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ABSTRACT
In-memory data management systems, such as key-value
stores, have become an essential infrastructure in today’s big-
data processing and cloud computing. They rely on efficient
index structures to access data. While unordered indexes,
such as hash tables, can perform point search withO(1) time,
they cannot be used in many scenarios where range queries
must be supported. Many ordered indexes, such as B+ tree
and skip list, have aO(logN ) lookup cost, whereN is number
of keys in an index. For an ordered index hosting billions of
keys, it may take more than 30 key-comparisons in a lookup,
which is an order of magnitude more expensive than that
on a hash table. With availability of large memory and fast
network in today’s data centers, thisO(logN ) time is taking
a heavy toll on applications that rely on ordered indexes.

In this paper we introduce a new ordered index structure,
named Wormhole, that takes O(logL) worst-case time for
looking up a key with a length of L. The low cost is achieved
by simultaneously leveraging strengths of three indexing
structures, namely hash table, prefix tree, and B+ tree, to
orchestrate a single fast ordered index. Wormhole’s range
operations can be performed by a linear scan of a list after
an initial lookup. This improvement of access efficiency
does not come at a price of compromised space efficiency.
Instead, Wormhole’s index space is comparable to those of B+
tree and skip list. Experiment results show that Wormhole
outperforms skip list, B+ tree, ART, and Masstree by up to
8.4×, 4.9×, 4.3×, and 6.6× in terms of key lookup throughput,
respectively.
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1 INTRODUCTION
A common approach to building a high-performance data
management system is to host all of its data and metadata in
the main memory [25, 32, 39, 43]. However, when expensive
I/O operations are removed (at least from the critical path),
index operations become a major source of the system’s
cost, reportedly consuming 14–94% of query execution time
in today’s in-memory databases [17]. Recent studies have
proposed many optimizations to improve them with a major
focus on hash-table-based key-value (KV) systems, including
efforts on avoiding chaining in hash tables, improving
memory access through cache prefetching, and exploiting
parallelism with fine-grained locking [10, 21, 35]. With these
efforts the performance of index lookup can be pushed close
to the hardware’s limit, where each lookup needs only one
or two memory accesses to reach the requested data [21].

Unfortunately, the O(1) lookup performance and benefits
of the optimizations are not available to ordered indexes used
in important applications, such as B+ tree in LMDB [25], and
skip list in LevelDB [20]. Ordered indexes are required to
support range operations, though the indexes can be (much)
more expensive than hash tables supporting only point
operations. Example range operations include searching for
all keys in a given key range or for keys of a common prefix.
It has been proved that lookup cost in a comparison-based
ordered index is O(logN ) key comparisons, where N is the
number of keys in the index [9]. As an example, in a B+ tree of
one million keys a lookup requires about 20 key comparisons
on average. When the B+ tree grows to billions of keys,
which is not rare with small KV items managed in today’s
large memory of hundreds of GBs, on average 30 or more
key-comparisons are required for a lookup. Lookup in both
examples can be an order of magnitude slower than that in
hash tables. Furthermore, searching in a big index with large
footprints increases working set size and makes CPU cache
less effective. While nodes in the index are usually linked
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by pointers, pointer chasing is a common access pattern
in the search operations. Therefore, excessive cache and
TLB misses may incur tens of DRAM accesses in a lookup
operation [46]. The performance gap between ordered and
unordered indexes has been significantly widened. As a
result, improving ordered indexes to support efficient search
operations has become increasingly important.
As a potential solution to reduce the search overhead,

prefix tree, also known as trie, may be adopted as an
ordered index, where a key’s location is solely determined
by the key’s content (a string of tokens, e.g., a byte string),
rather than by the key’s relative order in the entire keyset.
Accordingly, trie’s search cost is determined by the number
of tokens in the search key (L), instead of the number of keys
(N ) in the index. This unique feature makes it possible for
tries to perform search faster than the comparison-based
ordered indexes, such as B+ tree and skip list. As an example,
for a trie where keys are 4-byte integers and each byte is a
token, the search cost is upper-bounded by a constant (4)
regardless of the number of keys in the index. This makes
trie favorable in workloads dominated by short keys, such as
searching in IPv4 routing tables where all of the keys are 32-
bit integers. However, if keys are long (e.g., URLs of tens of
bytes long), evenwith a small set of keys in the trie, the search
cost can be consistently high (possibly substantially higher
than the O(logN ) cost in other indexes). As reported in a
study of Facebook’s KV cache workloads on its production
Memcached system, most keys have a size between 20 to
40 bytes [1], which makes trie an undesirable choice. It
is noted that the path compression technique may help to
reduce a trie’s search cost [18]. However, its efficacy highly
depends on the key contents, and there is no assurance that
itsO(L) cost can always be reduced. Together with its issues
of inflated index size and fragmentedmemory usage [18], trie
has not been an index structure of choice in general-purpose
in-memory data management systems.
In this paper we propose a new ordered index structure,

named Wormhole, to bridge the performance gap between
hash tables and ordered indexes for high-performance in-
memory data management. Wormhole efficiently supports
all common index operations, including lookup, insertion,
deletion, and range query. Wormhole has a lookup cost of
O(logL) memory accesses, where L is the length of search
key (actual number of accesses can be (much) smaller than
log2 L). With a reasonably bounded key length (e.g., 1000
bytes), the cost can be considered as O(1), much lower than
that of other ordered indexes, especially for a very-large-
scale KV store. In addition to lookup, other operations, such
as insertion, deletion, and range query, are also efficiently
supported. In the meantime, Wormhole has a space cost
comparable to B+ tree, and often much lower than trie.

This improvement is achieved by leveraging strengths of
three data structures, namely, space efficiency of B+ tree
(by storing multiple items in a tree node), trie’s search time
independent of store size, and hash-table’s O(1) search time,
to orchestrate a single efficient index. Specifically, we first
use a trie structure to replace the non-leaf section of a B+
tree structure in order to remove the N factor in the B+ tree’s
O(logN ) search time. We then use a hash table to reduce the
lookup cost on the trie structure to O(logL), where L is the
search key length. We further apply various optimizations in
the new structure to realize its full performance potential and
maximize its measurable performance. The proposed ordered
index is named Wormhole for its capability of jumping on
the search path from the tree root to a leaf node.

We design and implement an in-memory Wormhole index
and extensively evaluate it in comparison with several
representative indexes, including B+ tree, skip list, Adaptive
Radix Tree (ART) [18], and Masstree (a highly optimized trie-
like index) [26]. Experiment results show that Wormhole
outperforms these indexes by up to 8.4×, 4.9×, 4.3×, and
6.6×, in terms of key lookup throughput, respectively. We
also compare Wormhole with a highly optimized Cuckoo
hash table when range queries are not required. The results
show that Wormhole achieves point-lookup throughput 30–
92% of the hash-table’s throughput.
The rest of this paper is organized as below. Section 2

introduces design of Wormhole’s core data structure. Sec-
tion 3 describes techniques for efficient implementation of
the Wormhole index. Section 4 presents experiment setup,
workloads, and evaluation results. Section 5 discusses the
related work, and Section 6 concludes.

2 THEWORMHOLE DATA STRUCTURE
In this section we introduce the Wormhole index structure,
which has significantly lower asymptotic lookup time than
existing ordered indexes, without increasing demand on
space and cost of other modification operations, such as
insertion. To help understand how Wormhole achieves this
improvement, we start from B+ tree and progressively evolve
it to the structure of Wormhole.

2.1 Background: Lookup in the B+ Tree
Figure 1 shows a small set of 12 keys indexed in an example
B+ tree, where each character is a token. While a key in the
index is usually associated with a value, we omit the values
in the discussion and only use keys to represent KV items
to focus on time and space costs of index operations. The
example B+ tree has one internal node (the root node) and
four leaf nodes. In the B+ tree all keys are placed in leaf nodes
while internal nodes store a subset of the keys to facilitate
locating search keys at leaf nodes. Keys in a leaf node are
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Figure 1: An example B+ tree containing 12 keys
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Figure 2: Replacing B+ tree’sMetaTree with hash table

usually sorted and all leaf nodes are often linked into a fully
sorted list to support range operations with a linear scan
on it. We name the sorted list LeafList, and the remaining
structure of the index as MetaTree, as shown in Figure 1.
MetaTree is used to accelerate the process of locating

a leaf node that potentially stores a given search key. A
search within the leaf node is conducted thereafter. Because
a leaf node’s size, or number of keys held in the node, is
bounded in a predefined range [⌈k2 ⌉,k] (k is a predefined
constant integer), the search with a leaf node takes O(1)
time. Accordingly, the major search cost is incurred in the
MetaTree, which is log2 N

k or O(logN ) (N is the number
of indexed keys). As the B+ tree grows, the MetaTree will
contain more levels of internal nodes, and the search cost
will increase at a rate of O(logN ). Our first design effort is
to replace the MetaTree with a structure whose search cost
is not tied to N .

2.2 Replacing the MetaTree with a Trie
An intuitive idea on B+ tree’s improvement is to replace
its MetaTree structure with a hash table, as illustrated in
Figure 2. This can reduce the search cost to O(1). However,
this use of hash table does not support inserting a new key
at the correct position in the sorted LeafList. It also does
not support range queries whose search identifiers are not
existent in the index, such as search for keys between “Brown”
and “John” or search for keys with a prefix of “J” in the
example index shown in Figure 2, where “Brown” and “J”
are not in the index. Therefore, the MetaTree itself must
organize keys in an ordered fashion. Another issue is that
the hash table requires an entry (or pointer) for every key in
the index, demanding a space cost higher than MetaTree.
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Figure 3: Replacing B+ tree’s MetaTree withMetaTrie

To address the issues, trie can be a better replacement as
it is an ordered index and its lookup cost (O(L), where L is
the search key length) is not tied to N , the number of keys
in the index. Figure 3 illustrates the index evolved from B+
tree with its MetaTree structure replaced by a trie structure
named MetaTrie. For each node in the LeafList we create a
key as its anchor and insert it into MetaTrie. A node’s anchor
key is to serve as a borderline between this node and the
node immediately on its left, assuming the sorted LeafList
is laid out horizontally in an ascending order as shown in
Figure 3. Specifically, the anchor key (anchor-key) of a node
(Nodeb ), must meet the following two conditions:
• The Ordering Condition: left-key < anchor-key ≤
node-key, where left-key represents any key in the node
(Nodea ) immediately left to Nodeb , and node-key repre-
sents any key in Nodeb . If Nodeb is the left-most node in
the LeafList, the condition is anchor-key ≤ node-key.
• The Prefix Condition: An anchor key cannot be a prefix
of another anchor key.
When an anchor key is inserted into the MetaTrie, one

new leaf node corresponding to the key is created in the trie.
In addition, any prefix of the key is inserted to the trie as
its internal node, assuming it is not yet in the trie. We use
the prefix condition to make sure every anchor key has a
corresponding leaf node in the MetaTrie.

In the formation of an anchor key, we aim to minimize the
key length to reduce the MetaTrie size. To this end we design
a method to form an anchor key for the aforementioned
Nodeb in compliance with the two conditions, assuming the
smallest token, denoted by ⊥, does not appear in regular
keys (other than the anchor keys) on the LeafList. We will
remove the restriction on use of the smallest token later. We
denote the smallest key in Nodeb as ⟨P1P2...PkB1B2...Bm⟩
and the largest key in Nodea as ⟨P1P2...PkA1A2...An⟩, and
A1 < B1, where Pi (1 ≤ i ≤ k), Ai (1 ≤ i ≤ n), and Bi
(1 ≤ i ≤ n) represent the keys’ tokens. If k or n is 0, it
represents the corresponding key segment does not exist.
Accordingly, ⟨P1P2...Pk ⟩ is the longest common prefix of the
two keys. Assuming Nodeb is a new leaf node whose anchor
key has not been determined, we form its anchor key as
follows:
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• If Nodeb is not the left-most node on the LeafList (m > 0),
we will check whether ⟨P1P2...PkB1⟩ is a prefix of the
anchor key of the node immediately after Nodeb on the
LeafList, denoted Nodec .1 If not (including the case where
Nodec does not exist), Nodeb ’s anchor is ⟨P1P2...PkB1⟩.
Otherwise, Nodeb ’s anchor is ⟨P1P2...PkB1⊥⟩, which can-
not be a prefix of Nodec ’s anchor. This is because a
(k + 2)th token of Nodec ’s anchor key must be larger than
⊥. We then check whether Nodea ’s anchor is a prefix
of Nodeb ’s anchor (Nodea is ⟨P1P2...Pj ⟩, where j ≤ k).
If so, Nodea ’s anchor will be changed to ⟨P1P2...Pj⊥⟩.
Note that by appending the ⊥ token to meet the anchor
key’s prefix condition, its ordering condition can be
violated. To accommodate the situation, the ⊥ is ignored
in the ordering condition test without compromising the
correctness.
• Otherwise (Nodeb is the left-most node), its anchor is ⊥,
which is not any other anchor’s prefix.
Using the method the four leaf nodes in Figure 3, starting

from the left-most one, have their respective anchors as “⊥”,
“Au”, “Jam”, and “Jos”. All the anchors and their prefixes are
inserted into the MetaTrie.

2.3 Performing Search on MetaTrie
The basic lookup operation on the MetaTrie with a search
key is similar to that in a conventional trie structure, which
is to match tokens in the key to those in the trie one at a
time and walk down the trie level by level accordingly. If
the search key is “Joseph” in the example index shown in
Figure 3, it will match the anchor key “Jos”, which leads the
lookup to the last leaf node in the LeafList. The search key is
the first one in the node. However, unlike lookup in a regular
trie, when matching of the search key with an anchor key
fails before a leaf node is reached, there is still a chance that
the key is in the index. This is because the keys are stored
only at the LeafList and are not directly indexed by the trie
structure. One example is to look up “Denice” in the index,
where matching of the first token ‘D’ fails, though the search
key is in a leaf node. Furthermore, when a search key is
matched with a prefix of an anchor key, there is still a chance
the search key is not in the index. An example is to look up
“A” in the index.

To address the issue, we introduce the concept of target
node for a search key K . A target node for K is such a leaf
node whose anchor key K1 and immediately next anchor
key K2 satisfy K1 ≤ K < K2, if the anchor key K2 exists.
Otherwise, the last leaf node on the LeafList is the search-
key’s target node. If a search key is in the index, it must
be in its target node. The target nodes of “A”, “Denice”, and

1Note that if ⟨P1P2 ...PkB1 ⟩ is a prefix of any other anchor, it must be a
prefix of Nodec ’s anchor.

“Joseph” are the first, second, and fourth leaf nodes in Figure 3,
respectively. The question is how to identify the target node
for a search key.
Looking for a search-key’s target node is a process of

finding its longest prefix matching an anchor’s prefix. A
(short) prefix of the search key can be a prefix of multiple
anchors. However, if its (long) prefix is found to be equal to
a unique anchor key, the prefix cannot be another anchor’s
prefix due to the prefix condition for being an anchor.
Apparently this unique anchor key is not larger than the
search key. Furthermore, if the anchor’s next anchor exists,
according to anchor’s definition this anchor is smaller than
its next anchor and it is not its prefix. However, this anchor is
the search-key’s prefix. Therefore, the search key is smaller
than the next anchor. Accordingly, the anchor’s leaf node is
the target node of the search key. In the example, the unique
anchor of search key “Joseph” is “Jos”, which can be found
by walking down the MetaTrie with the search key.

If there is not such an anchor that is the prefix of a search
key, such as “Denice” in Figure 3, we cannot reach a leaf node
by matching token string of the key with anchor(s) one token
at a time starting at the first token. The matching process
breaks in one of two situations. The first one is that a token
in the key is found to be non-existent at the corresponding
level of the trie. For example, there isn’t an internal node ‘D’
at Level 1 (beneath the root at Level 0) of the trie to match
the first token of the search key “Denice”. The second one is
that tokens of the search key run out during the matching
before a leaf node is reached. An example is with the search
key “A”.

For the first situation, we assume that a search key’s first k
tokens (⟨T1T2...Tk ⟩) are matched andTk+1 at Level k+1 of the
trie is the first unmatched token. Because ⟨T1T2...Tk ⟩ is not an
anchor, theremust exist a nodematching ⟨T1T2...TkL⟩, a node
matching ⟨T1T2...TkR⟩, or both, where tokens L < Tk+1 < R.
In other words, the two nodes are siblings of the hypothetical
node matching ⟨T1T2...Tk+1⟩. Accordingly these two nodes
are its left and right siblings, respectively. We further assume
that they are immediate left and right siblings, respectively.
Rooted at left or right sibling nodes there is a subtree, named
left or right subtrees, respectively. If the left sibling exists,
the search key’s target node is the right-most leaf node of the
left subtree. If the right sibling exists, the left-most leaf node
of the right subtree is the target node’s immediate next node
on the LeafList. As all leaf nodes are doubly linked, the target
node can be reached by walking backward on the LeafList
by one node. For search key “Denice” in the example, both
subtrees exist, which are rooted at internal nodes “A” and “J”,
respectively, and the target node (the second leaf node) can
be reached by either of the two search paths, as depicted in
Figure 4. For search key “Julian”, only the left subtree (rooted
at internal node “O”) is available and only one search path
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Figure 4: Example lookups on a MetaTrie with search
keys “A”, “Denice”, and “Julian”.

down to the right-most leaf node exists to reach the target
node (the fourth leaf node).

For the second situation, we can append the smallest token
⊥ on the search key. As we assume the token is not used in
the regular key, ⊥ becomes the first unmatched key and we
can follow the procedure described for the first situation to
find the search-key’s target node. Note that in this case only
the right subtree exists. Figure 4 shows the path to reach the
target node of the search key “A”, which is the first leaf node.
Once a target node for a search key is identified, further

actions for lookup, insertion, and deletion operations are
straightforward. For lookup, we will search in the target
node for the key. In Section 3 we will present an optimization
technique to accelerate the process. Similar to those in the B+
tree, insertion and deletion of a key may lead to splitting of a
leaf node and merging of adjacent leaf nodes to ensure that
a node does not grow over its predetermined capacity and
does not shrink below a minimum size. The difference is that
the splitting and merging operations are not (recursively)
propagated onto the parent nodes in Wormhole, as it does
in B+ tree, to balance leaf node heights. The only operations
in the MetaTrie are removing anchors for merged nodes or
adding new anchors for split nodes. To remove an anchor,
only the trie nodes exclusively used by the anchor are to be
removed.
This composite index structure is more space efficient

than a conventional trie index by storing multiple keys in a
leaf node and inserting anchors usually (much) shorter than
keys in the trie. Its search time is practically independent
of number of keys in the index, and is only proportional to
anchor lengths, which can be further reduced by intelligently
choose the location where a leaf node is split (we leave this
optimization as future work). However, in the worst case
the search time can still be O(L), where L is the length of
a search key. With a long key, the search time can still be
substantial. In the following we will present a technique to
further reduce the search cost to O(logL).

Algorithm 1 Binary Search on Prefix Lengths
1: function searchLPM(search_key, Lanc , Lkey)
2: m← 0; n← min(Lanc , Lkey)+1
3: while (m+1) < n do
4: prefix_len← (m+n)/2
5: if search_key[0 : prefix_len-1] is in the trie then
6: m← prefix_len
7: else n← prefix_len
8: return search_key[0 : m-1]

2.4 Accelerating Search with a Hash Table
In the walk from the root of a MetaTrie to a search-key’s
target leaf node, there are two phases. The first one is actually
to conduct the longest prefix match (LPM) between the
search key and the anchors in the trie. If the longest prefix
is not equal to an anchor, the second phase is to walk on a
subtree rooted at a sibling of the token next to the matched
prefix of the search key. The O(L) cost of each of the phases
can be significantly reduced.
For the first phase, to obtain the LPM we do not have

to walk on the trie along a path from the root token by
token.Waldvogel et al. proposed to use binary search on prefix
lengths to accelerate the match for routing table lookups [45].
To apply the approach, we insert all prefixes of each anchor
into a hash table. In Figure 4’s index, “Jam” is an anchor, and
accordingly its prefixes (“”, “J”, “Ja”, “Jam”) are inserted in
the hash table. We also track the MetaTrie’s height, or the
length of the longest anchor key, denoted Lanc. Algorithm 1
depicts how a binary search for a search key of length Lkey is
carried out. As we can see the longest prefix can be found in
O(log(min(Lanc,Lkey))) time. In the example index for search
key “James” it takes two hash-table lookups (for “Ja” and
“Jam”) to find its longest common prefix (“Jam”).

The hash table is named MetaTrieHT, which is to replace
the MetaTrie to index the leaf nodes on the LeafList. The
MetaTrieHT for the MetaTrie in Figure 3 is illustrated in
Figure 5. Each node in MetaTrie corresponds to an item in
the hash table. If the node represents an anchor, or a leaf node,
the hash item is a leaf item, denoted ‘L’ in Figure 5. Otherwise,
the node is an internal node and the corresponding hash item
is an internal item, denoted ‘I’. Using this hash table, pointers
in the MetaTrie facilitating the walk from node to node in
the trie are not necessary in the MetaTrieHT, as every prefix
can be hashed into the index structure to know whether it
exists.

Each hash item has two fields supporting efficient walk in
the second search phase on a path to a leaf node. The first
field is a bitmap. It is meaningful only for internal items. It has
a bit for every possible child of the corresponding internal
node in the trie. The bit is set when the corresponding child
exists. With the bitmap, sibling(s) of an unmatched token can
be located in O(1) time. Trie node corresponding to a hash
item can be considered as root of a subtree. In the second
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Figure 5: The structure of Wormhole. For clarity the
bitmap is depicted by directly listing child tokens.

phase it is required to know the right-most leaf node or the
left-most leaf node of the subtree. The second field of a hash
item contains two pointers, each pointing to one of the leaf
nodes. Accordingly, the second phase takes a constant time.
The index consisting of a LeafList and a MetaTrieHT

represents Wormhole’s core data structure. Its operations,
including lookup (GET), insertion (SET), deletion (DEL), and
range search (RangeSearchAscending) are formally de-
picted in Algorithms 2, 3, and 4. The O(logL) time cost of
Wormhole is asymptotically lower thanO(logN ) for B+ tree
and O(L) for trie, where L is the search key’s length and N
is number of keys in the index.
Regarding space efficiency, Wormhole is (much) better

than trie by indexing multiple keys in a leaf node, rather
than individual keys in the trie. When compared to the B+
tree, it has the same number of leaf nodes. Therefore, their
relative space cost is determined by amount of space held
by their respective internal nodes. Wormhole’s MetaTrieHT
is essentially organized as a trie, whose number of nodes
highly depends on its key contents. While it is hard to
quantitatively evaluate its space cost and compare it to that
of the B+ tree without assuming a particular workload, we
analyze factors impacting the number. Generally speaking,
if the keys often share common prefixes, many anchors will
also share common prefixes, or nodes on the trie, which
reduces the trie size. On the other hand, if the keys are
highly diverse it’s less likely to have long common prefixes
between adjacent keys in the LeafList. According to the rule
of forming anchors, short common prefixes lead to short
anchors. Because it is anchors, instead of user keys, that are
inserted into the trie, short anchors lead to fewer internal
nodes. We will quantitatively measure and compare the
space costs of Wormhole and B+ tree with real-world keys
in Section 4.

Algorithm 2 Index Operations
1: function GET(wh, key)
2: leaf← searchTrieHT(wh, key); i← pointSearchLeaf(leaf, key)
3: if (i < leaf.size) and (key = leaf.hashArray[i].key) then
4: return leaf.hashArray[i]
5: else return NULL
6: function SET(wh, key, value)
7: leaf← searchTrieHT(wh, key); i← pointSearchLeaf(leaf, key)
8: if (i < leaf.size) and (key = leaf.hashArray[i].key) then
9: leaf.hashArray[i].value← value
10: else
11: if leaf.size = MaxLeafSize then
12: left, right← split(wh, leaf)
13: if key < right.anchor then
14: leaf← left
15: else leaf← right
16: leafInsert(leaf, key, value)
17: function DEL(wh, key)
18: leaf← searchTrieHT(wh, key); i← pointSearchLeaf(leaf, key)
19: if (i < leaf.size) and (key = leaf.hashArray[i].key) then
20: leafDelete(leaf, i)
21: if (leaf.size + leaf.left.size) < MergeSize then
22: merge(wh, leaf.left, leaf)
23: else if (leaf.size + leaf.right.size) < MergeSize then
24: merge(wh, leaf, leaf.right)
25: function RangeSearchAscending(wh, key, count)
26: leaf← searchTrieHT(wh, key);
27: incSort(leaf.keyArray); out← []
28: i← binarySearchGreaterEqual(leaf.keyArray, key)
29: while (count > 0) and (leaf , NULL) do
30: nr← min(leaf.size - i, count); count← count - nr
31: out.append(leaf.keyArray[i : (i + nr - 1)])
32: leaf← leaf.right; i← 0
33: if leaf , NULL then incSort(leaf.keyArray);
34: return out

Algorithm 3 Ancillary Functions
1: function searchTrieHT(wh, key)
2: node← searchLPM(wh.ht, key, min(key.len, wh.maxLen))
3: if node.type = LEAF then return node
4: else if node.key.len = key.len then
5: leaf← node.leftmost
6: if key < leaf.anchor then leaf← leaf.left
7: return leaf
8: missing← key.tokens[node.key.len]
9: sibling← findOneSibling(node.bitmap, missing)
10: child← htGet(wh.ht, concat(node.key, sibling))
11: if child.type = LEAF then
12: if sibling > missing then child← child.left
13: return child
14: else
15: if sibling > missing then return child.leftmost.left
16: else return child.rightmost
17: function pointSearchLeaf(leaf, key)
18: i← key.hash × leaf.size / (MAXHASH + 1); array← leaf.hashArray
19: while (i > 0) and (key.hash ≤ array[i - 1].hash) do i← i - 1
20: while (i < leaf.size) and (key.hash > array[i].hash) do i← i + 1
21: while (i < leaf.size) and (key.hash = array[i].hash) do
22: if key = leaf.array[i].key then return i
23: i← i + 1
24: return i
25: function allocInternalNode(initBitID, leftmost, rightmost, key)
26: node← malloc(); node.type← INTERNAL
27: node.leftmost← leftmost; node.rightmost← rightmost
28: node.key← key; node.bitmap[initBitID]← 1
29: return node
30: function incSort(array)
31: if array.sorted.size < THRESHOLD then array← qsort(array)
32: else array← twoWayMerge(array.sorted, qsort(array.unsorted))
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Algorithm 4 Split and Merge Functions
1: function split(wh, leaf)
2: incSort(leaf.keyArray); i← leaf.size / 2
3: while Cannot split between [i−1] and [i] in leaf.keyArray do
4: Try another i in range [1, leaf.size −1]
5: Abort the split if none can satisfy the criterion
6: alen← commonPrefixSize(leaf.keyArray[i−1], leaf.keyArray[i])+1
7: newL← malloc(); newL.anchor← leaf.keyArray[i].key.prefix(alen)
8: key← newL.anchor; Append 0s to key when necessary
9: wh.maxLen← max(wh.maxLen, key.len)
10: Move items at [i to leaf.size−1] of leaf.keyArray to newL
11: Insert newL at the right of leaf on the leaf list
12: htSet(wh.ht, key, newL)
13: for plen : 0 to key.len−1 do
14: prf← key.prefix(plen); node← htGet(wh.ht, prf)
15: if node.type = LEAF then
16: parent← allocInternalNode(0, node, node, prf)
17: htSet(wh.ht, prf, parent); prf.append(0); node.key← prf
18: htSet(wh.ht, prf, node); node← parent
19: if node = NULL then
20: node← allocInternalNode(key[plen], newL, newL, prf);
21: htSet(wh.ht, prf, node)
22: else
23: if node.leftmost = leaf.right then node.leftmost← leaf
24: if node.rightmost = leaf.left then node.rightmost← leaf
25: function merge(wh, left, victim)
26: Move all items from victim to the left node
27: key← victim.key; htRemove(wh.ht, key)
28: for plen : key.len−1 to 0 do
29: prefix← key.prefix(plen); node← htGet(wh.ht, prefix)
30: node.bitmap[key[plen]]← 0
31: if node.bitmap.isEmpty() then htRemove(wh.ht, prefix)
32: else
33: if node.leftmost = victim then node.leftmost← victim.right
34: if node.rightmost = victim then node.rightmost← victim.left

2.5 Concurrency Support
To provide strong support of concurrent operations for
high scalability, Wormhole aims to minimize its use of
locks, especially big locks, and minimize impact of a lock
on concurrency. There are three groups of operations that
require different levels of access exclusiveness. The first
group includes point and range lookups that do not modify
the index and do not demand any access exclusiveness
among themselves. The second group includes insertions
and deletions whose required modifications are limited on
one or multiple leaf nodes on the LeafList. They demand
access exclusiveness only at the leaf nodes. The third group
includes insertions and deletions that incur split and merge
of leaf nodes and modifications of the MetaTrieHT by
adding or removing anchors and their prefixes in it. They
demand exclusiveness at the relevant leaf nodes and at the
MetaTrieHT.
A design goal of Wormhole’s concurrency control is to

minimize the limit imposed by insertions/deletions on the
concurrency of lookup operations. To this end, we employ
two types of locks. One is a reader-writer lock for each leaf
node on the LeafList. For the second group of operations,
insertion/deletion of a key modifies only one leaf node, and
accordingly only one node is locked and becomes unavailable
for lookup. For the third group of the operations with one

key, only one or two leaf nodes have to be locked for split
or merge, respectively. However, for addition or removal
of prefixes of an anchor in the MetaTrieHT structure, we
may have to simultaneously acquire multiple locks to have
exclusive access of (many) hash items (equivalently trie
nodes). To this end the second type of lock is a single mutex
lock on the entire MetaTrieHT to grant exclusive access to an
addition or removal operation of an anchor and its prefixes,
instead of fine-grained locks with much higher complexity
and uncertain performance benefits.
However, as every key lookup requires access of the

MetaTrieHT table, a big lock imposed on the entire Meta-
TrieHT can substantially compromise performance of the
first two groups of operations that perform read-only access
on the MetaTrieHT. To address this issue, we employ the
QSBR RCU mechanism [30, 44] to enable lock-free access
on MetaTrieHT for its readers (the first two groups of
operations). Accordingly, only the writers of MetaTrieHT
need to acquire the mutex lock. To perform a split/merge
operation, a writer first acquires the lock. It then applies the
changes to a second hash table (T2), an identical copy of the
current MetaTrieHT (T1). Meanwhile, T1 is still accessed
by readers. Once the changes have been fully applied to T2,
T2 will be made visible for readers to access by atomically
updating the pointer to the current MetaTrieHT through
RCU, which simultaneously hides T1 from new readers. After
waiting for an RCU grace period which guarantees T1 is no
longer accessed by any readers, the same set of changes is
then safely applied to T1. Now T1 is again identical to T2
and it will be reused as the second hash table for the next
writer. The extra space used by the second MetaTrieHT is
negligible because a MetaTrieHT, containing only the anchor
keys, is consistently small in size compared with the size
of the entire index structure. As an example, for the eight
keysets used in our evaluation (see Table 1), the extra space
consumed by the second table is only 0.34% to 3.7% of the
whole index size.

When a lookup reaches a leaf node on the LeafList after
searching on a MetaTrieHT, it needs to make sure that the
hash table it used is consistent with the leaf node. For an
insertion/deletion in the third group, it first acquires lock(s)
for relevant leaf node(s), from left to right if two or more leaf
nodes are to be locked, and then acquires the mutex lock for
the MetaTrieHT. With the locks both the leaf node(s) and the
table can be updated. To minimize readers’ wait time on the
critical section we release the locks on the leaf nodes right
after they have been updated. To prevent lookups via an old
MetaTrieHT from accessing updated leaf nodes, including
nodes being split or deleted, we use version numbers to
check their consistency. Each MetaTrieHT is assigned a
version number. The number is incremented by one for each
split/merge operation where a new version of MetaTrieHT is
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made visible. Each leaf node is assigned an expected version
number, initialized as 0. When a leaf node is locked for
split/merge operation, we record the current MetaTrieHT’s
version number plus 1 as the leaf node’s expected version
number. A lookup remembers the MetaTrieHT’s version
number when it starts to access the MetaTrieHT, and then
compares the number with the expected number of the target
leaf node it reaches. If the expected number is greater, this
lookup shall abort and start over.
The penalty of the start-overs is limited. First, for a

split/merge operation, only one or two leaf nodes have their
version numbers updated. Lookups targeting any other leaf
nodes don’t need to start over. Second, the rate of split/merge
is much lower than that of insert/delete operations. Third, a
start-over only needs to perform a second lookup on a newer
version of MetaTrieHT, which is read-only and much faster
than an insert/delete operation.

3 OPTIMIZATION AND ENHANCEMENT
While Wormhole’s design provides significantly improved
asymptotic lookup time, we apply several optimization tech-
niques to maximize the efficiency of Wormhole’s operations
on MetaTrieHT and LeafList. We will also discuss how the
assumption on a reserved ⊥ token not allowed in user keys
can be removed. All the techniques described in this section
are also covered in Algorithms 2, 3, and 4.

3.1 Improving Operations in MetaTrieHT
There are two major operations in MetaTrieHT for a lookup
involving a sequence of prefixes of a search key. They can be
CPU-intensive or memory-intensive. The first operation is to
compute a prefix’s hash value as an index in the MetaTrieHT
hash table. The second one is to read the prefix in the table
and compare it with the search-key’s corresponding prefix.
Wormhole conducts these operations for each of its selected
prefixes during its binary search for the longest prefix match.
However, a hash-table-based index requires them only once
for a search key. We aim to reduce their CPU and memory
access costs, respectively, and make them comparable with
those of the hash-table-based indexes.
Regarding the first operation, the cost of some com-

monly used hash functions, such as that for CRC [36]
and xxHash [47], is approximately proportional to their
input lengths. By reducing the lengths, we can reduce
the hashing cost. Fortunately, there exist incremental hash
functions, including both CRC and xxHash. Such a function
can leverage previously hashed value of an input string when
it computes hash value for an extended string composed
of the string appended with an increment. In this case it
does not need to recompute the longer string from scratch.
Taking advantage of the above properties, Wormhole uses

hash(key)

2B 6B
tag *trie_node
tag *trie_node
tag *trie_node
tag *trie_node

tag *trie_node
tag *trie_node
tag *trie_node
tag *trie_node

*left_most_leaf *right_most_leaf
*node_key (unused)

bitmap (32B)
a trie node

(64B)

2B 6B

8B 8B

Figure 6: Structure of Wormhole’s hash table

incremental hashing whenever a prefix match is found and
the prefix is extended during its binary common-prefix
search.2 In this way, the average number of tokens used
for hashing in a lookup of a search key of length L is reduced
from L

2 log2 L to only L, comparable to that of a hash table
lookup.

Regarding the second operation, each prefix match opera-
tion may involve multiple prefixes stored in a hash bucket.
In the process many memory accesses may occur, including
dereferencing pointers for prefixes and accessing potentially
long prefixes of several cache-lines long. These accesses are
likely cache misses. To reduce the cache misses, we organize
8 prefixes in an array of a cache-line size (64 bytes), named
hash slot (see Figure 6). Each element in the array consists of
a 16-bit tag hashed from the prefix and a 48-bit pointer to the
original prefix.3 In a lookup, key-comparisons are performed
only for prefixes having a matched tag, which effectively
reduces average number of key-comparisons to almost one
per lookup. Similar approaches have been widely used in
high-performance hash tables [6, 10, 22].
However, it takes multiple hash-table lookups to find

an LPM, which still leads to multiple key-comparisons for
a lookup on Wormhole. To further reduce this overhead,
we first optimistically trust all tag-matches and omit key-
comparisons in every hash-table lookup until finding a
seemingly correct LPM. Tag comparisons may produce false-
positive matches, which can lead the binary search to a
wrong prefix that is longer than the correct one. To detect
this error, a full key comparison is performed at the last prefix
after the binary search. If it is a mismatch, the search will
start over with full prefix comparisons. Note that there are
no false-negative matches in this approach. Accordingly, it
always produces the correct longest prefixes if false-positive
matches do not occur.With the 16-bit tags produced by awell-
designed hash function, the probability of error occurrence
is only 0.0153% for keys of 1024-bytes long (1 − ( 216−1216 )

10).

2CRC-32c is used in our implementation.
3On x86-64 only the low-order 48 bits are used in virtual memory address.
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Figure 7: Wormhole’s leaf node

3.2 Improving Operations in Leaf Node
Once a target leaf node is identified, a search of a key within
the node is carried out. As keys in the node are sorted, a
binary search may be used during the search. Similar to the
issue of manymemory accesses in theMetaTrieHT, accessing
a number of original (long) keys for comparison can be very
expensive. Accordingly, we also calculate a 16-bit hash tag
for each key and place the tags in a tag array in the ascending
hash order. A search is then conducted on the compact tag
array. Only when a tag is matched will its corresponding
key be read and compared, which substantially reduces the
number of memory references.

We then further reduce number of comparisons on the tag
array using a direct speculative positioning approach. If a
hash function that uniformly hashes keys into the tag space
is employed, the tag values themselves are well indicative of
their positions in the array. Specifically, with a tag of value
T computed from a search key we will first compare it with
a tag at position k×T

Tmax+1 in the key array, where k is number
of keys in the array andTmax is the largest possible tag value.
If there isn’t a match at the position, we will compare it
with its neighboring tags. Using the lower 16-bits of a (CRC-
32c) hash value as the tag, it usually takes only 1 to 3 tag
comparisons to complete the search in a node of 128 keys.

Another benefit of having the compact tag array is that the
original key array does not have to always stay sorted. For
efficiency, we may append newly inserted keys after the keys
in the key array without immediate sorting, as illustrated
in Figure 7. The sorting on the key array can be indefinitely
delayed until a range search or split reaches the node. Further,
the batched sorting amortizes the cost of ordered insertions
when multiple unsorted keys are appended.

3.3 Wormhole with Any Key Tokens
We have assumed existence of a token value that never
appears in regular keys, similar to an assumption in the
design of Masstree [26]. With this assumption, we had
designated an unused value, denoted ‘⊥’, as the smallest
value and used it to extend prefix so as to form an anchor
satisfying the rule that no anchor can be a prefix of another
anchor. By removing the assumption, we have to allow the
minimal token value, say binary zero, to appear in the keys.

1 1
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Figure 8: Introducing a fat leaf node

This is not an issue for printable keys where 0 is not used.
However, a difficult situation arises for binary keys when
a potential anchor (generated due to node split) becomes
a prefix of another anchor that consists of the prefix and
trailing zeroes.

One example is that we cannot identify any position in the
first leaf node in Figure 8 to split it and produce a legitimate
anchor. Suppose we split the node in the middle and select
binary “100” as the anchor. Apparently it is a prefix of the
next anchor “10000” and it violates the prefix condition. In
this case where all keys in the node are composed of a
common prefix “1” and a number of trailing ‘0’s, there is
not a position where we can split and form a new anchor. To
address this issue, we simply allow the leaf node to grow over
the node capacity into a fat node without splitting it. Note
that the introduction of fat node is mainly for correctness
and we believe it has virtually no impact on real systems.
For example, with a maximal node size of N , having a fat
node requires that there are at least N + 1 keys sharing the
same prefix but having different numbers of trailing zeroes.
In this case the longest key among them must have at least
N trailing zeroes. With a moderate N of 64 or 128, the fat
node is unlikely to be seen with any real datasets.

4 EVALUATION
In this section we experimentally evaluate Wormhole by
comparing it with several commonly used index structures,
including B+ tree [8], skip list [37], Adaptive Radix Tree
(ART) [18], and Masstree [26].

In the Wormhole prototype we use 128 as the maximum
leaf-node size (number of keys in a leaf node). We use an
STX B+-tree [4], a highly optimized in-memory B+ tree
implementation, to accommodate large datasets. The B+
tree’s fanout is set to 128, which yields the best result on
our testbed. We use the skip list implementation extracted
from LevelDB [20]. ART is a trie-like index with a lookup
cost of O(L). To reduce space consumption, ART adaptively
selects its node size and employs path compression to reduce
number of nodes. We use an ART’s implementation available
on Github [23]. Masstree is a trie-like index with a very high
fanout (up to 264). With this high fanout it is impractical to
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Table 1: Description of Keysets

Name Description Keys
(×106)

Size
(GB)

Az1 Amazon reviews metadata,
avg. length: 40 B, format: item-user-time

142 8.5

Az2 Amazon reviews metadata;
avg. length: 40 B, format: user-item-time

142 8.5

Url URLs in Memetracker, avg. length: 82 B 192 20.0
K3 Random keys, length: 8 B 500 11.2
K4 Random keys, length: 16 B 300 8.9
K6 Random keys, length: 64 B 120 8.9
K8 Random keys, length: 256 B 40 10.1
K10 Random keys, length: 1024 B 10 9.7

use arrays to hold children pointers in trie nodes. Therefore,
at each trie node it employs a B+ tree to index the children.
We use the publicly available source code of Masstree from
its authors in the evaluation [27].
Among the five indexes, only Wormhole and Masstree

employ fine-grained RCU and/or locks, which enables thread-
safe access for all of their index operations. The other three
indexes are not designed with built-in concurrency control
mechanisms. For example, LevelDB needs to use an external
mutex lock to synchronize writers on its skip list. For fair
comparison, we only compare Wormhole with their thread-
unsafe implementations with read-only or single-writer
workloads.

Experiments are run on a Dell R630 server with two
16-core Intel Xeon E5-2697A v4 CPUs, each with 40MB
LLC. To minimize the interference between threads or
cores, hyper-threading is turned off from BIOS and we use
one NUMA node to run the experiments. The server is
equipped with 256GB DDR4-2400 ECC memory (32GB×8)
and runs a 64-bit Linux (v4.15.15). To evaluateWormhole in a
networked environment, we connect two identical servers of
the above configuration with a 100Gb/s Infiniband (Mellanox
ConnectX-4). Requests of index operations are generated
from one server and are sent to the other for processing.
We use publicly available datasets collected at Ama-

zon.com [28] and MemeTracker.org [31]. The original Ama-
zon dataset contains 142.8 million product reviews with
metadata, We extract three fields (Item ID, User ID, and
Review time) in the metadata to construct two keysets,
named Az1 and Az2, by concatenating them in different
orders (see Table 1). Key composition varies with the order,
and may impact the index’s performance, especially for
the trie-based indexes (B+ tree and Wormhole). For the
MemeTracker dataset we extract URLs from it and use them
as keys in the keyset, named Url.

For trie-based indexes a performance-critical factor is key
length. We create five synthetic keysets, each with a different
fixed key length (from 8B to 1024 B). Key count is selected
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Figure 9: Lookup throughput with different number
of threads. The Az1 keyset is used in this experiment.

to make sure each keyset is of the same size (see Table 1).
Key contents are randomly generated.

In the evaluation we are only concerned with performance
of index access and skip access of values in the KV items. In
the experiments, the search keys are uniformly selected from
a keyset to generate a large working set so that an index’s
performance is not overshadowed by effect of CPU cache. In
the experiments we use 16 threads to concurrently access
the indexes unless otherwise noted.

4.1 Lookup Performance
In the experiments for measuring lookup throughput we
insert each of the keysets to an index, then perform lookups
on random keys in the index.

We first measure single-thread throughput of the indexes
and see how they scale with number of the threads. The
results with Az1 keyset are shown in Figure 9. With one
thread, Wormhole’s throughput is 1.266MOPS (million
operations per second), about 52% higher than that of ART
(0.834MOPS), the second-fastest index in this experiment.
All of the five indexes exhibit good scalability. As an example,
Wormhole’s throughput with 16 threads (19.5MOPS) is 15.4×
of that with one thread. In addition, it’s 43% higher than
that of ART with 16 threads. We also create a thread-unsafe
version of wormhole index (namely Wormhole-unsafe) by
not using of the RCU and the locks. As shown in Figure 9, the
thread-unsafe Wormhole reaches 21.2MOPS, a 7.8% increase
of its thread-safe counterpart. Since the results of the other
keysets all show a consistent trend as described above, we
omit them from this paper.

We then investigate Wormhole’s performance with differ-
ent keysets. We use 16 threads for the following experiments
unless otherwise noted. The throughput results with the
eight keysets are shown in Figure 10. Wormhole improves
the lookup throughput by 1.3× to 4.2× when compared
with the best results among the other indexes for each
keyset. Compared with throughput of the B+ tree and skip
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Figure 10: Lookup throughput on local CPU

list, throughput of the other three indexes exhibits higher
variations due to their use of trie structure and variable key
lengths in different keysets. In the meantime, throughput of
Masstree and ART are more tightly correlated to key length
than Wormhole. Masstree substantially outperforms B+ tree
and skip list with short keys (e.g., K3 and K4). However, its
throughput drops quickly with longer keys (e.g., Url, K8, and
K10). Wormhole’s lookup throughput is much less affected
by key-length variation because its throughput is determined
by the anchor length (Lanc), which is usually (much) smaller
than the average key length. Specifically, it is determined by
log(min(Lanc,Lkey)), rather than by L in Masstree and ART
(see Algorithm 1). In Url the URLs often share long common
prefixes, which leads to long anchors (about 40 B in average
as measured) in Wormhole. Even though, Wormhole still
outperforms the others by at least 1.7×.
Various optimizations are applied in Wormhole’s imple-

mentation, including tag matching in MetaTrieHT (Tag-
Matching), incremental hashing (IncHashing), sorting by tags
at leaf nodes (SortByTag), and direct speculative positioning
in the leaf nodes (DirectPos). To see how much individual
optimizations quantitatively contribute to the Wormhole’s
improvement, we incrementally apply them one at a time to
a basic Wormhole version without the optimizations (Base-
Wormhole). Figure 11 shows the throughput of Wormholes
without and with the incrementally added optimizations, as
well as that of B+ tree as a baseline on different keysets.
As shown, BaseWormhole improves the throughput by
1.26× to 2.25×. After two optimizations (TagMatching and
IncHashing) are applied, the improvement increases to 1.4×
to 2.6×. The index workloads are memory-intensive, and
memory access efficiency plays a larger role than CPU in
an index’s overall performance. As TagMatching reduces
memory accesses, and corresponding cache misses, it con-
tributes more to throughput improvement than IncHashing,
which reduces CPU cycles and has a contribution of only
about 3%. A more significant improvement is received with
SortByTag and DirectPos applied at the leaf nodes. At the leaf
nodes SortByTag removes expensive full key comparisons. Its
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Figure 11: Throughput with optimizations applied.
For an optimization, the ones above it in the legends
are also applied. E.g., +DirectPos represents all opti-
mizations are applied.
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Figure 12: Lookup throughput on a networked key-
value store

contribution is bigger with keysets of longer keys. DirectPos
can dramatically reduce number of tag comparisons from 6–7
to less than 3 (on average), and also substantially contributes
to the throughput improvements (though less significant
than SortByTag). Overall with all the optimizations the
throughput is improved by up to 4.9× by Wormhole.
Network had often been considered as a major potential

bottleneck for client/server applications and a slow connec-
tion can overshadow any performance improvement made at
the host side. However, today’s off-the-shelf network devices
are able to offer a high bandwidth close to the speed of main
memory. For example, the aggregated bandwidth of three
200Gb/s Infiniband (IB) links (3×24GB/s) is close to that of a
CPU’s memory controller (76.8GB/s for a Xeon E4 v4 CPU).
This ever-increasing network bandwidth makes performance
of networked applications more sensitive to the efficiency
of the host-side CPU/memory usage. To evaluate by how
much Wormhole can improve performance of networked
data-intensive applications, we port the indexes to HERD, a
highly optimized RDMA-enabled key-value store [38], and
run the lookup benchmarks over a 100Gb/s IB link. We
use a batch size of 800 (requests per operation) for RDMA
sends and receives. The throughput results are shown in
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Figure 13: Lookup throughput of Wormhole and
Cuckoo hash table

Figure 12. Generally speaking, Wormhole is able to maintain
its advantage over the other indexes, which is comparable
to the results on a single machine (Figure 10). However, the
peak throughput of Wormhole is decreased by 5% to 20% for
most datasets. For the K10 dataset, the large key size (1 KB
each) significantly inflates the size of each request. In this
setting with one IB link, the network bandwidth becomes
the bottleneck that limits the improvement of Wormhole. As
a result, with the K10 dataset Wormhole’s throughput is only
37.5% of that without the network, and is only 30% higher
than that of B+ tree.

4.2 Comparing with Hash Tables
Wormhole aims to bridge the performance gap between or-
dered indexes and hash tables. To know how far Wormhole’s
performance is close to that of hash tables, we compare
Wormhole with a highly optimized Cuckoo hash table [24].
The experimental results are shown in Figure 13. For the first
seven keysets, Wormhole’s throughput is about 31% to 67%
of that of the hash table. The K10 keyset has very long keys
(1024-byte keys). 16 cache-lines need to be accessed in one
key comparison. And the key-access cost dominates lookup
time in both indexes. By using only tags in the MetaTrieHT
and leaf nodes in the comparison in both Wormhole and the
optimized hash table, they have similar number of full key
accesses. As a result, on this keyset Wormhole’s throughput
is close to that of the hash table.
Besides key length, another factor affecting Wormhole’s

lookup efficiency is anchor length, which determines the
MetaTrieHT’s size and lookup time in MetaTrieHT. With
randomly generated key contents, the anchors are likely
very short. However, in reality a key’s true content may only
occupy the last several bytes and fill the leading bytes of a
key with the same filler token such as ‘0’. To simulate this
scenario, we form a number of keysets. Each keyset contains
10 million keys of a fixed size (L). Such a keyset, denoted as
(Kshort), contains keys of random contents and is expected to
have short anchors. We then fill each-key’s first L − 4 bytes
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Figure 14: Lookup throughput for keysets of short and
long common prefixes

with ‘0’, and denote the resulting keyset as Klong. Figure 14
shows lookup throughput on the two keysets, Kshort and
Klong, at different key lengths.

The Cuckoo hash table shows little throughput difference
with the two keysets at various key lengths. However, with
longer anchors Wormhole’s throughput on Klong is lower
than that on Kshort. This throughput reduction becomes
larger with long keys. With the longest keys (512 B) the
corresponding long anchors lead to more memory accesses
(e.g., log2 512 = 9 for LPM on the MetaTrieHT), reducing its
throughput from about 78% of the hash-table’s throughput
to only 40%.

4.3 Performance of other Operations
In this section we use workloads having insertion operations.
Note that several indexes we used (skip list, B+ tree, and ART)
cannot safely perform concurrent accesses when a writer is
present. If we apply locking or use their lockfree/lockless
variants to allow concurrent readers and writers, their
performance can be penalized because of the extra overhead.
For a more vigorous and fair comparison, we compare
Wormhole with their implementations without concurrency
control. Accordingly, we use only one thread for insertion-
only workloads, and then exclude the three thread-unsafe
indexes in the evaluation with multi-threaded read-write
workloads.

In insertions-only workloads, keys from a keyset are
inserted into an initially empty index, and the insertion
throughput is shown in Figure 15. Wormhole’s throughput
is comparable to that of the skip list on most keysets. With
short keys (e.g., K3 and K4), both Masstree and Wormhole
show a higher throughput than comparison-based indexes
(B+ tree and skip list) as insertion of short keys has a low
cost on a trie-like structure. However, with longer keys (e.g.,
Url) throughput of Masstree and Wormhole becomes lower.

When an index for each of the keysets is built, we estimate
their memory demands by taking difference of resident
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Figure 15: Throughput of continuous insertions
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Figure 16: Memory usage of the indexes

memory sizes, reported by the getrusage() system call,
before and after an index is built. Hugepages are disabled
for this experiment to minimize memory wastage due to
internal fragmentation. In the indexes, space for each KV
item is allocated separately and is reached with a pointer in
an index node. To establish a baseline to represent minimal
memory demand of a keyset, wemultiply the key count of the
set with the sum of key length and a pointer’s size. Memory
demands of the indexes are shown in Figure 16. As shown,
in most cases Wormhole’s memory usage is comparable to
those of B+ tree and skip list. Wormhole uses a small trie
to organize its anchors and places the keys in large leaf
nodes. As anchors can be much shorter than keys, the space
overhead of the MetaTrieHT can be further reduced, leading
to a higher space efficiency than the trie-based Masstree,
which places keys in the trie structure. Masstree’s memory
usage is significantly higher than the other indexes, except
for keysets with very short keys (e.g., K3) where the entire
index is actually managed by a single B+ tree at the root trie
node. On the contrary, ART has significantly higher space
consumption with short keys (K3 and K4), which is due to its
excessive number of trie nodes. With longer keys, the path
compression helps to amortize the space cost with relatively
reduced numbers of trie nodes.
We now evaluate Wormhole with workloads of mixed

lookups and insertions using 16 threads. As shown in
Figure 17, we change percentage of insertions from 5%,
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Figure 18: Throughput of range lookups

50%, to 95% of the total operations to see how Wormhole’s
performance is affected by operations that may update the
MetaTrieHT. In general, the trend of relative throughput
betweenMasstree andWormhole with insertions on different
keysets is similar (compare Figures 10 and 17). With more
insertions, the throughput improvements of Wormhole over
Masstree become smaller, but still substantial. With a big
leaf node most insertions do not update the MetaTrieHT
and lookup time still holds a significant portion of the entire
operation cost. Furthermore, Wormhole’s concurrency con-
trol allows updates on the MetaTrieHT to impose minimal
constraint on lookups’ concurrency.
To compare Wormhole with other indexes on range

operations, we randomly select a search key and search for
following (up to) 100 keys starting from the search key. As
range-scan is not implemented in the ART source code, it is
omitted in this experiment. The results for various keysets
are shown in Figure 18. In the range search much of the
operation time is spent on sequentially scanning of a sorted
list. The performance advantage of Wormhole on reaching
the first search key is dwarfed. As a result, Wormhole’s
throughput improvement is reduced (improvement of 1.05×
to 1.59× over B+ tree). However, as Masstree stores all keys
in a trie structure, range query is much more expensive due
to its frequent pointer chasing on the trie, which leads to its
much lower throughput than the other indexes.
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5 RELATEDWORK
Comparison-based ordered indexes are commonly used as in-
memory index of popular SQL and NoSQL databases, such
as B-tree (or B+ tree) in LMDB [25] and MongoDB [33],
and skip list in MemSQL [32] and LevelDB [20]. Because
their lookup cost is bounded by O(logN ) the efforts on
improving their lookup performance are mainly focused
on improvement of parallelism and caching efficiency. For
example, Bw-tree enables latch-free operations of B+ tree
to improve lookup efficiency on multi-cores [19]. FAST
leverages architecture-specific knowledge to optimize B+-
tree’s layout in the memory to minimize cache and TLB
misses [16]. Many studies have proposed to use hardware
accelerators, such as GPU, to improve index lookups without
changing the underlying data structure [12, 13, 17, 41, 48].
Wormhole takes a new approach to fundamentally reduce
its asymptotic cost to O(logL). In addition to its algorithmic
improvement, Wormhole is further strengthened by a series
of implementation optimizations.
Trie has been proposed to achieve a lookup cost lower

than those of the comparison-based indexes. ART adaptively
changes the size of each trie node to minimize the space
usage of the trie structure [18]. However with a small fanout
(256 in ART) theO(L) lookup cost can be significant for long
keys. Masstree enables a very high fanout (264) by using a B+
tree at each trie node [26]. Accordingly, Masstree’s lookup
cost on the trie structure is practically reduced to 1/8 of that
in ART. However, with the high fanout a trie node may have
to be represented by a large B+ tree, which makes access on
this trie node slow and offsets the benefit of having reduced
trie height. Wormhole’s lookup efficiency is less sensitive to
key length as it has a O(logL) lookup cost. Using large leaf
nodes to host keys and a small trie to manage the anchors,
Wormhole’s space efficiency is much better than a trie.

Caching can effectively improve index lookup for work-
loads of strong locality. For example, SLB uses a small cache
to reduce the lookup cost for frequently accessed data [46].
However, caching is not effective for accessing of cold data.
Wormhole improves the index structure which can reduce
DRAM accesses for workloads of little locality. Bε-Tree is a B-
tree-like index which allocates a buffer at each internal node
to reduce the high write amplification of B Tree [7]. However
the use of buffers incurs an additional overhead for lookups.
Similarly, FloDB uses a hash table as a buffer ahead of a skip
list in LevelDB to service write requests, which can remove
the expensive skip-list insertion out of the critical path [2].
FloDB’s hash table needs to be fully flushed upon serving
a range operation, which can impose long delays for range
queries. Wormhole has a low lookup cost which benefits both
read and write operations. By quickly identifying a leaf node

for write operations, and using hashed keys in the sorting,
write operations in Wormhole has a consistently low cost.

In addition to using fine-grained locks, many synchro-
nization approaches have been proposed for efficient access
of shared data structures. MemC3 [10] and Masstree [26]
use version numbers to enable lock-free access for readers.
Atomic operations, such as CAS and LL/SC, have been exten-
sively used to implement lock-free lists and trees [3, 5, 11, 34].
RCU has been extensively used for read-dominant data
structures [29, 44]. Other approaches, such as transactional
memory and delegation techniques, have been extensively
studied [14, 15, 40, 42]. We employ fine-grained locking,
RCU, and version numbers to enable an efficient thread-
safe Wormhole index that is only slightly slower than the
thread-unsafe Wormhole. While there could be many other
choices for more efficient concurrency control on Wormhole,
we leave it for future work.

6 CONCLUSION
To the best of our knowledge, Wormhole is the first ordered
key-value index achieving the O(logL) lookup cost, which
is better than the O(logN ) or O(L) cost of other ordered
indexes, assuming key length L much smaller than key
count N . The reduced asymptotic cost makes Wormhole
capable of delivering quick access to KV items, especially
in challenging scenarios where the index manages a very
large number of items with long keys. Extensive evaluation
demonstrates that Wormhole can improve index lookup
throughput by up to 8.4×, 4.9×, 4.3×, and 6.6×, compared
with skip list, B+ tree, ART, and Masstree, respectively.
Meanwhile, Wormhole’s performance with other operations,
including insertion, deletion, and range query, is also higher
than or comparable to other indexes. Its space demand is
as low as that of B+ tree. The source code of an imple-
mentation of the Wormhole index is publicly available at
https://github.com/wuxb45/wormhole.
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