
2010 2nd International Conference on Industrial and Information Systems

A new scheduling algorithm for server farms load balancing

Ehsan Saboori, Shahriar Mohammadi

K.N Toosi University of Technology
Tehran, Iran

ehsansaboori@sina.kntu.ac.ir

mohammadi@kntu.ac.ir

Abstract- this paper describes a new scheduling algorithm to

distribute jobs in server farm systems .The proposed algorithm
overcomes the starvation caused by SRPT (Shortest Remaining
Processing Time). This algorithm is used in process scheduling in
operating system approach . The algorithm was developed to be
used in dispatcher scheduling. This algorithm is non-preemptive
discipline, similar to SRPT, in which the priority of each job
depends on its estimated run time, and also the amount of time it
has spent on waiting. Tasks in the servers are served in order of
priority to optimize the system response time. The experiments
show that the mean round around time is reduced in the server
farm system.

Keywords-server farm; load balancing; scheduling algorithm;
dispatcher; round around time

I. INTRODUCTION

Long round around time is a very important problem in
internet services. There is more and more evidence showing a
high variability of task size distribution in computer loads. For
example, files requested in Web servers and in UNIX fit a

heavy-tailed distribution [5]. One way to figure out this
problem is using server farms. Server farm is consisting of a
collection of many computers also called host, server or node
and front-end high-speed dispatcher. Each incoming request is
immediately dispatched via the dispatcher to one of the
computers. The main advantages of using server farms are
price and flexibility, because many slow computers are
cheaper than fast computers and it is easy to up or down your
server capacity. One of the most important issues in server
farms is "routing policy", also known as "task assignment
policy". This is the algorithm/rule for determining how to
assign jobs to hosts. On the Internet, companies whose web
sites get a great deal of traffic usually use load balancing. For
load balancing Web traffic, there are several approaches. For
Web serving, one approach is to route each request in tum to a
different server. In some approaches, the servers are
distributed over different geographic locations.

For distributing incoming jobs on the several servers,
dispatcher is used. Dispatcher objective distributes incoming
job on the servers in an efficient way. Dispatcher use
scheduling algorithms to be able to dispatch jobs in the best
way. Therefore scheduling algorithms is very important to
achieve better performance in dispatcher. This paper describes
a novel and efficient scheduling algorithm to be used in
dispatcher for better job distributing in order to increase server
farms performance.

978-1-4244-8217-7110/$26.00 ©201O IEEE

Shafigh Parsazad

Ferdowsi U ni versity of Mashhad

Mashhad, Iran
parsazad @stu.um.ac.ir

II. WEB SERVER FARMS

A Web server farm refers to a Web site that uses two or
more servers housed together in a single location to handle
user requests. They use one host called site to provide a single
interface for users [1]. Today busy web servers are required to
service many clients simultaneously, sometimes up to tens of
thousands of concurrent clients [8]. Large web-server farms
consist of thousands of servers and may handle millions of
HTTP requests per second. These sites are overwhelmed by
the offered load and the Web service provider shave to deal
with peak demands that are much higher than the average load
supported by their site. While operators are just about to be
able to collect detailed traffic statistics, the very detail and
volume make them nearly impossible to analyse. As a result,
performance prediction, monitoring and performance
measurement are rendered increasingly complicated, one
computer cannot be able to handle the requests, no matter how
many disks are used in parallel. The slow response times and
difficult navigation are the most common complaints of
Internet users [9]. Research shows the need for fast response
time. The response time should be around 8 seconds as the
limit of people's ability to keep their attention focus while
waiting [10]. To figure out this problem more Computers must
be added. Server farms consist of two important parts. First
part is called "Front-End "and second is called "Back-End".
To deliver requests to the individual machines of a server farm,
a device is needed to accept all incoming traffic and to assign
arequest to a particular machine to handle [3]. These devices
are called Front End Devices (FEDs), because they sit at the
front of a server farm accepting all requests. A major problem
now arises, if a similar workstation or PC is used for a FED,
then the number of attached machines in the server farm is
typical limited to ten or less [4]. The most important part of
any Web farms is the part that assigns the incoming load. This
entity is called "Dispatcher". In other words, the Dispatcher
acts as a centralized global scheduler that receives the totality
of the requests and routes them among the back-end servers of
the Web farm [2]. The dispatcher may use different
scheduling policies to assign the load to the nodes of Web
servers. Each server machine in the web farm is uniquely
identified with a private address to access. Figure 1 is
illustrated the server farm model.

lIS 2010

417

m' •• �

Bad\-Eod rr.n-r.r nodrs ----------------------------------

Figure 1. Server Farm model

III. SCHEDULING ALGORITHMS

The problem with web server farms is that a load
imbalance may occur, where some processors are idle with
nothing to execute, while other processors are busy and have
tasks in their ready queues. Any load imbalance will result in
poorer task response times. Scheduling policies determine
which requests in the queue are serviced at any point of time,
how much time is spent on each, and what happened when a
new request arrives. The goals of scheduling policies are to
minimize the mean round around time of the request and to
behave fairly to all requests [2].

Static algorithms are the fastest solutions. They do not
have overloading decision making time. Static algorithms can
potentially make poor assignment decisions, such as routing a
request to a server node havinga long queue of waiting load
while there are other almost idle nodes [5]. Dynamic
algorithms have the potential to outperform static algorithms
by using some state information to help dispatching decisions.
On the other hand, they require mechanisms that collect,
transmit and analyse state information there by incurring in
overheads [1]. Round-Robin (RR), random (RAN) and
Weighted Round-Robin (WRR) are dynamic algorithms.

A. FCFS (First-Come-First-Serve)
FCFS is a policy used to ensure fairness in a number of

application domains such as scheduling [6] and Operating
Systems [7]. This is a non-preemptive technique. A single
queue of ready processes is maintained, and the dispatcher
always picks the first one. This method does not emphasizes
throughput, since long processes are allowed to monopolies
CPU, For the same reason, the response time with FCFS can
be high with respect to execution time, especially if there is a
high variance in process execution times. It's fairly obvious
that this method penalizes short processes following long
ones, in appropriate for interactive systems; large fluctuations
in average turn around time are possible, though no starvation
is possible

B. SRPT (Shortest Remaining Processing Time)
Another policy that provable optimal mean round around

time for all requests is SRPT "Shortest Remaining Processing
Time". Shortest-Remaining -Processing -Time (SRPT)
scheduling policy is an optimal algorithm for minimizing
mean response time [11] and [12]. The SRPT scheduling
policies on web servers [13], [14], and [15] used the job size,
which is well known to the server, to refer to processing time
(response time) of the job to implement SRPT for web servers
to improve user-perceived performance. The job that has a
least remaining process time will be served. There are two

problems, this policy not fair. Jobs with large size may be
waiting for a while and Dispatcher must know size of jobs
beforehand.

C. Ps(Process Sharing)
In this policy capacity C of servers is equally shared

between the incoming requests. This policy assures max-min
fair allocation and easy to implement.

D. Multilevel Queue Scheduling
A multilevel queue scheduling algorithm partItIOns the

ready queue into separate queues. For example, a common
division is made between foreground (interactive) processes

and background (batch) processes. Processes are permanently
assigned to one queue. Each queue has its own scheduling
algorithm. For example, foreground queue might be scheduled
by a RR algorithm, while the background queue is scheduled
by an FCFS algorithm. In addition, there must be scheduling
between the queues. This is commonly a fixed-priority
preemptive scheduling. For example, the foreground queue
may have absolute priority over the background queue.
Another possibility is to time slice between the queues. Each
queue gets a certain portion of the CPU time, which it can
then schedule among the various processes in its queue. For
instance, in the foreground-background queue example, the
foreground queue can be given 80 percent of the CPU time for
RR among its processes, while the background queue receives
20 percent of the CPU to give its processes in a FCFS manner.

D. Round Robin
The round-robin scheduling algorithm sends each

incoming request to the next server in its list. Thus in a three
server cluster (servers A, B and C) request 1 would go to
server A, request 2 would go to server B, request 3 would go
to server C, and request 4 would go to server A, thus
completing the cycling or "round-robin" of servers. It treats all
real servers as equals regardless of the number of incoming
connections or response time each server is experiencing.

E. Weighted Round Robin
The weighted round-robin scheduling is designed to better

handle servers with different processing capacities. Each
server can be assigned a weight, an integer value that indicates
the processing capacity. Servers with higher weights receive
new connections first than those with fewer weights, and
servers with higher weights get more connections than those
with fewer weights and servers with equal weights get equal
connections. For example, the real servers, A, B and C, have

the weights, 4, 3, 2 respectively, a good scheduling sequence
will be AABABCABC in a scheduling period (mod sum Wi).

In the implementation of the weighted round-robin
scheduling, a scheduling sequence will be generated according
to the server weights after the rules of Virtual Server are
modified. The network connections are directed to the
different real servers based on the scheduling sequence in a
round-robin manner. The weighted round-robin scheduling is
better than the round-robin scheduling, when the processing
capacity of real servers are different. However, it may lead to

418

dynamic load imbalance among the real servers if the load of
the requests varies highly. In short, there is the possibility that
a majority of requests requiring large responses may be
directed to the same real server. Actually, the round-robin
scheduling is a special instance of the weighted round-robin
scheduling, in which all the weights are equal.

IV. THE PROPOSED ALGORITHM

In this paper, consider a new scheduling algorithm in server
farms called HRRN. This algorithm used in process scheduling
in operating system approach. This algorithm developed to
use in dispatcher scheduling. This algorithm is discussed in
this paper and shown how to evaluate it. HRRN is a variation

on SRPT to solve a problem whereby long tasks may never
get CPU time. If you imagine a system running with the SRPT
algorithm that has a steady stream of processes coming in, it
may be the case that a really long process never runs because
there is always a shorter task waiting for the CPU. The HRRN
algorithm fixes this by adjusting the priority of processes
which are waiting to be run. If a process which will take a
long time waits around for a while as a bunch of shorter
processes come and go the system shortens the time that the
scheduler thinks the long process will take. This of course
doesn't make the long process complete any faster, but it does
make it more likely to be scheduled. This repeats as long as
the big job is waiting. Eventually, as the scheduler thinks the
long job will be shorter and shorter, it is guaranteed to get the
CPU. Just how long this will take depends on how the system
is designed. Figure 2 is illustrate how can calculate priority of
jobs in this algorithm.

Priorit = wating_time + estimated_TUn_time = 1
+

waiting _time
Y estimated_TUn_time estimated_TUn_time

Figure 2. Priority in HRRN scheduling algorithm

V. THE SIMULATOR

The simulator was implemented using the C programming
language on an IBM PC with Pentium 4 processors and 1 GB
of RAM, running Microsoft Windows XP. The simulator has
two primary components: The job generator and the job
dispatcher. The job generator is responsible for generating
jobs randomly. Jobs are sequentially saved in a file in order to
be served in servers. The job dispatcher is responsible for
selecting jobs in the correct order to reduce the average round
around time. Finally, round around time of each job is saved
in an output file and charted in Microsoft Excel.

VI. SCENARIO

At first, jobs are generated randomly with random served
time, and then saved in a file. The dispatcher reads jobs from
the file. Then the Dispatcher selects the best jobs to reduce the
average round around time according to the aforementioned
algorithm. The FCFS, SRPT and HRRN algorithms are
implemented in the simulator. In this case, 100 jobs were
generated and the dispatcher distributed the jobs on different
number of servers. In this simulation, the Average round
around time was calculated for each algorithm.

The SRPT has the best performance load balancing and
average round around time, but starvation may be occur when
it is used. Therefore this algorithm is not practical and is
mainly used in comparison to other algorithms, i.e. the closet
the average round around time of an algorithm to that one of
SRPT, the better. In this simulation, different number of
servers was used to analyse its impact on the average round
around time. Algorithms act differently when the number of
servers changed. When server count is 1, HRRN behaves the
same as SRPT algorithm. When there are a small number of
servers, HRRN behaves approximately similar to SRPT
algorithm. A large number of servers will improve the
performance of HRRN and SRPT algorithms over FCFS
algorithms. Figure 3 illustrates the scenario of simulation for
evaluation and comparison of the algorithms.

End

Yes

Figure 3. Scenario of simulation

VII. COMPARISON

To analyse and compare the scheduling algorithms
presented in the last section, the load balancer simulator was
used. At first, 100 jobs are generated randomly with random
estimated times. Then the simulator dispatches incoming jobs
on servers and calculates the served time for each job. The
mean round around time is also computed all jobs. In order to
study the dependency of algorithms on the number of servers
in server farms, the simulator was configured for different
number of servers with the same defined jobs. The results are
different based on the number of servers used. This means that
the number of servers impacts on the performance of the
algorithms. The results are present in Tablel. This table
illustrates the mean round around time for each algorithm,
based on the number of servers used.

TABLE 1. The simulation results

Number of servers 25 15 6 I
FCFS 2342 ms 3657 ms 8588 ms 49740 ms
SRPT 1880 ms 2763 ms 6116 ms 34174 ms
HRRN 2034 ms 2976 ms 6383 ms 34179 ms

As illustrated in fig 4, when there is only one server used the
result of HRRN and SRPT algorithms are the same. The
vertical axis indicates the number of jobs and horizontal axis
indicates the mean round around time in milliseconds.

419

120000 ,---------------

100000 t----------------:ir
80000 t--------------;--"-+--
60000 t----------+'-�'----
40000 t---------.'�-�'------
20000 t---..",...:..:...-�.c.--------

.
...

. '
1 8 15 22 29 36 43 50 57 64 7 1 78 85 92 99

••••• . . .• FCFS

-- SRPT

- - -HRRN

Figure 4. Results for one server configuration

20000 ,---------------
18000 t--------------J�
16000 t-----------------.->F-
14000 +---_____ �.·F_7-
12000 +-----------;-0" .. :.:,,,-.. .,.. �f __

+-----------

�,,-.. .
��/

--
-

10000 ;'
8000 t------:7"-/---:::,IC-----
6000 t-------:,.-'--_�-----.' /' 4000 t---...... -'---------, ",""-------
2000 +--T'':'':'' '-' ���=-----------. ... ;.

�

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

......... FCFS

-- SRPT

- - - HRRN

Figure 5. Results for six server configuration

This graph shows that HRRN and SRPT algorithms act
similarly. According to Table 1, the number of servers
impacts on the server farm performance. As the number of
servers decreases, the functionality of HRRN algorithm
becomes more similar to that of SRPT. As the number of
servers increases, the difference between HRRN round around

time and SRPT round around time grows.

9000 ,----------------

8000 +--------------.1-7000 +--------------�F-
6000 +-----------.. -.. -..

-j' . . "'. �-
5000 +---------. -.. -.-f •• /-'-'--- AoF---
4000 +-_____

.
-.. -.. -.. -:-: .. ,;-'-/�<C-----

3000 +-----_'-'----�'---------
. ,,/ 2000 +-------;'�----;-�"'-----------....

. . .
:,

-
,?"

1000 +-....,..,..:........,..--": "------------.... :,�
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

......... FCFS

-- SRPT

- - - HRRN

Figure 6. Results for 15 server configuration

Increasing the number of servers has a small impact on this
difference .This fact is illustrated in Fig 6 and 7.

6000 ,---------------

5000 +--------------;.
4000 +---------------,r--
3000 +-----------,�/_---
2000 +------.",.-.:---:61''''------
1000 +--:-;-;--''-;-'7.,.£--------

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

•••....•. FCFS

- SRPT

- - -HRRN

Figure 7. Results for 25 server configuration

VIII. CONCLUSION

The shortest remaining process time (SRPT) algorithm has
the best performance among the scheduling algorithms but
suffers from starvation. First-Come-First-Served (FCFS)
algorithm is fairness but the mean round around time is too
high. Any scheduling algorithm that is more similar to SRPT
algorithm has better a performance. The proposed algorithm
described in this paper uses HRRN algorithm in server farms
dispatcher to distribute incoming jobs on the servers. The
advantage of using this algorithm is better performance. The
mean round around time of HRRN algorithm is more similar
to that of SRPT. The most advantage of HRRN algorithm is

overcoming starvation. This algorithm does not suffer from
any starvation and has the same performance as SRPT does;
therefore using the HRRN algorithm in the server farms
dispatcher can increase the performance.

REFERENCES

[1] E. Casalicchio, S. Tucci, "Static and Dynamic Scheduling Algorithms
for Scalable Web Server Farm", Proc. of 9th IEEE Euromicro
Workshop on Parallel and Distributed Processing, PDP2001, Mantova,
Italy Feb. 2001.

[2] S.Tragulthongwatana, C.Saivichit, "Methods for Performance
Improvement of The access to Internet Server Farm based on Task
Scheduling Techniques", Advanced Communication Technology, the
9th IEEE Internatio nal Conference on, Gangwon-Do, Feb 2007

[3] E. A. Brewer. (2001, Jul/Aug) Lessons from giant- scale services.
IEEE Internet Computing. 5(4). pp. 46- 55

[4] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W.
Zwaenepoel, and E. Nahum. Locality- aware request distribution in
cluster-based network servers. SIGPLAN, no. 33, 11; Nov. 1998.

[5] V. Paxson and S. floyd. Wide-Area Traffic: The Failure of Poisson
Modelling. IEEE Transactions on Networking, 5(5):226-244, June
1995.

[6] Pinedo, M.: Scheduling: theory, algorithms, and systems. Prentice-Hall,
Englewood Cliffs (1995)

[7] Levi, S.T., Tripathi, S.K., Carson, S.D., Agrawala, A.K.: The Maruti
Hard Real Time Operating System. ACM Special Interest Group on
Operating Systems 23(3), 90-106 (1989)

[8] Kegel, D.: The CIOK problem (2006), ttp:llwww.kegel.comlclOk.html
[9] King, A.: Speed up your site: web site optimization, 1st edn. New

Riders, Indiana (2003)
[10] Nielsen, J.: The need for speed (1997),

http://www.useit.comlalertboxl9703a.html
[11] Schrage, L., Miller, L.: The queue M/GIl with the shortest remaining

processing time discipline. Operations Research 14(4), 670-684 (1966)
[12] Schrage, L.: A proof of the optimality of the shortest remaining

processing time discipline. Operations Research 16(3),678-690 (1968)
[13] Crovella, M., Frangioso, R.: Connection scheduling in web servers. In:

USENIX Symposium on Internet Technologies and Systems (1999)
[14] Harchol-Balter, M., Schroeder, B., Agrawal, M., Bansal, N.: Size­

based scheduling to improve web performance. ACM Transactions on
Computer Systems (TOCS) 21(2), 207-233 (2003)

[15] Schroeder, B., Harchol-Balter, M.: Web servers under overload: How
schedule can help ACM TOIT 6(1), 20-52 (2006)

420

