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Preface

These are lecture notes for AME60634: Intermediate Heat Transfer, a second course on heat transfer
for undergraduate seniors and beginning graduate students. At this stage the student can begin to
apply knowledge of mathematics and computational methods to the problems of heat transfer.
Thus, in addition to some undergraduate knowledge of heat transfer, students taking this course are
expected to be familiar with vector algebra, linear algebra, ordinary differential equations, particle
and rigid-body dynamics, thermodynamics, and integral and differential analysis in fluid mechanics.
The use of computers is essential both for the purpose of computation as well as for display and
visualization of results.

At present these notes are in the process of being written; the student is encouraged to make
extensive use of the literature listed in the bibliography. The students are also expected to attempt
the problems at the end of each chapter to reinforce their learning.

I will be glad to receive comments on these notes, and have mistakes brought to my attention.

Mihir Sen
Department of Aerospace and Mechanical Engineering

University of Notre Dame

Copyright c© by M. Sen, 2008
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Chapter 1

Introductory heat transfer

It is assumed that the reader has had an introductory course in heat transfer of the level of [12,14,
19, 20, 22, 24, 26, 34, 65, 76, 80, 88, 90, 106, 111, 112, 117, 122, 138, 155, 177, 183, 188, 207, 210, 211]. More
advanced books are, for example, [206,212]. A classic work is that of Jakob [94].

1.1 Fundamentals

1.1.1 Definitions

Temperature is associated with the motion of molecules within a material, being directly related to
the kinetic energy of the molecules, including vibrational and rotational motion. Heat is the energy
transferred between two points at different temperatures. The laws of thermodynamics govern the
transfer of heat. Two bodies are in thermal equilibrium with each other if there is no transfer of
heat between them. The zeroth law states that if each of two bodies are in thermal equilibrium with
a third, then they also are in equilibrium with each other. Both heat transfer and work transfer
increase the internal energy of the body. The change in internal energy can be written in terms of
a coefficient of specific heat1 as Mc dT . According to the first law, the increase in internal energy
is equal to the net heat and work transferred in. The third law says that the entropy of an isolated
system cannot decrease over time.

Example 1.1
Show that the above statement of the third law implies that heat is always transferred from a high

temperature to a low.

1.1.2 Energy balance

The first law gives a quantitative relation between the heat and work input to a system. If there is
no work transfer, then

Mc
∂T

∂t
= Q (1.1)

where Q is the heat rate over the surface of the body. A surface cannot store energy, so that the
heat flux coming in must be equal to that going out.

1We will not distinguish between the specific heat at constant pressure and that a constant volume.

2



1.2. Conduction 3

1.1.3 States of matter

We will be dealing with solids, liquids and gases as well as the transformation of on to the other.
Again, thermodynamics dictates the rules under which these changes are possible. For the moment,
we will define the enthalpy of transformation2 as the change in enthalpy that occurs when matter is
transformed from one state to another.

1.2 Conduction

[31, 66,68,77,100,136,137,149]
The Fourier law of conduction is

q = −k∇T (1.2)

where q is the heat flux vector, T (x) is the temperature field, and k(T ) is the coefficient of thermal
conductivity.

1.2.1 Governing equation

∂T

∂t
= α∇ (k · ∇T ) + g (1.3)

1.2.2 Fins

Fin effectiveness ǫf : This is the ratio of the fin heat transfer rate to the rate that would be if the
fin were not there.
Fin efficiency ηf : This is the ratio of the fin heat transfer rate to the rate that would be if the entire
fin were at the base temperature.

Longitudinal heat flux

q′′x = O(ks
Tb − T∞

L
) (1.4)

Transverse heat flux
q′′t = O(h(Tb − T∞)) (1.5)

The transverse heat flux can be neglected compared to the longitudinal if

q′′x ≫ q′′t (1.6)

which gives a condition on the Biot number

Bi =
hL

k
≪ 1 (1.7)

Consider the fin shown shown in Fig. 1.1. The energy flows are indicated in Fig. 1.2. The
conductive heat flow along the fin, the convective heat loss from the side, and the radiative loss from
the side are

qk = −ksA
dT

dx
(1.8)

qh = hdAs(T − T∞) (1.9)

qr = σdAs(T
4 − T 4

∞
) (1.10)

2Also called the latent heat.
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T

T

b

∞

x

L

Figure 1.1: Schematic of a fin.

T∞

q (x)
k

q (x+dx)
k

q (x)+q (x)
h r

Figure 1.2: Energy balance.

where, for a small enough slope, P (x) ≈ dAs/dx is the perimeter. Heat balance gives

ρAc
∂T

∂t
+
∂qk
∂x

dx+ qh + qr = 0 (1.11)

from which

ρAc
∂T

∂t
− ks

∂

∂x
(A
∂T

∂x
) + Ph(T − T∞) + σP (T 4 − T 4

∞
) = 0 (1.12)

where ks is taken to be a constant.
The initial temperature is T (x, 0) = Ti(x). Usually the base temperature Tb is known. The

different types of boundary conditions for the tip are:

• Convective: ∂T/∂x = a at x = L

• Adiabatic: ∂T/∂x = 0 at x = L

• Known tip temperature: T = TL at x = L
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• Long fin: T = T∞ as x→ ∞

Taking

θ =
T − T∞
Tb − T∞

(1.13)

τ =
kst

L2ρc
Fourier modulus (1.14)

ξ =
x

L
(1.15)

a(ξ) =
A

Ab
(1.16)

p(ξ) =
P

Pb
(1.17)

where the subscript indicates quantities at the base, the fin equation becomes

a
∂θ

∂τ
− ∂

∂ξ

(
a
∂θ

∂ξ

)
+m2pθ + ǫp

[
(θ + β)4 − β4

]
= 0 (1.18)

where

m2 =
PbhL

2

ksAb
(1.19)

ǫ =
σPbL

2(Tb − T∞)3

ksAb
(1.20)

β =
T∞

Tb − T∞
(1.21)

1.2.3 Separation of variables

Steady-state coduction in a rectangular plate.

∇2T = 0 (1.22)

Let T (x, y) = X(x)Y (y).

1.2.4 Similarity variable

∂T

∂t
= α

∂2T

∂x2
(1.23)

1.2.5 Lumped-parameter approximation

Consider a wall with fluid on both sides as shown in Fig. 1.3. The fluid temperatures are T∞,1

and T∞,2 and the wall temperatures are Tw,1 and Tw,2. The initial temperature in the wall is
T (x, 0) = f(x).
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T∞,1

Tw,1

Tw,2

T∞,2

Figure 1.3: Wall with fluids on either side.

Steady state

In the steady state, we have

h1(T∞,1 − Tw,1) = ks
Tw,1 − Tw,2

L
= h2(Tw,2 − T∞,2) (1.24)

from which
h1L

ks

T∞,1 − Tw,1

T∞,1 − T∞,2
=

Tw,1 − Tw,2

T∞,1 − T∞,2
=
h2L

ks

Tw,2 − T∞,2

T∞,1 − T∞,2
(1.25)

Thus we have

Tw,1 − Tw,2

T∞,1 − T∞,2
≪ T∞,1 − Tw,1

T∞,1 − T∞,2
if
h1L

ks
≪ 1 (1.26)

Tw,1 − Tw,2

T∞,1 − T∞,2
≪ Tw,2 − T∞,2

T∞,1 − T∞,2
if
h2L

ks
≪ 1 (1.27)

The Biot number is defined as

Bi =
hL

ks
(1.28)

Transient

∂T

∂t
=
ks

ρc

∂2T

∂x2
(1.29)

There are two time scales: the short (conductive) tk0 = L2ρc/ks and the long (convective) th0 = Lρc/h.
In the short time scale conduction within the slab is important, and convection from the sides is
not. In the long scale, the temperature within the slab is uniform, and changes due to convection.
The ratio of the two tk0/t

h
0 = Bi. In the long time scale it is possible to show that

Lρsc
dT

dt
+ h1(T − T∞,1) + h2(T − T∞,2) = 0 (1.30)

where T = Tw,1 = Tw,2.
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T∞
T

Figure 1.4: Convective cooling.

Convective cooling

A body at temperature T , such as that shown in Fig. 1.4, is placed in an environment of different
temperature, T∞, and is being convectively cooled. The governing equation is

Mc
dT

dt
+ hA(T − T∞) = 0 (1.31)

with T (0) = Ti. We nondimensionalize using

θ =
T − T∞
Ti − T∞

(1.32)

τ =
hAt

Mc
(1.33)

The nondimensional form of the governing equation (1.31) is

dθ

dτ
+ θ = 0 (1.34)

the solution to which is
θ = e−τ (1.35)

This is shown in Fig. 1.5 where the nondimensional temperature goes from θ = 1 to θ = 0. The
dimensional time constant is Mc/hA.

1.3 Convection

[11, 21,27,67,95,98,99,102,104,133].
Newton’s law of cooling: The rate of convective heat transfer from a body is proportional the

difference in temperature between the body and the surrounding fluid. Thus, we can write

q = hA(Tb − Tf ), (1.36)

where A is the surface area of the body, Tb is its temperature, Tf is that of the fluid, and h is the
coefficient of thermal convection.
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θ

τ

1

Figure 1.5: Convective cooling.

1.3.1 Governing equations

For incompressible flow

∇ · V = 0 (1.37)

ρ

(
∂V

∂t
+ V · ∇V

)
= −∇p+ µ∇2V + f (1.38)

ρc

(
∂T

∂t
+ V · ∇T

)
= ∇ (k · ∇T ) + Φ (1.39)

1.3.2 Flat-plate boundary-layer theory

Forced convection

Natural convection

1.3.3 Heat transfer coefficients

Overall heat transfer coefficient
Fouling
Bulk temperature
Nondimensional groups
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Reynolds number Re =
UL

ν
(1.40)

Prandtl number =
ν

κ
(1.41)

Nusselt number Nu =
hL

k
(1.42)

Stanton number St = Nu/Pr Re (1.43)

Colburn j-factor j = St Pr2/3 (1.44)

Friction factor f =
2τw
ρU2

(1.45)

1.4 Radiation

[25, 58,127,209]
Emission can be from a surface or volumetric. Monochromatic radiation is at a single wave-

length. The direction distribution of radiation from a surface may be either specular (i.e. mirror-like
with angles of incidence and reflection equal) or diffuse (i.e. equal in all directions).

The spectral intensity of emission is the radiant energy leaving per unit time, unit area, unit
wavelength, and unit solid angle. The emissive power is the emission of an entire hemisphere.
Irradiations is the radiant energy coming in, while the radiosity is the energy leaving including the
emission plus the reflection.

The absorptivity αλ, the reflectivity ρλ, and transmissivity τλ are all functions of the wavelkength
λ. Also

αλ + ρλ + τλ = 1 (1.46)

Integrating over all wavelengths
α+ ρ+ τ = 1 (1.47)

The emissivity is defined as

ǫλ =
Eλ(λ, T )

Ebλ(λ, T )
(1.48)

where the numerator is the actual energy emitted and the denominator is that that would have been
emitted by a blackbody at the same temperature. For the overall energy, we have a similar definition

ǫ =
E(T )

Eb(T )
(1.49)

so that the emission is
E = ǫσT 4 (1.50)

For a gray body ǫλ is independent of λ.
Kirchhoff’s law: αλ = ǫλ and α = ǫ.

1.4.1 Electromagnetic radiation

[173]
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Electromagnetic radiation travels at the speed of light c = 2.998× 108 m/s. Thermal radiation
is the part of the spectrum in the 0.1–100 µm range. The frequency f and wavelength λ of a wave
are related by

c = fλ (1.51)

The radiation can also be considered a particles called phonons with energy

E = ~f (1.52)

where ~ is Planck’s constant.
Maxwell’s equations of electromagnetic theory are

∇× H = J +
∂D

∂t
(1.53)

∇× E = −∂B
∂t

(1.54)

∇ · D = ρ (1.55)

∇ · B = 0 (1.56)

where H, B, E, D, J, and ρ are the magnetic intensity, magnetic induction, electric field, electric
displacement, current density, and charge density, respectively. For linear materials D = ǫE, J = gE
(Ohm’s law), and B = µH, where ǫ is the permittivity, g is the electrical conductivity, and µ is the
permeability. For free space ǫ = 8.8542 × 10−12 C2N−1m−2, and µ = 1.2566 × 10−6 NC−2s2,

For ρ = 0 and constant ǫ, g and µ, it can be shown that

∇2H − ǫµ
∂2H

∂t2
− gµ

∂H

∂t
= 0 (1.57)

∇2E − ǫµ
∂2E

∂t2
− gµ

∂E

∂t
= 0 (1.58)

The speed of an electromagnetic wave in free space is c = 1/
√
µǫ.

Blackbody radiation

Planck distribution [147]

Eλ =
C1

λ5 [exp (C2/λT ) − 1]
(1.59)

Wien’s law: Putting dEλ/dλ = 0, the maximum of is seen to be at λ = λm, where

λmT = C3 (1.60)

and C3 = 2897.8 µmK.
Stefan-Boltzmann’s law: The total radiation emitted is

Eb =

∫
∞

0

Eλ dλ

= σT 4 (1.61)

where σ = 5.670 × 10−8 W/m2K4.

d2T

dx2
= λ2T 4 (1.62)
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cold

hot

(a) parallel flow

cold

hot

(a) counter flow

Figure 1.6: Parallel and counter flow.

1.4.2 View factors

1.5 Boiling and condensation

[29, 42,198]

1.5.1 Boiling curve

1.5.2 Critical heat flux

1.5.3 Film boiling

1.5.4 Condensation

Nusselt’s solution

1.6 Heat exchangers

[105,154]
Shell and tube heat exchangers are commonly used for large industrial applications. Compact

heat exchangers are also common in industrial and engineering applications that exchanger heat
between two separated fluids. The term compact is understood to mean a surface to volume ratio
of more than about 700 m2/m3. The advantages are savings in cost, weight and volume of the heat
exchanger.

The fin efficiency concept was introduced by Harper and Brown (1922). The effectiveness-NTU
method was introduced by London and Seban in 1941.

A possible classification of HXs is shown in Table 1.1.



1.6. Heat exchangers 12

Table 1.1: Classification of HX (due to Shah [170], 1981
According to Types of HXs Examples
Transfer processes Direct contact

Indirect contact (a) direct transfer,
(b) storage, (c)
fluidized bed

Surface Compact
compactness Non-compact
Construction Tubular (a) double pipe

(b) shell and tube
(c) spiral tube

Plate (a) gasketed,
(b) spiral,
(c) lamella

Extended surface (a) plate fin,
(b) tube fin

Regenerative (a) rotary disk
(b) rotary drum
(c) fixed matrix

Flow arrangement Single pass (a) parallel flow
(b) counterflow
(c) crossflow

Multipass (a) extended surface
cross counter flow,
(b) extended surface
cross parallel flow,
(c) shell and tube
parallel counterflow
shell and tube
mixed, (d) shell
and tube split
flow, (e) shell and
tube divided flow
Plate

Number of fluids Two fluid
Three fluid
Multifluid

Heat transfer Single-phase convection mechanisms on both sides
Single-phase convection on one side, two-phase
convection on other side
Two-phase convection on both sides
Combined convection and radiative heat transfer



1.6. Heat exchangers 13

1.6.1 Parallel- and counter-flow

We define the subscripts h and c to mean hot and cold fluids, i and o for inlet and outlet, 1 the end
where the hot fluids enters, and 2 the other end. Energy balances give

dq = U(Th − Tc) dA (1.63)

dq = ±ṁcCc dTc (1.64)

dq = −ṁhCh dTh (1.65)

where the upper and lower signs are for parallel and counterflow, respectively. From equations (1.64)
and (1.65), we get

−dq
(

1

ṁhCh
± 1

ṁcCc

)
= d(Th − Tc) (1.66)

Using (1.63), we find that

−U dA

(
1

ṁhCh
± 1

ṁcCc

)
=
d(Th − Tc)

Th − Tc
(1.67)

which can be integrated from 1 to 2 to give

−UA
(

1

ṁhCh
± 1

ṁcCc

)
= ln

(Th − Tc)1
(Th − Tc)2

(1.68)

From equation (1.66), we get

−qT
(

1

ṁhCh
+

1

ṁcCc

)
= (Th − Tc)2 − (Th − Tc)1 (1.69)

where qT is the total heat transfer rate. The last two equations can be combined to give

qT = UA∆Tlmtd (1.70)

where

∆Tlmtd =
(Th − Tc)1 − (Th − Tc)2

ln[(Th − Tc)1/(Th − Tc)2]
(1.71)

is the logarithmic mean temperature difference.
For parallel flow, we have

∆Tlmtd =
(Th,i − Tc,i) − (Th,o − Tc,o)

ln[(Th,i − Tc,i)/(Th,o − Tc,o)]
(1.72)

while for counterflow it is

∆Tlmtd =
(Th,i − Tc,o) − (Th,o − Tc,i)

ln[(Th,i − Tc,o)/(Th,o − Tc,i)]
(1.73)

We an write the element of area dA in terms of the perimeter P as dA = P dx, so that

Tc(x) = Tc,1 ±
q(x)

ṁcCc
(1.74)

Th(x) = Th,1 −
q(x)

ṁhCh
(1.75)
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Thus
dq

dx
+ qUP

(
1

ṁhCh
± 1

ṁcCc

)
(1.76)

With the boundary condition q(0) = 0, the solution is

q9x) =
Th,1 − Tc,1
1

ṁhCh
± 1

ṁcCc

{
1 − exp

[
−UP

(
1

ṁhCh
± 1

ṁcCc

)]}
(1.77)

1.6.2 HX relations

The HX effectiveness is

ǫ =
Q

Qmax
(1.78)

=
Ch(Th,i − Th,o)

Cmin(Th,i − Tc,i)
(1.79)

=
Cc(Tc,o − Tc,i)

Cmin(Th,i − Tc,i)
(1.80)

where
Cmin = min(Ch, Cc) (1.81)

Assuming U to be a constant, the number of transfer units is

NTU =
AU

Cmin
(1.82)

The heat capacity rate ratio is CR = Cmin/Cmax.

Effectiveness-NTU relations

In general, the effectiveness is a function of the HX configuration, its NTU and the CR of the fluids.
(a) Counterflow

ǫ =
1 − exp[−NTU(1 − CR)]

1 − CR exp[−NTU(1 − CR)]
(1.83)

so that ǫ→ 1 as NTU → ∞.
(b) Parallel flow

ǫ =
1 − exp[−NTU(1 − CR)]

1 + CR
(1.84)

(c) Crossflow, both fluids unmixed
Series solution (Mason, 1954)

(d) Crossflow, one fluid mixed, the other unmixed
If the unmixed fluid has C = Cmin, then

ǫ = 1 − exp[−CR(1 − exp{−NTUCr})] (1.85)

But if the mixed fluid has C = Cmin

ǫ = CR(1 − exp{−CR(1 − e−NTU )}) (1.86)
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(e) Crossflow, both fluids mixed
(f) Tube with wall temperature constant

ǫ = 1 − exp(−NTU) (1.87)

Pressure drop

It is important to determine the pressure drop through a heat exchanger. This is given by

∆p

p1
=

G2

2ρ1p1

[
(Kc + 1 − σ2) + 2(

ρ1

ρ2
− 1) + f

Aρ1

Acρm
− (1 − σ2 −Ke)

ρ1

ρ2

]
(1.88)

where Kc and Ke are the entrance and exit loss coefficients, and σ is the ratio of free-flow area to
frontal area.

1.6.3 Design methodology

Mean temperature-difference method

Given the inlet temperatures and flow rates, this method enables one to find the outlet temperatures,
the mean temperature difference, and then the heat rate.

Effectiveness-NTU method

The order of calculation is NTU , ǫ, qmax and q.

1.6.4 Correlations

1.6.5 Extended surfaces

η0 = 1 − Af

A
(1 − ηf ) (1.89)

where η0 is the total surface temperature effectiveness, ηf is the fin temperature effectiveness, Af is
the HX total fin area, and A is the HX total heat transfer area.

Problems

1. For a perimeter corresponding to a fin slope that is not small, derive Eq. 1.11.

2. The two sides of a plane wall are at temperatures T1 and T2. The thermal conductivity varies with temperature
in the form k(T ) = k0 + α(T − T1). Find the temperature distribution within the wall.

3. Consider a cylindrical pin fin of diameter D and length L. The base is at temperature Tb and the tip at T∞;
the ambient temperature is also T∞. Find the steady-state temperature distribution in the fin, its effectiveness,
and its efficiency. Assume that there is only convection but no radiation.

4. Show that the efficiency of the triangular fin shown in Fig. 1.7 is

ηf =
1

mL

I1(2mL)

I0(2mL)
,

where m = (2h/kt)1/2, and I0 and I1 are the zeroth- and first-order Bessel functions of the first kind.

5. A constant-area fin between surfaces at temperatures T1 and T2 is shown in Fig. 1.8. If the external temperature,
T∞(x), is a function of the coordinate x, find the general steady-state solution of the fin temperature T (x) in
terms of a Green’s function.
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t

L

w

Figure 1.7: Triangular fin.

T2T1

T∞(x)
x

Figure 1.8: Constant-area fin.

6. Using a lumped parameter approximation for a vertical flat plate undergoing laminar, natural convection, show
that the temperature of the plate, T (t), is governed by

dT

dt
+ α(T − T∞)5/4 = 0

Find T (t) if T (0) = T0.

7. Show that the governing equation in Problem 3 with radiation can be written as

d2T

dx2
− m2(T − T∞) − ǫ(T 4 − T 4

∞
) = 0.

Find a two-term perturbation solution for T (x) if ǫ ≪ 1 and L → ∞.

8. The fin in Problem 3 has a non-uniform diameter of the form

D = D0 + ǫx.

Determine the equations to be solved for a two-term perturbation solution for T (x) if ǫ ≪ 1.



Part II

No spatial dimension
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Chapter 2

Dynamics

2.1 Variable heat transfer coefficient

If, however, the h is slightly temperature-dependent, then we have

dθ

dτ
+ (1 + ǫθ)θ = 0 (2.1)

which can be solved by the method of perturbations. We assume that

θ(τ) = θ0(τ) + ǫθ1(τ) + ǫ2θ2(τ) + . . . (2.2)

To order ǫ0, we have

dθ0
dτ

+ θ0 = 0 (2.3)

θ0(0) = 1 (2.4)

which has the solution
θ0 = e−τ (2.5)

To the next order ǫ1, we get

dθ1
dτ

+ θ1 = −θ20 (2.6)

= −e−2τ (2.7)

θ1(0) = 0 (2.8)

the solution to which is
θ1 = −e−t + e−2τ (2.9)

Taking the expansion to order ǫ2

dθ2
dτ

+ θ2 = −2θ0θ1 (2.10)

= −2e−2t − 2e−3τ (2.11)

θ2(0) = 1 (2.12)

18
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with the solution
θ2 = e−τ − 2e−2τ + e−3τ (2.13)

And so on. Combining, we get

θ = e−τ − ǫ(e−τ − e−2τ ) + ǫ2(e−τ − 2e−2τ + e−3τ ) + . . . (2.14)

Alternatively, we can find an exact solution to equation (2.1). Separating variables, we get

dθ

(1 + ǫθ)θ
= dτ (2.15)

Integrating

ln
θ

ǫθ + 1
= −τ + C (2.16)

The condition θ(0) = 1 gives C = − ln(1 + ǫ), so that

ln
θ(1 + ǫ)

1 + ǫθ
= −τ (2.17)

This can be rearranged to give

θ =
e−τ

1 + ǫ(1 − e−τ )
(2.18)

A Taylor-series expansion of the exact solution gives

θ = e−τ
[
1 + ǫ(1 − e−τ

]
−1

(2.19)

= e−τ
[
1 − ǫ(1 − e−τ ) + ǫ2(1 − e−τ )2 + . . .

]
(2.20)

= e−τ − ǫ(e−τ − e−2τ ) + ǫ2(e−τ − 2e−2τ + e−3τ ) + . . . (2.21)

2.1.1 Radiative cooling

If the heat loss is due to radiation, we can write

Mc
dT

dt
+ σA(T 4 − T 4

∞
) = 0 (2.22)

Taking the dimensionless temperature to be defined in equation (1.32), and time to be

τ =
σA(Ti − T∞)3t

Mc
(2.23)

and introducing the parameter

β =
T∞

Ti − T∞
(2.24)

we get
dφ

dτ
+ φ4 = β4 (2.25)

where
φ = θ + β (2.26)
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Writing the equation as
dφ

φ4 − β4
= −dτ (2.27)

the integral is
1

4β3
ln

(
φ− β

φ+ β

)
− 1

2β3
tan−1

(
φ

β

)
= −τ + C (2.28)

Using the initial condition θ(0) = 1, we get (?)

τ =
1

2β3

[
1

2
ln

(β + T )(β − 1)

(β − T )(β + 1)
+ tan−1 T − 1

β + (T/β)

]
(2.29)

2.1.2 Convective with weak radiation

The governing equationis

Mc
dT

dt
+ hA(T − T∞) + σA(T 4 − T 4

∞
) = 0 (2.30)

with T (0) = Ti. Using the variables defined by equations (1.32) and (1.33), we get

dθ

dτ
+ θ + ǫ

[
(θ + β4)4 − β4

]
= 0 (2.31)

where β is defined in equation (2.24), and

ǫ =
σ(Ti − T∞)3

h
(2.32)

If radiative effects are small compared to the convective (for Ti − T∞ = 100 K and h = 10 W/m2K
we get ǫ = 5.67 × 10−3), we can take ǫ≪ 1. Substituting the perturbation series, equation (2.2), in
equation (2.31), we get

d

dτ

(
θ0 + ǫθ1 + ǫ2θ2 + . . .

)
+
(
θ0 + ǫθ1 + ǫ2θ2 + . . .

)

+ǫ
[ (
θ0 + ǫθ1 + ǫ2θ2 + . . .

)4
+ 4β

(
θ0 + ǫθ1 + ǫ2θ2 + . . .

)3

+6β2
(
θ0 + ǫθ1 + ǫ2θ2 + . . .

)2
4β3

(
θ0 + ǫθ1 + ǫ2θ2 + . . .

) ]
= 0 (2.33)

In this case

dθ

dτ
+ (θ − θ0) + ǫ(θ4 − θ4s) = 0 (2.34)

θ(0) = 1 (2.35)

As a special case, of we take β = 0, i.e. T∞ = 0, we get

dθ

dτ
+ θ + ǫθ4 = 0 (2.36)

which has an exact solution

τ =
1

3
ln

1 + ǫθ3

(1 + ǫ)θ3
(2.37)
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2.2 Radiation in an enclosure

Consider a closed enclosure with N walls radiating to each other and with a central heater H. The
walls have no other heat loss and have different masses and specific heats. The governing equations
are

Mici
dTi

dt
+ σ

N∑

j=1

AiFij(T
4
i − T 4

j ) + σAiFiH(T 4
i − T 4

H) = 0 (2.38)

where the view factor Fij is the fraction of radiation leaving surface i that falls on j. The steady
state is

T i = TH (i = 1, . . . , N) (2.39)

Linear stability is determined by a small perturbation of the type

Ti = TH + T ′

i (2.40)

from which

Mici
dT ′

i

dt
+ 4σT 3

H

N∑

j=1

AiFij(T
′

i − T ′

j) + 4σT 3
HAiFiHT

′

i = 0 (2.41)

This can be written as

M
dT′

dt
= −4σT 3

HAT′ (2.42)

2.3 Long time behavior

The general form of the equation for heat loss from a body with internal heat generation is

dθ

dτ
+ f(θ) = a (2.43)

with θ(0) = 1. Let
f(θ) = a (2.44)

Then we would like to show that θ → θ as t→ ∞. Writing

θ = θ + θ′ (2.45)

we have
dθ′

dτ
+ f(θ + θ′) = a (2.46)

2.3.1 Linear analysis

If we assume that θ′ is small, then a Taylor series gives

f(θ + θ′) = f(θ) + θ′f ′(θ) + . . . (2.47)

from which
dθ′

dτ
+ bθ′ = 0 (2.48)

where b = f ′(θ). The solution is
θ′ = Ce−bτ (2.49)

so that θ′ → 0 as t→ ∞ if b > 0.
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2.3.2 Nonlinear analysis

Multiplying equation (2.46) by θ′, we get

1

2

d

dτ
(θ′)2 = −θ′

[
f(θ + θ′) − f(θ)

]
(2.50)

Thus
d

dτ
(θ′)2 ≤ 0 (2.51)

if θ′ and [f(θ + θ′) − f(θ)], as shown in Fig. 2.1, are both of the same sign or zero. Thus θ′ → 0 as
τ → ∞.

f(  )θ

θ

f(  )θ

θ

Figure 2.1: Convective cooling.

2.4 Time-dependent T∞

Let

Mc
dT

dt
+ hA(T − T∞(t)) = 0 (2.52)

with
T (0) = Ti (2.53)

2.4.1 Linear

Let
T∞ = T∞,0 + at (2.54)

Defining the nondimensional temperature as

θ =
T − T∞,0

Ti − T∞,0
(2.55)

and time as in equation (1.33), we get
dθ

dτ
+ θ = Aτ (2.56)
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where

A =
aMc

hA(Ti − T∞,0)
(2.57)

The nondimensional ambient temperature is

θ∞ =
aMc

hA(Ti − T∞,0)
τ (2.58)

The solution to equation (2.56) is
θ = Ce−τ +Aτ −A (2.59)

The condition θ(0) = 1 gives C = 1 +A, so that

θ = (1 +A)e−τ +A(τ − 1) (2.60)

The time shown in Fig. 2.2 at crossover is

τc = ln
1 +A

A
(2.61)

and the offset is
δθ = A (2.62)

as τ → ∞.

θ 

θ
∞
 

∆
 

θ
 

τ 

 τ c

Figure 2.2: Response to linear ambient temperature.

2.4.2 Oscillatory

Let
T∞ = T∞ + δT sinωt (2.63)

where T (0) = Ti. Defining

θ =
T − T∞

Ti − T∞

(2.64)
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T∞,1

∞,2T

∞,2T T∞,1
T

T

(a) (b)

Figure 2.3: Two-fluid problems.

and using equation (1.33), the nondimensional equation is

dθ

dτ
+ θ = δθ sin Ωτ (2.65)

where

δθ =
δT

Ti − T∞

(2.66)

Ω =
ωMc

hA
(2.67)

The solution is

θ = Ce−τ +
δθ

(1 + Ω2) cosφ
sin(Ωτ − φ) (2.68)

where
φ = tan−1 Ω (2.69)

From the condition θ(0) = 1, we get C = 1 + δΩ/(1 + Ω2), so that

θ =

(
1 + δθ

Ω

1 + Ω2

)
e−τ +

δθ

(1 + Ω2) cosφ
sin(Ωτ − φ) (2.70)

2.5 Two-fluid problem

Suppose there is a body in contact with two fluids at different temperatures T∞,1 and T∞,2, like in
the two examples shown in Fig. 2.3. The governing equation is

Mc
dT

dt
+ h1A1(T − T∞,1) + h2A2(T − T∞,2) = 0 (2.71)

where T (0) = Ti. If T∞,1 and T∞,2 are constants, we can nondimensionalize the equation using the
parameters for one of them, fluid 1 for instance. Thus we have

θ =
T − T∞,1

Ti − T∞,1
(2.72)

τ =
h1A1t

Mc
(2.73)
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from which
dθ

dτ
+ θ + α(θ + β) = 0 (2.74)

with θ(0) = 1, where

α =
h2A2

h1A1
(2.75)

β =
T∞,1 − T∞,2

Ti − T∞,1
(2.76)

The equation can be written as
dθ

dτ
+ (1 + α)θ = −αβ (2.77)

with the solution

θ = Ce−(1+α)τ − αβ

1 + α
(2.78)

The condition θ(0) = 1 gives C = 1 + αβ/(1 + α), from which

θ =

(
1 +

αβ

1 + α

)
e−(1+α)τ − αβ

1 + α
(2.79)

For α = 0, the solution reduces to the single-fluid case, equation (1.35). Otherwise the time constant
of the general system is

t0 =
Mc

h1A1 + h2A2
(2.80)

2.6 Two-body problem

2.6.1 Convective

Suppose now that there are two bodies at temperatures T1 and T2 in thermal contact with each
other and exchanging heat with a single fluid at temperature T∞ as shown in Fig. 2.4.

1 2

Figure 2.4: Two bodies in thermal contact.

The mathematical model of the thermal process is

M1c1
dT1

dt
+
ksAc

L
(T1 − T2) + hA(T1 − T∞) = Q1 (2.81)

M2c2
dT2

dt
+
ksAc

L
(T2 − T1) + hA(T2 − T∞) = Q2 (2.82)
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Figure 2.5: Bodies with radiation.

2.6.2 Radiative

M1c1
dT1

dt
+
ksAc

L
(T1 − T2) +A1σF1s(T

4
1 − T 4

s ) +A1σF12(T
4
1 − T 4

2 ) = Q1 (2.83)

M2c2
dT2

dt
+
ksAc

L
(T2 − T1) + +A1F2s(T

4
2 − T 4

s ) +A2σF21(T
4
2 − T 4

1 ) = Q2 (2.84)

Without radiation

Q1 = Q2 = −2kA

L

(
T 1 − T 2

)
(2.85)

Problems

1. Show that the temperature distribution in a sphere subject to convective cooling tends to become uniform as
Bi → 0.

2. Check one of the perturbation solutions against a numerical solution.

3. Plot all real θ(β, ǫ) surfaces for the convection with radiation problem, and comment on the existence of
solutions.

4. Complete the problem of radiation in an enclosure (linear stability, numerical solutions).

5. Lumped system with convective-radiative cooling with nonzero θ0 and θs.

6. Find the steady-state temperatures for the two-body problem and explore the stability of the system for
constant ambient temperature.

7. Consider the change in temperature of a lumped system with convective heat transfer where the ambient
temperature, T∞(t), varies with time in the form shown. Find (a) the long-time solution of the system
temperature, T (t), and (b) the amplitude of oscillation of the system temperature, T (t), for a small period δt.

t

T∞

Tmax

Tmin

δt

Figure 2.6: Ambient temperature variation.



Chapter 3

Control

3.1 Introduction

There are many kinds of thermal systems in common industrial, transportation and domestic use
that need to be controlled in some manner, and there are many ways in which that can be done.
One can give the example of heat exchangers [85, 114], environmental control in buildings [70, 72,
82,115,152,218], satellites [101,172,184,221], thermal packaging of electronic components [150,185],
manufacturing [54], rapid thermal processing of computer chips [84, 158, 200], and many others. If
precise control is not required, or if the process is very slow, control may simply be manual; otherwise
some sort of mechanical or electrical feedback system has to be put in place for it to be automatic.

Most thermal systems are generally complex involving diverse physical processes. These include
natural and forced convection, radiation, complex geometries, property variation with temperature,
nonlinearities and bifurcations, hydrodynamic instability, turbulence, multi-phase flows, or chemical
reaction. It is common to have large uncertainties in the values of heat transfer coefficients, ap-
proximations due to using lumped parameters instead of distributed temperature fields, or material
properties that may not be accurately known. In this context, a complex system can be defined as
one that is made up of sub-systems, each one of which can be analyzed and computed, but when put
together presents such a massive computational problem so as to be practically intractable. For this
reason large, commonly used engineering systems are hard to model exactly from first principles,
and even when this is possible the dynamic responses of the models are impossible to determine
computationally in real time. Most often some degree of approximation has to be made to the
mathematical model. Approximate correlations from empirical data are also heavily used in prac-
tice. The two major reasons for which control systems are needed to enable a thermal system to
function as desired are the approximations used during design and the existence of unpredictable
external and internal disturbances which were not taken into account.

There are many aspects of thermal control that will not be treated in this brief review. The most
important of these are hardware considerations; all kinds of sensors and actuators [59,187] developed
for measurement and actuation are used in the control of thermal systems. Many controllers are
also computer based, and the use of microprocessors [87, 180] and PCs in machines, devices and
plants is commonplace. Flow control, which is closely related to and is often an integral part of
thermal control, has its own extensive literature [64]. Discrete-time (as opposed to continuous-
time) systems will not be described. The present paper will, however, concentrate only on the
basic principles relating to the theory of control as applied to thermal problems, but even then it
will be impossible to go into any depth within the space available. This is only an introduction,
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Figure 3.1: Schematic of a system without
controller.
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Figure 3.2: Schematic of a system with com-
parator C and controller.

and the interested reader should look at the literature that is cited for further details. There are
good texts and monographs available on the basics of control theory [116, 132, 144, 157], process
control [28,75,93,151], nonlinear control [91], infinite-dimensional systems [39,89], and mathematics
of control [9, 179] that can be consulted. These are all topics that include and are included within
thermal control.

3.2 Systems

Some basic ideas of systems will be defined here even though, because of the generality involved, it
is hard to be specific at this stage.

3.2.1 Systems without control

The dynamic behavior of any thermal system (often called the open-loop system or plant to distin-
guish it from the system with controller described below), schematically shown in Fig. 3.1, may be
mathematically represented as

Ls(x, u, w, λ) = 0, (3.1)

where Ls is a system operator, t is time, x(t) is the state of the system, u(t) is its input, w(t) is some
external or internal disturbance, and λ is a parameter that defines the system. Each one of these
quantities belongs to a suitable set or vector space and there are a large number of possibilities. For
example Ls may be an algebraic, integral, ordinary or partial differential operator, while x may be
a finite-dimensional vector or a function. u(t) is usually a low-dimensional vector.

In general, the output of the system y(t) is different from its state x(t). For example, x may be
a spatial temperature distribution, while y are the readings of one or more temperature measurement
devices at a finite number of locations. The relation between the two may be written as

Lo(y, x, u, w, λ) = 0, (3.2)

where Lo is the output operator.
The system is single-input single-output (SISO) if both u and y are scalars. A system is said

to be controllable if it can be taken from one specific state to another within a prescribed time with
the help of a suitable input. It is output controllable if the same can be done to the output. It is
important to point out that output controllability does not imply system controllability. In fact, in
practice for many thermal systems the former is all that is required; it has been reported that most
industrial plants are controlled quite satisfactorily though they are not system controllable [156].
All possible values of the output constitute the reachable set. A system is said to be observable if its
state x can be uniquely determined from the input u and output y alone. The stability of a system
is a property that leads to a bounded output if the input is also bounded.
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3.2.2 Systems with control

The objective of control is to have a given output y = yr(t), where the reference or set value yr is
prescribed. The problem is called regulation if yr is a constant, and tracking if it is function of time.

In open-loop control the input is selected to give the desired output without using any infor-
mation from the output side; that is one would have to determine u(t) such that y = yr(t) using
the mathematical model of the system alone. This is a passive method of control that is used in
many thermal systems. It will work if the behavior of the system is exactly predictable, if precise
output control is not required, or if the output of the system is not very sensitive to the input. If
the changes desired in the output are very slow then manual control can be carried out, and that
is also frequently done. A self-controlling approach that is sometimes useful is to design the system
in such a way that any disturbance will bring the output back to the desired value; the output in
effect is then insensitive to changes in input or disturbances.

Open-loop control is not usually effective for many systems. For thermal systems contributing
factors are the uncertainties in the mathematical model of the plant and the presence of unpredictable
disturbances. Internal disturbances may be noise in the measuring or actuating devices or a change
in surface heat transfer characteristics due to fouling, while external ones may be a change in the
environmental temperature. For these cases closed-loop control is an appropriate alternative. This
is done using feedback from the output, as measured by a sensor, to the input side of the system, as
shown in Fig. 3.2; the figure actually shows unit feedback. There is a comparator which determines
the error signal e(t) = e(yr, y), which is usually taken to be

e = yr − y. (3.3)

The key role is played by the controller which puts out a signal that is used to move an actuator in
the plant.

Sensors that are commonly used are temperature-measuring devices such as thermocouples,
resistance thermometers or thermistors. The actuator can be a fan or a pump if the flow rate is to
be changed, or a heater if the heating rate is the appropriate variable. The controller itself is either
entirely mechanical if the system is not very complex, or is a digital processor with appropriate
software. In any case, it receives the error in the output e(t) and puts out an appropriate control
input u(t) that leads to the desired operation of the plant.

The control process can be written as

Lc(u, e, λ) = 0, (3.4)

where Lc is a control operator. The controller designer has to propose a suitable Lc, and then Eqs.
(C.9)–(3.4) form a set of equations in the unknowns x(t), y(t) and u(t). Choice of a control strategy
defines Lo and many different methodologies are used in thermal systems. It is common to use on-off
(or bang-bang, relay, etc.) control. This is usually used in heating or cooling systems in which the
heat coming in or going out is reduced to zero when a predetermined temperature is reached and
set at a constant value at another temperature. Another method is Proportional-Integral-Derivative
(PID) control [214] in which

u = Kpe(t) +Ki

∫ t

0

e(s) ds+Kd
de

dt
. (3.5)

3.3 Linear systems theory

The term classical control is often used to refer to theory derived on the basis of Laplace transforms.
Since this is exclusively for linear systems, we will be using the so-called modern control or state-
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space analysis which is based on dynamical systems, mainly because it can be extended to nonlinear
systems. Where they overlap, the issue is only one of preference since the results are identical.
Control theory can be developed for different linear operators, and some of these are outlined below.

3.3.1 Ordinary differential equations

Much is known about a linear differential system in which Eqs. (C.9) and (3.2) take the form

dx

dt
= Ax+Bu, (3.6)

y = Cx+Du, (3.7)

where x ∈ R
n, u ∈ R

m, y ∈ R
p, A ∈ R

n×n, B ∈ R
n×m, C ∈ R

p×n, D ∈ R
p×m. x, u and y are

vectors of different lengths and A, B, C, and D are matrices of suitable sizes. Though A, B, C, and
D can be functions of time in general, here they will be treated as constants.

The solution of Eq. (3.6) is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−s)Bu(s) ds. (3.8)

where the exponential matrix is defined as

eAt = I +At+
1

2!
A2t2 +

1

3!
A3t3 + . . . ,

with I being the identity matrix. From Eq. (3.7), we get

y(t) = C

[
eAtx(t0) +

∫ t

t0

eA(t−s) Bu(s) ds

]
+Du. (3.9)

Eqs. (3.8) and (3.9) define the state x(t) and output y(t) if the input u(t) is given.
It can be shown that for the system governed by Eq. (3.6), a u(t) can be found to take x(t)

from x(t0) at t = t0 to x(tf ) = 0 at t = tf if and only if the matrix

M =

[
B

... AB
... A2B

... . . .
... An−1B

]
∈ R

n×nm (3.10)

is of rank n. The system is then controllable. For a linear system, controllability from one state to
another implies that the system can be taken from any state to any other. It must be emphasized
that the u(t) that does this is not unique.

Similarly, it can be shown that the output y(t) is controllable if and only if

N =

[
D

... CB
... CAB

... CA2B
... . . .

... CAn−1B

]
∈ R

p×(n+1)m (3.11)

is of rank p. Also, the state x(t) is observable if and only if the matrix

P =

[
C

... CA
... CA2 . . .

... CAn−1

]T

∈ R
pn×n (3.12)

is of rank n.
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3.3.2 Algebraic-differential equations

This is a system of equations of the form

E
dx

dt
= A x+B u, (3.13)

where the matrix E ∈ R
n×n is singular [113]. This is equivalent to a set of equations, some of which

are ordinary differential and the rest are algebraic. As a result of this, Eq. (3.13) cannot be converted
into (3.6) by substitution. The index of the system is the least number of differentiations of the
algebraic equations that is needed to get the form of Eq. (3.6). The system may not be completely
controllable since some of the components of x are algebraically related, but it may have restricted
or R-controllability [45].

3.4 Nonlinear aspects

The following are a few of the issues that arise in the treatment of nonlinear thermal control problems.

3.4.1 Models

There are no general mathematical models for thermal systems, but one that can be used is a
generalization of Eq. (3.6) such as

dx

dt
= f(x, u). (3.14)

where f : R
n × R

m 7→ R
n. If one is interested in local behavior about an equilibrium state x = x0,

u = 0, this can be linearized in that neighborhood to give

dx

dt
=

∂f

∂x

∣∣∣∣∣
0

x′ +
∂f

∂u

∣∣∣∣∣
0

u′

= Ax′ +Bu′, (3.15)

where x = x0 + x′ and u = u′. The Jacobian matrices (∂f/∂x)0 and (∂f/∂u)0, are evaluated at the
equilibrium point. Eq. (3.15) has the same form as Eq. (3.6).

3.4.2 Controllability and reachability

General theorems for the controllability of nonlinear systems are not available at this point in time.
Results obtained from the linearized equations generally do not hold for the nonlinear equations.
The reason is that in the nonlinear case one can take a path in state space that travels far from the
equilibrium point and then returns close to it. Thus regions of state space that are unreachable with
the linearized equations may actually be reachable. In a thermal convection loop it is possible to go
from one branch of a bifurcation solution to another in this fashion [1].

3.4.3 Bounded variables

In practice, due to hardware constraints it is common to have the physical variables confined to
certain ranges, so that variables such as x and u in Eqs. (C.9) and (3.2), being temperatures, heat
rates, flow rates and the like, are bounded. If this happens, even systems locally governed by Eqs.
(3.6) and (3.7) are now nonlinear since the sum of solutions may fall outside the range in which x
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exists and thus may not be a valid solution. On the other hand, for a controllable system in which
only u is bounded in a neighborhood of zero, x can reach any point in R

n if the eigenvalues of A have
zero or positive real parts, and the origin is reachable if the eigenvalues of A have zero or negative
real parts [179].

3.4.4 Relay and hysteresis

A relay is an element of a system that has an input-output relationship that is not smooth; it may be
discontinuous or not possess first or higher-order derivatives. This may be accompanied by hysteresis
where the relationship also depends on whether the input is increasing or decreasing. Valves are
typical elements in flow systems that have this kind of behavior.

3.5 System identification

To be able to design appropriate control systems, one needs to have some idea of the dynamic
behavior of the thermal system that is being controlled. Mathematical models of these systems
can be obtained in two entirely different ways: from first principles using known physical laws, and
empirically from the analysis of experimental information (though combinations of the two paths
are not only possible but common). The latter is the process of system identification, by which a
complex system is reduced to mathematical form using experimental data [75, 121, 129]. There are
many different ways in which this can be done, the most common being the fitting of parameters to
proposed models [141]. In this method, a form of Ls is assumed with unknown parameter values.
Through optimization routines the values of the unknowns are chosen to obtain the best fit of the
results of the model with experimental information. Apart from the linear Eq. (3.6), other models
that are used include the following.

• There are many forms based on Eq. (3.14), one of which is the closed-affine model

dx

dt
= F1(x) + F2(x)u (3.16)

The bilinear equation for which F1(x) = Ax and F2(x) = Nx+ b is a special case of this.

• Volterra models, like

y(t) = y0(t) +

∞∑

i=1

∫
∞

−∞

. . .

∫
∞

−∞

ki(t; t1, t2, t3, . . . , ti)u(t1) . . . u(ti) dt1 . . . dti (3.17)

for a SISO system, are also used.

• Functional [71], difference [23] or delay [57] equations such as

dx

dt
= A x(t− s) +B u (3.18)

also appear in the modeling of thermal systems.

• Fractional-order derivatives, of which there are several different possible definitions [10,17,134,
135, 148] can be used in differential models. As an example, the Riemann-Liouville definition
of the nth derivative of f(t) is

aDn
t f(t) =

1

Γ(m− n+ 1)

dm+1

dtm+1

∫ t

a

(t− s)m−nf(s) ds, (3.19)

where a and n are real numbers and m is the largest integer smaller than n.
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3.6 Control strategies

3.6.1 Mathematical model

Consider a body that is cooled from its surface by convection to the environment with a constant
ambient temperature T∞. It also has an internal heat source Q(t) to compensate for this heat loss,
and the control objective is to maintain the temperature of the body at a given level by manipulating
the heat source. The Biot number for the body is Bi = hL/k, where h is the convective heat transfer
coefficient, L is a characteristics length dimension of the body, and k is its thermal conductivity.
If Bi < 0.1, the body can be considered to have a uniform temperature T (t). Under this lumped
approximation the energy balance is given by

Mc
dT

dt
+ hAs(T − T∞) = Q(t), (3.20)

where M is the mass of the body, c is its specific heat, and As is the surface area for convection.
UsingMc/hAs and hAs(Ti−T∞) as the characteristic time and heat rate, this equation becomes

dθ

dt
+ θ = Q(t) (3.21)

Here θ = (T − T∞)/(Ti − T∞) where T (0) = Ti so that θ(0) = 1. The other variables are now non-
dimensional. With x = θ, u = Q, n = m = 1 in Eq. (3.6), we find from Eq. (3.10) that rank(M)=1,
so the system is controllable.

Open-loop operation to maintain a given non-dimensional temperature θr is easily calculated.
Choosing Q = θr, it can be shown from the solution of Eq. (3.21), that is

θ(t) = (1 − θr)e
−t + θr, (3.22)

that θ → θr as t → ∞. In practice, to do this the dimensional parameters hAs and T∞ must be
exactly known. Since this is usually not the case some form of feedback control is required.

3.6.2 On-off control

In this simple form of control the heat rate in Eq. (3.20) has only two values; it is is either Q = Q0

or Q = 0, depending on whether the heater is on or off, respectively. With the system in its on
mode, T → Tmax = T∞ + Q0/hAs as t → ∞, and in its off mode, T → Tmin = T∞. Taking the
non-dimensional temperature to be

θ =
T − Tmin

Tmax − Tmin

(3.23)

the governing equation is
dθ

dt
+ θ =

{
1 on
0 off

, (3.24)

the solution for which is

θ =

{
1 + C1e

−t on
C2e

−t off
. (3.25)

We will assume that the heat source comes on when temperature falls below a value TL, and goes
off when it is rises above TU . These lower and upper bounds are non-dimensionally

θL =
TL − Tmin

Tmax − Tmin

, (3.26)

θU =
TU − Tmin

Tmax − Tmin

. (3.27)
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Figure 3.3: Lumped approximation with on-off control.

The result of applying this form of control is an oscillatory temperature that looks like that
in Fig. 3.3, the period and amplitude of which can be chosen using suitable parameters. It can be
shown that the on and off time periods are

ton = ln
1 − θL

1 − θU
, (3.28)

toff = ln
θU

θL
, (3.29)

respectively. The total period of the oscillation is then

tp = ln
θU (1 − θL)

θL(1 − θU )
. (3.30)

If we make a small dead-band assumption, we can write

θL = θr − δ, (3.31)

θU = θr + δ, (3.32)

where δ ≪ 1. A Taylor-series expansion gives

tp = 2 δ

(
1

θr
+

1

1 − θr

)
+ . . . (3.33)

The period is thus proportional to the width of the dead band. The frequency of the oscillation
increases as its amplitude decreases.

3.6.3 PID control

The error e = θr − θ and control input u = Q can be used in Eq. (3.5), so that the derivative of Eq.
(3.21) gives

(Kd + 1)
d2θ

dt2
+ (Kp + 1)

dθ

dt
+Kiθ = Kiθr, (3.34)
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Figure 3.4: Lumped approximation with PID control; Ki = Kd = −0.1, θr = 0.5, (a) Kp = −0.1,
(b) Kp = −0.9.

with the initial conditions

θ = θ0 at t = 0, (3.35)

dθ

dt
= −Kp + 1

Kd + 1
θ0 +

Kpθr

Kd + 1
at t = 0. (3.36)

The response of the closed-loop system can be obtained as a solution. The steady-state for Ki 6= 0
is given by θ = θr. It can be appreciated that different choices of the controller constants Kp, Ki

and Kd will give overdamped or underdamped oscillatory or unstable behavior of the system. Fig.
3.4 shows two examples of closed-loop behavior with different parameter values.

Problems

1. Two lumped bodies A and B in thermal contact (contact thermal resistance Rc) exchange heat between
themselves by conduction and with the surroundings by convection. It is desired to control their temperatures
at TA and TB using separate internal heat inputs QA and QB .

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

A B

(a) Check that the system is controllable.
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(b) Set up a PID controller where its constants are matrices. Determine the condition for linear stability of
the control system. Show that the case of two independent bodies is recovered as Rc → ∞.

(c) Calculate and plot TA(t) and TB(t) for chosen values of the controller constants.

2. Apply an on-off controller to the previous problem. Plot TA(t) and TB(t) for selected values of the parameters.
Check for phase synchronization.

3. A number of identical rooms are arranged in a circle as shown, with each at a uniform temperature Ti(t). Each
room exchanges heat by convection with the outside which is at T∞, and with its neighbors with a conductive
thermal resistance R. To maintain temperatures, each room has a heater that is controlled by independent but
identical proportional controllers. (a) Derive the governing equations for the system, and nondimensionalize.
(b) Find the steady state temperatures. (c) Write the dynamical system in the form ẋ = Ax and determine
the condition for stability1.

i − 1

i

i + 1

T∞

T∞

1Eigenvalues of an N × N , circulant, banded matrix of the form

2

6

6

6

6

6

6

6

4

b c 0 . . . 0 a
a b c . . . 0 0
0 a b . . . 0 0
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 . . . 0 a b c
c 0 . . . 0 a b

3

7

7

7

7

7

7

7

5

are λj = b + (a + c) cos{2π(j − 1)/N} − i(a − c) sin{2π(j − 1)/N}, where j = 1, 2, . . . , N .
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Chapter 4

Conduction

4.1 Structures

Fig. 4.1 shows a complex shape consisting of conductive bars. At each node

∑

i

qi = 0 (4.1)

For each branch ∑

i

kiAi

Li
(Ti − T0) = 0 (4.2)

from which

T0 =

∑
i

kiAi

Li
Ti∑

i
kiAi

Li

(4.3)

4.2 Fin theory

4.2.1 Long time solution

The general fin equation is

a
∂θ

∂τ
− ∂

∂ξ

(
a
∂θ

∂ξ

)
+ f(θ) = 0 (4.4)

i

j

Figure 4.1: Complex conductive structures.

38
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where f(θ) includes heat transfer from the sides due to convection and radiation. The boundary
conditions are either Dirichlet or Neumannn type at ξ = 0 and ξ = 1. The steady state is determined
from

− d

dξ

(
a
dθ

dξ

)
+ f(θ) = 0 (4.5)

with the same boundary conditions. Substituting θ = θ+ θ′ in equation (4.4) and subtracting (4.5),
we have

a
∂θ′

∂τ
− ∂

∂ξ

(
a
∂θ′

∂ξ

)
+
[
f(θ + θ′) − f(θ)

]
= 0 (4.6)

where θ′ is the perturbation from the steady state. The boundary conditions for θ′ are homogeneous.
Multiplying by θ′ and integrating from ξ = 0 to ξ = 1, we have

dE

dτ
= I1 + I2 (4.7)

where

E =
1

2

∫ 1

0

a(θ′)2 dξ (4.8)

I1 =

∫ 1

0

θ′
∂

∂ξ

(
a
∂θ′

∂ξ

)
dξ (4.9)

I2 = −
∫ 1

0

θ′
[
f(θ + θ′) − f(θ)

]
dξ (4.10)

Integrating by parts we can show that

I1 = θ′a
∂θ′

∂ξ

∣∣∣∣∣

1

0

−
∫ 1

0

a

(
dθ′

dξ

)2

dξ (4.11)

= −
∫ 1

0

a

(
dθ′

dξ

)2

dξ (4.12)

since the first term on the right side of equation (4.11) is zero due to boundary conditions. Thus we
know from the above that I1 is nonpositive and from equation (4.8) that E is nonnegative. If we
also assume that

I2 ≤ 0 (4.13)

then equation (4.7) tells us that E must decrease with time until reaching zero. Thus the steady
state is globally stable. Condition (4.13) holds if [θ′ and f(θ + θ′) − f(θ)] are of the same sign or
both zero; this is a consequence of the Second Law of Thermodynamics.

4.2.2 Shape optimization of convective fin

Consider a rectangular fin of length L and thickness δ as shown in Fig. 4.2. The dimensional equation
is

d2T

dx2
−m2(T − T∞) = 0 (4.14)

where

m =

(
2h

ksδ

)1/2

(4.15)
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Figure 4.2: Rectangular fin.

We will take the boundary conditions

T (0) = Tb (4.16)

dT

dx
(L) = 0 (4.17)

The solution is
T = T∞ − (T − T∞) [tanhmL sinhmx− coshmx] (4.18)

The heat rate through the base per unit width is

q = −ksδ
dT

dx

∣∣∣∣∣
x=0

(4.19)

= ksδ(Tb − T∞)m tanhmL (4.20)

Writing L = Ap/δ, we get

q = ksδ

(
2h

ksδ

)1/2

(Tb − T∞) tanh

[
Ap

δ

(
2h

ksδ

)1/2
]

(4.21)

Keeping Ap constant, i.e. constant fin volume, the heat rate can be maximized if

δ
1/2
opt sech

2

[
Ap

δ

(
2h

ksδopt

)]
Ap

2h

ks

1/2

(−3

2
)δ

−5/2
opt +

1

2
δ
−1/2
opt tanh

[
Ap

δ

(
2h

ksδopt

)1/2
]

= 0 (4.22)

This is equivalent to
3βoptsech

2βopt = tanhβopt (4.23)

where

βopt =
Ap

δopt

(
2h

ksδopt

)
(4.24)

Numerically, we find that βopt = 1.4192. Thus

δopt =

[
Ap

βopt

(
ksAp

2h

)1/2
]2/3

(4.25)

Lopt =

[
βopt

(
ksAp

2h

)1/2
]2/3

(4.26)
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4.3 Fin structure

Consider now Fig. 4.1 with convection.

4.4 Fin with convection and radiation

Steady state solutions
Equation (4.4) reduces to

− d

dξ

(
a
dθ

dξ

)
+m2pθ + ǫp

[
(θ + β)4 − β4

]
= 0 (4.27)

Uniform cross section

For this case a = p = 1, so that

−d
2θ

dξ2
+m2θ + ǫ

[
(θ + β)4 − β4

]
= 0 (4.28)

Convective

With only convective heat transfer, we have

−d
2θ

dξ2
+m2θ = 0 (4.29)

the solution to whiich is
θ = C1 sinhmξ + C2 coshmξ (4.30)

the constants are determined from the boundary conditions. For example, if

θ(0) = 1 (4.31)

dθ

dξ
(1) = 0 (4.32)

we get
θ = − tanhm sinhmξ + coshmξ (4.33)

Example 4.1
If

T (0) = T0 (4.34)

T (L) = T1 (4.35)

then show that

T (x) =

"

T1 − T0 cosh

 

L

r

hP

kA

!# sinh

„

x
q

hP
kA

«

sinh

„

L
q

hP
kA

« + T0 cosh

 

x

r

hP

kA

!

(4.36)
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Radiative

The fin equation is

−d
2θ

dξ2
+ ǫ
[
(θ + β)4 − β4

]
= 0 (4.37)

Let
φ = θ + β (4.38)

so that

−d
2φ

dξ2
+ ǫφ4 = −ǫβ4 (4.39)

As an example, we will find a perturbation solution with the boundary conditions

φ(0) = 1 + β (4.40)

dφ

dξ
(1) = 0 (4.41)

We write
φ = φ0 + ǫφ1 + ǫ2φ2 + . . . (4.42)

The lowest order equation is

dφ
0

dξ2
= 0, φ0(0) = 1 + β,

dφ0

dξ
(1) = 0 (4.43)

which gives
φ0 = 1 + β (4.44)

To the next order
dφ
1

dξ2
= φ4

0 − β4, φ1(0) = 0,
dφ1

dξ
(1) = 0 (4.45)

with the solution

φ1 = [(1 + β)4 − β4]
ξ2

2
− [(1 + β)4 − β4]ξ (4.46)

The complete solution is

φ = (1 + β) + ǫ

{
[(1 + β)4 − β4]

ξ2

2
− [(1 + β)4 − β4]ξ

}
+ . . . (4.47)

so that

θ = 1 + ǫ

{
[(1 + β)4 − β4]

ξ2

2
− [(1 + β)4 − β4]ξ

}
+ . . . (4.48)

Convective and radiative

(4.49)
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4.4.1 Annular fin

Example 4.2
Show that under suitable conditions, the temperature distribution in a two-dimensional rectangle tends

to that given by a one-dimensional approximation.

4.5 Perturbations of one-dimensional conduction

4.5.1 Temperature-dependent conductivity

[13]
The governing equation is

d

dx

(
k(T )

dT

dx

)
− Ph

A
(T − T∞) = 0 (4.50)

with the boundary conditions

T (0) = Tb (4.51)

dT

dx
(L) = 0 (4.52)

we use the dimensionless variables

θ =
T − T∞
Tb − T∞

(4.53)

ξ =
x

L
(4.54)

Consider the special case of a linear variation of conductivity

k(T ) = k0

(
1 + ǫ

T − T∞
Tb − T∞

)
(4.55)

so that

(1 + ǫθ)
d2θ

dξ2
+ ǫ

(
dθ

dξ

)2

−m2θ = 0 (4.56)

θ(0) = 1 (4.57)

dθ

dξ
(L) = 0 (4.58)

where

m2 =
PhL2

Ak0(Tb − T∞)
(4.59)

Introduce
θ(ξ) = θ0(ξ) + ǫθ1(ξ) + ǫθ2(ξ) + . . . (4.60)
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Figure 4.3: Eccentric annulus.

Collect terms of O(ǫ0)

d2θ0
dξ2

−m2θ = 0 (4.61)

θ0(0) = 1 (4.62)

dθ0
dξ

(1) = 0 (4.63)

The solution is
θ(ξ) = coshmξ − tanhm sinhmξ (4.64)

To O(ǫ1)

d2θ1
dξ2

−m2θ1 = −θ0
d2θ0
dξ2

−
(
dθ0
dξ

)2

(4.65)

= −m2(1 − tanh2m) cosh 2mξ −m2 tanhm sinh 2mξ (4.66)

θ1(0) = 0 (4.67)

dθ1
dξ

(1) = 0 (4.68)

The solution is

4.5.2 Eccentric annulus

Steady-state conduction in a slightly eccentric annular space, as shown in Fig. 4.3 can be solved by
regular perturbation [13]. The radii of the two circles are r1 and r2.

We will use polar coordinates (r, ψ) with the center of the small circle as origin. The two circles
are at r = r1 and r = r̂, where

r22 = a2 + r̂2 + 2ar̂ cosψ. (4.69)

Solving for r̂, we have

r̂ =
√
r22 − a2(1 − cos2 ψ) − a cosψ. (4.70)
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In the quadratic solution, the positive sign corresponding to the geometry shown in the figure has
been kept.

The governing equation for the temperature is

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂ψ2

)
T (r, ψ) = 0. (4.71)

The boundary conditions are

T (r1, ψ) = T1, (4.72)

T (r̂, ψ) = T2. (4.73)

With the variables

θ =
T − T2

T1 − T2
. (4.74)

R =
r − r1
r2 − r1

. (4.75)

d =
r1

r2 − r1
. (4.76)

ǫ =
a

r2 − r1
, (4.77)

we get (
∂2

∂R2
+

1

R+ d

∂

∂R
+

1

(R+ d)2
∂2

∂ψ2

)
θ(R,ψ) = 0, (4.78)

and

θ(0, ψ) = 1, (4.79)

θ(R̂, ψ) = 0, (4.80)

where

R̂(ψ) =
r̂ − r1
r2 − r1

=
√

(1 + d)2 − ǫ2(1 − cos2 ψ) − ǫ cosψ − d, (4.81)

The perturbation expansion is

θ(R,ψ) = θ0(R,ψ) + ǫθ1(R,ψ) + ǫ2θ2(R,ψ) + . . . . (4.82)

Substituting in the equations, we get

(
∂2

∂R2
+

1

R+ d

∂

∂R
+

1

(R+ d)2
∂2

∂ψ2

)(
θ0 + ǫθ1 + ǫ2θ2 + . . .

)
= 0, (4.83)

R̂(ψ) = 1 − ǫ cosψ − ǫ2

2
(1 − cos2 ψ) + . . . , (4.84)

θ0(0, ψ) + ǫθ1(0, ψ) + ǫ2θ2(0, ψ) + . . . = 1, (4.85)

θ0(R̂, ψ) + ǫθ1(R̂, ψ) + ǫ2θ2(R̂, ψ) + . . . = 0. (4.86)
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Using Eq. (4.84), (4.86) can be further expanded in a Taylor series around R̂ = 1 to give

θ0(1, ψ) + ǫ

(
θ1(1, ψ) − cosψ

dθ0
dR

(1, ψ)

)
+ . . . = 0. (4.87)

Collecting terms to order O(ǫ0), we get

(
∂2

∂R2
+

1

R+ d

∂

∂R
+

1

(R+ d)2
∂2

∂ψ2

)
θ0 = 0, (4.88)

θ0(0, ψ) = 1, (4.89)

θ0(1, ψ) = 0, (4.90)

which has the solution

θ0(R,ψ) = 1 − ln(1 +R/h)

ln(1 + 1/h)
. (4.91)

To order O(ǫ1)

(
∂2

∂R2
+

1

R+ d

∂

∂R
+

1

(R+ d)2
∂2

∂ψ2

)
θ1 = 0, (4.92)

θ1(0, ψ) = 0, (4.93)

θ1(1, ψ) = cosψ
dθ0
dR

(1, ψ), (4.94)

=
cosψ

(1 + h) ln(1 + 1/h)
. (4.95)

The solution is

θ1(R,ψ) = ± R cosψ

(1 + 2h) ln(1 + 1/h)

R− 2h

R+ h
. (4.96)

4.6 Transient conduction

Let us propose a similarity solution of the transient conduction equation

∂2T

∂x2
− 1

κ

∂T

∂t
= 0 (4.97)

as

T = A erf

(
x

2
√
κt

)
(4.98)

Taking derivatives we find

∂T

∂x
= A

1√
πκt

exp

(
− x2

4κt

)
(4.99)

∂2T

∂x2
= −A x

2
√
πκ3t3

exp

(
− x2

4κt

)
(4.100)

∂T

∂t
= −A x

2
√
πκt3

exp

(
− x2

4κt

)
(4.101)

so that substitution verifies that equation (4.98) is a solution to equation (4.97).
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4.7 Linear diffusion

Let T = T (x, t) and
∂T

∂t
= α

∂2T

∂x2
(4.102)

in 0 ≤ x ≤ L, with the boundary and initial conditions T (0, t) = T1, T (L, t) = T2, and T (x, 0) =
f(x). The steady state solution is

T (x) = T1 +
T2 − T1

L
x. (4.103)

With
T ′(x, t) = T − T (4.104)

we have the same equation
∂T ′

∂t
= α

∂2T ′

∂x2
(4.105)

but with the conditions: T ′(0, t) = 0, T ′(L, t) = 0, and T ′(x, 0) = f(x) − T .
Following the methodology outlined in Section A.6.1, we consider the eigenvalue problem

d2φ

dx2
= λφ (4.106)

with φ(0) = φ(L) = 0. The operator is self-adjoint. Its eigenvalues are

λi = − i
2π2

L2
, (4.107)

and its orthonormal eigenfunctions are

φi(x) =

√
2

L
sin

iπx

L
. (4.108)

Thus we let

θ(x, t) =

∞∑

i=1

ai(t)φi(x), (4.109)

so that
daj

dt
= −α

(
jπ

L

)2

aj , (4.110)

with the solution

aj = Cj exp

{
−α

(
jπ

L

)2

t

}
. (4.111)

Thus

T ′(x, t) =

∞∑

i=1

Cj exp

{
−α

(
jπ

L

)2

t

}√
2

L
sin

iπx

L
. (4.112)

The solution shows that T ′ → 0, as t→ ∞. Thus θ = 0 is a stable solution of the problem. It
must be noted that there has been no need to linearize, since Eq. (4.105) was already linear.
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4.8 Nonlinear diffusion

The following diffusion problem with heat generation is considered in [81]

∂T

∂t
= ǫ

∂2T

∂x2
+ f(T ), (4.113)

with −∞ < x <∞, t ≥ 0, and ǫ≪ 1. The initial condition is taken to be

T (x, 0) = g(x) (4.114)

=
1

1 + eλx
. (4.115)

Consider two time scales, a fast, short one t1 = t, and a slow, long scale t2 = ǫt. Thus

∂

∂t
=

∂

∂t1
+ ǫ

∂

∂t2
. (4.116)

Assuming an asymptotic expansion of the type

T = T0(x, t1, t2) + ǫT1(x, t1, t2) + . . . (4.117)

we have a Taylor series expansion

f(T ) = f(T0) + ǫf ′(T0) + . . . (4.118)

Substituting and collecting terms of O(ǫ0), we get

∂T0

∂t1
= f(T0), (4.119)

with the solution ∫ T0

1/2

dr

f(r)
= t1 + θ(x, t2). (4.120)

The lower limit of the integral is simply a convenient value at which g(x) = 0.5. Applying the initial
condition gives

θ =

∫ g(x)

1/2

dr

f(r)
. (4.121)

The terms of O(ǫ) are
∂T1

∂t1
= f ′(T0)T1 +

∂2T0

∂x2
− ∂T0

∂t2
(4.122)

Differentiating Eq. 4.120 with respect to x gives

∂T0

∂x
= f(T0)

∂θ

∂x
, (4.123)

so that

∂2T0

∂x2
= f ′(T0)

∂T0

∂x

∂θ

∂x
+ f(T0)

∂2θ

∂x2

= f ′(T0)f(T0)

(
∂θ

∂x

)2

+ f(T0)
∂@2θ

∂x2
(4.124)
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Also, differentiating with respect to t2 gives

∂T0

∂t2
= f(T0)

∂θ

∂t2
(4.125)

Substituting in Eq. 4.122,

∂T1

∂t1
= f ′(T0)T1 + f(T0)

[
∂2θ

∂x2
− ∂θ

∂t2
+ f ′(T0)

(
∂θ

∂x

)2
]
. (4.126)

Since

∂

∂t1
ln f(T0) =

f ′(T0)

f(T0)

∂T0

∂t1
(4.127)

= f ′(T0) (4.128)

we have
∂T1

∂t1
= f ′(T0)T1 + f(T0)

[
∂2θ

∂x2
− ∂θ

∂t2
+

∂

∂t1
ln f(T0)

]
. (4.129)

The solution is

T1 =

[
A(x, t2) + t1

(
∂2θ

∂x2
− ∂θ

∂t2
+

(
∂θ

∂x

)2

ln f(T0)

)]
f(T0) (4.130)

which can be checked by differentiation since

∂T1

∂t1
=

[
∂2θ

∂x2
− ∂θ

∂t2
+ f ′(T0)

(
∂θ

∂x

)2
]
f(T0) (4.131)

+

[
A+ t1

(
∂2θ

∂x2
− ∂θ

∂t2

)
+

(
∂θ

∂x

)2

ln f(T0)

]
f ′(T0)

∂T0

∂t1
(4.132)

=

[
∂2θ

∂x2
− ∂θ

∂t2
+ f ′(T0)

(
∂θ

∂x

)2
]
f(T0) + T1f

′(T0). (4.133)

where Eq. 4.119 has been used.
To suppress the secular term in Eq. 4.130, we take

∂2θ

∂x2
− ∂θ

∂t2
+ κ(x, t1)

(
∂θ

∂x

)2

= 0. (4.134)

where κ = f ′(T0). Let
w(x, t2) = eκθ, (4.135)

so that its derivatives are

∂w

∂x
= κeκθ ∂θ

∂x
(4.136)

∂2w

∂x2
= κ2eκθ

(
∂θ

∂x

)2

+ κeκθ ∂
2θ

∂x2
(4.137)

∂w

∂t2
= κeκθ ∂θ

∂t2
(4.138)
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We find that

∂2w

∂x2
− ∂w

∂t2
= κeκθ

[
∂2θ

∂x2
− ∂θ

∂t2
+ κ

(
∂θ

∂x

)2
]

(4.139)

= 0. (4.140)

The solution is

w =
1√
π

∫
∞

∞

R(x+ 2r
√
t2)e

−r2

dr, (4.141)

where R(x) = w(x, 0). This can be confirmed by finding the derivatives

∂2w

∂x2
=

1√
π

∫
∞

∞

R′′(x+ 2r
√
t2)e

−r2

dr (4.142)

∂w

∂t2
=

1√
π

∫
∞

∞

R′(x+ 2r
√
t2)

r√
t2
e−r2

dr

= − 1

2
√
π

[
R′(x+ 2r

√
t2)

∣∣∣∣∣

∞

∞

−
∫

∞

∞

R′′(x+ 2r
√
t2)2

√
t2e

−r2

dr

]
(4.143)

=
1√
π

∫
∞

∞

R′′(x+ 2r
√
t2)e

−r2

dr (4.144)

and substituting. Also,

R(x) = exp [κθ(x, 0)] (4.145)

= exp

[
κ

∫ g(x)

1/2

dr

f(r)

]
(4.146)

so that the final (implicit) solution is

∫ T0

1/2

dr

f(r)
= t1 +

1

κ
ln

[
1√
π

∫
∞

∞

R(x+ 2r
√
t2)e

−r2

dr

]
(4.147)

Fisher’s equation: As an example, we take f(T ) = T (1 − T ), so that the integral in Eq. 4.120
is ∫ T0

1/2

dr

r(1 − r)
= ln

T0

T0 − 1
(4.148)

Substituting in the equation, we get

T0 =
1

1 + e−(t1+θ)
(4.149)

=
w

w + e−t1
(4.150)

Thus

w =
T0e

−t1

1 − T0
(4.151)

and from Eq. 4.115,

R(x) = w(x, 0) (4.152)

= e−λx (4.153)
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Substituting in Eq. 4.141 and integrating,

w = exp
(
−λx+ λ2t2

)
(4.154)

so that

T0 =
1

1 + exp [x− t(1 + λ2ǫ)/λ]
(4.155)

This is a wave that travels with a phase speed of (1 + λ2ǫ)/λ.

4.9 Stability by energy method

4.9.1 Linear

As an example consider the same problem as in Section 4.7. The deviation from the steady state is
governed by

∂T ′

∂t
= α

∂2T ′

∂x2
(4.156)

with T ′(0, t) = 0, T ′(L, t) = 0.
Define

E(t) =
1

2

∫ L

0

T ′2 dx (4.157)

so that E ≥ 0. Also

dE

dt
=

∫ L

0

T ′
∂T ′

∂t
dx

= α

∫ L

0

T ′
∂2T ′

∂x2
dx

= α



∫ L

0

T ′
∂T ′

∂x

∣∣∣∣∣

L

0

−
∫ L

0

(
∂T ′

∂x

)2

dx




= −α
∫ L

0

(
∂T ′

∂x

)2

dx (4.158)

so that
dE

dt
≤ 0. (4.159)

Thus E → 0 as t→ ∞ whatever the initial conditions.

4.9.2 Nonlinear

Let us now re-do the problem for a bar with temperature-dependent conductivity. Thus

∂T

∂t
=

∂

∂x

{
k(T )

∂T

∂x

}
, (4.160)

with T (0, t) = T1 and T (L, t) = T2. The steady state, T (x), is governed by

d

dx

{
k(T )

dT

dx

}
= 0. (4.161)
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Let the deviation from the steady state be

θ(x, t) = T (x, t) − T (x). (4.162)

Thus
∂θ

∂t
=

∂

∂x

{
k(θ)

∂θ

∂x

}
, (4.163)

where θ = θ(x, t), with θ(0, t) = θ(L, t) = 0. The steady state is θ = 0. Let

E(t) =
1

2

∫ L

0

θ2 dx. (4.164)

so that E ≥ 0. Then

dE

dt
=

∫ L

0

θ
∂θ

∂t
dx (4.165)

=

∫ L

0

θ
∂

∂x

{
k(θ)

∂θ

∂x

}
dx (4.166)

= θk(θ)
∂θ

∂x

∣∣∣∣∣

L

0

−
∫ L

0

k(θ)

(
∂θ

∂x

)2

dx. (4.167)

Due to boundary conditions the first term on the right is zero, so that dE/dt ≤ 0. Thus E → 0 as
t→ ∞.

4.10 Self-similar structures

Consider the large-scale structure shown in Fig. 4.4 in which each line i (indicated by i = 0, 1, . . .)
is a conductive bar. The length of each bar is Li = L/βi and its diameter is Di = D/βi. The
beginning is at temperature T0 and the ambient is T∞.

The total length of the structure is

LT = L0 + 2L1 + 4L2 + 8L3 + . . .

= . . . (4.168)

The total volume of the material is

VT =
π

4

(
D2

0L0 + 2D2
1L1 + 4D2

2L2 + 8D2
3L3 + . . .

)

= . . . (4.169)

Both of these are finite if β < βc = . . ..

4.11 Non-Cartesian coordinates

Toroidal, bipolar.
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Figure 4.4: Large-scale self-similar structure.

4.12 Thermal control

Partial differential equations (PDEs) are an example of infinite-dimensional systems that are very
common in thermal applications [2,110]. Exact controllability exists if the function representing the
state can be taken from an initial to a final target state, and is approximate if it can be taken to a
neighborhood of the target [118]. Determination of approximate controllability is usually sufficient
for practical purposes.

Consider a system governed by
∂X

∂t
= AX + Bu, (4.170)

with homogeneous boundary and suitable initial conditions, where A is a bounded semi-group oper-
ator [2], and B is a another linear operator. The state X(ξ, t) is a function of spatial coordinates ξ
and time t. If A is self-adjoint, then it has real eigenvalues and a complete orthonormal set of eigen-
functions φm(ξ), with m = 0, 1, 2 . . ., which forms a complete spatial basis for X. It is known [110]
that the system is approximately state controllable if and only if all the inner products

〈B, φm〉 6= 0. (4.171)

The lumped approximation in this chapter, valid for Bi ≪ 1, is frequently not good enough
for thermal systems, and the spatial variation of the temperature must be taken into account. The
system is then described by PDEs that represent a formidable challenge for control analysis. The
simplest examples occur when only one spatial dimension is present.

Fig. 4.5 shows a fin of length L with convection to the surroundings [4]. It is thin and long
enough such that the transverse temperature distribution may be neglected. The temperature field
is governed by

∂T

∂t
= α

∂2T

∂ξ2
− ζ(T − T∞), (4.172)
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Figure 4.5: One-dimensional fin with convection.

where T (ξ, t) is the temperature distribution that represents the state of the system, T∞ is the
temperature of the surroundings, t is time, and ξ is the longitudinal coordinate measured from
one end. The thermal diffusivity is α, and ζ = hP/ρcAc where h is the convective heat transfer
coefficient, Ac is the constant cross-sectional area of the bar, P is the perimeter of the cross section,
ρ is the density, and c is the specific heat. For simplicity it will be assumed that ζ is independent of
ξ. The end ξ = 0 will be assumed to be adiabatic so that (∂T/∂ξ)(0, t) = 0.

Since a linear system that is controllable can be taken from any state to any other, we can
arbitrarily assume the fin to be initially at a uniform temperature. There are two ways in which
the temperature distribution on the bar can be controlled: in distributed control1 the surrounding
temperature T∞ is the control input and in boundary control it is the temperature of the other end
T (L, t) of the fin.

(a) Distributed control: The boundary temperature T (L, t) = TL is fixed. Using it as a reference
temperature and defining θ = T − TL, Eq. (4.172) becomes,

∂θ

∂t
= α

∂2θ

∂ξ2
− ζθ + ζθ∞(t) (4.173)

with the homogeneous boundary and initial conditions (∂θ/∂ξ)(0, t) = 0, θ(L, t) = 0, and θ(ξ, 0) = 0.
The operators in Eq. (4.170) are A = α∂2/∂ξ2 − ζ, B = ζ, and u = θ∞. A is a self-adjoint

operator with the eigenvalues and eigenfunctions

βm = − (2m+ 1)2π2

4L2
− ζ,

φm =

√
2

L
cos

(2m+ 1)πξ

2L
,

respectively. Inequality (4.171) is satisfied for all m, so the system is indeed state controllable. It
can be shown that the same problem can also be analyzed using a finite-difference approximation [5].

(b) Boundary control: Using the constant outside temperature T∞ as reference and defining θ =
T − T∞, Eq. (4.172) becomes

∂θ

∂t
= α

∂2θ

∂ξ2
− ζθ, (4.174)

with the initial and boundary conditions (∂θ/∂ξ)(0, t) = 0, θ(L, t) = TL(t) − T∞, and θ(ξ, 0) = 0.
To enable a finite-difference approximation [5], the domain [0, L] is divided into n equal parts

of size ∆ξ, so that Eq. (4.174) becomes

dθi

dt
= σθi−1 − (2σ + ζ)θi + σθi−1, (4.175)

1This term is also used in other senses in control theory.
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where σ = α/∆ξ2. The nodes are i = 1, 2, . . . , n + 1, where i = 1 is at the left and i = n + 1 at
the right end of the fin in Fig. 4.5. With this Eq. (4.174) can be discretized to take the form of Eq.
(3.6), where x is the vector of unknown θi. Thus we find

A =




−(2σ + ζ) 2σ 0 · · · 0

σ −(2σ + ζ) σ
...

0
. . .

. . .
. . .

... σ
0 · · · 0 σ −(2σ + ζ)




∈ R
n×n, (4.176)

B = [0, · · · , σ]T ∈ R
n. (4.177)

The boundary conditions have been applied to make A non-singular: at the left end the fin is
adiabatic, and at the right end θn+1 is the control input u.

The controllability matrix M is

M =




0 · · · · · · 0 σn

0 · · · 0 σn−1 · · ·
...

...
...

...
...

0 0 σ3 · · · · · ·
0 σ2 −2σ2(2σ + ζ) · · · · · ·
σ −σ(2σ + ζ) σ3 + σ(2σ + ζ)2 · · · · · ·




(4.178)

The rank of M is n, indicating that the state of the system is also boundary controllable.

4.13 Multiple scales

Solve

∂T1

∂t
= α

∂2(T1 − T2)

∂x2
(4.179)

∂T2

∂t
= Rα

∂2(T2 − T1)

∂x2
(4.180)

where ǫ≪ 1, and with a step change in temperature at one end. Let

t = t0 + ǫt1 (4.181)

Problems

1. From the governing equation for one-dimensional conduction

d

dx

»

k(x, T )
dT

dx

–

= 0,

with boundary conditions

T (0) = T +
∆T

2
,

T (L) = T − ∆T

2
.

show that the magnitude of the heat rate is independent of the sign of ∆T if we can write k(x, T ) = A(x) λ(T ).
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2. Consider a rectangular fin with convection, radiation and Dirichlet boundary conditions. Calculate numerically
the evolution of an initial temperature distribution at different instants of time. Graph the results for several
values of the parameters.

3. Consider a longitudinal fin of concave parabolic profile as shown in the figure, where δ = [1 − (x/L)]2δb. δb

is the thickness of the fin at the base. Assume that the base temperature is known. Neglect convection from
the thin sides. Find (a) the temperature distribution in the fin, and (b) the heat flow at the base of the fin.
Optimize the fin assuming the fin volume to be constant and maximizing the heat rate at the base. Find (c)
the optimum base thickness δb, and (d) the optimum fin height L.

T

T

b

∞

x

L

Figure 4.6: Longitudinal fin of concave parabolic profile.



Chapter 5

Forced convection

In this chapter we will considering the heat transfer in pipe flows. We will take a one-dimensional ap-
proach and neglect transverse variations in the velocity and temperature. In addition, for simplicity,
we will assume that fluid properties are constant and that the area of the pipe is also constant.

5.1 Hydrodynamics

5.1.1 Mass conservation

For a duct of constant cross-sectional area and a fluid of constant density, the mean velocity of the
fluid, V , is also constant.

5.1.2 Momentum equation

The forces on an element of length ds, shown in Fig. 5.1, in the positive s direction are: fv, the
viscous force and fp, the pressure force. We can write

fv = −τw P ds (5.1)

fp = −A∂p
∂s
ds (5.2)

where τw is the magnitude of the wall shear stress, and p is the pressure in the fluid. Since the mass
of the element is ρA ds, we can write the momentum equation as

ρA ds
dV

dt
= fv + fp (5.3)

from which we get
dV

dt
+
τwP

ρA
= −1

ρ

∂p

∂s
(5.4)

Integrating over the length L of a pipe, we have

dV

dt
+

4τw
ρD

=
p1 − p2

ρL
(5.5)

where p1 and p2 are the pressures at the inlet and outlet respectively, and the hydraulic diameter is
defined by D = 4A/P .

57
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ds

s

p p+dp

f

f

p

v

Figure 5.1: Forces on an element of fluid.

For fully developed flow we can assume that τw is a function of V that depends on the mean
velocity profile, and acts in a direction opposite to V , so that we can write

dV

dt
+ T (|V |)V = β ∆p (5.6)

where T (V ) = |4τw/ρDV | is always positive, β = 1/ρL, and ∆p = p1 − p2 is the pressure difference
that is driving the flow. The wall shear stress is estimated below for laminar and turbulent flows.

Laminar

The fully developed laminar velocity profile in a circular duct is given by the Poiseuille flow result

ux(r) = um

(
1 − 4r2

D2

)
(5.7)

where u is the local velocity, r is the radial coordinate, um is the maximum velocity at the centerline,
and D is the diameter of the duct. The mean velocity is given by

V =
4

πD2

∫ D/2

0

ux(r) 2πr dr (5.8)

Substituting the velocity profile, we get

V =
um

2
(5.9)

The shear stress at the wall τw is given by

τw = −µ∂ux

∂r

∣∣∣∣∣
r=D/2

(5.10)

= µum
4

D
(5.11)

=
8µV

D
(5.12)

The wall shear stress is linear relationship

τw = αV (5.13)

where

α =
8µ

D
(5.14)

so that

T (|V |)V =
32µ

ρD2
V (5.15)
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Turbulent

For turbulent flow the expression for shear stress at the wall of a duct that is usually used is

τw =
f

4

(
1

2
ρV 2

)
(5.16)

so that

T (V ) =
f

2D
|V |V. (5.17)

Here f is the Darcy-Weisbach friction factor1. The friction factor is also a fucntion of |V |, and may
be calculated from the Blasius equation for smooth pipes

f =
0.3164

Re1/4
(5.18)

where the Reynolds number is Re = |V |D/ν, or the Colebrook equation for rough pipes

1

f1/2
= −2.0 log

(
e/Dh

3.7
+

2.51

Re f1/2

)
(5.19)

where e is the roughness at the wall, or similar expressions.
In the flow in a length of duct, L, without acceleration, the pressure drop is given by

∆p A = τwPL (5.20)

where A is the cross-sectional area, and P is the inner perimeter. Thus

∆p = f

(
L

4A/P

) (
1

2
ρV 2

)
(5.21)

= f

(
L

D

) (
1

2
ρ|V |V

)
(5.22)

Example 5.1
Consider a long, thin pipe with pressures p1 and p2 ate either end. For t ≤ 0, p1 − p2 = 0 and there is no

flow. For t > 0, p1 − p2 is a nonzero constant. Find the resulting time-dependent flow. Make the assumption
that the axial velocity is only a function of radial position and time.

5.1.3 Long time behavior

Consider the flow in a single duct of finite length with a constant driving pressure drop. The
governing equation for the flow velocity is equation (5.6). The flow velocity in the steady state is a
solution of

T (V )V = β ∆p (5.23)

1Sometimes, confusingly, the Fanning friction factor, which is one-fourth the Darcy-Weisbach value, is used in the
literature.
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where ∆p and V are both of the same sign, say nonnegative. We can show that under certain
conditions the steady state is globally stable. Writing V = V + V ′, equation (5.6) becomes

dV ′

dt
+ T (V + V ′)(V + V ′) = β ∆p (5.24)

Subtracting equation (5.23), we get

dV ′

dt
= −T (V + V ′)(V + V ′) + T (V )(V ) (5.25)

Defining

E =
1

2
V ′2 (5.26)

so that E ≥ 0, we find that

dE

dt
= V ′

dV ′

dt
(5.27)

= −V ′
[
T (V + V ′)(V + V ′) − T (V )V

]
(5.28)

= −V ′V
[
T (V + V ′) − T (V )

]
− V ′2T (V + V ′) (5.29)

If we assume that T (V ) is a non-decreasing function of V , we see that

V ′V
[
T (V + V ′) − T (V )

]
≥ 0 (5.30)

regardless of the sign of either V ′ or V , so that

dE

dt
≤ 0 (5.31)

Thus, E(V ) is a Lyapunov function, and V = V is globally stable to all perturbations.

5.2 Energy equation

Consider a section of a duct shown in Fig. 5.2, where an elemental control volume is shown. The
heat rate going in is given by

Q− = ρAV cT − kA
∂T

∂s
(5.32)

where the first term on the right is due to the advective and second the conductive transports. c is
the specific heat at constant pressure and k is the coefficient of thermal conductivity. The heat rate
going out is

Q+ = Q− +
∂Q−

∂s
ds (5.33)

The difference between the two is

Q+ −Q− =
∂Q−

∂s
ds

=

[
ρAV c

∂T

∂s
− kA

∂2T

∂s2

]
ds (5.34)
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ds

Q Q
_ +

Q

s

Figure 5.2: Forces on an element of fluid.

Furthermore, heat is gained from the side at a rate dQ, which can be written as

dQ = q ds (5.35)

where q is the rate of gain of heat per unit length of the duct.
An energy balance for the elemental control volume gives

Q− + dQ = Q+ + ρA ds c
∂T

∂t
(5.36)

where the last term is the rate of accumulation of energy within the control volume.
Substituting equations (5.34) and (5.35) in (5.36) we get the energy equation

∂T

∂t
+ V

∂T

∂s
=

q

ρAc
+

k

ρc

∂2T

∂s2
(5.37)

The two different types of heating conditions to consider are:

5.2.1 Known heat rate

The heat rate per unit length, q(s), is known all along the duct. Defining

ξ =
x

L
(5.38)

θ =
(T − Ti)ρV AC

Lq
(5.39)

τ =
tV

L
(5.40)

gives
∂θ

∂τ
+
∂θ

∂ξ
− λ

d2θ

dξ2
= 1 (5.41)

where

λ =
k

LV ρc
(5.42)

Boundary conditions may be θ = 0 at ξ = 0, θ = θ1 at ξ = 1.
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Tin(t) T (s, t) Tout(t)

T∞(t)

V
-

Figure 5.3: Fluid duct with heat loss.

5.2.2 Convection with known outside temperature

The heating is now convective with a heat transfer coefficient U , and an external temperature of
T∞(s). Thus,

q = PU(T∞ − T ) (5.43)

Defining

ξ =
x

L
(5.44)

θ =
T − Ti

T∞ − Ti
(5.45)

τ =
tV

L
(5.46)

gives
∂θ

∂τ
+
∂θ

∂ξ
− λ

d2θ

dξ2
+Hθ = H (5.47)

where

λ =
k

LV ρc
(5.48)

H =
UρL

ρV Ac
(5.49)

5.3 Single duct

Consider the duct that is schematically shown in Fig. 5.3. The inlet temperature is Tin(t), and the
outlet temperature is Tout(t), and the fluid velocity is V . The duct is subject to heat loss through
its surface of the form UP (T − T∞) per unit length, where the local fluid temperature is T (s, t) and
the ambient temperature is T∞(t). U is the overall heat transfer coefficient and P the cross-sectional
perimeter of the duct.

We assume that the flow is one-dimensional, and neglect axial conduction through the fluid
and the duct. Using the same variables to represent non-dimensional quantities, the governing
non-dimensional equation is

∂θ

∂τ
+
∂θ

∂ξ
+Hθ = 0 (5.50)

where the nondimensional variables are

ξ =
s

L
(5.51)

τ =
tV

L
(5.52)

θ =
T − T∞

∆T
(5.53)
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The characteristic time is the time taken to traverse the length of the duct, i.e. the residence time.
The ambient temperature is

T∞(t) = T∞ + T̃∞(t) (5.54)

where the time-averaged and fluctuating parts have been separated. Notice that the nondimensional
mean ambient temperature is, by definition, zero. The characteristic temperature difference ∆T will
be chosen later. The parameter γ = UPL/ρAV c represents the heat loss to the ambient.

5.3.1 Steady state

No axial conduction

The solution of the equation
dθ

dξ
+H(θ − 1) = 0 (5.55)

with boundary condition θ(0) = 0 is
θ(ξ) = 1 − e−Hξ (5.56)

With small axial conduction

We have

λ
d2θ

dξ2
− dθ

dξ
−H(θ − 1) = 0 (5.57)

where λ≪ 1, and with the boundary conditions θ(0) = 0 and θ(1) = θ1.
We can use a boundary layer analysis for this singular perturbation problem. The outer solution

is
θout = 1 − e−Hξ (5.58)

The boundary layer is near ξ = 1, where we make the transformation

X =
ξ − 1

λ
(5.59)

This gives the equation
d2θin
dX2

− dθin
dX

− λH(θin − 1) = 0 (5.60)

To lowest order, we have

λ
d2θin
dX2

− dθin
dX

= 0 (5.61)

with the solution
θin = A+BeX (5.62)

The boundary condition θin(X = 0) = θ1 gives θ1 = A+B, so that

θin = A+ (θ1 −A)eX (5.63)

The matching conditions is
θouter (ξ = 1) = θin(X → −∞) (5.64)

so that
A = 1 − e−H (5.65)

The composite solution is then

θ = 1 − e−H + (θ1 − 1 + e−H)e(ξ−1)/λ + . . . (5.66)
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Figure 5.4: Solution in s-t space.

5.3.2 Unsteady dynamics

The general solution of this equation is

T (s, t) =

[
f(s− t) + γ

∫ t

0

eHt′ T̃∞(t′) dt′
]
e−Ht (5.67)

The boundary conditions T (0, t) = Tin(t) and T (s, 0) = T0(s) are shown in Fig. 5.4. The solution
becomes

T (s, t) =

{
Tin(t− s)e−Hs +He−Ht

∫ t

t−s
eHt′ T̃∞(t′) dt′ for t ≥ s

T0(s− t)e−Ht +He−Ht
∫ t

0
eHt′ T̃∞(t′) dt′ for t < s

(5.68)

The t < s part of the solution is applicable to the brief, transient period of time in which the fluid
at time t = 0 has still not left the duct. The later t > s part depends on the temperature of the
fluid entering at s = 0. The temperature, Tout(t), at the outlet section, s = 1, is given by

Tout(t) =

{
Tin(t− 1)e−H +He−Ht

∫ t

t−1
eHt′ T̃∞(t′) dt′ for t ≥ 1

T0(1 − t)e−Ht +He−Ht
∫ t

0
eHt′ T̃∞(t′) dt′ for t < 1

(5.69)

It can be observed that, after an initial transient, the inlet and outlet temperatures are related
by a unit delay. The outlet temperature is also affected by the heat loss parameter, γ, and the
ambient temperature fluctuation, T̃∞. The following are some special cases of equation (5.69).

5.3.3 Perfectly insulated duct

If H = 0 the outlet temperature simplifies to

Tout(t) =

{
Tin(t− 1) for t ≥ 1
T0(1 − t) for t < 1

(5.70)

The outlet temperature is the same as the inlet temperature, but at a previous instant in time.

5.3.4 Constant ambient temperature

For this T̃∞ = 0, and equation (5.69) becomes

Tout(t) =

{
Tin(t− 1)e−H for t ≥ 1
T0(1 − t)e−Ht for t < 1

(5.71)

This is similar to the above, but with an exponential drop due to heat transfer.
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Figure 5.5: Effect of wall.

5.3.5 Periodic inlet and ambient temperature

We take

Tin(t) = T in + T̂in sinωt (5.72)

T̃∞(t) = T̂∞ sin Ωt (5.73)

so that equation (5.69) becomes

Tout(t) =





[
T in + T̂in sinω(t− 1)

]
e−H

+T̂∞H
√

−2e−H cos 1+e−2H

H2+Ω2 sin(Ωt+ φ) for t ≥ 1

T0(1 − t)e−Ht + H
H2+Ω2 T̂∞

√
H2 + Ω2 sin(Ωt+ φ′) for t < 1

where

tanφ = −H(1 − e−H cos 1) + e−HΩsin 1

Ω(1 − e−H cos 1) −He−H sin 1
(5.74)

tanφ′ = − Ω

H
(5.75)

The outlet temperature has frequencies which come from oscillations in the inlet as well as the ambi-
ent temperatures. A properly-designed control system that senses the outlet temperature must take
the frequency dependence of its amplitude and phase into account. There are several complexities
that must be considered in practical applications to heating or cooling networks, some of which are
analyzed below.

5.3.6 Effect of wall

The governing equations are

ρAc
∂T

∂t
+ ρV Ac

∂T

∂x
− kA

∂2T

∂x2
+ hiPi(T − T∞) = 0 (5.76)

ρwAwcw
∂Tw

∂t
− kwAw

∂2Tw

∂x2
+ hiPi(Tw − T ) + hoPo(Tw − T∞) = 0 (5.77)

(5.78)
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Nondimensionalize, using

ξ =
x

L
(5.79)

τ =
tV

L
(5.80)

θ =
T − T∞
Ti − T∞

(5.81)

θw =
Tw − T∞
Ti − T∞

(5.82)

we get

∂θ

∂τ
+
∂θ

∂ξ
− λ

∂2θ

∂ξ2
+Hin(θ − θw) = 0 (5.83)

∂θw

∂τ
− λw

∂2θw

∂ξ2
+Hin(θw − θ) +Houtθw = 0 (5.84)

where

λw =
kw

ρwV AwcwL
(5.85)

Hin =
hinPinL

ρwAwcwV
(5.86)

Hout =
houtPoutL

ρwAwcwV
(5.87)

In the steady state and with no axial conduction in the fluid

dθ

dξ
+Hin(θ − θw) = 0 (5.88)

−λw
d2θw

dξ2
+Hin(θw − θ) +Houtθw = 0 (5.89)

If we assume λw = 0 also, we get

θw =
Hin

Hin +Hout
θ (5.90)

The governing equation is
dT

dξ
+Hwθ = 0 (5.91)

where

Hw =
Hw

inH
w
out

Hw
in +Hw

out

(5.92)

5.4 Two-fluid configuration

Consider the heat balance in Fig. 5.6. Neglecting axial conduction, we have
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1

2

Figure 5.6: Two-fluids with wall.

ρwAwcw
∂Tw

∂t
+ h1(Tw − T1) + h2(Tw − T2) = 0 (5.93)

ρ1A1c1
∂T1

∂t
+ ρ1V1c1

∂T1

∂x
+ h1(T1 − Tw) = 0 (5.94)

ρ2A2c2
∂T2

∂t
+ ρ2V2c2

∂T2

∂x
+ h2(T2 − Tw) = 0 (5.95)

5.5 Flow between plates with viscous dissipation

Consider the steady, laminar flow of an incompressible, Newtonian fluid between fixed, flat plates at
y = −h and y = h. The flow velocity u(y) is in the x-direction due to a constant pressure gradient
P < 0. The plane walls are kept isothermal at temperature T = T0, and the viscosity is assumed to
decrease exponentially with temperature according to

µ = exp(1/T ).) (5.96)

The momentum equation is then

d

dy

(
µ(T )

du

dy

)
= P (5.97)

with boundary conditions u = 0 at y = ±h. Integrating, we get

µ(T )
du

dy
= Py + C (5.98)

Due to symmetry du/dy = 0 at y = 0 so that C = 0. There is also other evidence for this.
The energy equation can be written as

k
d2T

dy2
+ µ(T )

(
du

dy

)2

= 0 (5.99)

with T = T0 at y = ±h, where k has been taken to be a constant. The second term corresponds
to viscous heating or dissipation, and the viscosity is assumed to be given by Eq. (5.96). We non-
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Figure 5.7: Two solutions of Eq. (5.102) with
boundary conditions (5.104) for a = 1.
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Figure 5.8: Bifurcation diagram.

Figure 5.9: Schematic of regenerator.

dimensionalize using

θ = β(T − T0) (5.100)

η =
y

h
(5.101)

The energy equation becomes
d2θ

dη2
+ a η2eθ = 0 (5.102)

where

a =
βP 2h4

kµ0
(5.103)

The boundary conditions are
θ = 0 for η = ±1 (5.104)

There are two solutions that can be obtained numerically (by the shooting method, for instance)
for the boundary-value problem represented by Eqs. (5.102) and (5.104) for a < ac and above which
there are none. There are other solutions also but they do not satisfy the boundary conditions on
the velocity. As examples, two numerically obtained solutions for a = 1 are shown in Fig. 5.7.

The bifurcation diagram corresponding to this problem is shown in Fig. 5.8 where S is the
slope of the temperature gradient on one wall.

5.6 Regenerator

A regenerator is schematically shown in Fig. 5.9.

Mc
dT

dt
+ ṁc(Tin − Tout) = 0 (5.105)
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Figure 5.10: Flow between disks.

5.7 Radial flow between disks

This is shown in Fig. 5.10.

ur =
C

r
(5.106)

qr = ur2πrHT − k2πrH
dT

dr
(5.107)

where H is the distance between the disks. With dqr/dr = 0, we get

d

dr
(rurT ) = k

d

dr
(r
dT

dr
) (5.108)

For the boundary conditions T (r1) = T1 and T (r2) = T2, the temperature field is

T (r) =
T1 ln(r2/r) − T2 ln(r1/r)

ln(r2/r1)
(5.109)

Example 5.2
Redo the previous problem with a slightly eccentric flow.

5.8 Networks

A network consists of a number of ducts that are united at certain points. At each junction, we
must have ∑

i

AiVi = 0 (5.110)

where Ai are the areas and Vi the fluid velocities in the ducts coming in, the sum being over all the
ducts entering the junction. Furthermore, for each duct, the momentum equation is

dVi

dt
+ T (Vi)Vi = β

[
pin

i − pout
i + ∆p

]
(5.111)
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where ∆p is the pressure developed by a pump, if there happens to be one on that line. We must
distinguish between two possible geometries.

(a) Two-dimensional networks: A planar or two-dimensional network is one that is topologically
equivalent to one on a plane in which every intersection of pipes indicates fluid mixing. For such a
graph, we know that

E = V + F − 1 (5.112)

where E, V and F are the number of edges, vertices and faces, respectively. In the present context,
these are better referred to as branches, junctions and circuits, respectively.

The unknowns are the E velocities in the ducts and the V pressures at the junctions, except
for one pressure that must be known. The number of unknowns thus are E+V −1. The momentum
equation in the branches produce E independent differential equations, while mass conservation at
the juntions give V − 1 independent algebraic relations. Thus the number of

(b) Three-dimensional networks: For a three-dimensioanl network, we have

E = V + F − 2 (5.113)

If there are n junctions, they can have a maximum of n(n−1)/2 lines connecting them. The number
of circuits is then (n2 − 3n+ 4)/2. The number of equations to be solved is thus quite large if n is
large.

5.8.1 Hydrodynamics

The global stability of flow in a network can be demonstrated in a manner similar to that in a
finite-length duct. In a general network, assume that there are n junctions, and each is connected
to all the rest. Also, pi is the pressure at junction i, and Vij is the flow velocity from junction i to j
defined to be positive in that direction. The flow velocity matrix Vij is anti-symmetric, so that Vii

which has no physical meaning is considered zero.
The momentum equation for Vij is

dVij

dt
+ Tij(Vij)Vij = βij(pi − pj) (5.114)

The network properties are represented by the symmetric matrix βij . The resistance Tij may or
may not be symmetric. To simplify the analysis the network is considered fully connected, but
Tij is infinite for those junctions that are not physically connected so that the flow velocity in the
corresponding branch is zero. We take the diagonal terms in Tij to be also infinite, so as to have
Vii = 0.

The mass conservation equation at junction j for all flows arriving there is

n∑

i=1

AijVij = 0 for j = 1, . . . , n (5.115)

where Aij is a symmetric matrix. The symmetry of Aij and antisymmetry of Vij gives the equivalent
form

n∑

i=1

AjiVji = 0 for j = 1, . . . , n (5.116)

which is simply the mass conservation considering all the flows leaving junction j.



5.8. Networks 71

The steady states are solutions of

Tij(V ij)V ij = βij(pi − pj) (5.117)
n∑

i=1

AijV ij = 0 or
n∑

i=1

AjiV ji = 0 (5.118)

We write

Vij = V ij + V ′

ij (5.119)

pi = p+ p′i (5.120)

Substituting in equations (5.114)–(5.116), and subtracting equations (5.117) and (5.118) we get

dV ′

ij

dt
= −

[
Tij(V ij + V ′

ij)(V ij + V ′

ij) − Tij(V ij)V ij

]
+ βij(p

′

i − p′j) (5.121)

n∑

i=1

AijV
′

ij = 0 or
n∑

i=1

AjiV
′

ji = 0 (5.122)

Defining

E =
1

2

n∑

j=1

n∑

i=1

Aij

βij
V ′2

ij , βij > 0 (5.123)

we get

dE

dt
=

n∑

j=1

n∑

i=1

Aij

βij
V ′

ij

dV ′

ij

dt
(5.124)

= −
n∑

j=1

n∑

i=1

Aij

βij
V ′

ij

[
Tij(V ij + V ′

ij)(V ij + V ′

ij) − Tij(V ij)V ij

]

+

n∑

j=1

n∑

i=1

AijV
′

ij(p
′

i − p′j) (5.125)

The pressure terms vanish since

n∑

j=1

n∑

i=1

AijV
′

ijp
′

i =
n∑

i=1

n∑

j=1

AijV
′

ijp
′

i (5.126)

=

n∑

i=1


p′i

n∑

j=1

AijV
′

ij


 (5.127)

= 0 (5.128)

and

n∑

j=1

n∑

i=1

AijV
′

ijp
′

j =
n∑

j=1

(
p′j

n∑

i=1

AijV
′

ij

)
(5.129)

= 0 (5.130)
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Figure 5.11: Star network.

The terms that are left in equation (5.125) are similar to those in equation (5.30) and satisfy the
same inequality. Since E ≥ 0 and dE/dt ≤ 0, the steady state is globally stable. For this reason the
steady state is also unique.

Example 5.3
Show that the flow in the the star network shown in Fig. 5.11 is globally stable. The pressures p1, p2 and

p3 are known while the pressure p0 and velocities V10, V20 and V30 are the unknowns.
For branches i = 1, 2, 3, equation (5.6) is

dVi0

dt
+ Ti0(Vi0)Vi0 = βi0(pi − p0) (5.131)

Equation (5.110) at the junction gives
3
X

i=1

Ai0Vi0 = 0 (5.132)

In the steady state

Ti0(V i0)V i0 = βi0(pi − p0) (5.133)

3
X

i=1

Ai0V i0 = 0 (5.134)

Substituting Vi0 = V i0 + V ′

i0 and p0 = p0 + p′0 in equations (5.131) and (5.132) and subtracting equations
(5.133) and (5.134), we find that

dV ′

i0

dt
= −

ˆ

Ti0(V i0 + V ′

i0)(V i0 + V ′

i0) − Ti0(V i0)V i0

˜

− βi0p′0 (5.135)

3
X

i=1

Ai0V ′

i0 = 0 (5.136)

If we define

E =
1

2

3
X

i=1

Ai0

βi0
V ′2

i (5.137)

we find that

dE

dt
=

3
X

i=1

Ai0

βi0
V ′

i0

dV ′

i0

dt
(5.138)

= −
3
X

i=1

Ai0

βi0
V ′

i0

ˆ

Ti0(V i0 + V ′

i0)(V i0 + V ′

i0) − Ti0(V i0)V i0

˜

− p′0

3
X

i=1

Ai0V ′

i0 (5.139)
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The last term vanishes because of equation (5.136). Thus

dE

dt
= −

3
X

i=1

Ai0

βi0
V ′

i0V i0

ˆ

Ti0(V i0 + V ′

i0) − Ti0(V i0)
˜

−
3
X

i=1

Ai0

βi0
V ′2

i0Ti0(V i0 + V ′

i0) (5.140)

Since E ≥ 0 and dE/dt ≤ 0, E is a Lyapunov function and the steady state is globally stable.

5.8.2 Thermal networks

[61]

5.9 Thermal control

5.9.1 Control with heat transfer coefficient

5.9.2 Multiple room temperatures

Let there be n interconnected rooms. The wall temperature of room i is Tw
i and the air temperature

is T a
i . The heat balance equation for this room is

Ma
i c

w dT
w
i

dt
= hiAi(T

a
i − Tw

i ) + UiA
e
i (T

e − Tw
i ) (5.141)

Ma
i c

a dT
a
i

dt
= hiAi(T

w
i − T a

i ) +
1

2
ca
∑

j

(ma
ji + |ma

ji|)T a
j

−1

2
ca
∑

j

(ma
ij + |ma

ij |)T a
i + qi (5.142)

where T e is the exterior temperature, mij is the mass flow rate of air from room i to room j. By
definition mij = −mji. Since mii has no meaning and can be arbitrarily taken to be zero, mij is an
anti-symmetric matrix. Also, from mass conservation for a single room, we know that

∑

j

ma
ji = 0 (5.143)

Analysis

The unknowns in equations (5.141) and (5.142) are the 2n temperatures Tw
i and T a

i .
(i) Steady state with U = 0
(a) The equality ∑

i

∑

j

(ma
ji + |ma

ji|)T a
j −

∑

i

∑

j

(ma
ij + |ma

ij |)T a
i = 0 (5.144)

can be shown by interchanging i and j in the second term. Using this result, the sum of equations
(5.141) and (5.142) for all rooms gives ∑

i

qi = 0 (5.145)

which is a necessary condition for a steady state.
(b) Because the sum of equations (5.141) and (5.142) for all rooms gives an identity, the set of
equations is not linearly independent. Thus the steady solution is not unique unless one of the room
temperatures is known.
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Control

The various proportional control schemes possible are:

• Control of individual room heating

qi = −Ki(T
a
i − T set

i ) (5.146)

• Control of mass flow rates
ma

ji = fij(T
a
j , T

a
i , T

set
i ) (5.147)

Similar on-off control schemes can also be proposed.

5.9.3 Two rooms

Consider two interconnected rooms 1 and 2 with mass flow m from 1 to 2. Also there is leakage of
air into room 1 from the exterior at rate m, and leakage out of room 2 to the exterior at the same
rate. The energy balances for the two rooms give

M1c
a dT1

dt
= U1A1(T

e − T1) +
1

2
(m+ |m|)(T e − T1)

−1

2
(m− |m|)(T2 − T1) + q1 (5.148)

M2c
a dT2

dt
= U2A2(T

e − T2) −
1

2
(m− |m|)(T e − T2)

+
1

2
(m+ |m|)(T1 − T2) + q2 (5.149)

The overall mass balance can be given by the sum of the two equations to give

M1c
a dT1

dt
+M2c

a dT2

dt
= U1A1(T

e − T1) + U2A2(T
e − T2) + |m|T e

+
1

2
(m− |m|)T1 −

1

2
(m+ |m|)T2

+q1 + q2 (5.150)

One example of a control problem would be to change m to keep the temperatures of the two rooms
equal. Delay can be introduced by writing T2 = T2(t− τ) and T1 = T1(t− τ) in the second to last
terms of equations (5.148) and (5.149), respectively, where τ is the time taken for the fluid to get
from one room to the other.

5.9.4 Temperature in long duct

The diffusion problem of the previous section does not have advection. Transport of fluids in ducts
introduces a delay between the instant the particles of fluid go into the duct and when they come
out, which creates a difficulty for outlet temperature control. The literature includes applications to
hot-water systems [43, 128] and buildings [8, 159]; transport [197] and heater [40, 41] delay and the
effect of the length of a duct on delay [46] have also been looked at.

A long duct of constant cross section, schematically shown in Fig. 5.12 where the flow is driven
by a variable-speed pump, illustrates the basic issues [4, 7]. The fluid inlet temperature Tin is kept
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- =⇒flow
velocity = v(t)
temperature = T (ξ, t)

ξ

ξ = 0 ξ = L

Tin Tout(t)
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Figure 5.12: Schematic of duct.

constant, and there is heat loss to the constant ambient temperature T∞ through the surface of the
duct.

With a one-dimensional approximation, energy conservation gives

∂T

∂t
+ v

∂T

∂ξ
+

4h

ρcD
(T − T∞) = 0, (5.151)

with the boundary condition T (0, t) = Tin, where T (ξ, t) is the fluid temperature, t is time, ξ is the
distance along the duct measured from the entrance, v(t) is the flow velocity, h is the coefficient
of heat transfer to the exterior, ρ is the fluid density, c is its specific heat, and D is the hydraulic
diameter of the duct. The flow velocity is taken to be always positive, so that the ξ = 0 end is
always the inlet and ξ = L the outlet, where L is the length of the duct. The temperature of the
fluid coming out of the duct is Tout(t).

Using the characteristic quantities of L for length, ρcD/4h for time, and hL/ρcD for velocity,
the non-dimensional version of Eq. (5.151) is

∂θ

∂t
+ v

∂θ

∂ξ
+ θ = 0, (5.152)

where θ = (T − T∞)/(Tin − T∞), with θ(0, t) = 1. The other variables are now non-dimensional.
Knowing v(t), this can be solved to give

θ(ξ, t) = e−t f

(
ξ −

∫ t

0

v(s) ds

)
, (5.153)

where the initial startup interval in which the fluid within the duct is flushed out has been ignored;
f is an arbitrary function. Applying the boundary condition at ξ = 0 gives

1 = e−t f

(
−
∫ t

0

v(s) ds

)
. (5.154)

The temperature at the outlet of the duct, i.e. at ξ = 1, is

θout(t) = e−t f

(
1 −

∫ t

0

v(s). ds

)
(5.155)

Eqs. (5.154) and (5.155) must be simultaneously solved to get the outlet temperature θout(t) in
terms of the flow velocity v.

The problem is non-linear if the outlet temperature Tout(t) is used to control the flow velocity
v(t). The delay between the velocity change and its effect on the outlet temperature can often lead
instability, as it does in other applications [16, 69, 74, 174]. Fig. 5.13 shows a typical result using
PID control in which the system is unstable. Shown are the outlet temperature, flow velocity and
residence time of the fluid in the duct, all of which ultimately achieve constant amplitude oscillations.



5.9. Thermal control 76

0 50 100 150
0.2

0.3

0.4

0.5

T
ou

t

0 50 100 150
0.5

1

1.5

v

0 50 100 150
0.6

0.8

1

1.2

1.4

t

τ

Figure 5.13: Outlet temperature, velocity and residence time for Ki = −5 and Kp = 2.5 [4].

Problems

1. Determine the single duct solutions for heat loss by radiation q = Pǫσ(T 4
sur − T 4).

2. A sphere, initially at temperature Ti is being cooled by natural convection to fluid at T∞. Churchill’s correlation
for natural convection from a sphere is

Nu = 2 +
0.589 Ra

1/4
D

h

1 + (0.469/Pr)9/16
i4/9

,

where

RaD =
gβ(Ts − T∞)D3

να
.

Assume that the temperature within the sphere T (t) is uniform, and that the material properties are all
constant. Derive the governing equation, and find a two-term perturbation solution.

3. The velocity field, u(r), for forced convection in a cylindrical porous medium is given by

u′′ + r−1u′ − s2u + s2 Da = 0,

where s and the Darcy number Da are parameters. A WKB solution for small Da has been reported as2

u = Da

"

1 − e−s(1−r)

√
r

#

.

Re-do to check the analysis.

4. Consider one-dimensional steady-state flow along a pipe with advection and conduction in the fluid and lateral
convection from the side. The fluid inlet and outlet temperatures given. Use the nondimensional version of
the governing equation to find the inner and outer matched temperature distributions if the fluid thermal
conductivity is small.

2K. Hooman and A.A. Ranjbar-Kani, Forced convection in a fluid-saturated porous-medium tube with isoflux wall,
International Communcications in Heat and Mass Transfer, Vol. 30, No. 7, pp. 1015–1026, 2003.
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5. Plot the exact analytical and the approximate boundary layer solutions for Problem 4 for a small value of the
conduction parameter.

6. Show that no solution is possible in Problem 4 if the boundary layer is assumed to be on the wrong side.

7. Consider one-dimensional unsteady flow in a tube with a non-negligible wall thickness, as shown in Fig. 17.1.
There is conduction along the fluid as well as along the wall of the tube. There is also convection from the
outer surface of the tube to the environment as well as from its inner surface to the fluid. Find the governing
equations and their boundary conditions. Nondimensionalize.
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Figure 5.14: Flow in tube with non-negligible wall thickness.



Chapter 6

Natural convection

6.1 Modeling

Let us consider a closed loop, shown in Fig. 6.1, of length L and constant cross-sectional area A filled
with a fluid. The loop is heated in some parts and cooled in others. The temperature differences
within the fluid leads to a change in density and hence a buoyancy force that creates a natural
circulation. The spatial coordinate is s, measured from some arbitrary origin and going around the
loop in the counterclockwise direction.

We will make the Boussinesq approximation by which the fluid density is constant except in
the buoyancy term. We will also approximate the behavior of the fluid using one spatial dimensions.
Thus, we will assume that the velocity u and temperature T are constant across a section of the
loop. In general both u and T are functions of space s and time t, though we will find that u = u(t).

6.1.1 Mass conservation

Consider an elemental control volume as shown in Fig. 6.2. The mass fluxes in and out are

m− = ρ0uA (6.1)

m+ = m− +
∂m−

∂s
ds (6.2)

For a fluid of constant density, there is no accumulation of mass within an elemental control volume,
so that the mass flow rate into and out of the control volume must be the same, i.e. m− = m+. For

s

g

Figure 6.1: A general natural convective loop.

78
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s
ds

m
+

m
_

Figure 6.2: Mass flows in an elemental control volume.

a loop of constant cross-sectional area, this implies that u is the same into and out of the control
volume. Thus u is independent of s, and must be a function of t alone.

6.1.2 Momentum equation

The forces on an element of length ds, shown in Fig. 6.3, in the positive s direction are: fv, the
viscous force, fp, the pressure force, and fg, the component of the gravity force. We can write

fv = −τw P ds (6.3)

fp = −A∂p
∂s
ds (6.4)

fg = −ρA ds g̃ (6.5)

where τw is the wall shear stress, and p is the pressure in the fluid. It is impossible to determine
the viscous force fv through a one-dimensional model, since it is a velocity profile in the tube that
is responsible for the shear streass at the wall. For simplicity, however, we will assume a linear
relationship between the wall shear stress and the mean fluid velocity, i.e. τw = αu. For Poiseuille
flow in a duct, which is strictly not the case here but gives an order of magnitude value for the
coefficient, this would be

α =
8µ

D
(6.6)

The local component of the acceleration due to gravity has been written in terms of

g̃(s) = g cos θ (6.7)

= g
dz

ds
(6.8)

where g is the usual acceleration in the vertical direction, g̃ is its component in the negative s
direction, and dz is the difference in height at the two ends of the element, with z being measured
upwards. The integral around a closed loop should vanish, so that

∫ L

0

g̃(s) ds = 0 (6.9)

The density in the gravity force term will be taken to decrease linearly with temperature, so that

ρ = ρ0 [1 − β(T − T0)] (6.10)
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Figure 6.3: Forces on an element of fluid.
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Figure 6.4: Heat rates on an elemental con-
trol volume.

Since the mass of the element is ρ0A ds, we can write the momentum equation as

ρ0A ds
du

dt
= fv + fp + fg (6.11)

from which we get
du

dt
+
Pα

ρ0A
u = − 1

ρ0

∂p

∂s
− [1 − β(T − T0)] g̃ (6.12)

Integrating around the loop, we find that the pressure term disappears, and

du

dt
+
Pα

ρ0A
u =

β

L

∫ L

0

T g̃(s) ds (6.13)

where u = u(t) and T = T (s, t).

6.1.3 Energy equation

Fig. 6.4 shows the heat rates going into and out of an elemental control volume. The heat rate going
in is given by

Q− = ρ0AucpT − kA
∂T

∂s
(6.14)

where the first term on the right is due to the advective and second the conductive transports. cp
is the specific heat at constant pressure and k is the coefficient of thermal conductivity. The heat
rate going out is

Q+ = Q− +
∂Q−

∂s
ds (6.15)

The difference between the two is

Q+ −Q− =
∂Q−

∂s
ds

=

[
ρ0Aucp

∂T

∂s
− kA

∂2T

∂s2

]
ds (6.16)

Furthermore, heat is gained from the side at a rate Q, which can be written as

Q = q ds (6.17)

where q is the rate of gain of heat per unit length of the duct.



6.2. Known heat rate 81

An energy balance for the elemental control volume gives

Q− +Q = Q+ + ρ0A ds cp
∂T

∂t
(6.18)

where the last term is the rate of accumulation of energy within the control volume.
Substituting equations (6.16) and (6.17) in (6.18) we get the energy equation

∂T

∂t
+ u

∂T

∂s
=

q

ρ0Acp
+

k

ρ0cp

∂2T

∂s2
(6.19)

6.2 Known heat rate

[164,165]
The simplest heating condition is when the heat rate per unit length, q(s), is known all along

the loop. For zero mean heating, we have

∫ L

0

q(s) ds = 0 (6.20)

q(s) > 0 indicates heating, and q(s) < 0 cooling.

6.2.1 Steady state, no axial conduction

Neglecting axial conduction, the steady-state governing equations are

Pα

ρ0A
u =

β

L

∫ L

0

T (s)g̃(s) ds (6.21)

u
dT

ds
=

q(s)

ρ0Acp
(6.22)

The solution of equation (6.22) gives us the temperature field

T (s) =
1

ρ0Acpu

∫ s

0

q(s′) ds′ + T0 (6.23)

where T (0) = T0. Using equation (6.9) it can be checked that T (L) = T0 also. Substituting in
equation (6.21), we get

Pα

ρ0A
u =

β

ρ0AcpLu

∫ L

0

[∫ s

0

q(s′) ds′
]
g̃(s) ds (6.24)

from which

u = ±
√

β

PαLcp

∫ L

0

[∫ s

0

q(s′) ds′
]
g̃(s) ds (6.25)

Two real solutions exist for ∫ L

0

[∫ s

0

q(s′) ds′
]
g̃(s) ds ≥ 0 (6.26)
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Figure 6.5: Bifurcation with respect to parameter H.

and none otherwise. Thus there is a bifurcation from no solution to two as the parameter H passes
through zero, where

H =

∫ L

0

[∫ s

0

q(s′) ds′
]
g̃(s) ds (6.27)

The pressure distribution can be found from equation (6.12)

dp

ds
= −Pαu

A
− ρ0

[
1 − β(T − T0)

]
g̃ (6.28)

= −Pαu
A

− ρ0g̃ +
β

Acpu

[∫ s

0

q(s′) ds′
]
g̃ (6.29)

from which

p(s) = p0 −
Pαu

A
s− ρ0

∫ s

0

g̃(s′) ds′ +
β

Acpu

∫ s

0

[∫ s′′

0

q(s′) ds′

]
g̃(s′′) ds′′ (6.30)

where p(0) = p0. Using equations (6.9) and (6.24), it can be shown that p(L) = p0 also.

Example 6.1
Find the temperature distributions and velocities in the three heating and cooling distributions corre-

sponding to Fig. 6.6. (a) Constant heating between points c and d, and constant cooling between h and a.
(b) Constant heating between points c and d, and constant cooling between g and h. (c) Constant heating
between points d and e, and constant cooling between h and a. (d) Constant heating between points a and c,
and constant cooling between e and g. The constant value is q̂, and the total length of the loop is L.

Let us write

F (s) =

Z s

0
q(s′) ds′ (6.31)

G(s) = F (s)g(s) (6.32)

H =

Z L

0
G(s) ds (6.33)

The functions F (s) and G(s) are shown in Fig. 6.7. The origin is at point a, and the coordinate s runs
counterclockwise. The integral H in the four cases is: (a) H = 0, (b) H = q̂L/8, (c) H = −q̂L/8, (d) H = q̂L/4.

The fluid velocity is

u = ±
s

βH

PαLcp
(6.34)



6.2. Known heat rate 83

a b c

d

efg

h

Figure 6.6: Geometry of a square loop.
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Figure 6.7: Functions F (s) and G(s) for the four cases.
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No real solution exists for case (c); the velocity is zero for (a); the other two cases have two solutions each, one
positive and the other negative. The temperature distribution is given by

T − T0 =
F (s)

ρ0Acpu
(6.35)

The function F (s) is shown in Fig. 6.7. There is no real; solution for case (c); for (a), the temperature is
unbounded since the fluid is not moving; for the other two cases there are two temperature fields, one the
negative of the other.

The pressure distribution can be found from equation (6.29).

Example 6.2
What is the physical interpretation of condition (6.26)?

Let us write

H =

Z L

0

»Z s

0
q(s′) ds′

–

g̃(s) ds (6.36)

=

Z L

0

»Z s

0
q(s′) ds′

–

d

»Z s

0
g̃(s′) ds′

–

(6.37)

=

»Z s

0
q(s′) ds′

–L

0

»Z s

0
g̃(s′) ds′

–L

0

−
Z L

0

»

q(s)

Z s

0
g̃(s′) ds′

–

ds (6.38)

The first term on the right vanishes due to equations (6.20) and (6.9). Using equation (6.8), we find that

H = −g

Z L

0
q(s)z(s) ds (6.39)

The function z(s) is another way of describing the geometry of the loop. We introduce the notation

q(s) = q+(s) − q−(s) (6.40)

where

q+ =



q(s) for q(s) > 0
0 for q(s) ≤ 0

(6.41)

and

q− =



0 for q(s) ≥ 0
−q(s) for q(s) < 0

(6.42)

Equations (6.20) and (6.39) thus becomes

Z L

0
q+(s) ds =

Z L

0
q−(s) ds (6.43)

H = −g

»Z L

0
q+(s)z(s) ds −

Z L

0
q−(s)z(s) ds

–

(6.44)

From these, condition (6.26) which is H ≥ 0 can be found to be equivalent to

R L
0 q+(s)z(s) ds
R L
0 q+(s) ds

<

R L
0 q−(s)z(s) ds
R L
0 q−(s) ds

(6.45)

This implies that the height of the centroid of the heating rate distribution should be above that of the cooling.
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6.2.2 Axial conduction effects

To nondimensionalize and normalize equations (6.13) and (6.19), we take

t∗ =
t

τ
(6.46)

s∗ =
s

L
(6.47)

u∗ =
u

V G1/2
(6.48)

T ∗ =
T − T0

∆T G1/2
(6.49)

g̃∗ =
g̃

g
(6.50)

q∗ =
q

qm
(6.51)

where

V =
PαL

ρ0A
(6.52)

∆T =
P 2α2L

βgρ2
0A

2
(6.53)

τ =
ρ0A

Pα
(6.54)

G =
qmβgρ

2
0A

2

P 3α3Lcp
(6.55)

Substituting, we get

du∗

dt∗
+ u∗ =

∫ 1

0

T ∗g̃∗ ds∗ (6.56)

∂T ∗

∂t∗
+G1/2u∗

∂T ∗

∂s∗
= G1/2q∗ +K

∂2T ∗

∂s∗2
(6.57)

where

K =
kA

PαL2cp
(6.58)

The two nondimensional parameters which govern the problem are G and K.
Under steady-state conditions, and neglecting axial conduction, the temperature and velocity

are

T
∗

(s) =
1

u∗

∫ s∗

0

q∗(s∗1) ds
∗

1 (6.59)

u∗ = ±
√∫ 1

0

[∫ s∗

0

q∗(s∗1) ds
∗

1

]
g̃∗(s∗) ds∗ (6.60)

All variables are of unit order indicating that the variables have been appropriately normalized.
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For α = 8µ/D, A = πD2/4, and P = πD, we get

G =
1

8192π

Gr

Pr

(
D

L

)4

(6.61)

K =
1

32 Pr

(
D

L

)2

(6.62)

where the Prandtl and Grashof numbers are

Pr =
µcp
k

(6.63)

Gr =
qmgβL

3

ν2k
(6.64)

respectively. Often the Rayleigh number defined by

Ra = Gr Pr (6.65)

is used instead of the Grashof number.
Since u∗ is of O(1), the dimensional velocity is of order (8νL/D2)Gr1/2. The ratio of axial

conduction to the advective transport term is

ǫ =
K

G1/2
(6.66)

=

(
8π

Ra

)1/2

(6.67)

Taking typical numerical values for a loop with water to be: ρ = 998 kg/m3, µ = 1.003×10−3 kg/m
s, k = 0.6 W/m K, qm = 100 W/m, g = 9.91 m/s2, β = 0.207 × 10−3 K−1, D = 0.01 m, L = 1 m,
cp = 4.18 × 103 J/kgK, we get the velocity and temperature scales to be

V G1/2 = (6.68)

∆TG1/2 = (6.69)

and the nondimensional numbers as

G = 1.86 × 10−2 (6.70)

K = 4.47 × 10−7 (6.71)

Gr = 3.35 × 1011 (6.72)

Ra = 2.34 × 1012 (6.73)

ǫ = 3.28 × 10−6 (6.74)

Axial conduction is clearly negligible in this context.
For a steady state, equations (6.56) and (6.57) are

u∗ =

∫ 1

0

T
∗

g̃∗ ds∗ (6.75)

ǫ
d2T

∗

ds∗2
− u∗

dT
∗

ds∗
= −q∗(s∗) (6.76)

Integrating over the loop from s∗ = 0 to s∗ = 1, we find that continuity of T
∗

and equation (6.20)

imply continuity of dT
∗

/ds∗ also.
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Conduction-dominated flow

If λ = G1/2/ǫ≪ 1, axial conduction dominates. We can write

u = u0 + λu1 + λ2u2 + . . . (6.77)

T (s) = T 0(s) + λT 1(s) + λ2T 2(s) + . . . (6.78)

where, for convenience, the asterisks have been dropped. Substituting into the governing equations,
and collecting terms of O(λ0), we have

u0 =

∫ 1

0

T 0g̃ ds (6.79)

d2T 0

ds2
= 0 (6.80)

The second equation, along with conditions that T 0 and dT 0/ds have the same value at s = 0 and
s = 1, gives T 0 = an arbitrary constant. The first equation gives u0 = 0.

The terms of O(λ) give

u1 =

∫ 1

0

T 1g̃ ds (6.81)

d2T 1

ds2
= −q(s) + u0

dT 0

ds
(6.82)

The second equation can be integrated once to give

dT 1

ds
= −

∫ s

0

q(s′) ds′ +A (6.83)

and again

T 1 = −
∫ s

0

[∫ s′′

0

q(s′) ds′

]
ds′′ +As+B (6.84)

Continuity of T 1(s) and dT 1/ds at s = 0 and s = 1 give

B = −
∫ 1

0

[∫ s′′

o

q(s′) ds′

]
ds′′ +A+B (6.85)

A = A (6.86)

respectively, from which

A =

∫ 1

0

[∫ s′′

0

q(s′) ds′

]
ds′′ (6.87)

and that B can be arbitrary. Thus

T 1 =

∫ s

0

[∫ s′′

0

q(s′) ds′

]
ds′′ + s

∫ 1

0

[∫ s′′

0

q(s′) ds′

]
ds′′ + T1(0) (6.88)
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where T (0) is an arbitrary constant. Substituting in equation (6.81), gives

u1 = −
∫ 1

0

{∫ s

0

[∫ s′′

0

q(s′) ds′

]
ds′′

}
g̃ ds+

∫ 1

0

[∫ s′′

0

q(s′) ds′

]
ds′′

∫ 1

0

sg̃ ds (6.89)

The temperature distribution is determined by axial conduction, rather than by the advective ve-
locity, so that the resulting solution is unique.

Advection-dominated flow

The governing equations are

u =

∫ 1

0

T g̃ ds (6.90)

u
dT

ds
= q + ǫ

d2T

ds2
(6.91)

where ǫ≪ 1. Expanding in terms of ǫ, we have

u = u0 + ǫu1 + ǫ2u2 + . . . (6.92)

T = T 0 + ǫT 1 + ǫ2T 2 + . . . (6.93)

(6.94)

To O(ǫ0), we get

u0 =

∫ 1

0

T 0g̃ ds (6.95)

u0
dT 0

ds
= q (6.96)

from which

T 0 =
1

u0

∫ s

0

q(s′) ds′ (6.97)

u0 = ±
∫ 1

0

[∫ s

0

q(s′) ds′
]
g̃ ds (6.98)

Axial conduction. therefore, slightly modifies the two solutions obtained without it.

6.2.3 Toroidal geometry

The dimensional gravity function can be expanded in a Fourier series in s, to give

g̃(s) =

∞∑

n=1

[
gc

n cos
2πns

L
+ gs

1 sin
2πns

L

]
(6.99)

The simplest loop geometry is one for which we have just the terms

g̃(s) = gc
1 cos

2πs

L
+ gs

1 sin
2πs

L
(6.100)
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corresponds to a toroidal geometry. Using

g2 = (gc
1)

2 + (gs
1)

2 (6.101)

φ0 = tan−1 g
c
1

gs
1

(6.102)

equation (6.100) becomes

g̃(s) = g cos

(
2πs

L
− φ0

)
(6.103)

Without loss of generality, we can measure the angle from the horizontal, i.e. from three o’clock
point, and take φ0 = 0 so that

g̃(s) = g cos (2πs/L) (6.104)

The nondimensional gravity component is

g̃ = cos(2πs) (6.105)

where the * has been dropped.
Assuming also a sinusoidal distribution of heating

q(s) = − sin(2πs− φ) (6.106)

the momentum and energy equations are

u =

∫ 1

0

T (s) cos(2πs) ds (6.107)

u
dT

ds
= − sin(2πs− φ) + ǫ

d2T

ds2
(6.108)

The homogeneous solution is
Th = Beus/ǫ +A (6.109)

The particular integral satisfies

d2Tp

ds2
− u

ǫ

dT p

ds
=

1

ǫ
sin(2πs− φ) (6.110)

Integrating, we have

dTp

ds
− u

ǫ
T p = − 1

2πǫ
cos(2πs− φ) (6.111)

= − 1

2πǫ
[cos(2πs) cosφ+ sin(2πs) sinφ] (6.112)

Take
T p = a cos(2πs) + b sin(2πs) (6.113)

from which
dT p

ds
= −2πa sin(2πs) + 2πb cos(2πs) (6.114)
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Substituting and collecting the coefficients of cos(2πs) and sin(2πs), we get

−u
ǫ
a+ 2πb = −cosφ

2πǫ
(6.115)

−2πa− u

ǫ
b = − sinφ

2πǫ
(6.116)

The constants are

a =
(u/2πǫ2) cosφ+ (1/ǫ) sinφ

4π2 + u2/ǫ2
(6.117)

b =
−(1/ǫ) cosφ+ (u/2πǫ2) sinφ

4π2 + u2/ǫ2
(6.118)

The temperature field is given by
T = Th + T p (6.119)

Since T (0) = T (1), we must have B = 0. Taking the other arbitrary constant A to be zero, we have

T =
1

4π2 + u2/ǫ2

[(
u

2πǫ2
cosφ+

1

ǫ
sinφ

)
cos(2πs) +

(
−1

ǫ
cosφ+

u

2πǫ2
sinφ

)
sin(2πs)

]
(6.120)

The momentum equation gives

u =
(u/2πǫ2) cosφ+ (1/ǫ) sinφ

2(4π2 + u2/ǫ2)
(6.121)

which can be written as

u3 + u

(
4π2ǫ2 − 1

4π
cosφ

)
− ǫ

2
sinφ = 0 (6.122)

Special cases are:

• ǫ = 0

Equations (6.107) and (6.108) can be solved to give

T =
1

2πu
[cos(2πs) cosφ+ sin(2πs) sinφ] (6.123)

u = ±
√

cosφ

4π
(6.124)

On the other hand substituting ǫ = 0 in equation (6.122) gives an additional spurious solution
u = 0.

• ǫ→ ∞
We get that u→ 0.

• φ = 0

We get

u =





0√
1
4π − 4π2ǫ2

−
√

1
4π − 4π2ǫ2

(6.125)

The last two solutions exist only when ǫ < (16π3)−1/2.



6.2. Known heat rate 91

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

φ

φ

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

φ

u

u

u

ε = 0.001

ε = 0.01

ε = 0.1

Figure 6.8: u-φ curves.
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Figure 6.9: u-ǫ curves.

• φ = π/2

The velocity is a solution of

u3 + u4π2ǫ2 − ǫ

2
= 0 (6.126)

Figure 6.8 shows u-φ curves for three different values of ǫ. Figure 6.9 and 6.10 show u-ǫ curves
for different values of φ. It is also instructive to see the curve u-Ra, shown in Figure 6.11, since the
Rayleigh number is directly proportional to the strength of the heating.

The bifurcation set is the line dividing the regions with only one real solution and that with
three real solutions. A cubic equation

x3 + px+ q = 0 (6.127)

has a discriminant

D =
p3

27
+
q2

4
(6.128)

For D < 0, there are three real solutions, and for D > 0, there is only one. The discriminant for the
cubic equation (6.122) is

D =
1

27

(
4π2ǫ2 − 1

4π
cosφ

)3

+
1

4
(ǫ sinφ)

2
(6.129)

The result is shown in Fig. 6.12.
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6.2. Known heat rate 93

6.2.4 Dynamic analysis

We rescale the nondimensional governing equations (6.56) and (6.57) by

u∗ =
1

2πG1/2
û (6.130)

T ∗ =
1

2πG1/2
T̂ (6.131)

to get

du

dt
+ u =

∫ 1

0

T g̃ ds (6.132)

∂T

∂t
+

1

2π
u
∂T

∂s
= Gq +

G1/2K

2π

∂2T

∂s2
(6.133)

where the hats and stars have been dropped.
We take g̃ = cos(2πs) and q = − sin(2πs− φ). Expanding the temperature in a Fourier series,

we get

T (s, t) = T0(t) +

∞∑

n=1

[T c
n(t) cos(2πns) + T s

n(t) sin(2πns)] (6.134)

Substituting, we have
du

dt
+ u =

1

2
T c

1 (6.135)

and

dT0

dt
+

∞∑

n=1

[
dT c

n

dt
cos(2πns) +

dT c
n

dt
sin(2πns)

]

+u
∞∑

n=1

[−nT c
n sin(2πns) + nT s

n cos(2πns)]

= −G [sin(2πs) cosφ− cos(2πs) sinφ]

−2πn2G1/2K
∞∑

n=1

[T c
n cos(2πns) + T s

n sin(2πns)] (6.136)

Integrating, we get
dT0

dt
= 0 (6.137)

Multiplying by cos(2πms) and integrating

1

2

dT c
m

dt
+
m

2
uT s

m =
1

2
G sinφ− πm2G1/2KT c

m (6.138)

Now multiplying by sin(2πms) and integrating

1

2

dT s
m

dt
− m

2
uT c

m = −1

2
G cosφ− πm2G1/2KT s

m (6.139)
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Choosing the variables

x = u (6.140)

y =
1

2
T c

1 (6.141)

z =
1

2
T s

1 (6.142)

and the parameters

a =
G

2
sinφ (6.143)

b =
G

2
cosφ (6.144)

c = 2πG1/2K (6.145)

we get the dynamical system

dx

dt
= y − x (6.146)

dy

dt
= a− xz − cy (6.147)

dz

dt
= −b+ xy − cz (6.148)

The physical significance of the variables are: x is the fluid velocity, y is the horizontal temperature
difference, and z is the vertical temperature difference. The parameter c is positive, while a and b
can have any sign.

The critical points are found by equating the vector field to zero, so that

y − x = 0 (6.149)

a− xz − cy = 0 (6.150)

−b+ xy − cz = 0 (6.151)

From equation (6.149), we have y = x, and from equation (6.151), we get z = (−b+ x2)/c. Substi-
tuting these in equation (6.150), we get

x3 + x(c2 − b) − ac = 0 (6.152)

This corresponds to equation (6.122), except in different variables.
To analyze the stability of a critical point (x, y, z) we add perturbations of the form

x = x+ x′ (6.153)

y = y + y′ (6.154)

z = z + z′ (6.155)

Substituting in equation (6.146)-(6.148), we get the local form

d

dt



x′

y′

z′


 =




−1 1 0
−z −c −x
y x −c





x′

y′

z′


+




0
−x′z′
x′y′


 (6.156)



6.2. Known heat rate 95

b

x

c 2

Figure 6.13: Bifurcation diagram for x.

The linearized version is

d

dt



x′

y′

z′


 =




−1 1 0
−z −c −x
y x −c





x′

y′

z′


 (6.157)

No tilt, with axial conduction (a = 0, c 6= 0)

From equation (6.152), for a = 0 we get

x3 + x(c2 − b) = 0 (6.158)

from which

x = y =





0√
b− c2

−
√
b− c2

(6.159)

The z coordinate is

z =





−b/c
−c
−c

(6.160)

The bifurcation diagram is shown in Figure 6.13.

Stability of conductive solution
The critical point is (0, 0,−b/c). To examine its linear stability, we look at the linearized

equation (6.157) to get

d

dt



x′

y′

z′


 =




−1 1 0
b/c −c 0
0 0 −c





x′

y′

z′


 (6.161)

The eigenvalues of the matrix are obtained from the equation
∣∣∣∣∣∣

−(1 + λ) 1 0
b/c −(c+ λ) 0
0 0 −(c+ λ)

∣∣∣∣∣∣
= 0 (6.162)

which simplifies to

(c+ λ)

[
(1 + λ)(c+ λ) − b

c

]
= 0 (6.163)
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One eigenvalue is
λ1 = −c (6.164)

Since c ≥ 0 this eigenvalue indicates stability. The other two are solutions of

λ2 + (c+ 1)λ+ (c− b

c
) = 0 (6.165)

which are

λ2 =
1

2

[
−(c+ 1) −

√
(c+ 1)2 − 4(c− b

c
)

]
(6.166)

λ3 =
1

2

[
−(c+ 1) +

√
(c+ 1)2 − 4(c− b

c
)

]
(6.167)

λ2 is also negative and hence stable. λ3 is negative as long as

−(c+ 1) +

√
(c+ 1)2 − 4(c− b

c
) < 0 (6.168)

which gives
b < c2 (6.169)

This is the condition for stability.
In fact, one can also prove global stability of the conductive solution. Restoring the nonlinear

terms in equation (6.156) to equation (6.161), we have

dx′

dt
= y′ − x′ (6.170)

dy′

dt
=

b

c
x′ − cy′ − x′z′ (6.171)

dz′

dt
= −cz′ + x′y′ (6.172)

Let

E(x, y, z) =
b

c
x′2 + y′2 + z′2 (6.173)

Thus

1

2

dE

dt
=

b

c
x′
dx′

dt
+ y′

dy′

dt
+ z′

dz′

dt
(6.174)

= −b
c
x′2 +

2b

c
x′y′ − cy′2 − cz′2 (6.175)

= −b
c
(x′ − y′)2 − (c− b

c
)y′2 − cz′2 (6.176)

Since

E ≥ 0 (6.177)

dE

dt
≤ 0 (6.178)
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for 0 ≤ b ≤ c2, E is a Liapunov function, and the critical point is stable to all perturbations in this
region. The bifurcation at b = c2 is thus supercritical.

Stability of convective solution
For b > c2, only one critical point (

√
b− c2,

√
b− c2,−c) will be considered, the other being

similar. We use the linearized equations (6.157). Its eigenvalues are solutions of

∣∣∣∣∣∣

−(1 + λ) 1 0

c −(c+ λ) −
√
b− c2√

b− c2
√
b− c2 −(c+ λ)

∣∣∣∣∣∣
= 0 (6.179)

This can be expanded to give

λ3 + λ2(1 + 2c) + λ(b+ c) + 2(b− c2) = 0 (6.180)

The Hurwitz criteria for stability require that all coefficients be positive, which they are. Also the
determinants

D1 = 1 + 2c (6.181)

D2 =

∣∣∣∣
1 + 2c 2(b− c2)

1 b+ c

∣∣∣∣ (6.182)

D3 =

∣∣∣∣∣∣

1 + 2c 2(b− c2) 0
1 b+ c 0
0 1 + 2c 2(b− c2)

∣∣∣∣∣∣
(6.183)

should be positive. This requires that

b <
c(1 + 4c)

1 − 2c
if c < 1/2 (6.184)

b >
c(1 + 4c)

1 − 2c
if c > 1/2 (6.185)

(6.186)

With tilt, no axial conduction (a 6= 0, c = 0)

The dynamical system (6.146)-(6.148) simplifies to

dx

dt
= y − x (6.187)

dy

dt
= a− xz (6.188)

dz

dt
= −b+ xy (6.189)

The critical points are ±(
√
b,
√
b, a/

√
b). The linear stability of the point P+ given by (

√
b,
√
b, a/

√
b)

will be analyzed. From equation (6.157), the solutions of

∣∣∣∣∣∣

−(1 + λ) 1 0

−a/
√
b −λ −

√
b√

b
√
b −λ

∣∣∣∣∣∣
= 0 (6.190)
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are the eigenvalues. This simplifies to

λ3 + λ2 + λ(b+
a√
b
) + 2b = 0 (6.191)

For stability the Hurwitz criteria require all coefficients to be positive, which they are. The deter-
minants

D1 = 1 (6.192)

D2 =

∣∣∣∣
1 2b

1 b+ a/
√
b

∣∣∣∣ (6.193)

D3 =

∣∣∣∣∣∣

1 2b 0

1 b+ a/
√
b 0

0 1 2b

∣∣∣∣∣∣
(6.194)

should also be positive. This gives the condition (b+ a/
√
b) − 2b > 0, from which, we have

a > b3/2 (6.195)

for stability. The stable and unstable region for P+ is shown in Figure 6.14. Also shown is the
stability of the critical point P− with coordinates −(

√
b,
√
b, a/

√
b). The dashed circles are of radius

G/2, and the angleof tile φ is also indicated. Using equations (6.143) and (6.144), the stability
condition (6.195) can be written as

sinφ

cos3/2 φ
>

(
G

2

)1/2

(6.196)

As a numerical example, for the value of G in equation (6.70), P+ is stable for the tilt angle range
φ > 7.7◦, and P− is stable for φ < −7.7◦. In fact, for G≪ 1, the stability condition for P+ can be
approximated as

φ >

(
G

2

)1/2

(6.197)

The same information can be shown in slightly different coordinates. Using x =
√
b for P+

and equation (6.144), we get
G

2
=

x2

cosφ
(6.198)

The stability condition (6.195) thus becomes

tanφ < x (6.199)

The stability regions for both P+ and P− are shown in Figure 6.15.
The loss of stability is through imaginary eigenvalues. In fact, for P+, substituting a = b3/2 in

equation (6.191), the equation can be factorized to give the three eigenvalues −1,±i
√

2b. Thus the
nondimensional radian frequency of the oscillations in the unstable range is approximately

√
2b.

The effect of a small nonzero axial conduction parameter c is to alter the Figure 6.195 in the
zone 0 < b < c.
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Figure 6.14: Stability of critical points P+

and P− in (b, a) space.
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Figure 6.15: Stability of critical points P+

and P− in (φ, x) space.
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Figure 6.16: x-t for a = 0.9, b = 1.
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Figure 6.18: x-t for a = 0.55, b = 1.
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Figure 6.19: Phase-space trajectory for a =
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Figure 6.20: x-t for a = 0.53, b = 1.
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0.53, b = 1.
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Figure 6.22: x-t for a = 0, b = 1.

−4 −3 −2 −1 0 1 2 3

−10

−5

0

5

−6

−4

−2

0

2

4

6

x

y

z

Figure 6.23: Phase-space trajectory for a =
0, b = 1.

6.2.5 Nonlinear analysis

Numerical

Let us choose b = 1, and reduce a. Figures 6.16 and 6.17 show the x-t and phase space representation
for a = 0.9, Figures 6.18 and 6.19 for a = 0.55, and Figures 6.20 and 6.21 for a = 0.53.

The strange attractor is shown in Figures 6.22 and 6.23.
Comparison of the three figures in Figures 6.24 shows that vestiges of the shape of the closed

curves for a = −0.9 and a = 0.9 can be seen in the trajectories in a = 0.

Analytical

The following analysis is by W. Franco.
We start with the dynamical system which models a toroidal thermosyphon loop with known

heat flux

dx

dt
= y − x

dy

dt
= a− zx (6.200)

dz

dt
= xy − b

For b > 0 two critical points P+ and P− appear

(x̄, ȳ, z̄) = ±
(√

b,
√
b,

a√
b

)
(6.201)
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The local form respect to P+ is

dx′

dt
= y′ − x′

dy′

dt
= − a√

b
x′ −

√
bz′ (6.202)

dz′

dt
=

√
bx′ +

√
by′

For stability a > b
3
2 . At a = b

3
2 the eigenvalues are −1,±

√
2bi, thus a nonlinear analysis through

the center manifold projection is possible. Let’s introduce a perturbation of the form a = b
3
2 + ǫ and

the following change of variables

α =
a√
b

β =
√
b

rewriting the local form, dropping the primes and regarding the perturbation the system becomes

dx

dt
= y − x

dy

dt
=

(
β2 +

ǫ

β

)
x− βz (6.203)

dz

dt
= βx− βy

for stability α > β2.
Let’s apply the following transformation:

x = w1 +
2

2β2 + 1
w2 +

2β
√

2

2β2 + 1

y = 2w2 (6.204)

z = −βw1 −
2β

2β2 + 1
w2 +

2
√

2
(
β2 + 1

)

2β2 + 1
w3

in the new variables

ẇ =




−1 0 0

0 0 −
√

2β

0
√

2β 0


w + P̂w + l(w) (6.205)

The center manifold projection is convenient to use if the large-time dynamic behavior is of
interest. In many dimensional systems, the system often settles into the same large-time dynamics
irrespective of the initial condition; this is usually less complex than the initial dynamics and can
be described by far simple evolution equations.

We first state the definition of an invariant manifold for the equation

ẋ = N(x) (6.206)

where x ∈ Rn. A set S ⊂ Rn is a local invariant manifold for (6.206) if for x0 ⊂ S, the solution x(t)
of (6.206) is in S for | t |< T where T > 0. If we can always choose T = ∞, then S is an invariant
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manifold. Consider the system

ẋ = Ax+ f(x, y)

ẏ = By + g(x, y) (6.207)

where x ∈ Rn, y ∈ Rm and A and B are constant matrices such that all the eigenvalues of A have
zero real parts while all the eigenvalues of B have negative real parts. If y = h(x) is an invariant
manifold for (6.207) and h is smooth, then it is called a center manifold if h(0) = 0,h′(0) = 0. The
flow on the center manifold is governed by the n-dimensional system

ẋ = Ax+ f(x, h(x)) (6.208)

The last equation contains all the necessary information needed to determine the asymptotic behavior
of small solutions of (6.207).

Now we calculate, or at least approximate the center manifold h(w). Substituting w1 =
h(w2, w3) in the first component of (6.205) and using the chain rule, we obtain

ẇ1 =

(
∂h

∂w2
,
∂h

∂w3

)


ẇ2

ẇ3


 = −h+ l1 (w2, w3, h) (6.209)

We seek a center manifold
h = aw2

2 + bw2w3 + cw2
3 +O(3) (6.210)

substituting in (6.209)

(2aw2 + bw3, 2cw3 + bw2)




−
√

2βw3

√
2βw2


 =

−
(
aw2

2 + bw2w3 + cw2
3

)
+

(
k1w

2
2 + k2w2w3 + k3w

2
3

)
+O(3)

Equating powers of x2,xy and y2, we find that

a = k1 − b
√

2β

c = k3 + b
√

2β

b =
k2 + 2

√
2β (k1 − k3)

8β2 + 1

The reduced system is therefore given by

ẇ2 = −
√

2βw3 + s2 (w2, w3)

ẇ3 =
√

2βw2 + s3 (w2, w3) (6.211)

Normal form: Now we carry out a smooth nonlinear coordinate transform of the type

w = v + ψ(v) (6.212)

to simplify (6.211) by transforming away many nonlinear terms. The system in the new coordinates
is

v̇ =

(
0 −

√
2β√

2β 0

)
+




(νv1 − γv2)
(
v2
1 + v2

2

)

(νv2 + γv1)
(
v2
1 + v2

2

)


 (6.213)



6.2. Known heat rate 105

where ν and γ depend on the nonlinear part of (6.211). This is the unfolding of the Hopf bifurcation.
Although the normal form theory presented in class pertains to a Jacobian whose eigenvalues

all lie on the imaginary axis, one can also present a perturbed version. The eigenvalues are then
close to the imaginary axis but not quite on it. Consider the system

v̇ = Av + Âv + f(v) (6.214)

where the Jacobian A has been evaluated at a point in the parameter space where all its eigenvalues
are on the imaginary axis, Â represents a linear expansion of order µ in the parameters above that
point; a perturbed Jacobian. The perturbation parameter represents the size of the neighborhood in
the parameter space. We stipulate the order of µ such that the real part of the eigenvalues of A + Â

is such that, to leading order, Â does not change the coefficients of the leading order nonlinear terms
of the transformed equation. The linear part A + Â of perturbed Hopf can always be transformed
to (

µ −ω
ω µ

)

The required transformation is a near identity linear transformation

v = u + Bu

such that the linear part of (6.214) is transformed to

u̇ =
(
A + AB − BA + Â

)
z

For the Hopf bifurcation if

Â =

(
a1 a2

a3 a4

)

then

µ =
a1 + a4

ω

Therefore for ǫ small we can write (6.213) as

v̇ =

(
0 −

√
2β√

2β 0

)
v +

(
p22 p23

p32 p33

)
v +




f1(v)

f2(v)


 (6.215)

where the perturbation matrix comes from (6.205). Applying a near identity transformation of the
form v = u + Bu the system becomes

u̇ =

(
µ −

√
2β√

2β µ

)
u +




(νu1 − γu2)
(
u2

1 + u2
2

)

(νu2 + γu1)
(
u2

1 + u2
2

)


 (6.216)

which is the unfolding for the perturbed Hopf bifurcation. In polar coordinates we have

ṙ = µr + νr3

θ̇ =
√

2β (6.217)

where

µ = − ǫ
√

2

2β2 (2β2 + 1)
(6.218)
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ν = −40β6 + 40β4 + 12β3 + 10β2 + 12β + 3

4 (8β2 + 1) (2β2 + 1)
4 (6.219)

Appendix

k1 = −8β
(
β2 + 1

)

(2β2 + 1)
3

k2 =

(
β2 + 1

) (
4
√

2 − 8
√

2β2
)

(2β2 + 1)
3 (6.220)

k3 =
8β
(
β2 + 1

)

(2β2 + 1)
3

p22 = − ǫ

β (2β2 + 1)

p23 = − ǫ
√

2

2β2 + 1
(6.221)

From the literature

ν =
1

16
(fxxx + fxyy + gxxy + gyyy)

+
1

16ω
(fxy(fxx + fyy) − gxy(gxx − gyy) − fxxgxx − fyygyy) (6.222)

in our problem f = f1, g = f2, x = v1, y = v2 and ω =
√

2β.

6.3 Known wall temperature

The heating is now convective with a heat transfer coefficient U , and an external temperature of
Tw(s). Thus,

q = PU(T − Tw) (6.223)

Neglecting axial conduction

Pα

ρ0A
u =

β

L

∫ L

0

T (s)g̃(s) ds (6.224)

u
dT

ds
= γ

[
T − Tw(s)

]
(6.225)

where γ = UP/ρ0Acp
1. Multiplying the second equation by e−γs/u/u, we get

d

ds

(
e−γs/uT

)
= −γ

u
e−γs/uTw (6.226)

Integrating, we get

T = eγs/u

[
−γ
u

∫ s

0

e−γs′/uTw(s′) ds′ + T0

]
(6.227)

1The sign of γ appears to be wrong.
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Since T (L) = T (0), we get

T0 =
γ

u

eγL/u
∫ L

0
e−γs′/uTw(s′) ds′

eγL/u − 1
(6.228)

The velocity is obtained from

Pα

ρ0A
u =

β

L

∫ L

0

[
eγs/u

{
−γ
u

∫ s

0

e−γs′/uTw(s′) ds′ + T0

}]
g̃(s) ds (6.229)

This is a transcendental equation that may have more than one real solution.

Example 6.3
Show that there is no motion if the wall temperature is uniform.

Take Tw to be a constant. Then equation (6.225) can be written as

d(T − Tw)

T − Tw

=
γ

u
ds (6.230)

The solution to this is
T = Tw + K eγs/u (6.231)

where K is a constant. Continuity of T at s = 0 and s = L gives K = 0. Hence T = Tw, and, from equation
(6.224), u = 0.

Assume the wall temperature to be

Tw(s) = − sin(2πs− φ) (6.232)

The temperature field is

T =
b

r2 − r1

(
cos(2πs− φ)

2π(1 + r22/4π
2)

)
−
(

cos(2πs− φ)

2π(1 + r162/4π2)

)
(6.233)

6.4 Mixed condition

The following has been written by A. Pacheco-Vega.
It is common, especially in experiments, to have one part of the loop heated with a known heat

rate and the rest with known wall temperature. Thus for part of the loop the wall temperature is
known so that q = PU(T − Tw(s)), while q(s) is known for the rest. As an example, consider

q =

{
PU(T − T0) for φ

2π ≤ s ≤ π + φ
2π

q0 for π + φ
2π < s < 2π + φ

2π

(6.234)

where T0 and q0 are constants.
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Figure 6.25: Schematic of a convection loop heated with constant heat flux in one half and cooled
at constant temperature in the other half.

6.4.1 Modeling

[1]
If we consider a one-dimensional incompressible flow, the equation of continuity indicates that

the velocity v is a function of time alone. Thus,

v = v(t). (6.235)

Taking an infinitesimal cylindrical control volume of fluid in the loop πr2dθ, see Figure (6.25), the
momentum equation in the θ-direction can be written as

ρπr2Rdθ
dv

dt
= −πr2dθdp

dθ
− ρgπr2Rdθ cos(θ + α) − τw2πrRdθ (6.236)

Integrating Eq. (6.236) around the loop using the Boussinesq approximation ρ = ρw[1−β(T −
Tw)], with the shear stress at the wall being approximated by that corresponding to Poiseuille flow
in a straight pipe τw = 8µv/ρwr

2, the expression of the balance in Eq. (6.236) modifies to

dv

dt
+

8µ

ρwr2
v =

βg

2π

∫ 2π

0

(T − Tw) cos(θ + α) dθ (6.237)

Neglecting axial heat conduction, the temperature of the fluid satisfies the following energy balance
equation

ρwcp

(
∂T

∂t
+
v

R

∂T

∂θ

)
=





− 2h
r (T − Tw), 0 ≤ θ ≤ π

2
r q, π < θ < 2π

(6.238)
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Following the notation used by Greif et al. (1979), the nondimensional time, velocity and tempera-
ture are defined as

τ =
t

2πR/V
, w =

v

V
, φ =

T − Tw

q/h
(6.239)

respectively, where

V =

(
gβRrq

2πcpµ

)1/2

. (6.240)

Accordingly, Eqs. (6.237) and (6.238) become

dw

dτ
+ Γw =

πΓ

4D

∫ 2π

0

φ cos(θ + α) dθ (6.241)

and
∂φ

∂τ
+ 2πw

∂φ

∂θ
=

{
−2Dφ, 0 ≤ θ ≤ π
2D, π < θ < 2π

(6.242)

where the parameters D and Γ are defined by

D =
2πRh

ρwcprV
Γ =

16πµR

ρwr2V
(6.243)

6.4.2 Steady State

The steady-state governing equations without axial conduction are

w =
π

4D

∫ 2π

0

φ cos(θ + α) dθ (6.244)

and

dφ

dθ
=





− D
πw φ, 0 ≤ θ ≤ π

D
πw , π < θ < 2π

(6.245)

where w and φ are the steady-state values of velocity and temperature respectively. Eq. (6.245) can
be integrated to give

φ(θ) =





A e−(Dθ/πw), 0 ≤ θ ≤ π

D
πw θ +B, π < θ < 2π

(6.246)

Applying the condition of continuity in the temperature, such that φ(0) = φ(2π) and φ(π−) = φ(π+)
the constants A and B can be determined. These are

A =
D

w

1

1 − e(−D/w)
B =

D

w

[
2 e(−D/w) − 1

1 − e(−D/w)

]
(6.247)

The resulting temperature filed is

φ(θ) =





D
w

e−(Dθ/πw)

1−e−(D/w) , 0 ≤ θ ≤ π

D
w

[
θ
π + 2e−(D/w)

−1
1−e−(D/w)

]
, π < θ < 2π

(6.248)
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Substituion of Eq. (6.245) in Eq. (6.244), followed by an expansion of cos(θ + α), leads to

w =
π

4D
cosα

{∫ π

0

D

w

e−(Dθ/πw)

1 − e−(D/w)
cos θ dθ

+

∫ 2π

π

D

w

[
θ

π
+

2e−(D/w) − 1

1 − e−(D/w)

]
cos θ dθ

}

− π

4D
sinα

{∫ π

0

D

w

e−(Dθ/πw)

1 − e−(D/w)
sin θ dθ

+

∫ 2π

π

D

w

[
θ

π
+

2e−(D/w) − 1

1 − e−(D/w)

]
sin θ dθ

}
(6.249)

and integration around the loop, gives the steady-state velocity as

w2 =
cosα

2
+

(D/w) cosα+ π(D/w)2 sinα

4
[
1 +

(
D
πw

)2]
(

1 + e−(D/w)

1 − e−(D/w)

)
. (6.250)

As a final step, multiplying the numerator and denominator by e(D/2w) and rearranging terms leads
to the expresion for the function of the steady-state velocity

G(w,α,D) = w2 − cosα

2
− (D/w) cosα+ π(D/w)2 sinα

4
[
1 +

(
D
πw

)2] coth(D/2 w) = 0

(6.251)

For α = 0, symmetric steady-state solutions for the fluid velocity are possible since G(w, 0,D) is an
even function of w. In this case Eq.(6.251) reduces to

w2 =
1

2
+

(D/w)
[
1 + e−(D/w)

]

4
[
1 +

(
D
πw

)2] [
1 − e−(D/w)

] . (6.252)

The steady-state solutions of the velocity field and temperature are shown next. Figure 6.26
shows the w − α curves for different values of the parameter D. Regions of zero, one, two and
three solutions can be identified. The regions of no possible steady-state velocity are: −180◦ < α <
−147.5◦ and 147.5◦ < α < 180◦. There is only one velocity for the ranges −147.5◦ < α < −α0

and α0 < α < 147.5◦ where α0 varies from 90◦ at a value of D = 0.001 to α0 = 32.5◦ when
D = 100. Three velocities are obtained for −α0 < α < −32.5◦ and 32.5◦ < α < α0, except for the
zero-inclination case which has two possible steady-state velocities. The temperature distribution
in the loop, for three values of the parameter D and α = 0 is presented in Figure 6.27. From
the φ − θ curves it can be seen the dependence of the temperature with D. As D increases the
variation in temperature between two opposit points also increases. When has a value D = 0.1 the
heating and cooling curves are almost straight lines, while at a value of D = 1.0 the temperature
decays exponentially and rises linearly. Similar but more drastic change in temperature is seen when
D = 2.5. Figure 6.28 shows the φ− θ curves for three different inclination angles with D = 2.5. It
can be seen the increase in the temperature as α takes values of α = 0◦, α = 90◦ and α = 135◦. This
behaviour is somewhat expected since the steady-state velocity is decreasing in value such that the
fluid stays longer in both parts of the loop. Figure 6.29 shows the steady-state velocity as a function
of D for different angles of inclination α. For α = 0 we have two branches of the velocity-curve
which are symmetric. The positive and negative values of the velocity are equal in magnitude for
any value of D. For α = 45◦, the two branches are not symmetric while for α = 90◦ and α = 135◦,
only the positive branch exist.
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6.4.3 Dynamic Analysis

The temperature can be expanded in Fourier series, such that

φ = φ0 +

∞∑

n=1

[φc
n(t) cos(nθ) + φs

n(t) sin(nθ)] (6.253)

Substituiting into Eqs. (6.241) and (6.242), we have

dw

dτ
+ Γw =

π2Γ

4D
cosαφc

1 −
π2Γ

4D
sinαφs

1 (6.254)

and

dφc
0

dτ
+

∞∑

n=1

[
dφc

n

dτ
cos (nθ) +

dφs
n

dτ
sin (nθ)

]

+2πw

∞∑

n=1

[−nφc
n sin (nθ) + nφs

n cos (nθ)]

=





−2D {φc
0 +

∑
∞

n=1 [φc
n(t) cos(nθ) + φs

n(t) sin (nθ)]} , 0 ≤ θ ≤ π

2D, π < θ < 2π
(6.255)

Integrating Eq. (6.255) from θ = 0 to θ = 2π we get

dφc
0

dτ
= −D

[
φc

0 −
1

π

∞∑

n=1

φs
n

n
[(−1)n − 1] − 1

]
(6.256)

Multiplying by cos (mθ) and integrating from θ = 0 to θ = 2π

dφc
m

dτ
+ 2πm w φs

m = −Dφc
m +

D

π

∞∑

n=1
n 6=m

φs
n

[
(−1)m+n − 1

] 2n

n2 −m2
(6.257)

Now multiplying by sin (mθ) and integrating from θ = 0 to θ = 2π

dφs
m

dτ
− 2πm w φc

m = −Dφs
m +

D

π

∞∑

n=0
n 6=m

φc
n

[
(−1)m+n − 1

] 2m

m2 − n2

− 2D

πm
[1 − (−1)m] (6.258)

for m ≥ 1.
Choosing the variables

w = w (6.259)

C0 = φc
0 (6.260)

Cm = φc
m (6.261)

Sm = φs
m (6.262)
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we get an infinte-dimensional dynamical system

dw

dτ
= −Γw +

π2Γ

4D
cosα C1 −

π2Γ

4D
sinα S1 (6.263)

dC0

dτ
= −D C0 +

D

π

∞∑

n=1

Sn

n
[(−1)n − 1] +D (6.264)

dCm

dτ
= −2πm w Sm −D Cm +

D

π

∞∑

n=1
n 6=m

Sn

[
(−1)m+n − 1

] 2n

n2 −m2
(6.265)

dSm

dτ
= 2πm w Cm −D Sm +

D

π

∞∑

n=0
n 6=m

Cn

[
(−1)m+n − 1

] 2m

m2 − n2

+
2D

πm
[(−1)m − 1] (6.266)

for m ≥ 1. The physical significance of the variables are: w is the fluid velocity, C is the horizontal
temperature difference, and S is the vertical temperature difference. The parameters of the system
are D, Γ and α. D and Γ are positive, while α can have any sign.

The critical points are found by equating the vector filed to zero, so that

w − π2

4D
cosα C1 +

π2

4D
sinα S1 = 0 (6.267)

(C0 − 1) − 1

π

∞∑

n=1

Sn

n
[(−1)n − 1] = 0 (6.268)

2πm w Sm +D Cm − D

π

∞∑

n=1
n 6=m

Sn

[
(−1)m+n − 1

] 2n

n2 −m2
= 0 (6.269)

2πm w Cm −D Sm +
D

π

∞∑

n=0
n 6=m

Cn

[
(−1)m+n − 1

] 2m

m2 − n2

+
2D

πm
[(−1)m − 1] = 0 (6.270)

However, a convenient alternative way to determine the critical points is by using a Fourier
series expansion of the steady-state temperature field solution given in Eq. (6.248). The Fourier
series expansion is

φ =

∞∑

n=0

[
Cn cos(nθ) + Sn sin(nθ)

]
(6.271)

Performing the inner product between Eq. (6.248) and cos(mθ) we have

D

w

1

1 − e−(D/w)

∫ π

0

e−(Dθ/πw) cos(mθ) dθ

+
D

w

∫ 2π

π

[
θ

π
+

2e−(D/w) − 1

1 − e−(D/w)

]
cos(mθ) dθ

=

∞∑

n=0

Cn

∫ 2π

0

cos(nθ) cos(mθ) dθ +

∞∑

n=0

Sn

∫ 2π

0

sin(nθ) cos(mθ)dθ (6.272)
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Now the inner product between Eq. (6.248) and sin(mθ) gives

D

w

1

1 − e−(D/w)

∫ π

0

e−(Dθ/πw) sin(mθ) dθ

+
D

w

∫ 2π

π

[
θ

π
+

2e−(D/w) − 1

1 − e−(D/w)

]
sin(mθ) dθ

=

∞∑

n=0

Cn

∫ 2π

0

cos(nθ) sin(mθ) dθ +

∞∑

n=0

Sn

∫ 2π

0

sin(nθ) sin(mθ)dθ (6.273)

from which we get

C0 =
1

2

[
1 +

D

w

(
3

2
+

2e−(D/w) − 1

1 − e−(D/w)

)]
(6.274)

Cm =

(
D
πw

)2
[
m2 +

(
D
πw

)2]
1 − e−(D/w) cos(mπ)

1 − e−(D/w)
+

D

π2m2w
[1 − cos(mπ)] (6.275)

Sm = −





(
D
πw

)3

m
[
m2 +

(
D
πw

)2]
1 − e−(D/w) cos(mπ)

1 − e−(D/w)



 (6.276)

To analyze the stability of a critical point (w,C0, C1, · · · , Cm, S1, · · · , Sm) we add perturba-
tions of the form

w = w + w′ (6.277)

C0 = C0 + C ′

0 (6.278)

C1 = C1 + C ′

1 (6.279)

... (6.280)

Cm = Cm + C ′

m (6.281)

S1 = S1 + S′

1 (6.282)

... (6.283)

Sm = Sm + S′

m (6.284)
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Substituting in Eqs. (6.263) to (6.266), we obtain the local form

dw′

dτ
= −Γw′ +

π2Γ

4D
cosα C ′

1 −
π2Γ

4D
sinα S′

1 (6.285)

dC ′

0

dτ
= −D C ′

0 +
D

π

∞∑

n=1

(−1)n − 1

n
S′

n (6.286)

dC ′

m

dτ
= −2πm w S′

m − 2πm Sm w′ −D C ′

m

+
D

π

∞∑

n=1
n 6=m

2n

n2 −m2

[
(−1)m+n − 1

]
S′

n − 2πm w′ S′

m m ≥ 1

(6.287)

dS′

m

dτ
= 2πm w C ′

m + 2πm Cm w′ −D S′

m

+
D

π

∞∑

n=0
n 6=m

2m

m2 − n2

[
(−1)m+n − 1

]
C ′

n + 2πm w′ C ′

m m ≥ 1

(6.288)

The linearized version is

dw′

dτ
= −Γw′ +

π2Γ

4D
cosα C ′

1 −
π2Γ

4D
sinα S′

1 (6.289)

dC ′

0

dτ
= −D C ′

0 +
D

π

∞∑

n=1

(−1)n − 1

n
S′

n (6.290)

dC ′

m

dτ
= −2πm w S′

m − 2πm Sm w′ −D C ′

m

+
D

π

∞∑

n=1
n 6=m

2n

n2 −m2

[
(−1)m+n − 1

]
S′

n m ≥ 1 (6.291)

dS′

m

dτ
= 2πm w C ′

m + 2πm Cm w′ −D S′

m

+
D

π

∞∑

n=0
n 6=m

2m

m2 − n2

[
(−1)m+n − 1

]
C ′

n m ≥ 1 (6.292)

In general, the system given by Eqs. (6.263) to (6.266) can be written as

dx

dt
= f(x) (6.293)

The eigenvalues of the linearized system given by Eqs. (6.289) to (6.292), and in general form
as

dx

dt
= Ax (6.294)

are obtained numerically, such that
|A − λI| = 0 (6.295)
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Figure 6.31: Stability curve w vs. α for D =
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where A is the Jacobian matrix corresponding to the vector field of the linearized system, I is the
identity matrix, and λ are the eigenvalues. The neutral stability curve is obtained numerically from
the condition that ℜ(λ) = 0. A schematic of the neutral curve is presented in Figure 6.30 for α = 0.
In this figure, the stable and unstable regions can be identified. Along the line of neutral stability,
a Hopf-type of bifurcation occurs. Figure 6.31 shows the plot of w − α curve for a value of the
parameters D = 0.1 and Γ = 0.20029. When α = 0, a Hopf bifurcation for both the positive and
negative branches of the curve can be observed, where stable and unstable regions can be identified.
It is clear that the natural branches which correspond to the first and third quadrants are stable,
whereas the antinatural branches, second and fourth quadrants are unstable. The symmetry between
the first and third quadrants, and, between the second and fourth quadrants can be notice as well.
The corresponding eigenvalues of the bifurcation point are shown in Figure 6.32. The number of
eigenvalues in this figure is 42 which are obtained from a dynamical system of dimension 42. This
system results from truncating the infinite dimensional system at a number for which the value of
the leading eigenvalues does not change when increasing its dimension. When we increase the size of
the system, new eigenvalues appear in such a way that they are placed symmetrically farther from
the real axis and aligned to the previous set of slave complex eigenmodes. This behaviour seems to
be a characteristic of the dynamical system itself. Figure 6.33 illustrates a view of several stability
curves, each for a different value of the tilt angle α in a D − Γ plane at α = 0. In this plot, the
neutral curves appear to unfold when decreasing the tilt angle from 75.5◦ to −32.5◦ increasing the
region of instability. On the other hand, Figure 6.34 illustrates the linear stability characteristics of
the dynamical system in a w−α plot for a fixed Γ and three values of the parameter D. The stable
and unstable regions can be observed. Hopf bifurcations occur for each branch of ecah particular
curve. However, it is to be notice that the bifurcation occurs at a higher value of the tilt angle when
D is smaller.

6.4.4 Nonlinear analysis

Let us select D = 1.5, and increase Γ. Figures 6.35 and 6.36 show the w − τ time series and phase-
space curves for Γ = 0.95Γcr, whereas Figures 6.37 and 6.38 show the results for Γ = 1.01Γcr. The
plots suggest the appearance of a subcritical Hopf bifurcation. Two attractors coexist for Γ ≤ Γcr,
these being a critical point and a strange attractor of fractional dimension. For Γ > Γcr, the only
presence is of a strange attractor.
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Γ = 0.99Γcr.
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Figure 6.40: Curve w vs. τ for D = 0.1,
Γ = 1.1Γcr.

Now we choose D = 0.1, and increase Γ. Figure 6.39 presents a plot of the w − τ curve for
Γ = 0.99Γcr. Figures 6.40 and 6.41 show the time series plots and phase space representation for
Γ = 1.01Γcr, and Figures 6.42 and 6.43 for Γ = 20Γcr. In this case, for Γ < Γcr we have stable
solutions. For Γ = 1.01Γcr the figures show a possible limit cycle undergoes a period doubling. This
implies a supercritical Hopf bifurcation. The strange attractor is shown in Figures 6.44 and 6.45.

6.5 Perturbation of one-dimensional flow

6.6 Thermal control

Consider the control of temperature at a given point in the loop by modification of the heating. Both
known heat flux and known wall temperatures may be looked at. In terms of control algorithms,
one may use PID or on-off control.

Problems

1. Find the pressure distributions for the different cases of the square loop problem.

2. Consider the same square loop but tilted through an angle θ where 0 ≤ θ < 2π. There is constant heating
between points a and c, and constant cooling between e and g. For the steady-state problem, determine the
temperature distribution and the velocity as a function of θ. Plot (a) typical temperature distributions for
different tilt angles, and (b) the velocity as a function of tilt angle.

3. Find the steady-state temperature field and velocity for known heating if the loop has a variable cross-sectional
area A(s).

4. Find the temperature field and velocity for known heating if the total heating is not zero.

5. Find the velocity and temperature fields for known heating if the heating and cooling takes place at two different
points. What the condition for the existence of a solution?

6. What is the effect on the known heat rate solution of taking a power-law relationship between the frictional
force and the fluid velocity?

7. For known wall temperature heating, show that if the wall temperature is constant, the temperature field is
uniform and the velocity is zero.
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8. Study the steady states of the toroidal loop with known wall temperature including nondimensionalization of
the governing equations, axial conduction and tilting effects, multiplicity of solutions and bifurcation diagrams.
Illustrate typical cases with appropriate graphs.

9. Consider a long, thin, vertical tube that is open at both ends. The air in the tube is heated with an electrical
resistance running down the center of the tube. Find the flow rate of the air due to natural convection. Make
any assumptions you need to.

10. For a thin, vertical pipe compare the wall shear stress to mean flow velocity relation obtained from a two-
dimensional analysis to that from Poiseuille flow.

11. Find the combination of fluid parameters that determines the rate of heat transfer from a closed loop with
known temperature distribution. Compare the cooling rate achieved by an ionic liquid to water in the same
loop and operating under the same temperature difference.

12. Consider a tall natural circulation loop shown in Fig. 6.46 consisting of two vertical pipes of circular cross
sections. The heating pipe has a diameter D, and that of the cooling side is 2D. The heat rate per unit length
coming in and going out are both q. Find the steady state velocity in the loop. Neglect the small horizontal
sections and state your other assumptions.

Lq q

Figure 6.46: Tall natural circulation loop.

13. Set up a controller for PID control of the velocity x to a given value, xs, in the toroidal natural convection
loop equations

dx

dt
= y − x

dy

dt
= a sin φ − xz

dz

dt
= −b cos φ + xy
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where a and b are held constant. Use the tilt angle φ as control input, and show numerical results.



Chapter 7

Moving boundary

7.1 Stefan problems

[44]
The two phases, indicated by subscripts 1 and 2, are separated by an interface at x = X(t). In

each phase, the conduction equations is

∂2T1

∂x2
− 1

κ1

∂T1

∂t
= 0 (7.1)

∂2T2

∂x2
− 1

κ2

∂T2

∂t
= 0 (7.2)

At the interface the temperature should be continuous, so that

T1(X, t) = T2(X, t) (7.3)

Furthermore the difference in heat rate into the interface provides the energy required for phase
change. Thus

k1
∂T1

∂x
− k2

∂T2

∂x
= Lρ

dX

dt
(7.4)

7.1.1 Neumann’s solution

The material is initially liquid at T = T0. The temperature at the x = 0 end is reduced to zero for
t > 0. Thus

T1 = 0 at x = 0 (7.5)

T2 → T0 as x→ ∞ (7.6)

Assume T1(x, t) to be

T1 = A erf
x

2
√
κ1t

(7.7)

so that it satisfies equations (7.1) and (7.5). Similarly

T1 = A erf
x

2
√
κ1t

T2 = T0 −B erf
x

2
√
κ2t

(7.8)

123
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satisfies equation (7.2) and (7.6). The, condition (7.3) requires that

A erf
x

2
√
κ1t

= T0 −B erf
x

2
√
κ2t

= T1 (7.9)

This shows that
X = 2λ

√
κ1t (7.10)

where λ is a constant. Using the remaining condition (7.4), we get

k1Ae
−λ2 − k2B

√
κ1

κ2
e−κ1λ2/κ2 = λLκ1ρ

√
π (7.11)

This can be written as
e−λ2

erf λ
− k2

√
κ2

1(T0 − T1)e
−κ2λ2/κ2

k1
√
κ2T1 erfc(λ

√
κ1/κ2)

=
λL

√
π

c1T1s
(7.12)

The temperatures are

T1 =
T1

erf λ
erf (

x

2
√
κ1t

) (7.13)

T2 = T0 −
T0 − T1

erfc(λ
√
κ1/κ2)

erfc(
x

2
√
κ2t

) (7.14)

7.1.2 Goodman’s integral



Part IV

Multiple spatial dimensions

125



Chapter 8

Conduction

8.1 Steady-state problems

See [206].

8.2 Transient problems

8.2.1 Two-dimensional fin

The governing equation is

cρdx dyL
∂T

∂t
= Lk

(
∂2T

∂x2
+
∂2T

∂y2

)
− hdx dy(T − T∞) (8.1)

which simplifies to
1

α

∂T

∂t
=
∂2T

∂x2
+
∂2T

∂y2
−m2(T − T∞) (8.2)

where m2 = h/kL, the Biot number.
In the steady state

∂2T

∂x2
+
∂2T

∂y2
−m2(T − T∞) (8.3)

Consider a square of unit side with θ = T − T∞ being zero all around, except for one edge
where it is unity.

Let
θ(x, y) = X(x)Y (y) (8.4)

so that
1

X

d2X

dx2
= − 1

X

d2Y

dy2
+m2 = −λ2 (8.5)

This leads to one equation
d2X

dx2
+ λ2X = 0 (8.6)

with X(0) = X(1) = 1. Thus
X(x) = A sinλx+B cosλx (8.7)
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x

y

L

Figure 8.1: Two-dimensional fin.

where due to the boundary conditions, B = 0 and λ = nπ, n = 1, 2, . . .. Another equation is

d2Y

dy2
−
(
m2 + λ2

)
Y = 0 (8.8)

with
Y (y) = A sinh

√
m2 + n2π2y +B cosh

√
m2 + n2π2y (8.9)

The condition Y (0) = 0 gives B = 0. Thus

θ(x, y) =
∑

An sinnπx sinh
√
m2 + n2π2y (8.10)

8.3 Radiating fins

8.4 Non-Cartesian coordinates

Toroidal, bipolar.
Shape factor.
Moving boundary problem at a corner.

Problems

1. Show that the separation of variables solution for ∇2T = 0 for a rectangle can also be obtained through an
eigenfunction expansion procedure.

2. Consider steady-state conduction in bipolar coordinates shown in

http://mathworld.wolfram.com/BipolarCylindricalCoordinates.html

with a = 1. The two cylindrical surfaces shown as v = 1 and v = 2 are kept at temperatures T1 and T2,
respectively. Sketch the geometry of the annular material between v = 1 and v = 2 and find the temperature
distribution in it by solving the Laplace’s equation ∇2T = 0.

3. Set up and solve a conduction problem similar to Problem 2, but in parabolic cylindrical coordinates. Use
Morse and Feshbach’s notation as shown in

http://www.math.sdu.edu.cn/mathency/math/p/p059.htm

4. Consider an unsteady one-dimensional fin of constant area with base temperature known and tip adiabatic.
Use the eigenfunction expansion method to reduce the governing equation to an infinite set of ODEs and solve.

5. Consider conduction in a square plate with Dirichlet boundary conditions. Find the appropriate eigenfunctions
for the Laplacian operator for this problem.



Chapter 9

Forced convection

See [206].

9.1 Low Reynolds numbers

9.2 Potential flow

[169]
If the heat flux is written as

q = ρcuT − k∇T (9.1)

the energy equation is
∇ · q = 0 (9.2)

Heat flows along heatlines given by

dx

ρcTux − k(∂T/∂x)
=

dy

ρcTuy − k(∂T/∂y)
=

dz

ρcTuz − k(∂T/∂z)
(9.3)

The tangent to heatlines at every point is the direction of the heat flux vector.

9.2.1 Two-dimensional flow

9.3 Leveque’s solution

Leveque (1928)

9.4 Multiple solutions

See [166].

9.5 Plate heat exchangers

There is flow on the two sides of a plate, 1 and 2, with an overall heat transfer coefficient of U .
Consider a rectangular plate of size Lx×Ly in the x- and y-directions, respectively, as shown in Fig.
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x flow

y flow

Figure 9.1: Schematic of crossflow plate HX.

9.1. The flow on one side of the plate is in the x-direction with a temperature field Tx(x, y). The
mass flow rate of the flow is mx per unit transverse length. The flow in the other side of the plate
is in the y-direction with the corresponding quantities Ty(x, y) and my. The overall heat transfer
coefficient between the two fluids is U , which we will take to be a constant.

For the flow in the x-direction, the steady heat balance on an elemental rectangle of size dx×dy
gives

cx mx dy
∂Tx

∂x
dx = U dx dy (Ty − Tx) (9.4)

where cx is the specific heat of that fluid. Simplifying, we get

2CxR
∂Tx

∂x
= Ty − Tx (9.5)

where R = 1/2U is proportional to the thermal resistance between the two fluids, and Cx = cxmx.
For the other fluid

2CyR
∂Ty

∂y
= Tx − Ty (9.6)

These equations have to be solved with suitable boundary conditions to obtain the temperature
fields Tx(x, y) and Ty(x, y).

From equation (9.6), we get

Tx = Ty + CyR
∂Ty

∂y
(9.7)

Substituting in equation (9.5), we have

1

Cy

∂Ty

∂x
+

1

Cx

∂Ty

∂y
+ 2R

2Ty

∂x∂y
= 0 (9.8)

Nusselt (Jakob, 1957) gives an interesting solution in the following manner. Let the plate be
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of dimensions L and W in the x- and y-directions. Nondimensional variables are

ξ =
x

L
(9.9)

η =
y

W
(9.10)

θx =
Tx − Ty,i

Tx,i − Ty,i
(9.11)

θy =
Ty − Ty,i

Tx,i − Ty,i
(9.12)

a =
UWL

Cx
(9.13)

b =
UWL

Cy
(9.14)

The governing equations are then

a(θx − θy) = −∂θx

∂ξ
(9.15)

b(θx − θy) =
∂θy

∂η
(9.16)

with boundary conditions

θx = 1 at ξ = 0 (9.17)

θy = 0 at η = 0 (9.18)

Equation (9.16) can be written as

∂θy

∂η
+ bθy = bθx (9.19)

Solving for θy we get

θy = e−bη

(
C(ξ) + b

∫ η

0

θx(ξ, η′)ebη′

dη′
)

(9.20)

From the boundary condition (9.18), we get

C = 0 (9.21)

so that

θy(ξ, η) = be−bη

∫ η

0

θx(ξ, η′)ebη′

dη′ (9.22)

Using the same procedure, from equation (9.15) we get

θx(ξ, η) = e−aξ + ae−aξ

∫ ξ

0

θy(ξ′, η)eaξ′

dξ′ (9.23)

Substituting for θy, we find the Volterra integral equation

θx(ξ, η) = e−aξ + abe−(aξ+bη)

∫ ξ

0

∫ η

0

θx(ξ′, η′)eaξ′+bη′

dξ′ dη′ (9.24)
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for the unknown θx.
We will first solve the Volterra equation for an arbitrary λ, where

θx(ξ, η) = e−aξ + abλe−(aξ+bη)

∫ ξ

0

∫ η

0

θx(ξ′, η′)eaξ′+bη′

dξ′ dη′ (9.25)

Let us express the solution in terms of a finite power series

θx(ξ, η) = φ0(ξ, η) + λφ1(ξ, η) + λ2φ2(ξ, η) + . . .+ λnφn(ξ, η) (9.26)

This can be substituted in the integral equation. Since λ is arbitrary, the coefficient of each order
of λ must vanish. Thus

φ0(ξ, η) = e−aξ (9.27)

φ1(ξ, η) = abe−(aξ+bη)

∫ ξ

0

∫ η

0

φ0(ξ
′, η′)eaξ′+bη′

dξ′ dη′ (9.28)

φ2(ξ, η) = abe−(aξ+bη)

∫ ξ

0

∫ η

0

φ1(ξ
′, η′)eaξ′+bη′

dξ′ dη′ (9.29)

... (9.30)

φn(ξ, η) = abe−(aξ+bη)

∫ ξ

0

∫ η

0

φn−1(ξ
′, η′)eaξ′+bη′

dξ′ dη′ (9.31)

(9.32)

The solutions are

φ0 = e−aξ (9.33)

φ1 = aξe−aξ(1 − e−bη) (9.34)

φ2 =
1

2
a2ξ2e−aξ(1 − e−bη − bηe−bη) (9.35)

φ3 =
1

2 × 3
a3ξ3e−aξ(1 − e−bη − bηe−bη − 1

2
b2η2e−bη) (9.36)

... (9.37)

φn =
1

n!
anξne−aξ(1 − e−bη − bηe−bη − . . .− 1

(n− 1)!
bn−1ηn−1e−bη) (9.38)

Substituting into the expansion, equation (9.26), and taking λ = 1, we get

θx(ξ, η) = φ0(ξ, η) + φ1(ξ, η) + φ2(ξ, η) + . . .+ φn(ξ, η) (9.39)

where the φs are given above.

Example 9.1
Find a solution of the same problem by separation of variables.
Taking

Ty(x, y) = X(x)Y (y) (9.40)

Substituting and dividing by XY , we get

1

Cx

∂Tx

∂x
+

1

Cy

dY

dy
+ 2R = 0 (9.41)
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Since the first term is a function only of x, and the second only of y, each must be a constant. Thus we can
write

dX

dx
+

1

cxmx(a + R)
X = 0 (9.42)

dY

dy
+

1

cymy(a − R)
Y = 0 (9.43)

where a is a constant. Solving the two equations and taking their product, we have

Ty =
c

a + R
exp

»

− x

cxmx(a + R)
+

y

cymy(a − R)

–

(9.44)

where c is a constant. Substituting in equation (9.7), we get

Tx =
c

a − R
exp

»

− x

cxmx(a + R)
+

y

cymy(a − R)

–

(9.45)

The rate of heat transfer over the entire plate, Q, is given by

Q = Cx

Z L−y

0
[Tx(Lx, y) − Tx(0, y)] dy (9.46)

= cCxCy exp

»

− lx

Cx(a + R)
− Ly

C2(a − R)
− 2

–

(9.47)

The heat rate can be maximized by varying either of the variables Cx or Cy .

9.6 Falkner-Skan boundary flows

Problems

1. This is a problem



Chapter 10

Natural convection

10.1 Governing equations

10.2 Cavities

10.3 Marangoni convection

See [204].

Problems

1. This is a problem.
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Chapter 11

Porous media

[103,130,201]

11.1 Governing equations

The continuity equation for incompressible flow in a porous medium is

∇ · V = 0 (11.1)

11.1.1 Darcy’s equation

For the momentum equation, the simplest model is that due to Darcy

∇p = − µ

K
V + ρf (11.2)

where f is the body force per unit mass. Here K is called the permeability of the medium and
has units of inverse area. It is similar to the incompressible Navier-Stokes equation with constant
properties where the inertia terms are dropped and the viscous force per unit volume is represented
by −(µ/K)V. Sometimes a term cρ0∂V/∂t is added to the left side for transient problems, but it
is normally left out because it is very small. The condition on the velocity is that of zero normal
velocity at a boundary, allowing for slip in the tangential direction.

From equations (11.1) and (11.2), for f = 0 we get

∇2p = 0 (11.3)

from which the pressure distribution can be determined.

11.1.2 Forchheimer’s equation

Forchheimer’s equation which is often used instead of Darcy’s equation is

∇p = − µ

K
V − cfK

−1/2ρ|V|V + ρf (11.4)

where cf is a dimensionless constant. There is still slip at a boundary.
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11.1.3 Brinkman’s equation

Another alternative is Brinkman’s equation

∇p = − µ

K
V + µ̃∇2V + ρf (11.5)

where µ̃ is another viscous coefficient. In this model there is no slip at a solid boundary.

11.1.4 Energy equation

The energy equation is

(ρc)m
∂T

∂t
+ ρcpV · ∇T = km∇2T (11.6)

where km is the effective thermal conductivity, and

(ρc)m = φρcp + (1 − φ)(ρc)m (11.7)

is the average heat capacity. The subscripts m refers to the solid matrix, and φ is the porosity of
the material. An equivalent form is

σ
∂T

∂t
+ V · ∇T = αm∇2T (11.8)

where

αm =
km

ρcp
(11.9)

σ =
(ρc)m

ρcp
(11.10)

See [1].

11.2 Forced convection

11.2.1 Plane wall at constant temperature

The solution to

∂u

∂x
+
∂v

∂y
= 0 (11.11)

u = −K
µ

∂p

∂x
(11.12)

v = −K
µ

∂p

∂y
(11.13)

is

u = U (11.14)

v = 0 (11.15)

For
Ux

αm
= Pex ≫ 1 (11.16)
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the energy equation is

u
∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
(11.17)

or

U
∂T

∂x
= αm

∂2T

∂y2
(11.18)

The boundary conditions are

T (0) = Tw (11.19)

T (∞) = T∞ (11.20)

Writing

η = y

√
U

αmx
(11.21)

θ(η) =
T − Tw

T∞ − Tw
(11.22)

we get

∂T

∂x
= (T∞ − Tw)

dθ

dη

∂η

∂x
(11.23)

= (T∞ − Tw)
dθ

dη

(
−y
√

U

αm

1

2
x−3/2

)
(11.24)

∂T

∂y
= (T∞ − Tw)

dθ

dη

∂η

∂y
(11.25)

= (T∞ − Tw)
dθ

dη

√
U

αmx
(11.26)

∂2T

∂y2
= (T∞ − Tw)

d2θ

dη2

U

αmx
(11.27)

so that the equation becomes

θ′′ +
1

2
η θ′ = 0 (11.28)

with

θ(0) = 0 (11.29)

θ(∞) = 1 (11.30)

We multiply by the integrating factor eη2/4 to get

d

dη

(
eη2/4θ′

)
= 0 (11.31)

The first integral is

θ′ = C1e
−η2/4 (11.32)

Integrating again we have

θ = C1

∫ η

0

e−η′2/4 dη′ + C2 (11.33)
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With the change in variables x = η′/2, the solution becomes

θ = 2C1

∫ η/2

0

e−x2

dx (11.34)

Applying the boundary conditions, we find that C1 = 1/
√
π and C2 = 0. Thus

θ =
2√
π

∫ η/2

0

e−x2

dx (11.35)

= erf
η

2
(11.36)

The heat transfer coefficient is defined as

h =
q′′

Tw − T∞
(11.37)

= − km

Tw − T∞

∂T

∂y
(11.38)

= km
∂θ

∂y
(11.39)

The local Nusselt number is given by

Nux =
hx

km
(11.40)

= x
∂θ

∂y

∣∣∣∣∣
y=0

(11.41)

=
1√
π

√
Ux

αm
(11.42)

=
1√
π
Pe−1/2

x (11.43)

Example 11.1
Find the temperature distribution for flow in a porous medium parallel to a flat plate with uniform heat

flux.

11.2.2 Stagnation-point flow

For flow in a porous medium normal to an infinite flat plate, the velocity field is

u = Cx (11.44)

v = −Cy (11.45)

The energy equation is

Cx
∂T

∂x
− Cy

∂T

∂y
= αm

∂2T

∂y2
(11.46)
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11.2.3 Thermal wakes

Line source

For Pex ≫ 1, the governing equation is

U
∂T

∂x
= αm

∂2T

∂y2
(11.47)

where the boundary conditions are

∂T

∂y
= 0 at y = 0 (11.48)

q′ = (ρcp)U

∫
∞

−∞

(T − T∞) dy (11.49)

Writing

η = y

√
U

αmx
(11.50)

θ(η) =
T − T∞
q′/km

√
Ux

αm
(11.51)

we find that

∂T

∂x
= θ

q′

km

√
αm

U

(
−1

2
x−3/2

)
+
dθ

dη
y

√
U

αm

(
−1

2
x−3/2 q

′

km

√
αm

Ux

)
(11.52)

∂T

∂y
=

q′

km

√
αm

Ux

dθ

dη

√
U

αmx
(11.53)

∂2T

∂y2
=

q′

km

√
αm

Ux

dθ

dη

U

αmx
(11.54)

(11.55)

Substituting in the equation, we get

θ′′ = −1

2
(θ + ηθ′) (11.56)

The conditions (11.48)-(11.49) become

∂θ

∂η
= 0 at η = 0 (11.57)

∫
∞

−∞

θ dy = 1 (11.58)

The equation (11.56) can be written as

θ′′ = −1

2

d

dη
(ηθ) (11.59)

which integrates to

θ′ = −1

2
ηθ + C1 (11.60)
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Since θ′ = 0 at η = 0, we find that C1 = 0. Integrating again, we get

θ = C2e
−η2/4 (11.61)

Substituting in the other boundary condition

1 =

∫
∞

−∞

θ dη = C2

∫
∞

−∞

e−η2/4 dη = 2
√
πC2 (11.62)

from which

C2 =
1

2
√
π

(11.63)

Thus the solution is

θ =
1

2
√
π
e−η2/4 (11.64)

or

T − T∞ =
1

2
√
π

q′

km

√
(
αm

Ux
) exp(

−Uy2

4αmx
) (11.65)

Example 11.2
Show that for a point source

T − T∞ =
q

4πkx
exp(

−Ur2

4αmx
) (11.66)

11.3 Natural convection

11.3.1 Linear stability

This is often called the Horton-Rogers-Lapwood problem, and consists of finding the stability of a
horizontal layer of fluid in a porous medium heated from below. The geometry is shown in Fig. 11.1.

A

B

gravity

x

y

Figure 11.1: Stability of horizontal porous layer.

The governing equations are

∇ · V = 0 (11.67)

−∇p− µ

K
V + ρg = 0 (11.68)

σ
∂T

∂t
+ V · ∇T = αm∇2T (11.69)

ρ = ρ0 [1 − β (T − T0)] (11.70)
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where g = −gj. The basic steady solution is

V = 0 (11.71)

T = T0 + ∆T
(
1 − y

H

)
(11.72)

p = p0 − ρ0g

[
y +

1

2
β∆T

(
y2

H
− 2y

)]
(11.73)

For constant heat flux ∆T = q′′s /km. We apply a perturbation to each variable as

V = V + V′ (11.74)

T = T + T ′ (11.75)

p = p+ p′ (11.76)

Substituting and linearizing

∇ · V′ = 0 (11.77)

−∇p′ − µ

K
V′ − βρ0T

′g = 0 (11.78)

∂T ′

∂t
− ∆T

H
w′ = αm∇2T ′ (11.79)

Using the nondimensional variables

x∗ =
x

H
(11.80)

t∗ =
αmt

σH2
(11.81)

V∗ =
HV′

αm
(11.82)

T ∗ =
T ′

∆T
(11.83)

p∗ =
Kp′

µαm
(11.84)

the equations become, on dropping *s

∇ · V = 0 (11.85)

−∇p− V +Ra Tk = 0 (11.86)

∂T

∂t
− w = ∇2T (11.87)

where

Ra =
ρ0gβKH∆T

µαm
(11.88)

From these equations we get
∇2w = Ra∇2

HT (11.89)

where

∇H =
∂2

∂x2
(11.90)
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Using separation of variables

w(x, y, z, t) = W (y) exp (st+ ikxx) (11.91)

T (x, y, z, t) = Θ(y) exp (st+ ikxx) (11.92)

Substituting into the equations we get

(
d2

dy2
− k2 − s

)
Θ = −W (11.93)

(
d2

dy2
− k2

)
W = −k2Ra Θ (11.94)

where
k2 = k2

x + k2
y (11.95)

Isothermal boundary conditions

The boundary conditions are W = Θ = 0 at either wall. For the solutions to remain bounded as
x, y → ∞, the wavenumbers kx and ky must be real. Furthermore, since the eigenvalue problem is
self-adjoint, as shown below, it can be shown that s is also real.

For a self-adjoint operator L, we must have

(u,Lv) = (Lu, v) (11.96)

If

vL(u) − uL(v) =
∂P

∂x
+
∂Q

∂y
(11.97)

then
∫

V

[vL(u) − uL(v)] dV =

∫ (
∂P

∂x
+
∂Q

∂y

)
dV (11.98)

=

∫

V

∇ · (P i +Qj) dV (11.99)

=

∫

S

n · (P i +Qj) (11.100)

If n·(P i+Qj) = 0 at the boundaries (i.e. impermeable), which is the case here, then L is self-adjoint.
Thus, marginal stability occurs when s = 0, for which

(
d2

dy2
− k2

)
Θ = −W (11.101)

(
d2

dy2
− k2

)
W = −k2Ra Θ (11.102)

from which (
d2

dy2
− k2

)2

W = k2Ra W (11.103)

The eigenfunctions are
W = sinnπy (11.104)
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where n = 1, 2, 3, . . ., as long as

Ra =

(
n2π2

k
+ k

)2

(11.105)

For each n there is a minimum value of the critical Rayleigh number determined by

dRa

dk
= 2

(
n2π2

k
+ k

)[
−n

2π2

k2
+ 1

]
(11.106)

The lowest critical Ra is with k = π and n = 1, which gives

Rac = 4π2 (11.107)

for the onset of instability.

Constant heat flux conditions

Here W = dΘ/dy = 0 at the walls. We write

W = W0 + α2W1 + . . . (11.108)

Θ = Θ0 + α2Θ1 + . . . (11.109)

Ra = Ra0 + α2Ra1 + . . . (11.110)

For the zeroth order system
d2W0

dy2
= 0 (11.111)

with W0 = dΘ0/dy = 0 at the walls. The solutions is W0 = 0, Θ0 = 1. To the next order

d2W1

dy2
= W0 −Ra0Θ0 (11.112)

d2Θ1

dy2
+W1 = Θ0 (11.113)

with W1 = dΘ1/dy = 0 at the walls. Finally, we get Rac = 12.

11.3.2 Steady-state inclined layer solutions

Consider an inclined porous layer of thickness H at angle φ with respect to the horizontal shown in
Fig. 11.2

Introducing the streamfunction ψ(x, y), where

u =
∂ψ

∂y
(11.114)

v = −∂ψ
∂x

(11.115)

Darcy’s equation becomes

−∂p
∂x

− µ

K

∂ψ

∂y
= ρ0g [1 − β(T − T0)] sinφ (11.116)

−∂p
∂y

+
µ

K

∂ψ

∂x
= ρ0g [1 − β(T − T0)] cosφ (11.117)
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x

y

φ

Figure 11.2: Inclined porous layer.

Taking ∂/∂y of the first and ∂/∂x of the second and subtracting, we have

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ρ0gβK

µ

(
∂T

∂x
cosφ− ∂T

∂y
sinφ

)
(11.118)

The energy equation is (
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y

)
= αm

(
∂2T

∂x2
+
∂2T

∂y2

)
(11.119)

Side-wall heating

The non-dimensional equations are

∂2ψ

∂x2
+
∂2ψ

∂y2
= −Ra

(
∂T

∂x
cosφ− ∂T

∂y
sinφ

)
(11.120)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
=

∂2T

∂x2
+
∂2T

∂y2
(11.121)

where the Rayleigh number is
Ra =? (11.122)

The boundary conditions are

ψ = 0,
∂T

∂x
= 0 at x = ±A

2
(11.123)

ψ = 0,
∂T

∂y
= −1 at y = ±1

2
(11.124)

(11.125)

With a parallel-flow approximation, we assume [167]

ψ = ψ(y) (11.126)

T = Cx+ θ(y) (11.127)
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The governing equations become

∂2ψ

∂y2
−Ra sinφ

dθ

dy
+RC cosφ = 0 (11.128)

d2θ

dy2
− C

dψ

dy
= 0 (11.129)

An additional constraint is the heat transported across a transversal section should be zero. Thus

∫ 1/2

−1/2

(
uT − ∂T

∂x

)
dy = 0 (11.130)

Let us look at three cases.
(a) Horizontal layer

For φ = 0◦ the temperature and streamfunction are

T = Cx− y

[
1 +

RaC2

24

(
4y2 − 3

)]
(11.131)

ψ = −RaC
8

(
4y2 − 1

)
(11.132)

Substituting in condition (11.130), we get

C
(
10R−Ra2C2 − 120

)
= 0 (11.133)

the solutions of which are

C = 0 (11.134)

C =
1

Ra

√
10(Ra− 12) (11.135)

C = − 1

Ra

√
10(Ra− 12) (11.136)

The only real solution that exists for Ra ≤ 12 is the conductive solution C = 0. For C > 12, there
are two nonzero values of C which lead to convective solutions, for which

ψc =
RaC

8
(11.137)

Nu =
12

12 −RaC2
(11.138)

For φ = 180◦, the only real value of C is zero, so that only the conductive solution exists.
(b) Natural circulation

Let us take C sinφ > 0, for which we get

ψc =
B

C

(
1 − cosh

α

2

)
(11.139)

Nu = − α

2B sinh α
2 + αC cotφ

(11.140)

where

α2 = RC sinφ (11.141)

B = −1 + C cotφ

cosh α
2

(11.142)
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and the constant C is determined from

C − B2

2C

(
sinhα

α
− 1

)
−B cotφ

(
cosh

α

2
− 2

α
sinh

α

2

)
= 0 (11.143)

(c) Antinatural circulation
For C sinφ < 0, for which we get

ψc =
B

C

(
1 − cosh

β

2

)
(11.144)

Nu = − β

2B sinh β
2 + βC cotφ

(11.145)

where

β2 = −RC sinφ (11.146)

B = −1 + C cotφ

cosh β
2

(11.147)

and the constant C is determined from

C − B2

2C

(
sinβ

β
− 1

)
−B cotφ

(
cosh

β

2
− 2

β
sinh

β

2

)
= 0 (11.148)

End-wall heating

Darcy’s law is

∇2ψ = R

(
∂T

∂x
sinφ+

∂T

∂y
cosφ

)
(11.149)

The boundary conditions are

ψ = 0,
∂T

∂x
= −1 at x = ±A

2
(11.150)

ψ = 0,
∂T

∂y
= 0 at x = ±1

2
(11.151)

With a parallel-flow approximation, we assume

ψ = ψ(y) (11.152)

T = Cx+ θ(y) (11.153)

The governing equations become

dθ

dy2
− C

dψ

dy
= 0 (11.154)

∂2ψ

∂y2
−R cosφ

dθ

dy
−RC sinφ = 0 (11.155)

An additional constraint is the heat transported across a transversal section. Thus

∫ 1/2

−1/2

(
uT − ∂T

∂x

)
dy = 1 (11.156)
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Let us look at three cases.
(a) Vertical layer

For φ = 0◦ the temperature and streamfunction are

T = Cx+
B1

α
sin(αy) − B2

α
cos(αy) (11.157)

ψ =
B1

C
cos(αy) +

B2

C
sin(αy) +B3 (11.158)

where
α2 = −RC (11.159)

Substituting in condition (11.130), we get

C
(
10R−R2C2 − 120

)
= 0 (11.160)

the solutions of which are

C = 0 (11.161)

C =
1

R

√
10(R− 12) (11.162)

C = − 1

R

√
10(R− 12) (11.163)

The only real solution that exists for R ≤ 12 is the conductive solution C = 0. For C > 12, there
are two nonzero values of C which lead to convective solutions, for which

ψc =
RC

8
(11.164)

Nu =
12

12 −RC
(11.165)

For φ = 180◦, the only real value of C is zero, so that only the conductive solution exists.
(b) Natural circulation

Let us take C sinφ > 0, for which we get

ψc =
B

C

(
1 − cosh

α

2

)
(11.166)

Nu = − α

2B sinh α
2 + αC cotφ

(11.167)

where

α2 = RC sinφ (11.168)

B = −1 + C cotφ

cosh α
2

(11.169)

and the constant C is determined from

C − B2

2C

(
sinhα

α
− 1

)
−B cotφ

(
cosh

α

2
− 2

α
sinh

α

2

)
= 0 (11.170)

(c) Antinatural circulation
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For C sinφ > 0, for which we get

ψc =
B

C

(
1 − cosh

β

2

)
(11.171)

Nu = − β

2B sinh β
2 + βC cotφ

(11.172)

where

β2 = −RC sinφ (11.173)

B = −1 + C cotφ

cosh β
2

(11.174)

and the constant C is determined from

C − B2

2C

(
sinβ

β
− 1

)
−B cotφ

(
cosh

β

2
− 2

β
sinh

β

2

)
= 0 (11.175)

Problems

1. This is a problem.



Chapter 12

Moving boundary

12.1 Stefan problems
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Complex systems
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Chapter 13

Radiation

13.1 Monte Carlo methods

[209]
[219] is a review of the radiative properties of semiconductors.

Problems

1. Consider an unsteady n-body radiative problem. The temperature of the ith body is given by

Mjcj
dTj

dt
= −

n
X

i=1

AiFijσ(T 4
i − T 4

j ) + Qj

= Aj

n
X

i=1

Fjiσ(T 4
i − T 4

j ) + Qj

What kind of dynamic solutions are possible?

2. The steady-state temperature distribution in a one-dimensional radiative fin is given by

dT

dx
+ hT 4 = 0

Is the solution unique and always possible?

3. Show that between one small body 1 and its large surroundings 2, the dynamics of the small-body temperature
is governed by

M1c1
dT1

dt
= −A1F12σ(T 4

1 − T 4
2 ) + Q1.
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Chapter 14

Boiling and condensation

14.1 Homogeneous nucleation
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Chapter 15

Microscale heat transfer

[108] is a review of microscale heat exchangers, and [36] of photonic devices.
[86,119,178,186,202,219]

15.1 Diffusion by random walk

15.1.1 One-dimensional

Consider a walker along an infinite straight line moving with a step size ∆x taken forward or
backward with equal probability in a time interval ∆t. Let the current position of the walker be
x, and the probability that the walker is in an interval [x − dx/2, x + dx/2] be P (x, t). Since
there is equal probability of the walker in the previous time step to have been in the interval
[x− ∆x− dx/2, x− ∆x+ dx/2] or [x+ ∆x− dx/2, x+ ∆x+ dx/2], we have

P (x, t) =
1

2
[P (x− ∆x, t− ∆t) + P (x+ ∆x, t− ∆t] . (15.1)

Assuming that ∆x and ∆t are small, Taylor series expansions give

P (x± ∆x, t− ∆t) = P ± ∂P

∂x
∆x− ∂P

∂t
∆t

+
1

2

∂2P

∂x2
∆x2 ± ∂2P

∂x∂t
∆x∆t+

1

2

∂2P

∂t2
∆t2

±1

6

∂3P

∂x3
∆x3 − 1

2

∂3P

∂x2∂t
∆x2∆t± 1

2

∂3P

∂x∂t2
∆x∆t2 − 1

6

∂3P

∂t3
∆t3

+ . . . , (15.2)

where the terms on the right side are evaluated at (x, t). Substituting in Eq. (15.1) we get

∂P

∂t
−D

∂2P

∂x2
=

1

2

∂2P

∂t2
∆t− 1

2

∂3P

∂x2∂t
∆x2 + . . . , (15.3)

where D = ∆x2/2∆t. If we let ∆x → 0 and ∆t → 0 such that D is constant, we get the diffusion
equation

∂P

∂t
= D

∂2P

∂x2
. (15.4)
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15.1.2 Multi-dimensional

Let P = P (r, t), and ∆r be a step in any direction where |∆r| is a constant. Then

P (r, t) =

∫

S

P (r + ∆r, t− ∆t) dS (15.5)

where S is a sphere of radius |∆r| centered on r. Also

P (r + ∆r, t− ∆t) = P +
∂P

∂ri
∆ri −

∂P

∂t
∆t

1

2

∂2P

∂ri∂ri
+ . . . (15.6)

etc.

15.2 Boltzmann transport equation

The classical distribution function f(r,v, t) is defined as number of particles in the volume dr dv in
the six-dimensional space of coordinates r and velocity v. Following a volume element in this space,
we have the balance equation [109,123,124]

∂f

∂t
+ v · ∇f + a · ∂f

∂v
=

(
∂f

∂t

)

scat

, (15.7)

where a = dv/dt is the acceleration due to an external force. The term on the right side is due to
collisions and scattering. The heat flux is then

q(r, t) =

∫
v(r, t)f(r, ε, t)εD dε, (15.8)

where D(ε) is the density of energy states ε.

15.2.1 Relaxation-time approximation

Under this approximation (
∂f

∂t

)

scat

=
f0 − f

τ
, (15.9)

where τ = τ(r,v). Thus
∂f

∂t
+ v · ∇f + a · ∂f

∂v
=
f0 − f

τ
. (15.10)

Several further approximations can be made.

(a) Fourier’s law
Assume ∂/∂t = 0, a = 0 and ∇f = ∇f0 in the left side of Eq. (15.10) so that

f = f0 − τv · ∇f0. (15.11)

Introducing explicitly the dependence of f on temperature, we can write

∇f0 =
df0
dT

∇T. (15.12)
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xi−1 xi xi+1

Figure 15.1: Lattice of atoms of a single type

Using Eqs. (15.11) and (15.12) in (15.8), we get

q = −k∇T, (15.13)

where

k =

∫
v

(
τv · df0

dT

)
εD dε, (15.14)

since ∫
vf0εD dε = 0. (15.15)

(b) Cattaneo’s equation
Assume τ = constant and ∇f = (df0/dT )∇T . Multiply Eq. (15.10) by vεD dε and integrate

to get
∂

∂t

∫
vfεD dǫ+

∫ (
v · df0

dT
∇T
)

vεD dε = −1

τ

∫
vfεD dε. (15.16)

Using Eq. (15.8), this gives

q + τ
∂q

∂t
= −k∇T, (15.17)

where k is given by Eq. (15.14). This is Cattaneo’s equation that can be compared to Fourier’s law,
Eq. (15.13).

15.3 Phonons

15.3.1 Single atom type

A lattice of atoms of a single type is shown in Fig. 15.1. The mass of each atom is m, the spring
constants are c, and a is the mean distance between the atoms. For a typical atom n, Newton’s
second law gives

m
d2xn

dt2
= c(xn+1 − xn) − c(xn − xn−1) (15.18)

= c(xn+1 − 2xn + xn−1). (15.19)

Let
xi = x̂ei(nka−ωt), (15.20)

then the dispersion relation is

ω =

(
2c

m

)1/2

(1 − cos ka)
1/2

. (15.21)
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xi yi

Figure 15.2: Lattice of atoms of two different type

The phase velocity is

vp =

(
2c

mk2

)1/2

(1 − cos ka)
1/2

, (15.22)

and the group velocity is

vg =
( c

2m

)1/2 a sin ka

(1 − cos ka)
1/2

. (15.23)

For ka→ 0, we have

vg = a
( c
m

)1/2

. (15.24)

The thermal conductivity
k = ke + kp (15.25)

where ke and kp are those due to electron and phonon transports. We can also write

k =
1

3
cvgl (15.26)

where c is the specific heat, and l is the mean free path.

15.3.2 Two atom types

Newton’s second law gives

m1
d2xi

dt2
= c(yi − xi) − c(xi − yi−1) (15.27)

= c(yi − 2xi + yi−1), (15.28)

m2
d2yi

dt2
= c(xi+1 − yi) − c(yi − xi) (15.29)

= c(xi+1 − 2yi + xi). (15.30)

(15.31)

Let

xi = x̂ei(nka−ωt), (15.32)

yi = ŷei(nka−ωt), (15.33)

(15.34)

so that

−m1x̂ω
2 = c

(
ŷ − 2x̂+ ŷe−ika

)
, (15.35)

−m2ŷω
2 = c

(
x̂eika − 2ŷ + x̂

)
, (15.36)
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which can also be written as
[

2c−m1ω
2 −c(1 + e−ika)

−c(1 + eika) 2c−m2ω
2

] [
x̂
ŷ

]
=

[
0
0

]
. (15.37)

This means that
(2c−m1ω

2)(2c−m2ω
2) − c2(1 + e−ika)(1 + eika) = 0, (15.38)

which simplifies to
m1m2ω

4 − 2c(m1 +m2)ω
2 + 2c2(1 − cos ka) = 0. (15.39)

The solution is

ω2 =
1

2m1m2

[
2c(m1 +m2) ± 2c

√
m2

1 +m2
2 + 2m1m2 cos ka

]
. (15.40)

The positive sign corresponds to the optical and the negative to the acoustic mode.

15.4 Thin films



Chapter 16

Bioheat transfer

16.1 Mathematical models

Good references are [35,53].
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Chapter 17

Heat exchangers

17.1 Fin analysis

Analysis of Kraus (1990) for variable heat transfer coefficients.

17.2 Porous medium analogy

See Nield and Bejan, p. 87 [130].

17.3 Heat transfer augmentation

17.4 Maldistribution effects

Rohsenow (1981)

17.5 Microchannel heat exchangers

Phillips (1990).

17.6 Radiation effects

See Ozisik (1981).
Shah (1981)

17.7 Transient behavior

Ontko and Harris (1990)
For both fluids mixed

Mc
dT

dt
+ ṁ1c1(T

in
1 − T out

1 ) + ṁc2(T
in
2 − T out

2 ) = 0 (17.1)

For one fluid mixed and the other unmixed, we have

ρAc2
∂T2

∂t
+ ρV2Ac2

∂T2

∂x
+ hP (T − T1) = 0 (17.2)
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17.8 Correlations

17.8.1 Least squares method

Possible correlations are

y(x) =

n∑

k=0

akx
k (17.3)

y(x) = a0 + a1/2x
1/2 + a1x+ a3/2x

3/2 + a2x
2 + . . . (17.4)

y(x) = axm + bxn + . . . (17.5)

y(x) =

∫ n

k=0

a(k)xk dk where − 1 < x < 1 (17.6)

A power-law correlation of the form

y = cxn (17.7)

satisfies the invariance condition given by equation (A.1).

17.9 Compressible flow

17.10 Thermal control

A cross-flow heat exchanger model, schematically shown in Fig. 17.1, has been studied using finite
differences [4–6]. Water is the in-tube and air the over-tube fluid in the heat exchanger. This
example includes all the conductive, advective and convective effects discussed before. The governing
equations on the outside of the tube, in the water, and in the wall of the tube are

ṁa

L
ca(T a

in − T a
out) = ho2πro(Ta − Tt), (17.8)

ρwcwπr
2
i

∂Tw

∂t
+ ṁwcw

∂Tw

∂ξ
= hi2πri(Tt − Tw), (17.9)

ρtctπ(r2o − r2i )
∂Tt

∂t
= ktπ(r2o − r2i )

∂2Tt

∂ξ2
+ 2πroho(Ta − Tt) − 2πrihi(Tt − Tw),(17.10)

respectively. L is the length of the tube; ṁa(t) and ṁw(t) are the mass flow rates of air and water;
T a

in and T a
out(t) are the inlet and outlet air temperatures; Ta(t) is the air temperature surrounding

the tube; Tt(ξ, t) and Tw(ξ, t) are the tube-wall and water temperatures; hi and ho the heat transfer
coefficients in the inner and outer surfaces of the tube; ri and ro are the inner and outer radii of the
tube; ca, cw and ct are the specific heats of the air, water and tube material; ρw and ρt are the water
and tube material densities; and kt is the thermal conductivity of the tube material. In addition,
the air temperature is assumed to be Ta = (T a

in + T a
out)/2. The boundary and initial conditions are

Tt(0, t) = Tw(0, t) = Tw
in, Tt(L, t) = Tw(L.t), and Tt(ξ, 0) = Tw(ξ, 0). Suitable numerical values were

assumed for the computations.
The inlet temperatures T a

in and Tw
in, and the flow rates ṁa and ṁw can all be used as control

inputs to obtain a desired outlet temperature, T a
out or Tw

out. The flow rates present a special difficulty;
they appear in nonlinear form in Eqs. (17.8) and (17.9), and the outlet temperature is bounded. Fig.
17.2 shows the steady-state range of values of Tw

out that can be achieved on varying ṁw; temperatures
outside this range cannot be obtained. It is also seen that the outlet water temperature is hard to
control for large water flow rates. As an example of control dynamics, Fig. 17.3 shows the results of
applying PI control on ṁw to obtain a given reference temperature Tw

out = 23◦C.
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Figure 17.1: Schematic of single-tube cross-flow heat exchanger.
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Figure 17.3: Behavior of T a
out as a function of time for Ki = 50 and different Kp [4].

17.11 Control of complex thermal systems

The previous sections examined systems that were fairly simple in the sense that mathematical
models could be written down and their behaviors studied. For most practical thermal systems,
this is difficult to do with any degree of precision. In the following, we will look first at thermal
components and then combine them in networks.

17.11.1 Hydronic networks

The science of networks of all kinds has been put forward as a new emerging science [15]. In the
present context this means that a complete understanding of the behavior of components does not
necessarily mean that large networks formed out of these components can be modeled and computed
in real time for control purposes. Controllability issues of heat exchanger networks are reported
in [203]. Mathematical models of the dynamics of a piping network lead to differential-algebraic
systems [61]. The momentum equation governing the flow in each pipe is differential, while the
conservation of mass condition at each of the junctions is algebraic. Thus, it turns out that only
certain flow rates may be controllable, the others being dependent on these.

There are at present many different strategies for the thermal control of networks, and com-
parative studies based on mathematical models can be carried out. Fig. 17.4 shows a network in
which three specific control strategies can be compared [61, 62]; each control method works differ-
ently and are labeled VF, MCF and BT in the following figures (details are in [61]). The network
has a primary loop, a secondary loop and a bypass that has the three strategies as special cases.
The primary loop includes a chiller, while the secondary has a water-air cooling coil which serves
as a thermal load. Integral controllers are used to operate the valves Vα, Vβ , and Vγ to control
the air temperature leaving the cooling coil, TL

a (t). Figs. 17.5 and 17.6 show the dynamic response
of TL

a (t), the leaving water temperatures TL
w (t), and the bypass pressure difference ∆pbp to step
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Figure 17.4: Network used to study control strategies [61].

changes in the air velocity over the coil. α(t), β(t), and γ(t) are the respective closing fractions of
the valves which change dynamically in response to the error signal. There are some oscillations in
all the variables before they settle down to stable, steady values.

Laboratory experiments with a network of water-to-water heat exchangers have been reported
in [61–63]; the configuration is shown in Fig. 17.7. The hot water flow is diminished by changing its
controller set point. Figure 17.8 shows the secondary hot water flow rates q8, q7 and q4 to the heat
exchangers for the three different control strategies. Each curve represents one independent run;
that is, water flow to HXBT and HXCF is zero when testing VF, and so on. The system is taken
to the nominal operating conditions, and then the hot water flow is decreased by a constant value
every 1800 s. The controls drive the system to different operational points while coping with the
changes. The input voltages v7, v4 and v1 that control flow and the hot water temperature at the
heat exchanger inlet T21 are also shown. It is seen that for certain control parameters, the system
is becomes unstable and the variables oscillate in time.

17.11.2 Other applications

There are a large number of other thermal problems in which control theory has been applied.
Agent-based controls have been proposed by complex thermal systems such as in buildings [213],
microwave heating [120], thermal radiation [143], and materials processing and manufacturing [55,
160]. Control of convection is an important and active topic; this includes the study of convection
loops [175,176,205,215,217], stabilization and control of convection in horizontal fluid layers [18,83,
125,145,190–195], and in porous media [189].



17.11. Control of complex thermal systems 163

75 100 125 150 175 200 225 250 275 300
25

26

27

75 100 125 150 175 200 225 250 275 300
0

0.5

1

T
aL

o ( 
C

)

β

t (s)

t (s )

Figure 17.5: Dynamic response of control system to drop in air velocity, − ∗ − method VF, and
− � − method MCF; TL

a,set = 26◦C, TE
a = 30◦C [61].

100 125 150 175 200 225 250 275 300
5

6

7

t

100 125 150 175 200 225 250 275 300
0

0.5

1

t

100 125 150 175 200 225 250 275 300
0

1

2

3
x 10

4

t

100 125 150 175 200 225 250 275 300
0

0.5

1

t

100 125 150 175 200 225 250 275 300
25

26

27

t (s)

γ

∆
p

b
p
(N

/m
  )2

T
wL

o ( 
C

)

α

T
aL

o ( 
C

)

Figure 17.6: Dynamic response of control system to drop in air velocity with method BT; TL
w,set =

5.5◦C, ∆pbp,set = 20000 (N/m2); TE
a = 30◦C [61].



17.11. Control of complex thermal systems 164

HXm

13

HXBT HXCF HXVF

12

11

9

8

7

3

4

5

6

1

2

Pump

Control Valve

Manual Valve

HT1
HT2

10

PID

T1

T21

T6 T5

T8

T7 T12 T11

T14

T12 T16 T15

T18

T17

T3

T4

T9 T19

T10 T20

P3

P2

q
1

q
1

q
4

q
7

q
8

q
3 q

6

P1

∆p
V8

∆p
P4

∆p
V10

q
2 q

5 q
9

∆p
V3

P4

T2 M1

M2

M3

M4

M5

M6

Figure 17.7: Layout of hydronic network [61].

0 1000 2000 3000 4000 5000 6000
0

1

2

3

x 10
−4

0 1000 2000 3000 4000 5000 6000
0

1

2

3

0 1000 2000 3000 4000 5000 6000
30

35

40

T 2
1

C
( 

   
)

o

t s( )

v 
 ,
v 

 ,
v 

 
  
V

o
lts

( 
   

   
)

1
4

7
q

  
,q

  
,q

( 
   

  )
m

 /
s

3
8

7
4

Figure 17.8: Secondary hot water flows and T21: −◦−BT , −�−CF , −∗−V F . The dashed vertical
lines are instants at which the thermal load is changed [61].



17.12. Conclusions 165

17.12 Conclusions

This has been a very brief introduction to the theory of thermal control. The fundamental ideas in
this subject are firmly grounded on the mathematics of systems and control theory which should be
the starting point. There are, however, a few aspects that are particularly characteristic of thermal
systems. Phenomena such as diffusion, convection and advection are common and the systems
are usually complex, nonlinear and poorly predictable dynamically. The governing equations cover
a wide range of possibilities, from ordinary and partial differential equations to functional and
differential-algebraic systems. Furthermore, control theory itself is a vast subject, with specialized
branches like optimal [79], robust [38], and stochastic control [37] that are well developed. Many of
the tools in these areas find applications in thermal systems.

The study of thermal control will continue to grow from the point of view of fundamentals as
well as engineering applications. There are many outstanding problems and issues that need to be
addressed. To cite one specific example, networking between a large number of coupled components
will become increasingly important; it is known that unexpected synchronization may result even
when multiple dynamical systems are coupled weakly [181]. It is hoped that the reader will use
this brief overview as a starting point for further study and apply control theory in other thermal
applications.

Problems

1. This is a problem



Chapter 18

Soft computing

18.1 Genetic algorithms

[141]

18.2 Artificial neural networks

18.2.1 Heat exchangers

The most important of the components are heat exchangers, which are generally very complex in that
they cannot be realistically computed in real time for control purposes [92, 153, 182]. An approach
that is becoming popular in these cases is that of artificial neural networks (ANN) [73] for prediction
of system behavior both for time-independent [48,139,140,142] and time-dependent operation. It is
particularly suitable for systems for which experimental information that can be used for training
is available. Reviews of artificial neural network applications to thermal engineering [163, 168] and
other soft control methodologies [32,131,220] and applications [216] are available.

A stabilized neurocontrol technique for heat exchangers has been described in [47,49–52]. Fig.
18.1 shows the test facility in which the experiments were conducted. The objective is to control
the outlet air temperature T a

out. Figs. 18.2 shows the results of using neurocontrol compared with
PID; both are effective. Fig. 18.3 shows the result of an disturbance rejection experiment. The
heat exchanger is stabilized at T a

out = 36◦C, and then the water flow is shut down between t = 40s
and t = 70s; after that the neurocontroller brings the system back to normal operation. A neural
network-based controller is able to adapt easily to changing circumstances; in thermal systems
this may come from effects such as the presence of fouling over time or from changes in system
configuration as could happen in building heating and cooling systems.

[51,166]
[162]

Problems

1. This is a problem
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(a)

Air flow

a
Tout

Water flow

(b)

Figure 18.1: Experimental setup: (a) heat exchanger test facility with wind tunnel and in-draft fan,
(b) heat exchanger with water and air flows indicated; T a

out is the air outlet temperature [47].
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Appendix A

Mathematical review

A.1 Fractals

[60]
Fractals are objects that are not smooth; they are geometrical shapes in which the parts are

in some way similar to the whole. This self-similarity may be exact, i.e. a piece of the fractal, if
magnified, may look exactly like the whole fractal.

A function f(x) is invariant under change of scale if there exists constants a and b, such
that [199]

f(ax) = bf(x) (A.1)

A fractal curve must be nowhere rectifiable (i.e. any part of it cannot be of finite length) and
homogeneous (i.e. any par6 is similar to the whole).

Before discussing examples we need to put forward a working definition of dimension. Though
there are many definitions in current use, we present here the Hausdorff-Besicovitch dimension D.
If Nǫ is the number of ‘boxes’ of side ǫ needed to cover an object, then

D = lim
ǫ→0

lnNǫ

ln(1/ǫ)
(A.2)

We can check that this definition corresponds to the common geometrical shapes.

1. Point: Nǫ = 1,D = 0

2. Line of length l: Nǫ = l/ǫ,D = 1

3. Surface of size l × l: Nǫ = (l/ǫ)2,D = 2

4. Volume of size l × l × l: Nǫ = (l/ǫ)3,D = 3

A fractal has a dimension that is not an integer. Many physical objects are fractal-like, in that
they are fractal within a range of length scales. Coastlines are among the geographical features that
are of this shape. If there are Nǫ units of a measuring stick of length ǫ, the measured length of the
coastline will be of the power-law form ǫNǫ = ǫ1−D, where D is the dimension.

170
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k=0

k=1

k=2

k=3

Figure A.1: The Cantor set.

Figure A.2: The Koch curve.

A.1.1 Cantor set

Consider the line [0,1] corresponding to k = 0 in Figure A.1. Take away the middle third to leave
the two portions; this is shown as k = 1. Repeat the process to get k = 2, 3, . . .. If k → ∞, what is
left is called the Cantor set. Since Nǫ = 2k and ǫ = 1/3k,its dimension is D = ln 2/ ln 3 = 0.63 . . ..

If we define a function Ck(t) at the kth level so that Ck(t) = (3/2)k if t belongs to the set and
zero otherwise, its integral over the interval is unity. In terms of this function we can also define

D(t) =

∫ t

0

lim
k→∞

Ck(t′) dt′ (A.3)

that is called the devil’s staircase.

A.1.2 Koch curve

Here we start with an equilateral triangle shown in Figure A.2 as k = 0. The middle third of each
side of the triangle is removed, and two sides of a triangle drawn on that. This is shown as k = 1.
The process is continued, and in the limit gives a continuous, closed curve that is nowhere smooth.
Since Nǫ = 3 × 4k and ǫ = 1/3k, the dimension of the Koch curve is D = ln 4/ ln 3 = 1.26 . . ..

A.1.3 Knopp function

This is the function

K(t) =

∞∑

n=0

2−nHg(2nt) (A.4)

where 0 < H < 1, and g(t) is the periodic triangular function

g(t) =

{
2t for 0 ≤ t ≤ 1/2
2(1 − t) for 1/2 < t ≤ 1

(A.5)

defined on [0,1].

A.1.4 Weierstrass function

This is the function

W (t) =
∞∑

n=0

ω−nH cos (ωnt+ φn) (A.6)
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Figure A.3: Mandelbrot set

where a is real, b is odd, and ab > 1+3π/2. It is everywhere continuous, but nowhere differentiable.
The related Weierstrass-Mandelbrot function

Wm(t) =

∞∑

n=−∞

ω−nH (1 − cosωnt) (A.7)

satisfies the invariance relation A.1.

A.1.5 Julia set

An example of this comes from the application of Newton’s method to find the complex root of the
equation z3 = 1. In this method the following iterative scheme is set up:

zk+1 = zk − z3
k − 1

3z2
k

(A.8)

Each one of the three roots has a basin of attraction, the boundaries of which are fractal.

A.1.6 Mandelbrot set

This is the set of complex numbers c for which

zk+1 = z2
k + c (A.9)

stays bounded as k → ∞. The boundaries of this set shown in Figure A.3 are again fractal.

A.2 Perturbation methods

A.3 Vector spaces

Functional analysis, norms, inner product, complete space, Banach and Hilbert spaces, operators,
eigenvalues problem, adjoint and self-adjoint operators.

Finite-dimensional spaces, linear algebra.
Eigenfunction expansions.
[13,78,107]

A.4 Dynamical systems

A dynamical system is a set of differential equations such as

dxi

dt
= fi(x1, x2, . . . , t;λ1, λ2, . . . , λp) for i = 1, . . . , n (A.10)

The x1, . . . , xns are state variables and the λ1, . . . , λp are bifurcation parameters. The mapping
f : X ×Rp → Y is a vector field. If f1, . . . , fn do not depend on time t, the system is autonomous.
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A nonautonomous system can be converted into autonomous one by the change in variable xn+1 = t,
from which we can get the additional equation

dxn+1

dt
= 1 (A.11)

We will assume that the solutions of the system are always bounded. The system is conservative if
the divergence of the vector field

∑
∂fi/∂xi is zero, and dissipative if it is negative. An attractor of

a dissipative dynamical system is the set of {xi} as t→ ∞. The critical (or singular, equilibrium or
fixed) points, xi, of equation (A.10) are those for which

fi(x1, x2, . . . , t;λ1, λ2, . . . , λp) = 0 (A.12)

There may be multiple solutions to this algebraic or transcendental equation.
Defining a new coordinate x′i = xi − xi that is centered at the critical point, we get the local

form
dx′i
dt

= fi(x1 − x1, . . . , xn − xn) (A.13)

Sometimes we will use the notation

dxi

dt
= g(x1, . . . , xn) (A.14)

to indicate the local form, the origin being one critical point of this system.

A.4.1 Stability

The stability of the critical points is of major interest. A critical point is stable if, given an initial
perturbation, the solutions tends to it as t→ ∞.

Linear stability

The vector field in equation (A.14) can be expanded in a Taylor series to give

dxi

dt
=
∑

j

∂gi

∂xj

∣∣∣∣∣
0

xj + . . . (A.15)

The eigenvalues of the Jacobian matrix

A =
∂gi

∂xj
(A.16)

determine the linear stability of the critical point. The critical point is stable if all eigenvalues have
negative real parts, and unstable if one or more eigenvalues have positive real parts.

A.4.2 Routh-Hurwitz criteria

The polynomial equation
a0s

n + a1s
n−1 + . . .+ an−1s+ an = 0

has roots with negative real parts if and only if the following conditions are satisfied:
(i) a1/a0, a2/a0, . . . , an/a0 > 0
(ii) Di > 0, i = 1, . . . , n
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The Hurwitz determinants Di are defined by

D1 = a1

D2 =

∣∣∣∣
a1 a3

a0 a2

∣∣∣∣

D3 =

∣∣∣∣∣∣

a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣

Dn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a3 a5 . . . a2n−1

a0 a2 a4 . . . a2n−2

0 a1 a3 . . . a2n−3

0 a0 a2 . . . a2n−4

...
...

...
...

...
0 0 0 . . . an

∣∣∣∣∣∣∣∣∣∣∣∣∣

with ai = 0, if i > n.

Global stability

Consider the dynamical system in local form, equation (A.14). If there exists a function V (x1, . . . , xn)
such that V ≥ 0 and dV/dt ≤ 0, then the origin is globally stable, that is, it is stable to all
perturbations, large or small. V is called a Liapunov function.

[56]

A.4.3 Bifurcations

The critical point is one possible attractor. There are other time-dependent solutions which can also
be attractors in phase space, as indicated in the list below.

• Point (steady, time-independent)

• Closed curve (limit cycle, periodic)

• Torus (periodic or quasi-periodic)

• Strange (chaotic)

For a given dynamical system, several attractors may co-exist. In this case each attractor has
a basin of attraction, i.e. the set of initial conditions that lead to this attractor. A bifurcation is a
qualitative change in the solution as the bifurcation parameters λi are changed.

A.4.4 One-dimensional systems

A one-dimensional dynamical system is of the type

dx

dt
= f(x) (A.17)

Example A.1
Consider the linear equation

dx

dt
= ax + b (A.18)
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The critical point is

x = − b

a
(A.19)

On defining x′ = x − x, the local form is obtained as

dx′

dt
= ax′ (A.20)

We can take one of two approaches.

(a) Solving
x′ = x′

0eat (A.21)

The critical point is a repeller if a > 0, and an attractor if a < 0.

(b) Alternatively, we can multiply equation (A.20) by 2x′ to get

dV

dt
= 2aV (A.22)

where V = x′2. Since V is always nonnegative, the sign of dV/dt is the sign of a. Thus V will increase with
time if a > 0, and decrease if a < 0.

In either case we find that the critical point is unstable if a > 0 and stable if a < 0.

Example A.2
The nonlinear equation

dx

dt
= −x

ˆ

x2 − (λ − λ0)
˜

(A.23)

has critical point which are solutions of the cubic equation

x
ˆ

x2 − (λ − λ0)
˜

= 0 (A.24)

Thus

x(1) = 0 (A.25)

x(2) =
p

λ − λ0 (A.26)

x(3) = −
p

λ − λ0 (A.27)

where x(i) (i = 1, 2, 3) are the three critical points. The bifurcation diagram is shown in Fig. A.4.

(i) Critical point x(1) = 0
To analyze the local stability of x(1) = 0, we obtain the local form

dx′

dt
= x′(λ − λ0) − x′3 (A.28)

Neglecting the cubic term x′3, this becomes

dx′

dt
= x′(λ − λ0) (A.29)

Thus x(1) = 0 is locally stable if λ < λ0, and unstable if λ > λ0.
To analyze the global stability, equation (A.28) can be written as

1

2

dV

dt
= V (λ − λ0) − V 2 (A.30)

where V = x′2. For λ < λ0, V ≥ 0, dV/dt ≤ 0, so that x(1) = 0 is globally stable.

(ii) Critical point x(2) =
√

λ − λ0
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Figure A.5: Subcritical version of Fig. A.4
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Figure A.6: Transcritical bifurcation.
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Figure A.7: Saddle-node bifurcation.

The local form of the equation around this critical point is

dx′

dt
= −

“

p

λ − λ0 + x′

”

»

“

p

λ − λ0 + x′

”2
− (λ − λ0)

–

(A.31)

Linearizing, we get
dx′

dt
= −2(λ − λ0)x′ (A.32)

so that this critical point is linearly stable.

(iii) Critical point x(3) = −
√

λ − λ0

This is similar to the above.

A.4.5 Examples of bifurcations

• Supercritical: Fig. A.4.

• Subcritical: Fig. A.5.

• Transcritical: Fig. A.6.

• Saddle-node: Fig. A.7.
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Figure A.8: Imperfect bifurcations; (a) ǫ > 0, (b) ǫ < 0.

A.4.6 Unfolding and structural instability

Adding a small constant to the vector field in equation (A.23), we get

f(x) = −x
[
x2 − (λ− λ0)

]
+ ǫ (A.33)

The critical points are solutions of

x3 − (λ− λ0)x− ǫ = 0 (A.34)

To see the nature of the curve, we make an expansion around x = 0, λ = λ0 and write

x = x′ (A.35)

λ = λ0 + λ′ (A.36)

For small x′ and λ, we get
λ′x′ = −ǫ (A.37)

Figure A.8 shows the result of adding the imperfection ǫ. The dynamical system without ǫ is thus
structurally unstable.

A.4.7 Two-dimensional systems

Consider

dx

dt
= fx(x, y) (A.38)

dy

dt
= fy(x, x) (A.39)



A.4. Dynamical systems 178

The linearized equation in local form has a Jacobian matrix

A =

(
axx axy

ayx ayy

)
(A.40)

The eigenvalues satisfy a quadratic equation

λ2 + Pλ+Q = 0 (A.41)

from which

λ =
1

2

[
−P ±

√
P 2 − 4Q

]
(A.42)

The sign of the discriminant
D = P 2 − 4Q (A.43)

determines the nature of the solution. If D < 0, the eigenvalues are complex and the solution in
phase space is a spiral; if in addition P > 0, the spiral is stable, and if P < 0, it is unstable. If,
on the other hand, D > 0, the eigenvalues are real; the solutions do not oscillate in time but move
exponentially towards (if all eigenvalues are negative) or away (if at least one eigenvalue is positive)
from the critical point.

Example A.3

dx

dt
= y (A.44)

dy

dt
= −(λ − λ0)x (A.45)

This is a conservative system which is equivalent to

d2x

dt2
+ (λ − λ0)x = 0 (A.46)

The solutions are exponential if λ < λ0, and periodic if λ > λ0.

Example A.4

dx

dt
= y (A.47)

dy

dt
= −ω2x − σy (A.48)

For σ > 0, the system is dissipative, and the solutions are damped oscillations.

The occurrence of periodic solutions in two-dimensional systems, permits a Hopf bifurcation,
which is a transition from a time-independent to a periodic behavior through a pair of complex
conjugate imaginary eigenvalues.
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Example A.5
The dynamical system

dx

dt
= (λ − λ0)x − y − (x2 + y2)x (A.49)

dy

dt
= x + (λ − λ0)y − (x2 + y2)y (A.50)

can be converted to polar coordinates. Substituting x = r cos θ and y = r sin θ, we get

−r sin
dθ

dt
+ cos θ

dr

dt
= (λ − λ0)r cos θ − r sin θ − r3 cos θ (A.51)

r cos
dθ

dt
+ sin θ

dr

dt
= r cos θ + (λ − λ0)r sin θ − r3 sin θ (A.52)

which simplifies to

dr

dt
= r

`

λ − λ0 − r2
´

(A.53)

dθ

dt
= 1 (A.54)

There are two values of r, i..e r = 0 and r =
√

λ − λ0, at which dr/dt = 0. The first is a critical point at the
origin, and the second a circular periodic orbit that exists only for λ > λ0. A linear analysis of equations (A.49)
and (AHopftwo) shows that the origin is stable for λ < λ0. For λ > λ0, a similar analysis of equation (A.53)
indicates that r =

√
λ − λ0 is a stable orbit. There is thus a Hopf bifurcation at λ = λ0.

Example A.6

dx

dt
= y (A.55)

dy

dt
= −ω2x − σ

`

λ − x2 − y2
´

(A.56)

This is a Hopf bifurcation at λ = λ0, at which point the solution goes from time-independent to periodic.

A.4.8 Three-dimensional systems

Forced Duffing equation

Since a non-autonomous equation can be converted into a three-dimensional autonomous system,
we will include the case of the forced Duffing equation here1.

dx

dt
= y (A.57)

dy

dt
= x− x3 + f(t) (A.58)

1Sometimes defined with a negative sign in front of x in the second equation.
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Lorenz equations

An important example is the Lorenz equations:

dx

dt
= σ(y − x) (A.59)

dx

dt
= λx− y − xz (A.60)

dx

dt
= −bz + xy (A.61)

where σ and b are taken to be positive constants, with σ > b+ 1. The bifurcation parameter will be
λ.

The critical points are obtained from

y − x = 0

λx− y − xz = 0

−bz + xy = 0

which give 


x
y
z


 =




0
0
0


 ,




√
b(λ− 1)√
b(λ− 1)
λ− 1


 ,




−
√
b(λ− 1)

−
√
b(λ− 1)
λ− 1


 (A.62)

A linear stability analysis of each critical point follows.

(a) x = y = z = 0
Small perturbations around this point give

d

dt




x′

y′

z′


 =




−σ σ 0
λ −1 0
0 0 −b






x′

y′

z′


 (A.63)

The characteristic equation is

(λ+ b)[λ2 + λ(σ + 1) − σ(λ− 1)] = 0 (A.64)

from which we get the eigenvalues −b, 1
2 [−(1 + σ) ±

√
(1 + σ)2 − 4σ(1 − λ)]. For 0 < λ < 1, the

eigenvalues are real and negative, since (1 + σ)2 > 4σ(1 − λ). At λ = λ1, where λ1 = 1, there is a
pitchfork bifurcation with one zero eigenvalue. For λ > λ1, the origin becomes unstable.

(b) x = y =
√
b(λ− 1), z = λ− 1

Small perturbations give

d

dt




x′

y′

z′


 =




−σ σ 0

1 −1 −
√
b(λ− 1)√

b(λ− 1)
√
b(λ− 1) −b






x′

y′

z′


 (A.65)

The characteristic equation is

λ3 + (σ + b+ 1)λ2 + (σ + λ)bλ+ 2σb(λ− 1) = 0 (A.66)
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Using the Hurwitz criteria we can determine the sign of the real parts of the solutions of this cubic
equation without actually solving it. The Hurwitz determinants are

D1 = σ + b+ 1

D2 =

∣∣∣∣
σ + b+ 1 2σb(λ+ 1)

1 (σ + λ)b

∣∣∣∣
= σb(σ + b+ 3) − λb(σ − b− 1)

D3 =

∣∣∣∣∣∣

σ + b+ 1 2σb(λ− 1) 0
1 (σ + λ)b 0
0 σ + b+ 1 2σb(λ− 1)

∣∣∣∣∣∣
= 2σb(λ− 1)[σb(σ + b+ 3) − λb(σ − b− 1)]

Thus the real parts of the eigenvalues are negative if λ < λ3, where

λ3 =
σ(σ + b+ 3)

σ − b− 1
(A.67)

At λ = λ3 the characteristic equation (A.66) can be factorized to give the eigenvalues −(σ + b+ 1),
and ±i 2σ(σ + 1)/(σ − b− 1), corresponding to a Hopf bifurcation. The periodic solution which is
created at this value of λ can be shown to be unstable so that the bifurcation is subcritical.

Here is a summary of the series of bifurcation with respect to the parameter λ:

• Origin is a stable critical point for λ < λ1; becomes unstable at λ = λ1.

• Two other critical points are created for λ > λ1; these are linearly stable in the range λ1 <
λ < λ3.

• Just below λ3, i.e. in the range λ2 < λ < λ3, the two critical points are stable to small
perturbations, but for large enough perturbations produce chaos.

• For λ > λ3, all initial conditions produce chaos (except for periodic windows).

A.4.9 Nonlinear analysis

Center manifold theorem

[30]
Consider a vector field fi(x) with fi(0) = 0. The eigenvalues λ of ∂fi/∂xj at the origin are of

three kinds:
(a) Re(λ) > 0 with the generalized eigenspace Eu.
(b) Re(λ) < 0 with the generalized eigenspace Es.
(c) Re(λ) = 0 with the generalized eigenspace Ec.
There exist manifolds Wu, W s, and W c to which Eu, Es and Ec, respectively, are tangents. Wu,
W s, and W c are the unstable, stable and center manifolds, respectively.

A.5 Singularity theory

We have seen that the critical points of a dynamical system, equation (A.10), are found by solving
an equation of the type (A.12), i.e. by finding the singularities of the function fi. The type of
bifurcations that occur with a single bifurcation parameter λ has been discussed in the previous
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x

λ

µ

Figure A.9: Surface x = x(λ, µ).

λ

µ

One solution

Three solutions

One solution

Figure A.10: Bifurcation set.

section. Here we increase the number of parameters to λ1, . . . , λp and look at the consequent
changes in the bifurcations. A bifurcation (or catastrophe) set is the set of points in parametric
space λ1, . . . , λp at which equation (A.12) is satisfied.

Example A.7
Examine the one-dimensional vector field

f(x) = −(x3 + px + q) (A.68)

Figure A.9 shows the surface x = x(λ, µ). There are three real solutions if the discriminant D = 4λ3 +27µ2 > 0,
and only one otherwise. A section of this surface at µ = 0 will give Fig. A.4 and µ = ǫ will give Fig. A.8.

The bifurcation set is shown in Fig. A.10 in (λ, µ) coordinates. It is projection of the x = x(λ, µ) surface
in the (λ, µ) plane.

The quadratic surface

a1x
2 + a2y

2 + a3z
3 + a4xy + a5xz + a6yz + a7x+ a8y + a9z + a10 = 0 (A.69)

can be classified in terms of eleven canonical surfaces. For gradient systems, i.e. systems in which
fI = ∂φ/∂xi, there are only seven.

A.6 Partial differential equations

Classification
Boundary conditions

A.6.1 Eigenfunction expansion

Let T = T (x, t) and
∂T

∂t
= L(T ) (A.70)

in a domain Ω, where L is a linear operator with spatial partial derivatives. The boundary and
initial conditions are T = 0 at ∂Ω and T = f(x) at t = 0.

Let φi(x) be the eigenfunctions of L, such that

Lφi = λiφ. (A.71)
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Expand T (x, t) in the form

T (x, t) =

∞∑

i=1

ai(t)φi(x). (A.72)

Substituting in the equation, we get

∞∑

i=1

dai

dt
φi =

∞∑

i=1

ai(t)L(φi). (A.73)

Taking the inner product with φj , we find that

∞∑

i=1

dai

dt
〈φi, φj〉 =

∞∑

i=1

ai(t)〈L(φi), φj〉. (A.74)

At this point we restrict ourselves to the special case in which L is a self-adjoint operator, so that
the λi are real and the φi are orthonormal. Thus

〈φi, φj〉 = δij . (A.75)

Using eq. (A.71), we get
daj

dt
= λjaj . (A.76)

A.7 Waves

A wave can be of the form [208]
f(x, t) = Aei(kx−ωt). (A.77)

If we follow a point at constant phase φ = kx−ωt = k(x−ωt/k), we will be moving with the phase
velocity vp, where

vp =
ω

k
. (A.78)

The relation between the frequency ω and the wave number k

ω = ω(k) (A.79)

is called the dispersion relation. The group velocity is the velocity at which the energy of the wave
moves, and is given by

vg =
dω

dk
. (A.80)

Problems

1. Show that
dx

dt
= −x [x − (λ − λ0)]

has a transcritical bifurcation.

2. Carry out an imperfection analysis on the transcritical bifurcation above.

3. Show that
dx

dt
= −x2 + (λ − λ0)

has a saddle-node bifurcation.

4. Investigate the bifurcations in
dx

dt
= −x

`

x4 − 2x2 + 2 + λ
´
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Numerical methods

[33, 96,97,126,146,171,196]
Method of weighted residuals
Let us apply the following numerical methods to the one-dimensional fin equation

d2T

dx2
− T = 0 (B.1)

with the boundary conditions T (0) = TL and T (1) = TR.

B.1 Finite difference methods

Divide [0, 1] into N intervals, each of length ∆x = 1/N , and number the nodes as i = 0, 1, 2, . . . , N
so that xi = i∆x. Write the second derivative at x = xi as

T ′′(xi) =
1

∆x2
(Ti+1 − 2Ti + Ti−1) (B.2)

where Ti = T (xi), so that from Eq. B.1, we get

−Ti+1 + (2 + ∆x2)Ti − Ti−1 = 0 (B.3)

at i = 1, 2, . . . , N − 1. Applying the boundary conditions, we get N − 1 algebraic equations in the
unknowns T1, T2, . . . , TN−1. Thus we have




c −1 0 . . . 0
−1 c −1 0 . . .
0 −1 c −1 . . .
...

...
...

...
...

0 0 . . . −1 c








T1

T2

...
TN−2

TN−1





=





TL

0
...
0
TR





(B.4)

where c = 2 + ∆x2, which can be solved.

B.2 Finite element methods

[161]

184
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1 2 N

x

i  =  0

Figure B.1: Finite differencing.

ξ

ξ=0 ξ=∆x

Figure B.2: Finite element.

Once again, divide [0, 1] into N intervals or finite elements, each of length ∆x = 1/N . Number
the nodes as i = 0, 1, 2, . . . , N so that xi = i∆x. In each element use a local coordinate ξ that goes
from ξ = 0 to ξ = ∆x and correspond to the global coordinate x = xi and x = xi+1 = xi + ∆x,
respectively.

Let us use the linear test functions

φ1(ξ) = 1 − ξ

∆x
(B.5)

φ2(ξ) =
ξ

∆x
(B.6)

within element i. Notice that φ1(0) = φ2(∆x) = 1 and φ1(∆x) = φ2(0) = 0, so that we can write

T (ξ) = Ti−1φ1(ξ) + Tiφ2(ξ),

where Ti−1 = Tx=xi−1
= Tξ=0 and Ti = Tx=xi

= Tξ=∆x. Using the Galerkin method

∫ ∆x

0

(
d2T

dξ2
− T

)
φk(ξ) dξ = 0,

where k = 1, 2. Integrating by parts

T ′φk

∣∣∣∣∣

∆x

0

−
∫ ∆x

0

[
dT

dξ

dφk

dξ
+ Tφk

]
dξ = 0.

where T ′ = dT/dξ. For k = 1 and k = 2, we have the two equations

−T ′

i−1 − Ti−1

(
1

∆x
+

∆x

3

)
+ Ti

(
1

∆x
− ∆x

6

)
= 0,

T ′

i + Ti−1

(
1

∆x
− ∆x

6

)
− Ti

(
1

∆x
+

∆x

3

)
= 0,

respectively. Doing this for each of the N element, (and multiplying by −∆x for convenience) we
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end up with 2N algebraic equations.

∆x T ′

0 + (1 +
∆x2

3
)T0 − (1 − ∆x2

6
)T1 = 0 (B.7)

−∆x T ′

1 − (1 − ∆x2

6
)T0 + (1 +

∆x2

3
)T1 = 0 (B.8)

∆x T ′

1 + (1 +
∆x2

3
)T1 − (1 − ∆x2

6
)T2 = 0 (B.9)

−∆x T ′

2 − (1 − ∆x2

6
)T1 + (1 +

∆x2

3
)T2 = 0 (B.10)

... (B.11)

∆x T ′

N−1 + (1 +
∆x2

3
)TN−1 − (1 − ∆x2

6
)TN = 0 (B.12)

−∆x T ′

N − (1 − ∆x2

6
)TN−1 + (1 +

∆x2

3
)TN = 0 (B.13)

There are 2N unknowns including T and T ′ at each of the N + 1 node minus the values of
T0 and TN at the two ends that are known, so that we can solve for the unknowns at this stage if
we wish. However, it can be noticed that adding Eqs. (B.8) and (B.9) cancels the T ′

1 term. So we
discard the first and last equations, add the rest in pairs to get the reduced set




c1 −c2 0 . . . 0
−c2 c1 −c2 0 . . .
0 −c2 c1 −c2 . . .
...

...
...

...
...

0 0 . . . −c2 c1








T1

T2

...
TN−2

TN−1





=





c2TL

0
...
0

c2TR





(B.14)

where c1 = 2(1 + ∆x2/3), c2 = 1 − ∆x2/6.

B.3 Spectral methods

For the following, let
θ = T − TL − (TR − TL)x (B.15)

so that

d2θ

dx2
− θ = TL + (TR − TL)x

= g(x) (B.16)

with the homogeneous boundary conditions θ(0) = θ(1) = 0.
The dependent variable is expanded in terms of orthonormal functions φn(x) that satisfy the

boundary conditions. Thus

θ(x) =

N∑

n=1

anφn(x). (B.17)

Substituting in the differential equation gives the residual

N∑

n=1

an

(
d2φn

dx2
− φn

)
− g = ǫ. (B.18)
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Making the residual and functions ψm(x) orthogonal gives

〈ǫ, ψm〉 = 0 (B.19)

This reduces to an algebraic equation for each m. Solve.

B.3.1 Trigonometric Galerkin

Here
φn(x) = ψn(x) =

√
2 sin(nπx) (B.20)

with respect to the L2 inner product.

B.3.2 Trigonometric collocation

Equate the residual in Eq. (B.18) to zero in N equally-spaced points. This gives algebraic equations;
solve.

B.3.3 Chebyshev Galerkin

Using ξ = 2x − 1, transform the independent variable to the domain [−1, 1]. The orthonormal
Chebychev functions are φn(ξ) = 2nTn(ξ)/

√
2π, where the Chebychev polynomials Tn are

T1 = 1

T2 = ξ

T3 = 2ξ2 − 1

T4 = 4ξ3 − 3ξ

...

Take ψn(ξ) = φn(ξ) and an inner product with respect to the weight function 1/
√

1 − ξ2.

B.3.4 Legendre Galerkin

B.3.5 Moments

Let φ(x) = x(1 − x), so that it satisfies the boundary conditions and θ(x) = aφ(x). Take ψ(x) = 1
to determine a.

For higher-order accuracy, take φ1(x) = x(1− x), φ2(x) = x2(1− x), φ3(x) = x(1− x)2, . . . and
ψ1(x) = 1, ψ2(x) = x, ψ3(x) = x2, . . .

B.4 MATLAB

The PDE Toolbox uses a finite-element code to solve basic partial differential equations needed for
conduction heat transfer.
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Problems

1. Consider the convective fin equation
d2T

dx2
− T = 0,

where 0 ≤ x ≤ 1, with T (0) = 1, T (1) = 0. Solve using the following methods. You may have to transform the
dependent or independent variable differently for each method. In each case show convergence.

(a) Finite differences: Divide into N parts, write derivatives in terms of finite differences, reduce to algebraic
equations, apply boundary conditions, and solve.

(b) Trigonometric Galerkin: Expand in terms of N trigonometric functions, substitute in equation, take
inner products, reduce to algebraic equations, and solve.

(c) Chebyshev Galerkin: Expand in terms of N Chebyshev polynomials, substitute in equation, take inner
products, reduce to algebraic equations, and solve.

(d) Trigonometric collocation: Expand in terms of N trigonometric functions, substitute in equation, take
inner products, apply collocation, and solve.

(e) Galerkin finite elements: Divide into N elements, assume linear functions, integrate by parts, assemble
all equations, apply boundary conditions, and solve.

(f) Polynomial moments: Assume dependent variable to be a Nth-order polynomial that satisfies boundary
conditions, obtain algebraic equations by taking moments, and solve.

2. Consider the convective fin equation with heat generation

d2T

dx2
− T = 1,

where 0 ≤ x ≤ 1, with T (0) = 1, T ′(1) = 0. Solve using the above methods.



Appendix C

Additional problems

1. Plot all real θ(β, ǫ) surfaces for the convection with radiation problem, and comment on the
existence of solutions.

2. Complete the problem of radiation in an enclosure (linear stability, numerical solutions).

3. Two bodies at temperatures T1(t) and T2(t), respectively, are in thermal contact with each
other and with the environment. The temperatures are governed by

M1c1
dT1

dt
+ hAc(T1 − T2) + hA(T1 − T∞) = 0 (C.1)

M2c2
dT2

dt
+ hAc(T2 − T1) + hA(T2 − T∞) = 0 (C.2)

Derive the equations above and explain the parameters. Find the steady-state temperatures
and explore the stability of the system for constant T∞.

4. Consider the change in temperature of a lumped system with convective heat transfer where
the ambient temperature, T∞(t), varies with time in the form shown. Find (a) the long-time
solution of the system temperature, T (t), and (b) the amplitude of oscillation of the system
temperature, T (t), for a small period δt.

t

T∞

Tmax

Tmin

δt

Figure C.1: Ambient temperature variation.

5. Two bodies at temperatures T1(t) and T2(t), respectively, are in thermal contact with each

189
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other and with the environment. The temperatures are governed by

M1c1
dT1

dt
+ hcAc(T1 − T2) + hA(T1 − T∞(t)) = Q1(t)

M2c2
dT2

dt
+ hcAc(T2 − T1) + hA(T2 − T∞(t)) = Q2(t)

where Q1 and Q2 are internal heat generations, each one of which can be independently
controlled. Using PID control, show numerical results for the different types of responses
possible (damped, oscillatory, unstable, stable, etc.). Take the ambient temperature, T∞, to
be (a) constant and (b) oscillatory.

6. Two bodies at temperatures T1(t) and T2(t), respectively, are in thermal contact with each
other and with the environment. The temperatures are governed by

M1c1
dT1

dt
+ hcAc(T1 − T2) + hA(T1 − T∞(t)) = Q1(t)

M2c2
dT2

dt
+ hcAc(T2 − T1) + hA(T2 − T∞(t)) = Q2(t)

where Q1 and Q2 are internal heat generation sources, each one of which can be independently
controlled. Using on-off control, show analytical or numerical results for the temperature
responses of the two bodies. If you do the problem analytically, take the ambient temperature,
T∞, to be constant, but if you do it numerically, then you can take it to be (a) constant, and
(b) oscillatory.

7. Consider a rectangular fin with convection, radiation and Dirichlet boundary conditions. Cal-
culate numerically the evolution of an initial temperature distribution at different instants of
time. Graph the results for several values of the parameters.

8. Consider a longitudinal fin of concave parabolic profile as shown in the figure, where δ =
[1− (x/L)]2δb. δb is the thickness of the fin at the base. Assume that the base temperature is
known. Neglect convection from the thin sides. Find (a) the temperature distribution in the
fin, and (b) the heat flow at the base of the fin. Optimize the fin assuming the fin volume to
be constant and maximizing the heat rate at the base. Find (c) the optimum base thickness
δb, and (d) the optimum fin height L.

9. Analyze an annular fin with a prescribed base temperature and adiabatic tip. Determine its
fin efficiency and plot.

10. Consider a square plate of side 1 m. The temperatures on each side are (a) 10◦C, (b) 10◦C, (c)
10◦C, and (d) 10+sin(πx) ◦C, where x is the coordinate along the edge. Find the steady-state
temperature distribution analytically.

11. Write a computer program to do the previous problem numerically using finite differences and
compare with the analytical results. Choose different grid sizes and show convergence.

12. A plane wall initially at a uniform temperature is suddenly immersed in a fluid at a different
temperature. Find the temperature profile as a function of time. Assume all parameter values
to be unity.

13. Write a computer program to do the previous problem numerically using finite differences and
compare with the analytical results.
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δ b x

L

δ(x)

w

Figure C.2: Longitudinal fin of concave parabolic profile.

14. Consider the hydrodynamic and thermal boundary layers in a flow over a flat plate at constant
temperature. Starting from the boundary layer equations

∂u

∂x
+
∂v

∂y
= 0 (C.3)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
(C.4)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(C.5)

change to variables f(η) and θ(η) and derive the boundary layer equations

2f ′′′ + ff ′′ = 0 (C.6)

θ′′ +
Pr

2
fθ′ = 0 (C.7)

and the boundary conditions.

15. Solve equations (C.6) and (C.7) numerically by the shooting method for different Pr and
compare with results in the literature.

16. For Problem 1, derive the momentum and energy integral equations. Using cubic expansions
for u/u∞ and θ, derive expressions for the boundary layer thicknesses.

17. For natural convection near a vertical plate, show that the governing boundary layer equations

∂u

∂x
+
∂v

∂y
= 0 (C.8)

u
∂u

∂x
+ v

∂u

∂y
= gβ(T − T∞) + ν

∂2u

∂y2
(C.9)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(C.10)
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can be reduced to

f ′′′ + 3ff ′′ − 2(f ′)2 + θ = 0 (C.11)

θ′′ + 3 Pr f θ′ = 0 (C.12)

with appropriate boundary conditions.

18. Solve equations (C.11) and (C.12) numerically by the shooting method for different Pr and
compare with results in the literature.

19. Write the governing equations for natural convection flow in an inclined rectangular cavity, and
nondimensionalize them. The thermal conditions at the walls of the cavity are: (a) AB heating
with heat flux q′′s , (b) BC adiabatic, (c) CD cooling with heat flux q′′s , (d) DA adiabatic.

gravity

α

L
H

A

B

C

D

x
y

20. Derive the Nusselt result for laminar film condensation on a vertical flat plate. Find from the
literature if there is any experimental confirmation of the result.

21. For parallel and counterflow heat exchangers, I obtained the temperature distributions

Th(x) = Th,1 −
Th,1 − Tc,1

1 ± (ṁhch/ṁccc)

[
1 − exp{−UP

(
1

ṁhch
± 1

ṁccc

)
x}
]
,

Tc(x) = Tc,1 ±
Th,1 − Tc,1

(ṁccc/ṁhch) ± 1

[
1 − exp{−UP

(
1

ṁhch
± 1

ṁccc

)
x}
]

for the hot and cold fluids, respectively. As usual the upper sign is for parallel and the lower
for counterflow; 1 is the end where the hot fluid enters (from where x is measured) and 2 is
where it leaves. Please check.

22. For a counterflow heat exchanger, derive the expression for the effectiveness as a function of
the NTU, and also the NTU as function of the effectiveness.

23. (From Incropera and DeWitt) A single-pass, cross-flow heat exchanger uses hot exhaust gases
(mixed) to heat water (unmixed) from 30 to 80◦C at a rate of 3 kg/s. The exhaust gases,
having thermophysical properties similar to air, enter and exit the exchanger at 225 and 100◦C,
respectively. If the overall heat transfer coefficient is 200 W/m2K, estimate the required area.
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24. (From Incropera and DeWitt) A cross-flow heat exchanger used in cardiopulmonary bypass
procedure cools blood flowing at 5 liters/min from a body temperature of 37◦C to 25◦C in
order to induce body hypothermia, which reduces metabolic and oxygen requirements. The
coolant is ice water at 0◦C and its flow rate is adjusted to provide an outlet temperature of
15◦C. The heat exchanger operates with both fluids unmixed, and the overall heat transfer
coefficient is 750 W/m2K. The density and specific heat of the blood are 1050 kg/m2 and 3740
J/kg K, respectively. (a) Determine the heat transfer rate for the exchanger. (b) Calculate
the water flow rate. (c) What is the surface area of the heat exchanger?

25. Show that the energy spectrum for blackbody radiation (Planck’s law)

Eλ =
C1

λ5
(
exp C2

λT − 1
)

has a maximum at λ = λm where (Wien’s law)

λmT = 0.1987 C2

Also show that (Stefan-Boltzmann’s law)

∫
∞

0

Eλ dλ =
C1π

4

15C4
2

T 4

You can use a symbolic algebra program in this problem.

26. Write a numerical code to evaluate the view factor between two rectangular surfaces (each
of size L × 2L) at 90◦ with a common edge of length 2L; see Fig. C.3. Compare with the
analytical result.

27. Calculate the view factor again but with a sphere (diameter L/2, center at a distance of L/2
from each rectangle, and centered along the length of the rectangles) as an obstacle between
the two rectangles; see Fig. C.4.

28. (From Incropera and DeWitt) Consider a diffuse, gray, four-surface enclosure shaped in the
form of a tetrahedron (made of four equilateral triangles). The temperatures and emissivities
of three sides are

T1 = 700K, ǫ1 = 0.7

T2 = 500K, ǫ2 = 0.5

T3 = 300K, ǫ3 = 0.3

The fourth side is well insulated and can be treated as a reradiating surface. Determine its
temperature.

29. An “Aoki” curve is defined as shown in Fig. C.5. Show that when n → ∞, the dimension of
the curve is D = 1 and the length L→ ∞.

30. Consider conductive rods of thermal conductivity k joined together in the form of a fractal
tree (generation n = 3 is shown in Fig. C.6; the fractal is obtained in the limit n → ∞). The
base and tip temperatures are T0 and T∞, respectively. The length and cross-sectional area of
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Figure C.3: Two rectangular surfaces.

Figure C.4: Two rectangular surfaces with sphere.

n=0

n=1

n=2

Figure C.5: Aoki curve.

n=3
T0

T4

T1

T2T3

0

1

2

3

Figure C.6: Fractal tree.
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bar 0 is L and A, respectively, and those of bar 1 are 2L/β and A/β2, where 1 ≤ β < 2, and
so on. Show that the conductive heat transfer through rod 0 is

q =
kA

L
(T0 − T∞)

(
1 − β

2

)

31. The dependence of the rate of chemical reaction on the temperature T is often represented by
the Arrhenius function f(T ) = e−E/T , where E is the activation energy. Writing T ∗ = T/E,
show that f(T ∗) has a point of inflexion at T ∗ = 1/2. Plot f(T ∗) in the range T ∗ = 1/16 to
T ∗ = 4 as well as its Taylor series approximation to various orders around T ∗ = 1/2. Plot also
the L2-error in the same range for different orders of the approximation.

32. If e−E/T is proportional to the heat generated within a tank by chemical reaction, and there is
heat loss by convection from the tank, show that the temperature of the tank T is determined
by

Mc
dT

dt
= ae−E/T − hA(T − T∞)

where M is the mass, c is the specific heat, a is a proportionality constant, h is the convec-
tive heat transfer coefficient, A is the convective heat transfer area, and T∞ is the ambient
temperature. Nondimensionalize the equation to

dT ∗

dt∗
= e−1/T∗ −H(T ∗ − T ∗

∞
)

For T ∗

∞
= 0.1, draw the bifurcation diagram with H as the bifurcation parameter, and deter-

mine the bifurcation points.

33. Two bodies at temperatures T1(t) and T2(t), respectively, are in thermal contact with each
other and with the environment. Show that the temperatures are governed by

M1c1
dT1

dt
+ C(T1 − T2) + C1,∞(T1 − T∞) = Q1

M2c2
dT2

dt
+ C(T2 − T1) + C2,∞(T2 − T∞) = Q2

where Mi is the mass, ci is the specific heat, the Cs are thermal conductances, and Qi is
internal heat generation. Find the steady state (T 1, T 2) and determine its stability.

34. Using a complete basis, expand the solution of the one-dimensional heat equation

∂T

∂t
= α

∂2T

∂x2

with boundary conditions

−k∂T
∂x

= q0 at x = 0,

T = T1 at x = L

as an infinite set of ODEs.
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35. Show that the governing equation of the unsteady, variable-area, convective fin can be written
in the form

∂T

∂t
− ∂

∂x

(
a(x)

∂T

∂x

)
+ b(x)T = 0

Show that the steady-state temperature distribution with fixed temperatures at the two ends
x = 0 and x = L is globally stable.

36. Show numerically that there are two different types of attractors for the following dynamical
system.

dx

dt
= (λ− λ0)x− y − (x2 + y2)x,

dy

dt
= x+ (λ− λ0)y − (x2 + y2)y.

Choose λ0 = 1 and (a) λ = 0.5 and (b) λ = 2.

37. For the two-dimensional, unsteady velocity field ui + vj, where

u = y

v = x− x3 + a cos t

determine the pathline of a fluid particle which is at position (1,1) at time t = 0. Consider
two cases: (a) a = 0, and (b) a = 1. For these two cases find where 11 × 11 points uniformly
distributed within a square of size 0.01 and centered on (1,1) end up. Choose a suitably long
final time.

38. Find the dimension of the strange attractor for the Lorenz equations

dx

dt
= σ(y − x)

dy

dt
= λx− y − xz

dz

dt
= −bz + xy

where σ = 10, λ = 28 and b = 8/3. Use the method of counting the number of points N(r)
within a sphere of radius r from which D = lnN/ ln r.

39. Nondimensionalize and solve the radiative cooling problem

Mc
dT

dt
+ σA

(
T 4 − T 4

∞

)
= 0

with T (0) = Ti.

40. For heat transfer from a heated body with convection and weak radiation, i.e. for

dθ

dτ
+ θ + ǫ

{
(θ + β)

4 − β4
}

= q

with θ(0) = 1, using symbolic algebra determine the regular perturbation solution up to and
including terms of order ǫ4. Assuming ǫ = 0.1, β = 1, q = 1, plot the five solutions (with one
term, with two terms, with three terms, etc.) in the range 0 ≤ τ ≤ 1.
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41. Consider a body in thermal contact with the environment

Mc
dT

dt
+ hA(T − T∞) = 0

where the ambient temperature, T∞(t), varies with time in the form shown below. Find (a)
the long-time solution of the system temperature, T (t), and (b) the amplitude of oscillation of
the system temperature, T (t), for a small period δt.

t

T∞

Tmax

Tmin

δt

Figure C.7: Ambient temperature variation.

42. For a heated body in thermal contact with a constant temperature environment

Mc
dT

dt
+ hA(T − T∞) = Q

analyze the conditions for linear stability of PID control.

43. Two heated bodies at temperatures T1(t) and T2(t), respectively, are in thermal contact with
each other and with a constant temperature environment. The temperatures are governed by

M1c1
dT1

dt
+ C(T1 − T2) + C1,∞(T1 − T∞) = Q1(t)

M2c2
dT2

dt
+ C(T2 − T1) + C2,∞(T2 − T∞) = Q2(t)

where Q1(t) and Q2(t) are internal heat generations, each one of which can be independently
controlled. Using PID control, choose numerical values of the parameters and PID constants
to show numerical results for the different types of responses possible (damped, oscillatory,
etc.).

44. Show numerical results for the behavior of two heated bodies in thermal contact with each
other and with a constant temperature environment for on-off control with (a) one thermostat,
and (b) two thermostats.

45. Analyze the system controllability of two heated bodies in thermal contact with each other and
with a constant temperature environment for (a) Q1(t) and Q2(t) being the two manipulated
variables, and (b) with Q1(t) as the only manipulated variable and Q2 constant.
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46. Run the neural network FORTRAN code in

http://www.nd.edu/ msen/Teaching/IntSyst/Programs/ANN/

for 2 hidden layers with 5 nodes each and 20,000 epochs. Plot the results in the form of exact
z vs. predicted z.

47. Consider the heat equation
∂T

∂t
=
∂2T

∂x2

with one boundary condition T (0) = 0. At the other end the temperature, T (1) = u(t) is
used as the manipulated variable. Divide the domain into 5 parts and use finite differences
to write the equation as a matrix ODE. Find the controllability matrix and check for system
controllability.

48. Determine the semi-derivative and semi-integral of (a) C (a constant), (b) x, and (c) xµ where
µ > −1.

49. Find the time-dependent temperature field for flow in a duct wih constant T∞ and Tin, but
with variable flow rate V (t) = V0 + ∆V sin(ωt) such that V is always positive.

50. Write a computer program to solve the PDE for the previous problem, and compare numerical
and analytical results.

51. Derive an expression for heat transfer in a fractal tree-like microchannel net1.

52. Find the steady-state temperature distribution and velocity in a square-loop thermosyphon.
The total length of the loop is L and the distribution of the heat rate per unit length is

q(x) =





Q for L/8 ≤ x ≤ L/4,
−Q for 5L/8 ≤ x ≤ 3L/4,
0 otherwise.

L/4

Q

Q

g

x

1Y. Chen and P. Cheng, Heat transfer and pressure drop in fractal tree-like microchannel nets, International

Journal of Heat and Mass Transfer, Vol. 45, pp. 2643–2648, 2002
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53. Show that the dynamical system governing the toroidal thermosyphon with known wall tem-
perature can be reduced to the Lorenz equations.

54. Draw the steady-state velocity vs. inclination angle diagram for the inclined toroidal ther-
mosyphon with mixed heating. Do two cases: (a) without axial condution2, and (b) with axial
conduction.

55. Model natural convection in a long, vertical pipe that is being heated from the side at a
constant rate. What is the steady-state fluid velocity in the pipe? Assume one-dimensionality
and that the viscous force is proportional to the velocity.

56. Using the center manifold projection, find the nonlinear behavior of

dx

dt
= x2y − x5,

dy

dt
= −y + x2,

and hence determine whether the origin is stable.

57. The Brinkman model for the axial flow velocity, u∗(r∗), in a porous cylinder of radius R is

µeff

[
d2u∗

dr∗2
+

1

r∗
du∗

dr∗

]
− µ

K
u∗ +G = 0,

where u∗ = 0 at r∗ = R (no-slip at the wall), and ∂u∗/∂r∗ = 0 at r∗ = 0 (symmetry at the
centerline). µeff is the effective viscosity, µ is the fluid viscosity, K is the permeability, and G
is the applied pressure gradient. Show that this can be reduced to the nondimensional form

d2u

dr2
+

1

r

du

dr
− s2u+

1

M
= 0, (C.13)

where M = µeff /µ, Da = K/R2, s2 = (M Da)−1.

58. Using a regular perturbation expansion, show that for s≪ 1, the velocity profile from equation
(C.13) is

u =
1 − r2

4M

[
1 − s2

16

(
3 − r2

)]
+ . . .

59. Using the WKB method, show that the solution of equation (1) for s≫ 1 is

u = Da

[
1 − exp {−s(1 − r)}√

r

]
+ . . .

60. Consider steady state natural convection in a tilted cavity as shown. DA and BC are adiabatic
while AB and CD have a constant heat flux per unit length. It can be shown that the governing
equations in terms of the vorticity ω and the streamfunction ψ are

∂2ψ

∂x2
+
∂2ψ

∂x2
+ ω = 0

∂ψ

∂y

∂ω

∂x
− ∂ψ

∂x

∂ω

∂y
− Pr

[
∂2ω

∂x2
+
∂2ω

∂y2

]
−Ra Pr

[
∂T

∂x
cosα− ∂T

∂y
sinα

]
= 0

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
− ∂2T

∂x2
− ∂2T

∂y2
= 0

2M. Sen, E. Ramos and C. Treviño, On the steady-state velocity of the inclined toroidal thermosyphon, ASME J.

of Heat Transfer, Vol. 107, pp. 974–977, 1985.
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where Pr and Ra are the Prandtl and Rayleigh numbers, respectively. The boundary condi-
tions are:

at x = ±A
2
, ψ =

∂ψ

∂x
= 0,

∂T

∂x
= 0,

at y = ±1

2
, ψ =

∂ψ

∂y
= 0,

∂T

∂y
= 1.

where A = L/H is the aspect ratio. Find a parallel flow solution for ψ using

ψ = ψ(y)

T (x, y) = Cx+ θ(y)

gravity

α

L
H

A

B

C

D

x
y

Figure C.8: Problem 5.

61. Determine the stability of a fluid layer placed between two horizontal, isothermal walls and
heated from below.

62. Obtain the response to on-off control of a lumped, convectively-cooled body with sinusoidal
variation in the ambient temperature.

63. Determine the steady-state temperature field in a slab of constant thermal conductivity in
which the heat generated is proportional to the exponential of the temperature such that

d2T

dx2
= exp(ǫT ),

where 0 ≤ x ≤ 1, with the boundary conditions T (0) = T ′(0) = 0.

64. In the previous problem, assume that ǫ is small. Find a perturbation solution and compare
with the analytical. Do up to O(ǫ) by hand and write a Maple (or Mathematica) code to do
up to O(ǫ10).

65. The temperature equation for a fin of constant area and convection to the surroundings at a
constant heat transfer coefficient is

(
d2

dx2
−m2

)
θ = 0,
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where θ = T − T∞. Determine the eigenfunctions of the differential operator for each combi-
nation of Dirichlet and Neumann boundary conditions at the two ends x = 0 and x = L.

66. Add radiation to a convective fin with constant area and solve for small radiative effects with
boundary conditions corresponding to a known base temperature and adiabatic tip.

67. Find the temperature distribution in a slightly tapered 2-dimensional convective fin with known
base temperature and adiabatic tip.

x

68. Prove Hottel’s crossed string method to find the view factor FAB between two-dimensional
surfaces A and B with some obstacles between them as shown. The dotted lines are tightly
stretched strings. The steps are:

(a) Assuming the strings to be imaginary surfaces, apply the summation rule to each one of
the sides of figure abc.

(b) Manipulating these equations and applying reciprocity, show that

Fab−ac =
Aab +Aac −Abc

2Aab
.

(c) For abd find Fab−bd in a similar way.

(d) Use the summation rule to show that

Fab−cd =
Abc +Aad −Aac −Abd

2Aab

(e) Show that Fab−cd = AAFAB/Aab.

(f) Show the final result

FA−B =
Abc +Aad −Aac −Abd

2AA

69. Complete the details to derive the Nusselt result for laminar film condensation on a vertical
flat plate. Find from the literature if there is any experimental confirmation of the result.

70. Consider the hydrodynamic and thermal boundary layers in a flow over a flat plate at constant
temperature. Use a similarity transformation on the boundary layer equations to get

2f ′′′ + ff ′′ = 0,

θ′′ +
Pr

2
fθ′ = 0.

Using the shooting method and the appropriate boundary conditions, solve the equations for
different Pr and compare with the results in the literature.
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71. Solve the steady state conduction equation ∇2T = 0 in the area in the figure between the
square and the circle using the MATLAB Toolbox. Edges DA and BC have temperatures of
100 and 0 units, respectively, AB and CD are adiabatic and the circle is at a temperature of
200 units. Draw the isotherms. Save the M-file and e-mail it to: wcai@nd.edu.

72. (From Brauner and Shacham, 1995) Using Eq. 11, write a program to redraw Fig. 2 on a sunny
day (Cl = 0) and a cloudy day (Cl = 1). Assume Ta = 37◦C. Use Eq. 8 to calculate hc. Note:
since the physical properties are to be taken at the mean temperature between Ts and Ta, Eq.
11 must be solved numerically.

73. The steady-state temperature distribution in a plane wall of thermal conductivity k and thick-
ness L is given by T (x) = 4x3 + 5x2 + 2x + 3, where T is in K, x in m, and the constants in
appropriate units. (a) What is the heat generation rate per unit volume, q(x), in the wall?
(b) Determine the heat fluxes, q′′x , at the two faces x = 0 and x = L.

74. (From Incropera and DeWitt, 5th edition) Consider a square plate of side 1 m. Going around,
the temperatures on the sides are (a) 50◦C, (b) 100◦C, (c) 200◦C, and (d) 300◦C. Find the
steady-state temperature distribution analytically.

75. Write a computer program to do the previous problem numerically using finite differences and
compare with the analytical result. Choose different grid sizes and show convergence of the
heat flux at any wall. Plot the 75, 150, and 250◦C isotherms.

76. A plane wall of thickness 1 m is initially at a uniform temperature of 85◦C. Suddenly one side
of the wall is lowered to a temperature of 20◦C, while the other side is perfectly insulated.
Find the time-dependent temperature profile T (x, t). Assume the thermal diffusivity to be 1
m2/s.

77. Write a computer program to do the previous problem numerically using finite differences and
compare with the analytical result.

78. At a corner of a square where the temperature is discontinuous, show how the finite differ-
ence solution of the steady-state temperature behaves ompared to the separation-of-variables
solution.

79. Find the view factor of a semi-circular arc with respect to itself.

80. Derive the unsteady governing equation for a two-dimensional fin with convection and radia-
tion.
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81. Determine the steady temperature distribution in a two-dimensional convecting fin.

82. A number of identical rooms are arranged in a circle as shown, with each at a uniform tem-
perature Ti(t). Each room exchanges heat by convection with the outside which is at T∞, and
with its neighbors with a conductive thermal resistance R. To maintain temperatures, each
room has a heater that is controlled by independent but identical proportional controllers. (a)
Derive the governing equations for the system, and nondimensionalize. (b) Find the steady
state temperatures. (c) Write the dynamical system in the form ẋ = Ax and determine the
condition for stability3.

i − 1

i

i + 1

T∞

T∞

83. A sphere, initially at temperature Ti is being cooled by natural convection to fluid at T∞.
Churchill’s correlation for natural convection from a sphere is

Nu = 2 +
0.589 Ra

1/4
D[

1 + (0.469/Pr)
9/16

]4/9
,

where

RaD =
gβ(Ts − T∞)D3

να
.

Assume that the temperature within the sphere T (t) is uniform, and that the material proper-
ties are all constant. Derive the governing equation, and find a two-term perturbation solution.

84. (a) Show that the transient governing equation for a constant area fin with constant properties
that is losing heat convectively with the surroundings can be written as

1

α

∂θ

∂t
=
∂2θ

∂x2
−m2θ.

3Eigenvalues of an N × N , circulant, banded matrix of the form [3]

2

6

6

6

6

6

6

6

4

b c 0 . . . 0 a
a b c . . . 0 0
0 a b . . . 0 0
.
..

.

..
.
..

.

..
.
..

0 . . . 0 a b c
c 0 . . . 0 a b

3

7

7

7

7

7

7

7

5

are λj = b + (a + c) cos{2π(j − 1)/N} − i(a − c) sin{2π(j − 1)/N}, where j = 1, 2, . . . , N .
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(b) With prescribed base and tip temperatures, use an eigenfunction expansion to reduce to
an infinite set of ordinary differential equations. (c) Show that the steady state is attracting
for all initial conditions.

85. Cantor Sets: Construct a fractal that is similar to the Cantor set shown in class, but instead
remove the middle 1/2 from each line. Show that the fractal dimension is 1/2.

86. Menger’s Sponge: Shown below is Menger’s Sponge. Calculate its Hausdorff dimension
using each of the following methods: (a) Dh = logP/ logS, (b) Box Counting (analytical), (c)
Box Counting (graphical).

Figure C.9: Menger’s Sponge

87. Space Filling Curves: Shown below is a Peano curve, a single line that completely fills a
unit square. Calculate its Hausdorff dimension and state if the Peano curve is indeed a fractal.

(a) Initator (b) Generator

Figure C.10: Initiator and generator for a Peano (space filling) curve. The generator is recursively
applied to generate the Peano curve.

88. A duct carrying fluid has the cross-section of Koch’s curve. Show that the perimeter of the
cross-section is infinite while the flow area is finite.

89. Cauchy’s formula: Verify Cauchy’s formula for repeated integration by (a) integrating f(t)
five times, (b) applying Cauchy’s formula once with n = 5, (c) applying Cauchy’s formula
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twice, once to f(t) with n = 2 and then to the result with n = 3, showing that

∫ ∫ ∫ ∫ ∫ t

0

f(τ)dτ = J5f(t) = J3J2f(t)

for f(t) = 16t3.

90. Caputo Derivative: Take f(t) = 2t5 and using the Caputo RHD, (a) calculate D3f(t)
(take m = 4, α = 3) and verify that you get the same result as traditional differentation by
comparing to d3f/dt3. (b) Calculate D2.5f(t) and plot the function.

91. Numerical Evaluation of a Fractional Derivative: Consider the example worked in class
of calculating the heat flux in a blast furnace. The heat flux was calculated to be

q′′(t) =
√
cpλ 0D

1/2
t g(t),

where
g(t) = Tsurf (t) − T0,

which is simply the derivative of order α = 1/2 of the temperature difference at the surface.
Assume that the function g(t) is given as g(t) = 14 sin(πt/60) where t is in minutes and
the thermocouples sample once per minute, giving the discrete data set gi = 14 sin(πi/60).
Calculate the fractional derivative numerically using the first 2 hours of data and plot both
the heat flux at the surface and g(t).

Hint: It is easiest to calculate the binomial coefficients recursively, according to the recursion
formula:

(
α

0

)
= 1,

(
α

k + 1

)
=

(
α

k

)
α− k + 1

k
.

Note: In large time intervals (t very large), which would be of interest in this problem, the
calculation we used would not be suitable because of the enormous number of summands
in the calculation of the derivative and because of the accumulation of round off errors. In
these situations, the principle of “short memory” is often applied in which the derivative only
depends on the previous N points within the last L time units. The derivative with this “short
memory” assumption is typically written as (t−L)D

α
t .

92. Consider the periodic heating and cooling of the surface of a smooth lake by radiation. The
surface is subject to diurnal heating and nocturnal cooling such that the surface temperature
can be described by Ts(t) = To + Ta sinωt. Assume the heat diffusion to be one-dimensional
and find the heat flux at the surface of the lake. The following steps might be useful:

(a) Assume transient one-dimensional heat conduction:

∂T (x, t)

∂t
− α

∂2T (x, t)

∂x2
= 0,

with initial and boundary conditions T (x, 0) = To and T (0, t) = Ts(t). Also assume the lake
to be a semi-infinite planer medium (a lake of infinite depth) with T (∞, t) = 0.
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(b) Non-dimensionalize the problem with a change of variables ξ = α−1/2x and θ(x, t) =
T (x, t) − To.

(c) Use the following Laplace transform properties to transform the problem into the Laplace
domain:

L
[∂αf(x, t)

∂tα
]

= sαF (x, s) (with 0 initial conditions)

and

L
[∂αf(x, t)

∂xα

]
=

∂α

∂xα
F (x, s)

(d) Solve the resulting second order differential equation for Θ(ξ, s) by applying the trans-
formed boundary conditions.

(e) Find ∂Θ/∂ξ and then substitute Θ(ξ, s) into the result. Now take the inverse Laplace
transform of ∂Θ/∂ξ and convert back to the original variables. Be careful! The derivative of
order 1/2 of a constant is not zero! (see simplifications in (g) to simplify)

(f) You should now have an expression for ∂T (x, t)/∂x. Substitute this into Fourier’s Law to
calculate the heat flux, q′′(x, t) = −k ∂T (x, t)/∂x.

(g) Evaluate this expression at the surface (x = 0) to find the heat flux at the surface of the
lake. The following simplifications might be helpful:

∂1/2C

∂t1/2
=

C

πt1/2

∂α[Cg(t)]

∂tα
= C

∂αg(t)

∂tα

(h) The solution should look now look like

q′′s (t) =
k

α1/2

d1/2(Ta sinωt)

dt1/2

93. Describe how you would solve this problem using more typical methods and what other infor-
mation would be required.

94. Consider radiation between two long concentric cylinders of diameters D1 (inner) and D2

(outer). (a) What is the view factor F12. (b) Find F22 and F21 in terms of the cylinder
diameters.

95. Temperatures at the two sides of a plane wall shown in Fig. C.11 are TL and TR, respectively.
For small ǫ, find a perturbation steady-state temperature distribution T (x) if the dependence
of thermal conductivity on the temperature has the form

k(T ) = k0

(
1 +

T − TL

TR − TL
ǫ

)
.

96. One side of a plane wall shown in Fig. C.12 has a fixed temperature and the other is adiabatic.
With an initial condition T (x, 0) = f(x), determine the temperature distribution in the wall
T (x, t) at any other time. Assume constant properties.
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L

T = TL T = TR
x

Figure C.11: Plane wall in steady state.

L

T = Ts ∂T/∂x = 0
x

Figure C.12: Plane wall in unsteady state.

97. Using an eigenfunction expansion, reduce the governing PDE in Problem 96 to an infinite set
of ODEs.

98. A room that loses heat to the outside by convection is heated by an electric heater controlled
by a proportional controller. With a lumped capacitance approximation for the temperature,
set up a mathematical model of the system. Determine the constraint on the controller gain
for the system response to be stable. What is the temperature of the room after a long time?

99. A turbine blade internally cooled by natural convection is approxi-
mated by a rotating natural circulation loop of constant cross-section.
The heat rate in and out at the top and bottom, respectively, is Q
while the rest of the loop is insulated. Find the steady-state velocity in
the loop. Consider rotational forces but not gravity. State your other
assumptions.

L

ω

100. An infinite number of conductive rods are set up between two blocks
at temperatures Ta and Tb. The first rod has a cross-sectional area
A1 = A, the second A2 = A/β, the third A3 = A/β2, and so on, where
β > 1. What is the total steady-state heat transfer rate between the
two blocks? Assume that the thermal conductivity k is a constant, and
that there is no convection.
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101. Show that the functions φ1(x) =
√

2 sinπx and φ2(x) =
√

2 sin 2πx are orthonormal in the
interval [0, 1] with respect to the L2 norm. Using these as test functions, use the Galerkin
method to find an approximate solution of the steady-state fin equation

T ′′ − T = 0,

with T (0) = 0, T (1) = 1.
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102. A lamp of q W is radiating equally in all directions. Set up the gov-
erning equation for the temperature T (r) in the disk.

q

d

R

103. Determine the steady-state temperature distribution in the triangle
shown, if the hypotenuse is adiabatic, one of the sides is at one tem-
perature and the other is at another.

A B

C

104. A ball with coefficient of restitution r falls from height H and undergoes repeated bouncing.
Determine the temperature of the ball as a function of time T (t) if heat loss is by convection
to the atmosphere. Assume that the energy loss at every bounce goes to heat the ball.

105. Heat at the rate of q per unit volume is generated in a spherical shell that lies between R
and R + δ. If heat loss is by convection on the external surface only, find the steady-state
temperature distribution.
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