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Abstract. Scaling algorithms for entropic transport-type problems have become a very popular numerical method,
encompassing Wasserstein barycenters, multi-marginal problems, gradient flows and unbalanced transport. However, a
standard implementation of the scaling algorithm has several numerical limitations: the scaling factors diverge and con-
vergence becomes impractically slow as the entropy regularization approaches zero. Moreover, handling the dense kernel
matrix becomes unfeasible for large problems. To address this, we combine several modifications: A log-domain stabilized
formulation, the well-known ε-scaling heuristic, an adaptive truncation of the kernel and a coarse-to-fine scheme. This
permits the solution of larger problems with smaller regularization and negligible truncation error. A new convergence
analysis of the Sinkhorn algorithm is developed, working towards a better understanding of ε-scaling. Numerical examples
illustrate efficiency and versatility of the modified algorithm.

1. Introduction.

1.1. Motivation and Related Work.
Applications of Optimal Transport. Optimal transport (OT) is a classical optimization problem dat-

ing back to the seminal work of Monge and Kantorovich (see monographs [47, 39] for introduction and
historical context). The induced Wasserstein distances lift a metric from a ‘base’ space (X, d) to proba-
bility measures over X. This is a powerful analytical tool, for example to study PDEs as gradient flows in
Wasserstein space [24, 3]. With the increase of computational resources, OT has also become a popular
numerical tool in image processing, computer vision and machine learning (e.g. [38, 42, 32, 18, 20]).

Many ideas have been presented to extend Wasserstein distances to general non-negative measures.
We refer to [26, 13, 31, 15] and references therein for some context. A transport-type distance for general
multi-channel signals is proposed in [46].

Computational Optimal Transport. To this day, the computational effort to solve OT problems re-
mains the principal bottleneck in many applications. In particular large problems, or even multi-marginal
problems, remain challenging both in terms of runtime and memory demand.

For the linear assignment problem and discrete transport problems there are (combinatorial) al-
gorithms based on the finite dimensional linear programming formulation by Kantorovich, such as the
Hungarian method [28], the auction algorithm [9], the network simplex [2] and more [22]. Typically,
they work for (almost) arbitrary cost functions, but do not scale well for large, dense problems. On
the other hand, there are more geometric solvers, relying on the polar decomposition [11], that tend to
be more efficient. There is the famous fluid dynamic formulation by Benamou and Brenier [5], explicit
computation of the polar decomposition [23], semi-discrete solvers [34, 30], and solvers of the Monge-
Ampère equation [8, 7] among many others. However, these only work on very specific cost functions,
most notably the squared Euclidean distance. In a compromise between efficiency and flexibility, several
discrete coarse-to-fine solvers have been proposed that adaptively select sparse sub-problems [41, 35, 40].

Entropy Regularization for Optimal Transport. In [27] entropy regularization of the linear assignment
problem is considered to allow application of smooth optimization techniques or the Sinkhorn matrix scal-
ing algorithm [44]. For sufficiently small regularization the true optimal assignment can be extracted from
the approximate solution. For increased numerical stability, the Sinkhorn algorithm is also reformulated
in the log-domain. Similarly, in [17] the Sinkhorn algorithm is applied to solve an entropy regularized
approximation of the discrete optimal transport problem. It is demonstrated that for moderate regular-
ization strengths the algorithm is trivial to parallelize, easy to implement on GPUs and fast. Besides,
it is shown that moderate regularization can actually be beneficial for classification applications. Regu-
larization also makes the optimization problem more well-behaved (e.g. uniqueness of optimal coupling,
optimal objective differentiable as function of marginal distributions), which led to the first practical
numerical method for approximate computation of Wasserstein barycenters [19]. Today, this approach is
widely used, for instance [45, 37, 46, 33].

More recently, the Sinkhorn algorithm has been extended to more general transport-type problems,
such as multi-marginal problems and direct computation of Wasserstein barycenters [6], gradient flows [36]
and unbalanced transport problems [14], resulting in a family of Sinkhorn-like diagonal scaling algorithms.

Convergence of the discrete regularized problem towards the unregularized limit is studied in [16].
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In a continuous setting, this is related to the Schrödinger problem and the lazy gas experiment (see [29]
for a review and a very general convergence proof). [12] provides a simpler and direct analysis for the
2-Wasserstein distance on Rd and studies the limit of entropy regularized gradient flows.

Convergence Speed of Sinkhorn Algorithm. In [21] the convergence rate of the Sinkhorn algorithm is
studied for positive kernel matrices, yielding a global linear convergence rate of the marginals in terms of
Hilbert’s projective metric. However, applied to entropy regularized optimal transport, the contraction
factor tends to one exponentially, as the regularization approaches zero. Thus, running the algorithm with
this particular measure of convergence is often not practically feasible. In [25] the local convergence rate
of the Sinkhorn algorithm near the solution is examined, based on a linearization of the iterations. This
bound is tighter and more accurately describes the behaviour of the algorithm close to convergence. But
these estimates do not apply when one starts far from the optimal solution, which is the usual case for small
regularization parameters. In [27] a comparison is made between the Sinkhorn algorithm and the auction
algorithm. In particular the role of the entropy regularization parameter is related to the slack parameter
ε of the auction algorithm and it is pointed out that convergence of both algorithms becomes slower, as
these parameters approach zero (but small parameters are required for good approximate solutions). For
the auction algorithm this can provably be remedied by ε-scaling, where the ε parameter is gradually
decreased during optimization. Analogously, it is suggested to gradually decrease entropy regularization
during the Sinkhorn algorithm to accelerate optimization. Consequently, in the following we will also
refer to the entropy regularization parameter as ε and to the gradual reduction scheme as ε-scaling. The
ideas of [27] are refined in [43]. In particular, the latter proves convergence of a modified algorithm with
‘deformed iterations’ where ε is gradually decreased during the iterations, similar to ε-scaling. They
show that the primal iterate converges to the unregularized solution if the decrease is sufficiently slow.
Unfortunately, the number of iterations to reach a given value of ε increases exponentially, as ε decreases.
Thus it is “mostly interesting from the theoretical point of view” [43, p. 8].

Limitations of Entropic Transport. Despite its considerable merits, there are some fundamental con-
straints to the naive entropy regularization approach. Entropy introduces some blur in the optimal
assignment. While this may sometimes be beneficial (see above), in many applications it is considered
a nuisance (e.g. it quickly smears distinct features in gradient flows), and one would like to run the
scaling algorithm with as little regularization as possible. However, a standard implementation has some
major numerical limitations, becoming increasingly severe as the regularization approaches zero. The
diagonal scaling factors diverge in the limit of vanishing regularization, leading to numerical overflow
and instabilities. Moreover, the algorithm requires an increasing number of iterations to converge. In
practice this can often be remedied by ε-scaling, but its efficiency is not yet well understood theoretically.
Therefore, numerically this limit is difficult to reach. In addition, naively storing the dense kernel matrix
requires just as much memory as storing the full cost matrix in standard linear programming solvers
and multiplications with the kernel matrix become increasingly slow. Thus, effective heuristics to avoid
storing of, and multiplication by, the dense kernel matrix have been conceived, such as efficient Gaussian
convolutions or approximation by a pre-factored heat kernel [45]. However, these remedies only work for
particular (although relevant) problems, and do not solve the issues of blur and diverging scaling factors.

1.2. Contribution and Outline. In Section 2 we recall the framework for transport-type problems
and corresponding scaling algorithms for their entropy regularized counterparts, as put forward in [14].
The main contributions of this article are twofold: In Section 3 we propose to combine four modifications
of the Sinkhorn algorithm to address issues with numerical instability, slow convergence and large kernel
matrices. In Section 4 a new convergence analysis for the Sinkhorn algorithm is derived, based on an
analogy to the auction algorithm. The two sections can be read independently from each other. The
modifications used in Section 3 are:

• Section 3.1: A log-domain stabilization of the Sinkhorn algorithm, as described in [14]. It allows
to numerically run the algorithm at small regularizations while largely retaining the simple matrix
scaling structure.

• Section 3.2: The well-known ε-scaling heuristic, to reduce the number of required iterations.
• Section 3.3: Sparsification of the kernel matrix by adaptive truncation, to reduce memory demand

and accelerate iterations. We quantify the error induced by truncation and propose a truncation
scheme which reliably yields small error bounds that are easy to evaluate. While truncation has
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been proposed elsewhere (e.g. [33]), to the best of our knowledge the present article gives the
first concrete bounds for the inflicted error.

• Section 3.4: Amulti-scale scheme, inspired, for instance, by [41, 40, 35]. This serves two purposes:
First, it allows for a more efficient computation of the truncated kernel. Second, we propose to
combine the coarse-to-fine approach with simultaneous ε-scaling, which drastically reduces the
number of variables during early stages of ε-scaling, without losing significant precision.

We emphasize that each modification builds on the previous ones (see Remark 10) and only combining
all four leads to an algorithm that can solve large problems with significantly less runtime, memory and
regularization, as compared to the naive algorithm. The adaptations extend to the more general scaling
algorithms for transport-type problems presented in [14].

In Section 4 we develop a new convergence analysis of the Sinkhorn algorithm, based on analogy to
the auction algorithm, different from the Hilbert metric approach of [21]. The structure of Section 4 is:

• Section 4.1: The classical auction algorithm for the linear assignment problem is recalled.
• Section 4.2: A slightly modified asymmetric variant of the Sinkhorn algorithm is given and a

bound is derived for the number of iterations until a prescribed accuracy is reached. As for the
auction algorithm, for fixed ε the maximal number of iterations scales as O(1/ε). This is in
good agreement with numerical experiments (cf. Section 5.2). To avoid the difficulties with slow
convergence in Hilbert’s projective metric (cf. Section 1.1) we choose a weaker, but reasonable,
measure of convergence (cf. Remark 5).

• Section 4.3: We prove stability of optimal dual solutions of entropy regularized OT under changes
of the regularization parameter. This also implies stability of dual solutions in the limit of
vanishing regularization and therefore complements results of [16] (see also Remark 7).

• Section 4.4: Our eventual goal is a better theoretical understanding of the ε-scaling heuristic and
its efficiency. We show that the above stability result is an important step and discuss missing
steps for a full proof. To our knowledge (with the exception of [43], see above), these are the first
theoretical results towards ε-scaling for the Sinkhorn algorithm.

Numerical experiments confirm the efficiency of the modified algorithm (Section 5.2). Examples for
unbalanced optimal transport, barycenters, and Wasserstein gradient flows illustrate that the modified
algorithms retain the versatility of the diagonal scaling algorithms presented in [6, 36, 14] (Section 5.3).

1.3. Notation and Preliminaries. We assume that the reader has a basic knowledge of convex
optimization, such as convex conjugation, Fenchel–Rockafellar duality and primal-dual gaps (cf. [4]).

Throughout this article, we will consider transport problems between two discrete finite spaces X
and Y . For a discrete, finite space Z (typically X, Y or X×Y ) we identify functions and measures over Z
with vectors in R|Z|, which we simply denote by RZ . For v ∈ RZ , z ∈ Z we write v(z) for the component
of v corresponding to z (subscript notation is reserved for other purposes). The standard Euclidean inner
product is denoted by 〈·, ·〉. The sets of vectors with positive and strictly positive entries are denoted by
RZ+ and RZ++. The probability simplex over Z is denoted by P(Z). We write R := R ∪ {−∞,+∞} for
the extended real line and RZ for the space of vectors with possibly infinite components.

For a, b ∈ RZ the operators � and � denote pointwise multiplication and division, e.g. a� b ∈ RZ ,
(a� b)(z) := a(z) · b(z) for z ∈ Z. The functions exp and log are extended to RZ by pointwise application
to all components: exp(a)(z) := exp(a(z)). We write a ≥ b if a(z) ≥ b(z) for all z ∈ Z, a ≥ 0 if a(z) ≥ 0
for all z ∈ Z (and likewise for ≤, > and <). For a ∈ R, aZ denotes the vector in RZ with all entries
being a. We write max a and min a for the maximal and minimal entry of a.

For µ ∈ RZ and a subset A ⊂ Z we also use the notation µ(A) :=
∑
z∈A µ(z), analogous to measures.

We say µ ∈ RZ is absolutely continuous w.r.t. ν ∈ RZ+ and write µ � ν when [ν(z) = 0] ⇒ [µ(z) = 0].
This is the discrete special case of absolute continuity for measures. The set sptµ := {z ∈ Z : µ(z) 6= 0}
is called support of µ. The power set of Z is denoted by 2Z .

For a subset C ⊂ RZ the indicator function of C over RZ is given by ιC(v) = 0 if v ∈ C and +∞ else.
In particular, for v, w ∈ RZ one finds ι{v}(w) = 0 if v = w and +∞ otherwise. Moreover, we merely write
ι+ for ιRZ+ . For v ∈ RZ we introduce the short notation ι≤v : RZ → R with ι≤v(w) = 0 if w(z) ≤ v(z) for
all z ∈ Z and +∞ otherwise.
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The projection matrices PX ∈ RX×(X×Y ) and PY ∈ RY×(X×Y ) are given by

PX(x, (x′, y′)) :=

{
1 if x = x′,

0 else.
PY (y, (x′, y′)) :=

{
1 if y = y′,

0 else.

They act on some π ∈ RX×Y as follows:

(PX π)(x) =
∑
y∈Y

π(x, y) = π({x} × Y ), (PY π)(y) =
∑
x∈X

π(x, y) = π(X × {y}).

That is, they give the X and Y marginal in the sense of measures. Conversely, for some v ∈ RX , w ∈ RY
we find (P>Xv)(x, y) = v(x) and (P>Y w)(x, y) = w(y).

Definition 1 (Kullback–Leibler Divergence). For µ, ν ∈ RZ the Kullback–Leibler divergence of µ
w.r.t. ν is given by

KL(µ|ν) :=


∑

z∈Z:
µ(z)>0

µ(z) log
(
µ(z)
ν(z)

)
− µ(Z) + ν(Z) if µ, ν ≥ 0, µ� ν ,

+∞ else.
(1.1)

The convex conjugate w.r.t. the first argument is given by KL∗(α|ν) =
∑
z∈Z (exp(α(z))− 1) · ν(z). The

KL divergence plays a central role in this article and is used on various different base spaces. Sometimes,
when referring to the KL divergence on a space Z, we will add a subscript KLZ for clarification.

Definition 2 (KL Proximal Step). For a convex, lower semicontinuous function f : RZ → R and
a step size τ > 0 the proximal step operator for the Kullback–Leibler divergence is given by

prox1/τf : RZ → RZ , µ 7→ argmin
ν∈RZ

(
1
τ KL(ν|µ) + f(ν)

)
.(1.2)

A unique minimizer exists, if there is some ν ∈ RZ , ν � µ such that f(ν) 6= ±∞. Throughout this article
we shall always assume that this is the case.

For Sect. 4 we require the following Lemma.

Lemma 3 (Softmax and Softmin). For a parameter ε > 0 and a ∈ RZ let

softmax(a, ε) := ε log

(∑
z∈Z

exp(a(z)/ε)

)
, softmin(a, ε) := −ε log

(∑
z∈Z

exp(−a(z)/ε)

)
.

For ε, λ > 0 and a, b ∈ RZ one has the relations

max(a) ≤ softmax(a, ε) ≤ max(a) + ε log |Z|,(1.3a)
min(a)− ε log |Z| ≤ softmin(a, ε) ≤ min(a),(1.3b)

min(a− b)− λ log |Z| ≤ softmax(a, ε)− softmax(b, λ) ≤ max(a− b) + ε log |Z|,(1.3c)
min(a− b)− ε log |Z| ≤ softmin(a, ε)− softmin(b, λ) ≤ max(a− b) + λ log |Z|.(1.3d)

Proof. The first line follows immediately from 0 ≤ exp(a(z)/ε) ≤ exp(max a/ε). Line three then
follows from min(a − b) ≤ max(a) − max(b) ≤ max(a − b). The second and fourth line are implied by
softmin(a, ε) = − softmax(−a, ε).

2. Entropy Regularized Transport-Type Problems and Diagonal Scaling Algorithms.

2.1. Transport-Type Problems. For two probability measures µ ∈ P(X) and ν ∈ P(Y ) the set
Π(µ, ν) := {π ∈ P(X × Y ) : PX π = µ,PY π = ν} is called the couplings or transport plans between µ
and ν. A coupling π describes a rearrangement of the mass of µ into ν, π(x, y) can be interpreted as the
mass taken from x to y. Let c ∈ RX×Y be a cost function, such that the cost of taking one unit of mass
from x ∈ X to y ∈ Y is given by c(x, y). The cost inflicted by a coupling π is then given by 〈c, π〉 and
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the optimal transport problem between µ and ν is given by min{〈c, π〉 |π ∈ Π(µ, ν)}. This means, we are
looking for the most cost-efficient mass rearrangement between µ and ν. Note that for π ∈ RX×Y one
can write ιΠ(µ,ν)(π) = ι{µ}(PX π) + ι{ν}(PY π) + ι+(π) where the first two terms represent the marginal
constraints and the last term ensures that π is non-negative. Then we can reformulate the problem as

min
π∈RX×Y

ι{µ}(PX π) + ι{ν}(PY π) + 〈c, π〉+ ι+(π) .(2.1)

Recently it has been proposed to replace the constraints PXπ = µ and PY π = ν by soft constraints.
This allows meaningful comparison between measures of different total mass. Such formulations were
studied e.g. in [31] (see also [14] for more context). A particularly relevant choice for the soft constraints
is the Kullback–Leibler divergence. A corresponding ‘unbalanced’ transport problem is given by

min
π∈RX×Y

λ ·KL(PX π|µ) + λ ·KL(PY π|ν) + 〈c, π〉+ ι+(π) .(2.2)

where λ > 0 is a weighting parameter. Note that neither µ, ν nor π need to be probability measures in
this case and each may have different total mass.

When X = Y is a metric space with metric d, for λ = 1 and the cost function c = d2, the square
root of the optimal value of (2.2) yields the so called Gaussian Hellinger–Kantorovich (GHK) distance
on RX+ , introduced in [31]. Similarly, for the cost function

c(x, y) :=

{
− log

(
[cos(d(x, y))]2

)
if d(x, y) < π/2

+∞ else.
(2.3)

one obtains the Wasserstein–Fisher–Rao (WFR) distance (or Hellinger–Kantorovich distance), introduced
independently and simultaneously in [26, 13, 31]. WFR is the length distance induced by GHK [31].

Problems (2.1) and (2.2) share a common structure: in both we optimize over non-negative measures
π on the product space X×Y , there is a linear cost term 〈c, π〉 and two functions act on the marginals of
π. They are prototypical examples of a family of transport-type optimization problems with a common
functional structure that was introduced in [14]. The general structure is given in the following definition.

Definition 4 (Generic Transport-Type Problem). For two convex marginal functions FX : RX →
R, FY : RY → R and a cost function c ∈ RX×Y the primal transport-type problem is given by:

min
π∈RX×Y

E(π) with E(π) := FX(PX π) + FY (PY π) + 〈c, π〉+ ι+(π)(2.4a)

The corresponding dual problem is given by:

max
(α,β)∈(RX ,RY )

J(α, β) with J(α, β) := −F ∗X(−α)− F ∗Y (−β)− ι≤c(P>X α+ P>Y β)(2.4b)

The indicator function ι≤c(P>X α + P>Y β) denotes the classical optimal transport dual constraint α(x) +
β(y) ≤ c(x, y) for all (x, y) ∈ X × Y (see Section 1.3).

This family also covers Wasserstein gradient flows and the structure can be extended to multiple
couplings to describe barycenter and multi-marginal problems (see [6, 14] for details). As indicated, the
standard optimal transport problem (2.1) is obtained as a special case.

Definition 5 (Standard Optimal Transport). Problem (2.1) is a special case of Def. 4 with FX :=
ι{µ} and FY := ι{ν}. The primal and dual functional are given by:

E(π) = ι{µ}(PX π) + ι{ν}(PY π) + 〈c, π〉+ ι+(π)(2.5a)

J(α, β) = 〈α, µ〉+ 〈β, ν〉 − ι≤c(P>X α+ P>Y β)(2.5b)

Likewise, we can proceed for the unbalanced transport problem (2.2).

Definition 6 (Unbalanced Optimal Transport with KL Fidelity). Problem (2.2) is a special case
of Def. 4 with FX := λ ·KL(·|µ) and FY := λ ·KL(·|ν). The primal and dual functional are given by:

E(π) = λ ·KL(PX π|µ) + λ ·KL(PY π|ν) + 〈c, π〉+ ι+(π)(2.6)

J(α, β) = −λ ·KL∗(−α/λ)− λ ·KL∗(−β/λ)− ι≤c(P>X α+ P>Y β)(2.7)
5



2.2. Entropy Regularization and Diagonal Scaling Algorithms. Now we apply entropy reg-
ularization to the above transport-type problems (see Sect. 1.1 for references) and replace the non-
negativity constraint in (2.4a) by the Kullback–Leibler divergence. For this we need to select some
reference measure ρ ∈ RX×Y+ . We then replace the term ι+(π) in (2.4a) by ε ·KL(π|ρ), where ε > 0 is a
regularization parameter. Then one typically ‘pulls’ the linear cost term into the KL divergence:

〈c, π〉+ ε KL(π|ρ) = ε KL(π|K) + ε ·
(
ρ(X × Y )−K(X × Y )

)
where K ∈ RX×Y+ with K(x, y) := exp(−c(x, y)/ε) · ρ(x, y) .(2.8)

with the convention exp(−∞) = 0. K is called the kernel associated with c and the regularization
parameter ε. For convenience we formally introduce the function

getK : R++ → RX×Y , ε 7→ exp(−c/ε)� ρ .(2.9)

We obtain the regularized equivalent to Def. 4.

Definition 7 (Regularized Generic Formulation).

min
π∈RX×Y+

E(π) with E(π) := FX(PXπ) + FY (PY π) + ε KL(π|K)(2.10a)

max
(α,β)∈(RX ,RY )

J(α, β) with J(α, β) := −F ∗X(−α)− F ∗Y (−β)− ε KL∗
(

[P>Xα+ P>Y β]/ε
∣∣K)(2.10b)

Primal optimizers π† have the form

π† = diag(exp(α†/ε))K diag(exp(β†/ε))(2.11)

where (α†, β†) are dual optimizers. Conversely, for dual optimizers (α†, β†), π† constructed as above is
primal optimal [14].

Intuitively we see the relation between (2.4) and (2.10) as ε→ 0. For example, the term ε KL∗
(
[P>Xα+

P>Y β]/ε
∣∣K) in (2.10b) can be interpreted as a smooth barrier function for the dual constraint P>Xα+P>Y β ≤

c in (2.4b). We refer to Sect. 1.1 for references to rigorous convergence results.
Under suitable assumptions problem (2.10b) can be solved by alternating optimization in α and β

(see [14] for details). For fixed β, consider the KL∗-term:

KL∗X×Y
(

[P>Xα+ P>Y β]/ε
∣∣K) = KL∗X (α/ε|K exp(β/ε)) +

∑
(x,y)∈X×Y

K(x, y) (exp(β(y)/ε)− 1) .

Note that the last term is constant w.r.t. α. Therefore, optimizing (2.10b) over α, for fixed β corresponds
to maximizing

JX(α) = −F ∗X(−α)− ε KL∗X (α/ε|K exp(β/ε)) ,(2.12)

where K exp(β/ε) denotes standard matrix vector multiplication. The corresponding primal problem
consists of minimizing

EX(σ) = FX(σ) + ε KLX(σ|K exp(β/ε)) .(2.13)

This is a proximal step of FX for the KL divergence with step size 1/ε (see Def. 2). So, by using the
PD-optimality conditions between (2.12) and (2.13) (see e.g. [4, Thm. 19.1]), for a given β the primal
optimizer σ† of (2.13) and the dual optimizer α† of (2.12) are given by

σ† = proxεFX(K exp(β/ε)), α† = ε log(σ† � (K exp(β/ε))),(2.14)

Analogously, optimization w.r.t. β for fixed α is related to KL proximal steps of FY . Starting from some
initial β(0), we can iterate alternating optimization to obtain a sequence β(0), α(1), β(1), α(2), . . . as follows:

α(`+1) := ε log
(
proxεFX(K exp(β(`)/ε))� [K exp(β(`)/ε)]

)
,(2.15a)

β(`+1) := ε log
(
proxεFY (K> exp(α(`+1)/ε))� [K> exp(α(`+1)/ε)]

)
.(2.15b)
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The algorithm becomes somewhat simpler when it is formulated in terms of the effective variables

u := exp(α/ε) , v := exp(β/ε) .(2.16)

For more convenient notation we introduce the proxdiv operator of a function F and step size 1/ε:

proxdivεF : σ 7→ proxεF (σ)� σ(2.17)

The iterations then become:

u(`+1) := proxdivεFX(K v(`)) , v(`+1) := proxdivεFY (K>u(`+1)) .(2.18)

The primal-dual relation (2.11) then becomes π† = diag(u†)K diag(v†), which is why u and v are often
referred to as diagonal scaling factors.

Remark 1. Throughout this article, we will refer to the arguments of the dual functionals (2.4b) and
(2.10b) as dual variables and denote them with (α, β). The effective, exponentiated variables, introduced
in (2.16), will be denoted by (u, v) and referred to as scaling factors.

For future reference let us state the full scaling algorithm.

Algorithm 1 (Scaling Algorithm).
1: function ScalingAlgorithm(ε,v(0))
2: K ← getK(ε); v ← v(0) // compute kernel, see (2.9); initialize scaling variable
3: repeat
4: u← proxdivεFX(K v); v ← proxdivεFY (K>u)
5: until stopping criterion
6: return (u, v)
7: end function

The stopping criterion is typically a bound on the primal-dual gap between dual iterates (α, β) =
ε log(u, v) and primal iterate π = diag(u)K diag(v), an error bound on the marginals of π (for standard
optimal transport) or a pre-determined number of iterations.

With alternating iterations (2.15) or (2.18) a large family of functionals of form (2.10a) can be
optimized, as long as the KL proximal steps of FX and FY can be computed efficiently. A particularly
relevant sub-family is, where FX and FY are separable and are a sum of pointwise functions. Then the
KL steps decompose into pointwise one-dimensional KL steps, see [14, Section 3.4] for details.

Since Section 4 focusses on the special case of entropy regularized optimal transport, let us explicitly
state the corresponding functional and iterations.

Definition 8 (Entropic Optimal Transport). For marginals µ ∈ P(X), ν ∈ P(Y ) and a cost
function c ∈ RX×Y the entropy regularized optimal transport problem is obtained from Def. 7 by setting
FX := ι{µ}, FY := ι{ν} (see Definition 5 for the unregularized functional). We find:

E(π) = ι{µ}(PX π) + ι{ν}(PY π) + ε KL(π|K)(2.19a)

J(α, β) = 〈α, µ〉+ 〈β, ν〉 − ε KL∗
(

[P>Xα+ P>Y β]/ε
∣∣K)(2.19b)

The proximal steps of FX and FY are trivial (if K has non-empty columns and rows) and we recover the
famous Sinkhorn iterations:

proxdivεFX(σ) = µ� σ , proxdivεFY (σ) = ν � σ ,(2.20a)

u(`+1) = µ� (K v(`)) , v(`+1) = ν � (K>u(`+1)) .(2.20b)

3. Stabilized Sparse Multi-Scale Algorithm. Throughout this section we combine four adap-
tions to the Algorithm 1 to overcome the limitations of a naive implementation outlined in Section 1.1.
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3.1. Log-Domain Stabilization. When running Algorithm 1 with small regularization parameter
ε, entries in the kernel K, and the scaling factors u and v may become both very small and very large,
leading to numerical difficulties. However, under suitable conditions (e.g. standard optimal transport,
finite cost function) it can be shown that the optimal dual variables (α, β) remain finite and have a stable
limit as ε→ 0 ([16], see also Remark 7). In [27, 43] and others it was proposed to formulate the Sinkhorn
iterations directly in terms of the dual variables, instead of the scaling factors. For example, an update
of α would be performed as follows:

ψ(`+1)(x, y) = −c(x, y) + β(`)(y), ψ̃(`+1)(x, y) = ψ(`+1)(x, y)−max
y′∈Y

ψ(`+1)(x, y′)(3.1a)

α(`+1)(x) = ε logµ(x)− ε log
(∑
y∈Y

exp(ψ̃(`+1)(x, y)/ε) · ρ(x, y)
)
−max

y∈Y
ψ(`+1)(x, y)(3.1b)

Subtracting the maximum from ψ(`+1) avoids large arguments in the exponential function. While this
resolves the issue of extreme scaling factors, it perturbs the simple matrix multiplication structure of the
algorithm and requires many additional evaluations of exp and log in each iteration.

As an alternative, we employ the redundant parametrization of the iterations as proposed in[14]. The
scaling factors (u, v), (2.16), are written as

u = ũ� exp(α̂/ε) , v = ṽ � exp(β̂/ε) .(3.2)

Our goal is to formulate iterations (2.18) directly in terms of (ũ, ṽ), while keeping (α̂, β̂) unchanged during
most iterations. The role of (α̂, β̂) is to occasionally ‘absorb’ the large values of (u, v) such that (ũ, ṽ)
remain bounded. This leads to two types of iterations: stabilized iterations, during which only (ũ, ṽ)

are changed, and absorption iterations, during which (ũ, ṽ) are absorbed into (α̂, β̂). In this way, we
can combine the simplicity of the scaling algorithm in terms of the scaling factor formulation with the
numerical stability of the iterations in the log-domain formulation (3.1).

Analogous to the function getK, (2.9), we define the stabilized kernel as

getK : RX × RY × R++ → RX×Y , (α, β, ε) 7→ diag(exp(α/ε)) getK(ε) diag(exp(β/ε)),(3.3a)

[getK(α, β, ε)](x, y) = exp
(
− 1
ε [c(x, y)− α(x)− β(y)]

)
· ρ(x, y) .(3.3b)

The second line, (3.3b), should be used for numerical evaluation such that extreme values in (α, β) and
c can cancel before exponentiation. Moreover, we introduce a stabilized version of the proxdiv operator:

proxdivεF : (σ, γ) 7→ proxεF (exp(−γ/ε)σ)� σ(3.4)

Note that the regular version of the proxdiv operator, (2.17), is a special case of the stabilized variant
with γ = 0. With K = getK(ε) and K = getK(α̂, β̂, ε) we observe that

proxdivεF (K ṽ, α̂) = proxdivεF (K v)� exp(α̂/ε),(3.5a)

proxdivεF (K>ũ, β̂) = proxdivεF (K>u)� exp(β̂/ε) .(3.5b)

For a threshold parameter τ > 0 we formally state the stabilized variant of Algorithm 1.

Algorithm 2 (Stabilized Scaling Algorithm).
1: function ScalingAlgorithmStabilized(ε,α(0),β(0))
2: (α̂, β̂)← (α(0), β(0)); (ũ, ṽ)← (1X , 1Y ); K ← getK(α̂, β̂, ε)
3: repeat
4: while [‖ũ‖∞ ≤ τ ] ∧ [‖ṽ‖∞ ≤ τ ] do
5: ũ← proxdivεFX(K ṽ, α̂); ṽ ← proxdivεFY (K>ũ, β̂) // stabilized iteration
6: end while
7: (α̂, β̂)← (α̂, β̂) + ε · log(ũ, ṽ); (ũ, ṽ)← (1X , 1Y ); K ← getK(α̂, β̂, ε) // absorption iteration
8: until stopping criterion
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9: (α̂, β̂)← (α̂, β̂) + ε · log(ũ, ṽ)

10: return (α̂, β̂)
11: end function

Any successive combination of stabilized iterations and absorption iterations in Algorithm 2 is math-
ematically equivalent to Algorithm 1, in the sense that they produce the same iterates (keep in mind
(3.2–3.5)). But numerically, with finite floating point precision, combining both types of iterations can
make a significant difference. In practice one can run several stabilized iterations in a row, occasionally
checking whether (ũ, ṽ) become too large or too small (see line 4), and perform an absorption iteration
if required. This inflicts less computational overhead than the direct log-domain formulation (3.1) and
largely preserves the simple matrix multiplication structure of the scaling algorithms.

In the definitions for the stabilized kernel, (3.3b), and proxdiv-operator, (3.4), there still appear
exponentials of the form exp(·/ε), which may explode as ε → 0. Extending the max-argument trick in
(3.1) to more general scaling algorithms entails similar questions. In the examples studied in Section 5
and those given in [14] we find however, that evaluation of the exponential exp(−γ/ε) can be avoided.
For the special case of standard optimal transport ε no longer appears in the stabilized step.

3.2. ε-Scaling. It is empirically and theoretically well-known (cf. Section 1.1) that convergence of
Algorithm 1 becomes slow as ε → 0. A popular heuristic remedy is the so-called ε-scaling, where one
subsequently solves the regularized problem with gradually decreasing values for ε. Let E = (ε1, ε2, . . . , εn)
be a list of decreasing positive parameters. We extend Algorithm 2 as follows:

Algorithm 3 (Scaling Algorithm with ε-Scaling).
1: function ScalingAlgorithmεScaling(E,α(0),β(0))
2: (α, β)← (α(0), β(0))
3: for ε ∈ E do // iterate over list, form largest to smallest
4: (α, β)← ScalingAlgorithmStabilized(ε,α,β)
5: end for
6: return (α, β)
7: end function

The dual variable β is kept constant while changing ε, not the scaling factor v, because the optimal dual
variables (α, β) usually have a stable limit as ε→ 0, while the scaling factors (u, v) diverge (see Sect. 1.1
and also Theorem 20).

So far, very little is known theoretically about the behaviour of ε-scaling for the Sinkhorn algorithm
(cf. Section 1.1). Empirically, it is shown in Sect. 5.2 that ε-scaling is highly efficient and the number of
required iterations does not increase exponentially. We observe that indeed it behaves similar as in the
auction algorithm, as discussed in [27]. We work towards a theoretical quantification of this in Sect. 4.

Motivated by this, in practice we recommend a geometric decrease of ε and choose εk = ε0 · λk such
that εn is the desired final value, ε0 is on the order of the maximal values in the cost function c and
λ ∈ (0, 1) is a geometric scaling factor, typically in [0.5, 0.75]. If λ is too small, iterations will start far
from convergence after each change of ε, increasing the risk of numerical instabilities and requiring more
iterations. On the other hand, if λ is too large, many stages of ε-scaling have to be performed, increasing
numerical overhead.

3.3. Kernel Truncation. Storing the dense kernel K and computing dense matrix multiplications
during the scaling iterations (2.18) requires a lot of memory and time on large problems. For several
problems with particular structure, remedies have been proposed (Sect. 1.1). But these do not comprise
non-standard cost functions, as the one used for the Wasserstein-Fisher-Rao distance, (2.3). Moreover
they are not compatible with the log-stabilization (Section 3.1), thus a certain level of blur cannot be
avoided. We are looking for a more flexible method to accelerate solving.

For many unregularized transport problems the optimal coupling π† is concentrated on a sparse
subset of X × Y . In fact, this is the underlying mechanism for the efficiency of most solvers discussed
in Section 1.1. For the regularized problems the optimal coupling will usually be dense. This is due to
the diverging derivative of the KL divergence at zero. However, as ε → 0, the optimal coupling quickly
converges to an unregularized solution (see Sect. 1.1, in particular [16, Thm. 5.8]). As ε→ 0, large parts
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of the coupling will approach zero exponentially fast.
So while we will not be able to exactly solve the full problem, by solving suitable sparse sub-problems,

we may still expect a reasonable approximation. We formalize the concept of a sparse sub-problem.

Definition 9 (Sparse Sub-Problems). Let FX and FY be marginal functions and c be a cost function
as in Definition 4 and let N ⊂ X × Y . We introduce:

ĉ(x, y) :=

{
c(x, y) if (x, y) ∈ N ,

+∞ else.
K̂(x, y) :=

{
K(x, y) if (x, y) ∈ N ,

0 else.
(3.6)

We call problems (2.4a) and (2.4b) with c replaced by ĉ the problems restricted to N . This corresponds to
adding the constraint sptπ ⊂ N to the primal problem, and only enforcing the constraint α(x) + β(y) ≤
c(x, y) on (x, y) ∈ N in the dual problem. The entropy regularized variants of the restricted problems are
obtained through replacing K by K̂ in (2.10a) and (2.10b).

Clearly, when N is sparse, then so is K̂ and the restricted regularized problem can be solved faster and
with less memory. We now quantify the error inflicted by restriction.

Proposition 10 (Restricted Kernel and Duality Gap). Let ε > 0 and N ⊂ X × Y . Let E and J
be unrestricted regularized primal and dual functionals with kernel K, as given in Definition 7, and let Ê
and Ĵ be the functionals of the problems restricted to N , with sparse kernel K̂ (see Def. 9).

Further, let (α, β) be a pair of dual variables, let u = exp(α/ε), v = exp(β/ε) be the corresponding
scaling factors and let π = diag(u) K̂ diag(v) be the corresponding (restricted) primal coupling.

Then we find for the primal-dual gap between π and (α, β):

E(π)− J(α, β) = Ê(π)− Ĵ(α, β) + ε
∑

(x,y)∈(X×Y )\N
u(x)K(x, y) v(y) .(3.7)

Proof. For the primal score we find:

E(π) = FX(PX π) + FY (PY π) + ε
∑

(x,y)∈X×Y

[
π(x, y) log

(
π(x,y)
K(x,y)

)
− π(x, y) +K(x, y)

]
= Ê(π) + ε

∑
(x,y)∈(X×Y )\N

[
π(x, y) log

(
π(x,y)
K(x,y)

)
− π(x, y)︸ ︷︷ ︸

=0

+K(x, y)
]

Analogously, for the dual score we get:

J(α, β) = −F ∗X(−α)− F ∗Y (−β)− ε
∑

(x,y)∈X×Y
K(x, y) · (exp([α(x) + β(y)]/ε)− 1)

= Ĵ(α, β)− ε
∑

(x,y)∈(X×Y )\N
K(x, y) ·

(
exp([α(x) + β(y)]/ε)︸ ︷︷ ︸

=u(x) v(y)

−1
)

Together we obtain E(π)− J(α, β) = Ê(π)− Ĵ(α, β) + ε
∑

(x,y)∈(X×Y )\N u(x)K(x, y) v(y).

That is, the primal-dual gap for the original full functionals is equal to the gap for the truncated function-
als plus the ‘mass’ that we have chopped off by truncating K to K̂, when using the scaling factors u and
v. If some N were known, on which most mass of the optimal π† is concentrated, it would be sufficient
to solve the problem restricted to N , to get a good approximate solution. The remaining challenge is,
how to identify N without knowing π† before.

We propose an iterative re-estimation of N , based on current dual iterates and to combine this with
the log-stabilized iteration scheme (Section 3.1) and the computation of the stabilized kernel, (3.3b). For
a threshold parameter θ > 0 we define the following functions:

getN (α, β, ε, θ) := {(x, y) ∈ X × Y : exp(− 1
ε [c(x, y)− α(x)− β(y)]) ≥ θ}(3.8)

[getK̂(α, β, ε, θ)](x, y) :=

{
exp(− 1

ε [c(x, y)− α(x)− β(y)]) ρ(x, y) if (x, y) ∈ getN (α, β, ε, θ) ,

0 else.
(3.9)
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getK̂ can be used instead of getK in Algorithm 2. We refer to this as absorption iteration with truncation.
For this combination one finds a simple bound for the primal-dual gap comparison of Proposition 10.

Proposition 11 (Simple Duality Gap Estimate for Absorption Iterations with Truncation). For a
regularized problem as in Definition 7 with functionals E and J , let (u, v) be a pair of diagonal scaling
factors and (α, β) = ε · log(u, v), let (α̂, β̂) a pair of dual variables and (ũ, ṽ) a pair of relative scaling
factors such that u = ũ · exp(α̂/ε) and v = ṽ · exp(β̂/ε).

Let further N = getN (α̂, β̂, ε, θ), K = getK̂(α̂, β̂, ε, θ), let Ê and Ĵ be the functionals restricted to N
(see Def. 9) and π = diag(ũ)K diag(ṽ). Then E(π)−J(α, β) ≤ Ê(π)−Ĵ(α, β)+‖ũ‖∞ ·‖ṽ‖∞ ·θ ·ρ(X×Y ).

Proof. By virtue of Proposition 10

E(π)− J(α, β) = Ê(π)− Ĵ(α, β) +
∑

(x,y)∈(X×Y )\N
u(x)K(x, y) v(y) .

For (x, y) ∈ (X × Y ) \ N one has exp(− 1
ε [c(x, y)− α̂(x)− β̂(y)]) < θ and therefore

u(x)K(x, y) v(y) = ũ(x) exp
(
− 1
ε [c(x, y)− α̂(x)− β̂(y)]

)
· ρ(x, y) · ṽ(y)

≤ ũ(x) ṽ(y) θ ρ(x, y) .

The result follows by bounding ũ(x) ≤ ‖ũ‖∞, ṽ(y) ≤ ‖ṽ‖∞ and summing over (X × Y ) \ N .

This implies that in Algorithm 2 with truncation the additional duality gap error due to the sparse kernel
is bounded by ‖ũ(`)‖∞ · ‖ṽ(`)‖∞ · θ · ρ(X × Y ). In particular, before every stabilized iteration the error
is bounded by τ2 · θ · ρ(X × Y ) and after every absorption iteration it is bounded by θ · ρ(X × Y ). This
bound is easy to evaluate and does not require to sum over (X × Y ) \ N , as the exact expression in
Proposition 10. We find that in practice this truncation error bound can be kept much smaller than the
remaining primal-dual gap Ê(π)− Ĵ(α, β).

In general the stabilized iteration scheme with truncation might not converge. However, by Proposi-
tion 11, if one regularly performs an absorption iteration before ‖ũ(`)‖∞ · ‖ṽ(`)‖∞ becomes too large, the
potential oscillations in the primal iterates and primal and dual functionals are numerically negligible.

3.4. Multi-Scale Scheme. Finally, we propose to combine the stabilized sparse iterations with a
hierarchical multi-scale scheme, analogous to the ideas in [34, 41, 35].

This serves two purposes: First, a hierarchical representation of the problem allows to determine
the truncated sparse stabilized kernel getK̂, (3.9), with a coarse-to-fine tree search, without explicitly
testing all pairs (x, y) ∈ X×Y . The second reason is to make the combination of ε-scaling (Algorithm 3)
with the truncated stabilized scheme more efficient. For a fixed threshold θ, while ε is large, the support
of the truncated kernel getK̂ will contain many variables. At the same time, due to the blur induced
by the regularization, the primal iterates will not provide a sharply resolved assignment. Solving the
problems with large ε-value on a coarser grid reduces the number of required variables, without losing
much spatial accuracy. As ε decreases, so does the number of variables in getK̂ (since the exponential
function decreases faster), and the resolution of X and Y can be increased. Therefore, it is reasonable
to coordinate the reduction of ε with increasing the spatial resolution of the transport problem, until the
desired regularization and resolution are attained.

We will now briefly recall the hierarchical representation of a transport problem from [41].

Definition 12 (Hierarchical Partition and Multi-Scale Measure Approximation [41]). For a discrete
set X a hierarchical partition is an ordered tuple (X0, . . . ,XI) of partitions of X where X0 = {{x} : x ∈ X}
is the trivial partition of X into singletons and each subsequent level is generated by merging cells from the
previous level, i.e. for i ∈ {1, . . . , I} and any x ∈ Xi there exists some X̂ ⊂ Xi−1 such that x =

⋃
x̂∈X̂ x̂.

For simplicity we assume that the coarsest level is the trivial partition into one set: XI = {X}. We call
I > 0 the depth of X .

This implies a directed tree graph with vertex set
⋃I
i=0 Xi. For i, j ∈ {0, . . . , I}, i < j we say x ∈ Xi

is a descendant of x′ ∈ Xj when x ⊂ x′. We call x a child of x′ for i = j − 1, and a leaf for i = 0.
For some µ ∈ RX its multi-scale measure approximation is the tuple (µ0, . . . , µI) of measures µi ∈ RXi
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defined by µi(X̂ ) = µ(
⋃

x∈X̂ x) for all subsets X̂ ⊂ Xi and i = 0, . . . I. For convenience we often identify
X with the finest partition level X0 and µ with µ0.

Definition 13 (Hierarchical Dual Variables and Costs [41]). Let X and Y be discrete sets with
hierarchical partitions X = (X0, . . . ,XI), Y = (Y0, . . . ,YI) of depth I, let α ∈ RX and β ∈ RY be
functions over X and Y , and let c ∈ RX×Y be a cost function.

Then we define the extension α̂ = (α̂0, . . . , α̂I) of α onto the full partition X by

α̂i(x) = max
x∈x

α(x) =

{
α(x) if i = 0 and x = {x} for some x ∈ X,
maxx′∈children(x) α̂i−1(x′) if i > 0,

(3.10)

for i ∈ {0, . . . , I} and x ∈ Xi and analogous for β̂ and β. Similarly, define an extension ĉ of c by

ĉi(x,y) = min
(x,y)∈x×y

c(x, y)(3.11)

for i ∈ {0, . . . , I}, x ∈ Xi and y ∈ Yi.
For i ∈ {0, . . . , I}, x ∈ x ∈ Xi, y ∈ y ∈ Yi we find

ĉi(x,y)− α̂i(x)− β̂i(y) ≤ c(x, y)− α(x)− β(y) .(3.12)

Now we can implement a hierarchical tree-search for getN (and analogously getK̂).

Algorithm 4 (Hierarchical Search for getN ).
1: function getN (α,β,ε,θ)
2: (α̂, β̂)← hierarchical extensions of (α, β) // see (3.10)
3: N ← ScallCell(α̂,β̂,ε,θ,I,{X},{Y }) // call on coarsest partition level
4: end function

5: function ScanCell(α̂,β̂,ε,θ,i,x,y)
6: N ′ ← ∅ // temporary variable for result
7: if ĉi(x,y)− α̂i(x)− β̂i(y) ≤ −ε · log θ then // if cell cannot be ruled out at this level
8: if i > 0 then // if not yet at finest level, check on all children
9: for (x′,y′) ∈ children(x)× children(y) do
10: N ′ ← N ′∪ ScanCell(α̂,β̂,ε,θ,i− 1,x′,y′)
11: end for
12: else // if at finest level, add variable
13: N ′ ← N ′ ∪ (x× y) // recall x = {x}, y = {y} for some (x, y) ∈ X × Y at i = 0
14: end if
15: end if
16: return N ′
17: end function

From (3.12) follows directly that Algorithm 4 implements (3.8).
In many applications the discrete sets X and Y are point clouds in Rd and the hierarchical partitions

are 2d-trees over X and Y (see e.g. [40]). The cost function c is often originally defined on the whole
product space Rd × Rd (such as the squared Euclidean distance). For the validity of Algorithm 4 it
suffices if ĉi(x,y) ≤ min(x,y)∈x×y c(x, y). This allows to avoid computing (and storing) the full cost
matrix c ∈ RX×Y and the explicit minimizations in (3.11). c and lower bounds on ĉi can be computed
on-demand directly using the tree-structure.

The second purpose of the multi-scale scheme is the combination with ε-scaling. As explained above,
the purpose is to reduce the number of variables while ε is large. For an illustration see Fig. 1. For
this, we divide the list E of regularization parameters ε into multiple lists (E0, . . . , EI), with the largest
values in EI and the smallest (and final) values in E0, and sorted from largest to smallest within each Ei.
Then, for every i from I down to 0 we perform ε-scaling with list Ei at hierarchical level i, using the dual
solution at each level as initialization at the next stage. The full algorithm, combining log-stabilization,
ε-scaling, kernel truncation and the multi-scale scheme, is sketched next.
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ε = 1280L2, |N | = 57659 ε = 80L2, |N | = 20060 ε = 5L2, |N | = 5263

i =4, |N | = 225 i =2, |N | = 1253 i =0, |N | = 5263

Fig. 1. ε-scaling, truncated kernels and multi-scale scheme. X = Y is a uniform one-dimensional grid, representing
[0, 1], |X| = 256, h = 256−1. µ and ν are smooth mixtures of Gaussians. Top row Density of optimal coupling π† on X2

for various ε. |N | is the number of variables in the truncated, stabilized kernel for fixed θ = 10−10. As ε decreases, so
does |N |, since π† becomes more concentrated. Bottom row Optimal couplings for same ε as top row, but for different
levels i of hierarchical partitions. i and ε were chosen to keep number of variables per x ∈ X approximately constant. For
high ε (and i) |N | is now dramatically lower. While π† is ‘pixelated’ for high i, due to blur, it provides roughly the same
spatial information as the top row. Images in third column are identical.

Algorithm 5 (Full Algorithm).
1: function ScalingAlgorithmFull((E0, . . . , EI),θ)
2: i = I; (α, β)← ((0), (0)) // initialize scale counter and dual variables
3: while i ≥ 0 do
4: // solve problem at scale i with ε-scaling over Ei
5: for ε ∈ Ei do // iterate over list, from largest to smallest
6: (α, β)← ScalingAlgorithmStabilized(i,ε,θ,α,β)
7: end for
8: i← i− 1
9: if i ≥ 0 then // refine dual variables

10: (α, β)← RefineDuals(i,α,β)
11: end if
12: end while
13: return (α, β)
14: end function
Note: ScalingAlgorithmStabilized refers to calling Algorithm 2 for solving the problem at scale i,
with getK replaced by getK̂, (3.9), with threshold θ, implemented according to Algorithm 4. Accordingly,
two arguments i and θ were added. RefineDuals initializes the dual variables (α, β) at level i by setting
the values at x to the previous values at parent(x) for all cells x in Xi.

Remark 2 (Hierarchical Representation of FX , FY ). To solve the problem at hierarchical scale i, not
only do we need a coarse version of c, as given in (3.11). In addition we need hierarchical versions of
the marginal functions FX , FY , see (2.10). An appropriate choice is often clear from the context of the
problem. For example, for an optimal transport problem between µ and ν, see Def. 8, we set FXi = ι{µi},
where µi is taken from the multi-scale measure approximation of µ (see Def. 12). For the unbalanced
transport problem with KL fidelity, Def. 6, we use FXi = λ ·KLXi(·|µi).

This completes the modifications of the diagonal scaling algorithm. Their usefulness will be demon-
strated numerically in Sect. 5.

4. Analogy between Sinkhorn and Auction Algorithm. In this section we develop a new
complexity analysis of the Sinkhorn algorithm and examine the efficiency of ε-scaling. In [27] an intuitive
similarity between the Sinkhorn algorithm for the entropy regularized linear assignment problem and the
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auction algorithm was pointed out. This similarity motivates our approach.
In this section we only consider the standard Sinkhorn algorithm (as opposed to general scaling

algorithms), since the auction algorithm solves the linear assignment problem and assumptions on fixed
marginals µ, ν are required for our analysis.

The auction algorithm is briefly recalled in Section 4.1. In Section 4.2 we introduce an asymmetric
variant of the Sinkhorn algorithm, that is more similar to the original auction algorithm and provide an
analogous worst-case estimate for the number of iterations until a given precision is achieved. A stability
result for the dual optimal solutions under change of the regularization parameter ε is given in Section
4.3 and we discuss how it relates to ε-scaling in Sect. 4.4.

4.1. Auction Algorithm. For the sake of self-containedness, in this section we briefly recall the
auction algorithm and its basic properties. Note that compared to the original presentation (e.g. [9]) we
flipped the overall sign for compatibility with the notion of optimal transport.

In the following we consider a linear assignment problem, i.e. an optimal transport problem between
two discrete sets X, Y with equal cardinality |X| = |Y | = N where the marginals µ ∈ RX+ , ν ∈ RY+ are the
counting measures. For simplicity we assume that the cost function c ∈ RX×Y+ is finite and non-negative.

The main loop of the auction algorithm is divided into two parts: During the bidding phase, elements
of X that are unassigned determine their locally most attractive counterpart in Y (taking into account the
current dual variables) and submit a bid for them. During the assignment phase, all elements of Y that
received at least one bid, pick the most attractive one and change the current assignment accordingly. A
formal description is given in the following.

Algorithm 6 (Auction Algorithm).
1: function AuctionAlgorithm(β(0))
2: π ← 0X×Y ; β ← β(0) // initialize variables: ‘empty’ primal coupling, zero dual variable
3: while π(X × Y ) < N do
4: B(y)← ∅ for all y ∈ Y // start bidding phase: initialize empty bid lists
5: for x ∈ {x′ ∈ X : π({x′} × Y ) = 0} do // iterate over unassigned x
6: y ← argminy′∈Y [c(x, y′)− β(y′)] // pick some element from argmin
7: α(x)← c(x, y)− β(y) // set dual variable
8: B(y)← B(y) ∪ {x} // submit bid to y, i.e. add x to bid list of y
9: end for

10: for y ∈ {y′ ∈ Y : B(y′) 6= ∅} do // assignment phase: iterate over all y that received bids
11: π(·, y)← 0 // set column of coupling to zero
12: x← argminx′∈B(y)[c(x

′, y)− α(x′)] // find best bidder, pick one if multiple
13: β(y)← c(x, y)− α(x)− ε; π(x, y)← 1 // update dual variable and coupling
14: end for
15: end while
16: return (π, (α, β))
17: end function

Remark 3. In the above algorithm, line 7 is usually replaced by α(x)← miny′∈Y \{y}[c(x, y′)−β(y′)],
which in practice may reduce the number of iterations. It does not affect the following worst-case analysis
however, therefore we keep the simpler version.

We briefly summarize the main properties of the algorithm.

Proposition 14. With ε > 0 and β(0) = 0Y , Algorithm 6 has the following properties:
(i) α is increasing, β is decreasing.
(ii) After each assignment phase one finds α(x) + β(y) ≤ c(x, y) and [π(x, y) > 0] ⇒ [α(x) + β(y) ≥

c(x, y)− ε]. The latter property is called ε-complementary slackness.
(iii) The primal iterate satisfies PXπ ≤ µ and PY π ≤ ν.
(iv) The algorithm terminates after at most N · (C/ε+ 1) iterations, where C = max c.

For a proof see for example [9]. From ε-complementary slackness we deduce the following result.

Corollary 15. Upon convergence, the primal-dual gap of π and (α, β), cf. Def. 5, is bounded by
〈c, π〉 − (〈µ, α〉+ 〈ν, β〉) ≤ N · ε. If c is integer and ε < 1/N , then the final primal coupling is optimal.
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Remark 4 (ε-Scaling for the Auction Algorithm). During the auction algorithm it may happen that
several elements in X compete for the same target y ∈ Y , leading to the minimal decrease of β(y) by ε
in each iteration. This phenomenon has been dubbed ‘price haggling’ [10] and can cause poor practical
performance of the algorithm, close to the worst-case iteration bound. The impact of price haggling can be
reduced by the ε-scaling technique, where the algorithm is successively run with a sequence of decreasing
values for ε, each time using the final value of β as initialization of the next run (see also Algorithm 3).
With this technique the factor C/ε in the iteration bound can essentially be reduced to a factor log(C/ε).
An analysis of the ε-scaling technique for more general min-cost-flow problems can be found in [10].

4.2. Asymmetric Sinkhorn Algorithm and Iteration Bound. We now introduce a slightly
modified variant of the standard Sinkhorn algorithm, derive an iteration bound and make a comparison
with the auction algorithm. We emphasize that this modification is primarily made to facilitate theoretical
study of the algorithm and to understand why convergence becomes slow as ε→ 0. We do not advocate
its merits in an actual implementation.

For µ ∈ P(X), ν ∈ P(Y ) and a cost function c ∈ RX×Y+ we consider the entropic optimal transport
problem (Def. 8). Set the reference measure ρ for regularization, see (2.8), to the product measure
ρ(x, y) = µ(x) · ν(y). We state the modified Sinkhorn algorithm with parameter qtarget ∈ (0, 1) that
measures how much mass has to be assigned.

Algorithm 7 (Asymmetric Sinkhorn Algorithm).
1: function AsymmetricSinkhorn(ε,v(0),qtarget)
2: K ← getK(ε); v = v(0) // compute kernel, initialize scaling factor
3: repeat
4: u← µ� (K v); v̂ ← ν � (K>u)
5: v ← min{v, v̂} // element-wise minimum
6: π ← diag(u)K diag(v); q ← π(X × Y ) // update coupling and ‘assigned mass’-fraction q
7: until q ≥ qtarget
8: return (π, (u, v))
9: end function

The only differences to the standard Sinkhorn algorithm (given by Algorithm 1 with proxdiv-operators
(2.20)) lie in line 5 and in the choice of the specific stopping criterion (see Remark 5 for a discussion). In
the standard algorithm one would set v ← v̂. The modification implies that v is monotonously decreasing,
which implies the following result for Algorithm 7 in the spirit of Proposition 14. This monotonicity is
crucial for bounding the number of iterations (see also Remark 6).

Throughout this section, for clarity, we enumerate the iterates u, v, as well as the auxiliary variables
v̂, π and q in Algorithm 7, starting with v(0) and proceeding with (u(1), v(1), v̂(1), π(1), q(1)), . . ., similar
to formulas (2.18) and the corresponding dual variable iterates (α(`), β(`), β̂(`)) = ε · log(u(`), v(`), v̂(`)).

Proposition 16 (Monotonicity of Asymmetric Sinkhorn Algorithm).
(i) u and α = ε log u are increasing, v and β = ε log v are decreasing, q is increasing.
(ii) PX π ≤ µ and PY π ≤ ν. We say π is sub-feasible.
(iii) There exists some y∗ ∈ Y such that v(y∗) = v(0)(y∗) for all iterations.

Proof. By construction we have v(`+1) ≤ v(`). Consequently K v(`+1) ≤ K v(`) and thus u(`+1) ≥ u(`)

and eventually v̂(`+1) ≤ v̂(`).
After updating u(`+1) the row constraints are satisfied. That is PX diag(u(`+1))K diag(v(`)) = µ.

Since v(`+1) is only decreased (i.e. if the corresponding column constraint is violated from above), after-
wards the iterate π(`+1) is sub-feasible.

Since v̂(`) is decreasing, it follows that if v(`)(y) = v̂(`)(y) for some y ∈ Y , then v(k)(y) = v̂(k)(y) for
all k ≥ `. Let Y (`) = {y ∈ Y : v(`)(y) = v̂(`)(y)}. Then Y (`) ⊂ Y (`+1). Conversely, if y /∈ Y (`), then
v(`)(y) < v̂(`)(y) and therefore v(`)(y) = v(0)(y).

Let now q(`)(y) := v(`)(y) [K>u(`)](y). If y ∈ Y (`+1), then q(`+1)(y) = ν(y) ≥ q(`)(y) (as q(`)(y) can
never exceed ν(y)). If y /∈ Y (`+1), then v(`+1)(y) = v(`)(y) = v(0)(y) and since u(`) is increasing, we find
q(`+1)(y) ≥ q(`)(y). We obtain q(`+1) =

∑
y∈Y q

(`+1)(y) ≥ q(`).
When Y (`) 6= Y , there exists some y∗ ∈ Y with y∗ /∈ Y (k), v(k)(y∗) = v(0)(y∗) for k ∈ {1, . . . , `}. If
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Y (`) = Y , then v̂(`) = v(`) ≤ v(`−1). By construction one has (u(`))>K v(`−1) = µ(X) and (u(`))>K v̂(`) =
ν(Y ) = µ(X). So if Y (`) = Y , in fact v(`) = v(`−1). Consequently, there exists some y∗ ∈ Y with
v(`)(y∗) = v(0)(y∗) for all iterations.

Let us further investigate the increments of the dual variable iterates α(`) = ε log(u(`)).

Lemma 17 (Minimal Increment of α(`)). For ` ≥ 1 have
〈
α(`+1) − α(`), µ

〉
≥ ε (1− q(`)).

Proof. Recall that π(`) = diag(u(`))K diag(v(`)), and introduce π′(`) = diag(u(`+1))K diag(v(`)).
Consider the following evaluations of the dual functional:

J(α(`), β(`)) = 〈α(`), µ〉+ 〈β(`), ν〉 − ε · π(`)(X × Y ) + ε ·K(X × Y )

J(α(`+1), β(`)) = 〈α(`+1), µ〉+ 〈β(`), ν〉 − ε · π′(`)(X × Y ) + ε ·K(X × Y )

Note that π(`)(X × Y ) = q(`), π′(`)(X × Y ) = 1 and since going from α(`) to α(`+1) corresponds to a
block-wise dual maximization have J(α(`+1), β(`)) ≥ J(α(`), β(`)). The claim follows.

With these tools we can bound the total number of iterations to reach a given precision.

Proposition 18 (Iteration Bound for the Asymmetric Sinkhorn Algorithm). Initializing with β(0) =
0Y ⇔ v(0) = 1Y , for a given qtarget ∈ (0, 1) the number of iterations n necessary to achieve q(n) ≥ qtarget
is bounded by n ≤ 2+ C

ε·(1−qtarget) where C = max c. Moreover,
〈
u(`), µ

〉
≤ exp(C/ε) for all iterates ` ≥ 1.

Proof. Let us look at the first ‘bid’ α(1). With c ≥ 0 we have

α(1)(x) = ε log

(
µ(x)

[K v(0)](x)

)
= ε log

(
1∑

y∈Y ν(y) exp(−c(x, y)/ε)

)
≥ ε log

(
1∑

y∈Y ν(y)

)
= 0.(4.1)

By virtue of Proposition 16 get q(`) ≤ q(n) for ` ≤ n. With Lemma 17 this implies 〈α(n) − α(1), µ〉 ≥∑n−1
`=1 ε · (1− q(`)) ≥ ε · (n− 1) · (1− q(n)) and with (4.1)

〈α(n), µ〉 ≥ ε · (n− 1) · (1− q(n)) .(4.2)

From Proposition 16 we know that there is some y∗ ∈ Y with v(`)(y∗) = 1 ≤ v̂(`+1)(y∗) for all iterates
` ≥ 0. So

1 ≤ v̂(`+1)(y∗) =
ν(y∗)

[K>u(`+1)](y∗)
=

1∑
x∈X exp

(
− 1

ε [c(x, y∗)− α(`+1)(x)]
)
µ(x)

,

from which we infer exp(−C/ε) ·
〈
exp(α(`+1)/ε), µ

〉
≤ 1, i.e.

〈
u(`+1), µ

〉
≤ exp(C/ε). With Jensen’s

inequality we eventually find
〈
α(`+1), µ

〉
≤ C for ` ≥ 0.

Combining this with (4.2) we obtain n ≤ 1 + C
ε (1−q(n))

. So, as long as q(n) < qtarget we have
n < 1 + C

ε (1−qtarget) . By contraposition we know that there is some n ≤ 2 + C
ε (1−qtarget) such that

q(n) ≥ qtarget.
And finally, we formally establish convergence of the iterates.

Corollary 19 (Convergence of Asymmetric Algorithm). Ignoring the stopping criterion, the iter-
ates (u(`), v(`)) of the asymmetric Algorithm 7 converge to a solution of the scaling problem and q(`) → 1.

Proof. With the upper bound
〈
u(`), µ

〉
≤ exp(C/ε) (Proposition 18) we obtain the pointwise lower

bound v(`)(y) ≥ exp(−C/ε) for all ` ≥ 0. Since v(`) is pointwise decreasing, it converges to some limit
v(∞) ≥ exp(−C/ε) > 0.

The map f : v(`) 7→ v(`+1) is continuous for v(`) > 0. With v(`) → v(∞) and v(`+1) = f(v(`))→ v(∞)

have f(v(∞)) = v(∞) which implies that v(∞) (together with the corresponding u(∞) = µ � (K v(∞)))
solves the scaling problem. This implies convergence of q(`) to 1.

Remark 5 (On the Stopping Criterion and Relation to [21]). The criterion q ≥ qtarget is motivated
by Lemma 17, to provide a minimal increment of α during iterations. 1 − q measures the mass that is
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still missing and is equal to the L1 error between the marginals of π and the desired marginals µ and ν.
In pathological cases the dual variables (α, β) may still be far from optimizers, even though q ≥ qtarget
(see Example 1). In [21, Lemma 2] linear convergence of the marginals in the Hilbert projective metric
is proven. This is a stricter measure of convergence, less prone to ‘premature’ termination. However,
for small ε the contraction factor is roughly 1− 4 exp(−C/ε), which is impractical. The scaling O(1/ε)
predicted by Proposition 18 is consistent with numerical observations when one uses the L1 or L∞ marginal
error as stopping criterion (Sect. 5.2). Therefore we consider the q-criterion to be a reasonable measure
for convergence, as long as one keeps 1− qtarget � δ (Example 1).

Example 1. We consider the 1× 2 toy problem with the following parameters:

µ =
(
1
)>
, ν =

(
1− δ δ

)>
, c =

(
0 C

)
, K =

(
1− δ δ · e−C/ε

)
for some C > 0, δ ∈ (0, 1) and some regularization strength ε > 0. And we consider the scaling factors
(one for X, two choices for Y ): u =

(
1
)>, v1 =

(
1 1

)>, v2 =
(
1 eC/ε

)>
. Let πi = diag(u)K diag(vi)

and corresponding total masses qi, i = 1, 2. We find:

π1 =
(
1− δ δ · e−C/ε

)
, q1 = 1− δ (1− e−C/ε), π2 =

(
1− δ δ

)
, q2 = 1.

π2 and (α, β2) = ε log(u, v2) are primal and dual solutions. π1 is sub-feasible (see Proposition 16). For
fixed ε > 0, as δ → 0, q1 tends to 1 (but is strictly smaller), i.e. the pair (u, v1) has almost converged in
the q-measure sense, but the distance between β1 = ε log v1 and the actual solution β2 is C.

Remark 6 (Analogy to Auction Algorithm). For now assume |X| = |Y | = N and µ, ν are normal-
ized counting measures. Then line 4 in Algorithm 7, expressed in dual variables, becomes

α(x)← softmin({c(x, y)− β(y)|y ∈ Y }, ε) + ε logN ,

β̂(y)← softmin({c(x, y)− α(x)|x ∈ X}, ε) + ε logN .

These are formally similar to the corresponding lines 7 and 13 in Algorithm 6. We can interpret the u-
update in Algorithm 7 as x not just submitting a bid to the best candidate y, but to all candidates, weighted
by the attractiveness (recall that in the Sinkhorn algorithm, a change in the dual variable directly implies
a change in the primal iterate via (2.11)). Conversely, in line 5, y does not only accept the best bid, but
bids from all candidates, again weighted by price. If there are too many bids (i.e. if v̂(y) < v(y)), β(y)
decreases and thereby rejects superfluous offers.

Consequently, in Algorithm 7 one can observe that points in X compete for the mass in Y in a way
similar to the auction algorithm by repeatedly increasing their prices until a different target seems more
attractive or other competitors lose interest. In both algorithms the minimal increment is related to the
parameter ε which leads to iteration bounds that are proportional to 1/ε (Props. 14 and 18). An attempt
to mimic the analysis of ε-scaling is made in Section 4.4 (cf. Remark 9).

One can interpret the standard Sinkhorn algorithm with v ← v̂ as y submitting a ‘counter-bid’ if it
has not received enough bids. Such a symmetrization has also been discussed for the auction algorithm.
But then the complexity analysis based on monotonous dual variables breaks down, and the algorithm may
even run indefinitely (see ‘down iterations’ in [10]).

4.3. Stability of Dual Solutions. The main result of this section is Theorem 20, which pro-
vides stability of dual solutions to entropy regularized optimal transport (Def. 8) under changes of the
regularization parameter ε. Its implications for ε-scaling are discussed in Sect. 4.4.

We consider a similar setup as in Sect. 4.2: µ ∈ P(X), ν ∈ P(Y ), c ∈ RX×Y+ . Again, the reference
measure ρ for regularization, see (2.8), is chosen to be the product measure ρ(x, y) = µ(x) · ν(y). For
Theorem 20 we introduce an additional assumption on µ and ν. The necessity of this assumption can be
demonstrated by counter-examples similar to Example 1.

Assumption 1 (Atomic Mass). For µ ∈ P(X), ν ∈ P(Y ) there is some M ∈ N such that µ = r/M ,
ν = s/M for r ∈ NX , s ∈ NY .

Theorem 20 (Stability of Dual Solutions under ε-Scaling). Let max{|X|, |Y |} ≤ N <∞ and let µ
and ν satisfy Assumption 1 for some M ∈ N. For two regularization parameters ε1 > ε2 > 0, let (α1, β1)
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and (α2, β2) be maximizers of the corresponding dual regularized optimal transport problems (Def. 8) and
let ∆α = α2 − α1 and ∆β = β2 − β1. Then

max ∆α−min ∆α ≤ ε1 ·N · (4 logN + 24 logM),(4.3a)
max ∆β −min ∆β ≤ ε1 ·N · (4 logN + 24 logM).(4.3b)

Remark 7 (Relation to [16] and Motivation). [16] studies the convergence of entropy regularized
linear programs to the unregularized variant and can be used to understand the limit of entropy regularized
optimal transport (Def. 8). To apply [16], the constraint matrix must have full rank and the set of optimal
solutions to (2.5b) must be bounded. When the cost c is finite this is achieved by arbitrarily fixing one
dual variable, e.g. α(x0) = 0, and removing the corresponding column from the dual constraint matrix.
The slight difference in the definition of the entropy (or the dual exponential barrier) can be absorbed into
a change of variables which converges to the identity in the limit ε→ 0.

Then [16, Props. 3.1 and 3.2] imply that the optimal solutions of (2.19b) remain bounded and converge
to a particular solution of (2.5b) as ε→ 0. Furthermore, [16] provides statements about the convergence
of the optimal couplings (Prop. 4.1) and the asymptotic behaviour (Thm. 5.8).

The bounds derived in [16] depend on the geometry of the primal and dual feasible polytopes of (2.5),
i.e. on the transport cost function c. In contrast, the bound of Thm. 20 does not depend on c. The
motivation for deriving such a bound is the implication for ε-scaling, see Section 4.4. Note that Thm. 20
also implies that the optimal dual variables remain bounded as ε→ 0.

Remark 8 (Proof Strategy). The proof requires several auxiliary definitions and lemmas. The es-
timate consists of two contributions: One stems from following paths within connected components of
what we call assignment graph (defined in the following lemma), using the primal-dual relation (2.11).
This reasoning is analogous to the proof strategy for ε-scaling in the auction algorithm (see [10]). How-
ever, between different connected components (2.11) is too weak to yield useful estimates. So a second
contribution arises from a stability analysis of effective diagonal problems (in Lemmas 22 and 23).

Lemma 21 (Assignment Graph). For two feasible couplings π1, π2 ∈ Π(µ, ν) and a thresholdM−1 ≥
1 the corresponding assignment graph is a bipartite directed graph with vertex sets (X,Y ) and the set of
directed edges

E = {(x, y) ∈ X × Y : π2(x, y) ≥ µ(x) · ν(y)/M} t {(y, x) ∈ Y ×X : π1(x, y) ≥ µ(x) · ν(y)/M}

where (a, b) ∈ E indicates a directed edge from a→ b.
The assignment graph has the following properties:

(i) Every node has at least one incoming and one outgoing edge.
(ii) Let X0 ⊂ X, Y0 ⊂ Y such that there are no outgoing edges from (X0, Y0) to the rest of the vertices,

then |µ(X0) − ν(Y0)| < 1/M . This is also true when there are no incoming edges from the rest of
the vertices. If µ and ν are atomic, with atom size 1/M (see Assumption 1), then µ(X0) = ν(Y0).

(iii) Let µ and ν be atomic, with atom size 1/M . Let {(Xi, Yi)}Ri=1 be the vertex sets of the strongly
connected components of the assignment graph, for some R ∈ N (taking into account the orientation
of the edges). Then the sets {Xi}Ri=1 and {Yi}Ri=1 are partitions of X and Y , and µ(Xi) = ν(Yi) for
i = 1, . . . , R.

Proof. Assume, a node x ∈ X had no outgoing edge. Then
∑
y∈Y π2(x, y) < µ(x)/M ≤ µ(x). This

contradicts π2 ∈ Π(µ, ν). Existence of incoming edges follows analogously.
Let X̂0 = X \X0, Ŷ0 = Y \ Y0. If (X0, Y0) has no outgoing edges, then∑

x∈X0,

y∈Ŷ0

π2(x, y) <
∑
x∈X0,

y∈Ŷ0

µ(x) · ν(y)/M ≤ 1
M ,

∑
x∈X̂0,
y∈Y0

π1(x, y) <
∑
x∈X̂0,
y∈Y0

µ(x) · ν(y)/M ≤ 1
M .

Since π1, π2 ∈ Π(µ, ν), the first inequality implies µ(X0) = π2(X0 × Y ) = π2(X0 × Y0) + π2(X0 × Ŷ0) <
ν(Y0) + 1/M and the second inequality implies ν(Y0) < µ(X0) + 1/M , i.e. |µ(X0)− ν(Y0)| < 1/M . With
Assumption 1 for atom size 1/M , this implies µ(X0) = ν(Y0). The statement about incoming edges
follows from µ(X̂0) = 1− µ(X0) and ν(Ŷ0) = 1− ν(Y0).
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Every node in (X,Y ) is part of at least one strongly connected component (containing at least the
node itself). If two strongly connected components have a common element, they are identical. Hence,
the strongly connected components form partitions of X and Y . For some x ∈ X (or y ∈ Y ), let Xout ⊂ X
and Yout ⊂ Y be the set of nodes that can be reached from x, let Xin ⊂ X and Yin ⊂ Y be the set of nodes
from which one can reach x and let (Xcon = Xout ∩ Xin, Ycon = Yout ∩ Yin) be the strongly connected
component of x. Clearly (Xout, Yout) has no outgoing edges. Hence, by (ii) one has µ(Xout) = ν(Yout).
Moreover, (Xout \Xin, Yout \ Yin) has no outgoing edges, hence µ(Xout \Xin) = ν(Yout \ Yin), from which
follows that µ(Xcon) = ν(Ycon).

Lemma 22 (Reduction to Effective Diagonal Problem). Let {Xi}Ri=1 and {Yi}Ri=1 be partitions of
X and Y , for some R ∈ N, with µ(Xi) = ν(Yi) for i = 1, . . . , R. Let {yi}Ri=1 ⊂ Y such that yi ∈
Yi. Let (α†, β†) be optimizers for the dual entropy regularized optimal transport problem (Def. 8) for a
regularization parameter ε > 0.

Consider the following functional over RR:

Ĵ : RR → R, β̂ 7→ −ε
R∑

i,j=1

exp
(
− 1
ε

[
d(i, j) + β̂(i)− β̂(j)

])
where d ∈ RR×R with

d(i, j) = −ε log

∑
x∈Xi
y∈Yj

exp
(
− 1
ε

[
c(x, y)− α†(x)− β†(yi)− β†(y) + β†(yj)

])
· µ(x) · ν(y)

 .(4.4)

Then β̂† ∈ RR, given by β̂†(i) = β†(yi), is a maximizer of Ĵ . Conversely, if β̂†† is a maximizer of Ĵ ,
then there is a constant b ∈ R, such that β̂††(i) = β̂†(i) + b for all i ∈ 1, . . . , R.

Proof. We define the functional Ĵ : RR → R as follows:

Ĵ : β̂ 7→ J

((
α̃

β̃

)
+

(
−BX
BY

)
β̂

)
where J denotes the dual functional of entropy regularized optimal transport (2.19b), and

• α̃ ∈ RX with α̃(x) = α†(x) + β†(yi) when x ∈ Xi;
• β̃ ∈ RY with β̃(y) = β†(y)− β†(yj) when y ∈ Yj ;
• BX ∈ RX×R with BX(x, i) = 1 if x ∈ Xi and 0 else;
• BY ∈ RY×R with BY (y, j) = 1 if y ∈ Yj and 0 else.

Then one has (
α†

β†

)
=

(
α̃

β̃

)
+

(
−BX
BY

)
β̂† .

Since maximizing Ĵ corresponds to maximizing J over an affine subspace, clearly β̂† is a maximizer of
Ĵ . Since Ĵ inherits the invariance of J under constant shifts, any β̂†† of the form given above, is also a
maximizer. Consequently, we may add the constraint β̂(1) = 0, which does not change the optimal value.
With this added constraint the functional becomes strictly convex, which implies a unique optimizer.
Hence, any optimizer of the unconstrained functional can be written in the form of β̂††.

Let us now give a more explicit expression of Ĵ(β̂). We find

Ĵ(β̂) =
〈
B>Y ν −B>Xµ, β̂

〉
− ε

R∑
i,j=1

∑
x∈Xi
y∈Yj

exp
(
− 1
ε

[
c(x, y)− α̃(x) + β̂(i)− β̃(y)− β̂(j)

])
· µ(x) · ν(y)

+ 〈µ, α̃〉+
〈
ν, β̃
〉

+ ε ·K(X × Y ) .
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Note that the second line is constant w.r.t. β̂. Since µ(Xi) = ν(Yi) the linear term vanishes and we can
write Ĵ(β̂) = −ε

∑R
i,j=1 exp

(
− 1
ε

[
d(i, j) + β̂(i)− β̂(j)

])
+ const with coefficients d ∈ RR×R, as given

above. The constant offset does not affect minimization.

Lemma 23 (Effective Diagonal Problem and Stability). For a parameter ε > 0 and a real matrix
d ∈ RR×R consider the following functional:

Ĵε,d(β) =

R∑
i,j=1

exp ([−d(i, j)− β(i) + β(j)] /ε)(4.5)

Minimizers of Ĵε,d exist.
Let ε1 ≥ ε2 > 0 be two parameters and d1, d2 ∈ RR×R two real matrices. Let β†1 and β†2 be

minimizers of Ĵε1,d1 and Ĵε2,d2 , let ∆d = d2 − d1, ∆β = β†2 − β
†
1. Let the matrix w ∈ RR×R be given by

w(i, j) = max{−∆d(i, j),∆d(j, i)}. Then max ∆β −min ∆β ≤ maxdiam(w) + 2 ε1R logR, where

maxdiam(w) = max

{
k−1∑
i=1

w(ji, ji+1) : k ∈ {2, . . . , R}, ji ∈ {1, . . . , R} for i = 1, . . . , k, all ji distinct.

}
.

That is, maxdiam(w) is the length of the longest cycle-less path in {1, . . . , R} with edge lengths w.

The proofs of Theorem 20 and Lemma 23 can be found in Appendix A.

4.4. Application To ε-Scaling. Assuming that we know the dual solution for some ε1 > 0, then
Theorem 20 allows to bound the number of iterations of Algorithm 7 for some smaller ε2 ∈ (0, ε1),
independently of bounds on the cost function c. This may have implications for the efficiency of ε-scaling
(see Remark 9).

Proposition 24 (Single ε-Scaling Step). Consider the set-up of Theorem 20. In particular, let
ε1 > ε2 > 0 be two regularization parameters, let (α1, β1), (α2, β2) be corresponding optimizers of (2.19b).
If Algorithm 7 is initialized with v(0) = exp(β1/ε2), with regularization ε2, and for a given qtarget ∈ (0, 1),
the number of iterations n necessary to achieve q(n) ≥ qtarget is bounded by

n ≤ 2 +
ε1

ε2

N · (4 logN + 24 logM) + logM

1− qtarget
.(4.6)

Proof. For the optimal scaling factor u1 of the ε1-problem we find:

u1(x) := exp(α1(x)/ε1) =
(∑
y∈Y

exp
(
− 1
ε1

[c(x, y)− β1(y)]
)
ν(y)

)−1

This implies u1(x)−1 ν(y)−1 ≥ exp
(
− 1
ε1

[c(x, y)− β1(y)]
)
for all (x, y) ∈ X×Y . With this we can bound

the first iterate of the ε2-run of the algorithm by:

u(1)(x) =
(∑
y∈Y

exp
(
− 1
ε2

[c(x, y)− β1(y)]
)
ν(y)

)−1

≥
(∑
y∈Y

(u1(x) ν(y))
− ε1ε2 ν(y)

)−1

≥
(
u1(x)
M

) ε1
ε2

where we have used ν(y) ≥ 1/M , Assumption 1. Eventually we find α(1)(x) ≥ α1(x)− ε1 logM .
By monotonicity of the iterates we have β2 ≤ β(`) ≤ β(0) = β1 and β(`)(y′) = β1(y′) for a suitable

y′ ∈ Y (Proposition 14). Consequently max ∆β = 0. Then, from Theorem 20, we obtain β2(y)− β1(y) ≥
min ∆β ≥ −ε1 ·A where A = N · (4 logN + 24 logM). With this we can bound the u-iterates:

u(`)(x) ≤ u2(x) := exp(α2(x)/ε2) =
(∑
y∈Y

exp
(
− 1
ε2

[c(x, y)− β2(y)]
)
ν(y)

)−1

≤
(∑
y∈Y

exp
(
− 1
ε2

[c(x, y)− β1(y)]
)
ν(y)

)−1

exp
(
ε1
ε2
A
)
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With convexity of s 7→ sε1/ε2 and Jensen’s inequality we get

u(`)(x) ≤
(∑
y∈Y

exp
(
− 1
ε1

[c(x, y)− β1(y)]
)
ν(y)

)−ε1/ε2
exp

(
ε1
ε2
A
)

= u1(x)ε1/ε2 exp
(
ε1
ε2
A
)

and finally α(`)(x) ≤ α1(x) + ε1A. We summarize: α(`)(x) − α(0)(x) ≤ ε1 (A + logM). Now using
Lemma 17 and arguing as in Proposition 18, we find that there is some n ≤ 2 + ε1

ε2

A+logM
1−qtarget such that

q(n) ≥ qtarget.
Let now C = max c for a cost function c ≥ 0, let ε̂ > 0 be the desired final regularization parameter,

pick some λ ∈ (0, 1) and let k ∈ N such that ε̂ · λ−k ≥ C. Let E = (ε̂ · λ−k, ε̂ · λ−k+1, . . . , ε̂) be a list of
decreasing regularization parameters.

Remark 9. Now we combine Algorithm 7 with ε-scaling, (cf. Algorithm 3). For ε = ε̂ · λ−k ≥ C,
according to Proposition 18 it will take at most 2 + 1

1−qtarget iterations. It is tempting to deduce from
Proposition 24 that for each subsequent value of ε at most 2 + A

λ (1−qtarget) iterations are required, with
A = N · (4 logN + 24 logM) + logM . For N > 1 the total number of iterations would then be bounded by
(2 + A

λ (1−qtarget) ) · (k + 1). For fixed λ the step parameter k scales like log(C/ε̂). Consequently, the total
number of iterations would be bounded by O(log(C/ε̂)) w.r.t. the cost function and regularization, which
would be analogous to ε-scaling for the auction algorithm (Remark 4).

There is an obvious gap in this reasoning: Theorem 20 assumes that β1 is known exactly, while
Algorithm 7 only provides an approximate result. From Example 1 we learn that in extreme cases this
difference can be substantial and disrupt the efficiency of ε-scaling. Thus, additional assumptions on the
problem are required to make the above argument rigorous.

However, as discussed in Remark 5, in practice we usually observe that approximate iterates are
sufficient and we can therefore hope that ε-scaling does indeed serve its purpose.

5. Numerical Examples. Now we present a series of numerical experiments to confirm the use-
fulness of the modifications proposed in Sect. 3. We show that runtime and memory usage are reduced
substantially. At the same time the adapted algorithm is still as versatile as the basic version of [14],
Algorithm 1. But Algorithm 5 can solve larger problems at lower regularization, yielding very sharp
results. We give examples for unbalanced transport, barycenters and Wasserstein gradient flows. The
code used for the numerical experiments is available from the author’s website.1

5.1. Setup. We transport measures on [0, 1]d for d ∈ {1, 2, 3}, represented by discrete equidistant
Cartesian grids. The distance between neighbouring grid points is denoted by h. For the squared
Euclidean distance cost function c(x, y) = |x− y|2, x, y ∈ Rd, K is a Gaussian kernel with approximate
width

√
ε. Therefore, it is useful to measure ε in units of h2. For ε = h2 the blur induced by the

entropy smoothing is on the length scale of one pixel. With the enhanced scaling algorithm we solve most
problems in this section with ε = 0.1 · h2, leaving very little blur and giving a good approximation of the
original unregularized problem (see Fig. 4).

Unless stated otherwise, we use the following settings: Test measures are mixtures of Gaussians, with
randomized means and variances. The cost function is the squared Euclidean distance. ρ is the product
measure µ ⊗ ν for optimal transport problems and the discretized Lebesgue measure on the product
space for problems with variable marginals. For standard optimal transport the stopping criterion is
the L∞ error between prescribed marginals (µ, ν) and marginals of the primal iterate π (and likewise
for Wasserstein barycenters). For all other models the primal-dual gap is used. We set θ = 10−20 for
truncating the kernel and τ = 102 as upper bound for (ũ, ṽ) (cf. (3.9), Algorithm 2, line 4), implying a
bound of 10−16 · ρ(X × Y ) for the truncation error, which is many orders of magnitude below prescribed
marginal accuracies or primal-dual gaps. The hierarchical partitions in the coarse-to-fine scheme are
2d-trees, where each layer i is a coarser d-dimensional grid with grid constant hi. For combination with
ε-scaling (Algorithm 5) we choose the lists Ei, i > 0, such that for the smallest εi in each Ei we have
roughly εi/h2

i ≈ 1. On the finest scale, we go down to the desired final value of ε. All reported run-times
were obtained on a single core of an Intel Xeon E5-2697 processor at 2.7 GHz.

1https://github.com/bernhard-schmitzer
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Fig. 2. Efficiency of enhancements: average number of iterations and runtime for different ε and algorithms. X = Y
are 2-d 64 × 64 grids. (i) log-domain stabilized, Algorithm 2, (ii) with ε-scaling, Algorithm 3, (iii) with sparse stabilized
kernel, (3.9), (iv) with multi-scale scheme, Algorithm 5. (ii) and (iii) need same number of iterations, but the sparse
kernel requires less time. The naive implementation, Algorithm 1, requires same number of iterations as (i), but numerical
overflow occurs at approximately ε ≤ 3h2.

5.2. Efficiency of Enhanced Algorithm. The numerical efficiency of the subsequent modifica-
tions presented in Sect. 3, applied to the standard Sinkhorn algorithm, is illustrated in Fig. 2. While the
stabilized algorithm (i) is not yet faster than the naive implementation, it can robustly solve the problem
for all given values of ε. The required number of iterations scales like O(1/ε), in good agreement with the
complexity analysis of Sect. 4.2. With ε-scaling (ii) the number of iterations is decreased substantially.
Replacing the dense kernel with the adaptive truncated sparse kernel (iii) does not change the number
of required iterations, but saves time and memory. With the multi-scale scheme the required number of
iterations is slightly increased, since the initial dual variables obtained at a coarser level are only approx-
imate solutions. But by reducing the number of variables during the early ε-scaling stages, the runtime
is further decreased (cf. Fig. 1). The combination of all modifications leads to an average total speed-up
of more than two orders of magnitude on this problem type.
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Fig. 3. Average runtime and sparsity of Algorithm 5 for transporting test-images of different size (up to 5122 pixels
for 2-d, 643 for 3-d). Stopping criterion: L∞-marginal error, for different accuracy limits, final ε = 0.1 · h2. Performance
of the adaptive sparse linear programming solver [40] given for comparison (LP). As expected, runtime increases with
required accuracy. The runtime of the scaling algorithm scales more favourably (approximately linear) with |X| and is
competitive for large instances. The number of variables scales as O(1/|X|), suggesting that the number of variables per
x ∈ X is roughly constant. For the final ε = 0.1 · h2, the sparsity of the truncated kernel is comparable to [40]. For
ε = 1.8 · h2, the largest value in E0 (the list for the finest scale), more variables are required.

A runtime benchmark and study of the sparsity of the truncated kernel are given in Fig. 3. The
runtime scales approximately linear with |X| and for large problems the algorithm becomes faster than
the adaptive sparse linear programming solver [40]. The final number of variables in the sparse kernel
is comparable with the number of variables in [40], for higher values of ε, during scaling, more memory
is required (cf. Fig. 4). This underlines again the importance of the coarse-to-fine scheme (Sect. 3.4).
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It should be noted, that Fig. 2 shows results for 64 × 64 images, the smallest image size in Fig. 3. For
larger images the runtime difference between (i-iv) would be even larger, but due to time and memory
constraints, only (iv) can be run practically.
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Fig. 4. Different final values for ε in Algorithm 5. X = Y are 2-d 256× 256 grids. Left Average number of variables
in truncated kernel per x ∈ X. For ε = 0.1 · h2 only about 10 variables per x ∈ X are required. As expected, this number
increases with ε (cf. Fig. 1). Center For large ε, the runtime decreases with ε, since the number of variables decreases
(cf. left plot). For smaller ε, the runtime increases again, since more stages of ε-scaling are required. Right The optimal
regularized dual variables were transformed into feasible unregularized dual variables, by decreasing each α(x) until all
dual constraints α(x) + β(y) ≤ c(x, y) were met, (2.5b). The sub-optimality of these dual variables is shown. As expected
(see Sect. 1.1) they converge towards a dual optimizer. Absolute optimal value was between 100 and 400 for the used test
problems, i.e. for small ε, sub-optimality is small compared to total scale.

The impact of different final values for ε is outlined in Fig. 4. As expected, the number of variables in
the truncated kernel increases with ε. This leads to two competing trends in the overall runtime: For large
ε, the kernel truncation is less efficient, leading to an increase with ε. For small ε, the number of variables
is very small, but more and more stages of ε-scaling are necessary, increasing the runtime as ε decreases
further. Convergence of the regularized optimal dual variables to the unregularized optimal duals is
exemplified in the right panel, justifying the use of the approximate entropy regularization technique
for transport-type problems. While one may consider the dual sub-optimality at ε ≈ 30h2 sufficiently
accurate, we point out that the corresponding primal coupling still contains considerable blur (cf. Fig. 1)
and that due to less sparsity the runtime is actually higher than for ε ≈ h2.

As illustrated by Figs. 3 and 4, by choosing the threshold for the stopping criterion and the desired
final ε, one can tune between required precision and available runtime.

Remark 10 (Interplay of Modifications). The numerical findings presented in Figs. 2-4 underline
how each of the modifications discussed in Sect. 3 builds on the previous ones and that all four of them
are required for an efficient algorithm. The log-domain stabilization is an indispensable prerequisite for
running the scaling algorithms with small regularization. However, for small ε, convergence tends to
become extremely slow (cf. Fig. 2), therefore ε-scaling is needed to reduce the number of iterations. For
small ε, kernel truncation significantly reduces the number of variables and accelerates the algorithm
(cf. Figs. 2 and 4). However, for large ε (which must be passed during ε-scaling), far fewer variables are
truncated and the algorithm cannot be run on large problems. This can be avoided by using the coarse-to-
fine scheme, completing the algorithm. In principle it is possible, only to combine log-domain stabilization
with kernel truncation, and to skip ε-scaling and the coarse-to-fine scheme. While this tends to solve the
stability and memory issues, convergence is still impractically slow.

5.3. Versatility. The framework of scaling algorithms developed in [14], see Sect. 2, allows to solve
more general transport-type problems for which the enhancements of Sect. 3 still apply. We now give
some examples to demonstrate this flexibility. The scope of the following examples is similar to [14], but
with Algorithm 5 one can solve larger problems with smaller regularization.

KL Fidelity and Wasserstein-Fisher-Rao distance. For the marginal function FX(σ) = λ ·KLX(σ|µ)
with a given reference measure µ ∈ RX+ and a weight λ > 0, see Def. 6, one obtains for the (stabilized)
proxdiv operator

proxdivεFX(σ) = (µ� ν)
λ
λ+ε , proxdivεFX(σ, α) = exp

(
− α
λ+ε

)
� (µ� ν)

λ
λ+ε .(5.1)

A proof is given in [14]. Compared to the standard Sinkhorn algorithm, the only modification is the
pointwise power of the iterates. As λ→∞ the Sinkhorn iterations are recovered. In the stabilized oper-
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Fig. 5. Geodesic for Wasserstein-Fisher-Rao distance on [0, 1]2, approximated by a 256 × 256 grid, computed as
barycenters between end-points with varying weights. Mass that travels further, is decreased during transport to save cost.

(4, 0, 0) (3, 0, 1) (2, 0, 2) (1, 0, 3) (0, 0, 4)

(3, 1, 0) (2, 1, 1) (1, 1, 2) (0, 1, 3)

(2, 2, 0) (1, 2, 1) (0, 2, 2)

(1, 3, 0) (0, 3, 1)

(0, 4, 0)

ε = 0.1h2ε = 2h2

Fig. 6. Barycenters in Wasserstein space over [0, 1]2, computed on 256 × 256 grids for ε = 0.1h2. Left Weights
4 · (λ1, λ2, λ3) for shown barycenters. Center ‘Barycentric triangle’ spanned by a ring, a diamond and a square for
weights on the left. Right Close-up of the λ = (1, 2, 1)/4 barycenter for ε = 2h2 (as reported in [6]) and ε = 0.1h2,
computed with the adapted algorithm. The ε = 0.1h2 version is much sharper, revealing discretization artifacts.

ator only the exponential exp
( −α
λ+ε

)
needs to be evaluated, which remains bounded as ε→ 0. Algorithm

5 performs similarly with KL-fidelity as with fixed marginal constraints, allowing to efficiently solve large
unbalanced transport problems. Since the truncation scheme can also be used with non-standard cost
functions such as (2.3), this includes in particular the Wasserstein-Fisher-Rao (WFR) distance. Fig. 5
shows a geodesic for the WFR distance, to intuitively illustrate its properties. The geodesic has been
computed as weighted barycenters between its endpoints (see below). For a direct dynamic formulation
we refer to [26, 13, 31]. For the relation to the KL soft-marginal formulation, Def. 6, see [31, 15].

Wasserstein barycenters. Wasserstein barycenters as a natural generalization of the Riemannian cen-
ter of mass have been studied in [1]. The computation of entropy regularized Wasserstein barycenters
with a Sinkhorn-type scaling algorithm has been presented in [6], an alternative numerical approach can
be found in [19]. The iterations can be considered as a special case of the framework in [14]. Here, we
very briefly recall the iterations. Derivations and proofs can be found in [6].

We want to compute the (entropy regularized) Wasserstein barycenter of a tuple (µ1, . . . , µn) ∈ RX×n
over a common base space X = Y with metric d with non-negative weights (λ1, . . . , λn) that sum to one.
The primal functional can be written as an optimization problem over a tuple (πi)

n
i=1 = (π1, . . . , πn) ∈

R(X×X)×n of couplings, which requires a slight generalization of Def. 7, see [14]. It is given by

E((πi)i) = F1((PX πi)i) + F2((PY πi)i) +

n∑
i=1

λi KL(πi|K)(5.2)

where

F1((νi)i) =

n∑
i=1

ι{µi}(νi), F2((νi)i) =

{
0 if ∃σ ∈ RX s.t. [σ = νi ∀ i = 1, . . . , n],

+∞ else.

and K is the kernel (2.8) over X ×X for the cost c = d2. When an optimizer (π†i )i is found, the common
second marginal of all π†i is the sought-after barycenter. To solve (5.2) one considers again a suitable dual
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Fig. 7. Comparison of different barycenters models: First column Corner points of barycentric triangle. Each
measure consists of three ‘groups’. Second column Wasserstein-Fisher-Rao barycenter for λ = (1, 2, 1)/4 for ε = 0.1h2.
Third column Wasserstein barycenter between normalized reference measures for ε = 0.1h2. Unlike the ‘unbalanced’
barycenters, here mass must be transferred between the different ‘groups’ of the reference measures. Fourth column
Gaussian Hellinger-Kantorovich barycenter for ε = 6.55h2, as computed with Gaussian convolution without log-domain
stabilization.

problem and uses alternating optimization. Updates corresponding to F1 decompose into independent
standard Sinkhorn iterations for each marginal, the update for F2 couples all marginals, see [6, 14]. The
adaptations from Sect. 3 remain applicable. A barycentric triangle computed with Algorithm 5 is shown
in Fig. 6. The log-domain stabilization allows to reach a lower final regularization ε as for example in
[6]. Regularization can be made so small that discretization artifacts become visible. While this may not
look entirely pleasing, it clearly gives a better approximation to the unregularized problem and illustrates
that with log-domain stabilization entropy regularized numerical methods can produce sharp results.

Wasserstein-Fisher-Rao barycenters. Similarly one can define barycenters for transport distances
with KL marginal fidelity, which includes the Gaussian Hellinger-Kantorovich (GHK) distance and the
Wasserstein-Fisher-Rao (WFR) distance (Def. 6). The primal functional is given by (5.2) with

F1((νi)i) = Λ ·
n∑
i=1

λi KL(νi|µi) , F2((νi)i) = inf
σ∈RX

Λ ·
n∑
i=1

λi KL(νi|σ) ,

where Λ > 0 is a global weight of the KL-fidelity. When a primal optimizer is found, the minimizing σ
in F2 yields the sought-after barycenter. We refer to [14] for details. Partial optimization corresponding
to F1 can again be done separately for each marginal, leading to KL fidelity updates as given by (5.1).
The update corresponding to F2 is again coupled [14], adaptations from Sect. 3 remain applicable.

Wasserstein Gradient Flows. In [36] diagonal scaling algorithms were extended to compute proxi-
mal steps for entropy regularized optimal transport to approximate gradient flows in Wasserstein space
(cf. Sect. 1.1). This was then subsumed into the general framework of [14]. Here we given an example
for the porous medium equation, for more details we refer to [36, 14]. Let

F : P(X)→ R, µ 7→
∑
x∈X

u
(
µ(x)
L(x)

)
L(x) +

∑
x∈X

v(x)µ(x)(5.3)

where u(s) = s2, L is the discretized Lebesgue measure on X ⊂ Rd and v : X → R is a potential. Then,
for some initial µ(0) ∈ P(X) and a time step size τ > 0 we iteratively construct a sequence (µ(`))` where
µ(`+1) is given by the proximal step of F with step size τ w.r.t. the entropy regularized Wasserstein
distance on X from reference point µ(`). Based on Def. 8, µ(`+1) can be computed as follows:

π(`+1) := argmin
π∈P(X2)

(
ι{µ(`)}(PX π) + 2 τ · F (PY π) + ε KL(π|K)

)
, µ(`+1) := PY π(`+1) ,(5.4)

where K is the kernel w.r.t. the squared Euclidean distance on X. Then introduce the time-continuous
interpolation µ : R+ → P(X), t 7→ µ(`) when t ∈ [τ · `, τ · (` + 1)). Consider now the limit (τ, ε) → 0
in a way such that ε| log ε| ≤ τ2. Then, up to discretization, the function µ converges to a solution
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Fig. 8. Left Entropic Wasserstein gradient flow for the porous media equation on [0, 1]2, approximated by a 256×256
grid with ε = 10−5 ≈ 0.66h2, τ = 2 · 10−4. The energy is given by (5.3) with v((x1, x2)) = 100 · x1 if x = (x1, x2) ∈ Ω,
v(x) = +∞ otherwise and Ω = [0, 1]2 \ Ω̂ where Ω̂ is a ‘barrier’ indicated by the white rectangles. Top Right Cross section
of density at different times along x2 = 0.5. Bottom Right Close-up for t = 4 · 10−3 for different values of regularization
ε. For ε = 10−5 the compact support of µ, a characteristic feature of the porous media equation, is numerically well
preserved. Without log-domain stabilization, for ε = 10−4 the entropic blur quickly distorts this feature.

of the porous media PDE ∂tµ = ∆(µ2) + div(µ · ∇v). A proof is given in [12]. Problem (5.4) is an
instance of Def. 7 and can be solved by alternating dual optimization [14]. A numerical example is shown
in Fig. 8. As in the previous experiments, Algorithm 5 allows to use log-domain stabilization on large
problems, producing sharp results. In this example, the compact support of the porous media equation
is numerically well preserved.

6. Conclusion. Scaling algorithms for entropy regularized transport-type problems have become a
wide-spread numerical tool. Naive implementations have some severe numerical limitations, in particular
for small regularization and on large problems. In this article, we proposed an enhanced variant of
the standard scaling algorithm to address these issues: Diverging scaling factors and slow convergence
are remedied by log-domain stabilization and ε-scaling. Required runtime and memory are significantly
reduced by adaptive kernel truncation and a coarse-to-fine scheme. A new convergence analysis for the
Sinkhorn algorithm was developed. Numerical examples showed the efficiency of the enhanced algorithm,
confirmed the scaling predicted by the convergence analysis and demonstrated that the algorithm can
produce sharp results on a wide range of transport-type problems. Potential directions for future research
are the more detailed study of ε-scaling, a more systematic understanding of the stability of the log-domain
stabilization and application to multi-marginal problems.
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discussions. Bernhard Schmitzer was supported by the European Research Council (project SIGMA-
Vision).

Appendix A. Additional Proofs.

A.1. Proof of Lemma 23. First, we establish existence of minimizers. For some ε > 0, d ∈ RR×R
the functional β 7→ Ĵε,d(β) is convex and bounded from below. Further, it is invariant under adding the
same constant to all components of β. Hence, the optimal value minβ Ĵε,d(β) is not changed by adding
the constraint β(1) = 0. With this added constraint the functional becomes strictly convex and coercive
in the remaining variables, hence a unique minimizer exists. The full set of minimizers is then obtained
via constant shifts.

The first order optimality condition for the functional yields for the i-th component of β:

β(i) =
1

2

[
softmax
j:j 6=i

(−d(i, j) + β(j), ε) + softmin
j:j 6=i

(d(j, i) + β(j), ε)

]
,

where the subscript j : j 6= i denotes that softmax is taken only over components {1, . . . , R} \ {i}.
Finiteness of d ensures that this expression is meaningful. Let i1 ∈ {1, . . . , R} be an index where ∆β is
maximal, i.e. ∆β(i1) = max ∆β.
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From the optimality conditions for βa(i1), a = 1, 2, and (1.3) we obtain:

β†a(i1) =
1

2

[
softmax
j:j 6=i1

(−da(i1, j) + β†a(j), εa) + softmin
j:j 6=i1

(da(j, i1) + β†a(j), εa)

]
,

∆β(i1) ≤ 1

2

[
max
j:j 6=i1

(−∆d(i1, j) + ∆β(j)) + max
j:j 6=i1

(∆d(j, i1) + ∆β(j)) + (ε1 + ε2) · logR

]
≤ max
j:j 6=i1

(w(i1, j) + ∆β(j)) + ε1 logR

where w(i, j) = max{−∆d(i, j),∆d(j, i)}. This implies there is some i2 ∈ {1, . . . , R} \ {i1} with

∆β(i2) ≥ ∆β(i1)− w(i1, i2)− ε1 · logR .

We will call the index i2 a child of i1. We now repeat this reasoning to derive lower bounds for other
entries of ∆β. For this we must ‘remove’ the index i2 from the problem, defining a reduced problem. Let
I1 = {i1, i2} and let I2 = {1, . . . , R} \ I1. We will keep all variables of β with indices in I2, but describe
all variables with indices in I1 by a single reduced variable. For this we consider vectors in R1+|I2|, where
we index the entries by {i1} ∪ I2. One can think of this as a vector in RR, where we have ‘crossed out’
entries corresponding to I1 and replaced them by a single effective entry, indexed with i1. For a = 1, 2 we
consider the reduced functionals Ĵa : β̂ 7→ Ĵεa,da(β̃a+B β̂) where β̃a ∈ RR is a constant offset, β̂ ∈ R1+|I2|

is the reduced variable and B ∈ RR×(1+|I2|) is a matrix that implements the parametrization. We set

β̃a(j) =

{
β†a(j)− β†a(i1) if j ∈ I1,
0 else,

B(j, k) =


1 if j ∈ I1, k = i1,

1 if j = k ∈ I2,
0 else.

So the reduced functionals are given by

Ĵa(β̂) =
∑
j∈I1,
k∈I1

exp([−da(j, k)− β̃a(j) + β̃a(k)]/εa) +
∑
j∈I1,
k∈I2

exp([−da(j, k)− β̃a(j)− β̂(i1) + β̂(k)]/εa)

+
∑
j∈I2,
k∈I1

exp([−da(j, k)− β̂(j) + β̃a(k) + β̂(i1)]/εa) +
∑
j∈I2,
k∈I2

exp([−da(j, k)− β̂(j) + β̂(k)]/εa)

=
∑

j∈{i1}∪I2,
k∈{i1}∪I2

exp([−Da(j, k)− β̂(j) + β̂(k)]/εa)

with the reduced coefficient matrix Da ∈ R(1+|I2|)2 with entries

Da(j, k) =



softminr∈I1, s∈I1
(
da(r, s) + β̃a(r)− β̃a(s), εa

)
if j = i1, k = i1,

softminr∈I1
(
da(r, k) + β̃a(r), εa

)
if j = i1, k ∈ I2,

softmins∈I1
(
da(j, s)− β̃a(s), εa

)
if j ∈ I2, k = i1,

da(j, k) if j ∈ I2, k ∈ I2.

Consider the reduced variables β̂†a ∈ R1+|I2| with entries

β̂†a(j) =

{
β†a(i1) if j = i1,

β†a(j) if j ∈ I2.

Then β†a = β̃a + B β̂†a and therefore β̂†a are minimizers of Ĵa. Note also that β̂†2(j) − β̂†1(j) = ∆β(j) for
j ∈ {i1} ∪ I2. Using the optimality conditions for the reduced functionals and arguing as above, we find

∆β(i1) ≤ max
k∈I2

(W (i1, k) + ∆β(k)) + ε1 logR
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where W (i1, k) = max{−∆D(i1, k),∆D(k, i1)} for k ∈ I2 and ∆D = D2 −D1. With (1.3) we find

−∆D(i1, k) ≤ max
j∈I1

(−∆d(j, k)−∆β(j) + ∆β(i1)) + ε2 logR ,

∆D(k, i1) ≤ max
j∈I1

(∆d(k, j)−∆β(j) + ∆β(i1)) + ε1 logR

and eventually W (i1, k) ≤ maxj∈I1(w(j, k) − ∆β(j)) + ∆β(i1) + max{ε1, ε2} · logR. So there is some
index i3 ∈ I2 such that

∆β(i3) ≥ min
j∈I1

(−w(j, i3) + ∆β(j))− 2ε1 logR .

The index i3 will be called a child of the minimizing index j ∈ I1 on the r.h.s. (or one of the minimizing
indices). Then we add i3 to the set I1 and repeat the argument with the reduced functional, to obtain
an index i4 and repeat this until I1 contains all indices.

Since we assign every new index ik that is added to I1 as a child to one parent node in I1, this also
constructs a tree graph with root node i1 (finiteness of d and consequently D implies that this graph is
connected). For an index ik let (i1, i2, . . . , ik) be the unique path from the root to ik. Then

∆β(ik) ≥ −
k∑
j=2

w(ij−1, ij) + ∆β(i1)− 2 (k − 1) ε1 logR ≥ −maxdiam(w) + ∆β(i1)− 2 ε1R logR .

Since ∆β(i1) = max ∆β the result follows.

A.2. Proof of Theorem 20. Let π1, π2 be the primal optimizers associated with (α1, β1) and
(α2, β2) and consider the assignment graph for π1 and π2 and threshold 1/M (see Lemma 21). Let
{(Xi, Yi)}Ri=1 be the strongly connected components of the assignment graph. By virtue of Lemma
21(iii), µ(Xi) = ν(Yi) for i = 1, . . . , R. Pick some representatives {yi}Ri=1 ⊂ Y such that yi ∈ Yi for
i = 1, . . . , R.

For a = 1, 2, let now Ĵa be the reduced effective diagonal functionals, defined in Lemma 22, corre-
sponding to spaces (X,Y ), marginals (µ, ν), parameters εa, cost c, the partitions given by the strongly
connected components and the representatives {yi}Ri=1. Let da be the corresponding effective coefficients
(finite, since c is finite), let β̂†a be two corresponding maximizers and let ∆d = d2 − d1, ∆β̂ = β̂†2 − β̂

†
1.

By virtue of Lemma 23 one has max ∆β̂ −min ∆β̂ ≤ maxdiam(w) + 2 ε1R logR, where w ∈ RR×R with
w(i, j) = max{−∆d(i, j),∆d(j, j)}.

Now we derive some estimates on ∆d. Consider once more the assignment graph for π1, π2 and
threshold 1/M . For every edge y → x we have (using (2.11))

α1(x) + β1(y)− c(x, y) ≥ −ε1 logM .

Moreover, from the marginal conditions we find π2(x, y) ≤ ν(y), which implies

α2(x) + β2(y)− c(x, y) ≤ ε2 logM.

Combining the two estimates, we obtain ∆α(x) + ∆β(y) ≤ (ε1 + ε2) logM ≤ 2ε1 logM := L. Similarly,
for edges x → y we obtain ∆α(x) + ∆β(y) ≥ −(ε1 + ε2) logM ≥ −L. Let now (y1, x1, . . . , yk) be an
alternating path in (X,Y ), then, by combining the above inequalities we find ∆β(yj+1) ≥ ∆β(yj)− 2 ·L
for j = 1, . . . , k − 1 and eventually

∆β(yk)−∆β(y1) ≥ −2 · (k − 1) · L .

Similarly, for a path (x1, y2, x2, . . . , yk) get ∆α(x1)+∆β(yk) ≥ −(2 k−1)·L, and for a path (y1, x1, . . . , yk,
xk) get ∆α(xk) + ∆β(y1) ≤ (2 k − 1) · L.

Consider now a partition cell (Xi, Yi) and let yi ∈ Yi be the selected ‘representative’, as described
above. For every y ∈ Yi there is a path to and from yi with at most 2(|Yi| − 1) edges, for every x ∈ Xi
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there is a path to and from yi with at most 2 |Yi| − 1 edges. With ∆α̃(x) = ∆α(x) + ∆β(yi) and
∆β̃(y) = ∆β(y)−∆β(yi) we therefore obtain

|∆α̃(x)| ≤ (2 |Yi| − 1) · L, |∆β̃(y)| ≤ 2 (|Yi| − 1) · L.

We recall (4.4)

da(i, j) = softmin
x∈Xi,
y∈Yj

(
c(x, y)− α̃a(x)− β̃a(y)− εa log(µ(x) ν(y)), εa

)
and get

∆d(i, j) ≤ max
x∈Xi,
y∈Yj

(
−∆α̃(x)−∆β̃(y)−∆ε · log

(
µ(x) ν(y)

))
+ ε1 · log

(
|Xi| |Yj |

)
≤ 4 |Yi|L+ ε1 · log

(
|Xi| |Yj |

)
∆d(i, j) ≥ min

x∈Xi,
y∈Yj

(
−∆α̃(x)−∆β̃(y)−∆ε · log

(
µ(x) ν(y)

))
− ε2 · log

(
|Xi| |Yj |

)
≥ −4 |Yi|L− ε2 · log

(
|Xi| |Yj |

)
where we used |∆ε log(µ(x) ν(y))| ≤ 2ε1 logM = L. From this follows that w(i, j) ≤ 8 max{|Yi|, |Yj |} ·
ε1 logM + 2 ε1 logN , which in turn implies that maxdiam(w) ≤ 16 ε1N logM + 2 ε1R logN .

Recall that ∆β̂ = β̂†2 − β̂
†
1, where β̂

†
a, a = 1, 2, are the optimizers of the effective diagonal problems.

Then from Lemma 23, and by bounding R ≤ N we obtain that

max ∆β̂ −min ∆β̂ ≤ ε1N (4 logN + 16 logM)

and finally with max ∆β −min ∆β ≤ max ∆β̃ −min ∆β̃ + max ∆β̂ −min ∆β̂ we get

max ∆β −min ∆β ≤ ε1N (4 logN + 24 logM),

and analogously we get the equivalent bound for ∆α.
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