIFIER="true" ARITHABORT="true"
 CONCAT_NULL_YIELDS_NULL="true" ANSI_
NULLS="true"
 ANSI_PADDING="true" ANSI_WARNINGS="true"
 NUMERIC_ROUNDABORT="false">
 </StatementSetOptions>

Listing 13-2

Next is the QueryPlan element, which shows some plan- and optimizer-level properties
(the OptimizerStatsUsage element is collapsed).

<QueryPlan NonParallelPlanReason="CouldNotGenerateValidParallelPl
an"
 CachedPlanSize="104" CompileTime="10" CompileCPU="10"
 CompileMemory="1160">
 <MemoryGrantInfo SerialRequiredMemory="2048"

378

Chapter 13: The XML of Execution Plans

SerialDesiredMemory="2632" />
 <OptimizerHardwareDependentProperties EstimatedAvailableMemoryGra
nt="157286"
 EstimatedPagesCached="19660"
 EstimatedAvailableDegreeOfP
arallelism="2"
 MaxCompileMemory="1475656"
/>
 <OptimizerStatsUsage>…</OptimizerStatsUsage>

Listing 13-3

Collectively, Listings 13-2 and 13-3 show the same information available to us by looking at
the properties of the first operator, in this case a SELECT, in the graphical plan. You can see
information such as the CompileTime, the CachedPlanSize and the Statement-
OptmEarlyAbortReason. These get translated to Compile Time, Cached Plan Size,
and Reason for Early Termination of Optimization when you're looking at the graphical
plan. As always, some of the values in your XML (for estimated costs and row counts, for
example) may differ from those shown here.

Within the QueryPlan element is a nested hierarchy of RelOp elements, each one
describing an operator in the plan and its properties. The RelOp elements are listed in the
order in which they are called, akin to reading a graphical plan left to right, so in Figure 13-2
you can see that the very first operator called, with a NodeId of "0," is a Nested Loops
operator, followed by another Nested Loops, with a NodeId of "1," and then an Index Seek
on the SalesTerritory table, and so on.

XML data is more difficult to take in, all at once, than the graphical execution plans, but
you can expand and collapse elements using the "+" and "–" nodules down the left-hand
side, and in doing so, the hierarchy of the plan becomes somewhat clearer. Nevertheless,
finding specific operators in the XML is not easy, especially for complex plans. If you
know the NodeId of the operator (from the graphical plan) then you can do a Ctrl-F for
NodeID="xx."

Listing 13-4 shows the properties of the first Nested Loops join (reformatted somewhat
for legibility).

<RelOp NodeId="0" PhysicalOp="Nested Loops" LogicalOp="Inner Join"
EstimateRows="1"
 EstimateIO="0" EstimateCPU="5.9304e-005" AvgRowSize="149"
 EstimatedTotalSubtreeCost="1.04758" Parallel="0"

379

Chapter 13: The XML of Execution Plans

EstimateRebinds="0"
 EstimateRewinds="0" EstimatedExecutionMode="Row">

Listing 13-4

After that, we see a nested element, OutputList, showing the data returned by this oper-
ator (I've reformatted it, and reduced nesting levels, for readability). This operator, as you
would expect, returns values for all the columns requested in the SELECT list of our query.

<OutputList>
 <ColumnReference Database="[AdventureWorks2016]" Schema="[Sales]"
 Table="[Customer]" Alias="[c]"
Column="CustomerID" />
 <ColumnReference Database="[AdventureWorks2016]" Schema="[Sales]
 " Table="[Store]" Alias="[s]" Column="Name" />
 <ColumnReference Database="[AdventureWorks2016]" Schema="[Sales]"
 Table="[SalesTerritory]" Alias="[st]"
Column="Name" />
 <ColumnReference Database="[AdventureWorks2016]"
Schema="[Person]"
 Table="[Address]" Alias="[a]" Column="City" />
</OutputList>

Listing 13-5

For complex plans, I find this a relatively easily digestible way to see all the columns and
their attributes returned.

After that we see the NestedLoops element, which contains elements for specific prop-
erties of this operator, as shown in Listing 13-6. In this case, we can see that this operator
resolves the join condition using OuterReferences (see Chapter 4 for a full description).
Below that, I've included the collapsed version for the two inputs to the first operator, the
outer input being another NestedLoops (with NodeId="1"), and the inner input a
Clustered Index Seek (NodeId="14"), which is the last operator called in this plan.

The StoreID column values returned by the outer input are pushed down to the inner input,
where they are used to perform a Seek operation on the Store table to return the Name
column for matching rows.

380

Chapter 13: The XML of Execution Plans

 <NestedLoops Optimized="0">
 <OuterReferences>
 <ColumnReference Database="[AdventureWorks2016]"
Schema="[Sales]"
 Table="[Customer]" Alias="[c]"
Column="StoreID">
 </ColumnReference>
 </OuterReferences>
 <RelOp AvgRowSize="101" EstimateCPU="0.00059304" EstimateIO="0"
 EstimateRebinds="0" EstimateRewinds="0"
EstimatedExecutionMode="Row"
 EstimateRows="14.1876" LogicalOp="Inner Join" NodeId="1"
Parallel="false"
 PhysicalOp="Nested Loops" EstimatedTotalSubtreeCo
st="1.03974">…</RelOp>
 <RelOp AvgRowSize="61" EstimateCPU="0.0001581"
EstimateIO="0.003125"
 EstimateRebinds="1.78078" EstimateRewinds="11.4068"
 EstimatedExecutionMode="Row" EstimateRows="1"
EstimatedRowsRead="1"
 LogicalOp="Clustered Index Seek" NodeId="14"
Parallel="false"
 PhysicalOp="Clustered Index Seek" EstimatedTotalSubtreeC
ost="0.00778646"
 TableCardinality="701">…</RelOp>

Listing 13-6

By contrast, within the equivalent element for the second Nested Loops (NodeId="1"),
when you expand the first input again you will see that this operator resolves the join condi-
tion to the Store table, using a Predicate property. I've not shown the whole predicate
but, in short, this operator receives TerritoryID and Name values from the Index Seek
on the SalesTerritory table, and will join this data with that from the bottom input,
only returning rows that have matching values for TerritoryID in the Customer table.

<NestedLoops Optimized="0">
 <Predicate>
 <ScalarOperator
 ScalarString="[AdventureWorks2016].[Sales].
[SalesTerritory].[TerritoryID]
 as [st].[TerritoryID]=
 [AdventureWorks2016].[Sales].[Customer].
[TerritoryID]

381

Chapter 13: The XML of Execution Plans

 as [c].[TerritoryID]">
…Etc…
 </Predicate>

Listing 13-7

The XML for an actual plan
If you return to Listing 13-1 and this time execute it and capture the actual plan, you'll see all
the same information as in the XML for the estimated plan, plus some new elements, namely
those that are only populated at execution time, rather than compile time.

Listing 13-8 compares the content of the QueryPlan element for the estimated plan
(shown first) and then the actual plan. You can see that the latter contains additional
information, including the DegreeOfParallelism (more on parallelism in Chapter 11),
the MemoryGrant (which is the amount of memory needed for the execution of the query),
and some additional properties within the MemoryGrantInfo element.

<QueryPlan
 NonParallelPlanReason="CouldNotGenerateValidParallelPlan"
 CachedPlanSize="104" CompileTime="9" CompileCPU="9"
CompileMemory="1160">
<MemoryGrantInfo SerialRequiredMemory="2048"
SerialDesiredMemory="2632">
<QueryPlan
 DegreeOfParallelism="0"
 NonParallelPlanReason="CouldNotGenerateValidParallelPlan"
 MemoryGrant="2632"
 CachedPlanSize="104" CompileTime="9" CompileCPU="9"
CompileMemory="1160">
<MemoryGrantInfo SerialRequiredMemory="2048"
SerialDesiredMemory="2632"
 RequiredMemory="2048" DesiredMemory="2632" RequestedMemory="2632"
 GrantWaitTime="0" GrantedMemory="2632" MaxUsedMemory="640"
MaxQueryMemory="576112" />

Listing 13-8

Another major difference is that, in the XML for an actual plan, each operator has a
RunTimeInformation element, showing the thread, actual rows, and the number
of executions for that operator along with additional information.

382

Chapter 13: The XML of Execution Plans

<RelOp AvgRowSize="149" EstimateCPU="5.9304E-05" EstimateIO="0"
 EstimateRebinds="0" EstimateRewinds="0"
EstimatedExecutionMode="Row"
 EstimateRows="1" LogicalOp="Inner Join" NodeId="0"
Parallel="false"
 PhysicalOp="Nested Loops" EstimatedTotalSubtreeCo
st="1.04758">
 <OutputList>
 …Etc…
 </OutputList>
 <RunTimeInformation>
 <RunTimeCountersPerThread Thread="0" ActualRows="1" Batches="0"
 ActualEndOfScans="1"
ActualExecutions="1"
 ActualExecutionMode="Row"
 ActualElapsedms="6" ActualCPUms="6"
/>
 </RunTimeInformation>

Listing 13-9

Safely Saving and Sharing Execution Plans
Though you can output an execution plan directly in its native XML format, you can only
save it from the graphical representation. If we attempt to save to XML directly from the
result window we only get what is on display in the result window. Another option is to use a
PowerShell script, or similar, to output from XML to a .sqlplan file.

Simply right-click on the graphical plan and select Save Execution Plan As… to save it
as a .sqlplan file. This XML file, as we've seen, provides all the information in the plan,
including all properties. This can be a very useful feature. For example, we might collect
multiple plans in XML format, save them to file and then open them in easy-to-view (and to
compare) graphical format. This is useful to third-party applications, too (covered briefly in
Chapter 17).

A word of caution, though; as we saw earlier, the XML of the execution plan stores both the
query and parameter values. That information could include proprietary or personally identi-
fying information. Exercise caution when sharing an execution plan publicly.

383

Chapter 13: The XML of Execution Plans

When You'll Really Need the XML Plan
As you can see, while all the information is in there, reading plans directly through the XML
is just not as easy as reading the graphical plan and the property sheets for each operator.
However, there are a few specific cases where you'll need the XML, and I'll review those
briefly here (there may be others!).

Use the XML plan for plan forcing
In Chapter 9, we discussed plan forcing, by using a plan guide to apply the USE PLAN
query hint. Here, you need to supply the plan's XML to the @hints parameter of the
sp_create_plan_guide system stored procedure, when creating the plan guide.

To do this, you'll first need to capture the plan programmatically. This query pulls some
information from the Purchasing.PurchaseOrderHeader table and filters the data
on the ShipDate.

SET STATISTICS XML ON;
SELECT poh.PurchaseOrderID,
 poh.ShipDate,
 poh.ShipMethodID
FROM Purchasing.PurchaseOrderHeader AS poh
WHERE poh.ShipDate BETWEEN '20140103' AND '20140303';
GO
SET STATISTICS XML OFF;

Listing 13-10

Figure 13-3 shows the result, in the default grid mode.

Figure 13-3: A clickable link to the XML plan in SSMS.

If you have your query results outputting to text mode, you'll see some of the XML string,
but it won't be clickable and, depending on the settings within SSMS, it may not be complete.

384

Chapter 13: The XML of Execution Plans

In grid mode, clicking on this link opens the execution plan as a graphical plan. However,
instead, if you're doing plan forcing, just right-click on the link, copy it and paste it into the @
hints parameter when creating the plan guide.

First operator properties when capturing plans using
Extended Events
When you capture a plan using Extended Events, you won't see the first operator, the
SELECT, INSERT, UPDATE, or DELETE in the graphical plan, so you won't have access
to all the useful metadata it hides, except by switching to the XML representation, where
some of it is still stored. This is because the XML for the plans captured using Extended
Events (and Trace Events, for that matter) differs from every other source of execution plans
(SSMS, plan cache, and the Query Store).

Listing 13-11 shows the relevant section of the XML, for a plan captured using Extended
Events (you'll see how to do this in Chapter 15), between the Statement element and the
first RelOp element.

<StmtSimple StatementSubTreeCost="1.04758" StatementEstRows="1"
 SecurityPolicyApplied="false" StatementOptmLevel="FULL"
 QueryHash="0x6F422E0A48C0E2DA" QueryPlanHash="0xBF47C49
83DC8361D"
 StatementOptmEarlyAbortReason="TimeOut"
 CardinalityEstimationModelVersion="140">
 <QueryPlan DegreeOfParallelism="0" MemoryGrant="2632"
 NonParallelPlanReason="CouldNotGenerateValidParallelPl
an"
 CachedPlanSize="104" CompileTime="10" CompileCPU="10"
 CompileMemory="1160">
 <MemoryGrantInfo SerialRequiredMemory="2048"
SerialDesiredMemory="2632"
 RequiredMemory="2048" DesiredMemory="2632"
 RequestedMemory="2632" GrantWaitTime="0"
GrantedMemory="2632"
 MaxUsedMemory="640" MaxQueryMemory="573840">
 </MemoryGrantInfo>

385

Chapter 13: The XML of Execution Plans

 <OptimizerHardwareDependentProperties EstimatedAvailableMemoryG
rant="157286"

EstimatedPagesCached="19660"
 EstimatedAvailableDegreeO
fParallelism="2"

MaxCompileMemory="1475656">
 </OptimizerHardwareDependentProperties>
 <OptimizerStatsUsage>…</OptimizerStatsUsage>

Listing 13-11

It is a reduced set of information and I don't have a complete story from Microsoft on why
this is so. The code for capturing the plans seems to have come originally from Trace Events
and was duplicated in Extended Events. Nevertheless, what remains is still useful and it's
only available in the XML.

Pre-SQL Server 2012: full "missing index" details
As we've seen previously in the book, often, you'll see a message at the top of a plan saying
that there is a missing index that will "reduce the cost" of an operator by some percentage.
Prior to SQL Server 2012, if there was more than one missing index, only one would be
visible in the missing index hint in the graphical plan. So, if you're still working on earlier
SQL Server versions, the XML is the only place you'll find the full list.

Also, using the execution plan directly ties the missing index information to the query itself.
Using only the Microsoft-supplied DMVs, you won't see which query will benefit from the
suggested index.

If you open the XML for the actual execution plan for Listing 13-10, you'll notice an element
near the top labeled MissingIndexes, which lists tables and columns where the optimizer
recognizes that, potentially, if it had an index it could result in a better execution plan and
improved performance.

386

Chapter 13: The XML of Execution Plans

<MissingIndexes>
 <MissingIndexGroup Impact="83.5833">
 <MissingIndex Database="[AdventureWorks2016]"
Schema="[Purchasing]" Table="[PurchaseOrderHeader]">
 <ColumnGroup Usage="INEQUALITY">
 <Column Name="[ShipDate]" ColumnId="8" />
 </ColumnGroup>
 <ColumnGroup Usage="INCLUDE">
 <Column Name="[ShipMethodID]" ColumnId="6" />
 </ColumnGroup>
 </MissingIndex>
 </MissingIndexGroup>
</MissingIndexes>

Listing 13-12

While the information about missing indexes can sometimes be useful, it is only as good as
the available statistics, and can sometimes be very unreliable. It also does not consider the
added cost of maintaining the index. Always put appropriate testing in place before acting on
these suggestions.

Querying the Plan Cache
For the remainder of this chapter, we'll focus on the one overriding reason why it's very
useful to have the raw XML behind a plan: namely for querying it, using XQuery. We can
run XQuery queries against the .sqlplan file, or against execution plans stored in XML
columns in tables, or directly against the XML that exists in the plan cache or Query Store in
SQL Server.

This section introduces only a few of the core concepts for writing XQuery and some useful
examples to start you off, because an in-depth tutorial is far beyond the scope of this book.
For that, I recommend XML and JSON Recipes for SQL Server by Alex Grinberg.

387

Chapter 13: The XML of Execution Plans

Why query the XML of plans?
As discussed in Chapter 9, several DMOs, such as sys.dm_exec_query_stats and
sys.dm_exec_cached_plans store the plan_handle for a plan, which we can
supply to the sys.dm_exec_query_plan function, to return the execution plan in XML
format, as well as to the sys.dm_exec_sql_text function to return the SQL text. All
the queries stored in the Query Store are also in that same XML format, although stored by
default as text, which you must CAST to XML.

We can then use XQuery to return the elements, properties, and value within the plan XML,
many of which we discussed earlier in the chapter. Why is this useful?

Firstly, let's suppose we have a lot of plans that we need to examine. Thousands, or more.
Rather than attempt to walk through these plans, one at a time, looking for some common
pattern, we can write queries that search on specific elements or terms within the plan XML,
such as "Reason For Early Termination," and so track down recurring issues within the
entire set of plans.

Secondly, as we know, the DMOs and the Query Store contain a lot of other useful informa-
tion, such as execution statistics for the queries that used the cached plans. This means, for
example, we could query the plan cache or the Query Store, for all plans with missing index
recommendations, and the associated SQL statements, along with appropriate execution
statistics, so we can choose the right index strategy for the workload, rather than query by
query. The XML is the only place you can retrieve certain information, such as missing index
information correlated to its query, so the ability to retrieve information from the XML may
make using XQuery helpful.

Finally, sometimes a plan is very large, and it does become slightly easier to search the plan
XML for certain values and properties, rather than scroll through looking at individual operator
properties in the graphical plans. We'll cover this idea more in Chapter 14.

Before we start, though, a note of caution: XML querying is inherently costly, and queries
against XML might seriously affect performance on the server, primarily due to the memory that
XQuery consumes. Always apply due diligence when running these types of queries, and try to
minimize the overhead caused by XQuery, by applying some filtering criteria to your queries,
for example restricting the results to a single database, to limit the amount of data accessed.

Better still, we could export the XML plans, and potentially also the runtime stats, to a table on
a different server and then run the XQuery against that, in order to avoid placing too much of a
load directly against a production machine.

388

Chapter 13: The XML of Execution Plans

Query the plan XML for specific operators
Listing 13-13, given purely as an example of what's possible, returns the top three opera-
tors from the most frequently called query in the plan cache, assuming that this query has a
cached plan, based on the total estimated cost of each operator.

It illustrates how we can construct queries against the plan cache, but I would hesitate before
running this query on a production system if that system was already under stress.

WITH Top1Query
AS (SELECT TOP (1)
 dest.text,
 deqp.query_plan
 FROM sys.dm_exec_query_stats AS deqs
 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest
 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS
deqp
 ORDER BY deqs.execution_count DESC)
SELECT TOP 3
 tq.text,
 RelOp.op.value('@PhysicalOp', 'varchar(50)') AS PhysicalOp,
 RelOp.op.value('@EstimateCPU', 'float') + RelOp.op.value('@
EstimateIO', 'float') AS EstimatedCost
FROM Top1Query AS tq
 CROSS APPLY tq.query_plan.nodes('declare default element
namespace "http://schemas.microsoft.com/sqlserver/2004/07/
showplan";
 //RelOp') RelOp(op)
ORDER BY EstimatedCost DESC;

Listing 13-13

The basic logic is easy enough to follow. First, I define a common table expression (CTE),
Top1Query, which returns the SQL text and the plan for the most frequently executed
query currently in cache, as defined by the execution_count.

Next, skip down to the FROM clause of the second query, the "recursive member," which
references the CTE. For every row in our Top1Query CTE, (in this case there is only one
row), the CROSS APPLY will evaluate the subquery, which in this case uses the .nodes
method to "shred" the XML for the plan, stored in the query_plan column of sys.dm_
exec_query_plan, exposing the XML as if it were a table. Worth noting is that the query
uses the sum of the EstimatedCPU and EstimatedIO to arrive at an EstimatedCost

389

Chapter 13: The XML of Execution Plans

value for each operator. Normally, but not always, this will match exactly the value displayed
for the Estimated Operator Cost in the graphical plan properties. For some operators, other
factors (such as memory grants) are considered as part of the Estimated Operator Cost
value.

This done, the SELECT list of the second query takes advantage of the methods available
within XQuery, in this instance .value. We define the path to the location within the XML
from which we wish to retrieve information, such as the @PhysicalOp property.

The results from my system look as shown in Figure 13-4.

Figure 13-4: The three operators with highest estimated cost for the
most frequently executed query.

Querying the XML for missing index information
Let's look at one more example. You've already seen the Missing Index information that was
present in the execution plan (see Listing 13-12). There are Missing Index Dynamic Manage-
ment Views that show you all the suggested possible missing indexes found by the optimizer.
However, those DMVs do not have any mechanism for correlating the information back to
the queries involved. If we want to see both the missing index information and also which
queries they might be related to, we can use the query in Listing 13-14.

WITH XMLNAMESPACES
(
 DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/
showplan'
)
SELECT deqp.query_plan.value(N'(//MissingIndex/@Database)[1]',
'NVARCHAR(256)')
 AS DatabaseName,
 dest.text AS QueryText,
 deqs.total_elapsed_time,
 deqs.last_execution_time,

390

Chapter 13: The XML of Execution Plans

 deqs.execution_count,
 deqs.total_logical_writes,
 deqs.total_logical_reads,
 deqs.min_elapsed_time,
 deqs.max_elapsed_time,
 deqp.query_plan,
 deqp.query_plan.value(N'(//MissingIndex/@Table)[1]',
'NVARCHAR(256)')
 AS TableName,
 deqp.query_plan.value(N'(//MissingIndex/@Schema)[1]',
'NVARCHAR(256)')
 AS SchemaName,
 deqp.query_plan.value(N'(//MissingIndexGroup/@Impact)[1]',
'DECIMAL(6,4)')
 AS ProjectedImpact,
 ColumnGroup.value('./@Usage', 'NVARCHAR(256)') AS
ColumnGroupUsage,
 ColumnGroupColumn.value('./@Name', 'NVARCHAR(256)') AS
ColumnName
FROM sys.dm_exec_query_stats AS deqs
 CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp
 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest
 CROSS APPLY deqp.query_plan.nodes('//MissingIndexes/
MissingIndexGroup/MissingIndex/ColumnGroup') AS t1(ColumnGroup)
 CROSS APPLY t1.ColumnGroup.nodes('./Column') AS
t2(ColumnGroupColumn);

Listing 13-14

In the results shown in Figure 13-5, I ran a slightly modified version of Listing 13-14 to filter
the results to only show information regarding the AdventureWorks2014 database and
limit the number of columns, for readability.

Figure 13-5: Missing Index suggestions for AdventureWorks 2014.

391

Chapter 13: The XML of Execution Plans

The query in its current form returns multiple rows for the same missing index suggestions,
so in rows 2 to 4 you see the single missing index suggestion for the query from Listing
13-13. Row 1 shows an additional suggestion for a stored procedure that may need an index
created on it.

The TableName and ColumnName information is self-explanatory. The ColumnGroup-
Usage is suggesting where the column should be added to the index. An EQUALITY or
INEQUALITY value is suggesting that the column in question be added to the key of the
index. An INCLUDE value is suggesting adding that column to the INCLUDE clause of the
index creation statement. Each suggested index in this query is associated with the relevant
QueryText.

The query uses the .nodes method, to which we supply the path to the ColumnGroup
element in the XML plan stored in cache:

'//MissingIndexes/MissingIndexGroup/MissingIndex/ColumnGroup'

The values passed to .node here ensure that only information from this full path is used to
run the rest of the .value functions, which return information about the index, specifically
the TableName, ColumName, and ColumnGroupUsage information. With that you can
just refer to the path //MissingIndexGroup/ and then supply a property value such as
@Schema to arrive at data.

This is a useful way to filter or sort for queries currently in cache that have missing index
suggestions, to find queries that need tuning quickly. However, do bear in mind that not
all problem queries have missing indexes and not all queries with missing indexes are
problem queries. Finally, not all problem queries are guaranteed to be in cache when you
run Listing 13-14.

Very few people will sit down and write their own XQuery queries to retrieve data from
execution plans. Instead, you can take a query like Listing 13-14 and then adjust for your
own purposes. The only hard part is figuring out how to get the path correct. That's best done
by simply looking at the XML and stepping through the tree to arrive at the correct values.

392

Chapter 13: The XML of Execution Plans

Summary
The data provided in XML plans is complete, and the XML file is easy to share with
others. However, reading an XML plan is not an easy task and, unless you are the sort
of data professional who needs to know every internal detail (the majority of which
are available through the properties of a graphical plan), it is not one you will spend
time mastering.

Much better to read the plans in graphical form and, if necessary, spend time learning
how to use XQuery to access the data in these plans programmatically, and so begin
automating access to your plans in some instances, such as the Missing Index query
shown in this chapter.

393

Chapter 14: Plans for Special Data Types
and Cursors

Some of the data types introduced to SQL Server over the years have quite different
functionality from the standard set of numbers, strings, and dates that account for most
of the data with which we work. These data types have special functionality and indexing
that affect how they work, and when our queries, procedures, and functions work with these
data types, the differences can show up in execution plans.

We'll spend a large part of the chapter looking at plans for queries that use XML, since this
is the "special" data type most of us have encountered at some point. We'll examine the plans
that convert data from XML to relational (OPENXML), from relational to XML (FOR XML),
and ones that query XML data using XQuery. We won't dive into any tuning details, but I
will let you know where in the plan you might look for clues, if a query that uses XML is
performing poorly.

SQL Server 2016 added support for JavaScript Object Notation (JSON). It provides no
JSON-specific data type (it stores JSON data in an NVARVAR type) and consequently none
of the kinds of methods available to the XML data type. However, it does provide several
important T-SQL language elements for querying JSON, and we'll look at how that affects
execution plans.

We'll also look briefly at plans for queries that use the HIERARCHYID data type. We'll then
examine plans for queries that access spatial data, though only their basic characteristics,
because even rather simple spatial queries can have impressively complex plans.

The final part of the chapter examines plans for cursors. These don't fit neatly into the special
data type category; you can't store a cursor in a column and so it is not, strictly, a data type,
although, Microsoft does use "cursor" as the data type for a variable or output parameter that
references a cursor. In any event, cursors are certainly special in that they are a programming
construct that allows us to process query results one row at a time, rather than in the normal
and expected, set-based fashion. This will, of course, affect the execution plan, and not often
in a good way.

394

Chapter 14: Plans for Special Data Types and Cursors

XML
XML is a standard data type in many applications, and sometimes leads to storage of XML
within SQL Server databases, using the XML data type. However, if our database simply
accepts XML input and stores it in an XML column or variable, or reads an XML column
or variable, and returns it in XML form, then at the execution plan level, this is no different
from storing and retrieving data of any other type.

XML becomes relevant to execution plans if we query the XML data using XQuery, or if a
query uses the FOR XML clause to convert relational data to XML, or the OPENXML rowset
provider to go from XML to relational.

These methods of accessing and manipulating XML are very useful, but come at a cost.
Manipulating XML uses a combination of T-SQL and XQuery expressions, and problems
both in the T-SQL and in the XQuery parts can affect performance. Also, the XML parser,
which is required to manipulate XML, uses memory and CPU cycles that you would
normally have available only for T-SQL.

Overall, there are reasons to be judicious in your use and application of XML in
SQL Server databases.

Plans for queries that convert relational data to XML
(FOR XML)
By using the FOR XML clause in our T-SQL queries, we can transform relational data into
XML format, usually for outputting to a client, but sometimes so that we can store it in
an XML variable or column. We can use the FOR XML clause in any of the following four
modes, AUTO, RAW, PATH, or EXPLICIT. The first three can be used in the same way, will
create a different format of XML output from the same query, and the execution plan will be
the same in each case. The fourth mode allows us to define explicitly, in the query itself, the
shape of the resulting XML tree. This requires a query rewrite and so results in a different
execution plan.

Plans for basic FOR XML queries
Listing 14-1 shows a standard query that produces a list of stores and the contact person for
that store.

395

Chapter 14: Plans for Special Data Types and Cursors

SELECT s.Name AS StoreName,
 bec.PersonID,
 bec.ContactTypeID
FROM Sales.Store AS s
 JOIN Person.BusinessEntityContact AS bec
 ON s.BusinessEntityID = bec.BusinessEntityID
ORDER BY s.Name;

Listing 14-1

The resulting plan is very straightforward and needs no explanation at this stage of the book.

Figure 14-1: Traditional execution plan like elsewhere in the book.

To see the impact on the plan of converting the relational output to an XML format, we
simply add the FOR XML clause to Listing 14-1.

SELECT s.Name AS StoreName,
 bec.PersonID,
 bec.ContactTypeID
FROM Sales.Store AS s
 JOIN Person.BusinessEntityContact AS bec
 ON s.BusinessEntityID = bec.BusinessEntityID
ORDER BY s.Name
FOR XML AUTO;

Listing 14-2

In this case, I've used the AUTO mode but, regardless of whether I use that, or RAW, or PATH,
the plan in each case is as shown in Figure 14-2.

396

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-2: An execution plan showing output to XML through the
XML SELECT operator.

The only visible difference is that the SELECT operator is replaced by an XML SELECT
operator, and in fact this really is the only difference. The plans for the query with relational
output, and those for FOR XML queries with AUTO, RAW, or PATH seem to be identical in all
respects. However, each of the three FOR XML modes produces a different XML output from
the same query, as shown below, for the first row of the result set, in each case.

-- AUTO:
<s StoreName="A Bicycle Association">
 <bec PersonID="2050" ContactTypeID="11" />
</s>
-- RAW:
<row StoreName="A Bicycle Association" PersonID="2050"
ContactTypeID="11" />
-- PATH
<row>
 <StoreName>A Bicycle Association</StoreName>
 <PersonID>2050</PersonID>
 <ContactTypeID>11</ContactTypeID>
</row>

Each of these basic modes of FOR XML return text that is formatted like XML. If we want
the data to be returned in native XML format (as an XML data type), then we need to use the
TYPE directive. If you don't use the TYPE directive then, while it may look like XML to you
and me, to SQL Server and SSMS, it's just a string.

397

Chapter 14: Plans for Special Data Types and Cursors

Returning XML as XML data type

An extension of the XML AUTO mode allows you to specify the TYPE directive, to output
the results of the query as the XML data type, not simply as text in XML format. The TYPE
directive is mainly relevant if you use subqueries with FOR XML. The query in Listing
14-3 returns the same data as the previous one, but in a different structure. We're using the
subquery to make XML using TYPE, and then combining that with data from the outer query,
which is then output as XML-formatted text.

SELECT s.Name AS StoreName,
 (SELECT bec.BusinessEntityID,
 bec.ContactTypeID
 FROM Person.BusinessEntityContact AS bec
 WHERE bec.BusinessEntityID = s.BusinessEntityID
 FOR XML AUTO, TYPE, ELEMENTS) AS contact
FROM Sales.Store AS s
ORDER BY s.Name
FOR XML AUTO;

Listing 14-3

Figure 14-3 shows two result sets, the first for the query as written in Listing 14-3, and the
second for the same query but without the TYPE directive.

Figure 14-3: Output of FOR XML AUTO, both with and without the TYPE directive.

Notice that in the latter case the angle brackets in the subquery are converted to > and
< because the subquery is considered text to be converted to XML. In the former case,
it's formatted as XML.

Figure 14-4 shows the resulting execution plan for Listing 14-3 (with the TYPE directive).

398

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-4: Execution plan for XML AUTO.

First, it's worth noting that this query now causes 1515 logical reads, about 10 times more
than the query in Listing 14-2. This is because the optimizer uses a Nested Loops join to data
from the query and subquery, and since the outer input produces 701 rows.

The outer input returns the BusinessEntityID and Name columns, sorted by Name. The
BusinessEntityID values are pushed down to the inner input, and we see 701 seeks, for
the matching rows, returning the BusinessEntityID and ContactTypeID columns.
We then see the UDX operator, which in this case converts each row emerging from the
Index Seek into XML format.

Figure 14-5 shows the Properties window for the UDX operator. The Name property has the
value FOR XML, which tells us that it's converting relational data into XML. The
Used UDX Columns property shows which input data it processes. And the Output List
contains the internal name of the created XML data, in this case Expr1002, which consists
of the two BusinessEntityID and ContactTypeID columns from the Business-
EntityContact table.

Figure 14-5: Properties of the UDX operator.

399

Chapter 14: Plans for Special Data Types and Cursors

The UDX operator is often seen in plans that perform XPath and XQuery operations, and so
we'll see it again later in the chapter.

Finally, we see the Compute Scalar operator, which for some ill-defined reason assigns the
value of Expr1002 to Expr1004, then passes Expr1004 to its parent.

Plans for Explicit mode FOR XML queries
XML EXPLICIT mode is there for the occasions when we need to exert very precise control
over the format of the XML generated by the query. The downside is that the rowset our
query produces must obey certain formatting rules. If you try to run Listing 14-2 using the
EXPLICIT mode of FOR XML, you'll see an error to the effect that the format of your result
set is wrong.
Msg 6803, Level 16, State 1, Line 46

FOR XML EXPLICIT requires the first column to hold
positive integers that represent XML tag IDs.

So, it's up to us to write the query so that the rowset is in the right format, depending on the
required structure of the XML output. EXPLICIT mode is used to create very specific XML,
mixing and matching properties and elements in any way you choose based on what you
define within the query. Listing 14-4 shows a simple example.

SELECT 1 AS Tag,
 NULL AS Parent,
 s.Name AS [Store!1!StoreName],
 NULL AS [BECContact!2!PersonID],
 NULL AS [BECContact!2!ContactTypeID]
FROM Sales.Store s
JOIN Person.BusinessEntityContact AS bec
 ON s.BusinessEntityID = bec.BusinessEntityID
UNION ALL
SELECT 2 AS Tag,
 1 AS Parent,
 s.Name AS StoreName,
 bec.PersonID,
 bec.ContactTypeID

400

Chapter 14: Plans for Special Data Types and Cursors

FROM Sales.Store s
JOIN Person.BusinessEntityContact AS bec
 ON s.BusinessEntityID = bec.BusinessEntityID
ORDER BY [Store!1!StoreName],
 [BECContact!2!PersonID]
FOR XML EXPLICIT;

Listing 14-4

Figure 14-6 shows the actual execution plan for this query, which is somewhat
more complex.

Figure 14-6: Execution plan showing how XML EXPLICIT works.

To build the hierarchy of XML, we had to use the UNION ALL clause in T-SQL, between two
almost identical copies of the same query. The double execution of this branch makes it about
twice as expensive as the plan for the query in Listing 14-2. This is not as a direct result of
using FOR XML EXPLICIT, but is an indirect result of the requirements that option puts on
how we write the query.

So, while you get more control over the XML output, it comes at the cost of added
overhead, due to the need for the UNION ALL clause and the explicit formatting rules.
This leads to decreased performance due to the increased number of queries required to put
the data together.

Again, if you simply rerun the query without the FOR XML EXPLICIT clause, the only
difference in the plan will be an XML Select operator instead of a Select. Only the format
of the results is different. With FOR XML EXPLICIT you get XML; without it, you get an
oddly-formatted result set, since the structure you defined in the UNION query is not natu-
rally nested, as the XML makes it.

401

Chapter 14: Plans for Special Data Types and Cursors

Plans for queries that convert XML to relational data
(OPENXML)
We can use OPENXML in our T-SQL queries to "shred" XML into a relational format, most
often to take data from the XML format and change it into structured storage within a
normalized database.

OPENXML takes an XML document, stored in an nvarchar variable, and converts it into a
"rowset view" of that document, which can be treated as if it were a normal table. By rowset,
we mean a traditional view of the data in a tabular format, as if it were being queried from a
table. We can use OPENXML as a data source in any query. It can take the place of a table or
view in a SELECT statement, or in the FROM clause of modification statements, but it cannot
be the target of INSERT, UPDATE, DELETE, or MERGE.

To demonstrate this, we need an XML document. I've had to break elements across lines in
order to present the document in a readable form.

<ROOT>
 <Currency CurrencyCode="UTE"
 CurrencyName="Universal Transactional Exchange">
 <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE"
 CurrencyRateDate="2007/1/1" AverageRate=."553"
 EndOfDateRate= ."558" />
 <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE"
 CurrencyRateDate="2017/6/1/" AverageRate=."928"
 EndOfDateRate= "1.057" />
 </Currency>
</ROOT>

Listing 14-5

In this example, we're creating a new currency, the Universal Transactional Exchange,
otherwise known as the UTE. We need exchange rates for converting the UTE to USD.
We're going to take all this data and insert it, in a batch, into our database, straight from
XML. Listing 14-6 shows the script.

402

Chapter 14: Plans for Special Data Types and Cursors

BEGIN TRAN;
DECLARE @iDoc AS INTEGER;
DECLARE @Xml AS NVARCHAR(MAX);
SET @Xml = '<ROOT>
<Currency CurrencyCode="UTE" CurrencyName="Universal
 Transactional Exchange">
 <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE"
 CurrencyRateDate="2007/1/1" AverageRate=."553"
 EndOfDayRate= ."558" />
 <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE"
 CurrencyRateDate="2007/6/1" AverageRate=."928"
 EndOfDayRate= "1.057" />
</Currency>
</ROOT>';
EXEC sys.sp_xml_preparedocument
 @iDoc OUTPUT,
 @Xml;
INSERT INTO Sales.Currency
 (CurrencyCode,
 Name,
 ModifiedDate
)
SELECT CurrencyCode,
 CurrencyName,
 GETDATE()
FROM OPENXML (@iDoc, 'ROOT/Currency',1)
 WITH (CurrencyCode NCHAR(3), CurrencyName NVARCHAR(50));
INSERT INTO Sales.CurrencyRate
 (CurrencyRateDate,
 FromCurrencyCode,
 ToCurrencyCode,
 AverageRate,
 EndOfDayRate,
 ModifiedDate
)
SELECT CurrencyRateDate,
 FromCurrencyCode,
 ToCurrencyCode,
 AverageRate,
 EndOfDayRate,
 GETDATE()
FROM OPENXML(@iDoc , 'ROOT/Currency/CurrencyRate',2)
 WITH (CurrencyRateDate DATETIME '@CurrencyRateDate',
 FromCurrencyCode NCHAR(3) '@FromCurrencyCode',

403

Chapter 14: Plans for Special Data Types and Cursors

 ToCurrencyCode NCHAR(3) '@ToCurrencyCode',
 AverageRate MONEY '@AverageRate',
 EndOfDayRate MONEY '@EndOfDayRate');
EXEC sys.sp_xml_removedocument
 @iDoc;
ROLLBACK TRAN;

Listing 14-6

From this query, we get two actual execution plans, one for each INSERT. The first INSERT
is against the Currency table, as shown in Figure 14-7.

Figure 14-7: Execution plan for the INSERT against the Currency table.

A quick scan of the plan reveals a single new operator, Remote Scan. All the OPENXML
statement processing is handled within that Remote Scan operator. This operator represents
the opening of a remote object, meaning a DLL or some external process such as a CLR
object, within SQL Server, which will take the XML and convert it into a format within
memory that looks to the query engine like normal rows of data. Since the Remote Scan is
not actually part of the query engine itself, the optimizer represents the call, in the plan, as a
single icon.

The only place where we can really see the evidence of the XML is in the Output List for
the Remote Scan. In Figure 14-8, we can see the OPENXML statement referred to as a table,
and the properties selected from the XML data listed as columns.

Figure 14-8: Properties of the OPENXML operator.

404

Chapter 14: Plans for Special Data Types and Cursors

From there, it's a straightforward query with the data first being sorted for insertion into the
clustered index, and then sorted a second time for addition to the other index on the table.

The main point to note is that the Optimizer uses a fixed estimate of 10,000 rows returned for
the Remote Scan, which explains why it decides to Sort the rows first, to make inserting into
the indexes more efficient, though in this case that's unnecessary as we only actually return 1
row. This fixed estimate affects other operator choices that the optimizer makes, and so can
affect performance.

Also worth noting are the different arrow sizes coming in and out of Compute Scalar, which
are the result of a bad estimate. A Compute Scalar never actually does its own work, so it
only presents estimated row counts even in an actual plan. The size of the incoming arrow
reflects actual row counts (1 row), and the outgoing arrow reflects estimated (10,000 rows).

The second execution plan describes the INSERT against the CurrencyRate table.

 Figure 14-9: Execution plan for CurrencyRate table.

This query is the more complicated of the two because of the extra steps required for the
maintenance of referential integrity (see Chapter 6) between the Currency and Curren-
cyRate tables. There are two checks done for this because of the FromCurrency and
ToCurrency columns Yet still we see no XML-specific icons, since all the XML work is
hidden behind the Remote Scan operation. In this case, we see two comparisons against the
parent table, through the Merge Join operations. The data is sorted, first by FromCurren-
cyCode and then by ToCurrencyCode, in order for the data to be used in a Merge Join,
the operator picked by the optimizer because it estimated 10,000 rows would be returned by
the Remote Scan.

As you can see, it's easy to bring XML data into the database for use within our queries, or
for inclusion within our database. However, a lot of work goes on behind the scenes to do
this, and not much of that work is visible in the execution plan. First, SQL Server has to call
the sp_xml_preparedocument function, which parses the XML text using the MSXML
parser. However, we see none of this work in the plan. Next, it needs to transform the parsed
document into a rowset, but this work is "hidden" and represented by the Remote Scan
operator. However, we do see that the estimated row count for OPENXML is fixed at 10,000
rows, which may affect query performance. If this is causing performance problems for you,

405

Chapter 14: Plans for Special Data Types and Cursors

you should focus on other mechanisms of data manipulation, such as loading to a temporary
table first in order to get statistics for a better-performing execution plan.

One caveat worth mentioning is that parsing XML uses a lot of memory. You should
plan on opening the XML, getting the data out, and then closing and de-allocating the
XML as soon as possible. This will reduce the amount of time that the memory is allocated
within your system.

Plans for querying XML using XQuery
The true strength of querying XML within SQL Server is through XQuery. We'll examine
the execution plans for a few simple XQuery examples, so that you can start to see how
incorporating XQuery expressions in our T-SQL queries can affect those plans. However,
we can't cover the full breadth and depth of execution plan patterns you can see with XQuery
(and nor can I teach you XQuery; that would require an entire book of its own). For a
thorough introduction, read this white paper offered from Microsoft at http://bit.ly/1UH6KfP.

The purpose of seeing how to query XML, specifically the XML within execution plans, is to
be able to search for values in lots of plans rather than browsing the plans themselves. This
can be used against plans in cache, plans in the Query Store, and plans that are files. There
are examples of how to do this in the Querying the Plan Cache section of Chapter 13.

Effectively, using XQuery means a completely new query language to learn in addition to
T-SQL. The XML data type is the mechanism used to provide the XQuery functionality
through the SQL Server system. When you want to query from the XML data type, there are
five basic methods:

• .query() – used to query the XML data type and return the XML data type
• .value() – used to query the XML data type and return a non-XML scalar value
• .nodes() – a method for pivoting XML data into rows
• .exist() – queries the XML data type and returns a bit to indicate whether or

not the result set is empty, just like the EXISTS keyword in T-SQL
• .modify() – a method for inserting, updating, and deleting XML snippets within

the XML data set.

Generally, the optimizer seems to implement these methods using two specific opera-
tors, Table-Valued Function (XML Reader), with or without an XPath filter, and UDX,
combined in different patterns.

http://bit.ly/1UH6KfP

406

Chapter 14: Plans for Special Data Types and Cursors

The various options for running a query against XML, including the use of FLWOR
(For, Let, Where, Order By and Return) statements within the queries, all affect
the execution plans. I'm going to cover just two examples, to acquaint you with the
concepts and introduce you to the sort of execution plans you can expect to see. It's
outside the scope of this book to cover this topic in the depth that would be required
to demonstrate all aspects of the plans this language generates.

Plans for queries that use the .exist method
The Resume column of the JobCandidate table in AdventureWorks is an XML data
type. If we need to query the résumés of all employees to find out which of the people hired
were once sales managers, we'll need to use the .exist method in our XQuery expression,
so that our query only returns a row if the JobTitle element of the document contains the
text "Sales Manager."

SELECT p.LastName, p.FirstName, e.HireDate, e.JobTitle
 FROM Person.Person AS p
 INNER JOIN HumanResources.Employee AS e
 ON p.BusinessEntityID = e.BusinessEntityID
 INNER JOIN HumanResources.JobCandidate AS jc
 ON e.BusinessEntityID = jc.BusinessEntityID
 AND jc.Resume.exist(
 ' declare namespace
 res="http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/Resume";
 /res:Resume/res:Employment/res:Emp.JobTitle[contains
 (.,"Sales Manager")]') = 1;

Listing 14-7

Figure 14-10 shows the actual execution plan for this query.

407

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-10: Execution plan for the .exist XQuery method.

Following the data flow, from right to left, we see a normal execution plan. A Clustered
Index Scan against the JobCandidate table followed by a Filter that ensures that
the Resume field is not null. A Nested Loops join combines this data from the filtered
JobCandidate table with data returned from the Employee table, filtering us down to
two rows.

Then, another Nested Loops operator is used to combine data from a new operator, a Table
Valued Function operator, subtitled "XML Reader with XPath filter," which represents as
relational data the output from the XQuery. The role it plays is not dissimilar to that of the
Remote Scan operation from the OPENXML query. However, the Table Valued Function,
unlike the Remote Scan in the earlier example, is part of the query engine and is represented
by a distinct icon. Unlike a multi-statement table-valued function, the table-valued functions
used by XQuery do not have a plan we can access through the cache or the query store, or by
capturing an estimated plan. Its execution is purely internal.

The properties for the Table Valued Function show that the operator was executed two times
and four rows were returned.

408

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-11: Properties of the Table Valued Function showing XML operation.

These rows are passed to a Filter operator. Two values are defined by the Table Valued
Function, value and lvalue. It's not completely clear how this works, but the Filter operator
determines if the XPath query we defined equals 1 and is NOT NULL (and the NOT NULL
check isn't necessary, but it's there). This results in a single row for output to the Nested
Loops operator. From there, it's a typical execution plan, retrieving data from the Contact
table and combining it with the rest of the data already put together.

Plans for queries that use the .query method
 The .query method returns XML. We use this if, rather than simply filter based on the
XML, we want to return some or all of the XML we are querying against. In our example,
we'll query demographics data to find stores that are greater than 20,000 square feet in size.
We have to define the XML structure to be returned and, to this end, the query uses XQuery's
FLWOR expressions: For, Let Where, Order, Return.

In this example, we need to generate a list of stores managed by a particular salesperson.
Specifically, we want to look at any of the demographics for stores managed by this
salesperson that have more than 20,000 square feet, where those stores have recorded any
demographic information. We'll also list the stores that don't have it. The demographics
information is semi-structured data, so it is stored within XML in the database. To filter the
XML directly, we'll be using the .query method. Listing 14-8 shows our example query
and execution plan.

409

Chapter 14: Plans for Special Data Types and Cursors

SELECT s.Name,
 s.Demographics.query
('
 declare namespace ss="http://schemas.microsoft.com/
sqlserver/2004/07/adventure-works/StoreSurvey";
 for $s in /ss:StoreSurvey
 where ss:StoreSurvey/ss:SquareFeet > 20000
 return $s
') AS Demographics
 FROM Sales.Store AS s
 WHERE s.SalesPersonID = 279;

Listing 14-8

Figure 14-12 shows the plan.

Figure 14-12: Full execution plan for .query XQuery method.

The T-SQL consists of two queries:
• a regular T-SQL query against the Store table to return the rows where the

SalesPersonId = 279
• an XQuery expression that uses the .query method to return the data where the

store's square footage was over 20,000.
Stated that way, it sounds simple, but a lot more work is necessary around those two queries
to arrive at a result set.

Let's break this execution plan down into three parts, each of which has separate responsi-
bilities: one for the relational part of the query, the second to read and filter the XML data
according to the XQuery expression, and the third to take the data and convert it back into
proper XML.

410

Chapter 14: Plans for Special Data Types and Cursors

First, Figure 14-13 shows the top-left part of the plan, which contains the standard parts of
the query that is retrieving information from the Store table.

Figure 14-13: Blow-up of plan showing traditional data access.

The data flow starts with a Clustered Index Scan against the Sales table, filtered by
the SalesPersonId. The data returned is fed into the top half of a Nested Loops, left
outer join. This Nested Loops operator then calls its lower input (the section of the plan in
Figure 14-13) for each row, pushing the data (values from the BusinessEntityID and
Demographics columns) from the top input into the lower input, as seen in the Outer
References property. The result of that lower input is then combined with the data read from
the Stores table and returned to the client.

Going over to the right to find the second stream of data for the join, we find three familiar
Clustered Index Seek operators, but this time though, they're accessing an XML clustered
index. Figure 14-14 shows a blow-up of that part of the plan.

Figure 14-14: Blow-up of plan showing XML index use for XQuery statement.

The data in the XML data type is stored separately from the rest of the table, and there is an
XML index available. The three seeks and the way they are combined are an artefact of how
XML data is encoded in XML indexes, and I won't delve into this in detail. The Clustered
Index Seek operator at the top right retrieves that data, using the pushed-down values from
the Nested Loops discussed previously.

411

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-15: Properties of the Index Seek showing XML data access.

You can see in Figure 14-15 that the seek is occurring on PXML_Store_Demographics,
returning the 80 rows from the index that match the BusinessEntityId column from the
store table. You can also see the output of the columns from the XML index nodes. This
information allows you to understand better how SQL Server is retrieving the XML from the
index in question.

The Filter operator implements the WHERE part of the FLWOR expression in the XQuery
expression. Its predicate shows that it tests a column named "value," extracted from the
XML, against the value 20,000, since we're only returning stores with a square footage of
greater than this value. This illustrates that not all FLWOR logic is pushed into a special
XML-related operator, as we saw in earlier examples. Parts of the XQuery expression are

412

Chapter 14: Plans for Special Data Types and Cursors

evaluated as if they were relational expressions. Here, the engine extracts data out of the
XML, making it relational, operates on it using the normal operators, and will later put it
back into XML format.

The result of this fragment of the plan is data extracted from the XML column and
manipulated according to the XQuery expression, but presented as a rowset, i.e. in
relational format.

The third part of the plan does the conversion to XML. You can see this section blown up in
Figure 14-16.

Figure 14-16: Blow-up of the plan showing conversion to XML.

The Compute Scalar does some prep work for the UDX operator, which converts the data
information retrieved through the operations defined above back into XML format. That,
in fact, is the final part of the XML-related portion of the plan. The Filter operator uses a
Startup Expression Predicate property to suppress execution of the entire subtree of this
plan for any rows with a NULL value in the XML column (i.e. for the Demographics data),
preventing needless loss of performance.

All of this is combined with the original rows returned from the Store table through the
Nested Loops operator in Figure 14-13.

When to use XQuery
These examples show that all the familiar operators and a few new operators are combined
to implement XQuery, but that a full coverage is beyond the scope of this book. XQuery can
take the place of FOR XML, but you might see some performance degradation.

You can also use XQuery in place of OPENXML. The functionality provided by XQuery
goes beyond what's possible within OPENXML. Combining that with T-SQL will make for a
powerful combination when you have to manipulate XML data within SQL Server. As with
everything else, please test the solution with all possible tools to ensure that you're using the
optimal one for your situation.

413

Chapter 14: Plans for Special Data Types and Cursors

JavaScript Object Notation
JavaScript Object Notation (JSON), an open-standard file format using human-readable text,
is supported by SQL Server and Azure SQL Database starting with SQL Server 2016. There
are mechanisms around storage and retrieval built into SQL Server to deal with JSON data.
We won't explore all that information here. We are going to look at one example of a JSON
query, because it results in differences to the execution plans generated, so you need to know
what to look for. For a more detailed examination of the complete JSON functionality within
SQL Server please refer to the Microsoft documentation: https://bit.ly/2qCP8Mx.

Unfortunately, the current version of AdventureWorks does not have any JSON data, so we
must first build some.

SELECT p.BusinessEntityID,
 p.Title,
 p.FirstName,
 p.LastName,
 (SELECT p2.FirstName AS "person.name,"
 p2.LastName AS "person.surname,"
 p2.Title,
 p2.BusinessEntityID
 FROM Person.Person AS p2
 WHERE p.BusinessEntityID = p2.BusinessEntityID
 FOR JSON PATH) AS JsonData
INTO dbo.PersonJson
FROM Person.Person AS p;

Listing 14-9

This query moves data into a table called dbo.PersonJson. I've included both the regular
data and the JSON data, just so you can see the conversion if you run queries against it. This
is using the JSON PATH command to arrive at defined JSON data, similar to how we'd use
the XML PATH command.

Not only will this load data into the table and convert some of it into JSON, but we can look
at the execution plan for this query to see the JSON formatting in action.

https://bit.ly/2qCP8Mx

414

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-17: Execution plan showing the UDX operator for JSON PATH.

This query processes 19,000 rows, as well as converting them into JSON data, so it's quite a
high-cost plan, which explains why the optimizer parallelized it.

There are only two main points of note. First, an Index Spool was used to ensure that the
Clustered Index Scan wasn't used over and over again. You can verify this looking at the
Execution Count values in both the Clustered Index Scan operators, which have a value of
1. The Index Spool itself has a value of 19,972, once for each row. Next, the UDX operator.

In this case the UDX operator is satisfying the needs of the JSON PATH operation. We
can validate this by looking at the properties. The Name value is FOR JSON. That's the
only indicator we have of what's occurring within this operator. It outputs an expression,
Expr1005, but there are no other definitions given. You can see all this in Figure 14-18.

Figure 14-18: FOR JSON expressed within the UDX operator.

415

Chapter 14: Plans for Special Data Types and Cursors

The Compute Scalar operator performs some type of conversion on Expr1005 to create
Expr1007, and then the Table Insert operator inserts the rows into the JsonData column.

Figure 14-19: Scalar Operator performing a final operation to create JSON data.

We can't see any of the JSON operations at work based on the properties of the operators.
We just know that one operator is FOR JSON and the other does some type of conversion.
Nothing else is clear.

We can also see evidence of JSON queries at work. Listing 14-10 shows how we can retrieve
the JSON data from the table.

SELECT oj.FirstName,
 oj.LastName,
 oj.Title
FROM dbo.PersonJson AS pj
 CROSS APPLY
 OPENJSON(pj.JsonData,
 N'$')
 WITH (FirstName VARCHAR(50) N'$.person.name',
 LastName VARCHAR(50) N'$.person.surname',
 Title VARCHAR(8) N'$.Title',
 BusinessEntityID INT N'$.BusinessEntityID') AS oj
WHERE oj.BusinessEntityID = 42;

Listing 14-10

We can simply query this data from the columns within the table, but the purpose here
is to show OPENJSON at work, so we used that instead. The resulting execution plan is
quite interesting.

416

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-20: Execution for OPEN JSON query.

The Table Scan operator is used because the table in question, dbo.PersonJson,
has no index, so there isn't any other way to retrieve the data. A Nested Loops join joins
the data from the table to data produced by calls to a function, Table Valued Function
(OPENJSON_EXPLICIT). The choice of the Nested Loops join might seem surprising
given that the Table Scan returns an estimated (and actual) 19972 rows, meaning 19972
executions of a relatively expensive table-valued function. The reason is simply because the
optimizer has no choice in this case. This query uses a CROSS APPLY and the inner input
produces different rows for each row from the outer input. The only way for the optimizer to
implement this in current versions is with a Nested Loops.

The optimizer uses a fixed estimate of 50 rows returned, per execution of the JSON table-
valued function. In fact, it returns one row per execution. These rows do not represent a table
row, but a new row of data, with the selected JSON data extracted as a relational column in
the rowset. The Filter operator eliminates all rows other than those that match our WHERE
clause value on the BusinessEntityID column of 42. In other words, it shreds all the
JSON in all the rows before applying the filter when, of course, what we'd much rather it did
was push down the predicate and only shred the required rows!

If we open the properties of the Table Valued Function, we can see some of the JSON
activity at work. First, at the bottom of the properties, we see the Parameter List values as
shown in Figure 14-21.

417

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-21: Parameter values for the OPENJSON Table Valued Function.

At the top, we're passing in the full JSON string. Then, we pass the path operation and each
of the values we're retrieving. We can't see how these parameter values are used internally,
but we can see the definitions are very clear.

You also get to see the function's Defined Values, as shown in Figure 14-22.

418

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-22: Defined values within the OPEN JSON Table Valued Function.

These are the defined aliases within the WITH clause of the OPEN JSON command in Listing
14-10. These are also the names of the columns used in the Output List of the operation.

There are no other indications of exactly how JSON data is converted within SQL Server
beyond these hints that you can see within the execution plan. With this information, you can
observe the effects of JSON on your queries. In this case, we've discussed several causes for
concern: the need to use an inefficient Nested Loops join for the CROSS APPLY, the fixed
estimate of 50 rows returned by the OPEN JSON table-valued function, and the need to shred
the JSON for every row, before filtering. To help with the latter you might consider using
a persisted computed column and indexing it for the JSON data that is most often used in
filters.

Hierarchical Data
SQL Server can store hierarchical data using HIERARCHYID, a data type introduced in SQL
Server 2008 (implemented as a CLR data type). It doesn't automatically store hierarchical
data; you must define that storage from your applications and T-SQL code, as you make use
of the data type. As a CLR data type, it comes with multiple functions for retrieving and
manipulating the data. Again, this section simply demonstrates how hierarchical data opera-
tions appear in an execution plan; it is not an exhaustive overview of the data type.

Listing 14-11 shows a simple listing of employees that are assigned to a given manager.
I've intentionally kept the query simple so that we can concentrate on the activity of
the HIERARCHYID within the execution plan and not have to worry about other issues
surrounding the query.

DECLARE @ManagerID HIERARCHYID;
SELECT @ManagerID = e.OrganizationNode
 FROM HumanResources.Employee AS e
 WHERE e.JobTitle = 'Vice President of Engineering';
SELECT e.BusinessEntityID, p.LastName

419

Chapter 14: Plans for Special Data Types and Cursors

 FROM HumanResources.Employee AS e
 JOIN Person.Person AS p
 ON e.BusinessEntityID = p.BusinessEntityID
 WHERE e.OrganizationNode.IsDescendantOf(@ManagerID) = 1;

Listing 14-11

Figure 14-23 shows the execution plan.

Figure 14-23: Execution plan for hierarchy data.

As you can see, it's a very simple and clean plan. The optimizer is able to make use of an
index on the HIERARCHYID column, OrganizationNode, in order to perform an Index
Seek. The data then flows out to the Nested Loops operator, which retrieves data as needed
through a series of Clustered Index Seek operations on the Person.Person table, to
retrieve the additional data requested. The interesting aspect of this plan is the Seek Predi-
cate of the Index Seek operator, as shown in Figure 14-24.

Figure 14-24: Index Seek properties showing hierarchy filtering at work.

Now you can see some of the internal operations performed by the CLR data type. The
predicate supplies Start and End parameters, both working from mechanisms within
the HIERARCHYID operation. The index is just a normal index, and the HIERARCHYID

420

Chapter 14: Plans for Special Data Types and Cursors

column, OrganizationNode, is just a varbinary column as far as the Index Seek is
concerned. The work is done by internal functions, such as the DescendantLimit we see
in the Index Seek properties in Figure 14-24, which finds the appropriate varbinary value.

If I had run the query and added an extra column to the SELECT list, such as JobTitle
from the HumanResources.Employee table, the query would have changed to a
Clustered Index Scan, or to an Index Seek and Key Lookup, depending on cost estimates,
since the index on OrganizationNode would no longer be a covering index.

We could explore a few other functions with the HIERARCHYID data type, but this gives a
reasonable idea of how it manifests in execution plans, so let's move on to a discussion about
another one of the CLR data types, spatial data.

Spatial Data
The spatial data type introduces two different types of information storage. The first is the
concept of geometric shapes, and the second is data mapped to a projection of the surface
of the Earth. There are a huge number of functions and methods associated with spatial data
types and we simply don't have the room to cover all this in detail in this book. For a detailed
introduction to spatial data, I recommend Pro Spatial with SQL Server 2012 (Apress) by
Alastair Aitchison.

Like the HIERARCHYID data type, there are indexes associated with spatial data, but
these indexes are extremely complex in nature. Unlike a clustered or nonclustered index in
SQL Server, these indexes can (and do), work with functions, but not all functions. Listing
14-12 shows a query that could result in the use of a spatial index, if one existed, on a
SQL Server database.

DECLARE @MyLocation GEOGRAPHY = geography::STPointFromText('POI
NT(-122.33383 47.610870)', 4326);
SELECT a.AddressLine1,
 a.City,
 a.PostalCode,
 a.SpatialLocation
FROM Person.Address AS a
WHERE @MyLocation.STDistance(a.SpatialLocation) < 1000;

Listing 14-12

421

Chapter 14: Plans for Special Data Types and Cursors

This query creates a GEOGRAPHY variable and populates it with a specific point on the globe,
which coincides with the Seattle Sheraton, near where, most years, PASS hosts its annual
Summit. It then uses the STDistance calculation on that variable to find all addresses in
the database that are within a kilometer (1,000 meters) of that location.

Figure 14-25 shows the plan which, in the absence of a useful index, is just a Clustered
Index Scan, and then a Filter. If we were to review the properties of the SELECT operator,
we'd see that the Estimated Subtree Cost for the plan is 19.9.

Figure 14-25: Plan for a spatial query with no spatial index.

Let's now create a spatial index on the Address table for our spatial query to use, as shown
in Listing 14-13.

CREATE SPATIAL INDEX TestSpatial
ON Person.Address (SpatialLocation)
USING GEOGRAPHY_GRID
WITH (GRIDS = (LEVEL_1 = MEDIUM, LEVEL_2 = MEDIUM, LEVEL_3 =
MEDIUM, LEVEL_4 = MEDIUM),
 CELLS_PER_OBJECT = 16,
 PAD_INDEX = OFF,
 SORT_IN_TEMPDB = OFF,
 DROP_EXISTING = OFF,
 ALLOW_ROW_LOCKS = ON,
 ALLOW_PAGE_LOCKS = ON)
ON [PRIMARY];
GO

Listing 14-13

Rerun Listing 14-12 and you'll see an execution plan that is rather large and involved, when
you consider that we're querying a single table, although the estimated cost of the plan is
much lower, down from 19.9 to 0.67.

422

Chapter 14: Plans for Special Data Types and Cursors

 Figure 14-26: Complex execution plan using a spatial index to retrieve data.

To say that spatial indexes are complicated doesn't begin to describe what's going on. You
can see that, despite a simple query, a ton of activity is occurring. We'll have to break this
down into smaller pieces to understand it. Figure 14-27 focuses on the operators retrieving
the initial set of data from the disk.

 Figure 14-27: Blow-up of plan showing data access.

The Table Valued Function, which is named, GetGeographyTessellation_VarBinary, is
retrieving information using a process called tessellation. It consists of tiles of information
defined by our 1000-meter radius around a single point. You can see the parameter values
passed in by looking at the properties as shown in Figure 14-28.

Figure 14-28: Parameters for tessellation within Table Valued Function.

423

Chapter 14: Plans for Special Data Types and Cursors

Without getting into the details of exactly how geographical data is stored and retrieved, this
function reflects the settings of the index we created earlier and shows, in the final parameter
value, how the 1000-meter limit is being supplied to the function that retrieves an initial set
of data. You get some idea of the complexity of accessing spatial indexes because of this. We
can even go further. On the left side of the plan in Figure 14-27 we can see that the values
generated are used to perform the Clustered Index Seek (Spatial) against the additional
storage created as part of the spatial index. This seek isn't the same as others we've seen
before, which usually consist of a simple comparison operator, as you can tell by looking at
the Seek Predicates in Figure 14-29.

Figure 14-29: The Seek Predicates against the Spatial Index.

The number of operators involved does make this plan more complicated. It reflects all the
work necessary to satisfy a different data type, spatial data.

To clean up, you can drop the index created earlier.

DROP INDEX TestSpatial ON Person.Address;

Listing 14-14

While these spatial functions are complex and require a lot more knowledge to use, you can
see that the execution plans still use the same tools to understand these operations, although
in very complex configurations, making troubleshooting these queries harder.

424

Chapter 14: Plans for Special Data Types and Cursors

Cursors
Cursors, despite how they are defined within T-SQL, are not data types. They represent a
different type of processing behavior. Most operations within a SQL Server database should
be set based, rather than using the procedural, row-by-row processing embodied by cursors.
However, there will still be occasions when a cursor is the more appropriate or more expe-
dient way to resolve a problem, and there may be times when you do not have time to replace
the cursor with a set-based solution, but you need to investigate issues with this code.

While there are some operators that are cursor specific, mainly the optimizer uses the same
operators doing the same things we've already seen throughout the rest of the book. However,
the operators display differently between estimated and actual plans.

Static cursor
We'll start with the simplest type of cursor, a static cursor. This is the easiest to understand
because the data within the cursor can't change, so it simplifies the processing rather radi-
cally. Listing 14-15 defines the first cursor.

DECLARE CurrencyList CURSOR STATIC FOR
SELECT c.CurrencyCode, cr.Name
 FROM Sales.Currency AS c
 JOIN Sales.CountryRegionCurrency AS crc
 ON crc.CurrencyCode = c.CurrencyCode
 JOIN Person.CountryRegion AS cr
 ON cr.CountryRegionCode = crc.CountryRegionCode
 WHERE c.Name LIKE '%Dollar%';
OPEN CurrencyList;
FETCH NEXT FROM CurrencyList;
WHILE @@Fetch_Status = 0
 BEGIN
 -- Normally there would be operations here using data from
cursor
 FETCH NEXT FROM CurrencyList;
 END;
CLOSE CurrencyList;
DEALLOCATE CurrencyList;
GO

Listing 14-15

425

Chapter 14: Plans for Special Data Types and Cursors

In Listing 14-15, I don't do anything with the cursor. It doesn't process data or perform other
actions commonly associated with cursors. This is simply so we can focus only on the actions
of the cursor itself, within execution plans.

Capture the estimated plan for Listing 14-15.

Figure 14-30: Estimated plan for all the statements defining cursor use.

In the estimated plan, most cursor operators are represented using a placeholder icon.
The declare statement shows the plan that will be used; this is the first execution plan
you see at the top of Figure 14-30, and it shows how the cursor will be satisfied, as defined
in Listing 14-15.

The plan for the DECLARE CURSOR statement shows how the cursor will be populated and
accessed based on the other statements from Listing 14-15. We'll focus only on the top plan
to start with. Figure 14-31 shows a small part of the plan.

426

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-31: Cursor definition showing the Population and Fetch queries.

As you can see, we have an initial operator showing what kind of cursor we have, Snapshot
in this case. This operator is a lot like the SELECT operator; it contains information about
the cursor we're defining. Figure 14-32 shows the properties of this operation, providing a
full definition of the cursor.

Figure 14-32: Properties of the Snapshot cursor operator.

The real magic for cursors is in the next two operators shown in Figure 14-31, Population
Query and the Fetch Query operators.

The Population Query represents the optimizer's plan to execute the query that will collect
the data set to be processed by the cursor. This runs when we OPEN the cursor, and then the
Fetch Query represents the optimizer's plan to fetch each of the rows, and this runs once for
every FETCH statement.

427

Chapter 14: Plans for Special Data Types and Cursors

In this case, because a static cursor should not show any changes made later, the OPEN
statement simply executes the query and stores the results in a temporary table, and FETCH
then retrieves rows from that temporary table. Other cursor types use the same basic idea
of combining a Population Query and a Fetch Query, but modified to accommodate the
requested cursor type, as we'll see later.

Each of these operators has properties defining the query, again, similar to how
the SELECT operator would work. Figure 14-33 shows the properties for the
Population Query operator.

Figure 14-33: Properties of the Population Query operator.

You would use this data in the same way as you would the information in the SELECT
operator. It provides you the information you need to understand some of the choices made
by the optimizer, just as with other plans.

With the understanding that there are two queries at work, let's look at the definitions of those
queries as expressed by the execution plans that define this cursor, starting with the first, the
Population Query. In this case, it's performing two actions. First, it's retrieving data from
the disk, as shown in Figure 14-34.

428

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-34: Data retrieval for the Population Query of the Static Cursor.

It's a very straightforward execution plan that resolves the query in Listing 14-15. The
interesting parts of the execution plan comes after the data set has been defined, as shown
in Figure 14-35.

Figure 14-35: Creation of temporary storage for the Static Cursor.

I've included the Population Query operator and the Nested Loops operator as bookends to
the interesting part of the operations, so that it's clearer exactly where these are taking place.

After the data is retrieved and joined, we see a Segment and Sequence Project (Compute
Scalar) operators, which we saw in Chapter 5 when discussing the plans for Window func-
tions. In this case, the Group By property of Segment is empty, so the entire input is consid-
ered a single segment.

The Sequence Project (Compute Scalar) operator, which is used by ranking functions,
works off an ordered set of data, with segment marks added by the Segment operator. In this
case, it's adding a row number based on the segmented values, counting from zero each time
the segment changes. Here, though, there is only a single segment. Once again, we can see
this in the properties as shown in Figure 14-36.

Figure 14-36: Adding a row_number column to the data set.

429

Chapter 14: Plans for Special Data Types and Cursors

What this has done is to create an artificial primary key on the result set of our data for the
cursor in question. All the data is then added to a temporary clustered index, CWT_Prima-
ryKey. All this happened in tempdb, as we can see this in the properties as shown in
Figure 14-37.

Figure 14-37: The location of the CWT_PrimaryKey object is tempdb.

As noted earlier, the FETCH command then simply retrieves rows from this clustered index.
Its purpose is to prevent the need to keep going back to the data repeatedly, through a stan-
dard query, working much as we've seen spool operators in other plans.

Figure 14-38: Fetch Query execution plan defined.

The rest of the operators in the estimated plan, back in Figure 14-30, are various processes
within cursor operations; OPEN, FETCH, CLOSE, and DEALLOCATE. Each of these is repre-
sented by the Cursor catch-all operator, shown in Figure 14-39.

Figure 14-39: Cursor catch-all operator shown in FETCH NEXT command.

These operators will only be visible in the estimated plan. The properties of the operator don't
reveal any useful information in most cases since they simply represent the cursor command
in question, such as the FETCH NEXT command in Figure 14-39.

We can also capture actual plans for a cursor. If you do this, though, be ready to deal with the
fact that you will get multiple plans. In this case, one for the Population Query and then one
each for every row of data for the Fetch Query. It will look something like Figure 14-40.

430

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-40: Actual plans for a static cursor.

As expected, based on what we saw in the estimated plans, the data is retrieved and put into a
clustered index, and then that clustered index is used again and again as we FETCH data. The
only other point of interest for the actual plan is how the SELECT operator has again been
replaced, first by an OPEN CURSOR operator, and then by multiple FETCH CURSOR
operators. However, the information within each of these is the same as that found within
the SELECT operator, including such interesting bits of information as the Compile Time,
Query Hash, and Set options.

Capturing actual plans for cursors is an expensive operation and probably shouldn't be done
in most circumstances. Instead, use Extended Events to capture a single execution of one of
the queries, or use SET STATISTICS XML ON for a single statement.

Let's see how the behavior of the plans change as we use different types of cursors.

431

Chapter 14: Plans for Special Data Types and Cursors

Keyset cursor

A keyset cursor retrieves a set of keys for the data in question. This is very different than
what we saw with the Static cursor above. Keyset cursors should not show new rows, but
they should show new data if concurrent updates modify existing rows. To achieve this, the
Population Query will store the key values in the temporary table, and the Fetch Query
uses these key values to retrieve the current values in those rows. Our query will now look
like Listing 14-16.

DECLARE CurrencyList CURSOR KEYSET
FOR
SELECT c.CurrencyCode,
 cr.Name
FROM Sales.Currency AS c
 JOIN Sales.CountryRegionCurrency AS crc
 ON crc.CurrencyCode = c.CurrencyCode
 JOIN Person.CountryRegion AS cr
 ON cr.CountryRegionCode = crc.CountryRegionCode
WHERE c.Name LIKE '%Dollar%';
OPEN CurrencyList;
FETCH NEXT FROM CurrencyList;
WHILE @@FETCH_STATUS = 0
 BEGIN
 -- Normally there would be operations here using data from cursor
 FETCH NEXT FROM CurrencyList;
 END
CLOSE CurrencyList;
DEALLOCATE CurrencyList;
GO

Listing 14-16

If we capture an estimated plan for this set of queries, we'll again see a plan that defines the
cursor, and a series of catch-all plans for the rest of the supporting statements for the cursor
operations. We'll focus here on just the definition of the cursors. The full plan is shown in
Figure 14-41.

432

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-41: Plan to define a Keyset cursor.

Once again, the plan for the DECLARE CURSOR statement shows the Population Query and
the Fetch Query. The differences are in the fundamental behavior. We'll start with the part of
the plan that retrieves the data for the Population Query.

Figure 14-42: Data retrieval for the Population Query of the Keyset cursor.

Again, this execution plan doesn't introduce anything we haven't seen elsewhere in the book.
The one very important thing to note, though, is that this plan for data retrieval is different
than the earlier plan for data retrieval with the static cursor (Figure 14-34). The Key Lookup
operator has been added because, to support the Keyset cursor, it must retrieve all key values.
So while, before, the Nonclustered Index Seek satisfied the plan, now we have to get a new
value, a key check value that can only come from the clustered index key. You can see this
in the output of each of the Clustered Index Seek and Clustered Index Scan operators, in
Figure 14-43.

433

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-43: Check columns added from the clustered indexes.

This value will be used later, as we'll see. The next part of the Population Query is much the
same as before.

Figure 14-44: Loading information into a temporary index for later use.

A temporary index is created for use by the Fetch Query, the plan for which is shown in
Figure 14-45.

Figure 14-45: Fetch Query for the Keyset operator.

This is much more complicated than the previous cursor. This is because, with the Keyset
cursor, the data can change. So, to retrieve the correct data set, instead of simply looking at
everything stored within the temporary index, it has read the key values from the clustered
index scan on CWT_PrimaryKey, then used them to do Clustered Index Seeks on the
other tables. Also note that those are all using a Left Outer Join, because it is possible that
the referenced row has been deleted since.

Then, we're going to each of those tables to retrieve the data based on the key values stored.

434

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-46: Retrieving the data from the tables based on the key values.

There is also a check to see if data has been deleted, which explains the final Compute
Scalar operator. The Nested Loops (Left Outer Join) operator, immediately to the right of
the Compute Scalar, is there to put together data in preparation for the check.

The actual plans are much the same as before. You'll see one instance of the execution plan
for the Population Query and then a series of plans for the Fetch Query.

Dynamic cursor
Finally, we'll look at a dynamic cursor. Here, any of the data can be changed in any way,
at any point where we access the cursor. The actual code change is small so, instead of
repeating the entire code list, I'll just show the change in Listing 14-17.

DECLARE CurrencyList CURSOR DYNAMIC

Listing 14-17

Capturing an estimated plan for this new cursor results in yet another variation on the execu-
tion plans we've already seen. I'll focus on the details of the execution plan for the cursor
definition, since all the catch-all behaviors are the same.

Figure 14-47 shows the estimated plan.

435

Chapter 14: Plans for Special Data Types and Cursors

Figure 14-47: Estimated execution plan for a Dynamic cursor.

The biggest point to note here is that we only have a Fetch Query. There is no Populate
Query for dynamic cursors. The data and the order of the data can change, so all we can do
is run the full query, every time. There is a Compute Scalar operator to add an ID value, and
we store the information retrieved into a temporary clustered index. This enables us to move
in multiple directions within the cursor, not just forward, but the data is fetched repeatedly as
the cursor runs, which is why this is the least efficient of the various cursor types.

Interestingly enough, somewhere in the internals, there are checks that somehow keep
the engine from executing the query over and over, every time. The details are not known to
me but, effectively, you need to think about this approach as if it did execute the query 15
times. Capturing the actual plans for this cursor will only show the same execution plan over
and over.

There are several other options that can affect cursor behavior, but that won't reflect in any
novel ways within the execution plan. The behaviors you can expect are reflected in the
examples provided.

Summary
The introduction of these different data types, XML, Hierarchical, Spatial and JSON, radi-
cally expands the sort of data that we can store in SQL Server and the sort of operations
that we can perform on this data. Each of these types is reflected differently within execu-
tion plans. Cursors also add new wrinkles to what we're going to see within execution plans.
Neither the complex data types, nor cursors, fundamentally change what's needed to under-
stand the execution plans. Many of the same operators are in use, even though these special
data types and cursors have added values. You still have to drill down to the properties and
walk through the details in order to come to an understanding of how execution plans display
the behaviors defined within your T-SQL, even if it's for a cursor or a special data type.

436

Chapter 15: Automating Plan Capture
Throughout this book, we've been executing ad hoc queries and code modules from within
SSMS, and capturing their execution plans. In Chapter 9, we also explored how to retrieve
the plans currently in the plan cache, by querying a set of execution-related Dynamic
Management Objects (DMOs). These DMO queries allowed us to return interesting prop-
erties for each plan, such as its size and the number of times it had been used, as well as
runtime metrics. Many of the columns that store these metrics are counters and return a row
for each query statement in each plan. For example, each time a cached plan is executed, the
time taken to execute each query is added to total_elapsed_time counter value for
that row. In other words, the metrics are aggregated over the time the plan has been in cache.
If you're using the Query Store, you can capture plans and track aggregated runtime metrics
over even longer periods (as explored in detail in Chapter 16).

While this information is useful, there are times when the history of aggregated metrics
obscures the cause of a recent problem with a query. If a query is performing erratically, or a
SQL instance is experiencing performance problems only at specific times, then you'll want
to capture the plans and associated execution metrics for each of the queries in a workload,
over that period. If that period happens to be at around 2 a.m., then you'd probably rather
have a tool to capture the information for you automatically.

We're going to look at how to use two tools, Extended Events and SQL Trace, to capture
automatically the execution plans for each query in the workload or, perhaps more specifi-
cally, for the most resource-intensive and long-running queries in that workload.

Why Automate Plan Capture?
Situations of all kinds can arise where capturing a plan using SSMS, using the information in
the Query Store, or querying the plan cache, won't give you the data you need, or won't give
it to you easily and accurately. For example, if your applications submit a very high number
of ad hoc, unparameterized queries, this will essentially flood the cache with single-use plans,
and older plans will quickly age out of the cache, as discussed in Chapter 9. In that situation,
you'll probably have Query Store configured so that it's not capturing all the plans either.
Therefore, the plans for a given query you want to investigate may no longer be cached or
within the Query Store.

437

Chapter 15: Automating Plan Capture

During development work, you can capture the plans for your test workload simply by
adding SET STATISTICS XML commands to the code. However, this requires code changes
that are not always possible or easy when tackling a production server workload.

It's under these circumstances and others that we're going to go to other tools to retrieve
execution plans.

Tools for Automating Plan Capture
First, I'm going to show you how to use Extended Events to capture actual plans, and then the
tool that it replaced, SQL Trace. Starting in Azure SQL Database, and in SQL Server 2016 or
better, you also have access to the Query Store as a means of investigating execution plans,
and we'll cover that topic in the next chapter. However, one thing that Query Store does not
give you that Extended Events and SQL Trace do, is detailed runtime metrics.

My basic assumption is that you're working on SQL Server 2012 or higher, or on Azure SQL
Database. In either case, you really should be using Extended Events rather than SQL Trace,
as it's a far superior tool for collecting diagnostic data for all the different types of events that
occur within our SQL Server instances and databases.

All new functionality in SQL Server uses Extended Events as its internal monitoring mecha-
nism. The GUI built into Management Studio is updated regularly and has a lot of function-
ality to make it quite attractive, especially when tuning queries and looking at execution
plans. Diagnostic data collection with Extended Events adds a much lower overhead than
with SQL Trace, and so has a much lower impact on the server under observation, since
the events are captured at a lower level within the SQL Server system. SQL Trace, broadly
speaking, works on the principle of collecting all the event data that could possibly be
required, and then discarding that which individual traces don't need. Extended Events works
on the opposite principle; it collects as little data as possible and allows us to define precisely
the circumstances under which to collect event data. Finally, SQL Trace events are on the
deprecation path within SQL Server so, at some point, they won't be available.

All this said, if you're still working on SQL Server 2005, then you'll have to use SQL Trace,
since Extended Events were only introduced in SQL Server 2008. If you're working on SQL
Server 2008 or SQL Server 2008R2, then Extended Events are available, but these early
releases of it offered a far less complete set of events, and one of the missing events in 2008
and 2008R2 is the ability to capture execution plans. There are other weaknesses too, such as
the absence of an SSMS-integrated GUI, meaning we must parse the XML event data.

438

Chapter 15: Automating Plan Capture

CAUTION! Automating plan capture on production servers
With either of these tools, you are capturing the cached plan on the same thread that executes
the query; in other words, it is an in-process operation. Further, execution plans can be big,
so capturing them using these tools adds considerable in-process memory and I/O overhead.
As such, do exercise caution when running Extended Events sessions or server-side traces that
capture the plan, on a production server. Be sure to add very granular filters to these execution
plan events, so that you are capturing the plan for as few event instances as possible.

Automating plan capture using Extended Events
With Extended Events we can collect and analyze diagnostic data for many types of events
occurring within SQL Server instances and databases. For example, we can collect data for
events relating to T-SQL statement or stored procedure execution, locked processes, dead-
locks, and many more. We create an event session, loosely the equivalent of a trace in SQL
Trace, to which we add the required events, specify any additional data required that we wish
to collect as an action, add the predicates of filters that will limit when data is collected and
how much, and finally specify the targets that will consume the event data.

For example, if we have long-running queries that consume a lot of CPU and I/O resources,
then we may want to capture the plans for these queries, along with one or two other useful
events, to find out why. You can capture wait statistics for a given query or stored proce-
dure. You can use extended events to observe the statistics being queried and consumed by
the optimizer as it compiles a plan. You can see compile and recompile events and you can
correlate each of these to others so that you can achieve a complete picture of the behavior of
queries within the system, far beyond anything possible before the introduction of Extended
Events, but all of which goes beyond the scope of this book.

Extended Events provides three events that capture execution plans. Each one captures the
plan at a different stage in the optimization process. The query_post_compilation_
showplan event fires only on plan compilation. The first time you call a stored procedure,
or execute a batch or ad hoc query, you'll see this event fired. If you execute them again, and
their plans are reused from cache, the event won't fire. This event will also fire when you
request an estimated plan, assuming there is no cached plan for that query.

The query_pre_execution_showplan event fires right before a query executes.
It shows the plan that was either compiled or retrieved from cache. This is a very useful
event when you're dealing with lots of recompiles and you want to see plans before and
after the recompile.

439

Chapter 15: Automating Plan Capture

Since both the above events fire before query execution, neither contains runtime statistics. If
you want those, you'll need to capture the query_post_execution_showplan event.
Since it's capturing the plan, plus runtime metrics, for all queries that meet the filter criteria
of your event session, it's also more expensive than capturing the equivalent pre-execution
events. While I advocate its use, remember my earlier caution: please be careful with this
event, and the other two. Carefully test any event session that captures them, prior to running
it in a production environment.

Create an event session using the SSMS GUI
Event sessions are stored on each server, and you can find them in SSMS Object Explorer, as
shown in Figure 15-1. The AlwaysOn_health, system_health and telemetry_
xevents are built-in event sessions, and all the rest are sessions I've created. Green arrows
define the event sessions that are currently running and red squares those currently stopped.

Figure 15-1: A list of Extended Events sessions.

440

Chapter 15: Automating Plan Capture

My preferred way to create new event session is using T-SQL, but it's sometimes useful to
use the GUI to create a new session quickly, and then script it out and tweak it, as required.
Therefore, let's see how to create an event session that captures our execution plan-related
events, using the New Session dialog.

I won't cover every detail and every available option when creating event sessions. For that,
please go to the Microsoft documentation (https://bit.ly/2Ee8cok). I also won't cover the New
Session Wizard, because it has various limitations, and can only be used to create new event
sessions. If you want to alter an existing event, then the dialog for that uses the same layout
and options as the New Session dialog.

Right-click on the Sessions folder and select New session… from the context menu to open
the New Session dialog.

Figure 15-2: New Session window for Extended Events.

This figure shows the General page of the dialog, where we give the session a name, specify
when we want the session to start running and a few other options. I've given the new event
session a name, ExecutionPlansOnAdventureWorks2014, and specified that the session
should start running as soon as we create it, and that I want to watch live event data, on the
screen. I have also turned on Causality tracking for this session and I'll explain what that
does, briefly, later in the chapter.

https://bit.ly/2Ee8cok

441

Chapter 15: Automating Plan Capture

Now click over to the next page, Events, where we can select the events for the session.

Figure 15-3: The Events page of a new Extended Events Session.

In the left-hand pane, we identify the events we want to capture. I've used the Event library
textbox to filter for event names that contain the word showplan. There are four of them, and
in Figure 15-3, I've already used the '>' arrow to select the three events I want.

I've highlighted the query_post_compilation_showplan event, and it shows a
description for that event in the panel below, along with a warning that you could see perfor-
mance issues by capturing this event.

I also want to capture one other event, not directly related to execution plans, sql_batch_
completed, which fires when a T-SQL batch has finished executing, and provides useful
performance metrics of that query. Often, it's also useful to add the sql_statement_
recompile event, which fires when a statement-level recompilation occurs, for any kind of
batch, and provides useful event fields that reveal the cause of the recompile, and the identity
of database and object on which it occurred.

442

Chapter 15: Automating Plan Capture

Having selected all four events, click on the Configure button at the top right. This changes
our view but we're still on the same Events page, and it's here that we can control the
behavior of our event sessions.

On the Filter (predicate) tab, we can define predicates for our event session that will define
the circumstances in which we wish the event to fire fully, and to collect that data. In this
example, we only want to collect the event data if the event fires on the Adventure-
Works2014 database and only for a query that accesses the Person.Person table, as
shown in Figure 15-4.

Figure 15-4: Configuring the selected events in a new Extended Events session.

I've used the mouse and the Shift key to select all four events and then added the two filters
to all four events. To limit event data collection to the AdventureWorks2014 data-
base, we need to create a predicate on the sqlserver.database_name global field.
The required operator is the equal_i_sql_unicode_string textual comparator, in
order to compare the database_name for the event raised with the string 'Adventure-
Works2014'. The event engine will only fire the event fully and collect the data if they
match. To restrict data collection still further, I add the And operator and a second predicate
on the sqlserver.sql_text global field, selecting the like_i_sql_unicode_
string comparator, to use the LIKE command, and the value %Person.Person%.

In this way, despite the query plan Extended Events being expensive, I've ensured that I'm
only capturing a very limited set of those events.

While we won't do this here, we can use the other two tabs to control the data we want the
event session to collect. In the Event Fields tab, we can see the event data columns that
define the base payload for the event, i.e. they will always be captured when the event fires,
plus any event data columns that are configurable.

443

Chapter 15: Automating Plan Capture

In the Global Fields (Actions) tab, we can specify any additional data we want to add to the
event payload, as an "action." No global fields are collected by default, in stark contrast to
SQL Trace, where every event collects this data when the event fires, even if it is not a part of
the trace file definition. For example, if we wanted to collect the exact SQL text on an event
that doesn't already collect that information, then we'd add the sql_text global field to the
event session, explicitly, as an action. Actions add some additional overhead, so choose when
and how to use them with some caution.

Next, click on the Data Storage page on the left, where we can specify one or more targets
in which to collect the event data.

Figure 15-5: The Data Storage page of a new Extended Events session.

I've used the event_file target, which is simply flat file storage, similar to the server-
side trace file. It's the most commonly used target for standard event sessions, and usually
performs better than the other options. You can define the file properties in the lower window.
Except for defining the precise location of the file on the server, I've accepted all defaults in
this instance.

444

Chapter 15: Automating Plan Capture

There is a final Advanced page, where we can set a range of advanced session options,
which relate to configuring the memory buffer for events, dispatch frequency to the target,
and event retention in the target. We won't be covering that here.

With this, you can click on the OK button to create the new event session. If you have
done as I have, specifying that the session should start and to show the Live Data window,
you'll not only see a new session, but a new window will open in SSMS. We'll get to that in
just a minute.

Create an event session in T-SQL
As I stated earlier, I generally prefer to create event sessions in T-SQL. It's simple and clear
and makes it easier for you to migrate sessions between different servers. In this case, I'll
simply show the T-SQL for the ExecutionPlansOnAdventureWorks2014 event session that
we just created (simply right-click on the event session in SSMS Object Explorer and use
Script Session As…).

CREATE EVENT SESSION ExecutionPlansOnAdventureWorks2014
ON SERVER
 ADD EVENT sqlserver.query_post_compilation_showplan
 (WHERE (sqlserver.database_name = N'AdventureWorks2014'
 AND sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%Person.Person%'))),
 ADD EVENT sqlserver.query_post_execution_showplan
 (WHERE (sqlserver.database_name = N'AdventureWorks2014'
 AND sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%Person.Person%'))),
 ADD EVENT sqlserver.query_pre_execution_showplan
 (WHERE (sqlserver.database_name = N'AdventureWorks2014'
 AND sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%Person.Person%'))),
 ADD EVENT sqlserver.sql_batch_completed
 (WHERE (sqlserver.database_name = N'AdventureWorks2014'
 AND sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%Person.Person%')))
 ADD TARGET package0.event_file
 (SET filename = N'C:\PerfData\ExecutionPlansOnAdventureWor
ks2014.xel')

445

Chapter 15: Automating Plan Capture

WITH (MAX_MEMORY = 4096KB,
 EVENT_RETENTION_MODE = ALLOW_SINGLE_EVENT_LOSS,
 MAX_DISPATCH_LATENCY = 30 SECONDS,
 MAX_EVENT_SIZE = 0KB,
 MEMORY_PARTITION_MODE = NONE,
 TRACK_CAUSALITY = ON,
 STARTUP_STATE = OFF)
GO

Listing 15-1

Each of the execution plan events uses the same predicate or filter definitions, as we can
see in the WHERE clause for each event. The code is straightforward and you can see every
choice we made in the GUI reflected in the T-SQL statements.

Viewing the event data
If you followed exactly, you have a session running and the Live Data Viewer window open.
If not, you'll need to right-click on a session and select Start from the menu choice, then
right-click again and select Watch Live Data.

Now, execute the query shown in Listing 15-2. To make sure that we capture all three execu-
tion plan events, the opening section of the code grabs the plan_handle for a cached plan
for a query that contains the text %Person.Person%, and then uses it to remove those
plans from cache. That done, we run the query that will cause the events to fire.

USE AdventureWorks2014;
GO
DECLARE @PlanHandle VARBINARY(64);
SELECT @PlanHandle = deqs.plan_handle
FROM sys.dm_exec_query_stats AS deqs
 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest
WHERE dest.text LIKE '%Person.Person%';
IF @PlanHandle IS NOT NULL
 BEGIN
 DBCC FREEPROCCACHE(@PlanHandle);
 END;
GO

446

Chapter 15: Automating Plan Capture

SELECT p.LastName + ', ' + p.FirstName ,
 p.Title ,
 pp.PhoneNumber
FROM Person.Person AS p
 JOIN Person.PersonPhone AS pp
 ON pp.BusinessEntityID = p.BusinessEntityID
 JOIN Person.PhoneNumberType AS pnt
 ON pnt.PhoneNumberTypeID = pp.PhoneNumberTypeID
WHERE pnt.Name = 'Cell'
 AND p.LastName = 'Dempsey';
GO

Listing 15-2

I've run both the DMO query in one batch, and the actual query in a second batch, and both
in the context of AdventureWorks, so you'll see all four events fire twice. Figure 15-6
shows only the four relating to the execution of the second batch.

Figure 15-6: Events in the Live Data viewer showing the events we captured.

If you rerun just the query batch, you'll only see three events; you won't see a post_
compilation event since the query won't be compiling again. Click on any of the *_
showplan event instances in the upper grid to see the associated query plan displayed graphi-
cally in the Query Plan tab.

We're not going to explore this plan in detail, except to note that the first operator is not the
SELECT operator, as we've seen throughout the book. Instead, the first operator for plans
captured using Extended Events is the first operator of the plan as defined by the NodeID
value. For some reason known only to Microsoft, some of the properties normally displayed
for the first operator are not displayed in Extended Events. As explained in Chapter 13, you
can still find this information in the XML for the plan simply by right-clicking on the graph-
ical plan, selecting Show Execution Plan XML, and looking in the StmtSimple element
for the plan.

447

Chapter 15: Automating Plan Capture

Figure 15-7: An execution plan captured by Extended Events.

The Details tab for each event reveals some information that can be useful to your query-
tuning efforts. For example, Figure 15-8 shows the Details pane for our first event, query_
post_compilation_showplan.

Figure 15-8: query_post_compilation_showplan details.

448

Chapter 15: Automating Plan Capture

The first set of fields, with names starting with attach_, is added to event sessions for
which TRACK_CAUSALITY is set to ON, as it is for this session. This means that a set
of events that are linked will have a common ID and a sequence. You can see that, in our
sequence, this is the first event. This is useful if you want to group all the activities together
for any given set of events, defined by the attach_activity_id.guid value, and order
these events in the precise order in which they occurred within SQL Server, as shown by the
attach_activity_id.seq value. On a test system such as mine, this may not matter
because I'm the only one running queries. However, capturing events like this on a produc-
tion system, even well-filtered events, you may see additional queries and event sets in which
you've no interest. Alternatively, you may see multiple interesting events, but interlaced
because they were executed at the same time, and in these cases the activity_id values
can help you find out which ones belong together.

The interesting information is further down. For example, the duration field shows the
time it took to compile this plan, which was 4192 microseconds on my machine. You can
also see that the estimated number of rows returned was 1. We also have the plan_handle
and sql_handle which can be used to retrieve this plan and the T-SQL code from cache, if
required. The showplan_xml column has the plan as XML. The object_name column
describes this query as Dynamic SQL. This is accurate for the kind of query I'm running
in this case, which is just a T-SQL statement, not a prepared statement or stored procedure.
When pulling plans for stored procedures or other objects, you'll be able to see their object
names as well as the object_type.

The next event is query_pre_execution_showplan which shows similar informa-
tion, but the base payload for this event doesn't include a few of the event fields that we saw
for the previous event, such as the plan_handle and sql_handle.

The third event in the sequence is query_post_execution_showplan with the details
shown in Figure 15-9.

449

Chapter 15: Automating Plan Capture

 Figure 15-9: query_post_execution_showplan details.

As you can see there's not much additional information about the plan here. The detail is in
the plan itself. Importantly, the plan captured by this event has runtime information. Click on
the Query Plan tab and examine the Properties for the Nested Loops operator, and you'll
see that we have actual runtime counters for the number of rows and number of executions,
as well as estimated values.

450

Chapter 15: Automating Plan Capture

Figure 15-10: Properties for the Nested Loops operator showing runtime metrics.

Ensuring "lightweight" event sessions when capturing the plan
The most important aspect of all this is that you have an execution plan and that you captured
it in an automated fashion. Just remember that capturing plans using extended events is
a high-cost operation. You should only run the event session for a limited time. It should
only capture exactly the data you need and no more. You'd very rarely want to run an event
session that captured all three showplan events, as I did in Listing 15-1. Instead, just pick
one; I generally use the query_post_execution_showplan event. Also, define filters,
as I did, to control strictly the circumstances in which the event fires fully, which will limit
the number of events for which the event session collects the event data.

Listing 15-3 offers a more realistic example of the sort of event session you might use for
capturing specific plans, when query tuning.

451

Chapter 15: Automating Plan Capture

CREATE EVENT SESSION ExecPlansAndWaits
ON SERVER
 ADD EVENT sqlos.wait_completed
 (WHERE ((sqlserver.database_name = N'AdventureWorks2014')
 AND (sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%ProductTransferByReference%')))),
 ADD EVENT sqlserver.query_post_execution_showplan
 (WHERE ((sqlserver.database_name = N'AdventureWorks2014')
 AND (sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%ProductTransferByReference%')))),
 ADD EVENT sqlserver.rpc_completed
 (WHERE ((sqlserver.database_name = N'AdventureWorks2014')
 AND (sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%ProductTransferByReference%')))),
 ADD EVENT sqlserver.rpc_starting
 (WHERE ((sqlserver.database_name = N'AdventureWorks2014')
 AND (sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%ProductTransferByReference%'))))
 ADD TARGET package0.event_file
 (SET filename = N'C:\PerfData\ExecPlansAndWaits.xel')
WITH (TRACK_CAUSALITY = ON)
GO

Listing 15-3

It captures the rpc_starting and rpc_completed events, which fire when a stored
procedure starts and completes execution, respectively; wait_completed, which fires for
any waits that occurred while it executed; and query_post_execution_showplan, to
capture the plan, once the query has executed.

I've filtered these events by database and by procedure name and added causality tracking.
With this, I could see when the procedure started to execute, including parameter values,
each wait as it completes, and the order in which they completed, and the completion of the
procedure along with the execution plan. That would be just about everything you need to
troubleshoot performance on one specific query.

Start this on a production system, capture a few minutes' worth of executions, or whatever is
appropriate to your system, and then turn it back off. The load will be as minimal as you can
make it while still capturing useful data that will help drive your query-tuning choices.

452

Chapter 15: Automating Plan Capture

Automating plan capture using SQL Trace
As discussed at the start of the chapter, if you are running SQL Server 2008/R2 or lower, you
may have to use Trace Events instead.

We can use SQL Profiler to define a server-side trace to capture XML execution plans, as the
queries are executing. We can then examine the collected plans, starting with the queries with
the highest costs, and look for potential optimization possibilities, such as indexes that may
enable the optimizer to perform index seek rather than scan operations for frequent queries
that access large tables, or by investigating the accompanying SQL to find the cause of
specific warnings in the plans, such as sorts that spill to disk.

CAUTION! Never use the Profiler GUI to Capture Event Data
I'm going to show how to set up a server-side trace; never use the Profiler to capture event
data directly. The Profiler GUI uses a different caching mechanism that can have a profoundly
negative impact on the server that is the target of event collection. You can use the GUI to
generate a trace script, but then you should run it independently as a server-side trace, saving
the data to a file.

The basic principle of SQL Trace is to capture data about events as they occur within
the SQL Server engine, such as the execution of T-SQL or a stored procedure. However,
capturing trace events is very expensive, especially when compared to Extended Events.
Many of the events have a much heavier default payload, any data that is not actually
required simply being discarded. Also, the mechanisms of filtering in trace events are highly
inefficient. As discussed earlier, I strongly advise against using SQL Trace events if you can
instead use Extended Events.

Trace events for execution plans
There are many trace events that will capture an execution plan. The most commonly used
ones are as follows:

• Showplan XML – the event fires with each execution of a query and captures the
compile-time execution plan, in the same way as the query_pre_execution_
showplan event in Extended Events. This is probably the preferable event if you
need to minimize impact on the system. The others should be avoided because of
the load they place on the system or because they don't return data that is usable for
our purposes.

453

Chapter 15: Automating Plan Capture

• Showplan XML for Query Compile – like Showplan XML above, but it only
fires on a compilation of a query, like the query_post_compilation_
showplan event in Extended Events.

• Performance Statistics – can be used to trace when execution plans are added to
or removed from cache.

• Showplan XML Statistics Profile – this event will generate the actual execution
plan for each query, after it has executed. While this is the one you'll probably want
to use the most, it's also the most expensive one to capture.

You must be extremely cautious when running traces that capture any of these events on
a production machine, as it can cause a significant performance hit. SQL Trace's filtering
mechanism is far less efficient than for Extended Events. Even if we filter on database and
SQL text, as we did earlier for our events sessions, SQL trace still fires the event fully for
every database and for any SQL text, and only applies the filter at the point the individual
trace consumes the event. Aside from collecting the execution plans, these events will also
collect several global fields by default, whether you want them or not.

Run traces for as short a time as possible. If you can, you absolutely should replace SQL
Trace with Extended Events.

Creating a Showplan XML trace using Profiler
The SQL Server Profiler Showplan XML event captures the XML execution plan created by
the query optimizer and so doesn't include runtime metrics. To capture a basic Profiler trace,
showing estimated execution plans, start Profiler from the Tools menu in SSMS, create a new
trace and connect to your SQL Server instance. By default, only a person logged in as sa,
or a member of the SYSADMIN group can create and run a Profiler trace. For other users to
create a trace, they must be granted the ALTER TRACE permission.

On the General tab, change the template to blank, give the trace a name and then switch
to the Events Selection tab and make sure that the Show all events and Show All columns
checkboxes are selected. The Showplan XML event is located within the Performance
section, so click on the plus (+) sign to expand that selection. Click on the checkbox for the
Showplan XML event.

While you can capture the Showplan XML event by itself in Profiler, it is generally
more useful if, as I did with the extended events session, you capture it along with some
other basic events, such as RPC:Completed (in Stored Procedures event class) and
SQL:BatchCompleted (TSQL event class).

454

Chapter 15: Automating Plan Capture

These extra events provide additional information to help put the XML plan into context.
For example, we can see which parameters were passed to a stored procedure in which we
are interested.

I won't go into the details of which data fields to choose for each event but, if you're running
the trace in a shared environment, you may want to add the database_name field and then
filter on it (using Column Filters…) so you see only the events in which you're interested.

Deselect "Show All Events" and "Show All Columns" once you're done. The event selection
screen should look like Figure 15-11.

Figure 15-11: Trace defined within Profiler.

With Showplan XML or any of the other XML events selected, a third tab appears, called
Events Extraction Settings. On this tab, we can choose to output, to a separate file for
later use, a copy of the XML as it's captured. Not only can we define the file, we can also
determine whether all the XML will go into a single file or a series of files, unique to each
execution plan.

455

Chapter 15: Automating Plan Capture

Figure 15-12: Setting up the execution plan extraction.

For test purposes only, to prove the trace works correctly, and never on a production system,
click on the Run button to start the trace. Rerun the code from Listing 15-2 and you should
see the events captured, as shown in Figure 15-13.

Figure 15-13: Output from Trace Event with an execution plan on display.

456

Chapter 15: Automating Plan Capture

Stop the trace running. In the collected event data, I have clicked on the Showplan XML
event. In the lower pane, you can see the graphical execution plan. Note that the captured
plan again does not have the SELECT operator.

You cannot access the operator properties from this window; you'll need to browse the plan's
XML, available under the TextData column, or export it to a file by right-clicking on the row
and selecting Extract Event Data. However, in this case, we already have the plans in files
because of the Events Extraction Settings, shown in Figure 15-12.

Creating a server-side trace
As noted earlier, if we are using SQL Trace, we want to run server-side traces, saving the
results to a file. One quick way to script out a trace file definition is to start and immediately
stop the trace running, in Profiler, and then click on File | Export | Script Trace Definition |
For SQL Servers 2005–2017….

Listing 15-4 shows a truncated extract of the saved trace file.

EXEC @rc = sp_trace_create @TraceID OUTPUT,
 0,
 N'InsertFileNameHere',
 @maxfilesize,
 NULL;
IF (@rc != 0)
 GOTO error;
-- Client side File and Table cannot be scripted
-- Set the events
DECLARE @on BIT;
SET @on = 1;
EXEC sp_trace_setevent @TraceID, 122, 1, @on;
EXEC sp_trace_setevent @TraceID, 122, 9, @on;
EXEC sp_trace_setevent @TraceID, 122, 2, @on;
…
-- Set the Filters
DECLARE @intfilter INT;
DECLARE @bigintfilter BIGINT;
-- Set the trace status to start
EXEC sp_trace_setstatus @TraceID, 1;

457

Chapter 15: Automating Plan Capture

-- display trace id for future references
SELECT @TraceID AS TraceID;
GOTO finish;
error:
SELECT @rc AS ErrorCode;
finish:
GO

Listing 15-4

Yes, this lengthy script is roughly equivalent to that in Listings 15-1 or 15-3, just much less
clear and much longer-winded. Follow the instructions in the comments to use this on your
own servers.

Summary
Automating plan capture will allow you to target queries or plans that you might not be able
to get through more traditional means. This will come in extremely handy when you want the
execution plan and a correlated number of other events, such as wait statistics or recompile
events. Try not to use trace events for doing this, because they place a very high load on the
system. Instead, where possible, use Extended Events. Just remember that Extended Events,
though very low cost in terms of their overhead on the system, especially compared to Trace
Events, are not free, so you should carefully filter the events captured.

458

Chapter 16: The Query Store
Introduced to Azure SQL Database in 2015, and to the boxed version with SQL Server 2016,
the Query Store is a new mechanism for monitoring query performance metrics at the
database level. In addition to capturing query performance, the Query Store also retains
execution plans, including multiple versions of plans for a given query if the statistics or
settings for that query can result in different execution plans. This chapter will cover the
Query Store as it relates directly to execution plans and execution plan control; it is not a
thorough documentation on all the behavior surrounding the Query Store.

Behavior of the Query Store
The aim of the Query Store is to capture the information without interfering with normal
operations of your database and server. With this intent, then, the information that the Query
Store captures is initially written in an asynchronous fashion to memory. The Query Store
then has a secondary process that will flush the information from memory to disk, again
asynchronously. The Query Store does not directly interfere with the query optimization
process. Instead, once an execution plan has been generated by the optimization process, the
Query Store will capture that plan at the same time as it gets written to cache.

Some plans are not written to cache. For example, an ad hoc query with a RECOMPILE hint
will generate a plan, but that plan is not stored in cache. However, all plans, by default, are
captured by the Query Store at the time they would have been written to cache.

After a query executes, another asynchronous process captures runtime information about
the behavior of that query, how long it ran, how much memory it used, etc., and stores aggre-
gated data about the query behavior, first to memory, then flushed to disk in an asynchronous
process, just like the plans.

All this information is stored within system tables for each database on which you enable the
Query Store. By default, the Query Store is not enabled in SQL Server 2016, but it is enabled
by default in Azure SQL Database. You can control whether the Query Store is enabled
or disabled, but you have no ability to change where the information it gathered is placed,
because it is within system tables, so it will always be in the Primary file group.

459

Chapter 16: The Query Store

The organizing principle of the Query Store is the query. Not stored procedures and not
batches, but individual queries. For each query, one or more execution plans will also be
stored. There are several options regarding the behavior of the Query Store and the queries
it captures, length of retention, etc. None of that is directly applicable to the behavior of the
execution plans within the Query Store, so I won't be addressing them here.

The information about execution plans is stored in one table within the Query Store as shown
in Figure 16-1.

Figure 16-1: Execution plans within the Query Store.

The plan itself is stored in the query_plan column as an NVARCHAR(MAX) data type.
Additionally, there is a large amount of metadata about the plan stored as various other
columns within the catalog view. The data is stored as text, NVARCHAR, even though it is
an XML execution plan, because there is a limit on the nesting levels of XML within SQL
Server. Storing the plan as text avoids that issue. If you want to retrieve the plan from the
catalog view and view it graphically, you must either CAST as XML (assuming it will be
below the XML nesting-depth limit), or export to a .showplan file.

460

Chapter 16: The Query Store

Since there are a few options that affect plan retention and capture within the Query Store,
I want to talk about those, so that you can be sure you capture, or don't capture, the correct
plans for your queries.

Query Store Options
By default, you can capture up to 200 different plans for each query. That should be enough
for almost any query I've heard of. It is possible, although I have yet to see it, that this value
could be too high for a system and you may want to adjust it down. It's also possible for a
given system that this value is too low and may need to go up. The method for adjusting
Query Store settings is to use the ALTER DATABASE command as shown in Listing 16-1.

ALTER DATABASE AdventureWorks2014 SET QUERY_STORE (MAX_PLANS_PER_
QUERY = 20);

Listing 16-1

In that example I change the plans for each query from the default of 200 down to 20. Let
me repeat, I'm not recommending this change. It's just an example. The default values should
work fine in most cases. There are a few defaults that you may want to consider adjusting.

The first Query Store option that is going to be significant for execution plans
and plan capture is the Query Capture Mode. By default, this is set to ALL
in SQL Server 2016–2017 and AUTO in Azure SQL Database. There are three settings:

ALL Captures all plans for all queries on the database for which you have
enabled Query Store.

AUTO Captures plans based on two criteria. Either queries with a significant
compile time and execution duration, in tests, greater than one second
execution time, but this is controlled by Microsoft. Alternatively, a query
must be called at least three times before the plan will be captured.

NONE Leaves Query Store enabled on the database, but stops capturing infor-
mation on new queries, while continuing to capture runtime metrics on
existing queries.

461

Chapter 16: The Query Store

If you have a database where you have enabled Optimize For Ad Hoc Workloads, a setting
that ensures a query must be executed twice before the plan is loaded into cache, it might be a
good idea to change your capture mode to AUTO. This will help to reduce wasted space in the
Query Store data set. To make this change, you use the ALTER DATABASE command again.

ALTER DATABASE AdventureWorks2014 SET QUERY_STORE (QUERY_CAPTURE_
MODE = AUTO);

Listing 16-2

Having the Query Store set to NONE means that no additional plans for any query will be
captured (as noted above). However, it will continue to capture the execution runtime metrics
for the plans and queries that it has already captured. This may be useful under some circum-
stances where you only care about a limited set of queries.

Another setting that you may want to control is the automatic clean-up of the information in
the Query Store. By default, it keeps 367 days' worth of data, leap year plus one day. This
may be too much, or not enough. You can adjust it using the same functions as above. By
default, Query Store will also clean up the data once this limit is reached. You may want to
turn this off, depending on your circumstances.

In addition to using T-SQL to control the Query Store, you can use the Management Studio
GUI. I prefer T-SQL because it allows for automation of the processing. To get to the GUI
settings, right-click on a database and select Properties from the context menu. There will be
a new page listed, Query Store, and it contains the basic information about the Query Store
on the database in question, as shown in Figure 16-2.

You can't control all the settings from this GUI, so you will need to use the ALTER DATA-
BASE command for some settings. For example, the maximum number of plans per query
which we demonstrated in Listing 16-1 can't be adjusted from the GUI. The GUI report on
disk usage is handy, but if you really need to monitor it, you'll, again, want to set up queries
to retrieve that information.

462

Chapter 16: The Query Store

Figure 16-2: SSMS GUI for managing the Query Store.

Retrieving Plans from the Query Store
Retrieving execution plans is straightforward. There are canned reports built in to Manage-
ment Studio and available within the database. You can also use T-SQL to retrieve the execu-
tion plans from the catalog views exposed for the Query Store information. We'll start off
with the basic view of a report from the Query Store and then we'll focus on using the catalog
views to retrieve execution plans using T-SQL.

SSMS reports
SSMS provides several built-in reports, a couple of which can help you find problem queries
and their plans. I can't cover these reports in any detail, but I'll describe the basics of what
they offer, and then focus on using one of the reports available for the Query Store.

463

Chapter 16: The Query Store

Overview of Query Store reports

If you expand your database within Object Explorer, you'll see a folder marked Query Store.
Expand that folder, and you should see the reports shown in Figure 16-3.

Figure 16-3: Query Store reports within SSMS.

Each of these reports brings back different information based on their structure. Most of the
reports have a very similar layout. The exception is the Overall Resource Consumption
report, which shows a very different set of data from the others. Opening that report shows
queries sorted by resource consumption over time, based on the execution runtime data
within the Query Store.

464

Chapter 16: The Query Store

Figure 16-4: Overall Resource Consumption report from the Query Store.

This report is useful for identifying queries that are using more resources. Clicking on any
one query opens the Top Resource Consuming Queries window, which we're going to go
over in detail below.

The other reports are structured like the Top Resource Consuming Queries report, so we
won't go through all their functions. However, let's outline where each report can be used.

465

Chapter 16: The Query Store

Report Usefulness

Regressed Queries When the runtime behavior of a query
changes at the same time as the execution
plan changes, the query can be said to
have regressed due to the execution
plan change. This may come from bad
parameter sniffing, a change in the optimi-
zation process, or others. This report will
help you identify queries to focus on.

Overall Resource Consumption Displayed above in Figure 16-4, this report
breaks down queries by the resources
they consume over time. It's useful when
working on identifying which query is
causing a particular problem with memory,
I/O or CPU.

Top Resource Consuming Queries This will be covered in detail below. It's
simply a focused version of the Overall
Resource Consumption report with a single
metric being displayed.

Queries With Forced Plans When you choose to force a plan, detailed
below, this report will show which queries
currently have plans that are being forced.

Queries With High Variation These are queries that, based on a given
metric, are experiencing more changes in
behavior than other plans. This could be
used in conjunction with the Regressed
Queries report.

Tracked Queries You can mark a query for tracking through
the Query Store. The tracked queries will
then be exposed in this report.

Each report displays unique sets of data based on the information captured by the Query
Store but, except for the Overall Resource Consumption report, they all behave in roughly
the same fashion.

466

Chapter 16: The Query Store

The Top Resource Consuming Queries report

We'll focus on the Top Resource Consuming Queries report because it's one that is likely
to be used regularly on most systems. If you've just enabled the Query Store, then you
should run a few queries, to see some data in the report. Double-clicking on the report will
open it up.

Figure 16-5: Top Resource Consuming Queries report for the Query Store.

The report is divided into three sections. On the top left is a listing of queries sorted by
various metrics. The default is Duration. You can use the drop-down to choose amongst
CPU and other measures provided by the Query Store. You can also choose the Statistic to
measure. The default here is Total. These will populate the graph, showing you the queries
that are most problematic, when considering Total Duration. To the right is a second section
showing various execution times. Each circle represents, not an individual execution, but

467

Chapter 16: The Query Store

aggregated execution times over a time interval. There may be more than one plan. Selecting
any of those plans changes the third pane of the report, on the bottom, to a graphical repre-
sentation of the execution plan in question. That graphical plan functions exactly as any other
graphical plan we've worked with throughout the book.

In short, this report ties together the query, an aggregation of its performance metrics, and
the execution plan associated with those metrics. You can adjust the reports and modify them
from being graphical to showing grids of data. Simply click the buttons on the upper-right of
the first window of the report.

One additional piece of functionality is especially interesting from an Execution Plan stand-
point. When you have more than one plan available, as in the example in Figure 16-5, you
can select two of those plans, using the SHIFT key to select a second plan. With two plans
selected, one of the buttons in the tool bar, shown in Figure 16-6, allows you to compare
the plans.

Figure 16-6: Compare Execution Plans button.

Clicking that button, opens the Compare Execution Plan window (covered in more detail in
Chapter 17). You can see the two plans from the above example in Figure 16-7.

468

Chapter 16: The Query Store

Figure 16-7: Execution plans compared from Query Store report.

The functionality is described in detail in Chapter 17. Common parts of the plan are high-
lighted in varying shades of color (in this case pink). Differences in the properties are
displayed using the "not equals" symbol. You can explore and expose information about the
differences and similarities between the plans.

Other than that, there's only one other piece of functionality directly applicable to execution
plans and we'll cover it a little later in this chapter.

Retrieve Query Store plans using T-SQL
Getting information about the query plan from the Query Store system tables is quite
straightforward. There are only a few catalog views (how you read a system table) providing
the information, that are directly applicable to plans themselves:

• query_store_plan – the view that contains the execution plan itself along
with information about the plan such as the query_plan_hash, compatibility
level, and whether a plan is trivial (all as shown in Figure 16-1).

469

Chapter 16: The Query Store

• query_store_query – the view that identifies each query, but not the query
text, which is stored separately, and includes information such as the last compile
time, the type of parameterization, the query hash, and more. Although the text and
context are stored separately, they are how a query is identified.

• query_context_settings – this defines metadata about the query such as
ANSI settings, whether a query is for replication, and its language.

• query_store_query_text – this view defines the actual text of the query.
While there are three other Query Store catalog views, they are very focused on query
performance so I won't be directly addressing them in this book.

Querying to retrieve the plan is basically a matter of joining together the appropriate catalog
views to retrieve the information you are most interested in. You can simply query the sys.
query_store_plan table, but you won't have any context for that plan such as the text of
the query or the stored procedure that it comes from. Listing 16-3 demonstrates a good use of
the tables to retrieve an execution plan.

SELECT qsq.query_id,
 qsqt.query_sql_text,
 CAST(qsp.query_plan AS XML),
 qcs.set_options
FROM sys.query_store_query AS qsq
 JOIN sys.query_store_query_text AS qsqt
 ON qsqt.query_text_id = qsq.query_text_id
 JOIN sys.query_store_plan AS qsp
 ON qsp.query_id = qsq.query_id
 JOIN sys.query_context_settings AS qcs
 ON qcs.context_settings_id = qsq.context_settings_id
WHERE qsq.object_id = OBJECT_ID('dbo.AddressByCity');

Listing 16-3

Assuming you have at least once executed a stored procedure named dbo.AddressBy-
City, you'll get information back out. I've included the query_context_settings
under the assumption that if a query is executed using different settings, you may see it more
than one time. To make the results contain a clickable execution plan, I've opted to CAST the
plan as XML. The results of this query would look like Figure 16-8.

Figure 16-8: Results from query against Query Store system tables.

470

Chapter 16: The Query Store

This query returns the execution plan as a clickable column and shows the query_id.
Retrieving additional information about the plan is just a question of adding columns to this
query. One point worth noting is the text of the query as shown here. Listing 16-4 shows the
full text from that column.

(@City nvarchar(30))SELECT a.AddressID ,a.AddressLine1
,a.AddressLine2 ,a.City ,sp.[Name] AS StateProvinceName
,a.PostalCode FROM Person.Address AS a JOIN Person.StateProvince
AS sp ON a.StateProvinceID = sp.StateProvinceID WHERE a.City = @
City

Listing 16-4

This is a query that contains a parameter as defined by the stored procedure that the query
comes from:

CREATE OR ALTER PROC dbo.AddressByCity @City NVARCHAR(30)
AS
SELECT a.AddressID,
 a.AddressLine1,
 a.AddressLine2,
 a.City,
 sp.Name AS StateProvinceName,
 a.PostalCode
FROM Person.Address AS a
 JOIN Person.StateProvince AS sp
 ON a.StateProvinceID = sp.StateProvinceID
WHERE a.City = @City;

Listing 16-5

Note the change in the text of the query. In the Query Store, the definition of the param-
eter, @City, is included with the query text at the front of the statement, (@City nvar-
char(30)). That same text is not included with the text of the query from the stored proce-
dure as shown in Listing 16-5. This vagary in how Query Store works can make it difficult to
track down individual queries within the catalog views.

471

Chapter 16: The Query Store

There is a function, sys.fn_stmt_sql_handle_from_sql_stmt, that will help you
resolve a simple, or forced parameterized query from the Query Store. This function doesn't
work with stored procedures, though. There, you would be forced to use the LIKE operator
to retrieve the information. You can use the object_id, but you'll have to deal with
however many statements are contained within the procedure. To find individual statements,
you'll be forced to use the functions listed below.

Let's look at an example of this in action, taking a very simple query like Listing 16-6.

SELECT bom.BillOfMaterialsID,
 bom.StartDate,
 bom.EndDate
FROM Production.BillOfMaterials AS bom
WHERE bom.BillOfMaterialsID = 2363;

Listing 16-6

The query in Listing 16-6 will result in a query plan that uses simple parameterization to
ensure the potential of plan reuse. This means that the value, 2363, is replaced by a param-
eter, @1, within the plan stored in cache. If we ran a query like Listing 16-7, we wouldn't see
any data.

SELECT qsqt.query_text_id
FROM sys.query_store_query_text AS qsqt
WHERE qsqt.query_sql_text = 'SELECT bom.BillOfMaterialsID,
 bom.StartDate,
 bom.EndDate
FROM Production.BillOfMaterials AS bom
WHERE bom.BillOfMaterialsID = 2363;';''

Listing 16-7

The results are a complete empty set because the Query Store doesn't have the original
T-SQL we passed in. Instead, it has the new text that defines the parameter. This is where the
sys.fn_stmt_sql_handle_from_sql_stmt function comes into play. We'll modify
our query against the Query Store catalog views, to filter for the query in question.

472

Chapter 16: The Query Store

SELECT qsqt.query_text_id
FROM sys.query_store_query_text AS qsqt
 JOIN sys.query_store_query AS qsq
 ON qsq.query_text_id = qsqt.query_text_id
 CROSS APPLY sys.fn_stmt_sql_handle_from_sql_stmt(
 'SELECT bom.BillOfMaterialsID,
 bom.StartDate,
 bom.EndDate
FROM Production.BillOfMaterials AS bom
WHERE bom.BillOfMaterialsID = 2363;',
 qsq.query_parameterization_type) AS fsshfss
WHERE fsshfss.statement_sql_handle = qsqt.statement_sql_handle;''

Listing 16-8

To work with sys.fn_stmt_sql_handle_from_sql_stmt you must supply two
values. The first is the query in which you are interested. In our case that's the query from
Listing 16-6. The second contains the type of parameterization. Luckily, this information is
stored directly in the sys.query_store_query table, so we can go there to retrieve it.
With these values supplied, we'll get the query we need in the result set.

Control Plans Using Plan Forcing
One of the most important aspects of Query Store, regarding execution plans, is the ability
to pick an execution plan for a given query, and then use plan forcing in Query Store to force
the optimizer to use this plan. It is much easier to use plan forcing within Query Store than it
is to implement a plan guide (see Chapter 9). If you have an existing plan guide for a query,
and then also force a plan, perhaps a different plan, using Query Store, then the Query Store
plan forcing will take precedence. If you are in Azure SQL Database or using SQL Server
2016 or greater, and you need to force the optimizer to use an execution plan, the preferred
method is to use plan forcing through the Query Store rather than plan guides.

Query Store is designed to collect data using an asynchronous process. Plan forcing is the
one exception to that process. In this one case, when you define a plan as a forced plan,
regardless of what happens with the plan in cache, compiles or recompiles, reboots of the
server, even backup and restore of the database, that plan will be forced. To force a plan, the
plan must be valid for the query and structure as currently defined; changes in indexing, for
example, could mean that a plan is no longer valid for a query.

473

Chapter 16: The Query Store

The information that a plan is forced is written into the system tables of the Query Store
and stored with the database. With Query Store enabled, and if the plan is a valid plan, if
it's forced, that's the execution plan that will be used. There is a relatively obscure situation
where a "morally-equivalent" plan, a plan that is identical in all the core essentials, but not
necessarily perfectly identical, can be used instead of the precise plan you define. However,
this isn't common.

Plan forcing is a double-edged sword that can help or hurt depending on how it is imple-
mented and maintained. I recommend extremely judicious use of plan forcing and I advise
you to figure out a schedule for reviewing plans that have been forced. This is not something
you set once and forget about.

That said, there are several situations where you may consider using plan forcing, one of
which is the classic "parameter sniffing gone wrong" situation, which we've encountered
several times previously in the book. However, another good use case is to fix "plan regres-
sion" problems, where some system change means that the optimizer generates a new plan,
which does not perform as well as the old plan. Plan regression can occur after, for example,
upgrading from a version of SQL Server prior to 2014 which used the old cardinality estima-
tion engine, or applying Cumulative Updates or hot fixes that introduce changes to the query
optimizer. There is a specific report available for regressed queries. During upgrades or while
applying a CU, it's a very good idea to run Query Store prior to changing the compatibility
level during an upgrade, or applying the CU in that situation.

How to force a plan
I'll demonstrate the basics of how to force a plan, using the "bad parameter sniffing" case as
an example.

Execute the stored procedure dbo.AddressByCity, passing it a value of 'London'.

EXEC dbo.AddressByCity @City = N'London';

Listing 16-9

Let's look at the execution plan.

474

Chapter 16: The Query Store

Figure 16-9: First execution plan from stored procedure.

Next, we should ensure that the execution plan for the dbo.AddressByCity stored
procedure is removed from cache.

DECLARE @PlanHandle VARBINARY(64);
SELECT @PlanHandle = deqs.plan_handle
FROM sys.dm_exec_query_stats AS deqs
 CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest
WHERE dest.objectid = OBJECT_ID('dbo.AddressByCity');
IF @PlanHandle IS NOT NULL
BEGIN;
 DBCC FREEPROCCACHE(@PlanHandle);
END;
GO

Listing 16-10

If we then execute the query again, but this time pass in the value of 'Mentor', we'll see a
completely different execution plan.

EXEC dbo.AddressByCity @City = N'Mentor';

Listing 16-11

475

Chapter 16: The Query Store

Figure 16-10: Second execution plan from stored procedure.

This is a classic case of parameter sniffing gone wrong. Each plan works very well for the
estimated row counts, which are larger for 'London' and smaller for 'Mentor', but prob-
lems arise when a query that returns many rows uses the plan that's optimized for returning
smaller data sets. In some circumstances, this type of behavior leads to performance prob-
lems. Back in Chapter 10, we tackled this exact same problem by applying the OPTIMIZE
FOR query hint.

Let's say that one of these plans leads to more consistent, predictable performance over a
range of parameter values, than the other. We'd like to use the Query Store to force the opti-
mizer to always use that plan.

The T-SQL to force a plan requires that we first get the query_id and the plan_id. This
means we have to track down that information from the Query Store tables.

SELECT qsq.query_id,
 qsp.plan_id,
 CAST(qsp.query_plan AS XML)
FROM sys.query_store_query AS qsq
 JOIN sys.query_store_plan AS qsp
 ON qsp.query_id = qsq.query_id
WHERE qsq.object_id = OBJECT_ID('dbo.AddressByCity');

Listing 16-12

476

Chapter 16: The Query Store

This will return the information we need along with the execution plan so that we can deter-
mine which plan we want. Look at the plans to determine the one you wish to force. Imple-
menting the plan forcing is then extremely simple.

EXEC sys.sp_query_store_force_plan 214, 248;

Listing 16-13

Now, if I were to remove this plan from cache, using Listing 16-9 again, regardless of the
value passed to the dbo.AddressByCity stored procedure, the plan generated will
always be the plan I chose. The information within the plan and the behavior of the plan
will be the same as any other execution plan within the system with a couple of exceptions.
First, the plan defined will always be the plan returned (except when it is a morally equiva-
lent plan or an invalid plan) until we stop forcing the plan or disable the Query Store. Second,
one marker has been added to the execution plan properties so that we can see that it is a
forced plan.

Figure 16-11: Use plan properties from SELECT operator.

In the first operator, in this case the SELECT operator, a new property will be added to
any plans that are forced, Use plan. If that value is set to True, then that plan is a forced
execution plan.

You can retrieve information about plans that are forced by querying the Query Store directly.

SELECT qsq.query_id,
 qsp.plan_id,
 CAST(qsp.query_plan AS XML)
FROM sys.query_store_query AS qsq
 JOIN sys.query_store_plan AS qsp
 ON qsp.query_id = qsq.query_id
WHERE qsp.is_forced_plan = 1;

Listing 16-14

477

Chapter 16: The Query Store

With this information you can, if you choose, unforce a plan using another command.

EXEC sys.sp_query_store_unforce_plan 214, 248;

Listing 16-15

This will stop forcing the execution plan from the Query Store and all other behavior will
return to normal.

You can also use the GUI to force and unforce plans. If you look at the report from Figure
16-4, shown again in Figure 16-11, you can see, on the right-hand side, two buttons, Force
Plan and Unforce Plan.

 Figure 16-12: Forced plan in Query Store reports.

You can click on a plan in the upper-right pane, then select Force Plan to force the plan the
same as if you used T-SQL to do it. Unforcing the plan is just as straightforward. If a plan is
forced, you can see a check mark on it in the plan's listing to the right and anywhere that plan
is visible. Choosing to force or unforce a plan from the report, you will be prompted to check
whether you're sure.

478

Chapter 16: The Query Store

Just remember that forcing a plan can be a good choice for dealing with plan regressions.
However, that choice should be reviewed regularly to see if the situation has changed in some
way that suggests removing the forced plan is a preferred choice.

Automated plan forcing
Introduced in SQL Server 2017, and the foundation of automatic tuning in the Azure SQL
Database, the Query Store can be used to automatically identify and fix plan regression. It's
referred to as automatic tuning, but understand, it's just using the most recent good plan that
consistently runs better than other plans in the Query Store. It's not tuning the database in
terms of updating statistics, adding, removing, or modifying indexes or, most importantly
changing the code. However, for a lot of situations, this may be enough to automatically deal
with performance problems.

The automatic tuning is disabled by default. To enable it, you first must have Query Store
enabled and collecting data. Then, it's a simple command to enable the automated tuning.

ALTER DATABASE CURRENT SET AUTOMATIC_TUNING(FORCE_LAST_GOOD_PLAN =
ON);

Listing 16-16

The database engine will actually monitor the performance of queries using the informa-
tion gathered in the Query Store. When a plan change clearly causes performance issues,
a regression, the engine can automatically enable the last good plan. That may not be the
best possible plan depending on the circumstances, but it will be a better plan than what is
currently in use. However, the engine will also automatically check to see if performance
improved or degraded. If it has degraded, the plan forcing will be revoked and the plan will
recompile at the next call.

You can see immediately, even without enabling automatic tuning, if a potential automatic
tuning opportunity is available. A new DMV, sys.dm_db_tuning_recommenda-
tions, is available to show these recommendations. Figure 16-13 shows all the columns
returned from the DMV.

479

Chapter 16: The Query Store

Figure 16-13: DMV for automatic tuning recommendations.

While all the columns can be important depending on the situation, the most interesting ones
are the type, reason, state, and details. The rest of the data is largely informational. However,
we can't just query this data directly. The data in the state and details columns are
stored as JSON. Listing 16-17 shows how to pull this information apart.

SELECT ddtr.reason,
 ddtr.score,
 pfd.query_id,
 JSON_VALUE(ddtr.state,
 '$.currentValue') AS CurrentState
FROM sys.dm_db_tuning_recommendations AS ddtr
 CROSS APPLY
 OPENJSON(ddtr.details,
 '$.planForceDetails')
 WITH (query_id INT '$.queryId') AS pfd;

Listing 16-17

480

Chapter 16: The Query Store

This query will pull together some of the interesting data from the DMV. However, to really
put that data to work with the Query Store information to understand more fully what's going
on, we'll have to expand the JSON queries quite a bit. Listing 16-18 combines the data from
the sys.dm_db_tuning_recommendations DMV with the catalog views of the
Query Store.

WITH DbTuneRec
AS (SELECT ddtr.reason,
 ddtr.score,
 pfd.query_id,
 pfd.regressedPlanId,
 pfd.recommendedPlanId,
 JSON_VALUE(ddtr.state,
 '$.currentValue') AS CurrentState,
 JSON_VALUE(ddtr.state,
 '$.reason') AS CurrentStateReason,
 JSON_VALUE(ddtr.details,
 '$.implementationDetails.script') AS
ImplementationScript
 FROM sys.dm_db_tuning_recommendations AS ddtr
 CROSS APPLY
 OPENJSON(ddtr.details,
 '$.planForceDetails')
 WITH (query_id INT '$.queryId',
 regressedPlanId INT '$.regressedPlanId',
 recommendedPlanId INT '$.recommendedPlanId') AS pfd)
SELECT qsq.query_id,
 dtr.reason,
 dtr.score,
 dtr.CurrentState,
 dtr.CurrentStateReason,
 qsqt.query_sql_text,
 CAST(rp.query_plan AS XML) AS RegressedPlan,
 CAST(sp.query_plan AS XML) AS SuggestedPlan,
 dtr.ImplementationScript
FROM DbTuneRec AS dtr
 JOIN sys.query_store_plan AS rp
 ON rp.query_id = dtr.query_id
 AND rp.plan_id = dtr.regressedPlanId
 JOIN sys.query_store_plan AS sp
 ON sp.query_id = dtr.query_id
 AND sp.plan_id = dtr.recommendedPlanId
 JOIN sys.query_store_query AS qsq

481

Chapter 16: The Query Store

 ON qsq.query_id = rp.query_id
 JOIN sys.query_store_query_text AS qsqt
 ON qsqt.query_text_id = qsq.query_text_id;

Listing 16-18

This query will show the recommendation reason and the score (an estimated impact value
from 0 to 100), the current state and reason for that, the query, the two plans in question, and
finally, the script to implement the suggested change. You can use this query when Query
Store is enabled (and you're on SQL Server 2017 and up) to find potential plan-forcing candi-
dates; or you can enable automatic plan forcing and then this query will probably find queries
that already have a plan forced by that feature.

You can see the output from my system in Figure 16-18.

Figure 16-14: A suggested automatic tuning opportunity.

I have a simple stored procedure, dbo.ProductTransactionHistoryByRefer-
ence, that generates five different execution plans when you run it against the entire list of
ReferenceID values (I used a PowerShell script).

CREATE OR ALTER PROC dbo.ProductTransactionHistoryByReference (@
ReferenceOrderID INT)
AS
BEGIN
 SELECT p.Name,
 p.ProductNumber,
 th.ReferenceOrderID
 FROM Production.Product AS p
 JOIN Production.TransactionHistory AS th
 ON th.ProductID = p.ProductID
 WHERE th.ReferenceOrderID = @ReferenceOrderID;
END;

Listing 16-19

One of these plans is wildly slower than the others. With plans being recompiled regularly,
it's inevitable that the slower plan will cause problems. At some point, the engine will iden-
tify these problems and create a forced plan. I can take advantage of the Forced Plans report
to see the plan.

482

Chapter 16: The Query Store

Figure 16-15: Forced Plans report from the Query Store showing automatic tuning.

You can see that there is a check mark on Plan Id 7, the plan that is highlighted and visible.
That means that the system has forced this plan. I can verify this by going back to sys.dm_
db_tuning_recommendations and looking at additional columns.

SELECT ddtr.reason,
 ddtr.valid_since,
 ddtr.last_refresh,
 ddtr.execute_action_initiated_by
FROM sys.dm_db_tuning_recommendations AS ddtr;

Listing 16-20

483

Chapter 16: The Query Store

This will let us know, not only a suggested tuning process, but when it was initiated and by
whom. The output from the system looks as shown in Figure 16-16.

Figure 16-16: Output from the sys.dm_db_tuning_recommendations DMV.

You can see that the action was taken by the system. This is direct evidence that the system
has decided to force this execution plan.

Over time, the system continues to measure the performance of queries. In my example
above it will occasionally, through measurements, decide that forcing this plan in fact hurts
performance. In that case, you'll see the plan forcing will be removed, and if you look at
Revert_* columns available in sys.dm_db_tuning_recommendations, you'll
see they will be filled in. The fact that the plan was forced and, importantly, why, won't be
removed from sys.dm_db_tuning_recommendations unless you remove the data
from the Query Store (more on that in the next section).

Finally, you can decide to remove the plan forcing manually. You can either use the button
on the report, visible in Figure 16-15 and other reports in this chapter, or using the T-SQL
command shown in Listing 16-13. In this case, the execute_action_initiated_by
column (Listing 16-20) will show User instead of system.

If you decide to override the automatic tuning, that query will not be automatically forced
again, regardless of behavior. Your choices take precedence over the automation. The excep-
tion to this will arise if you remove the data from the Query Store. This will result in coming
back around to the forced plan again because your override can't survive the loss of data. Any
time you override the behavior of automatic tuning, it prevents any further automatic manip-
ulation of the plans, on or off.

Remove Plans from the Query Store
If you disable the Query Store, it will leave all the information in place. If you want to
remove every single bit of information from the Query Store, you could issue the command
in Listing 16-21.

ALTER DATABASE AdventureWorks2014 SET QUERY_STORE CLEAR;

Listing 16-21

484

Chapter 16: The Query Store

However, that is heavy handed unless your intention is to, for example, remove produc-
tion data from a database prior to using that database in a development environment. If you
wanted to only remove a particular query, and all its associated information including all
execution plans, you could use Listing 16-22.

EXEC sys.sp_query_store_remove_query
 @query_id = 214;

Listing 16-22

If I had retrieved the query_id using another query, such as one from Listing 16-3, I could
then use the value to run this query. It removes the query, all captured plans, and all recorded
runtime stats. It would even stop plan forcing because the query has been removed and the
information is no longer stored with the database.

You can also target just plans for removal. If we retrieved the plan_id using Listing 16-10,
we could then remove a plan from the Query Store using Listing 16-23.

EXEC sys.sp_query_store_remove_plan @plan_id = 248;

Listing 16-23

This will leave the query intact as well as any other plans associated with that query. It will
remove the execution plan defined by the plan_id. If that plan is associated with plan_
forcing, then plan forcing will be stopped because the plan is no longer in the database.

An important thing to remember about the Query Store information is that it is stored
with the database, within system tables. That means it gets backed up with the database. If
you back up a production database, and then restore it to a non-production system, all the
query store information will go with it. This includes any text stored with the query such
as filtering criteria or compile-time parameter values. If you are working with data that has
limited access, such as healthcare data, you need to take the Query Store into account when
removing sensitive information from a database prior to giving it to unauthorized persons.
Use the appropriate removal mechanism from above to ensure proper protection of your data.

485

Chapter 16: The Query Store

Summary
The Query Store introduces a great deal of useful information for query performance tuning
and execution plans. It persists this information with the database, which enables you to do
all sorts of troubleshooting and performance tuning offline from your production system.
Plan forcing means you don't have to worry about certain types of plan regressions in the
future because you can easily undo them and prevent them from happening again. However,
don't forget that data and statistics change over time, so the perfect plan to force today, may
not be the perfect plan tomorrow.

486

Chapter 17: SSMS Tools for Exploring
Execution Plans

Learning what makes up an execution plan and understanding how to read the properties
and operators is a fundamental part of advancing your knowledge of writing efficient T-SQL
queries, and improving your skills at tuning those that are causing problems.
However, as you've seen in some of the preceding chapters, certain plans are harder to
navigate, and it takes time to piece together all the details of each operator, and their various
properties, to work out exactly how SQL Server has chosen to execute a query, and why, and
what help you can offer the optimizer to arrive at a better plan, if necessary. In such cases,
it is not a bad idea to get a little extra help, and in this chapter I'll cover the SQL Server
Management tools I use when I need a little extra guidance in reading and understanding a
plan. I'll also mention briefly some of the third-party tools I've found useful when attempting
to navigate more complex plans.

The Query
The real strength of these tools lies in the extra help they offer in reading and understanding
more complex plans, often with hundreds of operators, rather than just a handful. However, it
would be difficult to demonstrate those plans easily within the confines of a book.
Therefore, I've opted to use a relatively simple query, and straightforward plan, although with
a few inherent problems. I'll use the same query throughout, shown in Listing 17-1.

SELECT soh.OrderDate,
 soh.Status,
 sod.CarrierTrackingNumber,
 sod.OrderQty,
 p.Name
FROM Sales.SalesOrderHeader AS soh
 JOIN Sales.SalesOrderDetail AS sod
 ON sod.SalesOrderID = soh.SalesOrderID
 JOIN Production.Product AS p
 ON p.ProductID = sod.ProductID
WHERE sod.OrderQty * 2 > 60
 AND sod.ProductID = 867;

Listing 17-1

487

Chapter 17: SSMS Tools for Exploring Execution Plans

This query would benefit from a little tuning and a new index. First, the calculation on the
column OrderQty is unnecessary. Next, there is no index to support the filter criteria in the
WHERE clause. Figure 17-1 shows the resulting execution plan in SSMS.

Figure 17-1: Execution plan in SSMS for the problematic query.

You can see that the scan against the primary key of the SalesOrderDetail table is esti-
mated to be the most expensive operator. There's a suggestion for a possible index shown in
the Missing Index information at the top of the screen:

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [Sales].[SalesOrderDetail] ([ProductID])
INCLUDE ([SalesOrderID],[CarrierTrackingNumber],[OrderQty])

Given the simple nature of this query, we probably have enough information available to
us already that we could begin to tune the query. However, let's now use it to explore the
additional benefits of our tools.

488

Chapter 17: SSMS Tools for Exploring Execution Plans

The SQL Server Management Studio 17 Tools

After many years of relatively modest improvements to the information available with
execution plans, the latest version, SSMS 17, has taken some bigger strides in increasing
visibility of important information in the plans, allowing us to compare that information
between plans, and more.

Before the release of SQL Server 2017, the announcement was made that SSMS would
became a stand-alone piece of software, installed and maintained separately from the SQL
Server engine. This divorced SSMS from the longer, slower, release cycle of Service Packs
and Cumulative Updates and allowed the SSMS team to introduce enhancements at a faster
pace than we'd become accustomed to, including several in support of execution plans.

It's still a free tool and you can download it from Microsoft (http://bit.ly/2kDEQrk). You can
install it side by side with existing versions of SSMS. The current version (as of this writing)
supports SQL Server 2008–2017, as well as Azure SQL Database, and has some limited
support for Azure SQL Data Warehouse.

We've been exploring plans using SSMS throughout the book, so I'm only going to cover the
new functionality that has been explicitly introduced to help you understand execution plans.

Right-click inside an execution plan in SSMS 17, and you'll see a context menu listing three
newer pieces of functionality: Compare Showplan, Analyze Actual Execution Plan, and
Find Node.

Figure 17-2: Context menu showing newer menu choices related to execution plans.

http://bit.ly/2kDEQrk

489

Chapter 17: SSMS Tools for Exploring Execution Plans

Analyze Actual Execution Plan

Select Analyze Actual Execution Plan from the menu, and it will open a new pane at the
bottom of your query window, as shown in Figure 17-3.

Figure 17-3: Showplan Analysis with a single query for the batch.

With a single statement batch, such as the example from Listing 17-1, you'll only see a single
query. If you have multiple statements in your batch, you'll see multiple queries. To have one
of the queries analyzed, just select that query using the radio buttons. You then click on the
Scenarios tab, where each scenario shows details on a category of potential issues found in
the plans.

Figure 17-4: The Scenarios tab of the Showplan Analysis with suggested problems.

According to Microsoft the scenarios presented for a query will provide different analysis
mechanisms to guide you through problematic plans. At time of writing, they've defined only
one scenario, Inaccurate Cardinality Estimation. This is a good choice since it's a common
problem in a stable environment and a very serious problem during upgrades, especially
when moving from servers older than SQL Server 2014 to servers newer than SQL Server
2014 (where the new cardinality estimation engine was introduced).

490

Chapter 17: SSMS Tools for Exploring Execution Plans

For the Inaccurate Cardinality Estimation scenario, the information is broken into two
parts. On the left is a list of operators where the cardinality estimations differ significantly
between estimated and actual. You're provided with information about the differences, in a
neat grid. This shows the Actual and Estimated values for each operator, the node involved,
and the percentage difference. If you check the properties of the Clustered Index Seek
(highlighted in Figure 17-4) operator in the graphical plan, you'll see that Actual Number
of Rows is 6, and Estimated Number of Rows is 1, but the Showplan analysis accurately
accounts for the fact that the Estimated Number of Executions is 69.4177, giving a total
estimated number of rows returned of 69.4177.

On the right, you'll find an explanation of one or more possible reasons why the cardi-
nality estimation may be different. This provides guidance on how to address the issue, and
possibly improve the query performance, although never just assume that this guidance is
100% accurate. Always validate it on your system before implementing the advice.

Selecting any one of the nodes will also update which node is selected within the execution
plan itself, and will update the guidance so that it reflects the selected node. In Figure 17-5,
I've selected the third node in the list, one of the Nested Loops joins.

Figure 17-5: Selecting different suggestions also changes the nodes in the plan.

491

Chapter 17: SSMS Tools for Exploring Execution Plans

While this functionality is currently limited, I know there will be further enhancements,
which should deepen your understanding of possible issues with your queries and data struc-
tures, as exposed through the execution plans in SSMS.

Compare Showplan
The Compare Showplan features allows us, perhaps unsurprisingly, to compare two
different execution plans for similarities and differences. You can compare two actual
plans, two estimated plans, or an actual plan to an estimated plan; any combination will
work. You can also compare plans between different SQL Server versions, different patch
levels, and so on. If you have two valid plans, and at least one of them stored as a file, you
can compare them.

To test it out, we'll use the query in Listing 17-2, which is similar to Listing 17-1 in that it
references the same tables and columns, but with a different WHERE clause.

SELECT soh.OrderDate,
 soh.Status,
 sod.CarrierTrackingNumber,
 sod.OrderQty,
 p.Name
FROM Sales.SalesOrderHeader AS soh
 JOIN Sales.SalesOrderDetail AS sod
 ON sod.SalesOrderID = soh.SalesOrderID
 JOIN Production.Product AS p
 ON p.ProductID = sod.ProductID
WHERE sod.ProductID = 897;

Listing 17-2

Execute Listing 17-1, capture the actual plan, use Save Execution Plan As…, to save it as
a .sqlplan file, and then capture the actual plan for Listing 17-2. Right-click on it, and select
Compare Showplans from the context menu, which will open a File Explorer window.
Locate and select your saved showplan file, and you should see a Showplan Comparison
window that looks something like Figure 17-6.

492

Chapter 17: SSMS Tools for Exploring Execution Plans

Figure 17-6: Showplan Comparison including the plans, Properties, and Statement Options.

The top plan is the one from which we initiated the comparison (Listing 17-2). Below the
plans you'll see the Showplan Analysis tab, which we saw earlier, but now with an addi-
tional tab, Statement Options. Figure 17-7 shows a blow-up of this area.

Figure 17-7: Statement Options tab of the Showplan Analysis window.

493

Chapter 17: SSMS Tools for Exploring Execution Plans

By default, the Highlight similar operations checkbox is activated, and the box below
highlights areas of similar functionality within the plan. In this case, you can see two similar
areas, highlighted in pink and green. If directly-connected operators are similar in each plan,
they'll be grouped. In our case, two operators are similar, but in different parts of each plan.
Also, by default, the plan comparison ignores database names. You may see no similarities at
all, or you may see multiple sets of similarities, in which case each "similar area" will have a
different color.

To the right of the graphical plans are the Properties windows for each plan, with the
top plan on the left, which you can use to compare property values between the plans.
In Figure 17-6, I've highlighted the SELECT operator in both plans, and Compare
Showplan is highlighting with the "not-equals" sign those property values that don't
match, as shown in Figure 17-8.

Figure 17-8: Properties in comparison between two plans.

Also, you can see that there are some properties visible in one plan that don't exist in the
other. In this case, only the plan for Listing 17-2 shows a MissingIndexes property.

If you select the operator highlighted in pink in Figure 17-6, the Clustered Index Seek
on the Product table, you can see that almost every property value between these two
operators in two plans is identical.

494

Chapter 17: SSMS Tools for Exploring Execution Plans

Figure 17-9: An operator that is very similar between the two plans.

Even the values for the Estimated Operator Cost are the same, but it's highlighted as different
because the operator cost as a percentage of the whole plan is different in each case. The
other highlighted difference is in the Seek Predicates property. In my case, this is simply
because I have forced parameterization (see Chapter 9) in operation for this query, and
the optimizer used different parameter names during the forced parameterization process.
Without this, the differences will simply be the different literal values used, in each case.

495

Chapter 17: SSMS Tools for Exploring Execution Plans

We can change the comparison behavior of Compare Showplan, by activating the Highlight
operators not matching similar segments checkbox shown in Figure 17-7, either instead
of, or in addition to, the Highlight similar operations checkbox. I opted for the former, and
Figure 17-10 shows that the non-matching operators are now highlighted in yellow.

Figure 17-10: Non-matching operators are now highlighted.

I use this functionality all the time while tuning queries because, while sometimes there
are glaring differences between plans, often they are much subtler, but with significant
performance implications. This feature helps to be able to spot these small differences
faster, especially when comparing two almost-identical, large-scale execution plans.

496

Chapter 17: SSMS Tools for Exploring Execution Plans

Find Node
Right-click on a graphical plan and choose Find Node, and a small window opens in the
upper right of the execution plan. Listed in the left-hand drop-down is a big list of properties,
as shown in Figure 17-11.

Figure 17-11: Drop-down of the Find Node feature, with all the properties of the plan.

497

Chapter 17: SSMS Tools for Exploring Execution Plans

Select a property, for example ActualRows, then select a comparison operator, "equals" for
numeric searches or "contains" for text searches, and the value for which you want to search.

Figure 17-12: The comparison property list.

For text searches there is no need for wild cards; it assumes you'll want to see similar
matches as well as exact. If you search on ActualRows = 6, and then click the left or right
arrows, you can search through the plans, in NodeId order, for operators that return 6 rows.

Figure 17-13: Finding the first operator matching the Find Node search criteria.

While you won't really need Find Node for small execution plans, it becomes a huge help
when dealing with larger plans, making it much easier, for example, to find the operator with
the ParentNodeID that matches the NodeID of a Table Spool operator, or to find every
reference to a column name.

498

Chapter 17: SSMS Tools for Exploring Execution Plans

Live execution plans
A live execution plan is one that exposes per-operator runtime statistics, in real time, as the
query executes. You'll get to see the query execution in action, and view the per-operator
statistics, as the execution progresses and data flows from one operator to the next. This is
useful if, for example, you need to understand how data moves through the plan for a very
long-running query. A live execution plan will also show you the estimated query progress,
which might be useful if you need to decide whether to kill the query.

SQL Server 2014 was the first version to introduce a way to track progress on a long-running
query. You could query the sys.dm_exec_query_profiles Dynamic Management
View (DMV) from another connection. However, it came with quite a high overhead, since
the data was only captured if you executed the query with the option to include the actual
execution plan enabled.

Subsequent SQL Server versions (and Service Pack 2 for SQL Server 2014) have introduced
lower-overhead ways to view the in-progress runtime statistics, without the need to capture
the actual plan, via a new extended event (query_thread_profile) or by enabling
Trace Flag 7412. Enabling the trace flag allows us to use a new lightweight query execution
statistics profiling infrastructure, which dramatically reduces the overhead of capturing the
in-progress query execution statistics.

Using the trace flag is the lowest-cost method of the three, followed by using the extended
event (which enables the trace flag automatically), and capturing the actual plan is the most
expensive option. Caution, though: even if you're using the trace flag, low-cost doesn't mean
no-cost. You should still test this carefully before enabling it on your production systems.
There is overhead associated with capturing the runtime metrics.

Let's see all this in action. To do so, we'll introduce one new query, in Listing 17-3.

SELECT *
FROM sys.objects AS o,
 sys.columns AS c;

Listing 17-3

This query violates a bunch of rules, many of which we have maintained throughout this
book. However, it takes about 40 seconds to run on my system, so it makes a good test bed
for all the other functions we'll see within live execution plans.

499

Chapter 17: SSMS Tools for Exploring Execution Plans

Live per-operator statistics using sys.dm_exec_query_profiles

The sys.dm_exec_query_profiles DMV shows the number of rows processed by
individual operators within a currently executing query, allowing you to see the status of the
executing query, and compare estimated row-count values to actual values.

If you're testing this on SQL Server 2014, but pre-SQL Server 2014 SP2, you'll need to run
Listing 17-3 using any of the options that include the actual execution plan, either in SSMS
or by using one of the SET commands, or by capturing the query_post_execution_
showplan event (see Chapter 15).

SQL Server 2016 introduced live execution statistics into SSMS, and added to Extended
Events the new "debug" category event called query_thread_profile. SQL Server 2016
SP1 introduced the Trace Flag 7412. Both the extended event and the trace flag were retro-
fitted into SQL Server 2014 SP2.

So, on SQL Server 2014 SP2, or on SQL Server 2016 SP1 and later, the best way is to first
enable Trace Flag 7412, as shown in Listing 17-4.

DBCC TRACEON (7412, -1);

Listing 17-4

Now, start executing Listing 17-3, and from another session run the following query against
the sys.dm_exec_query_profiles DMV. Note that I'm eliminating the current session
from the query because otherwise it will show up in the results.

SELECT deqp.session_id,
 deqp.node_id,
 deqp.physical_operator_name,
 deqp.estimate_row_count,
 deqp.row_count
FROM sys.dm_exec_query_profiles AS deqp
WHERE deqp.session_id <> @@SPID
ORDER BY deqp.node_id ASC;

Listing 17-5

The DMV returns a lot more information than I've requested here (see the Microsoft docu-
mentation for a full description: https://bit.ly/2JKYe5s), and you can combine this DMV with
others to return even more information. Figure 17-14 shows a subset of the results.

https://bit.ly/2JKYe5s

500

Chapter 17: SSMS Tools for Exploring Execution Plans

Figure 17-14: Results of query against sys.dm_exec_query_profiles.

You can see the nodes and their names along with the estimated_row_count, which
shows the total estimated number of rows to be processed, which you can then compare to
the actual number of rows currently processed, in the row_count column. You can see
immediately that the node with an ID value of 1, the Nested Loops operator, has an esti-
mated number of rows of 6,264,966, and has only actually processed 94,465. This lets us
know that, without a doubt, the query is still processing, and has quite a way to go to get to
the estimated number of rows. Of course, if the optimizer's row count estimates are inac-
curate then the row_count and estimated_row_count may not match up. However,
this provides one way to track the current execution status of a query and how much it has
successfully processed.

If you query the DMV again while the query is still executing, you can see the changes to
the data.

Figure 17-15: Changes to the information from sys.dm_exec_query_profiles.

501

Chapter 17: SSMS Tools for Exploring Execution Plans

As you can see, more rows have been processed by several of the operators, but the execution
is not yet complete. When you run the query after the long running query has completed, you
won't see a completed set of row counts. Instead, you'll see nothing at all, since there are no
active sessions.

Using the query_thread_profile extended event
If you want to see just the completed information, you can capture the query_thread_
profile extended event, which triggers for each query plan operator and execution thread,
at the end of query execution. It's a "Debug" channel event, so you'll need to enable that
channel in the SSMS GUI for Extended Events, to see the event.

Capturing the data from the event you'll see the execution statistics for each operator within
a given execution plan. As stated earlier, this is a debug event, so caution should be exercised
when using it. However, Microsoft has documented its use, so I have no problem sharing
this with you. To add the event through T-SQL, just add the event. To add the event through
the GUI, you will need to click on the drop-down for the Channel and select Debug. Figure
17-16 shows the information for the Nested Loops operator (NodeId=1) that we saw earlier.

Figure 17-16: Output from query_thread_profile extended event.

502

Chapter 17: SSMS Tools for Exploring Execution Plans

You can see that the estimated number of rows is 6,264,966, as before. The actual number of
rows shows the full execution-to-completion value of 1,273,188. So, in this case, the actual
row count is significantly less than the estimated row count. You also get interesting addi-
tional information such as the total_time_us and cpu_time_us, which can be useful
for performance tuning.

Live execution plans in SSMS
All the previous ways to see the "live" runtime information are useful. You could even build
a tool that constantly queries these sources, to show a live view into an execution plan, as it is
executing. However, we don't have to because, as of SQL Server 2016, this feature is already
included in SSMS. Note again, this will only work on versions of SQL Server that can show
the live query metrics we've been capturing in the sections above.

Figure 17-17 shows the Include Live Query Statistics icon in SSMS (the red arrow is
all mine). This icon acts as a toggle, just like the Include Actual Execution Plan button
to its left.

Figure 17-17: The tooltip and icon for Include Live Query Statistics.

If you enable Include Live Query Statistics, and then execute the query, you'll be able to
capture a live execution plan, and view the execution statistics for the plan, while the query is
still executing; turn it off, and you won't (unless you use Activity Monitor, as I'll demonstrate
shortly). Since we're capturing the plan, we don't need to be running the query_thread_
profile extended event or have Trace Flag 7412 enabled to use this feature. Note that
enabling the trace flag doesn't make it more lightweight to use this SSMS feature; you're still
paying the cost of capturing the plan.

503

Chapter 17: SSMS Tools for Exploring Execution Plans

Figure 17-18 shows the live execution plan for our long-running query.

Figure 17-18: A subset of a live execution plan in action.

Of course, showing real-time, ever-changing output in a still frame, within a book, doesn't
quite have the same impact. The only immediate indications that you're not just looking
at another execution plan are the Estimated query progress in the upper left (currently
at 12%), the dashed lines instead of solid lines between the operators, and the row counts
with percentage complete beneath the operators. If you are viewing a live execution plan in
SSMS, you will see the dashed lines moving, indicating data movement, and the row counts
moving up as data is processed by an operator. This continues until the query completes
execution, at which point you're just looking at a regular execution plan.

You can also look at the properties of any of the operators during the execution of the query.
There you'll see a normal set of properties. However, the properties associated with an
actual execution plan, such as the actual row count, will be changing in time with the plan,
providing you indications as to the progress of the query, in real time.

Viewing the live execution plan in Activity Monitor
With Trace Flag 7412 enabled, or if you're capturing the query_thread_profile event,
other tools can offer to display a live execution plan, any time while a query is executing,
without the need to capture an actual plan.

So, we can use the Activity Monitor within SSMS to see queries that are actively consuming
a large amount of resources as shown in Figure 17-19.

504

Chapter 17: SSMS Tools for Exploring Execution Plans

Figure 17-19: Activity Monitor showing an active expensive query.

The query shown in the Active Expensive Queries report is from Listing 17-3. If I right-
click on that query while it's in the active state, I'll see a menu choice, as in Figure 17-20.

Figure 17-20: A context menus showing a choice for a live execution plan.

If I select Show Live Execution Plan, I will be brought to a window just like in Figure
17-18. The behavior from then on is the same.

Live execution plans are useful if you have very long-running queries, and wish to develop
a more direct understanding of how the data moves within the operators. The information
contained in live execution plans, as well as the associated DMVs and Extended Events, can
help you decide when to roll back a transaction, or make other types of decisions, based on
how far and how fast the processing has gone within a query.

505

Chapter 17: SSMS Tools for Exploring Execution Plans

They suffer from two issues. First, they are dependent on the estimated values. If those are
off, so will the information be within the live execution plan. Second, capturing the infor-
mation for a live execution plan, even the lightweight options of Trace Flag 7412 or the
query_thread_profile event, may be too expensive for some systems. Exercise caution
when implementing this fascinating and useful functionality.

Other Execution Plan Tools
While I decided that it was out of scope to cover third-party tools, I will mention here the
ones that I've used, personally, and that not only display the plans, but also offer additional
functionality that will help you understand them. This is not a complete list; they are just the
ones I've used to date, and my apologies if I left out your favorite software.

Plan Explorer
Perhaps the best-known tool for navigating execution plans is Plan Explorer by SentryOne
(sentryone.com). It is a full, stand-alone application that offers many different views and
layouts of a plan. It also performs some intelligent analysis of the property values, index
statistics, and runtime statistics, to help you read even large-scale plans, and spot possible
causes of sub-optimal performance.

Supratimas
Supratimas is a web browser-based tool, available for free online at supratimas.com. You
can simply "drag and drop" your query text, or .sqlplan file, and it will display the graphical
plan, and visually highlight important property values, and the operators that are estimated
to be the most expensive. It also has an SSMS plug-in that is free when supported by ads, or
you can purchase it.

SSMS Tools Pack – Execution Plan Analyzer
SSMS Tools Pack (ssmstoolspack.com), written by Mladen Prajdić, is a collection of add-ons
for SQL Server Management Studio that provide a whole slew of additional functionality to
help make SSMS a friendlier place to work, including an Execution Plan Analyzer.

http://www.sentryone.com
http://supratimas.com/
https://ssmstoolspack.com/

506

Chapter 17: SSMS Tools for Exploring Execution Plans

This tool works directly from your SSMS query window. It offers a range of different views
of the "expensive" operators in the plan, and the analyzer will highlight potential problems,
such as a large mismatch between estimated and actual row counts, and suggest possible
courses of action.

SQL Server performance monitoring tools
I won't cover any of the third-party performance monitoring and tuning tools that
capture the execution plan as part of their diagnostic data set, such as the one I use,
Redgate SQL Monitor. These tools don't attempt to improve your understanding of plans,
rather than just present them. That said, a tool like SQL Monitor is valuable precisely
because it captures the plan for each query, within the context of all the other useful
resource-usage data and performance metrics, collected at the time the query executed.

Summary
SSMS 17 has provided us with a lot more help than we ever had previously toward under-
standing execution plans, and the differences between plans. Also, there are some third-party
tools that are useful, especially when trying to open and navigate around very large plans, to
identify possible issues.

Each of these tools brings different strengths to the table, but none of them replaces your
knowledge of how execution plans are generated through the query optimizer and how to
read and understand them. Instead, they just add to your knowledge, ability and efficiency.

507

A
Activity Monitor 503–505

Adaptive Join 30. See also Operators

Ad hoc queries 260–273

overuse of 264–266

Aggregate pushdown. See Columnstore indexes

Aggregating and sorting data 129–158. See
also Operators; See also Queries with ORDER BY

Aggregating data 140–152

and spools 148–152

filtering with HAVING 146–148

Hash Match Aggregate 143–146

Stream Aggregate 140–143

Algebrizer 28, 43

ANSI 75

Automating plan capture 436–457. See also Execu-
tion plans: capturing

reasons for 436–437

tools for 437–457

using Extended Events 438–451

ensuring lightweight event sessions 450–451

using the SSMS GUI 439–444

using T-SQL 444–445

viewing event data 445–450

using SQL Trace 452–457

server-side trace 456–457

Showplan XML trace 453–456

trace events 452–453

B
Batch mode

adaptive memory grant 369–372

mixing columnstore and rowstore indexes
366–368

plan for queries in 361–372

prior to SQL Server 2016 364–366

operations will not run in batch mode 372

processing 360–372

processing defined 360–361

versus row mode 247

C
Cardinality estimation 33, 223, 231

Columnstore indexes 241–247

aggregate pushdown 245

for an aggregation query 242–244

predicate pushdown 246–247

Common operators 57–59

Common Table Expression (CTE). See T-SQL

Compute Scalar. See Operators

Concatenation 126–128. See also Operators

Constraints 29

Convert relational data to XML

FOR XML. See XML plans

Convert XML to relational data

OPENXML. See XML plans

Index

508

Index

Cursors 424–435

dynamic 434–435

keyset 431–434

static 424–430

D
Data flow 66

Data flow arrows. See Graphical plans: compo-
nents

Data reading operators 80–97

Deferred name resolution 29

Density graph 226–227

Derived tables

using APPLY 195–199

Disabling the Query Store 483

Dynamic Management Objects (DMOs) 259–260

Dynamic SQL 264

E
Estimated and actual number of rows 104–105

Estimated operator costs 222–223. See also Graph-
ical plans: components

Estimated total query cost. See Graphical plans:
components

Execution plans

capturing 46–47

automating capture 436–457

estimated and actual 41–42, 65

difference between 42–44

exploring. See Tools for exploring execution
plans

for data modifications 159–184

for DELETEs 171–177

per-index plan 173–177

simple plan 171–172

for INSERTs 159–168

formats 39–41

for MERGEs 177–183

for UPDATEs 168–171

graphical plans 41

introduction to 26–55

plan aging 35

plan cache 35–38

cache churn, avoiding 37

manually clearing 36–37

retrieving plans from 41

plan recompilation 38

reading plans 57–79

which direction? 60–61

saving and sharing 55, 382

text plans 40

trivial plans 31

XML plans 40–41, 374–391

Extended Events 64, 76, 78–79, 196, 265

and first operator properties 384–385

F
First operator 63–64

Forced parameterization. See Plan reuse

Forcing plans. See Plan forcing

Fulfilling JOIN commands 100–110

Functions 212–220

scalar 212–215

509

Index

table valued 216–220

inline (iTVF) 216

multi-statement 216

G
GetNext 61

Graphical plans. See also Execution plans: graph-
ical plans

capturing 44–46

components 47–55

data flow arrows 49–50

estimated operator costs 50

estimated total query cost 51

operator properties 51–53

operators 48–49

ToolTips 53–55

saving 55

H
Hash index 248

not for a range of values 253–254

Hashing 111–124

hash table 111

Hash Match 30, 116. See also Operators

Heaps 94–97

Hierarchical data 418–420

Hints 303–343

dangers in using 303–304

join hints 333–335

query hints 304–333

EXPAND VIEWS 331–332

FAST n 314–316

FORCE ORDER 316–319

HASH GROUP 305–306

IGNORE_NONCLUSTERED_COLUMN-
STORE_INDEX 332–333

JOIN
LOOP, MERGE, HASH 309–313

MAXDOP 319–322

OPTIMIZE FOR 322–327

ORDER GROUP 305–306

RECOMPILE 327–331

UNION
MERGE, HASH, CONCAT 307–309

table hints 335–343

FORCESEEK/FORCESCAN 341–343

INDEX() 337–340

NOEXPAND 336–337

Histogram 227–230

I
Include Client Statistics 78

Index allocation map (IAM) 131

Index scans 81–86. See also Operators

when to use 86

Index seeks 87–94. See also Operators

Index usage 221–256

and selectivity 223–230

columnstore. See Columnstore indexes

covering indexes 230–231

memory-optimized 248–256

510

Index

possible problems 231–241

standard indexes 221–222

clustered 221

nonclustered 221

Interleaved execution 32

J
JavaScript Object Notation (JSON) 413–418

Joining data 99–128. See also Operators

Join operators. See Operators

other uses of 124–126

K
Key Lookup 91–94

L
Lazywriter process 35

Live execution plans. See Tools for exploring
execution plans

in Activity Monitor 503–505

in SSMS 502–503

Logical join operations 100

M
MAXDOP. See Hints: query hints; See also Paral-
lelism: controlling parallel query execution

MemoryGrantWarning 370

Memory Limit Exceeded 73

Memory-optimized tables and indexes 248–252

Merge 30

Missing index details. See XML plans

Missing index message 66

Mixing columnstore and rowstore indexes.
See Batch mode

Multiple execution plans 187

N
Nested Loops 30

O
Object plans 259

Object-Relational Mapping (ORM) 264

generating ad hoc queries 282

Operator cost 65–66

Operator properties. See Graphical plans: compo-
nents

Operators. See also Graphical plans: components

Adaptive Join 58, 120–124

Apply 195

Assert 59, 167–168

Bitmap 59

Clustered Index Insert 165–167

Clustered Index Scan 82–84

Clustered Index Seek 87–89

Clustered Index Update 170–171

Collapse 59

Compute Scalar 59, 113–114

Concatenation 58, 126–128

Conditional 215

Constant Scan 58, 162–165

Cursor operators 58

Distinct Sort 135

511

Index

Filter 59

Hash Match 58, 111–124

Hash Match (Aggregate) 58

Hash Match join 109–110

performance considerations 111–112

Index Scan 85

Ordered property 131

Index Seek 58

Index Seek (nonclustered) 89–91

INSERT 161–168

Key LookUp 91–94

language elements 58

Lookup 58

Merge Join 58, 115–120

performance considerations 117–120

Nested Loops 58, 92, 102–109

estimated and actual number of rows
104–105

Outer References 106–107

Rebind and Rewind 107–109

Parallelism 59

physical operators 57

RID Lookup 96–97

Segment 58, 153

SELECT 54

Sequence 58, 174

Sequence Project 59

Sequence Project (Compute Scalar) 154

Sort 58

Split 59

Spools 59

and aggregations 148–152

Stream Aggregate 58

streaming versus blocking 62–63

Switch 58

Table/Index Delete 59

Table/Index Insert 59

Table/Index Merge 59

Table/Index Scan 58

Table/Index Update 59

Table Scan 94–95

Table Spool (Eager Spool) 169

Top 59

Top N Sort 133–134

Window Aggregate 58

Window Spool 58

Optimizer 32–38

index selection 222–231

estimated costs and statistics 222–223

optimization level 71–73

Ordered property 192

Other execution plan tools 505–506

Overall Resource Consumption report 465

P
Parallelism 344–358

controlling parallel query execution 344–348

blockers 348

cost threshold 347–348

max degree of parallelism (MAXDOP)
345–347

512

Index

parallel plans: cost-benefits 358

parallel query execution 349–358

examining a plan 350–357

Parameterization

and stored procedures 278–280

for plan reuse 273–281

Parameter Compiled Value 189

ParameterizedText 161

Parameter List 73–74, 189

Parameter Runtime Value 189

prepared statements 274–278

simple parameterization 73, 266–273

for trivial plans 266–273

unsafe 270–273

Parameter sniffing

problems with 236–241

Performance Statistics 453

Permissions

required to view execution plans 39

Plan cache. See also Execution plans: plan cache

querying 258–260

with XQuery 386–391

Plan Explorer. See Tools for exploring execution
plans

Plan forcing 296–302, 472–483. See also Query
Store

automating 478–483

using plan guides 297–300

using Query Store 300–302

using the XML plan 383–384

Plan guides 288–296

object 293–295

SQL 291–293

template 289–291

viewing, validating, disabling, removing
295–296

Plan recompilation. See Execution plans: plan
recompilation

Plan reuse 258–302

and ad hoc queries. See Ad hoc queries

forced parameterization 285–288

optimize for ad hoc workloads 282–285

parameterizing queries 273–281

problems with 3rd-party code 281–302

problems with parameterized queries 281

Plans for special data types and cursors 393–435.
See also XML plans

Hierarchical data (HIERARCHYID). See Hierar-
chical data

spatial data. See Spatial data

PowerShell 382

Predicate pushdown. See Columnstore indexes

Procedure cache 54

Profiler 78

Properties 68–76

cached plan size 70

CardinalityEstimationModelVersion 70

CompileCPU 70

CompileMemory 70

CompileTime 70

Output List 163

ParameterizedText 161

513

Index

Predicate 90

Properties window 69

QueryTimeStats 71

RetrievedFromCache 71

Seek Predicates 90

With Stack 204

Q
Queries With Forced Plans report 465

Queries With High Variation report 465

Queries with ORDER BY 129–139

Sort operations 130–131

Query. See Stored procedures; See also T-SQL

ad hoc. See Ad hoc queries

binding 28

compilation and execution 27–32

execution engine 31–32

optimization 29–32. See also Optimizer

full cost-based 29–30

parsing 28

Subqueries 191–194

QueryHash 75

Query Interop 251

Query optimizer. See Optimizer

Query parameterization 37

QueryPlanHash 75

Query processor tree 29

Query Store 458–484

behavior 458–460

capture mode settings 460

controlling

T-SQL or Management Studio 461

enabled by default? 458

forcing a plan with 281

options 460–462

plan forcing 472–483

automating 478–483

removing plans from 483–484

retrieve plans using T-SQL 468–472

retrieving plans 462–472

SSMS reports 462–468

Top Resource Consuming Queries report
466–468

query_thread_profile extended event 501

R
Range index 248

Reading an index 80–94

Reading plans 76–79

Read operators 67

Rebind 107

Redgate SQL Monitor 506

Regressed Queries report 465

Result Showplan 68

Reusable plans. See Plan reuse

Rewind 107

RID Lookup. See Operators

Row mode 242

514

Index

S
Seek operators. See Operators

not on columnstore index 246

Selectivity

and indexes 223–230

estimation 223, 231

SET commands 77–78

SET options 75

Showplan XML 452, 453

Showplan XML for Query Compile 453

Showplan XML Statistics Profile 453

Sorting and aggregating data 129–158. See
also Operators; See also Queries with ORDER BY

Distinct Sort 135

expensive Sorts 132–133

Sort warnings 136–139

Top N Sort 133–134

Spatial data 420–435

Spools. See also Operators

Index Spool 148, 150–152

Rowcount Spool 148

Table Spool 148, 149–150

Table Spool (Eager Spool) 169

Window Spool 148

SQL plans 259

SQL Server 2014 372

SQL Server 2016 372

SQL Server Management Studio (SSMS)

tools 488–505

SQL Server performance monitoring tools 506

SSMS reports. See Query Store

Statistics 33–34, 222–223

density graph 33

header 33

histogram 33

problems with 232–236

Statistics header 226

STATISTICS IO 77

STATISTICS IO/TIME 77

Stored procedures 29, 185–190

and parameterized queries 278–280

natively-compiled 254–256

Subqueries 191–194

Supratimas. See Tools for exploring execution
plans

sys.dm_exec_query_profiles DMV 499

T
Table Scan. See Operators

Text plans. See Execution plans: text plans

Timeout 73

Tools for exploring execution plans 486–506

in SSMS 17 488–505

Activity Monitor 503–505

Analyze Actual Execution Plan 489–491

Compare Showplan 491–495

Find Node 496–497

live execution plans 498–505

Plan Explorer 505

SSMS Tools Pack 505

Supratimas 505

ToolTips 53–55

515

Index

Top Resource Consuming Queries report 465. See
also Query Store

Trace Events 78

Tracked Queries report 465

Trivial plans. See Execution plans

simple parameterization for 266–273

T-SQL

Common Table Expression (CTE) 199–205

Common T-SQL statements 185–220

retrieve Query Store plans with 468–472

U
UDX operator 399, 414

V
Views 206–212

indexed 208–212

standard 206–208

W
Warnings 64–65

Sort warnings 136–139

Window functions 152–158

DENSE_RANK 152

NTILE 152

OVER 152

RANK 152

ROW_NUMBER 152

X
XML plans 374–391, 394–412. See also Execution
plans: XML plans

and Extended Events 384–385

and missing index details 385–386

convert relational data to XML

FOR XML 394–400

convert XML to relational data

OPENXML 401–405

EXPLICIT mode 399–400

for actual plans 381–382

for estimated plans 374–381

for plan forcing 383–384

query using XQuery 386–391, 405–412

.exist() 405

for missing index information 389–391

for specific operators 388–389

.modify() 405

.nodes() 405

.query() 405, 408–412

.value() 405

returning XML as XML data type

XML AUTO 397–399

saving and sharing 382

XQuery. See also XML plans

when to use 412

	Chapter 1: Introducing the Execution Plan
	What Happens When a Query is Submitted?
	Query compilation phase
	Query parsing
	Query binding
	Query optimization

	Query execution phase

	Working with the Optimizer
	The importance of statistics
	The plan cache and plan reuse
	Plan aging
	Manually clearing the plan cache
	Avoiding cache churn: query parameterization
	Plan recompilation

	Getting Started with Execution Plans
	Permissions required to view execution plans
	Execution plan formats
	XML plans
	Text plans
	Graphical plans

	Retrieving cached plans
	Plans for ad hoc queries: estimated and actual plans
	Will the estimated and actual plans ever be different?
	Capturing graphical plans in SSMS
	Capturing our first plan
	The components of a graphical execution plan
	Operators
	Data flow arrows
	Estimated operator costs
	Estimated total query cost relative to batch
	Operator properties
	Tooltips

	Saving execution plans

	Chapter 2: Getting Started Reading Plans
	The Language of Execution Plans
	Common operators
	Reading a plan: right to left, or left to right?
	Streaming versus blocking operators

	What to Look for in an Execution Plan
	First operator
	Warnings
	Estimated versus actual number of rows
	Operator cost
	Data flow
	Extra operators
	Read operators

	The Information Behind the First Operator
	Optimization level
	Parameter List
	QueryHash and QueryPlanHash
	SET options

	Other Useful Tools and Techniques when Reading Plans
	I/O and timing statistics using SET commands
	Include Client Statistics
	SQL Trace and Profiler
	Extended Events

	Chapter 3: Data Reading Operators
	Reading an Index
	Index Scans
	Clustered Index Scan
	Index Scan
	Are scans "bad?"

	Index seeks
	Clustered Index Seek
	Index Seek (nonclustered)
	Key lookups

	Reading a Heap
	Table Scan
	RID Lookup

	Chapter 4: Joining Data
	Logical Join Operations
	Fulfilling JOIN Commands
	Nested Loops operator
	Estimated and Actual Number of Rows properties
	Outer References property
	Rebind and Rewind properties

	Hash Match (join)
	How Hash Match joins work

	Hashing and Hash Tables
	Performance considerations for Hash Match joins
	Compute Scalar
	Merge Join
	How Merge Joins work
	Performance considerations for Merge Joins

	Adaptive Join

	Other Uses of Join Operators
	Concatenating Data

	Chapter 5: Sorting and Aggregating Data
	Queries with ORDER BY
	Sort operations
	Sort operations and the Ordered property of Index Scans
	Dealing with expensive Sorts
	Top N Sort
	Distinct Sort
	Sort warnings

	Aggregating Data
	Stream Aggregate
	Hash Match (Aggregate)
	Filtering aggregations using HAVING
	Plans with aggregations and spools
	Table Spool
	Index Spool

	Working with Window Functions

	Chapter 6: Execution Plans for Data Modifications
	Plans for INSERTs
	INSERT operator
	Constant Scan operator
	Clustered Index Insert operator
	Assert operator

	Plans for UPDATEs
	Table Spool (Eager Spool) operator
	Clustered Index Update operator

	Plans for DELETEs
	A simple DELETE plan
	A per-index DELETE plan

	Plans for MERGE queries

	Chapter 7: Execution Plans for Common T-SQL Statements
	Stored Procedures
	Subqueries
	Derived Tables Using APPLY
	Common Table Expressions
	Views
	Standard views
	Indexed views

	Functions
	Scalar functions
	Table valued functions

	Chapter 8: Examining Index Usage
	Standard Indexes
	How the optimizer selects which indexes to use
	Estimated costs and statistics
	Selectivity and cardinality estimations
	Indexes and selectivity
	Statistics header
	Density graph
	The histogram

	Using covering indexes

	What can go wrong?
	Problems with statistics
	Problems with parameter sniffing
	Stored procedures and parameter sniffing
	What to do if parameter sniffing causes performance problems

	Columnstore Indexes
	Using a columnstore index for an aggregation query
	Aggregate pushdown
	No seek operation on columnstore index
	Predicate pushdown in a columnstore index
	Batch mode versus row mode

	Memory-optimized Indexes
	Using memory-optimized tables and indexes
	No option to seek a hash index for a range of values
	Plans with natively-compiled stored procedures

	Chapter 9: Exploring Plan Reuse
	Querying the Plan Cache
	Plan Reuse and Ad Hoc Queries
	The cost of excessive plan compilation
	Simple parameterization for "trivial" ad hoc queries
	Simple parameterization in action
	"Unsafe" simple parameterization

	Programming for Plan Reuse: Parameterizing Queries
	Prepared statements
	Stored procedures
	What can go wrong with plan reuse for parameterized queries?

	Fixing Problems with Plan Reuse if You Can't Rewrite the Query
	Optimize for ad hoc workloads
	Forced parameterization
	Plan guides
	Template plan guides
	SQL plan guides
	Object plan guides
	Viewing, validating, disabling, and removing plan guides

	Plan forcing
	Using plan guides to do plan forcing
	Using Query Store to do plan forcing

	Chapter 10: Controlling Execution Plans with Hints
	The Dangers of Using Hints
	Query Hints
	HASH | ORDER GROUP
	MERGE | HASH | CONCAT UNION
	LOOP | MERGE | HASH JOIN
	FAST n
	FORCE ORDER
	MAXDOP
	OPTIMIZE FOR
	RECOMPILE
	EXPAND VIEWS
	IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX

	Join Hints
	Table Hints
	NOEXPAND
	INDEX()
	FORCESEEK/FORCESCAN

	Chapter 11: Parallelism in Execution Plans
	Controlling Parallel Query Execution
	Max degree of parallelism
	Cost threshold for parallelism
	Blockers of parallel query execution

	Parallel Query Execution
	Examining a parallel execution plan
	Are parallel plans good or bad?

	Chapter 12: Batch Mode Processing
	Batch Mode Processing Defined
	Plan for Queries that Execute in Batch Mode
	Batch mode prior to SQL Server 2016
	Mixing columnstore and rowstore indexes
	Batch mode adaptive memory grant

	Loss of Batch Mode Processing

	Chapter 13: The XML of Execution Plans
	A Brief Tour of the XML Behind a Plan
	The XML for an estimated plan
	The XML for an actual plan

	Safely Saving and Sharing Execution Plans
	When You'll Really Need the XML Plan
	Use the XML plan for plan forcing
	First operator properties when capturing plans using Extended Events
	Pre-SQL Server 2012: full "missing index" details

	Querying the Plan Cache
	Why query the XML of plans?
	Query the plan XML for specific operators
	Querying the XML for missing index information

	Chapter 14: Plans for Special Data Types and Cursors
	XML
	Plans for queries that convert relational data to XML (FOR XML)
	Plans for basic FOR XML queries
	Returning XML as XML data type
	Plans for Explicit mode FOR XML queries

	Plans for queries that convert XML to relational data (OPENXML)
	Plans for querying XML using XQuery
	Plans for queries that use the .exist method
	Plans for queries that use the .query method

	When to use XQuery

	JavaScript Object Notation
	Hierarchical Data
	Spatial Data
	Cursors
	Static cursor
	Keyset cursor
	Dynamic cursor

	Chapter 15: Automating Plan Capture
	Why Automate Plan Capture?
	Tools for Automating Plan Capture
	Automating plan capture using Extended Events
	Create an event session using the SSMS GUI
	Create an event session in T-SQL
	Viewing the event data
	Ensuring "lightweight" event sessions when capturing the plan

	Automating plan capture using SQL Trace
	Trace events for execution plans
	Creating a Showplan XML trace using Profiler
	Creating a server-side trace

	Chapter 16: The Query Store
	Behavior of the Query Store
	Query Store Options
	Retrieving Plans from the Query Store
	SSMS reports
	Overview of Query Store reports
	The Top Resource Consuming Queries report

	Retrieve Query Store plans using T-SQL

	Control Plans Using Plan Forcing
	How to force a plan
	Automated plan forcing

	Remove Plans from the Query Store

	Chapter 17: SSMS Tools for Exploring Execution Plans
	The Query
	The SQL Server Management Studio 17 Tools
	Analyze Actual Execution Plan
	Compare Showplan
	Find Node
	Live execution plans
	Live per-operator statistics using sys.dm_exec_query_profiles
	Using the query_thread_profile extended event
	Live execution plans in SSMS
	Viewing the live execution plan in Activity Monitor

	Other Execution Plan Tools
	Plan Explorer
	Supratimas
	SSMS Tools Pack – Execution Plan Analyzer
	SQL Server performance monitoring tools

	_GoBack

