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PREFACE

These are lecture notes for AME60634: Intermediate Heat Transfer, a second course on heat transfer
for undergraduate seniors and beginning graduate students. At this stage the student can begin to
apply knowledge of mathematics and computational methods to the problems of heat transfer.
Thus, in addition to some undergraduate knowledge of heat transfer, students taking this course are
expected to be familiar with vector algebra, linear algebra, ordinary differential equations, particle
and rigid-body dynamics, thermodynamics, and integral and differential analysis in fluid mechanics.
The use of computers is essential both for the purpose of computation as well as for display and
visualization of results.

At present these notes are in the process of being written; the student is encouraged to make
extensive use of the literature listed in the bibliography. The students are also expected to attempt
the problems at the end of each chapter to reinforce their learning.

I will be glad to receive comments on these notes, and have mistakes brought to my attention.

Mihir Sen
Department of Aerospace and Mechanical Engineering
University of Notre Dame

Copyright (© by M. Sen, 2008
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Part 1

Review



CHAPTER 1

INTRODUCTORY HEAT TRANSFER

It is assumed that the reader has had an introductory course in heat transfer of the level of [12,14,
19,20, 22, 24,26, 34,65, 76,80, 88,90,106,111,112,117,122,138, 155,177,183, 188,207, 210,211]. More
advanced books are, for example, [206,212]. A classic work is that of Jakob [94].

1.1 Fundamentals

1.1.1 Definitions

Temperature is associated with the motion of molecules within a material, being directly related to
the kinetic energy of the molecules, including vibrational and rotational motion. Heat is the energy
transferred between two points at different temperatures. The laws of thermodynamics govern the
transfer of heat. Two bodies are in thermal equilibrium with each other if there is no transfer of
heat between them. The zeroth law states that if each of two bodies are in thermal equilibrium with
a third, then they also are in equilibrium with each other. Both heat transfer and work transfer
increase the internal energy of the body. The change in internal energy can be written in terms of
a coefficient of specific heat! as Mc dT. According to the first law, the increase in internal energy
is equal to the net heat and work transferred in. The third law says that the entropy of an isolated
system cannot decrease over time.

|
Ezxample 1.1
Show that the above statement of the third law implies that heat is always transferred from a high
temperature to a low.

1.1.2  Energy balance

The first law gives a quantitative relation between the heat and work input to a system. If there is
no work transfer, then

oT

— = 1.1

=0 (1)
where @ is the heat rate over the surface of the body. A surface cannot store energy, so that the
heat flux coming in must be equal to that going out.

Me

1We will not distinguish between the specific heat at constant pressure and that a constant volume.
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1.1.3 States of matter

We will be dealing with solids, liquids and gases as well as the transformation of on to the other.
Again, thermodynamics dictates the rules under which these changes are possible. For the moment,
we will define the enthalpy of transformation? as the change in enthalpy that occurs when matter is
transformed from one state to another.

1.2 Conduction

[31,66,68,77,100,136,137,149]
The Fourier law of conduction is
q=—kVT (1.2)

where q is the heat flux vector, T'(x) is the temperature field, and k(7T) is the coefficient of thermal
conductivity.

1.2.1 Governing equation

%—f =aV(k-VT)+g (1.3)

1.2.2 Fins

Fin effectiveness €y: This is the ratio of the fin heat transfer rate to the rate that would be if the
fin were not there.

Fin efficiency n¢: This is the ratio of the fin heat transfer rate to the rate that would be if the entire
fin were at the base temperature.

Longitudinal heat flux
Tb - Too

" = Ok, 1.4
q; = O( ) (1.4)
Transverse heat flux
¢/ = O(h(Th — Tw)) (1.5)
The transverse heat flux can be neglected compared to the longitudinal if
4 > q/ (1.6)
which gives a condition on the Biot number
hL
Bi = = <1 (1.7)

Consider the fin shown shown in Fig. 1.1. The energy flows are indicated in Fig. 1.2. The
conductive heat flow along the fin, the convective heat loss from the side, and the radiative loss from
the side are

ar

= —k,A 1.
dk dz (1.8)
qn = hdAy(T —Ts) (1.9)
¢ = odA(T*-TL) (1.10)

2Also called the latent heat.



1.2. Conduction

T
o)
T
L. X ‘
 ,
« L .
Figure 1.1: Schematic of a fin.
9,00+q (x)
T
00}
q léx) e qk(x+dx)

Figure 1.2: Energy balance.

where, for a small enough slope, P(z) = dAg/dz is the perimeter. Heat balance gives

oT 8qk -
pAcaJr e dr+qn+q- =0 (1.11)
from which T 9 a7
oL _ 4 pay _
pAc 5 ks 5 (A ax) + Ph(T —To)+oP(T*—T5)=0 (1.12)

where k; is taken to be a constant.

The initial temperature is T'(z,0) = T;(x). Usually the base temperature T} is known. The
different types of boundary conditions for the tip are:

e Convective: 0T /0rx =aat z =L
e Adiabatic: 90T /0x =0 at x = L

e Known tip temperature: T'=Tp at xt = L
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e Long fin: T =T, as * — o0

Taking
T-T.
6 = ——= 1.13
T T, (1.13)
kst )
T = —— Fourier modulus (1.14)
L2pc
x
= = 1.1
e = 7 (115)
A
= = 1.16
a€) = (1.16)
P
= — 1.1
"o = (117)
where the subscript indicates quantities at the base, the fin equation becomes
09 0 00 9 4 4
aaT—ag<aag>—|—mp9+ep[(9+ﬂ) -p =0 (1.18)
where
P,hI?
2 b
= 1.1
m A, (1.19)
UPbL2(Tb - Too)3
= 1.20
€ s (1.20)
T
= — 1.21
R (1.21)
1.2.3 Separation of variables
Steady-state coduction in a rectangular plate.
V2T =0 (1.22)
Let T'(z,y) = X(2)Y (y).
1.2.4  Similarity variable
oT 0T
= g 1.2
ot~ " oa2 (1.23)

1.2.5 Lumped-parameter approximation

Consider a wall with fluid on both sides as shown in Fig. 1.3. The fluid temperatures are T 1
and T2 and the wall temperatures are T, ; and T, 2. The initial temperature in the wall is

T(x,0) = f(x).
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w,2
vaz

Figure 1.3: Wall with fluids on either side.

Steady state
In the steady state, we have

Tw,l - Tw

By (Too1 — Topr) = ks - 2 — hy(Ts — Too2) (1.24)

from which
ML To1—Tw1r  Twi—Twz  hoL Ty2—Twp

= = 1.25
ks Too,l - Too,2 Too,l - Too,2 k;s Too,l - Too,2 ( )
Thus we have
Twi1—"T, Tew1—Ty, .. hiL
.1 2 L Lo« (1.26)
Too,l - Too,Q Too,l - Too,2 ks
Twl_Tw2 Tw2_Too2 . h2L
: . ; . f 1 1.27
Too,l - Too,2 Too,l - Too,2 ' s < ( )
The Biot number is defined as WL
Bi=— 1.28
- (1.29)
Transient
or kg, 0°T
—_— == 1.29
ot pc 02 (1.29)

There are two time scales: the short (conductive) t§ = L?pc/ks and the long (convective) th = Lpc/h.
In the short time scale conduction within the slab is important, and convection from the sides is
not. In the long scale, the temperature within the slab is uniform, and changes due to convection.

The ratio of the two t§/t} = Bi. In the long time scale it is possible to show that

where T = Tw,l = Tw,g.

dr
Lp507 —|— hl (T — Too,l) —|— hQ(T — Too,?) = 0

dt

(1.30)



1.3. Convection 7

Figure 1.4: Convective cooling.

Convective cooling

A body at temperature T, such as that shown in Fig. 1.4, is placed in an environment of different
temperature, T, and is being convectively cooled. The governing equation is

Mc% +hA(T = Too) =0 (1.31)

with T(0) = T;. We nondimensionalize using

T-T.,
hAt

The nondimensional form of the governing equation (1.31) is

do
—+60=0 1.34
dr + ( )
the solution to which is
f=e" (1.35)

This is shown in Fig. 1.5 where the nondimensional temperature goes from 8 = 1 to # = 0. The
dimensional time constant is Mc/hA.

1.3 Convection

[11,21,27,67,95,98,99,102,104,133].
Newton’s law of cooling: The rate of convective heat transfer from a body is proportional the
difference in temperature between the body and the surrounding fluid. Thus, we can write

q= hA(Tb - Tf), (136)

where A is the surface area of the body, T} is its temperature, Ty is that of the fluid, and & is the
coefficient of thermal convection.
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Figure 1.5: Convective cooling.

1.3.1 Governing equations

For incompressible flow

V-V = 0 (1.37)
p(+v vv> = —Vp+puVAV 4T (1.38)
pc <+V VT> = V(k-VT)+d (1.39)

1.3.2 Flat-plate boundary-layer theory
Forced convection

Natural convection

1.8.8 Heat transfer coefficients

Overall heat transfer coefficient
Fouling
Bulk temperature
Nondimensional groups
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UL
Reynolds number Re = " (1.40)
Prandtl number = = (1.41)

K

hL
Nusselt number Nu = - (1.42)
Stanton number St = Nu/Pr Re (1.43)
Colburn j-factor j = St Pr?/? (1.44)

27w
Friction factor f = # (1.45)

1.4 Radiation

[25,58,127,209]

Emission can be from a surface or volumetric. Monochromatic radiation is at a single wave-
length. The direction distribution of radiation from a surface may be either specular (i.e. mirror-like
with angles of incidence and reflection equal) or diffuse (i.e. equal in all directions).

The spectral intensity of emission is the radiant energy leaving per unit time, unit area, unit
wavelength, and unit solid angle. The emissive power is the emission of an entire hemisphere.
Irradiations is the radiant energy coming in, while the radiosity is the energy leaving including the
emission plus the reflection.

The absorptivity ay, the reflectivity py, and transmissivity 7, are all functions of the wavelkength
A. Also

ax+pr+1m=1 (1.46)
Integrating over all wavelengths
a+p+17=1 (1.47)
The emissivity is defined as
E)\(Aa T)
= 2 1.48
A= B OLT) (1.48)

where the numerator is the actual energy emitted and the denominator is that that would have been
emitted by a blackbody at the same temperature. For the overall energy, we have a similar definition

E(T)
€= 1.49
Ey(T) (1.49)
so that the emission is
E = eoT* (1.50)

For a gray body e, is independent of .
Kirchhoff’s law: a) =€) and o = €.

1.4.1 Electromagnetic radiation

[173]
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Electromagnetic radiation travels at the speed of light ¢ = 2.998 x 10% m/s. Thermal radiation
is the part of the spectrum in the 0.1-100 pm range. The frequency f and wavelength \ of a wave
are related by

c=fA (1.51)

The radiation can also be considered a particles called phonons with energy
E=n5nf (1.52)

where h is Planck’s constant.
Maxwell’s equations of electromagnetic theory are

oD
H = _— 1.
V x J+ 5 (1.53)
0B
E = —— 1.54
V x 5 (1.54)
VD = o (1.55)
V-B = 0 (1.56)

where H, B, E, D, J, and p are the magnetic intensity, magnetic induction, electric field, electric
displacement, current density, and charge density, respectively. For linear materials D = ¢E, J = gE
(Ohm’s law), and B = pH, where € is the permittivity, ¢ is the electrical conductivity, and u is the
permeability. For free space € = 8.8542 x 10712 C2N~!'m~2, and p = 1.2566 x 1076 NC—2s2,

For p = 0 and constant €, g and p, it can be shown that

0’H oH
VPH - ep—n —gu—— = 0 1.57
N~ IH (1.57)
O’E OE
VE — et~ —gu— = 0 1.58
ham ~ I, (1.58)
The speed of an electromagnetic wave in free space is ¢ = 1/, /pe.
Blackbody radiation
Planck distribution [147]
&
E, = 1.59
* 7 N fexp (Co/AT) — 1] (1.59)
Wien’s law: Putting dE)/dA = 0, the maximum of is seen to be at A = A,,,, where
AT = C (1.60)
and C5 = 2897.8 pmK.
Stefan-Boltzmann’s law: The total radiation emitted is
E, = / Ey dX
0
= oT* (1.61)
where o = 5.670 x 1078 W/m?K*.
d*T
—— =7 (1.62)

dx?
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-, cod

(a) parallel flow

5 hot

- cod
(a) counter flow

o hot

Figure 1.6: Parallel and counter flow.

1.4.2 View factors

1.5 Boiling and condensation

[29,42,198]

1.5.1 Boiling curve
1.5.2  Critical heat flux
1.5.3  Film boiling
1.5.4 Condensation

Nusselt’s solution

1.6 Heat exchangers

[105, 154]

Shell and tube heat exchangers are commonly used for large industrial applications. Compact
heat exchangers are also common in industrial and engineering applications that exchanger heat
between two separated fluids. The term compact is understood to mean a surface to volume ratio
of more than about 700 m?/m3. The advantages are savings in cost, weight and volume of the heat
exchanger.

The fin efficiency concept was introduced by Harper and Brown (1922). The effectiveness-NTU
method was introduced by London and Seban in 1941.

A possible classification of HXs is shown in Table 1.1.
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Table 1.1: Classification of HX (due to Shah [170], 1981

According to

Types of HXs Ezamples

Transfer processes

Direct contact

Indirect contact | (a) direct transfer,
(b) storage, (c)
fluidized bed

Surface Compact

compactness Non-compact

Construction Tubular a) double pipe
b) shell and tube
c) spiral tube

Plate a) gasketed,

b) spiral,
c) lamella

plate fin,
tube fin

Extended surface

Regenerative

a)

b)

a) rotary disk
b) rotary drum

Flow arrangement

parallel flow

Single pass a)
b) counterflow

Multipass (a) extended surface
cross counter flow,
(b) extended surface
cross parallel flow,
(c) shell and tube
parallel counterflow
shell and tube
mixed, (d) shell
and tube split

flow, (e) shell and
tube divided flow
Plate

Number of fluids

Two fluid

Three fluid

Multifluid

Heat transfer

Single-phase convection mechanisms on both sides

Single-phase convection on one side, two-phase
convection on other side

Two-phase convection on both sides

Combined convection and radiative heat transfer

12



1.6. Heat exchangers

1.6.1 Parallel- and counter-flow

13

We define the subscripts h and ¢ to mean hot and cold fluids, ¢ and o for inlet and outlet, 1 the end

where the hot fluids enters, and 2 the other end. Energy balances give

dg = U(T,-T.) dA
dqg = =£m.C.dI,
dq = —thh dTh

and (1.65), we get

dq< LI )d(ThTC)

mhch mcCc
Using (1.63), we find that

1 1 )zd(Th—Tc)

~U dA +
(mhch 111eCle T, —T.

which can be integrated from 1 to 2 to give

| 1 (Th — T)s
_UA PN T N W € el 20
v <mhch m0> N T =T0)s

From equation (1.66), we get

1 1
—qr (mhch + mccc> =T, —Te)o— (Th —Teh

where g7 is the total heat transfer rate. The last two equations can be combined to give

gr = UAAT 14

where
(Th — Tc)l - (Th - Tc)2
In[(Th = Te)1 /(Th — T¢)e]
is the logarithmic mean temperature difference.
For parallel flow, we have

ATypia =

AT _ (Th,i - Tc,i) - (Th,o - Tc,o)
Imtd —
ln[(Th,i - Tc,i)/(Th,o - Tc,o)]
while for counterflow it is
T i_Tco — (T o_Tci
ATy = (T, o) — (T, )

[(Thi —Teo)/(Thio — Tei)]

We an write the element of area dA in terms of the perimeter P as dA = P dz, so that

q(z)

mCCC

T(z) = Tea1=

Th(ac)

Thy—

(1.67)

(1.68)

(1.69)

(1.70)

(1.71)

(1.72)

(1.73)

(1.74)

(1.75)



1.6. Heat exchangers 14

Thus J ) )
q
— +qUP + 1.76
a4 (mhch mc) (1.76)
With the boundary condition ¢(0) = 0, the solution is
Th 1— Tc 1 1 1
q9x):”{1—exp [—UP( - + — )}} (1.77)
7‘nthh + mclcc thh mCCC
1.6.2 HX relations
The HX effectiveness is
Q
€ = 1.78
Qmax ( )
Crh(Thi—Tho
_ OnThi= Tho) (1.79)
sz'n(Th,z' - Tc,i)
Cc(Tc o Tc z)
= : : 1.80
Cmin(Th,i - Tc,i) ( )
where
Cmin - min(clu Cc) (181)
Assuming U to be a constant, the number of transfer units is
A
NTU = C’Q (1.82)

The heat capacity rate ratio is Cr = Chin/Craz-

Effectiveness-NTU relations

In general, the effectiveness is a function of the HX configuration, its NTU and the C'g of the fluids.

(a) Counterflow
1 —exp[-NTU(1 — Cg)]
— 1.
T 1 - Crexp|-NTU(1 - Cr)] (1.83)

so that € = 1 as NTU — oo.
(b) Parallel flow
. 1 —exp[-NTU(1 — Cg)]

1.84
1+ Cgr ( )
(¢) Crossflow, both fluids unmixed
Series solution (Mason, 1954)
(d) Crossflow, one fluid mixed, the other unmixed
If the unmixed fluid has C' = C,,;,, then
e =1—exp[-Cgr(1 — exp{—NTUC,})] (1.85)

But if the mixed fluid has C' = C,,,in

€ = Cr(1 — exp{—Cgr(1 —e N1} (1.86)
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(e) Crossflow, both fluids mixed
(f) Tube with wall temperature constant

e=1—exp(—NTU) (1.87)
Pressure drop
It is important to determine the pressure drop through a heat exchanger. This is given by

N Ie: A
2P (Ko+1-0))+22L 1)+ 7220 _(1- 02— K2

p1 2pipr p2 Acpm p2

(1.88)

where K. and K, are the entrance and exit loss coefficients, and o is the ratio of free-flow area to
frontal area.

1.6.3 Design methodology
Mean temperature-difference method

Given the inlet temperatures and flow rates, this method enables one to find the outlet temperatures,
the mean temperature difference, and then the heat rate.

Effectiveness-NTU method

The order of calculation is NTU, €, ¢mq, and gq.

1.6.4 Correlations
1.6.5 Extended surfaces

Al
=1~ ) (1.89)

where 7 is the total surface temperature effectiveness, 7y is the fin temperature effectiveness, Ay is
the HX total fin area, and A is the HX total heat transfer area.

Problems

1. For a perimeter corresponding to a fin slope that is not small, derive Eq. 1.11.

2. The two sides of a plane wall are at temperatures 77 and T5. The thermal conductivity varies with temperature
in the form k(T') = ko + a(T — T1). Find the temperature distribution within the wall.

3. Consider a cylindrical pin fin of diameter D and length L. The base is at temperature T} and the tip at Two;
the ambient temperature is also Tw. Find the steady-state temperature distribution in the fin, its effectiveness,
and its efficiency. Assume that there is only convection but no radiation.

4. Show that the efficiency of the triangular fin shown in Fig. 1.7 is

1 Li(2mL)

T L Io(2mL)’

where m = (2h/kt)'/2, and Iy and I; are the zeroth- and first-order Bessel functions of the first kind.

5. A constant-area fin between surfaces at temperatures 77 and 7% is shown in Fig. 1.8. If the external temperature,
T (), is a function of the coordinate x, find the general steady-state solution of the fin temperature T'(z) in
terms of a Green’s function.
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T1 T2

Figure 1.8: Constant-area fin.

6. Using a lumped parameter approximation for a vertical flat plate undergoing laminar, natural convection, show
that the temperature of the plate, T'(¢), is governed by

dT
— ol - Tw)?* =0

Find T'(¢) if T(0) = Tp.

7. Show that the governing equation in Problem 3 with radiation can be written as
d2T

dz?

Find a two-term perturbation solution for T'(z) if e € 1 and L — oo.

—m2(T —Two) —e(T* —TL) = 0.

8. The fin in Problem 3 has a non-uniform diameter of the form
D = Dg + ex.

Determine the equations to be solved for a two-term perturbation solution for T'(z) if € < 1.
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CHAPTER 2

DYNAMICS

2.1 Variable heat transfer coeflicient

If, however, the h is slightly temperature-dependent, then we have

df
T +c)o=0 (2.1)

which can be solved by the method of perturbations. We assume that

O(1) = 00(7) + €61 (1) + 6292(7') +... (2.2)
To order €Y, we have
dbo
— +6 = 0 2.3
dr 0
6o(0) = 1 (2.4)
which has the solution
90 =e 7 (25)
To the next order €', we get
db,
— 46, = -6 2.6
Do, : (2.6
= —e (2.7)
6:(00 = 0 (2.8)
the solution to which is
0 = —e e 2" (2.9)

Taking the expansion to order €2

d702 +6y = —2046; (2'10)
dr

= 2% 2737 (2.11)

02(0) = 1 (2.12)

18
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with the solution
Oy =e T =22 £ 737 (2.13)

And so on. Combining, we get
f=e " —cleT—e )+ (e =2 £+ ... (2.14)
Alternatively, we can find an exact solution to equation (2.1). Separating variables, we get

do

— 2.15
e (2.15)
Integrating
0
| = — C 2.16
N +1 T (2.16)
The condition #(0) =1 gives C' = —In(1 + €), so that
0(1+e)
In T o = —7 (217)

This can be rearranged to give

—T

e

0= ———— 2.18
1+e(l—e) (2.18)
A Taylor-series expansion of the exact solution gives
6 = e T[l+e(l—e]" (2.19)
= e T[l-el—e )+l —eT)+..] (2.20)
= e T —ele T —e )+ (e =2 e )+, (2.21)
2.1.1 Radiative cooling
If the heat loss is due to radiation, we can write
dT
Me—-+ cA(T* —TL)=0 (2.22)
Taking the dimensionless temperature to be defined in equation (1.32), and time to be
g A(T; — Tao )t
=t oo/ 2.23
T e (2.23)
and introducing the parameter
T
= 2.24
b= o (2.2)
we get
d
9 | gt = gt (2.25)
dr
where

p=0+0 (2.26)
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Writing the equation as

d¢
ot — Bt —dr (2.27)
the integral is
1 o—p 1 -1 ( ¢)
—In|{-—— ) ——t - | =- C 2.28
i (555) e (5) = (229)
Using the initial condition 6(0) = 1, we get (?)
L1 (BB, ., T-1 }
T=—|-In-——F"F——F +tan™ —— 2.29
o5 |2 ) 3+ @0 (229)
2.1.2 Convective with weak radiation
The governing equationis
dr 4 4
MCE +hA(T —Too) +cA(T* =T ) =0 (2.30)

with T(0) = T;. Using the variables defined by equations (1.32) and (1.33), we get

g Lot e[0+ Y -5 =0 (2.31)

where  is defined in equation (2.24), and

o(T; — T00)3
_ 2.32
=2 (2.32)
If radiative effects are small compared to the convective (for T; — T, = 100 K and h = 10 W/m?K
we get € = 5.67 x 1073), we can take ¢ < 1. Substituting the perturbation series, equation (2.2), in
equation (2.31), we get

d
— (0o + €01 + €202+ ...) + (00 + €01 + €202 +....)

dr
el (6o + €61 + 05 +...) " + 48 (60 + by + 20, +..)°
66 (6 + €61 + €205 +...) 48 (6 + €61 + 2o +...) | =0 (2.33)

In this case

B (6= 86)+ (6" — 6%)

dr
6(0)

([
— (aw]
—
oo
w w
(S TN
~  —

As a special case, of we take 0 =0, i.e. T, = 0, we get

de
o+ ' =0 (2.36)

which has an exact solution p
1 1+e€
=-In—-—— 2.37
T3 0o (2.37)
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2.2 Radiation in an enclosure

Consider a closed enclosure with NV walls radiating to each other and with a central heater H. The
walls have no other heat loss and have different masses and specific heats. The governing equations
are

N
dT;
Mici—= + 0 N AF(T - T)) + 0 AiFip (T} = Tfy) = 0 (2.38)
j=1

where the view factor Fj; is the fraction of radiation leaving surface ¢ that falls on j. The steady
state is

T;=Ty (i=1,...,N) (2.39)
Linear stability is determined by a small perturbation of the type
T, =Ty +T), (2.40)
from which
a1} al
Mici—t + 40T > AFj(T) — T)) + 40T A FopT] = 0 (2.41)
j=1
This can be written as T
M T —40TH AT (2.42)

2.3 Long time behavior

The general form of the equation for heat loss from a body with internal heat generation is

do
—+fl0)=a (2.43)
dr
with 0(0) = 1. Let 3
f@)=a (2.44)
Then we would like to show that § — 0 as t — oco. Writing
0=0+0 (2.45)
we have
d—el+f(§+9’)—a (2.46)
dr o :

2.3.1 Linear analysts

If we assume that 6’ is small, then a Taylor series gives

fO+0)=rf0O)+06f0)+... (2.47)
from which
A (2.48)
dr
where b = f(0). The solution is
¢ = Ce b7 (2.49)

sothat @ — 0 ast — oo if b > 0.



2.4. Time-dependent Ty, 22

2.3.2 Nonlinear analysis
Multiplying equation (2.46) by €', we get

S0 =0 [fB +0) ~ ()] (2.50)
Thus
d
dr
if 0" and [f(0 +60') — f(0)], as shown in Fig. 2.1, are both of the same sign or zero. Thus 6’ — 0 as
T — 00.

(02 <0 (2.51)

f@)

f®)

DI

0
Figure 2.1: Convective cooling.
2.4 Time-dependent T,
Let
dT
Me— +hA(T = T (1)) = 0 (2.52)
with
T(0)="T; (2.53)
2.4.1 Linear
Let
Too =T+ at (2.54)
Defining the nondimensional temperature as
T—Two
0= — 2.55
T‘i - Too,O ( )
and time as in equation (1.33), we get
do
—+60=Ar (2.56)

dr
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where
e aMc
hA(T; — T 0)
The nondimensional ambient temperature is
0. — aMc -
hRA(T; — Tso 0)

The solution to equation (2.56) is
0=Ce "+ AT - A

The condition 0(0) =1 gives C' =1+ A, so that
0=(14+Ae " +A(r-1)

The time shown in Fig. 2.2 at crossover is

! 1+ A
c =N ——
T A
and the offset is

00=A

as 7 — OQ.

Figure 2.2: Response to linear ambient temperature.

2.4.2 Oscillatory

Let
Too = Too + 6T sinwt
where T(0) = T;. Defining

T—-Te
p—= - -
T, - T

23

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

(2.64)
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(@) (b)

Figure 2.3: Two-fluid problems.

and using equation (1.33), the nondimensional equation is

d—g + 60 =60sinQr
dr
where
00 = 5T7
T, — T
wMe
Q —
hA
The solution is 50
§=Ce " + —————sin(Qr — ¢)

(1+9Q2?)cosd

where

¢ =tan"1Q
From the condition §(0) = 1, we get C' =1+ 5Q/(1 + Q?), so that

1+ 02

o= (1 + 599) e r—g)

(1+92)cos¢

2.5 Two-fluid problem

Tt

24

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

Suppose there is a body in contact with two fluids at different temperatures Too ;1 and T 2, like in

the two examples shown in Fig. 2.3. The governing equation is

dT
Me— 4+ h1 A1 (T — Too 1) + hoAs(T — Too 2) =0

dt

(2.71)

where T'(0) = T;. If T 1 and T 2 are constants, we can nondimensionalize the equation using the

parameters for one of them, fluid 1 for instance. Thus we have

T—Tsw1
0 — E)
T —Toon
hiAqt
T f—

Mec

(2.72)

(2.73)
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from which &0
—+0+a@+5)=0 (2.74)
dr
with 6(0) = 1, where
h2A2
= 2.
« AL (2.75)
Too 1 Too 2
= - %0 2.76
ﬁ n - Too,l ( )
The equation can be written as
do
e +(1+a)f=—-ap (2.77)
with the solution 5
9= Ce (1t _ ¢ 2.
Ce T+ a (2.78)
The condition 0(0) =1 gives C' =1+ /(1 + &), from which
af \ of
= (14— ) Otar _ 22 2.
b (+1+Oé>e I1+a (2.79)

For o = 0, the solution reduces to the single-fluid case, equation (1.35). Otherwise the time constant

of the general system is
Mc

th=——F—— 2.80
07 hi Ay + hoA, (2.80)

2.6 Two-body problem

2.6.1 Convective

Suppose now that there are two bodies at temperatures 77 and 75 in thermal contact with each
other and exchanging heat with a single fluid at temperature T, as shown in Fig. 2.4.

Figure 2.4: Two bodies in thermal contact.

The mathematical model of the thermal process is

dTy | ke

M101 dt L (T1 — TQ) —|— hA(T1 — Too) = Ql (281)
dTy  k.A.
Mchd—; + = (T = Th) + hA(Ty —Tss) = Q2 (2.82)
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Figure 2.5: Bodies with radiation.

2.6.2 Radiative

dT: kA
Mlcld—tl + SL C(Ty — Ty) + Ao Fy (T — T + AjoFio (T —T4) = @ (2.83)
dTy | ksA. 4 4 4 4y
MQCQE + L (T2 — Tl) + —|—A1F25(T2 — Ts ) + AQUFQl(TQ — Tl ) = QQ (284)
Without radiation
2kA —
Q1 =Q2= -7 (T, —T2) (2.85)

Problems

1. Show that the temperature distribution in a sphere subject to convective cooling tends to become uniform as
Bi — 0.

2. Check one of the perturbation solutions against a numerical solution.

3. Plot all real 6(8,¢) surfaces for the convection with radiation problem, and comment on the existence of
solutions.

4. Complete the problem of radiation in an enclosure (linear stability, numerical solutions).
5. Lumped system with convective-radiative cooling with nonzero 6y and 6s.

6. Find the steady-state temperatures for the two-body problem and explore the stability of the system for
constant ambient temperature.

7. Consider the change in temperature of a lumped system with convective heat transfer where the ambient
temperature, To(t), varies with time in the form shown. Find (a) the long-time solution of the system
temperature, T'(¢), and (b) the amplitude of oscillation of the system temperature, T'(¢), for a small period §¢.

T

max

min

Figure 2.6: Ambient temperature variation.



CHAPTER 3

CONTROL

3.1 Introduction

There are many kinds of thermal systems in common industrial, transportation and domestic use
that need to be controlled in some manner, and there are many ways in which that can be done.
One can give the example of heat exchangers [85,114], environmental control in buildings [70, 72,
82,115,152,218], satellites [101,172,184,221], thermal packaging of electronic components [150,185],
manufacturing [54], rapid thermal processing of computer chips [84,158,200], and many others. If
precise control is not required, or if the process is very slow, control may simply be manual; otherwise
some sort of mechanical or electrical feedback system has to be put in place for it to be automatic.

Most thermal systems are generally complex involving diverse physical processes. These include
natural and forced convection, radiation, complex geometries, property variation with temperature,
nonlinearities and bifurcations, hydrodynamic instability, turbulence, multi-phase flows, or chemical
reaction. It is common to have large uncertainties in the values of heat transfer coefficients, ap-
proximations due to using lumped parameters instead of distributed temperature fields, or material
properties that may not be accurately known. In this context, a complex system can be defined as
one that is made up of sub-systems, each one of which can be analyzed and computed, but when put
together presents such a massive computational problem so as to be practically intractable. For this
reason large, commonly used engineering systems are hard to model exactly from first principles,
and even when this is possible the dynamic responses of the models are impossible to determine
computationally in real time. Most often some degree of approximation has to be made to the
mathematical model. Approximate correlations from empirical data are also heavily used in prac-
tice. The two major reasons for which control systems are needed to enable a thermal system to
function as desired are the approximations used during design and the existence of unpredictable
external and internal disturbances which were not taken into account.

There are many aspects of thermal control that will not be treated in this brief review. The most
important of these are hardware considerations; all kinds of sensors and actuators [59,187] developed
for measurement and actuation are used in the control of thermal systems. Many controllers are
also computer based, and the use of microprocessors [87,180] and PCs in machines, devices and
plants is commonplace. Flow control, which is closely related to and is often an integral part of
thermal control, has its own extensive literature [64]. Discrete-time (as opposed to continuous-
time) systems will not be described. The present paper will, however, concentrate only on the
basic principles relating to the theory of control as applied to thermal problems, but even then it
will be impossible to go into any depth within the space available. This is only an introduction,

27
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w(t) A w(t) A
! !
u(t) lan e(t) | controller | u(t) lan
px(tg% y(t) br () ' px(tg

Figure 3.1: Schematic of a system without Figure 3.2: Schematic of a system with com-
controller. parator C and controller.

and the interested reader should look at the literature that is cited for further details. There are
good texts and monographs available on the basics of control theory [116, 132,144, 157], process
control [28,75,93,151], nonlinear control [91], infinite-dimensional systems [39,89], and mathematics
of control [9,179] that can be consulted. These are all topics that include and are included within
thermal control.

3.2 Systems

Some basic ideas of systems will be defined here even though, because of the generality involved, it
is hard to be specific at this stage.

3.2.1 Systems without control

The dynamic behavior of any thermal system (often called the open-loop system or plant to distin-
guish it from the system with controller described below), schematically shown in Fig. 3.1, may be
mathematically represented as

Ls(x,u,w, ) =0, (3.1)

where L, is a system operator, ¢ is time, x(t) is the state of the system, u(t) is its input, w(t) is some
external or internal disturbance, and X is a parameter that defines the system. Each one of these
quantities belongs to a suitable set or vector space and there are a large number of possibilities. For
example £, may be an algebraic, integral, ordinary or partial differential operator, while x may be
a finite-dimensional vector or a function. u(t) is usually a low-dimensional vector.

In general, the output of the system y(¢) is different from its state z(t). For example,  may be
a spatial temperature distribution, while y are the readings of one or more temperature measurement
devices at a finite number of locations. The relation between the two may be written as

EO(?J? I? u’ w? )\) = 07 (3'2)

where L, is the output operator.

The system is single-input single-output (SISO) if both u and y are scalars. A system is said
to be controllable if it can be taken from one specific state to another within a prescribed time with
the help of a suitable input. It is output controllable if the same can be done to the output. It is
important to point out that output controllability does not imply system controllability. In fact, in
practice for many thermal systems the former is all that is required; it has been reported that most
industrial plants are controlled quite satisfactorily though they are not system controllable [156].
All possible values of the output constitute the reachable set. A system is said to be observable if its
state & can be uniquely determined from the input v and output y alone. The stability of a system
is a property that leads to a bounded output if the input is also bounded.
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3.2.2  Systems with control

The objective of control is to have a given output y = y,-(t), where the reference or set value y,. is
prescribed. The problem is called regulation if vy, is a constant, and ¢racking if it is function of time.

In open-loop control the input is selected to give the desired output without using any infor-
mation from the output side; that is one would have to determine u(t) such that y = y,.(t) using
the mathematical model of the system alone. This is a passive method of control that is used in
many thermal systems. It will work if the behavior of the system is exactly predictable, if precise
output control is not required, or if the output of the system is not very sensitive to the input. If
the changes desired in the output are very slow then manual control can be carried out, and that
is also frequently done. A self-controlling approach that is sometimes useful is to design the system
in such a way that any disturbance will bring the output back to the desired value; the output in
effect is then insensitive to changes in input or disturbances.

Open-loop control is not usually effective for many systems. For thermal systems contributing
factors are the uncertainties in the mathematical model of the plant and the presence of unpredictable
disturbances. Internal disturbances may be noise in the measuring or actuating devices or a change
in surface heat transfer characteristics due to fouling, while external ones may be a change in the
environmental temperature. For these cases closed-loop control is an appropriate alternative. This
is done using feedback from the output, as measured by a sensor, to the input side of the system, as
shown in Fig. 3.2; the figure actually shows unit feedback. There is a comparator which determines
the error signal e(t) = e(y,, y), which is usually taken to be

e="Yr —y. (3.3)

The key role is played by the controller which puts out a signal that is used to move an actuator in
the plant.

Sensors that are commonly used are temperature-measuring devices such as thermocouples,
resistance thermometers or thermistors. The actuator can be a fan or a pump if the flow rate is to
be changed, or a heater if the heating rate is the appropriate variable. The controller itself is either
entirely mechanical if the system is not very complex, or is a digital processor with appropriate
software. In any case, it receives the error in the output e(t) and puts out an appropriate control
input u(t) that leads to the desired operation of the plant.

The control process can be written as

Leo(u,e,\) =0, (3.4)

where L, is a control operator. The controller designer has to propose a suitable L., and then Egs.
(C.9)—(3.4) form a set of equations in the unknowns x(t), y(¢) and u(¢). Choice of a control strategy
defines £, and many different methodologies are used in thermal systems. It is common to use on-off
(or bang-bang, relay, etc.) control. This is usually used in heating or cooling systems in which the
heat coming in or going out is reduced to zero when a predetermined temperature is reached and
set at a constant value at another temperature. Another method is Proportional-Integral-Derivative
(PID) control [214] in which
de

t
u= Kpe(t) + Ki/ e(s) ds+ Kd%. (3.5)
0

3.3 Linear systems theory

The term classical control is often used to refer to theory derived on the basis of Laplace transforms.
Since this is exclusively for linear systems, we will be using the so-called modern control or state-
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space analysis which is based on dynamical systems, mainly because it can be extended to nonlinear
systems. Where they overlap, the issue is only one of preference since the results are identical.
Control theory can be developed for different linear operators, and some of these are outlined below.

3.3.1 Ordinary differential equations
Much is known about a linear differential system in which Eqgs. (C.9) and (3.2) take the form

‘% — Az+ Bu, (3.6)
y = Cz+ Du, (3.7)

where x € R", u € R, y € RP; A € R™*" B € R"™*™ (C € RP*" D € RP*™. g, u and y are
vectors of different lengths and A, B, C, and D are matrices of suitable sizes. Though A, B, C, and
D can be functions of time in general, here they will be treated as constants.

The solution of Eq. (3.6) is

t
w(t) = ety (tg) + / 79 Bu(s) ds. (38)

to

where the exponential matrix is defined as
At Lo, 1,33
with I being the identity matrix. From Eq. (3.7), we get

y(t)=C [eAtﬂc(to) + /t A=) Bu(s) ds} + Du. (3.9)

to

Egs. (3.8) and (3.9) define the state z(t) and output y(¢) if the input u(t) is given.
It can be shown that for the system governed by Eq. (3.6), a u(t) can be found to take z(t)
from z(tg) at t = to to z(ty) = 0 at t =ty if and only if the matrix

M = {B tAB: A’B: ... fA"lB} € RXmm (3.10)

is of rank n. The system is then controllable. For a linear system, controllability from one state to
another implies that the system can be taken from any state to any other. It must be emphasized
that the u(t) that does this is not unique.

Similarly, it can be shown that the output y(t) is controllable if and only if

N = [D :CB:CAB:CA’B: ... ECA"—lB} € RpX(ntm (3.11)
is of rank p. Also, the state x(t) is observable if and only if the matrix
T
P= [C’ tCA:CA? ... CA"l] € RP*™ (3.12)

is of rank n.



3.4. Nonlinear aspects 31

3.8.2  Algebraic-differential equations

This is a system of equations of the form

Ed—x =Az+ B u, (3.13)
dt

where the matrix F € R™*" is singular [113]. This is equivalent to a set of equations, some of which
are ordinary differential and the rest are algebraic. As a result of this, Eq. (3.13) cannot be converted
into (3.6) by substitution. The index of the system is the least number of differentiations of the
algebraic equations that is needed to get the form of Eq. (3.6). The system may not be completely
controllable since some of the components of x are algebraically related, but it may have restricted
or R-controllability [45].

3.4 Nonlinear aspects

The following are a few of the issues that arise in the treatment of nonlinear thermal control problems.

8.4.1 Models

There are no general mathematical models for thermal systems, but one that can be used is a

generalization of Eq. (3.6) such as

dxr

i f(z,u). (3.14)

where f: R"™ x R™ — R™. If one is interested in local behavior about an equilibrium state x = x,
u = 0, this can be linearized in that neighborhood to give

de  af| , of] ,
@~ or| T Toul”
= Az’ + Bu/, (3.15)

where x = z¢ + 2’ and u = v'. The Jacobian matrices (9f/9z)o and (9f/0u)o, are evaluated at the
equilibrium point. Eq. (3.15) has the same form as Eq. (3.6).

3.4.2  Controllability and reachability

General theorems for the controllability of nonlinear systems are not available at this point in time.
Results obtained from the linearized equations generally do not hold for the nonlinear equations.
The reason is that in the nonlinear case one can take a path in state space that travels far from the
equilibrium point and then returns close to it. Thus regions of state space that are unreachable with
the linearized equations may actually be reachable. In a thermal convection loop it is possible to go
from one branch of a bifurcation solution to another in this fashion [1].

3.4.3 Bounded variables

In practice, due to hardware constraints it is common to have the physical variables confined to
certain ranges, so that variables such as x and u in Egs. (C.9) and (3.2), being temperatures, heat
rates, flow rates and the like, are bounded. If this happens, even systems locally governed by Egs.
(3.6) and (3.7) are now nonlinear since the sum of solutions may fall outside the range in which z
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exists and thus may not be a valid solution. On the other hand, for a controllable system in which
only u is bounded in a neighborhood of zero, x can reach any point in R™ if the eigenvalues of A have
zero or positive real parts, and the origin is reachable if the eigenvalues of A have zero or negative
real parts [179].

3.4.4 Relay and hysteresis

A relay is an element of a system that has an input-output relationship that is not smooth; it may be
discontinuous or not possess first or higher-order derivatives. This may be accompanied by hysteresis
where the relationship also depends on whether the input is increasing or decreasing. Valves are
typical elements in flow systems that have this kind of behavior.

3.5 System identification

To be able to design appropriate control systems, one needs to have some idea of the dynamic
behavior of the thermal system that is being controlled. Mathematical models of these systems
can be obtained in two entirely different ways: from first principles using known physical laws, and
empirically from the analysis of experimental information (though combinations of the two paths
are not only possible but common). The latter is the process of system identification, by which a
complex system is reduced to mathematical form using experimental data [75,121,129]. There are
many different ways in which this can be done, the most common being the fitting of parameters to
proposed models [141]. In this method, a form of £y is assumed with unknown parameter values.
Through optimization routines the values of the unknowns are chosen to obtain the best fit of the
results of the model with experimental information. Apart from the linear Eq. (3.6), other models
that are used include the following.

e There are many forms based on Eq. (3.14), one of which is the closed-affine model
d
diz = Fy(z) + Fa(z)u (3.16)

The bilinear equation for which Fy(z) = Az and Fa(x) = Nx + b is a special case of this.

e Volterra models, like
y(t) :yo(t>+2/ / ki(t;tl,tg,t37...,ti)’u,(tl)...u(ti) dty...dt; (317)
i=17 7% —oo

for a SISO system, are also used.

e Functional [71], difference [23] or delay [57] equations such as

%:Ax(t—s)—i—Bu (3.18)

also appear in the modeling of thermal systems.
e Fractional-order derivatives, of which there are several different possible definitions [10,17,134,

135,148] can be used in differential models. As an example, the Riemann-Liouville definition

of the nth derivative of f(t) is
Dn 1 dm+1 k m—n d
PP ) = oy et (") s (319)

where a and n are real numbers and m is the largest integer smaller than n.
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3.6 Control strategies

3.6.1 Mathematical model

Consider a body that is cooled from its surface by convection to the environment with a constant
ambient temperature Too. It also has an internal heat source Q(¢) to compensate for this heat loss,
and the control objective is to maintain the temperature of the body at a given level by manipulating
the heat source. The Biot number for the body is Bi = hL/k, where h is the convective heat transfer
coefficient, L is a characteristics length dimension of the body, and k is its thermal conductivity.
If Bi < 0.1, the body can be considered to have a uniform temperature 7'(¢). Under this lumped
approximation the energy balance is given by

Mc% +hAT — Too) = Q(t), (3.20)

where M is the mass of the body, ¢ is its specific heat, and A is the surface area for convection.
Using Mc¢/hAs and hA,(T;—Ts) as the characteristic time and heat rate, this equation becomes

S H0=00) (3.21)

Here 0 = (T — Tw)/(T; — Too) where T(0) = T; so that #(0) = 1. The other variables are now non-
dimensional. With x = 6, u = Q, n = m =1 in Eq. (3.6), we find from Eq. (3.10) that rank(M)=1,
so the system is controllable.

Open-loop operation to maintain a given non-dimensional temperature 6, is easily calculated.
Choosing @ = 6., it can be shown from the solution of Eq. (3.21), that is

(t)=(1—06)e " +0,, (3.22)

that & — 0, as t — oo. In practice, to do this the dimensional parameters hA; and T, must be
exactly known. Since this is usually not the case some form of feedback control is required.

3.6.2  On-off control

In this simple form of control the heat rate in Eq. (3.20) has only two values; it is is either Q = Qg
or @ = 0, depending on whether the heater is on or off, respectively. With the system in its on
mode, T' — Thae = Too + Qo/hAs as t — oo, and in its off mode, T — T = Too. Taking the
non-dimensional temperature to be

T — T
= —-T" 3.23
Tmar - Tmin ( )
the governing equation is
do 1 on
dt+9_{0 o (3.24)
the solution for which is Cromt
. 14+ Cie™™ on
9—{ Ce—t off (3.25)

We will assume that the heat source comes on when temperature falls below a value Ty, and goes
off when it is rises above Ty;. These lower and upper bounds are non-dimensionally
TL - Tmin
Tmaz - Tmin ’
TU - Tmzn

0 = — 3.27
v Tmaz - Tm'm ( )

0L (3.26)
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Figure 3.3: Lumped approximation with on-off control.

The result of applying this form of control is an oscillatory temperature that looks like that
in Fig. 3.3, the period and amplitude of which can be chosen using suitable parameters. It can be
shown that the on and off time periods are

1-46r

ton = In 0, (3.28)
Oy
tof = In-2, (3.29)
0L
respectively. The total period of the oscillation is then
Ou(l—0r)
t, =In ———=. 3.30
P 9[,(1 _ eU) ( )
If we make a small dead-band assumption, we can write
0, = 6,.—29, (3.31)
Oy = 6,.+6, (3.32)
where § < 1. A Taylor-series expansion gives
1 1
t,=20— . .
D <9r+1_9r)+ (3.33)

The period is thus proportional to the width of the dead band. The frequency of the oscillation
increases as its amplitude decreases.

3.6.8 PID control

The error e = 6, — 6 and control input u = @ can be used in Eq. (3.5), so that the derivative of Eq.
(3.21) gives
2

420 do
(Ka 1)y + (K + 1) + Kif) = Kif), (3.34)
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Figure 3.4: Lumped approximation with PID control; K; = K4 = —0.1, 6, = 0.5, (a) K, = —0.1,
(b) K, = —0.9.

with the initial conditions

0 = 6, at t=0, (3.35)
a9 K,+1 K0,

@weo_ b t=0. .
dt Ko+1 " K;+1 ° 0 (3.36)

The response of the closed-loop system can be obtained as a solution. The steady-state for K; # 0
is given by 6 = 6,. It can be appreciated that different choices of the controller constants K,, K;
and K, will give overdamped or underdamped oscillatory or unstable behavior of the system. Fig.
3.4 shows two examples of closed-loop behavior with different parameter values.

Problems

1. Two lumped bodies A and B in thermal contact (contact thermal resistance R.) exchange heat between
themselves by conduction and with the surroundings by convection. It is desired to control their temperatures
at T4 and T using separate internal heat inputs Q4 and Qpg.

(a) Check that the system is controllable.
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(b) Set up a PID controller where its constants are matrices. Determine the condition for linear stability of
the control system. Show that the case of two independent bodies is recovered as R, — oo.

(c) Calculate and plot T4 (¢t) and Tg(¢) for chosen values of the controller constants.
2. Apply an on-off controller to the previous problem. Plot T4 (¢) and Tg(¢) for selected values of the parameters.
Check for phase synchronization.

3. A number of identical rooms are arranged in a circle as shown, with each at a uniform temperature T;(t). Each
room exchanges heat by convection with the outside which is at T, and with its neighbors with a conductive
thermal resistance R. To maintain temperatures, each room has a heater that is controlled by independent but
identical proportional controllers. (a) Derive the governing equations for the system, and nondimensionalize.
(b) Find the steady state temperatures. (c) Write the dynamical system in the form x = Ax and determine

the condition for stability®.
' T

lEigenvalues of an N x N, circulant, banded matrix of the form

b ¢ 0 0 a
a b c 0 0
0 b 0 0
o ... 0 a b ¢
c 0 0 a b

are A\j = b+ (a+ c)cos{2n(j —1)/N} —i(a — c)sin{27(j — 1)/N}, where j =1,2,...,N.
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CHAPTER 4

CONDUCTION

4.1 Structures

Fig. 4.1 shows a complex shape consisting of conductive bars. At each node
a-o
i

For each branch

2

kiA;
T, —Ty) =

from which

o 2T
0= Z kiA;
i L;
4.2 Fin theory
4.2.1 Long time solution
The general fin equation is
00 0 00

Figure 4.1: Complex conductive structures.

38
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where f(#) includes heat transfer from the sides due to convection and radiation. The boundary
conditions are either Dirichlet or Neumannn type at £ = 0 and £ = 1. The steady state is determined

from p o
~% <ad£> +1(0)=0 (4.5)

with the same boundary conditions. Substituting § = 6+’ in equation (4.4) and subtracting (4.5),
we have

o0 o [ o0 o
aaT—ag<a8§>+[f(9+9) £0)] =0 (4.6)

where ¢’ is the perturbation from the steady state. The boundary conditions for 6’ are homogeneous.
Multiplying by €’ and integrating from £ = 0 to £ = 1, we have

dE

where
1 ! /\2
E = f/ a(0') d¢ (4.8)
2 Jo
Lo (oo
_ e
I, = /0 085 (a8§> dg (4.9)
1
b= - [ 01@+0) - @) a (410)
0
Integrating by parts we can show that
o0’ Lorden\?
j— / —_ P _—
L = Gaag /0 a(d€> d¢ (4.11)

1 AN
db )
— [ al=) d¢ (4.12
[ o )
since the first term on the right side of equation (4.11) is zero due to boundary conditions. Thus we
know from the above that I; is nonpositive and from equation (4.8) that E is nonnegative. If we

also assume that
I, <0 (4.13)

then equation (4.7) tells us that E must decrease with time until reaching zero. Thus the steady
state is globally stable. Condition (4.13) holds if [¢ and f(6 + 6") — f(0)] are of the same sign or
both zero; this is a consequence of the Second Law of Thermodynamics.

4.2.2  Shape optimization of convective fin

Consider a rectangular fin of length L and thickness § as shown in Fig. 4.2. The dimensional equation
is

d*T 9

Tz m (T-Tx)=0 (4.14)

1/2
. (;%) (4.15)

where
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Figure 4.2: Rectangular fin.

We will take the boundary conditions

TO) = T,
dT
@D =0

The solution is
T =Ty — (T — Ts) [tanh mL sinh mz — cosh mz]

The heat rate through the base per unit width is

dE
dx
=0

= ks0(Tp — Too)mtanhmL

A, (2n\'?
0 \ kso
Keeping A, constant, i.e. constant fin volume, the heat rate can be maximized if

1/2 . 1/2
51/ 2sech? Ap (2D A 2h (—§)(57‘)/2 + 1(571/2 tanh Ap (2R =0
2 § \ ksOopt

q = *ksé

Writing L = A, /4, we get

92 1/2
q= ks(s (k];) (Tb — Too)tanh

opt § kséopt P ks 9 opt opt

This is equivalent to
SﬁoptsechQQOpt = tanh Bop;

P
ot 6opt ks(sopt

Numerically, we find that 3,,; = 1.4192. Thus
A, <kSAp) 1/
ﬁopt 2h

2/3
koA, \ 2 /
Lopt = 6opt 2%

where

2/3

5opt
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(4.16)
(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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4.3 Fin structure

Consider now Fig. 4.1 with convection.

4.4 Fin with convection and radiation

Steady state solutions
Equation (4.4) reduces to

d do
U <ad§> +m’pf+ep[(0+8)" — B =0 (4.27)

Uniform cross section

For this case a = p = 1, so that
>0 2 4 4
—d—g+m9+e[(0+ﬁ) -p =0 (4.28)
Convective

With only convective heat transfer, we have

d?0 9
_27 = 4.2
e +m0=0 (4.29)
the solution to whiich is
0 = C1 sinh m& + Co cosh mé (4.30)

the constants are determined from the boundary conditions. For example, if

000) = 1 (4.31)
de
—(1) = 4.32
T =0 (4.52)
we get
6 = — tanh m sinh m¢& + cosh mé& (4.33)
|
Ezxample 4.1
If
TO) = Tp 4.34
T(L) = T 35

then show that

T(z) = |:T1 — To cosh <L hP>

Sinhg\/\/% + Tp cosh <z\/§> (4.36)
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Radiative
The fin equation is
d?o p 4 1 _g
*d?QJFG[( +0) =51 =
Let
¢p=0+p
so that 26
4 4
A
As an example, we will find a perturbation solution with the boundary conditions
¢(0) = 1+8
do
—(1) = 0

We write
¢ =¢o+ep1 + o+ ...

The lowest order equation is

a B do ..
which gives
po=1+p0
To the next order .
di 4 o _ @ _
with the solution )
b1 = [0+ 8) =305 — 10+ 8)" - B¢

The complete solution is

¢=(1+ﬁ)+6{[(1+ﬁ)4—64]£;_[(1+ﬁ)4—ﬁ4}5}+...
so that )
o=l 0) =5 [0+ 8) - 5+

Convective and radiative
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(4.37)

(4.38)

(4.39)

(4.40)
(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)
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4.4.1  Annular fin

|
Example 4.2

43

Show that under suitable conditions, the temperature distribution in a two-dimensional rectangle tends

to that given by a one-dimensional approximation.

4.5 Perturbations of one-dimensional conduction

4.5.1 Temperature-dependent conductivity

[13]
The governing equation is

with the boundary conditions

T0) = T,

dT

—(L) = 0

7 L)

we use the dimensionless variables

T-T,

g = -
Ty — Two
T

$ T

Consider the special case of a linear variation of conductivity

k(T) = ko (1 + eT_TC”)

Ty, — T
so that
20 A
0(0)=1
do
(L) =
=0
where
9 PhL?
mi=——""-
Ako(Ty — Too)
Introduce

0(&) = 00(8) + €b1(§) + €ba2(§) + ...

(4.50)

(4.51)
(4.52)

(4.53)

(4.54)

(4.55)

(4.56)
(4.57)
(4.58)

(4.59)

(4.60)
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/ e

T:Tl

Figure 4.3: Eccentric annulus.

Collect terms of O(e")

- 2 —
7 =0 (4.61)
00(0) =1 (4.62)
by
Y1) = 4.
=0 (4.63)
The solution is
0(&) = coshmé — tanh m sinh m& (4.64)
To O(e')
20, a2, [ dy\>
gz " = e - <d€> (465)
= —m?(1 — tanh® m) cosh 2m¢& — m? tanhm sinh 2mé (4.66)
0:(0) = 0 (4.67)
db,
—(1) = 4.
T = o (1.65)

The solution is

4.5.2  Eccentric annulus

Steady-state conduction in a slightly eccentric annular space, as shown in Fig. 4.3 can be solved by
regular perturbation [13]. The radii of the two circles are 71 and 5.
We will use polar coordinates (r,v) with the center of the small circle as origin. The two circles
are at r = r; and r = 7, where
r2 = a?® + 7% + 2ar cos . (4.69)

Solving for 7, we have

r= \/7% —a?(1 —cos? ) — acosp. (4.70)
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In the quadratic solution, the positive sign corresponding to the geometry shown in the figure has
been kept.
The governing equation for the temperature is

<62 10 1 92

ﬁ + ;5 + ﬂawz) T(r, lb) =0. (4'71)

The boundary conditions are

T(rlu 1/)) = T17 (472)
T(r¢v) = T (4.73)
With the variables
T-1T,
= : 4.74
0 T T, (4.74)
R = = (4.75)
To —T1
1
= . 4.
d ro —7T1 ( 76)
a
= 4.
€ e (4.77)
we get
0? 1 0 1 0?
—t ==+ == | R =0 4.78
(8R2+R+d8R+(R+d)28w2> (B,9) =0, (4.78)
and
00,4) = 1, (4.79)
O(R,v) = 0, (4.80
where
fay _ T — 1
Rw) = —%
= V(1 +d)?—e(1—cos2¢) —ecosy — d, (4.81)
The perturbation expansion is
0<Ra ’L/)) = GO(R? ¢) + 6(91 (Ra W + 6292(R7 '(/}) +o. (482)
Substituting in the equations, we get
0? 1 0 1 0?
—t——+ —— | (0 0 0+...)=0 4.83
<6R2+R+d8R+(R+d)28¢2)(0+61+€ 2t-) =0, (483)
N 2
R(¢)=1—ecosw—%(1—0032¢)—|—..., (4.84)
00(05 ¢) + 601 (Oa ¢) + 6202(07 ¢) +...= ’ (485)

00(R, ) + €01 (R, ) + €205(R, ) + ... = 0. (4.86)
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Using Eq. (4.84), (4.86) can be further expanded in a Taylor series around R =1 to give

90(1,¢)+6(91(1,1/1)—cosz/lefRO(l,w)) +...=0. (4.87)

Collecting terms to order O(e?), we get

2 1 1 2
<a + 9 0 )90 = 0, (4.88)

OR? " R+dOR ' (R+d)? 0y?
00(0,) = 1, (4.89)
bo(1,9) = 0, (4.90)
which has the solution (1 + R/A)
n(l +
0 =1—-— . 4.91
To order O(e')
0? 1 0 1 0?
- il )y, = 4.92
(6R2+R+d8R+(R+d)28¢2) 1 =9 (4.92)
do
01(Ly) = costg (L), (4.94)
cos
= . 4.
T+ 7) (L + 1/h) (4.95)
The solution is Reost R — o
cos —
=+ . 4.
61 (R, ) (1+2n) m(1+1/n) R+h (4.96)
4.6 Transient conduction
Let us propose a similarity solution of the transient conduction equation
o*T 10T
as
T = A erf (z) (4.98)
B 2v/kit '
Taking derivatives we find
orT 1 x?
= = A - 4.
ox VKL exPp ( 4/€t> ( 99)
0T x x?
— = —“A— - 4.1
81'2 2\/77[4;3'63 eXP ( 4l€t) ( 00)
oT x x?
= A= - 4.101
ot 2\/7‘(’/{1‘3 exp < 4I<Et) ( 0 )

so that substitution verifies that equation (4.98) is a solution to equation (4.97).
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4.7 Linear diffusion

Let T = T(x,t) and
oT o*r
g
ot 0x?
in 0 < z < L, with the boundary and initial conditions 7'(0,¢) = Ty, T(L,t) = Tz, and T(x,0) =
f(x). The steady state solution is

(4.102)

T, T

T(x)=T + T (4.103)
With -
T(x,t)=T-T (4.104)
we have the same equation
oT’ 0T’
= 4.1
ot~ "o (4.105)

but with the conditions: 77(0,t) =0, T"(L,t) = 0, and T"(z,0) = f(z) —T.
Following the methodology outlined in Section A.6.1, we consider the eigenvalue problem

¢
T3 =M (4.106)

with ¢(0) = ¢(L) = 0. The operator is self-adjoint. Its eigenvalues are

22
Ai =~ 75 (4.107)
and its orthonormal eigenfunctions are
¢i(x) = 2 Tt (4.108)
i(@) =4/ sin— .
Thus we let .
0(z,t) = ai(t)pi(x), (4.109)
i=1
so that
daj j’l'(' 2
o @ <L> aj, (4.110)

with the solution

a; = C; exp{a <‘7£T>2t} (4.111)

00 . 2 .
jm 12 | aimx

i=1

Thus

The solution shows that 7" — 0, as t — co. Thus € = 0 is a stable solution of the problem. It
must be noted that there has been no need to linearize, since Eq. (4.105) was already linear.
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4.8 Nonlinear diffusion

The following diffusion problem with heat generation is considered in [81]

T 9T

ot~ ‘o2
with —oo <z < 00, t > 0, and € < 1. The initial condition is taken to be

+ f(T), (4.113)

T(z,0) = g(x) (4.114)
1

Consider two time scales, a fast, short one ¢; = ¢, and a slow, long scale t; = et. Thus

0 0 0

— = — +te—. 4.116
ot~ ot ‘o (4.116)
Assuming an asymptotic expansion of the type
T:To(li,tl,tg)+6T1(93,t1,t2)+... (4117)
we have a Taylor series expansion
F(T) = f(To) + ef (To) + . ... (4.118)
Substituting and collecting terms of O(e°), we get
0Ty
— = f(T{ 4.119
atl f( 0)7 ( )
with the solution
[t o (4.120)
=ty +0(z, 1) 4.120
1/2 f(r) '
The lower limit of the integral is simply a convenient value at which g(x) = 0.5. Applying the initial
condition gives
g(x)
0 :/ i (4.121)
1/2 f(r)
The terms of O(e) are
0Ty , 0T, 0Ty
— =TT+ — — 4.122
on TNt 5~ g, (4.122)
Differentiating Eq. 4.120 with respect to = gives
0Ty 00
— = f(TyH) — 4.123
Ox F(To) ox’ ( )
so that
0*Ty , 0Ty 00 020
= Ty 220 77 TN
92 FIo) 5 o, T (M) 5
AN 5Q26
= f'(Ty)f(To) | — 7)) —= 4.124
raws) (ge) + 1% (1124)
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Also, differentiating with respect to to gives

oT, ... 06
Oy f(To)aT2

Substituting in Eq. 4.122,

ot 0% 00 99\

Ttl =f (Tg)Tl + f(To) @ — 87752 + f (TO) (81‘) ] :
Since

0 _ fi(Tp) 0Ty
= f'(To)
we have T 520 20 P
1 /
S = T+ ) [ - S ()|

The solution is

20 96  [(00\°
Tl - A(.’I,‘,t2) +t1 <8x2 - 37152 + ((%’) lnf(T0)> f(TO)
which can be checked by differentiation since
on,  |9% o0, 90\°
ot 8x2_€%2+f(TO)(6‘:z:) f(To)
9% 90 90\? L 9T,
+ A+t (8172 - atQ) + (ax> lnf(To) f (To)aitl

9% 90 96\ > .
92 o, + f(To) (83:) f(To) + Ty f'(To).

where Eq. 4.119 has been used.
To suppress the secular term in Eq. 4.130, we take

o600 (2.11) @2_0
022 oty gy ) TV

where k = f/'(Tp). Let

w(z,te) = e?

so that its derivatives are

ow 00
or e ox
w o o (00N 0%
Frel (m;) TR S
Ow wo 00

- = ke

Oto Ota

49

(4.125)

(4.126)

(4.127)

(4.128)

(4.129)

(4.130)

(4.131)

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)
(4.137)

(4.138)
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We find that
2w Ow ., | 020 06 a6\ >
27 = w0\ Z 2 7 = 4.139
022 oty e l@xQ ot " (&;) (4.139)
= 0. (4.140)
The solution is ) -
w = NG /Oo R(z + 27“\/5)6_T2 dr, (4.141)
where R(z) = w(z,0). This can be confirmed by finding the derivatives
82’10 1 > 2
W@ - U /Oo R'(x +2r/ta)e™" dr (4.142)
ow 1 e r 2
— = — R 2rv/te)—=e"" d
oty NG /Oo (2 + 2rv/t2) \/56 r
1 o
= NG R/ (x + 2r\/t3) 7/ R//($+2T\/5)2\/E€7T2 dr] (4.143)
™ o0
1 e 2
= —/ R"(z +2r\/ta)e™" dr (4.144)
VT Joo
and substituting. Also,
R(x) = explxb(z,0)] (4.145)
9@ gp
= exp Ii/ — 4.146
[ 1/2 f(r)l ( )
so that the final (implicit) solution is
o dr 1 1> 2
—=t1+—In {/ R(z +2r\/t2)e™" d'r] (4.147)
/1/2 f(r) I RVELV S
Fisher’s equation: As an example, we take f(T) = T(1 — T), so that the integral in Eq. 4.120
is
o g T,
/ LN P (4.148)
1/2 7’(1—7") T0—1
Substituting in the equation, we get
1
T = (4.149)
w
= — 4.150
w+ e h ( )
Thus Tomt
oe !
= 4.151
w= T T (4.151)
and from Eq. 4.115,

R(z) = w(x,0) (4.152)
= M@ (4.153)
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Substituting in Eq. 4.141 and integrating,
w = exp (—)\x + /\2t2) (4.154)

so that
1

T Ttexplr — 1+ A2e)/N
This is a wave that travels with a phase speed of (1 + A%¢)/\.

Ty (4.155)

4.9 Stability by energy method

4.9.1 Linear

As an example consider the same problem as in Section 4.7. The deviation from the steady state is
governed by

o1’ 0T’
with 77(0,¢) = 0, T'(L, t) = 0.
Define
1 L
E(t) = 3 / T dx (4.157)
0

so that & > 0. Also

dt ot

L 2TI
= a/ T’a dx
0

ox?
g Lo\ 2
0‘/0 (%) @

L
o1’
= T/
“ /0 Ox

L !
- _ /T'aT dzx
0

L N\ 2
oT
= - d 4.1
0‘/0 <ax> ! (4.158)
so that IE
— <0. 4.1
7 <0 (4.159)

Thus £ — 0 as t — oo whatever the initial conditions.

4.9.2  Nonlinear

Let us now re-do the problem for a bar with temperature-dependent conductivity. Thus
oT 9] oT
— = —qk(T)— 4.160
o = 3 MO | (1160
with 7°(0,t) = Ty and T(L,t) = T». The steady state, T(z), is governed by

% {k(T)le;} = 0. (4.161)
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Let the deviation from the steady state be

O(x,t) = T(x,t) —T(x). (4.162)
s 0 0 00
where 0 = 0(x,t), with 0(0,t) = 0(L,t) = 0. The steady state is § = 0. Let
1 L
Et) == / 02 da. (4.164)
2 Jo
so that £ > 0. Then
dE L o0
L
0 00
L
99 L 99\
_ LA 9 _ 4.1
k()5 0 /O k(6) ( ax) do (4.167)

Due to boundary conditions the first term on the right is zero, so that dE/dt < 0. Thus E — 0 as
t — 00.

4.10 Self-similar structures

Consider the large-scale structure shown in Fig. 4.4 in which each line ¢ (indicated by ¢ = 0,1,...)
is a conductive bar. The length of each bar is L; = L/3" and its diameter is D; = D/3'. The
beginning is at temperature Ty and the ambient is Tt .

The total length of the structure is

Lr = Lo+2Ly+4Ly+8L3+ ...
= ... (4.168)
The total volume of the material is
Vr = % (D2Lo +2D?Ly + 4D3Ly +8D3L5 + ...)
= .. (4.169)

Both of these are finite if 5 < 8. = .. ..

4.11 Non-Cartesian coordinates

Toroidal, bipolar.



4.12. Thermal control 53
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Figure 4.4: Large-scale self-similar structure.

4.12 Thermal control

Partial differential equations (PDEs) are an example of infinite-dimensional systems that are very
common in thermal applications [2,110]. Ezact controllability exists if the function representing the
state can be taken from an initial to a final target state, and is approzimate if it can be taken to a
neighborhood of the target [118]. Determination of approximate controllability is usually sufficient
for practical purposes.

Consider a system governed by

%—f = AX + Bu, (4.170)

with homogeneous boundary and suitable initial conditions, where A is a bounded semi-group oper-
ator [2], and B is a another linear operator. The state X (,t) is a function of spatial coordinates &
and time t. If A is self-adjoint, then it has real eigenvalues and a complete orthonormal set of eigen-
functions ¢,,(§), with m = 0,1,2..., which forms a complete spatial basis for X. It is known [110]
that the system is approximately state controllable if and only if all the inner products

(B, ¢m) # 0. (4.171)

The lumped approximation in this chapter, valid for Bi < 1, is frequently not good enough
for thermal systems, and the spatial variation of the temperature must be taken into account. The
system is then described by PDEs that represent a formidable challenge for control analysis. The
simplest examples occur when only one spatial dimension is present.

Fig. 4.5 shows a fin of length L with convection to the surroundings [4]. It is thin and long
enough such that the transverse temperature distribution may be neglected. The temperature field
is governed by

or o*r

O =l — (T T, (4.172)
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Figure 4.5: One-dimensional fin with convection.

where T'(¢,t) is the temperature distribution that represents the state of the system, T, is the
temperature of the surroundings, t is time, and £ is the longitudinal coordinate measured from
one end. The thermal diffusivity is «, and ¢ = hP/pcA. where h is the convective heat transfer
coefficient, A. is the constant cross-sectional area of the bar, P is the perimeter of the cross section,
p is the density, and c is the specific heat. For simplicity it will be assumed that ¢ is independent of
€. The end ¢ = 0 will be assumed to be adiabatic so that (07'/9¢)(0,t) = 0.

Since a linear system that is controllable can be taken from any state to any other, we can
arbitrarily assume the fin to be initially at a uniform temperature. There are two ways in which
the temperature distribution on the bar can be controlled: in distributed control! the surrounding
temperature T, is the control input and in boundary control it is the temperature of the other end
T(L,t) of the fin.

(a) Distributed control: The boundary temperature T'(L,¢) = Ty, is fixed. Using it as a reference
temperature and defining § =T — T}, Eq. (4.172) becomes,

00 020

with the homogeneous boundary and initial conditions (96/9£)(0,t) = 0, (L, t) = 0, and 6(&,0) = 0.
The operators in Eq. (4.170) are A = ad?/0¢2 — (¢, B = (, and u = 0. A is a self-adjoint
operator with the eigenvalues and eigenfunctions

(2m + 1)%7?
B = Y ¢

2 @m+1)me

respectively. Inequality (4.171) is satisfied for all m, so the system is indeed state controllable. It
can be shown that the same problem can also be analyzed using a finite-difference approximation [5].

(b) Boundary control: Using the constant outside temperature T, as reference and defining 6 =
T — Ty, Eq. (4.172) becomes
ol %0
A
ot 0¢?
with the initial and boundary conditions (96/9£)(0,¢) =0, 8(L,t) = T (t) — T, and 6(£,0) = 0.
To enable a finite-difference approximation [5], the domain [0, L] is divided into n equal parts
of size A&, so that Eq. (4.174) becomes

d6;
di

1This term is also used in other senses in control theory.

-9, (4.174)

=o00;_1 — (20’ + C)HZ +00;_1, (4175)
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where o = a/A&?. The nodes are i = 1,2,...,n + 1, where i = 1 is at the left and i = n + 1 at
the right end of the fin in Fig. 4.5. With this Eq. (4.174) can be discretized to take the form of Eq.
(3.6), where z is the vector of unknown 6;. Thus we find

[ —(20 + () 20 0o - 0 |
o —(204+¢) o :
A = 0 : : € R™ ™, (4.176)
. o
0 0 o —(20+¢) |
B = [0,--,0]" €eR™ (4.177)

The boundary conditions have been applied to make A non-singular: at the left end the fin is
adiabatic, and at the right end 6,1 is the control input w.
The controllability matrix M is

0 .. . 0 o
0 o 0 on—1 .
M = : : : (4.178)
0 0 o’
0 o? —202(20 4 ¢)
| 0 —0(20+() o +0(204()? ]
The rank of M is n, indicating that the state of the system is also boundary controllable.
4.13 Multiple scales
Solve
o1y (T, — Ty)
gi1 4.179
ot Ox? ( )
8T2 82 (TQ - Tl)
— = Ra———F——= 4.180
ot “ Ox? ( )
where € < 1, and with a step change in temperature at one end. Let
t=to+ ety (4.181)

Problems

1. From the governing equation for one-dimensional conduction

with boundary conditions

d dT
o |:k($7T) 7i| = 07
dx dx
— AT
T0)=T+ -
T(L)=T — %.

show that the magnitude of the heat rate is independent of the sign of AT if we can write k(x,T) = A(z) X\(T).
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2. Consider a rectangular fin with convection, radiation and Dirichlet boundary conditions. Calculate numerically
the evolution of an initial temperature distribution at different instants of time. Graph the results for several
values of the parameters.

3. Consider a longitudinal fin of concave parabolic profile as shown in the figure, where § = [1 — (x/L)]%5;. &
is the thickness of the fin at the base. Assume that the base temperature is known. Neglect convection from
the thin sides. Find (a) the temperature distribution in the fin, and (b) the heat flow at the base of the fin.
Optimize the fin assuming the fin volume to be constant and maximizing the heat rate at the base. Find (c)
the optimum base thickness dp, and (d) the optimum fin height L.

T

(ee]

L o X ‘
-
- L e

Figure 4.6: Longitudinal fin of concave parabolic profile.



CHAPTER 5

FORCED CONVECTION

In this chapter we will considering the heat transfer in pipe flows. We will take a one-dimensional ap-
proach and neglect transverse variations in the velocity and temperature. In addition, for simplicity,
we will assume that fluid properties are constant and that the area of the pipe is also constant.

5.1 Hydrodynamics

5.1.1 Mass conservation

For a duct of constant cross-sectional area and a fluid of constant density, the mean velocity of the
fluid, V, is also constant.

5.1.2  Momentum equation

The forces on an element of length ds, shown in Fig. 5.1, in the positive s direction are: f,, the
viscous force and f,, the pressure force. We can write

fo = —Tu Pds (5.1)
0
fo = — a—];ds (5.2)

where 7, is the magnitude of the wall shear stress, and p is the pressure in the fluid. Since the mass
of the element is pA ds, we can write the momentum equation as

v =fotfp (5.3)

A ds&
P AT

from which we get
av P 10p

dd S 5.4
dt + pA p Os (54)

Integrating over the length L of a pipe, we have
dV | Are _ p1—pe (55)

dt pD — pL

where p; and py are the pressures at the inlet and outlet respectively, and the hydraulic diameter is
defined by D = 4A/P.

o7
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Figure 5.1: Forces on an element of fluid.

For fully developed flow we can assume that 7, is a function of V' that depends on the mean

velocity profile, and acts in a direction opposite to V', so that we can write
dv
S T(V)V =5 Ap (56)

where T'(V') = |47, /pDV| is always positive, 8 = 1/pL, and Ap = p; — ps is the pressure difference
that is driving the flow. The wall shear stress is estimated below for laminar and turbulent flows.

Laminar

The fully developed laminar velocity profile in a circular duct is given by the Poiseuille flow result

Ug (1) = U <1 - ‘gi) (5.7)

where u is the local velocity, r is the radial coordinate, u,, is the maximum velocity at the centerline,
and D is the diameter of the duct. The mean velocity is given by

4 D/2
= 3 / ug(r) 277 dr (5.8)
0
Substituting the velocity profile, we get
V:“—;1 (5.9)
The shear stress at the wall 7, is given by
0
n,=-w5f (5.10)
r=D/2
4
it 7 (5.11)
8uV
- %T (5.12)
The wall shear stress is linear relationship
Ty = aV (5.13)
where 8
a:g (5.14)
so that
_32pu

meV—p 4 (5.15)
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Turbulent

For turbulent flow the expression for shear stress at the wall of a duct that is usually used is

Tw = £ (;pV2> (5.16)

so that f
V)= EWW' (5.17)

Here f is the Darcy-Weisbach friction factor!. The friction factor is also a fucntion of |V|, and may
be calculated from the Blasius equation for smooth pipes

f= 3};% (5.18)
where the Reynolds number is Re = |[V|D/v, or the Colebrook equation for rough pipes
# = —2.0 log (i{)gh + ]%:5]"1/2) (5.19)
where e is the roughness at the wall, or similar expressions.
In the flow in a length of duct, L, without acceleration, the pressure drop is given by
Ap A =r1,PL (5.20)

where A is the cross-sectional area, and P is the inner perimeter. Thus

(k) ()

L 1
1(5) (Govv) (522
lExample 5.1

Consider a long, thin pipe with pressures p; and ps ate either end. For ¢t < 0, p; — p2 = 0 and there is no
flow. For ¢t > 0, p1 — p2 is a nonzero constant. Find the resulting time-dependent flow. Make the assumption
that the axial velocity is only a function of radial position and time.

Ap

5.1.83 Long time behavior

Consider the flow in a single duct of finite length with a constant driving pressure drop. The
governing equation for the flow velocity is equation (5.6). The flow velocity in the steady state is a
solution of

T(V)V =0 Ap (5.23)

ISometimes, confusingly, the Fanning friction factor, which is one-fourth the Darcy-Weisbach value, is used in the
literature.
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where Ap and V are both of the same sign, say nonnegative. We can show that under certain
conditions the steady state is globally stable. Writing V' =V 4+ V', equation (5.6) becomes

av’

el TV +VHYV+V')=38Ap (5.24)
Subtracting equation (5.23), we get
dv’ Va N(T7 / 7\ (T
el “T(V+VHYVHV)+TV)(V) (5.25)
Defining
1
E= 5V/2 (5.26)
so that EZ > 0, we find that
dE ,dv’
- = 2
dt v dt (5.27)
= V' [T(V+V)YV+V)-T{V)V] (5.28)
= “VV[IV+V)-TV)] -V?T(V +V’) (5.29)

If we assume that T(V) is a non-decreasing function of V', we see that
VVI[T(V+V)-=T(V)] >0 (5.30)
regardless of the sign of either V’/ or V, so that

dE
— <0 5.31
dt — ( )

Thus, E(V) is a Lyapunov function, and V = V is globally stable to all perturbations.

5.2 Energy equation

Consider a section of a duct shown in Fig. 5.2, where an elemental control volume is shown. The
heat rate going in is given by

oT
Js
where the first term on the right is due to the advective and second the conductive transports. c is
the specific heat at constant pressure and k is the coefficient of thermal conductivity. The heat rate
going out is

Q =pAVT — kA (5.32)

_ . 0Q”

+ _ Zx* d

RQT=0Q + 55 & (5.33)
The difference between the two is
Qt-q = 2 4
Os
2
= pAVca—T — kAa T ds (5.34)

Os Ds2
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-

ds

Figure 5.2: Forces on an element of fluid.

Furthermore, heat is gained from the side at a rate d@Q, which can be written as

dQ =q ds

where ¢ is the rate of gain of heat per unit length of the duct.
An energy balance for the elemental control volume gives

Q_-i-szQ"’—i—pAdscaa—jt1

where the last term is the rate of accumulation of energy within the control volume.

Substituting equations (5.34) and (5.35) in (5.36) we get the energy equation

ot ds  pAc = pc 0s?

The two different types of heating conditions to consider are:

5.2.1 Known heat rate

The heat rate per unit length, ¢(s), is known all along the duct. Defining

x
$ =1
(T —T;)pV AC
0 =
Lq
_
T T I
gives
a0 00 d?0
—+—=—-A—==1
or "o ae
where .
A= LV pc

Boundary conditions may be § =0 at { =0,60 =0, at £ = 1.

61

(5.35)

(5.36)

(5.37)

(5.38)
(5.39)

(5.40)

(5.41)

(5.42)
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Tin () v — T(s,t) Tout(t)

Figure 5.3: Fluid duct with heat loss.

5.2.2  Convection with known outside temperature

The heating is now convective with a heat transfer coefficient U, and an external temperature of
Too(s). Thus,

q=PU(Tyw —T) (5.43)
Defining
T
= = .44
3 7 (5.44)
T-T;
0 = - (5.45)
1%
gives
06 00 d*0
—+—=—-A-——=+H0=H 5.47
or + 0¢ dg? + ( )
where
k
A= A4
LV pc (5:48)
UpL
H = 4
pV Ac (5:49)

5.3 Single duct

Consider the duct that is schematically shown in Fig. 5.3. The inlet temperature is T;,(t), and the
outlet temperature is T,,:(¢), and the fluid velocity is V. The duct is subject to heat loss through
its surface of the form UP (T — Tw) per unit length, where the local fluid temperature is T'(s, t) and
the ambient temperature is Too(t). U is the overall heat transfer coefficient and P the cross-sectional
perimeter of the duct.

We assume that the flow is one-dimensional, and neglect axial conduction through the fluid
and the duct. Using the same variables to represent non-dimensional quantities, the governing
non-dimensional equation is

06 00

— 4+ — +HO = .
o + B¢ + 0 (5.50)
where the nondimensional variables are
s
= — 5.51
£ = o (551)
tV
= — 5.52
T 7 (5.52)
T—-Te
0 = —— (5.53)
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The characteristic time is the time taken to traverse the length of the duct, i.e. the residence time.
The ambient temperature is - B
Too(t) = Too + Too(t) (5.54)

where the time-averaged and fluctuating parts have been separated. Notice that the nondimensional
mean ambient temperature is, by definition, zero. The characteristic temperature difference AT will
be chosen later. The parameter v = UPL/pAV ¢ represents the heat loss to the ambient.

5.8.1 Steady state

No axial conduction

The solution of the equation
deo

4L HO-1) = :
@ +H@-1)=0 (5.55)
with boundary condition 6(0) = 0 is
0(¢) =1 — e H¢ (5.56)
With small axial conduction
We have 20
ST HO-1)= .
R ( )=0 (5.57)

where A < 1, and with the boundary conditions #(0) = 0 and (1) = 6;.
We can use a boundary layer analysis for this singular perturbation problem. The outer solution
is

Opur = 1 — e~ 118 (5.58)
The boundary layer is near £ = 1, where we make the transformation
E—1
X=>— 5.59
. (559)
This gives the equation
- —AH(0; —1)=0 5.60
To lowest order, we have
d?*0sy,  dbyy,
X2 dx =0 (5.61)
with the solution
0 = A+ BeX (5.62)
The boundary condition 6;,(X = 0) = 6, gives §; = A+ B, so that
Oin = A+ (6, — A)e™ (5.63)
The matching conditions is
Oouter(E =1) =0, (X — —0) (5.64)
so that
A=1-—¢1 (5.65)

The composite solution is then

0=1—eT 4 (6, —1+e M)/ (5.66)
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t>s

T(0,4) = Tin(t)

Figure 5.4: Solution in s-t space.

5.3.2  Unsteady dynamics

The general solution of this equation is

T(s,t) = {f(s —t) +7/0t M T (t) dt’] e Ht (5.67)

The boundary conditions T'(0,t) = T;,(t) and T'(s,0) = To(s) are shown in Fig. 5.4. The solution
becomes

(4 _ \e—Hs —Ht (U JHt'p () g4 >
T(s,t){Tm(t sle s 4 He Ht [ eMUT () dt! fort > s (5.68)

To(s —t)e Ht 4 He H? fg HY T (¢) dt! fort < s
The t < s part of the solution is applicable to the brief, transient period of time in which the fluid

at time ¢ = 0 has still not left the duct. The later ¢ > s part depends on the temperature of the
fluid entering at s = 0. The temperature, T,,:(t), at the outlet section, s = 1, is given by

(- 1)e H —Ht (¢t JHYF 4y gy S
Tout(t)_{Tm(t De "+ He Mt [ M T (t') dt!  fort>1 (5.69)

| To(1 —t)e 't He H? fot eHV T () dt! fort <1
It can be observed that, after an initial transient, the inlet and outlet temperatures are related
by a unit delay. The outlet temperature is also affected by the heat loss parameter, 7, and the
ambient temperature fluctuation, Two. The following are some special cases of equation (5.69).
5.3.3 Perfectly insulated duct
If H = 0 the outlet temperature simplifies to

[ Tp(t—1) fort>1
Tour(t) = { To(1—t) fort<1

The outlet temperature is the same as the inlet temperature, but at a previous instant in time.

(5.70)

5.8.4 Constant ambient temperature
For this T = 0, and equation (5.69) becomes

Tyt —1)e H  fort>1
Tour(t) = { To(1 —t)e ™t fort <1 (5.71)

This is similar to the above, but with an exponential drop due to heat transfer.
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\

Figure 5.5: Effect of wall.

5.3.5 Periodic inlet and ambient temperature
We take

Tin(t) = Tin+ Tinsinwt
Too(t) = Toosin

so that equation (5.69) becomes

Tin + ﬁ?z Sil’l(,«)(t - 1):| e_H
Tout(t) = +ToH/ W sin(Q + ¢) fort>1
To(1 —t)e Tt 4+ ST VAZ + Psin(Qt +¢f)  fort < 1

where
H(l —eHcosl) +e HQsinl
tang = -— -
Q1 —eHcosl)— He Hsinl
Q
tang/ = ——
an ¢ I
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(5.74)

(5.75)

The outlet temperature has frequencies which come from oscillations in the inlet as well as the ambi-
ent temperatures. A properly-designed control system that senses the outlet temperature must take
the frequency dependence of its amplitude and phase into account. There are several complexities
that must be considered in practical applications to heating or cooling networks, some of which are

analyzed below.

5.3.6 Effect of wall

The governing equations are

oT oT 9?T
Ac— Ac— — kA— Pi(T — T, =
p Cat oV Cax F 0z +hiBi( =) 0
Tw *Tow
pwdyen 2l _poq O Tw hiPi(Tw —T) + hoPy(Tw — Too) = 0

ot W 92
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Nondimensionalize, using

T
$ =1
oW
L
T—-Ty
0 =
T — Ts
0, - Tw — T
T’L - Too
we get
00 00 0%0
— + = - A=+ H,0-6
or "o Ao T Hin(0—6u)
00 %0
8—7“’ — Aw 652“’ + Hin (0w — 0) + HoutO
where
Ky
Ay = ————
pwVAwaL
Hin =
prwaV
houtPoutL
HO’lL = A x5
! prwch

In the steady state and with no axial conduction in the fluid

df
dg
2
Y d=0,,
dg?
If we assume A\, = 0 also, we get
H;

O = -
Hin +Hout

0

The governing equation is
dr
— 4+ H,0=0
d¢ +

where
HYHY

out

HZ;JL + HU}

out

Hw =

5.4 Two-fluid configuration

Consider the heat balance in Fig. 5.6. Neglecting axial conduction, we have

+ Hm(é‘ — Hw) =

+Hz (gw _9)+Hout9w =

66

(5.79)
(5.80)
(5.81)

(5.82)

(5.83)

(5.84)

(5.85)
(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)
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9,

@

>
»

Figure 5.6: Two-fluids with wall.

oT,,
prwaW + hl(Tw — T1) + hQ(Tw — T2) = 0 (593)
oT; oT;
plAlClaitl + plvlcla—xl +h(Th—-T,) = 0 (5.94)
or: oT:
p2A26287t2 + pQVQCQa—; +ho(To—-T,) = 0 (5.95)

5.5 Flow between plates with viscous dissipation

Consider the steady, laminar flow of an incompressible, Newtonian fluid between fixed, flat plates at
y = —h and y = h. The flow velocity u(y) is in the a-direction due to a constant pressure gradient
P < 0. The plane walls are kept isothermal at temperature T' = T, and the viscosity is assumed to
decrease exponentially with temperature according to

w=-exp(1l/T).) (5.96)

The momentum equation is then

with boundary conditions u = 0 at y = +h. Integrating, we get

du
T—:P .
( )dy y+C (5.98)

Due to symmetry du/dy = 0 at y = 0 so that C = 0. There is also other evidence for this.
The energy equation can be written as

2T du\ 2
kd—yQ + u(T) (d;,) -0 (5.99)

with T = Ty at y = +h, where k has been taken to be a constant. The second term corresponds
to viscous heating or dissipation, and the viscosity is assumed to be given by Eq. (5.96). We non-
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high-temperature solution

Figure 5.7: Two solutions of Eq. (5.102) with Figure 5.8: Bifurcation diagram.
boundary conditions (5.104) for a = 1.

\}

Figure 5.9: Schematic of regenerator.

dimensionalize using

0 = [B(T-To) (5.100)
Y
= = 5.101
U N (5.101)
The energy equation becomes

d—nQJrane =0 (5.102)

where P2
a= 5.103
o (5.103)

The boundary conditions are

0=0forn==+1 (5.104)

There are two solutions that can be obtained numerically (by the shooting method, for instance)
for the boundary-value problem represented by Egs. (5.102) and (5.104) for a < a. and above which
there are none. There are other solutions also but they do not satisfy the boundary conditions on
the velocity. As examples, two numerically obtained solutions for a = 1 are shown in Fig. 5.7.

The bifurcation diagram corresponding to this problem is shown in Fig. 5.8 where S is the
slope of the temperature gradient on one wall.

5.6 Regenerator

A regenerator is schematically shown in Fig. 5.9.

dT
Me 4 1ie(Tin — Tour) = 0 (5.105)
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r

Figure 5.10: Flow between disks.

5.7 Radial flow between disks

This is shown in Fig. 5.10.

C
- ¢ 5.106
u = (5.106)
dT
g = u2nrHT — k?m“Hd— (5.107)
T
where H is the distance between the disks. With dg,./dr = 0, we get
d d  dT
L ru, T) = k2 (r 2 1
dr (ru,T) dr (r dr ) (5.108)
For the boundary conditions T'(r1) = Ty and T'(r2) = Ts, the temperature field is
T 1 —T51
T(r) = D12(r2/7) = ToIn(ra/r) (5.109)

In(ry/71)

|
Example 5.2

Redo the previous problem with a slightly eccentric flow.

5.8 Networks

A network consists of a number of ducts that are united at certain points. At each junction, we
must have

D> AV =0 (5.110)
i
where A; are the areas and V; the fluid velocities in the ducts coming in, the sum being over all the
ducts entering the junction. Furthermore, for each duct, the momentum equation is

dv;
dt

+T(Vi)Vi =3 [pi" — pi™ + Ap] (5.111)
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where Ap is the pressure developed by a pump, if there happens to be one on that line. We must
distinguish between two possible geometries.

(a) Two-dimensional networks: A planar or two-dimensional network is one that is topologically
equivalent to one on a plane in which every intersection of pipes indicates fluid mixing. For such a
graph, we know that

E=V+F-1 (5.112)

where E, V and F are the number of edges, vertices and faces, respectively. In the present context,
these are better referred to as branches, junctions and circuits, respectively.

The unknowns are the E velocities in the ducts and the V' pressures at the junctions, except
for one pressure that must be known. The number of unknowns thus are £+ V — 1. The momentum
equation in the branches produce E independent differential equations, while mass conservation at
the juntions give V' — 1 independent algebraic relations. Thus the number of

(b) Three-dimensional networks: For a three-dimensioanl network, we have
E=V+4+F-2 (5.113)

If there are n junctions, they can have a maximum of n(n—1)/2 lines connecting them. The number
of circuits is then (n? — 3n + 4)/2. The number of equations to be solved is thus quite large if n is
large.

5.8.1 Hydrodynamics

The global stability of flow in a network can be demonstrated in a manner similar to that in a
finite-length duct. In a general network, assume that there are n junctions, and each is connected
to all the rest. Also, p; is the pressure at junction %, and Vj; is the flow velocity from junction ¢ to j
defined to be positive in that direction. The flow velocity matrix V;; is anti-symmetric, so that V;;
which has no physical meaning is considered zero.

The momentum equation for V;; is

vy,
dt

+ T35 (Vij)Vig = Bij(pi — pj) (5.114)

The network properties are represented by the symmetric matrix 8;;. The resistance T;; may or
may not be symmetric. To simplify the analysis the network is considered fully connected, but
T;; is infinite for those junctions that are not physically connected so that the flow velocity in the
corresponding branch is zero. We take the diagonal terms in Tj; to be also infinite, so as to have
Vis = 0.

The mass conservation equation at junction j for all flows arriving there is

> AjVij=0 forj=1,...,n (5.115)

i=1

where A;; is a symmetric matrix. The symmetry of A;; and antisymmetry of V;; gives the equivalent
form
n
> A;Vii=0 forj=1,...,n (5.116)
i=1

which is simply the mass conservation considering all the flows leaving junction j.
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The steady states are solutions of

We write

T (Vij)Vij
Z Vi =0
=1
Vij
pi =

or

Vi + Vi
P+

71

(5.117)

(5.118)

(5.119)
(5.120)

Substituting in equations (5.114)—(5.116), and subtracting equations (5.117) and (5.118) we get

ZAUV’ =0

Defining

we get

dE
dt

= —[T;(Vig + Vi (Vig + Vi) =

or 2&:/%jVﬁ =0

n n

bD\PA

n dV/

22 SV
—ZZ Dy |
ﬁu

j=11i=1

+D 0N AV

j=1i=1

The pressure terms vanish since

and

DD AgVip: =

j=11i=1

n n

fh] UZU

,_n
,_.

] 1=

=1

A;
Bij

]

14678

T;;(Vij)Vi;] + Bi; (0}

ﬁU >0

Tiy(Vij + Vi) (Vij + Vi) = Tiy(Vi)Vij]

)

(5.121)

(5.122)

(5.123)

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)

(5.130)
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Figure 5.11: Star network.

The terms that are left in equation (5.125) are similar to those in equation (5.30) and satisfy the
same inequality. Since E > 0 and dE/dt < 0, the steady state is globally stable. For this reason the
steady state is also unique.

|
Ezxample 5.3
Show that the flow in the the star network shown in Fig. 5.11 is globally stable. The pressures pi1, p2 and
p3 are known while the pressure pg and velocities Vig, Voo and V3g are the unknowns.
For branches ¢ = 1,2, 3, equation (5.6) is

dVio

7 + Ti0(Vio)Vio = Bio(pi — po) (5.131)
Equation (5.110) at the junction gives
3
Z AioVio =0 (5.132)
=1
In the steady state
Tio(Vio)Vio = Bio(pi —Po) (5.133)

3
> AiVio 0 (5.134)
i=1

Substituting V;o = Vo + V/, and pg = Py + p{, in equations (5.131) and (5.132) and subtracting equations
(5.133) and (5.134), we find that

dv! . o .
d;O = - [Tio(vio + Vllo)(vzo + ‘/1,0) =T (ViO)ViO] - ﬁiOpE) (5'135)
3
i=1
If we define
3
1 A;
E=-= 0 V2 (5.137)
2= Bio
we find that
3
dE Aio ,, AV
aE v i 5.138
dt 1:21 BiO 0 dt ( )
3. Au . . o 3
= => =2V [To(Vio + Vin) (Vio + Vig) — Tio(Vio)Vio] — 1o D AioVip (5.139)

=1 Bio i=1
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The last term vanishes because of equation (5.136). Thus
3
Vio [Tio(Vio + Vio) = T(Vio)] =

z i=1 7

Since £ > 0 and dE/dt <0, E is a Lyapunov function and the steady state is globally stable.

A’LU

V/zOTzO(VzO + Vlo) (5.140)

5.8.2 Thermal networks
[61]

5.9 Thermal control
5.9.1 Control with heat transfer coefficient

5.9.2  Multiple room temperatures

Let there be n interconnected rooms. The wall temperature of room 7 is T} and the air temperature
is T}*. The heat balance equation for this room is

Tw
Mgcwdd; = hAy(TO — TP) + U; AS(T° — T) (5.141)
a adTia a 1 a a a a
Mict—b = hA(T —T) + e > (m§ + |m$ )T,

J

1 a a a a
“2° ;(mij‘ﬂmiﬂ)Ti +ai (5.142)

where T is the exterior temperature, m;; is the mass flow rate of air from room ¢ to room j. By
definition m;; = —m;;. Since m;; has no meaning and can be arbitrarily taken to be zero, m;; is an
anti-symmetric matrix. Also, from mass conservation for a single room, we know that

> m§; =0 (5.143)
J

Analysis

The unknowns in equations (5.141) and (5.142) are the 2n temperatures T;* and T
(i) Steady state with U = 0

(a) The equality
ZZ mi; + [m|) T ZZ m; + [md| (5.144)

can be shown by interchangmg i and j in the second term. Using this result, the sum of equations
(5.141) and (5.142) for all rooms gives

>_4i=0 (5.145)

which is a necessary condition for a steady state.

(b) Because the sum of equations (5.141) and (5.142) for all rooms gives an identity, the set of
equations is not linearly independent. Thus the steady solution is not unique unless one of the room
temperatures is known.
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Control

The various proportional control schemes possible are:

e Control of individual room heating
s = —K(T? — T3 (5.116)
e Control of mass flow rates
m; = fi; (T3, T, TP (5.147)

Similar on-off control schemes can also be proposed.

5.9.8 Two rooms

Consider two interconnected rooms 1 and 2 with mass flow m from 1 to 2. Also there is leakage of
air into room 1 from the exterior at rate m, and leakage out of room 2 to the exterior at the same
rate. The energy balances for the two rooms give

Me T = DA T 4 (m ) (T~ 1)

— 5= ) (T = T2) + (5.149)
Mgca% = UAy(T° —Tz) — %(m — |m|)(T° —T3)

+%(m+ |m|)(Ty — T2) + g2 (5.149)

The overall mass balance can be given by the sum of the two equations to give

dT; dT:
M B an e g A (T - Ty) + UaAn(T — Ta) + T

1 1
5 m = )Ty = 5 m + [m)T
+q1 + ¢ (5.150)

One example of a control problem would be to change m to keep the temperatures of the two rooms
equal. Delay can be introduced by writing To = T5(t — 7) and 77 = T1(t — 7) in the second to last
terms of equations (5.148) and (5.149), respectively, where 7 is the time taken for the fluid to get
from one room to the other.

5.9.4  Temperature in long duct

The diffusion problem of the previous section does not have advection. Transport of fluids in ducts
introduces a delay between the instant the particles of fluid go into the duct and when they come
out, which creates a difficulty for outlet temperature control. The literature includes applications to
hot-water systems [43,128] and buildings [8, 159]; transport [197] and heater [40,41] delay and the
effect of the length of a duct on delay [46] have also been looked at.

A long duct of constant cross section, schematically shown in Fig. 5.12 where the flow is driven
by a variable-speed pump, illustrates the basic issues [4,7]. The fluid inlet temperature Tj, is kept
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T

velocity = v(t)

£
flow = temperature = T(&,t)  Lout(?)

Figure 5.12: Schematic of duct.

constant, and there is heat loss to the constant ambient temperature T, through the surface of the
duct.
With a one-dimensional approximation, energy conservation gives

T T  4h
%+vg—§+pc—D(T—TM) =0, (5.151)
with the boundary condition T'(0,t) = T},, where T'(&,t) is the fluid temperature, ¢ is time, & is the
distance along the duct measured from the entrance, v(t) is the flow velocity, h is the coefficient
of heat transfer to the exterior, p is the fluid density, c is its specific heat, and D is the hydraulic
diameter of the duct. The flow velocity is taken to be always positive, so that the £ = 0 end is
always the inlet and £ = L the outlet, where L is the length of the duct. The temperature of the
fluid coming out of the duct is Ty (t).
Using the characteristic quantities of L for length, pcD/4h for time, and hL/pcD for velocity,
the non-dimensional version of Eq. (5.151) is

CLLA (5.152)

where 0 = (T — Tw)/(Tin, — Two), with 6(0,t) = 1. The other variables are now non-dimensional.
Knowing v(t), this can be solved to give

B(et) = et f(f—/otv(s) ds), (5.153)

where the initial startup interval in which the fluid within the duct is flushed out has been ignored;
f is an arbitrary function. Applying the boundary condition at £ = 0 gives

l=etf (— /Otv(s) ds). (5.154)

The temperature at the outlet of the duct, i.e. at £ =1, is

Oons (1) = e~ (1 - /0 Co(s). ds) (5.155)

Egs. (5.154) and (5.155) must be simultaneously solved to get the outlet temperature o, (f) in
terms of the flow velocity v.

The problem is non-linear if the outlet temperature T,,:(t) is used to control the flow velocity
v(t). The delay between the velocity change and its effect on the outlet temperature can often lead
instability, as it does in other applications [16,69,74,174]. Fig. 5.13 shows a typical result using
PID control in which the system is unstable. Shown are the outlet temperature, flow velocity and
residence time of the fluid in the duct, all of which ultimately achieve constant amplitude oscillations.
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Figure 5.13: Outlet temperature, velocity and residence time for K; = —5 and K, = 2.5 [4].

Problems

1. Determine the single duct solutions for heat loss by radiation ¢ = Pea (T2, — T*).
2. A sphere, initially at temperature T; is being cooled by natural convection to fluid at T'»c. Churchill’s correlation

for natural convection from a sphere is

— 0.589 Ra}/*
Nu =2+

4/9°
[1+ (0.469/Pr)°/*°] /

where
_ gB(Ts — TOO)D3
va ’

RaD

Assume that the temperature within the sphere T'(t) is uniform, and that the material properties are all
constant. Derive the governing equation, and find a two-term perturbation solution.

3. The velocity field, u(r), for forced convection in a cylindrical porous medium is given by
W +r W — s?u+ s? Da = 0,
where s and the Darcy number Da are parameters. A WKB solution for small Da has been reported as?
e—s(1-r)
u = Da |:1 - 7\/; ] .
Re-do to check the analysis.

4. Consider one-dimensional steady-state flow along a pipe with advection and conduction in the fluid and lateral
convection from the side. The fluid inlet and outlet temperatures given. Use the nondimensional version of
the governing equation to find the inner and outer matched temperature distributions if the fluid thermal
conductivity is small.

2K. Hooman and A.A. Ranjbar-Kani, Forced convection in a fluid-saturated porous-medium tube with isoflux wall,
International Communcications in Heat and Mass Transfer, Vol. 30, No. 7, pp. 1015-1026, 2003.
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5. Plot the exact analytical and the approximate boundary layer solutions for Problem 4 for a small value of the
conduction parameter.

6. Show that no solution is possible in Problem 4 if the boundary layer is assumed to be on the wrong side.

7. Consider one-dimensional unsteady flow in a tube with a non-negligible wall thickness, as shown in Fig. 17.1.
There is conduction along the fluid as well as along the wall of the tube. There is also convection from the
outer surface of the tube to the environment as well as from its inner surface to the fluid. Find the governing
equations and their boundary conditions. Nondimensionalize.

Figure 5.14: Flow in tube with non-negligible wall thickness.



CHAPTER 6

NATURAL CONVECTION

6.1 Modeling

Let us consider a closed loop, shown in Fig. 6.1, of length L and constant cross-sectional area A filled
with a fluid. The loop is heated in some parts and cooled in others. The temperature differences
within the fluid leads to a change in density and hence a buoyancy force that creates a natural
circulation. The spatial coordinate is s, measured from some arbitrary origin and going around the
loop in the counterclockwise direction.

We will make the Boussinesq approximation by which the fluid density is constant except in
the buoyancy term. We will also approximate the behavior of the fluid using one spatial dimensions.
Thus, we will assume that the velocity v and temperature T are constant across a section of the
loop. In general both w and T are functions of space s and time ¢, though we will find that u = wu(t).

6.1.1 Mass conservation

Consider an elemental control volume as shown in Fig. 6.2. The mass fluxes in and out are

m- = poud (6.1)
om~
+ _ —_

mT = m —— ds 6.2

+ s (6.2)

For a fluid of constant density, there is no accumulation of mass within an elemental control volume,
so that the mass flow rate into and out of the control volume must be the same, i.e. m~™ = m™. For

s

Figure 6.1: A general natural convective loop.

78
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Figure 6.2: Mass flows in an elemental control volume.

a loop of constant cross-sectional area, this implies that u is the same into and out of the control
volume. Thus u is independent of s, and must be a function of ¢ alone.
6.1.2 Momentum equation

The forces on an element of length ds, shown in Fig. 6.3, in the positive s direction are: f,, the
viscous force, f,, the pressure force, and f,;, the component of the gravity force. We can write

fo = —Tw Pds (6.3)
40
fo = —pAdsg (6.5)

where 7, is the wall shear stress, and p is the pressure in the fluid. It is impossible to determine
the viscous force f, through a one-dimensional model, since it is a velocity profile in the tube that
is responsible for the shear streass at the wall. For simplicity, however, we will assume a linear
relationship between the wall shear stress and the mean fluid velocity, i.e. 7, = au. For Poiseuille
flow in a duct, which is strictly not the case here but gives an order of magnitude value for the
coefficient, this would be

8

The local component of the acceleration due to gravity has been written in terms of

g(s) = gcosh (6.7)
= % (63)

where ¢ is the usual acceleration in the vertical direction, ¢ is its component in the negative s
direction, and dz is the difference in height at the two ends of the element, with z being measured
upwards. The integral around a closed loop should vanish, so that

L
| it as=o (69)
0
The density in the gravity force term will be taken to decrease linearly with temperature, so that

p=poll—p(T—Tp) (6.10)
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Figure 6.3: Forces on an element of fluid. Figure 6.4: Heat rates on an elemental con-
trol volume.

Since the mass of the element is pyA ds, we can write the momentum equation as

du
poA dsa =fotfotfg (6.11)

from which we get

du Pa 1 0p -
=2 n_gr-T 12
s P AR ¥ [1—B( 0)lg (6.12)

Integrating around the loop, we find that the pressure term disappears, and

du  Pa g [t
— - = - .1
; + ; u=7 /0 Tqg(s) ds (6.13)

where u = u(t) and T = T'(s, ).

6.1.3 Energy equation

Fig. 6.4 shows the heat rates going into and out of an elemental control volume. The heat rate going
in is given by
_ oT
Q™ = poAuc,T — kAa— (6.14)
S
where the first term on the right is due to the advective and second the conductive transports. c,
is the specific heat at constant pressure and k is the coefficient of thermal conductivity. The heat
rate going out is

9@~

+_ 0 d 1
Q Q™ + 55 & (6.15)
The difference between the two is
Qt-q = 2 4
0s
oT 0°T
= poAucp% - kAw ds (6.16)

Furthermore, heat is gained from the side at a rate ), which can be written as
QR=qds (6.17)

where ¢ is the rate of gain of heat per unit length of the duct.
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An energy balance for the elemental control volume gives

oT
Q™ +Q=Q" +poAds N (6.18)

where the last term is the rate of accumulation of energy within the control volume.
Substituting equations (6.16) and (6.17) in (6.18) we get the energy equation

or 9T ¢ k 0T

D Ve g 6.19
ot tu 0s  poAc,  pocp 0s? (6.19)

6.2 Known heat rate

[164,165]
The simplest heating condition is when the heat rate per unit length, ¢(s), is known all along
the loop. For zero mean heating, we have

L
/ q(s) ds=0 (6.20)
0
q(s) > 0 indicates heating, and ¢(s) < 0 cooling.

6.2.1 Steady state, no azial conduction

Neglecting axial conduction, the steady-state governing equations are

Por _ s /L s

—u = - T(s)g(s) ds 6.21
oAl L/ (s)3(s) (6.21)

_dT q(s)
—_— = 6.22
Ys pPoAcy (6.22)

The solution of equation (6.22) gives us the temperature field

1 S
T(s) = ") ds' + T 6.23
0=z | a)as 470 (6.2

where T(0) = Ty. Using equation (6.9) it can be checked that T(L) = Ty also. Substituting in
equation (6.21), we get

Pa _ _ B B ° / AR
poAu = poAchu/O [/0 q(s") ds"| g(s) ds (6.24)
from which
T=4+ b ’ /S q(s") ds'| g(s) ds (6.25)
PO&LCP 0 0

Two real solutions exist for

/0 ’ { /0 ") ds’] i(s) ds > 0 (6.26)
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Figure 6.5: Bifurcation with respect to parameter H.

and none otherwise. Thus there is a bifurcation from no solution to two as the parameter H passes

through zero, where
L s
H :/ [/ q(s") ds’} g(s) ds (6.27)
o LJo

The pressure distribution can be found from equation (6.12)

@ Pau

s = 4 —m[-BT-T)]g (6.28)
= T e Afpu { /0 a(s) ds’] 7 (6.29)

from which

P _— S S S,,
p(s) = po — zu s— pO/O g(s") ds’ + b /0 q(s') ds'| g(s") ds” (6.30)

Acyu Jg

where p(0) = pg. Using equations (6.9) and (6.24), it can be shown that p(L) = pg also.

|
Example 6.1
Find the temperature distributions and velocities in the three heating and cooling distributions corre-
sponding to Fig. 6.6. (a) Constant heating between points ¢ and d, and constant cooling between h and a.
(b) Constant heating between points ¢ and d, and constant cooling between g and h. (c) Constant heating
between points d and e, and constant cooling between h and a. (d) Constant heating between points a and c,
and constant cooling between e and g. The constant value is ¢, and the total length of the loop is L.

Let us write

F(s) = /OS q(s") ds’ (6.31)
Gs) = F(s)gs) (6.32)
H = " G(s) ds (6.33)

0

The functions F(s) and G(s) are shown in Fig. 6.7. The origin is at point a, and the coordinate s runs
counterclockwise. The integral H in the four cases is: (a) H =0, (b) H = ¢L/8, (c) H = —4¢L/8, (d) H = ¢L/4.
The fluid velocity is
BH
PalLcy

u==

(6.34)
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a b c

Figure 6.6: Geometry of a square loop.

il

(a) (b)

Pt

tt

Figure 6.7:

(© (d)

Functions F'(s) and G(s) for the four cases.
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No real solution exists for case (c); the velocity is zero for (a); the other two cases have two solutions each, one
positive and the other negative. The temperature distribution is given by

T Ty= F(s)

6.35
poAcpt ( )
The function F(s) is shown in Fig. 6.7. There is no real; solution for case (c); for (a), the temperature is
unbounded since the fluid is not moving; for the other two cases there are two temperature fields, one the
negative of the other.
The pressure distribution can be found from equation (6.29).

|
Example 6.2
What is the physical interpretation of condition (6.26)7

Let us write

H = /O " [ /O " () ds’} G(s) ds (6.36)
/0 " [ /0 ") ds’} d[ /0 "4 ds’} (6.37)
{ /0 " als) ds'K [ /O " 3(s) ds’K - /O - [q(s) /O "3 ds’} ds (6.38)

The first term on the right vanishes due to equations (6.20) and (6.9). Using equation (6.8), we find that

L
H= —g/ q(s)z(s) ds (6.39)
0
The function z(s) is another way of describing the geometry of the loop. We introduce the notation
a(s) =q*(s) —q~ (s) (6.40)
where (®) (®)
+ q(s) for q(s)>0
q _{ 0 for ¢(s) <0 (6.41)
and )
__J o0 for q(s) >0
7 = { —q(s) for q(s) <O (6.42)
Equations (6.20) and (6.39) thus becomes
L L
/ qt(s)ds = / g (s) ds (6.43)
0 0
L L
H = —g V gt (s)2(s) ds —/ = ()2(s) ds} (6.44)
0 0

From these, condition (6.26) which is H > 0 can be found to be equivalent to
Jo at(e)(s) ds _ Jy a=()2(s) ds
Jo at(syds  Jyam(s) ds

This implies that the height of the centroid of the heating rate distribution should be above that of the cooling.

(6.45)
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6.2.2  Awxial conduction effects

To nondimensionalize and normalize equations (6.13) and (6.19), we take

o= L (6.46)
T
s = % (6.47)
% u
. T Ty
- % (6.50)
I qi (6.51)
where
PaL
Vv o= p?A (6.52)
P20?L
M G o
A
T % (6.54)
Qmﬂ9p3A2
G = ImZ9Ps (6.55)
P3a3Le,
Substituting, we get
du* !
d?* tut = / T*G* ds* (6.56)
0
oT* 1/2 *aT 1/2 =« 82T*
= K .
g TC T e = GRS (6.57)
where LA
= Palic, (6.58)

The two nondimensional parameters which govern the problem are G and K.
Under steady-state conditions, and neglecting axial conduction, the temperature and velocity
are

T(s) = — / *(s7) ds} (6.59)

w11

All variables are of unit order indicating that the variables have been appropriately normalized.

*(s%) dsl] g*(s*) ds* (6.60)
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For a = 8u/D, A =7D?/4, and P = nD, we get

1 Gr (D\*
_ = (= .61
¢ 81927 Pr <L> (6.61)
1 D\?
K = 55 (L) (6:62)
where the Prandtl and Grashof numbers are
Pr = % (6.63)
4mgBL?
Gr = 6.64
r ok (6.64)
respectively. Often the Rayleigh number defined by
Ra = Gr Pr (6.65)

is used instead of the Grashof number.
Since @* is of O(1), the dimensional velocity is of order (8vL/D?)Gr!/2. The ratio of axial
conduction to the advective transport term is

K
S 1/2
_ (8 67
( Ra) (6.67)

Taking typical numerical values for a loop with water to be: p = 998 kg/m?, p = 1.003 x 1072 kg/m
s, k=0.6 W/mK, ¢, =100 W/m, g =9.91 m/s?, 3 =0.207 x 1072 K™, D =0.0l m, L =1 m,
cp = 4.18 x 103 J/kgK, we get the velocity and temperature scales to be

VG2 = (6.68)
ATGY? = (6.69)
and the nondimensional numbers as

G = 186x1072 (6.70)

K = 447x1077 (6.71)

Gr = 3.35x 10" (6.72)

Ra = 2.34x 10" (6.73)

e = 328x107° (6.74)

Axial conduction is clearly negligible in this context.
For a steady state, equations (6.56) and (6.57) are

1
T = /T*g* ds* (6.75)
0
2T dT" o
cger U e = —C) (6.76)

Integrating over the loop from s* = 0 to s* = 1, we find that continuity of 7" and equation (6.20)
imply continuity of dT" /ds* also.
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Conduction-dominated flow

If A\ = G'?/e < 1, axial conduction dominates. We can write

U = g+ \u + N ... (6.77)
T(s) To(s) + NT1(s) + A2Ta(s) + . .. (6.78)

where, for convenience, the asterisks have been dropped. Substituting into the governing equations,
and collecting terms of O(A\?), we have

1

uy = /Tog ds (679)
0

d*Ty

L (6.80)

The second gcluation, along with conditions that Ty and dT /ds have the same value at s = 0 and
s =1, gives Ty = an arbitrary constant. The first equation gives uy = 0.
The terms of O(\) give

1
U, = / Tlg ds (681)
0
T dT
i (DR e (0:52)

The second equation can be integrated once to give

dT s
=1 —/ q(s') ds' + A (6.83)
ds 0
and again
T, = —/ l/ q(s) ds’] ds" + As+ B (6.84)
o |Jo

Continuity of T (s) and dT/ds at s =0 and s = 1 give

Al

A = A (6.86)

1"

B

q(s") ds’] ds" + A+ B (6.85)

respectively, from which
q(s") ds'] ds” (6.87)

and that B can be arbitrary. Thus

- [ [ [ dsf] wes [ [ [

"

q(s") ds’] ds" + T1(0) (6.88)
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where T'(0) is an arbitrary constant. Substituting in equation (6.81), gives

_— /01 { [ [ /j"m ds/] dsff}g ds+ /01 /OS" o) dsf] 45" /Ozg i (6.89)

The temperature distribution is determined by axial conduction, rather than by the advective ve-
locity, so that the resulting solution is unique.

Advection-dominated flow

The governing equations are

1
T = / T4 ds (6.90)
0
(T &°T
[t il 91
U quedS2 (6.91)

where € < 1. Expanding in terms of ¢, we have

U = TUg+e€u + €U+ ... (6.92)
T = TO —|— ETl —|— 6272 —|— e (693)
(6.94)
To O(e%), we get
1 JR—
uy = / Tog ds (695)
0
dT,
Uy—— = 6.96
Uo ds q ( )
from which
_ 1 s
To = — [ q(s')ds (6.97)
Uo Jo

Ty = j:/ol Uosq(s/) ds’}gds (6.98)

Axial conduction. therefore, slightly modifies the two solutions obtained without it.

6.2.3 Toroidal geometry

The dimensional gravity function can be expanded in a Fourier series in s, to give
= 2mns 2mns
g(s) = ; [gz cos —— + g5 sin 5 (6.99)

The simplest loop geometry is one for which we have just the terms

2 2
g(s) = g5 cos %S + g7 sin %s (6.100)
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corresponds to a toroidal geometry. Using

9 = (g5 +(g5)?
91

(ZSO = tanflfs
91

equation (6.100) becomes

o= (2 )

89

(6.101)
(6.102)

(6.103)

Without loss of generality, we can measure the angle from the horizontal, i.e. from three o’clock

point, and take ¢y = 0 so that
g(s) = gcos (2ms/L)

The nondimensional gravity component is
g = cos(2ms)

where the * has been dropped.
Assuming also a sinusoidal distribution of heating

q(s) = —sin(2ws — @)

the momentum and energy equations are

/01 T(s) cos(2ms) ds

u =
dar d*T
ﬂ% = — Sin(27TS — ¢) + 6@
The homogeneous solution is - B
Ty = Be™/*+ A
The particular integral satisfies
d°T, wdl, 1 .
B2 e ds ¢ Smms—9)
Integrating, we have
dT, U= 1
d—sp - sz = 5 cos(2ms — ¢)
1
= ——[cos(27s) cos ¢ + sin(27s) sin @]
2me
Take -
T, = acos(2ms) + bsin(27s)
from which .
ar’,

o —27asin(27s) + 27b cos(27s)
s

(6.104)

(6.105)

(6.106)

(6.107)

(6.108)

(6.109)

(6.110)

(6.111)

(6.112)

(6.113)

(6.114)
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Substituting and collecting the coefficients of cos(27s) and sin(27s), we get

u cos ¢
—— 2rb = — 6.115
ea+ T 2me ( )

[ sin ¢
—2ma—-b = -— 6.116
e € 2me ( )

The constants are
(w/2me?) cos ¢ + (1/€) sin ¢

= 6.117
472 + 5% /€2 ( )
by = f(l/e)cos¢+£2/27re2)sin¢ (6.118)

A2 + 7 /e?

The temperature field is given by -
T=T,+T, (6.119)
Since T'(0) = T'(1), we must have B = 0. Taking the other arbitrary constant A to be zero, we have
1 u 1 1 o

= =y [(2:62 cos ¢ + - sin d)) cos(2ms) + (e cos ¢ + 2:62 sin ¢) sin(QWS)} (6.120)

The momentum equation gives

(w/2me?) cos ¢ + (1/€) sin ¢

U= 6.121
“ 2(4m2 + u?/e?) ( )
which can be written as
1
w4 (471'262 ~ 2. Cos qb) — %sin¢ =0 (6.122)
Special cases are:
e c=0
Equations (6.107) and (6.108) can be solved to give
— 1
T = Py [cos(27s) cos ¢ + sin(27s) sin @] (6.123)
T
cos ¢
u = =+ 6.124
“ 4dr ( )
On the other hand substituting ¢ = 0 in equation (6.122) gives an additional spurious solution
u=0.
e c— 00
We get that w — 0.
e p=0
We get
0
T= 15— dm2e? (6.125)
= — 4r2e

The last two solutions exist only when e < (167%)~1/2.
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Figure 6.8: w-¢ curves. Figure 6.9: u-€ curves.
o p=1/2

The velocity is a solution of

T+ udne® — % =0 (6.126)

Figure 6.8 shows @-¢ curves for three different values of €. Figure 6.9 and 6.10 show @-¢ curves
for different values of ¢. It is also instructive to see the curve u-Ra, shown in Figure 6.11, since the
Rayleigh number is directly proportional to the strength of the heating.

The bifurcation set is the line dividing the regions with only one real solution and that with
three real solutions. A cubic equation

B +pr+qg=0 (6.127)
has a discriminant
P 6.128
D= +%1 .
7 T ( )

For D < 0, there are three real solutions, and for D > 0, there is only one. The discriminant for the
cubic equation (6.122) is

L1 ., 1 1,
D= T <47r € = cosqb) + 1 (esin ) (6.129)

The result is shown in Fig. 6.12.
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6.2.4 Dynamic analysis
We rescale the nondimensional governing equations (6.56) and (6.57) by
SR S 6.130
ut o= o U (6.130)
* 1 -
T = T (6.131)
to get
d 1
L = / TG ds (6.132)
or 1 or G'?K 9°T
— +—u— = G — 6.133
8t+27ru88 s 27 0s? ( )
where the hats and stars have been dropped.
We take § = cos(27s) and ¢ = —sin(27s — ¢). Expanding the temperature in a Fourier series,
we get
T(s,t) Z ) cos(2mns) + T2 (t) sin(27n.s)] (6.134)
Substituting, we have
du 1
— =17 1
7 +u 511 (6.135)
and
dT, dT’s dre
dito + ; [ 7 ™ cos(2mns) + dtn sin(27ns)
oo
Z —nT)sin(2mns) + nT,, cos(2mns)]
G [sm(27rs) cos ¢ — cos(27s) sin @]
—2mn’G'\?K Z [T¢ cos(2ns) + T sin(27ns)] (6.136)
n=1
Integrating, we get
dTy
— =0 6.137
o (6.137)
Multiplying by cos(2mms) and integrating
1dT5 m 1
- m o Ts i . _ 2 1/2KTC 1
5 d + 5 ulm 2Gsmqﬁ -G m (6.138)
Now multiplying by sin(27ms) and integrating
vdary;, m .. 1 2+41/2 grps
3t 5 uly, = 2G’cos¢ mm G /KT, (6.139)
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Choosing the variables

T = u
1 C
Yy = ) Ty
1
and the parameters
G
a = 5 sin ¢
G
b = 5 cos ¢
¢ = 2rGY?’K
we get the dynamical system
dx
had— —x
dt Y
dy
5 = eTwooy
dz
il —b+zy—cz

94

(6.140)
(6.141)

(6.142)

(6.143)

(6.144)
(6.145)

(6.146)
(6.147)

(6.148)

The physical significance of the variables are: x is the fluid velocity, y is the horizontal temperature
difference, and z is the vertical temperature difference. The parameter c is positive, while a and b

can have any sign.
The critical points are found by equating the vector field to zero, so that

y-T =
a—TzZ—cy =

o o O

—b+TY—cz =

(6.149)
(6.150)
(6.151)

From equation (6.149), we have ¥ = 7, and from equation (6.151), we get Z = (—b + Z?)/c. Substi-

tuting these in equation (6.150), we get
72+ 7(c* —b) —ac=0

This corresponds to equation (6.122), except in different variables.
To analyze the stability of a critical point (Z,7,%Z) we add perturbations of the form

x = zT+72
= 7+
z = zZ+72

Substituting in equation (6.146)-(6.148), we get the local form

d x’ -1 1 0 x’ 0

— / — _z _ 7 / o

o Y = Z c T Y + Tz
2 7 T —c 2 'y’

(6.152)

(6.153)
(6.154)
(6.155)

(6.156)



6.2. Known heat rate

Figure 6.13: Bifurcation diagram for Z.

The linearized version is

d i -1 1 0 x’
_ / — _5 _ - /
i N Z —c -T Yy

2 7y T —c 2

No tilt, with axial conduction (a = 0,c # 0)
From equation (6.152), for a = 0 we get
2+ T —-0)=0

from which

The z coordinate is

The bifurcation diagram is shown in Figure 6.13.

Stability of conductive solution

95

(6.157)

(6.158)

(6.159)

(6.160)

The critical point is (0,0,—b/c). To examine its linear stability, we look at the linearized

equation (6.157) to get

d x’ -1 1 0 x!
pn y | =1 b/c —c 0 y'
tl oy 0 0 -—c 2’
The eigenvalues of the matrix are obtained from the equation
—(1+X) 1 0
b/c —(c+ M) 0 =0
0 0 —(c+N)

which simplifies to
b
(c+N) [T+ N(ec+N) - - =0

(6.161)

(6.162)

(6.163)
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One eigenvalue is
A =—c (6.164)

Since ¢ > 0 this eigenvalue indicates stability. The other two are solutions of

M+ (c+ DA+ (e — g) =0 (6.165)
which are
b
o = - —(c+1)—\/(c+1)2—4(c—)1 (6.166)
&
b
o= o —(c+1)+\/(c+1)2—4(c— 0)1 (6.167)
A2 is also negative and hence stable. A3 is negative as long as
b
~(e+ D) +y/(et1)?—4(c—-) <0 (6.168)
which gives
b<c? (6.169)

This is the condition for stability.
In fact, one can also prove global stability of the conductive solution. Restoring the nonlinear
terms in equation (6.156) to equation (6.161), we have

dx’ P
— = — 6.170
o y - (6.170)
dy’ b, ’ .
& _ b, 171
p ooy oz (6.171)
d /
dit = —cd+ay (6.172)
Let b
E(z,y,2) = Em'Q +y% 42 (6.173)
Thus
1dE b ,do’  ,dy’  ,d2
2 = I - — 6.174
2 dt Car TV T (6.174)
b 2b
= —a? 4+ Zaly — ey —c? (6.175)
c c
_ _9(/_/2_ _9 2202 1
= — (@ y')°—(c C)y cz (6.176)
Since
E > 0 (6.177)
dE
& <0 (6.178)
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for 0 < b < ¢?, E is a Liapunov function, and the critical point is stable to all perturbations in this
region. The bifurcation at b = ¢? is thus supercritical.

Stability of convective solution
For b > ¢2, only one critical point (v/b— c2,v/b— c2, —c) will be considered, the other being
similar. We use the linearized equations (6.157). Its eigenvalues are solutions of

—(1+)) 1 0

c —(c+A) —vVb—¢c% |=0 (6.179)
Vb—c2  Vb—c2  —(c+ )

This can be expanded to give
A A2 (14 20) +Ab+c)+2(b—c*) =0 (6.180)

The Hurwitz criteria for stability require that all coefficients be positive, which they are. Also the
determinants

Dy = 1+2¢ (6.181)
o142 2(0b-¢?)
D, = 1 bt e (6.182)
1+2¢c 2(b—c?) 0
Dy = 1 b+c 0 (6.183)

0 1+2¢ 2(b—c?)
should be positive. This requires that

c(1 + 4c)

b S i e<1)/2 (6.184)
ce(l4+4c) .
_ 1 1
b> % if e>1/2 (6.185)
(6.186)
With tilt, no axial conduction (a # 0, ¢ = 0)
The dynamical system (6.146)-(6.148) simplifies to
dx
ptad — 1
g y—x (6.187)
d
d—zz = a-—uxz (6.188)
=,y (6.189)
at Y '

The critical points are +(v/b, v/b, a/v/b). The linear stability of the point P+ given by (v, v/b, a//b)
will be analyzed. From equation (6.157), the solutions of

—(1+X) 1 0

—a/Nb -\ Vb |=0 (6.190)
Vb Vb =
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are the eigenvalues. This simplifies to

M2+ Ab+ ) +20=0 6.191
Vb

For stability the Hurwitz criteria require all coefficients to be positive, which they are. The deter-
minants

D =1 (6.192)
1 2b

Dy, = '1 N (6.193)
1 2b 0

Dy = |1 b+a/Vb 0 (6.194)
0 1 2b

should also be positive. This gives the condition (b + a/v/b) — 2b > 0, from which, we have
a>b? (6.195)

for stability. The stable and unstable region for PT is shown in Figure 6.14. Also shown is the
stability of the critical point P~ with coordinates —(v/b, v/b, a/v/b). The dashed circles are of radius
G/2, and the angleof tile ¢ is also indicated. Using equations (6.143) and (6.144), the stability
condition (6.195) can be written as

sin ¢ G\ ?

As a numerical example, for the value of G in equation (6.70), PT is stable for the tilt angle range
¢ > 7.7°, and P~ is stable for ¢ < —7.7°. In fact, for G < 1, the stability condition for Pt can be

approximated as
a\ /2
o> (2) (6.197)

The same information can be shown in slightly different coordinates. Using T = v/b for Pt
and equation (6.144), we get

G 7

— = 6.198

2 cos @ ( )
The stability condition (6.195) thus becomes

tan¢g < T (6.199)

The stability regions for both P4+ and P~ are shown in Figure 6.15.

The loss of stability is through imaginary eigenvalues. In fact, for PT, substituting a = b*/2 in
equation (6.191), the equation can be factorized to give the three eigenvalues —1, +iv/2b. Thus the
nondimensional radian frequency of the oscillations in the unstable range is approximately v/2b.

The effect of a small nonzero axial conduction parameter c is to alter the Figure 6.195 in the
zone 0 < b < c.
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Figure 6.15: Stability of critical points P™

and P~ in (4, ) space.

Figure 6.17: Phase-space trajectory for a

0.9, b=1.

Figure 6.16: z-t for a = 0.9, b = 1.
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Figure 6.19: Phase-space trajectory for a

0.55, b= 1.

Figure 6.18: z-t for a = 0.55, b = 1.

Figure 6.21: Phase-space trajectory for a

0.53, b= 1.

Figure 6.20: z-t for a = 0.53, b = 1.
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L L L L L
[ 50 100 150 200 250 300

Figure 6.22: z-t fora =0, b= 1. Figure 6.23: Phase-space trajectory for a =
0,b=1.

6.2.5 Nonlinear analysis
Numerical

Let us choose b = 1, and reduce a. Figures 6.16 and 6.17 show the z-t and phase space representation
for a = 0.9, Figures 6.18 and 6.19 for a = 0.55, and Figures 6.20 and 6.21 for a = 0.53.

The strange attractor is shown in Figures 6.22 and 6.23.

Comparison of the three figures in Figures 6.24 shows that vestiges of the shape of the closed
curves for a = —0.9 and a = 0.9 can be seen in the trajectories in a = 0.

Analytical

The following analysis is by W. Franco.
We start with the dynamical system which models a toroidal thermosyphon loop with known
heat flux

B

a Y

d

dii = a-zz (6.200)
dz

b S

dt o

For b > 0 two critical points P and P~ appear

(Z,7,2) = + (\/5, Vo, \%) (6.201)
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6.2. Known heat rate

Figure 6.24: Phase-space trajectories for b = 1.
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The local form respect to Pt is

d/

dxt = v

d/

N (6.202)

di NG

dz' , ,
—_— = \/53: + \/Ey
dt

For stability a > b3. At a = b? the eigenvalues are —1,++/2bi, thus a nonlinear analysis through
the center manifold projection is possible. Let’s introduce a perturbation of the form a = b3 +¢ and
the following change of variables

o = 2
Vb
B = Vb
rewriting the local form, dropping the primes and regarding the perturbation the system becomes
&y
a Y
dy 5 €
—= = - — 2
7 (ﬂ +5)x Bz (6.203)
dz
a px — By
for stability o > 32.
Let’s apply the following transformation:
2 262
r = w1+2ﬂ2+1w2+262+1
y = 2w (6.204)
28 2V2 (6% + 1)
= Pu- o 12T gy WS
in the new variables
-1 0 0
w=[ 0 0 —V28 |w+Pw+l(w) (6.205)
0 V28 0

The center manifold projection is convenient to use if the large-time dynamic behavior is of
interest. In many dimensional systems, the system often settles into the same large-time dynamics
irrespective of the initial condition; this is usually less complex than the initial dynamics and can
be described by far simple evolution equations.

We first state the definition of an invariant manifold for the equation

& = N(z) (6.206)

where © € R™. A set S C R™ is a local invariant manifold for (6.206) if for zo C S, the solution x(t)
of (6.206) is in S for | ¢ |[< T where T' > 0. If we can always choose T' = oo, then S is an invariant
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manifold. Consider the system

&= Az + f(z,y)
y = By +g(x,y) (6.207)

where x € R"™, y € R™ and A and B are constant matrices such that all the eigenvalues of A have
zero real parts while all the eigenvalues of B have negative real parts. If y = h(z) is an invariant
manifold for (6.207) and h is smooth, then it is called a center manifold if ~(0) = 0,h’(0) = 0. The
flow on the center manifold is governed by the n-dimensional system

&= Az + f(x, h(zx)) (6.208)

The last equation contains all the necessary information needed to determine the asymptotic behavior
of small solutions of (6.207).

Now we calculate, or at least approximate the center manifold h(w). Substituting w; =
h(ws,ws) in the first component of (6.205) and using the chain rule, we obtain

Oh  Oh w2
L = _— = — 2
Wy (8102’ 8w3> . h+ 1y (we, w3, h) (6.209)
We seek a center manifold
h = awj + bwyws + cw; + O(3) (6.210)

substituting in (6.209)

—V2pBws
(2aws + bws, 2cws + bws) =

V2Bws
— (aw% + bwows + cwg) + (klwg + kawows + kswg) +0(3)

Equating powers of x2,xy and y2, we find that

a = ki —bv/28
c = ks+bV28
p = ket 2V283 (k1 — k3)
862 +1
The reduced system is therefore given by
Wy = —V2Bws + 5% (wy, ws3)
s = V2Bwy + 57 (wa, ws) (6.211)

Normal form: Now we carry out a smooth nonlinear coordinate transform of the type
w=v+¢(v) (6.212)

to simplify (6.211) by transforming away many nonlinear terms. The system in the new coordinates
is

v = < 0 —v2p ) + (v = 7va) (o +25) (6.213)

V26 0 (vvg + yv1) (v% + v%)
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where v and - depend on the nonlinear part of (6.211). This is the unfolding of the Hopf bifurcation.

Although the normal form theory presented in class pertains to a Jacobian whose eigenvalues
all lie on the imaginary axis, one can also present a perturbed version. The eigenvalues are then
close to the imaginary axis but not quite on it. Consider the system

V=Av+Av 4 f(v) (6.214)

where the Jacobian A has been evaluated at a point in the parameter space where all its eigenvalues
are on the imaginary axis, A represents a linear expansion of order y in the parameters above that
point; a perturbed Jacobian. The perturbation parameter represents the size of the neighborhood in
the parameter space. We stipulate the order of p such that the real part of the eigenvalues of A + A
is such that, to leading order, A does not change the coeflicients of the leading order nonlinear terms
of the transformed equation. The linear part A + A of perturbed Hopf can always be transformed

to
[T
woop
The required transformation is a near identity linear transformation

v=u+ Bu

such that the linear part of (6.214) is transformed to

W= (A+AB—BA+A)Z

(2 %)
as a4

al + a4

For the Hopf bifurcation if

then

Therefore for € small we can write (6.213) as

S i Y = 18 o2

where the perturbation matrix comes from (6.205). Applying a near identity transformation of the
form v = u + Bu the system becomes

o L 28 (vuy — yus) (u% + u%)
u= V33 u+ (6.216)
(vus + yuq) (u% + u%)
which is the unfolding for the perturbed Hopf bifurcation. In polar coordinates we have
ro= ur-4+ vrs
0 = V28 (6.217)
where
2
p= V2 (6.218)

C202(287+1)



6.3. Known wall temperature

_408° +403" +126% +105° + 126+ 3
- 4(832+1) (282 +1)*

Appendiz

_88(F+1)
(232 +1)°
(8% +1) (4v2 - 8v28?)
(282 +1)°
88 (82 +1)
(2682 +1)°

by =

ky =

ks =

€
B(28%+1)
V2
23241

P22 = —

P23 =

From the literature

1

= 16 (fxm:c + fmyy + Gray + gyyy)

1
+ 16w (fry(ffmc + fyy) - gmy(gzm - gyy) — fexGaz — fyygyy)

in our problem f = f1, g = fa, T = vy, y = v2 and w = V/28.

6.3 Known wall temperature

106

(6.219)

(6.220)

(6.221)

(6.222)

The heating is now convective with a heat transfer coefficient U, and an external temperature of

Ty (s). Thus,
q=PU(T -T,)

Neglecting axial conduction

o L
;Z—AU = % /0 T(s)g(s) ds
ﬂ% = [T —Tu(s)]

where v = UP/pyAc,*. Multiplying the second equation by e‘”s/ﬂ/ﬂ, we get
i (e—WS/HT) — _Ze—WS/HTw
ds u

Integrating, we get

T =e/t {—7/ e 7T, (s) ds' + Ty
U Jo

1The sign of v appears to be wrong.

(6.223)

(6.224)

(6.225)

(6.226)

(6.227)
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Since T(L) = T(0), we get
eVL/u foL 6775//ET11;(8/) ds'
evkl/@ _1

Ty =

ISR

(6.228)

The velocity is obtained from

Lt M B e SRR ST
— U == eIt — = e VYT, (8") ds' + T s) ds 6.229
=1 : () ds' + 1, ] a(s) (6.229

This is a transcendental equation that may have more than one real solution.

|
Ezxample 6.3

Show that there is no motion if the wall temperature is uniform.

Take T, to be a constant. Then equation (6.225) can be written as

d(T - T,
AT =Tw) _ 7 4 (6.230)
T—Ty U
The solution to this is . B
T=T,+K /" (6.231)
where K is a constant. Continuity of T at s = 0 and s = L gives K = 0. Hence T' = Ty, and, from equation
(6.224), w = 0.
|
Assume the wall temperature to be
Tw(s) = —sin(27s — ¢) (6.232)

The temperature field is

__ b cos(2ms — ) cos(2ms — @)
i — (%(1 n r§/47r2)> - (277(1 -~ 7"162/47r2)) (6.233)

6.4 Mixed condition

The following has been written by A. Pacheco-Vega.

It is common, especially in experiments, to have one part of the loop heated with a known heat
rate and the rest with known wall temperature. Thus for part of the loop the wall temperature is
known so that ¢ = PU(T — Ty, (s)), while ¢(s) is known for the rest. As an example, consider

_ { PU(T —Tp) for & <s<m+ - (6.234)

Qo for 7r+%<s<27r+%

where Ty and gg are constants.
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Constant wall
temperature Ty

Cooling
water in

Uniform
heat flux q

Figure 6.25: Schematic of a convection loop heated with constant heat flux in one half and cooled
at constant temperature in the other half.

6.4.1 Modeling
[1]
If we consider a one-dimensional incompressible flow, the equation of continuity indicates that
the velocity v is a function of time alone. Thus,
v=uo(t). (6.235)

Taking an infinitesimal cylindrical control volume of fluid in the loop 7r2df, see Figure (6.25), the
momentum equation in the 6-direction can be written as

d d
pm‘szHd—zt) = —7rr2d9d—z — pgmr® Rdf cos( + ) — 7,2 Rd (6.236)
Integrating Eq. (6.236) around the loop using the Boussinesq approximation p = py,[1 — 8(T —

Tw)], with the shear stress at the wall being approximated by that corresponding to Poiseuille flow
in a straight pipe 7, = 8v/p,7?, the expression of the balance in Eq. (6.236) modifies to

dv =~ 8u By
av v="9
dt  pur? 2

/ T T cos(8 + ) df (6.237)
0

Neglecting axial heat conduction, the temperature of the fluid satisfies the following energy balance
equation
-2(T-T,), 0<0<m

or v oT
Pty <8t n Raa) 1. (6.238)

[\v]
3
A
S
AN
)
3
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Following the notation used by Greif et al. (1979), the nondimensional time, velocity and tempera-
ture are defined as

t v T—-T,
= == = 6.239
TEarv YTV 0T T (6.239)
respectively, where
R 1/2
V= (gﬂ Tq) . (6.240)
2wepp
Accordingly, Eqgs. (6.237) and (6.238) become
d T 2w
% +TlTw= Z—D ; ¢ cos(6 + a) df (6.241)
and 96 96
| —2D¢, 00
or + 27Tw% o { 2D, <0< 2w (6.242)
where the parameters D and I' are defined by
2 1
_ by 1omuR (6.243)
PuwCprV pur?V
6.4.2 Steady State
The steady-state governing equations without axial conduction are
T 2r
W= — .244
o 4D/0 3 cos(0+ ) b (6.244)
and D -
>y —= 0<o<r
d¢ W ¢’ — —
R 6.245
=1 . (6.245)

T<0<2m

where W and ¢ are the steady-state values of velocity and temperature respectively. Eq. (6.245) can
be integrated to give
A e (PO/m0) < f<m
o(0) = (6.246)
% 0+ B, <0 <2m

Applying the condition of continuity in the temperature, such that ¢(0) = ¢(27) and ¢(7~) = (7 ™)
the constants A and B can be determined. These are

D 1 D [2e=P/™ 1
A= w1 — e(-D/®) B=5 [ 1 — e(=D/®) ] (6.247)
The resulting temperature filed is
o (DO/7w)
_ & = O<f<m
b(0) = (6.248)

—(D/w) _
% Q‘F%}, T<0<2m

™
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Substituion of Eq. (6.245) in Eq. (6.244), followed by an expansion of cos(f + «), leads to

B - T D e—(DG/'frE)
w:wcosa{ A %71_6_([)/@)

27 —(D/w) _
—I—/ D[9+261} costH}

w|r  1—e P/

w
T ™D e—(DG/TrE) )
— 4DSIHO[{ o %m sin 0 d@

™ D 2¢—(D/®) _ 1
+/ -t {0 + e} sin 6 de} (6.249)

cos 6 db

w Tt 1—e(D/®
and integration around the loop, gives the steady-state velocity as
o2 cosa (D/w) cos a + w(D/w)? sin <1+e_(D/w)>
2 1[1+(2) 1—e=(0/®)
As a final step, multiplying the numerator and denominator by e(P/?®) and rearranging terms leads
to the expresion for the function of the steady-state velocity

(6.250)

_cosa (D/w)cosa+m(D/w)*sina coth(D/2 ) = 0

I

(6.251)

For a = 0, symmetric steady-state solutions for the fluid velocity are possible since G(w, 0, D) is an
even function of w. In this case Eq.(6.251) reduces to

(D/w) [1 + e (P/™]
4 [1 + (%)2} [1— e~ (P/m)]

The steady-state solutions of the velocity field and temperature are shown next. Figure 6.26
shows the w — a curves for different values of the parameter D. Regions of zero, one, two and
three solutions can be identified. The regions of no possible steady-state velocity are: —180° < a <
—147.5° and 147.5° < a < 180°. There is only one velocity for the ranges —147.5° < a < —ayg
and ag < o < 147.5° where aq varies from 90° at a value of D = 0.001 to g = 32.5° when
D = 100. Three velocities are obtained for —ap < a < —32.5° and 32.5° < a < «q, except for the
zero-inclination case which has two possible steady-state velocities. The temperature distribution
in the loop, for three values of the parameter D and o = 0 is presented in Figure 6.27. From
the ¢ — 6 curves it can be seen the dependence of the temperature with D. As D increases the
variation in temperature between two opposit points also increases. When has a value D = 0.1 the
heating and cooling curves are almost straight lines, while at a value of D = 1.0 the temperature
decays exponentially and rises linearly. Similar but more drastic change in temperature is seen when
D = 2.5. Figure 6.28 shows the ¢ — @ curves for three different inclination angles with D = 2.5. It
can be seen the increase in the temperature as « takes values of @ = 0°, « = 90° and o = 135°. This
behaviour is somewhat expected since the steady-state velocity is decreasing in value such that the
fluid stays longer in both parts of the loop. Figure 6.29 shows the steady-state velocity as a function
of D for different angles of inclination . For a = 0 we have two branches of the velocity-curve
which are symmetric. The positive and negative values of the velocity are equal in magnitude for
any value of D. For a = 45°, the two branches are not symmetric while for a = 90° and a = 135°,
only the positive branch exist.

1
2—7
w—2—|—

(6.252)
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B

Figure 6.26: Steady-State velocity field.

=2.5,0)

o6,D

Figure 6.28: Nondimensional temperature
distribution as a function of thermosyphon
inclination « for D = 2.5.
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e
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=0)

®6,D,a

Figure 6.27: Nondimensional temperature
distribution as a function of the parameter
D for a = 0.

Figure 6.29: Velocity w as a function of D for
different thermosyphon inclinations a.
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6.4.3 Dynamic Analysis

The temperature can be expanded in Fourier series, such that

b= o+ Z ) cos(nf) + ¢2,(t) sin(nh)]

Substituiting into Eqgs. (6.241) and (6.242), we have

dw ) 72T
I'w
+ cos ap§ — D

dr YY) sinagy

and

dg§ <~ [doy, doy, .
I +Z [ 7 Cos (nf) + 7 sin (nh)

n=1

+271w Z [—no sin (nf) + ne;, cos (nd)]

n=1
—2D {¢§ + Yoo [65,(t) cos(nb) + ¢5,(t) sin (nf)]}, 0<6 <7
2D, T<0 <2

Integrating Eq. (6.255) from 6 = 0 to § = 27 we get

de R n
dTOZ—D ¢o—;;;[(—1) —-1]-1

Multiplying by cos (mf) and integrating from 6 =0 to 6§ = 27

d(bc 2n
2 S — _Do¢ s m—i—n_l
+2rmw ¢, Oy, + — nzl¢ ]anmQ
n#m
Now multiplying by sin (mf) and integrating from 6 =0 to 6§ = 27
d¢7sn c s D S c m-+n 2m
n#m
2D
—— [ =(=™
N
for m > 1.
Choosing the variables
w o= w
Co = o5
Sm = o5,

112

(6.253)

(6.254)

(6.255)

(6.256)

(6.257)

(6.258)
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we get an infinte-dimensional dynamical system

113

dw 72l 7l A
e —Tw+ 1D o8¢ Cy — +p Sine S (6.263)
dCy D~ S
— = =D — — (=) =1+ D .264
< Cot 23 2 1+ (6.264)
dC,, D & et 2n
ntm
dSm e 2m
:f#n
2D
—[(-1)™ -1 2
) (6.266)

for m > 1. The physical significance of the variables are: w is the fluid velocity, C is the horizontal
temperature difference, and S is the vertical temperature difference. The parameters of the system

are D, I' and a. D and I' are positive, while o can have any sign.
The critical points are found by equating the vector filed to zero, so that

2 o 2 B
E——Dcosa01+ﬁsina51 =

2rmw S, + D C,p, —

— — D
2rmw Cy, — D Sy, + —
T

However, a convenient alternative way to determine the critical points is

series expansion of the steady-state temperature field solution given in Eq. (6.

series expansion is
¢ = Z C' cos(nb) + Sy, sin(nb)]
n=0
Performing the inner product between Eq. (6.248) and cos(mé) we have

D 1 " — TWw
=) / e= (P07 cos(mb) df

D m 2e (D/@) _
/ [ =) } cos(md) df

00 2m
Z / cos(n@) cos(mb) db + Z Sn / sin(n#) cos(mb)do
70 0

n=0

0 (6.267)
0 (6.268)
0 (6.269)
0 (6.270)

by using a Fourier
248). The Fourier

(6.271)

(6.272)
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Now the inner product between Eq. (6.248) and sin(m#) gives
D 1 4 _
:W/ e~ (PO/7D) gin(mb) df
—e w
D 2m 26 (D/’LU) .
/ { =) } sin(mf) do
o 2 2w
= Z C’n/ cos(nf) sin(mé) db + Z Sn / sin(n#) sin(md)do (6.273)
n=0 0 n=0 0
from which we get
- 1 D (3 2~ (P/®) 1
— (%)2 1 — e~ (P/®) cos(mr) D
Cpn = [m2 (%)Q] =Y 5o [1 — cos(mm)) (6.275)
D \3 —(D/w
_ L 1 — ¢~ (D/w)
s (z%) _1-e _(57%(””) (6.276)
mme+ () 1o
To analyze the stability of a critical point (w,Co,C1,- -+ ,Cm,S1,"+ ,Sm) we add perturba-
tions of the form
w = w+w (6.277)
Co = 60 + C(I) (6278)
c, = 61 + Ci (6279)
: (6.280)
Cn = Cnm+Cl, (6.281)
S = Si1+8; (6.282)
: (6.283)
S = Sm+S), (6.284)
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Substituting in Egs. (6.263) to (6.266), we obtain the local form

dw' 2r 2r
df = —Tuw + Z—D cosa ) — Z—D sina S (6.285)
dCy DX (-1)" -1
—2 = -DCH+=> ——¢, (6.286)
dr T = n
/
% = 2mmwS,, —2rm S, w —DC!,
=

D & 2n
m+n / ol
. ?;m[(_l) —1] 8;, = 2rmw' S), m>1

n#£m

(6.287)
ds! —
Tm = 2mmwC), +2mmC,,w' — DS,
-
D & 2m
m-+n
n#gm
(6.288)
The linearized version is
dw’ ’r ’r
du; = —Tw + Z—D cosa Cf — Z—D sina S (6.289)
dc} DX (1) -1
—— = —-DC+— ~— g 6.290
dr ot T ; n " ( )
dc! —
ACm —2rmw S, — 2mm Sy, w' — D Cl,
dr
D & 2n
=y ——— (=)™t —1]9 >1 6.291
+ T "ZI n2 —m?2 [( ) ] n mZz ( )
’!L;’NL
dS’:TL —_— !/ al / /
g = 2rmwC,, +2mrm Cpw — DS,
-
D & 2m
=y ——— (=)™t —1]C] >1 6.292
+ T ; m2 — n2 [( ) ] n mZz ( )
n;nl
In general, the system given by Eqgs. (6.263) to (6.266) can be written as
dx
— =1 6.293
L (6.298)

The eigenvalues of the linearized system given by Egs. (6.289) to (6.292), and in general form
as

dx
—=A 294
o b'e (6.294)
are obtained numerically, such that

|A— M| =0 (6.295)
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Figure 6.30: Stability curve D and I' for a Figure 6.31: Stability curve w vs. « for D =
thermosyphon inclination a = 0. 0.1, and I'" = 0.20029.

where A is the Jacobian matrix corresponding to the vector field of the linearized system, I is the
identity matrix, and A are the eigenvalues. The neutral stability curve is obtained numerically from
the condition that $(A) = 0. A schematic of the neutral curve is presented in Figure 6.30 for a = 0.
In this figure, the stable and unstable regions can be identified. Along the line of neutral stability,
a Hopf-type of bifurcation occurs. Figure 6.31 shows the plot of W — « curve for a value of the
parameters D = 0.1 and I' = 0.20029. When « = 0, a Hopf bifurcation for both the positive and
negative branches of the curve can be observed, where stable and unstable regions can be identified.
It is clear that the natural branches which correspond to the first and third quadrants are stable,
whereas the antinatural branches, second and fourth quadrants are unstable. The symmetry between
the first and third quadrants, and, between the second and fourth quadrants can be notice as well.
The corresponding eigenvalues of the bifurcation point are shown in Figure 6.32. The number of
eigenvalues in this figure is 42 which are obtained from a dynamical system of dimension 42. This
system results from truncating the infinite dimensional system at a number for which the value of
the leading eigenvalues does not change when increasing its dimension. When we increase the size of
the system, new eigenvalues appear in such a way that they are placed symmetrically farther from
the real axis and aligned to the previous set of slave complex eigenmodes. This behaviour seems to
be a characteristic of the dynamical system itself. Figure 6.33 illustrates a view of several stability
curves, each for a different value of the tilt angle o in a D — T" plane at « = 0. In this plot, the
neutral curves appear to unfold when decreasing the tilt angle from 75.5° to —32.5° increasing the
region of instability. On the other hand, Figure 6.34 illustrates the linear stability characteristics of
the dynamical system in a w — « plot for a fixed I and three values of the parameter D. The stable
and unstable regions can be observed. Hopf bifurcations occur for each branch of ecah particular
curve. However, it is to be notice that the bifurcation occurs at a higher value of the tilt angle when
D is smaller.

6.4.4 Nonlinear analysis

Let us select D = 1.5, and increase I'. Figures 6.35 and 6.36 show the w — 7 time series and phase-
space curves for I' = 0.95T,., whereas Figures 6.37 and 6.38 show the results for I' = 1.01I";,.. The
plots suggest the appearance of a subcritical Hopf bifurcation. Two attractors coexist for I' < T';,,
these being a critical point and a strange attractor of fractional dimension. For I" > T'.,., the only
presence is of a strange attractor.
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Figure 6.33: Neutral stability curve for dif-

ferent values of the tilt angle a.

Figure 6.32: Eigenvalues at the neutral curve
for D =0.1, I' = 0.20029 and «
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Figure 6.34: Curve w vs. a I' =4.0 and D =0.1,D = 1.0,D = 2.5.
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6.4. Mixed condition
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Figure 6.39: Curve w vs. 7 for D = 0.1, Figure 6.40: Curve w vs. 7 for D = 0.1,
I'=0.99T,. I'=11T,.

Now we choose D = 0.1, and increase I'. Figure 6.39 presents a plot of the w — 7 curve for
I' =0.99T.,.. Figures 6.40 and 6.41 show the time series plots and phase space representation for
I' = 1.01T;,, and Figures 6.42 and 6.43 for I' = 20T';,.. In this case, for I' < T'.. we have stable
solutions. For I' = 1.01I';,- the figures show a possible limit cycle undergoes a period doubling. This
implies a supercritical Hopf bifurcation. The strange attractor is shown in Figures 6.44 and 6.45.

6.5 Perturbation of one-dimensional flow

6.6 Thermal control

Consider the control of temperature at a given point in the loop by modification of the heating. Both
known heat flux and known wall temperatures may be looked at. In terms of control algorithms,
one may use PID or on-off control.

Problems

1. Find the pressure distributions for the different cases of the square loop problem.

2. Consider the same square loop but tilted through an angle 6 where 0 < 0 < 27. There is constant heating
between points a and ¢, and constant cooling between e and g. For the steady-state problem, determine the
temperature distribution and the velocity as a function of 6. Plot (a) typical temperature distributions for
different tilt angles, and (b) the velocity as a function of tilt angle.

3. Find the steady-state temperature field and velocity for known heating if the loop has a variable cross-sectional
area A(s).

4. Find the temperature field and velocity for known heating if the total heating is not zero.

5. Find the velocity and temperature fields for known heating if the heating and cooling takes place at two different
points. What the condition for the existence of a solution?

6. What is the effect on the known heat rate solution of taking a power-law relationship between the frictional
force and the fluid velocity?

7. For known wall temperature heating, show that if the wall temperature is constant, the temperature field is
uniform and the velocity is zero.
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2000

1995

1990

1985

0.6--{|-—fi--

-0.2t-

g Y110 I A

2000

1995

1990

1985

T for D = 0.1,

Curve w vs.

Figure 6.42:

r

Figure 6.41: Phase-space trajectory for D

0.1, T = 1.1T,,.

11T,

Figure 6.44: Phase-space trajectory for D

0.1, T = 20T,

Figure 6.43: Phase-space trajectory for D

0.1, T = 1.1T,,.
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10.

11.

12.

13.

Figure 6.45: Phase-space trajectory for D = 0.1, I' = 20T,..

Study the steady states of the toroidal loop with known wall temperature including nondimensionalization of
the governing equations, axial conduction and tilting effects, multiplicity of solutions and bifurcation diagrams.
Illustrate typical cases with appropriate graphs.

Consider a long, thin, vertical tube that is open at both ends. The air in the tube is heated with an electrical
resistance running down the center of the tube. Find the flow rate of the air due to natural convection. Make
any assumptions you need to.

For a thin, vertical pipe compare the wall shear stress to mean flow velocity relation obtained from a two-
dimensional analysis to that from Poiseuille flow.

Find the combination of fluid parameters that determines the rate of heat transfer from a closed loop with
known temperature distribution. Compare the cooling rate achieved by an ionic liquid to water in the same
loop and operating under the same temperature difference.

Consider a tall natural circulation loop shown in Fig. 6.46 consisting of two vertical pipes of circular cross
sections. The heating pipe has a diameter D, and that of the cooling side is 2D. The heat rate per unit length
coming in and going out are both ¢. Find the steady state velocity in the loop. Neglect the small horizontal
sections and state your other assumptions.

Nl
|

Figure 6.46: Tall natural circulation loop.

~

Set up a controller for PID control of the velocity x to a given value, xs, in the toroidal natural convection
loop equations

dx

- =

dt v

dy .

i asing —xz
dz

— = —bcosop+xy
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where a and b are held constant. Use the tilt angle ¢ as control input, and show numerical results.



CHAPTER 7

MOVING BOUNDARY

7.1 Stefan problems

[44]
The two phases, indicated by subscripts 1 and 2, are separated by an interface at x = X (¢). In
each phase, the conduction equations is

0*Ty 10Ty
0T, 1 0Ty

At the interface the temperature should be continuous, so that
T (X,t) =T (X, 1) (7.3)

Furthermore the difference in heat rate into the interface provides the energy required for phase

change. Thus

or, | 9Ty . dX
Moe ~Rge =g (7.4)

7.1.1 Neumann’s solution

The material is initially liquid at T = Ty. The temperature at the z = 0 end is reduced to zero for
t > 0. Thus

T, = 0 at =0 (7.5)
T, — Ty as z— 0 (7.6)
Assume Ti(z,t) to be
T

Th=Aeaf —— 7.7
! o 2\/I€1t ( )

so that it satisfies equations (7.1) and (7.5). Similarly
Ti=Aerf —~ Ty =Ty~ Berf —— (7.8)

te 2\/H1t 2= 0 2\/ Hgt '
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satisfies equation (7.2) and (7.6). The, condition (7.3) requires that

x x
o 2\/ Kjlt 0 o 2\/%225 !
This shows that
X = 2)\\/ Iilt

where A is a constant. Using the remaining condition (7.4), we get

kyAe™ — koB, | “Le=mA /R — Lk p/7
K2

This can be written as ) )
e ko /RI(To —Th)e "M /R ALVT

erf A Ky /roTy erfe(Ay/k1/k2) T aTys

The temperatures are

T1 X
T = i
! erf \ o (2\//$1t)
Ty — T,
T, — 0 1

B erfc(A\/k1/K2) erfe( 2\/?2??)

7.1.2  Goodman’s integral
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(7.9)

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)
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Multiple spatial dimensions
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CHAPTER 8

CONDUCTION

8.1 Steady-state problems

See [206].

8.2 Transient problems

8.2.1 Two-dimensional fin

The governing equation is

2 2
cpdx dyLa—T =Lk <8 r + 0 T) — hdz dy(T — Tso) (8.1)

ot T\ 0a? " oy?

which simplifies to
10T  9*T  O*T

= —m?*(T — T 2
a ot 0z + Oy? m( ) (8.2)
where m? = h/kL, the Biot number.
In the steady state
o*T  0°T 5
v AT .
92 + RYE m*( o) (8.3)

Consider a square of unit side with § = T — T, being zero all around, except for one edge
where it is unity.

Let
O0(z,y) = X(2)Y (y) (8.4)
so that | Ex | 2y
YEEZ*X@F+m%;“2 (8.5)
This leads to one equation
d’X 9
Tz + XX =0 (8.6)
with X(0) = X (1) = 1. Thus
X(x) = Asin Az + B cos \x (8.7)
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Figure 8.1: Two-dimensional fin.

where due to the boundary conditions, B =0 and A = nmw, n =1,2,.... Another equation is
d?Yy 9 9
with
Y (y) = Asinh vVm? + n?xw2y + B cosh vV m? 4+ n?n2y (8.9)

The condition Y (0) = 0 gives B = 0. Thus

O(z,y) = Z A, sinnmz sinh vvm?2 + n2n2y (8.10)

8.3 Radiating fins

8.4 Non-Cartesian coordinates

Toroidal, bipolar.
Shape factor.
Moving boundary problem at a corner.

Problems

1. Show that the separation of variables solution for V2T = 0 for a rectangle can also be obtained through an
eigenfunction expansion procedure.

2. Consider steady-state conduction in bipolar coordinates shown in
http://mathworld.wolfram.com/BipolarCylindrical Coordinates.html

with a = 1. The two cylindrical surfaces shown as v = 1 and v = 2 are kept at temperatures 77 and T3,
respectively. Sketch the geometry of the annular material between v = 1 and v = 2 and find the temperature
distribution in it by solving the Laplace’s equation V2T = 0.

3. Set up and solve a conduction problem similar to Problem 2, but in parabolic cylindrical coordinates. Use
Morse and Feshbach’s notation as shown in
http://www.math.sdu.edu.cn/mathency/math/p/p059.htm

4. Consider an unsteady one-dimensional fin of constant area with base temperature known and tip adiabatic.
Use the eigenfunction expansion method to reduce the governing equation to an infinite set of ODEs and solve.

5. Consider conduction in a square plate with Dirichlet boundary conditions. Find the appropriate eigenfunctions
for the Laplacian operator for this problem.



CHAPTER 9

FORCED CONVECTION

See [206].

9.1 Low Reynolds numbers

9.2 Potential flow

[169]
If the heat flux is written as
q = pcul — kVT

the energy equation is
V-q=0

Heat flows along heatlines given by

dx dy dz

pcTuy — k(0T /0x) B pcTuy — k(0T /0y) - pcTu, — k(0T /0%)

The tangent to heatlines at every point is the direction of the heat flux vector.

9.2.1 Two-dimensional flow

9.3 Leveque’s solution

Leveque (1928)

9.4 Multiple solutions

See [166].

9.5 Plate heat exchangers

There is flow on the two sides of a plate, 1 and 2, with an overall heat transfer coefficient of U.
Consider a rectangular plate of size L, x L, in the z- and y-directions, respectively, as shown in Fig.
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x flow

y flow

Figure 9.1: Schematic of crossflow plate HX.

9.1. The flow on one side of the plate is in the a-direction with a temperature field T, (x,y). The
mass flow rate of the flow is m, per unit transverse length. The flow in the other side of the plate
is in the y-direction with the corresponding quantities Ty (x,y) and m,. The overall heat transfer
coefficient between the two fluids is U, which we will take to be a constant.

For the flow in the z-direction, the steady heat balance on an elemental rectangle of size dz x dy
gives

Ty
8835 de=Udz dy (T, — Ty) (9.4)

where ¢, is the specific heat of that fluid. Simplifying, we get

Cy My dy

oT,
20, R—=2% =T, — T, .
CaR—2 =T, (9.5)

where R = 1/2U is proportional to the thermal resistance between the two fluids, and C, = ¢, m,.

For the other fluid T
QCyRa—yy =T,-T, (9.6)

These equations have to be solved with suitable boundary conditions to obtain the temperature
fields T (z,y) and Ty(x,y).

From equation (9.6), we get

T,
T, =T, + CyRa—yy (9.7)

Substituting in equation (9.5), we have

101, 19T, R T,

Cy 0xr  C, Oy Oxdy -

0 (9.8)

Nusselt (Jakob, 1957) gives an interesting solution in the following manner. Let the plate be
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of dimensions L and W in the z- and y-directions. Nondimensional variables are

x
$ Tz
n = X8
w
T, —T,:
ex — xr Y,
Tw,i - Ty,i
7 Ty =Ty,
Y Tz,i - Ty,i
u - UWL
= o
UWL
b =
Gy
The governing equations are then
00,
a(f, —0,) = _875
00
b6, — 0 = X
with boundary conditions
0, = 1 at&=0
0, = 0 atn=0
Equation (9.16) can be written as
00,
— + b6, = bl
on o0y

Solving for 0, we get
n ’
Oy = e " (C(é) +b/ 0.(&,m')e" dn’)
0
From the boundary condition (9.18), we get
C=0

so that

17 l
0,(&,m) :be*’”’/ 0.(& )’ df
0

Using the same procedure, from equation (9.15) we get

5 7
0,(¢,m) = e % 4 ae™% / 0,(¢',n)e d¢'
0

Substituting for §,, we find the Volterra integral equation

& .,
91:(5;77) — e—a£ + abe—(a&—i—bn)/ / ex(f/’n/)eaﬁ +bn df/ dn/
0 0
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(9.9)

(9.10)

(9.11)
(9.12)

(9.13)

(9.14)

(9.15)

(9.16)

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)
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for the unknown 6,,.
We will first solve the Volterra equation for an arbitrary A, where

IS L,
0.(€,m) = e + abhe~ (as+bn) / / 0.(¢',n")es +0 de" dif (9.25)
0o Jo
Let us express the solution in terms of a finite power series

This can be substituted in the integral equation. Since A is arbitrary, the coefficient of each order
of A\ must vanish. Thus

po(&m) = e ™ (9.27)

& , ,
b1(6) = abe(aEtn /0 /0 bol&,m)eoS+0" de! iy (9.28)

& , ,
d2(&m) = abe_(a&b”)/o /0 ¢1(§,777I)3a£ +om d¢' dn' (9.29)
(9.30)

§ , ,
(€)= abe-(aton /0 /0 b1 (€,1)e €01 dg’ dyy (9.31)
(9.32)
The solutions are
po = e % (9.33)
b1 = afe (1 —e7tM) (9.34)
by = %a%ze*“g(lfe’b"fbne*b") (9.35)
¢3 = %3(13536*“5(1—671”7—177)6*1”7—%b%]ze*bn) (9.36)
(9.37)
1 —Q — — 1 n— n— -

on = —a"€le Sl —e ™ —bpe - — (n_l)!b Lyn=le=tn) (9.38)

Substituting into the expansion, equation (9.26), and taking A = 1, we get
02(&,m) = do(&n) + d1(&,m) + ¢2(&,m) + . + D (&, m) (9.39)

where the ¢s are given above.

|
Ezxample 9.1
Find a solution of the same problem by separation of variables.
Taking
Ty(z,y) = X (@)Y (v) (9.40)
Substituting and dividing by XY, we get
1 0T 1 dY

— ——+4+2R=0 9.41
Cy Ox + Cy dy + ( )
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Since the first term is a function only of z, and the second only of y, each must be a constant. Thus we can

write
ax 1
X =0 (9.42)
dz camz(a+ R)
ay 1
= 0 (9.43)

dy cymy(a — R)

where a is a constant. Solving the two equations and taking their product, we have

c x y
Ty = — 9.44
Y a+Rexp[ camz(a+ R) * cymy(a—R)] ( )

where c is a constant. Substituting in equation (9.7), we get

T, =

z Y
- 9.45
a_Rexp|: cemz(a+ R) Jrcymy(a—R)] ( )

The rate of heat transfer over the entire plate, @, is given by

L-y
Q = [ Tl - To00)] dy (9.46)
0
Iz L
= cCrCyexp |:— i@t R G @ y_ B — 2} (9.47)

The heat rate can be maximized by varying either of the variables Cy or Cy.

9.6 Falkner-Skan boundary flows

Problems

1. This is a problem



CHAPTER 10

NATURAL CONVECTION

10.1 Governing equations
10.2 Cavities
10.3 Marangoni convection

See [204].

Problems

1. This is a problem.
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CHAPTER 11

POROUS MEDIA

(103,130, 201]

11.1 Governing equations
The continuity equation for incompressible flow in a porous medium is
V-V=0 (11.1)

11.1.1 Darcy’s equation

For the momentum equation, the simplest model is that due to Darcy
Vp =~V 4 pf (11.2)
K

where f is the body force per unit mass. Here K is called the permeability of the medium and
has units of inverse area. It is similar to the incompressible Navier-Stokes equation with constant
properties where the inertia terms are dropped and the viscous force per unit volume is represented
by —(u/K)V. Sometimes a term cpgdV /0t is added to the left side for transient problems, but it
is normally left out because it is very small. The condition on the velocity is that of zero normal
velocity at a boundary, allowing for slip in the tangential direction.

From equations (11.1) and (11.2), for f = 0 we get

Vip=0 (11.3)

from which the pressure distribution can be determined.

11.1.2 Forchheimer’s equation

Forchheimer’s equation which is often used instead of Darcy’s equation is
Vp = —%V—ch_l/2p|V|V+pf (11.4)

where c; is a dimensionless constant. There is still slip at a boundary.
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11.1.8 Brinkman’s equation

Another alternative is Brinkman’s equation

Vp = f%v L AVRV 4 pf

where [i is another viscous coefficient. In this model there is no slip at a solid boundary.

11.1.4 FEnergy equation
The energy equation is
oT
(Pc)ma + ,OCpV VT = kaQT

where k,, is the effective thermal conductivity, and

(pC)m = dpcp + (1 — @) (pc)m

135

(11.5)

(11.6)

(11.7)

is the average heat capacity. The subscripts m refers to the solid matrix, and ¢ is the porosity of

the material. An equivalent form is

oT
c—+V.-VT =, VT
ot
where
K,
Qy = —
PCp
y = Pm
PCp
See [1].
11.2 Forced convection
11.2.1  Plane wall at constant temperature
The solution to
ou v
42 = 0
ox + dy
y - _Kop
B w oz
, = _Kop
p Oy
is
u = U
=0
For I
zr Pe, > 1

O

(11.8)

(11.9)

(11.10)

(11.11)
(11.12)

(11.13)

(11.14)
(11.15)

(11.16)
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the energy equation is

or  or_ T
oz oy " oy?
or
oT 0T
=y ——
Ox Oy?
The boundary conditions are
T0) = T,
T (o) Ty
Writing
U
no= Y\ —
Q@
T—-T,
o) = 77—+
we get
oT de on
— = (Tooe—Ty) ———
or ( ) dn Ox
do U
= (Too—Ty)— | —yy/—=
( ) dn( oo
oT de on
oy~ T,
g | U
= (Teo—Ty)—1/—
( ) dn V anx
0T d’0 U
T = (T —T,) — ——
oy? ( ) dn? amax
so that the equation becomes
1
0" +-n0 =0
+ 277
with
f(0) = 0
0(c0) 1

We multiply by the integrating factor e’ /4 to get
a4 <6n2/49/) ~0
dn
The first integral is
o = Cre /4
Integrating again we have

77 ’
0 = 01/ e Ay + Oy
0
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(11.17)

(11.18)

(11.19)
(11.20)

(11.21)

(11.22)

(11.23)
(11.24)
(11.25)

(11.26)

(11.27)

(11.28)

(11.29)
(11.30)

(11.31)

(11.32)

(11.33)
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With the change in variables z = 7’ /2, the solution becomes
n/2 -,
0= 201/ e dx (11.34)
0

Applying the boundary conditions, we find that C; = 1/4/7 and Cy = 0. Thus

) n/2 R ( )

0 = — e " dx 11.35
7

- erfg (11.36)

The heat transfer coefficient is defined as

q
h = ——— 11.
T T (11.37)
km 0T
- _ Il 11.
Tw - Too ay ( 38)
00
= kma—y (11.39)
The local Nusselt number is given by
h
Nu, = — (11.40)
km,
00
= r— 11.41
o (11.41)
y=0
1 Uz
= — 11.42
ﬁ (0779} ( )
1
- __pel/2 11.43
e, (11.43)

|
Ezample 11.1
Find the temperature distribution for flow in a porous medium parallel to a flat plate with uniform heat
flux.

11.2.2 Stagnation-point flow

For flow in a porous medium normal to an infinite flat plate, the velocity field is

u = Crz (11.44)
= —Cy (11.45)
The energy equation is
oT oT o*T
— —Oy=— = aypy—— 114
Cx o Cy a9 e 52 (11.46)
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11.2.8 Thermal wakes
Line source

For Pe, > 1, the governing equation is

oT 0T
— = — 11.4
v ar o™ Oy? (11.47)
where the boundary conditions are
oT
— = 0aty=0 11.48
9 at y (11.48)
¢ = U [ (T-To)dy (11.49)
Writing
U
Q@
T-T, |Ux
= —_— 11.51
o) = = (1151)

we find that
oT q 1 df U q
or - _ 97 Gm [ 1 -3/2 | — [ =32 2 11.52
5 . < x )+ dny - ( 5% o W/Ua: (11.52)
oT A,
oL _ 4 [ 11.
Oy \/; amT (11.:53)

8°T q |andd U
-— = = _— 11.54
0y? k: Uz dn amz ( )
(11.55)
Substituting in the equation, we get
1
0" = —5(9+n9’) (11.56)
The conditions (11.48)-(11.49) become
00
— = 0atn=0 (11.57)
/ Ody = 1 (11.58)
The equation (11.56) can be written as
1d
0" =———(no 11.59
5 25 (1) (11.59)

which integrates to
1
0 = —57]9 +Cy (11.60)
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Since #’ = 0 at n = 0, we find that C; = 0. Integrating again, we get

0 =Che /4 (11.61)
Substituting in the other boundary condition
1= /OO 0 dn = Cs /Oo e~/ dn = 2/7Cy (11.62)
from which )
Cy = O (11.63)
Thus the solution is ) .
0= ﬁe_” /4 (11.64)
o 1 4 Qm —Uy?
T - Too = ozt =V exp(G ) (11.65)

|
Example 11.2

Show that for a point source

) (11.66)

11.3 Natural convection

11.8.1 Linear stability

This is often called the Horton-Rogers-Lapwood problem, and consists of finding the stability of a
horizontal layer of fluid in a porous medium heated from below. The geometry is shown in Fig. 11.1.

B

Y lgravity

x A

Figure 11.1: Stability of horizontal porous layer.

The governing equations are

V-V = 0 (11.67)

—Vp—%V—i—pg =0 (11.68)
T

a%—t—i—V-VT = 0, VT (11.69)

p = poll—B(T—Tp) (11.70)
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where g = —gj. The basic steady solution is
vV =0 (11.71)
T = Ty +AT (1 - %) (11.72)
P = DPo—pog {y + %BAT (i - 2y>] (11.73)

For constant heat flux AT = ¢/ /k,,. We apply a perturbation to each variable as

V = V+V (11.74)
T = T+T (11.75)
p = p+p (11.76)
Substituting and linearizing
V-V =0 (11.77)
-V — EV/ —BpeT'g = 0 (11.78)
T AT
8(% — Fw’ = a, VT (11.79)
Using the nondimensional variables
x* = % (11.80)
N amt
tt = I (11.81)
/
v = AV (11.82)
Qm
T/
™ = 11.
AT (11.83)
/
po= 1P (11.84)
KO,
the equations become, on dropping *s
V.-V =0 (11.85)
—-Vp—V+RaTk = 0 (11.86)
oT
——w = VT 11.87
5 "V (11.87)
where KHAT
Ra — POOPRHAT (11.88)
[y,
From these equations we get
V2w = RaV%T (11.89)
where
82
Vu=—-— (11.90)
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Using separation of variables

w(z,y,z,t) = W(y)exp (st+ ikyx) (11.91)
T(x,y,2,t) O(y) exp (st + ikyx) (11.92)

Substituting into the equations we get

d2
(dyz —k? - s> e = -W (11.93)
d2
(cly2 - k2) W = —k*Ra®© (11.94)
where
k? = k2 4k, (11.95)

Isothermal boundary conditions

The boundary conditions are W = © = 0 at either wall. For the solutions to remain bounded as
x,y — 00, the wavenumbers k, and k, must be real. Furthermore, since the eigenvalue problem is
self-adjoint, as shown below, it can be shown that s is also real.

For a self-adjoint operator L, we must have

(u, Lv) = (Lu,v) (11.96)
it oP 0Q
vL(u) —uL(v) = e + y (11.97)
then
_ or _ 0Q
/V WL(W) — uL()] dV = / ( o+ ay> v (11.98)
_ / V- (Pi+Qj) dV (11.99)
v
= /n.(Pi+Qj) (11.100)
S

If n-(Pi+@Qj) = 0 at the boundaries (i.e. impermeable), which is the case here, then L is self-adjoint.
Thus, marginal stability occurs when s = 0, for which

d2
<dy2 - k2> e = -W (11.101)
d2
(dy2 - k2> W = —k*Ra®© (11.102)
from which
d? ?
<dy2 - k:2> W =k’Ra W (11.103)

The eigenfunctions are
W = sinnmy (11.104)
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where n =1,2,3,..., as long as

n2n? 2
= k
Ra ( A + )

For each n there is a minimum value of the critical Rayleigh number determined by

dRa n?n? n2m?
(m_2< - +k>[_iﬂ+4

The lowest critical Ra is with kK = 7 and n = 1, which gives
Ra,. = 472

for the onset of instability.

Constant heat flux conditions

Here W = dO/dy = 0 at the walls. We write

W = Wyo+aWi+...
© = Op+a’0; +...
Ra = Rag+a?Raj+...
For the zeroth order system
d*Wy B
dy?
with Wy = dOg/dy = 0 at the walls. The solutions is Wy = 0, ©¢ = 1. To the next order
d*W,
dy2 = Wo — Raoeo
d’e
Liw, = 6

dy?
with W7 = dO;/dy = 0 at the walls. Finally, we get Ra. = 12.

11.8.2 Steady-state inclined layer solutions
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(11.105)

(11.106)

(11.107)

(11.108)
(11.109)
(11.110)

(11.111)

(11.112)

(11.113)

Consider an inclined porous layer of thickness H at angle ¢ with respect to the horizontal shown in

Fig. 11.2
Introducing the streamfunction ¢ (z,y), where
Lo
= %y
v = %
Ox
Darcy’s equation becomes
Op oY .
e 1-B(T - T,
R = pgll= AT - To))sing
dp = p Oy

"oy TR pog [1 — B(T —Tp)] cos ¢

(11.114)

(11.115)

(11.116)

(11.117)
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I

Figure 11.2: Inclined porous layer.

Taking 0/0y of the first and 9/9z of the second and subtracting, we have

ox?  Oy? 7

The energy equation is

(awT awT)_a <32T T

dy 0x Oz Oy

Side-wall heating

The non-dimensional equations are

>’y sz_mWK(m”

—— cos
or

da?

¢ — gsin¢>

0% 0%y oT

@—’_Tﬁ = —Ra <6xCOS¢—
QOT _ovor _ 0T 0T
oy 0xr  Ox Oy 022 Oy?

where the Rayleigh number is
Ra =7
The boundary conditions are
oT

1,[1 == 0, % =0 at x= 5

aoT 1

’l/) 0, aiy =—1 at Yy = 5

0y?

0

)

or sin (b)
Y
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(11.118)

(11.119)

(11.120)

(11.121)

(11.122)

(11.123)

(11.124)

(11.125)

(11.126)
(11.127)
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The governing equations become

02 do
a—yf — Ra sin¢d—y+RCcosqb = 0 (11.128)
d?6 d
——C—w = 0 (11.129)
dy? dy
An additional constraint is the heat transported across a transversal section should be zero. Thus
1/2 T
/ (uT — 8) dy =20 (11.130)
—1/2 ox

Let us look at three cases.
(a) Horizontal layer
For ¢ = 0° the temperature and streamfunction are

RaC?
T = Cx—y [1 + ;‘4 (4y* — 3)] (11.131)
Yy = ngC (442 — 1) (11.132)
Substituting in condition (11.130), we get
C (10R — Ra®C? — 120) =0 (11.133)
the solutions of which are
C =0 (11.134)
1
C = —+/10(Ra—12 11.135
T V10(Ra —12) ( )
1
C = ——/10(Ra —12 11.136
T V10(Ra —12) ( )

The only real solution that exists for Ra < 12 is the conductive solution C' = 0. For C' > 12, there
are two nonzero values of C' which lead to convective solutions, for which

RaC
o = % (11.137)
12

For ¢ = 180°, the only real value of C' is zero, so that only the conductive solution exists.
(b) Natural circulation
Let us take C'sin ¢ > 0, for which we get

Ve = g(l—cosh%) (11.139)
Nu = _2Bsinh%ia0cot¢ (11.140)
where
o> = RCsing (11.141)
p - _itCcote (11.142)

[
cosh 3
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and the constant C is determined from

B? (sinha a 2.«
C’—2C< - —1>—Bcot¢(cosh2—asmh2)—O

(¢) Antinatural circulation
For C'sin ¢ < 0, for which we get

e = g(l—cosh§>

g

Nu —
2B sinhg + BC cot ¢
where
B? = —RCsing
B - _1+C’cot¢
coshg

and the constant C is determined from

C—% (si;ﬁ —1) —Bcot¢<cosh§—;sinh§> =0

End-wall heating
Darcy’s law is

V) = R 8—Tsin¢+6chosgz5
ox dy

The boundary conditions are

oT A

P =0, o at 5
oT 1

Y =0, 3y 0 at = >

With a parallel-flow approximation, we assume

Y= Y(y)
T = Czx+6(y)
The governing equations become
&
dy? dy
2
(;715 — Rcosqb% — RCsing =0

An additional constraint is the heat transported across a transversal section. Thus

1/2
/ (uT — 8T> dy =1
—1/2 8:5
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(11.143)

(11.144)

(11.145)

(11.146)

(11.147)

(11.148)

(11.149)

(11.150)

(11.151)

(11.152)
(11.153)

(11.154)

(11.155)

(11.156)
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Let us look at three cases.
(a) Vertical layer
For ¢ = 0° the temperature and streamfunction are

B B
T = Czx+ ;1 sin(ay) — ;2 cos(ay) (11.157)
B B
v = =Lcos(ay)+ = sin(oy) + Bs (11.158)
C C
where
o® = —RC (11.159)
Substituting in condition (11.130), we get
C (10R — R*C® — 120) =0 (11.160)
the solutions of which are
C =0 (11.161)
1
C = VIR~ 12) (11.162)
1
= 5 VI0(R - 12) (11.163)

The only real solution that exists for R < 12 is the conductive solution C' = 0. For C' > 12, there
are two nonzero values of C' which lead to convective solutions, for which

Ye = % (11.164)
12

For ¢ = 180°, the only real value of C is zero, so that only the conductive solution exists.
(b) Natural circulation
Let us take C'sin ¢ > 0, for which we get

Ye = g(l—cosh%) (11.166)
Nu = _2Bsinh%0—é|—a6’cot¢ (11.167)
where
o> = RCsing (11.168)
p — _LfCcoto (11.169)
cosh §

and the constant C is determined from

B? /sinha
c-Z <

2
- 1> — Bcot ¢ (coshg - asinh ;) =0 (11.170)

(¢c) Antinatural circulation
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For C'sin ¢ > 0, for which we get

Ve

where

_ B g
= ¢ (1 — cosh2>

S
2Bsinh £ + 5C cot ¢

B? = —RCsing
B - _1+C’cot¢
coshg

and the constant C is determined from

B? [sinf
0—20< 5

Problems

1. This is a problem.

1) —Bcot(ﬁ(coshg—Zsinhg) =0
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(11.172)

(11.173)
(11.174)
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CHAPTER 12

MOVING BOUNDARY

12.1 Stefan problems
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Part V

Complex systems
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CHAPTER 13

RADIATION

13.1 Monte Carlo methods

[209]
[219] is a review of the radiative properties of semiconductors.

Problems

1. Consider an unsteady n-body radiative problem. The temperature of the ith body is given by

dT;

M=t

n
= =Y AiFo(T—T}) +Q;
=1

n
4 4
= A;> Fuo(T} =T} +Q;
i=1
What kind of dynamic solutions are possible?
2. The steady-state temperature distribution in a one-dimensional radiative fin is given by
drT
— +hT*=0
dx
Is the solution unique and always possible?

3. Show that between one small body 1 and its large surroundings 2, the dynamics of the small-body temperature
is governed by

dT
MlchTt1 = A Fioo(T = T + Q1.
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CHAPTER 14

BOILING AND CONDENSATION

14.1 Homogeneous nucleation
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CHAPTER 15

MICROSCALE HEAT TRANSFER

[108] is a review of microscale heat exchangers, and [36] of photonic devices.
[86,119,178,186,202,219]

15.1 Diffusion by random walk

15.1.1 One-dimensional

Consider a walker along an infinite straight line moving with a step size Az taken forward or
backward with equal probability in a time interval At. Let the current position of the walker be
x, and the probability that the walker is in an interval [x — dx/2,2 + dx/2] be P(x,t). Since
there is equal probability of the walker in the previous time step to have been in the interval
[ — Ax — dx/2,x — Az + dz/2] or [x + Ax — dx/2,x + Az + dz /2], we have

P(z,t) = %[P(xfAm,tht)JrP(erAx,tht}. (15.1)

Assuming that Az and At are small, Taylor series expansions give

P oP
Plxt Az, t—At) = P+ 6xA ﬁAt
19%P 82P 19%P
+§<’TA Dzt 2 08
10°P, 5 1 03P , 1 93P s 10°P .
60070 T 30zt A E S grar AT ~ g M
_— (15.2)

where the terms on the right side are evaluated at (x,t). Substituting in Eq. (15.1) we get

2 2 3
oP 0P _ 1P, 1P .,

o P T2 A 2020t (15.3)

where D = Axz?/2At. If we let Ax — 0 and At — 0 such that D is constant, we get the diffusion
equation
oP %P
—=D—. 15.4
ot 0x? (15-4)
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15.1.2 Multi-dimensional

Let P = P(r,t), and Ar be a step in any direction where |Ar| is a constant. Then
P(r,t) = / P(r+ Ar,t — At) dS (15.5)
S

where S is a sphere of radius |Ar| centered on r. Also

2
P(r+Ar,t—At):P+a—PAn- aPA L o°pP

R iE e el (15.6)

etc.

15.2 Boltzmann transport equation

The classical distribution function f(r,v,t) is defined as number of particles in the volume dr dv in
the six-dimensional space of coordinates r and velocity v. Following a volume element in this space,
we have the balance equation [109,123,124]

of of _ (of
at_|—‘/'V‘f_|_aha‘,_(8lf)scat, (157)

where a = dv/dt is the acceleration due to an external force. The term on the right side is due to
collisions and scattering. The heat flux is then

q(r,t) = /v(r,t)f(r,a,t)ED de, (15.8)
where D(¢) is the density of energy states ¢.

15.2.1 Relaxation-time approximation

Under this approximation

of _Jo—f
<at)scat a T 7 (159)
where 7 = 7(r, v). Thus
of of  fo—1f
S TV Vitaron =T (15.10)

Several further approximations can be made.

(a) Fourier’s law
Assume 9/0t =0, a=0 and Vf = Vfj in the left side of Eq. (15.10) so that

f=fo—1v-Vfo. (15.11)

Introducing explicitly the dependence of f on temperature, we can write

_ dh
Vo= "5 VT. (15.12)
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STt

e e O Qo O

Figure 15.1: Lattice of atoms of a single type

Using Eqgs. (15.11) and (15.12) in (15.8), we get

q=—kVT, (15.13)
where o
- .o
= /v (TV dT) eD de, (15.14)
since
/VfoED de = 0. (15.15)

(b) Cattaneo’s equation
Assume 7 = constant and V f = (dfp/dT)VT. Multiply Eq. (15.10) by veD de and integrate
to get

o) dfo _ 1
En vfeD de +/ (V' dTVT) veD de = 7;/Vf€D de. (15.16)
Using Eq. (15.8), this gives
q+ T%‘;‘ = —kVT, (15.17)

where k is given by Eq. (15.14). This is Cattaneo’s equation that can be compared to Fourier’s law,
Eq. (15.13).

15.3 Phonons

15.3.1 Single atom type

A lattice of atoms of a single type is shown in Fig. 15.1. The mass of each atom is m, the spring
constants are ¢, and a is the mean distance between the atoms. For a typical atom n, Newton’s
second law gives

A2z,
M- = A(Tpy1 — Tn) — c(Ty, — Tp—1) (15.18)
= c(Tpy1 — 2T + Tpo1)- (15.19)
Let _
z; = Telnka—wt) (15.20)

then the dispersion relation is

w= (> v (1— coska)'/?. (15.21)
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Figure 15.2: Lattice of atoms of two different type

The phase velocity is
2c 1/2 1/2
vy = (mk2> (1 —coska)'’”,

and the group velocity is
( c ) 1/2 asin ka
vy = [ — .
! (1 —coska)1/2

For ka — 0, we have

e\ 1/2
vg=a|— .
v=a(5)
The thermal conductivity
k=ke+kp
where k. and £, are those due to electron and phonon transports. We can also write
1
k= gcvgl

where c is the specific heat, and [ is the mean free path.

15.3.2 Two atom types

Newton’s second law gives

A2z
1?21 = C(yifl'v)*c(xz*yl—l)
= c(yi — 22 +yi-1),
d?y;
QW; = c(@iv1 —yi) — c(yi — x)
= C(l‘H_l — 2y; + l‘l)
Let
T, = aei(nka—wt)
3 - b
i = :/y\ei(nkafu.zt)7
so that
—miZw® = c(§— 22 +7ge *),

—mew? = ¢ (Eeik“ — 2y + f) ,
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(15.23)

(15.24)

(15.25)
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15.4. Thin films

which can also be written as

2c —miw?  —c(1 4 e"a) T |
—c(1+et*?)  2¢ — mow? vl

This means that ' 4
(2¢ — m1w2)(20 — mng) — 02(1 + e_’k'a)(l + el’m) =0,

which simplifies to
mimaw? — 2¢(my + ma)w? + 2¢3(1 — cos ka) = 0.

The solution is

1
w2 = 2¢(my + ma) & 20\/m% +m3 + 2mimg coskal .
2m1m2

The positive sign corresponds to the optical and the negative to the acoustic mode.

15.4 Thin films
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CHAPTER 16

BIOHEAT TRANSFER

16.1 Mathematical models

Good references are [35,53].
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CHAPTER 17

HEAT EXCHANGERS

17.1 Fin analysis

Analysis of Kraus (1990) for variable heat transfer coefficients.

17.2 Porous medium analogy

See Nield and Bejan, p. 87 [130].

17.3 Heat transfer augmentation

17.4 Maldistribution effects

Rohsenow (1981)

17.5 Microchannel heat exchangers

Phillips (1990).

17.6 Radiation effects

See Ozisik (1981).
Shah (1981)

17.7 Transient behavior

Ontko and Harris (1990)
For both fluids mixed

dT . ;
Me— +rnger (T1" — T™) + 1hea(T4" — Tg*') = 0

dt
For one fluid mixed and the other unmixed, we have

oT. oT.
pACQa—; + pVQAcQB—; +hP(T—T1) =0
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17.8 Correlations

17.8.1 Least squares method

Possible correlations are

y@) = > aa® (17.3)
k=0

ylz) = a0+ a1/2x1/2 +az+ a3/2m3/2 +aga® + ... (17.4)
ylz) = az™+bx" +... (17.5)
n
ylz) = / a(k)z® dk where — 1<z <1 (17.6)
k=0

A power-law correlation of the form
y=ca" (17.7)

satisfies the invariance condition given by equation (A.1).

17.9 Compressible flow

17.10 Thermal control

A cross-flow heat exchanger model, schematically shown in Fig. 17.1, has been studied using finite
differences [4-6]. Water is the in-tube and air the over-tube fluid in the heat exchanger. This
example includes all the conductive, advective and convective effects discussed before. The governing
equations on the outside of the tube, in the water, and in the wall of the tube are

m

Taca (T, — To) = ho2mre(Te —Tt), (17.8)
Ty, . 0Ty,
chwﬂ'rfﬁ + mwch«f = h2rri(Ty — Tyw), (17.9)
oT, 0*T,
preem(re — Tf)a—tt kem(r2 —r?) (95; + 2mroho(To — T) — 2mrihi (Ty — T(17.10)

respectively. L is the length of the tube; 1, (t) and i, (¢) are the mass flow rates of air and water;
T2 and T2,(t) are the inlet and outlet air temperatures; T,(t) is the air temperature surrounding
the tube; Ty (€, t) and T, (€, t) are the tube-wall and water temperatures; h; and h, the heat transfer
coeflicients in the inner and outer surfaces of the tube; r; and r, are the inner and outer radii of the
tube; ¢4, ¢ and ¢ are the specific heats of the air, water and tube material; p,, and p, are the water
and tube material densities; and k; is the thermal conductivity of the tube material. In addition,
the air temperature is assumed to be T, = (T% + T%,,)/2. The boundary and initial conditions are
T:(0,t) = Tp(0,t) = T2, Ty(L,t) = Ty (L.t), and T3 (£, 0) = T\, (§,0). Suitable numerical values were
assumed for the computations.

The inlet temperatures T}, and 737, and the flow rates 11, and 1, can all be used as control
inputs to obtain a desired outlet temperature, T%,, or T,%,. The flow rates present a special difficulty;
they appear in nonlinear form in Eqs. (17.8) and (17.9), and the outlet temperature is bounded. Fig.
17.2 shows the steady-state range of values of T}%, that can be achieved on varying 1,,; temperatures
outside this range cannot be obtained. It is also seen that the outlet water temperature is hard to
control for large water flow rates. As an example of control dynamics, Fig. 17.3 shows the results of

applying PI control on 77, to obtain a given reference temperature 7, = 23°C.
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Figure 17.1: Schematic of single-tube

23.6

cross-flow heat exchanger.
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Figure 17.2: The relation between T, and m,, for different r, [4].
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Figure 17.3: Behavior of T, as a function of time for K; = 50 and different K, [4].

¢

17.11 Control of complex thermal systems

The previous sections examined systems that were fairly simple in the sense that mathematical
models could be written down and their behaviors studied. For most practical thermal systems,
this is difficult to do with any degree of precision. In the following, we will look first at thermal
components and then combine them in networks.

17.11.1 Hydronic networks

The science of networks of all kinds has been put forward as a new emerging science [15]. In the
present context this means that a complete understanding of the behavior of components does not
necessarily mean that large networks formed out of these components can be modeled and computed
in real time for control purposes. Controllability issues of heat exchanger networks are reported
in [203]. Mathematical models of the dynamics of a piping network lead to differential-algebraic
systems [61]. The momentum equation governing the flow in each pipe is differential, while the
conservation of mass condition at each of the junctions is algebraic. Thus, it turns out that only
certain flow rates may be controllable, the others being dependent on these.

There are at present many different strategies for the thermal control of networks, and com-
parative studies based on mathematical models can be carried out. Fig. 17.4 shows a network in
which three specific control strategies can be compared [61,62]; each control method works differ-
ently and are labeled VF, MCF and BT in the following figures (details are in [61]). The network
has a primary loop, a secondary loop and a bypass that has the three strategies as special cases.
The primary loop includes a chiller, while the secondary has a water-air cooling coil which serves
as a thermal load. Integral controllers are used to operate the valves V,, V3, and V, to control
the air temperature leaving the cooling coil, T.F(¢). Figs. 17.5 and 17.6 show the dynamic response
of TE(t), the leaving water temperatures 7.5 (t), and the bypass pressure difference Apy, to step
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Figure 17.4: Network used to study control strategies [61].

changes in the air velocity over the coil. «(t), 8(t), and (t) are the respective closing fractions of
the valves which change dynamically in response to the error signal. There are some oscillations in
all the variables before they settle down to stable, steady values.

Laboratory experiments with a network of water-to-water heat exchangers have been reported
in [61-63]; the configuration is shown in Fig. 17.7. The hot water flow is diminished by changing its
controller set point. Figure 17.8 shows the secondary hot water flow rates gs, g7 and g4 to the heat
exchangers for the three different control strategies. Each curve represents one independent run;
that is, water flow to HXpr and H Xcp is zero when testing VF, and so on. The system is taken
to the nominal operating conditions, and then the hot water flow is decreased by a constant value
every 1800 s. The controls drive the system to different operational points while coping with the
changes. The input voltages vy, v4 and v; that control flow and the hot water temperature at the
heat exchanger inlet T, are also shown. It is seen that for certain control parameters, the system
is becomes unstable and the variables oscillate in time.

17.11.2  Other applications

There are a large number of other thermal problems in which control theory has been applied.
Agent-based controls have been proposed by complex thermal systems such as in buildings [213],
microwave heating [120], thermal radiation [143], and materials processing and manufacturing [55,
160]. Control of convection is an important and active topic; this includes the study of convection
loops [175,176,205,215,217], stabilization and control of convection in horizontal fluid layers [18,83,
125,145,190-195], and in porous media [189].
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Figure 17.5: Dynamic response of control system to drop in air
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Figure 17.8: Secondary hot water flows and Ty;: —o—BT, —>—CF, —x—V F. The dashed vertical
lines are instants at which the thermal load is changed [61].
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17.12 Conclusions

This has been a very brief introduction to the theory of thermal control. The fundamental ideas in
this subject are firmly grounded on the mathematics of systems and control theory which should be
the starting point. There are, however, a few aspects that are particularly characteristic of thermal
systems. Phenomena such as diffusion, convection and advection are common and the systems
are usually complex, nonlinear and poorly predictable dynamically. The governing equations cover
a wide range of possibilities, from ordinary and partial differential equations to functional and
differential-algebraic systems. Furthermore, control theory itself is a vast subject, with specialized
branches like optimal [79], robust [38], and stochastic control [37] that are well developed. Many of
the tools in these areas find applications in thermal systems.

The study of thermal control will continue to grow from the point of view of fundamentals as
well as engineering applications. There are many outstanding problems and issues that need to be
addressed. To cite one specific example, networking between a large number of coupled components
will become increasingly important; it is known that unexpected synchronization may result even
when multiple dynamical systems are coupled weakly [181]. It is hoped that the reader will use
this brief overview as a starting point for further study and apply control theory in other thermal
applications.

Problems

1. This is a problem



CHAPTER 18

SOFT COMPUTING

18.1 Genetic algorithms

[141]

18.2 Artificial neural networks

18.2.1 Heat exchangers

The most important of the components are heat exchangers, which are generally very complex in that
they cannot be realistically computed in real time for control purposes [92,153,182]. An approach
that is becoming popular in these cases is that of artificial neural networks (ANN) [73] for prediction
of system behavior both for time-independent [48,139,140,142] and time-dependent operation. It is
particularly suitable for systems for which experimental information that can be used for training
is available. Reviews of artificial neural network applications to thermal engineering [163, 168] and
other soft control methodologies [32,131,220] and applications [216] are available.

A stabilized neurocontrol technique for heat exchangers has been described in [47,49-52]. Fig.
18.1 shows the test facility in which the experiments were conducted. The objective is to control
the outlet air temperature 7)%,. Figs. 18.2 shows the results of using neurocontrol compared with
PID; both are effective. Fig. 18.3 shows the result of an disturbance rejection experiment. The
heat exchanger is stabilized at T, = 36°C, and then the water flow is shut down between ¢ = 40s
and t = 70s; after that the neurocontroller brings the system back to normal operation. A neural
network-based controller is able to adapt easily to changing circumstances; in thermal systems
this may come from effects such as the presence of fouling over time or from changes in system
configuration as could happen in building heating and cooling systems.

[51,166]

[162]

Problems

1. This is a problem
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Figure 18.1: Experimental setup: (a) heat exchanger test facility with wind tunnel and in-draft fan,
(b) heat exchanger with water and air flows indicated; T%,, is the air outlet temperature [47].
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Figure 18.2: Time-dependent behavior of heat exchanger using ANN, PID and PI control method-
ologies [47].
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Figure 18.3: Time-dependent behavior of heat exchanger with neurocontrol for disturbance rejection
experiment showing flow rates and air outlet temperature [47].
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APPENDIX A

MATHEMATICAL REVIEW

A.1 Fractals

[60]

Fractals are objects that are not smooth; they are geometrical shapes in which the parts are
in some way similar to the whole. This self-similarity may be exact, i.e. a piece of the fractal, if
magnified, may look exactly like the whole fractal.

A function f(z) is invariant under change of scale if there exists constants ¢ and b, such
that [199]

f(az) = bf () (A1)

A fractal curve must be nowhere rectifiable (i.e. any part of it cannot be of finite length) and
homogeneous (i.e. any par6 is similar to the whole).

Before discussing examples we need to put forward a working definition of dimension. Though
there are many definitions in current use, we present here the Hausdorff-Besicovitch dimension D.
If N, is the number of ‘boxes’ of side ¢ needed to cover an object, then

. In N,
b= lm 07 (4.2)

We can check that this definition corresponds to the common geometrical shapes.
1. Point: N.=1,D =0
2. Line of length I: N.=1/e,D =1
3. Surface of size [ x I: N, = (I/€)?,D =2
4. Volume of size [ x | x I: N, = (I/€)®,D =3

A fractal has a dimension that is not an integer. Many physical objects are fractal-like, in that
they are fractal within a range of length scales. Coastlines are among the geographical features that
are of this shape. If there are N, units of a measuring stick of length €, the measured length of the
coastline will be of the power-law form eN, = ¢!~ where D is the dimension.
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Figure A.1: The Cantor set.

Figure A.2: The Koch curve.

A.1.1 Cantor set

Consider the line [0,1] corresponding to k& = 0 in Figure A.1. Take away the middle third to leave
the two portions; this is shown as k = 1. Repeat the process to get k = 2,3,.... If K — oo, what is
left is called the Cantor set. Since N, = 2* and € = 1/3 its dimension is D =1In2/In3 = 0.63....
If we define a function C(t) at the kth level so that Cj(t) = (3/2)* if ¢t belongs to the set and
zero otherwise, its integral over the interval is unity. In terms of this function we can also define

D(t) = /ot lim Cy(t") dt’ (A.3)

k—oo

that is called the devil’s staircase.

A.1.2 Koch curve

Here we start with an equilateral triangle shown in Figure A.2 as k = 0. The middle third of each
side of the triangle is removed, and two sides of a triangle drawn on that. This is shown as k = 1.
The process is continued, and in the limit gives a continuous, closed curve that is nowhere smooth.
Since N, = 3 x 4% and € = 1/3F, the dimension of the Koch curve is D =In4/In3 = 1.26.. ..

A.1.8 Knopp function

This is the function

K(t) = i 9=t g(gny) (A.4)
n=0

where 0 < H < 1, and g(t) is the periodic triangular function

]2t for 0<t<1/2
9(t) { 21 —t) for 1/2<t<1 (A-5)
defined on [0,1].
A.1.4 Weierstrass function
This is the function -
W(t)=> w ™ cos (W't + ) (A.6)
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Figure A.3: Mandelbrot set

where a is real, b is odd, and ab > 14 37 /2. It is everywhere continuous, but nowhere differentiable.
The related Weierstrass-Mandelbrot function

W (t) = i w™ ™ (1 — cosw™t) (A7)

n=—oo

satisfies the invariance relation A.1.

A.1.5 Julia set

An example of this comes from the application of Newton’s method to find the complex root of the
equation z3 = 1. In this method the following iterative scheme is set up:

Zh41 = Rk — (A.8)
Each one of the three roots has a basin of attraction, the boundaries of which are fractal.

A.1.6 Mandelbrot set
This is the set of complex numbers ¢ for which
Zpp1 =20+ c (A.9)

stays bounded as k — oco. The boundaries of this set shown in Figure A.3 are again fractal.

A.2 Perturbation methods
A.3 Vector spaces

Functional analysis, norms, inner product, complete space, Banach and Hilbert spaces, operators,
eigenvalues problem, adjoint and self-adjoint operators.

Finite-dimensional spaces, linear algebra.

Eigenfunction expansions.

[13,78,107]

A.4 Dynamical systems

A dynamical system is a set of differential equations such as

dx;
dt’ = fi(z1, @, ..., t; A1, Moy, ) fori=1,...,n (A.10)
The z1,...,z,s are state variables and the Aq,..., A, are bifurcation parameters. The mapping

f: X XRP =Y is a vector field. If fi,..., f, do not depend on time ¢, the system is autonomous.
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A nonautonomous system can be converted into autonomous one by the change in variable z, 11 = t,
from which we can get the additional equation

dxn+1

=1 (A.11)

We will assume that the solutions of the system are always bounded. The system is conservative if
the divergence of the vector field Y df;/0x; is zero, and dissipative if it is negative. An attractor of
a dissipative dynamical system is the set of {x;} as t — oco. The critical (or singular, equilibrium or
fized) points, Z;, of equation (A.10) are those for which

fi(l‘l,l‘g,...,t;/\l,)\z,...,)\p)ZO (A.12)

There may be multiple solutions to this algebraic or transcendental equation.
Defining a new coordinate z = x; — T; that is centered at the critical point, we get the local
form

dx!
o = Sl =T — ) (A.13)
Sometimes we will use the notation
dLEi
i =~ 9@ ) (A.14)

to indicate the local form, the origin being one critical point of this system.

A.4.1 Stability

The stability of the critical points is of major interest. A critical point is stable if, given an initial
perturbation, the solutions tends to it as t — oo.

Linear stability

The vector field in equation (A.14) can be expanded in a Taylor series to give

dxi 8gi

= it A.15
dt - 833j i + ( )

J 0

The eigenvalues of the Jacobian matrix

9gi
A= A.16
o (A.16)

determine the linear stability of the critical point. The critical point is stable if all eigenvalues have
negative real parts, and unstable if one or more eigenvalues have positive real parts.

A.4.2 Routh-Hurwitz criteria
The polynomial equation
aps" +a1s" V..t an_1s+a,=0

has roots with negative real parts if and only if the following conditions are satisfied:
(i) a1/ao, az/ao, ..., an/ag >0
(i) D; >0,i=1,...,n
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The Hurwitz determinants D, are defined by

D1 = ai
D2 _ a1 as
ap a2
a1 agz as
D3 = an ag a4
0 a1 as
a; a3 as ... QAag2pn—1
apg a2 A4 ... QA9p—2
0 a; a3 ... QAagpn—3
D, = 0 ap as A2n—4
0 0 0 an
with a; =0, if i > n.
Global stability
Consider the dynamical system in local form, equation (A.14). If there exists a function V (z1,...,zy)

such that V' > 0 and dV/dt < 0, then the origin is globally stable, that is, it is stable to all
perturbations, large or small. V is called a Liapunov function.

[56]
A.4.8 Bifurcations

The critical point is one possible attractor. There are other time-dependent solutions which can also
be attractors in phase space, as indicated in the list below.

e Point (steady, time-independent)

e Closed curve (limit cycle, periodic)

Torus (periodic or quasi-periodic)

Strange (chaotic)

For a given dynamical system, several attractors may co-exist. In this case each attractor has
a basin of attraction, i.e. the set of initial conditions that lead to this attractor. A bifurcation is a
qualitative change in the solution as the bifurcation parameters \; are changed.

A.4.4 One-dimensional systems

A one-dimensional dynamical system is of the type

dx
— = A7
= @) (A.17)
|
Ezample A.1
Consider the linear equation
de =ar+b (A.18)

dt
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The critical point is
b

T=—— (A.19)
a
On defining 2’ = x — T, the local form is obtained as
d /
R (A.20)
dt
We can take one of two approaches.
(a) Solving
z' = xhe (A.21)

The critical point is a repeller if a > 0, and an attractor if a < 0.

(b) Alternatively, we can multiply equation (A.20) by 2z’ to get

v =2aV (A.22)
dt

where V' = 2’2, Since V is always nonnegative, the sign of dV//dt is the sign of a. Thus V will increase with

time if a > 0, and decrease if a < 0.
In either case we find that the critical point is unstable if a > 0 and stable if a < 0.

|
Example A.2

The nonlinear equation
%‘f = -z [2? — (A = Xo)] (A.23)
has critical point which are solutions of the cubic equation
Z[E2—(A—X0)] =0 (A.24)
Thus
zqy = 0 (A.25)
T2y = A—Xo (A.26)

l’(g) = —\ )\ — )\0 (A27)

where z(;y (i = 1,2,3) are the three critical points. The bifurcation diagram is shown in Fig. A.4.

(i) Critical point Z(;) =0
To analyze the local stability of Z(;) = 0, we obtain the local form

d /
d% = /(A= Ag) — 2’3 (A.28)
Neglecting the cubic term z’3, this becomes

dz’ ,
— =2 (A=A A.29
B0 0) (A.29)

Thus z(;) = 0 is locally stable if A < Ao, and unstable if A > Ao.
To analyze the global stability, equation (A.28) can be written as
1dV
S— =V(A=X) - V? A30
S = V=) (A:30)

where V = z/2. For A < Ao, V >0, dV/dt <0, so that (1) = 0 is globally stable.

(i) Critical point Z(2) = VA — Ao
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Figure A.4: Supercritical pitchfork bifurca-
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Figure A.6: Transcritical bifurcation.
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Figure A.5: Subcritical version of Fig. A.4
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Figure A.7: Saddle-node bifurcation.

The local form of the equation around this critical point is

ddi: —_— (M+x’) [(MH’)Q—(A—,\O)] (A.31)

Linearizing, we get

so that this critical point is linearly stable.

(iii) Critical point Z(3y = —v/A — Ao
This is similar to the above.

A.4.5 Examples of bifurcations

e Supercritical: Fig. A.4.
e Subcritical: Fig. A.5.

e Transcritical: Fig. A.6.
e Saddle-node: Fig. A.7.

2(X — Xo)x’ (A.32)
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Figure A.8: Imperfect bifurcations; (a) € > 0, (b) € < 0.

A.4.6  Unfolding and structural instability

Adding a small constant to the vector field in equation (A.23), we get
fl@)=—z [z — (A= Xo)] +e¢

The critical points are solutions of

2 (A=XN)T—€e=0

To see the nature of the curve, we make an expansion around T = 0, A = Ay and write

= /
r = T

A= N+ N

For small ' and A, we get
N1 = —e

177

(A.33)

(A.34)

(A.35)
(A.36)

(A.37)

Figure A.8 shows the result of adding the imperfection €. The dynamical system without € is thus

structurally unstable.

A. 4.7 Two-dimensional systems

Consider
dx
d
= = fy(l', 9:)

dt

(A.38)

(A.39)
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The linearized equation in local form has a Jacobian matrix

The eigenvalues satisfy a quadratic equation
M+PA+Q=0

from which
>\ =

[—P + \/W}

DN =

The sign of the discriminant
D =P%—-4Q

178

(A.40)

(A.41)

(A.42)

(A.43)

determines the nature of the solution. If D < 0, the eigenvalues are complex and the solution in
phase space is a spiral; if in addition P > 0, the spiral is stable, and if P < 0, it is unstable. If,
on the other hand, D > 0, the eigenvalues are real; the solutions do not oscillate in time but move
exponentially towards (if all eigenvalues are negative) or away (if at least one eigenvalue is positive)

from the critical point.

|
Ezample A.3

dx
dt
dy
dt

This is a conservative system which is equivalent to

=Y

= —(A=Xo)z

d?z
ﬁ‘i‘()\—)\o)xio

The solutions are exponential if A < Ag, and periodic if A > Ag.

|
Example A.J

dx
dt

B = —wlz—oy
dt

= Y

For o > 0, the system is dissipative, and the solutions are damped oscillations.

(A.44)

(A.45)

(A.46)

(A.47)

(A.48)

The occurrence of periodic solutions in two-dimensional systems, permits a Hopf bifurcation,
which is a transition from a time-independent to a periodic behavior through a pair of complex

conjugate imaginary eigenvalues.
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|
Example A.5

The dynamical system
i—f = A=X)z—y—@*+yz (A.49)
dy 2. .2
- z+ A=)y — (2 +y°)y (A.50)
can be converted to polar coordinates. Substituting x = rcosf and y = rsin6, we get
—rsin% —i—cos@% = (A= )Xg)rcosf —rsind —r3cos (A.51)
rcos%—i—sin@% = rcosf+ (A= Xo)rsind —r3sinf (A.52)
which simplifies to
% = r ()\ — Ao — r2) (A.53)
do
il 1 (A.54)

There are two values of r, i..e r = 0 and 7 = /A — Ao, at which dr/dt = 0. The first is a critical point at the
origin, and the second a circular periodic orbit that exists only for A > Ag. A linear analysis of equations (A.49)
and (AHopftwo) shows that the origin is stable for A < Ag. For A > Ao, a similar analysis of equation (A.53)
indicates that » = v/\ — Ao is a stable orbit. There is thus a Hopf bifurcation at A\ = Ag.

|
Ezample A.6

dx

— A.55
% Y (A.55)
% = —wlr-o (A= z? — y2) (A.56)

This is a Hopf bifurcation at A = \g, at which point the solution goes from time-independent to periodic.

A.4.8 Three-dimensional systems
Forced Duffing equation

Since a non-autonomous equation can be converted into a three-dimensional autonomous system,
we will include the case of the forced Duffing equation here!.

dz
dy )
o = w2 ) (A.58)

1Sometimes defined with a negative sign in front of z in the second equation.
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Lorenz equations

An important example is the Lorenz equations:

Z—f = o(y—=x) (A.59)
% = Ax—y—uxz (A.60)
CC% = —bz+uxy (A.61)

where o and b are taken to be positive constants, with ¢ > b+ 1. The bifurcation parameter will be
A

The critical points are obtained from

y—r =
Ne—7—Tz =
—-bz+Ty =
which give
T 0 b(A—1) —/b(A=1)
y]l=101], bA—=1) |, —vb(A=1) (A.62)
zZ 0 A—1 A—1

A linear stability analysis of each critical point follows.

(a)T=79=%z=0
Small perturbations around this point give

d x’ -0 o 0 x’
pn y | = A -1 0 Y’ (A.63)
z 0 0 -b z

The characteristic equation is

A+D)[N+ Ao +1)—a(A=1)] =0 (A.64)

from which we get the eigenvalues —b, $[—(1 + o) + /(1 +0)2 —40(1 — A)]. For 0 < X < 1, the
eigenvalues are real and negative, since (1 + )2 > 40(1 — A). At A = A\, where \; = 1, there is a
pitchfork bifurcation with one zero eigenvalue. For A > A1, the origin becomes unstable.

by z=g=ybA=-1),z=1-1
Small perturbations give

d z’ -0 o 0 '
v |- 1 1 - Y (A.65)
-4 V(A —=1) /b(A—1) —b 4

The characteristic equation is

Nt (0 +b+ 1A+ (0 + A)bA+20b(A — 1) =0 (A.66)
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Using the Hurwitz criteria we can determine the sign of the real parts of the solutions of this cubic
equation without actually solving it. The Hurwitz determinants are

D1 = O'+b+1
D, — c+b+1 20b(A+1)
2 1 (0 + )b
= oblo+b+3)—A(c —b—1)
o+b+1 20b(\—1) 0
D3 = 1 (U+/\)b 0
0 orb+1l 20b(A—1)

= 20b(A—1)[ob(c +b+3) — Xb(c —b—1)]
Thus the real parts of the eigenvalues are negative if A < A3, where

)\3:0(U+b+3)

" (A.67)

At A = X3 the characteristic equation (A.66) can be factorized to give the eigenvalues —(o + b+ 1),
and +i 20(0 4+ 1)/(c — b — 1), corresponding to a Hopf bifurcation. The periodic solution which is
created at this value of A can be shown to be unstable so that the bifurcation is subcritical.

Here is a summary of the series of bifurcation with respect to the parameter A:

e Origin is a stable critical point for A < A;; becomes unstable at A = A;.

e Two other critical points are created for A > A1; these are linearly stable in the range A\; <
A< As.

e Just below Az, i.e. in the range Ao < A < Ag, the two critical points are stable to small
perturbations, but for large enough perturbations produce chaos.

e For A > )3, all initial conditions produce chaos (except for periodic windows).

A.4.9 Nonlinear analysis
Center manifold theorem

[30]
Consider a vector field f;(x) with f;(0) = 0. The eigenvalues X of 0f;/0x; at the origin are of
three kinds:
(a) Re(A) > 0 with the generalized eigenspace E*.
(b) Re(A) < 0 with the generalized eigenspace E*.
(¢) Re(A) = 0 with the generalized eigenspace E°.
There exist manifolds W*, W* and W€ to which E*, E° and E°, respectively, are tangents. W,
W#, and W€ are the unstable, stable and center manifolds, respectively.

A.5 Singularity theory

We have seen that the critical points of a dynamical system, equation (A.10), are found by solving
an equation of the type (A.12), i.e. by finding the singularities of the function f;. The type of
bifurcations that occur with a single bifurcation parameter A has been discussed in the previous
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One solution

Three solutions

One solution

Figure A.9: Surface T = ZT(\, p). Figure A.10: Bifurcation set.

section. Here we increase the number of parameters to Ai,...,\, and look at the consequent
changes in the bifurcations. A bifurcation (or catastrophe) set is the set of points in parametric
space A1,...,Ap at which equation (A.12) is satisfied.

|
Example A.7

Examine the one-dimensional vector field
f(z) = —(=*+pr+q) (A.68)

Figure A.9 shows the surface = Z(\, 1). There are three real solutions if the discriminant D = 43 +27u2 > 0,
and only one otherwise. A section of this surface at p = 0 will give Fig. A.4 and p = € will give Fig. A.8.

The bifurcation set is shown in Fig. A.10 in (A, ) coordinates. It is projection of the T = T(A, p) surface
in the (A, p) plane.

The quadratic surface
a12? + asy® + asz® + ayxy + asxz + agyz + arx + agy + agz + ajo =0 (A.69)

can be classified in terms of eleven canonical surfaces. For gradient systems, i.e. systems in which
fr = 0¢/0x;, there are only seven.

A.6 Partial differential equations

Classification
Boundary conditions

A.6.1 Eigenfunction expansion

Let T = T(x,t) and
oT

ot
in a domain €2, where L is a linear operator with spatial partial derivatives. The boundary and
initial conditions are T'=0 at 9Q and T = f(x) at t = 0.
Let ¢;(x) be the eigenfunctions of £, such that

= L(T) (A.70)

Loi = Nio. (A.71)
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Expand T'(x,t) in the form
=Y ai(t)i(x). (A.72)
i=1

Substituting in the equation, we get

> g = S wL). (A73)
=1 =1

Taking the inner product with ¢;, we find that

Zdaz (i, d5) Zaz L(¢i), ¢5)- (A.74)

At this point we restrict ourselves to the special case in which £ is a self-adjoint operator, so that
the \; are real and the ¢; are orthonormal. Thus

(P, j) = dij- (A.75)
Using eq. (A.71), we get
d
% = \ja;. (A.76)
A.7 Waves
A wave can be of the form [208] 4
f(z,t) = Aellke—wt) (A.77)

If we follow a point at constant phase ¢ = kx — wt = k(x — wt/k), we will be moving with the phase
velocity vy, where

v, = % (A.78)
The relation between the frequency w and the wave number k&
w=w(k) (A.79)

is called the dispersion relation. The group velocity is the velocity at which the energy of the wave
moves, and is given by

dw
= —. A.
Ug dk ( 80)
Problems
1. Show that J
dit” = —zfz— (A= Ao)]

has a transcritical bifurcation.
2. Carry out an imperfection analysis on the transcritical bifurcation above.

3. Show that d
r 2
— ="+ (A=A
7 ( 0)
has a saddle-node bifurcation.
4. Investigate the bifurcations in
dx

axr 4 5.2
i a:(m 2z +2+)\)



APPENDIX B

NUMERICAL METHODS

[33,96,97,126,146,171,196]
Method of weighted residuals
Let us apply the following numerical methods to the one-dimensional fin equation
1
dz?

with the boundary conditions T'(0) = T, and T'(1) = Tr.

-T=0

B.1 Finite difference methods

Divide [0,1] into N intervals, each of length Az = 1/N, and number the nodes as i =0,1,2,...,

so that x; = i{Ax. Write the second derivative at = x; as

T" (x:) Tigy1 — 2T+ Ti—1)

1
- Ag? (
where T; = T'(x;), so that from Eq. B.1, we get

—1iy1 + (2 + A]JQ)T,L‘ —-T;,-1=0

N

(B.2)

(B.3)

at i =1,2,...,N — 1. Applying the boundary conditions, we get N — 1 algebraic equations in the

unknowns T1,T5, ..., Ty—_1. Thus we have
C -1 0 N 0 T1 TL
-1 C -1 O T2 0
Tn_o 0
0 0 -1 ¢ Tn_1 Tr

where ¢ = 2 + Axz?, which can be solved.

B.2 Finite element methods

[161]

184
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i=0 1 2 N E‘:O E:‘AX
L |
[
—y =&

Figure B.1: Finite differencing. Figure B.2: Finite element.

Once again, divide [0, 1] into N intervals or finite elements, each of length Az = 1/N. Number

the nodes as i = 0,1,2,..., N so that z; = iAz. In each element use a local coordinate & that goes
from £ = 0 to & = Az and correspond to the global coordinate x = z; and x* = ;41 = z; + Ax,
respectively.

Let us use the linear test functions
h(e) = 1- = (B.5)
He) = o (.6)
within element i. Notice that ¢1(0) = ¢2(Az) = 1 and ¢1(Ax) = ¢2(0) = 0, so that we can write
T(§) = Ti—101(§) + Tiga(§),

where T;_1 = Tp—y, , = Te—o and T; = Tp—y, = Te—a,. Using the Galerkin method

Ax d2
/0 (d;f—T) ou(€) de = 0,

where k = 1, 2. Integrating by parts

Az
Ty, —/O [ded)’“ +T¢5k] d¢ = 0.

¢ de

0

where T" = dT'/d¢. For k =1 and k = 2, we have the two equations

() (%)
T G BT R S
T4 T (Ax 6 Ti A;L’+ 3 =0

respectively. Doing this for each of the N element, (and multiplying by —Az for convenience) we

0,
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end up with 2V algebraic equations.

Ax? Az?

Az T+ (1 + Ta”)T0 ~1-=)n = 0 (B.7)

Az T] —(1- ATx?)TO +(1+ ATQUQ)T1 =0 (B.8)

Az T) + (1 + %ﬁ)ﬂ (- Asz):r2 = 0 (B.9)

Az Ty —(1— ATQCQ)Tl +(1+ ATCCQ)TQ =0 (B.10)
(B.11)

Ax Ty +(1+ AT:'JQ)TN_1 (- Asz)TN = 0 (B.12)
Ar T —(1— AT"TQ)TN_l +(1+ AT:CQ)TN = 0 (B.13)

There are 2N unknowns including T and 7" at each of the N + 1 node minus the values of
Ty and T at the two ends that are known, so that we can solve for the unknowns at this stage if
we wish. However, it can be noticed that adding Eqs. (B.8) and (B.9) cancels the T} term. So we
discard the first and last equations, add the rest in pairs to get the reduced set

C1 —C2 0 N 0 T1 CQTL

—C2 C1 —C9 O e Tg O

0 —c a -—c ... : = : (B.14)
. . . . TN72 0

0 0 N —C2 C1 TN—I CQTR

where ¢; = 2(1 + Az?/3),c0 = 1 — Ax? /6.

B.3 Spectral methods

For the following, let

QZT—TL - (TR—TL).’E (B15)
so that
d?o
= g(z) (B.16)

with the homogeneous boundary conditions #(0) = 6(1) = 0.
The dependent variable is expanded in terms of orthonormal functions ¢, (x) that satisfy the
boundary conditions. Thus

N
0(z) = anen(z). (B.17)

Substituting in the differential equation gives the residual

N d2 N
Z Qn (de — an) —g==¢ (B.18)

n=1
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Making the residual and functions v,,(x) orthogonal gives

(6,9m) =0 (B.19)

This reduces to an algebraic equation for each m. Solve.

B.3.1 Trigonometric Galerkin

Here

bn(x) = by (x) = V2sin(nrx) (B.20)

with respect to the Lo inner product.

B.3.2  Trigonometric collocation

Equate the residual in Eq. (B.18) to zero in N equally-spaced points. This gives algebraic equations;
solve.

B.3.3 Chebyshev Galerkin

Using ¢ = 2z — 1, transform the independent variable to the domain [—1,1]. The orthonormal
Chebychev functions are ¢, (&) = 2"T,(£)/v/2m, where the Chebychev polynomials T, are

T, = 1
T, = ¢
T3 = 262-1

T, = 48 -3¢

Take ¢, () = ¢,(€) and an inner product with respect to the weight function 1/4/1 — £2.

B.3.4 Legendre Galerkin
B.3.5 Moments

Let ¢(x) = 2(1 — ), so that it satisfies the boundary conditions and 6(z) = a¢(z). Take ¢¥(z) =1
to determine a.

For higher-order accuracy, take ¢1(7) = (1 — ), ¢p2(x) = 22(1 — x), #3(z) = (1 — 2)?,... and
1/’1(@ = 137/}2(35) =T, 1/}3(55) = 1'23 s

B.4 MATLAB

The PDE Toolbox uses a finite-element code to solve basic partial differential equations needed for
conduction heat transfer.
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Problems

1. Consider the convective fin equation

w0

where 0 < z < 1, with T(0) = 1, T(1) = 0. Solve using the following methods. You may have to transform the
dependent or independent variable differently for each method. In each case show convergence.

Finite differences: Divide into N parts, write derivatives in terms of finite differences, reduce to algebraic
equations, apply boundary conditions, and solve.

Trigonometric Galerkin: Expand in terms of N trigonometric functions, substitute in equation, take
inner products, reduce to algebraic equations, and solve.

Chebyshev Galerkin: Expand in terms of N Chebyshev polynomials, substitute in equation, take inner
products, reduce to algebraic equations, and solve.

Trigonometric collocation: Expand in terms of N trigonometric functions, substitute in equation, take
inner products, apply collocation, and solve.

Galerkin finite elements: Divide into N elements, assume linear functions, integrate by parts, assemble
all equations, apply boundary conditions, and solve.

Polynomial moments: Assume dependent variable to be a Nth-order polynomial that satisfies boundary
conditions, obtain algebraic equations by taking moments, and solve.

2. Consider the convective fin equation with heat generation

T

where 0 < z < 1, with T(0) = 1, T7(1) = 0. Solve using the above methods.



APPENDIX C

ADDITIONAL PROBLEMS

1. Plot all real 0(f,¢) surfaces for the convection with radiation problem, and comment on the
existence of solutions.

2. Complete the problem of radiation in an enclosure (linear stability, numerical solutions).

3. Two bodies at temperatures T3 (t) and T»(t), respectively, are in thermal contact with each
other and with the environment. The temperatures are governed by

T

Mlcl% b RASTY — Ty) + hA(Ts — o) = 0 (1)
T

MQCQ% +RASTy — Th) + hA(T> — T) = 0 (C.2)

Derive the equations above and explain the parameters. Find the steady-state temperatures
and explore the stability of the system for constant T.

4. Consider the change in temperature of a lumped system with convective heat transfer where
the ambient temperature, To,(t), varies with time in the form shown. Find (a) the long-time
solution of the system temperature, T'(t), and (b) the amplitude of oscillation of the system
temperature, T'(¢), for a small period dt.

-

t

Figure C.1: Ambient temperature variation.

5. Two bodies at temperatures T3 (t) and T»(t), respectively, are in thermal contact with each

189
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other and with the environment. The temperatures are governed by

dT

M161d7tl —|— hcAc(Tl — TQ) —|— hA(Tl — Too(t)) = Ql(t)
dT:

MQCQT: —|— h,cAc(Tg — Tl) —|— hA(TQ — Toc (t)) = Qg(t)

where )7 and Q2 are internal heat generations, each one of which can be independently
controlled. Using PID control, show numerical results for the different types of responses
possible (damped, oscillatory, unstable, stable, etc.). Take the ambient temperature, Tw,, to
be (a) constant and (b) oscillatory.

Two bodies at temperatures T;(t) and T5(t), respectively, are in thermal contact with each
other and with the environment. The temperatures are governed by

dTy

M161W + hcAc(Tl — Tg) + hA(Tl — Toc(t)) = Q1(t)
MQCQ% + hcAc(Tg — Tl) + hA(TQ — Toc(t)) = Qg(t)

where Q1 and @) are internal heat generation sources, each one of which can be independently
controlled. Using on-off control, show analytical or numerical results for the temperature
responses of the two bodies. If you do the problem analytically, take the ambient temperature,
T, to be constant, but if you do it numerically, then you can take it to be (a) constant, and
(b) oscillatory.

Consider a rectangular fin with convection, radiation and Dirichlet boundary conditions. Cal-
culate numerically the evolution of an initial temperature distribution at different instants of
time. Graph the results for several values of the parameters.

Consider a longitudinal fin of concave parabolic profile as shown in the figure, where § =
[1— (2/L))%8. & is the thickness of the fin at the base. Assume that the base temperature is
known. Neglect convection from the thin sides. Find (a) the temperature distribution in the
fin, and (b) the heat flow at the base of the fin. Optimize the fin assuming the fin volume to
be constant and maximizing the heat rate at the base. Find (c) the optimum base thickness
0p, and (d) the optimum fin height L.

Analyze an annular fin with a prescribed base temperature and adiabatic tip. Determine its
fin efficiency and plot.

Consider a square plate of side 1 m. The temperatures on each side are (a) 10°C, (b) 10°C, (c)
10°C, and (d) 10+sin(wz) °C, where z is the coordinate along the edge. Find the steady-state
temperature distribution analytically.

Write a computer program to do the previous problem numerically using finite differences and
compare with the analytical results. Choose different grid sizes and show convergence.

A plane wall initially at a uniform temperature is suddenly immersed in a fluid at a different
temperature. Find the temperature profile as a function of time. Assume all parameter values
to be unity.

Write a computer program to do the previous problem numerically using finite differences and
compare with the analytical results.
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Figure C.2: Longitudinal fin of concave parabolic profile.

14. Consider the hydrodynamic and thermal boundary layers in a flow over a flat plate at constant
temperature. Starting from the boundary layer equations

Oou Ov
—+=— =0 C.3
dr Oy (C.3)
ou ou 0%u
Zh= = p— CA4
“ox v Ay oy? (C4)
or oT 0T
i = o= C.5
“or v Oy Oy? (C5)
change to variables f(n) and 6(n) and derive the boundary layer equations
2f"+ ff" =0 (C.6)
P
0" + %f&’ = 0 (C.7)

and the boundary conditions.

15.
compare with results in the literature.

16.

Solve equations (C.6) and (C.7) numerically by the shooting method for different Pr and

For Problem 1, derive the momentum and energy integral equations. Using cubic expansions

for u/us and 6, derive expressions for the boundary layer thicknesses.

17. For natural convection near a vertical plate, show that the governing boundary layer equations

Ou Ov
Ju ou 0%u
oT oT o*T
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can be reduced to

|
—
aQ
-
=
SN~—

fl//+3ffl/ _Q(f/)2+9
0" +3Prfo = 0 (C.12)

with appropriate boundary conditions.

Solve equations (C.11) and (C.12) numerically by the shooting method for different Pr and
compare with results in the literature.

Write the governing equations for natural convection flow in an inclined rectangular cavity, and
nondimensionalize them. The thermal conditions at the walls of the cavity are: (a) AB heating
with heat flux ¢/, (b) BC adiabatic, (¢) CD cooling with heat flux ¢”, (d) DA adiabatic.

L /\ C/x

H
\ ravit
pe gravity

B

Derive the Nusselt result for laminar film condensation on a vertical flat plate. Find from the
literature if there is any experimental confirmation of the result.

For parallel and counterflow heat exchangers, I obtained the temperature distributions

Tha—Tca 1 1
T - Th,-— ’ : 1— exp{—UP +
n(7) ML T X (ien fiece) { exp{ <mhch mc> “T}] :
Tha—Tecq 1 1
T - T 4+ : ’ 1—exp{—UP 1
() 1= Givece /nen) £ 1 { exp{ (mhch mc) x}}

for the hot and cold fluids, respectively. As usual the upper sign is for parallel and the lower
for counterflow; 1 is the end where the hot fluid enters (from where z is measured) and 2 is
where it leaves. Please check.

For a counterflow heat exchanger, derive the expression for the effectiveness as a function of
the NTU, and also the NTU as function of the effectiveness.

(From Incropera and DeWitt) A single-pass, cross-flow heat exchanger uses hot exhaust gases
(mixed) to heat water (unmixed) from 30 to 80°C at a rate of 3 kg/s. The exhaust gases,
having thermophysical properties similar to air, enter and exit the exchanger at 225 and 100°C,
respectively. If the overall heat transfer coefficient is 200 W/m?2K, estimate the required area.
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(From Incropera and DeWitt) A cross-flow heat exchanger used in cardiopulmonary bypass
procedure cools blood flowing at 5 liters/min from a body temperature of 37°C to 25°C in
order to induce body hypothermia, which reduces metabolic and oxygen requirements. The
coolant is ice water at 0°C and its flow rate is adjusted to provide an outlet temperature of
15°C. The heat exchanger operates with both fluids unmixed, and the overall heat transfer
coefficient is 750 W/m?K. The density and specific heat of the blood are 1050 kg/m? and 3740
J/kg K, respectively. (a) Determine the heat transfer rate for the exchanger. (b) Calculate
the water flow rate. (c¢) What is the surface area of the heat exchanger?

Show that the energy spectrum for blackbody radiation (Planck’s law)
Ch

Ey—= — 1
TN (e G- 1)

has a maximum at A = \,, where (Wien’s law)
AT = 0.1987 Cs

Also show that (Stefan-Boltzmann’s law)

0o 0171_4 "
Eyd\=—T
/0 A 15C%

You can use a symbolic algebra program in this problem.

Write a numerical code to evaluate the view factor between two rectangular surfaces (each
of size L x 2L) at 90° with a common edge of length 2L; see Fig. C.3. Compare with the
analytical result.

Calculate the view factor again but with a sphere (diameter L/2, center at a distance of L/2
from each rectangle, and centered along the length of the rectangles) as an obstacle between
the two rectangles; see Fig. C.4.

(From Incropera and DeWitt) Consider a diffuse, gray, four-surface enclosure shaped in the
form of a tetrahedron (made of four equilateral triangles). The temperatures and emissivities
of three sides are

T, =700K, ¢ =0.7
Ty = 500K, e =0.5
T3 = 300K, €3 = 0.3

The fourth side is well insulated and can be treated as a reradiating surface. Determine its
temperature.

An “Aoki” curve is defined as shown in Fig. C.5. Show that when n — oo, the dimension of
the curve is D = 1 and the length L — oc.

Consider conductive rods of thermal conductivity & joined together in the form of a fractal
tree (generation n = 3 is shown in Fig. C.6; the fractal is obtained in the limit n — o0). The
base and tip temperatures are Ty and T, respectively. The length and cross-sectional area of



Figure C.3: Two rectangular surfaces.

] O

Figure C.4: Two rectangular surfaces with sphere.

n=0

- n=1

L

Figure C.5: Aoki curve.

Figure C.6: Fractal tree.

n=2

n=3

194
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bar 0 is L and A, respectively, and those of bar 1 are 2L/3 and A/3%, where 1 < 3 < 2, and
so on. Show that the conductive heat transfer through rod 0 is

q:%(TO*Too) (12)

The dependence of the rate of chemical reaction on the temperature 7T is often represented by
the Arrhenius function f(T) = e /T, where E is the activation energy. Writing T* = T/E,
show that f(7™) has a point of inflexion at T* = 1/2. Plot f(T*) in the range T* = 1/16 to
T* = 4 as well as its Taylor series approximation to various orders around 7* = 1/2. Plot also
the Lo-error in the same range for different orders of the approximation.

If e~ F/T is proportional to the heat generated within a tank by chemical reaction, and there is
heat loss by convection from the tank, show that the temperature of the tank 7" is determined
by
dr
MCE =ae P/T — hA(T — Ts)

where M is the mass, ¢ is the specific heat, a is a proportionality constant, h is the convec-
tive heat transfer coefficient, A is the convective heat transfer area, and T.. is the ambient
temperature. Nondimensionalize the equation to

I R
Sl ~H(T*—T
= ¢ ( )

For T% = 0.1, draw the bifurcation diagram with H as the bifurcation parameter, and deter-
mine the bifurcation points.

Two bodies at temperatures T (t) and T5(t), respectively, are in thermal contact with each
other and with the environment. Show that the temperatures are governed by

dT;
Mlclil + C(Tl — TQ) + Ol,oo(Tl — Too)

7 = @
dT5
M2C2W F+CO(T—T1)+ Coo(To —T) = Q2

where M; is the mass, ¢; is the specific heat, the Cs are thermal conductances, and @; is
internal heat generation. Find the steady state (17'1,7T2) and determine its stability.

Using a complete basis, expand the solution of the one-dimensional heat equation

or _ o1
ot~ " oa2
with boundary conditions
T
fka—:qo at z =0,
oz

T:Tl at x =L

as an infinite set of ODEs.
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Show that the governing equation of the unsteady, variable-area, convective fin can be written
in the form oT 5 oT

—_— - = — b(x)T =0

ot 0z (a(w) 8x) +b(@)
Show that the steady-state temperature distribution with fixed temperatures at the two ends
x =0 and x = L is globally stable.

Show numerically that there are two different types of attractors for the following dynamical
system.

dx
i A=)z —y— (2° + y°)z,
d
dit/ = 2+ A=)y — (@®+ ).

Choose A\g =1 and (a) A = 0.5 and (b) A = 2.
For the two-dimensional, unsteady velocity field ui 4+ vj, where
u =y
= x—2°+acost

determine the pathline of a fluid particle which is at position (1,1) at time ¢ = 0. Consider
two cases: (a) a = 0, and (b) a = 1. For these two cases find where 11 x 11 points uniformly
distributed within a square of size 0.01 and centered on (1,1) end up. Choose a suitably long
final time.

Find the dimension of the strange attractor for the Lorenz equations

dx

a o(y — )
dy

i AT —y —x2
% = —bz+4u

dt 4

where o = 10, A = 28 and b = 8/3. Use the method of counting the number of points N (r)
within a sphere of radius r from which D =In N/Inr.

Nondimensionalize and solve the radiative cooling problem
ar
Mce— +0A(T*—Ty) =0
dt
with T(0) = T;.
For heat transfer from a heated body with convection and weak radiation, i.e. for

do

Crore{O+8)' -8} =4

dr

with 6(0) = 1, using symbolic algebra determine the regular perturbation solution up to and
including terms of order e*. Assuming ¢ = 0.1, 3 = 1, ¢ = 1, plot the five solutions (with one
term, with two terms, with three terms, etc.) in the range 0 < 7 < 1.
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Consider a body in thermal contact with the environment

dT
Mcec— +hA(T —Tx) =0
dt
where the ambient temperature, Too(t), varies with time in the form shown below. Find (a)
the long-time solution of the system temperature, T'(t), and (b) the amplitude of oscillation of
the system temperature, T'(¢), for a small period Jt.
T

00

« ot

max

Tmin

Figure C.7: Ambient temperature variation.

For a heated body in thermal contact with a constant temperature environment

T
Mccfi—t FRA(T = Too) = Q

analyze the conditions for linear stability of PID control.

Two heated bodies at temperatures T;(t) and Tx(t), respectively, are in thermal contact with
each other and with a constant temperature environment. The temperatures are governed by

dT;

Mlclditl +C(T — 1)+ Creo(lt —Tx) = Q1(t)
dTs

Mz@g +C(N—Th) +Cr0c(To —Too) = Q2ft)

where Q1(t) and @Q3(¢) are internal heat generations, each one of which can be independently
controlled. Using PID control, choose numerical values of the parameters and PID constants
to show numerical results for the different types of responses possible (damped, oscillatory,
etc.).

Show numerical results for the behavior of two heated bodies in thermal contact with each
other and with a constant temperature environment for on-off control with (a) one thermostat,
and (b) two thermostats.

Analyze the system controllability of two heated bodies in thermal contact with each other and
with a constant temperature environment for (a) Q1(t) and Q2(t) being the two manipulated
variables, and (b) with Q1 (¢) as the only manipulated variable and Q2 constant.
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Run the neural network FORTRAN code in

http://www.nd.edu/ msen/Teaching/IntSyst/Programs/ANN/

for 2 hidden layers with 5 nodes each and 20,000 epochs. Plot the results in the form of exact
z vs. predicted z.

Consider the heat equation

oT  0°T

ot 0x2
with one boundary condition 7'(0) = 0. At the other end the temperature, T(1) = u(t) is
used as the manipulated variable. Divide the domain into 5 parts and use finite differences
to write the equation as a matrix ODE. Find the controllability matrix and check for system
controllability.

Determine the semi-derivative and semi-integral of (a) C' (a constant), (b) x, and (c) z* where
w>—1.

Find the time-dependent temperature field for flow in a duct wih constant T, and Tj,, but
with variable flow rate V' (t) = Vi + AV sin(wt) such that V' is always positive.

Write a computer program to solve the PDE for the previous problem, and compare numerical
and analytical results.

Derive an expression for heat transfer in a fractal tree-like microchannel net!.

Find the steady-state temperature distribution and velocity in a square-loop thermosyphon.
The total length of the loop is L and the distribution of the heat rate per unit length is

Q for L/8<x<L/4,

qg(x) =<9 —Q for 5L/8 <z <3L/4,
0 otherwise.
— .

-

-—

-~ f——
l——
l——

} L/4 ‘

1Y. Chen and P. Cheng, Heat transfer and pressure drop in fractal tree-like microchannel nets, International
Journal of Heat and Mass Transfer, Vol. 45, pp. 2643-2648, 2002



93.

o4.

55.

56.

o7.

58.

99.

60.

199

Show that the dynamical system governing the toroidal thermosyphon with known wall tem-
perature can be reduced to the Lorenz equations.

Draw the steady-state velocity vs. inclination angle diagram for the inclined toroidal ther-
mosyphon with mixed heating. Do two cases: (a) without axial condution?, and (b) with axial
conduction.

Model natural convection in a long, vertical pipe that is being heated from the side at a
constant rate. What is the steady-state fluid velocity in the pipe? Assume one-dimensionality
and that the viscous force is proportional to the velocity.

Using the center manifold projection, find the nonlinear behavior of
dx

&t 2. .5
di TYy—x,
dy 2
[

and hence determine whether the origin is stable.

The Brinkman model for the axial flow velocity, u*(r*), in a porous cylinder of radius R is

d*u* 1 du* .
Hety [d+d} TrYTe=0
where u* = 0 at 7* = R (no-slip at the wall), and du*/0r* = 0 at r* = 0 (symmetry at the
centerline). p.p is the effective viscosity, p is the fluid viscosity, K is the permeability, and G

is the applied pressure gradient. Show that this can be reduced to the nondimensional form

du ldu 1
- +— = 1
2 + S Sut g 0, (C.13)

where M = g /p, Da = K/R?, s* = (M Da)™'.

Using a regular perturbation expansion, show that for s < 1, the velocity profile from equation
(C.13) is
1—r2 s2
= 1— (372 .
U= [ G (3—r )] +

Using the WKB method, show that the solution of equation (1) for s > 1 is

NP IRCCES

Consider steady state natural convection in a tilted cavity as shown. DA and BC are adiabatic
while AB and CD have a constant heat flux per unit length. It can be shown that the governing
equations in terms of the vorticity w and the streamfunction v are

0%y 0%y

a2tz ty = 0
oY ow 0P Ow Pw  Ow oT orT . _
yor oroy L [axﬁayz Ra br gy cose - gysme| = 0

M OT  OT T 9T

oy dx Oz Oy 022  Oy? =0

2M. Sen, E. Ramos and C. Trevifio, On the steady-state velocity of the inclined toroidal thermosyphon, ASME J.
of Heat Transfer, Vol. 107, pp. 974977, 1985.
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where Pr and Ra are the Prandtl and Rayleigh numbers, respectively. The boundary condi-

tions are:
A oY oT
tx=+— === — =
ave 2’ v Ox 0 Oz 0,
1 oY oT
ty==+5 = =0 ——=1L
aty==%5, ¢ 3y 0, 3y
where A = L/H is the aspect ratio. Find a parallel flow solution for ¢ using
¥ ¥(y)
T(x,y) = Cx+0(y)

L/\

A

H
\ ravit
pe gravity

B

Figure C.8: Problem 5.

. Determine the stability of a fluid layer placed between two horizontal, isothermal walls and

heated from below.

. Obtain the response to on-off control of a lumped, convectively-cooled body with sinusoidal
variation in the ambient temperature.

. Determine the steady-state temperature field in a slab of constant thermal conductivity in

which the heat generated is proportional to the exponential of the temperature such that

A>T
dx?

= exp(eT),

where 0 < 2 < 1, with the boundary conditions 7'(0) = 77(0) = 0.

. In the previous problem, assume that € is small. Find a perturbation solution and compare
with the analytical. Do up to O(e) by hand and write a Maple (or Mathematica) code to do

up to O(et?).

. The temperature equation for a fin of constant area and convection to the surroundings at a

constant heat transfer coefficient is

(

d2
dez "

2)0&
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where § = T — T,,. Determine the eigenfunctions of the differential operator for each combi-
nation of Dirichlet and Neumann boundary conditions at the two ends x = 0 and z = L.

66. Add radiation to a convective fin with constant area and solve for small radiative effects with
boundary conditions corresponding to a known base temperature and adiabatic tip.

67. Find the temperature distribution in a slightly tapered 2-dimensional convective fin with known
base temperature and adiabatic tip.

68. Prove Hottel’s crossed string method to find the view factor Fap between two-dimensional
surfaces A and B with some obstacles between them as shown. The dotted lines are tightly
stretched strings. The steps are:

(a) Assuming the strings to be imaginary surfaces, apply the summation rule to each one of
the sides of figure abc.
(b) Manipulating these equations and applying reciprocity, show that
Aab + Aac - Abc
2A. ’

Fab—ac -

(¢) For abd find F,p_pq in a similar way.
(d) Use the summation rule to show that

Abc + Aad - Aac - Abd
2Aab

Fab—cd =

(e) Show that Fup_.q = AAFAB/Aab-

(f) Show the final result
Abc + Aad - Aac - Abd

24,4

Fy_p=

69. Complete the details to derive the Nusselt result for laminar film condensation on a vertical
flat plate. Find from the literature if there is any experimental confirmation of the result.

70. Consider the hydrodynamic and thermal boundary layers in a flow over a flat plate at constant
temperature. Use a similarity transformation on the boundary layer equations to get

2f/// + ff/l — 07
o4 LT fo =
2
Using the shooting method and the appropriate boundary conditions, solve the equations for
different Pr and compare with the results in the literature.
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Solve the steady state conduction equation V2T = 0 in the area in the figure between the
square and the circle using the MATLAB Toolbox. Edges DA and BC have temperatures of
100 and 0 units, respectively, AB and C'D are adiabatic and the circle is at a temperature of
200 units. Draw the isotherms. Save the M-file and e-mail it to: wcai@nd.edu.

(From Brauner and Shacham, 1995) Using Eq. 11, write a program to redraw Fig. 2 on a sunny
day (C; =0) and a cloudy day (C; = 1). Assume T, = 37°C. Use Eq. 8 to calculate h.. Note:
since the physical properties are to be taken at the mean temperature between T and T,, Eq.
11 must be solved numerically.

The steady-state temperature distribution in a plane wall of thermal conductivity k and thick-
ness L is given by T'(z) = 423 + 522 + 2x + 3, where T is in K, x in m, and the constants in
appropriate units. (a) What is the heat generation rate per unit volume, ¢(z), in the wall?
(b) Determine the heat fluxes, ¢/, at the two faces z = 0 and = = L.

(From Incropera and DeWitt, 5th edition) Consider a square plate of side 1 m. Going around,
the temperatures on the sides are (a) 50°C, (b) 100°C, (c) 200°C, and (d) 300°C. Find the
steady-state temperature distribution analytically.

Write a computer program to do the previous problem numerically using finite differences and
compare with the analytical result. Choose different grid sizes and show convergence of the
heat flux at any wall. Plot the 75, 150, and 250°C isotherms.

A plane wall of thickness 1 m is initially at a uniform temperature of 85°C. Suddenly one side
of the wall is lowered to a temperature of 20°C, while the other side is perfectly insulated.
Find the time-dependent temperature profile T'(z,t). Assume the thermal diffusivity to be 1
m?/s.

Write a computer program to do the previous problem numerically using finite differences and
compare with the analytical result.

At a corner of a square where the temperature is discontinuous, show how the finite differ-
ence solution of the steady-state temperature behaves ompared to the separation-of-variables
solution.

Find the view factor of a semi-circular arc with respect to itself.

Derive the unsteady governing equation for a two-dimensional fin with convection and radia-
tion.
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81. Determine the steady temperature distribution in a two-dimensional convecting fin.

82. A number of identical rooms are arranged in a circle as shown, with each at a uniform tem-
perature T;(t). Each room exchanges heat by convection with the outside which is at T, and
with its neighbors with a conductive thermal resistance R. To maintain temperatures, each
room has a heater that is controlled by independent but identical proportional controllers. (a)
Derive the governing equations for the system, and nondimensionalize. (b) Find the steady
state temperatures. (c) Write the dynamical system in the form X = Ax and determine the

condition for stability>.
.' T

83. A sphere, initially at temperature T; is being cooled by natural convection to fluid at To,.
Churchill’s correlation for natural convection from a sphere is

0.589 Raj/*
[1 + (0.469/ Pr)®/ 16}

Nu=2+

479°

where
gﬁ(Ts - Too>D3

vo

RCLD =

Assume that the temperature within the sphere T'(¢) is uniform, and that the material proper-
ties are all constant. Derive the governing equation, and find a two-term perturbation solution.

84. (a) Show that the transient governing equation for a constant area fin with constant properties
that is losing heat convectively with the surroundings can be written as

100 0%
=TS 2.
a Ot 0z
3Eigenvalues of an N x N, circulant, banded matrix of the form [3]
b ¢ 0 0 a
a b c 0 0
0 a b 0 0
0 0 a b c
c 0 0 a b

are A\j = b+ (a+ c)cos{2n(j —1)/N} —i(a — c)sin{2n(j — 1)/N}, where j =1,2,...,N.
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(b) With prescribed base and tip temperatures, use an eigenfunction expansion to reduce to
an infinite set of ordinary differential equations. (c) Show that the steady state is attracting
for all initial conditions.

85. Cantor Sets: Construct a fractal that is similar to the Cantor set shown in class, but instead
remove the middle 1/2 from each line. Show that the fractal dimension is 1/2.

86. Menger’s Sponge: Shown below is Menger’s Sponge. Calculate its Hausdorff dimension
using each of the following methods: (a) D}, = log P/log S, (b) Box Counting (analytical), (c)
Box Counting (graphical).

8 il B RA T TR

i !'i|||| i)

2 o

e

Figure C.9: Menger’s Sponge

87. Space Filling Curves: Shown below is a Peano curve, a single line that completely fills a
unit square. Calculate its Hausdorff dimension and state if the Peano curve is indeed a fractal.

I ———
(a) Initator (b) Generator

Figure C.10: Initiator and generator for a Peano (space filling) curve. The generator is recursively
applied to generate the Peano curve.

88. A duct carrying fluid has the cross-section of Koch’s curve. Show that the perimeter of the
cross-section is infinite while the flow area is finite.

89. Cauchy’s formula: Verify Cauchy’s formula for repeated integration by (a) integrating f(¢)
five times, (b) applying Cauchy’s formula once with n = 5, (c) applying Cauchy’s formula
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twice, once to f(t) with n = 2 and then to the result with n = 3, showing that
t
[]]] [ rmr=rmo=rrie
0

Caputo Derivative: Take f(t) = 2t° and using the Caputo RHD, (a) calculate D3 f(t)
(take m = 4, a = 3) and verify that you get the same result as traditional differentation by
comparing to d®f/dt3. (b) Calculate D?® f(t) and plot the function.

for f(t) = 16t3.

Numerical Evaluation of a Fractional Derivative: Consider the example worked in class
of calculating the heat flux in a blast furnace. The heat flux was calculated to be

" (t) = /ep oD g(t),

where
g(t) = Tsurf (t) - TOa

which is simply the derivative of order o« = 1/2 of the temperature difference at the surface.
Assume that the function g¢(t) is given as g(t) = 14sin(wt/60) where ¢ is in minutes and
the thermocouples sample once per minute, giving the discrete data set g; = 14 sin(mi/60).
Calculate the fractional derivative numerically using the first 2 hours of data and plot both
the heat flux at the surface and g(t).

Hint: Tt is easiest to calculate the binomial coefficients recursively, according to the recursion

formula:
(6) = v
0
« _ a\a—k+1
E+1)  \k koo

Note: In large time intervals (¢ very large), which would be of interest in this problem, the
calculation we used would not be suitable because of the enormous number of summands
in the calculation of the derivative and because of the accumulation of round off errors. In
these situations, the principle of “short memory” is often applied in which the derivative only
depends on the previous N points within the last L time units. The derivative with this “short
memory” assumption is typically written as ;_r)Dy".

Consider the periodic heating and cooling of the surface of a smooth lake by radiation. The
surface is subject to diurnal heating and nocturnal cooling such that the surface temperature
can be described by Ts(t) = T, + T, sinwt. Assume the heat diffusion to be one-dimensional
and find the heat flux at the surface of the lake. The following steps might be useful:

(a) Assume transient one-dimensional heat conduction:

or(z,t) 0*T (z,t)
ot T a2

with initial and boundary conditions T'(x,0) = T, and T(0,t) = Ts(t). Also assume the lake
to be a semi-infinite planer medium (a lake of infinite depth) with T'(co,t) = 0.

:0,
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(b) Non-dimensionalize the problem with a change of variables ¢ = o~ /2?2 and 0(z,t) =
T(xz,t) —T,.

(c) Use the following Laplace transform properties to transform the problem into the Laplace
domain:

E[%] = s“F(x,s) (with 0 initial conditions)
and 0% (. 1) 5
(0% x, _ 70{
L[ axa ] - axaF(]'"S)

(d) Solve the resulting second order differential equation for ©(¢, s) by applying the trans-
formed boundary conditions.

(e) Find 00/0¢ and then substitute O(,s) into the result. Now take the inverse Laplace
transform of 90/0¢ and convert back to the original variables. Be carefull The derivative of
order 1/2 of a constant is not zero! (see simplifications in (g) to simplify)

(f) You should now have an expression for 0T (z,t)/0x. Substitute this into Fourier’s Law to
calculate the heat flux, ¢"(z,t) = —k 0T (z,t)/0z.

(g) Evaluate this expression at the surface (z = 0) to find the heat flux at the surface of the
lake. The following simplifications might be helpful:

9Y2C C
otl/2 ~ rfl/2
0*[Ce()] _ ,0%9(t)
ot ot

(h) The solution should look now look like

(b = kE dY?(T,sinwt)
s Ql/2 dt1/2

Describe how you would solve this problem using more typical methods and what other infor-
mation would be required.

Consider radiation between two long concentric cylinders of diameters D; (inner) and Do
(outer). (a) What is the view factor Fiz. (b) Find Fpe and Fp; in terms of the cylinder
diameters.

Temperatures at the two sides of a plane wall shown in Fig. C.11 are T, and Tg, respectively.
For small €, find a perturbation steady-state temperature distribution T'(x) if the dependence
of thermal conductivity on the temperature has the form

T-1Ty,
T) = 14+ ——7>»~— .
k( ) k0<+TR—TL€>

One side of a plane wall shown in Fig. C.12 has a fixed temperature and the other is adiabatic.
With an initial condition T'(z,0) = f(z), determine the temperature distribution in the wall
T(z,t) at any other time. Assume constant properties.
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Figure C.11: Plane wall in steady state.

L

T="T, T /0x =0

Figure C.12: Plane wall in unsteady state.
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Using an eigenfunction expansion, reduce the governing PDE in Problem 96 to an infinite set

of ODEs.

A room that loses heat to the outside by convection is heated by an electric heater controlled
by a proportional controller. With a lumped capacitance approximation for the temperature,
set up a mathematical model of the system. Determine the constraint on the controller gain
for the system response to be stable. What is the temperature of the room after a long time?

I

A turbine blade internally cooled by natural convection is approxi-
mated by a rotating natural circulation loop of constant cross-section.
The heat rate in and out at the top and bottom, respectively, is Q
while the rest of the loop is insulated. Find the steady-state velocity in
the loop. Consider rotational forces but not gravity. State your other
assumptions.

An infinite number of conductive rods are set up between two blocks
at temperatures T, and T;. The first rod has a cross-sectional area
Aj = A, the second Ay = A/f3, the third A3 = A/3?, and so on, where
B > 1. What is the total steady-state heat transfer rate between the
two blocks? Assume that the thermal conductivity k is a constant, and
that there is no convection.

Show that the functions ¢;(x) = V2 sinTa and ¢2(z) = /2 sin 27z are orthonormal in the
interval [0,1] with respect to the Ly norm. Using these as test functions, use the Galerkin

method to find an approximate solution of the steady-state fin equation

T —T =0,

with T(0) = 0,7(1) = 1.
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A lamp of q W is radiating equally in all directions. Set up the gov-
erning equation for the temperature T'(r) in the disk.

R
C
Determine the steady-state temperature distribution in the triangle
shown, if the hypotenuse is adiabatic, one of the sides is at one tem-
perature and the other is at another.
A B

A ball with coefficient of restitution r falls from height H and undergoes repeated bouncing.
Determine the temperature of the ball as a function of time T'(¢) if heat loss is by convection
to the atmosphere. Assume that the energy loss at every bounce goes to heat the ball.

Heat at the rate of ¢ per unit volume is generated in a spherical shell that lies between R
and R+ §. If heat loss is by convection on the external surface only, find the steady-state
temperature distribution.
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