Third Edition _—

SQL Server
Execution Plans

What goes on beneath the surface with your queries

By Grant Fritchey

Technical Review by Hugo Kornelis

SQL Server Execution Plans

Third Edition

For
SQL Server 2008 through to 2017
and Azure SQL Database

By Grant Fritchey

Published by Redgate Publishing 2018

First Edition 2008
Copyright Grant Fritchey 2008, 2012, 2018
ISBN 978-1-910035-22-1

The right of Grant Fritchey to be identified as the author of this work has been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored or introduced into a retrieval system,
or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording or otherwise)
without the prior written consent of the publisher. Any person who does any unauthorized act in relation to this
publication may be liable to criminal prosecution and civil claims for damages.

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out,
or otherwise circulated without the publisher's prior consent in any form other than which it is published and
without a similar condition including this condition being imposed on the subsequent publisher.

Technical Reviewer: Hugo Kornelis
Editor: Tony Davis
Typeset by Gower Associates

Contents

Chapter 1: Introducing the Execution Plan

What Happens When a Query is Submitted?

26

27

Query compilation phase

28

Query parsing

28

Query binding

28

Query optimization

29

Query execution phase

31

Working with the Optimizer

32

The importance of statistics

33

The plan cache and plan reuse

35

Plan aging

35

Manually clearing the plan cache

36

Avoiding cache churn: query parameterization

Plan recompilation

37

38

Getting Started with Execution Plans

38

Permissions required to view execution plans

39

Execution plan formats 39
XML plans 40
Text plans 40
Graphical plans 41

Retrieving cached plans 41

Plans for ad hoc queries: estimated and actual plans 41

Will the estimated and actual plans ever be different? 42

Capturing graphical plans in SSMS 44

Capturing our first plan 46

The components of a graphical execution plan 47
Operators 48
Data flow arrows 49
Estimated operator costs 50
Estimated total query cost relative to batch 51
Operator properties 51
Tooltips 53

Saving execution plans 55

Chapter 2: Getting Started Reading Plans

The Language of Execution Plans

What to Look for in an Execution Plan

The Information Behind the First Operator

57

57

Common operators

57

Reading a plan: right to left, or left to right?

Streaming versus blocking operators

60

62

63

First operator

Warnings

Estimated versus actual number of rows

Operator cost

63
64

65

65

Data flow

Extra operators

66

67

Read operators

67

Optimization level

68

71

Parameter List

73

QueryHash and QueryPlanHash

75

SET options

75

Other Useful Tools and Techniques when Reading Plans

[/0 and timing statistics using SET commands

76

77

Include Client Statistics

78

SQL Trace and Profiler

78

Extended Events

78

Chapter 3: Data Reading Operators

8o

8o

Reading an Index

Index Scans

81

Clustered Index Scan

82

Index Scan

85

Are scans "bad?"

86

Index seeks

87

Clustered Index Seek

87

Index Seek (nonclustered)

Key lookups

89

91

Reading a Heap

94

Table Scan

94

RID Lookup

96

Chapter 4: Joining Data

99

Logical Join Operations

Fulfilling JOIN Commands

Nested Loops operator

100

100

102

Estimated and Actual Number of Rows properties

104

106

Outer References property

Rebind and Rewind properties

107

Hash Match (join)

109

How Hash Match joins work

110

Hashing and Hash Tables

111

Performance considerations for Hash Match joins

111

Compute Scalar

113

115

Merge Join

How Merge Joins work

115

Performance considerations for Merge Joins

117

Adaptive Join

120

Other Uses of Join Operators

124

Concatenating Data

126

Chapter 5: Sorting and Aggregating Data

Queries with ORDER BY

129

129

Sort operations

130

Sort operations and the Ordered property of Index Scans

Dealing with expensive Sorts

131

132

Top N Sort

133

Distinct Sort

135

Sort warnings

136

Aggregating Data

Stream Aggregate

Hash Match (Aggregate)

140

140

143

Filtering aggregations using HAVING

Plans with aggregations and spools

Table Spool

Index Spool

146
148
149

150

Working with Window Functions

152

Chapter 6: Execution Plans for Data Modifications

Plans for INSERTs

159

159

INSERT operator

161

Constant Scan operator

162

Clustered Index Insert operator

165

Assert operator

167

Plans for UPDATEs

168

Table Spool (Eager Spool) operator

Clustered Index Update operator

169

170

Plans for DELETESs

171

A simple DELETE plan 171

A per-index DELETE plan 173

Plans for MERGE queries 177
Chapter 7: Execution Plans for Common T-SQL Statements 185
Stored Procedures 185
Subqueries 191
Derived Tables Using APPLY 195
Common Table Expressions 199
Views 206
Standard views 206
Indexed views 208
Functions 212
Scalar functions 212

Table valued functions 216
Chapter 8: Examining Index Usage 221
Standard Indexes 221
How the optimizer selects which indexes to use 222
Estimated costs and statistics 222
Selectivity and cardinality estimations 223

Indexes and selectivity 223

Statistics header 226

Density graph 226

The histogram 227
Using covering indexes 230
What can go wrong? 231
Problems with statistics 232
Problems with parameter sniffing 236
Stored procedures and parameter sniffing 237
What to do if parameter sniffing causes performance problems 240
Columnstore Indexes 241
Using a columnstore index for an aggregation query 242
Aggregate pushdown 245
No seek operation on columnstore index 246
Predicate pushdown in a columnstore index 246
Batch mode versus row mode 247
Memory-optimized Indexes 248
Using memory-optimized tables and indexes 248

No option to seek a hash index for a range of values 253

Plans with natively-compiled stored procedures 254

Chapter g: Exploring Plan Reuse

Querying the Plan Cache

258

258

Plan Reuse and Ad Hoc Queries

260

The cost of excessive plan compilation

264

Simple parameterization for "trivial” ad hoc queries

266

Simple parameterization in action

266

270

"Unsafe” simple parameterization

Programming for Plan Reuse: Parameterizing Queries

273

Prepared statements

274

Stored procedures

278

What can go wrong with plan reuse for parameterized queries?

Fixing Problems with Plan Reuse if You Can't Rewrite the Query

281

281

282

Optimize for ad hoc workloads

Forced parameterization

285

288

Plan guides

Template plan guides

289

291

SQL plan guides

Object plan guides

293

Viewing, validating, disabling, and removing plan guides

295

Plan forcing 296

Using plan guides to do plan forcing 297

Using Query Store to do plan forcing 300
Chapter 10: Controlling Execution Plans with Hints 303
The Dangers of Using Hints 303
Query Hints 304
HASH | ORDER GROUP 305
MERGE | HASH | CONCAT UNION 307
LOOP | MERGE | HASH JOIN 309
FAST n 314
FORCE ORDER 316
MAXDOP 319
OPTIMIZE FOR 322
RECOMPILE 327
EXPAND VIEWS 331
IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX 332
Join Hints 333
Table Hints 335

NOEXPAND 336

INDEXI()

FORCESEEK/FORCESCAN

337

341

Chapter 11: Parallelism in Execution Plans

344

Controlling Parallel Query Execution

344

Max degree of parallelism

Cost threshold for parallelism

345

347

Blockers of parallel query execution

348

Parallel Query Execution

349

Examining a parallel execution plan

350

Are parallel plans good or bad?

358

360

Chapter 12: Batch Mode Processing

Batch Mode Processing Defined

360

Plan for Queries that Execute in Batch Mode

361

Batch mode prior to SQL Server 2016

364

Mixing columnstore and rowstore indexes

Batch mode adaptive memory grant

366

369

Loss of Batch Mode Processing

372

Chapter 13: The XML of Execution Plans

374

A Brief Tour of the XML Behind a Plan

374

The XML for an estimated plan

374

The XML for an actual plan

381

Safely Saving and Sharing Execution Plans

382

When You'll Really Need the XML Plan

383

Use the XML plan for plan forcing

383

First operator properties when capturing plans using Extended Events

Pre-SQL Server 2012: full "missing index” details

384

385

Querying the Plan Cache

386

Why query the XML of plans?

387

Query the plan XML for specific operators

388

Querying the XML for missing index information

389

Chapter 14: Plans for Special Data Types and Cursors

XML

393

394

Plans for queries that convert relational data to XML (FOR XML)

Plans for basic FOR XML queries

394

394

397

Returning XML as XML data type

Plans for Explicit mode FOR XML queries

399

Plans for queries that convert XML to relational data (OPENXML)

Plans for querying XML using XQuery

401

405

406

Plans for queries that use the .exist method

Plans for queries that use the .query method

408

When to use XQuery 412

JavaScript Object Notation 413
Hierarchical Data 418
Spatial Data 420
Cursors 424
Static cursor 424
Keyset cursor 431
Dynamic cursor 434
Chapter 15: Automating Plan Capture 436
Why Automate Plan Capture? 436
Tools for Automating Plan Capture 437
Automating plan capture using Extended Events 438
Create an event session using the SSMS GUI 439
Create an event session in T-SQL 444
Viewing the event data 445
Ensuring "lightweight" event sessions when capturing the plan 450
Automating plan capture using SQL Trace 452
Trace events for execution plans 452
Creating a Showplan XML trace using Profiler 453

Creating a server-side trace 456

Chapter 16: The Query Store

Behavior of the Query Store

458

458

460

Query Store Options

Retrieving Plans from the Query Store

462

462

SSMS reports

Overview of Query Store reports

463

466

The Top Resource Consuming Queries report

Retrieve Query Store plans using T-SQL

468

472

Control Plans Using Plan Forcing

How to force a plan

473

478

Automated plan forcing

Remove Plans from the Query Store

483

Chapter 17: SSMS Tools for Exploring Execution Plans

The Query

486

486

The SQL Server Management Studio 17 Tools

488

Analyze Actual Execution Plan

489

Compare Showplan

491

Find Node

496

Live execution plans

498

Live per-operator statistics using sys.dm_exec_query_profiles

499

Using the query_thread_profile extended event

501

502

Live execution plans in SSMS

Viewing the live execution plan in Activity Monitor

503

Other Execution Plan Tools

505

Plan Explorer

505

Supratimas

505

SSMS Tools Pack — Execution Plan Analyzer

505

SQL Server performance monitoring tools

506

About the Author

Grant Fritchey is a SQL Server MVP with over 30 years' experience in IT including time
spent in support, development, and database administration.

Grant has worked with SQL Server since version 6.0, back in 1995. He has developed in
VB, VB.Net, C#, and Java. Grant joined Redgate as a Product Evangelist in January 2011.

He writes articles for publication at SQL Server Central, Simple Talk, and other community
sites, and has published multiple books including the one you're reading now and SQL Server
Query Performance Tuning, 5th Edition (Apress, 2018). Grant also blogs on this topic and
others at https://scarydba.com.

You can contact him through grant@scarydba.com.

About the Technical Reviewer

Hugo Kornelis has been working in IT for almost 35 years, the last 20 of which have been
focused almost completely on SQL Server.

Within the SQL Server community, Hugo has answered thousands of questions on various
online forums. He also blogs at https://sqlserverfast.com/blog/, has contributed articles to
SQL Server Central and Simple Talk, and has authored a Pluralsight course on relational
database design. He has been a speaker at many conferences in Europe, and a few in the rest
of the world. In recognition of his community contributions, Microsoft has awarded Hugo
SQL Server MVP and Data Platform MVP 11 times (2006-2016).

Hugo has started to document his impressive knowledge of execution plans on
sqlserverfast.com, which is an excellent resource for anyone who has finished reading this
book and wants to know even more about all the nitty-gritty detail in their execution plans.
You'll find articles that expose interesting or uncommon patterns in execution plans, and
describe exactly how each one works, as well as The SQL Server Execution Plan Reference
(https://sqlserverfast.com/epr/), which, eventually, will list all operators, with their exact
behavior and all their properties.

19

https://scarydba.com
https://sqlserverfast.com/blog/
https://sqlserverfast.com/
https://sqlserverfast.com/epr/

Introduction

Frequently, a T-SQL query you wrote behaves in ways you don't expect, and causes slow
response times for the application users, and resource contention on the server. Sometimes,
you didn't write the offending query; it came from a third-party application, or was code
generated by an improperly-used Object Relational Mapping layer. In any of these situations,
and a thousand others, query tuning becomes quite difficult.

Often, it's very hard to tell, just by looking at the T-SQL code, why a query is running
slowly. SQL is a declarative language, and a T-SQL query describes only the set of data that
we want SQL Server to return. It does not tell SQL Server how fo execute the query,

to retrieve that data.

When we submit a query to SQL Server, several server processes kick into action whose
collective job is to manage the querying or modification of the data. Specifically, a compo-
nent of the relational database engine called the Query Optimizer has the job of examining
the submitted query text and defining a strategy for executing it. The strategy takes the form
of an execution plan, which contains a series of operators, each describing an action to
perform on the data.

So, if a query is performing poorly, and you can't understand why, then the execution plan
will tell you, not only what data set is coming back, but also what SQL Server did, and in
what order, to get that data. It will reveal how the data was retrieved, and from which tables
and indexes, what types of joins were used, at what point filtering and sorting occurred, and a
whole lot more. These details will often highlight the likely source of any problem.

What the Execution Plan Reveals

An execution plan is, literally, a set of instructions on how to execute a query. The optimizer
passes each plan on to the execution engine, which executes the query according to those
instructions. The optimizer also stores plans in an area of memory called the plan cache, so
that it can reuse existing execution strategies where possible.

During development and testing, you can request the plan very easily, using a few buttons in
SQL Server Management Studio. When investigating a query problem on a live production
system, you can often retrieve the plan used for that query from the plan cache, or from the
Query Store.

20

Armed with the execution plan, you have a unique window into what's going on behind the
scenes in SQL Server, and a wealth of information on how SQL Server has decided to resolve
the T-SQL that you passed to it. You can see things like:

the order in which the optimizer chose to access the tables referenced in the query
which indexes it used on each table, and how the data was pulled from them

how many rows the optimizer thought an operator would return, based on its
statistical understanding of the underlying data structures and data, and how many
rows it found in reality

how keys and referential constraints affect the optimizer's understanding of the
data, and therefore the behavior of your queries

how data is being joined between the tables in your query

when filtering and sorting occurred, how any calculations and aggregation were
performed, and more.

Execution plans are one of your primary tools for understanding how SQL Server does what
it does. If you're a data professional of any kind there will be times when you need to wade
into the guts of an execution plan, and so you'll need to know what it is that you're looking at,
and how to proceed.

That is why I wrote this book. My goal was to gather into a single location as much useful
information on execution plans as possible. I'll walk you through the process of reading
them, and show you how to understand the information that they present to you. Specifically,
I will cover:

how to capture execution plans using manual and automatic methods

a documented method for interpreting execution plans, so that you can make sense
of them in your own environment

how SQL Server represents and interprets the common SQL Server objects, such as
indexes, views, stored procedures, derived tables, and so on, in execution plans
how to control execution plans with hints and plan guides, and why this is a
double-edged sword

how the Query Store works with, and collects data on, execution plans and how
you can take control of them using the Query Store.

These topics and a slew of others, all related to execution plans and their behavior, are
covered throughout this book. I focus always on the details of the execution plans, and how
the behaviors of SQL Server are manifest in the execution plans.

21

As we work through each topic, I'll explain all the individual elements of the execution plan,

how each operator works, how they interact, and the conditions in which each operator works
most efficiently. With this knowledge, you'll have everything you need to allow you to tackle
every execution plan, regardless of complexity, and understand what it does.

Fixing Query Problems Using Execution Plans

Execution plans provide all the information you need, to understand how SQL Server
executed your queries. Paradoxically though, given that most people look at an execution
plan hoping to improve the performance of a query, this book isn't, and couldn't be, a book
about query performance tuning. The two topics are linked, but separate. If you are specifi-
cally looking for information on how to optimize T-SQL, or build efficient indexes, then you
need a book dedicated to those topics.

Neither is the execution plan the first place to look, if you need to tune performance on a
production system. You'll check for misconfigurations of servers or database settings, you'll
look for obvious points of resource contention on the server, which may be causing severe
locking and blocking problems, and so on. At this point, if performance is still slow, you'll
likely have narrowed the cause down to a few "hot" tables and one or two queries on those
tables. Then, you can examine the plans and look for possible causes of the problem.

However, execution plans are not necessarily designed to help the occasional user find the
cause of a query problem quickly, in the heat of firefighting poor SQL Server performance.
You need first to have invested time in learning the "language" of the plan and how to read it,
and what led SQL Server to choose that plan, and those operators, to execute your query.

And this book is that investment.

As you work through it, you will start to recognize each of the different operators SQL Server
might use to access the data in a table, or to join two tables, or to group and aggregate data.
As you learn how these operators work, and how they process the data they receive, you will
begin to recognize why some operators are designed for handling small numbers of rows,

and why others are better for larger data sets. You will start to understand the "properties" of
the data (such as uniqueness, and logical ordering) that will allow certain operators to work
more efficiently.

As you make connections between all of this and the behavior and performance of your
queries, you will suddenly find that you have an expectation of what a plan will reveal before

22

you even look at it, based on your understanding of the query logic, and of the data. There-
fore, any unexpected operators in the plan will catch your attention, and you'll know where
to look for possible issues, and what to do about them.

You are now at the stage where you can use plans to solve problems. Usually the optimizer
makes good choices of plan. Occasionally, it errs. The possible causes are many. Perhaps, it
is missing critical information about the database, because of a lack of keys or constraints.
Adding them might improve the query performance. Sometimes, its statistical understanding
of the data is inaccurate, or out of date. It may simply have no efficient means to retrieve the
initial data set, and you need to add an index or modify an existing one. Sometimes our query
logic simply defeats efficient optimization, and the best course is a rewrite, although that's
not always possible when troubleshooting a production system.

This book's job is to teach you how to read the plan, so that you can understand what is
causing the bad performance. It is then your job to work out how best to fix it, armed with the
understanding of execution plans that will give a much better chance of success.

This knowledge is also hugely valuable when writing new queries, or updating existing code.
Once you've verified that the code returns the correct results, you can test its performance.
Does it fall within expectations? If not, before you rip up the query and try again, look at

the plan, because you may just have made a simple mistake that means SQL Server isn't
executing it as efficiently as it could.

If you can test the query under different data loads, you'll be able to gauge whether query
performance will scale smoothly once the query hits a full production-size database. As the
data volume grows, and the data changes, the optimizer will often devise a different plan. Is it
still an efficient plan? If not, perhaps you can then try to rewrite the query, or modify the data
structures, to prevent performance issues before the code ever reaches production!

Before deploying T-SQL code, every database developer and DBA should get into the habit
of looking at the execution plan for any query that is beyond a certain level of complexity, if
it is intended to be run on a large-scale production database.

23

Changes in this Third Edition

The way I think about how to use execution plans, and how to read them, has changed a lot
over the years. I've now rearranged the book to reflect that. After the early chapters have
established an understanding of the basics of the optimizer and how to capture execution
plans, the later chapters focus more on the methods of reading plans, not just on what is in
the operators and their properties. And, of course, Microsoft has continued to make changes
to SQL Server, so there are new operators and mechanisms that must be covered.

Some of the new topics include:

* automate capturing execution plans using Extended Events

* new warnings and operators

* batch mode processing

» adaptive query processing

» additional functionality added to SQL Server 2014, 2016, and 2017, as well as
Azure SQL Database.

There are lots more changes because, with the help of my tech editor, Hugo Kornelis, and
long-time (and long-suffering) editor, Tony Davis, we've basically rewritten this book from
the ground up.

With the occasional hiatus, this book took over three years to rewrite and, during that time,
three versions of SQL Server were released, and who knows how many changes in Azure
were introduced. Microsoft has also divorced SQL Server Management System (SSMS)
releases from the main product, so that more and more new functionality has been intro-
duced, faster. I've done my level best to keep up, and the text should be up to date for May
2018. Any changes that came out after that, won't be in this edition of the book.

Code Examples

Throughout this book, I'll be supplying T-SQL code that you're encouraged to run for your-
self, to generate execution plans. From the following URL, you can obtain all the code you
need to try out the examples in this book:
https://scarydba.com/resources/ExecutionPlansV3.zip.

24

https://scarydba.com/resources/ExecutionPlansV3.zip

Most of the code will run on all editions and versions of SQL Server, starting from

SQL Server 2012. Most, although not all, of the code will work on Azure SQL Database.
Unless noted otherwise, all examples were written for, and tested on, the SQL Server
sample database, AdventureWorks2014, and you can get a copy of it from GitHub:
https://bit.ly/2yyW 1kh.

If you test the code on a different version of AdventureWorks, or if Microsoft updates
AdventureWorks2014, then statistics can change, and you may see a different execution
plan than the one I display in the book. If you are working with procedures and scripts other
than those supplied, please remember that encrypted stored procedures will not display an
execution plan.

The initial execution plans will be simple and easy to read from the samples presented in the
text. As the queries and plans become more complicated, the book will describe the situation
but, to see the graphical execution plans or the complete set of XML, it will be necessary for
you to generate the plans. So, please, read this book next to your machine, if possible, so that
you can try running each query yourself!

25

https://bit.ly/2yyW1kh

Chapter 1: Introducing the Execution Plan

An execution plan is a set of instructions for executing a query. Devised by the SQL Server
Query Optimizer, an execution plan describes the set of operations that the execution engine
needs to perform to return the data required by a query.

The execution plan is your window into the SQL Server Query Optimizer and query execu-
tion engine. It will reveal which tables and indexes a query accessed, in which order, how
they were accessed, what types of joins were used, how much data was retrieved initially, and
at what point filtering and sorting occurred. It will show how aggregations were performed,
how calculated columns were derived, how and where foreign keys were accessed, and more.

Any problems created by the query will frequently be apparent within the execution plan,
making it an excellent tool for troubleshooting poorly-performing queries. Rather than guess
at why a query is sending your I/O through the roof, you can examine its execution plan

to identify the exact operation, and associated section of T-SQL code, that is causing the
problem. For example, the plan may reveal that a query is reading every row in a table or
index, even though only a small percentage of those rows are being used in the query. By
modifying the code within the WHERE clause, SQL Server may be able to devise a new plan
that uses an index to find directly (or seek) only the required rows.

This chapter will introduce execution plans. We'll explore the basics of obtaining an execu-
tion plan and start the process of learning how to read them, covering the following topics:

* Abrief background on the query optimizer — execution plans are a result of the
optimizer's operations, so it's useful to know at least a little bit about what the opti-
mizer does, and how it works.

* The plan cache and plan reuse — execution plans are usually stored in an area of
memory called the plan cache and may be reused. We'll discuss why plan reuse is
important.

* Actual and estimated execution plans — clearing up the confusion over estimated
versus actual execution plans and how they differ.

+ Capturing an execution plan — we'll capture a plan for a simple query and intro-
duce some of the basic elements of a plan, and the information they contain.

26

Chapter 1: Introducing the Execution Plan

What Happens When a Query is Submitted?

Every time we submit a query to SQL Server, several server processes kick into action; their
job collectively is to manage the querying or modification of that data. Within the relational
engine, the query is parsed by the parser, bound by the algebrizer and then finally optimized
by the query optimizer, where the most important part of the work occurs. Collectively, we
refer to these processes as query compilation. The SQL Server relational engine takes the
input, which is the SQL text of the submitted query, and compiles it into a plan to execute
that query. In other words, the process generates an execution plan, effectively a series of
instructions for processing the query.

QUERY

Relational Engine \

Qiery Algebrizer Optimizer Execgtlon
Parser Engine

Binds Optimizes
Syntax objects query Executes
query

Execution

Compilation phase I_Executic'm

€ 4

Figure 1-1: Query compilation and execution.

The plan generated is stored in an area of memory called the plan cache. The next time the
optimizer sees the same query text, it will check to see if a plan for that SQL text exists in the
plan cache. If it does, it will pass the cached plan on to the query execution engine, bypassing
the full optimization process.

The query execution engine will execute the query, according to the instructions laid out

in the execution plan. It will generate calls to the storage engine, the process that manages
access to disk and memory within SQL Server, to retrieve and manipulate data as required by
the plan.

27

Chapter 1: Introducing the Execution Plan

Query compilation phase

Since execution plans are created and managed from within the relational engine, that's
where we'll focus our attention in this book. The following sections review briefly what
happens during query compilation, covering the parsing, binding, and particularly the optimi-
zation phase, of query processing.

Query parsing

When a request to execute a T-SQL query reaches SQL Server, either an ad hoc query from

a command line or application program, or a query in a stored procedure, user-defined func-
tion, or trigger, the query compilation and execution process can begin, and the action starts
in the relational engine.

As the T-SQL arrives in the relational engine, it passes through a process that checks that the
T-SQL is written correctly, that it's well formed. This process is query parsing. If a query
fails to parse correctly, for example, if you type SELETC instead of SELECT, then parsing
stops and SQL Server returns an error to the query source. The output of the Parser process
is a parse tree, or query tree (or it's even called a sequence tree). The parse tree represents the
logical steps necessary to execute the requested query.

Query binding

If the T-SQL string has parsed correctly, the parse tree passes to the algebrizer, which
performs a process called query binding. The algebrizer resolves all the names of the various
objects, tables, and columns referred to within the query string. It identifies, at the individual
column level, all the data types (varchar (50) versus datetime and so on) for the
objects being accessed. It also determines the location of aggregates, such as SUM and MAX,
within the query, a process called aggregate binding.

This algebrizer process is important because the query may have aliases or synonyms,

names that don't exist in the database, that need to be resolved, or the query may refer to
objects not in the database. When objects don't exist in the database, SQL Server returns an
error from this step, defining the invalid object name (except in the case of deferred name
resolution). As an example, the algebrizer would quickly find the table Person.Person in
the AdventureWorks database. However, the Product . Person table, which doesn't
exist, would cause an error and the whole compilation process would stop.

28

Chapter 1: Introducing the Execution Plan

Stored procedure and deferred name resolution

On creating a stored procedure, its statement text is parsed and stored in sys.sqgl mod-

ules catalog view. However, the tables referenced by the text do not have to exist in the

database at this point. This gives more flexibility because, for example, the text can reference a

temporary table that is not created by the stored procedure, and does not yet exist, but that we

know will exist at execution time. At execution time, the query processor finds the names of

the objects referenced, in sys.sqgl modules, and makes sure they exist.
The algebrizer outputs a binary called the query processor tree, which is then passed on to
the query optimizer. The output also includes a hash, a coded value representing the query.
The optimizer uses the hash to determine whether there is already a plan for this query stored
in the plan cache, and whether the plan is still valid. A plan is no longer considered valid after
some changes to the table (such as adding or dropping indexes), or when the statistics used
in the optimization were refreshed since the plan was created and stored. If there is a valid
cached plan, then the process stops here and the cached plan is reused.

Query optimization

The query optimizer is a piece of software that considers many alternate ways to achieve the
requested query result, as defined by the query processor tree passed to it by the algebrizer.
The optimizer estimates a "cost" for each possible alternative way of achieving the same
result, and attempts to find a plan that is cheap enough, within as little time as is reasonable.

Most queries submitted to SQL Server will be subject to a full cost-based optimization
process, resulting in a cost-based plan. Some very simple queries can take a "fast track" and
receive what is known as a trivial plan.

Full cost-based optimization

The full cost-based optimization process takes three inputs:

* The Query processor tree — gives the optimizer knowledge of the logical query
structure and of the underlying tables and indexes.

+ Statistics — index and column statistics give the optimizer an understanding of
volume and distribution of data in the underlying data structures.

* Constraints — the primary keys, enforced and trusted referential constraints, and any
other types of constraints in place on the tables and columns that make up the query,
tell the optimizer the limits on possible data stored within the tables referenced.

29

Chapter 1: Introducing the Execution Plan

Using these inputs, the optimizer applies its model, essentially a set of rules, to transform

the logical query tree into a plan containing a set of operators that, collectively, will physi-
cally execute the query. Each operator performs a dedicated task. The optimizer uses various
operators for accessing indexes, performing joins, aggregations, sorts, calculations, and so
on. For example, the optimizer has a set of operators for implementing logical join conditions
in the submitted query. It has one specialized operator for a Nested Loops implementation,
one for a Hash Match, one for a Merge, and one for an Adaptive Join.

The optimizer will generate and evaluate many possible plans, for each candidate testing
different methods of accessing data, attempting different types of join, rearranging the join
order, trying different indexes, and so on. Generally, the optimizer will choose the plan that
its calculations suggest will have the lowest total cost, in terms of the sum of the estimated
CPU and I/O processing costs.

During these calculations, the optimizer assigns a number to each of the steps within the plan,
representing its estimation of the combined amount of CPU and disk I/O time it thinks each
step will take. This number is the estimated cost for that step. The accumulation of costs for
each step is the estimated cost for the execution plan itself. We'll shortly cover the estimated
costs, and why they are estimates, in more detail.

Plan evaluation is a heuristic process. The optimizer is not attempting to find the best
possible plan but rather the lowest-cost plan in the fewest possible iterations, meaning the
shortest amount of time. The only way for the optimizer to arrive at a perfect plan would be
to be able to take an infinite amount of time. No one wants to wait that long on their queries.

Having selected the lowest-cost plan it could find within the allotted number of iterations,

the query execution component will use this plan to execute the query and return the required
data. As noted earlier, the optimizer will also store the plan in the plan cache. If we submit

a subsequent request with identical SQL text, it will bypass the entire compilation process
and simply submit the cached plan for execution. A parameterized query will be parsed, and
if a plan with a matching query hash is found in the cache, the remainder of the process is
short-circuited.

30

Chapter 1: Introducing the Execution Plan

Trivial plans

For very simple queries, the optimizer may simply decide to apply a trivial plan, rather than
go through the full cost-based optimization process. The optimizer's rules for deciding when
it can simply use a trivial plan are unclear, and probably complex. However, for example, a
very simple query, such as a SELECT statement against a single table with no aggregates or
calculations, as shown in Listing 1-1, would receive a trivial plan.

SELECT d.Name
FROM HumanResources.Department AS d
WHERE d.DepartmentID = 42;

Listing 1-1

Adding even one more table, with a JOIN, would make the plan non-trivial. Also, if addi-
tional indexes exist on the table, or if the possibility of parallelism exists (discussed more in
Chapter 11), then you will get further optimization of the plan.

It's also worth noting here that this query falls within the rules covered by auto-parameter-
ization, so the hard-coded value of "42" will be replaced with a parameter when the plan is
stored in cache, to enable plan reuse. We'll cover that in more detail in Chapter 9.

All data manipulation language (DML) statements are optimized to some extent, even if
they receive only a trivial plan. However, some types of Data Definition Language (DDL)
statement may not be optimized at all. For example, if a CREATE TABLE statement parses
correctly, then there is only one "right way" for the SQL Server system to create a table.
Other DDL statements, such as using ALTER TABLE to add a constraint, will go through
the optimization process.

Query execution phase

The query execution engine executes the query per the instructions set out in the execution
plan. At runtime, the execution engine cannot change the optimizer's plan. However, it can
under certain circumstances force a plan to be recompiled. For example, if we submit to
the query processor a batch or a stored procedure containing multiple statements, the whole
batch will be compiled at once, with plans produced for every statement. Even if we have
IF..THEN or CASE flow control in our queries, all statements within the batch will be
compiled. At runtime, each plan is checked to ensure it's still valid. As for plans taken in
the plan cache, if the plan's associated statement references tables that have changed or had

31

Chapter 1: Introducing the Execution Plan

statistics updated since the plan was compiled, then the plan is no longer considered valid.
If that occurs, then the execution is temporarily halted, the compilation process is invoked,
and the optimizer will produce a new plan, only for the affected statement in the batch

or procedure.

Introduced in SQL Server 2017, there is also the possibility of interleaved execution when
the object being referenced in the query is a multi-statement table valued user-defined
function. During an interleaved execution, the optimizer generates a plan for the query, in
the usual fashion, then the optimization phase pauses, the pertinent subtree of a given plan
is executed to get the actual row counts, and the optimizer then uses the actual row counts to
optimize the remainder of the query. We'll cover interleaved execution and multi-statement
table valued user-defined functions in more detail in Chapter 8.

Working with the Optimizer

Most application developers, when writing application code, are used to exerting close
control, not just over the required result of a piece of code, but also over how, step by step,
that outcome should be achieved. Most compiled languages work in this manner. SQL Server
and T-SQL behave in a different fashion.

The query optimizer, not the database developer, decides how a query should be executed.
We focus solely on designing a T-SQL query to describe logically the required set of data. We
do not, and should not, attempt to dictate to SQL Server how to execute it.

What this means in practice is the need to write efficient SQL, which generally means using a
set-based approach that describes as succinctly as possible, in as few statements as possible,
just the required data set. This is the topic for a whole other book, and one that's already been
written by Itzik Ben-Gan, Inside