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Abstract 
Compact finite difference scheme is applied for a partial integro-differential equation 

with a weakly singular kernel. The product trapezoidal method is applied for 
discretization of the integral term. The order of accuracy in space and time is

4 2O(h , k )−α , where 0 1< α < . Stability and convergence in 2L  norm are discussed 
through energy method. Numerical examples are provided to confirm the theoretical 
prediction and to show that the combination of the compact finite difference 
approximation and product trapezoidal method give an efficient method for solving a 
partial integro-differential equation. 
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Introduction 
This study is focused on the investigation of a 

compact difference method for the following partial 
integro-differential equation 

t

t xx x xx x0
u (u u ) (s t) (u u )ds, 0 x 1, t 0,−α= μ + β + − + β < < ≥
                                                                                    (1) 

where 0μ ≥ , 0 1< α < , and β  are real constants, 
with initial and boundary conditions   

0u(x,0) u (x), 0 x 1,
u(0, t) u(1, t) 0, t 0.

= ≤ ≤
= = ≥

                                (2) 

 
The partial integro-differential equations arise in a 

wide range of disciplines including physics, chemistry, 
and engineering. Specific examples of our interest here 
include modeling of wave propagation which involves 
viscoelastic forces, heat conduction in materials with 

memory and anomalous diffusion processes [1-3].  
The standard and compact techniques in finite 

difference methods are usually used to obtain the 
numerical solutions of differential equations. These 
methods appear to compete with both the finite element 
and the spectral methods. The latter is preferred to the 
other two methods whenever the solution is highly 
regular and the geometric dimension of the domain 
becomes large. Spectral methods have been studied by 
variational techniques, to point out the dependence of 
the approximation error (for instance in the 2L norm, or 
in the energy norm) on the regularity of the solution and 
the discretization parameter. Indeed, the solution is not 
often infinitely differentiable [4]. However, using fewer 
nodes per level, our proposed method can solve 
algebraic system whose coefficient matrix is of 
tridiagonal type. On the other hand, discretization of 
integral term to be used in equation (1), shall not 
contradict difference schem of derivaties term in that 
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equation and shall result in the formation of tridiagonal 
matrix. Therefore, the combination of the compact finite 
difference approximation and product trapezoidal 
method gives an efficient method for solving the partial 
integro-differential equation (1), and would help us 
accomplish our goal. 

A number of people have studied the integro-
differential equations [5, 6], however, considerable 
works on numerical solutions of partial integro-
differential equations have not been carried out. Lopez-
Marcos studied the nonlinear partial integro-differential 
equation; he used one order full discrete difference 
scheme and a convolution quadrature for approximating 
the integral term [7]. Xu considered backward Euler 
method in time direction for a parabolic integro-
differential equation and proved the stability and 
convergent properties of time discretizations [8, 9], 
Singh, et al. analyzed an efficient matrix method based 
on shifted Legendre polynomials for the solution of 
non-linear volterra singular partial integro-differential 
equations [10]. Fakhar-Izadi and Dehghan applied the 
spectral method for the partial integro-differential 
equations with a weakly singular kernel on irregular 
domains [11]. 

Tang presented finite difference scheme for Eq. (1) 
with 0,β =  and 1

2α =  [12], Chen and Xu worked on 
theoretical analysis of compact difference scheme for an 
evolution equation with a weakly singular kernel with 
the truncation error of order 3

2  in time and 4 in space, 
and the convergence and stability of their method was 
proved [13], and Luo, et al. considered compact finite 
difference scheme for Eq. (1) with 0β =  and 1

2α =
[14].  In the present study, the researchers attempt to 
give a compact difference scheme for Eq. (1) and prove 
that the compact difference scheme is stable and 
convergent in L2 norm; moreover, the order of 
convergence will be proved to be 4 2O(h , k )−α .  

This study is presented in the following sections: in 
Section 1, the product trapezoidal method and a fourth-
order compact finite difference scheme for 
discretization of spatial derivatives are introduced. 
Results of section 1 are applied for discretization of Eq. 
(1) and product trapezoidal method to approximate the 
integral term of Eq. (1). Stability analysis and 
convergence of the suggested method are addressed in 
section 2. In Section 3, the numerical results obtained 
from applying new scheme to an illustrative example 
are presented. Finally, the conclusion is stated in 
Section 4. 

 
 

Description of the Method 
Let h 1 M=  be the step size in x direction, M and 

N be positive integers, and k explain the step size of 
time. Consider the following nodes 

ix ih, i 0,1,...,M,= =  and jt jk, j 0,1,2, , N.= =   

Moreover, let j 1 2t ( j 1 2)k+ = +  and i, j i ju u(x , t ),=  
where 0 i M,≤ ≤ 0 j N≤ ≤ .  

In the following, product trapezoidal method 
explained approximation of t

0
I(u, t) (t s) u(s)ds−α= − . 

This method was presented for 1 2α = , by Tang [11]. 
To start, for any 1 3u (C [0,1] C (0,1])∈ ∩  satisfying 
u (t) O(t )−α′′ =  and 1u (t) O(t )− −α′′′ = , as t 0+→ ,
I(u, t)  will be approximated numerically. Obviously, 

 
2 1

j 1 2 j j 1 j
1I(u, t ) I(u, t ) I(u, t ) O(k t ), j 0.
2

− −α
+ + = + + ≥ 

   (3)  

 
Now, the product trapezoidal method is applied to 

approximate jI(u, t ), 1 j N≤ ≤ . For 
ju(t )−θ  with

n n 1[t , t ], 0 n j 2+θ∈ ≤ ≤ − , the following can be written: 
 

n 1 n
j j n j n 1 j1

t tu(t ) u(t ) u(t ) E
k k

+
− − −

− θ θ −− θ = + + ,     (4)  

for j 1 j[t , t ]−θ∈ , the following will be given: 
 

2n n 1
j 1 0

t tu(t ) u(t ) u(t ) O(k )
k k

−α−− θ θ −− θ = + + .           (5) 

 
The remainder term, j1E , in (4) can be bounded by

2 2
j n 1O(k t ) O(k )−α −α
− − = . Using (4), (5) and 

transformation jt sθ = − , the following will be 
resulted: 

 
j n 1

n

n 1

n

j 1t t

j j j0 t
n 0

j 1 t n 1 n
j n j n 1 j2t

n 0

I(u, t ) u(t ) d u(t ) d

t tu(t ) u(t ) d E ,
k k

+

+

−
−α −α

=

−
−α +

− − −
=

= θ − θ θ = θ − θ θ

− θ θ − = θ + θ +  

 



    (6) 

 
where   

n 1

n

j 1 t 2 2
j2 t

n 0
E O(k )d O(k ).+

−
−α −α −α

=

≤ θ θ =                   (7)  

 
Using integration by parts in (6), results in: 
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n 1

n

n 1

n

j 1 t n 1 n
j n j n 1t

n 0

j 1 j 1 t j n j n 11 1 1
n 1 j n 1 n j n t

n 0 n 0
j 1

2
j 0 0 j n j n

n 1

t tu(t ) u(t ) d
k k

u(t ) u(t )1 1[t u(t ) t u(t )] d ,
1 1 k

u(t ) u(t ) u(t ) O(k ),

+

+

−
−α +

− − −
=

− −
− − −−α −α −α

+ − − −
= =

−
−α

−
=

− θ θ − θ + θ  
−

= − + θ θ
− α − α

= λ + γ + γ +



 


                                                                                        (8) 

where 

 

 
j

j 1

1

0

n 1 n

n n 1

t1 1
j j t

t1 1
0 0 t

t t1 1
n t t

1 1[t d ],
1 k

1 1[t d ],
1 k

1 [ d d ].
k(1 )

−

+

−

−α −α

−α −α

−α −α

λ = − θ θ
− α

γ = − − θ θ
− α

γ = θ θ − θ θ
− α





 

                   (9) 

 
The following lemma will be used in the derivation 

of the compact difference scheme. 
 
Lemma1.1. Suppose that 6

i 1 i 1u(x) C [x , x ]− +∈ , then 
a compact finite difference form of the following 
differential equation 
 

u u f (x), x (0,1),
u(0) = u(1) = 0.
′′ ′+ β = ∈




                          (10) 

 
Is 
 

1 2 i 1 1 i 1 2 i 1 3 4 i 1 3 i 3 4 i 1(r r )u 2r u (r r )u (r r )f 10r f (r r )f+ − + −+ − + − = + + + −
                                                                                    (11)  

Where 
 

2

1 2 3 42
1 1 hr , r , r , r
h 12 2h 12 24

β β β= + = = = .  

 
Proof: The well-known central difference 

approximation for the first and the second derivatives of 
u(x) are applied which result in the following discrete 
form of equation (10), at the ix point: 

2
x i x i i iu u f ,δ + βδ − τ =                                           (12) 

where  

   

2
2 (4)i 1 i i 1
x i 2

2
i 1 i 1

x i

2 4 3
4

i 4 3

u 2u u hu u ,
h 12

u u hu u ,
2h 6

h d u d u( + 2 ) O(h ).
12 dx dx

+ −

+ −

− +δ = +

− ′′′δ = +

τ = β +

                       (13) 

 

In order to take a fourth-order compact difference 
scheme for Eq. (10), the third and fourth derivatives of
u(x) , in (13) should be approximated [15]. 

Considering (10), one has: 
 

3 2
2 2

i i x i x i3 2

4 2 3
2 2 2 2

i i x i x i x i4 2 3

d u df d u( ) ( ) ( f u ) O(h ),
dx dx dx
d u d f d u( ) ( ) ( f f u ) O(h ).
dx dx dx

= −β = δ − βδ +

= − β = δ − βδ + β δ +

   (14) 

 
By substituting (14) into the third equation of (13), 

truncation error can be written as the following: 
 

2
2 2 2 4

i x i x i x i
h f f u O(h ).
12

 τ = δ + βδ −β δ +                  (15) 

 
By substituting (15) in (12), a fourth-order compact 

finite difference form of Eq. (10) can be obtained. 
 
1-1. Implementation of the product trapezoidal 

method 
Equation (1)  can be introduced as follows 
 

t xx x xx xu (u u ) I(u u , t).= μ + β + + β                     
(16) 

 
According to lemma1.1, one has: 
 
2
x x i, j 1 2 i 1, j 1 i, j 1 2 i 1, j( )u (r r )u 2r u (r r )u .+ −δ + βδ = + − + −     (17)  
 
By using (17), an application of the standard Crank-

Nicolson method for (16) gives:  
 

5 i 1, j 1 i, j 1 5 i 1, j 1 5 i 1, j i, j 5 i 1, j

j
j j 1 j 12 2 2

x x i, j x x i,0 n x x i, j n
n 0

1 [(1 r )u 10u (1 r )u ] [(1 r )u 10u (1 r )u
12k

1( )u ( )u ( )u E,
2 2

+ + + − + + −

+ +
−

=

 + + + − − + + + − = 

λ + λ + γ
μ δ + βδ + δ + βδ + γ δ + βδ +
                                                                                   (18) 

 
where j j 1, +λ λ  and j 1+γ  are presented in (9), 

5r h 2= β , and  i, j i, j i, j 1

i, j n i, j n i, j n 1

u u u ,
u u u .

+

− − − +

= +

= +
      

 
There exists a constant c,  such that the remainder 

term (E) in (18) can be predicted as follows: 
2 4 2 2 1

jE c(k h k k t ).−α − −α≤ + + +      
 
Considering initial and boundary conditions, (2) can 

be written as the following: 
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0, j M, j

i,0 i

u u 0, 0 j N,
u u(x ,0), 1 i M 1.

= = ≤ ≤

= ≤ ≤ −
                               (19) 

 
In what follows the operator ,Δ  will be used, 
 

5 i 1, j 1 i, j 1 5 i 1, j 1

5 i 1, j i, j 5 i 1, j 5 t i 1, j t i, j 5 t i 1,

i j

j

,
1 [(1 r )u 10u (1 r )u ]

12k
1[(1 r )u 10u (1 r )u ] [(1 r ) u 10 u (1 r ) u ].

12

+ + + − +

+ − + −

 + + + −

− + +

Δ

+ − = + δ + δ + −

=

δ

u

                                                                                         (20)  
 
Eliminating E in (18) and replacing i, ju  by i, jU , the 

proposed compact scheme is constructed as follows:  
 

j
2 2 2

i, j x x i, j j x x i,0 n x x i, j n
n 0

U ( )U ( )U ( )U ,−
=

Δ = μ δ + βδ + λ δ + βδ + γ δ + βδ

                                                                                         (21)  

where  j j 1 j 1
j .

2
+ +λ + λ + γ

λ =  

Furthermore, 
0, j M, j

i,0 i

U U 0, j 0,1,..., N,
U U(x ,0), i 0,1,...,M.

= = =

= =
                               (22) 

 
Analysis of the compact difference scheme 

In this section, it will be shown that the proposed 
method is convergent with the  
order 4 2O(h ,k )−α . In the special case of (1), when

1 2α =  and 0β = , Luo et.al [13] proved that 

convergence order is 4 3 2O(h , k ) . Suppose hU  be the 
space of grid functions as follows: 

 
{ }h 0 1 M 1 M 0 MU U U (U , U ,..., U , U ), U U 0 .−= = = =

    
Defining the grid function
i, j i jU u(x , t ), 0 i M,0 j N= ≤ ≤ ≤ ≤ , for any two 

grid functions hU, W U∈ , one gets the followings; 
 

2
t i, j i, j 1 i, j x i i 1 i 1 x i i 1 i i 12

i, j i, j 1 i, j

M 1
2

i i i i i i1 i M 1 i 1

1 1 1U (U U ), U (U U ), U (U 2U U ),
k 2h h

1U (U U ),
2

(UW) U W , U max U , U, W h U W , U U, U .

+ + − + −

+

−

∞ ≤ ≤ − =

δ = − δ = − δ = − +

= +

= = = =
                                                                                         (23) 

 
Lemma2.1.   
I) Suppose that hU, W U∈ , then  

M 1
2
x x x

i 0
U, W h ( U)( W).

−

=

δ = − δ δ                              (24) 

 
II) If .,k .,l hU , U U∈ , then  

2
x x .,k .,l .,k .,l2

4( )U , U U U .
h
+ βδ + βδ ≤  

 
Proof: For proving I, see [7].  
(II): When N 1≥ , one has: 
 

2 2
x x .,k .,l x .,k .,l x .,k .,l

M 1 M 1
2
x i,k i,l x i,k i,l

i 1 i 1

( )U , U U , U U , U

h U U h U U ,
− −

= =

δ +βδ ≤ δ +β δ

= δ +β δ 
                                                                                    (25) 

 
each term in (25) can be estimated. First, it can be 

written as the following: 
 

M 1 M 1 M 1 M 1
2 2 2 2

i 1,k i,l i 1,k i,l i 1,k i,l
i 1 i 1 i 1 i 1

2 2
.,k .,l

( hU U ) ( h U U ) ( h(U ) )( h(U ) )

U U ,

− − − −

+ + +
= = = =

≤ ≤

≤

   

                                                                                    (26) 
 
by using Cauchy-Schwarz inequality, one gets: 
 

M 1 M 12 i 1,k i 1,k2 2
x .,k x i,k

i 0 i 1
M 1 M 1 M 1

2 2 2
i 1,k i 1,k i 1,k i 1,k

i 0 i 1 i 0

2
.,k2

U U
U h | U | h | |

2h
1 [ | U | 2 | U U | | U | ]

4h
1 U .
h

− −
+ −

= =

− − −

+ + − −
= = =

−
δ = δ =

≤ + +

≤

 

  

                                                                                    (27) 
 
Consequently, inequality (25) can be written as the 

following: 
M 1 M 1

2 2
x x .,k .,l x i,k i,l x i,k i,l

i 1 i 1

M 1 M 1

i 1,k i,k i 1,k i,l i 1,k i 1,k i,l
i 1 i 1

( )U , U h U U h U U

1 (U 2U U )U (U U )U ,
h 2

− −

= =

− −

+ − + −
= =

δ + βδ ≤ δ + β δ

β= − + + −

 

 
     

Using (26) and (27), yields to: 
2
x x .,k .,l .,k .,l2

4( )U , U U U .
h
+βδ +βδ ≤         (28) 

 
Which completes the proof. 
 
Lemma2.2. Let ., j 1, j M 1, jU ( U ,..., U )−= , then  
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N 1 2 2
., j ., j .,N .,0

j 0

11 1k U , U U U .
24 2

−

=

Δ ≥ −  

 
Proof: By using (20), the general term of this 

sequence can be written as the following: 
 

M 1

., j ., j 5 t i 1, j t i, j 5 t i 1, j i, j
i 1

2M 1
2 5

t i, j x t i, j x t i, j i, j
i 1

2
2 5

t ., j ., j x t ., j ., j x t ., j ., j

22 2
., j 1 ., j x ., j

hU , U ([(1 r ) U 10 U (1 r ) U ])(U )
12

r hhh ( U U U )(U )
12 6

r hhU , U U , U U , U
12 6

1 h( U U ) ( U
2k 24k

−

+ −
=

−

=

+

Δ = + δ + δ + − δ

= δ + δ δ + δ δ

= δ + δ δ + δ δ

= − − δ





2 2 2 25
1 x ., j x ., j t ., j

2 22 2 2 2
., j 1 x ., j 1 ., j x ., j

r hU ) U U
6

1 h h( U U ) ( U U ) ,
2k 12 12

+

+ +

− δ − δ δ

 
≥ − δ − − δ 

 

                                                                                         (29) 
 
and by considering (27) 
 

22 2 2 2 2 2

., j ., j x ., j ., j ., j ., j
h 1 11U U U U U U .
12 12 12

≥ − δ ≥ − ≥

                                                                                         (30) 
 
Using (29) and (30), leads to: 

2 2N 1 2 2 2 2
., j ., j .,N x .,N .,0 x .,0

j 0

2 2
.,N .,0

1 h hk U , U ( U U ) ( U U )
2 12k 12k
11 1U U .
24 2

−

=

 
Δ ≥ − δ − − δ 

 

≥ −



                                                                                         (31) 
 
Now, the stability and the convergence of the 

proposed approach will be proved. 
 
2.1. Stability 
The stability of the scheme by means of the energy 

method should be established as the following:  
 
Theorem2.1. Let ., j 1, j M 1, jU ( U ,..., U )−=  for

i 1,...,M 1, j 1,..., N= − =  be the solution of the 
following equation 

 
j

2 2 2
i, j x x i, j j x x i,0 n x x i, j n

n 0
U ( )U ( )U ( )U ,−

=

Δ = μ δ + βδ + λ δ + βδ + γ δ + βδ

                                                                                         (32) 
 
with initial and boundary conditions (22). Then for

N 1≥ , 
 

2

.,N .,0 .,02
Ck T 12U U U .

11h 11

−α α

≤ +                       (33) 

Proof: Multiplying both sides of (32) by i, jhU  and 

summing i  from 1  up to M 1− , and j  from 0  up to
N , the following can be written: 

 
N 1 N 1

2
., j ., j x x ., j ., j

j 0 j 0

jN 1 N 1
2 2

j x x .,0 ., j n x x ., j n ., j
j 0 j 0 n 0

U , U ( )U , U

( )U , U ( )U , U .

− −

= =

− −

−
= = =

Δ = μ δ + βδ

+ λ δ + βδ + γ δ + βδ

 

 

                                                                                         (34) 
 
The first term in the right side of equation (34), when 

using (26), will be estimated as follows: 
 

M 1
2 2
x x ., j ., j x x i, j i, j

i 1
M 1 M 1

2
x i, j i, j x i, j i, j

i 1 i 1
M 1 M 1

x i, j x i, j x i, j i, j
i 1 i 1

2 2 2

., j ., j ., j

k ( )U , U k h (( )U )(U )

k h ( U )(U ) k h ( U )(U )

k h ( U )( U ) k h ( U )(U )

kk U U k (1 ) U 0.
h h

−

=

− −

= =
− −

= =

μ δ + βδ = μ δ + βδ

= μ δ + μ βδ

= − μ δ δ + μβ δ

μβ β= − μ − = − μ + ≤



 

 

                                                   
 
                                                                                    (35) 

 
In the third equality of (35), Lemma 2.1(1) is used.  
For estimation of the second term on the right hand 

side of equality (34), using Cauchy–Schwarz inequality 
and (28), result in:  

 
N 1 N 1 M 1

2 2
j x x .,0 ., j j x x i,0 i, j

j 0 j 0 i 1

N 1
2

j x x .,0 ., j
j 0

N 1

j .,0 ., j2
j 0

k ( )U , U kh (( )U )U

k | | ( )U , U

4 k | | U U .
h

− − −

= = =

−

=

−

=

λ δ + βδ = λ δ + βδ

≤ λ δ + βδ

+ β≤ λ

 





 





                                                                                    (36) 
 
According to (9), and using the mean value theorem 

of integrals, the sum of jλ  can be written as the 
following: 

 
j

j 1

N 1 N 1 N 1 N 1t1 1 1 1 1
j j j 1 jt

j 0 j 0 j 0 j 0

T2 2 2
1 1 1 10

1 1 kk k [t d ] (t ) k kt
1 k 1

k 1 1 1 1 1k k dx k T ,
k (k) (2k) (mk) x

−

− − − −
−α −α −α −α α−

= = = =

−α −α α
α −α −α −α −α

λ = − θ θ = − η ≤
− α − α

 = + + + ≤ ≤  α 

   



                                                                                         (37) 
where 1 j j 1(t , t )+η ∈ , and 
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j 1 j

j j 1

N 1 N 1 N 1t t1 1 1 1
j 1 2 3t t

j 0 j 0 j 0

N 1 N 1 T1 1 2 1 2 2
j 2 j j 10

j 0 j 0

1 kk k [ d d ] ( )
k(1 ) 1

1k (t t ) 2k t 2k dx Ck T ,
x

+

−

− − −
−α −α −α −α

+
= = =

− −
α− α− α− −α −α α
+ −α

= =

γ = θ θ − θ θ = η − η
− α − α

≤ − ≤ ≤ ≤

   

  
                                                                                        (38) 

 
where 2 j j 1(t , t ),+η ∈  and 3 j 1 j(t , t )−η ∈ . 
The last term on the right hand side of equality (34), 

will be estimated as follows: 
 

j jN 1 N 1
2 2

n x x ., j n ., j n x x ., j n ., j
j 0 n 0 j 0 n 0

2
., j n ., j2

k ( )U , U kh | |(( )U )(U )

4C Nk T U U 0.
h

− −

− −
= = = =

−α α
−

γ δ + βδ ≤ − γ δ + βδ

+ β≤ − ≤

  

                                                                                         (39) 
 

Since 1
j j j 1 j 12 ( )+ +λ = λ +λ + γ  and substituting 

(31) and (35)–(39) into (34), this inequality can be 
obtained as follows: 

N 1 N 12 2 2
.,N .,0 ., j ., j j x x .,0 ., j

j 0 j 0

N 1

j .,0 ., j2
j 0

2 2 2
.,0 ., j2

11 1U U k U , U k ( )U , U
24 2

4 | | U U
h

4 1 1( k T k T Ck T ) U U ,
2h

− −

= =

−

=

−α α −α α −α α

− ≤ Δ ≤ λ δ + βδ

+ β≤ λ

+ β≤ + +
α α

 







 
so 
2 22 2

.,N .,0 ., j .,02
12(4 ) 2 12U ( k T Ck T ) U U U ,

11h 11
−α α −α α+ β≤ + +

α
 

choosing J, so that .,J ., j0 j N
U max U

≤ ≤
=  , results in; 

 
2 22 2

.,J .,0 .,J .,02

2

.,0 .,J .,0 .,J2

12(4 ) 2 12U ( k T Ck T ) U U U
11h 11

Ck T 12U U U U ,
11h 11

−α α −α α

−α α

+ β≤ + +
α

≤ +

 
Therefore, for N 1≥ , above inequality can be 

written as the following: 
 

2

.,N .,J .,0 .,02
Ck T 12U U U U ,

11h 11

−α α

≤ ≤ +  

 
which completes the proof.  
 
2.2. Convergence 
The convergence of the numerical method (21), with 

initial and boundary conditions (22), is proved similar to 
Theorem 2.1. Denote 

i, j i, j i, je u U , 0 i M, 0 j N.= − ≤ ≤ ≤ ≤  
 
Theorem2.2. Assume that 
i, j{u : 0 i M, 0 j N}≤ ≤ ≤ ≤  is a solution of the 

problem (1), subjected to initial and boundary 
conditions (2). Let .,0 .,1 .,N(U , U ,..., U )  be the solution 
of compact difference scheme (21) with initial and 
boundary conditions (22). When h  and k  tend to zero 
independently, leads to:  

 
4 2

., j1 j N
max || e || O(h , k ).−α

≤ ≤
=                                          

(40) 
 
Proof: Subtracting (18) and (19) from (21) and (22), 

respectively, the error operator can be obtained as the 
following:  

j
2 2

i, j x x i, j n x x i, j n
n 0

e ( )e ( )e E, 1 i M 1,1 j N 1,−
=

Δ = μ δ + βδ + γ δ + βδ + ≤ ≤ − ≤ ≤ −
                                                                                         (41) 

 

and  0, j M, j

i,0

e e 0, j 0,1,..., N.
e 0, i 1,...,M 1.

= = =

= = −
 

 
Multiplying (41) by i, jkhe  and summing on i from

1 up to M 1− , and j from 0 to N , can be obtained 
as follows: 

 
N 1 N 1

2
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jN 1 N 1
2
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−
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 

 
                                                                                   (42) 

 
As in the proof of Theorem 2.1, choosing

.,J ., j0 j N
|| e || max || e ||

≤ ≤
=  results in; 
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2 1 4 2 4 2

.,J
j 0

11 1e e k E, e Ck E . e [C (k kh k t )] e
24 2

[Ck ( j 1) Ch Ck O(h k )] e ,

− − −
−α − −α

+∞
= = =

−
−α − −α −α −α

=

− ≤ ≤ ≤ + +

≤ + + + + +

  


                                                                                         (43) 

therefore, 
2 4 2

.,J .,Je 3C(h k ) e .−α≤ +  

Hence, the convergence order (40) is obtained.  
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