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Abstract:

Over the past few decades, topology optimization has emerged as a powerful and

useful tool for the design of structures, also exploiting the ever growing computational

speed and power. The design process has also been affected by computers which

changed the concept of form into the concept of formation and the emergence of digital

design. Topology optimization can modify existing designs, incorporate explicit features
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into a design and generate completely new designs. This paper will show how topology

optimization can be used as a digital tool. The liteITD (lite version of Isolines Topology

Design) software package will be described with the purpose of providing a tool for

topology design. The liteITD program solves the topology optimization of two-

dimensional continuum structures using von Mises stress isolines under single or

multiple loading conditions, with different material properties in tension and

compression, and multiple materials. The liteITD program is fully implemented in the

MATrix LABoratory (MATLAB) software environment of MathWorks under Windows

operating system. GUIDE (Graphical User Interface Development Environment) was

used to create a friendly Graphical User Interface (GUI). The usage of this application

is directed to students mainly (educational purposes), although also to designers and

engineers with experience. The liteITD program can be downloaded and used for free

from the website: http://www.upct.es/goe/software/liteITD.php.
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1 INTRODUCTION

In the past, the intuition and experience of designers played a key role in structural

design. In the literature, there are a lot of methods available to carry out topology

optimization, that can be divided in two types: 1) those with a mathematical basis:

Homogenization (Bendsøe and Kikuchi, 1988; Bendsøe, 1995); Solid Isotropic

Microstructure with Penalization (SIMP), (Bendsøe, 1989; Rozvany et al., 1992;

Bendsøe and Sigmund, 2003); Level Set Method (LSM), (Osher and Sethian, 1988); 2)

those based on heuristics: Evolutionary Structural Optimization (ESO), (Xie and Steven,

1997); Bidirectional-ESO (BESO), (Querin et al., 1998) and Isolines Topology Design

(ITD), (Victoria et al., 2009). The aim of these methods is to support the intuition and

the experience of a designer. For a more exhaust review of topology optimization in

structural and continuum mechanics, the reader should refer to Rozvany and LewiĔski

(2014).

The last two decades have seen the emergence of topology optimization as a very

powerful and useful tool for the design of structures. One of the reasons for the growth

in the development of topology optimization has been the growth in computational

power and speed. This also had a remarkable impact on the design process, shifting it

from the traditional paper-based concept of design to digital design. This is self evident

by the implementation of topology and other forms of optimization in most commercial

structural analysis programs, like ANSYS (ANSYS, 2016), FEMtools (Dynamic design

solutions, 2016) and MSC Nastran (MSC software, 2015). There has also been

topology optimization specific software with either inbuilt or links to external analysis

tools, such as OptiStruct (Altair Engineering, 2016) and CATOPO (Creative

Engineering Services, 2016). As well as topology optimization tools available over the

internet such as TopOpt (TopOpt, 2009).

The ITD method is easily implemented and can also be called as a subroutine from

commercial FEA software packages. However, although the designer can understand
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how the method works, it is very hard to apply it on demand. Hence, it is necessary to

have access to various computer programs such as: finite element analysis software,

optimization software, and a good programming background. Besides, the reliance on

complicated and expensive third-party programs severely limits the potential use of the

ITD method. This paper includes with it a friendly GUI implemented in the technical

computation language MATLAB (MathWorks, 2016) that will allow the user to test and

use the ITD method.

MATLAB has three advantages over other methods or languages:

1. To provide a software development environment that offers high-performance

numerical computation and visualisation capacities.

2. To have a broad spectrum of functions and algorithms for wide range of purposes

written by experts, in addition to those written by MATLAB user community.

3. To dispose of a flexible workbench for the integration of other software tools and

GUI builder to build up a portable and powerful graphical user interface.

The MATLAB software package has become one of the most popular scientific

tools for research and teaching applications. The literature on topology optimization of

truss-like continua has a considerable number of available educational computer codes

for MATLAB and other platforms. Sigmund (2001) presented a 99 line topology

optimization code written in MATLAB for compliance minimization of statically loaded

structures. Wang et al. (2004) introduced the 199-line program TOPLSM for the mean

compliance optimization of structures in 2D, with the classical level set method. Challis

(2010) presented a discrete level-set topology optimization code written in MATLAB.

The code can be used to minimize the compliance of a statically loaded structure.

Simple code modifications to extend the code for different and multiple loading

conditions are given. Suresh (2010) developed a 199-line MATLAB code for Pareto-

optimal tracing by exploiting the notion of topological sensitivities. Andreassen et al.

(2011) introduced an efficient topology optimization in MATLAB using 88 lines of code
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with improved assembly and filtering strategies. Liu and Tovar (2014) presented an

efficient and compact MATLAB code to solve three-dimensional problems. The 169

lines code solves minimum compliance problems.

On the contrary, the number of applications (apps) or GUIs has relatively few

publications. Querin (1997) introduced Evolve97. This computer program is the first

ESO program in the world which is developed in the environment of Windows.

Tcherniak and Sigmund (2001) presented a web-based interface called Topopt.

Paulino et al. (2005) introduced a java-based topology optimization program with web

access called I-Top. Coelho and Sierakowski (2008) implemented in MATLAB an

educational software tool, called PSOLet, to aid the teaching of Particle Swarm

Optimization (PSO) concepts. Zuo (2010) developed BESO2D. This is a standalone

program for topology optimization for 2D structures using the latest BESO algorithms.

Aage et al. (2013) presented the TopOpt app. This is an interactive topology

optimization tool that solves the minimum compliance problem in 2D and is available

for iOS and Android devices.

In this paper, an educational topology optimization tool (under Windows operating

system) called liteITD (lite version of Isolines Topology Design) is presented to aid the

teaching of topology optimization concepts to students mainly, although also to

designers and engineers with experience. liteITD is a fully interactive topology design

GUI and was implemented in MATLAB software package.

The liteITD consists of three internal modules: pre-processor (geometric modelling,

material properties, loading conditions, and supports); solution (Finite Element (FE)

mesh generator and FE Analysis (FEA) solver); optimizer (topology optimization

algorithms and visualization options). This GUI allows the user to solve the topology

optimization of two-dimensional continuum structures using isolines under single or

multiple loading conditions, with different material properties in tension and

compression, and multiple materials. The topology and the shape of the design depend
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on an iterative algorithm, which continually adds and removes material depending on

the shape and distribution of the contour isolines of the required structural behaviour. In

the current liteITD program (version 1.0), only the von Mises stress option is available.

Several examples are presented to validate and show the usefulness of the program.

The results show the effectiveness of liteITD, providing quality solutions with very

detailed shapes without the need to interpret the resulting design.

The liteITD program can be downloaded and used for free from the website:

http://www.upct.es/goe/software/liteITD.php. If more detailed information is necessary

about liteITD or wish to obtain future upgrades, the user can visit the website or contact

us via e-mail at: mariano.victoria@upct.es or O.M.Querin@leeds.ac.uk.

The remainder of this paper is organized as follows. In Section 2, a brief theoretical

background of ITD method is given. In Section 3, the liteITD program GUI is described

in detail. In Section 4, the liteITD is run from GUI to solve a short cantilever loaded at

the centre of the free end. Three more examples and conclusions are discussed in

Sections 5 and 6, respectively.

2 THEORETICAL BACKGROUND

The use of isolines and isosurfaces in 2D and 3D, respectively, to obtain the

optimum design of structures has been applied in several studies (Woon et al. 2003;

Cui et al. 2003; Koguchi and Kikuchi 2006). The ITD is an iterative algorithm which

redistributes (adds and removes) material inside a design domain until it reaches a

desired volume fraction. The redistribution process consists of the following four steps:

(1) obtain the design criterion distribution within the design domain; (2) determine the

Minimum Criterion Level (MCL), where its intersection with the design criterion

distribution produces the new structural boundary, shown for a 2D continuum in Figure

1; (3) remove all regions from the design domain where the criterion distribution is
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lower than the MCL; (4) this design modification requires the re-evaluation of the

remaining structure in order to recalculate the design criterion distribution.

Figure 1. The structural boundary is defined by the intersection of the minimum criterion level
(MCL) with the criterion distribution.

The MCL is calculated in each iteration and depends on both the distribution of the

design criterion and the volume of the design domain in that iteration, given by Eq. (1):

( )0 0i f
i

i
V V V V

n
= + - (1)

where iV  is the design volume in the i th iteration, 0V  is the initial volume, fV  is the

final volume of the optimized structure, and in  is the total number of iterations.

Once the criterion has been calculated for each element in the design domain,

these are arranged in decreasing order of criterion value. An element by element

volume summation of the ordered list is carried out until a volume is reached which is

as close as possible to the target volume given by Eq. (1), where the error level
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between the summed and target volume depends on the size of the elements. The

criterion value of the next element in the ordered list is then used as the value for the

MCL.

2.1 Fixed grid finite element analysis

The Fixed Grid (FG) method was first introduced by Garcia and Steven (1999) as a

tool for numerical estimation of 2D elasticity problems, and was later extended to 3D

structures by Garcia et al. (2004, 2005) and others. The benefits of using FG-finite

element analysis (FEA) over conventional FEA are that: (1) FG does not need a fitted

mesh to discretize the analysis domain; (2) the boundary of the design is disassociated

from the mesh (Garcia and Steven, 1999); (3) designs using FG-FEA do not contain

chequerboard patterns, making the design more reliable for manufacture (Maan et al.,

2007); (4) solution time is significantly reduced (Garcia and Steven, 2000).

In FG-FEA, the elements are in a fixed position and have the real design

superimposed on them. This means that there are elements that lie inside (I), outside

(O) or on the boundary (B) of the design.

The elemental stiffness matrix ( )eK  is given by Eq. (2):

( )

I

O I R

B I O

1

FG 0

1 0 1

e

e e

e e e

if

if

if

x
x

x x x

ì =
ïï= = ´ =í
ï = + - < <ïî

K

K K K

K K K

(2)

where ex  is the design fraction inside the element; IK , OK , BK  are the element

stiffness matrices for an element inside, outside, and on the boundary respectively;

RFG  is the Fixed Grid ratio, usually set in the range of 610-  to 410- .

The criterion value at the i  node ( )is  is determined by Eq. (3)

1

1

e

e

N
i
e e

i e
N

e
e

V

V

s
s =

=

´
=
å

å
(3)
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where i
es  is the nodal criterion value at node i  for each element ( )e  surrounding that

node, eN  is the number of elements connected to that node, and eV  is the volume for

each element that surrounds that node. The nodal value i
es  is obtained from the

criterion values at each Gauss point extrapolated to the nodes using the shape

functions of the element.

The criterion value in each element ( )es  is calculated using Eq. (4):

1

iN
i

e i

iN

s
s ==

å (4)

where iN  is the number of nodes of the element.

In the current liteITD program, there are two available finite elements for 2D

modelling of solid structures: (1) Quadrilateral; (2) Triangle. The four and three-sided

elements include four and three nodes, each with two degrees of freedom (two

displacements), and four and one Gauss integration points, respectively. Both

elements can be used only as a plane ones (plane stress with thickness).

2.2 Criterion selection

 The design criterion ( )s  used in liteITD program was the von Mises stress ( )vMs ,

which for a 2D continuum domain is calculated using Eq. (5).

2 2 2
vM 3x y x y xys s s s s t= + - + (5)

where xs , ys  and xyt  are the normal and shear stresses, respectively.

2.3 Minimum criterion level extraction

The procedure used to generate the structural boundary depends on the

determination of the MCL isoline. To determine the line segments that produce the

profile of the boundary, the contouring subroutine called the marching triangles (MT)

algorithm (Hinton and Illingworth, 1997) was implemented, since there are no

ambiguities and the constructed isolines are smooth.
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(a) (b) (c) (d)

Figure 2. Look-up table for the MT algorithm showing the four different topological states.

The MT algorithm uses a divide-and-conquer approach, treating each finite

element independently as a triangular cell. In the case where the element shape is

quadrilateral, the element is divided into four triangular cells by introducing a point at

the centroid of the element. The criterion value of the central point is obtained by

calculating the average values from the four nodes of the original element. The basic

assumption of this algorithm is that a contour can only pass through a triangular cell in

a limited number of ways. This algorithm requires the value of the MCL together with

the value of the criterion at each corner of the cell, and consists of two steps: (1)

identify from Figure 2 the topological state of each cell; (2) determine the shape of the

contour of the MCL isoline through each cell. The interaction of an isoline through a

triangular cell can have a maximum of four different topological states (Figure 2). A

value of (1) at a corner means that its criterion value is greater than the MCL, whereas

a value of (0) at a corner means that its criterion value is less than the MCL. When the

corner in an edge of a cell has different values (0 and 1 or vice versa) it indicates that

the MCL isoline intersects that edge, which is the case for topological states shown in

Figures 2b and 2c. To find that intersection point, linear interpolation can be used. The

shape of the MCL isoline through the cell is then obtained by connecting these

intersecting points between the opposite edges as shown in Figures 2b and 2c.

2.4 Structural boundary stabilization

When the MCL is modified, the structural boundary changes and this affects the

criterion distribution. Therefore, before the next iteration is started, an iterative process
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of reanalysis and material redistribution is carried out until the change in the domain

volume between successive boundary adjustments is less than a minimum volume

change limit ( )VD , given by Eq. (6). Typical values of the minimum volume change

limit are around ( )% 1%VD = .

( ) 2

1

% 1 10i

i

V
V

V-

æ ö
D = - ´ç ÷

è ø
(4)

2.5 Original isolines topology design algorithm

The original ITD algorithm (Victoria et al. 2009) can be explained by the following

steps, a schematic representation of which is given in Figure 3.

1. Define the structure: design and non-design domains, material properties, loads

and supports.

2. Specify the finite element mesh characteristics.

3. Specify the ITD parameters: design criterion; final design volume; total number of

iterations; minimum volume change.

4. Carry out an FG-FEA.

5. Calculate the MCL.

6. Extract the boundary of the structure.

7. If the percentage volume change is greater than the minimum volume change, go

to step 8, otherwise go to step 9.

8. Carry out an FG-FEA of the design domain and go to step 6.

9. If the total number of iterations has been reached, go to step 10, otherwise update

the design volume, increment the iteration number by 1 and go to step 4.

10. Stop the design process.
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Figure 3. Flowchart showing the steps of the original ITD optimization algorithm.

2.6 Improvements, extension and applications of ITD

Victoria et al. (2009) presented the algorithm for the topological design of two-

dimensional structures using isolines called isolines topology design (ITD). The

topology and the shape of the design depend on an iterative algorithm, which

continually adds and removes material depending on the shape and distribution of the

contour isolines of the required structural behaviour. The use of the isolines has two

major benefits: (1) although the design criteria can be local (such as stress), by using
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the MCL isoline to define the shape/topology of the domain, the process works globally;

(2) the generated designs have smooth boundaries and need no further interpretation,

enhancement or processing.

In this section we introduce a brief review of the ITD method extensions and

applications researched in the last years.

Victoria et al. (2011) presented an extension to the original 2D-algorithm for

topology design of three-dimensional continuum structures. The novelty of this work

was in introducing into ITD the capability of designing 3D structures. The method of

determining the isosurfaces was given, together with several examples to show the

effectiveness of the algorithm. Victoria et al. (2010) presented an enhancement to the

ITD method for topology design under multiple load cases of 2D/3D continuum

structures. The results demonstrated how using multiple loading conditions can

produce more stable and realistic designs with a little additional complexity. The

literature on the topology optimization of truss-like continua has relatively few

publications that look at the problem of structures with different material properties

behaviour in tension and compression (T&C). The aim of Querin et al. (2010) was to

propose an approach suitable for topology optimization of continuum structures with

different material properties in tension and compression. Victoria et al. (2011) studied

the effect of using different mechanical properties for the steel reinforcement and for

the concrete on the emerging topology of strut-and-tie models. The results

demonstrated that T&C designs gave the exact location of the reinforcement. However,

for the majority of structures, the layout or topology of the steel reinforcement in the

T&C designs was pretty different from classic designs. The application of topology

optimization to shell structures has been less researched than size and shape

optimization. Victoria et al. (2014) introduced into ITD method the capability of

designing shell structures to investigate when it is appropriate or not to include the shell

membrane or force symmetry in the topology optimization of stiffeners. To obtain the
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stiffener layout, the shell structure was modelled using overlapping layers of thin-shell

FE whose nodes were coupled using multi-point constraints. Querin et al. (2015)

presented an enhancement to the ITD algorithm that allows it to produce multi-material

designs. The placement of the multiple materials in the design was determined by the

distribution of the design criterion (i.e. von Mises stress) following the concept that the

material of highest stiffness must support the regions of the design with the highest

design criterion.

The current lite version of ITD method includes: (1) single and (2) multiple loading

conditions; (3) different material properties/behaviour in tension and compression; (4)

multi-material optimization for 2D continuum structures.

3 DESCRIPTION OF THE liteITD SOFTWARE

A user interface (UI) is a graphical display in one or more windows containing

controls, called components that enable the user to perform interactive tasks. The user

does not have to create a script or type commands at the command line to accomplish

the tasks. Unlike coding programs to accomplish tasks, the user does not need to

understand the details of how the tasks are performed.

UI components can include menus, toolbars, push buttons, radio buttons, list

boxes, and sliders-just to name a few. UIs created using MATLAB tools can also

perform any type of computation, read and write data files, communicate with other UIs,

and display data as tables or as plots (MathWorks, 2016).

GUIDE is a development environment that provides a set of tools for creating user

interfaces (UIs). These tools simplify the process of laying out and programming UIs.

Using the GUIDE layout editor, it is possible to populate a UI by clicking and

dragging UI components-such as axes, panels, buttons, text fields, sliders, and so on-

into the layout area. The user can also create menus and context menus for the UI.

From the layout editor, the user can size the UI, modify component look and feel, align



Mariano Victoria, Osvaldo M. Querin, Concepción Díaz, and Pascual Martí

15

components, set tab order, view a hierarchical list of the component objects, and set UI

options.

GUI Options dialog box allows to configure several behaviours that are specific to

the GUI that is being created. liteITD GUI was created using the GUIDE tool and it has

two main features: MATLAB automatically rescales the components in the GUI in

proportion to the new figure window size; MATLAB allows to display only one instance

of the GUI at a time.

3.1 System requirements and installation of liteITD

The liteITD program was generated using MATLAB 2014a and it is a 64-bit

application for Windows operating system. Although, it has been tested with the newer

MATLAB version (MATLAB 2015a).

On the DEyC (Structures and Construction Department) website of the Technical

University of Cartagena (UPCT) http://www.upct.es/goe/software/liteITD.php under the

directory liteITD, the following three folders may be found:

1. for_redistribution: A folder containing the installer (MyAppInstaller_mcr) to

distribute the application.

2. for_testing: A folder containing the raw files (liteITD.exe; mccExcludedFiles.txt;

readme.txt) generated by the compiler.

3. for_redistribution_files_only: A folder containing only the files (liteITD.exe;

readme.txt) needed to redistribute the application.

Note that liteITD for other operating systems may be issued in the future and the

interested users can check the DEyC website for updates.

3.1.1 User with access to MATLAB

liteITD program can be started by double-click on the icon shown in Figure 4.

liteITD.exe is the main program of the UI window which allows the user: (1) to build the
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plane solid model; (2) to create the finite element model; (3) to run the topology

optimization.

Figure 4. liteITD.exe icon.

3.1.2 User without access to MATLAB

The MATLAB Compiler Runtime (MCR) is a standalone set of shared libraries that

enables the execution of MATLAB files on computers without an installed version of

MATLAB. Applications that use components built with MATLAB Compiler require

access to an appropriate version of the MCR to run. In our case, the installer generated

(MyAppInstaller_mcr) by the compiler app include the MCR installer and liteITD

application.

To install a MATLAB generated liteITD standalone application, it is necessary to

carry out the following steps:

1. Locate the MyAppInstaller_mcr executable in the for_redistribution folder created

by the MATLAB Compiler.

2. Double click the liteITD installer (MyAppInstaller_mcr) to advance to liteITD

installer (Figure 5).

3. Click Next to advance to the installation options page (Figure 6).

4. Click Next to advance to the required software page (Figure 7). If asked about

creating the destination folder, click Yes. If the user already has the correct version

of the MCR installed on the system, this page will have a message indicating that

the user does not have to install the MCR. If the user receives this message, skip

to step 8.

5. Click Next to advance to the license agreement page. If asked about creating the

destination folder, click Yes.

6. Read the license agreement and check Yes to accept the license.
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7. Click Next to advance to the confirmation page.

8. Click Install. The installer installs the MATLAB generated application.

9. Click Finish.

10. Run your liteITD standalone application.

Figure 5. liteITD installation launcher. Application information.

Figure 6. Installation options page.
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Figure 7. Required software page.

3.2 Overview of liteITD interface

When liteITD is started, the graphical interface of Figure 8 appears. This is similar

to most windows applications as it has most of the usual features. From top to bottom,

the interface consists of four sections: (1) Title bar; (2) Menu bar; (3) Button bar; (4)

Display area. Users can resize the overall size of the display area. To resize this

section, either drag the borders around the window or position the mouse on of the

corners of the GUI and drag it diagonally toward the centre of the GUI while holding

down the left mouse button. Note that, not all menus and buttons are enabled

throughout the work session, it depends on the step in which the user is in the session.

Figure 8. liteITD graphical interface.
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3.2.1 Title bar

The Title bar (part 1 in Figure 8) displays the name of the application “Isolines

Topology Design – Lite version” together with the version number “1.0”. On the right

hand side it also has the standard windows buttons to minimize, maximize, and close

the application.

3.2.2 Menu bar

Each menu topic on the Menu bar (part 2 in Figure 8) brings up a pull-down menu

of subtopics, which in turn either cascade to a submenu (indicated by a >) or perform

an action. The action may do any of the following: (1) immediately execute a command;

(2) execute/active a function (indicated by a ü); (3) bring up a dialog box (indicated by

a …). Note that, during a session the user will need to use the menu bar buttons from

left-to-right. For this reason, these will switch automatically between enable a disable

modes depending on the moment of the work session.

The liteITD workspace consists of all input data in a liteITD session. Remark that,

workspace is not maintained across work sessions of liteITD. When the user quits

liteITD, the workspace is cleared. However, the user can save all input data to a MAT-

file (.mat).

The Menu bar (2) has four menus: Files; Entities; Labels; Options. They are

explained in the following sections.

When File is selected, the drop-down list of Figure 9 is displayed. There are six

topics in the File menu: Load; Save; Autosave; Change jobname; Change directory;

Exit. Each menu topic performs an action.

Figure 9. File drop-down menu list.
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1. Load: to restore data from the workspace file, select the MAT-file in the current

folder browser, left-click, and then select open. The user can load or resume MAT-

files in any moment of the work session. A resume operation replaces the data

currently in memory with the data in the named workspace file.

2. Save: to save all input data in a file called jobname.mat. It is a good practice to

save the job at different times throughout the building of the model to backup the

work in case of a system failure or other unforeseen problems.

3. Autosave: if autosave feature is on (indicated by a ü). Automatically, liteITD saves

in each step, the workspace in a file called “jobname_asv-step.mat”. Where “step”

is a label that helps to understand in which point of the work session was saved

the workspace. There are six step labels: wb (workbench); geo (geometry); mat

(material properties); mesh (mesh of finite elements); sup (support conditions); for

(forces).

The “jobname” is a name that identifies the liteITD job. When user defines a

jobname, this becomes the first part of the name of all files the session creates. By

using a jobname for each work session, user insures no files are overwritten. When

user does not specify a jobname, all files receive the name file.

4. Change jobname: allows the user to specify the jobname. Type the new jobname

in the available field of the dialog box (Figure 10).

Figure 10. Dialog box used by liteITD to change jobname.

“Working directory” is a specific folder for liteITD to store all of the files created

during a work session.
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5. Change directory: allows the user to set the folder (by file selection dialog box) in

which the liteITD run will be executed. The initial name of this folder defaults to

outITD, and it can be found by default in the folder where the liteITD engine is.

6. Exit, will exit the program (Figure 11).

Figure 11. Dialog box for exiting the liteITD.

When “Entities” is selected, the drop-down list of Figure 12 is displayed. There are

seven topics in the Entities menu: Point (points); Line (lines), Area (areas); Node

(nodes of the finite elements); Element (finite elements); Support (support conditions);

Force (forces).

Figure 12. Dialog box for selecting entities to draw and for labels to show.

When an entity is enabled, it is selectable in the normal manner. When it is

disabled (there are no entities of that type), it will be greyed out. Clicking on the

enabled items (checked items have a tick mark against them), user can select those

entities of the model that user wants to draw.
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Figure 13. Dialog box for labels to show.

When “Labels” is selected, the drop-down list of Figure 13 is displayed. There are

six topics in the Labels menu: Point (point numbers, at the right of items); Line (line

numbers, at the middle of items); Area (area numbers, at the centre of items); Node

(node number, at the right of items); Element (finite element numbers, at the centre of

items); Force (force values written at the right of arrows).

Clicking on the enabled items, user can control those entity labels that user wants

to plot.

When “Options” is selected, the drop-down list of Figure 14 is displayed. There are

four topics in the Options menu: Stiffness matrix; Designs; Results per; Optimization

diary.

Figure 14. Options drop-down menu list.

When “Stiffness matrix” is selected, the submenu of Figure 15 is displayed. There

are two options: (1) Dense (full matrix); (2) Sparse (sparse matrix).

Figure 15. Stiffness matrix submenu.

It is not uncommon to have matrices with a large number of zero-valued elements

and, because the MATLAB software store zeros in the same way it stores any other
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numeric value, these elements can use memory space unnecessarily and can

sometimes require extra computing time. Sparse matrices provide a way to store data

that with a large percentage of zero elements more efficiently. While full matrices

internally store every element in memory regardless of value, sparse matrices can

significantly reduce the amount of memory required for data storage. For this reason, it

is the checked option by default (Figure 15).

When “Designs” is checked (option by default, Figure 15), the resulting designs

shown in display area during the optimization are saved to a graphic file (bmp file

format) called “jobname_it-%it_sIt-%sIt.bmp”, where “jobname” is the jobname, “%it” is

the iteration number and “%sIt” is the stabilization number (or subiteration).

“Result per” allows the user to fix which is the frequency to save (in a graphic file)

and display (on the screen) the resulting designs. When Result per is selected, the

submenu of Figure 16 is displayed. There are two frequency options: (1) Iteration; (2)

Subiteration (option by default).

Figure 16. Result per submenu.

“Optimization diary” allows the user to export the results of the optimization to file

named jobname_optEvol. When Optimization diary is selected, the submenu of Figure

17 is displayed. There are two file format options: (1) *.csv (comma separated values

text files); (2) *.txt (delimited text files, in which the TAB character typically separates

each field of text).

Note that, if the optimization result file is a csv file (option by default), Microsoft

Excel (or similar programs) automatically opens the file and displays the data in a new
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workbook. On the contrary, if the file is a text file (.txt), Excel starts the Import Text

Wizard.

Figure 17. Optimization diary submenu.

After the optimization, the optimization result file can be found in the working

directory. Part of a result file in txt file format is depicted in Figure 18.

Figure 18. Part of a result optimization file.

Here the results of the first four iterations are presented. The first and second

column of data identifies the iteration (It) and subiteration (sIt) numbers, respectively.

The third column displays the total number of finite element analysis (nAnl). The fourth

column shows the total time spent by the optimization. The fifth column indicates the

design volume fraction. The last five columns present the values of maximum

displacement in X- and Y-directions (maxDX, maxDY); minimum, mean, maximum von

Mises stresses (minVM, meanVM, maxVM) for those nodes which lie inside or on the

boundary of the resulting designs.

In case of multiple loading conditions or different material properties in tension and

compression the last five column are not written in the result file.

3.2.3 Toolbar area
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The toolbar area (part 3 in Figure 8) contains five sections: main toolbar; view

toolbar; run toolbar; material toolbar; miscellaneous buttons. When the user moves the

mouse pointer onto any button in the Toolbar area, a tooltip string will pop up to give an

explanation of the button functions. This section will explain what each button does.

Main toolbar

The main toolbar is depicted in Figure 19 and contains six buttons as explained

below.

Figure 19. The main toolbar.

This is the “Define workbench dimensions” button . By pressing this, it opens

the dialog box of Figure 20, and allows the user to specify the width and height of the

workbench. The liteITD program does not assume a system of units for your work

session. The user can use any system of units (units must be consistent for all input

data).

Figure 20. Dialog box for defining the workbench dimensions.

After the workbench dimensions are defined, the user can draw the geometry of

the model.

This is the “Draw geometry” button . By pressing this, it opens the “Geometry”

dialog box shown in Figure 21, and allows the user to draw the geometric model of the

structure to optimize.



Mariano Victoria, Osvaldo M. Querin, Concepción Díaz, and Pascual Martí

26

To obtain an analysis model is necessary to generate a finite element model

(nodes and finite elements). There are mainly two strategies to create the analysis

model: (1) direct generation; (2) solid modelling. With direct generation, the user

manually defines the location of each node and the connectivity of each element. With

solid modelling, one describes the geometric model, then instructs the program to

automatically mesh the geometry with nodes and elements.

liteITD makes use of solid modelling strategy to relieve user of the time-consuming

task of building a complex analysis model by direct generation. Take into account any

plane geometric model is defined in terms of points, lines, and areas. Points are the

vertices, lines are the edges, and areas are the faces. There is a hierarchy in these

entities: areas, the highest-order entities, are bounded by lines, which in turn are

bounded by points.

“Pick mode” allows the user to add, select, and unselect an entity or location by

clicking on it in the display area. To enable or disable pick mode the user must click the

check box called “By mouse click on screen” shown in Figure 21. A summary of the

mouse-button assignments used during a picking operation is given below:

1. Left button adds the entity or location closest to the cursor of the mouse.

2. Right button selects the entity or location closest to click location.

3. Double-click any mouse button unselects the picked entities.

liteITD allows the user to create (“Add” button), remove (“Delete” and “Clear”

buttons), and select (list boxes) points, lines, and areas. To manage these entities the

user must use the radio buttons “Point”, “Line”, and “Area”.

1. Point (by coordinates): (1) by typing the coordinates in the edit boxes (X- and Y-

coordinate, Figure 21) and then pushing “Add” button; (2) by picking in the display

area (point coordinates in real time are shown in the edit boxes) with the left button

of the mouse (picking mode must be enabled, Figure 21). The user can use the

point list (Figure 21) for selecting a point: (1) clicking in the point list with left button
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of the mouse; (2) picking on the screen with the right button of the mouse. When a

point is selected, this is remarked in the point list and on the screen (using a

square marker of blue colour). “Delete” button removes the selected point from the

list, and “Clear” button removes all points. In case of remove a point, bounded

lines and areas are also removed. When any entity is deleted a reordering

procedure is made to avoid numeration jumps.

2. Line (from two points): (1) by typing the “Start” and “End” points in the edit boxes

(Figure 21) and then pushing “Add” button; (2) by picking in the display area with

the left button of the mouse. The user can use the line list (Figure 21) for selecting

a line: (1) clicking in the line list with left button of the mouse; (2) picking on the

screen with the right button of the mouse (at the middle of line). When a line is

selected, this is remarked in the line list and also on the screen (using a ticker blue

line). “Delete” button removes the selected line from the list, and “Clear” button

removes all lines. If a line is removed, bounded areas are also removed.

3. Area (by lines): (1) by typing “Line/s” in the edit box (Figure 21) and then pushing

“Add” button; (2) by picking in the display area with the left button of the mouse (at

the centre of area) and then pushing “Add” button. The user can use the area list

(Figure 21) for selecting an area: (1) clicking in the area list with left button of the

mouse; (2) picking on the screen with the right button of the mouse. When an area

is selected, this is remarked in the area list and also on the screen (using a blue

background). “Delete” button removes the selected area from the list, and “Clear”

button removes all areas. Note that, (1) lines contained in areas do not need to be

specified in consecutive order (although, in the area list they are sorted in counter

clockwise). (2) When number of lines to input is high, MATLAB provides a special

shortcut notation for this circumstance using the colon operator. This operator

specifies a whole series of values by specifying the first value (first) in the series,

the stepping increment (incr), and the last value (last) in the series. For example,
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the expression 1:2:8 (first:incr:last) is a shortcut for a 1×4 row vector containing the

values 1,3,5, and 7.

Figure 21. Dialog box for drawing the geometric model.
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After drawing the geometric model, the user can specify the mechanical properties

of the materials.

The “Define material properties” button  enables the user to specify the

mechanical properties of the materials for the analysis model. By clicking on this button,

a dialog box shown in Figure 22 will appear where the user can input Young’s modulus

and Poisson’s ratio for each material. The liteITD program allows to define up to five

material types, by clicking the pop-up menu labelled “Number of materials”. Each set of

material properties has a material reference number (“No.”) and can be differentiated

by colours (cyan, black, magenta, yellow, and green are available). Take into

consideration: (1) the unit system must be consistent; (2) Poisson’s ratios must be in

the range of 0 to 0.5; (3) Young’s moduli must be positive.

Figure 22. Dialog box for specifying the material properties.

After the material properties are defined, the geometric model is ready to be

meshed in the following step.

By clicking on this button  in the main toolbar, the “mesh” dialogue shown in

Figure 23 will appear. The dialog box is divided in five sections: (1) Fixed grid; (2)

Shape; (3) Type; (4) Size; (5) Attributes.



Mariano Victoria, Osvaldo M. Querin, Concepción Díaz, and Pascual Martí

30



Mariano Victoria, Osvaldo M. Querin, Concepción Díaz, and Pascual Martí

31

Figure 23. Dialog box where the features of the fixed grid of finite elements are specified.

1. Fixed grid: in this section, the user can type in the edit box the RFG  value (Eq. 2),

which defaults to 1×10-4.

2. Shape: in this section the finite element shape is set. To specify the desired shape,

one can use the labelled radio buttons “Tri” and “Qua” for triangular- and

quadrilateral-shaped elements, respectively. Note that, the mixture of the two

shapes in the same model is not allowed.

3. Type: in addition to specifying element shape, the user can also set the type of

meshing (free or mapped) that must be used to mesh the geometric model. To

specify the mesh type, the user can use the radio buttons called “Mapped” and

“Free”. Before meshing the model, and even before building the model, it is crucial

to think about whether a free or mapped mesh is appropriate for the FEA and for

the optimization.

When mapped option is selected, the user must build the geometry as a series

of fairly regular areas that can accept a mapped mesh. For an area to accept a

mapped mesh, two conditions must be satisfied: (1) the area must be bounded by

four lines (four-sided areas); (2) the area must have equal number of element

divisions specified on opposite sides. Note that, (1) liteITD can only create a

mapped mesh within convex 4-sided regions; (2) liteITD generates mapped

triangle mesh starting from m apped quadrangle m esh, div iding each quadrangle

into two t r iangles.

In free meshing operations, no special requirements restrict the solid model.

Any geometry, even if this is irregular, can be meshed. When free option is

selected, the edit boxes called “Tolerance”, “Iterations”, and “Gradient” are active.

These options allows the user to modify the default behaviour of the free mesh

generator, where “Tolerance” is the converge tolerance (the maximum relative
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change in edge length per iteration must be less than this value, which defaults to

0.02), “Iterations” is the maximum allowable number of iterations, which defaults to

20, and “Gradient” is the maximum allowable (relative) gradient in the size function,

which defaults to 0.3. Note that, liteITD generates free quadrangle mesh starting

from free triangle mesh by quadrangulation (by joining the triangle centroids to the

midpoints of its sides, three quadrilaterals are obtained for each of these triangles).

4. Size: controls the element size used to create the mesh. The user can use either

“Global” option to specify the maximum allowable global element size (maximum

edge length), or “Edge” option to specify the number of divisions on lines (shortcut

notation is allowed), or both options together. In that case, liteITD will use the

option that provides the smallest element size. The list box of this panel group

allows the user to select lines or manage (add, delete, or clear) the size

specifications.

5. Attributes: before generating a mesh, one must first define the appropriate area

attributes. That is, it must be specified the following: (1) “Design” or “non-design”

domain (by radio buttons). Remark that, a non-design domain is a region that

cannot be optimized; (2) “Material” properties set (by pop-up menu); (3) “Area/s”

(by edit box, shortcut notation is allowed); (4) “Thickness” of the “Area/s” (by pop-

up menu). The list box of this panel group allows the user to select areas or

manage (add, delete, or clear) the area attributes.

A summary of the mouse-button assignments when pick mode is active is given

below:

1. Left button adds to “Line/s” edit box line closest to the mouse cursor.

2. Right button adds to “Area/s” edit box area closest to the mouse cursor.

3. Double-click any mouse button unselects any picked entity.

Clicking on the “Ok” button will dismiss the dialog box and the liteITD will start to

generate a mesh. In case of free meshing operations a wait bar dialog box of Figure 24
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appears. This bar displays what percentage of a meshing is complete by progressively

filling a bar with red from left to right.

Figure 24. Wait bar that displays the progress of free meshing operations. The message text
shows the meshing area number and the number of completed iterations.

After the geometric model is meshed, the user can apply the support conditions.

This is the “Input support conditions” button . By pressing this, the

“Displacements on nodes” dialog box of Figure 25 appears, and allows the user to

specify constrained displacements on nodes. The dialog box is divided in two sections:

(1) Constrained freedom; (2) Selection.

1. Constrained freedom: liteITD allows the user applies only DOF (Degree Of

Freedom) constraints on nodes. The user can choose from three DOF constraint

conditions: (1) Displacement in X-direction is fixed (X-displacement box is

checked); (2) Displacement in Y-direction is fixed (Y-displacement box is checked);

(3) All displacements are fixed (X- and Y- displacement boxes are checked, Figure

25).

2. Selection: the user can select a node by keyboard entry (by typing the node

number in the “Node/s” edit box, shortcut notation is allowed) or by graphical

picking (pick mode must be active). For retrieval picking (identify existing identities),

the user can choose among “Single”, “Box”, and “Polygon” mode. In single pick

mode, each click on the left mouse button picks one node. With box and polygon

modes, the user can press and drag the mouse to enclose a set of nodes in a box

or polygon. Notice that, when a node is selected, this is remarked using a square

marker of blue colour.
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Figure 25. Dialog box for specifying constrained displacements on nodes.

When the “Add” button is pressed the DOF constraints specified above are

applied to selected nodes and shown in the list box. “Delete” button removes the

constrained node from the list, and “Clear” button remove all constrained nodes.

A summary of the mouse-button assignments when pick mode is active is given

below:

1. Left button adds to “Node/s” edit box the node closest to the mouse cursor.

2. Right button selects (from nodes shown in the list box) node closest to the mouse

cursor.

3. Double-click any mouse button unselects all picked nodes.

Notice that, when pick mode is active the mouse cursor coordinates are shown, in

real time, in “X-coordinate” and “Y-coordinate” edit boxes.
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After the support conditions are specified, the user can apply the loading

conditions.

This is done by means of the “Input nodal forces” button . By pressing this, the

“Forces on nodes” dialog box of Figure 26 appears, and allows the user to apply forces

(concentrated loads) on nodes. The dialog box is divided in three sections: (1) Load

case number; (2) Nodal force; (3) Selection.

1. Load case number: the user must specify the number of load case in this edit box.

When the button “Apply” is pressed, “Nodal force” and “Selection” panels are

activated.

2. Nodal force: the user can choose which load case is current by left-clicking on the

“Load case” pop-up menu. In “X-direction” and “Y-direction” edit boxes, the user

can specify the force values that will be applied to selected nodes in the model. Be

aware that the unit system be consistent.

3. Selection: This panel works equal to “Selection” section from “Displacements on

nodes” dialog box.
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Figure 26. Dialog box for specifying loading conditions.

View toolbar

The view toolbar is depicted in Figure 27 and contains five buttons as explained

below.

Figure 27. The view toolbar.

This is the “Show triad” button . When this button is in pressed down position, it

shows the global XY coordinate triad on display (in lower left screen corner).

This is the “Show workbench” button . When this button is in pressed down

position, it shows the workbench dimensions through a dashed black rectangle.
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This is the “Show entities” button . When this button is in pressed down position,

it shows the entities marked with tick symbol in the “Entities” menu.

This is the “Show labels” button . When this button is in pressed down position, it

shows the labels marked with tick symbol in the “Labels” menu.

This is the “Display edges of finite elements” button .  When  this  button  is  in

pressed down position, it displays the boundaries (edges) of finite elements with a solid

black line.

Run toolbar

The run toolbar is shown in Figure 28 and contains four buttons as explained

below.

Figure 28. The run toolbar.

This is the “Optimization launcher” button . By clicking on this button, the

“Optimization” dialog box of Figure 29 appears, and allows the user to specify the

liteITD parameters. The values shown in this figure are default settings specified by

liteITD for all designs. The dialog box is divided in four sections: (1) Material; (2) Load

case; (3) T-ension/C-ompression, (4) Evolution.

1. Material: the user can choose among single or multi-material design. When

“Single” option is selected the user must specify a material from pop-up menu. On

the other hand, if multiple material option is selected the user must click which will

be the materials and the volume control weighting factors used to optimize the

structure (Querin et al. 2015). Notice that, when there is an only material, the

“Multiple materials (Fractions)” option will be disabled.

2. Load case: the user can choose among single or multiple loading conditions.

When “Single” option is selected the user must specify a load case from pop-up
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menu. Otherwise, the optimization is carried out for multiple load cases (Victoria et

al. 2010). Notice that, when there is only a single load defined, the “Multiple” option

will be disabled.

3. T-ension/C-ompression: if the user desires a topology optimization with different

material properties in tension and compression “T/C-material properties” option

should be selected (Querin et al. 2010). In that case, density of tension and

compression members (T-density, C-density) and Young’s moduli of tensile and

compressive members (T-Young’s mod., C-Young’s mod.) must be specified. The

“T/C colours” option allows the user to display the regions in tension and

compression in red and blue colours, respectively.

4. Evolution: the evolutionary parameters include number of iterations (“Iterations”);

minimum volume change, in percentage (“Min. change (%)”); Objective volume

fraction, in percentage (“Obj. fraction (%)”).

Notice that, the topology optimization is allowed only in the following cases: (1)

single material, single load case, no differentiation T/C; (2) single material, single load

case, different material properties in tension and compression; (3) single material,

multiple loading conditions, no differentiation T/C; (4) multi-materials, single load case,

no differentiation T/C.

Clicking on the “Ok” button in the dialog box will start the liteITD optimization

process. The computational cost of the optimization will depend mainly on size of finite

element model and number of load cases.

This is the “Optimization pause” button . Pressing this button, the optimization

process is stopped until the user presses the button again.

This is the “Optimization stop” button . Pressing this button, the optimization

process is stopped.
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This is the “Restart liteITD program” button . By clicking on this button, all input

data are deleted and liteITD program is restarted.

Figure 29. Dialog box for defining liteITD parameters.
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Material toolbar

The material toolbar is shown in Figure 30 and contains six buttons. The first five

button (from left to right) allows the user to filter by material in design domain. The last

button allows to show/hide the regions treated as non-design domain in the resulting

designs. Notice that, (1) the number of enabled buttons to filter by material is consistent

with the material number used in the optimization; (2) the “Display non-design regions”

is enabled whether there is any region of this type in the model.

Figure 30. The material toolbar.

Miscellaneous buttons

The miscellaneous button toolbar is shown in Figure 31 and contains four buttons

as explained below.

Figure 31. The miscellaneous button toolbar.

This is the “Show information” button . When this button is in pressed down

position, the liteITD shows on the display area (Figure 32) relevant information for the

user:

On the left side of the screen (from top to bottom, Figure 32a): working directory

(Working directory); jobname (Jobname) ; time; date; number of points (Points), lines

(Lines), areas (Areas), and materials (Materials); fixed grid ratio (FG ratio); number of

nodes (Nodes), elements (Elements), degree of freedoms (DoFs), constrained degree

of freedoms (Const. DoFs); number of load cases (Load cases); number of materials

(Opt. materials) and load cases (Opt. load cases) that take part in the optimization;

tension and compression factor (T/C factor); number of iterations (Iterations); minimum

volume change (Min. change); objective volume fraction (Obj. Fraction).
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On the right side of the screen (from top to bottom, Figure 32b): current iteration

(Iter.) and subiteration (SubIter.); number of finite element analysis (FE analysis);

elapsed time (Time); current volume fraction (Vol. frac.); number of non-design

elements (ND elem.), inside (I elem.), (O elem.) outside, and boundary (B elem.)

elements; maximum displacement in X- (Max. dx) and Y- (Max. dy) directions;

minimum (Min. vM), mean (Mean vM), and maximum (Max. vM) von Mises stress in

nodes which lie inside or on the boundary of the design.

(a) (b)
Figure 32. Information shown on the display area during the optimization.

Note that, depending on the moment of the work session and the optimization

options, part of this information can be hidden.

This is the “Screenshot” button . This button allows the user to save the display

area to a “.bmp” file called “jobname_screenshot_%iShot”, where “jobname” is the

jobname and “%iShot” is the capture number.
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This is the “Raise hidden menu” button . By clicking on this button the user can

raise hidden windows to the top of liteITD graphical interface.

This is the “Active dynamic model manipulation” button . Pressing this button

activates dynamic model manipulation mode. The user can use the mouse pointer to

pan or zoom the model. Press and hold down the left mouse button to pan the model.

Mouse scroll wheel lets user make zoom in/out. Double-click with any mouse button

resets the view to initial view.

Notice that, when the “By mouse click on screen” check box (see Geometry, mesh,

displacements and forces on nodes pop-up menus) is checked the dynamic model

manipulation model is disabled.

4 RUNNING liteITD FROM GUI

This section has been written to guide, step-by-step, how to use the liteITD GUI

window to construct a model and then optimize it. The procedure includes the following

steps:

1. Defining the design workbench dimensions.

2. Drawing the geometric model.

3. Specifying the material properties.

4. Generating a finite element mesh.

5. Applying DOF constraints.

6. Applying loading conditions.

7. Specifying liteITD parameters.

8. Viewing the resulting optimal design.

To show how liteITD works, we will optimize a typical Michell type structure

(Michell, 1904). This example is the short cantilever shown in Figure 33. The design

domain was a rectangular area of 1.5×1 m and the thickness was 0.01 m. The mesh
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used for the discretization of the design domain had 150×100 elements. A vertical force

of 1000 N was applied at the centre of the free end in the downward direction and the

cantilever was fully clamped along the left edge. The Young’s modulus of all elements

was 2×1011 Pa, Poisson’s ratio was 0.3, and fixed grid ratio was 1×10-4. The ITD

parameters were: total number of iterations 100; final volume fraction 10%; minimum

volume change 1%.

Figure 33. Design domain for the short cantilever loaded at the centre of the free end.

1. Start liteITD.exe.

2. Click on “Autosave” subtopic (GUI: Menu bar>File>Autosave).

3. Open “Change jobname” subtopic (GUI: Menu bar>File>Change jobname…).

When the dialog box of Figure 10 appears, type “Short_Cantilever_SLC” and press

“OK” (Figure 34).

Remark that, these two last actions are not strictly necessary but are strongly

recommended.

4.1 Defining the design workbench dimensions

This step involves the next actions:

1. Press the “Define workbench dimensions” button from the main toolbar.

2. When the “Workbench” dialog box of Figure 20 appears, enter “1.5” in the “Width”

edit box, then press “Ok” (Figure 35).
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3. Press the “Show information” button from the main toolbar. The resulting

workbench is drawn in the display area how is shown in Figure 36.

Figure 34. Change jobname dialog box showing the new jobname.

Figure 35. Workbench dialog box showing the workbench dimensions.

Figure 36. liteITD graphical interface showing drawn workbench.

4.2 Drawing the geometric model
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After having defined a workbench, follow the next actions to draw the geometric

model. In this case, a rectangular-shaped area:

1. Press the “Draw geometry” button in the main toolbar. The “Geometry” dialog box

of Figure 21 will appear. Note that, when the user creates/deletes entities such as

points, lines, or areas, these are automatically numbered.

2. Pick the location of the corners of workbench or type the point coordinates as

follows: enter “0” in the “X-coordinate” and “0” in the “Y-coordinate” edit boxes,

then press “Add”. Repeat the procedure with the remaining points of coordinates (x,

y): (1.5, 0); (1.5, 1); (0, 1).

3. Select the “Line” radio button. Pick the points “1” and “2” or type 1 in the “Start

point” and 2 in the “End point” edit boxes, then press the “Add” button. Repeat the

procedure with the point couples: “2” and “3”; “3” and “4”; “4” and “1”.

4. Select the “Area” radio button. Pick the lines “L1”, “L2”, “L3”, and “L4” or type e.g.

“1:4” in the “Line/s” edit box, then press the “Add” button (Figure 37). The grey

area is numbered as “A1” (Figure 38).

5. Press “Ok”. The expected geometry is shown in Figure 38. The “dynamic model

manipulation” mode can be activated to fit the view.
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Figure 37. Geometry dialog box showing the geometry data.
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Figure 38. liteITD graphical interface showing drawn geometric model.

4.3 Specifying the material properties

Press the “Define material properties” button located in the main toolbar and the

“Materials” dialog box of Figure 22 will appear with those same default values. For this

example, the default values need not be changed. Just press the “Ok” button.

4.4 Generating a finite element mesh

After the material properties are defined, the geometric model is ready to be

meshed in this step. From within the main toolbar, press the “Mesh generator” button.

The “Mesh” dialog box of Figure 23 will appear.

1. From the “Shape” panel, select “Quad” option.

2. From the “Type” panel, select “Mapped (four-sided areas)” option.

3. From the “Size” panel: (1) pick or type in “Line/s” edit box “1 4” and in “Divisions”

edit box “100”, then press “Add” button; (2) pick or type in “Line/s” edit box “3 2”

and in “Divisions” edit box “150”, then press “Add” button.
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Figure 39. Mesh dialog box showing the mesh data.
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4. From the “Attributes” panel, pick or type in “Area/s” edit box “1” and in “Thickness”

edit box “0.01”, then press “Add” button. The user can review or manage the input

data using the list boxes included in the dialog box (Figure 39).

5. Press “Ok” button. When the process is completed, the mesh of Figure 40 should

be drawn.

Figure 40. liteITD graphical interface showing the generated finite element mesh.

4.5 Applying DOF constraints

After the geometric model is meshed, the user can define DOF constraints at

nodes. By clicking on the “Input support conditions” button, the “Displacements on

nodes” dialog box will appear (Figure 25).

1. From “Selection” panel, select the “Box” radio button.

2. Move the mouse into the display area to upper left screen corner. At this location,

pick the left mouse button, and move to the right and down until the first column of

nodes is inside of the dashed blue box, then pick the left mouse button again. The

selected nodes are marked using a blue square marker and their labels are shown

in the “Node/s” edit box.
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3. Press the “Add” button. The selected nodes will be included in the list box (Figure

41) and a two triangles (X- and Y- displacements are fixed) per constrained node

will show in the display area (Figure 43).

4. When done, press the “Ok” button.

Figure 41. Displacements on nodes dialog box showing the DOF constraint data.

4.6 Applying loading conditions

The user can specify forces at nodes by clicking on the “Input nodal forces” button,

the “Forces on nodes” dialog box will appear (Figure 26).
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Figure 42. Forces on nodes dialog box showing the loading conditions data.

1. From the “Load case number” panel, press “Apply” button. For this example, the

number of load cases need not be changed.

2. Input the force components as “0” for “X-direction” and “-1000” for “Y-direction”.

3. Move the mouse to the position (1.5, 0.5), the mouse position is displayed from the

“Selection” panel. Press the left button to include the node nearest to the mouse

location in the “Node/s” edit box.

4. Press “Add” button. The selected node will be included in the list box (Figure 42)

and a red arrow pointing down will be drawn (Figure 43).
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Figure 43. liteITD graphical interface showing the support and loading conditions.

4.7 Specify parameters and run liteITD

Press the “Optimization launcher” button. The dialog box of Figure 29 will appear.

From the “Evolution” panel, replace “30” with “10” for “Obj. fraction (%)” edit box. Press

the “Ok” button to accept these new parameters and to start the optimization.

4.8 View the resulting optimal design

After one hundred iterations, the optimization run is finished and the final design

with 10% volume fraction will be obtained as shown in Figure 44.
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Figure 44. liteITD workbench showing the final optimal design for the short cantilever. 10%
volume fraction, 100 iterations and 212 structural analysis.

The resulting topology with ITD algorithm (which resembles the layout of an 8-bar

truss) reveals a good agreement with the optimum design obtained (Figure 45) using

SIMP method (Sigmund, 2001).

Figure 45. Final optimal design for the short cantilever using a 99 line topology optimization
code written in Matlab (Sigmund, 2001) with the input line: top(150,100,0.1,3.0,1.5). 10%

volume fraction, 199 iterations and 199 structural analysis.

5 ADDITIONAL EXAMPLES

 In order to illustrate the other optimization algorithms implemented in the liteITD

program, the short cantilever was optimized again: (1) under multiple loading

conditions; (2) using multi-materials; (3) with different material properties in tension and

compression.
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5.1 Short cantilever under multiple loading conditions

Most real structures are subjected to different loads at different times (not all loads

act simultaneously). This is referred to as multiple loading conditions (e.g. a moving

load can be suitably simulated by multiple load cases). With multiple loading conditions,

the resulting design has to be optimized to account for all load cases.

The geometric model, material properties, mesh characteristics, and support

conditions used in this second example are the same as for the first example (see

Section 4). The upward force F1= 1000 N is applied at the upper right-hand corner and

represents load case 1. The downward force F2 = 1000 N is applied at the lower free

end and represents load case 2, as shown in Figure 46. The ITD parameters were set

as follows: total number of iterations 100; final volume fraction 20%; minimum volume

change 1%.

Figure 46. Design domain for the short cantilever under two load cases, where F1 and F2

represent each load case.

In order to carry out the topology optimization under multiple loading conditions,

follow these steps:

1. Start liteITD.exe.

2. Open “Change jobname” dialog box, then type “Short_Cantilever_MLC” and press

“OK”.
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3. Repeat Sections 4.1 to 4.5 or load “Short_Cantilever_SLC_asv-sup.mat” file.

4. Press the “Input nodal forces” button. Type “2” in the “Load case number” edit box,

then press “Apply” button.

5. From the “Nodal forces” panel, type “1000” in the “Y-direction” edit box.

6. Select the node located at the upper right-hand corner, then press “Add” button.

7. Select “2” from the “Load case” pop-up menu.

8. From the “Nodal forces” panel, type “-1000” in the “Y-direction” edit box.

9. Select the node located at the lower free end, then press “Add” button.

10. Press “Ok” button in order for these values to be applied.

11. Press the “Optimization launcher” button. From the “Load case” panel, select

“Multiple” radio button.

12. From the “Evolution” panel, replace “30” with “20” for “Obj. fraction (%)” edit box.

Press the “Ok” button to accept these new parameters and to start the optimization.

After one hundred iterations, the final optimal design under two load cases is

shown in Figure 47.

Figure 47. liteITD workbench showing the final optimal design under two load cases. 20%
volume fraction, 100 iterations and 294 structural analysis.
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Similar solution to this example (Figure 48) was obtained using SIMP method

(Sigmund, 2001).

Figure 48. Final optimal design for the short cantilever under two load cases using a 99 line
topology optimization code written in Matlab (Sigmund, 2001) with the input line:

top(150,100,0.2,3.0,1.5). 20% volume fraction, 164 iterations and 328 structural analysis.

5.2 Short cantilever with different properties in tension and compression

The geometric model, material properties, mesh characteristics, support conditions,

and forces applied are the same as for the first example, Figure 33. In this third

example, we will study the use of the same material for tensile and compressive

elements of the structure with different properties. Young’s moduli of tensile and

compressive members of the structure were 2×1011 Pa and 1×1011 Pa, respectively.

Weight per unit volume was 78500 N/m3. The ITD parameters were set as follows: total

number of iterations 50; final volume fraction 25%; minimum volume change 1%.

In order to optimize the structure again using different properties in tension and

compression, follow these steps:

1. Start liteITD.exe.

2. Open “Change jobname” dialog box, then type “Short_Cantilever_TC” and press

“OK”.

3. Repeat Sections 4.1 to 4.6 or load “Short_Cantilever_SLC_asv-for.mat” file.
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4. Press the “Optimization launcher” button. From the “T-ension/C-ompression” panel,

select “T/C–Material properties” radio button, then type “78500” for “T-density” and

“C-density”, “2E+11” for “T-Young’s mod.”, and “1E+11” for “C-Young’s mod.”

5. From the “Evolution” panel, replace “100” with “50” for “Iterations” edit box and “30”

with “25” for “Obj. fraction (%)” edit box. Press the “Ok” button to accept these new

parameters and to start the optimization.

The final optimal design is shown in Figure 49. The regions under

tension/compression are displayed in red (lighter)/blue (darker) colours, respectively.

Figure 49. liteITD workbench showing the final optimal design with different material properties
in tension and compression. 25% volume fraction, 50 iterations and 123 structural analysis.

The same problem was also optimized using the method of Martinez et al. (2007),

producing the layout of Figure 50. The resulting topology with ITD algorithm is very

similar to that of the truss-produced optimum.
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Figure 50. Optimal topology for the short cantilever using the method of Martinez et al. (2007)
with 4 iterations and 72 structural analysis.

5.3 Short cantilever using multi-materials

The geometric model, mesh characteristics, support conditions, and forces applied

are the same as for the first example, Figure 33. In this example, two materials were

used, with Young’s moduli of E1 = 2×1011 Pa and E2 = 2×1010 Pa, Poisson’s ratios

equal to 0.3, and volume control weighting factors equal to w1 = 0.5 and w2 = 0.5. The

material with the highest stiffness (material No. 1) is displayed in magenta (darker

colour), and the material No. 2 is displayed in cyan (lighter colour). The ITD parameters

were set as follows: total number of iterations 50; final volume fraction 10%; minimum

volume change 2%.

In order to optimize the structure again using two-material scheme, follow these

steps:

1. Start liteITD.exe.

2. Open “Change jobname” dialog box, then type “Short_Cantilever_MM” and press

“OK”.

3. Repeat Sections 4.1 to 4.2 or load “Short_Cantilever_SLC_asv-geo.mat” file.

4. Press the “Define material properties” button. From the “Number of materials” pop-

up menu, select “2”. For the material No. 1, select “Magenta” from “Colour” pop-up
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menu. For the material No. 2, select “Cyan” colour and type “2E+10” in the

“Young’s modulus” edit box. Then Press “Ok”.

5. Repeat Section 4.4. In case of initial material distribution is unknown, the model

can be meshed using only one material type.

6. Repeat Sections 4.5 to 4.6.

7. Press the “Optimization launcher” button. From the “Material” panel, select

“Multiple materials (Fractions)” radio button. Click on the “Material 1” and “Material

2” check boxes, and then type “0.5” in both edit boxes.

8. From the “Evolution” panel, replace “100” with “50” for “Iterations” edit box, “1” with

“2” for “Min. change (%)” edit box and“30” with “10” for “Obj. fraction (%)” edit box.

Press the “Ok” button to accept these new parameters and to start the optimization.

The final optimal design for two-material scheme is shown in Figure 51. The

obtained design is in good agreement with that obtained by Querin et al. (2015), Figure

52.

Figure 51. liteITD workbench showing the final optimal design for two-material scheme. 10%
volume fraction, 50 iterations and 113 structural analysis.
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Figure 52. Final design for two-material scheme using the ITD method (Querin et al. 2015). 10%
volume fraction, 50 iterations and 143 structural analysis.

6 CONCLUSIONS

In this paper, a software package called liteITD (lite version of Isolines Topology

Design) for topology optimization of two-dimensional continuum structures was

presented. This application was completely designed using MATLAB GUI environment.

The usage of this application is directed to students mainly (educational purposes),

although also to designers and engineers with experience. Several examples were

presented to show the effectiveness of the program, which provides quality solutions

with a very detailed contours without the need to interpret the topology in order to

obtain a final design. liteITD can be downloaded and used for free from the website:

http://www.upct.es/goe/software/liteITD.php.
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