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Abstract

Compact finite difference scheme is applied for a partial integro-differential equation
with a weakly singular kernel. The product trapezoidal method is applied for
discretization of the integral term. The order of accuracy in space and time is

O(h*,k* ), where 0<o<l1. Stability and convergence in L, norm are discussed

through energy method. Numerical examples are provided to confirm the theoretical
prediction and to show that the combination of the compact finite difference
approximation and product trapezoidal method give an efficient method for solving a

partial integro-differential equation.

Keywords: Compact finite difference; Partial integro-differential equation; Product trapezoidal

method; Stability; Convergence.

Introduction

This study is focused on the investigation of a
compact difference method for the following partial
integro-differential equation

u, =u(u,, +Bux)+J.Ol(s—t)'°‘(uXX +Bu,)ds, O0<x<1,t=0,

(1)
where 1>0, 0<o <1, and B are real constants,
with initial and boundary conditions
u(x,0)=u,(x), 0<x<l,

2
u(0,t)=u(l,t)=0, t=0.

The partial integro-differential equations arise in a
wide range of disciplines including physics, chemistry,
and engineering. Specific examples of our interest here
include modeling of wave propagation which involves
viscoelastic forces, heat conduction in materials with

memory and anomalous diffusion processes [1-3].

The standard and compact techniques in finite
difference methods are usually used to obtain the
numerical solutions of differential equations. These
methods appear to compete with both the finite element
and the spectral methods. The latter is preferred to the
other two methods whenever the solution is highly
regular and the geometric dimension of the domain
becomes large. Spectral methods have been studied by
variational techniques, to point out the dependence of

the approximation error (for instance in the L2 norm, or

in the energy norm) on the regularity of the solution and
the discretization parameter. Indeed, the solution is not
often infinitely differentiable [4]. However, using fewer
nodes per level, our proposed method can solve
algebraic system whose coefficient matrix is of
tridiagonal type. On the other hand, discretization of
integral term to be used in equation (1), shall not
contradict difference schem of derivaties term in that

* Corresponding author: Tel: +981333664408; Fax: +981333666427; Email: Mehrlatifan@gmail.com

359



Vol. 28 No.4 Autumn 2017

equation and shall result in the formation of tridiagonal
matrix. Therefore, the combination of the compact finite
difference approximation and product trapezoidal
method gives an efficient method for solving the partial
integro-differential equation (1), and would help us
accomplish our goal.

A number of people have studied the integro-
differential equations [5, 6], however, considerable
works on numerical solutions of partial integro-
differential equations have not been carried out. Lopez-
Marcos studied the nonlinear partial integro-differential
equation; he used one order full discrete difference
scheme and a convolution quadrature for approximating
the integral term [7]. Xu considered backward Euler
method in time direction for a parabolic integro-
differential equation and proved the stability and
convergent properties of time discretizations [8, 9],
Singh, et al. analyzed an efficient matrix method based
on shifted Legendre polynomials for the solution of
non-linear volterra singular partial integro-differential
equations [10]. Fakhar-Izadi and Dehghan applied the
spectral method for the partial integro-differential
equations with a weakly singular kernel on irregular
domains [11].

Tang presented finite difference scheme for Eq. (1)
with =0, and oo=Z [12], Chen and Xu worked on

theoretical analysis of compact difference scheme for an
evolution equation with a weakly singular kernel with

the truncation error of order % in time and 4 in space,

and the convergence and stability of their method was
proved [13], and Luo, et al. considered compact finite
difference scheme for Eq. (1) with B=0 and o=7

[14]. In the present study, the researchers attempt to
give a compact difference scheme for Eq. (1) and prove
that the compact difference scheme is stable and
convergent in L, norm; moreover, the order of
convergence will be proved to be O(h*,k*™).

This study is presented in the following sections: in
Section 1, the product trapezoidal method and a fourth-
order compact finite difference scheme for
discretization of spatial derivatives are introduced.
Results of section 1 are applied for discretization of Eq.
(1) and product trapezoidal method to approximate the
integral term of Eq. (1). Stability analysis and
convergence of the suggested method are addressed in
section 2. In Section 3, the numerical results obtained
from applying new scheme to an illustrative example
are presented. Finally, the conclusion is stated in
Section 4.
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Description of the Method
Let h=1/M be the step size in x direction, M and

N be positive integers, and k explain the step size of
time. Consider the following nodes
x; =1h,1=0,1,..,M, and t =jk, j=0,1,2,...,N.
let tj+1/2 = (j+1/2)k and W
where 0<i<M, 0<j<N.

Moreover, =u(x,,t)),

In the following, product trapezoidal method
explained approximation  of y(y, )= J‘O‘ (t—s)*u(s)ds-
This method was presented for o=1/2, by Tang [11].
To start, for any ue (C'[0,1]NC’(0,1]) satisfying
u () =0(t™) u”(H)=0(t"),
I(u,t) will be approximated numerically. Obviously,

and as t— 0%,

1 o
I(u,tm)=E[I(u,tj)ﬂ(u,tjﬂ)}+0(k2tj1 ), j=0. (3)

Now, the product trapezoidal method is applied to
approximate I(u,tj), 1<j<N. For u(t;—0) with

0e(t,.t, ], 0<n<j-2, the following can be written:

t.,—6 0t
u(t =0y === —u(t, )+ ——=u(t, )+ Ey @)
for B€ [t ,t;]. the following will be given:
u(t;~6) =" k_ O uit)+2 _kt"* u(ty) +O(k*™)- ®)

The remainder term, Ejl , in (4) can be bounded by
Ok’ t*_)=0(k>™). @, )

o and
transformation 6 = ‘[j —s, the following will be

Using

resulted:

I(u,t)) = jﬂ 07 u(t,~0)do = i j 6™ u(t;-0)do (6)
= Jz; [ {% u(t, )+ e;t" u(tjinfl):id9+Ej2,
where
j-1
[Ea< 2 [ 6 00 ) d0 = 00 g
n=0 "

Using integration by parts in (6), results in:
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u(t;, ,.)+

Sfree] b=

|\U‘

ut; n_l)} de

=LJZ]: todu(t, )=t "u(t; )] +—ZJ' " '“7tj"‘)_l(u(tj’“")de

l1-ai5

=hu(ty) +v,u(t)+ Z Yo ult,)+Ok™™),
=l

3

where
A = 1 - L qieo

j ——a[tj —LH 0 de],

_ [ LR )]
yo——m[t ——jtoe dey,

1 n+l lcx 1-o
do—[" 6"*do

e a)[f J. o don

The following lemma will be used in the derivation
of the compact difference scheme.

Lemmal.1. Suppose that u(x)e C°[x,_,X,,, ], then

a compact finite difference form of the following
differential equation

v +Bu’ =1f(x), xe€(0,1), (10)
u(0)=u(1)=0.
Is
(6 +)uy, =200 +(5 —5)u, =(5 +r)f, +1056f +(5 —)f
(1)
Where
1 p p 1 ph
L=—+—,,=—,5,=—,1, =—.
"h* 1277 2n Y 127t 24
Proof: The well-known central difference

approximation for the first and the second derivatives of
u(x) are applied which result in the following discrete

form of equation (10), at the X, point:

Siui +Bd,u; —1, =1, (12)
where
§u. = U, —2u+u, +h—2u(4),
o h? 12
5. = umzhul Ly % o (13)
h? d*u d*u
T, zﬁ(d 7 B )+O(h )-
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In order to take a fourth-order compact difference
scheme for Eq. (10), the third and fourth derivatives of

u(x), in (13) should be approximated [15].
Considering (10), one has:

d3u _ 2

(s e (*X—B ) =(8,f, —Bd;u,) +O(h*), (14)
( ) _(7_[5 )i = (8:f, —B3,f, +p’8u;) +O(h?).

By substituting (14) into the third equation of (13),
truncation error can be written as the following:

2
= {836, +B0.8, ~B5u, ]+ OCh). (15)

By substituting (15) in (12), a fourth-order compact
finite difference form of Eq. (10) can be obtained.

1-1. Implementation of the product trapezoidal
method
Equation (1) can be introduced as follows

u, =u(u,, +Pu )+I(u, +Pu,,t).
(16)

According to lemmal.1, one has:

(8 +Bd)u, ;= (r +r)u,,, —2nu,  + (5 -y, . (17)

By using (17), an application of the standard Crank-
Nicolson method for (16) gives:

[d+15)u +10u,

+A

i+, i+ +(-1)u,_ 1, |+| [(1+r5)u1+1 j

1
IZk[
W +pd,)u,; +

n=0

(18)

where A ,A,,, and Y, are presented in (9),

l,j _u +u1 L+

r,=Bh/2,and _
Y

i,j—n i,j-n+l*

There exists a constant ¢, such that the remainder

term (E) in (18) can be predicted as follows:
[E| <ok +h* + K7 + K7t %),

Considering initial and boundary conditions, (2) can
be written as the following:

A + J
SR T (3 B8 5 Y1, (6 +BOT -, +

+10u, +(1-r)u, ;| =

5
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0 = Uy, =0, 0ZJ<N,

(19)
u, =u(x;,0), IsisM-I.

In what follows the operator A, will be used,

Au [A+15)y, +10u\,]+1 +(1-1)u,_, J+,]

L

1
" 12k|:

)y, +10u;; +(1= r5>u,u]] Sla+mdu,,

(20)

Eliminating E in (18) and replacing u; by U. ot

proposed compact scheme is constructed as follows:

AU, =w(8: +B8,)U, +1,(8 +PB3, )U10+Zy“(82+[38 YU,

i,j-n?

n=0
1)
where § :m
! 2
Furthermore,
U(),j =UMJ =0, J:O,l,...,N (22)
U;, = U(x;,0), i=0,L...M

Analysis of the compact difference scheme
In this section, it will be shown that the proposed
method is convergent with the

order O(h*,k*™). In the special case of (1), when
o=1/2 andB=0, Luo etal [13] proved that
convergence order is O(h*, k¥ *). Suppose U, be the

space of grid functions as follows:

={ulu=(U,,U,...,U,_,,U,), U, =U,, =0}.
Defining the grid function
U =u(x;,t;), 0<i<M,0<j<N, for any two

grid functions U, W € Uh , one gets the followings;

8U,, = (U.ﬁ1 U, 6XUi=21—h(UM—U,,,), SiU,:#(UM—2Ui+UH),
U,= (U,J+1+U,,J),
(UW),=UW, [UL. = max U], (UW)=h3 UW, U =(U.0).
(23)
Lemma2.1.

I) Suppose that U, We U, , then
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<6§U, W> = —hhf (8, U)(3, W). (24)

I 1fU,,U, e U,,then

(@ +p3,00,.U )| < EPJu o,

Proof: For proving I, see [7].
(IT): When N =1, one has:

(@ +B8)U U, )| <[(82U,,U,)|+B|(8,U. )

< 2
= z 6UlkUll +B
i=1

Zh& U, kUll‘,
i=1
(25)

each term in (25) can be estimated. First, it can be
written as the following:

i+lLk

M-1
( z hUi+1,kUi,]
i=1

)Zs(fhu

)R,

(26)

by using Cauchy-Schwarz inequality, one gets:

—h§| Sin,k |z — hl\§| Ui+l,k2_hUi—]‘k |2

i=0 i=1

1 M s M-1 5 M-1 s
—_[z‘ Ui+l,k ‘ +22‘ Ui+1,kUi—l,k | +Z| Ui—l,k | ]

i i=1 i=0
1
<zlual
(27)

Consequently, inequality (25) can be written as the
following:

(82 +B8)UL U < [ h8LU, U |+ Zhsx WU
:%‘E(Uﬂlk 2U;, +U, U, B E(in =U U
Using (26) and (27), yields to:
(8 +B5)U,.U ) s“h_*;ﬁuu,,k TR -

Which completes the proof.

Lemma2.2.Let U ; =(U,;,...,Uy, ), then
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2 1
N

ANEE

)

Proof: By using (20), the general term of this
sequence can be written as the following:

124
=h§® g ua@pu+ 0 5.6,U,)(T,)
:@MWQJ+E®$U U>+L@jpm6)

S i TR P RO
L R >—<\\u.4\r—guaxu_d\\ ﬂ,
(29)
and by considering (27)
11
o =lu.f-E. gl 2 glul

(30)

Using (29) and (30) leads to:

N-1 _ 1
kj=0 <AU J’U"j>22{ 12k Hz)_(HU-ﬁH 12k
11 1
-auuwr—guu.,o\r.

(€2))

Now, the stability and the convergence of the
proposed approach will be proved.

2.1. Stability
The stability of the scheme by means of the energy
method should be established as the following:

Theorem2.1. Let U ;=(U,;,..., for

i=L..,M-1,j=1,...,

following equation

UM—l,j)
N be the solution of the

_ - J _
AU, =(8; +B8 )T, +4,(8 +B8 U, , + D 7, (8 +B8)U, .,
n=0
(32)

with initial and boundary conditions (22). Then for
N=1,

ENE

Ck** T 12
= Va1Vl G33)

N—

]

=0

ku ((8; +P8,)U |

Proof: Multiplying both sides of (32) by h[ji’j and
summing i from 1 up to M—1, and j from O up to

N, the following can be written:

(AU, T )= ui((ﬁiwsx)ﬁd,ﬁj)

N-1

(R +B3)U.,,U )+ D 27 (@ +B8)U ;.0 )
(34)

The first term in the right side of equation (34), when
using (26), will be estimated as follows:

J0,)=kuh. (& +B5,)T, )T,
=lh 3, B0, )(0,,)+ kg 3, (38,0, )T, )
——kuh Y (3.0, )3, 0, )+ kuBhZ 6,00,

=k [0, P[0 - kum‘%uu <o

(35)

In the third equality of (35), Lemma 2.1(1) is used.

For estimation of the second term on the right hand
side of equality (34), using Cauchy—Schwarz inequality
and (28), result in:

Z

N-1 -1 M-1

kY (1,8 +B8,)U ,,U ;) =kh

=0

J((82 +B8,)U, 0)UlJ

o

j i=1
N ~ f—
kID A 1{(@+B3,)U .U )

j:

N-l —
By IEH N

(36)

IN
S L

According to (9), and using the mean value theorem
of integrals, the sum of Xj can be written as the

following:
N- k N-1 -1
ka kZ—[t‘“—fI 0 d6] = W (t - )<kat‘“
=0
) Zli[(k)l1“+(2kl)‘“+ } ks LT,
(37

363

where M, € (t;,t;,,), and
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initial and boundary conditions (22), is proved similar to
o Theorem 2.1. Denote

0<i<M,0<j<N.

N-1 k N-1

N-1
i l(x -0
k;yw Zk(l_ )j do- j 6 do] = —

M,
& €, =~ Ui

<1 (<! - “)<zk22t“<2k“j ﬂdeCkHT“,

P i Theorem?2.2. Assume that

(38) fu,;: 0<i<M,0<j<N} is a solution of the

problem (1), subjected to initial and boundary

where M, € (t;,t;,,), and M, € (1, ). conditions (2). Let (U ,U ,,...,U ) be the solution
_The last term on the right hand side of equality (34), of compact difference scheme (21) with initial and
will be estimated as follows: boundary conditions (22). When h and k tend to zero

independently, leads to:

z

—1

k iv (@ +85)0,.,,0 ) <—khY |3y, (32 +B5,)0_, )T

i max e | [|= O(h*, k*).
<_ 4+B NkZ ocTa U I<j<N "
- (40)
(39

Proof: Subtracting (18) and (19) from (21) and (22),
. A 1 oL respectively, the error operator can be obtained as the
Since 7\,j =3 (7\4J +7bj oY, 1) and substituting following:
31) and (35)—(39) into (34), this inequality can be o _ . .
E)bta)lined ai fozlo(ws)' (34) 9 v Ae,, =1(8; +B3,)e  + D 7,8 +Bd)e  , +E, 1<iSM-LI<j<N-I,
. n=0
1 1 N-1 _ N1 _
SVl =3 1U.lf s1(au 0 ) <3 (7,3 48,00, U ) @1

=0

€ =Cu,; =0, j=0,1,...,N.
=Oa izl,...,M—l,

4+B 5
= h? and

Cio
< 42;2[3( kZ oo 4 klfa T + Csza Ta)HU_,o 7

Multiplying (41) by khEi,j and summing on 1 from

SO .
up to M—1, and j from 0 to N, can be obtained
SN} —121(‘1‘};3) “keTe ek U |0, ||+ "U oI+ as follows:
choosing J, so that HUJ H = grslg)N( , Tesults in; k: <Ae_,j,€., > kuN:‘Ol< 52 +[35x)€.,ja€.,j>
Nfl i N-1
(8 +Bd,)e ,.e.)+k> (Ee,)
"U J|| _12(4-2]3) 21(2 o« o L O uTa U0||||[—JJ||+£"U0”2 UZ < € vJ> FZO< e_l>
11h ’ et o (42)
ck*™T*
: 11h? " ""U "+ "U ""U " As in the proof of Theorem 2.1, choosing

lle s |l=max || € || results in;
Therefore, for N1, above inequality can be 0<j<N

written as the following: He o 1 o o . .
aHe_JH ‘EH"’-,o "< kZO<E,6_J> < CkZOHE\L L] [c;(lé “+kh +16 ] e
Ck>™“ T* 12 T :
||U.,N ” S”U‘,J” S W”Uo” +ﬁ||U_,0 , <[Ck §(1+1) +Ch* +CK™ +O(h* +k
(43)
which completes the proof. therefore, He,JHZ <3 C(h4 +k2—a) e»JH‘
2.2. Convergence Hence, the convergence order (40) is obtained.

The convergence of the numerical method (21), with

364
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Results

In order to illustrate our schemes, the following
examples are computed.

Example 1.
The effectiveness of scheme (21) is demonstrated by
the following example. Consider the partial integro-

differential equation
1

¢ 1
u =u_, +I0 (s—t) 2u_ds,
u(0,t)=u(l,t)=0, 0<t<T.
u(x,0)=sin(nx), 0<x<1.

Let =0, u=1, o=1/2, and T=0.5. Take h=1/M,
k=1/N
u(x,t) corresponding to MxN=10x640 is used as

the exact solution. The results are presented in Table 1
with different step-sizes.
The numerical results from Table 1 reflect that the

and M=10. The numerical solution of

convergence rate in time is 3/ 2. Our results are similar
to the numerical solution reported in [14], but our
method can be applied to any OL. Comparing the results
in Table 1 with those of table 4, in [14], the results
obtained in this paper are more accurate. For example,
consider N =20, the error in [14], is 1.00346e —003,

but the error in this paper is 3.60254e — 004 .

Example 2.
Consider Eq. (1) when o=1/2 and u=p=0, with

the following exact solution u(x,t) =¥V m't’ sin(nx).
where ¥, denotes the entire function

Y(z)= i (—1)‘r(%i +1)7'Z (44)

The initial and boundary conditions can be
obtained from the exact solution. This test problem is
used in [14]. The authors of [14] proposed a scheme

2
time. The accuracy of our method is tested by solving
this problem with several values of steps size and
presents rates of convergence in time forT =0.5. Our
results are similar to the numerical solution in [14]
because we used the same method. The numerical
results are presented in Table 2.

which has fourth-order accuracy in space and in

Discussion

In this article, a compact difference scheme, for a
partial integro-differential equation with a weakly
singular kernel for any 0 <o <1, is constructed. The

stability and L, norm convergence is proved by energy
method. In this study, Crank—Nicolson time-stepping is

Table 1. Maximum error for example 1

N Error in [12] Error in [14] Error Rate
10 2.49¢-002 2.87067e¢—003 1.01914e—-003 --

20 8.66e—003 1.00346e—003 3.60254e—-004 1.50026
40 3.05e-003 3.52049¢ - 004 1.25719¢—-004 1.51881
80 -- 1.21344e-004 4.35397¢—-005 1.52979

Figure 1. Computational solution of problem 2
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Figure 2. Computational solution of problem 2
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Table 2. Maximum error for example 2

N Error in [14] Rate in [14] Error Rate
20 8.93117e—-002 - 9.05317e—-003 -

40 3.21568e—002 1.47372 3.19954¢—-003 1.50055
80 1.15715e-002 1.47455 1.13096e - 003 1.50031
160 4.16970e -003 1.47256 3.99814e—-004 1.50014
320 1.50417e—-003 1.47098 1.41360e—004 1.49995
640 5.46742¢—-004 1.46004 5.00614e—-005 1.49760

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

0 01 02 03 04
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06 07 08 09 1

Figure 3. Numerical approximations are compared with exact solution (44) of problem 2 for N =80 .
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06 07 08 09 1

Figure 4. Numerical approximations are compared with exact solution (44) of problem 2 for N =160 .

used to approximate the differential term and a product
trapezoidal method is used to approximate the integral

term. The convergence order is 2— O, in time and 4 in
space. The method was tested against exact reference
solutions of two different examples, where B =0 and
w=1, and B,L=0, both examples supported our
theoretical results. What’s more by increasing N, the
rates in time will increase at a steady rate. In addition,

366

numerical results presented in the present study are
more accurate than those reported in [12, 14]. It is
worth mentioning that our computations are performed
by Matlab.
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