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Introduction

Frequently, a T-SQL query you wrote behaves in ways you don't expect, and causes slow 
response times for the application users, and resource contention on the server. Sometimes, 
you didn't write the offending query; it came from a third-party application, or was code 
generated by an improperly-used Object Relational Mapping layer. In any of these situations, 
and a thousand others, query tuning becomes quite difficult.

Often, it's very hard to tell, just by looking at the T-SQL code, why a query is running  
slowly. SQL is a declarative language, and a T-SQL query describes only the set of data that 
we want SQL Server to return. It does not tell SQL Server how to execute the query,  
to retrieve that data.

When we submit a query to SQL Server, several server processes kick into action whose 
collective job is to manage the querying or modification of the data. Specifically, a compo-
nent of the relational database engine called the Query Optimizer has the job of examining 
the submitted query text and defining a strategy for executing it. The strategy takes the form 
of an execution plan, which contains a series of operators, each describing an action to 
perform on the data.

So, if a query is performing poorly, and you can't understand why, then the execution plan 
will tell you, not only what data set is coming back, but also what SQL Server did, and in 
what order, to get that data. It will reveal how the data was retrieved, and from which tables 
and indexes, what types of joins were used, at what point filtering and sorting occurred, and a 
whole lot more. These details will often highlight the likely source of any problem.

What the Execution Plan Reveals
An execution plan is, literally, a set of instructions on how to execute a query. The optimizer 
passes each plan on to the execution engine, which executes the query according to those 
instructions. The optimizer also stores plans in an area of memory called the plan cache, so 
that it can reuse existing execution strategies where possible.

During development and testing, you can request the plan very easily, using a few buttons in 
SQL Server Management Studio. When investigating a query problem on a live production 
system, you can often retrieve the plan used for that query from the plan cache, or from the 
Query Store.
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Armed with the execution plan, you have a unique window into what's going on behind the 
scenes in SQL Server, and a wealth of information on how SQL Server has decided to resolve 
the T-SQL that you passed to it. You can see things like:

• the order in which the optimizer chose to access the tables referenced in the query
• which indexes it used on each table, and how the data was pulled from them
• how many rows the optimizer thought an operator would return, based on its  

statistical understanding of the underlying data structures and data, and how many 
rows it found in reality

• how keys and referential constraints affect the optimizer's understanding of the 
data, and therefore the behavior of your queries

• how data is being joined between the tables in your query
• when filtering and sorting occurred, how any calculations and aggregation were 

performed, and more.

Execution plans are one of your primary tools for understanding how SQL Server does what 
it does. If you're a data professional of any kind there will be times when you need to wade 
into the guts of an execution plan, and so you'll need to know what it is that you're looking at, 
and how to proceed.

That is why I wrote this book. My goal was to gather into a single location as much useful 
information on execution plans as possible. I'll walk you through the process of reading  
them, and show you how to understand the information that they present to you. Specifically, 
I will cover:

• how to capture execution plans using manual and automatic methods
• a documented method for interpreting execution plans, so that you can make sense 

of them in your own environment
• how SQL Server represents and interprets the common SQL Server objects, such as 

indexes, views, stored procedures, derived tables, and so on, in execution plans
• how to control execution plans with hints and plan guides, and why this is a 

double-edged sword
• how the Query Store works with, and collects data on, execution plans and how 

you can take control of them using the Query Store.

These topics and a slew of others, all related to execution plans and their behavior, are 
covered throughout this book. I focus always on the details of the execution plans, and how 
the behaviors of SQL Server are manifest in the execution plans.
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As we work through each topic, I'll explain all the individual elements of the execution plan, 
how each operator works, how they interact, and the conditions in which each operator works 
most efficiently. With this knowledge, you'll have everything you need to allow you to tackle 
every execution plan, regardless of complexity, and understand what it does.

Fixing Query Problems Using Execution Plans
Execution plans provide all the information you need, to understand how SQL Server 
executed your queries. Paradoxically though, given that most people look at an execution 
plan hoping to improve the performance of a query, this book isn't, and couldn't be, a book 
about query performance tuning. The two topics are linked, but separate. If you are specifi-
cally looking for information on how to optimize T-SQL, or build efficient indexes, then you 
need a book dedicated to those topics.

Neither is the execution plan the first place to look, if you need to tune performance on a 
production system. You'll check for misconfigurations of servers or database settings, you'll 
look for obvious points of resource contention on the server, which may be causing severe 
locking and blocking problems, and so on. At this point, if performance is still slow, you'll 
likely have narrowed the cause down to a few "hot" tables and one or two queries on those 
tables. Then, you can examine the plans and look for possible causes of the problem.

However, execution plans are not necessarily designed to help the occasional user find the 
cause of a query problem quickly, in the heat of firefighting poor SQL Server performance. 
You need first to have invested time in learning the "language" of the plan and how to read it, 
and what led SQL Server to choose that plan, and those operators, to execute your query.

And this book is that investment.

As you work through it, you will start to recognize each of the different operators SQL Server 
might use to access the data in a table, or to join two tables, or to group and aggregate data. 
As you learn how these operators work, and how they process the data they receive, you will 
begin to recognize why some operators are designed for handling small numbers of rows,  
and why others are better for larger data sets. You will start to understand the "properties" of 
the data (such as uniqueness, and logical ordering) that will allow certain operators to work 
more efficiently.

As you make connections between all of this and the behavior and performance of your 
queries, you will suddenly find that you have an expectation of what a plan will reveal before 
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you even look at it, based on your understanding of the query logic, and of the data. There-
fore, any unexpected operators in the plan will catch your attention, and you'll know where  
to look for possible issues, and what to do about them.

You are now at the stage where you can use plans to solve problems. Usually the optimizer 
makes good choices of plan. Occasionally, it errs. The possible causes are many. Perhaps, it 
is missing critical information about the database, because of a lack of keys or constraints. 
Adding them might improve the query performance. Sometimes, its statistical understanding 
of the data is inaccurate, or out of date. It may simply have no efficient means to retrieve the 
initial data set, and you need to add an index or modify an existing one. Sometimes our query 
logic simply defeats efficient optimization, and the best course is a rewrite, although that's 
not always possible when troubleshooting a production system.

This book's job is to teach you how to read the plan, so that you can understand what is 
causing the bad performance. It is then your job to work out how best to fix it, armed with the 
understanding of execution plans that will give a much better chance of success.

This knowledge is also hugely valuable when writing new queries, or updating existing code. 
Once you've verified that the code returns the correct results, you can test its performance. 
Does it fall within expectations? If not, before you rip up the query and try again, look at 
the plan, because you may just have made a simple mistake that means SQL Server isn't 
executing it as efficiently as it could.

If you can test the query under different data loads, you'll be able to gauge whether query 
performance will scale smoothly once the query hits a full production-size database. As the 
data volume grows, and the data changes, the optimizer will often devise a different plan. Is it 
still an efficient plan? If not, perhaps you can then try to rewrite the query, or modify the data 
structures, to prevent performance issues before the code ever reaches production!

Before deploying T-SQL code, every database developer and DBA should get into the habit 
of looking at the execution plan for any query that is beyond a certain level of complexity, if 
it is intended to be run on a large-scale production database.
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Changes in this Third Edition

The way I think about how to use execution plans, and how to read them, has changed a lot 
over the years. I've now rearranged the book to reflect that. After the early chapters have 
established an understanding of the basics of the optimizer and how to capture execution 
plans, the later chapters focus more on the methods of reading plans, not just on what is in 
the operators and their properties. And, of course, Microsoft has continued to make changes 
to SQL Server, so there are new operators and mechanisms that must be covered.

Some of the new topics include:

• automate capturing execution plans using Extended Events
• new warnings and operators
• batch mode processing
• adaptive query processing
• additional functionality added to SQL Server 2014, 2016, and 2017, as well as 

Azure SQL Database.

There are lots more changes because, with the help of my tech editor, Hugo Kornelis, and 
long-time (and long-suffering) editor, Tony Davis, we've basically rewritten this book from 
the ground up.

With the occasional hiatus, this book took over three years to rewrite and, during that time, 
three versions of SQL Server were released, and who knows how many changes in Azure 
were introduced. Microsoft has also divorced SQL Server Management System (SSMS) 
releases from the main product, so that more and more new functionality has been intro-
duced, faster. I've done my level best to keep up, and the text should be up to date for May 
2018. Any changes that came out after that, won't be in this edition of the book.

Code Examples
Throughout this book, I'll be supplying T-SQL code that you're encouraged to run for your-
self, to generate execution plans. From the following URL, you can obtain all the code you 
need to try out the examples in this book: 
https://scarydba.com/resources/ExecutionPlansV3.zip.

https://scarydba.com/resources/ExecutionPlansV3.zip
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Most of the code will run on all editions and versions of SQL Server, starting from  
SQL Server 2012. Most, although not all, of the code will work on Azure SQL Database. 
Unless noted otherwise, all examples were written for, and tested on, the SQL Server  
sample database, AdventureWorks2014, and you can get a copy of it from GitHub:  
https://bit.ly/2yyW1kh.

If you test the code on a different version of AdventureWorks, or if Microsoft updates 
AdventureWorks2014, then statistics can change, and you may see a different execution 
plan than the one I display in the book. If you are working with procedures and scripts other 
than those supplied, please remember that encrypted stored procedures will not display an 
execution plan.

The initial execution plans will be simple and easy to read from the samples presented in the 
text. As the queries and plans become more complicated, the book will describe the situation 
but, to see the graphical execution plans or the complete set of XML, it will be necessary for 
you to generate the plans. So, please, read this book next to your machine, if possible, so that 
you can try running each query yourself!

https://bit.ly/2yyW1kh
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Chapter 1: Introducing the Execution Plan
An execution plan is a set of instructions for executing a query. Devised by the SQL Server 
Query Optimizer, an execution plan describes the set of operations that the execution engine 
needs to perform to return the data required by a query.

The execution plan is your window into the SQL Server Query Optimizer and query execu-
tion engine. It will reveal which tables and indexes a query accessed, in which order, how 
they were accessed, what types of joins were used, how much data was retrieved initially, and 
at what point filtering and sorting occurred. It will show how aggregations were performed, 
how calculated columns were derived, how and where foreign keys were accessed, and more.

Any problems created by the query will frequently be apparent within the execution plan, 
making it an excellent tool for troubleshooting poorly-performing queries. Rather than guess 
at why a query is sending your I/O through the roof, you can examine its execution plan 
to identify the exact operation, and associated section of T-SQL code, that is causing the 
problem. For example, the plan may reveal that a query is reading every row in a table or 
index, even though only a small percentage of those rows are being used in the query. By 
modifying the code within the WHERE clause, SQL Server may be able to devise a new plan 
that uses an index to find directly (or seek) only the required rows.

This chapter will introduce execution plans. We'll explore the basics of obtaining an execu-
tion plan and start the process of learning how to read them, covering the following topics:

• A brief background on the query optimizer – execution plans are a result of the 
optimizer's operations, so it's useful to know at least a little bit about what the opti-
mizer does, and how it works.

• The plan cache and plan reuse – execution plans are usually stored in an area of 
memory called the plan cache and may be reused. We'll discuss why plan reuse is 
important.

• Actual and estimated execution plans – clearing up the confusion over estimated 
versus actual execution plans and how they differ.

• Capturing an execution plan – we'll capture a plan for a simple query and intro-
duce some of the basic elements of a plan, and the information they contain.
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Chapter 1: Introducing the Execution Plan

What Happens When a Query is Submitted?
Every time we submit a query to SQL Server, several server processes kick into action; their 
job collectively is to manage the querying or modification of that data. Within the relational 
engine, the query is parsed by the parser, bound by the algebrizer and then finally optimized 
by the query optimizer, where the most important part of the work occurs. Collectively, we 
refer to these processes as query compilation. The SQL Server relational engine takes the 
input, which is the SQL text of the submitted query, and compiles it into a plan to execute 
that query. In other words, the process generates an execution plan, effectively a series of 
instructions for processing the query.

Figure 1-1: Query compilation and execution.

The plan generated is stored in an area of memory called the plan cache. The next time the 
optimizer sees the same query text, it will check to see if a plan for that SQL text exists in the 
plan cache. If it does, it will pass the cached plan on to the query execution engine, bypassing 
the full optimization process.

The query execution engine will execute the query, according to the instructions laid out 
in the execution plan. It will generate calls to the storage engine, the process that manages 
access to disk and memory within SQL Server, to retrieve and manipulate data as required by 
the plan.
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Chapter 1: Introducing the Execution Plan

Query compilation phase

Since execution plans are created and managed from within the relational engine, that's 
where we'll focus our attention in this book. The following sections review briefly what 
happens during query compilation, covering the parsing, binding, and particularly the optimi-
zation phase, of query processing.

Query parsing
When a request to execute a T-SQL query reaches SQL Server, either an ad hoc query from 
a command line or application program, or a query in a stored procedure, user-defined func-
tion, or trigger, the query compilation and execution process can begin, and the action starts 
in the relational engine.

As the T-SQL arrives in the relational engine, it passes through a process that checks that the 
T-SQL is written correctly, that it's well formed. This process is query parsing. If a query 
fails to parse correctly, for example, if you type SELETC instead of SELECT, then parsing 
stops and SQL Server returns an error to the query source. The output of the Parser process 
is a parse tree, or query tree (or it's even called a sequence tree). The parse tree represents the 
logical steps necessary to execute the requested query.

Query binding
If the T-SQL string has parsed correctly, the parse tree passes to the algebrizer, which 
performs a process called query binding. The algebrizer resolves all the names of the various 
objects, tables, and columns referred to within the query string. It identifies, at the individual 
column level, all the data types (varchar(50) versus datetime and so on) for the 
objects being accessed. It also determines the location of aggregates, such as SUM and MAX, 
within the query, a process called aggregate binding.

This algebrizer process is important because the query may have aliases or synonyms,  
names that don't exist in the database, that need to be resolved, or the query may refer to 
objects not in the database. When objects don't exist in the database, SQL Server returns an 
error from this step, defining the invalid object name (except in the case of deferred name 
resolution). As an example, the algebrizer would quickly find the table Person.Person in 
the AdventureWorks database. However, the Product.Person table, which doesn't 
exist, would cause an error and the whole compilation process would stop.
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Chapter 1: Introducing the Execution Plan

Stored procedure and deferred name resolution
On creating a stored procedure, its statement text is parsed and stored in sys.sql_mod-
ules catalog view. However, the tables referenced by the text do not have to exist in the 
database at this point. This gives more flexibility because, for example, the text can reference a 
temporary table that is not created by the stored procedure, and does not yet exist, but that we 
know will exist at execution time. At execution time, the query processor finds the names of 
the objects referenced, in sys.sql_modules, and makes sure they exist.

The algebrizer outputs a binary called the query processor tree, which is then passed on to 
the query optimizer. The output also includes a hash, a coded value representing the query. 
The optimizer uses the hash to determine whether there is already a plan for this query stored 
in the plan cache, and whether the plan is still valid. A plan is no longer considered valid after 
some changes to the table (such as adding or dropping indexes), or when the statistics used 
in the optimization were refreshed since the plan was created and stored. If there is a valid 
cached plan, then the process stops here and the cached plan is reused.

Query optimization
The query optimizer is a piece of software that considers many alternate ways to achieve the 
requested query result, as defined by the query processor tree passed to it by the algebrizer. 
The optimizer estimates a "cost" for each possible alternative way of achieving the same 
result, and attempts to find a plan that is cheap enough, within as little time as is reasonable.

Most queries submitted to SQL Server will be subject to a full cost-based optimization 
process, resulting in a cost-based plan. Some very simple queries can take a "fast track" and 
receive what is known as a trivial plan.

Full cost-based optimization
The full cost-based optimization process takes three inputs:

• The Query processor tree – gives the optimizer knowledge of the logical query 
structure and of the underlying tables and indexes.

• Statistics – index and column statistics give the optimizer an understanding of 
volume and distribution of data in the underlying data structures.

• Constraints – the primary keys, enforced and trusted referential constraints, and any 
other types of constraints in place on the tables and columns that make up the query, 
tell the optimizer the limits on possible data stored within the tables referenced.
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Using these inputs, the optimizer applies its model, essentially a set of rules, to transform 
the logical query tree into a plan containing a set of operators that, collectively, will physi-
cally execute the query. Each operator performs a dedicated task. The optimizer uses various 
operators for accessing indexes, performing joins, aggregations, sorts, calculations, and so 
on. For example, the optimizer has a set of operators for implementing logical join conditions 
in the submitted query. It has one specialized operator for a Nested Loops implementation, 
one for a Hash Match, one for a Merge, and one for an Adaptive Join.

The optimizer will generate and evaluate many possible plans, for each candidate testing 
different methods of accessing data, attempting different types of join, rearranging the join 
order, trying different indexes, and so on. Generally, the optimizer will choose the plan that 
its calculations suggest will have the lowest total cost, in terms of the sum of the estimated 
CPU and I/O processing costs.

During these calculations, the optimizer assigns a number to each of the steps within the plan, 
representing its estimation of the combined amount of CPU and disk I/O time it thinks each 
step will take. This number is the estimated cost for that step. The accumulation of costs for 
each step is the estimated cost for the execution plan itself. We'll shortly cover the estimated 
costs, and why they are estimates, in more detail.

Plan evaluation is a heuristic process. The optimizer is not attempting to find the best 
possible plan but rather the lowest-cost plan in the fewest possible iterations, meaning the 
shortest amount of time. The only way for the optimizer to arrive at a perfect plan would be 
to be able to take an infinite amount of time. No one wants to wait that long on their queries.

Having selected the lowest-cost plan it could find within the allotted number of iterations, 
the query execution component will use this plan to execute the query and return the required 
data. As noted earlier, the optimizer will also store the plan in the plan cache. If we submit  
a subsequent request with identical SQL text, it will bypass the entire compilation process 
and simply submit the cached plan for execution. A parameterized query will be parsed, and 
if a plan with a matching query hash is found in the cache, the remainder of the process is 
short-circuited.
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Trivial plans

For very simple queries, the optimizer may simply decide to apply a trivial plan, rather than 
go through the full cost-based optimization process. The optimizer's rules for deciding when 
it can simply use a trivial plan are unclear, and probably complex. However, for example, a 
very simple query, such as a SELECT statement against a single table with no aggregates or 
calculations, as shown in Listing 1-1, would receive a trivial plan.

SELECT d.Name 
FROM HumanResources.Department AS d 
WHERE d.DepartmentID = 42;

Listing 1-1

Adding even one more table, with a JOIN, would make the plan non-trivial. Also, if addi-
tional indexes exist on the table, or if the possibility of parallelism exists (discussed more in 
Chapter 11), then you will get further optimization of the plan.

It's also worth noting here that this query falls within the rules covered by auto-parameter-
ization, so the hard-coded value of "42" will be replaced with a parameter when the plan is 
stored in cache, to enable plan reuse. We'll cover that in more detail in Chapter 9.

All data manipulation language (DML) statements are optimized to some extent, even if 
they receive only a trivial plan. However, some types of Data Definition Language (DDL) 
statement may not be optimized at all. For example, if a CREATE TABLE statement parses 
correctly, then there is only one "right way" for the SQL Server system to create a table. 
Other DDL statements, such as using ALTER TABLE to add a constraint, will go through  
the optimization process.

Query execution phase
The query execution engine executes the query per the instructions set out in the execution 
plan. At runtime, the execution engine cannot change the optimizer's plan. However, it can 
under certain circumstances force a plan to be recompiled. For example, if we submit to  
the query processor a batch or a stored procedure containing multiple statements, the whole 
batch will be compiled at once, with plans produced for every statement. Even if we have 
IF…THEN or CASE flow control in our queries, all statements within the batch will be 
compiled. At runtime, each plan is checked to ensure it's still valid. As for plans taken in 
the plan cache, if the plan's associated statement references tables that have changed or had 
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statistics updated since the plan was compiled, then the plan is no longer considered valid.  
If that occurs, then the execution is temporarily halted, the compilation process is invoked, 
and the optimizer will produce a new plan, only for the affected statement in the batch 
or procedure.

Introduced in SQL Server 2017, there is also the possibility of interleaved execution when 
the object being referenced in the query is a multi-statement table valued user-defined 
function. During an interleaved execution, the optimizer generates a plan for the query, in 
the usual fashion, then the optimization phase pauses, the pertinent subtree of a given plan 
is executed to get the actual row counts, and the optimizer then uses the actual row counts to 
optimize the remainder of the query. We'll cover interleaved execution and multi-statement 
table valued user-defined functions in more detail in Chapter 8.

Working with the Optimizer
Most application developers, when writing application code, are used to exerting close 
control, not just over the required result of a piece of code, but also over how, step by step, 
that outcome should be achieved. Most compiled languages work in this manner. SQL Server 
and T-SQL behave in a different fashion.

The query optimizer, not the database developer, decides how a query should be executed. 
We focus solely on designing a T-SQL query to describe logically the required set of data. We 
do not, and should not, attempt to dictate to SQL Server how to execute it.

What this means in practice is the need to write efficient SQL, which generally means using a 
set-based approach that describes as succinctly as possible, in as few statements as possible, 
just the required data set. This is the topic for a whole other book, and one that's already been 
written by Itzik Ben-Gan, Inside SQL Server T-SQL Querying.

However, beyond that, there are some practical ways that the database developer or DBA can 
help the optimizer generate efficient plans, and avoid unnecessary plan generation:

• maintaining accurate, up-to-date statistics
• promoting plan reuse.
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The importance of statistics

As we've discussed, the optimizer will choose the lowest-cost plan, based on estimated cost. 
The principal driver of these estimates is the statistics on your indexes and data. Ultimately, 
this means that the quality of the plan choice is limited by the quality of the statistics the  
optimizer has available for the target tables and indexes.

We don't want the optimizer to read all the data in all the tables referenced in a query  
each time it tries to generate a plan. Instead, the optimizer relies on statistics, aggregated 
information based on a sample of the data, that provides the information used by the  
optimizer to represent the entire collection of data.

The estimated cost of an execution plan depends largely on its cardinality estimations, in 
other words, its knowledge of how many rows are in a table, and its estimations of how many 
of those rows satisfy the various search and join conditions, and so on.

New cardinality estimator in SQL Server 2014
In SQL Server 2014, the cardinality estimator within SQL Server was updated for the first 
time since SQL Server 7.0. It's very likely that you may see a difference in plans generated in 
SQL Server 2014 compared to previous versions, just because of the update to the cardinality 
estimator, let alone any updates to other processes within the optimizer.

These cardinality estimations rely on statistics collected on columns and indexes within the 
database that describe the data distribution, i.e. the number of different values present, and 
how many occurrences of each value. This in turn determines the selectivity of the data. 
If a column is unique, then it will have the highest possible selectivity, and the selectivity 
degrades as the level of uniqueness decreases. A column such as "gender," for example, will 
likely have a low selectivity.

If statistics exist for a relevant column or index, then the optimizer will use them in its calcu-
lations. If statistics don't exist then, by default, they'll be created immediately, in order for the 
optimizer to consume them.

The information that makes up statistics is divided into three subsections:
• the header – general data about a given set of statistics
• the density graph – the selectivity, uniqueness, of the data, and, most importantly
• a histogram – a tabulation of counts of the occurrence of a particular value, taken from 

up to 200 data points that are chosen to best represent the complete data in the table.



34

Chapter 1: Introducing the Execution Plan

It's this "data about the data" that provides the information necessary for the optimizer to 
make its calculations. The key measure is selectivity, i.e. the percentage of rows that pass 
the selection criteria. The worst possible selectivity is 1.0 (or 100%) meaning that every row 
will pass. The cardinality for a given operator in the plan is then simply the selectivity of that 
operator multiplied by the number of input rows.

The reliance the optimizer has on statistics means that your statistics need to be as accurate  
as possible, or the optimizer could make poor choices for the execution plans it creates. 
Statistics, by default, are created and updated automatically within the system for all indexes 
or for any column used as a Predicate, as part of a WHERE clause or JOIN criteria.

The automatic update of statistics that occurs, assuming it's on, only samples a subset of the 
data in order to reduce the cost of the operation. This means that, over time, the statistics 
can become a less-and-less-accurate reflection of the actual data. All of this can lead to SQL 
Server making poor choices of execution plans.

There are other statistical considerations too, around the objects types we choose to use in 
our SQL code. For example, table variables do not ever have statistics generated on them, 
so the optimizer makes assumptions about them, regardless of their actual size. Prior to SQL 
Server 2014, that assumption was for one row. SQL Server 2014 and SQL Server 2016 now 
assume one hundred rows in multi-statement user-defined functions, but remain with the one 
row for all other objects. SQL Server 2017 can, in some instances, use interleaved execution 
to arrive at more accurate row counts for these functions.

Temporary tables do have statistics generated on them and their statistics are stored in  
the same type of histogram as permanent tables, and the optimizer can make use of these 
statistics. In places where statistics are needed, say, for example, when doing a JOIN to a 
temporary table, you may see advantages in using a temporary table over a table variable. 
However, further discussion of such topics is beyond the scope of this book.

As you can see from all the discussion about statistics, their creation and maintenance have  
a large impact on your systems. More importantly, statistics have a large impact on your 
execution plans. For more information on this topic, check out Erin Stellato's article 
Managing SQL Server Statistics in Simple Talk (http://preview.tinyurl.com/yaae37gj).

http://preview.tinyurl.com/yaae37gj
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The plan cache and plan reuse
All the processes described previously, which are required to generate execution plans, have 
an associated CPU cost. For simple queries, SQL Server generates an execution plan in less 
than a millisecond, but for very complex queries, it can take seconds or even minutes to 
create an execution plan.

Therefore, SQL Server will store plans in a section of memory called the plan cache, and 
reuse those plans wherever possible, to reduce that overhead. Ideally, if the optimizer encoun-
ters a query it has seen before, it can bypass the full optimization process and just select the 
plan from the cache.

However, there are a few reasons why the plan for a previously executed query may no 
longer be in the cache. It may have been aged out of the cache to make way for new plans, 
or forced out due to memory pressure, or someone manually clearing the cache. In addition, 
certain changes to the underlying database schema, or statistics associated with these objects, 
can cause plans to be recompiled (i.e. recreated from scratch).

Plan aging
Each plan has an associated "age" value that is the estimated CPU cost of compiling the plan 
multiplied by the number of times it has been used. So, for example, a plan with an estimated 
compilation cost of 10 that has been referenced 5 times has an "age" value of 50. The idea is 
that frequently-referenced plans that are expensive to compile will remain in the cache for as 
long as possible. Plans undergo a natural aging process. The lazywriter process, an internal 
process that works to free all types of cache (including the plan cache), periodically scans the 
objects in the cache and decreases this value by one each time.

Plans will remain in the cache unless there is a specific reason they need to be moved out. 
For example, if the system is under memory pressure, plans may be aged, and cleared out, 
more aggressively. Also, plans with the lowest age value can be forced out of the cache if the 
cache is full and memory is required to store newer plans. This can become a problem if the 
optimizer is being forced to produce a very high volume of plans, many of which are only 
ever used one time by one query, constantly forcing older plans to be flushed from the cache. 
This a problem known as cache churn, which we'll discuss again shortly.
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Manually clearing the plan cache

Sometimes, during testing, you may want to flush all plans from the cache, to see how 
long a plan takes to compile, or to investigate how minor query adjustments might lead to 
slightly different plans. The command DBCC FREEPROCCACHE will clear the cache for 
all databases on the server. In a production environment, that can result in a significant and 
sustained performance hit because then each subsequent query is a "new" query and must go 
through the optimization process. We can flush only specific queries or plans by supplying 
a plan_handle or sql_handle. You can retrieve these values from either the plan 
cache itself using Dynamic Management Views (DMVs) such as sys.dm_exec_query_
stats, or the Query Store (see Chapter 16). Once you have the value, simply run DBCC 
FREEPROCCACHE(<plan_handle>) to remove a specific plan from the plan cache.

Similarly, we can use DBCC FLUSHPROCINDB(db_id) to remove all plans for a specific 
database, but the command is not officially documented. SQL Server 2016 introduced a 
new, fully-documented method to remove all plans for a single database, which is to run the 
following command within the target database:

ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE 
Criteria for plan reuse

When we submit a query to the server, the algebrizer process creates a hash value for the 
query. The optimizer stores the hash value in the QueryHash property of the associated 
execution plan (covered in more detail in Chapter 2). The job of the QueryHash is to iden-
tify queries with the same, or very similar logic (there are rare cases where logically different 
queries end up with the same hash value, known as hash collisions).

For each submitted query, the optimizer looks for a matching QueryHash value among 
the plans in the plan cache. If found, it performs a detailed comparison of the SQL text of 
the submitted query and SQL text associated with the cached plan. If they match exactly 
(including spaces and carriage returns) this returns the plan_handle, a value that uniquely 
identifies the plan in memory. This plan may be reused, if the following are also true:

• the plan was created using the same SET options (see Chapter 2) – otherwise 
there will be multiple plans created even if the SQL texts are identical

• the database IDs match – identical queries against different databases will have 
separate plans.

Note that it's also possible that lack of schema-qualification for the referenced objects in the 
query will lead to separate plans for different users.
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Generally, however, a plan will be reused if all four of the above match (QueryHash, SQL 
text, SET options, database ID). If so, the entire cost of the optimization process is skipped 
and the execution plan in the plan cache is reused.

Avoiding cache churn: query parameterization
It is an important best practice to write queries in such a way that SQL Server can reuse the 
plans in cache. If we submit ad hoc queries to SQL Server and use hard-coded literal values 
then, for most of those queries, SQL Server will be forced to complete the full optimization 
process and compile a new plan each time. On a busy server, this can quickly lead to cache 
bloat, and to older plans being forced relatively quickly from the cache.

For example, let's say we submit the query in Listing 1-2.

SELECT  p.ProductID , 
        p.Name AS ProductName , 
        pi.Shelf , 
        l.Name AS LocationName 
FROM    Production.Product p 
        INNER JOIN Production.ProductInventory AS pi 
             ON pi.ProductID = p.ProductID 
        INNER JOIN Production.Location AS l 
             ON l.LocationID = pi.LocationID 
WHERE   l.Name = 'Paint'; 
GO

Listing 1-2

We then submit the same query again, but for a different location name (say, 'Tool 
Cribs' instead of 'Paint'). This will result in two separate plans stored in cache, even 
though the two queries are essentially the same (they will have the same QueryHash 
values, assuming no other changes are made).

To ensure plan reuse, it's best to use either stored procedures or parameterized queries, where 
the variables within the query are identified with parameters, rather than hard-coded literals, 
and we simply pass in the required parameter values at runtime. This way, the SQL text the 
optimizer sees will be "set in stone," maximizing the possibility of plan reuse.

These are also called "prepared queries" and are built from the application code. For an 
example of using prepared statements, see this article in Technet (http://preview.tinyurl.com/
ybvc2vcs). You can also parameterize a query by using sp_executesql from within your 
T-SQL code.

http://preview.tinyurl.com/ybvc2vcs
http://preview.tinyurl.com/ybvc2vcs
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Another way to mitigate the churn from ad hoc queries is to use a server setting called  
Optimize For Ad Hoc Workloads. Turning this on will cause the optimizer to create what  
is known as a "plan stub" in the plan cache, instead of putting the entire plan there the first 
time a plan is created. This means that single-use plans will take up radically less memory  
in your plan cache.

Plan recompilation
Certain events and actions, such as changes to an index used by a query, can cause a plan to 
be recompiled, which simply means that the existing plan will be marked for recompilation, 
and a new plan generated the next time the query is called. It is important to remember  
this, because recompiling execution plans can be a very expensive operation. This only 
becomes a problem if our actions as programmers force SQL Server to perform excessive 
recompilations.

We'll discuss recompiles in more detail in Chapter 9, but the following actions can lead to 
recompilation of an execution plan (see http://preview.tinyurl.com/y947r969 for a full list):

• changing the structure of a table, view or function referenced by the query
• changing, or dropping, an index used by the query
• updating the statistics used by the query
• calling the function sp_recompile
• mixing DDL and DML within a single batch
• changing certain SET options within the T-SQL of the batch
• changes to cursor options within the query
• deferred compiles
• changes to a remote rowset if you're using a function like OPENQUERY.

Getting Started with Execution Plans
Execution plans assist us in writing efficient T-SQL code, troubleshooting existing T-SQL 
behavior or monitoring and reporting on our systems. How we use them and view them is up 
to us, but first we need to understand what information is contained within the plans, and how 
to interpret that information. One of the best ways to learn about execution plans is to see 
them in action, so let's get started.

http://preview.tinyurl.com/y947r969
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Permissions required to view execution plans
In order to view execution plans for queries you must have the correct permissions within 
the database. If you are sysadmin, dbcreator or db_owner, you won't need any other 
permission. If you are granting this permission to developers who will not be in one of those 
privileged roles, they'll need to be granted the ShowPlan permission within the database 
being tested. Run the statement in Listing 1-3.

GRANT SHOWPLAN TO [username];

Listing 1-3

Substituting the username will enable the user to view execution plans for that database. 
Additionally, in order to run the queries against the Dynamic Management Objects (DMO), 
either VIEW SERVER STATE or VIEW DATABASE STATE, depending on the DMO in  
question, will be required. We'll explore DMOs more in Chapter 15.

Execution plan formats
SQL Server can output the execution plan in three different ways:

• as an XML plan
• as a text plan
• as a graphical plan.

The one you choose will depend on the level of detail you want to see, and on the methods 
used to capture or view that plan.

In each format, we can retrieve the execution plan without executing the query, (so without 
runtime information), which is known as the estimated plan, or we can retrieve the plan 
with added runtime information, which of course requires executing the query, and is known 
as the actual plan. While, strictly speaking, the terms actual and estimated are exclusive 
to graphical plans, it is common to see them applied to all execution plan formats and, for 
simplicity, we'll use those terms for each format here.
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XML plans
XML plans present a complete set of data available on a plan, all on display in the structured 
XML format. The XML format is great for transmitting to other data professionals if you 
want help on an execution plan or need to share with coworkers. Using XQuery, we can also 
query the XML data directly (see Chapter 13).

We can use one of the following two commands to retrieve the plan in XML format:
• SET SHOWPLAN_XML ON – generates the estimated plan (i.e. the query is not 

executed).
• SET STATISTICS_XML ON – generates the actual execution plan (i.e. with 

runtime information).
XML plans are extremely useful, but mainly for querying, not for standard-style reading of 
plans, since the XML is not human readable. Useful though these types of plan are, you're 
more likely to use graphical plans for simply browsing the execution plan.

Every graphical execution plan is actually XML under the covers. Within SSMS, simply 
right-click on the plan itself. From the context menu select Show Execution Plan XML… to 
open a window with the XML of the execution plan.

Text plans
These can be quite difficult to read, but detailed information is immediately available. Their 
text format means that they we can copy or export them into text manipulation software 
such as NotePad or Word, and then run searches against them. While the detail they provide 
is immediately available, there is less detail overall from the execution plan output in these 
types of plan, so they can be less useful than the other plan types.

Text plans are on the deprecation list from Microsoft. They will not be available in a future 
version of SQL Server. I don't recommend using them.

Nevertheless, here are the possible commands we can use to retrieve the plan in text format:
• SET SHOWPLAN_ALL ON – retrieves the estimated execution plan for the query.
• SET STATISTICS PROFILE ON – retrieves the actual execution plan for  

the query.
• SET SHOWPLAN_TEXT ON – retrieves the estimated plan but with a very limited 

set of data, for use with tools like osql.exe.
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Graphical plans
Graphical plans are the most commonly viewed format of execution plan. They are quick  
and easy to read. We can view both estimated and actual execution plans in graphical format 
and the graphical structure makes understanding most plans very easy. However, the detailed 
data for the plan is hidden behind Tooltips and Property sheets, making it somewhat more 
difficult to get to, other than in a one-operator-at-a-time approach.

Retrieving cached plans
There is some confusion regarding the different types of plan and what they really mean. 
I've heard developers talk about estimated and actual plans as if they were two completely 
different plans. Hopefully this section will clear things up. The salient point is that the query 
optimizer produces the plan, and there is only one valid execution plan for a query, at any 
given time.

When troubleshooting a long-running query retrospectively, we'll often need to retrieve the 
cached plan for that query from the plan cache. As discussed earlier, once the optimizer 
selects a new plan for a query, it places it in the plan cache, and passes it on to the query 
execution engine for execution. Of course, the optimizer never executes any queries, it 
merely formulates the plan based on its knowledge of the underlying data structures and 
statistical knowledge of the data. Cached plans don't contain any runtime information, except 
for the row counts in interleaved plans.

We can retrieve this cached plan manually, via the Dynamic Management Objects, or using a 
tool such as Extended Events. We'll cover techniques to automate capture of the cached plan 
later in the book (Chapter 15).

Plans for ad hoc queries: estimated and actual plans
Most of the time in this book, however, we'll retrieve the execution plan simply by executing 
ad hoc queries within SSMS. At the point we submit the query, we have the option to request 
either the estimated plan or the actual plan.

If we request the estimated plan, we do not execute the query; we merely submit the query 
for inspection by the optimizer, in order to see the associated plan. If there exists in the plan 
cache a plan that exactly matches the submitted query text, then the optimizer simply returns 
that cached plan. If there is no match, the optimizer performs the optimization process and 
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returns the new plan. However, because there is no intent to execute the query, the next two 
steps are skipped (i.e. placing the plan in the cache, if it's a new plan, and sending it for 
execution). Since estimated plans never access data, they are very useful during development 
for testing large, complex queries that could take a long time to run.

If, when we submit the query, we request a plan with runtime information, (what SSMS 
refers to as an actual plan), then all three steps in the process are performed.

If there is a cached plan that exactly matches the submitted query text, then the optimizer 
simply passes the cached plan to the execution engine, which executes it, and adds the 
requested runtime values to the displayed plan. If there is no cached plan, the optimizer 
produces a new plan, places it in the cache and passes it on for execution and, again, we see 
the plan with runtime information. For example, we'll see runtime values for the number of 
rows returned and the number of executions of each operator, alongside the optimizer's esti-
mated values. Note that SQL Server does not store anywhere a second copy of the plan with 
the runtime information. These values are simply injected into the copy of the plan, whether 
displayed in SSMS, or output through other means.

Will the estimated and actual plans ever be different?
Essentially, the answer to this is "No." As emphasized previously, there is only one valid 
execution plan for a query at any given time, and the estimated and actual plans will not  
be different.

You may see differences in parallelization between the runtime plan and the estimated plan, 
but this doesn't mean the execution engine "changed" the plan. At compile time, if the opti-
mizer calculates that the cost of the plan might exceed the cost threshold for parallelism, then 
it produces a parallel version of the plan (see Chapter 11). However,  the engine gets the final 
say on whether the query is executed in parallel, based on current server activity and avail-
able resources. If resources are too scarce, it will simply strip out the parallelism and run a 
serial version of the plan.

Sometimes, you might generate an estimated plan and then, later, an actual plan for the same 
query, and see that the plans are different. In fact, what will have happened here is that, in 
the time between the two requests, something happened to invalidate the existing plan in 
the cache, forcing the optimizer to perform a full optimization and generate a new plan. For 
example, changes in the data or data structures might have caused SQL Server to recompile 
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the plan. Alternatively, processes or objects within the query, such as interleaving  
Data Definition Language (DDL) and data manipulation language (DML), result in a  
recompilation of the execution plan.

If you request an actual plan and then retrieve from the cache the plan for the query you just 
executed (we'll see how to do that in Chapter 9), you'll see that the cached plan is the same as 
your actual plan, except that the actual plan has runtime information.

One case where the estimated and actual plans will be genuinely different is when the  
estimated plan won't work at all. For example, try generating an estimated plan for the simple 
bit of code in Listing 1-4.

CREATE TABLE TempTable 
    ( 
      Id INT IDENTITY(1, 1) , 
      Dsc NVARCHAR(50) 
    ); 
INSERT  INTO TempTable 
        ( Dsc 
        ) 
        SELECT  [Name] 
        FROM    [Sales].[Store]; 
SELECT  * 
FROM    TempTable; 
DROP TABLE TempTable;

Listing 1-4

You will get this error:

Msg 208, Level 16, State 1, Line 7 
Invalid object name 'TempTable'.

The optimizer runs the statements through the algebrizer, the process outlined earlier that is 
responsible for verifying the names of database objects but, since SQL Server has not yet 
executed the query, the temporary table does not yet exist.

The plan will get marked for deferred name resolution. In other words, while the batch is 
parsed, bound, and compiled, the SELECT query is excluded from compilation because the 
algebrizer has marked it as deferred. Capturing the estimated plan doesn't execute the query, 
and so doesn't create the temporary table, and this is the cause of the error. At runtime, the 
query will be compiled and now a plan does exist. If you execute Listing 1-4 and request the 
actual execution plan, it will work perfectly.
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A second case where the estimated and actual plans will be different, new in SQL Server 
2017, is when the optimizer uses interleaved execution. If we request an estimated plan for 
a query that contains a multi-statement table valued function (MSTVF), then the optimizer 
will use a fixed cardinality estimation of 100 rows for the MSTVF. However, if we request an 
actual plan, the optimizer will first generate the plan using this fixed estimate, and then run 
the subtree containing the MSTVF to get the actual row counts returned, and recompile the 
plan based on these real row counts. Of course, this plan will be stored in the plan cache, so 
subsequent requests for either an estimated or an actual plan will return the same plan.

Capturing graphical plans in SSMS
In SSMS, we can capture both the estimated and the actual plans for a query, and there are 
several ways to do it, in each case. Perhaps the most common, or at least the route I usually 
take, is to use the icons in the toolbar. Figure 1-2 shows the Display Estimated Execution 
Plan icon.

Figure 1-2: Capturing the estimated plan.

A few icons to the right, we have the Include Actual Execution Plan icon, as shown in 
Figure 1-3.
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Figure 1-3: Capturing the actual plan.

Alternatively, for either type of plan, you could:
• right-click in the query window and select the same option from the context menu
• click on the Query option in the menu bar and select the same choice
• use the keyboard shortcut (CTRL+L for estimated; CTRL+M for actual within 

SSMS or CTRL+ALT+L and CTRL+ALT+M for the same within Visual Studio).
For estimated plans, we have to click the icon, or use one of the alternative methods, each 
time we want to capture that type of plan for a query. For the actual plan, each of these 
methods acts as an "on/off" switch for the query window. When the actual plan is switched 
on, at each execution, SQL Server will then capture an actual execution plan for all queries 
run from that window, until you turn it off again for each query window within SSMS.

Finally, there is one additional way to view a graphical execution plan, a live execution plan. 
The view of the plan is based on a DMV, sys.dm_exec_query_statistics_xml, 
introduced in SQL Server 2014. This DMV returns live statistics for the operations within an 
execution plan. The graphical view of this DMV was introduced in SQL Server 2016. You 
toggle it on or off similarly to what you do with an actual execution plan. Figure 1-4 shows 
the button.
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Figure 1-4: Enabling the live execution plan.

We’ll explore this completely in Chapter 17.

Capturing our first plan
It's time to capture our first execution plan. We'll start off with a relatively simple query that 
nevertheless provides a fairly complete view into everything you're going to do when reading 
execution plans.

As noted in the introduction to this book, we strongly encourage you to follow along with the 
examples, by executing the relevant script and viewing the plans. Occasionally, especially  
as we reach more complex examples later in the book, you may see a plan that differs from 
the one presented in the book. This might be because we are using different versions of  
SQL Server (different service pack levels and cumulative updates), different editions, or 
we are using slightly different versions of the AdventureWorks sample database. We use 
AdventureWorks2016 in this book; other versions are slightly different, and even if you 
use the same version, its schema or statistics may have been altered over time. So, while most 
of the plans you get should be very similar, if not identical, to what we display here, don't be 
too surprised if you try the code and see something different.

Open a new query tab in SSMS and run the query shown in Listing 1-5.

USE AdventureWorks2014; 
GO 
SELECT p.LastName + ', ' + p.FirstName, 
    p.Title, 
    pp.PhoneNumber 
FROM Person.Person AS p 
    INNER JOIN Person.PersonPhone AS pp
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        ON pp.BusinessEntityID = p.BusinessEntityID 
    INNER JOIN Person.PhoneNumberType AS pnt 
        ON pnt.PhoneNumberTypeID = pp.PhoneNumberTypeID 
WHERE pnt.Name = 'Cell' 
      AND p.LastName = 'Dempsey'; 
GO

Listing 1-5

Click the Display Estimated Execution Plan icon and in the execution plan tab you will see 
the estimated execution plan, as shown in Figure 1-5.

Figure 1-5: Estimated execution plan.

Notice that there is no Results tab, because we have not actually executed the query. Now, 
highlight the Include Actual Execution Plan icon and execute the query. This time you'll  
see the result set retuned (a single row) and the Execution plan tab will display the actual 
execution plan, which should also look as shown in Figure 1-5.

The components of a graphical execution plan
We're now going to explore each section of the plan from Figure 1-5 in more detail, but still 
at a high level. We won't start exploring the details of individual operators until Chapter 3. 
You'll notice that it's rather difficult to read the details on the plan in Figure 1-5. Here, and 
throughout the book we'll be following a method where I show the whole plan, and then drill 
down into sections of the plan to discuss individual parts or segments of the plan.

Most people start on the right-hand side, when reading plans, where you will find the opera-
tors that read data out of the base tables and indexes. From there we follow the data flow, as 
indicated by the arrows, from right to left until it reaches the SELECT operator, where the
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rows are passed back to the client. However, it's equally valid to read the plan from left to 
right, which is the order in which the operators are called – essentially data is pulled from 
right to left as each operator in turn calls the child operator on its right, but we'll discuss this 
in more detail in Chapter 3.

Operators
Operators, represented as icons in the plan, are the workhorses of the plan. Each operator 
implements a specific algorithm designed to perform a specialized task. The operators in a 
plan tell us exactly how SQL Server chose to execute a query, such as how it chose to access 
the data in a certain table, how it chose to join that data to rows in a second table, how and 
where it chose to perform any aggregations, sorting, calculations, and so on.

In this example, let's start on the right-hand side of the plan, with the operators shown in 
Figure 1-6.

 Figure 1-6: Two data access operators and a join operator.

Here we see two data access operators passing data to a join operator. The first operator is 
an Index Seek, which is pulling data from the Person table using a nonclustered index, 
Person.IX_Person_LastName_FirstName_MiddleName. Each qualifying row 
(rows where the last name is Dempsey) passes to a Nested Loops operator, which is going to 
pull additional data, not held in the nonclustered index, from the Key Lookup operator.

Each operator has both a physical and a logical element. For example, in Figure 1-6, Nested 
Loops is the physical operator, and Inner Join is the logical operation it performs. 
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So the logical component describes what the operator actually does (an INNER JOIN opera-
tion) and the physical part is how the optimizer chose to implement it (using a Nested Loops  
algorithm).

From the first Nested Loops operator, the data flows to a Compute Scalar operator. For each 
row, it performs its required task (in this case, concatenating the first and last names with a 
comma) and then passes it on to the operator on its left. This data is joined with matching 
rows in the PersonPhone table, and then in turn with matching rows in the PhoneNum-
berType table. Finally, the data flows to the SELECT operator.

 Figure 1-7: Broader section of the plan showing more operators.

The SELECT icon is one that you're going to frequently reference for the important data 
it contains. Of course, every operator contains important data (see the Operator properties 
section, a little later), but what sets the SELECT operator apart is that it contains data about 
the plan as a whole, whereas other icons only expose information about the operator itself.

Data flow arrows
The arrows represent the direction of data flow between the operators, and the thickness of 
the arrow reflects the amount of data passed, a thicker arrow meaning more rows. Arrow 
thickness is another visual clue as to where performance issues may lie. For example, you 
might see a big thick arrow emerging from a data access operator, on the right side of the 
plan, but very thin arrows on the left, since your query ultimately returns only two rows. 
This is a sign that a lot of data was processed to produce those two output rows. That may be 
unavoidable for the functional requirements of the query, but equally it might be something 
you can avoid.
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You can hover with the mouse pointer over these arrows and it will show the number of rows 
that it represents in a tooltip that you can see in Figure 1-8. In an execution plan that contains 
runtime statistics (the actual plan), the thickness is determined by the actual, rather than the 
estimated, number of rows.

 Figure 1-8: Tooltip for the data flow arrow.

Estimated operator costs
Below each individual icon in a plan is displayed a number as a percentage. This number 
represents the estimated cost for that operator relative to the estimated cost of the plan as a 
whole. These numbers are best thought of as "cost units," based on the mathematical calcu-
lations of anticipated CPU and I/O within the optimizer. The estimated costs are useful as 
measures, but these costs don't represent real-world measures of actual CPU and I/O. There is 
generally a correlation between high estimated cost within the plan, and higher actual perfor-
mance costs, but these are still just estimated values.

The origin of the estimated cost values
The story goes that the developer tasked with creating execution plans in SQL Server 7 used 
his workstation as the basis for these numbers, and they have never been updated. See Danny 
Ravid's blog at: http://preview.tinyurl.com/yawet2l3.

All operators will have an associated cost, and even an operator displaying 0% will actu-
ally have a small associated cost, which you can see in the operator's properties (which we'll 
discuss shortly).

If you compare the operator- and plan-costs side by side for the estimated and actual plan of 
the same query, you'll see that they are identical. Only the optimizer generates these cost 
values, which means that all costs in all plans are estimates, based on the optimizer's statis-
tical knowledge of the data.

http://preview.tinyurl.com/yawet2l3
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Estimated total query cost relative to batch

At the top of every execution plan is displayed as much of the query string as will fit into the 
window, and a "cost (relative to the batch)" of 100%.

Figure 1-9: Query and the estimated query cost at the top of the execution plan.

Just as each query can have multiple operators, and each of those operators will have a cost 
relative to the query, you can also run multiple queries within a batch and get execution plans 
for them. Each plan will then have different costs. The estimated cost of the total query is 
divided by the estimated cost of all queries in a batch. Each operator within a plan displays 
its estimated costs relative to the plan it's a part of, not to the batch as a whole.

Never lose sight of the fact that the costs you see, even in actual plans, are an estimated  
cost, not real, measured, performance metrics. If you focus your tuning efforts exclusively 
on the queries or operators with high estimated costs, and it turns out the cost estimations are 
incorrect, then you may be looking in the wrong area for the cause of performance issues.

Operator properties
Right-click any icon within a graphical execution plan and select the Properties menu item 
to get a detailed list of information about that operation. Each operator performs a distinct 
task and therefore each operator will have a distinct set of property data. The vast majority  
of useful information to help you read and understand execution plans is contained in the 
Properties window for each operator. It's a good habit to get into when reading an execu-
tion plan to just leave the Properties window open and pinned to your SSMS window at all 
times. Sadly, due to the vagaries of the SSMS GUI, you may sometimes have to click two 
places to get the properties you want to properly display.

Figure 1-10 compares the Properties window for the same Index Seek operator at the  
top right of Figure 1-5, which performs a seek operation on a nonclustered index on the 
Person table. The left-hand pane is from the estimated plan, and the right-hand pane is  
for the actual plan.
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Figure 1-10: Comparing properties of the Index Seek operator for the  
estimated and actual plans.

As you can see, in the actual plan we see the actual, as well as the estimated, number of rows 
that passed through that operator, as well as the actual number of times the operator was 
executed. Here we see that the optimizer estimated 1.3333 rows and 2 were actually returned.

When comparing the properties of an operator, for the estimated and actual plans, look out 
for very big differences between the estimated and the actual number of rows returned, 
such as an estimated row count of 100 and an actual row count of 100,000 (or vice versa). 
If a query that returns hundreds of thousands of rows uses a plan the optimizer devised for 
returning 10 rows, it is likely to be very inefficient, and you will need to investigate the 
possible cause. It might be that the row count has changed significantly since the plan was 
generated but statistics have not yet auto-updated, or it might be caused by problems with 
parameter sniffing, or by other issues. We'll return to this topic in detail in Chapter 9.



53

Chapter 1: Introducing the Execution Plan

I'm not going into detail here on all the properties and their meanings, but I'll mention briefly 
a few that you'll refer to quite frequently:

• Actual Number of Rows – the true number of rows returned according to runtime 
statistics. The availability of this value in actual plans is the biggest difference 
between these and cached plans (or estimated plans). Look out for big differences 
between this value and the estimated value.

• Defined Values – values introduced by this operator, such as the columns returned, 
or computed expressions from the query, or internal values introduced by the  
query processor.

• Estimated Number of Rows – calculated based on the statistics available to the 
optimizer for the table or index in question. These are useful for comparing to the 
Actual Number of Rows.

• Estimated Operator Cost – the estimated operator cost as a figure (as well as  
a percentage). This is an estimated cost even in actual plans.

• Object – the object accessed, such as the index being accessed by a scan or  
a seek operation.

• Output List – columns returned.
• Predicate – a "pushed down" search Predicate.
• Table Cardinality – number of rows in the table.

You'll note that some of the properties, such as Object, have a triangle icon on their left, indi-
cating that they can be expanded. Some of the longer property descriptions have an ellipsis 
at the end, which allows us to open a new window, making the longer text easier to read. 
Almost all properties, when you click on them, display a description at the bottom of the 
Property pane.

All these details are available to help us understand what's happening within the query in 
question. We can walk through the various operators, observing how the subtree cost accu-
mulates, how the number of rows changes, and so on. With these details, we can identify 
queries that are estimated to use excessive amounts of CPU or tables that need more indexes, 
or identify other performance issues.

Tooltips
Associated with each of the icons and the arrows is a pop-up window called a tooltip, which 
you can access by hovering your mouse pointer over the icon or arrow. I already used one of 
these in Figure 1-8. Essentially, the tooltip for an operator is a cut-down version of the full 
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Properties window. It’s worth noting that the tooltip and the properties for given operators 
change as SQL Server itself changes. You may see differences in the tooltips between one 
version of SQL Server and the next. Most of the examples in this book are from SQL Server 
2016.

Figure 1-11 shows the tooltip window for the SELECT operator for the estimated execution 
plan for the query in Listing 1-4.

Figure 1-11: Tooltip for the SELECT operator.

The properties of the SELECT operator are often particularly interesting, since this provides 
information relating to the plan as a whole. For example, we see the following two property 
values (among others, several of which we'll review in detail in Chapter 2):

• Cached plan size – how much memory the plan generated by this query will take 
up in the plan cache. This is a useful number when investigating cache perfor-
mance issues because you'll be able to see which plans are taking up more memory.

• Degree of Parallelism – whether this plan was designed to use (or did use) 
multiple processors. This plan uses a single processor as shown by the value of 1. 
(See Chapter 11.)
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In Figure 1-11, we also see the statement that represents the entire query that SQL Server is 
processing. You may not see the statement if it's too long to fit into the tooltip window. The 
same thing applies to other properties in other operators. This is yet another reason to focus 
on using the Properties window when working with execution plans.

The information available in the tooltips can be extremely limited. But, it's fairly quick to see 
the information available in them since all you have to do is hover your mouse to get the tips. 
To get a more consistent and more detailed view of information about the operations within 
an execution plan, you should use the full Properties window.

Saving execution plans
We can save an execution plan from the graphical execution plan interface by right-clicking 
within the execution plan and selecting Save Execution Plan As. Way back in SQL Server 
2005, we then had to change the filter to "*.*" and, when typing the name of the file we 
wanted to save, add .sqlplan as the extension. Thankfully, SQL Server 2008, and later, auto-
matically selects the .sqlplan file type.

What we are saving is simply an XML file. One of the benefits of extracting an XML plan 
and saving it as a separate file is that we can share it with others. For example, we can send 
the XML plan of a slow-running query to a DBA friend and ask them their opinion on how 
to rewrite the query. Once the friend receives the XML plan, he or she can open it up in 
Management Studio and review it as a graphical execution plan.

You can look at the underlying XML of a plan as well by right-clicking on the plan and 
selecting Show Execution Plan XML from the context menu. That will open the raw XML 
in another window where you can browse the XML manually if you like. Alternatively, you 
can open the .sqlplan file in Notepad. We'll explore the XML within execution plans in detail 
in Chapter 13.

Summary
In this chapter, we've described briefly the role of the query optimizer in producing the 
execution plan for a query, and how it selects the lowest-cost plan, based on its knowledge of 
the data structures and statistical knowledge of the data distribution. We also covered the plan 
cache, the importance of plan reuse, and how to promote this.
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We explored the different execution plan formats, and then focused on graphical execution 
plans, how to read these plans, and the various components of these plans. We are going to 
spend a lot of time within the graphical plans when interpreting individual execution plans, 
so understanding the information available within the plans is important.

I also tried to clear up any confusion regarding what the terms "estimated plan" and "actual 
plan" really mean. I've even heard people talk about "estimated and actual plans" as if they 
were two completely different plans, or that the estimated plan might be somehow "inaccu-
rate." Hopefully this chapter dispelled those misunderstandings.
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The aim of this chapter is to show you how to start reading graphical execution plans. We're 
still going to stay relatively high level, using a few simple queries and basic filters to explain 
the mechanics of reading a plan, and what to look for in a plan. In subsequent chapters, we'll 
start drilling down into the details of the various individual operators and their properties.

Specifically, we'll cover:

• a brief review of most common execution plan operators – categorized per their 
basic function.

• the basics of how to read a graphical plan – do we read a plan right to left, or left 
to right? Both!

• what to look for in a plan – a few key warning signs and operator properties that 
can often help rapidly identify potential issues.

• the SELECT operator – contains a lot of useful information about the plan as a 
whole.

The Language of Execution Plans
In some ways, learning how to read execution plans is like learning a new language, except 
that this language is based on a series of operators, each of which is represented as an icon 
in a graphical plan. Fortunately, unlike a language, the number of words (operators) we must 
learn is minimal. There are approximately 85 available operators and most queries use only a 
small subset of them.

Common operators
Books Online (http://preview.tinyurl.com/y97wndcf) lists all the operators in (sort of) alpha-
betical order. This is fine as a reference, but it isn't the easiest way to learn them, so we will 
forgo being "alphabetically correct" here.

http://preview.tinyurl.com/y97wndcf
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A graphical execution plan displays three distinct types of operator:
• Physical Operators (and their associated logical operations) appear as blue-

based icons and represent query execution. They include DML and parallelism 
operators. These are the only type of operator you'll see in an actual execution plan.

• Cursor Operators have yellow icons and represent T-SQL cursor operations.
• Language Elements are green icons and represent T-SQL language elements, such 

as ASSIGN, DECLARE, IF, WHILE, and so on.

The focus of this chapter, and of the book, is on the physical operators and their corre-
sponding logical operations. However, we will also cover cursor operators in Chapter 14, 
and there will be a few dives into some of the special information available in the language 
element operators.

A physical operator represents the physical algorithm chosen by the optimizer to implement 
the required logical operation. Every physical operator is associated with one or more logical 
operations. Generally, the name of the physical operator will be followed in brackets by the 
name of the associated logical operation (although Microsoft isn't entirely consistent about 
this). For example, Nested Loops (Inner Join), where Nested Loops is the physical  
implementation of the logical operation, Inner Join.

The optimizer has at its disposal sets of operators for reading data, combining data, ordering 
and grouping data, modifying data, and so on. Each operator performs a single, specialized 
task. The following table lists some of the more common physical operators, categorized 
according to their basic purpose.

Reading data Combining data Grouping and ordering data

Table/Index Scan

Index Seek

Lookup

Constant Scan

Nested Loops

Merge Join

Hash Match

Adaptive Join

Sequence

Concatenation

Switch

Sort

Stream Aggregate

Hash Match (Aggregate)

Window Aggregate

Segment

Window Spool
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Manipulating data Modifying data Performance

Compute Scalar

Filter

Top

Sequence Project

Table/Index Insert

Table/Index Update

Table/Index Delete

Table/Index Merge

Assert

Split

Collapse

Bitmap

Spools

Parallelism

Which plan operators you see most frequently as a developer or DBA depends a lot on the 
nature of the workload. For an OLTP workload you will hope to see a lot of Index Seek 
and Nested Loops operators, characteristic of frequent queries that return relatively small 
amounts of data. For a BI system, you are likely to see more Index Scans, since these are 
often more efficient when reading a large proportion of data in a table, and Merge Join or 
Hash Match joins, which are join algorithms that become more efficient when joining larger 
data streams.

Understanding all the internal mechanisms of a given operator is only possible if you run 
a debugger on SQL Server. I absolutely do not recommend that you do this, but if you're 
looking for deep knowledge of operator internals, then I recommend Paul White's blog 
(http://preview.tinyurl.com/y75n6f5z).

Generally, however, we can learn a lot about what an operator is doing by observing how 
they function and relate to one another within execution plans. The key is to start by trying 
to understand the basic mechanics of the plan as a whole, and then drill down into the "inter-
esting" operators. These might be the operators with the highest estimated cost, such as a 
high-cost Index Scan or seek, or it might be a "blocking" operator such as a Sort (more on 
blocking versus streaming operators shortly). Having chosen a starting point, look at the  
properties of these operators, where all the details about the operator are available. Each 
operator has a different set of characteristics. For example, they manage memory in different 
ways. Some operators, primarily Sort, Hash Match, and Adaptive Join, require a variable 
amount of memory in order to execute. As such, a query with one of these operators may have 
to wait for available memory prior to execution, possibly adversely affecting performance.

http://preview.tinyurl.com/y75n6f5z
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Reading a plan: right to left, or left to right?

Should we read an execution plan from right to left, or from left to right? The answer, as we 
discussed briefly in Chapter 1, is that we generally read execution plans from right to left, 
following the data flow arrows, but that it is equally valid, and frequently helpful, to read 
from left to right.

Let's take a look at a very simple example. Listing 2-1 shows a simple query against the 
AdventureWorks2014 database, retrieving details from the Person.Person table, 
within a certain date range.

SELECT TOP ( 5 ) 
        BusinessEntityID , 
        PersonType , 
        NameStyle , 
        Title , 
        FirstName , 
        LastName , 
        ModifiedDate 
FROM    Person.Person 
WHERE   ModifiedDate >= '20130601' 
        AND ModifiedDate <= CURRENT_TIMESTAMP ;

Listing 2-1

Figure 2-1 shows the resulting execution plan.

Figure 2-1: Simple execution plan, read right to left.

If we read the plan from right to left, following the data flow direction, the first action in the 
plan is to read the data from the Person table, via a Clustered Index Scan. The data passes 
to the Top operator, which in turn passes the first five rows back to the SELECT. This is a 
perfectly valid way to read the plan, and is the way most people read one. However, this data 
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flow order could imply that, first, the Clustered Index Scan reads the data in the Person 
table and passes on the rows that match the search condition in the WHERE clause (there are 
over 13 K qualifying rows), and then the Top operator only sends on the first five.

Of course, this would be highly inefficient, and is not what happens, as you can tell from 
the thin arrow between the Clustered Index Scan and Top operators. The Clustered Index 
Scan only reads 5 rows from the Person table.

Figure 2-2: Actual number of rows processed.

In fact, this example illustrates clearly that, during plan execution, the operators are called 
from left to right, so if we follow the order in which the operators are called, we must read 
the plan left to right.

Each operator supports a GetNext method ("Give me the next row") and the first action in 
this case is a GetNext call from the Top operator to the Clustered Index Scan, which passes 
the first qualifying row, filtered according to the WHERE clause, back to Top and then the 
cycle repeats for each row, steadily streaming rows back to the client. Once the Top operator 
has all the rows it needs, five rows in this case, execution stops, so the rest of the table is 
never read.
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Streaming versus blocking operators

Many of the operators you see in plans will be non-blocking, a.k.a. streaming, operators. 
A streaming operator creates output data at the same time as it receives the input. In other 
words, it will pass on rows to the next operator as soon as it has performed its task on  
that row.

Some operators, however, are blocking operators and must gather the entire set of input data 
and then perform their work on the entire data set, before passing on any rows. Add ORDER 
BY ModifiedDate to Listing 2-1, and re-execute the query, requesting the actual execution 
plan, as shown in Figure 2-3.

Figure 2-3: Execution plan showing blocking operators.

The Clustered Index Scan (discussed in detail later in Chapter 3) is a streaming operator, 
and passes on rows as they are read from the index. A scan indicates that it will read all rows 
in the table, or index, until all rows are processed (unless a different operator, such as Top 
in the previous example, ends execution early). When it finds a row that falls in the required 
date range, it passes that row on to the next operator, in this case, a Sort.

The Sort operator reorders data, representing here the ORDER BY statement in the query. 
The Sort operator is a blocking operator. This logical operation is a Top N Sort because of 
the TOP operation in the query. It must read every row from its child operator, in this case 
over 13K qualifying rows, sort them according to the specified criteria, ModifiedDate, and 
then pass on the top five rows. In this sort of situation, especially for a very large input, such 
blocking operators could slow down performance.

Some operators are only semi-blocking, and must complete only part of their work  
before releasing the first row. For example, the join operator Hash Match first processes 
 all rows from its first input, but then processes and returns rows from the second input as  
it reads them.
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Microsoft maintains no definitive listing of blocking and non-blocking operators. Instead, 
you can infer their behavior by the definitions and relationships within the plan. Again, the 
key to understanding execution plans is to start to learn how to understand what the operators 
do and how this affects your query.

The warning shown in the plan in Figure 2-3, the little exclamation point, will be discussed in 
the next section.

What to Look for in an Execution Plan
As queries grow complex, so their executions plans can quickly become rather unwieldy 
and harder to understand, regardless of whether we read the plan right to left or left to right. 
Rather than trawling through every operator, we can often identify potential issues by looking 
out for a few key warning signs, and by examining the properties behind certain important 
operators.

The following recommendations don't preclude the need to understand the plan as a whole, 
and its operators, but they can help you read through a plan a little faster than trying to trace 
all the data paths and all the behaviors one at a time.

We'll discuss why each of these are important "pointers" to sources of possible problems, but 
we won't drill into specific examples. Throughout the rest of the book, we'll expand on these 
recommendations, with specific examples.

First operator
The first operator, on the left-hand side of the execution plan, is the SELECT/INSERT/
UPDATE/DELETE (and sometimes others, such as MERGE) operator, and the first time you 
look at an execution plan it's always worth examining its properties.

Whereas the Properties window for other operators reveals information specific to the action 
of that operator, the first operator offers a lot of information about the plan itself and its 
generation. It includes information such as the time, CPU and memory required to compile 
the plan, the ANSI connection settings, whether the optimizer completed optimization or 
terminated the optimization process early because a good enough plan was found or it didn't 
find what it considered an optimal plan (this is referred to as a "timeout").
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 Figure 2-4: First operator properties.

We'll review some of the details of this operator later in this chapter, and continue, 
throughout the book, to explore the interesting pieces of information it provides.

When capturing plans using Extended Events (see Chapter 15), you may not see the first 
operator and all the great information it provides, which is a pity. However, most of the 
important information is still available in the plans captured through Extended Events, within 
the XML that defines the plan.

Warnings
Within an execution plan, you may see (on SQL Server 2012 and later) small icons appear 
on an operator, specifically a yellow or red exclamation mark. These are warnings. Not every 
warning indicates a grave problem, but whenever you see one, check the properties for that 
icon, which will contain a description of the warning.
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Figure 2-5: Execution plan with a warning.

Figure 2-5 shows a warning on the SELECT (in this case caused by a memory allocation 
mismatch), but there are other types of warning, such as a warning on a Sort operator that 
spilled to disk, and we'll go over several of them as we encounter them in execution plans 
throughout the rest of the book.

Estimated versus actual number of rows
It is very important to remember that all costs you will ever see in a plan are based on cardi-
nality estimations, never on actual row and execution counts. Therefore, these costs are only 
as accurate as the optimizer's cardinality estimations.

One of the first things to check in a plan before digging deeper, and certainly before looking 
at the costs associated with individual operators, is to compare estimated and actual row 
counts and make sure they are within reasonable margins, to confirm the accuracy of the 
cardinality estimates associated with the estimated costs. Sometimes, you'll see an operator 
with a very high estimated cost, because the optimizer estimated it would need to process 
many rows, when in fact it had to process very few rows (or vice versa, for low estimated 
costs).

If estimated and actual rows counts differ significantly, you need to work out the cause and 
fix that first. Only then can you look at estimated cost of operators.

Operator cost
Having verified that cardinality estimates were accurate, we can look for the costliest opera-
tors as a means of determining where to focus our initial efforts. It's often useful to compare 
the cost of one operator to another within the plan. However, we can't compare operator cost 
within one plan to operator cost within a second plan because the cost estimates are math-
ematical constructs and don't really lend themselves directly to that type of comparison.
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Also, some operators, and we'll discuss them as we go, don't have costs associated with 
them, or they're "fixed" costs based on assumptions within the optimizer, which may or may 
not be accurate. For example, a Compute Scalar operator always has a very low fixed cost 
(zero-point-lots-of-zeros-one), which is often fine but occasionally misleading, as we'll see in 
Chapter 4.

So, while cost estimates are important and we will use them, just remember that they can't be 
blindly trusted as an accurate measure of actual cost within the plan.

"Missing Index" suggestions
Often, you'll see a message at the top of a plan saying that there is a missing index that will "re-
duce the cost" of an operator by some impressive percentage. Treat them as suggestions only, 
rather than going ahead and creating each index that's suggested. Remember, an index that 
may help a single query, which is all that a given execution plan represents, may be detrimen-
tal to the performance of your workload as a whole. Also, there may be more than one index 
suggested. You’ll only see one at the top of the plan. Check the first operator to see if there are 
additional suggestions.

Data flow
As discussed previously, the data flow within an execution plan is defined by the arrows 
connecting one operator to the next. These arrows, because they represent the flow of data, 
are frequently referred to as pipes. The thickness of the pipe is based on actual row count 
when available (actual execution plan), and on estimates otherwise (cached or estimated 
plan). A thicker pipe indicates more data being processed; a thinner pipe indicates less data. 
In some cases, some of the operators in an actual plan do not report an actual row count, in 
which case the estimated row count is used to set the pipe size.

Look out not only for "fat pipes," but also for abrupt transitions in pipe thickness as you read 
through the execution plan. For example, a very fat pipe at the beginning of a plan narrowing 
to a very thin pipe on the left-hand side of the plan suggests that filtering is happening late. 
Small pipes that get bigger and bigger suggest that your query is somehow multiplying data.
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Extra operators
There is not really any such thing as an extra operator; every operator in a plan performs a 
specific function. The idea of an "extra" operator is one that I've made up as a good way to 
help people get started reading execution plans. Here's how it works.

Every time you're reading a plan and you see an operator you've never seen, or an operator 
that you've seen and understand, but can't determine why it's in the spot it's in within the plan, 
then that is an "extra" operator. It's an operator that you don't know, or you don't understand 
why it's affecting the plan.

Your response is simple: understand what the operator is and what it's doing and then it is no 
longer an "extra" operator.

Read operators
We'll detail the various read operators in the next chapter. The ones we'll focus on here are 
the scan and the seek. A scan operator (an Index Scan or Table Scan) is just an indicator of 
one type of data access that reads across the pages in an index or a table. However, it's a type 
of data access that indicates, frequently, that a lot of rows are being accessed.

A seek operator is an indicator of another type of data access that uses the structure of an 
index to identify a starting point, and possibly an ending point, for a targeted scan through 
the pages of an index. A seek indicates, most of the time, that only a small number of rows 
are being accessed.

Most people when reading plans have a "scans bad, seeks good" mentality. In fact, neither 
of these operations is good or bad, by definition. What you want to look out for in a plan 
are high-cost scans that retrieve limited data sets (sometimes indicating a missing or poorly 
structured index), or seeks that retrieve extremely large data sets.
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The Information Behind the First Operator

Many people in the habit of reading plans right to left immediately focus their attention on 
the data access operators over on the right-hand side. They forget to look at the properties of 
the first operator, which is a pity because they are missing a lot of valuable information about 
the plan, as a whole. Hopefully, this section will put that right. As you will see, there is a lot 
of information available in the first operator about the process that the optimizer went 
through to arrive at this plan.

That's why the first operator in a plan, reading left to right, makes a good starting point for 
exploring the execution plan of any query. Microsoft defines these operations as "Language 
Elements." They represent the process that the query is performing. The official name of the 
first operator is the Result Showplan operator, but all the labels within plans and the tooltip 
refer to it by a different name: SELECT in a SELECT query, UPDATE in an UPDATE 
query, and various other names are possible. Rather than confusing things, we'll use its actual 
name, such as SELECT, rather than refer to it as the Result Showplan.

Let's start with a simple query against the HumanResources.Department table in the 
AdventureWorks2014 database.

SELECT d.DepartmentID, 
       d.Name, 
       d.GroupName 
FROM HumanResources.Department AS d 
WHERE d.GroupName = 'Manufacturing';

Listing 2-2

Execute the query in SSMS and capture the execution plan for this query, as shown  
in Figure 2-6.
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Figure 2-6: Simple plan.

The plan has only two operators, a Clustered Index Scan, which we'll discuss in Chapter 3, 
and the SELECT. When exploring the information provided by the SELECT operator, use 
the full Properties window, because the tooltip, shown in Figure 2-7, provides only a subset 
of the available information and almost none of the most important ones.

 Figure 2-7: Tooltips often don't display important properties.

To bring up the full Properties window, as shown in Figure 2-8, simply right-click on the 
SELECT operator and select Properties from the context menu. Throughout the rest of the 
book, we'll be using only the Properties window, so it makes sense to pin this window to 
your SSMS desktop. This will preclude the need to right-click on each operator and you can 
simply select the operator from that point forward.
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 Figure 2-8: Full property page for SELECT operator.

All of the property values are stored with the plan and are visible in the XML as well as in 
the graphical plan. I'm not going to explain every property here, but I will start by listing out 
a few that are occasionally useful and then describe, in a bit more detail, some of the ones 
that you will use on a regular basis:

• Cached plan size – This property is important because it indicates just how much 
memory this plan will take up within the plan cache of SQL Server.

• CardinalityEstimationModelVersion – Starting with SQL Server 2014, a new 
cardinality estimator can be used by the optimizer. You can tell if the plan in ques-
tion is using the new or the old. The value in Figure 2-8 is 140, signifying the new 
estimator. If it was 70, it would be the old version from SQL Server 7.

• CompileCPU, CompileMemory, CompileTime – The resources used to produce 
the plan. The time is in milliseconds. The memory is in kilobytes.
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• RetrievedFromCache – This is something of a misnomer. Instead of telling you 
that this plan was pulled from cache, it basically says that this plan was stored 
in the cache. You'll only see a value of "False" here if the plan in question is not 
stored in cache.

• QueryTimeStats – Introduced in SQL Server 2016, this property shows the  
execution time for the query, when you're capturing an actual query.

Optimization level
This shows the level of optimization required to produce the plan. Generally, you'll see either 
"Trivial" or "Full." A trivial plan, such as this one, can only be resolved one way by the 
optimizer, as described in Chapter 1. Exactly what makes a plan trivial is the lack of choices 
possible to the optimizer. For example, a SELECT * statement against a single table without 
a WHERE clause can only be resolved one way. Another example is an INSERT statement 
against a table using VALUES. This can only be resolved a single way by the optimizer, 
making the plan trivial.

Full optimization just means it's not a trivial plan, but doesn't actually tell you the extent of 
work that the optimizer put into the optimization of this particular plan. To see the optimiza-
tion level in action, we'll add a JOIN to the query as you can see in Listing 2-3.

SELECT d.DepartmentID, 
       d.Name, 
       d.GroupName, 
       edh.StartDate 
FROM HumanResources.Department AS d 
INNER JOIN HumanResources.EmployeeDepartmentHistory AS edh 
   ON edh.DepartmentID = d.DepartmentID 
WHERE d.GroupName = 'Manufacturing';

Listing 2-3

Figure 2-9 shows the actual execution plan.
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Figure 2-9: Execution plan illustrating FULL optimization.

We won't examine the whole plan now as it contains operators we won't discuss till later in 
the book. However, if we look at the properties for the SELECT operator, we see FULL 
optimization level, as shown in Figure 2-10.

Figure 2-10: Subset of SELECT operator properties.

We also see a value for a related property called Reason For Early Termination Of  
Statement Optimization.

If a plan is produced via the FULL optimization process, then there will be a reason for the 
optimizer to stop processing and present its selected plan. For simple queries, the reason 
you'll commonly see here is Good Enough Plan Found. This means that after at least one of 
the optimization phases, the estimated cost of the cheapest plan was below the threshold for 
entering the next phase, and therefore the optimizer selected that plan as good enough.
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For more complex queries, if this property value is not reported, it indicates that the plan was 
simply the one selected by the full optimization process after completing all possible optimi-
zations in whatever phase the optimizer chose to put the plan through.

You'll see two other values in this property, Timeout and Memory Limit Exceeded. A value 
of Timeout indicates that the optimizer attempted to go through its full optimization process, 
but didn't succeed. Instead, it ran through as many optimization attempts as it thought neces-
sary for the query, but it didn't find what it considered to be a mathematically good enough 
plan. So, it returned the least-cost plan that it had found so far.

A value of Memory Limit Exceeded means an extremely large and complex query against 
very complex structures. The plan generated is probably not optimal for the query if you have 
a Timeout or Memory Limit Exceeded. However, without simplifying your query or your 
structure, you're unlikely to get a better plan.

Parameter List
In our query in Listing 2-2, the single-table query, we hard-coded the value supplied for 
GroupName, in the WHERE clause. In other words, we did not use parameters or local vari-
ables. However, the Properties window displays a Parameter List, the expanded view of 
which is shown in Figure 2-11, where we see a parameter named @1 and its corresponding 
compile time and runtime values.

Figure 2-11: SELECT properties showing the Parameter List.

Since this is a very simple query, the optimizer has been able to perform a process called 
simple parameterization. This is a process where the optimizer recognizes that, if you 
were using a parameter instead of the hard-coded value supplied, it would be able to create 
an execution plan it can reuse. So, it substitutes a parameter of its own. In this case, the 
optimizer parameterized our search argument so that the WHERE clause of our query is now 
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WHERE d.GroupName = @1. As a result, we can see this parameter in the SELECT oper-
ator of our queries. When you see this sort of parameterization, it is also important to inspect 
the query (in the SELECT operator) to check which of the hard-coded values in the original 
query is replaced by which parameter.

Without simple parameterization, if we were to execute the query in Listing 2-2 again, but 
with a different value in the search condition, such as WHERE d.GroupName = 'Sales 
and Marketing', then the query text has changed, no plan will match, and the optimizer 
will generate a new plan, even though we've executed what is essentially the same query.

However, with our newly parameterized query, the query text remains static from one execu-
tion to the next, and SQL Server swaps in the required value for the @1 parameter on each 
subsequent execution. Assuming no SET options change, the optimizer will reuse the existing 
plan. Figure 2-12 shows the Parameter List for a second execution of the query, with a 
different value supplied in the search condition.

Figure 2-12: SELECT properties with varying Compiled and Runtime values.

However, you will note that we don't see a Parameter List in the SELECT properties for 
the two-table query in Listing 2-3. The optimizer can only perform simple parameterization 
for simple, one-table queries. The best way to promote plan reuse is to actively parameterize 
your queries, using stored procedures.

Whenever a parameter is used, the value passed to that parameter is used to compare to the 
statistics of the column or index being used. This is known as "parameter sniffing" (or "vari-
able sniffing"). The use of the specific value leads the optimizer to make better choices based 
on your statistics. So, you can look to the SELECT operator to get the compile and runtime 
values for parameters to understand how parameter sniffing was resolved on any given query. 
We'll discuss parameter sniffing, and the occasional problems it causes, in more detail when 
we get to stored procedures.
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QueryHash and QueryPlanHash

The QueryHash is a hash value of the query, which is stored with the plan and used by the 
optimizer to identify plans with the same or very similar logic. As discussed in Chapter 1, if 
the value of a submitted query matches the QueryHash for a plan in the cache, the optimizer 
analyzes the SQL text and, if it's identical, can reuse the plan, assuming no difference in 
SET options, or database ID. The QueryHash can be very useful in situations where you're 
dealing with ad hoc or dynamic T-SQL and need to identify if there are multiple, similar 
queries in the system for which separate plans are being created.

The QueryPlanHash is like the QueryHash value but for the plan itself. It identifies plans 
that are the same in terms of the operations they perform, and the order they perform them.

Leaving aside cases where the optimizer performs "auto-parameterization," we can have 
cases such as the following:

• If we make a change only to literal values, and it doesn't affect the plan, we can see 
multiple plans in the cache, each with the same QueryHash and the same Query-
PlanHash.

• If we change only the literals but it results in a different plan, then we'll see 
multiple plans, each with the same QueryHash but different values for Query-
PlanHash.

• If we make a logical change to the query that does not affect the execution plan, 
then we might see multiple plans in the cache, each with a different QueryHash 
but the same QueryPlanHash.

SET options
Figure 2-13 shows the ANSI connection settings and other SET options that were used when 
the plan was created. These are very handy values because, as mentioned above, changing 
these settings can result in multiple plans in the cache for what are, in all other respects,  
identical queries.
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Figure 2-13: ANSI settings within SELECT properties.

Other Useful Tools and Techniques when Reading 
Plans
One of the primary (but not the only) uses of execution plans is in understanding how a query 
is being executed, in order to understand why it is performing poorly.

As such, it's often very useful to collect performance metrics alongside your execution plans, 
especially when you're attempting to tune a query in your development environment. There 
are multiple ways to gather query metrics:

• SET STATISTICS IO/TIME
• Include Client Statistics
• SQL Trace (Profiler)
• Extended Events
• Query Store (covered in Chapter 16)

There are actually a few other ways, but these are the most used and the most useful. I'm 
going to recommend that you use Extended Events for detailed metrics, and Query Store, 
where possible, for aggregated metrics. There are several reasons for this, but let's start with 
using STATISTICS IO/TIME.
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I/O and timing statistics using SET commands
People often use STATISTICS IO/TIME to capture individual query performance  
when tuning a query. All we do is surround the query with the SET commands, as shown  
in Listing 2-4.

SET STATISTICS IO ON; 
SET STATISTICS TIME ON; 
  SELECT d.DepartmentID, 
      d.Name, 
      d.GroupName 
  FROM HumanResources.Department AS d 
  WHERE d.GroupName = 'Manufacturing'; 
SET STATISTICS IO OFF; 
SET STATISTICS TIME OFF;

Listing 2-4

Look at the complete output of these values for the execution of a single query as shown  
in Listing 2-5.

SQL Server parse and compile time: 
   CPU time = 0 ms, elapsed time = 0 ms. 
(2 row(s) affected) 
Table 'Department'. Scan count 1, logical reads 2, physical reads 
0, read-ahead reads 0, lob logical reads 0, lob physical reads 0, 
lob read-ahead reads 0. 
(1 row(s) affected) 
SQL Server Execution Times: 
   CPU time = 0 ms,  elapsed time = 6 ms. 
SQL Server Execution Times: 
   CPU time = 0 ms,  elapsed time = 0 ms.

Listing 2-5

Without someone explaining to you exactly what to look for, can you tell the number of reads 
and exactly how long the query took to execute? Once it's explained, sure, but the output 
here is quite unclear. The one advantage is that the I/O is broken down by table, which can 
be handy at times; because of this, depending on the situation, I will use STATISTICS IO, 
but with the following caveat: capturing STATISTICS IO can negatively impact execution 
time because of the additional overhead of transferring the I/O information to the client after 
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it's captured. If you're attempting to tune a query and you want to see if it's running faster or 
slower, as well as capture the number of reads, you need your measures to be accurate and 
they simply won't be with STATISTICS IO.

Also, it also doesn't always reveal all the work done. For example, if you have code that 
makes a lot of calls to a user-defined function, it won't count that I/O, whereas Extended 
Events does.

Include Client Statistics
If you are investigating queries that run fast but often, then the overhead of showing the 
results in grid or text is often significant enough to invalidate the performance measurements.

A useful technique in such cases is to change the query options to discard the results after 
execution, then add a high number after GO commands so that the query runs lots of times 
(e.g. GO 100 to run a query 100 times), and use SSMS's Include Client Statistics option to 
look at the elapsed time.

SQL Trace and Profiler
The Profiler GUI uses a different buffering mechanism than Trace Events which can directly 
affect your server in such a way that gathering metrics can negatively impact the server or 
even take it down. I don't recommend ever running Profiler on your production server, and 
running it on a development server can invalidate the gathering of metrics. Trace Events can't 
be filtered at the point of capture. Instead, all Trace Events are captured and then filtered 
afterwards, radically increasing their overhead on your system. Further, Trace and Profiler are 
on the list for deprecation. This means that in an upcoming edition of SQL Server they will 
no longer be available. It's time to stop using them.

Extended Events
My recommendation is to capture your I/O and timing metrics using Extended Events. 
They're in active support from Microsoft. They offer better and more effective filtering than 
Trace. They operate lower within the call stack within SQL Server so they have a much 
lower impact on performance. Their measure of performance and reads is clear and easy to 
understand. When working in SQL Server 2012 or greater, there's a fully-functional graphical 
interface for looking at the metrics gathered. 
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Because of all these reasons, I strongly advise you to use Extended Events. Listing 2-6 offers 
a basic mechanism for capturing stored procedures and batches.

CREATE EVENT SESSION QueryPerformance ON SERVER 
ADD EVENT sqlserver.rpc_completed ( 
    WHERE (sqlserver.database_name = N'AdventureWorks2014')), 
ADD EVENT sqlserver.sql_batch_completed ( 
    WHERE (sqlserver.database_name = N'AdventureWorks2014')) 
ADD TARGET package0.event_file (SET filename = N'QueryPerformance') 
WITH (MAX_MEMORY = 4096 KB, 
      EVENT_RETENTION_MODE = ALLOW_SINGLE_EVENT_LOSS, 
      MAX_DISPATCH_LATENCY = 3 SECONDS, 
      MAX_EVENT_SIZE = 0 KB, 
      MEMORY_PARTITION_MODE = NONE, 
      TRACK_CAUSALITY = OFF, 
      STARTUP_STATE = OFF);

Listing 2-6

Summary
This chapter introduced the basics of reading execution plans, starting with defining the 
"language" used by the plans themselves. We also introduced a basic set of things to look 
for within execution plans. This can act as a guide to reading all execution plans, no matter 
how large. Just remember that the details of the plan are very important and the information 
presented here is only a guide. We covered the often-neglected information behind the first 
operator. We rounded off with some useful tools and techniques that are often used side by 
side with execution plans to gather useful execution statistics.
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In this chapter, we're going to examine the data reading operators, which represent the 
 optimizer's different mechanisms for reading data. They can also act as a filtering  
mechanism, to pass on the qualifying rows to the next operator.

We'll cover the following operators in detail:
• Clustered Index Scan
• Index Scan (nonclustered)
• Clustered Index Seek
• Index Seek (nonclustered)
• Key Lookup (clustered)
• Table Scan
• RID Lookup (heap).

As we progress, you'll learn how the operators work, and start to deepen your knowledge of 
execution plans generally, the various operators that they use, and how to read the plan and to 
understand the optimizer's choices on how the query should be executed.

Reading an Index
Traditional SQL Server indexes, which excludes memory-optimized, columnstore, full-
text indexes, and others, consist of 8 K pages connected in a b+tree structure. These 
are frequently referred to as balanced-tree, bushy-tree or even Bayer-tree, after the lead 
researcher who developed them.

The overriding majority of tables in a SQL Server database should have a clustered index. 
The leaf-level pages of a clustered index store the data rows, ordered according to all the 
columns of the clustered index key. A clustered index is not a "copy" of the table. It is the 
table, with a b+tree structure built on top of it, so that the data is organized by the clustering 
key. This explains why we can only create one clustered index per table.
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In addition to a clustered index, most tables have one or more nonclustered indexes, 
designed to improve the performance of critical, frequent, and expensive queries. A 
nonclustered index has the same b+tree structure, but the leaf-level pages do not contain 
the data rows, just the data for the index key columns, plus the clustered index key columns 
(assuming the table is not a heap), plus any columns that we optionally add to the index using 
the INCLUDE clause.

There are essentially three classes of operator that SQL Server can use to access data in  
an index: scan, seek, or lookup.

Index Scans

In a scan operation, SQL Server navigates down to the first or last leaf-level page of the index 
and then scans forward or backward through the leaf pages. A scan often reads all the pages 
in the leaf level of the index, but may read only a portion of the index in some cases.

A scan often occurs when all rows need to be read to satisfy the definition of the query. You 
can also see a scan when so many rows need to be read that scanning them all would take less 
time than navigating the index structure to find them (a.k.a. "seeking," discussed shortly). 
Sometimes, the optimizer chooses a scan because there is no usable index for the Predicate 
columns, or because the query is written in such a way that performing a seek against the 
index is not possible (for example, a function against a column will lead to scans).

If a scan occurs on a clustered index, we'll see the Clustered Index Scan operator, and if 
it's on a nonclustered index, we'll see an Index Scan (nonclustered) operator. It's the same 
operation in either case. In the case of a heap table, a table without a clustered index, you'll 
see a Table Scan, which is effectively the same operation, just done against a different  
structure, the heap as opposed to an index. This will be discussed further later in the chapter.
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Clustered Index Scan
Listing 3-1 shows a simple query on the Employee table, looking for people with birthdays 
over 50 years ago.

SELECT  e.LoginID, 
        e.JobTitle, 
        e.BirthDate 
FROM    HumanResources.Employee AS e 
WHERE   e.BirthDate < DATEADD(YEAR, -50, GETUTCDATE());

Listing 3-1

Figure 3-1 shows the actual execution plan.

Figure 3-1: Execution plan with a Clustered Index Scan.

The optimizer chose a Clustered Index Scan operator to retrieve the required data. If your 
Property window is already up, click on the Clustered Index Scan to load it with informa-
tion from that operator. Otherwise, right-click on the icon and select Properties from the 
context menu.

You're going to notice a lot of properties that repeat from one operator to the next. Some of 
these properties can be useful in understanding how the operator works and what it is doing, 
but some properties are reported for many operators, but are only interesting in the context 
of specific operators. For example, Rebinds and Rewinds (estimated and actual) are only 
important when dealing with the Nested Loops operator, but there are no joins of that type  
in this plan so, in this case, those values are useless to you.
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Figure 3-2: Properties of the Clustered Index Scan operator.

Some of the properties are self-explanatory. Looking at Figure 3-2, near the bottom of the 
Properties, you find the Object property. This indicates which object this operator refer-
ences. In this case, the clustered index used was HumanResources.Employee.PK_
Employee_BusinessEntityID.

Other interesting properties could include the Output List. These are the columns that are 
output from the operation. Near the top, though, you'll also see Defined Values. These are the 
values added to the process by this operator. In this case, the Output List and the Defined 
Values are the same, but in other cases, such as when a calculation is done in a Compute 
Scalar operator (discussed in the next chapter), or in any other operator, you'll see additional 
information in Defined Values.



84

Chapter 3: Data Reading Operators

As discussed in detail in previous chapters, all the properties that start with "Estimated," such 
as Estimated I/O Cost and Estimated CPU Cost are measures assigned by the optimizer, 
but do not represent actual I/O and CPU measures. Even in an actual plan, these values 
represent the estimates from the optimizer based on statistics. Each operator's estimated cost 
contributes to the overall estimated cost of the plan.

Since we captured an actual execution plan, we see both the Estimated Number of Rows 
and the Actual Number of Rows, which is the estimated and actual number of rows output 
by the operator. In this case, the operator outputs 26 rows (the number of rows with a 
BirthDate more than 50 years in the past). You can also see the number of rows that  
were accessed via the Number of Rows Read property. In this case it's 290, or the entire 
clustered index.

The Ordered property is False, indicating that the optimizer did not require the data to be 
retrieved in index key order. If we were to add an ORDER BY e.BusinessEntityID 
clause to Listing 3-1, then this property value would change to True, because it could use 
the clustered key order to perform that operation. The optimizer can choose to use the order 
of the index for its scans. This can be very useful if one of the next operators in line needed 
ordered data, because then no extra sorting operation is needed, possibly making this execu-
tion plan more efficient, depending on the needs of the query.

The Predicate property is important, and shows the Predicate applied by this operator (click 
on the ellipsis to see the full text):

[AdventureWorks2014].[HumanResources].[Employee].[BirthDate] as [e].
[BirthDate]<dateadd(year,(-50),getutcdate())

The operator is a scan, and it reads all the pages in the leaf level of the index. In other words, 
it reads all the rows in the table, 290 in this case (see the Table Cardinality property value). 
While a scan generally reads all rows, it does not always return them all. Here, it evaluates 
the Predicate for each of the 290 rows it reads, and outputs only the 26 rows that match the 
condition. This is an important difference between a Predicate, and a Seek Predicate (which 
we'll see shortly, when we discuss Index Seek operations). Although the filtering looks 
similar in each case, the latter reads only the rows that match the condition.

So why do we see a scan in this case? Simply because the optimizer does not have an index avail-
able that matches our Predicate column. The clustered index key is on BusinessEntityID 
so the data in the leaf level is organized by that column. The scan operator has to scan all the leaf 
pages to find the matching rows. Reading one page is one logical read, so the number of logical 
reads required to return the data will depend on the number of pages in the leaf level of the index.
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Index Scan

An Index Scan is the same as a Clustered Index Scan. It's just against a different type of 
object. Let's examine the query in Listing 3-2.

SELECT  e.LoginID, 
        e.BusinessEntityID 
FROM    HumanResources.Employee AS e;

Listing 3-2

This small query is only retrieving two values, LoginID and BusinessEntityID.  
There happens to be an index on the HumanResources.Employee table, AK_
Employee_LoginID. Figure 3-3 shows the execution plan.

Figure 3-3: Execution plan with an Index Scan.

Since the query in question doesn't have a WHERE clause, there's little the optimizer can do 
to pick and choose how it's going to retrieve the information. It has to do a scan. However, 
based on the columns selected, it has a choice where it does that scan. Our index, AK_
Employee_LoginID is keyed on the LoginID column. Since the clustered index key 
for this table is on BusinessEntityID, that key is included with the nonclustered index. 
This means that the optimizer can choose this index to satisfy the query. Further, since the 
size of this index, measured in the number of pages, is smaller than the primary key index, 
scans of this index will be faster and use fewer resources.

Other than the reasons for the choice of this index, the process of the scan is the same. It's 
retrieving the data from the leaf level of the index.
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Are scans "bad?"
Scans are not a "bad" thing. If we want all, or most, of the data from a modestly-sized table, 
they can be a very efficient operation. In our Clustered Index Scan example, the fact that 
the operator processes 290 rows to output only 21 won't have a significant impact on perfor-
mance in most systems. However, what if the optimizer opted to use a scan to output 21 rows 
from a table containing not 300 but 3 million rows? At that point, we are performing a lot 
of unnecessary logical reads, and we may need to consider either tuning the query to make 
better use of our existing index, or adding an index that will allow the optimizer to choose a 
plan where the SQL Server engine will only need to read the pages containing the 21 rows 
that we need to return.

As discussed earlier, there are other reasons we may see a scan operation. Sometimes,  
our query logic causes the optimizer to choose a scan when an index exists that it could, 
notionally, seek. One example of this would be when you have a query that embeds the 
indexed column in an expression. This prevents the optimizer from being able to determine 
which of the values stored in that column may match, because it has to evaluate the  
expression for each row, and so it has to scan the entire index.

It's also possible for the statistics on an index to become stale over time. In these cases, the 
optimizer can overestimate the number of rows that are likely to be returned, choosing to 
scan when a seek could have been more efficient.

Sometimes, our query may simply require all, or most, of the rows, so a scan is the most 
efficient way to do it. In the example in Listing 3-2, the lack of a WHERE clause forced the 
optimizer to request to return every row in the table.

An obvious question to ask, if you see an Index Scan in your execution plan, is whether you 
are processing more rows than is necessary. The business case, or the application, may ask 
for all the rows from a table, but then filter those down on the client or within the applica-
tion. It's not unreasonable to push back on such requests. You could also see an unexpected 
number of rows where you know that you are filtering on a well-structured index with up-to-
date statistics and you still see a scan. In this case, you should question why and how a scan 
is being used.

Processing unnecessary rows wastes SQL Server resources and hurts overall performance. 
That's why a scan can be an indicator of a potential issue, but a scan is not, by definition,  
a bad thing.
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Index seeks

In a seek operation, SQL Server navigates directly to the page(s) containing the qualifying 
rows, or to the start/end of a range of rows, and processes only the rows that it needs  
to output.

Just as a scan is not necessarily "bad," a seek is not always "good." A seek is an efficient way 
to retrieve a small number of rows from a relatively large table. However, a seek operator 
can sometimes become highly inefficient, for example if inaccurate statistics have caused the 
optimizer to underestimate massively the number of rows it will need the operator to process.

A seek occurs when:
• an index exists that matches a Predicate column used in the query, and the index 

covers the query (can provide all the columns the query needs)
• an index matches the Predicate column used in the query, does not cover the query, 

but the Predicate is highly selective (returns only a small percentage of the rows).
If a seek occurs on a clustered index, we'll see the Clustered Index Seek operator, and if 
it's on a nonclustered index, we'll see an Index Seek (nonclustered) operator. It's the same 
operation in either case.

Clustered Index Seek
Let's examine a new query.

SELECT  e.BusinessEntityID, 
        e.NationalIDNumber, 
        e.LoginID, 
        e.VacationHours, 
        e.SickLeaveHours 
FROM    HumanResources.Employee AS e 
WHERE   e.BusinessEntityID = 226;

Listing 3-3
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Execute this query and capture the actual plan and you will see the Clustered Index Seek 
operator, chosen by the optimizer to read the clustered index on the Employee table.

Figure 3-4: A simple plan showing a Clustered Index Seek operator.

Now that our query contains a search Predicate (BusinessEntityID) that matches the 
key of the clustered index, SQL Server's use of that index becomes analogous to looking up 
a word in the index of a book to get the exact pages that contain that word. The seek operator 
uses the key values to identify the row, or rows, of data needed and navigates through the 
b+tree structure directly to those pages.

This means that an Index Seek reads only those pages that contain data that is included in 
the filter. To return a single row while using an index, such as in the example, SQL Server 
performs only three logical reads to retrieve the data. This includes the pages it reads as it 
walks through the b+tree of the index to find the leaf-level page where the row is stored, plus 
the read of the leaf-level page.

As such, seeks can significantly reduce I/O compared to a scan, assuming the filter defines  
a small enough subset of the entire data set. Of course, the leaf-level pages of a clustered 
index store the actual data rows so no extra steps are required to return all the data required 
by the query.

Figure 3-5 shows a section of the properties for our Clustered Index Seek.

Figure 3-5: Properties of the Index Seek operator.
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The index used, shown in the Object property, is the same as the example from Listing 3-1, 
specifically the PK_Employee_BusinessEntityID, which happens to be both the 
PRIMARY KEY constraint and the clustered index for this table. In this case, the index  
was created automatically to enforce the constraint; they are different objects but with the 
same name.

A seek operator has a property called Seek Predicates, which displays each of the predicates 
used to define the rows that need to be read:

Seek Keys[1]: Prefix: [AdventureWorks2014].[HumanResources].[Employee].
BusinessEntityID = Scalar Operator(CONVERT_IMPLICIT(int,[@1],0))

Once again, we can see the effects of simple parameterization. This time we also see a 
CONVERT_IMPLICIT function applied to the @1 parameter value, for BusinessEn-
tityID, since the value we supplied (226) is inferred to be a smallint, and needs to be 
converted to an int to enable a seek. The optimizer chooses the data type for simple param-
eterization based on the size of the value passed to it. If we passed a larger value, it would 
create the parameter as an int and it would create a second execution plan. However, as you 
can see, this didn't affect the choice of an Index Seek operation; some type conversions are 
harmful and lead to a scan when a seek should have been possible, others do not.

Index Seek (nonclustered)
Let's execute a simple query against the Person.Person table.

SELECT  p.BusinessEntityID, 
        p.LastName, 
        p.FirstName 
FROM    Person.Person AS p 
WHERE   p.LastName LIKE 'Jaf%';

Listing 3-4

This query takes advantage of a nonclustered index (IX_Person_LastName_First-
Name_MiddleName) on the table as you can see from the execution plan in Figure 3-6.
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Figure 3-6:  Plan showing Index Seek operator on nonclustered index.

A seek operator on a nonclustered index works in the same way as a seek operator on a 
clustered index. As such, there are no new properties to see for this operator compared to the 
Clustered Index Seek. However, it's worth noting that for this Index Seek (nonclustered) 
operator, we see both Predicate and Seek Predicates properties.

The Predicate looks like this, and essentially matches our WHERE clause:

[AdventureWorks2014].[Person].[Person].[LastName] as [p].[LastName] like 
N'Jaf%'

The Seek Predicates property shows the following:

Seek Keys[1]: 
  Start: [AdventureWorks2014].[Person].[Person].LastName >= Scalar 
Operator(N'Jaf'), 
  End: [AdventureWorks2014].[Person].[Person].LastName < Scalar 
Operator(N'JaG')

Instead of a LIKE 'Jaf%', as was passed in the query, the optimizer has modified the logic 
it uses so that an additional filter has been added as follows (minus a bit of formatting):

Person.LastName >= 'Jaf' AND Person.LastName < 'JaG'.

This is a good example of the sort of work performed by the optimizer, as outlined in Chapter 
1. In this case, the optimizer optimized the WHERE clause Predicate, rewriting it from a LIKE 
condition to an interval defined by an AND condition. This is based on the fact that all values 
matching the LIKE condition logically have to be in the specified interval. Depending on 
collation, the interval might also contain values not matching the LIKE condition. Therefore, 
the latter is not removed but repeated in the Predicate property.
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There's nothing new for us to see in the SELECT operator in the plan, except to note that 
this statement, unlike many of the simple statements we've been using as examples, did not 
go through simple parameterization. This is because a LIKE Predicate can be handled in 
different ways, depending whether the text-matching pattern starts with a wildcard, and so 
the optimizer can't do the parameterization.

As noted earlier, for a nonclustered index the leaf-level pages contain only the indexed 
columns, plus columns from the clustered index (BusinessEntityID, in this example), 
plus any columns we included using the INCLUDE clause. In this example, all the columns 
required by the query are contained in the leaf level of the nonclustered index. In other 
words, this is a covering index for this query.

Key lookups

A Key Lookup (Clustered) operator occurs in addition to an Index Seek (or sometimes an 
Index Scan), when the index used does not cover the query. The optimizer uses a Key 
Lookup to the clustered index, which will retrieve values for columns not available in the 
nonclustered index.

Let's take the same query from Listing 3-4 and modify it just slightly so that we also return 
the NameStyle column, as shown in Listing 3-5.

SELECT  p.BusinessEntityID, 
        p.LastName, 
        p.FirstName, 
        p.NameStyle 
FROM    Person.Person AS p 
WHERE   p.LastName LIKE 'Jaf%';

Listing 3-5

If we run this query and capture the plan, it should look something like Figure 3-7.
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Figure 3-7:  A plan with a Key Lookup operator.

The optimizer has still chosen an Index Seek (nonclustered) operator on the same nonclus-
tered index as we saw previously, IX_Person_LastName_FirstName_MiddleName. 
However, in terms of the columns required by the query, the leaf level of the index stores 
only LastName, FirstName (since these are part of the index key), and Busines-
sEntityID (the clustered index key). It does not contain the NameStyle column, and 
so we see the additional Key Lookup operator, which uses the clustered index key values 
to retrieve the corresponding value for the NameStyle column from the leaf level of the 
clustered index.

A Nested Loops operator, which combines the results of these two operations, always 
accompanies a Key Lookup. We won't examine that operator until the next chapter.

Let's review some of the properties for this Key Lookup operator:

Figure 3-8:  Properties showing the Output List of columns.
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The Object property shows PK_Person_BusinessEntityID, which is the clustered 
index on this table, and the target of the Key Lookup. The expanded Output List, confirms 
that the output from this operator is the NameStyle column.

The Seek Predicates property shows the following:

Seek Keys[1]: Prefix: [AdventureWorks2014].[Person].[Person].
BusinessEntityID = Scalar Operator([AdventureWorks2014].[Person].[Person].
[BusinessEntityID] as [p].[BusinessEntityID])

If we look at the values for Estimated and Actual Number of rows, we see that it is 1 row, 
in each case, so the Key Lookup operator was only executed one time.

Figure 3-9: Properties comparing Estimated Number of Rows and Number of Executions.
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A Key Lookup, depending on the number of rows being returned, could be an indication 
that query performance might benefit from a covering index, although it's never a good idea 
to create a covering index for every single query that uses a lookup, because that would 
result in a wild growth of little-used indexes. A Key Lookup becomes expensive only when 
it is executed a lot of times, because each lookup is a Clustered Index Seek that will cause 
several logical reads (usually three), to traverse the b+tree structure to the page containing 
the data.

If a Key Lookup seems problematic, it's a good habit to verify that all the columns being 
returned are needed by the consuming application. If they are, then try to cover the query by 
extending an existing index, rather than creating a new one.

A covering index is created by either having all the columns necessary as part of the key of 
the index, or by using the INCLUDE operation to store extra columns at the leaf level of the 
index so that they're available for use with the index.

Reading a Heap
A heap is a table without a clustered index and therefore the rows are not stored in any order 
(beyond "order of arrival"). We can add nonclustered indexes to a heap. In this case, the 
nonclustered index has the location, the row identifier, where the row is stored within the 
heap rather than the clustered key value.

There are only two ways SQL Server can read data from a heap: via a scan or via a lookup.

Table Scan

Table Scans only occur against heap tables, so let's experiment now with a couple of queries 
against tables without a clustered index.
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SELECT  dl.DatabaseUser, 
        dl.PostTime, 
        dl.Event, 
        dl.DatabaseLogID 
FROM    dbo.DatabaseLog AS dl;

Listing 3-6

This query results in the execution plan on display in Figure 3-10.

Figure 3-10: Execution plan with a Table Scan operator.

There's nothing new in the SELECT operator, so we can go straight to the other operator in 
this plan, Table Scan. When reading an index, the equivalent operator is a Clustered Index 
Scan.

A Table Scan can occur for several reasons, but it's often because there are no useful 
nonclustered indexes on the table, and the query optimizer has to search through every row 
in order to identify the rows to return. Another common cause of a Table Scan is a query that 
requests all the rows of a table, as is the case in this example.

When all, or the majority, of the rows of a table are returned then, whether an index exists or 
not, it is often faster to scan through each row and return them than look up each row in an 
index. Last, sometimes, especially for a table with few rows, scanning the table is faster even 
when there could be a selective index.

If the number of rows in a table is relatively small, Table Scans are generally not a problem. 
On the other hand, if the table is large and many more rows are processed than you need for 
the query, then you might want to investigate ways to rewrite the query to read fewer rows, or 
add an appropriate index to speed performance.
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RID Lookup

We can put filter criteria into a query that could result in a RID Lookup as in Listing 3-7.

SELECT  dl.DatabaseUser, 
        dl.PostTime, 
        dl.Event, 
        dl.DatabaseLogID 
FROM    dbo.DatabaseLog AS dl 
WHERE   dl.DatabaseLogID = 1;

Listing 3-7

This query results in a different execution plan than before.

Figure 3-11: Execution plan showing a RID Lookup operator.

We have an Index Seek operator and a RID Lookup (Heap) operator, and a Nested Loops 
operator combining the two streams.
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RID Lookup is the heap equivalent of the Key Lookup operation. As was mentioned before, 
nonclustered indexes don't always have all the data needed to satisfy a query. When they do 
not, an additional operation is required to get that data. When there is a clustered index on the 
table, it uses a Key Lookup operator as described above. When there is no clustered index, 
the table is a heap and must look up data using an internal identifier known as the Row ID  
or RID.

To return the results for this query, the query optimizer first performs an Index Seek on the 
primary key. While this index is useful in identifying the rows that meet the WHERE clause 
criteria, all the required data columns are not present in the index. How do we know this? In 
the Properties for the Index Seek, we see the value Bmk1000 in the Output List.

 Figure 3-12: Output list in the properties of the Index Seek.

This "Bmk1000" is an additional column, not referenced in the query. It's the RID, i.e. the 
location of the row in the heap, and it will be used in the Nested Loops operator to join with 
data from the RID Lookup operation. The Bmk prefix is a throwback from when these types 
of lookup operations were called "Bookmark Lookups."

If we look at the Seek Predicates of the RID Lookup operator as shown in Figure 3-13, you 
can see that the Bmk1000 value is used again:

Figure 3-13: Seek Predicates defined in the properties of the Index Seek operator.

Bmk1000 is the key value, which is a row identifier or RID, from the nonclustered index. In 
this case, SQL Server had to look up only one row, which isn't a big deal from a performance 
perspective. If a RID Lookup returns many rows, however, you may need to consider taking 
a close look at the query to see how you can make it perform better by using less disk I/O – 
perhaps by rewriting the query, by adding a clustered index, or by using a covering index.
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Summary
This chapter explained all the various mechanisms involved in reading data into execution 
plans using scans, seeks, and lookups against indexes, and scans and RID Lookups against 
heap tables. A scan operator in a plan is not necessarily a bad thing, nor is a seek neces-
sarily ideal. You need to read through the properties of the operators within execution plans 
to understand what each operator is doing, how many rows it processed, how many rows 
it returned, how the filtering mechanism worked, and so on. This will be a common theme 
throughout the rest of the book.
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In the previous chapter, we kept things simple, and stuck to single-table queries. However, 
in any real database, most of the execution plans you ever look at will have at least one join 
operator. After all, what's a relational database without the joins between tables? SQL Server 
is a relational database engine, which means that part of the designed operation is to combine 
data from different tables into single data sets. The execution plan exposes the operators that 
the optimizer uses to combine data.

This chapter is concerned mainly with various logical join operations in T-SQL. When imple-
menting the join, SQL Server will take the two data inputs, one from each table generally, 
and combine the data according to the join criteria. The optimizer might choose to implement 
the join using one of four physical join operators:

• Nested Loops – For each row in the top data set, perform one search of the other 
data set for matching values.

• Hash Match – Using each row in the top data set, create a hash table, which will 
then be probed using the rows from the second data set to find any matching value.

• Merge Join – Read data from both inputs simultaneously and merge the two 
inputs, joining each matching row value. This requires both inputs to be sorted on 
the join column(s).

• Adaptive Join – Introduced in SQL Server 2017, this operator implements both 
the Nested Loops and the Hash Match algorithms, and chooses the option with the 
lowest cost at runtime, when the actual number of rows in the top input is known.

As we'll discuss, the physical join operator chosen by the optimizer will depend both on the 
size of the two input data streams and on how they are ordered.

Having covered these, we'll consider briefly other tasks that the optimizer can fulfill using 
JOIN operators, as well as other ways of combining data, such as via the UNION T-SQL 
command, and how SQL Server implements such operations.
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Logical Join Operations

The join operators above implement eight logical join operations and two operations that 
combine data in a way that is not actually considered a join, as follows:

• Inner Join
• Outer Join (Left, Right, or Full)
• Semi Join (Left or Right)
• Anti Semi Join (Left or Right)
• Concatenation and Union.

The first two can be specified directly in T-SQL, whereas the Semi Joins are the logical oper-
ation associated with EXISTS (or NOT EXISTS) and IN, and Concatenation and Union 
are associated with UNION ALL and UNION.

The optimizer will choose what is deems to be the lowest-cost physical operator (Nested 
Loops, Hash Match, or Merge Join) to implement the logical join conditions described in 
the T-SQL statement.

Fulfilling JOIN Commands
This section is concerned explicitly with how the optimizer uses join operators to fulfill 
T-SQL JOIN commands.

Let's start off with the query in Listing 4-1, which retrieves Employee information from 
the AdventureWorks2014 database, concatenating the FirstName and LastName 
columns in order to return the information in a more pleasing manner.

SELECT e.JobTitle, a.City, 
  p.LastName + ', ' + p.FirstName AS EmployeeName 
  FROM HumanResources.Employee AS e 
    INNER JOIN Person.BusinessEntityAddress AS bea 
      ON e.BusinessEntityID = bea.BusinessEntityID 
    INNER JOIN Person.Address AS a 
      ON bea.AddressID = a.AddressID 
    INNER JOIN Person.Person AS p 
      ON e.BusinessEntityID = p.BusinessEntityID;

Listing 4-1
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Figure 4-1 shows the full, actual execution plan for this query.

 Figure 4-1: Execution plan showing two Nested Loops joins.

This plan has more operators than any we've seen so far but, as with every plan, we can read 
it either by starting at the top right and following the data arrows left, or read from left to 
right, following the order in which the operators are called.

If we were trying to tune this query, we might be tempted to simply jump in and look at those 
operators with the highest estimated cost, namely the Clustered Index Seek against the 
Person.Person table (27%), or the Index Scan on the Person.Address table (48%), 
or the Hash Match join operator (16%).

However, a better approach is first to take some time to understand broadly what the plan 
does. Reading right to left, it first joins matching rows in the Employee and Busines-
sEntityAddress tables using a Nested Loops operator, then uses a Hash Match oper-
ator to join rows in that data stream with rows in the Address table, based on matching 
AddressID values, and then uses another Nested Loops operator to join those rows with 
matching rows in the Person table (on BusinessEntityID). Finally, it adds a computed 
scalar value to each row and returns it.

We're going to focus on the role of each of the join operators, within the context of the plan 
as a whole, so we're just going to start in the top right of the plan, and take a more detailed 
look at the first Nested Loops join operator.
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Nested Loops operator

 A Nested Loops operator, often referred to as a nested iteration, takes a set of data, referred 
to as the "outer input," and compares it, one row at a time, to another set of data, called  
the "inner input" (on the graphical plan, these correspond to the two pipes feeding into the 
Nested Loops operator: the outer input on the top side, and the inner input on the bottom 
side). This sounds very like a cursor and, in effect, it is one. In fact, in this case, it's two 
cursors. The first cursor is the outer input data set. It will be processed one row at a time.  
The second cursor is the inner input, which will be processed one row at a time for each row 
from the outer input. As a result, the operator (or operators) in the inner input, the lower 
branch in the graphical plan, will each be executed multiple times, once for each row found 
in the outer input.

A Nested Loops operator can be highly efficient, as long as the outer input is small and it is 
cheap to search the inner input, which in the case of simple join operations is often achieved 
by indexing the "inner table" on the join column.

The execution plan in Figure 4-1 has two Nested Loops join operators. Let's start with an 
exploded view of the top right-hand corner of the plan, and take a look at one of them in 
more detail.

Figure 4-2: Nested Loops join within an inner and outer input.
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In Figure 4-2, a Nested Loops iteration drives the joining of matching rows in the 
Employee and BusinessEntityAddress table. Notice that, in this example, an  
Inner Join is the logical operation associated with this physical operator.

The outer input for this Nested Loops operator is the data produced by a scan of the clustered 
index on the Employee table. It scans the entire index, retuning every row (290 rows, in 
this case). For each of these rows, the Nested Loops operator calls the operator in the inner 
input, searching for rows in the BusinessEntityAddress table with a matching Busi-
nessEntityID value. In this case, this means that it executes 290 Index Seek operations 
on the clustered index. Figure 4-3 shows the properties of the Nested Loops operator.

Figure 4-3: Property page of the Nested Loops operator.

As with most operators, there is a common set of properties on display, some of which don't 
apply and some of which are more useful than others. The following subsections review a 
few of the properties that are of interest in this case.
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Estimated and Actual Number of Rows properties
Often, it's interesting to compare the Actual Number of Rows, 290, to the Estimated 
Number of Rows, 275.573 (proving this is a calculation, since you can't possibly  
return .573 rows).

A difference this small is not worth worrying about, but a larger discrepancy can be an 
indication that the optimizer has used inaccurate estimations of the number of rows that will 
need to be processed when selecting the plan, which could result in a suboptimal plan choice. 
There are many possible causes of this. For example, perhaps the optimizer had to generate 
a plan for a query containing a Predicate on a column with missing or stale statistics, or the 
optimizer may have reused a plan where the data volume or distribution in a column has 
changed significantly since the statistics were last created or updated. Alternatively, the data 
distribution in a column may be very non-uniform, making accurate cardinality estimations 
difficult, or the query may contain logic that defeats accurate estimations. Parameter sniffing 
may have occurred, resulting in a plan generated for an input parameter value with an esti-
mated row count that is atypical of the row counts for subsequent input values. Chapter 8 
discusses parameter sniffing in some detail.

There is another Nested Loops operator in Figure 4-1, which takes the 290 rows from the 
Hash Match join (discussed shortly) as the outer input, and so performs 290 separate seek 
operations of the clustered index on the inner Person table, joining matching rows in that 
table. Since the Clustered Index Seek on Person is estimated to be the costliest operation 
in the plan, it's worth peeking at its properties (see Figure 4-4).

Again, the first thing is to check that there is no wild disparity between estimated and actual 
number of rows processed. Initially, it seems like there might be, since the Estimated 
Number of Rows is just 1 but the Actual Number of Rows is 290. However, SSMS is 
inconsistent in how it reports these numbers; the estimated row count is per execution, and 
the optimizer estimated this Clustered Index Seek will be executed 275.573 times, for an 
estimated 275.573 rows returned. The actual rows count is simply the total number of rows 
processed, which is 290 (an average of 1 row returned per execution).
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Figure 4-4: Nested Loops operator showing runtime statistics.

The fact that the optimizer estimates that it will execute this Clustered Index Seek on the 
Persons table about 257 times explains at least partly why it is the highest-cost operator in 
the plan. The Clustered Index Seek on the BusinessEntityAddress table is estimated 
to be executed even more often, 290 times, but because this table uses far fewer bytes per 
row it has one less level of index pages, reducing the amount of work per seek from three to 
two logical reads.

Taking the time to understand how the operations interact will permit you to understand why 
the costs are distributed the way they are.
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Outer References property

There are two ways that the Nested Loops operator can resolve a join condition. One way 
is via the Outer References property. In this case, operators on the inner input of the join, 
the lower branch in a graphical plan, use values from the outer input to deliver the results. 
If ten values are pushed down from the outer input into the inner input, referred to as Outer 
References, then this implies that the inner input will be executed ten times, searching for 
matching rows. The inner input will only ever return matching rows, and so the Nested 
Loops operator does not have to do any work in terms of validating matching data.

You can see the Outer References property within the tooltip or the property page of the 
Nested Loops operator, as shown in Figure 4-5.

Figure 4-5: Outer References details of the Nested Loops join.

You can see that in this case values from the BusinessEntityID column are being 
pushed down to the inner input. The BusinessEntityID column is the leading column 
of a usable index on BusinessEntityAddress, so by pushing it into the inner input it 
facilitates a seek operation (see Figure 4-2).

Incidentally, the other value pushed down, Expr1008, has no other reference anywhere 
within the execution plan, even if you search the XML. Therefore, it's likely that it's an arti-
fact of the process of comparison in the Clustered Index Seek operator.
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The second way that the Nested Loops operator can resolve a join condition is via the 
Predicate property. This happens when the inner input has no pushed-down values, so it 
will always return the same results on every subsequent execution. Here, the Nested Loops 
operator applies the join Predicate to the rows returned from the inner input, and only passes 
on matching rows. We'll see an example of this in Chapter 5.

Rebind and Rewind properties
A Rebind and a Rewind both count of the number of times the Init() method is called by an 
operator, but do so under different circumstances. The Init() method initializes the operator 
and sets up any required data structures. In most cases, this happens once for an operator, in 
any plan. However, a Nested Loops operator executes its inner input once for every row in 
the outer input. This means that the Init() method on the operators in the inner input can be 
called more than once.

Every execution is either a Rebind or a Rewind. A Rebind occurs for the very first  
execution of the inner input, and then each time the values of the column pushed down  
from the outer input change (i.e. when the values marked by Outer References change).

A Rewind occurs when the values are unchanged, or when there are no Outer References  
(so the join condition is resolved using a Predicate, within the Nested Loops operator). In the 
latter case, you'll always see a single Rebind for the first execution, and then, from that point 
forward, a series of Rewinds.

For the Nested Loops operator depicted in Figure 4-5, the join is resolved using values in the 
BusinessEntityID column as the Outer References, and there are 290 distinct values for 
this column (it is the primary key). Notionally, this means that all 290 executions of the inner 
input are Rebinds.

However, Figure 4-6 shows the properties of the Clustered Index Seek, which is the inner 
input of the Nested Loops operator, and we can see that the Rebinds and Rewinds are zero 
in each case.
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Figure 4-6: Properties of the Clustered Index Seek.

Of course, knowing whether the outer input value changed is only useful to the optimizer if 
the results of the previous execution of the inner input, for the same value, are stored some-
where. For example, Spool operators save their results in a worktable, a Sort saves them in 
memory and a Table Valued Function populates a table variable. When these operators are 
present, the optimizer can streamline the execution process because, if it knows it has the 
rows it needs stored somewhere then, when a Rewind occurs, there is no need to re-do all the 
work to produce them again.

Therefore, Rebinds and Rewinds are only relevant, and the property values only populated, 
when the Nested Loops operator interacts with one of the following operators, each of which 
can save the results from its previous execution:

• Index Spool
• Remote Query
• Row Count Spool
• Sort
• Table Spool
• Table valued function.



109

Chapter 4: Joining Data

We won't describe any of the operators listed above until Chapter 5, so we won't walk 
through an example here. However, let's say the outer input of a Nested Loops join produces 
14 rows, the join condition is resolved using Outer References and there are 10 distinct 
values in the Outer References column. The inner input is an Index Spool, the properties of 
which show that the 14 executions of this inner input comprise 10 Rebinds and 4 Rewinds.

Figure 4-7: Rebinds and Rewinds for an Index Spool.

For each Rewind, there is no need to execute any operators downstream (to the right) of the 
spool, as the matching values are already stored in the spool's worktable. This means that 
each of these operators execute only 10 times, once for each Rebind of the inner input.

Hash Match (join)

The optimizer can use a Hash Match operator to implement any of the logical JOIN opera-
tions, though it can only use it to implement a UNION in cases where the probe input is 
guaranteed to have no duplicates, and it is not used at all for Concatenation (UNION ALL), 
which is instead done by the Concatenate operator. A Hash Match can also aggregate data 
from a single data input, but we'll focus exclusively on join implementations here, covering 
aggregation in Chapter 5.
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When used to implement logical join operations, the Hash Match operator makes a single 
pass over two data inputs. One data input (the "build") is stored in memory, in a so-called 
hash table, and then this structure is used to compare data by probing, or comparing, from  
the other data input, to arrive at the matching output set.

How Hash Match joins work
Figure 4-8 shows an exploded view of the section of the plan for Listing 4-1 that contains  
a Hash Match, in this case used to implement an inner join.

Figure 4-8: Hash Match join showing two inputs.

In a Hash Match join operator, the top input is called the Build input and the bottom  
input is called the Probe input. In this example, the Build input is the 290 rows produced  
by the first Nested Loops operator in the plan, discussed above. This is by far the smaller  
of the two inputs.

The Hash Match operator reads the Build input, hashes the join column (in this case 
AddressID), and stores the column values, and their hashes, in a hash table, in memory. 
It then reads the rows in the Probe input one row at a time, in this case the 19614 rows that 
result from a Nonclustered Index Scan on the Address table. For each row, it produces a 
hash value for the AddressID column that it can compare to the hashes in the hash table, 
looking for matching values.
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Hashing and Hash Tables
Hashing is a programmatic technique where data is converted into a simple number to make 
searching for that data much more efficient. For example, SQL Server converts a row of data 
in a table into a value that is derived from the columns in that row that are designated as the 
input to the hash function.

A hash table is a data structure in which SQL Server attempts to divide all the elements into 
equal-sized categories, or buckets, to allow quick access to the elements. The hashing func-
tion determines into which bucket an element goes. For example, SQL Server can take a 
column from a table, hash it into a hash value, and then store the matching rows in memory, 
within the hash table, in the appropriate bucket.

Figure 4-9 shows the Hash Keys Build and Hash Keys Probe properties for the Hash 
Match join operator. These properties reveal which columns from each input are hashed by 
the operator, when building the hash table and comparing the rows from the Probe input.

Figure 4-9: Hash Keys Build and Hash Keys Probe values.

Performance considerations for Hash Match joins
A Hash Match join operator is blocking during the Build phase. It has to gather all the data 
in order to build a hash table prior to performing its join operations and producing output. 
The optimizer will only tend to choose Hash Match joins in cases where the inputs are not 
sorted according to the join column. Hash Match joins can be efficient in cases where there 
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are no usable indexes or where significant portions of the index will be scanned. If the inputs 
are already sorted on the join column, or are small and cheap to sort, then the optimizer may 
often opt to use a Merge Join instead.

However, a Hash Match join is often the best choice when you have two unsorted inputs, 
both large, or one small and one large. The optimizer will always choose what it estimates to 
be the smaller of the data inputs to be the Build input, which provides the values in the hash 
table. The goal is many hash buckets with few rows per bucket (i.e. minimal hash collisions, 
as few duplicate hashed values as possible). This makes finding matching rows in the Probe 
input fast, even with two large inputs, because the optimizer only needs to search for matches 
in the basket with the same hash value, instead of scanning all the rows.

Performance problems with Hash Match only really occur when the Build input is much 
larger than the optimizer anticipated, so that it exceeds the memory grant, and subsequently 
spills to disk.

So, given that the section of our plan, in Figure 4-6, contains what the optimizer reckons 
are the second and third most expensive operators in the plan, in the Index Scan on the 
Address table, and the Hash Match join itself, should we attempt to "tune" these  
operations? Sometimes, you can. While a Hash Match join may represent the current,  
most efficient way for the query optimizer to join two tables, it's possible that we can tune 
our query to make available to the optimizer more-efficient join techniques, such as using 
Nested Loops or Merge Join operators. For example, seeing a Hash Match join in an 
execution plan sometimes indicates:

• a missing or unusable index
• a WHERE clause with a calculation or conversion that makes it non-SARGable  

(a commonly used term meaning that the search argument, "sarg," can't be used); 
this means it won't use an existing index.

However, it depends simply on what's happening in the query. Generally, you don't tune  
individual operators; you use them to understand the execution plan. Some expensive  
operators can be targeted, others are estimated to be expensive but aren't really, and some 
really are expensive but are still an essential element of the cheapest plan overall. A Hash 
Match join often falls in the latter category, as the alternatives are either Nested Loops with 
lots of executions of the inner input, or using sorts to enable a Merge Join (covered later). In 
this case, with no WHERE clause, the Hash Match is simply an efficient mechanism to put all 
the data together to satisfy the query in question.
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Compute Scalar

As each row emerges from the second Nested Loops operator, in our plan in Figure 4-1, it 
passes into a Compute Scalar operator. This is not a type of join operation but since it 
appears in our plan, we'll cover it here.

Figure 4-10: Compute Scalar operator.

Figure 4-11 shows the Properties window for this operator.

 Figure 4-11: Properties of the Compute Scalar operator.
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This is simply a representation of an operation to produce one or more simple, scalar values, 
usually from a calculation – in this case, the alias EmployeeName, which combines the 
columns Contact.LastName and Contact.FirstName with a comma between 
them. While this was not a zero-cost operation, 0.000027, the cost estimate is so trivial in 
the context of the query as to be essentially free. You can see what this operation is doing by 
looking at the definition for the highlighted property, Defined Values, but to really see what 
the operation is doing, click on the ellipsis on the right side of the property page. This will 
open the expression definition as shown in Figure 4-12.

Figure 4-12: Defined values of the Compute Scalar operator.

While the Compute Scalar operator in this case is very straightforward and clear, this  
won't always be the case. These operations are not costed completely by the optimizer, so 
you may see situations where the estimates for the work involved are radically off. The value 
is calculated as 0.0000001 * (Estimated Number of Rows), regardless of the complexity or 
number of calculations being done. Also, the logical representation of where the Compute 
Scalar occurs within the plan is represented here; it's not necessarily where the physical 
process occurs within the plan. That's why you sometimes see no values for actual number of 
rows or actual executions on a Compute Scalar operator, in an actual execution plan; if all 
the computations are processed elsewhere, the operator does not run at all and can therefore 
not track these numbers.

Because of the lack of accurate estimated costs, you should understand exactly what a 
Compute Scalar operation represents within your execution plan because they can represent 
a hidden cost, especially when scalar user-defined functions (UDFs) are involved.
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Merge Join

A Merge Join operator works from ordered data only. It takes the data from two inputs and 
uses the fact that the data in each input is ordered on the join column to simply merge the two 
inputs, joining rows based on the matching values, which it can do very easily because the 
order of the values will be identical. A Merge Join is a non-blocking operator; as it joins 
each row, with matching values on the join column, it passes it on to the next operator 
upstream.

If each data input is ordered by the join column, this can be one of the most efficient join 
operations. However, the data is frequently not ordered, and so sorting it for a Merge Join 
requires the addition of a Sort operator to ensure it works; the sorting requirement can make 
plans with a Merge Join operation less efficient, depending on how the sort is satisfied.

However, because a Merge Join ensures that the output from the join process itself is also 
ordered, it may sometimes be better to pay the cost of a single Sort operation to ensure 
ordered output for additional Merge Join operations in a plan.

How Merge Joins work
To demonstrate a Merge Join operator, we need a new query.

SELECT c.CustomerID 
FROM Sales.SalesOrderDetail AS sod 
    INNER JOIN Sales.SalesOrderHeader AS soh 
        ON sod.SalesOrderID = soh.SalesOrderID 
    INNER JOIN Sales.Customer AS c 
        ON soh.CustomerID = c.CustomerID;

Listing 4-2

Figure 4-13 shows the execution plan for this query.
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 Figure 4-13: Execution plan showing a Merge Join.

Here, the optimizer has selected a Merge Join operator to perform the INNER JOIN 
between the Customer and SalesOrderHeader tables, based on matching values of 
CustomerID. Since the query did not specify a WHERE clause, a scan was performed on 
each table to return all the rows in each table. Also, you'll note that the order of the join 
operations is not the same as that specified by the query. The optimizer can choose to rear-
range the order of tables within the plan as it sees fit, to arrive at the best possible plan. Here, 
the input with guaranteed unique values, the Customer table, is used as the top input, so we 
have a one-to-many join.

The data in the top input, the Clustered Index Scan on the Customer table, is ordered by 
CustomerID. The bottom input is the data from a Nonclustered Index Scan on the Sale-
sOrderHeader table. Again, this nonclustered index is ordered by CustomerID. In other 
words, both data inputs are ordered on the join column, as confirmed, in the Properties of the 
Merge Join operator.

Figure 4-14: Properties of the Merge Join showing Where property values.

Once the Merge Join has joined two of the tables, the optimizer joins the third table to the 
first two using a Hash Match join, as discussed earlier. Finally, the joined rows are returned.
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Performance considerations for Merge Joins
The key to the performance of a Merge Join is that the inputs are sorted by the join columns. 
We can see that the results from the scans are sorted if we consult the properties of those 
operators. Figure 4-13 shows the Clustered Index Scan operator, with an Ordered property 
value of True, meaning that the optimizer requires the input to be ordered.

Figure 4-15: Scan properties showing Ordered value.

If you see an Ordered property set to False, that doesn't mean that the data being retrieved 
is not, in fact, ordered; it merely means that the optimizer does not require the data to be 
ordered to satisfy the rest of the plan.

So, in this example, the output of the scans is ordered by the join columns, and no additional 
sorting is necessary. If one or more of the inputs is not ordered, and the query optimizer 
chooses to sort the data in a separate operation before it performs a Merge Join, it might 
indicate that you need to reconsider your indexing strategy, especially if the Sort operation is 
for a large data input. Could you, for example, modify an existing index so that the optimizer 
can avoid the need for the Sort operation?

The Merge Join in this example is for a one-to-many join, as we can see by inspecting the 
Many to Many property value for the operator, which is False.
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Figure 4-16: Merge Join properties showing Many to Many value.

However, a Merge Join for a many-to-many join condition can prove to be a lot more  
expensive, and the performance a lot worse. Consider the example in Listing 4-3.

SET STATISTICS IO ON; 
SELECT      sod.ProductID, 
            sod.SalesOrderID, 
            pv.BusinessEntityID, 
            pv.StandardPrice 
FROM        Sales.SalesOrderDetail   AS sod 
INNER JOIN  Purchasing.ProductVendor AS pv 
      ON    pv.ProductID = sod.ProductID; 
SET STATISTICS IO OFF;

Listing 4-3

Figure 4-17 shows the execution plan for this query.
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Figure 4-17: Execution plan with a Many to Many Merge Join.

The optimizer tries to infer uniqueness on the join columns of each input, by looking at 
unique indexes as well as at plan elements, such as a Distinct or Aggregate operator in a 
branch of the plan. If one of the inputs of the join would be guaranteed unique, it would be 
the top input, Many to Many would be False, and the join efficient. However, in this case, 
both inputs can, and do, have multiple rows with the same ProductID value. In the Merge 
Join, Many to Many is true, and the join becomes less efficient. This can be seen in the SET 
STATISTICS IO output:

(74523 rows affected) 
Table 'Worktable'. Scan count 19, logical reads 18013, physical 
reads 0, read-ahead reads 0, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'ProductVendor'. Scan count 1, logical reads 7, physical 
reads 1, read-ahead reads 8, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'SalesOrderDetail'. Scan count 1, logical reads 250, physical 
reads 0, read-ahead reads 326, lob logical reads 0, lob physical 
reads 0, lob read-ahead reads 0.

The problem is that, for a Many to Many join, rows from the bottom input must be copied 
to a worktable in tempdb. If a new row from the top input has the same value in the join 
column as the previous, the temporary table is used to rewind to the start of the duplicates 
as needed in the comparison. If the data from the top input changes, the temporary table is 
cleared out and loaded with new matching rows from the bottom. The I/O stats demonstrate 
the impact of this extra activity in the temporary table: the number of logical reads is more 
than 98% of the total number of logical reads of the query as a whole.

In this case, there are duplicates for ProductID in both tables so there is little we can do to 
change this. However, it is not uncommon to see Merge Join operators with Many to Many 
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set to True where it could have been False. This is often related to missing constraints in  
the tables, or to embedding columns in expressions (such as implicit or explicit data type 
conversions). The optimizer can only correctly infer uniqueness if there is a uniqueness 
constraint on a column that is not embedded in an expression.

Adaptive Join

Introduced in SQL Server 2017, and also available in Azure SQL Database and Azure SQL 
Data Warehouse, the Adaptive Join is a new join operation. Currently it only works with 
batch mode (see Chapter 12), but that may change as cumulative updates are released, or in 
updates to Azure.

The optimizer can choose an Adaptive Join operator to defer the exact choice of physical 
join algorithm, either a Hash Match or a Nested Loops, until runtime, when the actual 
number of rows in the top input is known rather than estimated.

To see the Adaptive Join in action, we need a batch mode plan, which requires a column-
store index. Listing 4-4 creates a nonclustered columnstore index on the Production.
TransactionHistory table.

Once you've finished testing the example in this section, please return to this listing and run 
the DROP INDEX batch to remove the columnstore index.

DROP INDEX IF EXISTS ix_csTest ON Production.TransactionHistory; 
GO 
CREATE NONCLUSTERED COLUMNSTORE INDEX IX_CSTest 
ON Production.TransactionHistory 
( 
    TransactionID, 
    ProductID, 
    ActualCost 
);

Listing 4-4
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With this index in place, executing the simple query in Listing 4-5 (on SQL Server 2017 or 
Azure SQL Database, with database compatibility level set to at least 140 in either case) will 
result in an Adaptive Join.

SELECT p.Name AS ProductName, 
       th.ActualCost 
FROM Production.TransactionHistory AS th 
    JOIN Production.Product AS p 
        ON p.ProductID = th.ProductID 
WHERE th.ActualCost > 0 
      AND th.ActualCost < .21;

Listing 4-5

Figure 4-18 shows the actual execution plan.

Figure 4-18: Execution plan showing an Adaptive Join.

The first thing I want to point out about this plan is the warning we have on the SELECT 
operator, which is an Excessive Memory Grant warning. We'll deal with that warning in 
Chapter 12.

The first thing you will likely notice about the Adaptive Join operator is that, unlike all the 
other join operators we've seen up to this point, it has three inputs. The top input is a scan of 
a nonclustered columnstore index (we won't cover the specifics of plans involving column-
store indexes until Chapter 12). The lower inputs, an Index Scan plus Filter and a Clustered 
Index Seek are, respectively, the operators to support either a Hash Match join, or a Nested 
Loops join.
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Since a columnstore index doesn't have statistics in the same way that a rowstore index  
does, there's not always an easy way for the optimizer to accurately estimate the number  
of rows returned.

All operations necessary for either join type are defined and stored with the execution plan at 
compilation time. If this plan were retrieved from the plan cache, or the Query Store, it would 
show both possible branches to support both possible join types. In short, you can't tell which 
path was taken without considering the properties of an actual plan. Any estimated plan will 
show both possible branches.

Just as for the Hash Match join operator, the Adaptive Join operator has a Build phase, 
which stores the rows for the top input in a hash table in memory, which is why there is a 
memory grant. The operator is blocking during this phase.

Once the top input is processed and stored in the hash table, the exact number of rows is 
known. This number is now used to decide whether to proceed as a Hash Match or Nested 
Loops join. That determination is made by comparing the number of values in the hash table 
to a threshold determined by the optimizer. For any given join operation, that value could 
vary depending on the data structures, the query, and the statistics on the indexes. You can 
check the value being used by looking to the properties of the Adaptive Join operator.

Figure 4-19: The Adaptive Threshold Rows property.

If the number of rows in the hash table is above this value, in this case 18 rows or greater, 
then a Hash Match join will be used. The hash table will use the upper branch of the two 
inputs to gather the necessary data and, from that point forward, acts just like a Hash Match 
join. In this case, that would mean an Index Scan against the Product table using the  
AK_Product_Name index. If the number of rows in the hash table falls below the 
threshold value, then the Nested Loops method is used, resulting in one Clustered 
Index Seek on the Product table, using a completely different index, PK_Product_
ProductID, for each of the rows in the hash table.

There are three ways, within the execution plan, to tell which of the two choices was used 
during execution. Each method obviously requires you to capture an actual execution plan. 
The first method is to look to the properties of the Adaptive Join itself. Figure 4-20 shows 
that in this case the Actual Join Type is HashMatch.
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Figure 4-20: Adaptive Join properties showing Actual and Estimated Join Type.

At the bottom is the Estimated Join Type, also HashMatch. So, the Estimated Number of 
Rows and the Actual Number of Rows were reasonably accurate. The row threshold was met, 
so the Adaptive Join used the hash table to complete the join process as a Hash Match join.

Another way to see what type of join was used is to look at the two inputs in the plans. Figure 
4-21 shows the tooltip for each pipe feeding to the Adaptive Join. The top tooltip is for the 
Hash Match join input and the bottom is for the Nested Loops join input.

Figure 4-21: Two tooltips showing Actual Number of Rows.
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You can see that the top input had 5 actual rows and the bottom input has 0, indicating that, 
in this case, the Adaptive Join consumed the first of the two possible inputs.

Finally, you can look at the end of the branch, the data access point within the execution plan 
to count the number of executions. This can be the most reliable method since, even if zero 
rows were returned, at least one execution of one of the operators would still be recorded. 
Figure 4-22 illustrates the bottom branch which was not executed:

Figure 4-22: Properties showing no executions for an Index Seek.

You can also use Extended Events to capture Adaptive Join "misses," using the event adap-
tive_join_skipped to find out why an Adaptive Join couldn't be used by the optimizer, for a 
particular query.

To summarize, the Adaptive Join offers the optimizer the best of both worlds (almost). If 
the actual rowcounts are low, the Nested Loops branch of the plan will execute. This ends 
up costing slightly more than if the optimizer had just chosen a Nested Loops join during 
optimization, but if it had chosen the Hash Match join during optimization, for what turned 
out to be a low rowcount, it would have been a far less efficient plan. For high rowcounts, the 
Nested Loops branch of the adaptive plan will execute, which results in a very similar plan 
cost as for a standard Hash Match join.

Other Uses of Join Operators
The optimizer uses the physical join operators to fulfill tasks other than the T-SQL JOIN 
keyword. In Chapter 3, for example, we saw the optimizer use a Nested Loops operator to 
combine data from an Index Seek and its associated Key Lookup data.

In addition, sometimes the optimizer uses a join operator to implement a non-join request in 
a query, such as APPLY or EXISTS. We'll save coverage of APPLY until Chapter 7, but let's 
take a brief look here at how the optimizer implements EXISTS operations. These are some-
times called Semi Joins, because even though the sources need to be combined, returned data 
is still from a single source only. Listing 4-6 shows a simple example.
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SELECT bom.ProductAssemblyID, 
       bom.PerAssemblyQty 
FROM Production.BillOfMaterials AS bom 
WHERE EXISTS (  SELECT * 
                FROM Production.BillOfMaterials AS bom2 
                WHERE bom.BillOfMaterialsID = bom2.ComponentID 
                      AND bom2.EndDate IS NOT NULL 
             );

Listing 4-6

When we run this query, the execution plan is a little different than the straightforward join 
operations listed earlier.

 Figure 4-23: Execution plan showing Right Semi Join.

The optimizer selected a plan that performs a scan of the clustered index two times to satisfy 
the query and then the results are put together using a Hash Match join operation. However, 
this Hash Match is designated as a Right Semi Join, unlike the earlier ones which were all 
Inner Joins.

Unlike an Outer Join, which will return all valid combinations of rows from the two inputs 
plus a single copy of each unmatched row from the top input, a Semi Join returns a single 
copy of each row from one input that has at least one matching row in the other input. It  
does not add rows from the other input to the data; it is only used for the existence of a 
matching row.

The optimizer uses, in this case, a Hash Match operator to perform the Semi Join logical 
processing. A hash table of values from the first data set is created and then probes from the 
second data set are used to find matching values. If any value matches, the row from the 
second data set is returned and no other comparisons are made.
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There are both Right and Left Semi Joins. The optimizer determines which direction it's 
going to perform the functions depending on the rest of the necessary operations to satisfy 
the query in question.

You may also see Anti Semi Join logical join types used in an execution plan. As suggested 
by the name, these are the reverse of the Semi Join operations: they return a single copy 
of each row from one input that does not have a match in the other input (similar to NOT 
EXISTS).

Concatenating Data
Finally, as well as joining data together, it is possible to concatenate data. The most common 
type of data concatenation is through the UNION ALL keyword. However, you may also 
see concatenation operations occur within an execution plan from other types of queries. 
For example, using variables in an IN clause may result in a concatenation operation within 
an execution plan. A Concatenation operator will always have two or more inputs, and it 
simply processes each of the inputs in order, from top to bottom, and concatenates them.

Let's look at a simple example of concatenation.

SELECT p.LastName, 
       p.BusinessEntityID 
FROM Person.Person AS p 
UNION ALL 
SELECT p.Name, 
       p.ProductID 
FROM Production.Product AS p;

Listing 4-7

This query combines a list of the Person.LastName column with the Product.Name 
column. The execution plan looks like Figure 4-24.
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 Figure 4-24: Execution plan showing Concatenation operator.

This execution plan is very straightforward. The Concatenation operator first calls the top 
input, passing rows retrieved to its parent, until it has received all rows. After that it moves 
on to the second input, repeating the same process. Each of the data access operators is 
simply retrieving all the data from the referenced indexes. In this case, there are only the two 
data sets, but Concatenation can have as many inputs as necessary. If we look at the proper-
ties for the operator, shown in Figure 4-25, you can see how the information is resolved.

 Figure 4-25: Properties of the Concatenation operator.
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The Defined Values have been expanded out so that you can see the combined  
output, defined as Union1002, consists of the LastName and Name columns from  
the respective tables.

Summary
This chapter represents a major step in learning how to read graphical execution plans. 
However, as we discussed at the beginning of the chapter, we only focused on join operators 
and we only looked at simple queries.

So, if you decide to analyze a 2000-line query and get a graphical execution plan that is just 
about as long, don't expect to be able to analyze it immediately. Learning how to read and 
analyze execution plans takes time and effort. However, having gained some experience, you 
will find that it becomes easier and easier to read and analyze, even for the most complex of 
execution plans. You already have enough knowledge to get started. Just remember to follow 
the key points to look for in a plan. They will act as guide-posts as you step through the 
operations of the plan.
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In this chapter, we explore the execution plans for queries that sort, aggregate, and manipu-
late data. In some cases, we'll see that the plans can quickly get radically more complicated, 
but the mechanisms for reading and understanding these plans really don't change.

Specifically, we will cover:
• Sorting data – queries with ORDER BY and the operators the optimizer  

can use to perform the data ordering.
• Aggregating data – queries that use GROUP BY, or that perform  

aggregations, covering:
• Standard aggregation functions, such as SUM, COUNT, and so on
• Filtering aggregations using HAVING
• Window functions – how the optimizer executes these queries.

Queries with ORDER BY
When retrieving data from a table, there is no defined order in which that data will be 
returned. If we want to guarantee the order in which the data is returned, we need to use 
the ORDER BY clause to establish that order. If the optimizer can retrieve the data from an 
index in which the data is already in the required order, and all the operators within the plan 
preserve that order, then no additional operations are necessary. If not, a Sort operator will 
be necessary in the plan. As we discussed in Chapter 2, Sort is a blocking operator; it must 
gather all the rows that it needs before passing on the first row to the calling operator.

We'll cover the following varieties of sort operation:
• Sort
• Top N Sort
• Distinct Sort

We'll also see what can cause Sort warnings to appear in the plan, and what this means.
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Sort operations

Let's start with a very simple SELECT statement, returning data from the ProductInven-
tory table, ordered according to shelf location.

SELECT  pi.Shelf 
FROM    Production.ProductInventory AS pi 
ORDER BY pi.Shelf;

Listing 5-1

Figure 5-1 shows the execution plan.

Figure 5-1: Execution plan showing a Sort operator.

Following the data flow from right to left, we see a Clustered Index Scan on the Produc-
tion.ProductInventory table. The optimizer had no choice but to scan all the rows, 
since our query provided no WHERE clause filtering. The Clustered Index Scan passes 1069 
rows to the Sort operator; we can see this by hovering over the arrow leading to the Sort 
operator, to bring up the tooltip window, or by looking at the Actual Number of Rows in the 
Properties pane for the scan.

The Clustered Index Scan passes on the rows in the order they are read from the index, in 
this case probably ordered by ProductID. Any order is not guaranteed, and we know this 
because the Ordered property is set to False, which means that the optimizer does not need 
the rows returned from the index to be in any order (more on the Ordered property shortly).
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Figure 5-2: Properties of the Clustered Index Scan showing an unordered scan.

Since there is no index on the Shelf column, the optimizer must use a Sort operator within 
the query execution to achieve the required ordering. Once the Sort has all 1069 rows, it 
orders the data by Shelf and the rows pass back to the calling SELECT, and back to the 
client.

If an ORDER BY clause does not specify order, the default order is ascending, as you will see 
from the properties for the Sort icon in Figure 5-3.

Figure 5-3: Order By property within the Sort operator.

Sort operations and the Ordered property of Index Scans
The execution engine can use the following retrieval methods to fulfill an Index Scan  
(clustered and nonclustered):

• Ordered – simply follow the index structure to the first leaf page, and then the 
page pointers until the end of the index, or until all the required data is collected. 
Data is returned in logical index order, but if data must come from disk then the 
access pattern is random.

• IAM – this is like a Table Scan and uses index allocation map pages to find pages 
allocated to index. Data is returned in "semi-random" order, but disk access is 
sequential, as long as the data page is not fragmented at the operating system level.
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If the optimizer sets Ordered to False, it means that it doesn't care about order. In that case, 
at runtime the engine can choose either retrieval method, if it can guarantee to return the 
correct results (not always possible for IAM).

The optimizer sets Ordered to True if it needs the data to be in order. In that case the engine 
will always use the ordered retrieval method. For example, if instead of ORDER BY Shelf, 
this query used ORDER BY ProductID, then the query optimizer sets the Ordered property 
to True. Now that the data, as retrieved through the index, is already in the correct logical 
order, there is no need for a Sort operator in the execution plan.

Figure 5-4: A Clustered Index Scan showing an Ordered scan in the tooltip.

Dealing with expensive Sorts
In Figure 5-1, the Sort operation is estimated to account for 76% of the cost of the query. 
This is no reason to panic. There are only two operators in this entire plan, and so 76% is 
quite reasonable as a percentage of all the work being done. If there were 5 or 10 operators 
and one of them was 76% of the estimated cost, then that would be much more concerning 
over all.
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Nevertheless, if sorting takes a significant portion of a query's total estimated cost and the 
query is running slowly, or otherwise causing issues, then you may need to review it carefully 
and see if you can optimize it.

A Sort operation, like any other expensive operation, may not be problematic in and of itself. 
The first thing you need to do is establish why the operation is there; it may be there simply 
to fulfill an ORDER BY clause, but there are other reasons. You may also see the Sort operator 
added by the optimizer when the data must be ordered for a Merge Join operation, just as 
an example. In more complex plans, the purpose of a Sort may not be immediately obvious, 
since it could be necessary for other parts of the execution plan. Once you understand why 
the sort is there, then the next question to ask is, "Is the Sort really necessary?"

You may find cases where an ORDER BY clause has been added to a query when it wasn't 
needed. Developers often use an ORDER BY when developing and debugging a query 
because it's easier to verify results that way, and then to forget to take it out, even though it's 
not needed in the final production code.

Beyond that, SQL Server often performs the Sort operation within the query execution due to 
the lack of an appropriate index. With the appropriate index, in this case an index ordered by 
Shelf, the data may come presorted. It is not always possible, or desirable, to create a new 
index, but if it is, you might save sorting overhead. If it were decided that the rows did not 
have to be returned ordered by Shelf, then we might be in an easier situation.

If the data must be ordered by Shelf, and we're not able to create an index, then the alterna-
tives are limited, unless we're allowed to alter the logic of the query. Notably, for example, 
this query has no WHERE clause. Is the query returning more rows than are strictly necessary? 
Even if a WHERE clause exists, you need to ensure that it limits the number of rows to only 
the required number of rows to be sorted, not rows that will never be used. Regardless, the 
Sort operation will still be expensive, just because sorting is not a cheap operation.

If an execution plan has multiple Sort operators, review the query to see if they are all neces-
sary, or if you can rewrite the code so that fewer sorts will accomplish the goal of the query. 
Obviously, this is not always possible or even desirable. However, because the Sort operator 
is so expensive, it's worth ensuring that you need to order the data.

Top N Sort
A different kind of Sort operation can be performed when the number of rows to be returned 
are limited. Consider the query in Listing 5-2.
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SELECT TOP (50) 
   p.LastName, 
   p.FirstName 
FROM Person.Person AS p 
ORDER BY p.FirstName DESC;

Listing 5-2

This query selects the last and first names of the 50 people that come last in the alphabet, 
when sorted by first name. Figure 5-5 shows how the optimizer resolves this query.

Figure 5-5: An execution plan displaying a Top N Sort operator.

There is no index that can satisfy the ORDER BY clause in the query. However, there is an 
index other than the clustered index on the table that holds the FirstName and LastName 
columns, IX_Person_LastName_FirstName_MiddleName. This index will only 
hold the key columns defined plus the clustered key column, so it will be a smaller index than 
the clustered index. Therefore, scanning it will be cheaper, which is why it was chosen by the 
optimizer. All 19,972 rows will be scanned and fed into the Sort operator.

The Sort operator in this case is a unique type, Top N Sort. Like the regular Sort operator, 
this is a blocking operator. It will retrieve all 19,972 rows and then sort the data, and then 
return the first 50 rows. This is defined right within the properties.

Figure 5-6: Properties of Top N Sort operator.

You can also see it in the data pipe leading away from the Sort operator in the execution  
plan shown in Figure 5-5. Below 100 rows, a sort mechanism that uses CPU more than 
memory is in play, to help with memory management. Above 100 rows, more memory  
intensive mechanisms are used, because the CPU cost would be far too high.
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Distinct Sort
Sometimes, the optimizer may choose to use a Sort operation to satisfy a query that does  
not specify an ORDER BY clause. The intent of Listing 5-3 is to return a list of the unique 
combinations of the parts of a name, LastName, FirstName, MiddleName, Suffix.

SELECT DISTINCT 
   p.LastName, 
   p.FirstName, 
   p.MiddleName, 
   p.Suffix 
FROM Person.Person AS p;

Listing 5-3

Figure 5-7 shows the resulting execution plan, a scan of the clustered index followed by a 
Sort operation.

Figure 5-7: An execution plan with a Distinct Sort operator.

This time, we see a Distinct Sort. The optimizer is using the Sort operation, not only to 
order the data, but also to eliminate duplicates. You can see what's happening by expanding 
the Properties of the Sort operator to look at the Order By property, shown in Figure 5-8.

Figure 5-8: Properties of Sort (Distinct Sort) operator demonstrating sorting  
on all columns.

By sorting on all columns in the SELECT list, duplicate rows are immediately adjacent, and 
so can easily be skipped when the Sort operator returns the sorted data.
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Sort warnings

The Sort operator is very dependent on the row estimates provided to the optimizer because 
it needs memory to perform the sort. When an inadequate amount of memory is allocated for 
a sort, data gets stored in tempdb through a process referred to as a spill. This is so problem-
atic for performance that, in SQL Server 2012 and later, you get a warning in the execution 
plan itself (or in an Extended Event, starting in SQL Server 2008).

Listing 5-4 shows an apparently simple query that returns the data in descending order  
of the ModifiedDate.

SELECT sod.CarrierTrackingNumber, 
       sod.LineTotal 
FROM Sales.SalesOrderDetail AS sod 
WHERE sod.UnitPrice = sod.LineTotal 
ORDER BY sod.ModifiedDate DESC;

Listing 5-4

Figure 5-9 shows the actual execution plan that this query generates.

Figure 5-9: An execution plan that has generated a Sort warning.

There are several things worth exploring in this execution plan, but the one that should 
immediately pop out is the warning symbol on the Sort operator below.

Figure 5-10: The Sort warning, blown up for easier viewing.

If you hover over the operator, the tooltip will show a message about the warning, but the 
details are in the properties, so we'll go there first. The full message of the warning is shown 
in Figure 5-11.
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Figure 5-11: Full description of the Sort warning.

The warning lays out specifically what happened. An additional 346 pages were used in 
tempdb despite memory being allocated for 2,928 KB. Why did this happen? That informa-
tion is also available in the properties. Figure 5-12 has the full property sheet with a few facts 
highlighted.

Figure 5-12: Difference between the Estimated and Actual Rows leading to a spill.
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As you can see, the Estimated Number of Rows is 12,131.7. The actual number of rows was 
74,612. That's nearly six times as many rows being processed as SQL Server expected. While 
the memory grant does include some margin of error, there was not enough memory allocated 
to deal with this much data. That's why the Sort operation was forced to spill to tempdb. 
Your investigation then has to determine where the estimates went wrong. The way to do that 
is to walk through the other operators in the execution plan.

The data being read from the disk is coming from the Clustered Index Scan of the  
PK_SalesOrderDetail index, at the far right of the plan in Figure 5-9. The  
Estimated Number of Rows is 121,317 and the actual number of rows is the same.  
This means that the initial operation went as expected.

The next two operators are Compute Scalar. The first has a pair of calculations shown in 
Figure 5-13.

Figure 5-13: Details of the first Compute Scalar operator.

These two calculations are benign and directly related to the data we're working with in 
the query. The next Compute Scalar operator is simply aliasing the calculations from the 
preceding operator. LineTotal is a computed column in the table definition, and this is 
how you can see that within the execution plan.
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Figure 5-14: Calculation made by the second Compute Scalar operator.

None of these processes will affect the row estimates. The next operation is the Filter oper-
ator (covered in more detail later in the chapter). A Filter operator inspects the data in each 
row it receives with the goal of eliminating rows that are not required; only rows that meet 
the Predicate criteria are passed on to the calling operator.

Normally, this type of operation is done at the table or index level, through seeks and scans. 
However, because we're dealing with calculated values, the LineTotal, those calculations 
must be performed before the data set can be filtered. We can see the Predicate calculation 
in the properties of the operator. All the brackets and fully-qualified object names may make 
reading a little difficult. The core calculation is sod.UnitPrice = sod.LineTotal.

Figure 5-15: Details of the Predicate property of the Filter operator.

However, this calculation is itself not the issue. Instead, we need to look to the Estimated 
Number of Rows processed by the Filter operator, 12,131.7. In other words, of the 121,317 
rows that were read from the clustered index, the optimizer assumed only 10% would match 
the Predicate condition. This is a fixed estimate, which the optimizer uses because it can't 
know for certain how many values will match, when comparing to a calculated value.

In fact, 74,612 were returned, and this is the cause of the inappropriate memory estimates for 
the Sort operator and the subsequent spill to tempdb.
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Aggregating Data
One of the most common uses for data, after it has been collected and cleaned, is to apply 
some math to it to get the number of records (COUNT), the mean value of a column (AVG), 
the maximum value (MAX), and others. These calculations require that we combine the data 
in a process known as "aggregation."

Aggregation is a powerful feature within T-SQL that enables us, in many instances, to 
perform these types of calculations in a much more efficient manner because we can  
aggregate the data as we retrieve it. In short, if we get aggregation operations early in a  
plan, we're frequently working with less data in the rest of the plan, making that plan more 
efficient. We're also saving huge amounts of network traffic, if the alternative is to aggregate 
on the client.

This section will explore the mechanisms through which SQL Server aggregates information, 
based on the data, your data structures, and the T-SQL code you have written.

Stream Aggregate

The first aggregation operator we'll look at is the Stream Aggregate. This operator  
uses data that is sorted to build a set of aggregate values. We'll use the simple query in 
Listing 5-5 to create an aggregate count of the number of TerritoryID values within  
the Sales.Customer table.

SELECT c.TerritoryID, 
       COUNT(*) 
FROM Sales.Customer AS c 
GROUP BY c.TerritoryID;

Listing 5-5
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If we run this query and capture the execution plan, we'll see the Stream Aggregate operator 
in use.

Figure 5-16: Execution plan with a Stream Aggregate operator.

Reading this plan in the order of data flow, we see that it uses the IX_Customer_TerritoryID 
nonclustered index to scan the data. This data flows into the Stream Aggregate operator, 
which aggregates the data, and then on to a Compute Scalar operator before returning as a 
result set.

The first requirement for the use of the Stream Aggregate operator is that the data be sorted 
by the columns being aggregated. If we check the properties of the Index Scan operator, 
we'll see that the Ordered property is set to True, meaning that the data will be accessed in 
the logical order in which it's stored in the index (by TerritoryID), and so no additional Sort 
operator is required. This helps explain why the optimizer has chosen to use this nonclustered 
index to retrieve the data.

Figure 5-17: Properties of the Index Scan showing an Ordered operation.

We can look the properties of the Stream Aggregate operator to see how the data is being 
processed. Figure 5-18 shows the properties for the GROUP BY clause of our query.
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Figure 5-18: Group By properties of the Stream Aggregate operator.

The Defined Values property discloses the calculations we're requesting from  
this aggregation.

Figure 5-19: Output of the aggregated values shown as Defined Values.

The aggregations occur within the Stream Aggregate operator, as it reads the ordered data. 
The AggType of countstar indicated that in this case it's performing an aggregate count for 
each TerritoryID value.

Why, then, is there a Compute Scalar operator within this plan? Figure 5-20 shows  
its properties.

Figure 5-20: Compute Scalar operator showing data conversion.



143

Chapter 5: Sorting and Aggregating Data

The output data type of the countstar aggregation from the operator properties shown in 
Figure 5-19 is BIGINT. The optimizer added a Compute Scalar operator to perform an 
implicit conversion of that data to a type of INT, before returning it within the result set  
of the query because this query is asking for a COUNT (which outputs as INT). This is 
changing the data to an INT. If we used COUNT_BIG in the query, the Compute Scalar 
would be removed.

The Stream Aggregate operator is generally straightforward. It calculates the information 
as it retrieves it, in a stream, because the data is ordered. This can make for a very efficient 
operation. However, the requirement that the data be ordered implies that, depending on the 
data structures involved, a Sort operation may be a part of the plan. This could possibly lead 
to poor performance of the Stream Aggregate, suggesting the need for a new or different 
index to better support retrieving the data in an ordered fashion.

Hash Match (Aggregate)

Let's consider another simple aggregate query against a single table, where we want to know 
the average discount offered, for each unit price.

SELECT sod.UnitPrice, 
       AVG(sod.UnitPriceDiscount) 
FROM Sales.SalesOrderDetail AS sod 
GROUP BY sod.UnitPrice;

Listing 5-6

Figure 5-21 shows the actual execution plan.

Figure 5-21: Execution plan generated with a Hash Match aggregation operator.
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The data flow of the query execution begins with a Clustered Index Scan, because all rows 
are returned by the query; there is no WHERE clause to filter the rows. Next, the optimizer 
aggregates these rows, to start the process of the requested AVG aggregate calculation. To 
count the number of rows for each UnitPrice, the optimizer chooses to perform a Hash 
Match (Aggregate) operator.

In Chapter 4, we looked at the Hash Match(Join) operator for joins. This same Hash Match 
operator can also occur when we perform aggregations within a query, or because the opti-
mizer decides to use aggregation for some other reason. As with a Hash Match with a join, 
a Hash Match with an aggregate causes SQL Server to create a temporary hash table in 
memory in which it stores the results of all aggregate computations; it can count rows, track 
minimum and maximum values, calculate a sum, and so on.

In this example, for each value in the GROUP BY column, which is UnitPrice, it stores  
a row with that UnitPrice, a tally of rows and a total discount. As it builds the hash  
table, it increases the tally and total discount whenever it processes a row with the  
same UnitPrice.

As a general rule, the memory used by a Hash Match(Aggregate) will usually be less than 
that used by a Hash Match(Join), because the join operator must create a hash table for all 
the data, while for the aggregate operator, the hash table contains only the aggregation key 
and the computation results. Certainly, one can envision exceptions; for example, if we have 
a very small table consisting of two columns, but a query with a very large number of aggre-
gate calculations, but generally the rule will hold true.

We can see how the aggregations are performed by looking at the properties of the Hash 
Match(Aggregate), shown in Figure 5-22.
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Figure 5-22: Properties of the Hash Match aggregate operator detailing  
the function of the operator.

Highlighted at the top you can see there are two aggregates, and neither is the average. The 
first is a COUNT * calculation being executed to get a row count for each UnitPrice, 
returned as Expr1006. The second aggregation is a SUM of the UnitPriceDiscount 
column for each UnitPrice, returned as Expr1007. Further down you can see how the 
hash table is being created on the UnitPrice column.

As you can see from the Output List, the UnitPrice, Expr1006 and Expr1007 are 
passed on to a Compute Scalar operator, which performs the calculation below for each 
UnitPrice value.
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 [Expr1001] = Scalar Operator(CASE WHEN [Expr1006]=(0) THEN NULL 
ELSE [Expr1007]/CONVERT_IMPLICIT(money,[Expr1006],0) END)

If a given UnitPrice value, as expressed by Expr1006, has no rows, then this will  
return NULL for that UnitPrice. If there are rows for that UnitPrice, the average 
UnitPriceDiscount is calculated by dividing Expr1007 by Expr1006, first having 
converted Expr1006 to a MONEY data type, using the CONVERT_IMPLICIT command.

Quite often, aggregations within queries can be comparatively expensive operations, 
depending on the number of rows that need to be aggregated. However, it is almost always 
far more efficient to aggregate on the server, and push a limited number of rows over to the 
client, than to push all data and aggregate on the client. Also, in cases where the aggregated 
data is used in the rest of a larger query, or stored in a temporary table and then joined to 
other data, the savings get even bigger because all subsequent operators work on far  
fewer rows.

One tactic when attempting to tune an aggregation is to add a covering index, or to  
remove unneeded columns so that an existing index becomes covering, sorted on the  
GROUP BY columns. This will allow the optimizer to use the Stream Aggregate instead  
of Hash Match Aggregate.

You can also pre-aggregate data by using an indexed view, although that tactic incurs the 
overhead of maintaining the data in the view, as well as the table, when data is modified.

Filtering aggregations using HAVING

The optimizer uses the Filter operator to limit the output to the rows that meet the specified 
criteria. In Listing 5-7 we add a HAVING clause, to limit the result set to only those rows 
where the average unit price discount is greater than 0.2.
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SELECT sod.UnitPrice, 
       AVG(sod.UnitPriceDiscount) 
FROM Sales.SalesOrderDetail AS sod 
GROUP BY sod.UnitPrice 
HAVING AVG(sod.UnitPriceDiscount) > .2

Listing 5-7

Figure 5-23 shows the execution plan, which now contains a Filter operator after the 
Compute Scalar.

Figure 5-23: Execution plan uses a Filter operator to satisfy the HAVING clause.

The Filter operator limits the output to those values of the column, UnitPriceDiscount, 
that have an average value greater than .2, to satisfy the HAVING clause. This is accom-
plished by applying a Predicate against the output of the Compute Scalar operator, as we 
can see from the properties of the Filter operator.

Figure 5-24: Properties of the Filter operating showing  
the filtering calculation.

In this case, the nature of the HAVING clause meant that the optimizer had no way to verify 
the Predicate without first doing the aggregation. The Hash Match (Aggregate) receives 
121317 rows and passes on 287 (hover over the data flow arrows to see this), which is the 
number processed by the Filter operator.

However, if there is a way to filter before aggregation, the optimizer will usually find it. To 
offer a trivial example, if we were to change the HAVING clause to sod.UnitPrice > 
800, the optimizer is sensible enough to, essentially, rewrite HAVING to WHERE, in which 
case the filtering is pushed down into the Clustered Index Scan, as you'll see by running the 
modified query and examining the Predicate property of this operator (rewriting the query to 
use WHERE rather than HAVING will have the same effect).
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Figure 5-25: An execution plan that shows filtering occurring during aggregation.

When filtering on aggregated rows, the optimizer has no choice but to add a Filter operator 
to the plan, after the aggregation is complete. Notionally, this adds a minimal extra cost to 
the plan. However, this is more than compensated for by the need to return fewer rows to the 
client. Also, when the aggregated and filtered data is used elsewhere in a larger query, the 
savings are even greater. If the optimizer can find a way to apply the filtering earlier, it will 
do it.

Plans with aggregations and spools
A Spool operator uses a temporary worktable to store data that may need to be reused 
multiple times within an execution plan. This section will review a couple of examples where 
spools are used to store the results of aggregation calculations for plans that use Nested 
Loops joins. However, spools can appear in many other situations where, by storing the 
results in a worktable, the optimizer can reuse that data many times, instead of having to 
execute sets of operators multiple times.

There are several types of spool, represented by the following physical operators: Index 
Spool, Rowcount Spool, Table Spool and Window Spool. Here, we’ll only consider the 
Table Spool and the Index Spool, as they appear in the context of queries that contain aggre-
gations. SQL Server will always have a clustered index for storing the data for any spool; an 
Index Spool will have an additional nonclustered index to make it easier to retrieve the data.

There are two logical types of Spool operator, Lazy Spool and Eager Spool. A Lazy Spool 
is a streaming operator. It requests a row from its child operator, stores it, and then passes 
it to its parent, passing control back to that parent. An Eager Spool, on the other hand, is a 
blocking operator, that will call its child node until it has all the rows, and only then return 
the first row from its worktable. Generally the optimizer will avoid the Eager Spool, but it is 
ideal for certain situations such as Halloween protection (covered in Chapter 6).
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Table Spool
Let's start with an aggregation example that uses a Table Spool. The query in Listing 5-8 
uses a subquery to calculate the total tax amount paid by customers, according to sales  
region (TerritoryID).

SELECT sp.BusinessEntityID, 
       sp.TerritoryID, 
       (   SELECT SUM(TaxAmt) 
           FROM Sales.SalesOrderHeader AS soh 
           WHERE soh.TerritoryID = sp.TerritoryID) 
FROM Sales.SalesPerson AS sp 
WHERE sp.TerritoryID IS NOT NULL 
ORDER BY sp.TerritoryID;

Listing 5-8

Figure 5-26 shows the execution plan.

 Figure 5-26: An execution plan using a Table Spool with aggregation.

The outer input of the Nested Loops join operator is a scan of the clustered index on the 
SalesPerson table, which returns 14 rows (sorted by TerritoryID). This means that 
the inner input, a Table Spool, will execute 14 times.

The first execution of the inner input is always a Rebind, so the Table Spool calls for a row 
from the Hash Match, which in turn calls for a row from the Clustered Index Scan on 
SalesOrderHeader. The Hash Match operator uses a temporary hash table to calculate 
the total tax amount collected for each distinct TerritoryID value in SalesOrder-
Header. There are 10 distinct values of TerritoryID and, at some point, it will start 
returning each of these 10 rows to the Table Spool, which stores these in its worktable while 
passing them on (it's a Lazy Spool), until it has passed on all 10 rows.
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If we examine the properties of the Nested Loops operator we see that it satisfies the join 
condition using a Predicate (see the Nested Loops operator section of Chapter 4 for a discus-
sion of this topic). Essentially, the inner input is static, and will produce the same result for 
every value in the outer input.

For each of the other 13 rows returned from SalesPerson to the Nested Loops operator, 
the outer input has to rewind. This is where the Table Spool comes into play. Instead of 
calling the Hash Match again, 13 times, the worktable defined by the Table Spool is used.

 Figure 5-27: Properties showing how the Table Spool was used to filter data.

If you inspect the properties of the Table Spool you'll see 13 Rewinds and 1 Rebind. The 
Hash Match and Clustered Index Scan are only executed once each, for the initial Rebind, 
to load the data into the Table Spool.

This is a simple example of how the optimizer can use a Table Spool to make aggregation 
queries more efficient, where a single Table Spool reused its own information. However, 
very often, you'll encounter cases where a spool shares its information with other Spool 
operators in the same plan. If you check the properties of the Table Spool, you'll see that it 
has a Node ID value of 4. If a second spool were to reuse data from this first spool, then in 
the properties for the second spool you'd see both its own Node ID value, and a Primary 
Node ID value, which in this case would be 4. We'll see an example of this in Chapter 6.

Index Spool
To see an Index Spool operator, we just need to add a useful index that the optimizer can use 
to find the rows with matching TerritoryID values, in the SalesOrderHeader table.
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CREATE INDEX IX_SalesOrderHeader_TerritoryID 
ON Sales.SalesOrderHeader 
( 
    TerritoryID 
) 
INCLUDE 
( 
    TaxAmt 
);

Listing 5-9

Now, re-execute the query in Listing 5-8. Figure 5-28 shows the execution plan, which is 
similar to the previous plan, except that now, for the inner input of the Nested Loops join, we 
see an Index Seek against the SalesOrderHeader table, a streaming aggregation instead 
of the blocking Hash Match aggregation, and then an Index Spool instead of a Table Spool.

Figure 5-28: An execution plan using an Index Spool operator for aggregation.

The 14 rows returned by the scan of the SalesPerson table are ordered by the Sort  
operation on TerritoryID. Examine the properties of the Nested Loops operator and 
you'll see that it satisfies the join condition using the TerritoryID values as Outer  
References. That means that each of the values from the 14 rows is pushed down into the 
inner input, which returns only matching rows based on the Index Seek operation.

As before, the first execution of the inner input is a Rebind. The value of 1, the first  
TerritoryID row's value, is pushed down to the other operators. The Index Spool first 
initializes its child operators. The Stream Aggregate starts requesting rows from Index 
Seek, which uses the pushed-down value to find matching rows in the index. The spool 
passes the matching rows to the Stream Aggregate, which then returns a single row, the 
aggregation result for TaxAmt, to the Index Spool, which then stores it in an indexed  
worktable and returns it to Nested Loops.
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The second and third rows coming into Nested Loops also have a TerritoryID value of 
1, so the next two executions of Index Spool are Rewinds. Index Spool will not call Stream 
Aggregate, and instead immediately returns the previously stored results from the worktable.

For the fourth row, we have a TerritoryID value of 2, a new value. The data change 
forces the Index Spool to register a Rebind initializing the other operators again with the 
new pushed-down value. This will be the fourth execution of the Index Spool, but only the 
second execution of each of the child operators.

This pattern repeats until all 14 rows are processed. Look at the properties of the Index 
Spool and you'll see that there are 10 Rebinds and 4 Rewinds. Look at the properties of the 
Stream Aggregate or the Index Seek and you see only 10 executions, corresponding to the 
10 distinct values for TerritoryID in the 14 rows.

Remember to drop the index created in Listing 5-9 before continuing.

DROP INDEX IX_SalesOrderHeader_TerritoryID ON Sales.
SalesOrderHeader;

Listing 5-10

Working with Window Functions
Introduced in SQL Server 2008, the OVER clause defines how to sort and partition the data, 
to which an aggregate function can be applied. A Window function is essentially one that 
operates on a window, or partition of data, as defined within the OVER clause. The ranking 
functions, ROW_NUMBER, RANK, DENSE_RANK and NTILE, are all Window functions. 
Aggregate functions, such as SUM or AVG, also support the OVER clause, but are not consid-
ered Window functions.

The query in Listing 5-10 partitions the data according to the CustomerID value, 
and within each partition orders the data by order date. To each partition, we apply the 
ROW_NUMBER ranking function, which simply numbers each row in each partition, so if a 
customer made 5 orders in that period, there would be 5 rows in their partition, numbered 1 
to 5, with the earliest order having a RowNum of 1.
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SELECT soh.CustomerID, 
       soh.SubTotal, 
       ROW_NUMBER() OVER (PARTITION BY soh.CustomerID 
                     ORDER BY soh.OrderDate ASC) AS RowNum, 
       soh.OrderDate 
FROM Sales.SalesOrderHeader AS soh 
WHERE soh.OrderDate BETWEEN '20130101' 
                    AND     '20130701'

Listing 5-11

Figure 5-29 shows the resulting execution plan.

Figure 5-29: Execution plan to satisfy a Windowing function using a Segment  
and a Sequence operator.

Since there is no index that supports the WHERE clause, the optimizer chooses to scan the 
clustered index. It returns the orders that fall within the required period. These rows are then 
sorted by CustomerID, and secondarily by OrderDate in preparation for splitting the 
data into partitions.

Next, we encounter two new operators that we have not yet explored, Segment and 
Sequence Project (Compute Scalar). Whenever you see an operator with which you're 
unfamiliar, or familiar operators whose role is not immediately clear to you, this is usually a 
good place to start.

A Segment operator splits the data into a series of partitions, or segments, based on the parti-
tion column or columns, defined within the query. In this case, we have chosen to partition 
the data by CustomerID. If we examine the Group By property of this operator, we see 
that the data is being grouped on the CustomerID column. We can also see that an output 
column is created, Segment1002, which marks the start of each new segment.
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Figure 5-30: Properties of the Segment operator showing the segmentation of the data.

All this data passes to the Sequence Project (Compute Scalar) operator, which is used 
exclusively by ranking functions, and works off an ordered set of data, with segment marks 
added by the Segment operator.

In Figure 5-31, we can see that in this case the Sequence Project operator simply counts the 
number of rows in each segment, and assigns a sequential number to them, rather like having 
an IDENTITY column assigned to each partition.

Figure 5-31: Properties of the Sequence operator showing the function of the operation.

That example is fine, but it doesn't show off the aggregations that are possible when you 
begin to use windowing functions. Listing 5-11 adds an additional column to the query, the 
average value of the SubTotal, across a given CustomerID, for the data range in ques-
tion.
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SELECT soh.CustomerID, 
       soh.SubTotal, 
       AVG  (soh.SubTotal) OVER (PARTITION BY soh.CustomerID) AS 
AverageSubTotal, 
       ROW_NUMBER() OVER (PARTITION BY soh.CustomerID ORDER BY soh.
OrderDate ASC) AS RowNum 
FROM Sales.SalesOrderHeader AS soh 
WHERE soh.OrderDate 
BETWEEN '20130101' AND '20130701';

Listing 5-12

If we examine the execution plan for this query we'll see, in Figure 5-32, one that is much 
more complex than others have been so far in the book.

 Figure 5-32: A more complex plan showing additional window functions.

That is hard to read, so we'll drill down on parts of the execution plan. Figure 5-33 shows the 
primary section relating to the data retrieval.

 Figure 5-33: Details of the plan from Figure 5-32.

Just as before, there is no index that supports our WHERE clause, so we see a Clustered 
Index Scan. The data is ordered again through a Sort operation and then it is passed to the 
now familiar Segment operator. From there it passes to a Table Spool (Lazy Spool), which 
is the outer input of a Nested Loops join operator. The inner input is another Nested Loops 
join, for which Figure 5-34 shows the outer and inner inputs.
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 Figure 5-34: Additional details of the plan from Figure 5-32.

In Figure 5-34, you can see where we are reusing the data stored in the Table Spool operator. 
This operator deals with segmented data by slightly changing its behavior. In normal opera-
tion, a Lazy Spool reads a row, stores it and passes it on straight away. However, in this 
case, the Table Spool reads all rows for a segment of data, and then sends on the row for that 
segment to the following operations.

The data from the Table Spool is passed to a Stream Aggregate operator. The Stream 
Aggregate operation can be used because the data is ordered based on the Sort operator we 
see in Figure 5-33. If we look at the Stream Aggregate properties, we can then understand 
what it's doing within this execution plan.

Figure 5-35: Properties of the Stream Aggregate operator.
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There are two new values being created, a count of the values within the aggregate of the 
CustomerID and a sum of the SubTotal column across that same aggregate. All of this 
is then passed to a Compute Scalar operator which performs another calculation.

 Figure 5-36: Calculation within the Compute Scalar operator.

This is creating a new value, Expr1001, which will either be null, or an average calculation 
of the values created in the Stream Aggregate. In short, this part of the process is satis-
fying the AVG function called for in the query in Listing 5-11. The output from the Scalar 
Operator is then run through another Nested Loops operator, which refers to our temporary 
storage in the Table Spool. Why?

This is where things get fun. We must aggregate our data in order to arrive at an average, 
so the number of rows being returned is going to change. You can see this if you look at 
the actual rows output from the Stream Aggregate operator and compare it to the number 
of rows output from the second instance of the Table Spool operator in Figure 5-34. The 
aggregate output is 2,464 and the temporary storage output is 2,784. The Nested Loops is 
necessary to put together the output of the aggregation operation with the information being 
stored temporarily in the Table Spool. All this is passed to the other Nested Loops operator 
(originally shown in Figure 5-33) to be combined with the output of the Table Spool for final 
processing of the query as shown in Figure 5-37.



158

Chapter 5: Sorting and Aggregating Data

 Figure 5-37: Details of the plan from Figure 5-32 showing Segment and Sequence 
operators.

This final section of the execution plan is where we see the functions necessary to support 
the ROW_NUMBER() function, from the original query in Listing 5-10. There is no final 
Sort operation because I dropped the ORDER BY clause in the query in Listing 5-11, just to 
simplify things a little bit.

Through all this now, you can see how the Window functions can be used for aggregations, 
how these functions and methods are satisfied within the execution plan, and how you read 
through an execution plan to understand what functions are being performed where. Reading 
through the plan is possible because you can see the creation of values such as Expr1004 
and Expr1005 within the Stream Aggregate to be followed by their use to create an average 
represented by Expr1001 created in the Compute Scalar operator. You can also see how 
each of the Table Spool operators is used to move the data through the necessary processing 
to arrive at the requested output.

Summary
This chapter focused primarily on the ordering and aggregation of data. You've seen several 
examples of execution plans that showed how to follow properties and values as they move 
between operators within an execution plan. This is one of the fundamentals to reading your 
own execution plan and you'll see it again and again throughout the rest of the book. During 
all this discussion we brought up the cost of certain operations. Just remember that no opera-
tion is inherently problematic. Each just represents the optimizer's best attempts at resolving 
the query in question. Don't focus on eliminating or changing any given operator; focus 
instead on the query in question.



159

Chapter 6: Execution Plans for Data 
Modifications

All the previous execution plans in the book have been for SELECT queries. However, the 
optimizer also generates execution plans for all data modification queries issued for the data-
base, to instruct the execution engine how best to undertake the requested data change. This 
chapter will examine the characteristics of execution plans for INSERT, UPDATE, DELETE, 
and MERGE queries. You're going to find the execution plans for data modification queries 
very handy. You'll see how IDENTITY columns get resolved during INSERTs, and how 
referential constraints are managed during DELETEs, just to name a couple of the processes 
exposed within the execution plan. You'll also be able to use these plans in tuning your data 
modification queries, just like you would a SELECT query.

Plans for INSERTs
INSERT queries are always executed against a single table. This would lead you to believe 
that their execution plans will be simple. However, to account for IDENTITY columns, 
computed columns, referential integrity checks, and other table structures, execution plans 
for insert queries can be quite complicated.

Listing 6-1 shows a very simple INSERT query.

INSERT INTO Person.Address 
( 
    AddressLine1, 
    AddressLine2, 
    City, 
    StateProvinceID, 
    PostalCode, 
    rowguid, 
    ModifiedDate 
) 
VALUES 
(   N'1313 Mockingbird Lane', -- AddressLine1 - nvarchar(60) 
    N'Basement',              -- AddressLine2 - nvarchar(60) 
    N'Springfield',           -- City - nvarchar(30) 
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    79,                       -- StateProvinceID - int 
    N'02134',                 -- PostalCode - nvarchar(15) 
    NEWID(),                  -- rowguid - uniqueidentifier 
    GETDATE()                 -- ModifiedDate - datetime 
    );

Listing 6-1

Just as for any other query, we can capture either the estimated or the actual execution plan. 
As discussed in Chapter 1, if we request the estimated plan, we don't execute the query and 
so don't insert any data; we simply submit the query for inspection by the optimizer, in order 
to see the plan.

If we want to see runtime information, we execute the query, requesting the actual plan. If we 
want to see the actual plan without modifying the data, we could wrap the query in a transac-
tion and roll back that transaction after capturing the plan.

In this case, we'll just capture the estimated plan, as shown in Figure 6-1.

Figure 6-1: Estimated plan showing an INSERT.

The physical structure of the table that the INSERT query accesses can affect the resulting 
execution plan. This table has an IDENTITY column and a FOREIGN KEY constraint.

Just as with the SELECT queries we've examined, we can read this plan from right to left 
(data flow order) or from left to right (operator call order). However, before we attempt to 
follow the various steps in the plan, we'll start by looking behind the "first operator" because, 
as we discovered in Chapter 2, it contains a lot of useful information about the plan.
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INSERT operator
Figure 6-2 shows the properties for the INSERT operator for this plan.

Figure 6-2: Properties for the INSERT operator.

Despite the larger number of operators in this plan, the optimizer still classified it as a  
trivial plan. Also note that the optimizer has performed simple parameterization on this  
query, swapping the hard-coded values supplied in the VALUES clause in Listing 6-1,  
with parameters, in order to promote plan reuse.

We can see how the parameters were resolved by looking at the ParameterizedText  
property value, shown in Listing 6-2 (after copying and pasting, and applying formatting  
to make it readable).
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(@1 nvarchar(4000),@2 nvarchar(4000),@3 nvarchar(4000),@4 int,@5 
nvarchar(4000)) 
INSERT  INTO [Person].[Address] 
        ([AddressLine1], 
         [AddressLine2], 
         [City], 
         [StateProvinceID], 
         [PostalCode], 
         [rowguid], 
         [ModifiedDate] 
        ) 
VALUES  (@1, 
         @2, 
         @3, 
         @4, 
         @5, 
         newid(), 
         getdate() 
        )

Listing 6-2

Let's now step through the plan, reading from right to left, following the data flow. We started 
with an operator that is new to us: Constant Scan.

Constant Scan operator

The Constant Scan operator introduces into the results one or more rows, originating from  
a "scan of an internal table of constants." In other words, the rows come from the properties 
of the operator itself, specifically the Values properties, rather than from any external data 
source.

A Constant Scan generates one or more rows, consisting of one or more columns, and  
it has many possible roles within an execution plan. To understand its role in any specific 
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execution plan, you need to look at what values it produces, and where in the plan these 
values are used. To do this, we need to look at the detailed properties of the operators.

You can see what columns it returned from the Output List property, and the row values 
from the Values property. Figure 6-3 shows the properties of the Constant Scan for a trivial 
query (SELECT * FROM (VALUES (1,2),(3,4),(5,6)) AS x(a,b);), showing 
that the operator generates two columns (Union1006, Union1007) and three rows.

Figure 6-3: The defined values of the Constant Scan operator.

In less trivial cases, it's useful to follow the column names given in the Output List 
throughout the plan to see where else they are used, and why they are required.

For the Constant Scan in Figure 6-1, the Output List is blank, and the Values property 
absent, indicating that the operator generates a single, empty row. We can also see the row is 
empty by hovering over the data output pipe from Constant Scan. Notice that the Row Size 
is 9 B (which indicates column header only).

 Figure 6-4: Tooltip showing an empty row returned a Constant Scan.

Sometimes, in a plan, you will see that a Constant Scan returns an empty row, essentially a 
place holder for information that will be added by other operators within the plan, such as a 
Compute Scalar. In Figure 6-1, the Constant Scan is followed by not one, but two of them.
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The first Compute Scalar operator reads each of the rows from the Constant Scan (in this 
case, one row only) and for each row calls a function called getidentity, as you can see 
from the Defined Values property of this operator.

[Expr1002] = Scalar Operator(getidentity((373576369),(11),NULL))

This is where SQL Server generates an identity value, for the AddressID column, which 
is the Primary Key and is an IDENTITY column. The first two values being passed are the 
object_id and the database_id. I don't know what the third parameter represents, but 
here it's a NULL value.

The fact that this operation precedes the INSERT, and any integrity checks, within the plan, 
helps explain why, when an INSERT fails, you still get a gap in the IDENTITY values for 
a table. The input for this operator was a single empty row, and so its output, after adding 
Expr1002, is just a single row with one column holding the IDENTITY value.

The second Compute Scalar operator reads the row from the previous operator, and adds 
to it a series of columns for most of the parameterized values in the query, plus the new 
uniqueidentifier (guid) value, and the date and time from the GETDATE function.

The Defined Values property, in Figure 6-5 illustrates all this.

Figure 6-5: Defined Values of the Compute Scalar operator.

The hard-coded strings in the query were converted to variables with a data type of nvar-
char(4000). The expression for each column value converts them from their inferred data 
type to the data type of the corresponding column in the table.

The output from this second Compute Scalar, as confirmed by its Output List property,  
is a single row with columns containing the IDENTITY value (Expr1002) defined earlier, 
the parameter values (Expr1003 – 1006), the guid value (Expr1007) and the getdate 
value (Expr1008).
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The reason we have 7 column values to insert (not including the identity), and only 6 defined 
values is that the inferred data type for the StateProvinceID variable is an INT, so this 
doesn't need conversion.

The Clustered Index Insert operator receives this single row, containing all of these values.

Clustered Index Insert operator

The Clustered Index Insert operator represents the insert of our data into the clustered 
index. In the execution plan in Figure 6-1, this operation represents most of the estimated 
cost of this plan (92%). Probably the most important property on this operator, for this 
example, is the Object property, shown in Figure 6-6.

Figure 6-6: Multiple indexes on display in Clustered Index Insert operator.

You see that the insert affects four different indexes, one being the clustered index into which 
we insert the new row, and the other three being three nonclustered indexes on this table, to 
which data also needs to be added. In this case, these additional nonclustered indexes are 
modified by adding them to the object list of the clustered index modification operator. The 
alternative is that they can be modified from within their own operators (a per-index plan; 
we'll see a per-index DELETE plan later).

Filtered indexes and indexed, or materialized, views are always modified from within their 
own operators.
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You can see the parameters that have been created and formatted in the ScalarOperator 
property that is inside the Predicate property.

Figure 6-7: Parameters evaluated in the ScalarOperator.

This data is broken down within the properties of the operator, but they're broken down 
individually, so it doesn't make them any easier to read. I've highlighted the @4 value of the 
StateProvinceID, mentioned earlier, highlighting the fact that it reads this variable 
directly, whereas all the other columns are set using the expressions, Expr1003, and so on, 
generated earlier in the Compute Scalar operator.

The next item of interest is the value of the Output List property, the Person.Address.
StateProvinceId as shown in Figure 6-8. Since this column is a FOREIGN KEY,  
SQL Server needs to check for referential integrity.

Figure 6-8: Output List property of a Clustered Index Insert.

We now come to the familiar Nested Loops join operator (the final part of the plan is  
reproduced in Figure 6-9).
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 Figure 6-9: Section of the execution plan with the Nested Loops operator.

The Nested Loops receives the row with the StateProvinceID that has already been 
inserted, and then calls the Clustered Index Seek, which reads the PRIMARY KEY column 
of the parent table to check that the value we're inserting exists in that column. You'll note 
that the Nested Loops operator is marked as a Left Semi Join. This means that it's only 
looking for a single match rather than finding all matches. The output from the Nested Loops 
join is a new expression, which is tested by the next operator, Assert.

Assert operator

An Assert operator verifies that a certain condition, or conditions, can be met, all of which it 
lists in the Predicate property, which returns NULL if they are all met. Each non-NULL value 
results in a rollback; the exact error message is determined by the actual value.

In this example, the Assert operator checks that the value of Expr1012 is not NULL. Or, in 
other words, that the data inserted into the Person.Address.StateProvinceId field 
matched a piece of data in the Person.StateProvince table; this was the referential 
check. You can see this in the Predicate property in Figure 6-10.
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Figure 6-10: The Predicate property of the Assert operator.

Plans for UPDATEs
UPDATE queries also work against one table at a time. Depending on the structure of the 
table, and the columns to be updated, the effect on the execution plan could be as significant 
as that shown above for the INSERT query. Consider the UPDATE query in Listing 6-3.

UPDATE Person.Address 
SET City = 'Munro', 
    ModifiedDate = GETDATE() 
WHERE City = 'Monroe';

Listing 6-3

Figure 6-11 shows the estimated execution plan (not included is a Missing Index hint 
suggesting a possible index on the City column, to help the performance of the query).

 Figure 6-11: Execution plan showing an UPDATE.

Once again, we can start reading this plan by checking the UPDATE operator to see what's 
there. However, in this case, nothing new is introduced. This plan has gone through FULL 
optimization and a "Good Enough Plan Found" was the reason for early termination.

Stepping through the plan, reading from right to left, the first operator is an Index Scan on 
the table, which scans all the rows in this index, and will return only those rows WHERE 
[City] = 'Monroe' (see the Predicate property of the Index Scan).
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The optimizer estimates that it will return only 4.6 rows, which helps explain why an index 
on City was suggested by the optimizer. As always, whether you create it depends entirely 
on the importance of the query within your workload, or its frequency of execution.

The Index Scan operator is called by the next operator along, a Table Spool (Eager Spool).

Table Spool (Eager Spool) operator

As we discussed in Chapter 5, the Table Spool operator provides a mechanism for storing the 
incoming data in a worktable, so that it may be reused, perhaps several times, within an 
execution plan. However, this is the first time we've encountered an Eager Spool, which 
keeps requesting rows from its child operator until it has all of them, and only then will pass 
on the first row. This means that it is a blocking operator, which the optimizer will generally 
try to avoid. However, in this case, it's exactly the behavior that is required; it is there to 
prevent the Halloween Problem (see: http://en.wikipedia.org/wiki/Halloween_Problem).

The spool reads all of the rows to be updated and stores them in its worktable, and this data is 
referenced throughout the rest of the processing of the query. By using only that worktable to 
drive the rest of the query, we are guaranteed to not see already updated data again.

The next three operators are all Compute Scalar operators, which we have seen before. In 
this case, they are used to evaluate expressions and to produce a computed scalar value, such 
as the GETDATE() function used in the query.

After these simple and clear computations, there are also computations creating the 
Expr1012 value, derived from the Expr1006 value, which are less easy to explain.  
Potentially, they play some role in ensuring that the data being updated is updated correctly 
and safely, but equally they could be an artifact of how the execution plan is generated. A 
Compute Scalar operator is very low cost, to the point where the optimizer sometimes does 
not even bother to remove computations that are no longer needed.

http://en.wikipedia.org/wiki/Halloween_Problem
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Clustered Index Update operator

Now we get to the core of the UPDATE query, the Clustered Index Update operator. This 
operator reads its input data, uses it to identify the rows to be updated, and updates them. If 
you examine the Object property you'll find that two objects are getting updated: the clus-
tered index itself, and a nonclustered index that happens to have the City column as one of 
its keys.

In this example, the Clustered Index Update operator is updating rows passed in from an 
Index Scan, but in certain cases it can find the rows to update by itself, based on a Predicate. 
Listing 6-4 creates a very simple table, loads a row into it, and runs an UPDATE on that row.

CREATE TABLE dbo.Mytable (id INT IDENTITY(1, 1) PRIMARY KEY 
CLUSTERED, 
                          val VARCHAR(50)); 
INSERT dbo.Mytable (val) 
VALUES ('whoop' -- val 
    ); 
UPDATE dbo.Mytable 
SET val = 'WHOOP' 
WHERE id = 1;

Listing 6-4

The execution plan for the UPDATE is very simple because all the work is performed directly 
within the Clustered Index Update operator. The rows are filtered and updated in place. You 
can see the details by looking at the properties of the operator, the Seek Predicate property, 
in particular.
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Figure 6-12: A simple execution plan for an UPDATE.

Plans for DELETEs
What kind of execution plan is created for a DELETE query? Let's find out!

A simple DELETE plan
Run the code in Listing 6-5 and capture the actual execution plan.

BEGIN TRAN; 
DELETE FROM Person.EmailAddress 
WHERE BusinessEntityID = 42; 
GO 
ROLLBACK TRAN;

Listing 6-5

Figure 6-13 shows the actual execution plan.

 Figure 6-13: Simple execution plan for a DELETE.
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Not all execution plans are complicated and hard to understand. In this case, the Clustered 
Index Delete operator defines the rows in the clustered index that need to be deleted, and 
deletes them. Not all DELETE plans will look this simple if the optimizer needs to validate 
referential integrity for the DELETE operation but, in this case, it didn't.

The DELETE operator shows a TRIVIAL plan and simple parameterization to help promote 
plan reuse. Figure 6-14 shows the properties of the Clustered Index Delete.

Figure 6-14: Clustered Index DELETE operator properties.

As we have seen previously in this chapter, the Object property shows that more than just the 
clustered index has been modified. Even with this very simple execution plan, you can see 
that the nonclustered index modification is covered within this one operator. Also, you can 
see how the row or rows that will be deleted are found through the Seek Predicate operator. 
Finally, within the expression, you see that simple parameterization has occurred because 
we're not comparing the actual value of 42 that was supplied, but rather @1, a parameter.



173

Chapter 6: Execution Plans for Data Modifications

A per-index DELETE plan
In the examples so far, all nonclustered indexes were modified in the same operator that 
modifies the clustered index. You'll see this referred to, occasionally, as a "narrow" plan. 
Another way that the optimizer can choose to modify all the required nonclustered indexes 
on a table is to process the modification of each one separately, referred to as a "wide" or 
"per-index" plan.

To see an example of a wide DELETE plan, we'll first create a materialized view and then 
delete some data.

CREATE OR ALTER VIEW dbo.TransactionHistoryView 
WITH SCHEMABINDING 
AS 
SELECT COUNT_BIG(*) AS ProductCount, 
       th.ProductID 
FROM Production.TransactionHistory AS th 
GROUP BY th.ProductID 
GO 
CREATE UNIQUE CLUSTERED INDEX TransactionHistoryCount 
ON dbo.TransactionHistoryView(ProductID) 
GO 
BEGIN TRAN; 
DELETE FROM Production.TransactionHistory 
WHERE ProductID = 711; 
ROLLBACK TRAN;

Listing 6-6

The resulting execution plan is much more complex than before.

Figure 6-15: A per-index DELETE execution plan.

In reading this plan, we're going to start off on the left-hand side, following the order of 
execution. There are two things we must address there, before we switch back over to the 
data flow order of operations. Figure 6-16 shows the first two operators of the plan.
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Figure 6-16: The DELETE operator receiving information from the Sequence operator.

After the DELETE operator, which we've already discussed in this chapter, the next operator, 
in order of execution, is the Sequence operator. It takes some number of inputs, in this 
case two, and processes them in precise order, from top to bottom. The inputs are related 
objects in which data must be modified, and the operations must be performed in the correct 
sequence. In our example, the optimizer needs to delete data from a clustered index, and 
its associated nonclustered indexes, and then from a second clustered index that defines the 
materialized view.

With a Sequence operator, almost always as part of an UPDATE or DELETE, each input 
represents a different object within the database. Even if multiple values can be returned from 
the various inputs to the Sequence operator, only the bottom, the final, input is passed on.

This makes the Sequence a partially blocking operator, since all processing for one input 
must be complete before the next is started. Only when all other inputs have completed, and 
the bottom input starts, will the Sequence start to pass rows it receives on to the next oper-
ator. Understanding that we're dealing with the Sequence operator will make the rest of the 
plan easier to understand.

Figure 6-17 shows the operators that comprise the top input for the Sequence operator.

Figure 6-17: The operators in the top input to a Sequence operator.

The start of the processing in the data flow direction begins with an Index Seek operation 
against the IX_TransactionHistory_ProductID nonclustered index. The output 
from that index is a listing of TransactionID values that match the input value of 711, 
provided for the ProductID, from Listing 6-6.
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This listing of TransactionID values then goes to the Clustered Index Delete opera-
tion which will take care of removing all data from the clustered index that defines the table. 
Figure 6-18 shows the output from the Clustered Index Delete operator.

Figure 6-18: The Output List property from a Clustered Index Delete.

If you check the output, you'll see the column, ProductID, which will be used elsewhere 
in the plan. The output is then loaded into a Table Spool operator for later use. Any time you 
start to deal with table spools, it's always a good idea to get the NodeID value (in this case it 
is 2), which you can find from the Properties or the tooltip (more on this shortly).

The Table Spool is just temporary storage for use later in the plan and nothing else is done to 
this data during this process except to load it into the Spool for later use. The logical opera-
tion is an Eager Spool. An Eager Spool will first collect all information from preceding 
operators before passing on any rows. This means that all rows that match our criteria, 
ProductID = 711, are already deleted, before the rest of the plan receives any data from 
this operator.

That completes the top input to the Sequence operator. Figure 6-19 shows the bottom input.

Figure 6-19: Complete bottom input of the Sequence Operator.

We'll break this down a little farther, for ease of reading, with Figure 6-20 showing the far 
right of the plan, up to the Nested Loops operator.
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Figure 6-20: Identifying matching rows in materialized view.

We start with another Table Spool operator. This Table Spool operator has its own NodeID, 
showing where it falls within the processing of the plan. However, it has an additional piece 
of information, the Primary Node ID, indicating that it is reusing data stored in the Table 
Spool found in the top input.

Figure 6-21: Properties of the Table Spool operator.

All that information was loaded once from the output of the Clustered Index Delete  
operator, in the top input, and now is going to be reused in this set of operations in the  
bottom input.

The next operator is a Stream Aggregate operator (see Chapter 5), which takes the output 
from the deleted values in the clustered index and aggregates them in order to make them 
match the data in the materialized view. The Nested Loops join then adds the corresponding 
data, as it is currently stored in the materialized view.

Figure 6-22 shows the next section of the lower input of the Sequence operator.
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Figure 6-22: The DELETE of the materialized view.

The Compute Scalar computes the new value for use in the materialized view by subtracting 
the number of deleted rows by ProductID (as computed in the Stream Aggregate) from 
the originally stored data. The Table Spool operator has its own NodeID, and no Parent 
NodeID, so isn't reusing data from elsewhere. In this case, it's again protecting against the 
Halloween Problem. Finally, we see a Clustered Index Update that modifies the data in the 
materialized view itself.

This example illustrates the alternative way to maintain indexes in data modification plans. 
It is up to the optimizer to decide to use either method, or a mix. This decision is as always 
based on estimations on the cost of maintaining indexes in random order, versus the cost 
of saving the rows in a Table Spool, sorting them, and then maintaining the indexes with 
pre-ordered data. Though this example showed a DELETE plan, the same options apply to 
INSERT, UPDATE, and MERGE plans.

Drop the materialized view before we continue.

DROP INDEX TransactionHistoryCount ON dbo.TransactionHistoryView; 
GO 
DROP VIEW dbo.TransactionHistoryView; 
GO

Listing 6-7

Plans for MERGE queries
With SQL Server 2008, Microsoft introduced the MERGE query. This is a method for modi-
fying data in your database in a single query, instead of one query for INSERTs, one for 
UPDATEs, and another for DELETEs. The nickname for this is an "upsert." The simplest 
application of the MERGE query is to perform an UPDATE if there are existing key values in 
a table, or an INSERT if they don't exist. The query in Listing 6-7 UPDATEs or INSERTs 
rows to the Purchasing.Vendor table.
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DECLARE @BusinessEntityId INT = 42, 
        @AccountNumber NVARCHAR(15) = N'SSHI', 
        @Name NVARCHAR(50) = N'Shotz Beer', 
        @CreditRating TINYINT = 2, 
        @PreferredVendorStatus BIT = 0, 
        @ActiveFlag BIT = 1, 
        @PurchasingWebServiceURL NVARCHAR(1024) = N'http://
shotzbeer.com', 
        @ModifiedDate DATETIME = GETDATE(); 
BEGIN TRANSACTION; 
MERGE Purchasing.Vendor AS v 
USING 
(   SELECT @BusinessEntityId, 
           @AccountNumber, 
           @Name, 
           @CreditRating, 
           @PreferredVendorStatus, 
           @ActiveFlag, 
           @PurchasingWebServiceURL, 
           @ModifiedDate) AS vn (BusinessEntityId, AccountNumber, 
NAME, CreditRating, PreferredVendorStatus, ActiveFlag, 
PurchasingWebServiceURL, ModifiedDate) 
ON (v.AccountNumber = vn.AccountNumber) 
WHEN MATCHED THEN 
    UPDATE SET v.Name = vn.NAME, 
               v.CreditRating = vn.CreditRating, 
               v.PreferredVendorStatus = vn.PreferredVendorStatus, 
               v.ActiveFlag = vn.ActiveFlag, 
               v.PurchasingWebServiceURL = 
vn.PurchasingWebServiceURL, 
               v.ModifiedDate = vn.ModifiedDate 
WHEN NOT MATCHED THEN 
    INSERT (BusinessEntityID, 
            AccountNumber, 
            Name, 
            CreditRating, 
            PreferredVendorStatus, 
            ActiveFlag, 
            PurchasingWebServiceURL, 
            ModifiedDate)
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    VALUES (vn.BusinessEntityId, vn.AccountNumber, vn.NAME, 
vn.CreditRating, vn.PreferredVendorStatus, vn.ActiveFlag, 
            vn.PurchasingWebServiceURL, vn.ModifiedDate); 
ROLLBACK TRANSACTION;

Listing 6-8

This query uses the alternate key, the AccountNumber column, on the Purchasing.
Vendor table. If the value supplied (in this case 'SSHI') matches a key value in this 
column, then the query will run an UPDATE, and if it doesn't, it will perform an INSERT. 
Figure 6-22 shows the execution plan.

Figure 6-23: Full plan for the MERGE query.

As you can see, that plan is a bit large for the book, so I'll break this plan down in  
right-to-left order.

 Figure 6-24: Loading the Constant Scan and checking for a row.

This first section of the plan contains a series of steps to prepare for the main operations to 
come. The Constant Scan generates one empty row, a place holder for data so that all the 
operators will have information to work with, even if it's an empty set. The Nested Loops 
operator uses this empty row to drive a single execution of its inner input, where the Index 
Seek against the Vendor.AK_Vendor_AccountNumber nonclustered index will pull 
back any rows to be updated (i.e. that match the supplied Seek Predicate). We'd expect one 
row at most, since it's a UNIQUE index but, in this case, the Properties for the data flow 
between the Index Seek and the first Compute Scalar reveals zero rows returned.
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Figure 6-25: Properties of the Compute Scalar operator.

For every row it receives, the Compute Scalar operator creates a value TrgPrb1001 and 
sets it to a value of 1, as you will see in the Defined Values property value for the operator.

The Nested Loops operator combines the empty column from the Constant Scan with the 
data (if any) from the Compute Scalar, by using a Left Outer Join. If, as in our case, no 
data is returned by the Compute Scalar, it still returns a row, using NULL values. The  
effect of this is that the value 1 is passed into TrgPrb1001 if the Index Seek finds a  
row, or NULL if it doesn't. This is used later in the plan to determine if any rows exist  
for UPDATE or DELETE.

The next part of the plan is a series of Compute Scalar operations, as shown in Figure 6-25.

 Figure 6-26: Multiple calculations against the data to determine what to do with it.

The hard part of reading a plan like this is trying to figure out what each of the Compute 
Scalar operators does. This is revealed by the Defined Values and Output List property 
values. Working from the right again, the first Compute Scalar operator in Figure 6-25 
performs a calculation:

[Action1003] = Scalar Operator(ForceOrder(CASE WHEN [TrgPrb1001] IS 
NOT NULL THEN (1) ELSE (4) END))

This Compute Scalar operator creates a new value, called Action1003 in my case, and 
since TrgPrb1001 is null, the value is set to "4." Depending on your SQL Server version, 
and the updates applied, you may see different values for Action1003 or Expr1005, or 
any of the various generated values within the plan, even though you may have an otherwise 
identical plan. This simply reflects minor changes within the optimizer and the order in which 
it initializes each of these expressions.
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The next Compute Scalar operator loads all the variable values into the row, and performs 
two other calculations:

[Expr1004] = Scalar Operator([@ActiveFlag]), [Expr1005] = 
Scalar Operator([@PurchasingWebServiceURL]), [Expr1006] = 
Scalar Operator([@PreferredVendorStatus]), [Expr1007] = Scalar 
Operator([@CreditRating]), [Expr1008] = Scalar Operator(CASE 
WHEN [Action1003]=(4) THEN [@BusinessEntityId] ELSE 
[AdventureWorks2014].[Purchasing].[Vendor].[BusinessEntityID] 
as [v].[BusinessEntityID] END), [Expr1009] = Scalar Operator([@
ModifiedDate]), [Expr1010] = Scalar Operator([@Name]), [Expr1011] 
= Scalar Operator(CASE WHEN [Action1003]=(4) THEN [@AccountNumber] 
ELSE [AdventureWorks2014].[Purchasing].[Vendor].[AccountNumber] as 
[v].[AccountNumber] END)

Looking at the expression for Expr1011, we can begin to understand what's happening. 
The first Compute Scalar output, TrgPrb1001, determined if the row existed in the 
table. If it existed, then the second Compute Scalar would have set Action1003 equal 
to 1, meaning that the row did exist, and this new Compute Scalar would have used the 
value from the table but, instead, it's evaluating Action1003 and choosing the variable @
AccountNumber, since an INSERT is needed. The same logic is used in Expr1008 for 
the BusinessEntityId value. The result of this Compute Scalar is that all expressions 
hold the correct value for the INSERT or UPDATE, as determined by the Action1003.

Moving to the left, the next Compute Scalar operator validates what Action1003 is and 
sets a new value, Expr1023, based on this formula:

[Expr1023] = Scalar Operator(CASE WHEN [Action1003] = (1) THEN 
(0) ELSE [Action1003] END)

We know that Action1003 is set to 4, so this expression will be set to 4.

The final Compute Scalar operator sets two values equal to themselves, for some reason 
that's not completely clear to me. It may be some internal process within the optimizer that 
is evidenced here in the execution plan. Finally, we're ready to move on with the rest of the 
execution plan.
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Figure 6-27: Final steps in the Merge operation.

The Clustered Index Merge receives all the information added to the data stream by the 
various operators, and uses it to determine if the action is an INSERT, an UPDATE, or a 
DELETE, and performs that action. You can see the outcome within the Action Column 
property of the operator, in Figure 6-27, which shows a value of Action1003.

Figure 6-28: Action Column values for Clustered Index Merge operator.

Of course, in this case, it's only either an INSERT or UPDATE. You can even see the infor-
mation in the Predicate property of the operator.

Figure 6-29: Predicate values of the Clustered Index Merge operator.
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Appropriately, in this case, because of all the work that the Merge operation must perform in 
modifying two indexes, the optimizer estimates that this operation will account for 75% of 
the cost of the execution plan.

Next, an Assert operator runs a check against a constraint in the database, validating that the 
data is within a certain range. The data passes to the Nested Loops operator, which is used 
to retrieve values used for validation that the BusinessEntityId referential integrity is 
intact, through the Clustered Index Seek against the BusinessEntity table. This action 
is only performed in this case, since this is an INSERT operation, as determined earlier by 
the definition of the value of Action1003. The Nested Loops operator has a Pass Through 
function, which skips invoking the inner input, in other cases. We can see that in Figure 6-30.

Figure 6-30: The evaluation that determines if it is a Pass Through.

The information gathered by that join passes to another Assert operator, which validates the 
referential integrity, assuming that it was an INSERT action. The query is then completed.

As you can see, a lot of action takes place within execution plans but, with careful review, it 
is possible to identify most of what is going on.

Prior to the MERGE query, you may have done a query of this type dynamically. You either 
had different procedures for each of the processes, or different queries within an IF clause. 
Either way, you ended up with multiple execution plans in the cache, for each process. This 
is no longer the case. If you were to modify the query in Listing 6-7 and change one simple 
value as in Listing 6-9…

… 
@AccountNumber NVARCHAR(15) = 'SPEEDCO0001', 
…

Listing 6-9

…the exact same query with the exact same execution plan will now UPDATE the data for 
values where the AccountNumber is equal to that passed through the parameter. Therefore, 
this plan, with the Merge operator, creates a single reusable plan for all the data manipulation 
operations it supports.
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Summary
This chapter dealt with the plans for relatively simple data modification queries. The key 
lessons are that you read these queries in the same way that you read a SELECT query and 
use the same tools such as properties, and the estimated costs, to try to understand how and 
why the optimizer has implemented the plan in this way.
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In Chapters 2 through 6, we dealt with single statement T-SQL queries. As we saw, some-
times even these relatively simple queries can generate complicated execution plans. In this 
chapter, we'll extend our scope to consider plans for common T-SQL statements and objects, 
such as stored procedures, subqueries, derived tables, common table expressions, views, and 
functions.

As the T-SQL statements get more complex, so the plans that the optimizer creates can get 
bigger, and more time-consuming to decipher. However, just as a large T-SQL statement can 
be broken down into a series of simple steps, large execution plans are simply extensions of 
the same simple plans we have already examined, just with more, and different, operators.

Again, please bear in mind that the plans you see, if you follow along, may vary slightly from 
what's shown in the text, due to different service pack levels, hot-fixes, differences in the 
AdventureWorks database, its statistics, and data.

Stored Procedures
The best place to get started is with stored procedures, which may comprise a single query, 
or a whole series of queries. In the latter case, you will see multiple execution plans, but the 
way you tackle each of these plans is no different than any other execution plan.

Listing 7-1 shows a TaxRateByState stored procedure, the intent of which is to return 
information on tax rates that are less than a defined value, in this case 7.5. This is a typical 
example of a procedure that was probably built up over time, by someone who is not an 
expert at T-SQL. It involves a series of steps to pull together some data, manipulate that data, 
then return a result set. There are circumstances where this approach is justified, but others 
where it is not the optimal solution.

CREATE OR ALTER PROCEDURE Sales.TaxRateByState @CountryRegionCode 
NVARCHAR(3) 
AS 
SET NOCOUNT ON; 
CREATE TABLE #TaxRateByState 
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( 
    SalesTaxRateID INT NOT NULL, 
    TaxRateName NVARCHAR(50) COLLATE DATABASE_DEFAULT NOT NULL, 
    TaxRate SMALLMONEY NOT NULL, 
    TaxType TINYINT NOT NULL, 
    StateName NVARCHAR(50) COLLATE DATABASE_DEFAULT NOT NULL 
); 
INSERT INTO #TaxRateByState 
( 
    SalesTaxRateID, 
    TaxRateName, 
    TaxRate, 
    TaxType, 
    StateName 
) 
SELECT st.SalesTaxRateID, 
       st.Name, 
       st.TaxRate, 
       st.TaxType, 
       sp.Name AS StateName 
FROM Sales.SalesTaxRate AS st 
    JOIN Person.StateProvince AS sp 
        ON st.StateProvinceID = sp.StateProvinceID 
WHERE sp.CountryRegionCode = @CountryRegionCode; 
DELETE #TaxRateByState 
WHERE TaxRate < 7.5; 
SELECT soh.SubTotal, 
       soh.TaxAmt, 
       trbs.TaxRate, 
       trbs.TaxRateName 
FROM Sales.SalesOrderHeader AS soh 
    JOIN Sales.SalesTerritory AS st 
        ON st.TerritoryID = soh.TerritoryID 
    JOIN Person.StateProvince AS sp 
        ON sp.TerritoryID = st.TerritoryID 
    JOIN #TaxRateByState AS trbs 
        ON trbs.StateName = sp.Name; 
GO

Listing 7-1

It would be possible to write the same logic in just a single query, without the need for a 
temporary table. However, this is the type of code you encounter in real-life systems, and 
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sometimes you just need to understand the cause of the performance issue, via the plan,  
and decide on a fix, without necessarily having the time, or even the opportunity, to do 
 a full rewrite.

Also, note that NVARCHAR(3) isn't the best data type for use for the @CountryRegion-
Code parameter; CHAR(3) would be far more efficient and sensible. However,  
NVARCHAR(3) is the data type used for that column, in the table, so the stored procedure 
follows suit, to avoid data type conversion issues.

We can execute the stored procedure by passing in a value, as shown in Listing 7-2.

EXEC Sales.TaxRateByState @CountryRegionCode = N'US'; 
GO

Listing 7-2

Figure 7-1 shows the resulting actual execution plan, which is a little more complex than 
ones we've seen previously.

Figure 7-1: Multiple execution plans from a single stored procedure.
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An interesting point is that we don't have a stored procedure in sight. Instead, the optimizer 
treats the T-SQL within the stored procedure in the same way as if we had written and run the 
SELECT statement, through the query window.

The more statements get added to a given stored procedure, the more execution plans you'll 
see. In the event of some type of looping query, you can see hundreds of execution plans. 
Capturing all the execution plans in such cases can cause performance problems with SSMS. 
If you are dealing with that situation, your approach should be to use an estimated plan where 
possible. If you must see an actual plan, then capture plans for individual statements using a 
filtered Extended Event session, or use SET STATISTICS XML ON and OFF statements, if 
you can modify the code.

The stored procedure in Listing 7-1 has five statements but we see only three execution plans 
in Figure 7-1. The Data Definition Language (DDL) statement to create the temporary table, 
#TaxRateByState, doesn't get an execution plan. A DDL statement can only be resolved 
one way, so they do not go through optimization, therefore there is no execution plan. We 
also don't see a plan for the SET NOCOUNT statement. An estimated plan will show a T-SQL 
operator for these statements, but not any kind of fuller execution plan.

Just as when we execute a batch containing two or more queries, for a stored procedure 
containing two or more statements, the execution plan shows the estimated cost of each 
query, relative to the batch. These values appear as the Query cost (relative to the batch), at 
the head of each plan, and we can use them to identify the plan that needs the most attention, 
for performance tuning. As always, though, treat these estimated costs with caution, and only 
use them if there is no large disparity between the estimated and actual row counts.

Query 1 accounts for an estimated 3% of the total cost, and it's the plan for populating the 
temporary table with tax rate information for each state in the supplied country, in this case 
the USA. We won't explore the plan in detail, but it's worth taking a peek at the properties of 
the INSERT operator.

Figure 7-2: Properties of the INSERT operator showing the Parameter List.
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The interesting value properties here are in the Parameter List, which contains the Param-
eter Compiled Value, the parameter value that the optimizer used to compile the plan for the 
stored procedure. Below it is the Parameter Runtime Value, showing the value when this 
query was called.

When we run the batch in Listing 7-2, to execute the stored procedure, SQL Server first 
compiles the batch only, and sets the value of the @CountryRegionCode to N'US'. It 
then runs the EXEC command, and checks in the plan cache to see if there is a plan to execute 
the stored procedure. In this case there isn't, so it will then invoke the compiler again to 
create a plan for the procedure. At this point, the optimizer can "sniff" the parameter value, 
and generate a plan, using statistics for that value. If we execute the stored procedure again 
with a different parameter value, this time there will be a plan the optimizer can reuse, and 
we see a different runtime value but the same compiled value.

Figure 7-3: Properties of the SELECT operator with changes to parameters.

This is only significant if the compiled value returned a row count that was very "atypical" 
compared to most values used to execute the procedure. The section on Indexes and selec-
tivity, in Chapter 8, provides more information about parameter sniffing, and compiled 
values, so we won't go into further details here.

Query 2 is the plan to delete rows that fall below our tax rate threshold value, which in this 
case leaves only 5 rows in the temporary table.

Query 3 joins to our temporary table, and several others, to return our results. This query 
looks to be the place to start our serious investigation, since the optimizer thinks it accounts 
for the majority (96%) of the cost for executing the stored procedure, as shown in Figure 7-4.
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Figure 7-4: The execution plan for Query 3, 96% of the estimated cost of the batch.

Visually it's not a terribly complex plan, but there is a lot going on. Starting on the right, we 
have a Nested Loops join operator where the outer input is a scan of the temporary table, 
which returns 5 rows. This will incur 5 executions of the inner input, an Index Seek against 
the StateProvince table. The output of this Nested Loops join operator is the outer input 
from another Nested Loops join, so we get 5 executions on the inner input, a Key Lookup 
on the clustered index of the StateProvince table to retrieve the values not stored in the 
nonclustered index, in this case, the TerritoryID values.

The output of the second Nested Loops join is the Build input for a Hash Match join oper-
ator, where the Probe input is a Clustered Index Seek against the SalesOrderHeader 
table.

The Hash Match operator reads the Build input, hashes the join column (in this case 
TerritoryID), and stores the column values, and their hashes, in a hash table in memory. 
It then reads the rows in the Probe input one row at a time, in this case 31465 rows, and for 
each row, it produces a hash value for the TerritoryID column that it can compare to the 
hashes in the hash table, looking for matching values, and starts retuning the matching rows 
(23752 in total).

As you can see, execution plans for stored procedures are not special, and are not different 
from other execution plans. You just need to identify the plan, or plans, within that are 
causing the issue, and assess possible fixes.



191

Chapter 7: Execution Plans for Common T-SQL Statements

Subqueries
A common and useful, but occasionally problematic, approach to querying data is to select 
information from other tables within the query, but not as part of a JOIN statement. Instead, 
we embed a SELECT statement within another SELECT, INSERT, UPDATE, or DELETE 
statement. We can use a subquery in any part of the query where expressions are allowed, but 
you'll most commonly see them in the WHERE, SELECT and FROM clauses.

Listing 7-3 illustrates a correlated subquery that accesses the Production.Produc-
tionListPriceHistory table. This table maintains a history of prices for each product, 
and the date ranges for which a given price was valid. It's quite common to see subqueries 
used like this, for tables that hold "versioned" data. In this case, we use it to ensure we only 
see the most recent "version" of the list price for each product.

However, for reasons that we'll discuss as we examine the plan, it's not necessarily the 
optimal solution.

SELECT p.Name, 
       p.ProductNumber, 
       ph.ListPrice 
FROM Production.Product AS p 
    INNER JOIN Production.ProductListPriceHistory AS ph 
        ON p.ProductID = ph.ProductID 
           AND ph.StartDate = (   SELECT TOP (1) 
                                         ph2.StartDate 
                                  FROM Production.
ProductListPriceHistory AS ph2 
                                  WHERE ph2.ProductID = p.ProductID 
                                  ORDER BY ph2.StartDate DESC);

Listing 7-3

Notice that the subquery references the ProductID values from the outer query so, for each 
row from the outer query, that row's ProductID value is plugged into the subquery and 
compared with the ProductID value of the ProductListPriceHistory table. As a 
result, the subquery is executed once for each row returned by the outer query. The TOP (1) 
clause, with the ORDER BY, ensures that, in each case, the subquery only returns the most 
recent row (showing the current list price). Depending on the query, sometimes the optimizer 
can figure out a more efficient way to achieve the desired results. As we'll see, this is not one 
of those situations.
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Figure 7-5 shows the actual execution plan.

Figure 7-5: Execution plan for a subquery.

Reading the plan from right to left, we see two Clustered Index Scans, one on Produc-
tion.Product and one on Production.ProductListPriceHistory. These two 
data streams are combined using the Merge Join operator, using ProductID as the join 
column; you can see this in the Where (join columns) property in the Merge Join operator.

Figure 7-6: Merge Join columns defined.

Since the Merge Join requires that both data inputs are ordered on the join key, in this case 
the ProductID, you'll see that the Ordered property is set to True for each of the scans. 
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This means that the execution engine will use the Ordered retrieval method to fulfill them 
(see Chapter 5), and the data will be retrieved in the logical index order, in each case. In this 
example, both clustered indexes are ordered by ProductID.

Figure 7-7: Clustered Index Scan showing that it is Ordered.

So, the Merge Join simply takes the data from two inputs and uses the fact that the data  
in each input is ordered on the join column to merge them, joining rows based on the 
matching values. You can refer to Chapter 4 for further details on how various flavors of 
Merge Join work.

There are 395 merged rows, which are the 395 rows with list price entries. Incidentally, this 
is clearly an atypical data distribution, since there are 504 products in the Products table, 
and you'd generally expect there to be one or more price list entries for each product. In any 
event, these rows form the outer input for a Nested Loops join operator, which implies that 
the inner input will be executed 395 times. If you check the Outer References property of 
the Nested Loops, you'll see that values from the ProductID and StartDate column are 
being pushed down to the inner input.

The clustered index on the ProductListPriceHistory table is on (ProductID, 
StartDate) and for each execution, we're looking for rows matching the ProductID 
value pushed down from the outer input. However, the TOP operator ensures that it only 
reads the row with the most recent StartDate (remember that execution order is left to 
right). The Filter operator will either pass on or reject that single row, depending on whether 
there is a match on StartDate (the other pushed-down column value). Figure 7-8 shows 
the expanded Predicate property value for the Filter operator.
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Figure 7-8: Details on the Predicate property.

A couple of other points to note here. Firstly, the Filter is executed 395 times (as are its child 
operators). It returns the most recent row for each of the 293 distinct ProductID values; 
you can see from the Output List that it does not return any data, just an empty row shell 
for each row that passes its filter criteria. The row itself is empty because the only thing that 
Nested Loops needs to make its decision is the presence or absence of a row. Finally, notice 
that the Startup Expression is False in this case, meaning the child operators will be called 
for every execution. If you were to see Startup Expression Predicate, the child operators 
would only be called for rows that met that Predicate condition.

Hopefully, it's clear that the fundamental problem with this plan is the number of executions 
of the inner input of the Nested Loops join. Imagine some different numbers: let's say we 
have 200 products and an average of 15 prices per product in the ProductListPrice-
History history. The Merge Join will produce 3000 rows, so the outer input of the Nested 
Loops operator has 3000 rows, and the inner input then executes 3000 times, reading the 
same 200 rows repeatedly. That would cause a high number of logical reads; the optimizer is 
likely to choose a different plan under those conditions, if it can find one.

There are many ways you could consider trying to optimize this query and I can't cover 
them all here. One option would be to replace the SELECT TOP(N)…ORDER BY logic with 
SELECT MAX(ph2.StartDate)…. If you were to try this, you'd see a change from a 
Nested Loops join to two Merge Joins and an improvement in performance. Try it out and 
read through the plan. Another option is to use a derived table instead of a subquery and we'll 
see how that works in the next section.
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Derived Tables Using APPLY
One of the ways that we can access data through T-SQL is via a derived table. If you are 
unfamiliar with them, think of a derived table as a virtual table created on the fly from within 
a SELECT statement.

You create derived tables by writing a subquery within a set of parentheses in the FROM 
clause of an outer query. Once you apply an alias, this subquery is treated as a table by the 
T-SQL code. Prior to SQL Server 2005, any derived table had to be fully independent of the 
main query. However, SQL Server 2005 introduced the APPLY operator, which allows us to 
create a correlation between the main query and the derived table. The APPLY operator will 
evaluate the subquery (or Table Valued Function) once for every row produced by the part of 
the FROM clause to the left of the APPLY clause. This is the logical definition; the optimizer 
is, of course, free to find a different, faster implementation, if it can.

There are two forms of the APPLY operator, CROSS APPLY and OUTER APPLY. The former 
combines each row from the left input with each row returned from the right input. The latter 
does the same, but also retains the row from the left input if nothing is returned from the right 
input, using NULL values for columns originating from the right input. If you are unfamiliar 
with the Apply operator, check out http://bit.ly/1FFmldl (it's an MSDN entry for SQL Server 
2008R2, but it's still correct).

In my own code, one place where I've come to use derived tables frequently is when dealing 
with data that changes over time, for which I should maintain history. This query approach, 
shown in Listing 7-4, is an alternative to the subquery we saw in the Listing 7-3. It produces 
the same results as Listing 7-3, but uses the APPLY operator. The big difference is that the 
data becomes available to the rest of the query, when the subquery is in the FROM, making it 
a derived table. For a subquery used anywhere else in the query, its result is only available in 
the location where it is specified.

SELECT p.Name, 
       p.ProductNumber, 
       ph.ListPrice 
FROM Production.Product p 
    CROSS APPLY 
     ( 
         SELECT TOP (1) 
             ph2.ProductID, 
             ph2.ListPrice 

http://bit.ly/1FFmldl


196

Chapter 7: Execution Plans for Common T-SQL Statements

         FROM Production.ProductListPriceHistory ph2 
         WHERE ph2.ProductID = p.ProductID 
         ORDER BY ph2.StartDate DESC 
     ) ph;

Listing 7-4

The introduction of the APPLY operator changes the execution plan substantially, as shown 
in Figure 7-9.

Figure 7-9: Execution plan for the APPLY command.

In this plan, we see that the outer input to the Nested Loops operator is a Clustered Index 
Scan of the Products tables, which produces 504 rows. This implies that the inner input 
will be executed 504 times. The values of the ProductID column are pushed down as 
Outer References, and used to seek matching rows in the ProductListPriceHistory 
table, and the TOP operator again ensures that each seek operation returns only the row with 
the most recent list price.

So, which method of writing this query do you think is the most efficient? One way to find 
out is to capture and compare performance metrics for each query run (duration, number of 
logical reads performed, and so on).

As discussed in Chapter 2, the lowest-impact way to do this is using Extended Events. Also, 
when you do go to measure performance (duration), it's a very good idea to stop capturing 
the execution plans because that introduces substantial observer effect. Figure 7-10 shows the 
results, captured using the Extended Events session provided in Listing 2-6.
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Figure 7-10: Performance results for the APPLY command.

Although both queries returned identical result sets, the subquery in the ON clause (Listing 
7-3) uses fewer logical reads (811) compared to the query using APPLY and a derived table 
(Listing 7-4), which caused 1024 logical reads.

The simple explanation for the difference is that in the correlated subquery the expensive 
inner input of the Nested Loops join is executed 395 times (once per list price), and in the 
derived table query it's executed once per product (504 times). As noted earlier, we're dealing 
with a rather strange data distribution in this case, where 211 products have no list price 
and the remaining 293 have one or more list prices. With a more typical data distribution, 
consisting of multiple list prices for all, or most, products, we could easily have expected the 
derived table version to outperform the subquery.

Things get more interesting if we add the WHERE clause in Listing 7-5 to the outer query of 
each of the previous listings.

WHERE p.ProductID = 839

Listing 7-5

When we rerun Listing 7-3 with the added WHERE clause, we get the plan shown in  
Figure 7-11.

Figure 7-11: New execution plan after adding a WHERE clause.

The Filter operator is gone but, more interestingly, the optimizer has changed the order of 
evaluation; the TOP operator now appears in the part of the plan to resolve the outer query 
where, before, it was in the part of the plan to resolve the subquery. First, it finds the single 
requested row from the Product table and then immediately evaluates the subquery to find 
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the most recent StartDate for that ProductID. If you check the properties of the right-
most Clustered Index Seek on ProductListPriceHistory, you'll see that it refer-
ences the ph2 alias, which tells us it's evaluating the subquery.

The next inner join to ProductListPriceHistory is on both ProductID and 
StartDate, with StartDate being pushed down from the outer input (see the Outer 
References property of the Nested Loops join). Also, if you check out the Seek Predicates 
property of the Clustered Index Seek on the left, which displays each of the predicates used 
to define the rows that need to be read, it references both ProductID and StartDate.

The end result is that, instead of Index Scans, and the inefficiencies caused by executing the 
inner input of a Nested Loops join hundreds of times, we now have three Clustered Index 
Seek operations, with an equal estimated cost distribution, and two Nested Loops joins. The 
Merge Join we saw in Figure 7-5 was appropriate when we were dealing with scans of the 
data, but was not used, nor applicable, when the introduction of the WHERE clause reduced 
the data set. The inner input of each Nested Loops join is executed only once, since the 
WHERE clause means the outer input produces only a single row.

If we add the WHERE clause to Listing 7-4 (APPLY and a derived table), we see the plan 
shown in Figure 7-12.

Figure 7-12: How the WHERE clause changes the APPLY plan.

This plan is almost identical to the one seen in Figure 7-9, with the only change being that the 
Clustered Index Scan has changed to a Clustered Index Seek. This change was possible 
because the inclusion of the WHERE clause allows the optimizer to take advantage of the 
clustered index to identify the row needed, rather than having to scan through them all to find 
the correct row to return.

Let's compare the I/O statistics for each of the queries:
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Figure 7-13: Performance metrics after adding a WHERE clause.

Now, with the addition of a WHERE clause, the derived query is more efficient, with only 
4 logical reads versus the sub-select query with 6 logical reads, and a marginal increase in 
speed. If you run the query frequently, you'll find that the APPLY query is consistently faster. 
If we increase the data volumes, it's very likely that you'll see the APPLY operator perform 
even better than the other method.

With the WHERE clause in place, the subquery became relatively costlier to maintain when 
compared to the speed provided by APPLY. Understanding the execution plan makes a real 
difference in deciding which T-SQL constructs to apply to your own code. Just remember 
that you should use the best possible representative data on your tests, in order to get behav-
iors and performance similar to your production environment. Also remember that, as data 
changes, so the distribution of that data may change, which can result in differences in execu-
tion plans and differences in performance. If your data is modified frequently, you may have 
to reevaluate queries on a regular basis.

Common Table Expressions
SQL Server 2005 introduced the Common Table Expression (CTE), a T-SQL construct with 
behavior that appears similar to derived tables. A CTE is a "temporary result set" that exists 
only within the scope of a single SQL statement. It allows access to functionality within a 
single SQL statement that was previously only available through the use of functions, tempo-
rary tables, cursors, and so on. Unlike a derived table, a CTE can be self-referential and 
referenced repeatedly within a single query. Also unlike a derived table, a CTE cannot be 
correlated, even when used with APPLY. For more details on CTEs, check out this article on 
Simple Talk: http://bit.ly/1NCr8k0.

Despite the description of a CTE as a temporary result set, don't assume that the CTE is 
processed in a separate manner from the rest of the T-SQL. Fundamentally, this is still a 
derived table, just like the other examples we've already seen. The primary difference will be 
when the CTE is self-referencing. A recursive CTE always uses two (or, rarely, more) 

http://bit.ly/1NCr8k0
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queries, combined with UNION ALL. The first query, known as the "anchor member," can be 
executed on its own to produce a result. The second query, the "recursive member," refer-
ences the CTE itself. It uses the data coming from the anchor member to produce more rows, 
but then recursively continues to produce even more data using the rows it produces itself. 
This is the logical definition; we will see how it executes shortly.

The built-in stored procedure, dbo.uspGetEmployeeManagers, in Adventure-
Works, uses a CTE called EMP_cte in a classic recursive exercise, listing employees and 
their managers.

CREATE OR ALTER PROCEDURE dbo.uspGetEmployeeManagers 
    @BusinessEntityID INT 
AS 
BEGIN 
    SET NOCOUNT ON; 
    -- Use recursive query to list out all Employees required for a 
Manager 
    WITH EMP_cte(BusinessEntityID, OrganizationNode, FirstName, 
LastName, JobTitle, 
         RecursionLevel) -- CTE name and columns 
    AS ( 
        SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName, 
p.LastName, 
               e.JobTitle, 0 -- Get the initial Employee 
        FROM HumanResources.Employee e 
            INNER JOIN Person.Person AS p 
            ON p.BusinessEntityID = e.BusinessEntityID 
        WHERE e.BusinessEntityID = @BusinessEntityID 
        UNION ALL 
        SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName, 
p.LastName, 
               e.JobTitle, RecursionLevel + 1 -- Join recursive 
member to anchor 
                                              -- and to the next 
recursive member 
        FROM HumanResources.Employee e 
            INNER JOIN EMP_cte 
            ON e.OrganizationNode = EMP_cte.OrganizationNode.
GetAncestor(1) 
            INNER JOIN Person.Person p 
            ON p.BusinessEntityID = e.BusinessEntityID 
    )
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    -- Join back to Employee to return the manager name 
    SELECT EMP_cte.RecursionLevel, EMP_cte.BusinessEntityID, EMP_
cte.FirstName, 
           EMP_cte.LastName, EMP_cte.OrganizationNode.ToString() 
            AS OrganizationNode, p.FirstName AS 'ManagerFirstName', 
            p.LastName AS 'ManagerLastName'  -- Outer select from 
the CTE 
    FROM EMP_cte 
        INNER JOIN HumanResources.Employee e 
        ON EMP_cte.OrganizationNode.GetAncestor(1) = 
e.OrganizationNode 
        INNER JOIN Person.Person p 
        ON p.BusinessEntityID = e.BusinessEntityID 
    ORDER BY RecursionLevel, EMP_cte.OrganizationNode.ToString() 
    OPTION (MAXRECURSION 25) 
END; 
GO

Listing 7-6

You can see the anchor member, the first query in the UNION ALL within the CTE, which 
will return data based on the BusinessEntityID value that gets passed to it as a param-
eter. It's commented in the code as -- Get the initial Employee. The recursion then 
occurs in the second query within the UNION ALL. It's commented as -- Join recur-
sive member to anchor and the next recursive member. It uses the function, 
GetAncestor, to retrieve additional data based on that defined within the anchor member.

Let's execute this procedure and capture the actual plan.

EXEC dbo.uspGetEmployeeManagers 
    @BusinessEntityID = 9;

Listing 7-7

As Figure 7-14 shows, the execution plan is reasonably complex and will be impossible to 
read as is within this book.
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Figure 7-14: Full recursive execution plan from a CTE.

However, our hard work in previous chapters is now paying off. There aren't any operators 
in this plan you've not seen before, so even though it's a big plan, with patience it should be 
relatively easy to understand. Let's break down the plan into sections, starting with the top 
right section, shown in Figure 7-15.

Figure 7-15: Portion of the CTE execution plan showing initial data access.

We're going to read this section of the plan from left to right (logical call order), starting with 
Index Spool operator, because this operator, in conjunction with a Table Spool operator that 
we'll encounter shortly, essentially marks the start of the recursion process, in the CTE. As 
discussed in Chapter 5, a Spool operator uses a temporary worktable to store data that may 
need to be used multiple times, or reused, within an execution plan. The recursive nature of 
the query above requires that SQL Server store the data as it recursively builds the result set. 
This Index Spool is a Lazy Spool, a streaming operator that requests a row from its child 
operator, stores it, and then passes it on immediately to its parent, the one preceding it logi-
cally passing control back to that parent.

In this case, the Index Spool operator has a Node ID value of 4, and it's storing the results 
from a Concatenation operator, which resolves the UNION ALL operation seen in Listing 
7-6. As discussed in Chapter 4, this operator simply processes each of its inputs in order, 
from top to bottom, and concatenates them. A Concatenation operator will always have two 
or more inputs. It calls the top input, passing rows retrieved to its parent, until it has received 
all rows. After that it moves on to the second input, repeating the same process.
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In this case, the top input collects the data for the "anchor member" of the CTE. It performs 
a Nested Loops join of the data from two Clustered Index Seeks against HumanRe-
sources.Employee and Person.Person. This produces a single row (for the 
employee with BusinessEntityID of 9). We then have two Compute Scalar operators, 
each of which returns an expression, both of which are set to zero. One is for the recursion 
level, and the other for the derived column, called RecursionLevel, in the CTE.

After all rows from the top input are processed, the Concatenation operator switches to its 
second input and never returns to the first input. Figure 7-16 displays the bottom input to the 
Concatenation operator, which resolves the recursive member.

Figure 7-16: Portion of the CTE execution plan showing use of Table Spool.

This is where things get interesting. This section of the plan finds each of the managers 
(direct manager, manager's manager and so on). SQL Server implements the recursion 
method via the Table Spool operator, combined with the Index Spool in the top input. The 
Primary Node ID for the Table Spool is 4, indicating that it consumes the data previously 
loaded into the Index Spool operator. You can see this in Figure 7-17, along with some other 
property values for the Table Spool.

Figure 7-17: Table spool properties showing the Primary Node ID and With Stack.
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The With Stack property, set to True, as shown in Figure 7-17 is a necessary part of the 
recursive query. Storing data as a stack means that new data is always added at the top and 
the data is always read from the top. After being read, the data is removed. When you see 
a With Stack property set to True, the behavior of the Index Spool is changed to that of a 
"stack." This is crucial for driving the recursive evaluation of the CTE. As the recursive 
member executes, the Table Spool reads and removes the anchor row from the spool. The 
rest of this plan fragment then finds the anchor value's manager. The manager is stored in the 
spool by the Index Spool operator (NodeID 4), and that row is then read and removed when 
the Table Spool is ready to request the next row. From there, the recursion continues. The job 
of the Assert operator, over on the left-hand side of Figure 7-16 is to verify the MAXRECUR-
SION(25) in the query, aborting execution when that level is exceeded.

So, the Table Spool (Node ID 14) produces a copy of the data stored by the Index Spool 
operator (Node ID 4). When the operator is first called, it will produce a copy of the anchor 
row, and then whatever is stored later, on subsequent calls. The Table Spool operator loops 
through the rows from the Index Spool, and joins the data to data from the tables defined in 
the second part of the UNION ALL definition, within the CTE.

The Table Spool returns four rows. The Compute Scalar operator, next to the Table Spool, 
is used to calculate the current recursion level by adding one to the value. This data stream 
forms the outer input to a Nested Loops join, which joins to the Employee table on a 
built-in function, GetAncestor, which in turn joins to the Person table on Busines-
sEntityID. The inner input performs the Nested Loops join between the Employee 
and Person tables. Figure 7-18 shows the properties of the Clustered Index Scan of the 
Employee table, where you can see the number of times this scan was executed.

The Estimated Number of Executions is 4, and Estimated Number of rows is 290 and  
so four times 290 is 1160 rows in total, which matches exactly the Actual Number of  
Rows value.
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Figure 7-18: Clustered Index Scan of the Employee table.

We then have a Filter operator. The optimizer has decided to do a full scan of the 
Employee table and then, in this Filter operator, compare the OrganizationNode 
of each row to the GetAncestor of the row from the CTE, and keep only the rows that 
match. For the first three rows processed (the one from the anchor member and the first two 
returned from the recursive member), this filter keeps only one row, the employee's direct 
manager. The fourth row processed is the CEO, who has no manager, so the filter now returns 
no row at all and the recursion stops. Hence the right-most section of the plan returns four 
rows in total: one from the anchor member and three from the recursive member, listing the 
employee's managers all the way to the CEO.

So, we have one row from the anchor and three rows from the recursive member giving 
the four rows in total emerging from the Concatenation operation, but only three rows are 
returned in the final results. After the recursion process is finished, we do one more inner join 
of each row returned, to their manager, at which point, the last row returned from the recur-
sive CTE, the CEO, fails to find data for their ManagerFirstName and ManagerLast-
Name columns and so the row is lost.
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Views
A view is essentially just a "stored query." In other words, a logical way of representing data 
as if it were in a table, without creating a new table. The various uses of views are well docu-
mented (preventing certain columns from being selected, reducing complexity for end-users, 
and so on). Here, we will just focus on what happens within an execution plan when working 
with a view.

One note of caution regarding views. Views are not tables, as will become clear when we 
examine their execution plans, but they look like tables, and so there is an inclination to use 
them as tables, joining one view to the next, or nesting multiple views inside of other views. 
This leads to horrible query performance, because the complexity of the execution plans 
overwhelms the optimizer. This bad practice, a common code smell, should be avoided.

Standard views
The view, Sales.vIndividualCustomer, provides a summary of customer data, 
displaying information such as their name, email address, physical address, and demographic 
information. A very simple query to get a specific customer would look something like 
Listing 7-13. While using SELECT * is not the best way to write queries, in this case I'm 
doing it to illustrate what happens when a query is run against a view and all the data refer-
enced by that view are retrieved.

SELECT  * 
FROM    Sales.vIndividualCustomer 
WHERE   BusinessEntityId = 8743;

Listing 7-8

Figure 7-19 shows the resulting graphical execution plan.

Figure 7-19: The full plan of the query against a view.
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This is another plan that is very difficult to read on the printed page, so Figure 7-20 shows an 
exploded view of just the five operators on the right-hand side of the plan.

 Figure 7-20: Subsection of the plan showing standard operators.

What happened to the view, vIndividualCustomer, which we referenced in this query? 
Remember that, while SQL Server treats views similarly to tables, a view is just a stored 
query definition, which sits on top of the base tables (and possibly other views) from which 
they derive. During query binding (see Chapter 1), the algebrizer "expands" the view, i.e. 
replaces it with its definition, and then the result is passed to the optimizer. So the optimizer 
never even sees the view, only the query that defines it. The optimizer simply optimizes 
access to the eight tables and the seven joins defined within this view.

In short, while a view can make coding easier, it doesn't in any way change the need of the 
query optimizer to perform the actions defined within the view. This is an important point to 
keep in mind, since developers frequently use views to mask the complexity of a query.

What happens if we change the query to use a list of columns in the SELECT statement?

SELECT ic.BusinessEntityID, 
       ic.Title, 
       ic.LastName, 
       ic.FirstName 
FROM Sales.vIndividualCustomer AS ic 
WHERE BusinessEntityID = 8743;

Listing 7-9

This results in quite a different execution plan, shown in Figure 7-21.
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Figure 7-21: Same view, but a different execution plan.

Notice just how different the execution plan shape and the number of operators are in Figure 
7-21, when compared to Figure 7-19, even though we are querying the same view. This is 
because a step in the process called "simplification" will eliminate tables that are not needed 
to satisfy the query. In this case, without referencing all the columns, the optimizer can elimi-
nate them from the plan.

It is worth noting that you could probably write a query that references even fewer of the 
tables. The simplification process won't always catch every possible excess table. For 
example, the EmailAddress table is still being referenced within the plan.

Indexed views
An indexed view, also called a "materialized" view or even a "persisted" view, is essentially 
a "view plus a clustered index." A clustered index stores the column data as well as the index 
data, so creating a clustered index on a view results in what is effectively a new physical 
table in the database. Indexed views can often speed up the performance of many queries, as 
the data is directly stored in the indexed view, negating the need to join and look up the data 
from multiple tables each time the query is run.

Creating an indexed view is, to say the least, a costly operation. Fortunately, it's also a one-
time operation, which we can schedule when our server is less busy. Indexed views also 
come with an internal maintenance cost for SQL Server. If the base tables in the indexed 
view are relatively static, there is little overhead associated with maintaining indexed views. 
However, it's quite different if the base tables are subject to frequent modification. For 
example, if one of the underlying tables is subject to a hundred INSERT statements a minute, 
then each INSERT will have to be updated in the indexed view. As a DBA, you must decide 
if the overhead associated with the internal maintenance of an indexed view is worth the 
gains provided by creating the indexed view in the first place.
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Queries that contain aggregates are good candidates for indexed views because the creation 
of the aggregates only has to occur once, when the index is created, and the aggregated 
results can be returned with a simple SELECT query, rather than having the added overhead 
of running the aggregates through a GROUP BY each time the query runs. There is also a 
substantial I/O saving when aggregation is done within an indexed view.

For example, one of the indexed views supplied with AdventureWorks2014 is 
vStateProvinceCountryRegion. You can see the complete query in Listing 7-10. 
There I drop and recreate the view, and then create the clustered index that makes it an 
indexed view.

DROP VIEW Person.vStateProvinceCountryRegion; 
GO 
CREATE OR ALTER VIEW Person.vStateProvinceCountryRegion 
WITH SCHEMABINDING 
AS 
SELECT sp.StateProvinceID, 
       sp.StateProvinceCode, 
       sp.IsOnlyStateProvinceFlag, 
       sp.Name AS StateProvinceName, 
       sp.TerritoryID, 
       cr.CountryRegionCode, 
       cr.Name AS CountryRegionName 
FROM Person.StateProvince sp 
    INNER JOIN Person.CountryRegion cr 
        ON sp.CountryRegionCode = cr.CountryRegionCode; 
GO 
CREATE UNIQUE CLUSTERED INDEX IX_vStateProvinceCountryRegion 
ON Person.vStateProvinceCountryRegion 
( 
    StateProvinceID ASC, 
    CountryRegionCode ASC 
); 
GO

Listing 7-10

If I run the query in Listing 7-10 and try to capture the execution plan, there is one; even 
though each of these statements is a DDL statement. This is because, in order to satisfy the 
final statement which creates the index on the view, the query that defines the view must be 
run. Figure 7-22 shows the execution plan for this query.
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  Figure 7-22: Execution plan for the creation of an Indexed View.

This looks like some of the plans we saw in Chapter 6. We're selecting from the two tables 
defined in the view and a Nested Loops operator is used to put the data together before 
supplying it to an Index Insert (Clustered) operator. This is the process of creating the 
indexed view.

We can run a query from the view and see the execution plan.

SELECT vspcr.StateProvinceCode, 
       vspcr.IsOnlyStateProvinceFlag, 
       vspcr.CountryRegionName 
FROM Person.vStateProvinceCountryRegion AS vspcr ;

Listing 7-11

The execution plan that results from this query reflects, not a regular index, but an indexed 
view, assuming you're using either Enterprise or Developer Edition. If you're using Standard 
Edition, prior to SQL Server 2016 SP1, or Express Edition, where neither do indexed view 
matching by default, you'll need to use the WITH NOEXPAND hint to see the same behavior.

Figure 7-23: Execution plan against an indexed view.
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From our previous experience with execution plans containing views, you might have 
expected to see two tables and the join in the execution plan. Instead, we see a single Clus-
tered Index Scan operation. Rather than execute each step of the view, the optimizer went 
straight to the clustered index that makes this an indexed view.

Since the indexes that define an indexed view are available to the optimizer, they are also 
available to queries that don't even refer to the view. For example, the query in Listing 7-12 
gives a very similar execution plan to the one shown in Figure 7-23, because the optimizer 
recognizes the index as the best way to access the data (again this assumes the use of Enter-
prise or Developer Edition).

SELECT  sp.Name AS StateProvinceName, 
        cr.Name AS CountryRegionName 
FROM    Person.StateProvince sp 
INNER JOIN Person.CountryRegion cr 
        ON sp.CountryRegionCode = cr.CountryRegionCode;

Listing 7-12

However, as the query grows in complexity, this behavior is neither automatic nor guaran-
teed. For example, consider the query in Listing 7-13.

SELECT  a.City, 
        v.StateProvinceName, 
        v.CountryRegionName 
FROM    Person.Address a 
JOIN    Person.vStateProvinceCountryRegion v 
        ON a.StateProvinceID = v.StateProvinceID 
WHERE   a.AddressID = 22701;

Listing 7-13

If you expected to see a join between the indexed view and the Person.Address table, 
you would be disappointed.
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 Figure 7-24: Execution plan of the expanded indexed view.

Instead of using the clustered index that supports the materialized view, as we saw in Figure 
7-23, the algebrizer performs the same type of index expansion as it did when presented with 
a regular view. The query that defines the view is fully resolved, substituting the tables that 
make it up instead of using the clustered index provided with the view.

The algebrizer in SQL Server will expand views every time. The optimizer has a process that 
determines that direct table access will be less costly than using the indexed view. Again, 
there is a way around this with the NOEXPAND hint, covered in Chapter 10.

Functions
There are two kinds of user-defined functions within SQL Server:

• Scalar functions – return a single value.
• Table valued functions – return a table.

Their behavior within execution plans can be somewhat deceptive.

Scalar functions
Let's start with a scalar function that is part of AdventureWorks2014, called dbo.
ufnGetStock. Listing 7-14 shows the query.

CREATE OR ALTER FUNCTION dbo.ufnGetStock(@ProductID int) 
RETURNS int 
AS 
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-- Returns the stock level for the product. 
BEGIN 
    DECLARE @ret int; 
    SELECT @ret = SUM(p.Quantity) 
    FROM Production.ProductInventory p 
    WHERE p.ProductID = @ProductID 
        AND p.LocationID = '6'; -- Only look at inventory in the 
misc storage 
    IF (@ret IS NULL) 
        SET @ret = 0 
    RETURN @ret 
END; 
GO

Listing 7-14

We can see the function in action with a query looking for stock levels of only  
black products.

SELECT p.Name, 
       dbo.ufnGetStock(p.ProductID) AS StockLevel 
FROM Production.Product AS p 
WHERE p.Color = 'Black';

Listing 7-15

If we run the query and capture the actual execution plan, there's not much to it, as shown in 
Figure 7-25.

Figure 7-25: Introducing the scalar function in a plan.

The Clustered Index Scan makes sense because there is no index that can support the 
WHERE clause on the Color column. So, the entire index must be scanned and then 
the Predicate applied to return only the 93 rows with a Color of black. To see what the 
Compute Scalar operator is up to, we must go into the properties and look at the Defined 
Values to see the calculation.
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Figure 7-26: Function calculation within the Compute Scalar operator.

As you can see, that's the execution of the scalar function. So that's pretty much all we need 
to look at, right? Not exactly. This UDF is accessing data through the query in Listing 7-14. 
That access cannot be seen anywhere in Figure 7-27. Instead of capturing an actual plan for 
Listing 7-15, if we capture an estimated plan, different information is surfaced.

Figure 7-27: Estimated plan showing full extent of plans needed for function.

Instead of a single execution plan, there are two. The second plan represents the scalar func-
tion. This is a hidden cost behind the Compute Scalar operator in the plan shown in Figure 
7-25. The plan in Figure 7-27 introduces a lot of functionality.
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Reading the plan from the left, the first operator we see is a T-SQL operator labeled as UDF, 
representing the user-defined function. There are no properties of note beyond an estimated 
cost. Going to the right we see three sub-branches (in effect, three plans), one for each of the 
statements in the UDF.

The first operator we encounter on the top branch is a SELECT. We will see one SELECT 
operator for each SELECT statement in a UDF. If we had a UDF with three SELECT state-
ments, they will each have their values for Plan Hash, Optimization Level, and so on. This 
sub-branch is used for the query that computes @Ret, by aggregating data from Product-
Inventory. It uses a Clustered Index Seek to find matching data, and then a Stream 
Aggregate and Compute Scalar to produce the desired result. We've seen all these operators 
before, throughout the book, but this is the first time they've been hidden away!

In the second sub-branch, we see a COND operator. This is a Conditional, in this case 
performing the NULL check you can see within the function in Listing 7-14. If @ret is 
NULL, the COND operator calls the ASSIGN operator, which sets @ret to 0.

The final sub-branch shows the RETURN operator, which represents the RETURN statement 
from Listing 7-14.

As the plan in Figure 7-30 shows, there is more going on behind the scenes with a scalar 
function than is immediately apparent. This is especially true of a scalar function that is 
accessing data. If we were to capture STATISTICS IO results for executing Listing 7-17, it 
would report only 15 logical reads to return the 93 rows. Unfortunately, as noted in Chapter 
2, it fails to count additional I/O resulting from calls to the user-defined function. The user-
defined function is called from the Compute Scalar of the "main" plan, once for each of the 
93 rows returned from the Product table. This means that each of the steps in the execution 
plan for the UDF itself is executed 93 times.

If you capture the performance metrics, using our Extended Events session (Listing 2.6), you 
will see that in fact it performs 211 logical reads, and that the query references not 93 but 
365 rows. Each of the 93 executions of the UDF does an Index Seek to find all rows for one 
specific ProductID, processing 365 rows in total, but performing a lot of unnecessary I/O 
to return them. If we had avoided the UDF and just written a join between the two tables, 
chances are that the same number of rows would have been written, but using far fewer 
logical reads.
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Table valued functions
User-defined table valued functions come in two different varieties with two different modes 
of behavior. First is the inline Table Valued Function (iTVF). These are sometimes referred to 
as parameterized views because of how they operate. The second is the multi-statement table 
valued function. These allow for complex queries consisting of multiple statements. These 
functions are each exposed in execution plans in different ways.

Listing 7-16 shows how we could rewrite the function from Listing 7-14 as in iTVF.

CREATE FUNCTION dbo.GetStock (@ProductID INT) 
RETURNS TABLE 
AS 
RETURN 
( 
    SELECT SUM(pi.Quantity) AS QuantitySum 
    FROM Production.ProductInventory AS pi 
    WHERE pi.ProductID = @ProductID 
          AND pi.LocationID = '6' 
);

Listing 7-16

To use the function in a query we'll have to modify Listing 7-15 slightly.

SELECT p.Name, 
       gs.QuantitySum 
FROM Production.Product AS p 
CROSS APPLY dbo.GetStock(p.ProductID) AS gs 
WHERE p.Color = 'Black';

Listing 7-17

The resulting actual execution plan is completely different from what we saw for the  
scalar function.
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Figure 7-28: Plan for a Table Valued Function.

The most immediate question you might have is: why is there no aggregation operator in the 
plan? How does the SUM get computed? The answer is that the optimizer uses information in 
the query used to define the iTVF (the filter on LocationID) along with metadata (the fact 
that there is a unique index on ProductID) to conclude that per product, there will be at 
most one row with LocationID = 6. Since there can never be more than 1 row per product, 
aggregating by product is unnecessary.

Reading from the left we see a Merge Join operator, which is performing a right Outer Join 
between the ProductInventory and Product tables. We see a Clustered Index Scan 
on the ProductInventory table, with a pushed-down Predicate on LocationID. The 
Compute Scalar is an implicit convert of the Quantity value to an integer. Quantity is 
defined as SMALLINT, but the SUM aggregation automatically converts that to INT. Without 
the aggregation in the plan, the conversion must be done in a Compute Scalar. This data is 
merged with the data from a Clustered Index Scan of Product.

Unlike the scalar function earlier, the inline function is fully exposed in a single execution 
plan. An estimated plan of Listing 7-17 would be the same as Figure 7-28, minus the runtime 
values. There are no hidden costs, and rows required to satisfy the query are accurately 
reflected within the execution plan.

A multi-statement table valued UDF behaves completely differently. Listing 7-18 shows how 
we could rewrite our inline function to be a multi-statement UDF.
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CREATE FUNCTION dbo.GetStock2 (@ProductID INT) 
RETURNS @GetStock TABLE (QuantitySum int NULL) 
AS 
BEGIN 
    INSERT @GetStock 
    ( 
        QuantitySum 
    ) 
    SELECT SUM(pi.Quantity) AS QuantitySum 
    FROM Production.ProductInventory AS pi 
    WHERE pi.ProductID = @ProductID 
          AND pi.LocationID = '6'; 
    RETURN; 
END

Listing 7-18

If we modify Listing 7-17 to use this function and then run the query, the execution plan 
changes as in Figure 7-29.

 Figure 7-29: Multi-statement table valued function execution plan.

You can easily see that we are once again facing a situation where there is hidden  
functionality. We have a new operator, Table Valued Function, on the inner input  
of a Nested Loops join.

The single most important property value to examine for the Table Valued Function  
operator is the Estimated Number of Rows, which is 100.
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Figure 7-30: Properties of the Table Valued Function operator.

In fact, the estimated rows returned for a multi-statement table valued function will always 
be 100 rows. The cardinality estimator uses a hard-coded value for table variables. Prior to 
SQL Server 2014 this value was 1. From SQL Server 2014 onwards, this value is 100. That 
row count is completely separated from reality.

In this case, an estimated 100 rows returned, per execution, and an estimated 93 executions 
(once for each row produced by the outer input), giving a total of 9300 rows. In fact, it only 
returns 1 row per execution, 93 in total.

To see the functionality behind the Table Valued Function operator, we must look to the 
estimated plan again. Figure 7-31 shows the full function.
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 Figure 7-31: Estimated plan showing full functionality of the Table Valued Function.

You can see that, in this situation, the multi-statement function looks very similar to the 
original scalar function. The one addition is the Table Insert operator that's necessary to load 
the table variable within the function. Once more, this represents a hidden cost to the query. 
If we look at the I/O from the Extended Events for the GetStock function and compare it 
to GetStock2 function we see them go from 44 reads to 1141 reads. The optimizer is just 
not given adequate information to make good choices, when dealing with a multi-statement 
user-defined function.

Summary
This chapter demonstrated the sort of execution plans that we can expect to see when our 
code uses stored procedures, views, derived tables, CTEs, and user-defined functions. They 
are more complex than the ones we've seen in earlier chapters, but all the principles are the 
same; there is nothing special about larger and more complicated execution plans except 
that their size and level of complexity requires more time to read them. If you follow the 
same patterns of using the information in the first operator to understand how the engine is 
resolving the query, and then reading the properties to understand how the information is 
flowing between the operators, you'll be fine.
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It's difficult to understate the impact that a carefully selected set of indexes will have on 
the quality of the plans that the optimizer generates, and the performance of your queries. 
However, we can't always solve a performance problem just by adding an index. It is entirely 
possible to have too many indexes, so we must be judicious in their use.

We need to ensure that the indexes we choose to create are well designed and selective for 
the predicates used by your most important queries. This also means making sure that your 
statistics accurately reflect the data that is stored within the index.

This chapter will describe how the optimizer uses these statistics to make selectivity and 
cardinality estimations, and what can go wrong, either because the statistics are unreliable, 
or because the optimizer used accurate statistics to generate a plan that was good for some 
execution of a parameterized query, but bad for others.

Finally, we'll examine some of the important execution plan features you'll see  
for queries that use two relatively new index types, Columnstore indexes and Memory- 
optimized indexes.

Standard Indexes
For a typical OLTP workload, comprising the sorts of example queries seen throughout 
this book, our indexing strategy will primarily rely on standard clustered and nonclustered 
indexes:

• Clustered indexes – the primary means of storing and accessing most tables 
within the standard relational storage of SQL Server.

• Nonclustered indexes – a secondary method of accessing data, in support of the 
clustered index on a table, designed to improve the performance of frequent and 
expensive queries in the workload.

Generally, if a suitable index is available, then the query optimizer will choose an  
effective plan that uses it. If there isn't, then you risk poor execution plans and poor  
query performance.
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When a table is altered to add a clustered index, it replaces the heap table with an index that 
stores all the table's data, ordered such that it is easy to access rows based on the clustering 
key value, or a range of consecutive key values. Most tables will have a clustered index, 
plus one or more nonclustered indexes. A nonclustered index is similar in that its intent is 
to make it easy to access data by certain key values but, instead of storing all data, it stores 
only the index key values, with a pointer to the location of the full data, usually the values of 
the clustered index key or, for a heap table, an internal value known as the row identifier. A 
nonclustered index can also store additional data columns at the leaf level with the use of the 
INCLUDE operator.

An important part of any tuning effort involves choosing the right clustered index, and then 
a set of supporting nonclustered indexes, for each table in the database. As we've discussed 
throughout the book, we are not trying to cover every query with an index. Instead, our goal 
is to create the minimal set of indexes that will be most beneficial to the optimizer in helping 
it resolve, as cheaply as possible, the most important, expensive and frequent queries in  
our workload.

How the optimizer selects which indexes to use
We've already seen plenty of examples of the optimizer choosing to use certain indexes to 
locate and retrieve the data the query needs to read or modify. Sometimes, however, the 
optimizer will, perplexingly, choose a different plan that ignores what appears to be a useful 
index. There is always a reason for this, revealed by the execution plan, often by examining 
the estimated costs for the operators, estimated and actual row counts, as well as other  
behaviors and properties of each index-reading operator, and their interaction with other 
operators in the execution plan, as we'll see shortly.

First, we need to recap a little on how the optimizer chooses which indexes to use (it's  
essentially the same process for any operator).

Estimated costs and statistics
As we discussed way back in Chapter 1, the optimizer will choose the lowest-cost plan, based 
on estimated cost values. It will choose the plan that its calculations suggest will have the 
lowest total cost, in terms of the sum of the estimated CPU and I/O processing costs. Each 
operator's estimated cost contributes to the overall estimated cost of the plan.
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The accuracy of the optimizer's estimated costs depends largely on the accuracy of its statis-
tical knowledge of the data: its data about the data. These statistics, collected automatically 
for each index, and many columns as well, provide aggregated information to the optimizer, 
based on a sample of the data. They describe, hopefully accurately, the volume and distribu-
tion of all the data in the table.

For example, the statistics used by the optimizer include a density graph, which predicts  
the "uniqueness" of the data in a column (the number of different values present) and a  
histogram, which predicts the number of occurrences of each value. The optimizer needs to 
know this information accurately, because it is a key factor in its decisions on which indexes 
to use, and how.

Selectivity and cardinality estimations
The key measure for the optimizer in determining whether to use an index, and how to  
read that index, is the likely selectivity of a query predicate that the index could support.  
The selectivity of a predicate, for a given index, is the expected ratio of matching rows. 
Count the total number of rows in the table (z), count the number of distinct values (x) for 
a given column, or combination of columns, across all the rows, and then (x/z) gives the 
selectivity of the index, for an equality predicate comparing the column (or columns) against 
unknown values.

A highly selective index will have a low selectivity value. For example, a selectivity of  
0.01 (1%) means that the optimizer expects 1% of the total rows in the table to match the 
predicate. Conversely, the worst possible selectivity is 1.0 (or 100%) meaning that every row 
will match the predicate condition.

The cardinality for a given operator in a plan, shown in the Estimated Number of Rows 
property, is computed based on the selectivity of each predicate in the filter, some other data 
available from the statistics, and some assumptions about the data in the tables. The nature of 
calculations varies depending on the operator. For example, for a Merge Join, the Estimated 
Number of Rows is based on the estimated cardinalities of the two input streams and some 
very complex calculations on the histograms of those two input streams (if available).

Indexes and selectivity
Essentially, a query is resolved by a chain of successive operations on the data, as described 
in its execution plan. Therefore, an indexing strategy that can help the optimizer reduce the 
amount of data being manipulated, as soon as possible in the chain, is likely to work best.
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To do this, we need an index to be selective, for the filtering predicates used by the queries 
you intend it to help. If an index exists that matches a predicate column used by certain 
queries in the workload, and if the optimizer gauges that, for a given query, the selectivity of 
the predicate is sufficiently high, then it will consider the index to be a good candidate to use 
in the plan. Usually, this means that the estimated cardinality will be low, meaning only a few 
rows will be accessed, which will lower the overall estimated cost of the operator.

To demonstrate how the optimizer makes decisions on how to read data from tables, we'll 
create a copy of the SalesOrderDetail table, in AdventureWorks. We'll assume that at 
some point a developer added a couple of nonclustered indexes that he or she thought might 
help certain queries.

DROP TABLE IF EXISTS NewOrders ; 
GO 
SELECT SalesOrderID, 
       SalesOrderDetailID, 
       CarrierTrackingNumber, 
       OrderQty, 
       ProductID, 
       SpecialOfferID, 
       UnitPrice, 
       UnitPriceDiscount, 
       LineTotal, 
       rowguid, 
       ModifiedDate 
INTO dbo.NewOrders 
FROM Sales.SalesOrderDetail; 
GO 
ALTER TABLE dbo.NewOrders 
ADD  CONSTRAINT PK_NewOrders_SalesOrderID_SalesOrderDetailID 
PRIMARY KEY CLUSTERED 
( 
   SalesOrderID, 
   SalesOrderDetailID 
); 
CREATE NONCLUSTERED INDEX IX_NewOrders_ProductID 
ON dbo.NewOrders (ProductID); 
GO 
CREATE NONCLUSTERED INDEX IX_NewOrders_OrderQty 
ON dbo.NewOrders(OrderQty); 
GO

Listing 8-1
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We'll run the following simple query to return order details for a known order quantity (20) 
and capture the actual execution plan.

SELECT OrderQty, 
       SalesOrderID, 
       SalesOrderDetailID, 
       LineTotal 
FROM dbo.NewOrders 
WHERE OrderQty = 20;

Listing 8-2

Figure 8-1 shows the execution plan. We see that the optimizer chose to use an Index Seek 
on our nonclustered index on OrderQty, even though this index is not covering for this 
query. A total of 46 rows are returned from the Index Seek and, because the index is not 
covering, this results in 46 executions of the Key Lookup.

Figure 8-1: The index selection process.

To help us understand the decisions that the optimizer has made, we can look at the  
statistics for the IX_NewOrders_OrderQty index, using the DBCC SHOW_STATIS-
TICS command.

DBCC SHOW_STATISTICS('dbo.NewOrders', 
                     'IX_NewOrders_OrderQty');

Listing 8-3
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This returns three result sets, the first showing the header, with general details about the 
statistics, the second the density graph, and finally the histogram with the tabulation of 
counts for each indexed column value that's sampled in the statistics.

Statistics header
The header displays the name of the index, the number of rows in the table, and the number 
of rows sampled by the create/update statistics algorithm to generate the statistics, in this case 
all 12317 rows. It also shows that there are 40 rows, or steps, in this histogram.

Figure 8-2: The header information in the statistics for IX_NewOrders_OrderQty.

There are only ever up to 200 data points or steps in the histogram. In this case, there are 
40 steps. Since there are 41 distinct values in the OrderQty column, that may appear 
surprising, but this is simply a consequence of how the algorithm for building the histogram 
works; it simply tries to identify the most "interesting" data points, with a maximum of 200, 
in a single pass of the data.

Density graph
The density graph provides the optimizer with its estimations of the number of distinct values 
in a column or index. The lower the density, the higher the "uniqueness," and the more selec-
tive is the index. A unique column in a 10000-row table has a density of 1/10000 or 0.0001. 
An equality predicate on this column has a selectivity of 0.0001 (or 0.01 percent), the exact 
same number, because they are computed in the same way.

However, density and selectivity aren't the same thing. For example, density is also used to 
estimate the number of rows after an aggregation operator: if the same 10000-row table has 
5 distinct values for Color, then the density of Color will be 1/5, or 0.2; the estimated 
number of rows when you group by Color is then computed as 1/0.2 which brings us  
back to 5.
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Figure 8-3 shows that the density for the OrderQty column is 0.02439024.

Figure 8-3: The density graph for IX_NewOrders_OrderQty.

The optimizer can use the density graph to estimate the selectivity of a predicate, for an 
equality predicate comparing the column (or columns) against unknown values. If a query 
uses a predicate on OrderQty and the optimizer cannot "sniff" the parameter or variable 
value, it simply takes the density value for the OrderQty column, which is 0.02439024, 
multiplies it by the total number of rows in the table (121317) and estimates a cardinality of 
2958.95 rows.

If we're performing an inequality predicate against unknown values, then the optimizer 
always uses a default estimated selectivity of 30%, and no density is used.

The other rows in the density graph refer to the density for predicates that use a combina-
tion of OrderQty and the clustered index key column values, also stored in the index. 
As you can see, for this index the density for a predicate on a combination of OrderQty 
and SalesOrderID is about 1000 times less that for OrderQty alone, meaning that an 
equality predicate on this combination of columns is about 1000 times more selective than a 
predicate on OrderQty. This density level makes the index a very attractive option for the 
optimizer, for an equality predicate on these columns, comparing to unknown values.

The histogram
Often, the optimizer knows the parameter or variable value to which it is comparing,  
either because it sniffed it, or because we hard-coded it. In such cases, the optimizer  
uses the histogram to get a better estimate of the cardinality for the predicate.

In Listing 8-2, where we supplied a hard-coded OrderQty value of 20 and in the histogram, 
this value matches exactly one of the ranges defined by the RANGE_HI_KEY. The optimizer 
reads a cardinality value (row count) of 46, from the EQ_ROWS column for that row.
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Figure 8-4: An extract from the histogram for IX_NewOrders_OrderQty.

If there is no exact match, the optimizer uses a slightly different approach to the row count 
estimates. For example, if we changed the literal value for OrderQty to 35, in Listing 
8-2, we can see that there is a match for 34 and 36 in the RANGE_HI_KEY column, but no 
match for 35. Since the RANGE_HI_KEY defines the top of a range, the value of 35 lies 
within the range defined by 36, and the optimizer uses the AVG_RANGE_ROWS value for 
that row as the row count estimate, 2 rows. It derives the AVG_RANGE_ROWS value simply 
by dividing RANGE_ROWS (the estimated number of rows that make up the range defined 
by the RANGE_HI_KEY) by DISTINCT_RANGE_ROWS (number of distinct values within 
the range). You may see a different row number estimate, depending on your version of SQL 
Server or AdventureWorks, or on whether you modified your database structures, rebuilt 
indexes, or updated your statistics.
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Armed with its cardinality estimate (46 rows), the optimizer calculates the total estimated 
cost of performing a seek followed by 46 lookups, and compares it to its alternatives, (in 
this case simply performing a single scan of the clustered index), and chooses the cheapest 
option. The higher the estimated row count, the more lookups will need to be performed, and 
there will be a tipping point where the optimizer decides to simply scan the clustered index.

In this example, the tipping point is somewhere around 400 rows. If you execute Listing 8-2 
with a literal value of 11 (estimated 392 rows), we still see the seek/lookup plan, but use a 
value of 12 (estimated 466 rows) and it tips, and we see the clustered index scan.

Figure 8-5: A clustered index scan caused by a change in estimated rows.

What if we were to rewrite Listing 8-2 to use a local variable, instead of a hard-coded literal?

DECLARE @OrderQuantity SMALLINT 
SET @OrderQuantity = 20 
SELECT OrderQty, 
       SalesOrderID, 
       SalesOrderDetailID, 
       LineTotal 
FROM dbo.NewOrders 
WHERE OrderQty = @OrderQuantity;

Listing 8-4

When we execute this, we'll see the plan with the clustered index scan, even though in terms 
of actual number of rows returned, we are below the tipping point. The reason is that the 
optimizer cannot sniff the value supplied, when we use local variables (unless statement-level 
recompile takes place because of an OPTION (RECOMPILE) hint), and so it simply uses 
the density graph to estimate a cardinality of 2958.95 rows, as described earlier, which we 
can confirm from the Properties sheet for the Clustered Index Scan. This estimated number 
of rows is way above the tipping point for the optimizer to choose a scan in preference to the 
seeks plus lookups.
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 Figure 8-6: Properties showing the Estimated Number of Rows.

If we were to modify the WHERE clause in Listing 8-4 to use an inequality search condi-
tion, OrderQty > @OrderQuantity, then you'll see that the optimizer reverts to using a 
hard-coded cardinality estimation of 30% of the rows in the table, estimating 36,395.1 rows 
when only 164 are returned. This will always result in the plan with the scan whereas, for a 
OrderQty value of 20, the optimizer would choose the seek/lookup plan in cases where it 
knows or can sniff the value, since it can once again use the histogram to get accurate cardi-
nality estimations.

Using covering indexes
In the previous examples, our index on the OrderQty column did not cover any of our 
queries. When the optimizer chose to use the index, the plans incurred the extra cost of 
performing lookups on the clustered index, to retrieve the column values not contained in the 
nonclustered index.

As discussed in Chapter 3, we create a covering index either by having all the columns 
necessary as part of the key of the index, or by using the INCLUDE operation to store extra 
columns at the leaf level of the index so that they're available for use with the index.

A lookup always adds some extra cost, but when the number of rows is small then that extra 
cost is also small, and the extra cost may be an acceptable tradeoff against the total cost for 
the entire application of adding a covering index.

Remember that adding an index, however selective, comes at a price during INSERTs, 
UPDATEs, DELETEs and MERGEs as the data within each index is reordered, added, or 
removed. We need to weigh the importance, frequency of execution, and actual run time 
of the query, against the overhead caused by adding an extra index, or by adding an extra 
column to the INCLUDE clause of an existing index.
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If this were a critical or frequent query, we might consider replacing the existing index with 
one that included the LineTotal column to cover the query, and perhaps other columns, if 
it meant that the same index would then also cover several other queries in the workload.

What can go wrong?
There are many reasons why the optimizer might be unable to use what looks like a very suit-
able index, or appears to ignore it, and we can't cover them in this book.

Sometimes, it's a problem with the code. For example, a mismatch between the parameter 
data type and the column type forces implicit conversion on the indexed column, and this 
will prevent the optimizer from seeking the index. Sometimes, a query contains logic that 
defeats accurate estimations. Complex predicates are harder to estimate than simple predi-
cates. Inequality predicates are sometimes harder to estimate than equality predicates and,  
in cases where the parameter or variable values can't be sniffed, the optimizer simply uses  
a hard-coded selectivity estimation (30%). Expressions with a column embedded are harder 
to estimate than expressions where the column is by itself and the expression is on the  
other side.

Sometimes, the optimizer chooses what appears to be a less ideal index because it is,  
in fact, cheaper overall, perhaps because that index presents the data in an order that  
facilitates a merge join or stream aggregate later in the plan, instead of its more expensive 
counterparts. Or, because it allows the optimizer to observe ORDER BY without having to  
add a Sort operator.

We can't cover every case, so in this section we'll focus only on problems that occur when  
the optimizer's selectivity and cardinality estimations don't match reality. The optimizer 
thinks an operator will only need to process 10 rows, but it processes 10,000, or vice versa.

If the optimizer cannot accurately estimate how many rows are involved in each operation  
in the plan, or it reuses a plan with estimated row counts that are no longer valid, then it  
may ignore even well-constructed and highly selective indexes, or use inappropriate indexes, 
and therefore create suboptimal execution plans. These problems often manifest in large 
discrepancies between actual and estimated row counts in the plan, and the potential causes 
are numerous.
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Problems with statistics
Regarding statistics, the optimizer can use a suboptimal plan for several possible reasons:

• Missing statistics – no statistics are available on the column used in the predicate, 
perhaps because certain database options prevent their creation, such as the AUTO_
CREATE_STATISTICS option being set to OFF.

• Stale statistics – it had to generate a plan for a query containing a predicate on a 
column with statistics that have not recently updated, and no longer reflect accu-
rately the true distribution.

• Reusing a suboptimal cached plan– the optimizer reused a plan that was good 
when it was created, but the data volume or distribution has changed significantly 
since then, and the plan is no longer optimal.

• Skewed data distribution – the optimizer had to generate a plan for a query 
containing a predicate on a column where the data distribution was very non-
uniform, making accurate cardinality estimations difficult.

Let's see an example. Listing 8-5 captures an actual execution plan for a simple query against 
our NewOrders table. It then inserts new rows. It only inserts 5% of the total number 
currently in the table, which is below the threshold required to trigger an automatic statistics 
update, but it does it in a way designed to skew the data distribution.

Next, it recaptures the plan for the same query. Finally, it manually updates the statistics, and 
captures the plan a final time. If you're following along, you might also consider creating and 
starting the Extended Events session I show in Chapter 2 (Listing 2-6), to capture the I/O and 
timing metrics for each query.
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SET STATISTICS XML ON; 
GO 
SELECT OrderQty, 
       CarrierTrackingNumber 
FROM dbo.NewOrders 
WHERE ProductID = 897; 
GO 
SET STATISTICS XML OFF; 
GO 
--Modify the data 
BEGIN TRAN; 
INSERT INTO dbo.NewOrders (SalesOrderID, 
                           CarrierTrackingNumber, 
                           OrderQty, 
                           ProductID, 
                           SpecialOfferID, 
                           UnitPrice, 
                           UnitPriceDiscount, 
                           LineTotal, 
                           rowguid, 
                           ModifiedDate) 
SELECT TOP (5) PERCENT 
       SalesOrderID, 
       CarrierTrackingNumber, 
       OrderQty, 
       897, 
       SpecialOfferID, 
       UnitPrice, 
       UnitPriceDiscount, 
       LineTotal, 
       rowguid, 
       ModifiedDate 
FROM Sales.SalesOrderDetail 
ORDER BY SalesOrderID; 
GO 
SET STATISTICS XML ON; 
GO 
SELECT OrderQty, 
       CarrierTrackingNumber 
FROM dbo.NewOrders 
WHERE ProductID = 897; 
GO 
SET STATISTICS XML OFF; 
GO 
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--Manually update statistics 
UPDATE STATISTICS dbo.NewOrders 
GO 
SET STATISTICS XML ON; 
GO 
SELECT OrderQty, 
       CarrierTrackingNumber 
FROM dbo.NewOrders 
WHERE ProductID = 897; 
GO 
SET STATISTICS XML OFF; 
GO 
ROLLBACK TRAN; 
--Manually update statistics 
UPDATE STATISTICS dbo.NewOrders; 
GO

Listing 8-5

By using SET STATISTICS XML statements, along with separating the code into batches, 
we can capture just the execution plans for those specific batches, and omit the other plans 
such as the one that is generated for the INSERT statement. First, here is the plan for the 
query before inserting the extra rows.

Figure 8-7: The initial execution plan before statistics are updated.

The optimizer chose to seek the nonclustered index on ProductID. The index does 
not cover the query, but it estimates that the seek will return only 50.817 rows. It gets 
this estimate from the AVG_RANGE_ROWS value column of the histogram for the IX_
ProductID_NewOrders index, as described earlier.
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In fact, it returns only two rows, but even so the optimizer estimates that the extra overhead 
of the Key Lookup operator, for around 51 rows, is small enough to prefer this route over 
scanning the clustered index.

Figure 8-7 shows the plan after we "skewed" the data with our INSERT statement.

 Figure 8-8: Inefficient execution plan for out-of-date statistics.

We see the same plan. The optimizer has simply encountered a query it has seen before, 
selected the existing plan from the cache and passed it on to the execution engine.

However, now the Actual Number of Rows for the Index Seek is 6068, so the Key Lookup 
is executed 6068 times. The initial query had 52 logical reads, but the subsequent query had 
19385, as measured in Extended Events.

Finally, we update the statistics, so the plan in cache will be invalidated, causing a new one to 
be compiled. With up-to-date statistics, the plan is now reflected in Figure 8-7.

  Figure 8-9: Correct execution plan for up-to-date statistics.

This is a good and appropriate strategy for the query on this table, as it is now. Since a large 
percentage of the table now matches the criteria defined in the WHERE clause of Listing 8-2, 
the Clustered Index Scan makes sense. Further, the number of reads has dropped to 1,723 
even though the exact same number of rows is being returned.
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This example illustrates the importance of statistics in helping the optimizer to make good 
choices, and how those choices affect the behavior of indexes that we can see within the 
execution plans generated. Bad statistics will result in bad choices of plan. A discussion 
on maintaining statistics is outside the scope of this book, but certainly you should always 
leave AUTO_UPDATE_STATISTICS enabled, and possibly consider running UPDATE 
STATISTICS as a scheduled maintenance job for big tables, if required. For data skews that 
affect important queries, you might consider investigating filtered statistics.

Problems with parameter sniffing
In correctly-parameterized queries, and when we use correctly-written objects such as stored 
procedures and functions, the optimizer can peek at the value passed to a parameter, and use 
it to compare to the statistics of the index key (or the column), specifically the histogram. 
This is known as parameter sniffing and it allows the optimizer to get accurate cardinality 
estimates, rather than relying on "averages," based on statistical density of the index or 
column, or on hard-coded estimates (such as 30%).

When SQL Server runs the batch to execute a stored procedure, for example, it first compiles 
the batch. At this point, it sets the value of any variables, and evaluates any expressions. It 
then runs the EXEC command, checking in the plan cache to see if there is a plan to execute 
the stored procedure. If there isn't one, it invokes the compiler again to create a plan for 
the procedure. At this point, the optimizer can "sniff" the parameter value it detected when 
running the EXEC command in the batch.

In some cases, parameter sniffing is unequivocally our friend. For example, let's say we 
have a million-row Orders table that we query using an inequality predicate (such as a date 
range), and only ever return a small subset of the data, typically results for the last week. 
Without parameter sniffing, we'll always get a plan generated to accommodate an estimated 
row count of 300,000 (30% of 1 million), which is likely to be a bad plan, if the queries  
typically only return tens or hundreds of rows.

In other cases, such as if our queries filter on the PRIMARY KEY column, or on a key with an 
even data distribution, then parameter sniffing is largely irrelevant.

Often, we're somewhere in between, and problematic parameter sniffing occurs when queries 
filter on keys with uneven data distribution, and the optimizer reuses a cached plan generated 
for a sniffed input parameter value with an estimated row count that turns out to be atypical 
of the row counts for subsequent input values.
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Stored procedures and parameter sniffing

In Listing 8-6, we simply turn our NewOrders query from Listing 8-2 into a stored  
procedure but, to keep things interesting, with the slight kink that the @OrderQty  
parameter is optional.

CREATE OR ALTER PROCEDURE dbo.OrdersByQty 
    @OrderQty SMALLINT = NULL 
AS 
SELECT SalesOrderID, 
       SalesOrderDetailID, 
       OrderQty, 
       LineTotal 
FROM dbo.NewOrders 
WHERE 
      ( 
          OrderQty = @OrderQty 
          OR @OrderQty IS NULL 
      ); 
GO

Listing 8-6

We already know what if we supply a literal value of OrderQty=20 for the original query, 
the optimizer will create a plan with the nonclustered index seek and the key lookups (see 
Figure 8-1). Figure 8-10 shows the actual plan when we execute this procedure supplying an 
OrderQty value of 20.

Figure 8-10: Parameter sniffing results in a plan with Key Lookups.
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The optimizer has used parameter sniffing and created a plan optimized for a parameter value 
of 20, which we can see from the properties of the SELECT operator.

Figure 8-11: Parameter List showing the same runtime and  
compile time parameter values.

This means that we see the same nonclustered index and key lookup combination, but with 
the difference that here the optimizer scans rather than seeks the nonclustered index (I'll 
explain why, shortly).

The timing and I/O metrics tell us that SQL Server performs 424 logical reads and the execu-
tion time was about 10 milliseconds.

If the optimizer had not been able to sniff the parameter value, we know that it would have 
used the density graph for the nonclustered index to estimate a cardinality of 2958.95 rows, 
and chosen a clustered index scan (see Figure 8-3). So, this is an example of the optimizer 
making good use of its ability to sample the data directly through parameter sniffing to arrive 
at a more efficient execution plan; scanning the smaller nonclustered index and performing a 
few key lookups is cheaper than scanning the clustered index.

However, parameter sniffing can have a darker side. Let's re-execute the stored procedure and 
pass it a different value.

EXEC dbo.OrdersByQty @OrderQty = 1; 
GO

Listing 8-7

It reuses the execution plan from the cache, but now 74954 rows match the parameter value, 
rather than 46, which means 74954 executions of the Key Lookup, instead of 46. It performs 
239186 logical reads, and takes about 1400 ms.

If you see performance issues with stored procedures, it's worth checking the properties  
of the first operator for the plan to see if the compile and runtime values for any parameters 
are different.
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Figure 8-12: Parameter List showing different runtime and  
compile time parameter values.

If they are, that's your cue to investigate 'bad' parameter sniffing as the cause. Of course, 
here, we know the optimizer would choose a different plan for Listing 8-7 if it were starting 
from scratch. Listing 8-8 retrieves the plan_handle value for our stored procedure, from 
the sys.dm_exec_procedure_stats DMV and uses it to flush just that single plan 
from the procedure cache.

DECLARE @PlanHandle VARBINARY(64); 
SELECT  @PlanHandle = deps.plan_handle 
FROM    sys.dm_exec_procedure_stats AS deps 
WHERE   deps.object_id = OBJECT_ID('dbo.OrdersByQty'); 
IF @PlanHandle IS NOT NULL 
    BEGIN 
        DBCC FREEPROCCACHE(@PlanHandle); 
    END 
GO

Listing 8-8

Run Listing 8-7 again and the optimizer uses the histogram to get an estimated row count 
of 74954 (spot on), and you'll see the clustered index scan plan, and only 1512 logical reads 
instead of 239186.

Finally, why does the optimizer use an Index Scan, rather than Seek operator in Figure 
8-10? If we check the properties of the Index Scan, we'll see that the Predicate condition is 
OrderQty = @OrderQty OR @OrderQty IS NULL. The reason is simply that the opti-
mizer must always ensure that a plan is safe for reuse. If it has selected the expected Index 
Seek with a Seek Predicate of OrderQty = @OrderQty, then what would happen if that 
plan were reused when no value for @OrderQty was supplied? The seek predicate would be 
an equality with NULL and no rows would be returned, when of course the intent would be to 
return rows for all order quantities.
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What to do if parameter sniffing causes performance problems

There are many possible ways to address problems relating to parameter sniffing, depending 
on the exact situation. If the data distribution is "jagged" with lots of variations in row counts 
returned, depending on the input parameter value, then this will often increase the likelihood 
of problematic parameter sniffing.

In such cases, you might consider adding the OPTION (RECOMPILE) hint to the end of the 
affected query (or queries). For example, if a stored procedure has three queries and only one 
of them suffers from bad sniffing, then only add the hint to the affected query; recompiling 
all three is a waste of resources.

This will force SQL Server to recompile the plan for that query every time, and optimize it 
for the specific value passed in. Use of this hint within our OrderByQty stored procedure 
would both fix the problem with problematic parameter sniffing, and mean that the optimizer 
could choose a plan with the usual Index Seek / Key Lookup combination (instead of the 
Index Scan / Key Lookup seen in Figure 8-10, since it will then know that the plan will 
never be reused.

However, the downside with the OPTION (RECOMPILE) solution, generally, is the extra 
compilations it causes. For stored procedures and other code modules, all statements, 
including the one with OPTION(RECOMPILE), will still be in the plan cache, but the plan for 
the OPTION(RECOMPILE) statement will still recompile for every execution, which means 
that its plan is not reused. When we use the hint for ad hoc queries, the optimizer marks the 
plan created so that it is not stored in cache at all.

An alternative is to persuade the optimizer to always pick a specific plan; since the problem 
is caused by the optimizer optimizing the query based on an inappropriate parameter value, 
the solution might be to specify what parameter value the optimizer must use to create the 
plan, using the OPTION (OPTIMIZE FOR <value>) query hint. We'll cover hints in 
detail in Chapter 10. Yet another alternative, is to use a plan-forcing technique, discussed in 
Chapter 9.

Of course, this relies on us knowing the best parameter value to pick, one that will most often 
result in an efficient or at least good-enough execution plan. For example, from the previous 
example, we might choose to optimize for an OrderQty value of 20, if we felt the plan in 
Figure 8-10 would generally be the best plan. The issue you can hit here is that data changes 
over time and that value may no longer work well in the future.
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Yet another alternative is to generate a generic plan, by optimizing for an unknown value. 
We can do this, in this case, by adding the OPTION (OPTIMIZE FOR (@OrderQty 
UNKNOWN)) hint to the query in our stored procedure. The optimizer will use the density 
graph to arrive at a cardinality estimation (in this case, always estimating that 2958.95 rows 
will return), and we'll see the plan in Figure 8-9.

The issue comes when good enough just isn't, for certain values, such that performance 
suffers unduly where a more specific plan would work better. In short, everything is a trade-
off. There isn't always a single correct answer.

Columnstore Indexes
Columnstore indexes were a new index type introduced in SQL Server 2012, in addition 
to the existing index types. With a columnstore index, the storage architecture is different. 
It doesn't use the B-tree as a primary storage mechanism (although part of the data can be 
stored in a B-tree), and it stores data by column instead of by row. So, rather than storing 
as many rows as will fit on a data page, the columnstore index takes all values for a single 
column and stores them in one or more pages.

A clustered columnstore index replaces the heap table with an index that stores all the table's 
data in a column-wise structure. A nonclustered columnstore index can be applied to any 
table, alongside traditional "rowstore" clustered and nonclustered indexes.

CS indexes achieve high data compression and are designed to improve the performance of 
analysis, reporting, and aggregation queries such as those found in a data warehouse. In other 
words, typical workloads for CS indexes involve a combination of large tables (millions, or 
even billions, of rows), and queries that operate on all rows or on large selections. In fact, 
simple queries that retrieve a single row or small subsets of rows usually perform much 
worse with the columnstore indexes than they do with traditional indexes, because in the 
former case SQL Server needs to read a page for each column in the table to reconstruct  
each row.

Further, the nature of the storage of the columnstore index makes putting less than 100,000 
rows into the index much less efficient than storing greater than that value of rows. Quoting 
from the Microsoft documentation, you should consider using a clustered columnstore index 
on a table when: Each partition has at least a million rows. Columnstore indexes have 
rowgroups within each partition. If the table is too small to fill a rowgroup within each 
partition, you won't get the benefits of columnstore compression and query performance.
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As well as having a different architecture, columnstore indexes also support a new kind of 
query execution model, optimized for modern hardware, called batch mode, the traditional 
model being row mode. We won't cover plans for queries that use the batch mode execution 
model until Chapter 12.

This section is going to focus purely on how columnstore indexes are exposed within the 
execution plans and some important properties that you need to pay attention to when 
working with these indexes. For further detail regarding columnstore indexes, and their use 
in query tuning, their behavior and storage mechanisms, and maintenance, I suggest the 
following resources:

• Columnstore indexes: overview – the Microsoft documentation: 
http://bit.ly/1djYOCW

• SQL Server Central Stairway to Columnstore Indexes – written by  
Hugo Kornelis, the technical reviewer of this book: 
http://bit.ly/2CBiXoQ

• Columnstore indexes: what's new – includes a useful table summarizing  
support for various CS features from SQL Server 2012 onwards: 
http://bit.ly/2oD9keB

• Niko Neugebauer's Columnstore series – extensive and comprehensive  
coverage of all aspects of using columnstore indexes, though the early  
articles cover the basics:  
http://www.nikoport.com/columnstore/

Using a columnstore index for an aggregation query
Despite being designed for analytics queries on very large tables, you can occasionally 
see improved performance using the columnstore index even within an OLTP system, if, 
for example, you have reporting queries that pull data from very large tables. A minimum 
number of recommended rows to really see big performance gains is one million.

We'll start with a simple query on the TransactionHistory table, with no columnstore 
indexes created. This table is not an ideal candidate for a columnstore index, since it contains 
only 113 K rows, and is subject to OLTP-style, rather than DW-style, workloads. However, 
columnstore indexes are well suited to aggregation queries, so this simple example serves 
perfectly well as a first demo of how columnstore indexes work.

http://bit.ly/1djYOCW
http://bit.ly/2CBiXoQ
http://bit.ly/2oD9keB
http://www.nikoport.com/columnstore/
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SELECT p.Name, 
       COUNT(th.ProductID) AS CountProductID, 
       SUM(th.Quantity) AS SumQuantity, 
       AVG(th.ActualCost) AS AvgActualCost 
FROM Production.TransactionHistory AS th 
    JOIN Production.Product AS p 
        ON p.ProductID = th.ProductID 
GROUP BY th.ProductID, 
         p.Name;

Listing 8-9

The execution plan shown in Figure 8-13 illustrates some of the potential load on the server 
from this query.

Figure 8-13: Execution plan for an aggregation query (no Columnstore index).

Our query has no WHERE clause, so the optimizer sensibly decides to scan the clustered index 
to retrieve all the data from the TransactionHistory table. We then see a Hash Match 
(Aggregate) operator. As discussed in Chapter 5, SQL Server creates a temporary hash table 
in memory in which it stores the results of all aggregate computations. In this case, the hash 
table is created on the ProductID column, and for each distinct ProductID value it 
stores a row count tally, total Quantity, and total ActualCost, increasing the counts and 
totals whenever it processes a row with the same ProductID. A Compute Scalar computes 
the requested AVG, by dividing the row tally for each ProductID by the total Actual-
Cost (it also performs some data type conversions). This data stream forms the Build input 
for a Hash Match (inner join) operator, where the Probe input is an Index Scan against the 
Product table, to join the Name column.

This simple query returns 441 rows and in my tests returned them in 127ms, on average,  
with 803 logical reads. Let's see what happens when we add a nonclustered columnstore to 
the table.
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CREATE NONCLUSTERED COLUMNSTORE INDEX ix_csTest 
ON Production.TransactionHistory 
( 
    ProductID, 
    Quantity, 
    ActualCost, 
    ReferenceOrderID, 
    ReferenceOrderLineID, 
    ModifiedDate 
);

Listing 8-10

If we rerun the query from Listing 8-9, we'll see significant changes in performance. In my 
tests, the query time dropped from an average of 127ms to an average of 55ms, and the 
number of logical reads plummeted from 803 to 84, because the columnstore structure allows 
the engine to read only the requested columns and skip the other columns in the table. You'll 
likely see variance on the number of reads, because of how columnstore builds the index and 
compresses the data.

Figure 8-14 shows the execution plan.

Figure 8-14: Execution plan for an aggregation query (with Columnstore index).

We've seen the Adaptive Join before, in Chapter 4, so we won't describe that part of the plan 
again here. Note that you'll only see this operator if your database compatibility level is set to 
140 or higher.

We'll use this plan, and one for a similar query with a WHERE clause filter, to explore differ-
ences you'll encounter in execution plans, when the optimizer chooses to access data using a 
columnstore index.
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Aggregate pushdown
The first difference from the plan we saw before creating the CS index is that we now see 
a Columnstore Index Scan. If we look at its property sheet, some of the values may seem 
confusing at first, since it seems to suggest that the estimated number of rows returned is 
113443, but the actual number of rows is 0!

Figure 8-15: Columnstore Index Scan properties showing locally aggregated rows.

This is a special feature of CS indexes in action, called "aggregate pushdown," introduced 
in SQL Server 2016, where some, or all, of the aggregation is done by the scan itself. This is 
possible because of the pivoted storage mechanisms of the columnstore index. The aggrega-
tion results are "injected directly" into the aggregation operator, in this case the Hash Match 
(Aggregate) operator. The arrow from the operator displays only rows that cannot be locally 
aggregated. This explains why the Hash Match (Aggregate) operator appears to make the 
arrow thicker (effectively adding rows).

In Figure 8-15, the Actual Number of Locally Aggregated Rows value indicates the 
number of rows that were aggregated within the scan and not returned in "the normal way" to 
the Hash Match (Aggregate), in this case all the rows (113443). On a Columnstore Index 
Scan operator, the Actual Number of Rows is the number of rows that were not aggregated 
in the scan and were hence returned "normally," in this case, zero rows.
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No seek operation on columnstore index
Let's add a simple filter to our previous aggregation query.

SELECT p.Name, 
       COUNT(th.ProductID) AS CountProductID, 
       SUM(th.Quantity) AS SumQuantity, 
       AVG(th.ActualCost) AS AvgActualCost 
FROM Production.TransactionHistory AS th 
    JOIN Production.Product AS p 
        ON p.ProductID = th.ProductID 
WHERE th.TransactionID > 150000 
GROUP BY th.ProductID, 
         p.Name;

Listing 8-11

The plan is the same shape, and has the same operators as the one in Figure 8-14; we still  
see the Columnstore Index Scan. There is no Seek operator for a columnstore index, simply 
due to how the index is organized; the data in a columnstore index is not sorted in any way, 
so there is no way to find specific values directly.

Predicate pushdown in a columnstore index
If we examine the properties of the Columnstore Index Scan in the plan for Listing 8-11,  
we see that the WHERE clause predicate was pushed down.

Figure 8-16: Predicate within the columnstore index.

Predicate pushdown in a Columnstore Index Scan is even more important than in a 
Rowstore Index Scan, because pushed predicates can result in rowgroup elimination 
(sometimes, for historic reasons, incorrectly called segment elimination). In a columnstore 
index, each partition is divided into units called rowgroups, and each rowgroup contains up 
to about a million rows that are compressed into columnstore format at the same time.
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Rowgroup elimination is visible in SET STATISTICS IO, by looking at the  
"segment skipped" count.

(434 rows affected) 
Table 'TransactionHistory'. Scan count 2, logical reads 0, physical 
reads 0, read-ahead reads 0, lob logical reads 63, lob physical 
reads 0, lob read-ahead reads 0. 
Table 'TransactionHistory'. Segment reads 1, segment skipped 0. 
Table 'Worktable'. Scan count 0, logical reads 0, physical reads 0, 
read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob 
read-ahead reads 0. 
Table 'Product'. Scan count 1, logical reads 6, physical reads 0, 
read-ahead reads 0, lob logical reads 0, lob physical reads 0, lob 
read-ahead reads 0.

In this example, on a small table, all data is in a single rowgroup, so we don't see rowgroup 
elimination, of course. However, if you have a 60 million row table then predicate pushdown 
can lead to rowgroup elimination and you will see an improvement in query performance.

Batch mode versus row mode
We cover Batch mode in detail in Chapter 12, and the only details I want to call out here are 
the Actual Execution Mode and Estimated Execution Mode for the Columnstore Index 
Scan operator, both of which are Batch in this case (see Figure 8-15).

This indicates that the plan was optimized for batch mode operation, and so we're seeing the 
full potential of the columnstore index. If a query is unexpectedly slow when using a column-
store index then it's worth comparing the actual and estimated execution modes. If the former 
shows row and the latter, batch, then you have a plan optimized for batch mode that for some 
reason had to fall back into row mode during execution. This is very bad for query perfor-
mance, but is only an issue on SQL Server 2012, where a batch mode plan can fall back to 
row mode when a hash operation spills to tempdb.
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Memory-optimized Indexes
Indexes perform the same purpose for memory-optimized tables as for the disk-based 
tables that we've used up to now. However, they are very different structures, representing a 
complete redesign of the data access and locking structures, and specifically designed to get 
the best possible performance from being in-memory.

Memory-optimized tables, introduced in SQL Server 2014, support two new types of 
nonclustered index:

• Hash indexes – a completely new type of index, for memory-optimized tables, 
used for performing lookups on specific values. It's essentially an array of hash 
buckets, where each bucket points to the location of a data row, in memory.

• Range indexes – used for retrieving ranges of values, and more akin to the familiar 
B-tree index, except these memory-optimized counterparts use a different, Bw-tree 
storage structure.

Again, memory-optimized tables and indexes are designed to meet the specific performance 
requirements of very-high-throughput OLTP systems, with many inserts per second, but as 
well as inserts, updates, and deletes. In other words, the sort of situation where you're likely 
to experience the bottleneck of page latches in memory, when accessing disk-based tables.

Even if you’re not hitting the memory latch issues, but you have an extremely write-heavy 
database, you could see some benefits from memory-optimized tables. Otherwise, the  
only other regular use of memory-optimized tables is to enhance the performance of  
table variables.

Again, our goal in this section is purely to examine some of the main features of execution 
plans for queries that access memory-optimized tables and indexes. For further details of 
their design and use, as well as the various caveats that may prevent you from using them, 
I'd suggest the Microsoft online documentation (http://bit.ly/2EQl2Lc) and Kalen Delaney's 
book on the topic (http://bit.ly/2BpDxXI).

Using memory-optimized tables and indexes
Listing 8-12 creates a test database and, in it, three memory-optimized tables (copied from 
AdventureWorks 2014), and then fills them with data. Please adjust the values of the file 
properties, FILENAME, SIZE and FILEGROWTH, as suitable for your system.

http://bit.ly/2EQl2Lc
http://bit.ly/2BpDxXI
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CREATE DATABASE InMemoryTest 
ON PRIMARY (NAME = InMemTestData, 
            FILENAME = 'C:\Data\InMemTest.mdf', 
            SIZE = 10GB, 
            FILEGROWTH = 10GB), 
   FILEGROUP InMem CONTAINS MEMORY_OPTIMIZED_DATA (NAME = InMem, 
                                                   FILENAME = 'c:\
data\inmem.ndf') 
LOG ON (NAME = InMemTestLog, 
        FILENAME = 'C:\Data\InMemTestLog.ldf', 
        SIZE = 5GB, 
        FILEGROWTH = 1GB); 
GO 
--Move to the new database 
USE InMemoryTest; 
GO 
--Create some tables 
CREATE TABLE dbo.Address (AddressID INTEGER NOT NULL IDENTITY 
PRIMARY KEY NONCLUSTERED HASH 
                                                              WITH 
(BUCKET_COUNT = 128), 
                          AddressLine1 VARCHAR(60) NOT NULL, 
                          City VARCHAR(30) NOT NULL, 
                          StateProvinceID INT NOT NULL) 
WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); 
GO 
CREATE TABLE dbo.StateProvince (StateProvinceID INTEGER NOT NULL 
PRIMARY KEY NONCLUSTERED, 
                                StateProvinceName VARCHAR(50) NOT 
NULL, 
                                CountryRegionCode NVARCHAR(3) NOT 
NULL) 
WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); 
CREATE TABLE dbo.CountryRegion (CountryRegionCode NVARCHAR(3) NOT 
NULL PRIMARY KEY NONCLUSTERED, 
                                CountryRegionName NVARCHAR(50) NOT 
NULL) 
WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); 
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--Add Data to the tables 
--Cross database queries can't be used with in-memory tables 
SELECT a.AddressLine1, 
       a.City, 
       a.StateProvinceID 
INTO dbo.AddressStage 
FROM AdventureWorks2014.Person.Address AS a; 
INSERT INTO dbo.Address (AddressLine1, 
                         City, 
                         StateProvinceID) 
SELECT a.AddressLine1, 
       a.City, 
       a.StateProvinceID 
FROM dbo.AddressStage AS a; 
DROP TABLE dbo.AddressStage; 
SELECT sp.StateProvinceID, 
       sp.Name, 
       sp.CountryRegionCode 
INTO dbo.ProvinceStage 
FROM AdventureWorks2014.Person.StateProvince AS sp; 
INSERT INTO dbo.StateProvince (StateProvinceID, 
                               StateProvinceName, 
                               CountryRegionCode) 
SELECT ps.StateProvinceID, 
       ps.Name, 
       ps.CountryRegionCode 
FROM dbo.ProvinceStage AS ps; 
DROP TABLE dbo.ProvinceStage; 
SELECT cr.CountryRegionCode, 
       cr.Name 
INTO dbo.CountryStage 
FROM AdventureWorks2014.Person.CountryRegion AS cr; 
INSERT INTO dbo.CountryRegion (CountryRegionCode, 
                               CountryRegionName) 
SELECT cs.CountryRegionCode, 
       cs.Name 
FROM dbo.CountryStage AS cs 
DROP TABLE dbo.CountryStage; 
GO

Listing 8-12

Before we dive in, let's first run a query that accesses the standard, disk-based Adventure-
Works tables, for comparison.
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SELECT a.AddressLine1, 
       a.City, 
       sp.Name, 
       cr.Name 
FROM Person.Address AS a 
    JOIN Person.StateProvince AS sp 
        ON sp.StateProvinceID = a.StateProvinceID 
    JOIN Person.CountryRegion AS cr 
        ON cr.CountryRegionCode = sp.CountryRegionCode 
WHERE a.AddressID = 42;

Listing 8-13

It produces a standard execution plan with no real surprises, or new lessons to be learned.

 Figure 8-17: Execution plan for query accessing standard tables.

We can run essentially the same standard query against our InMemoryTest table, thanks  
to the Query Interop component of in-memory OLTP, which allows interpreted T-SQL to 
reference memory-optimized tables.

USE InMemoryTest; 
GO 
SELECT a.AddressLine1, 
       a.City, 
       sp.StateProvinceName, 
       cr.CountryRegionName 
FROM dbo.Address AS a 
    JOIN dbo.StateProvince AS sp 
        ON sp.StateProvinceID = a.StateProvinceID 
    JOIN dbo.CountryRegion AS cr 
        ON cr.CountryRegionCode = sp.CountryRegionCode 
WHERE a.AddressID = 42;

Listing 8-14 
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The execution plan it produces is not very abnormal looking either.

 Figure 8-18: Execution plan for query accessing memory-optimized tables.

However, there are a few differences:
• We can see a new Index Seek (NonClusteredHash) operator for accessing 

 the Address table.
• Examine the Storage property of any of the Index Seek operators, and you'll  

see it's MemoryOptimized instead of RowStore.
• Estimated costs for the seeks are lower because the memory-optimized index  

is assumed to be more efficient.
On the last point, remember that lower cost estimated doesn't necessarily mean that these 
operations cost more or less. You can't effectively compare the costs of operations within a 
given plan with the costs of operations within another plan. They're just estimates. Estimates 
for a regular plan account for the fact that some of the costs will be accessing data from 
the disk whereas the cost estimates for in-memory plans will only be retrieving data from 
memory.

Standard queries against memory-optimized tables will generate a completely standard 
execution plan. You'll be able to understand which indexes have been accessed, and how 
they're accessed. Internally there's a lot going on, but visibly, in the graphical plan, there's 
just nothing much to see.

It gets more interesting when we look at a slightly different query.
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No option to seek a hash index for a range of values
Let's modify the query just a little bit, looking for a range of addresses rather than just one.

SELECT a.AddressLine1, 
       a.City, 
       sp.StateProvinceName, 
       cr.CountryRegionName 
FROM dbo.Address AS a 
    JOIN dbo.StateProvince AS sp 
        ON sp.StateProvinceID = a.StateProvinceID 
    JOIN dbo.CountryRegion AS cr 
        ON cr.CountryRegionCode = sp.CountryRegionCode 
WHERE a.AddressID BETWEEN 42 
                  AND     52;

Listing 8-15

If I run the equivalent query against the normal AdventureWorks database I'll get an  
execution plan as shown in Figure 8-19.

 Figure 8-19: Standard execution plan with Index Seek operators.

The BETWEEN operator doesn't affect whether the clustered index is used for a seek  
operation. It's still an efficient mechanism for retrieving data from the clustered index  
on the Address table. Contrast this with the execution plan against the memory-optimized 
hash index.
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Figure 8-20: Execution plan for query using memory-optimized hash index.

Instead of a seek against the hash index, we see a table scan against the Address table.  
This is because the hash index isn't conducive to selections of range values, but instead is 
optimized for point lookups. Notice also that the optimizer cannot push down a search  
predicate into a scan when running in Interop mode, so it must pass all 19,614 rows to  
the Filter operator.

If this was the common type of query being run against this table, we'd need to have a 
memory-optimized nonclustered index on the table to better support this type of query. You 
can use your execution plans to evaluate this type of information within memory-optimized 
tables and queries.

Plans with natively-compiled stored procedures
One additional object that was introduced with memory-optimized tables is the natively-
compiled stored procedure. Currently, the behavior here is different than the standard queries 
as demonstrated above. Listing 8-17 creates a natively-compiled stored procedure from the 
query in Listing 8-15.

CREATE OR ALTER PROC dbo.AddressDetails @AddressIDMin INT, @
AddressIDMax INT 
WITH NATIVE_COMPILATION, SCHEMABINDING, EXECUTE AS OWNER AS 
BEGIN ATOMIC WITH (TRANSACTION ISOLATION LEVEL = SNAPSHOT, LANGUAGE 
= N'us_english') 
 SELECT a.AddressLine1, 
       a.City, 
       sp.StateProvinceName, 
       cr.CountryRegionName 
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FROM dbo.Address AS a 
    JOIN dbo.StateProvince AS sp 
        ON sp.StateProvinceID = a.StateProvinceID 
    JOIN dbo.CountryRegion AS cr 
        ON cr.CountryRegionCode = sp.CountryRegionCode 
WHERE a.AddressID BETWEEN @AddressIDMin 
                  AND     @AddressIDMax; 
END 
GO 
EXECUTE dbo.AddressDetails @AddressIDMin = 42, -- int 
                           @AddressIDMax = 52;  -- int

Listing 8-16

We cannot execute the query and get an actual execution plan. That's a limitation with the 
compiled procedures. We can get an estimated plan.

Figure 8-21: Execution plan for query accessing a natively-compiled stored procedure.

We still see the Table Scan on the Address table, because there is no supporting index, but 
this time, but if we examine its properties, we see that predicate pushdown is supported in 
natively-compiled code.

Figure 8-22: Predicate pushdown in natively-compiled code.
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A scan within a memory-optimized table is faster, and different internally, than a standard 
table, but if the table has a few million rows it will still take time to scan all of them, and 
a Bw-tree index would still be useful for this query. Even if did choose to alter the table to 
supply an index, the plan itself won't recompile and show us differences, it'll just choose the 
index at runtime.

Note that all the estimated costs are zero because Microsoft are costing these procedures in a 
new way that isn't reflected externally. There is not a single value beyond zero in any of the 
estimated costs inside any of the properties for any of the operators. Let's look at the proper-
ties of the SELECT operator.

Figure 8-23: SELECT operator properties showing estimated costs of zero  
for natively-compiled code.

That represents the complete set of properties available. None of the useful properties we've 
discussed earlier in the book such as the Reason for Early Termination exist here. This is 
because of differences in how these plans are stored (for example, this plan is not in the plan 
cache) and how they are generated.

As of this writing, SQL Server 2017 execution plans, when used with the compiled memory-
optimized stored procedures, are less useful. Missing the row counts and costs affects your 
ability to make decisions based on the plans, but they still provide good information, which 
should allow you to see the actions taken when the query executes, and figure out why a 
query is slow.
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Summary
It's difficult to overstate the impact of indexes and their supporting statistics on the quality of 
the plans that the optimizer generates.

You can't always solve a performance problem just by adding an index. It is entirely possible 
to have too many indexes, so you must be judicious in their use. You need to ensure that the 
index is selective, and you must make appropriate choices regarding the addition or inclusion 
of columns in your indexes, both clustered and nonclustered.

You will also need to be sure that your statistics accurately reflect the data that is stored 
within the index because the choice of index used in plan is based on the optimizer's esti-
mated row count and estimated operator costs, and the estimated row counts are based on 
statistics. If you use hard-coded input parameter values, then the optimizer can use statistics 
for that specific value, but SQL Server loses the ability to reuse plans for those queries. If the 
optimizer can sniff parameters, such as when we use a stored procedure, it can use accurate 
statistics, but a reused plan based on a sniffed parameter can backfire if the next parameter 
has a hugely different rowcount.
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All the processes the optimizer needs to perform to generate execution plans, come at a 
cost. It costs time and CPU resources to devise an execution strategy for a query. For simple 
queries, SQL Server can generate a plan in less than a millisecond, but on typical OLTP 
systems there are lots of these short, fast queries and the costs can add up. If the workload 
also includes complex aggregation and reporting queries, then it will take the optimizer 
longer to create an execution plan for each one.

Therefore, it makes sense that SQL Server wants to avoid paying the cost of generating a 
plan every single time it needs to execute a query, and that's why it tries its best to reuse 
existing query execution strategies. The optimizer saves them as reusable plans, in an area of 
memory called the plan cache. Ideally, if the optimizer encounters a query it has seen before, 
it grabs a ready-made execution strategy for it from the plan cache, and passes it straight to 
the execution engine. That way, SQL Server spends valuable CPU resources executing our 
queries, rather than always having to first devise a plan, and then execute it.

SQL Server will try its best to promote plan reuse automatically, but there are limits to what 
it can do without our help as programmers. Fortunately, armed with some simple techniques, 
we can ensure that our queries are correctly parameterized, and that plans get reused as often 
as possible; I'm going to show you exactly what you need to do. We'll also explore some of 
the problems that can occur with plan reuse and what you can do about them.

Querying the Plan Cache
As discussed in Chapter 1, when we submit any query for execution, the optimizer generates 
a plan if one doesn't already exist that it can reuse, and stores it in an area of the buffer pool 
called the plan cache. Our goal as programmers, DBAs and database developers, is to help 
promote efficient use of this memory, which means that the plan for a query gets reused from 
cache, and not created or recreated each time the query is called, unless changes in structures 
or statistics necessitate recompiling the plan.
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The plan cache has four cache stores that store plans (see https://bit.ly/2mgrS6s for more 
detail). The compiled plans in which we're interested will be stored in either the SQL plans 
cache store (CACHESTORE_SQLCP) or the Object plans store (CACHESTORE_OBJCP), 
depending on object type (objtype):

• SQL plans store contains plans for ad hoc queries, which have an objtype of 
Adhoc, as well as plans for auto-parameterized queries, and prepared statements, 
both of which have an objtype of Prepared.

• Object plans store contains plans for procedures, functions, triggers, and some 
other types of object, and each plan will have an associated Object ID value. Plans 
for stored procedures, scalar user-defined functions, or multi-statement table-
valued functions have an objtype of Proc, and triggers have an objtype  
of Trigger.

To examine plans currently in the cache, as well as to explore plan reuse, we can query a set 
of execution-related Dynamic Management Objects (DMOs). Whenever we execute an ad 
hoc query, a batch, or an object such as a stored procedure, the optimizer stores the plan. An 
identifier, called a plan_handle, uniquely identifies the cached query plan for every query, 
batch, or stored procedure that has been executed.

We can supply the plan_handle as a parameter to the sys.dm_exec_sql_text 
function to return the SQL text associated with a plan, as well as to the sys.dm_exec_
query_plan function, to return the execution plan in XML format. Several DMOs store 
the plan_handle, but in this chapter, we'll primarily use:

• sys.dm_exec_cached_plans – returns a row for every cached plan and 
provides information such as the type of plan, the number of times it has been 
used, and its size.

• sys.dm_exec_query_stats – returns a row for every query statement in 
every cached plan, and provides execution statistics, aggregated over the time the 
plan has been in cache. Many of the columns are counters, and provide informa-
tion about how many times the plan has been executed, and the resources that were 
used.

There are also a few DMOs that provide similar aggregated execution statistics to  
sys.dm_exec_query_stats, but for specific objects, each of which will have a 
separate plan, with an associated object_id value. We have sys.dm_exec_proce-
dure_stats for stored procedures, sys.dm_exec_trigger_stats for triggers and 
sys.dm_exec_function_stats for user-defined scalar functions. Even though multi-
statement table-valued functions do get a plan, with an object_id value, these plans only 
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appear in sys.dm_exec_query_stats. Inline views and table-valued functions  
do not get a separate plan because their behavior is incorporated into the plan for the  
query referencing them.

All the previous DMOs are for investigating plans for queries that have completed execu-
tion. However, since the execution plan is already stored in the cache when execution 
starts, we also can look at the plan for queries that are still executing, using the sys.dm_
exec_requests DMV. This is useful if your system is experiencing resource pressure 
right now, due to currently-executing, probably long-running, queries. This DMV stores the 
plan_handle and a range of other information, including execution stats, for any currently 
executing query, whether it's ad hoc, or a prepared statement, or part of a code module.

Using these DMOs, we can construct simple queries that for each plan_handle will 
return, for example, the associated query text, and an XML value representing the cached 
plan for that query, along with a lot of other useful information. We'll see some examples as 
we work through the chapter, though I won't be covering the DMOs in detail.

More on the DMOs
You can refer to the Microsoft documentation (http://bit.ly/2m1F6CA), or Louis Davidson 
and Tim Ford's excellent book, Performance Tuning with SQL Server Dynamic Management 
Views (https://bit.ly/2Je3evr), which is available as a free eBook. Glenn Berry's diagnostic 
queries (http://bit.ly/Q5GAJU) include lots of examples on using DMOs to query the cache 
in. Finally, you can skip writing your own queries and use Adam Machanic's sp_WhoIsActive 
(http://whoisactive.com/).

Plan Reuse and Ad Hoc Queries
When a query is submitted, the engine first computes the QueryHash and looks for matching 
values in the plan cache. If any are found, it does a detailed comparison of the full SQL text. 
If they are identical then, assuming there are also no differences in SET options or database 
ID, it can bypass the compilation process and simply submit the cached plan for execution. 
This is efficient plan reuse at work, and we'd like to promote this as far as possible. Unfortu-
nately, use of ad hoc queries with hard-coded literals, to cite one example, defeats plan reuse.

Listing 9-1 clears out the plan cache and then executes a batch consisting of three ad hoc 
queries, which concatenate the name columns in the Person table of AdventureWorks. The 
first and second queries are identical in all but the value supplied for BusinessEntityID, 
and the second and third differ only in white space formatting.

http://bit.ly/2m1F6CA
https://bit.ly/2Je3evr
http://bit.ly/Q5GAJU
http://whoisactive.com/
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ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE; 
GO 
SELECT ISNULL(p.Title, '') + ' ' + p.FirstName + ' ' + p.LastName 
FROM Person.Person AS p 
WHERE p.BusinessEntityID = 5; 
SELECT ISNULL(p.Title, '') + ' ' + p.FirstName + ' ' + p.LastName 
FROM Person.Person AS p 
WHERE p.BusinessEntityID = 6; 
SELECT ISNULL(p.Title, '') + ' ' + p.FirstName + ' ' + p.LastName 
FROM Person.Person AS p WHERE p.BusinessEntityID = 6; 
GO

Listing 9-1

The plans for each query are the same in each case, consisting of only three operators.  
If you examine the QueryHash and QueryPlanHash values of the SELECT operator,  
you'll see that these are identical for each plan. However, let's see what's stored in the plan 
cache. All the DMOs used in this query are server-scoped, so the database context for the 
query is irrelevant.

SELECT cp.usecounts, 
       cp.objtype, 
       cp.plan_handle, 
       DB_NAME(st.dbid) AS DatabaseName, 
       OBJECT_NAME(st.objectid, st.dbid) AS ObjectName, 
       st.text, 
       qp.query_plan 
FROM sys.dm_exec_cached_plans AS cp 
    CROSS APPLY sys.dm_exec_sql_text(cp.plan_handle) AS st 
    CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle) AS qp 
WHERE st.text LIKE '%Person%' 
      AND st.dbid = DB_ID('AdventureWorks2014') 
      AND st.text NOT LIKE '%dm[_]exec[_]%' ;

Listing 9-2

Figure 9-1 shows the result set, with one entry.

Figure 9-1: Results from querying the plan cache.
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When we submit to the query processor a batch, or a stored procedure or function, containing 
multiple statements, the whole batch will be compiled at once, and so the optimizer has 
produced a plan for the whole Adhoc batch. If you check the value of the text column, 
you'll see it's the SQL text of the entire batch. The final column in the result set, query_plan, 
contains the XML representation of the query execution plan. When viewing the results in 
grid view, these XML values are displayed as hyperlinks, and we can click on one to show 
the graphical form of the execution plan. As you can see, the optimizer produces a plan for 
the batch, which contains individual plans for every statement in the batch.

Figure 9-2: Three execution plans that look the same despite being from three queries.

The first column of the result set, in Figure 9-1, usecounts, tells us the number of times a 
plan has been looked up in the cache. In this case it's once, and the only way the plan for this 
batch will be reused is if we submit the exact same batch again; same formatting, same literal 
values. If we re-execute just part of the same batch, such as the last query then, after rerun-
ning Listing 9-2, we'll see a new entry, and a new plan generated.

The sys.dm_exec_query_stats DMV shows us a slightly different view on this, since 
it returns one row for every query statement in a cached plan.
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SELECT SUBSTRING( 
                    dest.text, 
                    (deqs.statement_start_offset / 2) + 1, 
                    (CASE deqs.statement_end_offset 
                         WHEN -1 THEN 
                             DATALENGTH(dest.text) 
                         ELSE 
                             deqs.statement_end_offset - deqs.
statement_start_offset 
                     END 
                    ) / 2 + 1 
                ) AS QueryStatement, 
       deqs.creation_time, 
       deqs.execution_count, 
       deqp.query_plan 
FROM sys.dm_exec_query_stats AS deqs 
    CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp 
    CROSS APPLY sys.dm_exec_sql_text(deqs.plan_handle) AS dest 
WHERE dest.text LIKE '%Person%' 
      AND deqp.dbid = DB_ID('AdventureWorks2016') 
      AND dest.text NOT LIKE '%dm[_]exec[_]%' 
ORDER BY deqs.execution_count DESC, 
         deqs.creation_time;

Listing 9-3

To see some differences in counts and batches, execute the final statement in the batch from 
Listing 9-1 two times. Figure 9-3 shows the results after executing the whole of Listing 9-1 
once, and then those additional two executions.

Figure 9-3: Multiple executions from the plan cache.

Of course, I could have opted, in Listing 9-3, to return many other columns containing  
useful execution statistics, such as the aggregated physical and logical reads and writes,  
and CPU time, resulting from all executions of each plan, since that information was stored 
in the cache.
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The cost of excessive plan compilation
One of the worst offenders for misuse of the plan cache is the unnecessary overuse of  
ad hoc, unparameterized queries. These are sometimes generated dynamically by a poorly-
written application library, or by an incorrectly-configured Object-Relational Mapping 
(ORM) layer between the application and the database. You also see a lot more plan compiles 
when an ORM tool is coded poorly so that it creates different parameter definitions based on 
the length of the string being passed, for example VARCHAR(3) for 'Dog' or VARCHAR(5) 
for 'Horse'.

Dynamic SQL is any SQL declared as a string data type, and an ad hoc query is any query 
where the query text gets submitted to SQL Server directly, rather than being included in a 
code module (stored procedure, scalar user-defined function, multi-statement user-defined 
function, or trigger). Examples include unparameterized queries typed in SSMS, and 
dynamic SQL queries submitted through EXEC(@sql) or through sp_excutesql, as 
well as any query that is submitted and sent from a client program, which may be parameter-
ized, in a prepared statement, or may just be an unparameterized string, depending on how 
the client code is built.

In extreme cases, unparameterized queries run iteratively, row by row, instead of a single set-
based query. Listing 9-4 uses our previous query in a couple of iterations. The first iteration 
hard codes the @id value (for BusinessEntityID) into a dynamic SQL string and passes 
the string into the EXECUTE command.

The second iteration uses the sp_executesql procedure to create a prepared statement 
containing a parameterized string, to which we pass in parameter values. This approach 
allows for plan reuse. Don't worry too much about the details here, as we'll discuss prepared 
statements later in the chapter. The key point here is that we want to compare the work 
performed by SQL Server to execute the same ad hoc SQL multiple times, in one case where 
it can't reuse plans, and in one where it can.

Of course, both iterative approaches are still highly inefficient, given that we can achieve the 
desired result set in a set-based way, with a single execution of one query.

DECLARE @ii INT; 
DECLARE @IterationsToDo INT = 500; 
DECLARE @id VARCHAR(8); 
SELECT @ii = 1; 
WHILE @ii <= @IterationsToDo
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BEGIN 
    SELECT @ii = @ii + 1, 
           @id = CONVERT(VARCHAR(5), @ii); 
    EXECUTE ('SELECT ISNULL(Title, '''') + '' '' + FirstName + '' 
'' + LastName FROM Person.Person WHERE BusinessEntityID =' + @id); 
END; 
GO 
DECLARE @ii INT; 
DECLARE @IterationsToDo INT = 500; 
DECLARE @id VARCHAR(8); 
SELECT @ii = 1; 
WHILE @ii <= @IterationsToDo 
BEGIN 
    SELECT @ii = @ii + 1, 
           @id = CONVERT(VARCHAR(5), @ii); 
    EXEC sys.sp_executesql N' 
  SELECT ISNULL(Title, '''') + '' '' + FirstName + '' '' + LastName 
FROM Person.Person WHERE BusinessEntityID = @id', 
N'@id int', 
@id = @ii; 
END; 
GO

Listing 9-4

If you capture performance metrics using Extended Events, you'll see that the first iteration 
performs about 3,500 logical reads and takes 368,890 microseconds, the second performs 
1,500 logical reads and takes 26,329 microseconds. Note that STATISTICS IO doesn't 
show the extra work; you see only work done directly by the query, not the extra work done 
on behalf of the query, for plan cache management.

The approach, using ad hoc, dynamic, unparameterized strings, floods the plan cache  
with 500 single-use copies of the same plan (you can run Listing 9-2 to verify). The extra 
logical reads this requires, over the iterative approach that reuses the plan, is extra work  
associated with compiling and storing these plans. It's only an extra 4 logical reads per  
iteration, but if your system is inundated with unparameterized ad hoc queries, all this extra 
work adds up quickly.

It causes bigger problems, too. It increases the amount of CPU processing the server must 
perform, in continuously and unnecessarily compiling and storing new plans. It also wastes 
memory resources, using buffer cache memory to store plans that will only ever be used 
once. Unless you have the luxury of enough server memory to accommodate every parameter 
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combination of every query, it can lead to "cache churn," where older plans, ones that might 
be useful, reusable plans, are continuously evicted to make room for the flood of ad hoc 
query plans. In severe cases, it can lead to memory pressure.

If you're experiencing such problems, there are various ways to query the plan cache to 
confirm or disprove that it's related to excessive use of ad hoc queries. For example, the 
simple query in Listing 9-5 will tell you the proportion of each type of compiled plan in  
the cache.

SELECT decp.objtype, 
       CAST(100.0 * COUNT(*) / SUM(COUNT(*)) OVER () AS DECIMAL(5, 
2)) AS plans_In_Cache 
FROM sys.dm_exec_cached_plans AS decp 
GROUP BY decp.objtype 
ORDER BY plans_In_Cache;

Listing 9-5

The results of this query don't mean much, as a one-off execution. You will need to monitor 
the values over time, and understand what the expected numbers are for your system, along-
side metrics such as Batch Requests/sec and SQL Compilations/sec, using Perfmon, or 
track events directly with Extended Events. You can also retrieve the plan types from the 
Query Store.

Various online resources provide more detailed scripts to examine use and abuse of the plan 
cache; see, for example, https://bit.ly/2EfYOkl.

Simple parameterization for "trivial" ad hoc queries
For very simple, one-table queries, the optimizer might recognize that, if a query supplied 
a parameter instead of a literal, it would be able to create an execution plan it could reuse. 
In such cases, the optimizer will try to automatically create a parameter for you, through a 
process called "simple parameterization." This only works for execution plans that qualify as 
trivial plans (see Chapter 1), because it is only for these that the optimizer can be certain that 
the same plan will work well, regardless of the parameter value supplied.

Simple parameterization in action
We encountered simple parameterization back in Chapter 2, but didn't cover it in any detail, 
so let's see it in action again. Execute Listing 9-6 and capture the actual plan.

https://bit.ly/2EfYOkl
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SELECT a.AddressID, 
       a.AddressLine1, 
       a.City 
FROM Person.Address AS a 
WHERE a.AddressID = 42;

Listing 9-6

Figure 9-4 shows the very simple execution plan. I've highlighted the first, visible indica-
tion that the optimizer has performed simple parameterization. You can see the query that is 
highlighted is different than the query I wrote and executed, because the hard-coded value for 
AddressID has been replaced by a parameter called @1.

Figure 9-4: First visual evidence of simple parameterization.

If the query text is longer, you might not see this clue in the graphical execution plan.  
The best place to look is in the properties of the SELECT operator, specifically the  
Parameter List.

Figure 9-5: SELECT properties showing evidence of simple parameterization.
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Just as we see for stored procedures, or any other parameterized query, the Parameter List 
shows the name of any parameters, their compile-time and runtime values, and their data 
types. We have no control over the naming of these parameters; they will be simply listed in 
the order that the optimizer creates them. We also have no control over the data types;  
the optimizer chooses the data type for simple parameterization based on the size of the  
value passed to it. You can also see that the query engine respected the parameterization,  
by looking at the value at the bottom of Figure 9-5, StatementParameterizationType.  
If this value is 0, no parameterization occurred. In this case the value is 2, indicating  
simple parameterization.

Re-execute Listing 9-6, but with a hard-coded value of 100, and you'll see that the compile-
time value remains at 42, but the runtime value changes to 100. If we query sys.dm_
exec_cached_plans (see Listing 9-2), then we see the following output.

Figure 9-6: Plan usecounts from the plan cache.

The bottom entry in the output shows that the optimizer reused the existing plan that it 
created for the auto-parameterized query, effectively turning it into a prepared statement. 
In the text column, we can see the parameter it used (@1) and its data type, in this case 
tinyint. For integers, the optimizer uses the smallest data type that can fit the value. If 
we'd passed in a value of, say, 300 instead of 42, then the data type would be a smallint 
instead of a tinyint. This can mean that even when simple parameterization occurs, we 
can still have more than one plan in cache for the same trivial query, but with differences in 
the size of the parameter. This is not a major concern, but it's something to be aware of.

The first two entries in Figure 9-6 are for the individual ad hoc queries (with hard-coded 
literals). However, if you click on the links to the query plans for each of these entries, you'll 
see that they consist only of a SELECT operator. The first thing SQL Server does when 
we issue a query is search for an exact textual match in the plan cache. This is done before 
simple parameterization, and obviously requires that the pre-parameterization query is stored. 
However, these "placeholder" plans are never completed or executed. You can confirm this 
by querying sys.dm_exec_query_stats (Listing 9-3), which shows just a single plan 
for this query, executed twice.
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You can also use the Query Store to retrieve the execution counts, compile counts, the type of 
plan, and the type of parameterization. Listing 9-7 shows the information available.

SELECT qsqt.query_sql_text, 
       qsq.query_parameterization_type_desc, 
       qsq.count_compiles, 
       qsp.is_trivial_plan, 
       qsrs.count_executions 
FROM sys.query_store_query AS qsq 
    JOIN sys.query_store_query_text AS qsqt 
        ON qsqt.query_text_id = qsq.query_text_id 
    JOIN sys.query_store_plan AS qsp 
        ON qsp.query_id = qsq.query_id 
    JOIN sys.query_store_runtime_stats AS qsrs 
        ON qsrs.plan_id = qsp.plan_id 
WHERE qsqt.query_sql_text LIKE '%@1%';

Listing 9-7

The results would look like Figure 9-7.

Figure 9-7: Results from the Query Store showing multiple executions.

The optimizer must be sure that any possible query that could use the auto-parameterized 
plan will be executed safely, and it won't apply it in cases that could cause plan instability. In 
short, it is very cautious in its application of simple parameterization, and is easily deterred.

As noted earlier, a prerequisite is that the plan is trivial, as it was for our query in Listing 
9-6, and as indicated by an Optimization Level of TRIVIAL in Figure 9-5 and the is_
trivial_plan indicator in Figure 9-7. However, that doesn't mean any trivial plan will be 
auto-parameterized. If you capture the actual plans for the queries in Listing 9-1, and check 
the properties of the SELECT operator, you'll see that they also get trivial plans, but you'll 
see no parameter list. In this case, simple parameterization is defeated by our inclusion of the 
ISNULL function in the query (remove it, and it works). In Chapter 3 (Listing 3-4), we saw a 
similar case, where simple parameterization was defeated by use of a LIKE predicate.
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What happens if we need to join to another table in our query?

SELECT a.AddressID, 
       a.AddressLine1, 
       a.City, 
       bea.BusinessEntityID 
FROM Person.Address AS a 
    JOIN Person.BusinessEntityAddress AS bea 
        ON bea.AddressID = a.AddressID 
WHERE a.AddressID = 42;

Listing 9-8

Figure 9-8 shows the relevant properties from the resulting plan. As you can see, the  
Optimization Level will be FULL, rather than TRIVIAL. Since a trivial plan is a  
pre-condition of simple parameterization, we'll see no parameters.

Figure 9-8: SELECT properties showing the Optimization Level.

There are many other clauses and conditions that will defeat simple parameterization  
if included in a query, such as GROUP BY, DISTINCT, TOP, UNION, INTO, BULK 
INSERT, COMPUTE, and others. For more details, refer to Microsoft documentation at 
https://bit.ly/2LS6Api.

"Unsafe" simple parameterization
Simple parameterization, and the rules that govern it, are not quite as simple as they might 
seem. Try capturing an actual plan for the query in Listing 9-9.

SELECT Person.FirstName + ' ' + Person.LastName, 
       Person.Title 
FROM Person.Person 
WHERE Person.LastName = 'Diaz';

Listing 9-9

https://bit.ly/2LS6Api
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The properties of the SELECT operator do show a Parameter List, apparently indicating 
that the optimizer did simple parameterization. But did it? Look higher, and you'll see that  
the Optimization Level is FULL, and earlier I said that TRIVIAL was a prerequisite for 
simple parameterization.

Figure 9-9: SELECT properties showing parameterization, but not really.

In fact, simple parameterization has not occurred. Change 'Diaz' to 'Brown' in Listing 9-9, 
rerun it, and then query either the sys.dm_exec_cached_plans or sys.dm_exec_
query_stats DMO. You will see two plans, one for each execution, each unparameter-
ized. We can also see that the StatementParameterizationType property, only 
visible if Query Store is enabled in the database, and a value only found in actual plans 
because it's a runtime metric, is set to the value of 0. This indicates that no parameters were 
used in the execution of the query.

The query plan as captured in the Query Store also shows the attempt to parameterize, 
including the parameterized version of the statement. However, the query_parameter-
ization_type column value will be zero, indicating that there was no parameterization, 
and the query_sql_text column shows the original query text, not the parameterized 
version it would show if the parameterization had been successful.
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Not all details of the simple parameterization process are fully documented, so the following 
is merely an "educated speculation," based on current understanding and observations. It 
appears that there are two phases. The first phase, prior to actual compilation, looks at only 
the query text to determine whether the query might qualify for simple parameterization. A 
long list of keywords is checked and, if none of them occur in the query, it will be parameter-
ized and handed to the optimizer. Otherwise the query is sent to the optimizer unchanged, 
with all the constants in place.

The optimizer will, as always, first check whether TRIVIAL optimization applies. Apart 
from the same list of keywords checked for simple parameterization, this now also considers 
other database objects such as constraints, indexes, and so on. At this stage, the optimizer 
might conclude that simple parameterization is unsafe. The parameterization is undone and 
the original, unparameterized query is compiled.

Unfortunately, this series of events results in SSMS showing (and Query Store capturing) 
the execution plan as if it were parameterized. The fact that the StatementParameter-
izationType property has a value of zero (see Figure 9-9) is the only indicator that the 
displayed execution plan is not the plan that was used.

Of course, when a query does qualify for simple parameterization in the first check, and then 
also qualifies for trivial optimization in the second check, the parameterized version of the 
query will be compiled, and all plans shown in SSMS, in Query Store, and in the DMOs, will 
show the parameterized version.

If you simply omit the Title column from Listing 9-9 and rerun it, you'll see that simple 
parameterization now succeeds.

Inclusion of the Title column, in Listing 9-9 necessitated a Key Lookup, which means 
that is a threshold at which a clustered index scan is the better option; without Title, the 
index is covering and will always be used. Probably, this explains why simple parameteriza-
tion is now "safe."

Finally, you'll see from the Parameter Data Type value that, for strings, the optimizer 
chooses a very long maximum length, and so will be able to reuse this plan for input strings 
that are much longer.
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Figure 9-10: SELECT properties showing successful simple parameterization.

Programming for Plan Reuse: Parameterizing 
Queries
As we saw earlier, if we simply hardcode values directly into a dynamic SQL string and 
then pass it directly into SQL Server for execution using the EXECUTE command, or by any 
other method, the optimizer cannot reuse a cached plan for a subsequent execution where the 
SQL string differs only by the coded value. While plan reuse is our focus here, a far bigger 
problem with this approach is its vulnerability to SQL Injection attacks. I cannot cover the 
latter topic here, but will happily refer you to Erland Sommarskog (http://www.sommarskog.
se/dynamic_sql.html) for further details.

To avoid this vulnerability when issuing dynamic SQL, and to ensure your plans will be 
reused rather than regenerated each time, we need to parameterize the SQL text, so that the 
optimizer sees the exact same SQL text each time you execute the query. However, as the 
previous discussion indicates, we can't rely on the optimizer's simple parameterization for 
anything other than the most trivial queries, and sometimes not even those.

http://www.sommarskog.se/dynamic_sql.html
http://www.sommarskog.se/dynamic_sql.html
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As T-SQL coders, we need to promote plan reuse, by using parameters in our queries. From 
application code, we can do this by creating a prepared statement, using the ODBC ADO.
NET and OLEDB APIs. This parameterizes the query, and then we pass in the parameter 
values, for each execution of the parameterized SQL text.

In SQL Server, the best approach, especially for more complex queries to which we need  
to pass parameters in (and out), and that we wish to reuse, we use code modules such as 
stored procedures or functions. However, we can also create prepared statements using  
sp_executesql, or even sp_prepare.

Prepared statements
Listing 9-10 shows how to create a parameterized statement in SQL Server using sp_
executesql (see Listing 9-4 for another example).

DECLARE @sql NVARCHAR(400); 
DECLARE @param NVARCHAR(400); 
SELECT @sql = 
  N'SELECT  p.Name, 
            p.ProductNumber, 
            th.ReferenceOrderID 
    FROM    Production.Product AS p 
    JOIN    Production.TransactionHistory AS th 
            ON th.ProductID = p.ProductID 
    WHERE   th.ReferenceOrderID = @ReferenceOrderID;'; 
SELECT @param = N'@ReferenceOrderID int'; 
EXEC sys.sp_executesql @sql, @param, 53465;

Listing 9-10

When SQL Server compiles the batch containing the prepared statement, it will set the values 
of any variables, and then run the EXECUTE command, and at this point can sniff the param-
eter values. This means that it can use statistics to come up with a very accurate row count 
estimate for the predicate (72 rows). Figure 9-11 shows the resulting plan.
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Figure 9-11: Execution plan showing sniffed parameters.

In a similar fashion, Listing 9-11 shows how to define parameters through prepared state-
ments in your application (this example uses C#), making use of the API of OLEDB or 
ODBC.

using System.Collections.Generic; 
using System.Text; 
using System.Data; 
using System.Data.SqlClient; 
namespace ExecuteSQL 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            string connectionString = "Data Source=MySQLInstance;Da
tabase=AdventureWorks2014;Integrated Security=true"; 
            try 
            { 
                using (SqlConnection myConnection = new SqlConnecti
on(connectionString)) 
                { 
                 myConnection.Open(); 
                 SqlCommand prepStatement = myConnection.
CreateCommand(); 
                 prepStatement.CommandText = @"SELECT p.Name, 
p.ProductNumber,
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                                 th.ReferenceOrderID 
                                 FROM Production.Product AS p 
                                 JOIN Production.TransactionHistory 
AS th 
                                 ON th.ProductID = p.ProductID 
                                 WHERE th.ReferenceOrderID = @
ReferenceOrderID"; 
                prepStatement.Parameters.Add("@ReferenceOrderID," 
SqlDbType.Int); 
                prepStatement.Prepare(); 
                prepStatement.Parameters["@ReferenceOrderID"].Value 
= 53465; 
                prepStatement.ExecuteReader (); 
                } 
            } 
            catch (SqlException e) 
            { 
                Console.WriteLine(e.Message); 
                Console.Read(); 
            } 
        } 
    } 
}

Listing 9-11

If you execute this and examine the plan cache (Listing 9-2 or 9-3) you'll find the plan shown 
in Figure 9-11. If you look at the SELECT operator as we have done throughout this chapter, 
you’ll see that the @ReferenceOrderID was parameterized and that the value was 
sniffed, with a compile value of 53465 and that the StatementParameterization-
Type has a value of 1, which means the user explicitly parameterized the query, as shown in 
Figure 9-12.

Different types of prepared statement behave differently. A .NET application can build 
a query in a StringBuilder object, then prepare and execute it; technically, that's a 
prepared statement, but it would have all the characteristics of dynamic SQL.
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Figure 9-12: SELECT properties showing the prepared statement parameterization.

Similarly, we can also create a prepared statement in SQL using the built-in sp_prepare 
stored procedure, although there's not much practical need for it and, again, it behaves some-
what differently.

DECLARE @sql NVARCHAR(400); 
DECLARE @param NVARCHAR(400); 
DECLARE @PreparedStatement INT; 
DECLARE @MyID INT; 
SELECT @sql = 
  N'SELECT  p.Name, 
            p.ProductNumber, 
            th.ReferenceOrderID 
    FROM    Production.Product AS p 
    JOIN    Production.TransactionHistory AS th 
            ON th.ProductID = p.ProductID 
    WHERE   th.ReferenceOrderID = @ReferenceOrderID;'; 
SELECT @param = N'@ReferenceOrderID int'; 
SELECT @MyID = 53465; 
EXEC sp_prepare @PreparedStatement OUTPUT, @param, @sql; 
EXEC sp_execute @PreparedStatement, @MyID; 
EXEC sp_unprepare @PreparedStatement;

Listing 9-12
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Using this technique, the compilation occurs in two steps: first, prepare (without values) and 
then execute (with values). The plan is generated during the prepare step and, since there are 
no values, the parameters cannot be sniffed and are treated as normal local variables. This is 
different than what we showed with the C# code from Listing 9-11.

Therefore, prepared statements created in this fashion always cause optimization for 
unknown values, and so the optimizer will use the density graph to arrive at a cardinality esti-
mation, in this case 3.05 rows, and will generate an appropriate plan, which is rather different 
from the one we saw in Figure 9-10. You'll have to clear the cache to see this plan, else you'll 
see a reuse of the plan for Listing 9-9, because the SQL text is identical in each case.

Figure 9-13: Execution plan from the sp_prepare statement query.

This is the same plan as we'd see if we'd simply set the value of @ReferenceOrderID 
using a local variable (DECLARE @ReferenceOrderID INT). While it may look like a 
parameter, the two behave differently and are handled in different ways by the optimizer, as 
we saw in Chapter 8.

In this case, the efficiency of this plan will decrease, the more rows are returned by the top 
inputs into each of the Nested Loops joins. However, in this case, it isn't a significant perfor-
mance issue, and the plan is good enough for all values that can be passed in.

As we saw, when we parameterize SQL using sp_executesql, use a code-based prepared 
statement, or a stored procedure based on this query, we get the optimizer plan for the sniffed 
parameter value, but we may see erratic performance as a result.

Stored procedures
We've already seen plenty of examples in this book, especially in Chapter 7, of encapsu-
lating a parameterized query in a stored procedure. When you call a stored procedure, a plan 
is created and placed in a cache that is associated with the object ID of the procedure. This 
makes plan reuse straightforward and simple, both to work with and to understand.
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Listing 9-13 uses the same query as the previous two listings, but this time in a  
stored procedure.

CREATE OR ALTER PROC dbo.ProductTransactionHistoryByReference (@
ReferenceOrderID INT) 
AS 
BEGIN 
    SELECT p.Name, 
           p.ProductNumber, 
           th.ReferenceOrderID 
    FROM Production.Product AS p 
        JOIN Production.TransactionHistory AS th 
            ON th.ProductID = p.ProductID 
    WHERE th.ReferenceOrderID = @ReferenceOrderID; 
END 
GO

Listing 9-13

I can execute the stored procedure with the command in Listing 9-14.

EXEC dbo.ProductTransactionHistoryByReference @ReferenceOrderID = 
41798;

Listing 9-14

A big advantage of investigating cached plans for stored procedures is that I can now retrieve 
its plan directly from cache. In this case, it will be the plan that is optimized for low esti-
mated row counts, where the leftmost join is a Nested Loops (Figure 9-13).

SELECT DB_NAME(deps.database_id) AS DatabaseName, 
       deps.cached_time, 
       deps.min_elapsed_time, 
       deps.max_elapsed_time, 
       deps.last_elapsed_time, 
       deps.total_elapsed_time, 
       deqp.query_plan 
FROM sys.dm_exec_procedure_stats AS deps 
    CROSS APPLY sys.dm_exec_query_plan(deps.plan_handle) AS deqp 
WHERE deps.object_id = OBJECT_ID('AdventureWorks2014.dbo.ProductTra
nsactionHistoryByReference');

Listing 9-15
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This query will return all the various runtimes (in microseconds), which are stored with 
the cached plan and are updated for as long as the object remains in cache, and doesn't get 
recompiled. The cached_time shows when the object was added to the cache. Figure 9-14 
shows the results of running Listing 9-15, after two executions of Listing 9-14.

Figure 9-14: Execution metrics of the stored procedure.

The compile time is included in the *_elapsed_time metrics, so the first execution (6900 
microseconds) is substantially slower than the second (80). If we execute the procedure a 
third time, but with a parameter value of 53465, you'll see that the last_elapsed_time 
is longer (about 12 K microseconds, in my case) because the plan optimized for returning 3 
rows is now returning 72. This is not a significant performance issue, but would be more of a 
concern if there were parameter values that returned significantly more rows.

Listing 9-15, using the object_id as a filter, is the best way to investigate plans for stored 
procedures. However, we can also examine the plans for individual statements within a 
stored procedure, using sys.dm_exec_query_stats.

SELECT  dest.text, 
       deqp.query_plan, 
       deqs.execution_count, 
       deqs.max_worker_time, 
       deqs.max_logical_reads, 
       deqs.max_logical_writes 
FROM sys.dm_exec_query_stats AS deqs 
    CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp 
    CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest 
WHERE dest.text LIKE 'CREATE PROC dbo.ProductTransactionHistoryByRe
ference%';

Listing 9-16

I used the LIKE statement, and the 'CREATE…' filter, because the text column in this case 
shows the object definition of the procedure (or function or trigger) that was called.
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What can go wrong with plan reuse for parameterized queries?
Once the optimizer generates a plan for a prepared statement or stored procedure, all  
subsequent executions will use that plan, until the plan is, for whatever reason, removed  
from cache. As we discussed briefly above, and in more detail in Chapter 8, if the distribution 
of rows in an index is very uneven, the optimizer will choose very different plans, depending 
on the parameter value supplied. In these cases, parameter sniffing can sometimes cause you 
performance problems.

If you can alter the query text, then the common solutions include use of various query 
hints, such as OPTION (RECOMPILE)if you want the optimizer to produce a new plan 
on every execution of the statement to which it's applied. For stored procedures and 
other code modules, all statements will still be in the plan cache, but the plan for the 
OPTION(RECOMPILE) statement will still recompile for every execution, which means 
that its plan is not reused. For ad hoc parameterized queries (including prepared statements), 
use of this hint means the plan is not stored at all. In either case, this means that you lose out 
on reducing recompiles, but at least you do still save space in the plan cache.

The alternative if you don't want to recompile is to use Query Store to force a plan. Another 
option is to use various forms of the OPTION (OPTIMIZE FOR…) hint, if you want the 
optimizer to always use a plan for specific parameter value, or to always use a "generic" plan, 
based on average statistics.

We'll see a few of these hints briefly later, when we discuss plan guides and plan forcing. 
Hints will be covered in full detail in Chapter 10, and the Query Store in Chapter 16.

Fixing Problems with Plan Reuse if You Can't 
Rewrite the Query
There are two distinct types of problem that we may need to fix, and that are especially hard 
to fix with third-party vendor code that you can't change. One is pressure on memory and 
CPU resources, caused by the optimizer compiling a very high volume of ad hoc query plans 
that it cannot reuse, because of a workload consisting of unparameterized ad hoc queries.

The second is erratic performance of parameterized queries when reusing cached plans, 
caused by cases of "bad" parameter sniffing.
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Optimize for ad hoc workloads
Let's imagine that a third-party application, where you have no control over the submitted 
SQL text, is generating a huge number of ad hoc queries, many of which are only ever 
executed once. Another possibility is that an ORM tool, which should be using  
parameterized queries, is instead badly configured and generates ad hoc queries instead. 
Either of these situations results in plan cache bloat, and is a contributing factor to memory 
pressure on the server.

Probably the first option you should consider in this type of situation is to enable the server-
wide setting optimize for ad hoc workloads. I emphasize server-wide because this 
setting will affect all databases on the server, and you'll need to test its impact carefully 
before choosing to enable it in production. Starting with SQL Server 2016, though, you can 
use the database scoped configuration settings to enable, or disable, this setting at the  
database level.

With this setting enabled, the query optimizer still optimizes each query in the usual way,  
but with one critical difference. Rather than immediately storing a plan in cache, it instead 
stores a plan stub, or placeholder. If the same query is executed a second time, then the plan 
must be compiled again, and now it is added to the cache for future reuse. This reduces 
significantly the amount of memory the plan cache uses for managing execution plans that 
are only ever executed once, at the cost of one additional compile for queries that are called 
more than once.

Listing 9-17 initializes the optimize for ad hoc workloads setting, and then clears 
out the entire plan cache. I'm using the DBCC command just for demonstration purposes. It's 
better to either use targeted plan cache removal by passing a plan handle, or to only remove 
plans for a single database using ALTER DATABASE SCOPED CONFIGURATION CLEAR 
PROCEDURE_CACHE.

EXECUTE sp_configure 'show advanced options', '1'; 
RECONFIGURE; 
GO 
EXECUTE sp_configure 'optimize for ad hoc workloads', 1; 
RECONFIGURE; 
DBCC FREEPROCCACHE; 
GO

Listing 9-17
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Listing 9-18 shows how to initialize the setting at the database level in Azure SQL Database, 
using database scoped configuration changes.

ALTER DATABASE SCOPED CONFIGURATION SET OPTIMIZE_FOR_AD_HOC_
WORKLOADS = ON; 
ALTER DATABASE SCOPED CONFIGURATION CLEAR PROCEDURE_CACHE;

Listing 9-18

To see optimize for ad hoc in action, let's execute a query. This one uses several literals 
in a search to find email addresses that start with "david" belonging to people from the state 
of Washington.

SELECT 42 AS TheAnswer, 
       em.EmailAddress, 
       a.City 
FROM Person.BusinessEntityAddress AS bea 
    JOIN Person.Address AS a 
        ON bea.AddressID = a.AddressID 
    JOIN Person.StateProvince AS sp 
        ON a.StateProvinceID = sp.StateProvinceID 
    JOIN Person.EmailAddress AS em 
        ON bea.BusinessEntityID = em.BusinessEntityID 
WHERE em.EmailAddress LIKE 'david%' 
      AND sp.StateProvinceCode = 'WA';

Listing 9-19

Figure 9-15 shows the actual execution plan. If you were to inspect the properties of the 
SELECT operator, you'd see that the text of the Statement is identical to the text we 
submitted, and there is no Parameter List. In other words, no parameterization occurred.
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Figure 9-15: Execution plan for the query in Listing 9-19.

Now let's see what's in the plan cache, by querying sys.dm_exec_cached_plans. I 
used the query in Listing 9-2, adapted slightly so that it also returns the cp.size_in_
bytes column.

Figure 9-16: Output from sys.dm_exec_cached_plans showing no execution plan.

Having enabled optimize for ad hoc workloads, and run this ad hoc for the first 
time, the optimizer compiles the plan, but it doesn't store it in the plan cache. There is just a 
small (424 byte) plan "stub" with an associated plan_handle.

If you were to run Listing 9-19 one more time and re-query sys.dm_exec_cached_
plans, the results will be different. The optimizer has compiled the plan again, and this time 
stored it.

Figure 9-17: Output from sys.dm_exec_cached_plans with an execution plan.

Notice that the usecount didn't go up by one, because this is effectively a new query plan 
in cache. Subsequent executions of the same query will result in the execution count ticking 
over as normal, with no further compilations. If we execute the same query, but this time 
looking for emails starting with "paul" then we'll see a new "stub" entry for that query, then a 
normal plan the next time the exact same text is submitted.

Before we move on, let's disable the setting to avoid confusion.
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EXECUTE sp_configure 'show advanced options', 1; 
RECONFIGURE; 
GO 
EXECUTE sp_configure 'optimize for ad hoc workloads', 0; 
RECONFIGURE; 
GO 
EXECUTE sp_configure 'show advanced options', 0; 
RECONFIGURE; 
GO

Listing 9-20

Forced parameterization
The 'optimize for ad hoc workloads' reduces the memory required in the plan 
cache for plans that will only ever be used once, but it does not help promote plan reuse. If 
your OLTP system is subject to a heavy workload comprising ad hoc queries, and the sheer 
number of plan compilations is contributing heavily to existing CPU pressure, then you may 
need a different approach. If you can't rewrite the queries to parameterize them, then you may 
consider using forced parameterization, although there can be substantial drawbacks, as we'll 
discuss later in this section.

We saw earlier that the optimizer applies simple parameterization very cautiously, occasion-
ally replacing literals with parameters, in trivial plans, based on a complex set of rules.

If we enable forced parameterization, then the optimizer attempts to replace all literal  
values with a parameter, with the following important exceptions (among others, see  
https://bit.ly/2JhrIb2):

• literals in the select list of any SELECT statement are not replaced
• parameterization does not occur within individual T-SQL statements inside stored 

procedures, triggers, and UDFs, which get execution plans of their own
• The pattern and escape_character arguments of a LIKE clause
• XQuery literals are not replaced with parameters.

Normally, forced parameterization is set at the database level, by setting the PARAMETER-
IZATION option to FORCED, and will apply to all queries on that basis. You also have the 
option of choosing to set it only for a single query using the query hint, PARAMETERIZA-
TION FORCED, but this hint is only available as a plan guide, which we cover later in  
this chapter.

https://bit.ly/2JhrIb2
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Listing 9-21 shows a simple ad hoc query like the one we encountered earlier in the chapter, 
and which does not get simple parameterization.

SELECT ISNULL(Person.Title, '') + ' ' + Person.FirstName + ' ' + 
Person.LastName 
FROM Person.Person 
WHERE Person.BusinessEntityID = 278;

Listing 9-21

Figure 9-18 shows the results of running Listing 9-3, to see what's in the plan cache.

Figure 9-18: Query without parameterization from cache.

Let's now enable forced parameterization and clean out the buffer cache, which happens 
automatically when you change the parameterization option.

ALTER DATABASE AdventureWorks2014 SET PARAMETERIZATION FORCED; 
GO

Listing 9-22

Now run Listing 9-21 again. If you capture the actual plan and examine the properties  
of the SELECT operator, you'll see that, this time, they were parameterized. We see a 
Parameter List, and a StatementParameterizationType of 3, indicating  
forced parameterization.

Figure 9-19: SELECT properties showing that forced parameterization occurred.
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Just as for simple parameterization, with forced parameterization we still have no control 
over the parameter names, which are just based on the order in which parameters are created, 
which in turn is driven by the order in which the literal values appear in the query. Crucially, 
we can't control the data types picked for parameterization, either.

Figure 9-20 shows the plan cache after executing Listing 9-21 one more time, but with a 
different literal value, proving that the plan was reused.

Figure 9-20: A parameterized query is now in cache.

Is this a good thing? For this query, yes. The plan uses a Seek of the clustered index, and will 
always produce the same plan, regardless of parameter value. However, the problem with 
enforcing parameterization is that it is a very blunt instrument. It will force the optimizer 
to parameterize all queries running on the database, for better or worse. If some queries get 
parameterized that otherwise would have many different plans, according to the exact value 
supplied then, while you might reduce compilations, you're possibly heading for bad param-
eter sniffing problems.

Forced parameterization also has limitations. What if your OLTP system is subject to many 
wildcard searches, with hard-coded literals? Rerun Listing 9-19, which contains just such 
a wildcard search for email addresses. You'll see that the execution plan is the same as that 
shown in Figure 9-10. However, the query text stored with the plan is no longer the same. It 
now looks as below (formatted for legibility).

SELECT 42 AS TheAnswer, 
       em.EmailAddress, 
       a.City 
FROM Person.BusinessEntityAddress AS bea 
    JOIN Person.Address AS a 
        ON bea.AddressID = a.AddressID 
    JOIN Person.StateProvince AS sp 
        ON a.StateProvinceID = sp.StateProvinceID 
    JOIN Person.EmailAddress AS em 
        ON bea.BusinessEntityID = em.BusinessEntityID 
WHERE em.EmailAddress LIKE 'david%' 
      AND sp.StateProvinceCode = @0
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Instead of the two-character string we supplied in the original query definition, the parameter 
@0 is used in the comparison to the StateProvinceCode field. If this query is called 
again with a different two- or three-character state code, the plan will be reused. This could 
affect performance, either positively or negatively. Also, because LIKE is in the exception 
list for forced parameterization, this plan will only be reused for a search for email addresses 
that start with 'david', in any state.

As a small side note, the query stored with the plan did not include the semicolon statement 
terminator that I had in my original query.

Before proceeding, be sure to reset the parameterization of the database.

ALTER DATABASE AdventureWorks2014 SET PARAMETERIZATION SIMPLE; 
GO

Listing 9-23

Plan guides
The optimize for ad hoc workloads setting and forced parameterization, at the 
database level, may be useful options for fixing problems related to ad hoc query workloads, 
especially where you don't have the option of fixing the code. However, they are both broad-
reaching in their impact.

Plan guides offer you a way to control certain aspects of the optimizer's behavior, and there-
fore "guide" towards the plan you want, in cases where you can't modify the database code or 
schema. They allow us to apply valid query hints to the code, without editing the T-SQL code 
in any way. They're available on all SQL Server Editions except Express Edition.

We can create plan guides for stored procedures and other database objects (object plan 
guides), or for SQL statements that are not part of a database object (SQL plan guides  
and template plan guides). Their advantage over the optimize for ad hoc work-
loads setting and forced parameterization is that they affect only the specific objects or 
queries to which we apply them. I'll offer typical examples of how you might use each of 
these types of plan guide to tackle problems related to plan reuse (of course, they have 
broader applications, too).

Before we start, my customary words of caution: exercise due care when implementing plan 
guides, because changing how the optimizer deals with a query can degrade its performance, 
if used incorrectly. As I stress heavily in Chapter 10, hints and therefore plan guides, can be 
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dangerous. They are not suggestions that the optimizer might consider, they are commands 
that the optimizer must obey. Also, any performance advantage a plan guide offers today may 
soon start to work against you, as the database and its data change over time.

As with hints, plan guides should be a last resort, not a standard tactic. As code, structures, or 
the data change, the forced plan may become suboptimal, hurting performance. Proper testing 
and due diligence must be observed prior to applying forcing with plan guides, or with Query 
Store. Then, over time, you should reevaluate the plans being forced in this fashion. Finally, 
plan guides are a tool for dealing with some types of issues around plan reuse, but plan 
forcing through the Query Store, covered later in this chapter, is now a preferred mechanism 
over plan guides.

You can monitor the success or failure of any of the plan guides using the Extended Events 
plan_guide_successful and plan_guide_unsuccessful.

Template plan guides
Let's say there are only a few problematic ad hoc queries that you'd like the optimizer to 
parameterize, while not affecting the optimization behaviors for any other queries on the 
database. In other words, you'd like a solution like forced parameterization, but localized to 
just those problem queries. This is where template plan guides can be useful.

Let's suppose that we decide that our query from Listing 9-17 must have its PARAMETER-
IZATION set to FORCED, but the query comes from vendor code that we can't edit. We can 
simply create a template plan guide to implement forced parameterization, just for that query, 
rather than changing the settings on the entire database. A template plan guide will override 
parameterization settings in queries.

The first step is to use the sp_get_query_template stored procedure to retrieve the 
template. We use the query text as input, and the outputs, which "mimic the parameterized 
form of a query that results from using forced parameterization," we store in variables and 
then pass to the sp_create_plan_guide procedure, to create the template plan guide.

The @templatetext output parameter will contain the parameterized form of the query 
text, as a string, and the @parameters output parameter will contain a comma-separated 
list of parameter names and data types.
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DECLARE @templateout NVARCHAR(MAX), 
        @paramsout NVARCHAR(MAX); 
EXEC sys.sp_get_query_template @querytext = N'SELECT  42 AS 
TheAnswer 
       ,em.EmailAddress 
       ,e.BirthDate 
       ,a.City 
FROM    Person.Person AS p 
        JOIN HumanResources.Employee e 
            ON p.BusinessEntityID = e.BusinessEntityID 
        JOIN Person.BusinessEntityAddress AS bea 
            ON p.BusinessEntityID = bea.BusinessEntityID 
        JOIN Person.Address a 
            ON bea.AddressID = a.AddressID 
        JOIN Person.StateProvince AS sp 
            ON a.StateProvinceID = sp.StateProvinceID 
        JOIN Person.EmailAddress AS em 
        ON e.BusinessEntityID = em.BusinessEntityID 
WHERE   em.EmailAddress LIKE ''david%'' 
        AND sp.StateProvinceCode = ''WA'';', 
                               @templatetext = @templateout OUTPUT, 
                               @parameters = @paramsout OUTPUT; 
EXEC sys.sp_create_plan_guide 
    @name = N'MyTemplatePlanGuide', 
    @stmt = @templateout, 
    @type = N'TEMPLATE', 
    @module_or_batch = NULL, 
    @params = @paramsout, 
    @hints = N'OPTION(PARAMETERIZATION FORCED)';

Listing 9-24

The input parameters for sp_create_plan_guide are as follows:
• @name – the plan guide name will operate within the context of the database, not 

the server, which also means the guide only works within that database.
• @stmt – must be an exact match to the query that the query optimizer will be 

called on to match, although white space and carriage returns don't matter. When 
the optimizer finds code that matches, it will look up and apply the correct plan 
guide. In this case, we supply the variable storing the @templatetext output.

• @type – the type of plan guide, in this case a template plan guide.
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• @module_or_batch – we'd specify the name of the target object if we were 
creating an object plan guide. We'd supply NULL otherwise.

• @params – only applicable to template plan guides, and is a comma-separated  
list of parameter names and data types.

• @hints – specifies any hints that need to be applied, in this case 
OPTION(PARAMETERIZATION FORCED).

Run Listing 9-24, and then rerun Listing 9-19 and you'll see that this query is now subject to 
forced parameterization, as indicated in the properties of the SELECT operator. Unlike for 
other types of plan guides, the template plan guide itself isn't identified within the execution 
plan. You can use the Extended Event plan_guide_successful to ensure that the plan 
guide was applied.

SQL plan guides
Rather than having problems with unparameterized queries, perhaps your system executes 
lots of parameterized queries, and you're getting performance problems with some of them, 
due to bad parameter sniffing.

In the earlier section on Prepared statements, we encountered a parameterized query where 
the optimizer's choice of plan depended on the input value. When the cardinality estimation 
was just a few rows, we saw a simple plan consisting of Nested Loops joins (Figure 9-13). 
For higher estimated rows returned, we saw a more complex-looking plan with a Merge Join 
(Figure 9-11).

We've decided that the simpler plan is the best plan for most possible input values, and so we 
want to apply the OPTIMIZE FOR hint to get that plan. However, again, we can't add a hint 
because we have no control over the SQL executed. This is one example of where a SQL plan 
guide can be useful.

One option would be to force the optimizer to produce a plan for a specific value, one that we 
know results in the simpler plan, for example OPTIMIZE FOR (@ReferenceOrderID 
= 41798). However, what if the data changes and suddenly this input value returns many 
rows? The plan will change, and this could impact the performance of other executions of the 
prepared statement.

Instead, we'll create a SQL plan guide that uses the OPTIMIZE FOR hint with a value of 
UNKNOWN to force a more generic plan on the optimizer, based on average statistics, which 
results in the simple plan we want and is less susceptible to instability over time.
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EXEC sys.sp_create_plan_guide 
  @name = N'MySQLPlanGuide', 
  @stmt = N'SELECT  p.Name, 
            p.ProductNumber, 
            th.ReferenceOrderID 
    FROM    Production.Product AS p 
    JOIN    Production.TransactionHistory AS th 
            ON th.ProductID = p.ProductID 
    WHERE   th.ReferenceOrderID = @ReferenceOrderID;', 
  @type = N'SQL', 
  @module_or_batch = NULL, 
  @params = N'@ReferenceOrderID int', 
  @hints = N'OPTION (OPTIMIZE FOR UNKNOWN)';

Listing 9-25

Now if we rerun the prepared statement in Listing 9-10, the optimizer will no longer do 
parameter sniffing and arrive at the plan with the Merge Join, but will instead create the plan 
based on average statistics, shown in Figure 9-21.

Figure 9-21: Execution plan resulting from the hint in the plan guide.

The properties of the SELECT operator show that the plan guide was applied.
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Figure 9-22: SELECT properties showing the plan guide in use.

This means you have a method to see if a plan guide was accurately applied to a stored 
procedure, and to identify plans where a plan guide affected the optimizer, when trouble-
shooting an inherited database.

Object plan guides
Perhaps your system executes lots of parameterized queries, in stored procedure form, and 
again you're getting performance problems with some of them, due to bad parameter sniffing. 
You've identified a stored procedure, dbo.uspGetManagerEmployees (which is a 
built-in stored procedure in AdventureWorks), where you're willing to take the hit of 
having SQL Server compile a plan for every execution, by applying the RECOMPILE hint. 
However, this isn't a procedure you can edit. So you decide to create an object plan guide to 
apply the RECOMPILE hint. We can only use object plan guides for queries that execute in 
the context of T-SQL stored procedures, scalar user-defined functions, multi-statement table-
valued user-defined functions, and DML triggers.
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EXEC sys.sp_create_plan_guide  
    @name = N'MyObjectPlanGuide', 
    @stmt = N'WITH [EMP_cte]([BusinessEntityID], 
[OrganizationNode], 
                              [FirstName], [LastName], 
[RecursionLevel]) 
                              -- CTE name and columns 
AS ( 
SELECT e.[BusinessEntityID], e.[OrganizationNode], p.[FirstName], 
       p.[LastName], 0 -- Get initial list of Employees for Manager 
n 
FROM [HumanResources].[Employee] e 
     INNER JOIN [Person].[Person] p 
            ON p.[BusinessEntityID] = e.[BusinessEntityID] 
WHERE e.[BusinessEntityID] = @BusinessEntityID 
UNION ALL 
SELECT e.[BusinessEntityID], e.[OrganizationNode], p.[FirstName], 
       p.[LastName], [RecursionLevel] + 1 
-- Join recursive member to anchor 
FROM [HumanResources].[Employee] e 
     INNER JOIN [EMP_cte] 
            ON e.[OrganizationNode].GetAncestor(1) = 
                  [EMP_cte].[OrganizationNode] 
    INNER JOIN [Person].[Person] p 
           ON p.[BusinessEntityID] = e.[BusinessEntityID] 
) 
SELECT [EMP_cte].[RecursionLevel], 
       [EMP_cte].[OrganizationNode].ToString() as 
[OrganizationNode], 
       p.[FirstName] AS ''ManagerFirstName'', 
       p.[LastName] AS ''ManagerLastName'', 
       [EMP_cte].[BusinessEntityID], [EMP_cte].[FirstName], 
       [EMP_cte].[LastName] -- Outer select from the CTE 
FROM [EMP_cte] 
     INNER JOIN [HumanResources].[Employee] e 
             ON [EMP_cte].[OrganizationNode].GetAncestor(1) =  
                  e.[OrganizationNode] 
     INNER JOIN [Person].[Person] p 
            ON p.[BusinessEntityID] = e.[BusinessEntityID] 
ORDER BY [RecursionLevel], [EMP_cte].[OrganizationNode].ToString() 
OPTION (MAXRECURSION 25) ', 
    @type = N'OBJECT', 
    @module_or_batch = N'dbo.uspGetManagerEmployees', 
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    @params = NULL, 
    @hints = N'OPTION(RECOMPILE,MAXRECURSION 25)';

Listing 9-26

Again, the @stmt parameter must contain SQL text that is an exact match to that which the 
query optimizer sees (barring white space and carriage returns). Remember that a procedure 
could have more than one statement and you want to apply the hint to the correct one within 
the procedure.

This time, the @type parameter is a database object, and in the @module_or_batch 
parameter we specify the name of the target object.

For the @hints parameter, we apply the RECOMPILE hint, but notice that this query 
already had a hint, MAX RECURSION. That hint had also to be part of my @stmt in order to 
match what was inside the stored procedure. The plan guide replaces the existing OPTION, 
so if we need it to be carried forward, we must add it to the plan guide.

From this point forward, without making a single change to the actual definition of the stored 
procedure, when we execute it, the optimizer will recompile the plan for the specified query 
every time, and optimize it for the specific value provided. Note that you cannot alter a stored 
procedure that has a plan guide.

Again, you can identify that a guide has been used by looking at the SELECT operator of the 
resulting execution plan.

Viewing, validating, disabling, and removing plan guides
To see a list of plan guides within the database, just SELECT from the dynamic management 
view, sys.plan_guides.

SELECT  * 
FROM    sys.plan_guides;

Listing 9-27

After you apply cumulative updates, upgrade your instance of SQL Server, or even deploy 
changes to your database, it’s a good idea to ensure that your plan guides, if any, are intact. 
You can validate the plan guides using fn_validate_plan_guide.
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SELECT pg.plan_guide_id, 
       pg.name, 
       fvpg.message, 
       fvpg.severity, 
       fvpg.state 
FROM sys.plan_guides AS pg 
    OUTER APPLY sys.fn_validate_plan_guide(pg.plan_guide_id) AS 
fvpg;

Listing 9-28

The value being passed is the plan_guide_id, retrieved from the sys.plan_guides 
system view. If the plan guide is valid, nothing is returned. If the plan guide is invalid you’ll 
get the first error found by the validation process. This query, then, will list all the plan guides 
and show any that have errors.

Aside from the procedure to create plan guides, a second one, sp_control_plan_
guide, allows you to drop, disable (which saves the definition but stops SQL Server  
from using it), or enable a specific plan guide; or drop, disable, or enable all plan guides  
in the database.

Simply run execute the sp_control_plan_guide procedure, changing the  
@operation parameter appropriately. Listing 9-29 will remove all the plan guides  
created in this chapter.

EXEC sys.sp_control_plan_guide @operation = N'DROP ALL', @name = 
N'*';

Listing 9-29

Plan forcing
There may be situations where adding hints using plan guides does not produce consistent 
results. While hints dictate how the optimizer deals with certain aspects of a query (such as 
dictating use of a join operator), sometimes they still allow the optimizer room to pick from 
multiple candidate plans, of which some are good and some are bad. You cannot control 
which one is picked.

In such cases, where you can't touch the code, and you want to "strong-arm" the optimizer 
into picking the plan you want, you can use plan forcing. I'll show you how to use a plan 
guide to force the use of your plan for a query, by applying the USE PLAN query hint. I'll 
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then show an alternative approach to plan forcing using Query Store (a topic we'll cover 
in detail in Chapter 16). As you will see, it is much easier to use plan forcing within Query 
Store than it is to implement a plan guide.

As with hints, and plan guides, and for all the reasons discussed previously, plan forcing 
should be a final attempt at solving an otherwise unsolvable problem. As the data and  
statistics change, or new indexes are added, plan guides can become outdated and the  
exact thing that saved you so much processing time yesterday will be costing you more  
and more tomorrow.

Using plan guides to do plan forcing
The USE PLAN query hint, introduced in SQL Server 2005, allows you to come as close as 
you can to gaining total control over a query execution plan. This hint allows you to take an 
execution plan, captured as XML, and then use that plan on a given query from that point 
forward. This doesn't stop the optimizer from doing its job. You'll still get full optimization 
depending on the query, but the optimization is used only to verify that the forced plan will 
be valid for the query.

With plan guides, you cannot force a plan on:
• INSERT, UPDATE, DELETE, or MERGE queries
• Queries that use cursors other than static, fast_forward, forward_only 

or insensitive.
While you can simply attach an XML plan directly to the query in question, XML execution 
plans are very large. If your attached plan exceeds 8 K in size, then SQL Server can no longer 
cache the query, because it exceeds the 8 K string literal cache limit. For this reason, you 
should employ USE PLAN, within a plan guide, so that the query in question will be cached 
appropriately, enhancing performance. It also means that you avoid thousand-line queries, 
improving the readability and maintainability of the code, and you avoid having to deploy 
and redeploy the query to your production system, if you want to add or remove a plan.

Listing 9-30 shows a simple CreditInfoBySalesPerson stored procedure, for 
reporting some information from the SalesOrderHeader table.

CREATE PROCEDURE Sales.CreditInfoBySalesPerson (@SalesPersonID INT) 
AS 
SELECT soh.AccountNumber, 
       soh.CreditCardApprovalCode, 
       soh.CreditCardID, 
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       soh.OnlineOrderFlag 
FROM Sales.SalesOrderHeader AS soh 
WHERE soh.SalesPersonID = @SalesPersonID;

Listing 9-30

When the procedure is run using the value for @SalesPersonID = 277, a Clustered 
Index Scan results.

Figure 9-23: Execution plan with a scan for a large data set.

If we remove the plan from cache and change the value to 285, we see an Index Seek with a 
Key Lookup.

Figure 9-24: Execution plan with a Seek and Key Lookup for a smaller data set.

In situations like this, you might generally choose to recompile, using the RECOMPILE hint, 
but let's assume that is not acceptable, in this case. The next valid option is to add a plan guide 
that uses the OPTIMIZE FOR hint, as described previously. The Clustered Index Scan has the 
advantage of predictable and consistent performance, whereas the plan with the Index Seek and 
Key Lookup will likely have more erratic performance patterns.

However, your testing suggests that, for most values of SalesPersonID, the Index Seek 
with a Key Lookup is much faster than the Clustered Index Scan and, rather than use a 
plan guide and OPTIMIZE FOR hint, you're going to force the optimizer to always use your 
preferred plan.
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First, we need to create an XML plan that behaves the way we want. We do this by taking the 
SQL text out of the stored procedure and modifying it to behave the correct way. This results 
in the desired plan, which we capture by wrapping it within STATISTICS XML, which will 
generate an actual execution plan in XML. You can also use a graphical plan and then right-
click to capture the XML.

SET STATISTICS XML ON; 
GO 
SELECT soh.AccountNumber, 
       soh.CreditCardApprovalCode, 
       soh.CreditCardID, 
       soh.OnlineOrderFlag 
FROM Sales.SalesOrderHeader AS soh 
WHERE soh.SalesPersonID = 285; 
GO 
SET STATISTICS XML OFF; 
GO

Listing 9-31

This simple query generates a 117-line XML plan, which I won't show here. With the  
XML plan in hand, we'll create a plan guide to apply it to the stored procedure. You can 
 just right-click on the XML Showplan link, select Copy and paste it in as the value for  
the @hints parameter.

EXEC sys.sp_create_plan_guide 
    @name = N'UsePlanPlanGuide', 
    @stmt = N'SELECT soh.AccountNumber, 
       soh.CreditCardApprovalCode, 
       soh.CreditCardID, 
       soh.OnlineOrderFlag 
FROM Sales.SalesOrderHeader AS soh 
WHERE soh.SalesPersonID = @SalesPersonID;', 
    @type = N'OBJECT', 
    @module_or_batch = N'Sales.CreditInfoBySalesPerson', 
    @params = NULL, 
    @hints = N'<ShowPlanXML xmlns="http://sche...

Listing 9-32



300

Chapter 9: Exploring Plan Reuse

If we supply a valid XML plan to @hints, then sp_create_plan_guide automatically 
interprets this as a USE PLAN hint. Now, we execute the query using the value that generates 
the non-preferred plan.

EXEC Sales.CreditInfoBySalesPerson @SalesPersonID = 277;

Listing 9-33

However, we still get the execution plan we want, as shown in Figure 9-25.

Figure 9-25: Execution plan using the Seek because of the plan guide.

The fatter data transfer pipes between the operators in Figure 9-25, compared to Figure 9-24, 
tells us that more data is being moved through the plan, as expected. You can also inspect the 
properties of the SELECT operator to verify that the plan guide was used.

Using Query Store to do plan forcing
If you're working on Azure SQL Database or SQL Server 2016 and later, an easier way to 
solve the same problem is to use plan forcing in Query Store. I'm assuming you have Query 
Store enabled. If not, go to Chapter 16 to learn how.

Execute the query in Listing 9-34.
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SELECT Object_Name(qsq.object_id) AS ObjectName, 
  Cast(qsp.query_plan AS XML) AS xmlplan, qsq.query_id, qsp.plan_id 
  FROM sys.query_store_query AS qsq 
    JOIN sys.query_store_plan AS qsp 
      ON qsp.query_id = qsq.query_id 
  WHERE qsq.object_id = Object_Id('Sales.CreditInfoBySalesPerson');

Listing 9-34

You should see three execution plans, all with the same query_id but different values for 
plan_id. The first two are the plans for the initial two executions of the stored procedure, 
with @SalesPersonID values of 277 and 285, and the third is technically a different plan 
because it is now a forced plan.

Figure 9-26: Three plans in the Query Store.

If we had edited the query text directly, to add the hint, then the query_id would have 
been different as well. However, in this case we used a plan guide so the query text was still 
exactly the same.

Let's say that this time we want to force the Clustered Index Scan plan for this procedure 
(Figure 9-23), then we can pull a plan directly out of the Query Store and put it into the plan 
cache. In my case, plan_id 5111 is the one I want.

EXEC sys.sp_query_store_force_plan @query_id = 5004, @plan_id = 
5111;

Listing 9-35

Execute CreditInfoBySalesPerson with a parameter value of 285, and you'll see 
the Clustered Index Scan plan instead of the Index Seek and Key Lookup plan. And 
remember, unless you dropped it, the UsePlanPlanGuide guide, forcing the latter plan, is 
still in place. Query Store plan forcing will take precedence over a plan guide.



302

Chapter 9: Exploring Plan Reuse

To unforce the plan, run Listing 9-36.

EXEC sp_query_store_unforce_plan @query_id = 5004, @plan_id = 5111;

Listing 9-36

You many also want to run Listing 9-29 one more time, if you still have plan forcing with a 
plan guide in place.

Again, plan forcing is a quick, although temporary, method for addressing bad parameter 
sniffing. I call the fix temporary because, as with any of the other bad-parameter-sniffing 
fixes, you'll want to reassess it over time as the data, your systems, and your code change.

Summary
Creating execution plans is a costly operation for SQL Server. Because of this, you want 
to reuse plans as often as you can, and in as many ways as you can. Using parameterized 
queries, whether stored procedures or prepared statements, is a great way to get this done. 
Other methods of controlling plan use and reuse such as forced parameterization and Opti-
mize For Ad Hoc Workloads can also help reduce the load placed on the server by the 
optimization process. 

Using plan guides and plan forcing, you can take direct control away from the optimizer and 
attempt to achieve better performance for your queries. However, by taking control of the 
optimizer you can introduce problems as big as those you're attempting to solve. Be very 
judicious in the use of some of the methods outlined in this chapter. Take your time and test 
everything you do to your systems. You will also need to regularly retest your systems  
wherever you've taken direct control using plan guides. Use the information that you've 
gleaned from the other chapters in this book to be sure that the choices you're making are  
the right ones.
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The query optimizer gets it right most of the time, but occasionally it chooses a plan that  
isn't the best one possible. As discussed in Chapter 8, the optimizer bases its plan choices  
on selectivity and cardinality estimates that are derived from statistics. If a column has a 
particularly "jagged" distribution, even statistics that are as good, and as up to date, as SQL 
Server can make them can't accurately describe it. Sometimes, our queries use complex 
predicates that are hard to estimate, or that force the optimizer to use a hard-coded selectivity 
estimation. These issues could cause the optimizer to err in its choice of plan, resulting in 
suboptimal query performance.

In such cases, we might decide to force the optimizer's hand, by applying hints that tell it 
how to access certain tables, or which join strategy to use, or how it should optimize a whole 
set of operations for a given query. This, of course, will result in a different plan from the one 
the optimizer would have chosen if given a free hand.

I'll describe those query, join, and table hints that directly affect the choice of execution plan. 
I won't cover hints that affect the strategy for executing rather than compiling the query (such 
as locking hints), or any that have minimal impact on plan choice. I'll also explain why it's a 
very good idea, generally, to be extremely cautious when applying hints to your queries, and 
I'll point out the specific dangers associated with certain hints.

The Dangers of Using Hints
While you may find situations where a hint does indeed help performance, you should  
use them sparingly, because hints can be dangerous. Even their name is misleading; hints  
are not suggestions that the optimizer might consider, they are commandments that the  
optimizer must follow. Even if you supply a hint with which it is technically impossible for 
the optimizer to comply, it will still attempt to apply the hint, and throw an error. You'll see 
an example of that later, when we discuss the INDEX() hint.

While hints allow you to control the behavior of the optimizer, it doesn't mean your choices 
are necessarily better than the optimizer's choices. If you find yourself putting hints on most 
of your queries and stored procedures, then you're doing something wrong. Yes, the right hint 
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on the right query can improve query performance. However, the exact same hint used  
on another query can create more problems than it solves, radically slowing your query  
and leading to severe blocking and timeouts in your application. Even a hint that is "good" 
right now can turn out to be very bad with time, because it removes the optimizer's  
subsequent ability to make a better plan choice, in response to changes in the data  
distribution, or in response to an upgrade to a new SQL Server version, or the application  
of a new service pack.

Over the coming sections, I'll describe the various hints we can use, and problems that  
we're hoping to solve by applying that hint. You'll see examples where a hint improves 
performance, or changes the behavior in a positive manner, and also some where a hint 
degrades performance. Again, this is not a chapter about hints, per se, but rather their effect 
on execution plans. For more details on hints, please refer to the Microsoft documentation 
(http://bit.ly/2pt7UF2).

For any hint, only apply it after copious testing, and with thorough documentation. You need 
to make it as easy as possible for others to find where hints are used, to understand the intent 
of the hint, and therefore to schedule regular tests to verify that its use is still valid, as the 
system and its data change over time.

Query Hints
Query hints take control of an entire query and can affect all operators within the execu-
tion plan. We can use query hints to force the use of a specific operator for all aggregations 
in a query, or for all joins. We can use them to instruct the optimizer to optimize a query 
for a defined parameter value, or to compile a new plan on every execution of that query, to 
control use of parallelism for that query, and more. Some query hints are useful occasionally, 
while a few are for rare circumstances. As with all hints, injudicious use of query hints can 
cause you more problems than they solve!

We specify query hints in the OPTION clause. Listing 10-1 shows the basic syntax.

  SELECT ... 
  OPTION (<hint>,<hint>...);

Listing 10-1

http://bit.ly/2pt7UF2
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We can't apply query hints to data manipulation statements INSERT, except as part of an 
associated SELECT operation, and we can't use query hints in subqueries since the hint must 
apply to the entire query.

HASH | ORDER GROUP
The HASH GROUP and ORDER GROUP hints apply to all aggregations in the query caused by 
GROUP BY or DISTINCT. Generally, the optimizer will choose the most appropriate of the 
two aggregation mechanisms it has available, Hash Match (which is hash based) or Stream 
Aggregate (which is order based). The HASH GROUP hint forces it to use the former, and the 
ORDER GROUP hint, the latter.

In Listing 10-2, we have a simple GROUP BY query that returns a count of the number of 
occurrences of each distinct value in the Suffix column of the Person table.

SELECT p.Suffix, 
       COUNT(*) AS SuffixUsageCount 
FROM Person.Person AS p 
GROUP BY p.Suffix;

Listing 10-2

Let's suppose that you, as the DBA, maintain a high-end shop where the sales-force submits 
many queries against an ever-changing set of data. One of the sales applications frequently 
calls the query in Listing 10-2 and your job is to make this query run as fast as possible.

The first thing you'll do, of course, is look at the execution plan, as shown in Figure 10-1.

Figure 10-1: Unforced execution plan using a Hash Match for aggregation.

As you can see, the optimizer has chosen to use hashing for this query. The "unordered" data 
from the Clustered Index Scan is grouped within the Hash Match (Aggregate) operator. 
This operator builds a hash table, creating entries for each of the distinct values in the data 
supplied by the Clustered Index Scan, and maintains a count of each of those values. 
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As a reference point, on my system, and on my version of AdventureWorks, the scan on the 
Person table caused 3,819 reads, the plan had an estimated cost of 2.99727, and the query 
ran in about 9.7ms.

Although not the most expensive operation in the plan (that's the Clustered Index Scan), 
you may have read that the Hash Match could cause problems because of the overhead of 
building and populating a table in memory, and because this is a "blocking" operation.  
Therefore, let's see what happens if we force the optimizer to use a Stream Aggregate 
instead, by adding the ORDER GROUP hint to the query.

SELECT p.Suffix, 
       COUNT(p.Suffix) AS SuffixUsageCount 
FROM Person.Person AS p 
GROUP BY p.Suffix 
OPTION (ORDER GROUP);

Listing 10-3

Figure 10-2 shows the new plan.

Figure 10-2: Execution plan forced to use Stream Aggregate operator.

Since stream aggregation requires sorted data (See Chapter 5), and since there is no index 
that SQL Server can use to directly produce rows ordered by Suffix, the optimizer intro-
duced a Sort operator to enforce the required ordering, and the estimated cost of the plan 
jumped 39% to 4.17893, with the source of the increased cost being the Sort operation. As a 
result, this query now runs in 18ms, instead of the original 9.7ms, a 100% increase.

The broader problem with this hint, as with all hints, is that it forces a certain behavior, 
regardless of changes to the database structure, such as addition or removal of indexes,  
or to the data. Instead of adding the hint, it's much better to find out why the optimizer  
doesn't use stream aggregation, and then fix the root cause. For example, if appropriate  
for the query workload, you might consider adding a new nonclustered index, or modifying 
an existing index.
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MERGE | HASH | CONCAT UNION
These query hints affect how the optimizer deals with UNION operations in your queries, 
instructing the optimizer to use either merging, hashing, or concatenation of the data sets. 
If a UNION operation is causing performance issues, you may be tempted to use these hints 
to guide the optimizer's behavior. As discussed in Chapter 4, the optimizer will never use a 
Hash Match operator for a UNION ALL concatenation, and so the HASH UNION hint doesn't 
work for UNION ALL queries.

The example query in Listing 10-4 is not running fast enough to satisfy the demands  
of the application.

SELECT pm1.Name, 
       pm1.ModifiedDate 
FROM Production.ProductModel AS pm1 
UNION 
SELECT p.Name, 
       p.ModifiedDate 
FROM Production.Product AS p;

Listing 10-4

When a query has been identified as running slow, it's time to look at the execution plan, as 
seen in Figure 10-3.

Figure 10-3: An execution plan for a UNION operation using concatenation.

The Concatenation operator simply concatenates the 128 rows from the top input with the 
504 rows from the bottom and, in the context of the plan, it is very cheap. The Sort operator, 
specifically a Distinct Sort (see Chapter 5), is in the plan to remove duplicates, as required 
by the UNION clause, and is relatively expensive. The query took about 121ms to run 
 with 29 reads.
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Perhaps forcing the use of a join operator to implement the UNION clause, instead of concat-
enation, might enable the optimizer to remove the expensive Sort operator, and improve 
performance? As a first test, you apply the MERGE UNION hint.

SELECT pm1.Name, 
       pm1.ModifiedDate 
FROM Production.ProductModel AS pm1 
UNION 
SELECT p.Name, 
       p.ModifiedDate 
FROM Production.Product AS p 
OPTION (MERGE UNION);

Listing 10-5

The plan confirms that you have forced the UNION operation to use the Merge Join (Union) 
instead of the Concatenation operator.

Figure 10-4: Forcing the execution plan to use a Merge Join for the UNION.

Now that we're joining rather than concatenating the rows, we no longer see the Distinct 
Sort. However, since the Merge Join only works with sorted data feeds, we've also forced 
the optimizer to use two Sort operators to sort each of the inputs. The execution time went up 
to 193ms from 121ms and the reads went to 41 from 29. Clearly, this didn't work.

What if you tried the HASH UNION hint? Note that use of this hint will only work if the 
probe (bottom) input is guaranteed to have no duplicates, as is true here.

SELECT pm1.Name, 
       pm1.ModifiedDate 
FROM Production.ProductModel AS pm1 
UNION 
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SELECT p.Name, 
       p.ModifiedDate 
FROM Production.Product AS p 
OPTION (HASH UNION);

Listing 10-6

Figure 10-5 shows the new execution plan, with the Sort operations eliminated although, if 
the bottom input had had duplicates, the optimizer would have needed to add a Sort (Distinct 
Sort) or other operator to the input to remove them. You can verify this by removing the 
Name column from Listing 10-6.

Figure 10-5: Execution plan forced to use a Hash Match Union operator.

We achieved our initial goal of eliminating the post-union Sort operator without introducing 
any new Sort operators. It turns out that, in this case, using a Hash Match to perform the 
UNION operation is less expensive than performing a Concatenation followed by a Distinct 
Sort, and the execution time has decreased from 121ms on average to 99ms, while the reads 
remained the same. Of course, it's possible that with bigger, or different, tables the dynamic 
might change.

LOOP | MERGE | HASH JOIN
These query hints make all the join operations in the query, including the semi-joins used to 
fulfill the EXISTS or IN clauses, use the method supplied by the hint. However, note that, 
if we also apply a join hint (covered later) on a specific join, then the more granular join hint 
takes precedence over the general query hint.
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Let's say that our system is suffering from poor disk I/O, so we need to reduce the number of 
reads that our queries generate. By collecting data from Extended Events and Performance 
Monitor, we identify the query in Listing 10-7 as one that needs some tuning.

SELECT pm.Name, 
       pm.CatalogDescription, 
       p.Name AS ProductName, 
       i.Diagram 
FROM Production.ProductModel AS pm 
    LEFT JOIN Production.Product AS p 
        ON pm.ProductModelID = p.ProductModelID 
    LEFT JOIN Production.ProductModelIllustration AS pmi 
        ON p.ProductModelID = pmi.ProductModelID 
    LEFT JOIN Production.Illustration AS i 
        ON pmi.IllustrationID = i.IllustrationID 
WHERE pm.Name LIKE '%Mountain%' 
ORDER BY pm.Name;

Listing 10-7

Figure 10-6 shows the plan

Figure 10-6: A mix of Nested Loops and Hash Match joins.

The query predicate, WHERE pm.name LIKE '%Mountain%', is non-SARGable, a 
term used for predicates that can't be used by the optimizer in an Index Seek, and so the 
Clustered Index Scan operator on the ProductModel table makes sense. The query has 
no filter on the Product table, so the scan is the only option. The optimizer uses a Hash 
Match operator to join the Product and ProductModel tables , accounting for 39% of 
the estimated cost of the plan. It then performs the required Sort which, because the opti-
mizer estimates only about 99 matching rows, should be cheap. It then uses Nested Loops 
joins to construct the rest of the data set. The optimizer chooses to scan the ProductMod-
elIllustration and Illustration tables rather than seek them, probably because 
they're both so small that the cost estimates are all too small to make a significant difference 
to the total query cost.
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In my tests, this query ran in about 74ms, requiring 485 logical reads, as measured using 
Extended Events (see Chapter 2, Listing 2-6).

Again, let's say you've read that Hash Match joins incur the overhead of creating an 
in-memory worktable that is prone to spilling to tempdb. Maybe it will be cheaper if we 
force the use of Nested Loops joins, by adding the LOOP JOIN hint to the end of the query?

…OPTION ( LOOP JOIN );

Listing 10-8

Figure 10-7 shows the new plan.

Figure 10-7: Forcing the execution plan to use only Nested Loops joins.

As expected, we've forced the optimizer to use Nested Loops joins throughout. As a result, 
it's moved the Sort operation to directly after the scan of the ProductModel table, which 
it can do because a Nested Loops join will always preserve the order of the outer input, so 
now will sort only an estimated 40 rows (actual number is 37). Also, we should have elimi-
nated the need for in-memory worktables. But has it reduced the I/O?

Sadly, no. The query now performs 1250 logical reads, and ran in about 73ms. This is 
due to the increased logical reads on the Product table. Thanks to us forcing the use of 
Nested Loops joins, this table is now scanned 37 times, once for every row returned by 
our Sort operator. On the plus side, if you check the MemoryGrantInfo property of the 
Select operator, for Figure 10-7, you'll see that the query has a significantly smaller memory 
grant compared to the original plan, which may be a consideration if this were a frequently-
executed query.
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What if we modify the query to use the MERGE JOIN hint, instead?

OPTION  ( MERGE JOIN );

Listing 10-9

Figure 10-8 shows the new plan.

Figure 10-8: An execution plan that only contains Merge Joins.

The plan is a different shape, and looks more complicated mainly because, inauspiciously, we 
now see three Sort operators rather than one. The Sort on the Name column is now the final 
operation, before returning the results. The two new Sort operators are required because, as 
discussed in Chapter 4, the data in each input must be ordered on the join column, and the 
data stream from the Product table, and the one emerging from the second Merge Join, 
are not in the required order.

Did we manage to reduce logical reads? In fact, yes, this plan performs only 116 logical 
reads. However, in my tests, performance did not improve (around 83ms in my tests). The 
first problem is the extra overhead of the sorting operations; the memory grant is almost 
double that of the original query. The second problem is the rightmost Merge Join is a many-
to-many join, which requires the creation of a worktable in tempdb, and is far less efficient 
(see Chapter 4, Listing 4-3 and subsequent discussion).

Given that we said we were worried about the overhead of worktables, we'd be unlikely to try 
the final option, the HASH JOIN hint, but let's see what it might do.

OPTION  ( HASH JOIN );

Listing 10-10
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Figure 10-9 shows the new plan.

Figure 10-9: Forcing the plan to use Hash Joins.

We now see three Hash Match joins, and we're back down to only one Sort (on name), but 
it's over on the left-hand side. This is the only place the optimizer can safely put it since the 
Hash Match joins are not guaranteed to preserve the order of the probe input (if they were, 
then the sort could go directly after the scan of ProductModel).

How does it perform? Well, we've reduced logical reads to 97, the best so far, but the query 
runs in about the same time as the original query. If we are seeing lots of I/O contention, this 
could be a possible win, but you'd need to test this in an environment with additional load 
to understand if there are contention issues. Also, we've significantly increased the memory 
cost; the memory grant is up to about 6080 KB, due to the overhead of hashing values in all 
tables and creating hash tables for the build inputs.

Overall, our efforts have reaped minimal rewards, and whether you chose to use one of 
these hints would depend on the contention points in your system. More significantly, all our 
efforts with hints have ignored the bigger problem with this query, which is the use of the 
LIKE '%Mountain%' in the WHERE clause. This is an operator that can only be resolved 
by scans against the table, and it's those scans that are our primary problem. The best solution 
for this query could be to modify the database structure so that the need for the LIKE query, 
using wild cards, is removed. When modifying the code or structure is not possible, you may 
have to resort to query hints to attempt to gain improvements where you can.
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FAST n
Let's assume for a moment that we are less concerned about the overall performance of the 
database, generally a very poor proposition, than we are about perceived performance of the 
application. The users would like an immediate return of data to the screen, even if it's not the 
complete result set, and even if they end up waiting longer for the complete result set. This 
could be a handy way to get a little bit of information in front of people quickly, so that they 
can decide whether it's important, and either move on or wait for the rest of the data.

The FAST n hint provides this ability by getting the optimizer to focus on finding the execu-
tion plan that will return the first "n" rows as fast as possible, where "n" is a positive integer 
value. Consider the following query and execution plan.

SELECT soh.SalesOrderNumber, 
       soh.OrderDate, 
       soh.DueDate, 
       sod.CarrierTrackingNumber, 
       sod.OrderQty 
FROM Sales.SalesOrderDetail AS sod 
    JOIN Sales.SalesOrderHeader AS soh 
        ON sod.SalesOrderID = soh.SalesOrderID 
ORDER BY soh.DueDate DESC;

Listing 10-11

Figure 10-10 shows the plan. The Estimated Subtree Cost of this plan is 11.4, so if your 
cost threshold for parallelism setting (see Chapter 11) is at 11.4 or higher, you'll 
see the parallelized version of this plan.

Figure 10-10: An execution plan optimized to return all data quickly.
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I won't explain this plan in any detail, except to point out the warning visible on the  
SELECT operator. If you look at the Warnings property of the SELECT operator,  
you'll find the following:

Type conversion in expression (CONVERT(nvarchar(23),[soh].
[SalesOrderID],0)) may affect "CardinalityEstimate" in query plan 
choice

This is caused by a calculated column in the SalesOrderHeader table. This is an 
example of a false warning. It doesn't affect our query in any way because we're not referring 
to that column in any filtering clause.

This query performs adequately considering the fact that it's selecting all the data from  
the tables without any sort of filtering operation, but let's try to get some, but not all, rows 
back faster from this query by adding the FAST n hint to return the first 10 rows as quickly 
as possible.

OPTION  ( FAST 10 );

Listing 10-12

Figure 10-11: An execution plan optimized to return only 10 rows.

Now, the optimizer chooses a Nested Loops operator to perform the join, rather than a 
Merge Join. This plan returns first rows very fast, but the rest of the processing was some-
what slower, which is perhaps to be expected, since the optimizer focuses its efforts on 
getting just the first ten rows back as soon as possible. The way this works, internally, is that 
the optimizer treats this query as if it had a TOP (10) clause and was only ever going to 
return 10 rows. That changes completely the execution plan choices; the plan you get will 
usually be the same as the plan for a query that uses TOP, but without the operators that 
implement the TOP clause.
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The total estimated cost for the original query was 11.3573. The hint reduced that cost to 
2.72567. While that sounds great, remember that is the estimated cost for only the first 
10 rows. This is also why the plan in Figure 10-11 shows some "bad" row estimates. For 
example, if you were to check the properties of the Sort operator, you'd see that the optimizer 
estimated that it would return 2.6 rows (the actual number of rows was 31465).

We've made the choice that we don't care about overall performance impact on the system, 
we just want to see the first 10 rows very fast. However, we can't ignore the fact that the 
number of logical reads increases dramatically, from 1,935 for the un-hinted query to 106,505 
for the hinted query. Depending on the load on your system and the contention on your disk, 
getting a responsive appearance on your application could seriously negatively impact the 
overall system.

FORCE ORDER
Once again, our monitoring tools have identified a query that is performing poorly. It's a long 
query with a higher number of tables being joined, as shown in Listing 10-13, which could be 
a concern, because the more tables there are involved, the harder the optimizer has to work.

Normally, the optimizer will determine the order in which the joins occur, rearranging them 
as it sees fit. However, the optimizer can make incorrect choices when the statistics are not 
up to date, when the data distribution is less than optimal, or if the query has a high degree of 
complexity, with many joins. In the latter case, the optimizer may even time out when trying 
to rearrange the tables because there are so many of them for it to try to deal with.

Using the FORCE ORDER hint, you can make the optimizer use the order of joins as you 
have defined them in the query. This might be an option if you are sure that your join order is 
better than that supplied by the optimizer, if you're experiencing timeouts in the optimization 
process, or if you see lots of compiles or recompiles from a query, and system performance is 
suffering as a result (although, testing is, as always, in order).

SELECT pc.Name AS ProductCategoryName, 
       ps.Name AS ProductSubCategoryName, 
       p.Name AS ProductName, 
       pdr.Description, 
       pm.Name AS ProductModelName, 
       c.Name AS CultureName, 
       d.FileName, 
       pri.Quantity, 
       pr.Rating, 
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       pr.Comments 
FROM Production.Product AS p 
    LEFT JOIN Production.ProductModel AS pm 
        ON p.ProductModelID = pm.ProductModelID 
    LEFT JOIN Production.ProductSubcategory AS ps 
        ON p.ProductSubcategoryID = ps.ProductSubcategoryID 
    LEFT JOIN Production.ProductInventory AS pri 
        ON p.ProductID = pri.ProductID 
    LEFT JOIN Production.ProductReview AS pr 
        ON p.ProductID = pr.ProductID 
    LEFT JOIN Production.ProductDocument AS pd 
        ON p.ProductID = pd.ProductID 
    LEFT JOIN Production.Document AS d 
        ON pd.DocumentNode = d.DocumentNode 
    LEFT JOIN Production.ProductCategory AS pc 
        ON ps.ProductCategoryID = pc.ProductCategoryID 
    LEFT JOIN Production.ProductModelProductDescriptionCulture AS 
pmpdc 
        ON pm.ProductModelID = pmpdc.ProductModelID 
    LEFT JOIN Production.ProductDescription AS pdr 
        ON pmpdc.ProductDescriptionID = pdr.ProductDescriptionID 
    LEFT JOIN Production.Culture AS c 
        ON c.CultureID = pmpdc.CultureID;

Listing 10-13

Based on your knowledge of the data, you're confident that you've put the joins in the correct 
order. Figure 10-12 shows the current execution plan.

Figure 10-12: Large execution plan with more tables.
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This plan is far too large to review on this page in the book. The image in Figure 10-12 gives 
you a good idea of the overall structure and shape of the execution plan. Figure 10-13 shows 
an exploded view of the bottom right of the plan, showing just a few of the tables and the 
order in which they are being joined.

Figure 10-13: Subset of execution plan in Figure 10-12 showing table join order.

Following the data flow, we first see the Hash Match join between ProductModel and 
Product. This data forms the bottom input to a Hash Match join to ProductSubcate-
gory and this joined data stream forms the bottom input to Hash Match join to Product-
Inventory, and so on. However, in execution order, the optimizer starts right at the other 
end, with Culture, then ProductDescription, then Product-ModelProduct-
DescriptionCulture and so on.

If you check the properties of the SELECT operator, you'll see that the optimizer timed out 
when generating this execution plan.

Figure 10-14: SELECT property showing the Reason For Early Termination.

With a larger number of tables, and a timeout in the optimizer, there's a good chance that 
not all possible permutations of the join order were attempted. If we had exhausted other 
attempts at tuning this query, we might attempt to wrest control from the optimizer by using a 
query hint. Take the same query and apply the FORCE ORDER query hint.
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OPTION (FORCE ORDER);

Listing 10-14

It results in the plan shown in Figure 10-15.

Figure 10-15: A new execution plan shape because of the FORCE ORDER hint.

You can tell, just by comparing the shapes of the plan in Figure 10-12 to the one in Figure 
10-15 that a substantial change has occurred. The optimizer is now accessing the tables 
exactly in the order specified by the query. Again, we'll zoom in on the set of operators on the 
right-hand side of the plan, so that you can see how the join order has changed.

 Figure 10-16: Subset of Figure 10-15 showing a different table order in the joins.

Now the join order is from the Product table, followed by the ProductModel, exactly 
as specified in the query. This data forms the top input to a Merge Join to ProductSub-
category, which forms the top input to Merge Join to ProductInventory, and so on. 
This order forces the optimizer to do more Sort operations, and the execution time went from 
149ms in the first query to 166ms in the second. While it is possible to get direct control over 
the optimizer to achieve positive results, this is not one of those cases.

MAXDOP
In this example, we have one of those nasty problems where a query that sometimes runs 
just fine, sometimes runs incredibly slowly. We have investigated the issue, using Extended 
Events or the Query Store to capture the execution plan of a query, over time, with various 
parameters. We finally arrive at two execution plans. Figure 10-17 shows the execution plan 
that results in better performance on my system.
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Figure 10-17: A serial execution plan that runs quickly.

Figure 10-18 shows the slower execution plan (I modified this image for readability).

Figure 10-18: A parallel execution plan that, in this case, doesn't run as fast.

This is an example of where the optimizer has estimated that the cost of executing the plan 
in a serial fashion might exceed the 'cost threshold for parallelism' sp_
configure option, and so produces a parallel plan, whereby the work required to execute 
the query is split across multiple CPUs (see Chapter 11 for more detail). Ideally, this should 
be helping the performance of your system, but it seems to be hurting it in this specific case.

Of course, the first question to ask here is why we have two plans with two different costs. 
What caused the new compile in the first place, and why are the costs different? If this were 
a parameterized query, then parameter sniffing might be a likely culprit (see Chapter 8), and 
we'd investigate that possibility first. However, in this case we're dealing with a simple query 
and, for this discussion, we've decided to fix the problem the "easy" way, with a hint.

We can control parallelism by setting the Max Degree of Parallelism value at the 
server level. You can also control this setting at the database level, and this is generally 
considered the better approach. A properly configured system will benefit from parallel 
execution, so you shouldn't simply turn it off. We'll also assume that you've tuned the value 
of cost threshold for parallelism, on your server, in order to be sure that only 
high-cost queries are experiencing parallelism. (A strong recommendation: don't leave it at 
the default value of 5; for details see this blog post: http://bit.ly/2DM92sc.)

However, having done this work, you still have the occasional outliers where the execution 
engine chooses to use the parallel plan. It's for cases like this that the MAXDOP hint becomes 
useful, since it controls the use of parallelism within an individual query, rather than working 
using the server-wide setting of max degree of parallelism.

For example, we can suppress parallelism altogether for this query by setting MAXDOP to 
1. More commonly, we'd use it to set MAXDOP to a value greater than 1, but less than the 
number of processors, to ensure that a long-running query doesn't hog all resources.

http://bit.ly/2DM92sc
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This example is somewhat contrived in that, as part of the query, I'm going to reset the cost 
threshold for parallelism for my system to a low value, to enable this query to be 
run in parallel.

--enable advanced options 
EXEC sys.sp_configure 'show advanced options', 1 
GO 
RECONFIGURE WITH OVERRIDE 
GO 
--change the cost threshold to 1 
EXEC sp_configure 'cost threshold for parallelism', 1; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO 
--Execute the query which will go parallel 
SELECT wo.DueDate, 
       MIN(wo.OrderQty) AS MinOrderQty, 
       MIN(wo.StockedQty) AS MinStockedQty, 
       MIN(wo.ScrappedQty) AS MinScrappedQty, 
       MAX(wo.OrderQty) AS MaxOrderQty, 
       MAX(wo.StockedQty) AS MaxStockedQty, 
       MAX(wo.ScrappedQty) AS MaxScrappedQty 
FROM Production.WorkOrder AS wo 
GROUP BY wo.DueDate 
ORDER BY wo.DueDate; 
GO 
--reset the cost threshold to the default value 
--if your cost threshold is set to a different value, change the 5 
EXEC sys.sp_configure 'cost threshold for parallelism', 5; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO 
--disable advanced options 
EXEC sys.sp_configure 'show advanced options', 0 
GO 
RECONFIGURE WITH OVERRIDE 
GO

Listing 10-15

This will result in an execution plan that takes full advantage of parallel processing, as shown 
in Figure 10-18.
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Let's now modify the query to include the MAXDOP hint.

OPTION  ( MAXDOP 1 );

Listing 10-16

The use of the hint makes the new execution plan use a single processor, so no parallelism 
occurs at all. Add the hint to the end of the query in Listing 10-15 and then rerun the code. 
The plan will be the same as Figure 10-17.

Generally, you'd expect the performance of certain operators, such as the Sort arising from 
our ORDER BY clause in Listing 10-15, to benefit greatly from parallelism, as it reduces 
both CPU cost and runtime. Balancing these kinds of savings is the extra overhead associ-
ated with the parallelism operators that take the data from a single stream to a set of parallel 
streams, and then bring it all back together again. On my system, is seems that these extra 
costs outweighed the savings. However, with a properly configured cost threshold for 
parallelism setting, you'd expect most queries that cross that threshold to benefit from 
parallel execution.

OPTIMIZE FOR
You can use the OPTIMIZE FOR hint in any situation where you want to attempt to control 
how the optimizer deals with parameter values. Let's say that you have identified a query 
that will run at an adequate speed for hours or days, and then it suddenly performs horribly. 
With a lot of investigation and experimentation, you find that the parameters supplied by the 
application to run the procedure or parameterized query usually result in an execution plan 
that performs very well. Sometimes, though, a certain value or subset of values supplied to 
the parameters after a recompile event, results in an execution plan that performs extremely 
poorly. This is an instance of the bad parameter sniffing problem, as discussed in Chapter 8.

When you're hitting a bad parameter sniffing situation, you can use the OPTIMIZE FOR 
hint, which instructs the optimizer to optimize the query for the value that you supply, rather 
than a sniffed parameter value. Starting with SQL Server 2008, we can also use the OPTI-
MIZE FOR hint with a value of UNKNOWN to force a more generic plan on the optimizer, 
rather than a specific plan for a specific value.

We can demonstrate the utility of this hint with a very simple set of queries.

SELECT  AddressID, 
        AddressLine1, 
        AddressLine2, 
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        City, 
        StateProvinceID, 
        PostalCode, 
        SpatialLocation, 
        rowguid, 
        ModifiedDate 
FROM    Person.Address 
WHERE   City = 'Mentor'; 
SELECT  AddressID, 
        AddressLine1, 
        AddressLine2, 
        City, 
        StateProvinceID, 
        PostalCode, 
        SpatialLocation, 
        rowguid, 
        ModifiedDate 
FROM    Person.Address 
WHERE   City = 'London';

Listing 10-17

We'll run these at the same time, and we get two different execution plans.

Figure 10-19: Two different execution plans for two different values.
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Each query is returning the data from the table in a way that is optimal for the value passed 
to it, based on the indexes and the statistics of the table. The first execution plan, for the first 
query, where City = 'Mentor' scans the Address table to find matching values. Next, it 
must perform a Key Lookup operation to get the rest of the data. The data is joined through 
the Nested Loops operation. The value of London is much less selective, so the optimizer 
decides to perform a scan of the clustered index only, which you can see in the second  
execution plan in Figure 10-19.

If this query were in a stored procedure, which was executed first with a value of Mentor, 
then the next time we executed it with a value of London, the plan would be reused (unless 
it was recompiled for some reason), and we'd likely see a lot of key lookups and very poor 
performance.

We might consider adding a OPTIMIZE FOR (@City = 'London') query hint. While 
this might seem a sensible option in this case, the more general problem with the OPTIMIZE 
FOR <value> hint, is that it's susceptible to "turning bad," as data in the table changes  
over time.

Let's now see what happens if we use local variables in our T-SQL, as shown in  
Listing 10-18.

DECLARE @City NVARCHAR(30) 
SET @City = 'Mentor' 
SELECT  AddressID, 
        AddressLine1, 
        AddressLine2, 
        City, 
        StateProvinceID, 
        PostalCode, 
        SpatialLocation, 
        rowguid, 
        ModifiedDate 
FROM    Person.Address 
WHERE   City = @City; 
SET @City = 'London' 
SELECT  AddressID, 
        AddressLine1, 
        AddressLine2, 
        City, 
        StateProvinceID, 
        PostalCode, 
        SpatialLocation, 
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        rowguid, 
        ModifiedDate 
FROM    Person.Address 
WHERE   City = @City;

Listing 10-18

Now, we see the same plan, with a clustered index scan, for both queries.

Figure 10-20: Identical execution plans for queries using a local variable.

As described in Chapter 8, the optimizer cannot sniff the value supplied, when we use local 
variables, unless statement-level recompile takes place because of an OPTION (RECOM-
PILE) hint (covered later). It optimizes for the average distribution, using the density value, 
to arrive at a cardinality estimation (it's the ratio of number of rows in the table to number of 
distinct values). If we know that the resulting plan will be good enough for most executions, 
then we might consider using the OPTIMIZE FOR UNKNOWN hint to force the optimizer to 
produce that generic plan. Listing 10-19 shows an example (I've simply moved the query into 
a stored procedure).
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CREATE OR ALTER PROCEDURE dbo.AddressByCity @City NVARCHAR(30) 
AS 
SELECT  AddressID, 
        AddressLine1, 
        AddressLine2, 
        City, 
        StateProvinceID, 
        PostalCode, 
        SpatialLocation, 
        rowguid, 
        ModifiedDate 
FROM    Person.Address 
WHERE   City = @City 
OPTION (OPTIMIZE FOR UNKNOWN); 
GO 
EXEC dbo.AddressByCity @City = N'Mentor';

Listing 10-19

Even though Mentor is an uncommon city, and so our nonclustered index is selective for 
this predicate, we still see the "generic" plan.

 Figure 10-21: The plan once the OPTIMIZE FOR hint has been applied.

Use of the OPTIMIZE FOR hint requires intimate knowledge of the underlying data. 
Choosing the wrong value for OPTIMIZE FOR will not only fail to help performance, but 
could have a very serious negative impact. It’s also very important that you maintain the hint, 
and adapt it as necessary, as the data changes over time.

In the example above, there was only a single variable, so there was only a single hint 
needed. If you need to control the value used for optimization for more than a single variable 
in a query, you can set as many hints as necessary. Listing 10-20 shows an example of the 
necessary syntax.
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CREATE OR ALTER PROCEDURE dbo.AddressDetails 
    @City NVARCHAR(30), 
    @PostalCode NVARCHAR(15), 
    @AddressLine2 NVARCHAR(60) NULL 
AS 
SELECT a.AddressLine1, 
       a.AddressLine2, 
       a.SpatialLocation 
FROM Person.Address AS a 
WHERE a.City = @City 
      AND a.PostalCode = @PostalCode 
      AND (   a.AddressLine2 = @AddressLine2 
              OR @AddressLine2 IS NULL) 
OPTION (OPTIMIZE FOR (@City = 'London', @PostalCode = 'W1Y 3RA'));

Listing 10-20

The OPTIMIZE FOR hint is one of the few that I use regularly, though still not often.  
Even so, I strongly recommend you exercise caution and perform lots of tests before applying 
the OPTIMIZE FOR hint. As the data changes over time, you will need to re-evaluate 
whether the choice you made is still the correct one. In my experience, the OPTIMIZE FOR 
UKNOWN hint is generally more stable than optimizing for a particular value, because of  
those data changes.

RECOMPILE
We discussed use of the RECOMPILE hint in Chapter 8, as a common cure for bad parameter 
sniffing when using stored procedures or other forms of parameterized SQL, such as prepared 
statements. We apply the hint to any of the individual queries within the procedure, and it 
will force SQL Server to recompile the plan for that query every time. The new compile will 
optimize the plan for the current values of all variables and parameters used in the query 
(rather than reuse the plan for a previously sniffed value).

The RECOMPILE query hint was introduced in SQL Server 2005 along with statement-
level recompiles. For stored procedures and other code modules, all statements including 
the one with OPTION(RECOMPILE) will still be in the plan cache, but the plan for the 
OPTION(RECOMPILE) statement will still recompile for every execution, which means 
that the plan is not reused in any way.



328

Chapter 10: Controlling Execution Plans with Hints

When we use the hint for ad hoc queries, the optimizer marks the plan created so that it is not 
stored in the cache at all. We discussed the problems that ad hoc queries can cause, such as 
cache bloat, in Chapter 9. If the problem is caused by lack of parameterization, then the most 
common fix is to enable the Optimize for Ad Hoc Workloads setting. However, if your 
system executes lots of parameterized ad hoc queries, and you're getting performance prob-
lems with bad parameter sniffing, then you might opt to take the hit of having SQL Server 
compile a plan for every execution, by applying the RECOMPILE hint.

Consider the pair of queries in Listing 10-21.

SELECT  soh.SalesOrderNumber , 
        soh.OrderDate , 
        soh.SubTotal , 
        soh.TotalDue 
FROM    Sales.SalesOrderHeader soh 
WHERE   soh.SalesPersonID = 279; 
GO 
SELECT  soh.SalesOrderNumber , 
        soh.OrderDate , 
        soh.SubTotal , 
        soh.TotalDue 
FROM    Sales.SalesOrderHeader soh 
WHERE   soh.SalesPersonID = 280;

Listing 10-21

This results in the mismatched set of query plans in Figure 10-22, once again demonstrating 
the optimizer's "tipping point" between choosing a plan with a seek and lookups, versus scan-
ning the clustered index (as discussed in detail in Chapter 8).
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Figure 10-22: The execution plans change radically when recompiled.

If you examine the Parameter List property of either SELECT operator, it appears that both 
these queries have gone through Simple Parameterization (covered in Chapter 9). However, 
the value of the StatementParameterizationType property, lower down, tells us that, in fact, 
they were not parameterized.

Figure 10-23: A failed attempt at Simple Parameterization.
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If this query runs as a prepared statement, we'll see different behavior. Using sp_prepare 
always causes optimization for unknown values (see Chapter 9), and so the optimizer will use 
the density graph to arrive at a cardinality estimation and generate an appropriate plan, which 
will then be reused for subsequent executions.

DECLARE @IDValue INT; 
DECLARE @MaxID INT = 280; 
DECLARE @PreparedStatement INT; 
SELECT @IDValue = 279; 
EXEC sp_prepare @PreparedStatement OUTPUT, 
                N'@SalesPersonID INT', 
                N'SELECT  soh.SalesPersonID, soh.SalesOrderNumber, 
        soh.OrderDate, 
        soh.SubTotal, 
        soh.TotalDue 
FROM    Sales.SalesOrderHeader soh 
WHERE   soh.SalesPersonID =  @SalesPersonID'; 
WHILE @IDValue <= @MaxID 
BEGIN 
    EXEC sp_execute @PreparedStatement, @IDValue; 
    SELECT @IDValue = @IDValue + 1; 
END; 
EXEC sp_unprepare @PreparedStatement;

Listing 10-22

If you query the plan cache (as shown in Chapter 9), or the query store (see Chapter 16), 
you'll see a single plan, the clustered index scan plan, used twice. This is what you'll see, 
regardless of whether you execute using the value of 280 first instead of 279, because the 
optimizer isn't doing parameter sniffing, it's optimizing for an unknown value.

If this lack of parameter sniffing is causing performance issues for one of the queries, and so 
you prefer to optimize for sniffed variables, then you might consider simply adding OPTION 
(RECOMPILE) to the end of the prepared statement.

… 
EXEC sp_prepare @PreparedStatement OUTPUT, 
                N'@SalesPersonID INT', 
                N'SELECT  soh.SalesPersonID, soh.SalesOrderNumber, 
        soh.OrderDate, 
        soh.SubTotal, 
        soh.TotalDue 
FROM    Sales.SalesOrderHeader soh 
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WHERE   soh.SalesPersonID =  @SalesPersonID 
OPTION (RECOMPILE)'; 
…

Listing 10-23

If you execute Listing 10-23 and capture the plans in SSMS, you'll see the two different plans 
again, but if you check the plan cache you'll see that neither is cached.

EXPAND VIEWS
The EXPAND VIEWS query hint eliminates the use of the indexed, or materialized, views 
within a query and forces the optimizer to go directly to tables for the data. The optimizer 
replaces the referenced indexed view with the view definition (in other words, the query used 
to define the view) just like it normally does with a standard view; but when the EXPAND 
VIEWS hint is used it will then not try to match the expanded queries with usable indexed 
views. This behavior can be overridden on a view-by-view basis by adding the WITH 
(NOEXPAND) clause to any indexed views within the query. Indexed view matching is 
Enterprise only, so this hint has no effect in a Standard system.

In some instances, the plan generated by referencing the indexed view performs worse than 
the one that uses the view definition. In most cases, the reverse is true. Test this hint to ensure 
its use doesn't negatively affect performance.

Using one of the indexed views supplied with AdventureWorks2014, we can run the 
following simple query.

SELECT vspcr.StateProvinceCode, 
       vspcr.StateProvinceName, 
       vspcr.CountryRegionName 
FROM Person.vStateProvinceCountryRegion AS vspcr;

Listing 10-24

Figure 10-24 shows the resulting execution plan.
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Figure 10-24: Execution plan using an indexed view.

A view is changed into an indexed view by creating a clustered index on it, which stores the 
data defined by the query in the view. This execution plan makes perfect sense, since the 
data needed to satisfy the query is available in the indexed view. Things change, as we see in 
Figure 10-25, if we add the query hint, OPTION (EXPAND VIEWS).

Figure 10-25: View definition expanded out because of the query hint.

Now we're no longer scanning the indexed view. Within the compilation process (before the 
optimizer is invoked), the view has been expanded into its definition, and so the effect of the 
hint is that the view matching phase of optimization is skipped. As a result, we see the Clus-
tered Index Scan against the Person.CountryRegion and Person.StateProv-
ince tables. These are then joined using a Merge Join, after the data in the StateProv-
ince stream is run through a Sort operation. The first query ran in about 54ms, but the 
second ran in about 189ms, so we're talking a substantial decrease in performance to use the 
hint in this situation.

IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX
As discussed in Chapter 8, the optimizer can choose to use a columnstore index, where 
appropriate. Columnstore indexes are extremely efficient when assisting aggregation queries, 
but much less efficient for traditional point lookup queries. As with all the other choices 
made by the optimizer, the choice of a columnstore index may not always be appropriate. 
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You can use this query hint to ensure that any existing nonclustered columnstore index is 
ignored, for the entire query. If the table in question has a clustered columnstore index, this 
hint does not affect its use within the execution plan.

Join Hints
A join hint provides a means to force SQL Server to use one of the three standard join 
methods that we detailed in Chapter 4, but for a specific join operation rather than all join 
operations, as we saw when we applied the query hints earlier.

By incuding one of the join hints in your T-SQL, you will potentially override the  
optimizer's choice of the most efficent join method. Also, as soon as you force a particular 
join, you're also forcing the join order, effectively the same as using OPTION (FORCE 
ORDER). In general, this is not a good idea, and if you're not careful you could seriously 
impede performance.

Application of the join hint applies to any query (SELECT, INSERT, or DELETE) where 
joins can be applied. Join hints are specified as part of the JOIN clause between two inputs 
(such as tables). You can use the LOOP, HASH, or MERGE join hints in the same fashion. The 
core behavior won't change. You'll just get a different join depending on the hint you use. 
Worth noting is that you can't force an Adaptive Join using hints, at time of writing.

There is a fourth join method, the Remote join, that is used when dealing with data from a 
remote server. The REMOTE join hint forces the join operation from your local machine onto 
the remote server. This has no effect on execution plans, so we won't be drilling down on this 
functionality here.

Since all join hints work basically the same, I'm only going to demonstrate the HASH join 
hint, to force use of a Hash Join operator. We'll reuse the simple query from an earlier query 
(Listing 10-7) that lists Product Models, Products, and Illustrations.

SELECT pm.Name, 
       pm.CatalogDescription, 
       p.Name AS ProductName, 
       i.Diagram 
FROM Production.ProductModel AS pm 
    LEFT JOIN Production.Product AS p 
        ON pm.ProductModelID = p.ProductModelID 
    LEFT JOIN Production.ProductModelIllustration AS pmi 
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        ON p.ProductModelID = pmi.ProductModelID 
    LEFT JOIN Production.Illustration AS i 
        ON pmi.IllustrationID = i.IllustrationID 
WHERE pm.Name LIKE '%Mountain%' 
ORDER BY pm.Name;

Listing 10-25

Once again, we'll get the execution plan shown in Figure 10-26.

Figure 10-26: An execution plan with joins chosen by the optimizer.

As discussed earlier, this plan (I won't describe it again) entails 485 logical reads and the 
query ran in about 74ms.

The top input to the final Nested Loops join returns 455 rows, which means that the Clus-
tered Index Scan on the Illustration table executes 455 times. What happens if we 
decide that we're smarter than the optimizer and that it really should be using a Hash Match 
join instead of that Nested Loops join? We can force the issue by adding the HASH hint to 
the join condition between Illustration and ProductModelIllustration.

SELECT pm.Name, 
       pm.CatalogDescription, 
       p.Name AS ProductName, 
       i.Diagram 
FROM Production.ProductModel AS pm 
    LEFT JOIN Production.Product AS p 
        ON pm.ProductModelID = p.ProductModelID 
    LEFT JOIN Production.ProductModelIllustration AS pmi 
        ON pm.ProductModelID = pmi.ProductModelID 
    LEFT HASH JOIN Production.Illustration AS i 
        ON pmi.IllustrationID = i.IllustrationID 
WHERE pm.Name LIKE '%Mountain%' 
ORDER BY pm.Name;

Listing 10-26

If we execute this new query, we'll see the plan shown in Figure 10-27.
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Figure 10-27: The new plan with a forced Nested Loops join.

Sure enough, where previously we saw a Nested Loops operator, we now see the Hash 
Match operator. However, the rest of the plan has changed shape as well. The optimizer has 
decided that the most efficient way to deal with Hash Match (which it has no choice but to 
implement due to our hint), is to change the other joins to Merge. This adds the requirement 
to Sort the data from the Product table.

Interestingly, in this case, we drop to 34 logical reads and the execution time drops, just a 
little, to 74.1ms on average. It’s entirely possible that by eliminating the loops we are getting 
superior performance. The actual difference between 77 and 74 is small, but the reads going 
from 485 to 34 is a substantial saving. Additional testing on a system under load would be 
required to determine if, for certain, this hint resulted in superior performance.

Table Hints
Table hints enable you to control how the optimizer "uses" a table when generating an execu-
tion plan for the query to which the table hint is applied. For example, you can force the use 
of a Table Scan for that query, or specify which index you want the optimizer to use.

As with the query and join hints, using a table hint circumvents the normal optimizer 
processes and can lead to serious performance issues. Further, since table hints can affect 
locking strategies, they could possibly affect data integrity leading to incorrect or lost data. 
Use table hints sparingly and judiciously!

Most of the table hints are primarily concerned with locking strategies. Since they don't affect 
execution plans, we won't be covering them. The table hints covered below have a direct 
impact on the execution plans. For a full list of table hints, please refer to Books Online.

The correct syntax is to use the WITH keyword, and then list the hints within a set of paren-
theses. Listing 10-27 shows an example of applying table hints when the table name directly 
follows the FROM clause, but they can also be used when the table name follows a JOIN or 
APPLY keyword.
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FROM TableName WITH (hint, hint,…)

Listing 10-27

The WITH keyword is not required in all cases, nor are the commas required in all cases 
but, rather than attempt to guess or remember which hints are the exceptions, all hints can 
be placed within the WITH clause. As a best practice, separate hints with commas to ensure 
consistent behavior and future compatibility. Even with the hints that don't require the WITH 
keyword, it must be supplied if more than one hint is to be applied to a given table.

NOEXPAND
When one or more indexed views are referenced within a query, the use of the NOEXPAND 
table hint will prevent view expansion, roughly the opposite of the EXPAND VIEW hint we 
used earlier. The query hint affects all views in the query. The table hint will prevent the 
indexed view to which it applies from being "expanded" into its underlying view definition. 
The primary use of this hint is to get indexed views to be used inside the plans on Standard 
Edition systems, because they won't use the materialized view otherwise.

SQL Server Enterprise and Developer editions use the indexes in an indexed view if the 
optimizer determines that index is best for the query. This is indexed view matching, and it 
requires the following settings for the connection:

• ANSI_NULL set to On
• ANSI_WARNINGS set to On
• CONCAT_NULL_YIELDS_NULL set to On
• ANSI_PADDING set to On
• ARITHABORT set to On
• QUOTED_IDENTIFIER set to On
• NUMERIC_ROUNDABORT set to Off.

Using the NOEXPAND hint forces the optimizer to use one of the indexes from the indexed 
view. In Chapter 7 (Listing 7-11), we used a query that referenced one of the indexed views, 
vStateProvinceCountryRegion, in AdventureWorks2014. During the compila-
tion process, the indexed view was replaced with its definition and then the optimizer did not 
undo that during view matching, and we saw an execution plan that featured a three-table 
join. Via use of the NOEXPAND table hint, in Listing 10-28, we change that behavior.
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SELECT a.City, 
       v.StateProvinceName, 
       v.CountryRegionName 
FROM Person.Address AS a 
    JOIN Person.vStateProvinceCountryRegion AS v WITH (NOEXPAND) 
        ON a.StateProvinceID = v.StateProvinceID 
WHERE a.AddressID = 22701;

Listing 10-28

Now, instead of a three-table join, we get the execution plan in Figure 10-28.

Figure 10-28: A smaller execution due to the use of the NOEXPAND hint.

Now, not only are we using the clustered index defined on the view, but we're also seeing 
a performance increase, albeit a very small one, from 189ms to 162ms on average on my 
system. The reads dropped from 6 to 4. In this situation, eliminating the overhead of the extra 
join resulted in improved performance. That will not always be the case, so you must test the 
use of hints very carefully.

INDEX()
The INDEX() table hint allows you to specify the index to be used when accessing a table. 
The syntax supports two methods, or four if you include the WITH (INDEX = (name or 
number)), although this syntax doesn't support multiple indexes, so is generally not used.
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We can specify the index to use by its number or its name. Indexes are numbered within the 
sys.indexes table. You'll have to look up any given index there. The numbers 0 and 1 
cause different behaviors. 0 forces a scan of the clustered index or the heap, while 1 forces 
either a scan or a seek on a clustered index and produces an error on a heap. The syntax is  
as follows.

…FROM dbo.TableName WITH (INDEX(2))…

Listing 10-29

Alternatively, we can simply refer to the index by name, which I recommend, because the 
order in which indexes are applied to a table can change, so you can't guarantee the value for 
the number of the index.

…FROM dbo.TableName WITH (INDEX (IndexName))…

Listing 10-30

You can only have a single INDEX() hint for a given table, but you can define multiple 
indexes within that one hint. This is applicable when you're attempting to perform index joins 
to retrieve data, forcing an intersection between all indexes on the table, i.e. forcing the opti-
mizer to use all listed indexes, in listed order.

…FROM TableName WITH (INDEX (IndexName1,IndexName2))…

Listing 10-31

This does not cause the optimizer to pick among only the mentioned indexes, but forces it to 
use all of them, in the order specified. Within the comma-separated list of indexes, you can 
match the index number and index name formats. For a quick demo, examine the plan for the 
following query.

CREATE TABLE dbo.IndexSample (ID INT NOT NULL IDENTITY(1, 1), 
                              ColumnA INT, 
                              ColumnB INT, 
                              ColumnC INT, 
                              CONSTRAINT IndexSamplePK 
                                  PRIMARY KEY 
                                  ( 
                                      ID 
                                  )); 
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CREATE INDEX FirstIndex ON dbo.IndexSample (ColumnA); 
CREATE INDEX SecondIndex ON dbo.IndexSample (ColumnB); 
CREATE INDEX ThirdIndex ON dbo.IndexSample (ColumnC); 
SELECT isa.ID, 
       isa.ColumnA, 
       isa.ColumnB, 
       isa.ColumnC 
FROM dbo.IndexSample AS isa WITH (INDEX(FirstIndex, SecondIndex, 
ThirdIndex)); 
DROP TABLE dbo.IndexSample;

Listing 10-32

Now, let's take a simple query that lists department, job title, and employee name.

SELECT de.Name, 
       e.JobTitle, 
       p.LastName + ', ' + p.FirstName 
FROM HumanResources.Department AS de 
    JOIN HumanResources.EmployeeDepartmentHistory AS edh 
        ON de.DepartmentID = edh.DepartmentID 
    JOIN HumanResources.Employee AS e 
        ON edh.BusinessEntityID = e.BusinessEntityID 
    JOIN Person.Person AS p 
        ON e.BusinessEntityID = p.BusinessEntityID 
WHERE de.Name LIKE 'P%';

Listing 10-33

We get a reasonably straightforward execution plan, as shown in Figure 10-29.

Figure 10-29: Execution plan using indexes chosen by the optimizer.
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We see a series of Index Seek and Clustered Index Seek operators, joined together by 
Nested Loops operators. Suppose we're convinced that we can get better performance if 
we could eliminate the Index Seek on the HumanResources.Department table, and 
instead use that table's clustered index, PK_Department_DepartmentID. We could 
accomplish this using the INDEX() hint, as shown in Listing 10-34.

SELECT de.Name, 
       e.JobTitle, 
       p.LastName + ', ' + p.FirstName 
FROM HumanResources.Department AS de WITH (INDEX(PK_Department_
DepartmentID)) 
    JOIN HumanResources.EmployeeDepartmentHistory AS edh 
        ON de.DepartmentID = edh.DepartmentID 
    JOIN HumanResources.Employee AS e 
        ON edh.BusinessEntityID = e.BusinessEntityID 
    JOIN Person.Person AS p 
        ON e.BusinessEntityID = p.BusinessEntityID 
WHERE de.Name LIKE 'P%';

Listing 10-34

Figure 10-30 shows the resulting execution plan.

 Figure 10-30: An execution plan with forced index choices.

After the hint is added, we can see a Clustered Index Scan of one index replacing the Index 
Seek of the other index, just as we told the optimizer to do, although we didn't specify either 
seek or scan, through the use of the table hint. This change results in a slight improvement in 
performance in the query, with the execution time coming in at 103ms as opposed to 217ms 
without the hint. Interestingly, the number of reads for the query overall remained consistent 
at 1042, regardless of the index used.
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FORCESEEK/FORCESCAN
As we have seen throughout this chapter, it is possible to make some choices for the opti-
mizer, which can either hurt or enhance performance. One area that lots of people worry 
about is the use of indexes. Seeing an index scan leads many people to want to force an 
index seek in its place, working under the assumption that seeks are always better than scans. 
However, this is not always the case.

Nevertheless, we can use the FORCESEEK or FORCESCAN table hints to force the specified 
type of operator, without forcing the index used. It's rather like the reverse of an index hint, 
which forces the index but allows the optimizer to choose between scan or seek.

Let's take the query in Listing 10-35 as an example.

SELECT p.Name AS ComponentName, 
       p2.Name AS AssemblyName, 
       bom.StartDate, 
       bom.EndDate 
FROM Production.BillOfMaterials AS bom 
    JOIN Production.Product AS p 
        ON p.ProductID = bom.ComponentID 
    JOIN Production.Product AS p2 
        ON p2.ProductID = bom.ProductAssemblyID;

Listing 10-35

As you can probably guess from looking at the query, without a WHERE clause to provide any 
sort of filtering, scans have been used to retrieve the data from the tables in question. You can 
see this in the execution plan shown in Figure 10-31.

Figure 10-31: An execution plan using scans because of a lack of a WHERE clause.
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This is completely normal behavior considering the query in question. However, people 
really like to see those seeks. Looking at the plan, you can see that the highest estimated cost 
of any of the index operations is the scan against the BillOfMaterials table. Let's see if 
forcing a seek operation will improve performance.

SELECT p.Name AS ComponentName, 
       p2.Name AS AssemblyName, 
       bom.StartDate, 
       bom.EndDate 
FROM Production.BillOfMaterials AS bom WITH (FORCESEEK) 
    JOIN Production.Product AS p 
        ON p.ProductID = bom.ComponentID 
    JOIN Production.Product AS p2 
        ON p2.ProductID = bom.ProductAssemblyID;

Listing 10-36

Taking the choices for a scan away from the optimizer, it is forced to use a seek operation and 
that also forces other changes on the execution plan, as you can see in Figure 10-32.

Figure 10-32: Execution plan forcing a Seek operation through the table hint.

The scan of the BillOfMaterials table has been replaced with a seek. Also, the Hash 
Match operator has been replaced with a Nested Loops. The question is not what changes 
occurred in the plan, however. The question is, what happened to performance. The execu-
tion time went from about 145ms on average to about 290ms. The reads jumped from 34 to 
1160. Not only was the query slower because of the seek and the loops join, but the number 
of reads means that there will be a marked increase in contention for resources on a system 
under load.
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The FORCESCAN operator can be used to go the other way, changing a seek to a scan. Either 
of these table hints may be useful, depending on the circumstances. However, you must exer-
cise extreme caution in the use of all the table, query, and join hints.

Summary
While the optimizer makes very good decisions most of the time, it may sometimes make 
less than optimal choices. Taking control of the queries using table, join, and query hints, 
when appropriate, can often be the right choice. However, remember that the data in your 
database is constantly changing. Any choices you force on the optimizer through hints today, 
to achieve whatever improvement you're hoping for, may become a major pain in the future.

If you decide to use hints, test them prior to applying them, and remember to document their 
use in some manner so that you can come back and test them again periodically as your 
database grows and changes. As Microsoft releases patches and service packs, the behavior 
of the optimizer can change. Be sure to retest any queries using hints after an upgrade to your 
server. I intentionally demonstrated cases where the query hints hurt as well as help, as this 
simply reflects reality. Hints more often hurt performance than they help it. Use of these hints 
should be a last resort, not a standard method of operation.
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Plans

SQL Server can take advantage of a server's multiple processors, by spreading the processing 
of certain operations across the CPUs available to it. Firstly, lots of small queries can run at 
the same time, each on their own thread. These queries will just have normal execution plans. 
Secondly, a single query can execute across multiple threads. This latter case, the parallel 
execution of a single query, will result in a different execution plan, and these differences are 
our focus in this chapter.

Essentially, when the optimizer detects that its estimated cost for a plan exceeds the "cost 
threshold," beyond which parallelization of the query will benefit performance, it produces 
a parallel version of the plan. The work performed by any "parallelized" operators in the 
parallel plan can be distributed across multiple CPUs, the goal being that, by dividing the 
work into smaller chunks, the overall operation performs quicker.

For large-scale queries, and for queries using columnstore indexes, query parallelism is 
extremely desirable for performance. For smaller, OLTP-style queries, it can cause more 
problems than it solves. By understanding how to read parallelized plans, you'll start to 
understand how it affects the overall cost of the plan, which operators benefit most, and 
where the added overhead of parallelism might come into play.

This chapter focuses on the details of parallel execution of a single plan, and only on plans 
that use the traditional row mode execution model, where the operators pass around data row 
by row. As mentioned briefly in Chapter 8, columnstore indexes support a new type of query 
execution model, called batch mode, where operators pass around batches of rows rather 
than single rows. Chapter 12 will cover batch mode in detail, including parallel execution 
plans that use columnstore indexes.

Controlling Parallel Query Execution
SQL Server has two instance-wide configuration options that determine if, or when, the 
optimizer might generate parallel execution plans, and also control the parallel execution of 
queries by the engine. The max degree of parallelism (I'll sometimes use MAXDOP 
for brevity) setting determines the maximum number of processors that the SQL Server 
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execution engine can use when executing a parallel query, and the cost threshold for 
parallelism setting, which specifies the threshold, or minimum cost, at which SQL 
Server creates and runs parallel plans; the cost being measured in this case is the estimated 
cost of the execution plan.

Of course, parallel query execution requires SQL Server to have access to more than  
one processor. At compilation time, if the optimizer determines that only one processor is 
available, or that MAXDOP is set to 1, then it will not produce parallel plans. Otherwise, the 
optimizer will select a plan in the usual fashion and, if the estimated cost of that plan exceeds 
the cost threshold for parallelism value, it will produce a parallel version of  
the plan.

At runtime, the execution engine then determines across how many processors to parallelize 
the query, up to the maximum value defined by the instance-level MAXDOP setting, or by 
use of the MAXDOP query hint (see Chapter 10). Also, the engine must check with the OS to 
determine if sufficient threads (an operating system construct that allows multiple concurrent 
operations) are available for use, prior to launching a parallel process. Plans that are eligible 
for parallelism may not go parallel. If the execution engine decides that, even though a plan 
qualifies for parallel execution, there aren't enough resources to support it, then it will simply 
strip out the parallelism and run a serial version of the plan (Query Store is the only place 
you'll see both versions of the plan).

Max degree of parallelism
By default, MAXDOP is set to 0 (zero), which means that SQL Server can use all available 
processors to execute a query. If you wish to suppress parallel execution, you set this option 
to a value of 1. If you wish to specify the number of processors to use for a query execution, 
then you can set a value of greater than 1, and up to 64.

Without thorough measurement, and tested proof that query parallelism is always going  
to cause issues, I recommend leaving parallelism on, for most systems. However, I also 
recommend that you don't leave MAXDOP set to zero. Instead, you'll want to set it to a value 
greater than 1, but less than the total number of available processors, to prevent an expensive, 
parallelized query from blocking other queries, by "hogging" all available processors.

A very general recommendation is to set this value to half the number of physical cores  
on your machine, but this doesn't begin to cover all the subtlety and nuances of this topic. 
Determining a precise setting for MAXDOP requires precise knowledge of your operating 
system, your hardware, whether your system is virtualized and the type of workload that 
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your system runs. Microsoft offers some recommendations on how to determine the right 
MAXDOP setting for your system: https://bit.ly/2uwvUeI. Paul Randal and the SQLskills team 
also provide some very detailed recommendations, and punch holes in common myths on the 
topic: https://bit.ly/2GwQ9Pu. Between these two resources, you should be able to determine 
the right answer for your system.

You can query the current setting and determine the configuration of this option via the 
following scripts shown in Listing 11-1.

EXEC sys.sp_configure @configname = 'show advanced options', 
                      @configvalue = 1; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO 
--show the current value 
EXEC sys.sp_configure @configname = 'max degree of parallelism' 
--change value 
EXEC sys.sp_configure @configname = 'max degree of parallelism', 
                      @configvalue = 4; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO 
EXEC sys.sp_configure @configname = 'show advanced options', 
                      @configvalue = 0; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO

Listing 11-1

The first statement turns on the advanced options, necessary to access the degree of  
parallelism. The system is then reconfigured, necessary to actually activate the new setting. 
Then we query the configuration by passing the first parameter value and not the second to 
the system procedure, sys.sp_configure.

Figure 11-1: The max degree of parallelism set to the default value of 0.

https://bit.ly/2uwvUeI
https://bit.ly/2GwQ9Pu
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The run_value shows the current setting which, in this case, is the default value of 0. To 
change the value we call sys.sp_configure, passing two values, the setting we wish to 
change, max degree of parallelism, and the value we wish to change it to, 4. The 
script then resets the advanced options display.

If we were to query the setting again after running the script, we would see the run_value 
had changed to 4.

Cost threshold for parallelism
The optimizer assigns estimated costs to operators within the execution plan. These costs, 
at one point in the past, represented an estimation of the number of seconds each operation 
would take. Today, simply think of the cost as just that, estimated cost units. The accumulated 
values of each of the costs assigned to the operators is the estimated cost of the plan itself. 
If that estimated cost is greater than the cost threshold for parallelism, then that 
operation may be executed as a parallel operation.

The default value for the cost threshold for parallelism is 5. This was probably a 
good default value back in 1998, when it was first established for SQL Server 7. The number 
and power of processors, and the type of processors, all have changed radically since then, 
and I strongly advise you to change that value to something much higher. My rough recom-
mendation would be 25 or more for a reporting system or data warehouse, and 50 for an 
OLTP system. I make these choices because, in general, you're more likely to see large-scale 
data movement in reporting systems, where a parallel plan is more likely to benefit query 
processing. An OLTP system generally only deals with smaller data sets and therefore should 
be using its processors for lots of queries, not a single query.

Regardless, you should not leave the cost threshold for parallelism at the default 
value, and Listing 11-2 shows how to change it, using the same sys.sp_configure func-
tion as previously.

EXEC sys.sp_configure @configname = 'show advanced options', 
                      @configvalue = 1; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO 
EXEC sys.sp_configure @configname = 'cost threshold for 
parallelism', 
                      @configvalue = 50; 
GO 
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RECONFIGURE WITH OVERRIDE; 
GO 
EXEC sys.sp_configure @configname = 'show advanced options', 
                      @configvalue = 0; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO

Listing 11-2

Blockers of parallel query execution
A few code statements can force the entire plan to be serial, regardless of your settings for 
your MAXDOP or cost threshold:

• Scalar functions using T-SQL
• CLR multi-statement, table-valued, or user-defined functions that access data
• Some internal functions in SQL Server such as ERROR_NUMBER(),  

IDENT_CURRENT(), @@TRANCOUNT and others
• Accessing system tables
• Dynamic cursors.

There are also some T-SQL functions and objects that lead to parts of a plan executing in 
serial mode (this list can vary depending on the version of SQL Server):

• Recursive CTEs
• TOP
• Paging functions such as ROW_NUMBER
• Backward scans
• Multi-statement, table-valued, user-defined functions
• Global scalar aggregates.

The parts of any T-SQL statement using these objects and functions will prevent parallel 
execution within the plan for the parts of the plan that satisfy these functions.
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Parallel Query Execution

When the optimizer determines that a query could benefit from parallelization, it creates 
a version of the plan optimized for parallel execution. In this parallel plan, you'll see all 
the familiar operators you've seen previously in the book, except with the yellow "double 
arrow" icon, indicating that the work performed by the operator will be split across proces-
sors. In effect, these operators do the same work as in a serial plan, but on less data. You'll 
also see extra operators, which handle distribution of data across threads. In plans, these are 
called Parallelism operators, but they are often referred to as Exchange operators. These do 
the "marshaling" job of partitioning the workload into multiple streams of data, passing it 
through the various parallel operators, and gathering all the streams back together again. You 
can see an example of these in Figure 11-2.

Figure 11-2: Examples of parallel operators in an execution plan.

Most operators are not parallelism aware; they just do their normal work on whatever data 
they get; the only difference is that they will only process some proportion of the rows, 
rather than all of them, as they would in a serial plan. In fact, scans, and seeks when used to 
return ranges of consecutive rows, are the only operators that change their behavior between 
parallel and serial plans, and we'll discuss that in more detail shortly.
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Examining a parallel execution plan

We'll start with an aggregation query, of the sort that you might find in a data warehouse. If 
the data set this query operates against is very large, it might benefit from parallelism.

SELECT  so.ProductID, 
        COUNT(*) AS Order_Count 
FROM    Sales.SalesOrderDetail so 
WHERE   so.ModifiedDate >= '20140301' 
        AND so.ModifiedDate < DATEADD(mm, 3, '20140301') 
GROUP BY so.ProductID 
ORDER BY so.ProductID;

Listing 11-3

Figure 11-3 shows the estimated execution plan, which seems straightforward.

Figure 11-3: A plan that is executing in serial fashion.

There is nothing in this plan that we haven't seen before. One interesting point is that the 
optimizer decided to use the Hash Match operator, and then Sort the aggregated data, rather 
than the alternative, which would be to Sort the data emerging from the scan on SalesOr-
derDetail by ProductID and then use the Stream Aggregate operator. The reason is 
that the extra cost of sorting about 24 K rows in the latter case, rather than 178 in the former, 
outweighed any savings from using the cheaper aggregation operator.

Let's move on to see what happens if the optimizer decided to produce a parallelized version 
of his plan. In this simple example, the total cost of the plan is only 1.3 (you can see this from 
the Estimated Subtree Cost property of the SELECT operator, so I'll need to artificially 
lower the cost threshold for parallelism to 1.

EXEC sys.sp_configure @configname = 'show advanced options', 
                      @configvalue = 1; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO
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EXEC sys.sp_configure @configname = 'cost threshold for 
parallelism', 
                      @configvalue = 1; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO 
SET STATISTICS XML ON; 
SELECT so.ProductID, 
       COUNT(*) AS Order_Count 
FROM Sales.SalesOrderDetail AS so 
WHERE so.ModifiedDate >= 'March 3, 2014' 
      AND so.ModifiedDate < DATEADD(mm, 
                                    3, 
                                    'March 1, 2014') 
GROUP BY so.ProductID 
ORDER BY so.ProductID; 
SET STATISTICS XML OFF; 
GO 
EXEC sys.sp_configure @configname = 'cost threshold for 
parallelism', 
                      @configvalue = 5; --your value goes here 
GO 
RECONFIGURE WITH OVERRIDE; 
GO 
EXEC sys.sp_configure @configname = 'show advanced options', 
                      @configvalue = 0; 
GO 
RECONFIGURE WITH OVERRIDE; 
GO

Listing 11-4

Figure 11-4 shows the execution plan.

Figure 11-4: A plan that has gone to parallel execution.

Let's start on the left, with the SELECT operator. If you look at its Properties sheet, you can 
see the Degree of Parallelism property, which in this case is 4, indicating that the execution 
of this query was split between each of the four available processors. If there had been exces-
sive load on the system at the time of execution, the plan might not have gone parallel, or, 
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it might have used fewer processors. The Degree of Parallelism property is a performance 
metric, captured at runtime and displayed with an actual plan, and so will reflect accurately 
the parallelism used at runtime.

Figure 11-5: Properties of the SELECT operator showing the Degree of Parallelism.

Looking at the graphical execution plan, we'll start from the right and follow the  
data flow. First, we find a Clustered Index Scan operator. Figure 11-6 shows part  
of its Properties sheet.

Figure 11-6: Properties of the Clustered Index Scan showing parallel artifacts.
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The Parallel property is set to True. More interesting is that the Number of Executions 
value indicates that this operator was called 4 times, once for each thread. At the very top of 
the sheet, you can that 23883 rows matched our predicate on ModifiedDate, and we can 
see how these rows were distributed across four threads, in my case quite unevenly.

Scans and seeks are among the few operators that change their behavior between parallel and 
serial plans. In parallel plans, rows are provided to each worker thread using a demand-based 
system where the operator requests rows from a Storage Engine feature called the Parallel 
Page Supplier, which responds to each request by supplying a batch of rows to any thread 
that asks for more work (this feature is not part of the query processor, so it doesn't appear in 
the plan).

The data passes on to a Hash Match operator, which is performing an aggregate count for 
each ProductID value, as defined by the GROUP BY clause within the T-SQL, but only 
for each row on its thread (the Hash Match is not parallelism aware). The result will be 
one row for each ProductID value that appears on a thread (plus its associated count). It 
is likely that there will be other rows for the same ProductID in the other threads, so the 
resulting aggregates are not the final values, which is why, in the execution plans shown in 
Figure 11-4, the logical operation performed by the Hash Match is listed as a Partial Aggre-
gate, although in every other respect the operator functions in the same way as a Hash Match 
(Aggregate).

If you inspect the Properties of the Hash Match (Partial Aggregate) operator (Figure 11-7), 
you'll see that it was called 4 times, and again you will see the distribution of the partially 
aggregated rows across the threads.

Remember that you can, and likely will, see different row counts at this stage of the plan, 
depending on the degree of parallelism you see in your tests, and on how the rows are distrib-
uted across those threads. There are 178 distinct ProductID values in the selected data. If 
all rows for each ProductID ended up on the same thread, then you'd see the theoretical 
minimum total of 178 rows, because the partial aggregate would already be the final aggre-
gate. The theoretical maximum number of rows occurs when every ProductID value 
occurs on every thread. If there are 4 threads, as in my case, the theoretical maximum is 
4*178 = 712 rows. I see 470 rows, nicely in between the theoretical minimum and maximum.
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Figure 11-7: Properties of the Hash Match showing parallel artifacts.

The rows pass to a Parallelism operator (often referred to, remember, as an Exchange oper-
ator), which implements the Repartition Streams operation. You can think of this operator, 
generally, as being responsible for routing rows to the right thread. Sometimes this is done 
just to balance the streams, trying to make sure that a roughly equal amount of work is 
performed by each stream. Other times, its main function is to ensure that all rows that need 
to be processed by a single instance of an operator are on the same thread. This is an example 
of the latter; the operator is used to ensure that the columns with matching ProductID 
values are all on the same thread, so that the final, global aggregation can be performed. We 
can see that in the properties the partitioning type is Hash (there are other partitioning types 
too, such as Round Robin and Broadcast) and the partition column is ProductID.
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Figure 11-8: Partition Column properties of the Repartition Streams operation.

Figure 11-9 shows the results of this "rerouting" in the operator properties.

Figure 11-9: Rows rearranged inside the threads.
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You can see the Actual Number of Rows property, and how the threads have been rear-
ranged with a roughly even distribution of rows. A more even distribution of data across 
threads was a happy side-effect in this case. However, if the ProductID values had not 
been spread equally in the hash algorithm used, then this could just as easily have added 
more skew.

Conceptually, you can imagine the plan, up to this point, as looking like Figure 11-10. Again, 
the exact row counts will differ for you, but it demonstrates the execution of the query on 
multiple threads, and the distribution, then repartitioning, of the rows across those threads.

Figure 11-10: An imaginary example of what is happening in parallel execution.

After the partial aggregation and repartitioning, all rows for a given ProductID value  
will be on the same thread, which means that each of the four threads will have up to four 
rows per ProductID. The rows need to be aggregated again to complete the "local-global 
aggregation."

Now that the number of rows is reduced substantially by the partial aggregation, the opti-
mizer estimates that it is cheaper to sort the data into the correct order so that a Stream 
Aggregate operator can do the final aggregation, rather than use another Hash Match. A 
Sort operator is one that benefits greatly from parallelization, and often shows a significant 
reduction in total cost, compared to the equivalent serial Sort.
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The next operator is another Parallelism operator, performing the Gather Streams opera-
tion. The function of this operator is somewhat self-explanatory, in that it gathers the streams 
back together, to present the data as a single data set to the query or operator calling it. The 
output from this operator is now a single thread of data. The one, very important, property 
that I will call out here is the Order By property, as shown in Figure 11-11.

Figure 11-11: Properties of the Parallelism operator showing the Order By property.

In the previous Parallelism operator (Repartition Streams), this property was absent, 
meaning that it just read each of the input threads and sent packets of rows on to each output 
thread as soon as it could. The incoming order of the data is not guaranteed to be preserved.

However, if the order is preserved, then you will see different behavior. If the data in each 
thread is already in the correct order, then an order-preserving exchange operator will wait 
for data to be available on all inputs, and merge them into a single stream that is still in the 
correct order. This means that an order-preserving Exchange can be a little slower than one 
that doesn't preserve order. However, because parallelized sorting is so efficient, the opti-
mizer will usually favor a plan with a parallel sort, and an order-preserving Parallelism 
operator, over a plan with a non-order-preserving Parallelism operator, and a serial sort of all 
the data.

From this point on, the plan is just a normal, "serial" plan, working on a single thread of data, 
which passes next to the Compute Scalar operator, which converts the aggregated column to 
an int. This implies that internally, during the aggregation phases of the plan, that value was 
a bigint, but it's unclear. Finally, the data is returned through the SELECT operator.
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Are parallel plans good or bad?
Parallelism comes at a cost. It takes processing time and power to divide an operation into 
various threads, coordinate the execution of each of those threads, and then gather all the 
data back together again. If only a few rows are involved, then that cost will far outweigh the 
benefits of putting multiple CPUs to work on the query.

However, given how quickly operator costs increase, and the cost of certain operators in 
particular (such as Sorts), with the number of rows to process, it's likely that parallelism 
will make a lot of sense for any long-running, processor-intensive, large-volume queries, 
including most queries that use columnstore indexes. You'll see this type of activity mainly in 
reporting, warehouse, or business intelligence systems.

In an OLTP system, where the majority of the transactions are small and fast, parallelism 
can sometimes cause a query to run slower that it would have run with a serial plan. Some-
times, it can cause the parallelized query to run a bit faster, but the extra resources used cause 
queries on all other connections to run slower, reducing overall performance of the system. 
Most of the time the optimizer does a good job of avoiding these situations, but it can some-
times make poor choices. However, even in OLTP systems, some plans, such as for reporting 
queries, will still benefit from parallelism. The general driving factor here is the estimated 
costs of these plans, which is why setting the cost threshold for parallelism 
setting becomes so important.

There is no hard-and-fast rule for determining when parallelism may be useful, or when 
it will be costlier. The best approach is to observe the execution times and wait states of 
queries that use parallelism, as well as the overall workload, using metrics such as "requests 
per second." If the system deals with an especially high level of concurrent requests, then 
allowing one user's query to parallelize and occupy all available CPUs will probably cause 
blocking problems. Where necessary, either change the system settings to increase the cost 
threshold and MAXDOP, or use the MAXDOP query hint in individual cases.

It all comes down to testing to see if you are gaining a benefit from the parallel processes, 
and query execution times are usually the surest indicator of this. If the time goes down 
with MAXDOP set to 1 during a test, that's an indication that the parallel plan is hurting you, 
but it doesn't mean you should disable parallelism completely. You need to go through the 
process of choosing appropriate settings for Max Degree of Parallelism and Cost 
Threshold for Parallelism, and then measure your system performance and  
behaviors with parallel plans executing.
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Summary
The chapter explained the basics of how you can read through a parallel execution plan. 
Parallelism doesn't fundamentally change what you do when reading execution plans, it  
just requires additional knowledge and understanding of a few new Parallelism operators, 
and the potential impact on other operators in the plan, so you can start to see what types  
of queries really benefit, and to spot the cases where the added overhead of parallelism 
becomes significant.

Parallel execution of queries can be a performance enhancer. It can also hurt performance. 
You need to ensure that you've set your system up correctly, both the Max Degree of 
Parallelism and the Cost Threshold for Parallelism. With those values 
correctly set, you should benefit greatly by limiting the execution of parallel queries to those 
that really need it.
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Introduced with the columnstore index in 2012, batch mode processing is a new way for the 
query engine to process queries, allowing it to pass batches of rows between operators, rather 
than individual rows, which can radically improve performance in some situations.

For many queries that use columnstore indexes, parallel execution is desirable for perfor-
mance. As a result, batch mode processing tends to be discussed together with parallel 
processing, but in fact parallel execution is not required for all types of batch mode 
processing, and batch mode is available in non-parallel execution in SQL Server 2016 and 
later, as well as in Azure SQL Database.

Elsewhere in the book, such as when we discussed Adaptive Joins back in Chapter 4, you've 
seen some evidence of the row or batch mode processing in the properties of operators,  
but here we're going to discuss in detail what it is and how it works, the characteristics of 
execution plans for queries that use batch mode and, finally, some of its limitations.

At the time of writing, only tables with columnstore indexes support this new batch mode 
execution model, and so this chapter will only discuss execution plans for queries that access 
tables with a columnstore index, and execute in batch mode. However, Microsoft recently 
announced that an upcoming release of SQL Server will also introduce batch mode to 
rowstore queries, so this type of processing is going to expand.

Batch Mode Processing Defined
The traditional processing mechanism, row mode, has been described throughout the book. 
An operator will request rows from the preceding operator, process each row that it receives 
and then pass that row on to the next operator as it requests rows (or, in the case of a blocking 
operator, request all input rows one by one, and then return all result rows one by one). This 
constant request negotiation is a costly operation within SQL Server. It can, and does, slow 
things down, especially when we start dealing with very large data sets.

Batch mode processing reduces the frequency of the negotiation process, thereby increasing 
performance. Instead of passing along individual rows, operators pass rows on in batches, 
generally 900-row batches, and then only the batches are negotiated. So, if we assume 9,000 
rows moving between operators, instead of 9,000 negotiations to move the rows, you'll 
see 10 negotiations (9,000 rows / 900 = 10 batches), radically reducing the overhead for 
processing the data.
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The batch mode size won't always be 900 rows; that is the value provided by Microsoft 
as guidance. However, it can vary as it's largely dependent on the number and size of the 
columns being passed through the query. You'll see some examples where the batch size is 
less than 900, but I've yet to see a case where it is more than 900 rows in a batch, although 
I've seen no evidence that 900 is a hard maximum, and you may see different behaviors, 
depending on the SQL Server version.

Plan for Queries that Execute in Batch Mode
As discussed in Chapter 8, columnstore indexes are designed to improve workloads that 
involve a combination of very large tables (millions of rows), and analysis, reporting and 
aggregation queries that operate on all rows, or on large selections. It is for these types of 
queries that batch mode execution can really improve performance, rather than typical OLTP 
queries that process single rows or small collections of rows.

We're going to focus on how row and batch mode processing appear in execution plans, and 
how you can determine which processing mode you're seeing, again based on information 
supplied through the execution plan.

To get started with batch mode, and demonstrate the resulting changes in behavior within 
execution plans, we'll need to create a columnstore index on a pretty big table. Fortunately, 
Adam Machanic has posted a script that can create a couple of large tables within Adventure-
Works for just this sort of testing. You can download the script from http://bit.ly/2mNBIhg.

With the larger tables in place, Listing 12-1 creates a nonclustered columnstore index on the 
bigTransactionHistory table.

CREATE NONCLUSTERED COLUMNSTORE INDEX TransactionHistoryCS 
ON dbo.bigTransactionHistory 
( 
    ProductID, 
    TransactionDate, 
    Quantity, 
    ActualCost, 
    TransactionID 
);

Listing 12-1

http://bit.ly/2mNBIhg
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We'll start off with a simple query that groups information together for analysis, as shown in 
Listing 12-2.

SELECT th.ProductID, 
       AVG(th.ActualCost), 
       MAX(th.ActualCost), 
       MIN(th.ActualCost) 
FROM dbo.bigTransactionHistory AS th 
GROUP BY th.ProductID;

Listing 12-2

Figure 12-1 shows the actual execution plan.

 Figure 12-1: The Columnstore Index Scan operator.

On my system, the database compatibility level is 140, and the cost threshold for 
parallelism is 50 (the estimated cost of the serial plan is just under 25; see the Esti-
mated Subtree Cost property of the SELECT operator). If your compatibility level setting 
is different, or your cost threshold setting is below 25, then you may see a parallelized 
version of the plan.

Following the flow of data from right to left, the first operator is the Columnstore Index 
Scan (described in Chapter 8). There is nothing in Figure 12-1 to indicate visually whether 
this operator is using batch mode or row mode, but the Properties sheet, shown in Figure 
12-2 reveals the pertinent pieces of information.
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 Figure 12-2: Batch mode in the properties of the Columnstore Index Scan operator.

As you can see in Figure 12-2, there is an estimated and actual execution mode that will 
designate an operator as performing in batch mode or not. This operator was estimated to use 
batch mode and then, when the query ran, batch mode was used. Prior to SQL Server 2016, 
with a non-parallel plan such as this, batch mode was not available for serial plans such as 
this (more on this shortly).

This operator scanned the whole table (over 31 million rows) and returned to the Hash 
Match (Aggregate) operator 29,666,619 rows, in 32,990 batches. The remaining 1,596,982 
were aggregated locally (due to aggregate pushdown, as described in Chapter 8); the results 
of this local aggregation were injected directly into the Hash Match (Aggregate) operator's 
results. Aggregation was on the ProductID. Figure 12-3 shows the tooltip for the Hash 
Match, which will also reveal whether operators in the plan used batch mode processing.
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Figure 12-3: Portion of the Hash Match operator's tooltip.

The Hash Match operator also used batch mode processing. It received almost 30 million 
rows in 32990 batches and, after aggregation, returned 25,200 rows in 28 batches. So, there 
were about 899 rows per batch coming in and 846 going out, both close to the 900 value 
stated earlier.

Batch mode prior to SQL Server 2016
If we change the compatibility level of the database from the SQL Server 2017 value of 140 
to the SQL Server 2014 value of 120, it can change the behavior of our batch mode opera-
tions, because fewer operations supported batch mode in earlier versions of SQL Server.

ALTER DATABASE AdventureWorks2014 
SET COMPATIBILITY_LEVEL = 120;

Listing 12-3

Now, when we rerun the query from Listing 12-2, we'll get a parallelized execution plan, as 
shown in Figure 12-5.

Figure 12-4: A parallel execution plan against a columnstore index.
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The primary, visible difference between the plan in Figure 12-4 and the one in Figure 12-1 is 
the addition of the Parallelism (Gather Streams) operator that pulls parallel execution back 
into a single data stream.

Prior to SQL Server 2016, it was very common for queries to never go into batch mode 
unless they were costly enough to run in parallel, because it was a requirement of batch mode 
processing that the plan be parallel. In this instance, because batch mode was not available to 
the serial plan, the cost of that serial plan was high enough that the cost threshold for 
parallelism was exceeded, and the plan went parallel. If you want to verify this, you can 
add the OPTION (MAXDOP 1) hint to Listing 12.2, and capture the actual plan, and you'll 
see that the cost of the serial plan is now approximately 150. You'll also notice that the opti-
mizer no longer chooses the columnstore index, and that's because the estimated cost of using 
it in a serial plan is even higher (approximately 200). You can verify this by adding an index 
hint (see Chapter 10) to force use of the columnstore index.

More generally, depending on the query, you may also see different costs in different SQL 
Server versions and compatibility modes, due to changes in both the options that the query 
optimizer can use and the cardinality estimation engine in use.

In SQL Server 2012 and 2014 (and corresponding compatibility levels), a query below  
the threshold for parallelism would never use batch mode. In those earlier SQL Server 
versions, if you wanted to see batch mode within your queries, you would need to lower  
the cost threshold for parallelism. If that wasn't viable, you would be forced to modify the 
query to add an undocumented trace flag, 8649, that artificially lowers the cost threshold for 
parallelism to zero, making sure that any query will run in parallel. Listing 12-4 shows how 
to use the QUERYTRACEON 8649 hint to force parallel execution.

SELECT th.ProductID, 
       AVG(th.ActualCost), 
       MAX(th.ActualCost), 
       MIN(th.ActualCost) 
FROM dbo.bigTransactionHistory AS th 
GROUP BY th.ProductID 
OPTION(QUERYTRACEON 8649);

Listing 12-4

Before we continue, let's change the compatibility mode back to 140.
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ALTER DATABASE AdventureWorks2014 
SET COMPATIBILITY_LEVEL = 140;

Listing 12-5

Mixing columnstore and rowstore indexes
The previous section showed how execution plans exposed batch mode processing. Your 
next question might be: what happens when you're mixing columnstore and rowstore indexes 
within the same query? In fact, batch mode works regardless of the type of index used to read 
the rows. The only requirement for batch mode is that at least one of the tables in the query 
must have a columnstore index (even if it's not useful for the query). As long as this is true 
then you may see plans with some operators using row mode and some using batch mode 
processing, depending on the operators involved. Let's see an example that joins rowstore 
and columnstore data.

SELECT bp.Name, 
       AVG(th.ActualCost), 
       MAX(th.ActualCost), 
       MIN(th.ActualCost) 
FROM dbo.bigTransactionHistory AS th 
    JOIN dbo.bigProduct AS bp 
        ON bp.ProductID = th.ProductID 
GROUP BY bp.Name;

Listing 12-6

Figure 12-5 shows the resulting execution plan (if your cost threshold for paral-
lelism is 26 or more).

Figure 12-5: An execution plan combining rowstore and columnstore data.
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Once again, if you inspect the properties of the Columnstore Index Scan, you'll see that it is 
using batch mode execution, and that it again uses an early aggregation enhancement called 
aggregate pushdown, where some (or sometimes all) of the aggregation is done by the scan 
itself, as the data is read. Doing this reduces the number of rows returned to the Hash Match 
by about 1.5 million.

The data passes to a Hash Match (Aggregate) operator which, again, is using batch mode 
execution. You might be surprised to see not one but two aggregation operators in this plan, 
for what is a relatively simply query. This is another example of the optimizer opting to use 
both local and global aggregation. We also saw a "local-global" aggregation in Chapter 11 
(Listing 11-4), as part of a row-mode parallel plan. In that case, the Hash Mash operator was 
clearly marked as (Partial Aggregate), because it was only working on the data in this one 
thread, but it behaved in the same way as a normal aggregate operator.

Here, the Defined Values and Hash Key Build properties of the Hash Match (Aggregate) 
offer some insight into what is occurring. Figure 12-6 shows the Defined Values.

Figure 12-6: Defined Values showing partial aggregation.

You can see that a value called [partialagg1005] is created, consisting of the aggregation 
of several columns in the data set. The aggregation is being performed on the ProductID 
column, as shown in the Hash Keys Build property.
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Figure 12-7: Local aggregation based on ProductID.

Based on the output from the Columnstore Index Scan index, the optimizer has decided that 
an early aggregation on ProductID will make the later aggregation, by the product Name 
as we defined in the T-SQL, more efficient. Consequently, the number of rows returned to 
the subsequent join operation is reduced from approximately 30 million rows (from the base 
table) to just 25200 (the number of distinct ProductID values), as shown by the Actual 
Number of Rows property.

This data stream is joined with rows in the bigProduct table, based on matching 
ProductID values. It uses an Adaptive Join (see Chapter 4), again executing in batch 
mode. The Actual Join Type used is Hash Match, with the Clustered Index Scan as the 
lower input (chosen because the number of rows returned exceeds the Adaptive Threshold 
Rows property value). The Clustered Index Scan used row mode processing.

At this point the product Name column values are available and, after a batch mode Sort 
operator, we see the Stream Aggregate operator, which uses the partial aggregates to 
perform the final "global" aggregation on Name.

Figure 12-8: Global aggregation for final values.

The Stream Aggregate operator used row mode processing, since it does not support  
batch mode.
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Batch mode adaptive memory grant
Finally, for batch mode processing, let's look at one more query, a stored procedure as shown 
in Listing 12-7.

CREATE OR ALTER PROCEDURE dbo.CostCheck (@Cost MONEY) 
AS 
SELECT p.Name, 
       AVG(th.Quantity) 
FROM dbo.bigTransactionHistory AS th 
    JOIN dbo.bigProduct AS p 
        ON p.ProductID = th.ProductID 
WHERE th.ActualCost = @Cost 
GROUP BY p.Name;

Listing 12-7

Listing 12-8 shows how we could execute the CostCheck procedure.

EXEC dbo.CostCheck @Cost = 0;

Listing 12-8

Figure 12-9 shows the execution plan.

Figure 12-9: Execution plan with a Warning indicator.

You'll see the warning there on the SELECT operator of the plan. While we can see the 
warning from the tooltip, it will only show the first warning. If there is more than one 
warning, it's best to use the properties. Figure 12-10 shows the Warnings section of the  
properties for the SELECT.
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 Figure 12-10: MemoryGrantWarning properties.

The full text of the warning is as follows:

The query memory grant detected "ExcessiveGrant," which may impact 
the reliability. Grant size: Initial 80840 KB, Final 80840 KB, Used 
3192 KB.

The initial estimate on rows from the columnstore index was 12.3 million, but the actual 
was only 10.8 million. From there, the Hash Match operator estimated that the aggregation, 
based on the statistics sampled, would return 25200 rows. The Hash Match (Aggregate), 
in this example, uses a hash table optimized for aggregation, because it stores GROUP BY 
values and intermediate aggregation results, instead of storing all input rows unchanged, as 
other Hash Match operators do. This means that its memory grant is based on the estimated 
number of rows produced (25200), not read. However, it only produced 10 K rows. This 
over-estimation also affects the memory grant for the subsequent Adaptive Join which, until 
the end of its build phase, will require memory at the same time as the Hash Match, and the 
memory grant for the Sort.

In short, these over-estimated row counts meant that a larger amount of memory was 
requested, 80840, than was consumed, 3192. However, while SQL Server often allows  
a large margin for error in its memory allocations to prevent spills, these relatively  
modest over-estimations don't quite explain why the memory grant estimate is quite  
so big in this case.

Starting in SQL Server 2017 and in Azure SQL Database, the query engine can now adjust 
the memory grant for subsequent executions, either up or down, based on the values of the 
previous executions of the query. In short, if we re-execute the query, the memory allocation, 
during batch mode processing, will adjust itself on the fly. Let's take an example. Assuming 
I've just executed Listing 12-8, I'm going to execute the stored procedure again, supplying a 
different value for the @Cost parameter.
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EXEC dbo.CostCheck @Cost = 15.035;

Listing 12-9

This query has a similar result set. Executing this will result in reusing the execution plan 
already in cache. However, because we're doing batch mode processing, the memory grant 
can be adjusted on subsequent executions based on similar processes that enable the adaptive 
join. The plan now looks as shown in Figure 12-11.

Figure 12-11: Execution plan without a warning.

The warning has been removed, even though the plan has not been recompiled, statistics 
haven't been adjusted, or any of the other processes that would normally result in a change to 
the memory allocation. The memory grant has been adjusted on the fly as we can see in the 
SELECT operator properties in Figure 12-12.I've also expanded the Parameter List prop-
erty, to verify that the optimizer has reused the plan compiled for a Cost of zero.

Figure 12-12: Properties showing adjusted memory.
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The adaptive memory can work in either direction, either under- or over-calculated memory 
allocations, to adjust the memory during subsequent executions of similar allocations. 
However, this could lead to thrashing if a query has lots of different types of allocations so, at 
some point, automatically, the adaptive memory will be turned off. This is tracked on a per-
plan basis. It can be turned off for one query and still works for other queries, and it will be 
turned on again every time the plan for a query is recompiled.

You can't tell directly from a single plan whether adaptive memory has been turned off for 
that plan. You would have to set up monitoring through Extended Events to observe that 
behavior. If you suspect it's happened, you can compare the values of the memory allocation 
from one execution to the next. If they are not changing, even though the query experiences 
spills or large over-allocation, then the adaptive memory grant has been disabled.

While adaptive memory is only available currently with batch mode processing, Microsoft 
has stated that they will enable row mode adaptive memory processing at some point in  
the future.

Loss of Batch Mode Processing
SQL Server 2017, when dealing with columnstore indexes, has a very heavy bias towards 
using batch mode processing for all, or at least part, of any query executed against the 
columnstore index. If you're working on SQL Server 2014 or 2016, then you'll find that 
certain of the following operations will not run in batch mode:

• UNION ALL
• OUTER JOIN
• IN/EXISTS or NOT IN/NOT EXISTS
• OR in WHERE
• Aggregation without GROUP BY
• OVER

You will need to check the actual execution plan, because it's going to show whether the 
operators within the plan used batch mode or if they went to row mode. However, on  
testing all these in SQL Server 2017, the plan always went, in whole or in part, to batch  
mode processing.
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Summary
The new batch mode execution mode means that the query engine can pass around large 
groups of rows at once, rather than moving data row by row. In addition, there are some 
specific performance optimizations that are only available in batch mode.

For now, batch mode comes with certain preconditions. It currently only works with queries 
on tables that have a columnstore index, but that is going to change in the future. In older 
SQL Server versions, batch mode is supported by a relatively limited set of operators.

Batch mode can offer huge performance benefits when processing large data sets, but queries 
that perform point lookups and limited range scans are still better off in row mode.
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Behind each of the execution plans we've been examining up to this point in the book is 
XML. An "XML plan" is not in any way different from a graphical plan; it contains the same 
information you can find in the operators and properties of a graphical plan. XML is just a 
different format in which to view that same plan. If we save a plan, it will be saved in its 
native XML format, which makes it easy to share with others.

I would imagine that very few people would prefer to read execution plans in the raw 
XML format, rather than graphical. Also, the XML having received barely a mention in the 
previous twelve chapters of this book, it should be clear that you don't need to read XML to 
understand execution plans. However, there are a few cases where access to it will be useful, 
which I'll highlight, and then we'll discuss the one overriding reason why you may want to 
use the raw XML data: programmability. You can run XQuery T-SQL queries against XML 
files and XML plans. In effect, this gives us a direct means of querying the plans in the  
Plan Cache.

A Brief Tour of the XML Behind a Plan
The easiest way to view the XML for any given plan in SSMS is simply to right-click on any 
graphical plan and select Show Execution Plan XML from the context menu.

If required, you can capture the XML plan programmatically, by encapsulating the batch 
within SET SHOWPLAN_XML ON/OFF commands, for the estimated plan, or SET STATIS-
TICS XML ON/OFF for the actual plan (more on this later).

The XML for an estimated plan
Display the estimated plan for the query in Listing 13-1, which retrieves some details for 
customers in the state of New York..

SELECT c.CustomerID, a.City, s.Name, st.Name 
  FROM Sales.Customer AS c 
    JOIN Sales.Store AS s 
      ON c.StoreID = s.BusinessEntityID 
    JOIN Sales.SalesTerritory AS st 
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      ON c.TerritoryID = st.TerritoryID 
    JOIN Person.BusinessEntityAddress AS bea 
      ON c.CustomerID = bea.BusinessEntityID 
    JOIN Person.Address AS a 
      ON bea.AddressID = a.AddressID 
    JOIN Person.StateProvince AS sp 
      ON a.StateProvinceID = sp.StateProvinceID 
  WHERE st.Name = 'Northeast' AND sp.Name = 'New York'; 
GO

Listing 13-1

Figure 13-1 shows the usual graphical plan.

Figure 13-1: Execution plan for New York state customers query.

Right-click in any white space area of the plan and choose Show Execution Plan XML to 
get to the XML behind this estimated plan. The results, even for our simple query, are too 
large to output here, and Figure 13-2 just shows the opening section. Content is often added 
in new SQL Server versions, and the order of attributes, and sometimes elements, can differ 
between versions, so don't worry if it looks different on your system.
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Figure 13-2: The XML of an execution plan.

Right at the start, we have the schema definition. The XML has a standard structure, 
consisting of elements and attributes, as defined and published by Microsoft. A review  
of some of the common elements and attributes and the full schema is available at  
https://bit.ly/2BU9Yhf .

Listed first are the BatchSequence, Batch, and Statements elements. In this 
example, we're only looking at a single batch and a single statement, so nothing else  
is displayed.

https://bit.ly/2BU9Yhf
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Next, as part of the StmtSimple element, we see the text of the query followed by a list of 
attributes of the statement itself. After that, the StatementSetOptions element shows 
the database-level options that were in force. Listing 13-2 shows the StmtSimple and 
StatementSetOptions for the estimated plan.

<StmtSimple StatementText="SELECT c.CustomerID, a.City, s.Name, 
                           st.Name FROM Sales.Customer AS c  
                           JOIN Sales.Store AS s ON c.StoreID = 
s.BusinessEntityID 
                           JOIN Sales.SalesTerritory AS st 
                            …etc… 
                           WHERE st.Name = 'Northeast'AND sp.Name = 
'New York'" 
            StatementId="1" StatementCompId="1" 
StatementType="SELECT" 
            StatementSqlHandle="0x0900A7CAC098F11600D1596466
7F6395453000000 …" 
            DatabaseContextSettingsId="3" ParentObjectId="0" 
            StatementParameterizationType="0" 
RetrievedFromCache="true" 
            StatementSubTreeCost="1.04758" StatementEstRows="1" 
            SecurityPolicyApplied="false" StatementOptmLevel="FULL" 
            QueryHash="0x6F422E0A48C0E2DA" QueryPlanHash="0xBF47C49
83DC8361D" 
             StatementOptmEarlyAbortReason="TimeOut" 
             CardinalityEstimationModelVersion="140"> 
  <StatementSetOptions QUOTED_IDENTIFIER="true" ARITHABORT="true" 
                       CONCAT_NULL_YIELDS_NULL="true" ANSI_
NULLS="true" 
                       ANSI_PADDING="true" ANSI_WARNINGS="true" 
                       NUMERIC_ROUNDABORT="false"> 
  </StatementSetOptions>

Listing 13-2

Next is the QueryPlan element, which shows some plan- and optimizer-level properties 
(the OptimizerStatsUsage element is collapsed).

<QueryPlan NonParallelPlanReason="CouldNotGenerateValidParallelPl
an" 
            CachedPlanSize="104" CompileTime="10" CompileCPU="10" 
            CompileMemory="1160"> 
  <MemoryGrantInfo SerialRequiredMemory="2048" 
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SerialDesiredMemory="2632" /> 
  <OptimizerHardwareDependentProperties EstimatedAvailableMemoryGra
nt="157286" 
                                        EstimatedPagesCached="19660" 
                                        EstimatedAvailableDegreeOfP
arallelism="2" 
                                        MaxCompileMemory="1475656" 
/> 
  <OptimizerStatsUsage>…</OptimizerStatsUsage>

Listing 13-3

Collectively, Listings 13-2 and 13-3 show the same information available to us by looking at 
the properties of the first operator, in this case a SELECT, in the graphical plan. You can see 
information such as the CompileTime, the CachedPlanSize and the Statement-
OptmEarlyAbortReason. These get translated to Compile Time, Cached Plan Size, 
and Reason for Early Termination of Optimization when you're looking at the graphical 
plan.  As always, some of the values in your XML (for estimated costs and row counts, for 
example) may differ from those shown here.

Within the QueryPlan element is a nested hierarchy of RelOp elements, each one 
describing an operator in the plan and its properties. The RelOp elements are listed in the 
order in which they are called, akin to reading a graphical plan left to right, so in Figure 13-2 
you can see that the very first operator called, with a NodeId of "0," is a Nested Loops 
operator, followed by another Nested Loops, with a NodeId of "1," and then an Index Seek 
on the SalesTerritory table, and so on.

XML data is more difficult to take in, all at once, than the graphical execution plans, but 
you can expand and collapse elements using the "+" and "–" nodules down the left-hand 
side, and in doing so, the hierarchy of the plan becomes somewhat clearer. Nevertheless, 
finding specific operators in the XML is not easy, especially for complex plans. If you 
know the NodeId of the operator (from the graphical plan) then you can do a Ctrl-F for 
NodeID="xx."

Listing 13-4 shows the properties of the first Nested Loops join (reformatted somewhat  
for legibility).

<RelOp NodeId="0" PhysicalOp="Nested Loops" LogicalOp="Inner Join" 
EstimateRows="1" 
       EstimateIO="0" EstimateCPU="5.9304e-005" AvgRowSize="149" 
       EstimatedTotalSubtreeCost="1.04758" Parallel="0" 
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EstimateRebinds="0" 
       EstimateRewinds="0" EstimatedExecutionMode="Row">

Listing 13-4

After that, we see a nested element, OutputList, showing the data returned by this oper-
ator (I've reformatted it, and reduced nesting levels, for readability). This operator, as you 
would expect, returns values for all the columns requested in the SELECT list of our query.

<OutputList> 
  <ColumnReference Database="[AdventureWorks2016]" Schema="[Sales]" 
                    Table="[Customer]" Alias="[c]" 
Column="CustomerID" /> 
  <ColumnReference Database="[AdventureWorks2016]" Schema="[Sales] 
                 "  Table="[Store]" Alias="[s]" Column="Name" /> 
  <ColumnReference Database="[AdventureWorks2016]" Schema="[Sales]" 
                    Table="[SalesTerritory]" Alias="[st]" 
Column="Name" /> 
  <ColumnReference Database="[AdventureWorks2016]" 
Schema="[Person]" 
                    Table="[Address]" Alias="[a]" Column="City" /> 
</OutputList>

Listing 13-5

For complex plans, I find this a relatively easily digestible way to see all the columns and 
their attributes returned.

After that we see the NestedLoops element, which contains elements for specific prop-
erties of this operator, as shown in Listing 13-6. In this case, we can see that this operator 
resolves the join condition using OuterReferences (see Chapter 4 for a full description). 
Below that, I've included the collapsed version for the two inputs to the first operator, the 
outer input being another NestedLoops (with NodeId="1"), and the inner input a  
Clustered Index Seek (NodeId="14"), which is the last operator called in this plan.

The StoreID column values returned by the outer input are pushed down to the inner input, 
where they are used to perform a Seek operation on the Store table to return the Name 
column for matching rows.



380

Chapter 13: The XML of Execution Plans

  <NestedLoops Optimized="0"> 
    <OuterReferences> 
      <ColumnReference Database="[AdventureWorks2016]" 
Schema="[Sales]" 
                        Table="[Customer]" Alias="[c]" 
Column="StoreID"> 
      </ColumnReference> 
    </OuterReferences> 
    <RelOp AvgRowSize="101" EstimateCPU="0.00059304" EstimateIO="0" 
           EstimateRebinds="0" EstimateRewinds="0" 
EstimatedExecutionMode="Row" 
           EstimateRows="14.1876" LogicalOp="Inner Join" NodeId="1" 
Parallel="false" 
           PhysicalOp="Nested Loops" EstimatedTotalSubtreeCo
st="1.03974">…</RelOp> 
    <RelOp AvgRowSize="61" EstimateCPU="0.0001581" 
EstimateIO="0.003125" 
           EstimateRebinds="1.78078" EstimateRewinds="11.4068" 
           EstimatedExecutionMode="Row" EstimateRows="1" 
EstimatedRowsRead="1" 
           LogicalOp="Clustered Index Seek" NodeId="14" 
Parallel="false" 
           PhysicalOp="Clustered Index Seek" EstimatedTotalSubtreeC
ost="0.00778646" 
            TableCardinality="701">…</RelOp>

Listing 13-6

By contrast, within the equivalent element for the second Nested Loops (NodeId="1"), 
when you expand the first input again you will see that this operator resolves the join condi-
tion to the Store table, using a Predicate property. I've not shown the whole predicate 
but, in short, this operator receives TerritoryID and Name values from the Index Seek 
on the SalesTerritory table, and will join this data with that from the bottom input, 
only returning rows that have matching values for TerritoryID in the Customer table.

<NestedLoops Optimized="0"> 
  <Predicate> 
    <ScalarOperator 
         ScalarString="[AdventureWorks2016].[Sales].
[SalesTerritory].[TerritoryID] 
                         as [st].[TerritoryID]= 
                       [AdventureWorks2016].[Sales].[Customer].
[TerritoryID] 
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                        as [c].[TerritoryID]"> 
…Etc… 
  </Predicate>

Listing 13-7

The XML for an actual plan
If you return to Listing 13-1 and this time execute it and capture the actual plan, you'll see all 
the same information as in the XML for the estimated plan, plus some new elements, namely 
those that are only populated at execution time, rather than compile time.

Listing 13-8 compares the content of the QueryPlan element for the estimated plan  
(shown first) and then the actual plan. You can see that the latter contains additional  
information, including the DegreeOfParallelism (more on parallelism in Chapter 11), 
the MemoryGrant (which is the amount of memory needed for the execution of the query), 
and some additional properties within the MemoryGrantInfo element.

<QueryPlan  
  NonParallelPlanReason="CouldNotGenerateValidParallelPlan"  
  CachedPlanSize="104" CompileTime="9" CompileCPU="9" 
CompileMemory="1160"> 
<MemoryGrantInfo SerialRequiredMemory="2048" 
SerialDesiredMemory="2632"> 
<QueryPlan  
  DegreeOfParallelism="0" 
  NonParallelPlanReason="CouldNotGenerateValidParallelPlan"  
  MemoryGrant="2632"  
  CachedPlanSize="104" CompileTime="9" CompileCPU="9" 
CompileMemory="1160"> 
<MemoryGrantInfo SerialRequiredMemory="2048" 
SerialDesiredMemory="2632" 
  RequiredMemory="2048" DesiredMemory="2632" RequestedMemory="2632" 
  GrantWaitTime="0" GrantedMemory="2632" MaxUsedMemory="640" 
MaxQueryMemory="576112" />

Listing 13-8

Another major difference is that, in the XML for an actual plan, each operator has a  
RunTimeInformation element, showing the thread, actual rows, and the number  
of executions for that operator along with additional information.
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<RelOp AvgRowSize="149" EstimateCPU="5.9304E-05" EstimateIO="0" 
       EstimateRebinds="0" EstimateRewinds="0" 
EstimatedExecutionMode="Row" 
       EstimateRows="1" LogicalOp="Inner Join" NodeId="0" 
Parallel="false" 
       PhysicalOp="Nested Loops" EstimatedTotalSubtreeCo
st="1.04758"> 
  <OutputList> 
  …Etc… 
  </OutputList> 
  <RunTimeInformation> 
    <RunTimeCountersPerThread Thread="0" ActualRows="1" Batches="0" 
                              ActualEndOfScans="1" 
ActualExecutions="1" 
                              ActualExecutionMode="Row" 
                              ActualElapsedms="6" ActualCPUms="6" 
/> 
  </RunTimeInformation>

Listing 13-9

Safely Saving and Sharing Execution Plans
Though you can output an execution plan directly in its native XML format, you can only 
save it from the graphical representation. If we attempt to save to XML directly from the 
result window we only get what is on display in the result window. Another option is to use a 
PowerShell script, or similar, to output from XML to a .sqlplan file.

Simply right-click on the graphical plan and select Save Execution Plan As… to save it  
as a .sqlplan file. This XML file, as we've seen, provides all the information in the plan, 
including all properties. This can be a very useful feature. For example, we might collect 
multiple plans in XML format, save them to file and then open them in easy-to-view (and to 
compare) graphical format. This is useful to third-party applications, too (covered briefly in 
Chapter 17).

A word of caution, though; as we saw earlier, the XML of the execution plan stores both the 
query and parameter values. That information could include proprietary or personally identi-
fying information. Exercise caution when sharing an execution plan publicly.
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When You'll Really Need the XML Plan
As you can see, while all the information is in there, reading plans directly through the XML 
is just not as easy as reading the graphical plan and the property sheets for each operator. 
However, there are a few specific cases where you'll need the XML, and I'll review those 
briefly here (there may be others!).

Use the XML plan for plan forcing
In Chapter 9, we discussed plan forcing, by using a plan guide to apply the USE PLAN  
query hint. Here, you need to supply the plan's XML to the @hints parameter of the  
sp_create_plan_guide system stored procedure, when creating the plan guide.

To do this, you'll first need to capture the plan programmatically. This query pulls some  
information from the Purchasing.PurchaseOrderHeader table and filters the data 
on the ShipDate.

SET STATISTICS XML ON; 
SELECT  poh.PurchaseOrderID, 
        poh.ShipDate, 
        poh.ShipMethodID 
FROM    Purchasing.PurchaseOrderHeader AS poh 
WHERE   poh.ShipDate BETWEEN '20140103' AND '20140303'; 
GO 
SET STATISTICS XML OFF;

Listing 13-10

Figure 13-3 shows the result, in the default grid mode.

Figure 13-3: A clickable link to the XML plan in SSMS.

If you have your query results outputting to text mode, you'll see some of the XML string, 
but it won't be clickable and, depending on the settings within SSMS, it may not be complete.
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In grid mode, clicking on this link opens the execution plan as a graphical plan. However, 
instead, if you're doing plan forcing, just right-click on the link, copy it and paste it into the @
hints parameter when creating the plan guide.

First operator properties when capturing plans using  
Extended Events
When you capture a plan using Extended Events, you won't see the first operator, the 
SELECT, INSERT, UPDATE, or DELETE in the graphical plan, so you won't have access 
to all the useful metadata it hides, except by switching to the XML representation, where 
some of it is still stored. This is because the XML for the plans captured using Extended 
Events (and Trace Events, for that matter) differs from every other source of execution plans 
(SSMS, plan cache, and the Query Store).

Listing 13-11 shows the relevant section of the XML, for a plan captured using Extended 
Events (you'll see how to do this in Chapter 15), between the Statement element and the 
first RelOp element.

<StmtSimple StatementSubTreeCost="1.04758" StatementEstRows="1" 
            SecurityPolicyApplied="false" StatementOptmLevel="FULL" 
            QueryHash="0x6F422E0A48C0E2DA" QueryPlanHash="0xBF47C49
83DC8361D" 
            StatementOptmEarlyAbortReason="TimeOut"  
            CardinalityEstimationModelVersion="140"> 
  <QueryPlan DegreeOfParallelism="0" MemoryGrant="2632"  
             NonParallelPlanReason="CouldNotGenerateValidParallelPl
an"  
             CachedPlanSize="104" CompileTime="10" CompileCPU="10"  
             CompileMemory="1160"> 
    <MemoryGrantInfo SerialRequiredMemory="2048" 
SerialDesiredMemory="2632"  
                     RequiredMemory="2048" DesiredMemory="2632"  
                     RequestedMemory="2632" GrantWaitTime="0" 
GrantedMemory="2632"  
                     MaxUsedMemory="640" MaxQueryMemory="573840"> 
    </MemoryGrantInfo>
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    <OptimizerHardwareDependentProperties EstimatedAvailableMemoryG
rant="157286"  
                                          
EstimatedPagesCached="19660"  
                                          EstimatedAvailableDegreeO
fParallelism="2"  
                                          
MaxCompileMemory="1475656"> 
    </OptimizerHardwareDependentProperties> 
  <OptimizerStatsUsage>…</OptimizerStatsUsage>

Listing 13-11

It is a reduced set of information and I don't have a complete story from Microsoft on why 
this is so. The code for capturing the plans seems to have come originally from Trace Events 
and was duplicated in Extended Events. Nevertheless, what remains is still useful and it's 
only available in the XML.

Pre-SQL Server 2012: full "missing index" details
As we've seen previously in the book, often, you'll see a message at the top of a plan saying 
that there is a missing index that will "reduce the cost" of an operator by some percentage. 
Prior to SQL Server 2012, if there was more than one missing index, only one would be 
visible in the missing index hint in the graphical plan. So, if you're still working on earlier 
SQL Server versions, the XML is the only place you'll find the full list.

Also, using the execution plan directly ties the missing index information to the query itself. 
Using only the Microsoft-supplied DMVs, you won't see which query will benefit from the 
suggested index.

If you open the XML for the actual execution plan for Listing 13-10, you'll notice an element 
near the top labeled MissingIndexes, which lists tables and columns where the optimizer 
recognizes that, potentially, if it had an index it could result in a better execution plan and 
improved performance.
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<MissingIndexes> 
  <MissingIndexGroup Impact="83.5833"> 
    <MissingIndex Database="[AdventureWorks2016]" 
Schema="[Purchasing]" Table="[PurchaseOrderHeader]"> 
      <ColumnGroup Usage="INEQUALITY"> 
        <Column Name="[ShipDate]" ColumnId="8" /> 
      </ColumnGroup> 
      <ColumnGroup Usage="INCLUDE"> 
        <Column Name="[ShipMethodID]" ColumnId="6" /> 
      </ColumnGroup> 
    </MissingIndex> 
  </MissingIndexGroup> 
</MissingIndexes>

Listing 13-12

While the information about missing indexes can sometimes be useful, it is only as good as 
the available statistics, and can sometimes be very unreliable. It also does not consider the 
added cost of maintaining the index. Always put appropriate testing in place before acting on 
these suggestions.

Querying the Plan Cache
For the remainder of this chapter, we'll focus on the one overriding reason why it's very 
useful to have the raw XML behind a plan: namely for querying it, using XQuery. We can 
run XQuery queries against the .sqlplan file, or against execution plans stored in XML 
columns in tables, or directly against the XML that exists in the plan cache or Query Store in 
SQL Server.

This section introduces only a few of the core concepts for writing XQuery and some useful 
examples to start you off, because an in-depth tutorial is far beyond the scope of this book. 
For that, I recommend XML and JSON Recipes for SQL Server by Alex Grinberg.
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Why query the XML of plans?
As discussed in Chapter 9, several DMOs, such as sys.dm_exec_query_stats and 
sys.dm_exec_cached_plans store the plan_handle for a plan, which we can 
supply to the sys.dm_exec_query_plan function, to return the execution plan in XML 
format, as well as to the sys.dm_exec_sql_text function to return the SQL text. All 
the queries stored in the Query Store are also in that same XML format, although stored by 
default as text, which you must CAST to XML.

We can then use XQuery to return the elements, properties, and value within the plan XML, 
many of which we discussed earlier in the chapter. Why is this useful?

Firstly, let's suppose we have a lot of plans that we need to examine. Thousands, or more. 
Rather than attempt to walk through these plans, one at a time, looking for some common 
pattern, we can write queries that search on specific elements or terms within the plan XML, 
such as "Reason For Early Termination," and so track down recurring issues within the 
entire set of plans.

Secondly, as we know, the DMOs and the Query Store contain a lot of other useful informa-
tion, such as execution statistics for the queries that used the cached plans. This means, for 
example, we could query the plan cache or the Query Store, for all plans with missing index 
recommendations, and the associated SQL statements, along with appropriate execution 
statistics, so we can choose the right index strategy for the workload, rather than query by 
query. The XML is the only place you can retrieve certain information, such as missing index 
information correlated to its query, so the ability to retrieve information from the XML may 
make using XQuery helpful.

Finally, sometimes a plan is very large, and it does become slightly easier to search the plan 
XML for certain values and properties, rather than scroll through looking at individual operator 
properties in the graphical plans. We'll cover this idea more in Chapter 14.

Before we start, though, a note of caution: XML querying is inherently costly, and queries 
against XML might seriously affect performance on the server, primarily due to the memory that 
XQuery consumes. Always apply due diligence when running these types of queries, and try to 
minimize the overhead caused by XQuery, by applying some filtering criteria to your queries, 
for example restricting the results to a single database, to limit the amount of data accessed.

Better still, we could export the XML plans, and potentially also the runtime stats, to a table on 
a different server and then run the XQuery against that, in order to avoid placing too much of a 
load directly against a production machine.
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Query the plan XML for specific operators
Listing 13-13, given purely as an example of what's possible, returns the top three opera-
tors from the most frequently called query in the plan cache, assuming that this query has a 
cached plan, based on the total estimated cost of each operator.

It illustrates how we can construct queries against the plan cache, but I would hesitate before 
running this query on a production system if that system was already under stress.

WITH Top1Query 
AS (SELECT TOP (1) 
           dest.text, 
           deqp.query_plan 
    FROM sys.dm_exec_query_stats AS deqs 
        CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest 
        CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS 
deqp 
    ORDER BY deqs.execution_count DESC) 
SELECT TOP 3 
       tq.text, 
       RelOp.op.value('@PhysicalOp', 'varchar(50)') AS PhysicalOp, 
       RelOp.op.value('@EstimateCPU', 'float') + RelOp.op.value('@
EstimateIO', 'float') AS EstimatedCost 
FROM Top1Query AS tq 
    CROSS APPLY tq.query_plan.nodes('declare default element 
namespace "http://schemas.microsoft.com/sqlserver/2004/07/
showplan"; 
    //RelOp') RelOp(op) 
ORDER BY EstimatedCost DESC;

Listing 13-13

The basic logic is easy enough to follow. First, I define a common table expression (CTE), 
Top1Query, which returns the SQL text and the plan for the most frequently executed 
query currently in cache, as defined by the execution_count.

Next, skip down to the FROM clause of the second query, the "recursive member," which 
references the CTE. For every row in our Top1Query CTE, (in this case there is only one 
row), the CROSS APPLY will evaluate the subquery, which in this case uses the .nodes 
method to "shred" the XML for the plan, stored in the query_plan column of sys.dm_
exec_query_plan, exposing the XML as if it were a table. Worth noting is that the query 
uses the sum of the EstimatedCPU and EstimatedIO to arrive at an EstimatedCost 
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value for each operator. Normally, but not always, this will match exactly the value displayed 
for the Estimated Operator Cost in the graphical plan properties. For some operators, other 
factors (such as memory grants) are considered as part of the Estimated Operator Cost 
value.

This done, the SELECT list of the second query takes advantage of the methods available 
within XQuery, in this instance .value. We define the path to the location within the XML 
from which we wish to retrieve information, such as the @PhysicalOp property.

The results from my system look as shown in Figure 13-4.

Figure 13-4: The three operators with highest estimated cost for the  
most frequently executed query.

Querying the XML for missing index information
Let's look at one more example. You've already seen the Missing Index information that was 
present in the execution plan (see Listing 13-12). There are Missing Index Dynamic Manage-
ment Views that show you all the suggested possible missing indexes found by the optimizer. 
However, those DMVs do not have any mechanism for correlating the information back to 
the queries involved. If we want to see both the missing index information and also which 
queries they might be related to, we can use the query in Listing 13-14.

WITH XMLNAMESPACES 
( 
    DEFAULT 'http://schemas.microsoft.com/sqlserver/2004/07/
showplan' 
) 
SELECT deqp.query_plan.value(N'(//MissingIndex/@Database)[1]', 
'NVARCHAR(256)') 
           AS DatabaseName, 
       dest.text AS QueryText, 
       deqs.total_elapsed_time, 
       deqs.last_execution_time, 
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       deqs.execution_count, 
       deqs.total_logical_writes, 
       deqs.total_logical_reads, 
       deqs.min_elapsed_time, 
       deqs.max_elapsed_time, 
       deqp.query_plan, 
       deqp.query_plan.value(N'(//MissingIndex/@Table)[1]', 
'NVARCHAR(256)') 
           AS TableName, 
       deqp.query_plan.value(N'(//MissingIndex/@Schema)[1]', 
'NVARCHAR(256)') 
           AS SchemaName, 
       deqp.query_plan.value(N'(//MissingIndexGroup/@Impact)[1]', 
'DECIMAL(6,4)') 
           AS ProjectedImpact, 
       ColumnGroup.value('./@Usage', 'NVARCHAR(256)') AS 
ColumnGroupUsage, 
       ColumnGroupColumn.value('./@Name', 'NVARCHAR(256)') AS 
ColumnName 
FROM sys.dm_exec_query_stats AS deqs 
    CROSS APPLY sys.dm_exec_query_plan(deqs.plan_handle) AS deqp 
    CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest 
    CROSS APPLY deqp.query_plan.nodes('//MissingIndexes/
MissingIndexGroup/MissingIndex/ColumnGroup') AS t1(ColumnGroup) 
    CROSS APPLY t1.ColumnGroup.nodes('./Column') AS 
t2(ColumnGroupColumn);

Listing 13-14

In the results shown in Figure 13-5, I ran a slightly modified version of Listing 13-14 to filter 
the results to only show information regarding the AdventureWorks2014 database and 
limit the number of columns, for readability.

Figure 13-5: Missing Index suggestions for AdventureWorks 2014.
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The query in its current form returns multiple rows for the same missing index suggestions, 
so in rows 2 to 4 you see the single missing index suggestion for the query from Listing 
13-13. Row 1 shows an additional suggestion for a stored procedure that may need an index 
created on it.

The TableName and ColumnName information is self-explanatory. The ColumnGroup- 
Usage is suggesting where the column should be added to the index. An EQUALITY or 
INEQUALITY value is suggesting that the column in question be added to the key of the 
index. An INCLUDE value is suggesting adding that column to the INCLUDE clause of the 
index creation statement. Each suggested index in this query is associated with the relevant 
QueryText.

The query uses the .nodes method, to which we supply the path to the ColumnGroup 
element in the XML plan stored in cache:

'//MissingIndexes/MissingIndexGroup/MissingIndex/ColumnGroup'

The values passed to .node here ensure that only information from this full path is used to 
run the rest of the .value functions, which return information about the index, specifically 
the TableName, ColumName, and ColumnGroupUsage information. With that you can 
just refer to the path //MissingIndexGroup/ and then supply a property value such as 
@Schema to arrive at data.

This is a useful way to filter or sort for queries currently in cache that have missing index 
suggestions, to find queries that need tuning quickly. However, do bear in mind that not  
all problem queries have missing indexes and not all queries with missing indexes are 
problem queries. Finally, not all problem queries are guaranteed to be in cache when you  
run Listing 13-14.

Very few people will sit down and write their own XQuery queries to retrieve data from 
execution plans. Instead, you can take a query like Listing 13-14 and then adjust for your 
own purposes. The only hard part is figuring out how to get the path correct. That's best done 
by simply looking at the XML and stepping through the tree to arrive at the correct values.



392

Chapter 13: The XML of Execution Plans

Summary
The data provided in XML plans is complete, and the XML file is easy to share with  
others. However, reading an XML plan is not an easy task and, unless you are the sort  
of data professional who needs to know every internal detail (the majority of which  
are available through the properties of a graphical plan), it is not one you will spend  
time mastering.

Much better to read the plans in graphical form and, if necessary, spend time learning  
how to use XQuery to access the data in these plans programmatically, and so begin  
automating access to your plans in some instances, such as the Missing Index query  
shown in this chapter.
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Some of the data types introduced to SQL Server over the years have quite different  
functionality from the standard set of numbers, strings, and dates that account for most  
of the data with which we work. These data types have special functionality and indexing 
that affect how they work, and when our queries, procedures, and functions work with these 
data types, the differences can show up in execution plans.

We'll spend a large part of the chapter looking at plans for queries that use XML, since this 
is the "special" data type most of us have encountered at some point. We'll examine the plans 
that convert data from XML to relational (OPENXML), from relational to XML (FOR XML), 
and ones that query XML data using XQuery. We won't dive into any tuning details, but I 
will let you know where in the plan you might look for clues, if a query that uses XML is 
performing poorly.

SQL Server 2016 added support for JavaScript Object Notation (JSON). It provides no 
JSON-specific data type (it stores JSON data in an NVARVAR type) and consequently none 
of the kinds of methods available to the XML data type. However, it does provide several 
important T-SQL language elements for querying JSON, and we'll look at how that affects 
execution plans.

We'll also look briefly at plans for queries that use the HIERARCHYID data type. We'll then 
examine plans for queries that access spatial data, though only their basic characteristics, 
because even rather simple spatial queries can have impressively complex plans.

The final part of the chapter examines plans for cursors. These don't fit neatly into the special 
data type category; you can't store a cursor in a column and so it is not, strictly, a data type, 
although, Microsoft does use "cursor" as the data type for a variable or output parameter that 
references a cursor. In any event, cursors are certainly special in that they are a programming 
construct that allows us to process query results one row at a time, rather than in the normal 
and expected, set-based fashion. This will, of course, affect the execution plan, and not often 
in a good way.
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XML
XML is a standard data type in many applications, and sometimes leads to storage of XML 
within SQL Server databases, using the XML data type. However, if our database simply 
accepts XML input and stores it in an XML column or variable, or reads an XML column 
or variable, and returns it in XML form, then at the execution plan level, this is no different 
from storing and retrieving data of any other type.

XML becomes relevant to execution plans if we query the XML data using XQuery, or if a 
query uses the FOR XML clause to convert relational data to XML, or the OPENXML rowset 
provider to go from XML to relational.

These methods of accessing and manipulating XML are very useful, but come at a cost. 
Manipulating XML uses a combination of T-SQL and XQuery expressions, and problems 
both in the T-SQL and in the XQuery parts can affect performance. Also, the XML parser, 
which is required to manipulate XML, uses memory and CPU cycles that you would 
normally have available only for T-SQL.

Overall, there are reasons to be judicious in your use and application of XML in  
SQL Server databases.

Plans for queries that convert relational data to XML  
(FOR XML)
By using the FOR XML clause in our T-SQL queries, we can transform relational data into 
XML format, usually for outputting to a client, but sometimes so that we can store it in  
an XML variable or column. We can use the FOR XML clause in any of the following four 
modes, AUTO, RAW, PATH, or EXPLICIT. The first three can be used in the same way, will 
create a different format of XML output from the same query, and the execution plan will be 
the same in each case. The fourth mode allows us to define explicitly, in the query itself, the 
shape of the resulting XML tree. This requires a query rewrite and so results in a different 
execution plan.

Plans for basic FOR XML queries
Listing 14-1 shows a standard query that produces a list of stores and the contact person for 
that store.
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SELECT s.Name AS StoreName, 
       bec.PersonID, 
       bec.ContactTypeID 
FROM Sales.Store AS s 
    JOIN Person.BusinessEntityContact AS bec 
        ON s.BusinessEntityID = bec.BusinessEntityID 
ORDER BY s.Name;

Listing 14-1

The resulting plan is very straightforward and needs no explanation at this stage of the book.

Figure 14-1: Traditional execution plan like elsewhere in the book.

To see the impact on the plan of converting the relational output to an XML format, we 
simply add the FOR XML clause to Listing 14-1.

SELECT s.Name AS StoreName, 
       bec.PersonID, 
       bec.ContactTypeID 
FROM Sales.Store AS s 
    JOIN Person.BusinessEntityContact AS bec 
        ON s.BusinessEntityID = bec.BusinessEntityID 
ORDER BY s.Name 
FOR XML AUTO;

Listing 14-2

In this case, I've used the AUTO mode but, regardless of whether I use that, or RAW, or PATH, 
the plan in each case is as shown in Figure 14-2.
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Figure 14-2: An execution plan showing output to XML through the  
XML SELECT operator.

The only visible difference is that the SELECT operator is replaced by an XML SELECT 
operator, and in fact this really is the only difference. The plans for the query with relational 
output, and those for FOR XML queries with AUTO, RAW, or PATH seem to be identical in all 
respects. However, each of the three FOR XML modes produces a different XML output from 
the same query, as shown below, for the first row of the result set, in each case.

-- AUTO: 
<s StoreName="A Bicycle Association"> 
  <bec PersonID="2050" ContactTypeID="11" /> 
</s> 
-- RAW: 
<row StoreName="A Bicycle Association" PersonID="2050" 
ContactTypeID="11" /> 
-- PATH 
<row> 
  <StoreName>A Bicycle Association</StoreName> 
  <PersonID>2050</PersonID> 
  <ContactTypeID>11</ContactTypeID> 
</row>

Each of these basic modes of FOR XML return text that is formatted like XML. If we want 
the data to be returned in native XML format (as an XML data type), then we need to use the 
TYPE directive. If you don't use the TYPE directive then, while it may look like XML to you 
and me, to SQL Server and SSMS, it's just a string.
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Returning XML as XML data type

An extension of the XML AUTO mode allows you to specify the TYPE directive, to output 
the results of the query as the XML data type, not simply as text in XML format. The TYPE 
directive is mainly relevant if you use subqueries with FOR XML. The query in Listing 
14-3 returns the same data as the previous one, but in a different structure. We're using the 
subquery to make XML using TYPE, and then combining that with data from the outer query, 
which is then output as XML-formatted text.

SELECT s.Name AS StoreName, 
       (   SELECT bec.BusinessEntityID, 
                  bec.ContactTypeID 
           FROM Person.BusinessEntityContact AS bec 
           WHERE bec.BusinessEntityID = s.BusinessEntityID 
           FOR XML AUTO, TYPE, ELEMENTS) AS contact 
FROM Sales.Store AS s 
ORDER BY s.Name 
FOR XML AUTO;

Listing 14-3

Figure 14-3 shows two result sets, the first for the query as written in Listing 14-3, and the 
second for the same query but without the TYPE directive.

Figure 14-3: Output of FOR XML AUTO, both with and without the TYPE directive.

Notice that in the latter case the angle brackets in the subquery are converted to &gt; and 
&lt; because the subquery is considered text to be converted to XML. In the former case, 
it's formatted as XML.

Figure 14-4 shows the resulting execution plan for Listing 14-3 (with the TYPE directive).
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Figure 14-4: Execution plan for XML AUTO.

First, it's worth noting that this query now causes 1515 logical reads, about 10 times more 
than the query in Listing 14-2. This is because the optimizer uses a Nested Loops join to data 
from the query and subquery, and since the outer input produces 701 rows.

The outer input returns the BusinessEntityID and Name columns, sorted by Name. The 
BusinessEntityID values are pushed down to the inner input, and we see 701 seeks, for 
the matching rows, returning the BusinessEntityID and ContactTypeID columns. 
We then see the UDX operator, which in this case converts each row emerging from the 
Index Seek into XML format.

Figure 14-5 shows the Properties window for the UDX operator. The Name property has the 
value FOR XML, which tells us that it's converting relational data into XML. The  
Used UDX Columns property shows which input data it processes. And the Output List 
contains the internal name of the created XML data, in this case Expr1002, which consists 
of the two BusinessEntityID and ContactTypeID columns from the Business- 
EntityContact table.

Figure 14-5: Properties of the UDX operator.
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The UDX operator is often seen in plans that perform XPath and XQuery operations, and so 
we'll see it again later in the chapter.

Finally, we see the Compute Scalar operator, which for some ill-defined reason assigns the 
value of Expr1002 to Expr1004, then passes Expr1004 to its parent.

Plans for Explicit mode FOR XML queries
XML EXPLICIT mode is there for the occasions when we need to exert very precise control 
over the format of the XML generated by the query. The downside is that the rowset our 
query produces must obey certain formatting rules. If you try to run Listing 14-2 using the 
EXPLICIT mode of FOR XML, you'll see an error to the effect that the format of your result 
set is wrong.
Msg 6803, Level 16, State 1, Line 46 

FOR XML EXPLICIT requires the first column to hold 
positive integers that represent XML tag IDs.

So, it's up to us to write the query so that the rowset is in the right format, depending on the 
required structure of the XML output. EXPLICIT mode is used to create very specific XML, 
mixing and matching properties and elements in any way you choose based on what you 
define within the query. Listing 14-4 shows a simple example.

SELECT  1 AS Tag, 
        NULL AS Parent, 
        s.Name AS [Store!1!StoreName], 
        NULL AS [BECContact!2!PersonID], 
        NULL AS [BECContact!2!ContactTypeID] 
FROM    Sales.Store s 
JOIN    Person.BusinessEntityContact AS bec 
        ON s.BusinessEntityID = bec.BusinessEntityID 
UNION ALL 
SELECT  2 AS Tag, 
        1 AS Parent, 
        s.Name AS StoreName, 
        bec.PersonID, 
        bec.ContactTypeID
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FROM    Sales.Store s 
JOIN    Person.BusinessEntityContact AS bec 
        ON s.BusinessEntityID = bec.BusinessEntityID 
ORDER BY [Store!1!StoreName], 
        [BECContact!2!PersonID] 
FOR     XML EXPLICIT;

Listing 14-4

Figure 14-6 shows the actual execution plan for this query, which is somewhat  
more complex.

Figure 14-6: Execution plan showing how XML EXPLICIT works.

To build the hierarchy of XML, we had to use the UNION ALL clause in T-SQL, between two 
almost identical copies of the same query. The double execution of this branch makes it about 
twice as expensive as the plan for the query in Listing 14-2. This is not as a direct result of 
using FOR XML EXPLICIT, but is an indirect result of the requirements that option puts on 
how we write the query.

So, while you get more control over the XML output, it comes at the cost of added  
overhead, due to the need for the UNION ALL clause and the explicit formatting rules.  
This leads to decreased performance due to the increased number of queries required to put 
the data together.

Again, if you simply rerun the query without the FOR XML EXPLICIT clause, the only 
difference in the plan will be an XML Select operator instead of a Select. Only the format 
of the results is different. With FOR XML EXPLICIT you get XML; without it, you get an 
oddly-formatted result set, since the structure you defined in the UNION query is not natu-
rally nested, as the XML makes it.
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Plans for queries that convert XML to relational data 
(OPENXML)
We can use OPENXML in our T-SQL queries to "shred" XML into a relational format, most 
often to take data from the XML format and change it into structured storage within a 
normalized database.

OPENXML takes an XML document, stored in an nvarchar variable, and converts it into a 
"rowset view" of that document, which can be treated as if it were a normal table. By rowset, 
we mean a traditional view of the data in a tabular format, as if it were being queried from a 
table. We can use OPENXML as a data source in any query. It can take the place of a table or 
view in a SELECT statement, or in the FROM clause of modification statements, but it cannot 
be the target of INSERT, UPDATE, DELETE, or MERGE.

To demonstrate this, we need an XML document. I've had to break elements across lines in 
order to present the document in a readable form.

<ROOT> 
  <Currency CurrencyCode="UTE" 
     CurrencyName="Universal Transactional Exchange"> 
    <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE" 
                   CurrencyRateDate="2007/1/1" AverageRate=."553" 
                   EndOfDateRate= ."558" /> 
    <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE" 
                   CurrencyRateDate="2017/6/1/" AverageRate=."928" 
                   EndOfDateRate= "1.057" /> 
  </Currency> 
</ROOT>

Listing 14-5

In this example, we're creating a new currency, the Universal Transactional Exchange,  
otherwise known as the UTE. We need exchange rates for converting the UTE to USD.  
We're going to take all this data and insert it, in a batch, into our database, straight from 
XML. Listing 14-6 shows the script.
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BEGIN TRAN; 
DECLARE @iDoc AS INTEGER; 
DECLARE @Xml AS NVARCHAR(MAX); 
SET @Xml = '<ROOT> 
<Currency CurrencyCode="UTE" CurrencyName="Universal 
  Transactional Exchange"> 
   <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE" 
     CurrencyRateDate="2007/1/1" AverageRate=."553" 
     EndOfDayRate= ."558" /> 
   <CurrencyRate FromCurrencyCode="USD" ToCurrencyCode="UTE" 
     CurrencyRateDate="2007/6/1" AverageRate=."928" 
     EndOfDayRate= "1.057" /> 
</Currency> 
</ROOT>'; 
EXEC sys.sp_xml_preparedocument 
    @iDoc OUTPUT, 
    @Xml; 
INSERT  INTO Sales.Currency 
        (CurrencyCode, 
         Name, 
         ModifiedDate 
        ) 
SELECT  CurrencyCode, 
        CurrencyName, 
        GETDATE() 
FROM    OPENXML (@iDoc, 'ROOT/Currency',1) 
           WITH (CurrencyCode NCHAR(3), CurrencyName NVARCHAR(50)); 
INSERT  INTO Sales.CurrencyRate 
        (CurrencyRateDate, 
         FromCurrencyCode, 
         ToCurrencyCode, 
         AverageRate, 
         EndOfDayRate, 
         ModifiedDate 
        ) 
SELECT  CurrencyRateDate, 
        FromCurrencyCode, 
        ToCurrencyCode, 
        AverageRate, 
        EndOfDayRate, 
        GETDATE() 
FROM    OPENXML(@iDoc , 'ROOT/Currency/CurrencyRate',2) 
          WITH (CurrencyRateDate DATETIME '@CurrencyRateDate', 
                 FromCurrencyCode NCHAR(3) '@FromCurrencyCode', 
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                 ToCurrencyCode NCHAR(3) '@ToCurrencyCode', 
                 AverageRate MONEY '@AverageRate', 
                 EndOfDayRate MONEY '@EndOfDayRate'); 
EXEC sys.sp_xml_removedocument 
    @iDoc; 
ROLLBACK TRAN;

Listing 14-6

From this query, we get two actual execution plans, one for each INSERT. The first INSERT 
is against the Currency table, as shown in Figure 14-7.

Figure 14-7: Execution plan for the INSERT against the Currency table.

A quick scan of the plan reveals a single new operator, Remote Scan. All the OPENXML 
statement processing is handled within that Remote Scan operator. This operator represents 
the opening of a remote object, meaning a DLL or some external process such as a CLR 
object, within SQL Server, which will take the XML and convert it into a format within 
memory that looks to the query engine like normal rows of data. Since the Remote Scan is 
not actually part of the query engine itself, the optimizer represents the call, in the plan, as a 
single icon.

The only place where we can really see the evidence of the XML is in the Output List for 
the Remote Scan. In Figure 14-8, we can see the OPENXML statement referred to as a table, 
and the properties selected from the XML data listed as columns.

Figure 14-8: Properties of the OPENXML operator.
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From there, it's a straightforward query with the data first being sorted for insertion into the 
clustered index, and then sorted a second time for addition to the other index on the table.

The main point to note is that the Optimizer uses a fixed estimate of 10,000 rows returned for 
the Remote Scan, which explains why it decides to Sort the rows first, to make inserting into 
the indexes more efficient, though in this case that's unnecessary as we only actually return 1 
row. This fixed estimate affects other operator choices that the optimizer makes, and so can 
affect performance.

Also worth noting are the different arrow sizes coming in and out of Compute Scalar, which 
are the result of a bad estimate. A Compute Scalar never actually does its own work, so it 
only presents estimated row counts even in an actual plan. The size of the incoming arrow 
reflects actual row counts (1 row), and the outgoing arrow reflects estimated (10,000 rows).

The second execution plan describes the INSERT against the CurrencyRate table.

 Figure 14-9: Execution plan for CurrencyRate table.

This query is the more complicated of the two because of the extra steps required for the 
maintenance of referential integrity (see Chapter 6) between the Currency and Curren-
cyRate tables. There are two checks done for this because of the FromCurrency and 
ToCurrency columns Yet still we see no XML-specific icons, since all the XML work is 
hidden behind the Remote Scan operation. In this case, we see two comparisons against the 
parent table, through the Merge Join operations. The data is sorted, first by FromCurren-
cyCode and then by ToCurrencyCode, in order for the data to be used in a Merge Join, 
the operator picked by the optimizer because it estimated 10,000 rows would be returned by 
the Remote Scan.

As you can see, it's easy to bring XML data into the database for use within our queries, or 
for inclusion within our database. However, a lot of work goes on behind the scenes to do 
this, and not much of that work is visible in the execution plan. First, SQL Server has to call 
the sp_xml_preparedocument function, which parses the XML text using the MSXML 
parser. However, we see none of this work in the plan. Next, it needs to transform the parsed 
document into a rowset, but this work is "hidden" and represented by the Remote Scan 
operator. However, we do see that the estimated row count for OPENXML is fixed at 10,000 
rows, which may affect query performance. If this is causing performance problems for you, 
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you should focus on other mechanisms of data manipulation, such as loading to a temporary 
table first in order to get statistics for a better-performing execution plan.

One caveat worth mentioning is that parsing XML uses a lot of memory. You should  
plan on opening the XML, getting the data out, and then closing and de-allocating the  
XML as soon as possible. This will reduce the amount of time that the memory is allocated 
within your system.

Plans for querying XML using XQuery
The true strength of querying XML within SQL Server is through XQuery. We'll examine  
the execution plans for a few simple XQuery examples, so that you can start to see how 
incorporating XQuery expressions in our T-SQL queries can affect those plans. However,  
we can't cover the full breadth and depth of execution plan patterns you can see with XQuery 
(and nor can I teach you XQuery; that would require an entire book of its own). For a  
thorough introduction, read this white paper offered from Microsoft at http://bit.ly/1UH6KfP.

The purpose of seeing how to query XML, specifically the XML within execution plans, is to 
be able to search for values in lots of plans rather than browsing the plans themselves. This 
can be used against plans in cache, plans in the Query Store, and plans that are files. There 
are examples of how to do this in the Querying the Plan Cache section of Chapter 13.

Effectively, using XQuery means a completely new query language to learn in addition to 
T-SQL. The XML data type is the mechanism used to provide the XQuery functionality 
through the SQL Server system. When you want to query from the XML data type, there are 
five basic methods:

• .query() – used to query the XML data type and return the XML data type
• .value() – used to query the XML data type and return a non-XML scalar value
• .nodes() – a method for pivoting XML data into rows
• .exist() – queries the XML data type and returns a bit to indicate whether or 

not the result set is empty, just like the EXISTS keyword in T-SQL
• .modify() – a method for inserting, updating, and deleting XML snippets within 

the XML data set.

Generally, the optimizer seems to implement these methods using two specific opera-
tors, Table-Valued Function (XML Reader), with or without an XPath filter, and UDX, 
combined in different patterns.

http://bit.ly/1UH6KfP
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The various options for running a query against XML, including the use of FLWOR  
(For, Let, Where, Order By and Return) statements within the queries, all affect  
the execution plans. I'm going to cover just two examples, to acquaint you with the  
concepts and introduce you to the sort of execution plans you can expect to see. It's  
outside the scope of this book to cover this topic in the depth that would be required  
to demonstrate all aspects of the plans this language generates.

Plans for queries that use the .exist method
The Resume column of the JobCandidate table in AdventureWorks is an XML data 
type. If we need to query the résumés of all employees to find out which of the people hired 
were once sales managers, we'll need to use the .exist method in our XQuery expression, 
so that our query only returns a row if the JobTitle element of the document contains the 
text "Sales Manager."

SELECT p.LastName, p.FirstName, e.HireDate, e.JobTitle 
  FROM Person.Person AS p 
    INNER JOIN HumanResources.Employee AS e 
      ON p.BusinessEntityID = e.BusinessEntityID 
    INNER JOIN HumanResources.JobCandidate AS jc 
      ON e.BusinessEntityID = jc.BusinessEntityID 
     AND jc.Resume.exist( 
           ' declare namespace 
        res="http://schemas.microsoft.com/sqlserver/2004/07/
adventure-works/Resume"; 
        /res:Resume/res:Employment/res:Emp.JobTitle[contains 
             (.,"Sales Manager")]') = 1;

Listing 14-7

Figure 14-10 shows the actual execution plan for this query.
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Figure 14-10: Execution plan for the .exist XQuery method.

Following the data flow, from right to left, we see a normal execution plan. A Clustered 
Index Scan against the JobCandidate table followed by a Filter that ensures that 
the Resume field is not null. A Nested Loops join combines this data from the filtered 
JobCandidate table with data returned from the Employee table, filtering us down to 
two rows.

Then, another Nested Loops operator is used to combine data from a new operator, a Table 
Valued Function operator, subtitled "XML Reader with XPath filter," which represents as 
relational data the output from the XQuery. The role it plays is not dissimilar to that of the 
Remote Scan operation from the OPENXML query. However, the Table Valued Function, 
unlike the Remote Scan in the earlier example, is part of the query engine and is represented 
by a distinct icon. Unlike a multi-statement table-valued function, the table-valued functions 
used by XQuery do not have a plan we can access through the cache or the query store, or by 
capturing an estimated plan. Its execution is purely internal.

The properties for the Table Valued Function show that the operator was executed two times 
and four rows were returned.
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Figure 14-11: Properties of the Table Valued Function showing XML operation.

These rows are passed to a Filter operator. Two values are defined by the Table Valued 
Function, value and lvalue. It's not completely clear how this works, but the Filter operator 
determines if the XPath query we defined equals 1 and is NOT NULL (and the NOT NULL 
check isn't necessary, but it's there). This results in a single row for output to the Nested 
Loops operator. From there, it's a typical execution plan, retrieving data from the Contact 
table and combining it with the rest of the data already put together.

Plans for queries that use the .query method
 The .query method returns XML. We use this if, rather than simply filter based on the 
XML, we want to return some or all of the XML we are querying against. In our example, 
we'll query demographics data to find stores that are greater than 20,000 square feet in size. 
We have to define the XML structure to be returned and, to this end, the query uses XQuery's 
FLWOR expressions: For, Let Where, Order, Return.

In this example, we need to generate a list of stores managed by a particular salesperson. 
Specifically, we want to look at any of the demographics for stores managed by this  
salesperson that have more than 20,000 square feet, where those stores have recorded any 
demographic information. We'll also list the stores that don't have it. The demographics 
information is semi-structured data, so it is stored within XML in the database. To filter the 
XML directly, we'll be using the .query method. Listing 14-8 shows our example query 
and execution plan.
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SELECT s.Name, 
  s.Demographics.query 
(' 
   declare namespace ss="http://schemas.microsoft.com/
sqlserver/2004/07/adventure-works/StoreSurvey"; 
   for $s in /ss:StoreSurvey 
   where ss:StoreSurvey/ss:SquareFeet > 20000 
   return $s 
') AS Demographics 
  FROM Sales.Store AS s 
  WHERE s.SalesPersonID = 279;

Listing 14-8

Figure 14-12 shows the plan.

Figure 14-12: Full execution plan for .query XQuery method.

The T-SQL consists of two queries:
• a regular T-SQL query against the Store table to return the rows where the 

SalesPersonId = 279
• an XQuery expression that uses the .query method to return the data where the 

store's square footage was over 20,000.
Stated that way, it sounds simple, but a lot more work is necessary around those two queries 
to arrive at a result set.

Let's break this execution plan down into three parts, each of which has separate responsi-
bilities: one for the relational part of the query, the second to read and filter the XML data 
according to the XQuery expression, and the third to take the data and convert it back into 
proper XML.
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First, Figure 14-13 shows the top-left part of the plan, which contains the standard parts of 
the query that is retrieving information from the Store table.

Figure 14-13: Blow-up of plan showing traditional data access.

The data flow starts with a Clustered Index Scan against the Sales table, filtered by  
the SalesPersonId. The data returned is fed into the top half of a Nested Loops, left 
outer join. This Nested Loops operator then calls its lower input (the section of the plan in 
Figure 14-13) for each row, pushing the data (values from the BusinessEntityID and 
Demographics columns) from the top input into the lower input, as seen in the Outer 
References property. The result of that lower input is then combined with the data read from 
the Stores table and returned to the client.

Going over to the right to find the second stream of data for the join, we find three familiar 
Clustered Index Seek operators, but this time though, they're accessing an XML clustered 
index. Figure 14-14 shows a blow-up of that part of the plan.

Figure 14-14: Blow-up of plan showing XML index use for XQuery statement.

The data in the XML data type is stored separately from the rest of the table, and there is an 
XML index available. The three seeks and the way they are combined are an artefact of how 
XML data is encoded in XML indexes, and I won't delve into this in detail. The Clustered 
Index Seek operator at the top right retrieves that data, using the pushed-down values from 
the Nested Loops discussed previously.
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Figure 14-15: Properties of the Index Seek showing XML data access.

You can see in Figure 14-15 that the seek is occurring on PXML_Store_Demographics, 
returning the 80 rows from the index that match the BusinessEntityId column from the 
store table. You can also see the output of the columns from the XML index nodes. This 
information allows you to understand better how SQL Server is retrieving the XML from the 
index in question.

The Filter operator implements the WHERE part of the FLWOR expression in the XQuery 
expression. Its predicate shows that it tests a column named "value," extracted from the 
XML, against the value 20,000, since we're only returning stores with a square footage of 
greater than this value. This illustrates that not all FLWOR logic is pushed into a special 
XML-related operator, as we saw in earlier examples. Parts of the XQuery expression are 
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evaluated as if they were relational expressions. Here, the engine extracts data out of the 
XML, making it relational, operates on it using the normal operators, and will later put it 
back into XML format.

The result of this fragment of the plan is data extracted from the XML column and  
manipulated according to the XQuery expression, but presented as a rowset, i.e. in  
relational format.

The third part of the plan does the conversion to XML. You can see this section blown up in 
Figure 14-16.

Figure 14-16: Blow-up of the plan showing conversion to XML.

The Compute Scalar does some prep work for the UDX operator, which converts the data 
information retrieved through the operations defined above back into XML format. That, 
in fact, is the final part of the XML-related portion of the plan. The Filter operator uses a 
Startup Expression Predicate property to suppress execution of the entire subtree of this 
plan for any rows with a NULL value in the XML column (i.e. for the Demographics data), 
preventing needless loss of performance.

All of this is combined with the original rows returned from the Store table through the 
Nested Loops operator in Figure 14-13.

When to use XQuery
These examples show that all the familiar operators and a few new operators are combined 
to implement XQuery, but that a full coverage is beyond the scope of this book. XQuery can 
take the place of FOR XML, but you might see some performance degradation.

You can also use XQuery in place of OPENXML. The functionality provided by XQuery 
goes beyond what's possible within OPENXML. Combining that with T-SQL will make for a 
powerful combination when you have to manipulate XML data within SQL Server. As with 
everything else, please test the solution with all possible tools to ensure that you're using the 
optimal one for your situation.
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JavaScript Object Notation
JavaScript Object Notation (JSON), an open-standard file format using human-readable text, 
is supported by SQL Server and Azure SQL Database starting with SQL Server 2016. There 
are mechanisms around storage and retrieval built into SQL Server to deal with JSON data. 
We won't explore all that information here. We are going to look at one example of a JSON 
query, because it results in differences to the execution plans generated, so you need to know 
what to look for. For a more detailed examination of the complete JSON functionality within 
SQL Server please refer to the Microsoft documentation: https://bit.ly/2qCP8Mx.

Unfortunately, the current version of AdventureWorks does not have any JSON data, so we 
must first build some.

SELECT p.BusinessEntityID, 
       p.Title, 
       p.FirstName, 
       p.LastName, 
       (   SELECT p2.FirstName AS "person.name," 
                  p2.LastName AS "person.surname," 
                  p2.Title, 
                  p2.BusinessEntityID 
           FROM Person.Person AS p2 
           WHERE p.BusinessEntityID = p2.BusinessEntityID 
           FOR JSON PATH) AS JsonData 
INTO dbo.PersonJson 
FROM Person.Person AS p;

Listing 14-9

This query moves data into a table called dbo.PersonJson. I've included both the regular 
data and the JSON data, just so you can see the conversion if you run queries against it. This 
is using the JSON PATH command to arrive at defined JSON data, similar to how we'd use 
the XML PATH command.

Not only will this load data into the table and convert some of it into JSON, but we can look 
at the execution plan for this query to see the JSON formatting in action.

https://bit.ly/2qCP8Mx
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Figure 14-17: Execution plan showing the UDX operator for JSON PATH.

This query processes 19,000 rows, as well as converting them into JSON data, so it's quite a 
high-cost plan, which explains why the optimizer parallelized it.

There are only two main points of note. First, an Index Spool was used to ensure that the 
Clustered Index Scan wasn't used over and over again. You can verify this looking at the 
Execution Count values in both the Clustered Index Scan operators, which have a value of 
1. The Index Spool itself has a value of 19,972, once for each row. Next, the UDX operator.

In this case the UDX operator is satisfying the needs of the JSON PATH operation. We 
can validate this by looking at the properties. The Name value is FOR JSON. That's the 
only indicator we have of what's occurring within this operator. It outputs an expression, 
Expr1005, but there are no other definitions given. You can see all this in Figure 14-18.

Figure 14-18: FOR JSON expressed within the UDX operator.
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The Compute Scalar operator performs some type of conversion on Expr1005 to create 
Expr1007, and then the Table Insert operator inserts the rows into the JsonData column.

Figure 14-19: Scalar Operator performing a final operation to create JSON data.

We can't see any of the JSON operations at work based on the properties of the operators. 
We just know that one operator is FOR JSON and the other does some type of conversion. 
Nothing else is clear.

We can also see evidence of JSON queries at work. Listing 14-10 shows how we can retrieve 
the JSON data from the table.

SELECT oj.FirstName, 
       oj.LastName, 
       oj.Title 
FROM dbo.PersonJson AS pj 
    CROSS APPLY 
    OPENJSON(pj.JsonData, 
             N'$') 
    WITH (FirstName VARCHAR(50) N'$.person.name', 
          LastName VARCHAR(50) N'$.person.surname', 
          Title VARCHAR(8) N'$.Title', 
          BusinessEntityID INT N'$.BusinessEntityID') AS oj 
WHERE oj.BusinessEntityID = 42;

Listing 14-10

We can simply query this data from the columns within the table, but the purpose here  
is to show OPENJSON at work, so we used that instead. The resulting execution plan is  
quite interesting.
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Figure 14-20: Execution for OPEN JSON query.

The Table Scan operator is used because the table in question, dbo.PersonJson,  
has no index, so there isn't any other way to retrieve the data. A Nested Loops join joins  
the data from the table to data produced by calls to a function, Table Valued Function 
(OPENJSON_EXPLICIT). The choice of the Nested Loops join might seem surprising 
given that the Table Scan returns an estimated (and actual) 19972 rows, meaning 19972 
executions of a relatively expensive table-valued function. The reason is simply because the 
optimizer has no choice in this case. This query uses a CROSS APPLY and the inner input 
produces different rows for each row from the outer input. The only way for the optimizer to 
implement this in current versions is with a Nested Loops.

The optimizer uses a fixed estimate of 50 rows returned, per execution of the JSON table-
valued function. In fact, it returns one row per execution. These rows do not represent a table 
row, but a new row of data, with the selected JSON data extracted as a relational column in 
the rowset. The Filter operator eliminates all rows other than those that match our WHERE 
clause value on the BusinessEntityID column of 42. In other words, it shreds all the 
JSON in all the rows before applying the filter when, of course, what we'd much rather it did 
was push down the predicate and only shred the required rows!

If we open the properties of the Table Valued Function, we can see some of the JSON 
activity at work. First, at the bottom of the properties, we see the Parameter List values as 
shown in Figure 14-21.
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Figure 14-21: Parameter values for the OPENJSON Table Valued Function.

At the top, we're passing in the full JSON string. Then, we pass the path operation and each 
of the values we're retrieving. We can't see how these parameter values are used internally, 
but we can see the definitions are very clear.

You also get to see the function's Defined Values, as shown in Figure 14-22.
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Figure 14-22: Defined values within the OPEN JSON Table Valued Function.

These are the defined aliases within the WITH clause of the OPEN JSON command in Listing 
14-10. These are also the names of the columns used in the Output List of the operation.

There are no other indications of exactly how JSON data is converted within SQL Server 
beyond these hints that you can see within the execution plan. With this information, you can 
observe the effects of JSON on your queries. In this case, we've discussed several causes for 
concern: the need to use an inefficient Nested Loops join for the CROSS APPLY, the fixed 
estimate of 50 rows returned by the OPEN JSON table-valued function, and the need to shred 
the JSON for every row, before filtering. To help with the latter you might consider using 
a persisted computed column and indexing it for the JSON data that is most often used in 
filters.

Hierarchical Data
SQL Server can store hierarchical data using HIERARCHYID, a data type introduced in SQL 
Server 2008 (implemented as a CLR data type). It doesn't automatically store hierarchical 
data; you must define that storage from your applications and T-SQL code, as you make use 
of the data type. As a CLR data type, it comes with multiple functions for retrieving and 
manipulating the data. Again, this section simply demonstrates how hierarchical data opera-
tions appear in an execution plan; it is not an exhaustive overview of the data type.

Listing 14-11 shows a simple listing of employees that are assigned to a given manager.  
I've intentionally kept the query simple so that we can concentrate on the activity of 
the HIERARCHYID within the execution plan and not have to worry about other issues 
surrounding the query.

DECLARE @ManagerID HIERARCHYID; 
SELECT @ManagerID = e.OrganizationNode 
  FROM HumanResources.Employee AS e 
  WHERE e.JobTitle = 'Vice President of Engineering'; 
SELECT e.BusinessEntityID, p.LastName 
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  FROM HumanResources.Employee AS e 
    JOIN Person.Person AS p 
      ON e.BusinessEntityID = p.BusinessEntityID 
  WHERE e.OrganizationNode.IsDescendantOf(@ManagerID) = 1;

Listing 14-11

Figure 14-23 shows the execution plan.

Figure 14-23: Execution plan for hierarchy data.

As you can see, it's a very simple and clean plan. The optimizer is able to make use of an 
index on the HIERARCHYID column, OrganizationNode, in order to perform an Index 
Seek. The data then flows out to the Nested Loops operator, which retrieves data as needed 
through a series of Clustered Index Seek operations on the Person.Person table, to 
retrieve the additional data requested. The interesting aspect of this plan is the Seek Predi-
cate of the Index Seek operator, as shown in Figure 14-24.

Figure 14-24: Index Seek properties showing hierarchy filtering at work.

Now you can see some of the internal operations performed by the CLR data type. The 
predicate supplies Start and End parameters, both working from mechanisms within 
the HIERARCHYID operation. The index is just a normal index, and the HIERARCHYID 
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column, OrganizationNode, is just a varbinary column as far as the Index Seek is 
concerned. The work is done by internal functions, such as the DescendantLimit we see 
in the Index Seek properties in Figure 14-24, which finds the appropriate varbinary value.

If I had run the query and added an extra column to the SELECT list, such as JobTitle 
from the HumanResources.Employee table, the query would have changed to a  
Clustered Index Scan, or to an Index Seek and Key Lookup, depending on cost estimates, 
since the index on OrganizationNode would no longer be a covering index.

We could explore a few other functions with the HIERARCHYID data type, but this gives a 
reasonable idea of how it manifests in execution plans, so let's move on to a discussion about 
another one of the CLR data types, spatial data.

Spatial Data
The spatial data type introduces two different types of information storage. The first is the 
concept of geometric shapes, and the second is data mapped to a projection of the surface 
of the Earth. There are a huge number of functions and methods associated with spatial data 
types and we simply don't have the room to cover all this in detail in this book. For a detailed 
introduction to spatial data, I recommend Pro Spatial with SQL Server 2012 (Apress) by 
Alastair Aitchison.

Like the HIERARCHYID data type, there are indexes associated with spatial data, but  
these indexes are extremely complex in nature. Unlike a clustered or nonclustered index in 
SQL Server, these indexes can (and do), work with functions, but not all functions. Listing 
14-12 shows a query that could result in the use of a spatial index, if one existed, on a  
SQL Server database.

DECLARE @MyLocation GEOGRAPHY = geography::STPointFromText('POI
NT(-122.33383 47.610870)', 4326); 
SELECT a.AddressLine1, 
       a.City, 
       a.PostalCode, 
       a.SpatialLocation 
FROM Person.Address AS a 
WHERE @MyLocation.STDistance(a.SpatialLocation) < 1000;

Listing 14-12
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This query creates a GEOGRAPHY variable and populates it with a specific point on the globe, 
which coincides with the Seattle Sheraton, near where, most years, PASS hosts its annual 
Summit. It then uses the STDistance calculation on that variable to find all addresses in 
the database that are within a kilometer (1,000 meters) of that location.

Figure 14-25 shows the plan which, in the absence of a useful index, is just a Clustered 
Index Scan, and then a Filter. If we were to review the properties of the SELECT operator, 
we'd see that the Estimated Subtree Cost for the plan is 19.9.

Figure 14-25: Plan for a spatial query with no spatial index.

Let's now create a spatial index on the Address table for our spatial query to use, as shown 
in Listing 14-13.

CREATE SPATIAL INDEX TestSpatial 
ON Person.Address (SpatialLocation) 
USING GEOGRAPHY_GRID 
WITH (GRIDS = (LEVEL_1 = MEDIUM, LEVEL_2 = MEDIUM, LEVEL_3 = 
MEDIUM, LEVEL_4 = MEDIUM), 
      CELLS_PER_OBJECT = 16, 
      PAD_INDEX = OFF, 
      SORT_IN_TEMPDB = OFF, 
      DROP_EXISTING = OFF, 
      ALLOW_ROW_LOCKS = ON, 
      ALLOW_PAGE_LOCKS = ON) 
ON [PRIMARY]; 
GO

Listing 14-13

Rerun Listing 14-12 and you'll see an execution plan that is rather large and involved, when 
you consider that we're querying a single table, although the estimated cost of the plan is 
much lower, down from 19.9 to 0.67.
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 Figure 14-26: Complex execution plan using a spatial index to retrieve data.

To say that spatial indexes are complicated doesn't begin to describe what's going on. You 
can see that, despite a simple query, a ton of activity is occurring. We'll have to break this 
down into smaller pieces to understand it. Figure 14-27 focuses on the operators retrieving 
the initial set of data from the disk.

 Figure 14-27: Blow-up of plan showing data access.

The Table Valued Function, which is named, GetGeographyTessellation_VarBinary, is 
retrieving information using a process called tessellation. It consists of tiles of information 
defined by our 1000-meter radius around a single point. You can see the parameter values 
passed in by looking at the properties as shown in Figure 14-28.

Figure 14-28: Parameters for tessellation within Table Valued Function.
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Without getting into the details of exactly how geographical data is stored and retrieved, this 
function reflects the settings of the index we created earlier and shows, in the final parameter 
value, how the 1000-meter limit is being supplied to the function that retrieves an initial set 
of data. You get some idea of the complexity of accessing spatial indexes because of this. We 
can even go further. On the left side of the plan in Figure 14-27 we can see that the values 
generated are used to perform the Clustered Index Seek (Spatial) against the additional 
storage created as part of the spatial index. This seek isn't the same as others we've seen 
before, which usually consist of a simple comparison operator, as you can tell by looking at 
the Seek Predicates in Figure 14-29.

Figure 14-29: The Seek Predicates against the Spatial Index.

The number of operators involved does make this plan more complicated. It reflects all the 
work necessary to satisfy a different data type, spatial data.

To clean up, you can drop the index created earlier.

DROP INDEX TestSpatial ON Person.Address;

Listing 14-14

While these spatial functions are complex and require a lot more knowledge to use, you can 
see that the execution plans still use the same tools to understand these operations, although 
in very complex configurations, making troubleshooting these queries harder.
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Cursors
Cursors, despite how they are defined within T-SQL, are not data types. They represent a 
different type of processing behavior. Most operations within a SQL Server database should 
be set based, rather than using the procedural, row-by-row processing embodied by cursors. 
However, there will still be occasions when a cursor is the more appropriate or more expe-
dient way to resolve a problem, and there may be times when you do not have time to replace 
the cursor with a set-based solution, but you need to investigate issues with this code.

While there are some operators that are cursor specific, mainly the optimizer uses the same 
operators doing the same things we've already seen throughout the rest of the book. However, 
the operators display differently between estimated and actual plans.

Static cursor
We'll start with the simplest type of cursor, a static cursor. This is the easiest to understand 
because the data within the cursor can't change, so it simplifies the processing rather radi-
cally. Listing 14-15 defines the first cursor.

DECLARE CurrencyList CURSOR STATIC FOR 
SELECT c.CurrencyCode, cr.Name 
  FROM Sales.Currency AS c 
    JOIN Sales.CountryRegionCurrency AS crc 
      ON crc.CurrencyCode = c.CurrencyCode 
    JOIN Person.CountryRegion AS cr 
      ON cr.CountryRegionCode = crc.CountryRegionCode 
  WHERE c.Name LIKE '%Dollar%'; 
OPEN CurrencyList; 
FETCH NEXT FROM CurrencyList; 
WHILE @@Fetch_Status = 0 
  BEGIN 
    -- Normally there would be operations here using data from 
cursor 
    FETCH NEXT FROM CurrencyList; 
  END; 
CLOSE CurrencyList; 
DEALLOCATE CurrencyList; 
GO

Listing 14-15
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In Listing 14-15, I don't do anything with the cursor. It doesn't process data or perform other 
actions commonly associated with cursors. This is simply so we can focus only on the actions 
of the cursor itself, within execution plans.

Capture the estimated plan for Listing 14-15.

Figure 14-30: Estimated plan for all the statements defining cursor use.

In the estimated plan, most cursor operators are represented using a placeholder icon.  
The declare statement shows the plan that will be used; this is the first execution plan  
you see at the top of Figure 14-30, and it shows how the cursor will be satisfied, as defined  
in Listing 14-15.

The plan for the DECLARE CURSOR statement shows how the cursor will be populated and 
accessed based on the other statements from Listing 14-15. We'll focus only on the top plan 
to start with. Figure 14-31 shows a small part of the plan.
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Figure 14-31: Cursor definition showing the Population and Fetch queries.

As you can see, we have an initial operator showing what kind of cursor we have, Snapshot 
in this case. This operator is a lot like the SELECT operator; it contains information about 
the cursor we're defining. Figure 14-32 shows the properties of this operation, providing a 
full definition of the cursor.

Figure 14-32: Properties of the Snapshot cursor operator.

The real magic for cursors is in the next two operators shown in Figure 14-31, Population 
Query and the Fetch Query operators.

The Population Query represents the optimizer's plan to execute the query that will collect 
the data set to be processed by the cursor. This runs when we OPEN the cursor, and then the 
Fetch Query represents the optimizer's plan to fetch each of the rows, and this runs once for 
every FETCH statement. 
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In this case, because a static cursor should not show any changes made later, the OPEN 
statement simply executes the query and stores the results in a temporary table, and FETCH 
then retrieves rows from that temporary table. Other cursor types use the same basic idea 
of combining a Population Query and a Fetch Query, but modified to accommodate the 
requested cursor type, as we'll see later.

Each of these operators has properties defining the query, again, similar to how  
the SELECT operator would work. Figure 14-33 shows the properties for the  
Population Query operator.

Figure 14-33: Properties of the Population Query operator.

You would use this data in the same way as you would the information in the SELECT 
operator. It provides you the information you need to understand some of the choices made 
by the optimizer, just as with other plans.

With the understanding that there are two queries at work, let's look at the definitions of those 
queries as expressed by the execution plans that define this cursor, starting with the first, the 
Population Query. In this case, it's performing two actions. First, it's retrieving data from 
the disk, as shown in Figure 14-34.
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Figure 14-34: Data retrieval for the Population Query of the Static Cursor.

It's a very straightforward execution plan that resolves the query in Listing 14-15. The  
interesting parts of the execution plan comes after the data set has been defined, as shown  
in Figure 14-35.

Figure 14-35: Creation of temporary storage for the Static Cursor.

I've included the Population Query operator and the Nested Loops operator as bookends to 
the interesting part of the operations, so that it's clearer exactly where these are taking place.

After the data is retrieved and joined, we see a Segment and Sequence Project (Compute 
Scalar) operators, which we saw in Chapter 5 when discussing the plans for Window func-
tions. In this case, the Group By property of Segment is empty, so the entire input is consid-
ered a single segment.

The Sequence Project (Compute Scalar) operator, which is used by ranking functions, 
works off an ordered set of data, with segment marks added by the Segment operator. In this 
case, it's adding a row number based on the segmented values, counting from zero each time 
the segment changes. Here, though, there is only a single segment. Once again, we can see 
this in the properties as shown in Figure 14-36.

Figure 14-36: Adding a row_number column to the data set.



429

Chapter 14: Plans for Special Data Types and Cursors

What this has done is to create an artificial primary key on the result set of our data for the 
cursor in question. All the data is then added to a temporary clustered index, CWT_Prima-
ryKey. All this happened in tempdb, as we can see this in the properties as shown in 
Figure 14-37.

Figure 14-37: The location of the CWT_PrimaryKey object is tempdb.

As noted earlier, the FETCH command then simply retrieves rows from this clustered index. 
Its purpose is to prevent the need to keep going back to the data repeatedly, through a stan-
dard query, working much as we've seen spool operators in other plans.

Figure 14-38: Fetch Query execution plan defined.

The rest of the operators in the estimated plan, back in Figure 14-30, are various processes 
within cursor operations; OPEN, FETCH, CLOSE, and DEALLOCATE. Each of these is repre-
sented by the Cursor catch-all operator, shown in Figure 14-39.

Figure 14-39: Cursor catch-all operator shown in FETCH NEXT command.

These operators will only be visible in the estimated plan. The properties of the operator don't 
reveal any useful information in most cases since they simply represent the cursor command 
in question, such as the FETCH NEXT command in Figure 14-39.

We can also capture actual plans for a cursor. If you do this, though, be ready to deal with the 
fact that you will get multiple plans. In this case, one for the Population Query and then one 
each for every row of data for the Fetch Query. It will look something like Figure 14-40.
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Figure 14-40: Actual plans for a static cursor.

As expected, based on what we saw in the estimated plans, the data is retrieved and put into a 
clustered index, and then that clustered index is used again and again as we FETCH data. The 
only other point of interest for the actual plan is how the SELECT operator has again been 
replaced, first by an OPEN CURSOR operator, and then by multiple FETCH CURSOR 
operators. However, the information within each of these is the same as that found within 
the SELECT operator, including such interesting bits of information as the Compile Time, 
Query Hash, and Set options.

Capturing actual plans for cursors is an expensive operation and probably shouldn't be done 
in most circumstances. Instead, use Extended Events to capture a single execution of one of 
the queries, or use SET STATISTICS XML ON for a single statement.

Let's see how the behavior of the plans change as we use different types of cursors.
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Keyset cursor

A keyset cursor retrieves a set of keys for the data in question. This is very different than 
what we saw with the Static cursor above. Keyset cursors should not show new rows, but 
they should show new data if concurrent updates modify existing rows. To achieve this, the 
Population Query will store the key values in the temporary table, and the Fetch Query 
uses these key values to retrieve the current values in those rows. Our query will now look 
like Listing 14-16.

DECLARE CurrencyList CURSOR KEYSET 
FOR 
SELECT c.CurrencyCode, 
       cr.Name 
FROM Sales.Currency AS c 
    JOIN Sales.CountryRegionCurrency AS crc 
        ON crc.CurrencyCode = c.CurrencyCode 
    JOIN Person.CountryRegion AS cr 
        ON cr.CountryRegionCode = crc.CountryRegionCode 
WHERE c.Name LIKE '%Dollar%'; 
OPEN CurrencyList; 
FETCH NEXT FROM CurrencyList; 
WHILE @@FETCH_STATUS = 0 
    BEGIN 
 -- Normally there would be operations here using data from cursor 
        FETCH NEXT FROM CurrencyList; 
    END 
CLOSE CurrencyList; 
DEALLOCATE CurrencyList; 
GO

Listing 14-16

If we capture an estimated plan for this set of queries, we'll again see a plan that defines the 
cursor, and a series of catch-all plans for the rest of the supporting statements for the cursor 
operations. We'll focus here on just the definition of the cursors. The full plan is shown in 
Figure 14-41.
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Figure 14-41: Plan to define a Keyset cursor.

Once again, the plan for the DECLARE CURSOR statement shows the Population Query and 
the Fetch Query. The differences are in the fundamental behavior. We'll start with the part of 
the plan that retrieves the data for the Population Query.

Figure 14-42: Data retrieval for the Population Query of the Keyset cursor.

Again, this execution plan doesn't introduce anything we haven't seen elsewhere in the book. 
The one very important thing to note, though, is that this plan for data retrieval is different 
than the earlier plan for data retrieval with the static cursor (Figure 14-34). The Key Lookup 
operator has been added because, to support the Keyset cursor, it must retrieve all key values. 
So while, before, the Nonclustered Index Seek satisfied the plan, now we have to get a new 
value, a key check value that can only come from the clustered index key. You can see this 
in the output of each of the Clustered Index Seek and Clustered Index Scan operators, in 
Figure 14-43.
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Figure 14-43: Check columns added from the clustered indexes.

This value will be used later, as we'll see. The next part of the Population Query is much the 
same as before.

Figure 14-44: Loading information into a temporary index for later use.

A temporary index is created for use by the Fetch Query, the plan for which is shown in 
Figure 14-45.

Figure 14-45: Fetch Query for the Keyset operator.

This is much more complicated than the previous cursor. This is because, with the Keyset 
cursor, the data can change. So, to retrieve the correct data set, instead of simply looking at 
everything stored within the temporary index, it has read the key values from the clustered 
index scan on CWT_PrimaryKey, then used them to do Clustered Index Seeks on the 
other tables. Also note that those are all using a Left Outer Join, because it is possible that 
the referenced row has been deleted since.

Then, we're going to each of those tables to retrieve the data based on the key values stored.
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Figure 14-46: Retrieving the data from the tables based on the key values.

There is also a check to see if data has been deleted, which explains the final Compute 
Scalar operator. The Nested Loops (Left Outer Join) operator, immediately to the right of 
the Compute Scalar, is there to put together data in preparation for the check.

The actual plans are much the same as before. You'll see one instance of the execution plan 
for the Population Query and then a series of plans for the Fetch Query.

Dynamic cursor
Finally, we'll look at a dynamic cursor. Here, any of the data can be changed in any way, 
at any point where we access the cursor. The actual code change is small so, instead of 
repeating the entire code list, I'll just show the change in Listing 14-17.

DECLARE CurrencyList CURSOR DYNAMIC

Listing 14-17

Capturing an estimated plan for this new cursor results in yet another variation on the execu-
tion plans we've already seen. I'll focus on the details of the execution plan for the cursor 
definition, since all the catch-all behaviors are the same.

Figure 14-47 shows the estimated plan.
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Figure 14-47: Estimated execution plan for a Dynamic cursor.

The biggest point to note here is that we only have a Fetch Query. There is no Populate 
Query for dynamic cursors. The data and the order of the data can change, so all we can do 
is run the full query, every time. There is a Compute Scalar operator to add an ID value, and 
we store the information retrieved into a temporary clustered index. This enables us to move 
in multiple directions within the cursor, not just forward, but the data is fetched repeatedly as 
the cursor runs, which is why this is the least efficient of the various cursor types.

Interestingly enough, somewhere in the internals, there are checks that somehow keep  
the engine from executing the query over and over, every time. The details are not known to 
me but, effectively, you need to think about this approach as if it did execute the query 15 
times. Capturing the actual plans for this cursor will only show the same execution plan over 
and over.

There are several other options that can affect cursor behavior, but that won't reflect in any 
novel ways within the execution plan. The behaviors you can expect are reflected in the 
examples provided.

Summary
The introduction of these different data types, XML, Hierarchical, Spatial and JSON, radi-
cally expands the sort of data that we can store in SQL Server and the sort of operations 
that we can perform on this data. Each of these types is reflected differently within execu-
tion plans. Cursors also add new wrinkles to what we're going to see within execution plans. 
Neither the complex data types, nor cursors, fundamentally change what's needed to under-
stand the execution plans. Many of the same operators are in use, even though these special 
data types and cursors have added values. You still have to drill down to the properties and 
walk through the details in order to come to an understanding of how execution plans display 
the behaviors defined within your T-SQL, even if it's for a cursor or a special data type.



436

Chapter 15: Automating Plan Capture
Throughout this book, we've been executing ad hoc queries and code modules from within 
SSMS, and capturing their execution plans. In Chapter 9, we also explored how to retrieve 
the plans currently in the plan cache, by querying a set of execution-related Dynamic 
Management Objects (DMOs). These DMO queries allowed us to return interesting prop-
erties for each plan, such as its size and the number of times it had been used, as well as 
runtime metrics. Many of the columns that store these metrics are counters and return a row 
for each query statement in each plan. For example, each time a cached plan is executed, the 
time taken to execute each query is added to total_elapsed_time counter value for 
that row. In other words, the metrics are aggregated over the time the plan has been in cache. 
If you're using the Query Store, you can capture plans and track aggregated runtime metrics 
over even longer periods (as explored in detail in Chapter 16).

While this information is useful, there are times when the history of aggregated metrics 
obscures the cause of a recent problem with a query. If a query is performing erratically, or a 
SQL instance is experiencing performance problems only at specific times, then you'll want 
to capture the plans and associated execution metrics for each of the queries in a workload, 
over that period. If that period happens to be at around 2 a.m., then you'd probably rather 
have a tool to capture the information for you automatically.

We're going to look at how to use two tools, Extended Events and SQL Trace, to capture 
automatically the execution plans for each query in the workload or, perhaps more specifi-
cally, for the most resource-intensive and long-running queries in that workload.

Why Automate Plan Capture?
Situations of all kinds can arise where capturing a plan using SSMS, using the information in 
the Query Store, or querying the plan cache, won't give you the data you need, or won't give 
it to you easily and accurately. For example, if your applications submit a very high number 
of ad hoc, unparameterized queries, this will essentially flood the cache with single-use plans, 
and older plans will quickly age out of the cache, as discussed in Chapter 9. In that situation, 
you'll probably have Query Store configured so that it's not capturing all the plans either. 
Therefore, the plans for a given query you want to investigate may no longer be cached or 
within the Query Store.



437

Chapter 15: Automating Plan Capture

During development work, you can capture the plans for your test workload simply by 
adding SET STATISTICS XML commands to the code. However, this requires code changes 
that are not always possible or easy when tackling a production server workload.

It's under these circumstances and others that we're going to go to other tools to retrieve 
execution plans.

Tools for Automating Plan Capture
First, I'm going to show you how to use Extended Events to capture actual plans, and then the 
tool that it replaced, SQL Trace. Starting in Azure SQL Database, and in SQL Server 2016 or 
better, you also have access to the Query Store as a means of investigating execution plans, 
and we'll cover that topic in the next chapter. However, one thing that Query Store does not 
give you that Extended Events and SQL Trace do, is detailed runtime metrics.

My basic assumption is that you're working on SQL Server 2012 or higher, or on Azure SQL 
Database. In either case, you really should be using Extended Events rather than SQL Trace, 
as it's a far superior tool for collecting diagnostic data for all the different types of events that 
occur within our SQL Server instances and databases.

All new functionality in SQL Server uses Extended Events as its internal monitoring mecha-
nism. The GUI built into Management Studio is updated regularly and has a lot of function-
ality to make it quite attractive, especially when tuning queries and looking at execution 
plans.  Diagnostic data collection with Extended Events adds a much lower overhead than 
with SQL Trace, and so has a much lower impact on the server under observation, since 
the events are captured at a lower level within the SQL Server system. SQL Trace, broadly 
speaking, works on the principle of collecting all the event data that could possibly be 
required, and then discarding that which individual traces don't need. Extended Events works 
on the opposite principle; it collects as little data as possible and allows us to define precisely 
the circumstances under which to collect event data. Finally, SQL Trace events are on the 
deprecation path within SQL Server so, at some point, they won't be available.

All this said, if you're still working on SQL Server 2005, then you'll have to use SQL Trace, 
since Extended Events were only introduced in SQL Server 2008. If you're working on SQL 
Server 2008 or SQL Server 2008R2, then Extended Events are available, but these early 
releases of it offered a far less complete set of events, and one of the missing events in 2008 
and 2008R2 is the ability to capture execution plans. There are other weaknesses too, such as 
the absence of an SSMS-integrated GUI, meaning we must parse the XML event data.
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CAUTION!  Automating plan capture on production servers
With either of these tools, you are capturing the cached plan on the same thread that executes 
the query; in other words, it is an in-process operation. Further, execution plans can be big, 
so capturing them using these tools adds considerable in-process memory and I/O overhead. 
As such, do exercise caution when running Extended Events sessions or server-side traces that 
capture the plan, on a production server. Be sure to add very granular filters to these execution 
plan events, so that you are capturing the plan for as few event instances as possible.

Automating plan capture using Extended Events
With Extended Events we can collect and analyze diagnostic data for many types of events 
occurring within SQL Server instances and databases. For example, we can collect data for 
events relating to T-SQL statement or stored procedure execution, locked processes, dead-
locks, and many more. We create an event session, loosely the equivalent of a trace in SQL 
Trace, to which we add the required events, specify any additional data required that we wish 
to collect as an action, add the predicates of filters that will limit when data is collected and 
how much, and finally specify the targets that will consume the event data.

For example, if we have long-running queries that consume a lot of CPU and I/O resources, 
then we may want to capture the plans for these queries, along with one or two other useful 
events, to find out why. You can capture wait statistics for a given query or stored proce-
dure. You can use extended events to observe the statistics being queried and consumed by 
the optimizer as it compiles a plan. You can see compile and recompile events and you can 
correlate each of these to others so that you can achieve a complete picture of the behavior of 
queries within the system, far beyond anything possible before the introduction of Extended 
Events, but all of which goes beyond the scope of this book.

Extended Events provides three events that capture execution plans. Each one captures the 
plan at a different stage in the optimization process. The query_post_compilation_
showplan event fires only on plan compilation. The first time you call a stored procedure, 
or execute a batch or ad hoc query, you'll see this event fired. If you execute them again, and 
their plans are reused from cache, the event won't fire. This event will also fire when you 
request an estimated plan, assuming there is no cached plan for that query.

The query_pre_execution_showplan event fires right before a query executes.  
It shows the plan that was either compiled or retrieved from cache. This is a very useful  
event when you're dealing with lots of recompiles and you want to see plans before and  
after the recompile.
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Since both the above events fire before query execution, neither contains runtime statistics. If 
you want those, you'll need to capture the query_post_execution_showplan event. 
Since it's capturing the plan, plus runtime metrics, for all queries that meet the filter criteria 
of your event session, it's also more expensive than capturing the equivalent pre-execution 
events. While I advocate its use, remember my earlier caution: please be careful with this 
event, and the other two. Carefully test any event session that captures them, prior to running 
it in a production environment.

Create an event session using the SSMS GUI
Event sessions are stored on each server, and you can find them in SSMS Object Explorer, as 
shown in Figure 15-1. The AlwaysOn_health, system_health and telemetry_
xevents are built-in event sessions, and all the rest are sessions I've created. Green arrows 
define the event sessions that are currently running and red squares those currently stopped.

Figure 15-1: A list of Extended Events sessions.
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My preferred way to create new event session is using T-SQL, but it's sometimes useful to 
use the GUI to create a new session quickly, and then script it out and tweak it, as required. 
Therefore, let's see how to create an event session that captures our execution plan-related 
events, using the New Session dialog.

I won't cover every detail and every available option when creating event sessions. For that, 
please go to the Microsoft documentation (https://bit.ly/2Ee8cok). I also won't cover the New 
Session Wizard, because it has various limitations, and can only be used to create new event 
sessions. If you want to alter an existing event, then the dialog for that uses the same layout 
and options as the New Session dialog.

Right-click on the Sessions folder and select New session… from the context menu to open 
the New Session dialog.

Figure 15-2: New Session window for Extended Events.

This figure shows the General page of the dialog, where we give the session a name, specify 
when we want the session to start running and a few other options. I've given the new event 
session a name, ExecutionPlansOnAdventureWorks2014, and specified that the session 
should start running as soon as we create it, and that I want to watch live event data, on the 
screen. I have also turned on Causality tracking for this session and I'll explain what that 
does, briefly, later in the chapter.

https://bit.ly/2Ee8cok
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Now click over to the next page, Events, where we can select the events for the session.

Figure 15-3: The Events page of a new Extended Events Session.

In the left-hand pane, we identify the events we want to capture. I've used the Event library 
textbox to filter for event names that contain the word showplan. There are four of them, and 
in Figure 15-3, I've already used the '>' arrow to select the three events I want.

I've highlighted the query_post_compilation_showplan event, and it shows a 
description for that event in the panel below, along with a warning that you could see perfor-
mance issues by capturing this event.

I also want to capture one other event, not directly related to execution plans, sql_batch_
completed, which fires when a T-SQL batch has finished executing, and provides useful 
performance metrics of that query. Often, it's also useful to add the sql_statement_
recompile event, which fires when a statement-level recompilation occurs, for any kind of 
batch, and provides useful event fields that reveal the cause of the recompile, and the identity 
of database and object on which it occurred.
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Having selected all four events, click on the Configure button at the top right. This changes 
our view but we're still on the same Events page, and it's here that we can control the 
behavior of our event sessions.

On the Filter (predicate) tab, we can define predicates for our event session that will define 
the circumstances in which we wish the event to fire fully, and to collect that data. In this 
example, we only want to collect the event data if the event fires on the Adventure-
Works2014 database and only for a query that accesses the Person.Person table, as 
shown in Figure 15-4.

Figure 15-4: Configuring the selected events in a new Extended Events session.

I've used the mouse and the Shift key to select all four events and then added the two filters 
to all four events. To limit event data collection to the AdventureWorks2014 data-
base, we need to create a predicate on the sqlserver.database_name global field. 
The required operator is the equal_i_sql_unicode_string textual comparator, in 
order to compare the database_name for the event raised with the string 'Adventure-
Works2014'. The event engine will only fire the event fully and collect the data if they 
match. To restrict data collection still further, I add the And operator and a second predicate 
on the sqlserver.sql_text global field, selecting the like_i_sql_unicode_
string comparator, to use the LIKE command, and the value %Person.Person%.

In this way, despite the query plan Extended Events being expensive, I've ensured that I'm 
only capturing a very limited set of those events.

While we won't do this here, we can use the other two tabs to control the data we want the 
event session to collect. In the Event Fields tab, we can see the event data columns that 
define the base payload for the event, i.e. they will always be captured when the event fires, 
plus any event data columns that are configurable.



443

Chapter 15: Automating Plan Capture

In the Global Fields (Actions) tab, we can specify any additional data we want to add to the 
event payload, as an "action." No global fields are collected by default, in stark contrast to 
SQL Trace, where every event collects this data when the event fires, even if it is not a part of 
the trace file definition. For example, if we wanted to collect the exact SQL text on an event 
that doesn't already collect that information, then we'd add the sql_text global field to the 
event session, explicitly, as an action. Actions add some additional overhead, so choose when 
and how to use them with some caution.

Next, click on the Data Storage page on the left, where we can specify one or more targets 
in which to collect the event data.

Figure 15-5: The Data Storage page of a new Extended Events session.

I've used the event_file target, which is simply flat file storage, similar to the server-
side trace file. It's the most commonly used target for standard event sessions, and usually 
performs better than the other options. You can define the file properties in the lower window. 
Except for defining the precise location of the file on the server, I've accepted all defaults in 
this instance.
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There is a final Advanced page, where we can set a range of advanced session options, 
which relate to configuring the memory buffer for events, dispatch frequency to the target, 
and event retention in the target. We won't be covering that here.

With this, you can click on the OK button to create the new event session. If you have  
done as I have, specifying that the session should start and to show the Live Data window, 
you'll not only see a new session, but a new window will open in SSMS. We'll get to that in 
just a minute.

Create an event session in T-SQL
As I stated earlier, I generally prefer to create event sessions in T-SQL. It's simple and clear 
and makes it easier for you to migrate sessions between different servers. In this case, I'll 
simply show the T-SQL for the ExecutionPlansOnAdventureWorks2014 event session that 
we just created (simply right-click on the event session in SSMS Object Explorer and use 
Script Session As…).

CREATE EVENT SESSION ExecutionPlansOnAdventureWorks2014 
ON SERVER 
    ADD EVENT sqlserver.query_post_compilation_showplan 
    (WHERE (   sqlserver.database_name = N'AdventureWorks2014' 
               AND sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%Person.Person%'))), 
    ADD EVENT sqlserver.query_post_execution_showplan 
    (WHERE (   sqlserver.database_name = N'AdventureWorks2014' 
               AND sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%Person.Person%'))), 
    ADD EVENT sqlserver.query_pre_execution_showplan 
    (WHERE (   sqlserver.database_name = N'AdventureWorks2014' 
               AND sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%Person.Person%'))), 
    ADD EVENT sqlserver.sql_batch_completed 
    (WHERE (   sqlserver.database_name = N'AdventureWorks2014' 
               AND sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%Person.Person%'))) 
    ADD TARGET package0.event_file 
    (SET filename = N'C:\PerfData\ExecutionPlansOnAdventureWor
ks2014.xel')
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WITH (MAX_MEMORY = 4096KB, 
      EVENT_RETENTION_MODE = ALLOW_SINGLE_EVENT_LOSS, 
      MAX_DISPATCH_LATENCY = 30 SECONDS, 
      MAX_EVENT_SIZE = 0KB, 
      MEMORY_PARTITION_MODE = NONE, 
      TRACK_CAUSALITY = ON, 
      STARTUP_STATE = OFF) 
GO

Listing 15-1

Each of the execution plan events uses the same predicate or filter definitions, as we can 
see in the WHERE clause for each event. The code is straightforward and you can see every 
choice we made in the GUI reflected in the T-SQL statements.

Viewing the event data
If you followed exactly, you have a session running and the Live Data Viewer window open. 
If not, you'll need to right-click on a session and select Start from the menu choice, then 
right-click again and select Watch Live Data.

Now, execute the query shown in Listing 15-2. To make sure that we capture all three execu-
tion plan events, the opening section of the code grabs the plan_handle for a cached plan 
for a query that contains the text %Person.Person%, and then uses it to remove those 
plans from cache. That done, we run the query that will cause the events to fire.

USE AdventureWorks2014; 
GO 
DECLARE @PlanHandle VARBINARY(64); 
SELECT  @PlanHandle = deqs.plan_handle 
FROM    sys.dm_exec_query_stats AS deqs 
        CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest 
WHERE   dest.text LIKE '%Person.Person%'; 
IF @PlanHandle IS NOT NULL 
    BEGIN 
        DBCC FREEPROCCACHE(@PlanHandle); 
    END; 
GO
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SELECT  p.LastName + ', ' + p.FirstName , 
        p.Title , 
        pp.PhoneNumber 
FROM    Person.Person AS p 
        JOIN Person.PersonPhone AS pp 
        ON pp.BusinessEntityID = p.BusinessEntityID 
        JOIN Person.PhoneNumberType AS pnt 
        ON pnt.PhoneNumberTypeID = pp.PhoneNumberTypeID 
WHERE   pnt.Name = 'Cell' 
        AND p.LastName = 'Dempsey'; 
GO

Listing 15-2

I've run both the DMO query in one batch, and the actual query in a second batch, and both 
in the context of AdventureWorks, so you'll see all four events fire twice. Figure 15-6 
shows only the four relating to the execution of the second batch.

Figure 15-6: Events in the Live Data viewer showing the events we captured.

If you rerun just the query batch, you'll only see three events; you won't see a post_
compilation event since the query won't be compiling again. Click on any of the *_
showplan event instances in the upper grid to see the associated query plan displayed graphi-
cally in the Query Plan tab.

We're not going to explore this plan in detail, except to note that the first operator is not the 
SELECT operator, as we've seen throughout the book. Instead, the first operator for plans 
captured using Extended Events is the first operator of the plan as defined by the NodeID 
value. For some reason known only to Microsoft, some of the properties normally displayed 
for the first operator are not displayed in Extended Events. As explained in Chapter 13, you 
can still find this information in the XML for the plan simply by right-clicking on the graph-
ical plan, selecting Show Execution Plan XML, and looking in the StmtSimple element 
for the plan.
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Figure 15-7: An execution plan captured by Extended Events.

The Details tab for each event reveals some information that can be useful to your query-
tuning efforts. For example, Figure 15-8 shows the Details pane for our first event, query_
post_compilation_showplan.

Figure 15-8: query_post_compilation_showplan details.
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The first set of fields, with names starting with attach_, is added to event sessions for 
which TRACK_CAUSALITY is set to ON, as it is for this session. This means that a set 
of events that are linked will have a common ID and a sequence. You can see that, in our 
sequence, this is the first event. This is useful if you want to group all the activities together 
for any given set of events, defined by the attach_activity_id.guid value, and order 
these events in the precise order in which they occurred within SQL Server, as shown by the 
attach_activity_id.seq value. On a test system such as mine, this may not matter 
because I'm the only one running queries. However, capturing events like this on a produc-
tion system, even well-filtered events, you may see additional queries and event sets in which 
you've no interest. Alternatively, you may see multiple interesting events, but interlaced 
because they were executed at the same time, and in these cases the activity_id values 
can help you find out which ones belong together.

The interesting information is further down. For example, the duration field shows the 
time it took to compile this plan, which was 4192 microseconds on my machine. You can 
also see that the estimated number of rows returned was 1. We also have the plan_handle 
and sql_handle which can be used to retrieve this plan and the T-SQL code from cache, if 
required. The showplan_xml column has the plan as XML. The object_name column 
describes this query as Dynamic SQL. This is accurate for the kind of query I'm running 
in this case, which is just a T-SQL statement, not a prepared statement or stored procedure. 
When pulling plans for stored procedures or other objects, you'll be able to see their object 
names as well as the object_type.

The next event is query_pre_execution_showplan which shows similar informa-
tion, but the base payload for this event doesn't include a few of the event fields that we saw 
for the previous event, such as the plan_handle and sql_handle.

The third event in the sequence is query_post_execution_showplan with the details 
shown in Figure 15-9.
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 Figure 15-9: query_post_execution_showplan details.

As you can see there's not much additional information about the plan here. The detail is in 
the plan itself. Importantly, the plan captured by this event has runtime information. Click on 
the Query Plan tab and examine the Properties for the Nested Loops operator, and you'll 
see that we have actual runtime counters for the number of rows and number of executions, 
as well as estimated values.
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Figure 15-10: Properties for the Nested Loops operator showing runtime metrics.

Ensuring "lightweight" event sessions when capturing the plan
The most important aspect of all this is that you have an execution plan and that you captured 
it in an automated fashion. Just remember that capturing plans using extended events is 
a high-cost operation. You should only run the event session for a limited time. It should 
only capture exactly the data you need and no more. You'd very rarely want to run an event 
session that captured all three showplan events, as I did in Listing 15-1. Instead, just pick 
one; I generally use the query_post_execution_showplan event. Also, define filters, 
as I did, to control strictly the circumstances in which the event fires fully, which will limit 
the number of events for which the event session collects the event data.

Listing 15-3 offers a more realistic example of the sort of event session you might use for 
capturing specific plans, when query tuning.
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CREATE EVENT SESSION ExecPlansAndWaits 
ON SERVER 
    ADD EVENT sqlos.wait_completed 
    (WHERE (   (sqlserver.database_name = N'AdventureWorks2014') 
               AND (sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%ProductTransferByReference%')))), 
    ADD EVENT sqlserver.query_post_execution_showplan 
    (WHERE (   (sqlserver.database_name = N'AdventureWorks2014') 
               AND (sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%ProductTransferByReference%')))), 
    ADD EVENT sqlserver.rpc_completed 
    (WHERE (   (sqlserver.database_name = N'AdventureWorks2014') 
               AND (sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%ProductTransferByReference%')))), 
    ADD EVENT sqlserver.rpc_starting 
    (WHERE (   (sqlserver.database_name = N'AdventureWorks2014') 
               AND (sqlserver.like_i_sql_unicode_string(sqlserver.
sql_text, N'%ProductTransferByReference%')))) 
    ADD TARGET package0.event_file 
    (SET filename = N'C:\PerfData\ExecPlansAndWaits.xel') 
WITH (TRACK_CAUSALITY = ON) 
GO

Listing 15-3

It captures the rpc_starting and rpc_completed events, which fire when a stored 
procedure starts and completes execution, respectively; wait_completed, which fires for 
any waits that occurred while it executed; and query_post_execution_showplan, to 
capture the plan, once the query has executed.

I've filtered these events by database and by procedure name and added causality tracking. 
With this, I could see when the procedure started to execute, including parameter values, 
each wait as it completes, and the order in which they completed, and the completion of the 
procedure along with the execution plan. That would be just about everything you need to 
troubleshoot performance on one specific query.

Start this on a production system, capture a few minutes' worth of executions, or whatever is 
appropriate to your system, and then turn it back off. The load will be as minimal as you can 
make it while still capturing useful data that will help drive your query-tuning choices.
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Automating plan capture using SQL Trace
As discussed at the start of the chapter, if you are running SQL Server 2008/R2 or lower, you 
may have to use Trace Events instead.

We can use SQL Profiler to define a server-side trace to capture XML execution plans, as the 
queries are executing. We can then examine the collected plans, starting with the queries with 
the highest costs, and look for potential optimization possibilities, such as indexes that may 
enable the optimizer to perform index seek rather than scan operations for frequent queries 
that access large tables, or by investigating the accompanying SQL to find the cause of 
specific warnings in the plans, such as sorts that spill to disk.

CAUTION! Never use the Profiler GUI to Capture Event Data
I'm going to show how to set up a server-side trace; never use the Profiler to capture event 
data directly. The Profiler GUI uses a different caching mechanism that can have a profoundly 
negative impact on the server that is the target of event collection. You can use the GUI to 
generate a trace script, but then you should run it independently as a server-side trace, saving 
the data to a file.

The basic principle of SQL Trace is to capture data about events as they occur within 
the SQL Server engine, such as the execution of T-SQL or a stored procedure. However, 
capturing trace events is very expensive, especially when compared to Extended Events. 
Many of the events have a much heavier default payload, any data that is not actually 
required simply being discarded. Also, the mechanisms of filtering in trace events are highly 
inefficient. As discussed earlier, I strongly advise against using SQL Trace events if you can 
instead use Extended Events.

Trace events for execution plans
There are many trace events that will capture an execution plan. The most commonly used 
ones are as follows:

• Showplan XML – the event fires with each execution of a query and captures the 
compile-time execution plan, in the same way as the query_pre_execution_
showplan event in Extended Events. This is probably the preferable event if you 
need to minimize impact on the system. The others should be avoided because of 
the load they place on the system or because they don't return data that is usable for 
our purposes.
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• Showplan XML for Query Compile – like Showplan XML above, but it only 
fires on a compilation of a query, like the query_post_compilation_
showplan event in Extended Events.

• Performance Statistics – can be used to trace when execution plans are added to 
or removed from cache.

• Showplan XML Statistics Profile – this event will generate the actual execution 
plan for each query, after it has executed. While this is the one you'll probably want 
to use the most, it's also the most expensive one to capture.

You must be extremely cautious when running traces that capture any of these events on 
a production machine, as it can cause a significant performance hit. SQL Trace's filtering 
mechanism is far less efficient than for Extended Events. Even if we filter on database and 
SQL text, as we did earlier for our events sessions, SQL trace still fires the event fully for 
every database and for any SQL text, and only applies the filter at the point the individual 
trace consumes the event. Aside from collecting the execution plans, these events will also 
collect several global fields by default, whether you want them or not.

Run traces for as short a time as possible. If you can, you absolutely should replace SQL 
Trace with Extended Events.

Creating a Showplan XML trace using Profiler
The SQL Server Profiler Showplan XML event captures the XML execution plan created by 
the query optimizer and so doesn't include runtime metrics. To capture a basic Profiler trace, 
showing estimated execution plans, start Profiler from the Tools menu in SSMS, create a new 
trace and connect to your SQL Server instance. By default, only a person logged in as sa, 
or a member of the SYSADMIN group can create and run a Profiler trace. For other users to 
create a trace, they must be granted the ALTER TRACE permission.

On the General tab, change the template to blank, give the trace a name and then switch 
to the Events Selection tab and make sure that the Show all events and Show All columns 
checkboxes are selected. The Showplan XML event is located within the Performance 
section, so click on the plus (+) sign to expand that selection. Click on the checkbox for the 
Showplan XML event.

While you can capture the Showplan XML event by itself in Profiler, it is generally 
more useful if, as I did with the extended events session, you capture it along with some 
other basic events, such as RPC:Completed (in Stored Procedures event class) and 
SQL:BatchCompleted (TSQL event class). 
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These extra events provide additional information to help put the XML plan into context.  
For example, we can see which parameters were passed to a stored procedure in which we 
are interested.

I won't go into the details of which data fields to choose for each event but, if you're running 
the trace in a shared environment, you may want to add the database_name field and then 
filter on it (using Column Filters…) so you see only the events in which you're interested.

Deselect "Show All Events" and "Show All Columns" once you're done. The event selection 
screen should look like Figure 15-11.

Figure 15-11: Trace defined within Profiler.

With Showplan XML or any of the other XML events selected, a third tab appears, called 
Events Extraction Settings. On this tab, we can choose to output, to a separate file for  
later use, a copy of the XML as it's captured. Not only can we define the file, we can also 
determine whether all the XML will go into a single file or a series of files, unique to each  
execution plan.
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Figure 15-12: Setting up the execution plan extraction.

For test purposes only, to prove the trace works correctly, and never on a production system, 
click on the Run button to start the trace. Rerun the code from Listing 15-2 and you should 
see the events captured, as shown in Figure 15-13.

Figure 15-13: Output from Trace Event with an execution plan on display.
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Stop the trace running. In the collected event data, I have clicked on the Showplan XML 
event. In the lower pane, you can see the graphical execution plan. Note that the captured 
plan again does not have the SELECT operator.

You cannot access the operator properties from this window; you'll need to browse the plan's 
XML, available under the TextData column, or export it to a file by right-clicking on the row 
and selecting Extract Event Data. However, in this case, we already have the plans in files 
because of the Events Extraction Settings, shown in Figure 15-12.

Creating a server-side trace
As noted earlier, if we are using SQL Trace, we want to run server-side traces, saving the 
results to a file. One quick way to script out a trace file definition is to start and immediately 
stop the trace running, in Profiler, and then click on File | Export | Script Trace Definition | 
For SQL Servers 2005–2017….

Listing 15-4 shows a truncated extract of the saved trace file.

EXEC @rc = sp_trace_create @TraceID OUTPUT, 
                           0, 
                           N'InsertFileNameHere', 
                           @maxfilesize, 
                           NULL; 
IF (@rc != 0) 
    GOTO error; 
-- Client side File and Table cannot be scripted 
-- Set the events 
DECLARE @on BIT; 
SET @on = 1; 
EXEC sp_trace_setevent @TraceID, 122, 1, @on; 
EXEC sp_trace_setevent @TraceID, 122, 9, @on; 
EXEC sp_trace_setevent @TraceID, 122, 2, @on; 
… 
-- Set the Filters 
DECLARE @intfilter INT; 
DECLARE @bigintfilter BIGINT; 
-- Set the trace status to start 
EXEC sp_trace_setstatus @TraceID, 1;
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-- display trace id for future references 
SELECT @TraceID AS TraceID; 
GOTO finish; 
error: 
SELECT @rc AS ErrorCode; 
finish: 
GO

Listing 15-4

Yes, this lengthy script is roughly equivalent to that in Listings 15-1 or 15-3, just much less 
clear and much longer-winded. Follow the instructions in the comments to use this on your 
own servers.

Summary
Automating plan capture will allow you to target queries or plans that you might not be able 
to get through more traditional means. This will come in extremely handy when you want the 
execution plan and a correlated number of other events, such as wait statistics or recompile 
events. Try not to use trace events for doing this, because they place a very high load on the 
system. Instead, where possible, use Extended Events. Just remember that Extended Events, 
though very low cost in terms of their overhead on the system, especially compared to Trace 
Events, are not free, so you should carefully filter the events captured.
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Introduced to Azure SQL Database in 2015, and to the boxed version with SQL Server 2016, 
the Query Store is a new mechanism for monitoring query performance metrics at the  
database level. In addition to capturing query performance, the Query Store also retains 
execution plans, including multiple versions of plans for a given query if the statistics or 
settings for that query can result in different execution plans. This chapter will cover the 
Query Store as it relates directly to execution plans and execution plan control; it is not a 
thorough documentation on all the behavior surrounding the Query Store.

Behavior of the Query Store
The aim of the Query Store is to capture the information without interfering with normal 
operations of your database and server. With this intent, then, the information that the Query 
Store captures is initially written in an asynchronous fashion to memory. The Query Store 
then has a secondary process that will flush the information from memory to disk, again 
asynchronously. The Query Store does not directly interfere with the query optimization 
process. Instead, once an execution plan has been generated by the optimization process, the 
Query Store will capture that plan at the same time as it gets written to cache.

Some plans are not written to cache. For example, an ad hoc query with a RECOMPILE hint 
will generate a plan, but that plan is not stored in cache. However, all plans, by default, are 
captured by the Query Store at the time they would have been written to cache.

After a query executes, another asynchronous process captures runtime information about 
the behavior of that query, how long it ran, how much memory it used, etc., and stores aggre-
gated data about the query behavior, first to memory, then flushed to disk in an asynchronous 
process, just like the plans.

All this information is stored within system tables for each database on which you enable the 
Query Store. By default, the Query Store is not enabled in SQL Server 2016, but it is enabled 
by default in Azure SQL Database. You can control whether the Query Store is enabled 
or disabled, but you have no ability to change where the information it gathered is placed, 
because it is within system tables, so it will always be in the Primary file group.
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The organizing principle of the Query Store is the query. Not stored procedures and not 
batches, but individual queries. For each query, one or more execution plans will also be 
stored. There are several options regarding the behavior of the Query Store and the queries 
it captures, length of retention, etc. None of that is directly applicable to the behavior of the 
execution plans within the Query Store, so I won't be addressing them here.

The information about execution plans is stored in one table within the Query Store as shown 
in Figure 16-1.

Figure 16-1: Execution plans within the Query Store.

The plan itself is stored in the query_plan column as an NVARCHAR(MAX) data type. 
Additionally, there is a large amount of metadata about the plan stored as various other 
columns within the catalog view. The data is stored as text, NVARCHAR, even though it is 
an XML execution plan, because there is a limit on the nesting levels of XML within SQL 
Server. Storing the plan as text avoids that issue. If you want to retrieve the plan from the 
catalog view and view it graphically, you must either CAST as XML (assuming it will be 
below the XML nesting-depth limit), or export to a .showplan file.
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Since there are a few options that affect plan retention and capture within the Query Store, 
I want to talk about those, so that you can be sure you capture, or don't capture, the correct 
plans for your queries.

Query Store Options
By default, you can capture up to 200 different plans for each query. That should be enough 
for almost any query I've heard of. It is possible, although I have yet to see it, that this value 
could be too high for a system and you may want to adjust it down. It's also possible for a 
given system that this value is too low and may need to go up. The method for adjusting 
Query Store settings is to use the ALTER DATABASE command as shown in Listing 16-1.

ALTER DATABASE AdventureWorks2014 SET QUERY_STORE (MAX_PLANS_PER_
QUERY = 20);

Listing 16-1

In that example I change the plans for each query from the default of 200 down to 20. Let 
me repeat, I'm not recommending this change. It's just an example. The default values should 
work fine in most cases. There are a few defaults that you may want to consider adjusting.

The first Query Store option that is going to be significant for execution plans  
and plan capture is the Query Capture Mode. By default, this is set to ALL  
in SQL Server 2016–2017 and AUTO in Azure SQL Database. There are three settings:

ALL Captures all plans for all queries on the database for which you have 
enabled Query Store.

AUTO Captures plans based on two criteria.  Either queries with a significant 
compile time and execution duration, in tests, greater than one second 
execution time, but this is controlled by Microsoft. Alternatively, a query 
must be called at least three times before the plan will be captured.

NONE Leaves Query Store enabled on the database, but stops capturing infor-
mation on new queries, while continuing to capture runtime metrics on 
existing queries.



461

Chapter 16: The Query Store

If you have a database where you have enabled Optimize For Ad Hoc Workloads, a setting 
that ensures a query must be executed twice before the plan is loaded into cache, it might be a 
good idea to change your capture mode to AUTO. This will help to reduce wasted space in the 
Query Store data set. To make this change, you use the ALTER DATABASE command again.

ALTER DATABASE AdventureWorks2014 SET QUERY_STORE (QUERY_CAPTURE_
MODE = AUTO);

Listing 16-2

Having the Query Store set to NONE means that no additional plans for any query will be 
captured (as noted above). However, it will continue to capture the execution runtime metrics 
for the plans and queries that it has already captured. This may be useful under some circum-
stances where you only care about a limited set of queries.

Another setting that you may want to control is the automatic clean-up of the information in 
the Query Store. By default, it keeps 367 days' worth of data, leap year plus one day. This 
may be too much, or not enough. You can adjust it using the same functions as above. By 
default, Query Store will also clean up the data once this limit is reached. You may want to 
turn this off, depending on your circumstances.

In addition to using T-SQL to control the Query Store, you can use the Management Studio 
GUI. I prefer T-SQL because it allows for automation of the processing. To get to the GUI 
settings, right-click on a database and select Properties from the context menu. There will be 
a new page listed, Query Store, and it contains the basic information about the Query Store 
on the database in question, as shown in Figure 16-2.

You can't control all the settings from this GUI, so you will need to use the ALTER DATA-
BASE command for some settings. For example, the maximum number of plans per query 
which we demonstrated in Listing 16-1 can't be adjusted from the GUI. The GUI report on 
disk usage is handy, but if you really need to monitor it, you'll, again, want to set up queries 
to retrieve that information.
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Figure 16-2: SSMS GUI for managing the Query Store.

Retrieving Plans from the Query Store
Retrieving execution plans is straightforward. There are canned reports built in to Manage-
ment Studio and available within the database. You can also use T-SQL to retrieve the execu-
tion plans from the catalog views exposed for the Query Store information. We'll start off 
with the basic view of a report from the Query Store and then we'll focus on using the catalog 
views to retrieve execution plans using T-SQL.

SSMS reports
SSMS provides several built-in reports, a couple of which can help you find problem queries 
and their plans. I can't cover these reports in any detail, but I'll describe the basics of what 
they offer, and then focus on using one of the reports available for the Query Store.
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Overview of Query Store reports

If you expand your database within Object Explorer, you'll see a folder marked Query Store. 
Expand that folder, and you should see the reports shown in Figure 16-3.

Figure 16-3: Query Store reports within SSMS.

Each of these reports brings back different information based on their structure. Most of the 
reports have a very similar layout. The exception is the Overall Resource Consumption 
report, which shows a very different set of data from the others. Opening that report shows 
queries sorted by resource consumption over time, based on the execution runtime data 
within the Query Store.
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Figure 16-4: Overall Resource Consumption report from the Query Store.

This report is useful for identifying queries that are using more resources. Clicking on any 
one query opens the Top Resource Consuming Queries window, which we're going to go 
over in detail below.

The other reports are structured like the Top Resource Consuming Queries report, so we 
won't go through all their functions. However, let's outline where each report can be used.
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Report Usefulness

Regressed Queries When the runtime behavior of a query 
changes at the same time as the execution 
plan changes, the query can be said to 
have regressed due to the execution 
plan change. This may come from bad 
parameter sniffing, a change in the optimi-
zation process, or others. This report will 
help you identify queries to focus on.

Overall Resource Consumption Displayed above in Figure 16-4, this report 
breaks down queries by the resources 
they consume over time. It's useful when 
working on identifying which query is 
causing a particular problem with memory, 
I/O or CPU.

Top Resource Consuming Queries This will be covered in detail below. It's 
simply a focused version of the Overall 
Resource Consumption report with a single 
metric being displayed.

Queries With Forced Plans When you choose to force a plan, detailed 
below, this report will show which queries 
currently have plans that are being forced.

Queries With High Variation These are queries that, based on a given 
metric, are experiencing more changes in 
behavior than other plans. This could be 
used in conjunction with the Regressed 
Queries report.

Tracked Queries You can mark a query for tracking through 
the  Query Store. The tracked queries will 
then be exposed in this report.

Each report displays unique sets of data based on the information captured by the Query 
Store but, except for the Overall Resource Consumption report, they all behave in roughly 
the same fashion.
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The Top Resource Consuming Queries report

We'll focus on the Top Resource Consuming Queries report because it's one that is likely  
to be used regularly on most systems. If you've just enabled the Query Store, then you  
should run a few queries, to see some data in the report. Double-clicking on the report will 
open it up.

Figure 16-5: Top Resource Consuming Queries report for the Query Store.

The report is divided into three sections. On the top left is a listing of queries sorted by 
various metrics. The default is Duration. You can use the drop-down to choose amongst 
CPU and other measures provided by the Query Store. You can also choose the Statistic to 
measure. The default here is Total. These will populate the graph, showing you the queries 
that are most problematic, when considering Total Duration. To the right is a second section 
showing various execution times. Each circle represents, not an individual execution, but 
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aggregated execution times over a time interval. There may be more than one plan. Selecting 
any of those plans changes the third pane of the report, on the bottom, to a graphical repre-
sentation of the execution plan in question. That graphical plan functions exactly as any other 
graphical plan we've worked with throughout the book.

In short, this report ties together the query, an aggregation of its performance metrics, and 
the execution plan associated with those metrics. You can adjust the reports and modify them 
from being graphical to showing grids of data. Simply click the buttons on the upper-right of 
the first window of the report.

One additional piece of functionality is especially interesting from an Execution Plan stand-
point. When you have more than one plan available, as in the example in Figure 16-5, you 
can select two of those plans, using the SHIFT key to select a second plan. With two plans 
selected, one of the buttons in the tool bar, shown in Figure 16-6, allows you to compare  
the plans.

Figure 16-6: Compare Execution Plans button.

Clicking that button, opens the Compare Execution Plan window (covered in more detail in 
Chapter 17). You can see the two plans from the above example in Figure 16-7.
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Figure 16-7: Execution plans compared from Query Store report.

The functionality is described in detail in Chapter 17. Common parts of the plan are high-
lighted in varying shades of color (in this case pink). Differences in the properties are 
displayed using the "not equals" symbol. You can explore and expose information about the 
differences and similarities between the plans.

Other than that, there's only one other piece of functionality directly applicable to execution 
plans and we'll cover it a little later in this chapter.

Retrieve Query Store plans using T-SQL
Getting information about the query plan from the Query Store system tables is quite 
straightforward. There are only a few catalog views (how you read a system table) providing 
the information, that are directly applicable to plans themselves:

• query_store_plan – the view that contains the execution plan itself along 
with information about the plan such as the query_plan_hash, compatibility 
level, and whether a plan is trivial (all as shown in Figure 16-1).
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• query_store_query – the view that identifies each query, but not the query 
text, which is stored separately, and includes information such as the last compile 
time, the type of parameterization, the query hash, and more. Although the text and 
context are stored separately, they are how a query is identified.

• query_context_settings – this defines metadata about the query such as 
ANSI settings, whether a query is for replication, and its language.

• query_store_query_text – this view defines the actual text of the query.
While there are three other Query Store catalog views, they are very focused on query  
performance so I won't be directly addressing them in this book.

Querying to retrieve the plan is basically a matter of joining together the appropriate catalog 
views to retrieve the information you are most interested in. You can simply query the sys.
query_store_plan table, but you won't have any context for that plan such as the text of 
the query or the stored procedure that it comes from. Listing 16-3 demonstrates a good use of 
the tables to retrieve an execution plan.

SELECT qsq.query_id, 
       qsqt.query_sql_text, 
       CAST(qsp.query_plan AS XML), 
       qcs.set_options 
FROM sys.query_store_query AS qsq 
    JOIN sys.query_store_query_text AS qsqt 
        ON qsqt.query_text_id = qsq.query_text_id 
    JOIN sys.query_store_plan AS qsp 
        ON qsp.query_id = qsq.query_id 
    JOIN sys.query_context_settings AS qcs 
          ON qcs.context_settings_id = qsq.context_settings_id 
WHERE qsq.object_id = OBJECT_ID('dbo.AddressByCity');

Listing 16-3

Assuming you have at least once executed a stored procedure named dbo.AddressBy-
City, you'll get information back out. I've included the query_context_settings 
under the assumption that if a query is executed using different settings, you may see it more 
than one time. To make the results contain a clickable execution plan, I've opted to CAST the 
plan as XML. The results of this query would look like Figure 16-8.

Figure 16-8: Results from query against Query Store system tables.
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This query returns the execution plan as a clickable column and shows the query_id. 
Retrieving additional information about the plan is just a question of adding columns to this 
query. One point worth noting is the text of the query as shown here. Listing 16-4 shows the 
full text from that column.

(@City nvarchar(30))SELECT a.AddressID  ,a.AddressLine1  
,a.AddressLine2  ,a.City  ,sp.[Name] AS StateProvinceName  
,a.PostalCode  FROM Person.Address AS a  JOIN Person.StateProvince 
AS sp  ON a.StateProvinceID = sp.StateProvinceID  WHERE a.City = @
City

Listing 16-4

This is a query that contains a parameter as defined by the stored procedure that the query 
comes from:

CREATE OR ALTER PROC dbo.AddressByCity @City NVARCHAR(30) 
AS 
SELECT a.AddressID, 
       a.AddressLine1, 
       a.AddressLine2, 
       a.City, 
       sp.Name AS StateProvinceName, 
       a.PostalCode 
FROM Person.Address AS a 
    JOIN Person.StateProvince AS sp 
        ON a.StateProvinceID = sp.StateProvinceID 
WHERE a.City = @City;

Listing 16-5

Note the change in the text of the query. In the Query Store, the definition of the param-
eter, @City, is included with the query text at the front of the statement, (@City nvar-
char(30)). That same text is not included with the text of the query from the stored proce-
dure as shown in Listing 16-5. This vagary in how Query Store works can make it difficult to 
track down individual queries within the catalog views.
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There is a function, sys.fn_stmt_sql_handle_from_sql_stmt, that will help you 
resolve a simple, or forced parameterized query from the Query Store. This function doesn't 
work with stored procedures, though. There, you would be forced to use the LIKE operator 
to retrieve the information. You can use the object_id, but you'll have to deal with 
however many statements are contained within the procedure. To find individual statements, 
you'll be forced to use the functions listed below.

Let's look at an example of this in action, taking a very simple query like Listing 16-6.

SELECT bom.BillOfMaterialsID, 
       bom.StartDate, 
       bom.EndDate 
FROM Production.BillOfMaterials AS bom 
WHERE bom.BillOfMaterialsID = 2363;

Listing 16-6

The query in Listing 16-6 will result in a query plan that uses simple parameterization to 
ensure the potential of plan reuse. This means that the value, 2363, is replaced by a param-
eter, @1, within the plan stored in cache. If we ran a query like Listing 16-7, we wouldn't see 
any data.

SELECT qsqt.query_text_id 
FROM sys.query_store_query_text AS qsqt 
WHERE qsqt.query_sql_text = 'SELECT bom.BillOfMaterialsID, 
       bom.StartDate, 
       bom.EndDate 
FROM Production.BillOfMaterials AS bom 
WHERE bom.BillOfMaterialsID = 2363;';''

Listing 16-7

The results are a complete empty set because the Query Store doesn't have the original 
T-SQL we passed in. Instead, it has the new text that defines the parameter. This is where the 
sys.fn_stmt_sql_handle_from_sql_stmt function comes into play. We'll modify 
our query against the Query Store catalog views, to filter for the query in question.
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SELECT qsqt.query_text_id 
FROM sys.query_store_query_text AS qsqt 
    JOIN sys.query_store_query AS qsq 
        ON qsq.query_text_id = qsqt.query_text_id 
    CROSS APPLY sys.fn_stmt_sql_handle_from_sql_stmt( 
                    'SELECT bom.BillOfMaterialsID, 
       bom.StartDate, 
       bom.EndDate 
FROM Production.BillOfMaterials AS bom 
WHERE bom.BillOfMaterialsID = 2363;', 
                    qsq.query_parameterization_type) AS fsshfss 
WHERE fsshfss.statement_sql_handle = qsqt.statement_sql_handle;''

Listing 16-8

To work with sys.fn_stmt_sql_handle_from_sql_stmt you must supply two 
values. The first is the query in which you are interested. In our case that's the query from 
Listing 16-6. The second contains the type of parameterization. Luckily, this information is 
stored directly in the sys.query_store_query table, so we can go there to retrieve it. 
With these values supplied, we'll get the query we need in the result set.

Control Plans Using Plan Forcing
One of the most important aspects of Query Store, regarding execution plans, is the ability 
to pick an execution plan for a given query, and then use plan forcing in Query Store to force 
the optimizer to use this plan. It is much easier to use plan forcing within Query Store than it 
is to implement a plan guide (see Chapter 9). If you have an existing plan guide for a query, 
and then also force a plan, perhaps a different plan, using Query Store, then the Query Store 
plan forcing will take precedence. If you are in Azure SQL Database or using SQL Server 
2016 or greater, and you need to force the optimizer to use an execution plan, the preferred 
method is to use plan forcing through the Query Store rather than plan guides.

Query Store is designed to collect data using an asynchronous process. Plan forcing is the 
one exception to that process. In this one case, when you define a plan as a forced plan, 
regardless of what happens with the plan in cache, compiles or recompiles, reboots of the 
server, even backup and restore of the database, that plan will be forced. To force a plan, the 
plan must be valid for the query and structure as currently defined; changes in indexing, for 
example, could mean that a plan is no longer valid for a query.
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The information that a plan is forced is written into the system tables of the Query Store 
and stored with the database. With Query Store enabled, and if the plan is a valid plan, if 
it's forced, that's the execution plan that will be used. There is a relatively obscure situation 
where a "morally-equivalent" plan, a plan that is identical in all the core essentials, but not 
necessarily perfectly identical, can be used instead of the precise plan you define. However, 
this isn't common.

Plan forcing is a double-edged sword that can help or hurt depending on how it is imple-
mented and maintained. I recommend extremely judicious use of plan forcing and I advise 
you to figure out a schedule for reviewing plans that have been forced. This is not something 
you set once and forget about.

That said, there are several situations where you may consider using plan forcing, one of 
which is the classic "parameter sniffing gone wrong" situation, which we've encountered 
several times previously in the book. However, another good use case is to fix "plan regres-
sion" problems, where some system change means that the optimizer generates a new plan, 
which does not perform as well as the old plan. Plan regression can occur after, for example, 
upgrading from a version of SQL Server prior to 2014 which used the old cardinality estima-
tion engine, or applying Cumulative Updates or hot fixes that introduce changes to the query 
optimizer. There is a specific report available for regressed queries. During upgrades or while 
applying a CU, it's a very good idea to run Query Store prior to changing the compatibility 
level during an upgrade, or applying the CU in that situation.

How to force a plan
I'll demonstrate the basics of how to force a plan, using the "bad parameter sniffing" case as 
an example.

Execute the stored procedure dbo.AddressByCity, passing it a value of 'London'.

EXEC dbo.AddressByCity @City = N'London';

Listing 16-9

Let's look at the execution plan.
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Figure 16-9: First execution plan from stored procedure.

Next, we should ensure that the execution plan for the dbo.AddressByCity stored 
procedure is removed from cache.

DECLARE @PlanHandle VARBINARY(64); 
SELECT @PlanHandle = deqs.plan_handle 
FROM sys.dm_exec_query_stats AS deqs 
    CROSS APPLY sys.dm_exec_sql_text(deqs.sql_handle) AS dest 
WHERE dest.objectid = OBJECT_ID('dbo.AddressByCity'); 
IF @PlanHandle IS NOT NULL 
BEGIN; 
    DBCC FREEPROCCACHE(@PlanHandle); 
END; 
GO

Listing 16-10

If we then execute the query again, but this time pass in the value of 'Mentor', we'll see a 
completely different execution plan.

EXEC dbo.AddressByCity @City = N'Mentor';

Listing 16-11
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Figure 16-10: Second execution plan from stored procedure.

This is a classic case of parameter sniffing gone wrong. Each plan works very well for the 
estimated row counts, which are larger for 'London' and smaller for 'Mentor', but prob-
lems arise when a query that returns many rows uses the plan that's optimized for returning 
smaller data sets. In some circumstances, this type of behavior leads to performance prob-
lems. Back in Chapter 10, we tackled this exact same problem by applying the OPTIMIZE 
FOR query hint.

Let's say that one of these plans leads to more consistent, predictable performance over a 
range of parameter values, than the other. We'd like to use the Query Store to force the opti-
mizer to always use that plan.

The T-SQL to force a plan requires that we first get the query_id and the plan_id. This 
means we have to track down that information from the Query Store tables.

SELECT qsq.query_id, 
       qsp.plan_id, 
       CAST(qsp.query_plan AS XML) 
FROM sys.query_store_query AS qsq 
    JOIN sys.query_store_plan AS qsp 
        ON qsp.query_id = qsq.query_id 
WHERE qsq.object_id = OBJECT_ID('dbo.AddressByCity');

Listing 16-12



476

Chapter 16: The Query Store

This will return the information we need along with the execution plan so that we can deter-
mine which plan we want. Look at the plans to determine the one you wish to force. Imple-
menting the plan forcing is then extremely simple.

EXEC sys.sp_query_store_force_plan 214, 248;

Listing 16-13

Now, if I were to remove this plan from cache, using Listing 16-9 again, regardless of the 
value passed to the dbo.AddressByCity stored procedure, the plan generated will 
always be the plan I chose. The information within the plan and the behavior of the plan  
will be the same as any other execution plan within the system with a couple of exceptions. 
First, the plan defined will always be the plan returned (except when it is a morally equiva-
lent plan or an invalid plan) until we stop forcing the plan or disable the Query Store. Second, 
one marker has been added to the execution plan properties so that we can see that it is a 
forced plan.

Figure 16-11: Use plan properties from SELECT operator.

In the first operator, in this case the SELECT operator, a new property will be added to  
any plans that are forced, Use plan. If that value is set to True, then that plan is a forced 
execution plan.

You can retrieve information about plans that are forced by querying the Query Store directly.

SELECT qsq.query_id, 
       qsp.plan_id, 
       CAST(qsp.query_plan AS XML) 
FROM sys.query_store_query AS qsq 
    JOIN sys.query_store_plan AS qsp 
        ON qsp.query_id = qsq.query_id 
WHERE qsp.is_forced_plan = 1;

Listing 16-14
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With this information you can, if you choose, unforce a plan using another command.

EXEC sys.sp_query_store_unforce_plan 214, 248;

Listing 16-15

This will stop forcing the execution plan from the Query Store and all other behavior will 
return to normal.

You can also use the GUI to force and unforce plans. If you look at the report from Figure 
16-4, shown again in Figure 16-11, you can see, on the right-hand side, two buttons, Force 
Plan and Unforce Plan.

 Figure 16-12: Forced plan in Query Store reports.

You can click on a plan in the upper-right pane, then select Force Plan to force the plan the 
same as if you used T-SQL to do it. Unforcing the plan is just as straightforward. If a plan is 
forced, you can see a check mark on it in the plan's listing to the right and anywhere that plan 
is visible. Choosing to force or unforce a plan from the report, you will be prompted to check 
whether you're sure.
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Just remember that forcing a plan can be a good choice for dealing with plan regressions. 
However, that choice should be reviewed regularly to see if the situation has changed in some 
way that suggests removing the forced plan is a preferred choice.

Automated plan forcing
Introduced in SQL Server 2017, and the foundation of automatic tuning in the Azure SQL 
Database, the Query Store can be used to automatically identify and fix plan regression. It's 
referred to as automatic tuning, but understand, it's just using the most recent good plan that 
consistently runs better than other plans in the Query Store. It's not tuning the database in 
terms of updating statistics, adding, removing, or modifying indexes or, most importantly 
changing the code. However, for a lot of situations, this may be enough to automatically deal 
with performance problems.

The automatic tuning is disabled by default. To enable it, you first must have Query Store 
enabled and collecting data. Then, it's a simple command to enable the automated tuning.

ALTER DATABASE CURRENT SET AUTOMATIC_TUNING(FORCE_LAST_GOOD_PLAN = 
ON);

Listing 16-16

The database engine will actually monitor the performance of queries using the informa-
tion gathered in the Query Store. When a plan change clearly causes performance issues, 
a regression, the engine can automatically enable the last good plan. That may not be the 
best possible plan depending on the circumstances, but it will be a better plan than what is 
currently in use. However, the engine will also automatically check to see if performance 
improved or degraded. If it has degraded, the plan forcing will be revoked and the plan will 
recompile at the next call.

You can see immediately, even without enabling automatic tuning, if a potential automatic 
tuning opportunity is available. A new DMV, sys.dm_db_tuning_recommenda-
tions, is available to show these recommendations. Figure 16-13 shows all the columns 
returned from the DMV.
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Figure 16-13: DMV for automatic tuning recommendations.

While all the columns can be important depending on the situation, the most interesting ones 
are the type, reason, state, and details. The rest of the data is largely informational. However, 
we can't just query this data directly. The data in the state and details columns are 
stored as JSON. Listing 16-17 shows how to pull this information apart.

SELECT ddtr.reason, 
       ddtr.score, 
       pfd.query_id, 
       JSON_VALUE(ddtr.state, 
                  '$.currentValue') AS CurrentState 
FROM sys.dm_db_tuning_recommendations AS ddtr 
    CROSS APPLY 
    OPENJSON(ddtr.details, 
             '$.planForceDetails') 
    WITH (query_id INT '$.queryId') AS pfd;

Listing 16-17
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This query will pull together some of the interesting data from the DMV. However, to really 
put that data to work with the Query Store information to understand more fully what's going 
on, we'll have to expand the JSON queries quite a bit. Listing 16-18 combines the data from 
the sys.dm_db_tuning_recommendations DMV with the catalog views of the 
Query Store.

WITH DbTuneRec 
AS (SELECT ddtr.reason, 
           ddtr.score, 
           pfd.query_id, 
           pfd.regressedPlanId, 
           pfd.recommendedPlanId, 
           JSON_VALUE(ddtr.state, 
                      '$.currentValue') AS CurrentState, 
           JSON_VALUE(ddtr.state, 
                      '$.reason') AS CurrentStateReason, 
           JSON_VALUE(ddtr.details, 
                      '$.implementationDetails.script') AS 
ImplementationScript 
    FROM sys.dm_db_tuning_recommendations AS ddtr 
        CROSS APPLY 
        OPENJSON(ddtr.details, 
                 '$.planForceDetails') 
        WITH (query_id INT '$.queryId', 
              regressedPlanId INT '$.regressedPlanId', 
              recommendedPlanId INT '$.recommendedPlanId') AS pfd) 
SELECT qsq.query_id, 
       dtr.reason, 
       dtr.score, 
       dtr.CurrentState, 
       dtr.CurrentStateReason, 
       qsqt.query_sql_text, 
       CAST(rp.query_plan AS XML) AS RegressedPlan, 
       CAST(sp.query_plan AS XML) AS SuggestedPlan, 
       dtr.ImplementationScript 
FROM DbTuneRec AS dtr 
    JOIN sys.query_store_plan AS rp 
        ON rp.query_id = dtr.query_id 
           AND rp.plan_id = dtr.regressedPlanId 
    JOIN sys.query_store_plan AS sp 
        ON sp.query_id = dtr.query_id 
           AND sp.plan_id = dtr.recommendedPlanId 
    JOIN sys.query_store_query AS qsq 



481

Chapter 16: The Query Store

        ON qsq.query_id = rp.query_id 
    JOIN sys.query_store_query_text AS qsqt 
        ON qsqt.query_text_id = qsq.query_text_id;

Listing 16-18

This query will show the recommendation reason and the score (an estimated impact value 
from 0 to 100), the current state and reason for that, the query, the two plans in question, and 
finally, the script to implement the suggested change. You can use this query when Query 
Store is enabled (and you're on SQL Server 2017 and up) to find potential plan-forcing candi-
dates; or you can enable automatic plan forcing and then this query will probably find queries 
that already have a plan forced by that feature.

You can see the output from my system in Figure 16-18.

Figure 16-14: A suggested automatic tuning opportunity.

I have a simple stored procedure, dbo.ProductTransactionHistoryByRefer-
ence, that generates five different execution plans when you run it against the entire list of 
ReferenceID values (I used a PowerShell script).

CREATE OR ALTER PROC dbo.ProductTransactionHistoryByReference (@
ReferenceOrderID INT) 
AS 
BEGIN 
    SELECT p.Name, 
           p.ProductNumber, 
           th.ReferenceOrderID 
    FROM Production.Product AS p 
        JOIN Production.TransactionHistory AS th 
            ON th.ProductID = p.ProductID 
    WHERE th.ReferenceOrderID = @ReferenceOrderID; 
END;

Listing 16-19

One of these plans is wildly slower than the others. With plans being recompiled regularly, 
it's inevitable that the slower plan will cause problems. At some point, the engine will iden-
tify these problems and create a forced plan. I can take advantage of the Forced Plans report 
to see the plan.
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Figure 16-15: Forced Plans report from the Query Store showing automatic tuning.

You can see that there is a check mark on Plan Id 7, the plan that is highlighted and visible. 
That means that the system has forced this plan. I can verify this by going back to sys.dm_
db_tuning_recommendations and looking at additional columns.

SELECT ddtr.reason, 
       ddtr.valid_since, 
       ddtr.last_refresh, 
       ddtr.execute_action_initiated_by 
FROM sys.dm_db_tuning_recommendations AS ddtr;

Listing 16-20



483

Chapter 16: The Query Store

This will let us know, not only a suggested tuning process, but when it was initiated and by 
whom. The output from the system looks as shown in Figure 16-16.

Figure 16-16: Output from the sys.dm_db_tuning_recommendations DMV.

You can see that the action was taken by the system. This is direct evidence that the system 
has decided to force this execution plan.

Over time, the system continues to measure the performance of queries. In my example 
above it will occasionally, through measurements, decide that forcing this plan in fact hurts 
performance. In that case, you'll see the plan forcing will be removed, and if you look at 
Revert_* columns available in sys.dm_db_tuning_recommendations, you'll 
see they will be filled in. The fact that the plan was forced and, importantly, why, won't be 
removed from sys.dm_db_tuning_recommendations unless you remove the data 
from the Query Store (more on that in the next section).

Finally, you can decide to remove the plan forcing manually. You can either use the button 
on the report, visible in Figure 16-15 and other reports in this chapter, or using the T-SQL 
command shown in Listing 16-13. In this case, the execute_action_initiated_by 
column (Listing 16-20) will show User instead of system.

If you decide to override the automatic tuning, that query will not be automatically forced 
again, regardless of behavior. Your choices take precedence over the automation. The excep-
tion to this will arise if you remove the data from the Query Store. This will result in coming 
back around to the forced plan again because your override can't survive the loss of data. Any 
time you override the behavior of automatic tuning, it prevents any further automatic manip-
ulation of the plans, on or off.

Remove Plans from the Query Store
If you disable the Query Store, it will leave all the information in place. If you want to 
remove every single bit of information from the Query Store, you could issue the command 
in Listing 16-21.

ALTER DATABASE AdventureWorks2014 SET QUERY_STORE CLEAR;

Listing 16-21
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However, that is heavy handed unless your intention is to, for example, remove produc-
tion data from a database prior to using that database in a development environment. If you 
wanted to only remove a particular query, and all its associated information including all 
execution plans, you could use Listing 16-22.

EXEC sys.sp_query_store_remove_query 
    @query_id = 214;

Listing 16-22

If I had retrieved the query_id using another query, such as one from Listing 16-3, I could 
then use the value to run this query. It removes the query, all captured plans, and all recorded 
runtime stats. It would even stop plan forcing because the query has been removed and the 
information is no longer stored with the database.

You can also target just plans for removal. If we retrieved the plan_id using Listing 16-10, 
we could then remove a plan from the Query Store using Listing 16-23.

EXEC sys.sp_query_store_remove_plan @plan_id = 248;

Listing 16-23

This will leave the query intact as well as any other plans associated with that query. It will 
remove the execution plan defined by the plan_id. If that plan is associated with plan_
forcing, then plan forcing will be stopped because the plan is no longer in the database.

An important thing to remember about the Query Store information is that it is stored 
with the database, within system tables. That means it gets backed up with the database. If 
you back up a production database, and then restore it to a non-production system, all the 
query store information will go with it. This includes any text stored with the query such 
as filtering criteria or compile-time parameter values. If you are working with data that has 
limited access, such as healthcare data, you need to take the Query Store into account when 
removing sensitive information from a database prior to giving it to unauthorized persons. 
Use the appropriate removal mechanism from above to ensure proper protection of your data.
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Summary
The Query Store introduces a great deal of useful information for query performance tuning 
and execution plans. It persists this information with the database, which enables you to do 
all sorts of troubleshooting and performance tuning offline from your production system. 
Plan forcing means you don't have to worry about certain types of plan regressions in the 
future because you can easily undo them and prevent them from happening again. However, 
don't forget that data and statistics change over time, so the perfect plan to force today, may 
not be the perfect plan tomorrow.
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Learning what makes up an execution plan and understanding how to read the properties 
and operators is a fundamental part of advancing your knowledge of writing efficient T-SQL 
queries, and improving your skills at tuning those that are causing problems.
However, as you've seen in some of the preceding chapters, certain plans are harder to  
navigate, and it takes time to piece together all the details of each operator, and their various 
properties, to work out exactly how SQL Server has chosen to execute a query, and why, and 
what help you can offer the optimizer to arrive at a better plan, if necessary. In such cases, 
it is not a bad idea to get a little extra help, and in this chapter I'll cover the SQL Server 
Management tools I use when I need a little extra guidance in reading and understanding a 
plan. I'll also mention briefly some of the third-party tools I've found useful when attempting 
to navigate more complex plans.

The Query
The real strength of these tools lies in the extra help they offer in reading and understanding 
more complex plans, often with hundreds of operators, rather than just a handful. However, it 
would be difficult to demonstrate those plans easily within the confines of a book.
Therefore, I've opted to use a relatively simple query, and straightforward plan, although with 
a few inherent problems. I'll use the same query throughout, shown in Listing 17-1.

SELECT soh.OrderDate, 
       soh.Status, 
       sod.CarrierTrackingNumber, 
       sod.OrderQty, 
       p.Name 
FROM Sales.SalesOrderHeader AS soh 
    JOIN Sales.SalesOrderDetail AS sod 
        ON sod.SalesOrderID = soh.SalesOrderID 
    JOIN Production.Product AS p 
        ON p.ProductID = sod.ProductID 
WHERE sod.OrderQty * 2 > 60 
      AND sod.ProductID = 867;

Listing 17-1
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This query would benefit from a little tuning and a new index. First, the calculation on the 
column OrderQty is unnecessary. Next, there is no index to support the filter criteria in the 
WHERE clause. Figure 17-1 shows the resulting execution plan in SSMS.

Figure 17-1: Execution plan in SSMS for the problematic query.

You can see that the scan against the primary key of the SalesOrderDetail table is esti-
mated to be the most expensive operator. There's a suggestion for a possible index shown in 
the Missing Index information at the top of the screen:

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>] 
ON [Sales].[SalesOrderDetail] ([ProductID]) 
INCLUDE ([SalesOrderID],[CarrierTrackingNumber],[OrderQty])

Given the simple nature of this query, we probably have enough information available to  
us already that we could begin to tune the query. However, let's now use it to explore the 
additional benefits of our tools.
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The SQL Server Management Studio 17 Tools

After many years of relatively modest improvements to the information available with  
execution plans, the latest version, SSMS 17, has taken some bigger strides in increasing 
visibility of important information in the plans, allowing us to compare that information 
between plans, and more.

Before the release of SQL Server 2017, the announcement was made that SSMS would 
became a stand-alone piece of software, installed and maintained separately from the SQL 
Server engine. This divorced SSMS from the longer, slower, release cycle of Service Packs 
and Cumulative Updates and allowed the SSMS team to introduce enhancements at a faster 
pace than we'd become accustomed to, including several in support of execution plans.

It's still a free tool and you can download it from Microsoft (http://bit.ly/2kDEQrk). You can 
install it side by side with existing versions of SSMS. The current version (as of this writing) 
supports SQL Server 2008–2017, as well as Azure SQL Database, and has some limited 
support for Azure SQL Data Warehouse.

We've been exploring plans using SSMS throughout the book, so I'm only going to cover the 
new functionality that has been explicitly introduced to help you understand execution plans.

Right-click inside an execution plan in SSMS 17, and you'll see a context menu listing three 
newer pieces of functionality: Compare Showplan, Analyze Actual Execution Plan, and 
Find Node.

Figure 17-2: Context menu showing newer menu choices related to execution plans.

http://bit.ly/2kDEQrk
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Analyze Actual Execution Plan

Select Analyze Actual Execution Plan from the menu, and it will open a new pane at the 
bottom of your query window, as shown in Figure 17-3.

Figure 17-3: Showplan Analysis with a single query for the batch.

With a single statement batch, such as the example from Listing 17-1, you'll only see a single 
query. If you have multiple statements in your batch, you'll see multiple queries. To have one 
of the queries analyzed, just select that query using the radio buttons. You then click on the 
Scenarios tab, where each scenario shows details on a category of potential issues found in 
the plans.

Figure 17-4: The Scenarios tab of the Showplan Analysis with suggested problems.

According to Microsoft the scenarios presented for a query will provide different analysis 
mechanisms to guide you through problematic plans. At time of writing, they've defined only 
one scenario, Inaccurate Cardinality Estimation. This is a good choice since it's a common 
problem in a stable environment and a very serious problem during upgrades, especially 
when moving from servers older than SQL Server 2014 to servers newer than SQL Server 
2014 (where the new cardinality estimation engine was introduced).
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For the Inaccurate Cardinality Estimation scenario, the information is broken into two 
parts. On the left is a list of operators where the cardinality estimations differ significantly 
between estimated and actual. You're provided with information about the differences, in a 
neat grid. This shows the Actual and Estimated values for each operator, the node involved, 
and the percentage difference. If you check the properties of the Clustered Index Seek 
(highlighted in Figure 17-4) operator in the graphical plan, you'll see that Actual Number 
of Rows is 6, and Estimated Number of Rows is 1, but the Showplan analysis accurately 
accounts for the fact that the Estimated Number of Executions is 69.4177, giving a total 
estimated number of rows returned of 69.4177.

On the right, you'll find an explanation of one or more possible reasons why the cardi-
nality estimation may be different. This provides guidance on how to address the issue, and 
possibly improve the query performance, although never just assume that this guidance is 
100% accurate. Always validate it on your system before implementing the advice.

Selecting any one of the nodes will also update which node is selected within the execution 
plan itself, and will update the guidance so that it reflects the selected node. In Figure 17-5, 
I've selected the third node in the list, one of the Nested Loops joins.

Figure 17-5: Selecting different suggestions also changes the nodes in the plan.
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While this functionality is currently limited, I know there will be further enhancements, 
which should deepen your understanding of possible issues with your queries and data struc-
tures, as exposed through the execution plans in SSMS.

Compare Showplan
The Compare Showplan features allows us, perhaps unsurprisingly, to compare two 
different execution plans for similarities and differences. You can compare two actual  
plans, two estimated plans, or an actual plan to an estimated plan; any combination will 
work. You can also compare plans between different SQL Server versions, different patch 
levels, and so on. If you have two valid plans, and at least one of them stored as a file, you 
can compare them.

To test it out, we'll use the query in Listing 17-2, which is similar to Listing 17-1 in that it 
references the same tables and columns, but with a different WHERE clause.

SELECT soh.OrderDate, 
       soh.Status, 
       sod.CarrierTrackingNumber, 
       sod.OrderQty, 
       p.Name 
FROM Sales.SalesOrderHeader AS soh 
    JOIN Sales.SalesOrderDetail AS sod 
        ON sod.SalesOrderID = soh.SalesOrderID 
    JOIN Production.Product AS p 
        ON p.ProductID = sod.ProductID 
WHERE sod.ProductID = 897;

Listing 17-2

Execute Listing 17-1, capture the actual plan, use Save Execution Plan As…, to save it as 
a .sqlplan file, and then capture the actual plan for Listing 17-2. Right-click on it, and select 
Compare Showplans from the context menu, which will open a File Explorer window. 
Locate and select your saved showplan file, and you should see a Showplan Comparison 
window that looks something like Figure 17-6.
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Figure 17-6: Showplan Comparison including the plans, Properties, and Statement Options.

The top plan is the one from which we initiated the comparison (Listing 17-2). Below the 
plans you'll see the Showplan Analysis tab, which we saw earlier, but now with an addi-
tional tab, Statement Options. Figure 17-7 shows a blow-up of this area.

Figure 17-7: Statement Options tab of the Showplan Analysis window.
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By default, the Highlight similar operations checkbox is activated, and the box below 
highlights areas of similar functionality within the plan. In this case, you can see two similar 
areas, highlighted in pink and green. If directly-connected operators are similar in each plan, 
they'll be grouped. In our case, two operators are similar, but in different parts of each plan. 
Also, by default, the plan comparison ignores database names. You may see no similarities at 
all, or you may see multiple sets of similarities, in which case each "similar area" will have a 
different color.

To the right of the graphical plans are the Properties windows for each plan, with the  
top plan on the left, which you can use to compare property values between the plans.  
In Figure 17-6, I've highlighted the SELECT operator in both plans, and Compare  
Showplan is highlighting with the "not-equals" sign those property values that don't  
match, as shown in Figure 17-8.

Figure 17-8: Properties in comparison between two plans.

Also, you can see that there are some properties visible in one plan that don't exist in the 
other. In this case, only the plan for Listing 17-2 shows a MissingIndexes property.

If you select the operator highlighted in pink in Figure 17-6, the Clustered Index Seek  
on the Product table, you can see that almost every property value between these two 
operators in two plans is identical.
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Figure 17-9: An operator that is very similar between the two plans.

Even the values for the Estimated Operator Cost are the same, but it's highlighted as different 
because the operator cost as a percentage of the whole plan is different in each case. The 
other highlighted difference is in the Seek Predicates property. In my case, this is simply 
because I have forced parameterization (see Chapter 9) in operation for this query, and 
the optimizer used different parameter names during the forced parameterization process. 
Without this, the differences will simply be the different literal values used, in each case.
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We can change the comparison behavior of Compare Showplan, by activating the Highlight 
operators not matching similar segments checkbox shown in Figure 17-7, either instead 
of, or in addition to, the Highlight similar operations checkbox. I opted for the former, and 
Figure 17-10 shows that the non-matching operators are now highlighted in yellow.

Figure 17-10: Non-matching operators are now highlighted.

I use this functionality all the time while tuning queries because, while sometimes there  
are glaring differences between plans, often they are much subtler, but with significant 
performance implications. This feature helps to be able to spot these small differences  
faster, especially when comparing two almost-identical, large-scale execution plans.
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Find Node
Right-click on a graphical plan and choose Find Node, and a small window opens in the 
upper right of the execution plan. Listed in the left-hand drop-down is a big list of properties, 
as shown in Figure 17-11.

Figure 17-11: Drop-down of the Find Node feature, with all the properties of the plan.
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Select a property, for example ActualRows, then select a comparison operator, "equals" for 
numeric searches or "contains" for text searches, and the value for which you want to search.

Figure 17-12: The comparison property list.

For text searches there is no need for wild cards; it assumes you'll want to see similar 
matches as well as exact. If you search on ActualRows = 6, and then click the left or right 
arrows, you can search through the plans, in NodeId order, for operators that return 6 rows.

Figure 17-13: Finding the first operator matching the Find Node search criteria.

While you won't really need Find Node for small execution plans, it becomes a huge help 
when dealing with larger plans, making it much easier, for example, to find the operator with 
the ParentNodeID that matches the NodeID of a Table Spool operator, or to find every 
reference to a column name.
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Live execution plans
A live execution plan is one that exposes per-operator runtime statistics, in real time, as the 
query executes. You'll get to see the query execution in action, and view the per-operator 
statistics, as the execution progresses and data flows from one operator to the next. This is 
useful if, for example, you need to understand how data moves through the plan for a very 
long-running query. A live execution plan will also show you the estimated query progress, 
which might be useful if you need to decide whether to kill the query.

SQL Server 2014 was the first version to introduce a way to track progress on a long-running 
query. You could query the sys.dm_exec_query_profiles Dynamic Management 
View (DMV) from another connection. However, it came with quite a high overhead, since 
the data was only captured if you executed the query with the option to include the actual 
execution plan enabled.

Subsequent SQL Server versions (and Service Pack 2 for SQL Server 2014) have introduced 
lower-overhead ways to view the in-progress runtime statistics, without the need to capture 
the actual plan, via a new extended event (query_thread_profile) or by enabling 
Trace Flag 7412. Enabling the trace flag allows us to use a new lightweight query execution 
statistics profiling infrastructure, which dramatically reduces the overhead of capturing the 
in-progress query execution statistics.

Using the trace flag is the lowest-cost method of the three, followed by using the extended 
event (which enables the trace flag automatically), and capturing the actual plan is the most 
expensive option. Caution, though: even if you're using the trace flag, low-cost doesn't mean 
no-cost. You should still test this carefully before enabling it on your production systems. 
There is overhead associated with capturing the runtime metrics.

Let's see all this in action. To do so, we'll introduce one new query, in Listing 17-3.

SELECT * 
FROM sys.objects AS o, 
     sys.columns AS c;

Listing 17-3

This query violates a bunch of rules, many of which we have maintained throughout this 
book. However, it takes about 40 seconds to run on my system, so it makes a good test bed 
for all the other functions we'll see within live execution plans.
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Live per-operator statistics using sys.dm_exec_query_profiles

The sys.dm_exec_query_profiles DMV shows the number of rows processed by 
individual operators within a currently executing query, allowing you to see the status of the 
executing query, and compare estimated row-count values to actual values.

If you're testing this on SQL Server 2014, but pre-SQL Server 2014 SP2, you'll need to run 
Listing 17-3 using any of the options that include the actual execution plan, either in SSMS 
or by using one of the SET commands, or by capturing the query_post_execution_
showplan event (see Chapter 15).

SQL Server 2016 introduced live execution statistics into SSMS, and added to Extended 
Events the new "debug" category event called query_thread_profile. SQL Server 2016 
SP1 introduced the Trace Flag 7412. Both the extended event and the trace flag were retro-
fitted into SQL Server 2014 SP2.

So, on SQL Server 2014 SP2, or on SQL Server 2016 SP1 and later, the best way is to first 
enable Trace Flag 7412, as shown in Listing 17-4.

DBCC TRACEON (7412, -1);

Listing 17-4

Now, start executing Listing 17-3, and from another session run the following query against 
the sys.dm_exec_query_profiles DMV. Note that I'm eliminating the current session 
from the query because otherwise it will show up in the results.

SELECT deqp.session_id, 
       deqp.node_id, 
       deqp.physical_operator_name, 
       deqp.estimate_row_count, 
       deqp.row_count 
FROM sys.dm_exec_query_profiles AS deqp 
WHERE deqp.session_id <> @@SPID 
ORDER BY deqp.node_id ASC;

Listing 17-5

The DMV returns a lot more information than I've requested here (see the Microsoft docu-
mentation for a full description: https://bit.ly/2JKYe5s), and you can combine this DMV with 
others to return even more information. Figure 17-14 shows a subset of the results.

https://bit.ly/2JKYe5s
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Figure 17-14: Results of query against sys.dm_exec_query_profiles.

You can see the nodes and their names along with the estimated_row_count, which 
shows the total estimated number of rows to be processed, which you can then compare to 
the actual number of rows currently processed, in the row_count column. You can see 
immediately that the node with an ID value of 1, the Nested Loops operator, has an esti-
mated number of rows of 6,264,966, and has only actually processed 94,465. This lets us 
know that, without a doubt, the query is still processing, and has quite a way to go to get to 
the estimated number of rows. Of course, if the optimizer's row count estimates are inac-
curate then the row_count and estimated_row_count may not match up. However, 
this provides one way to track the current execution status of a query and how much it has 
successfully processed.

If you query the DMV again while the query is still executing, you can see the changes to  
the data.

Figure 17-15: Changes to the information from sys.dm_exec_query_profiles.
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As you can see, more rows have been processed by several of the operators, but the execution 
is not yet complete. When you run the query after the long running query has completed, you 
won't see a completed set of row counts. Instead, you'll see nothing at all, since there are no 
active sessions.

Using the query_thread_profile extended event
If you want to see just the completed information, you can capture the query_thread_
profile extended event, which triggers for each query plan operator and execution thread, 
at the end of query execution. It's a "Debug" channel event, so you'll need to enable that 
channel in the SSMS GUI for Extended Events, to see the event.

Capturing the data from the event you'll see the execution statistics for each operator within 
a given execution plan. As stated earlier, this is a debug event, so caution should be exercised 
when using it. However, Microsoft has documented its use, so I have no problem sharing 
this with you. To add the event through T-SQL, just add the event. To add the event through 
the GUI, you will need to click on the drop-down for the Channel and select Debug. Figure 
17-16 shows the information for the Nested Loops operator (NodeId=1) that we saw earlier.

Figure 17-16: Output from query_thread_profile extended event.
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You can see that the estimated number of rows is 6,264,966, as before. The actual number of 
rows shows the full execution-to-completion value of 1,273,188. So, in this case, the actual 
row count is significantly less than the estimated row count. You also get interesting addi-
tional information such as the total_time_us and cpu_time_us, which can be useful 
for performance tuning.

Live execution plans in SSMS
All the previous ways to see the "live" runtime information are useful. You could even build 
a tool that constantly queries these sources, to show a live view into an execution plan, as it is 
executing. However, we don't have to because, as of SQL Server 2016, this feature is already 
included in SSMS. Note again, this will only work on versions of SQL Server that can show 
the live query metrics we've been capturing in the sections above.

Figure 17-17 shows the Include Live Query Statistics icon in SSMS (the red arrow is  
all mine). This icon acts as a toggle, just like the Include Actual Execution Plan button  
to its left.

Figure 17-17: The tooltip and icon for Include Live Query Statistics.

If you enable Include Live Query Statistics, and then execute the query, you'll be able to 
capture a live execution plan, and view the execution statistics for the plan, while the query is 
still executing; turn it off, and you won't (unless you use Activity Monitor, as I'll demonstrate 
shortly). Since we're capturing the plan, we don't need to be running the query_thread_
profile extended event or have Trace Flag 7412 enabled to use this feature. Note that 
enabling the trace flag doesn't make it more lightweight to use this SSMS feature; you're still 
paying the cost of capturing the plan.
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Figure 17-18 shows the live execution plan for our long-running query.

Figure 17-18: A subset of a live execution plan in action.

Of course, showing real-time, ever-changing output in a still frame, within a book, doesn't 
quite have the same impact. The only immediate indications that you're not just looking 
at another execution plan are the Estimated query progress in the upper left (currently 
at 12%), the dashed lines instead of solid lines between the operators, and the row counts 
with percentage complete beneath the operators. If you are viewing a live execution plan in 
SSMS, you will see the dashed lines moving, indicating data movement, and the row counts 
moving up as data is processed by an operator. This continues until the query completes 
execution, at which point you're just looking at a regular execution plan.

You can also look at the properties of any of the operators during the execution of the query. 
There you'll see a normal set of properties. However, the properties associated with an 
actual execution plan, such as the actual row count, will be changing in time with the plan, 
providing you indications as to the progress of the query, in real time.

Viewing the live execution plan in Activity Monitor
With Trace Flag 7412 enabled, or if you're capturing the query_thread_profile event, 
other tools can offer to display a live execution plan, any time while a query is executing, 
without the need to capture an actual plan.

So, we can use the Activity Monitor within SSMS to see queries that are actively consuming 
a large amount of resources as shown in Figure 17-19.
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Figure 17-19: Activity Monitor showing an active expensive query.

The query shown in the Active Expensive Queries report is from Listing 17-3. If I right-
click on that query while it's in the active state, I'll see a menu choice, as in Figure 17-20.

Figure 17-20: A context menus showing a choice for a live execution plan.

If I select Show Live Execution Plan, I will be brought to a window just like in Figure 
17-18. The behavior from then on is the same.

Live execution plans are useful if you have very long-running queries, and wish to develop 
a more direct understanding of how the data moves within the operators. The information 
contained in live execution plans, as well as the associated DMVs and Extended Events, can 
help you decide when to roll back a transaction, or make other types of decisions, based on 
how far and how fast the processing has gone within a query.
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They suffer from two issues. First, they are dependent on the estimated values. If those are 
off, so will the information be within the live execution plan. Second, capturing the infor-
mation for a live execution plan, even the lightweight options of Trace Flag 7412 or the 
query_thread_profile event, may be too expensive for some systems. Exercise caution 
when implementing this fascinating and useful functionality.

Other Execution Plan Tools
While I decided that it was out of scope to cover third-party tools, I will mention here the 
ones that I've used, personally, and that not only display the plans, but also offer additional 
functionality that will help you understand them. This is not a complete list; they are just the 
ones I've used to date, and my apologies if I left out your favorite software.

Plan Explorer
Perhaps the best-known tool for navigating execution plans is Plan Explorer by SentryOne 
(sentryone.com). It is a full, stand-alone application that offers many different views and 
layouts of a plan. It also performs some intelligent analysis of the property values, index 
statistics, and runtime statistics, to help you read even large-scale plans, and spot possible 
causes of sub-optimal performance.

Supratimas
Supratimas is a web browser-based tool, available for free online at supratimas.com. You 
can simply "drag and drop" your query text, or .sqlplan file, and it will display the graphical 
plan, and visually highlight important property values, and the operators that are estimated 
to be the most expensive. It also has an SSMS plug-in that is free when supported by ads, or 
you can purchase it.

SSMS Tools Pack – Execution Plan Analyzer
SSMS Tools Pack (ssmstoolspack.com), written by Mladen Prajdić, is a collection of add-ons 
for SQL Server Management Studio that provide a whole slew of additional functionality to 
help make SSMS a friendlier place to work, including an Execution Plan Analyzer.  

http://www.sentryone.com
http://supratimas.com/
https://ssmstoolspack.com/
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This tool works directly from your SSMS query window. It offers a range of different views 
of the "expensive" operators in the plan, and the analyzer will highlight potential problems, 
such as a large mismatch between estimated and actual row counts, and suggest possible 
courses of action.

SQL Server performance monitoring tools
I won't cover any of the third-party performance monitoring and tuning tools that  
capture the execution plan as part of their diagnostic data set, such as the one I use,  
Redgate SQL Monitor. These tools don't attempt to improve your understanding of plans, 
rather than just present them. That said, a tool like SQL Monitor is valuable precisely  
because it captures the plan for each query, within the context of all the other useful  
resource-usage data and performance metrics, collected at the time the query executed.

Summary
SSMS 17 has provided us with a lot more help than we ever had previously toward under-
standing execution plans, and the differences between plans. Also, there are some third-party 
tools that are useful, especially when trying to open and navigate around very large plans, to 
identify possible issues.

Each of these tools brings different strengths to the table, but none of them replaces your 
knowledge of how execution plans are generated through the query optimizer and how to 
read and understand them. Instead, they just add to your knowledge, ability and efficiency.
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columnstore. See Columnstore indexes

covering indexes  230–231

memory-optimized  248–256
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possible problems  231–241

standard indexes  221–222

clustered  221

nonclustered  221

Interleaved execution  32

J
JavaScript Object Notation (JSON)  413–418

Joining data  99–128. See also Operators

Join operators. See Operators

other uses of  124–126

K
Key Lookup  91–94

L
Lazywriter process  35

Live execution plans. See Tools for exploring 
execution plans

in Activity Monitor  503–505

in SSMS  502–503

Logical join operations  100

M
MAXDOP. See Hints: query hints; See also Paral-
lelism: controlling parallel query execution

MemoryGrantWarning  370

Memory Limit Exceeded  73

Memory-optimized tables and indexes  248–252

Merge  30

Missing index details. See XML plans

Missing index message  66

Mixing columnstore and rowstore indexes. 
See Batch mode

Multiple execution plans  187

N
Nested Loops  30

O
Object plans  259

Object-Relational Mapping (ORM)  264

generating ad hoc queries  282

Operator cost  65–66

Operator properties. See Graphical plans: compo-
nents

Operators. See also Graphical plans: components

Adaptive Join  58, 120–124

Apply  195

Assert  59, 167–168

Bitmap  59

Clustered Index Insert  165–167

Clustered Index Scan  82–84

Clustered Index Seek  87–89

Clustered Index Update  170–171

Collapse  59

Compute Scalar  59, 113–114

Concatenation  58, 126–128

Conditional  215

Constant Scan  58, 162–165

Cursor operators  58

Distinct Sort  135
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Filter  59

Hash Match  58, 111–124

Hash Match (Aggregate)  58

Hash Match join  109–110

performance considerations  111–112

Index Scan  85

Ordered property  131

Index Seek  58

Index Seek (nonclustered)  89–91

INSERT  161–168

Key LookUp  91–94

language elements  58

Lookup  58

Merge Join  58, 115–120

performance considerations  117–120

Nested Loops  58, 92, 102–109

estimated and actual number of rows  
104–105

Outer References  106–107

Rebind and Rewind  107–109

Parallelism  59

physical operators  57

RID Lookup  96–97

Segment  58, 153

SELECT  54

Sequence  58, 174

Sequence Project  59

Sequence Project (Compute Scalar)  154

Sort  58

Split  59

Spools  59

and aggregations  148–152

Stream Aggregate  58

streaming versus blocking  62–63

Switch  58

Table/Index Delete  59

Table/Index Insert  59

Table/Index Merge  59

Table/Index Scan  58

Table/Index Update  59

Table Scan  94–95

Table Spool (Eager Spool)  169

Top  59

Top N Sort  133–134

Window Aggregate  58

Window Spool  58

Optimizer  32–38

index selection  222–231

estimated costs and statistics  222–223

optimization level  71–73

Ordered property  192

Other execution plan tools  505–506

Overall Resource Consumption report  465

P
Parallelism  344–358

controlling parallel query execution  344–348

blockers  348

cost threshold  347–348

max degree of parallelism (MAXDOP)  
345–347
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parallel plans: cost-benefits  358

parallel query execution  349–358

examining a plan  350–357

Parameterization

and stored procedures  278–280

for plan reuse  273–281

Parameter Compiled Value  189

ParameterizedText  161

Parameter List  73–74, 189

Parameter Runtime Value  189

prepared statements  274–278

simple parameterization  73, 266–273

for trivial plans  266–273

unsafe  270–273

Parameter sniffing

problems with  236–241

Performance Statistics  453

Permissions

required to view execution plans  39

Plan cache. See also Execution plans: plan cache

querying  258–260

with XQuery  386–391

Plan Explorer. See Tools for exploring execution 
plans

Plan forcing  296–302, 472–483. See also Query 
Store

automating  478–483

using plan guides  297–300

using Query Store  300–302

using the XML plan  383–384

Plan guides  288–296

object  293–295

SQL  291–293

template  289–291

viewing, validating, disabling, removing  
295–296

Plan recompilation. See Execution plans: plan 
recompilation

Plan reuse  258–302

and ad hoc queries. See Ad hoc queries

forced parameterization  285–288

optimize for ad hoc workloads  282–285

parameterizing queries  273–281

problems with 3rd-party code  281–302

problems with parameterized queries  281

Plans for special data types and cursors  393–435. 
See also XML plans

Hierarchical data (HIERARCHYID). See Hierar-
chical data

spatial data. See Spatial data

PowerShell  382

Predicate pushdown. See Columnstore indexes

Procedure cache  54

Profiler  78

Properties  68–76

cached plan size  70

CardinalityEstimationModelVersion  70

CompileCPU  70

CompileMemory  70

CompileTime  70

Output List  163

ParameterizedText  161
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Predicate  90

Properties window  69

QueryTimeStats  71

RetrievedFromCache  71

Seek Predicates  90

With Stack  204

Q
Queries With Forced Plans report  465

Queries With High Variation report  465

Queries with ORDER BY  129–139

Sort operations  130–131

Query. See Stored procedures; See also T-SQL

ad hoc. See Ad hoc queries

binding  28

compilation and execution  27–32

execution engine  31–32

optimization  29–32. See also Optimizer

full cost-based  29–30

parsing  28

Subqueries  191–194

QueryHash  75

Query Interop  251

Query optimizer. See Optimizer

Query parameterization  37

QueryPlanHash  75

Query processor tree  29

Query Store  458–484

behavior  458–460

capture mode settings  460

controlling

T-SQL or Management Studio  461

enabled by default?  458

forcing a plan with  281

options  460–462

plan forcing  472–483

automating  478–483

removing plans from  483–484

retrieve plans using T-SQL  468–472

retrieving plans  462–472

SSMS reports  462–468

Top Resource Consuming Queries report  
466–468

query_thread_profile extended event  501

R
Range index  248

Reading an index  80–94

Reading plans  76–79

Read operators  67

Rebind  107

Redgate SQL Monitor  506

Regressed Queries report  465

Result Showplan  68

Reusable plans. See Plan reuse

Rewind  107

RID Lookup. See Operators

Row mode  242
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S
Seek operators. See Operators

not on columnstore index  246

Selectivity

and indexes  223–230

estimation  223, 231

SET commands  77–78

SET options  75

Showplan XML  452, 453

Showplan XML for Query Compile  453

Showplan XML Statistics Profile  453

Sorting and aggregating data  129–158. See 
also Operators; See also Queries with ORDER BY

Distinct Sort  135

expensive Sorts  132–133

Sort warnings  136–139

Top N Sort  133–134

Spatial data  420–435

Spools. See also Operators

Index Spool  148, 150–152

Rowcount Spool  148

Table Spool  148, 149–150

Table Spool (Eager Spool)  169

Window Spool  148

SQL plans  259

SQL Server 2014  372

SQL Server 2016  372

SQL Server Management Studio (SSMS)

tools  488–505

SQL Server performance monitoring tools  506

SSMS reports. See Query Store

Statistics  33–34, 222–223

density graph  33

header  33

histogram  33

problems with  232–236

Statistics header  226

STATISTICS IO  77

STATISTICS IO/TIME  77

Stored procedures  29, 185–190

and parameterized queries  278–280

natively-compiled  254–256

Subqueries  191–194

Supratimas. See Tools for exploring execution 
plans

sys.dm_exec_query_profiles DMV  499

T
Table Scan. See Operators

Text plans. See Execution plans: text plans

Timeout  73

Tools for exploring execution plans  486–506

in SSMS 17  488–505

Activity Monitor  503–505

Analyze Actual Execution Plan  489–491

Compare Showplan  491–495

Find Node  496–497

live execution plans  498–505

Plan Explorer  505

SSMS Tools Pack  505

Supratimas  505

ToolTips  53–55
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Top Resource Consuming Queries report  465. See 
also Query Store

Trace Events  78

Tracked Queries report  465

Trivial plans. See Execution plans

simple parameterization for  266–273

T-SQL

Common Table Expression (CTE)  199–205

Common T-SQL statements  185–220

retrieve Query Store plans with  468–472

U
UDX operator  399, 414

V
Views  206–212

indexed  208–212

standard  206–208

W
Warnings  64–65

Sort warnings  136–139

Window functions  152–158

DENSE_RANK  152

NTILE  152

OVER  152

RANK  152

ROW_NUMBER  152

X
XML plans  374–391, 394–412. See also Execution 
plans: XML plans

and Extended Events  384–385

and missing index details  385–386

convert relational data to XML

FOR XML  394–400

convert XML to relational data

OPENXML  401–405

EXPLICIT mode  399–400

for actual plans  381–382

for estimated plans  374–381

for plan forcing  383–384

query using XQuery  386–391, 405–412

.exist()  405

for missing index information  389–391

for specific operators  388–389

.modify()  405

.nodes()  405

.query()  405, 408–412

.value()  405

returning XML as XML data type

XML AUTO  397–399

saving and sharing  382

XQuery. See also XML plans

when to use  412
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